
pascal/MT+ Release 5 Language Reference and Applications Guide

Pascal/MT+

Release 5

Language Reference
and

Applications.Guide

CopyrIght· (c): 1980 by MT ·MicroSYSTEMS

All Rights Reserved

Worldwide

MT MicroSYSTEMS
1562 Kings Cross Drive

Cardiff-by-the-sea, CA. 92007

pasca1/MT+ Release 5 Language Reference and Applications. Guide

COPYRIGH.T

'copyright (c) 1980 by MT MicroSYSTEMS. : All rights reserved. No part
of this pUblication. may be reproduced, t~ansmitted, transcribed,
stored in a retrieval system, or translated into any language or
'computer .l~nguage, in any form or by : any means, electrq~ic,
mechanical, magnetic, optical, chemical, manual or otherwise, without
prior written permission of MT MicroSYSTEMS, 1562 King~ Cross~ Drive,
Cardiff, California, 92037.

permission is grant~d to reproduce or abstract the example programs
shown in the enclosed ~igures for the purpose of inclusion within the
reader's programs.'

DISCLAIMER

MT MicroSYSTEMS makes no~£epresentations or warranties with respect to
the contents hereof and specifically disclaims any implied' warranties
of merchantability or fitness for any particulai purpos~. Further, MT
MicroSYSTEMS reserves the right to revise this pUblication and·~o make
changes f£om' time to 'time in the content h~reof without _obligation of
MTMicioSY~TEMS to notify any person of such revision or chang~s.

TRADEMARKS

Pascal/MT+ is ~~radema~k of MT MicroSYSTEMS. Credit·i~ given·· .. td
Digital Reseaich of California for its trademarks: CP/M, MP/M-80,
SID, and MAC. Credit is giv~n to Microsoft of. Wash~ngton state for
its trademarks: MACRO-83," FORTRAN-80 and LINK-80. Any reference ·~t.9
CP/M,. MP/M, SID, MAC; "83, . FORTRAN, and L80 als~ refer to the~
~appropriate trad~marked ~~ftware packages.

I Second printing: October 1980

pascal/MT+· Release 5 Language Reference and Applications Guid~

Table of Contents·

System Overview.

LANGUAGE GUIDE

1.0

2.0

3.0

5.0

6.0

7.0

8 • "

9.0

Introduction.
• 0 • • • • • • • • • • • it ••

Summary of the ·language.
Notation, Terminology, and vocabulary ••

Identifiers, Numbers and Strings •••••••
Constant definitions •••
Data type definitions •••••••••
6.1 Sim~le types •••••••

6.1.1 Scalar types.
6.1.2 Standard types •••
6.1.3 Subrange types •.

~
6.2 Structured types •••

6.2.1 Array types •••
6.2.2 Record types •••
6.2.3 Set types ••
6.2.4 File types.

.
6.3 Pointer types •••• . ..
Declarations and denotations of variables ••
7.1 Entire variables •••••••••
7 .2 Component var"iables ••• ." •••

7.2.1~Indexed variables ••
7".2.2 Field designators ••
7.2~3 File buffers •••••

7.3 Referenced variables ••••••

Expressions ••••••••••••••.•
8.1 Operators •.•••••.••••••

8.1.1
8.1.2
8.1.3

The operator not ••
Multiplying operators.
Adding operators •••••••

8.1.4 Relational operators ••
8.2 Function d~signators •• ~.

Statements.
. ~ . 9.1 Simple statements ••••••••••••

9.1:1 Assignment statements ••
9.1.2 Procedure statements •••
9.1.3 Goto statements ••••••••

.
9.2 Structured statements ••••••

9.2·.1 Compound statements.

3

. . . .

.. .

Page.

8

10

11

12

13

14

15
15
15
15
15
16
16
17
17
18
~8

19
20
2C3
20
20
20
20

21
22
22
22
22
22
22

23
23
23
24
24
24
·24

Pascal/MT+" Release 5 Language Reference and Applicatiops Guide

Table of Contents"
------~----------

System Overview. ,

LANGUAGE GUIDE

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

Introduction. ~ . .
Summary of the "language.". .. .,
Notation, Terminology, and vocabulary ••

Identifiers, Numbers and Strings •••••••

Constant definitions •••
Data type definitions •••
6 • 1 S i m pI e type s • • • •• • •

6.1.1 Scalar types.
6.1.2 Standard types.
6.1.3 Subrang~ types ••

.. . .

6.2 Structured types •••
6.2.1 Array types •••
6.2.2 Record types.
6.2.3 Set types ••
6.2.4 File types.

.
· -

• .0 • .. ' ...
6.3 Pointer types •••• • ••• e.

Declarations and denotations of variables ••
7.1 Entire variables ••••••••••
7 .2 Component var"iables •••• " ••

7.2.l~Indexed variables.
7".2.2 Field designators.
7.2~3 File buffers ••••

7.3 Referenced variables.

Expressions ••••••••••••••
8.1 Operators ••••••••••••

8.1.1 The operator not.
8.1.2 Multiplying operators.
8.1.3 Adding operators •••••
8.1.4 Relational operators ••

8.2 Function d~signators •• ~ ••••••

Statements.
9.1

9.2

Simple statements •••••••••••••
9.1.1 Assignment statements ••
9.1.2 Procedure statements ••
9.1.3 Goto statements ••••••
Structured statements ••••••
9.2~1 Compound statements.

. .

.. ".

·
. . . .
. • fa •

.'.

page

8

10

11

12

13

14

15
15
15
lr----
1~-
16
16
17
17
18
~8

19
20
20
20
20
20
20

21
22
22
22,
22
22
22

/

2:
23
23
24
24
24
24

pascal/MT+ Release 5 Language Reference and Applications Guide

pascal/MT+ APPLICATIONS GUIDE:

Table of Contents

1.0

2.0

3.0

5.0

Introduction •••••••••••••••••••••••
1 • 1
1.2
1.3

Purpose of Applications Guide.
Compile' and run a sample program ••
Contents of Distribution disk ••••

.0- .

Compiler Operation •••••••••••••••••••• ; ••••••••
2.1 System requirements for running Pascal/MT+.
2.2 Run time requirements for pascal/MT+ ••
2.3 Invocation •.••.•••••
2.4 Compilation data ••
2.5 ComRiler toggles ••
2.6 Error messages.

Lin k e rope rat ion. • • .. • • • • • • • . • • . • . • • •
3.1
3.2
3.3

Invocation and commands ••••••••
Attributes of linkable modules.
Using other linkers.

Data Types ••

• 10 •

. ..

• • ...!-,.,..

4 • 1
4.2
4.3
4.4
4.5
4.5
4.7

CHAR ••••
B·OOLEAN.
INTEGER.

...

-REAL ••
BYTE •.•
WORD ••
STRING.
4.7.1
4.7.2
4.7.3

De f i~n i t ion.
Ass ignmen t.
·Compa r i sons.

4.8 SET •••••.•••••..••.

Summary of built-in procedures
5.1
5.2
5.3
5.4
5.5
5.6-
5. 7 ~-
5.8

MOVERIGHT, MOVELEFT ••
EXIT •••
TSTBIT, SETBIT,
SHR, SHL •••••
HI, LO, SWAP.
ADDR.
WAIT.
SIZEOF •••••

5.9 FILLCHAR.
5.10 ·LENGTH.
5.11 CONCAT.
5 .12 COpy. ,

..
5 .13 POS •••
5.14 DELETE ••••

CLRBIT.

. -.
. '.

and parameters ••

.

Page

45
45
45
48

49-
52
53
53
54
54
59

l50
6~

F53
64

65
65
65
(in
67
l58
58
68
68
70
72
73

74
75
77
78
79
80
81
82
83
84
85
8-6
87
88
89

pascal/MT+· Release 5 L~nguag,e Reference and Applications Guide

6.0

7.0

8.0

9.0

10.0

11.0

12.0

13.0

14.0

15.0

i6.0

· · · INSERT •
ASS"rGN.
WNB, GNB.

·
• •••••••••• 0 • ·

BLOCKREAD, BLOCKWRITE.
• • a.-OPEN, OPENX •• ' •• .;

CLOSE, CLOSEDEL. ·
PURGE •••••••••••
IORESULT ••••••••••••

.

......... · . ·

. 5.15
5.16
5.17
5.18
5.19
5.20
5.21
5.22
5.23
5.24

MEMAVAIL, MAXAVAIL •••••••••••••••••••••••••
Quick reference guide to built-in routines •••

Interrupt procedures ••••••••••••••••••••• ·

INLINE and Mini assembler.
7.1
7.2

Syntax •••••••••••••••••••• . .
Appl tcations ••• ~ ••••.••••••
7.2.1 Code examples ••••••••••••
7.2.2 Constant data generation ••

·

INP and OUT arrays ••••••••••••••
Chaining ••••••

Disassembler ••••••
10.1 Instructions ••••
10.2 Sample •••••••••

Debugger ••••••••••••
11.1 Introduction.
11."2 Commands ••••• . .
Run-time Environment ••
12.1 Library routines ••
12.2 Console I/O •••••••
12.3 File I/O
12.4 ROM env i r.onmen ts ••

· .

· .

· . . .
· ·

pascal/MT+ . Assembly Interfacing. .
13.1 Assemblers •••••••••••• ·
13.2 Naming considerations •• · . .
13.3 Variable accessing •• · .
13.4 Parameter passing •• ·
13.5 Restriction~ •••••• · .
Run-time error handl ing •••••• 0.
14.1~Range checking •••••••••••
14.2 Exception checking ••••• ;.
14.3 User supplied handlers •••

.

. · . . . ·

.. . -...

. .

.
• • • • • ·

Index •••••• · .
Append ices ' ••••••
i6.1 Error messages ••

6

· .

90
91.
92
93
94
95
96
87
98
99

100

103
103
10"3
104
105

106

107

110
110
III

119
120
121

124
124
128
129
129

133
133
133
133
136
138

139
139
140
140

141

147
147

pascal/MT+ Release 5 Language Reference and Applications Guide

16.2 Rese'rved ,words ••••••••••••••••••••••••• ,..... 155
16 • 3 Loa n g u age s y n t a x des c rip t ion. • • • • • • • • • • • • • • • • 15 6
16.4 S~mmary of option switches and toggles...... 164

7

pascal/MT+ Release 5 Language Reference and Ap·plications Guide

0.0 system Overview
------------~--

PLEASE NOTE: THE PURPOSE OF THIS DOCUMENTATION IS NOT TO TEACH
THE pascal LANGUAGE BUT RATHER TO DESCRIBE IN DETAIL THE SPECIFIC·
IMPLEMENTATION CALLED Pascal/MT+. WE STRONGLY RECOMMEND THAT THE USER
PURCHASE EITHER Jensen and Wirth or Addyman and Wilson AS Pasbal
TEXTS {BOTH ARE AVAILABLE FROM BOOKSTORES AND BYTE M.AGAZINE-, AND ~OTH .
ARE·PUBLISHED.BY SPRINGER / VERLAG IN NEW YORK CITY. -

Contained in this manual is the documentation for the Pascal/MT+
software system. The Pascal/MT+ package consists of the following
software components:

pascal/MT+
Link/MT+
PASLIB.ERL
RTP/MT+
Debug/MT+
Disasm/MT+
Pa tch/MT+

cpmpiler
1 inke r
run-time library relocatable object file
run-time library source file
run~time debugging tool
disassembler
System patch application program

Also included -is a group of utility programs written in
pascal/MT+ which ~re included for user information as well as their
intrinsic value as tools.

"The Pascal/MT+· system has evolved from an original goal as an
assembly language replacement tool into a full ISO (International
Standards Organization) Standard Pascal system including capability
for modular compilation. The Pascal/MT+ compiler is a completely new
compiler designed .from the beg~inning to implement· the entire Pascal
language and is not a revision of our popular Pascal/MT package.
Pascal/MT+ and pascal/MT have been used for-such diverse applications
as multi-processor measurment machines, ptocess controllers, business
applications and software tool development (compilers, assemblers,
etc.) • All of the features and facil i ties present in our Pascal/MT
iystem which has been sold to over 1000 users are present in
Pascal/MT+. Conformance to the ISO standard has required some
syntactic changes from Pascal/MT but the functionality of our
extensions to the Pascal language remain the same as Pascal/MT.

The Pascal/MT+ system/is designed to be an effective tool both
in computer resource and human resource utilization. The Pascal/MT+
compiler, linker, debugger and disassembler have been designed with an
eye to practical -user needs such as minimum wa i ting time and
visibility. We are -dedicated to the construction of useful software
"power tools" whiqh amplify the creative po~er of the
programmer/engineer. If after·having read this manual and/or having

-·used the pascal/MT+ system, you have any ideas for improving the
usability of our software please write or call. We would be glad to
hear from you.

8

pascal/MT+ Release 5 Languag~ Reference and Applications Guide

.pascal/~T+ Language Guide

9

pascai/MT+ Release 5" Language Reference and Appl ications Guide

l.~ Introduction

The purpose of this langu~g~ guid~ is to define the language
features of Pascal/MT+. This guide assumes that the reader is·
familiar with the Jensen and Wirth and/or the ISO. draft standard
(currently DPS/7l85). The standard Pascal features which are
different in pascal/MT+ than those "in the standard and in Jensen and
wirth's 'Report' are described by section. . In each section ~NF
(Backus Normal Form) syntax is provided for reference. The co~plete
BNF description of the language is present in section· 16.3 o-f the
applications guide. Each section corresponds to W~rth's 'Report'
beginning with section 2.

l~

pascal/MT+ Release 5 .Lang~age Reference and Applications Guide

2.0· Summary of t~e language

The language compiled by Pascal/MT+ is identical to the ISO
draft standard (DPS/7185 as of 10/1/80) with the following add~ti6ns:

Additional pre-defined scalar types: BYTE, WORD, STRING
Expressions may contain the pre-declared INP array
Assignments may be made to the pre-declared OUT array
For 16-bit CPU systems ·INpW and OUTW for WORD .1/0
Operators on integers & (and), !, I (or), and - ,\,? '(not)
Else on CASE statement .
Interrupt and External procedures
Additional built-in procedures and functions

.Modular compil§tion facilIties
Re-direc'table I/O facilities (user written char I/O)

11

pascal/MT+ Release 5 Language' Reference and Applications Guide

3.0 Notation, terminology, 'and vocabulary
------------~-------------~----------

<letter>

<d-igit>

<special

.. -.. - A B I c I D E F I G H I I f J I
K L I M I N 0 P I Q R I s I T I
u V I w I X Y Z I a b I c I d I
e f I g I h i j I k 1 I In I n I
n 0 I p I. q r s I t u I v I wi
x y I z I @

: : = . ~ 1 2 3 I 4 I 5 6 I 7 I 8 I 9 I·
A B C D 1 E 1 F {only allowed in HEX numbers}

symbol> .. - {r;-eserved words are listed in section l6.2} .. -
+ I I * I I' I = I <> I < J > I .
<= I >= I I) I .[. I J I { I } I

1 1-- I I I , I I .- ;

{the following .are additional or substitutions:}
(. I .) I I \ I ? I I I I $ I &

(. is' a synonym for. [
.) is a s yn 0 n ym for 'J

, \, and? are synonyms
! , 'and. I.. are synonyms
&

(see section 8.1.1)
(see section 8.1.2)'
(see section 8.1.3)

The symbol '@' is a legal letter in addition to those listed in
the 'Report'. This has been added because all of our' run-time library
rou~ine are written using this'special character and this allowed us
to decide which routines should be written in Pascal and wh'ich should
be written in assembly language •.

A comment beg inning wi th '(*' must end wi th ,*)". A comment
beginning with '{' must end with I}I. To allow nested comments the
begin comment delimiter must be the same as the end comment
delimiter. Thus, in Pascal/MT+ the following is legal:

(* outer comment ••• { inner comment •••• } ••• outer comment *)

12

·pascal/M~+ ,Release 5 ·Language Reference and Applications. Guide

4.0 Identifiers, numbers,'and strings

<identifier>
<letter or digit>

::= <letter> {<letter or digit or underscore>}
::= <letter> I <dig it> I

<digit sequence>
.<unsigned integer>

<unsigned real>

::= <digit) {<digit>}
::= $ <digit sequence>

<digit sequence>
::= <unsigned integer> <digit sequence>

<unsigned integer> • <digit sequence>
E <scale factor>
<unsigned integer> E <scale factor> .

::= <unsigned integer I <unsigned real> <unsigned number>
<scale factor>
< sign>

::= <unsigned integer> I <sign><unsigned integer>
•• - + I -.. -

< string>' ::= , <character> {<ch~racter>}' I "

All identifiers are significant to 8 characters. External
identifiers are significant to either six or seven characters
depending upon usage (see section 14 of the _language guide and section
13.2 of the applications guide) The underscore character" () is legal
between letters and digits in an identifier and is ignor~d by the
compiler (i.e. A B is equivalent to AB). Identifiers may begin with
an '@'. This is t~ allow declaration of "external run-ti~e, routines
within a Pascal program. Users are, in general, advised ~o ~void the

"'@' character to eliminate the chance of conflict with run-time
routine names.

Numbers may be hex as well as decimal. Placing a '$'
of an integer number causes it to be interpreted as a hex
the compiler. The symbol.<digit> now includes: 'A', '.B',
"E' and 'F'. The~e may b~ upper or lower case.

13

in front
number by

'C', 'D',

pascal/MT+ Release 5 Language Reference and Applications Guide

6.0 Data type difinitions

< type>

<type definition>

::= <simple type>
<structured type>
<pointer type>

::= <identifier> = <type>

6.1 Simple types

<simple type> ::= <scalar type> I'
<subrange type> 1
<type identifier>

<type identifier> ::=, <identifier>

6.1.1 Scala,r types

<scalar type> ::= <identifier> { , <identifier>})

..

5.1.2' Standard types

T~e following types,are standard in Pascal/MT+

INTEGER
REAL

-BOOLEAN
CHAR

BYTE
WORD
STRING

Three additional standard types exist in Pascal/MT+. See the
applications guide for information on representation and usage of all
standard and structured types.

STRING: Packed array [0 •• n] of char~,
byte 0 is dynamic length byte
bytes l •• n are characters.

BYTE Subrange 0 •• 255 with special attribute that
it is compatible also with CHAR type

WORD .: Unsigned native machine word.
Guaranteed to be the same size as 3 pointer.
(integers and pointers are different sizes
in some 16/32 bit machines) •

pascal/MT+ Release 5 . Languag~ Reference and Applications Guide

6.1.3 Subrange types

<subrange type> ::= <constant> •• <constant>

6.2 structured types

<structured type> ::= <unpacked structured type>
PACKED <unpacked structured -type>

<unpacked structured type> ::= <array type> I
<record type> I
<set type> I
<file type>

The reserved word PACKED is detected and handled by the pascal/MT+
compiler as follows~

All structures are packed at the BYTE level even if the
PACKED reserved word is not found. The user is refered

··to ~ection 13.0 in the applications guide for a
description of how "fields and contiguous variables
are allocated for variou~ target machines.

Array types

-<array type>

< s t ring . a r ray>
<max leng th>

<intconst>

<int const id>
<normal array>

"<index type>
<component type>

::= <normal array> r
<string array>

::= STRING <max length~
::= [<intconst>] r

<empty> _
::= <unsigned integer>

< int c"onst id>
::= <identifier>
::= ARRAY [<index type> {,<index type>}] OF'

<component type>
::= <simple" type>
: : = < type>

Variables of type STRING have a default length of 81 bytes (80
data characters). A different length' can be specified in square
brackets following the word STRING. The length must be a constant

. (either literal ~r declared e.g. STRING[S] or STRING[xyz] (where xyz
is a constant (xyz=10))) and represents the length of the DATA
portion (i.e. one more byte is actually allocat~d for the length)~

16

Pascal/MT+ Release 5 Language Reference and Applications Guide

6.2".2 Record types

I
<record type>
<field list>

<fixed part>
<record section>

<variant p~rt>

<variant>

<case label list>
<case label>
< tag field>

6.2.3· Set types

::= RECORD <field list> END
::= <fixed part>

<fixed part> ; <variant part>
<variant part>

::= <record section> {;<record section>}
::= <field identifier> {,<field identifier>}

<empty> -
::= CASE <tag field> <type identifier> OF

<variant> {;<variant>l
::= <case label list> : «field list»

<empty>
::= <case label> {,<case label>}
: : = <constant>
::= <identifier> ': I

;"

<empty>

<set type>
<.ba se type>

::= SET OF <bas~ type>
::= <simple type>

: <type>

The maximum·range of a base type is 0.:255. For example, a set
of (0 •• 10000] is no~ legal but the set of CHAR or set of 0 •• 255 is
legal but set of 0 •• 256 is not •.

17

pascal/MT+ Release 5 Language Reference and Applications Guide

6.2.4 File types

<file type> :1:= file {of <type>}

Untyped files are allowed. They are used for CHAINING (see 9.0
in applications guide) and are also used with BLOCKREAD and BLOCKWRITE
procedures (see 5.18 in applications guide)". The user should be
extremely careful when using untyped files.

When wishing' to read a fil'e of ASCII characters. and using
implied conversions for integers and reals the user should use the
pre-defined type TEXT. TEXT is NOT exactly the same as FILE OF CHAR
but has conversion implied in READ and WRITE procedure calls and also
may be used with READLN and WRITELN.

6.1 Pointer types

<pointer type> ::= A <type identifier>

Pointer types are identical to the standard except that" weak
type checking exists when the RELAXED type checking feature of the
compiler is enabled (the default) (see sections 2.6' in t.he
applications guide). In this case pointers and WORDs used as pointers
are compatible in 'all cases.

18

Pascal/MT+ Release·S Language Reference and Applications Guide

7.0 Declarations and 'denotations of variables

<variable> · .-· .- <v.ar>
<externa'l var>
<absolute var>

<external var> · .-· .- EXTERNAL <var>

<absolute var> · .- ABSOLUTE [<constant>] '<var> · .-
<var> · .- <'enti re var iable> I .. -

<component variable> I
<referenced variable>

ABSOLUTE vari~bles may be declared if the user knows the address
at compile time. The user declares variable(s) to be absolute using
special syntax, in.a VAR declaration. ABSOLUTE ,variables are, not
allocated any.space in the user's data segment by the compiler and the
user is responsible for making sure that no compiler allocated
variables confl ict wi th the absolute variables., NOTE: STRING
VARIABLES MAY NOT EXIST AT LOCATIONS <= 10·0H. This is done so that
the run-time routines can detect the gifference betw~en' a string
address' ahd a character on the top of the stack. Characters have· the
high byte of 0 when present on the stack. After the colon, (:) and
before the type of the variab1e(s) the user places the keyword
ABSOLUTE followed by the address of ·the variable in br~ckets ([•••]):

Exampl~s:

I: ABSOLUTE [$8000] INTEGER;
SCREEN: ABSOLUTE [$C000] ARRAY[0 •• 151 OF ARRAY[0 •• 63] OF CHAR;

19

pascal/MT+ Release 5 Language' Reference and Applications Guide

7.1 Entire variables

<entire variqble> ::= <variable identifier>
<variable identifier> ::= <identifier>

7.2. Component 'variables

<component variable> ::= <indexed variable>
<field designator>
<file buffer>

7.2.1 Indexed variables

<indexed variable>
<?rray variable>

::= <array variable> [<expression> {,<expression>}]
::= <variable>

STRING variables are to be treated-as a PACKED array of CHAR for
subscripting purposes. The valid range is ~ •• rnaxlength where
~axlength is 80 for a' default length (see section 7.~).

7.2.2 Field designators

<field designator> ::= <record variable> • <field identifier>
<record variable> , ::= <variable>·
<field identifier> ::= <identifier>

7.2.3 File buffers

<file buffer> ::= <file variable> A

<file variable> ::= <variable>

7.3 Referenced variables

<referenced variab!e> ::= <pointer variable> A

<pointer variable> ::= <variable>

pascal/MT+ Release 5 Language Reference and Applications Guide

8.0 Expressions

<unsigne~ constant> ::= <unsigned number>
< str ing >

< factor>

<set> .
<element list>

< element>

<term> ,
<simple expression>

<expression>

NIL
<constant identifier>

::= <variable>
<unsigned constant>
<function ,designator>
(<expression>)
NOT <factor>

::= [<element list>]
::= <element> {,<element>}

<empty>
::= <expression>

<expression> •• <expression>
::= <factor> <multiplying operator> <factor>
::= <term>

<simple expression> <adding operator> <term>
<adding operator> <term>

::= <simple expression>
<simple expression> <relational operat~r>·

'<simple expression>

I
1
1

. The.pre-declared arrayINP is used in expres~ions to return a
~yte from an I/O port. The INP array is of type BYTE and·therefore
may be used'with integers and CHAR variables. The arra~ is indexed by
an expression. If the expression is a constant the compiler will

. generate in-line code for the port access. Otherwise a subroutine is
called for variable port numbers. The INPW array is present on the
l6-bit CPU system for WORD oriented input ports. Allowable range fot
port numbers is CPU dependent, 0 •• 255 for 808~/Z80, see the specific
processor applicatidns' guide for more information on non-8080 type
CPUs.

Example:

x := INP[$55];

x := INP[baseaddr+9];

'x may be of type BYTE, CHAR or INTEGER

An additional category of operators on l6-bit v~riables' are &,1
(also I), and·- (also \. and ?) denoting AND, OR and ONE's complement
NOT, respectively. These have the same precedence as their
equivalent boolean op~rators and- accept any type of operand with a
size <= 2 bytes.

?1

pascal/MT+ Release 5 Language Reference and Applications .Gu.ide

8.1 Operators

8.1.1 The operator not.

<logical not operator> ::= NOT \ ?

- (synonyms \ and ?) is a NOT operator for non-booleans.

8.1.2 Multiplying operators
------------------~--

<multiplying operator> ::= * I / I DIV I MOD I AND I &

& is an AND operator on non-booleans.

8.1.3 Adding operators.

<adding operator>-::= + OR I. !

!. (synonym I) is an OR operator on n.on-booleanso

8.1.4 Relational operators

<relational operators> ::= = I <> I < I <= I > I >= I IN

8.2 Function ?esignat9rs .
-~----------~-------

<function designator> ::= <function identifier>
<function identifier> { <parrn> {,<parm>)

<function identifier> ::= <identifier>

22

pasdal/MT+ Release 5 Lang~age Reference and Applications Gulde

9.0 Statements

<~tatement~ ::= <label> <unlabelled statement>
<unlabelled statement>

<unlabelled statement> ::= <simple statement>
<structured statement>

<label> ::= <unsigned integer>

9.1 Simple Statements

<simple statement ::= <assignment statement>
<procedure statement>
<goto statement>
<~mpty statement>

<empty.statement> ::=,<empty> "

9 • 1.1 Assignment statements

<assignment statement> ::= <variable> := <expression>
<function·identtfier> := <expression>

pa$cal/MT+ implements a pre-declared BYTE array called OUT to
which may be assigned items of type integer, byte, or char. OUT is
i~dexed by an expression. The range is CPU dependent and· is 0 •• 255
for 8080, 8085, and Z80. For··16-bit CPU systems the pre-declared WORD
array OUTW is also present. For 808S systems the system accepts the
strings: RIM85 and SIM8S as-subscripts for. INP and OUT. RIM85 and
SIM85 are not stored in the symbol table but are examined for using a·
~tring comparision therefore users not compiling to "an 8085 target
machine ·are not penalized. Consult the CPU applications guide for
more information. As in the case of INP, if the expression is a
constant the compiler will generate in-line code for the port access.
Otherwise a subroutine is called to handle variable port numbers.

OUT [po r t n urn 1 : = $ 8 8 ;

To the 1is~·of exceptions to assign~ent compatibility add:

1. Integer expressions may be assigned to variables of
type pointer. For example:

TYPE X = RECORD
"(* fi~ld declarations *)

END;

23

pascal/MT+ Release 5 Language Reference and Applications Guide

VAR P : A~;

I : INTEGER;
P := 1+1;

2. Expressions of type CHAR may be assigned to variables
of type STRING. -

3. Variables of type CHAR and literal characters may
be assigned to variables of type BYTE.

4. Expressions evaluating to the type WORD may be
assigned to pointer variables.

5. Expressions evaluating to the type INTEGER may be
assigned to variables of type WORD

9.1.2 Procedure statements

<proce~ure statement>· :: = <procedure identifier>
<procedure identifier>

<proc~dure identifier>::= <ideritifier>
<parm> ::= <procedure identifier>

9 .1.3 Goto statements

<function identifier>
<expression>
<variable>

<goto statement> ::= goto <label>

9.2 Structured statements

<structured statement> ::= <repetitive statment>
<conditional statement>
<compound statement>
<with statement>

9.2.1 Compound~tatments

< pa rm> {, < pa rm>}) I

<compound statement> ::= BEG~N <statement> {,<statement>} END

24

pasca1/MT+ Release 5 .Languag~ Refer'ence and App1 ications Guide

9.2.2 Conditional stat~ents

<conditional, statement> ::= <case statement>
<if statement>

9.2.2.1 If statements

<if statement> ::= IF <expression> THEN <statement> ELSE '<statement> .1
IF <expression> THEN <statement>

9.2.2.2 Case statements

<case statement> ::~ CASE <expression> OF

..

<case list> {,<case list>}
{ELSE <statement>}
END

<case list> ::= <label list> <statement>
<empty>

<label list> ::= <case label> {,<case label>}

Pascal/MT+ implements an ELSE clause on the case statement.. In
addition if the .se1ecting expression does not match any of the case
selectors the program flow will "drop through" the case statement.
This is different than the s~andard which says this condition is an
e r ro r •

.9.2.3

Example:

CASE CH OF
'A' : WRITELN('A');
• Q I : WRI TELN (I Q ') ;
ELSE

WRITELN('NOT A OR Q')
END

Repetitive statements
. .

----------~----------

<repetitive statement> ::= <repeat statement>
<while statement)
<for statement>

25

pascal/MT+ Release 5 La~guage.Reference and Applications Guide

9.2.3.1 While statements
----------~-----

<while statement> ::= WHILE·<expression> 1;>0 <statement>

9.2.3.2 Repeat statements

<repeat statement> ::= REPEAT <statement> {,<statement>} UNTIL <expression>

9.2.1.3 For statements

<for statement>·
<for list>.

::= FOR <ctrlvar> :=" <for list> DO <statement>
::~ <expression> DOWNTO <expression> I

<expression> TO <expression>
::= <variable) <ctrlvar>

9 .2.4 W.i th sta tements

<with statement)
<record variable list>

::= WITH <record variable list> DO <statment>
::= <record variable> {,<record variable>J

The user should note~that the ISO standard differs fro~ Jensen
and Wirth in that only LOCAL variables are allowed as FOR loop control
variables. This prevents such programming errors as the inadvertant
use of a GLOBAL variable as a FOR control variable when burried 5
levels deep in nesting.

In a recursive stack.frame environment the user is limited to 16
.FOR and / or WITH statements in a single procedure / function. This
"i 5 so tha t the compiler can allocate a fixed number of tempo ra ry
locations (16 words) in the data segment for the procedure / function.
This environment is present in all CPUs except the 8080 / Z80 default
environment (static allocation) • The 8080 / Z80 enter the stack frame
environment using the $S switch.

., 1: __

•

pascal/MT+ Release 5 .Langu~ge Reference and Applications Guide

10.0 0 Procedure declarations

<procedure ~eclaration)

<block>

<procedure heading>

<parmlist>

<fparm>

<parm group>

<conformant array>

<conarray2>

<indxtyp>

<ordtypid>

<scalar type identifier>

<subrange type identifier>

<label declaration part>

<constant definition part>

<type definition part>

· .-· .-
· .-· .-

EXTERNAL <procedure heading>
<pr~ce~ure heading> <block>
<label declaration part>
<constant definition part>
<type definition part>
<variable declaration part>"
<procfunc declaration part>
<statement part>

· .-· .- PROCEDURE <identifier> <parmlist)
PROCEDURE <identifier> ;
PROCEDURE INTERRUPT [<constant>] ;

· .­.. - (0 <fp~rm> {,<fparm>}

::= <procedure heading>
<function heading>
VAR <parm group>
<parm group>

I
I'
I

::= <identifier> {,<identifier>}
<type identifier> .

<identifier> {,<identifier>}
<conformant array>

::= ARRAY [<indxtyp> {;<indxtyp}""] OF
<conarray2>

::= <type identifier>
<conformant array>

::= <identifier> •• <identifier>

· .­... -

· .-· .-
· .-· .-
· .-· .-

· .-· .-

<scalar type identifier>
<subrange type identifier>

<identifier>

<identifier>

<empty> I
LABEL <label> {,<label>}

<empty> I
CONST

<constant definition>
{;<constant definition} ;

::= <empty> I
TYPE

<type definition>

27

<ordtypid>

Pascal/MT+ Release 5 Language Reference and Applications Guide

{; <type defini tion>} . ; .

<variable declaration-part> ::= <empty> I

<procfunc part>

<proc or func>

<statement part>

VAR
<variable declaration>
{;<variable declaration>} ;

::= {<proc or func> ; }

::= <procedure declaration> I·
<function declaration>

::= <compound statement>

28

pascal/MT+ Release 5 Language Reference and Applications Guide

, A special procedu~e type is implemented in pascal/MT+, the
interrupt procedure. The user selects the vector to be ass~ciated
with each interrupt.' The procedure is declared as follows:

I

PROCEDURE INTERRUPT(vector number] procname;

The user is referred to section 6.~ of the applicati6ns 'gbide
for more information on using INTERRUPT procedures.

, The user should note that the ISO standard ha~ added the
CONFORMANT ·ARRAY SCHEMA for passing arrays of similar structure (i.e •.
same number of dimensions, compatible index type, ans same element
type), but different upper and lower bounds. The user may now pass,
for example, an array dimensioned as l •• l~ and an array 2 •• 50 to a
procedure which expecting an array. The user defines the'-array as a
VAR'parameter and in the process of declaring the array the use~
defines also variables,to hold the upper and lower b6und of the array.
These upper and lower bound items are filled in at RUN-TIME· by the
generated code. The user should note that in order to pass arrays in
this manner the index type 'must be compatible with the type of the
conformant array bounds. ' .

Below is an example of p~ssing two arrays to a procedure which.
displays the contents of the arrays on the file OUTPUT:

2,9

pascal/MT+ Release 5 ' ~~ngua~e Reference and Applications Guide

PROGRAM DEMOCON;

TYPE ,
N"ATURAL = 0 •• MAXINT; (* FOR ,USE I~ CONFORMANT ARRAY DECLARATION *)

VAR
Al : ARRAY [1 •• 10] OF INTEGER;
A2 : ARRAY [2 •• 20] OF INTEGER;

PROCEDURE DISPLAYIT(

VAR AR1 : ARRAY [LOWBOUND •• HIBOUND:NATURAL] OF INTEGER

) ;

(* THIS DECLARATION DEFINES THREE VARIABLES:
",..

AR1 THE PASSED ARRAY
LOWBOUND: THE LOWER BOUND OF ARI (PASSED AT RUN-TIME)
HIBOUND THE UPPER BOUND OF ARI (PASSED AT RUN-TIME)

*),

VAR
I NATURAL;

(* COMPATIBLE WITH THE INDEX TYPE OF THE CONFORMANT ARRAY *)

BEGIN
FOR I := LOWBOUND TO HIBOUND DO

WRITELN('INPUT ARRAY[' ,1,']=' ,AR1[I)
END;

BEGIN (* MAIN PROGRAM *)

DISPLAYIT(A1);

DISPLAYIT (A2)

END.

(* CALL DISPLAYIT AND PASS Al EXPLICITLY AND
1 AND 10 IMPLICITLY *)

(* CALL DISPLAYIT AND PASS A2 EXPLICITLY AND
2 AND 20 IMPLICITLY *)

30

pascal/MT+ Release 5 Language Reference and Applications Guide

10.1 Standard procedures· ____ L _____________ _

The following is a list tif pascal/MT+ built-in procedures
(except I/O which are listed in section 10.1.1). See the applications

.guide for parameters and usage. These procedures are pre~dec1ared in
a scope surrounding the program therefore any ·user routines of the
same name will take precedence.

NEW
DELETE

DISPOSE
COpy

EXIT
CONCAT

INSERT

10.1.1 File. handling procedures
--------------~---------

All standard file handling procedures are included. In addition
the procedure ASSIGN(f,string) is added where f is a file and string
is a literal or variable string. ASSIGN assigns the .external file
name contained in string to the file f. It· is used preceeding a
RESET or REWRITE. See section 5.16 in_the Applications Guide for
details.

Listed below are the names of the file handling procedures:

GET
ASSIGN
OPEN
CHAIN

PUT
CLOSE
OPENX
PAGE

RESET
CLOSEDEL
BLOCKREAD

REWRITE
PURGE
BLOCKWRITE

pascal/MT+ Release 5 Language Reference and Applications Guide

10.1.2 Dynamic allo~ation procedures

In addition to NEW and DISPOSE, MEMAVAIL andMAXAVAIL are alsu
included. See section 5.23 of the applications guide for a
description of these functions.

10.1.3 Data transfer procedures

PACK UNPACK

32

pascal/MT+ Release 5 Language Reference and Applications Guide

ll.~ Function declarations

<function ~ecl> ::= EXTERNAL <function heading> I
<function heading> <block>

<functon heading> ::= F~NCTION <identifier> <parmlist> : <result type> ;
FUNCTION <identifier> : <result type> ;

<result type> ::= <type identifier>

11.1 Standard functions

Listed below ar~ the names of the standard functions support~d:

ABS SQR SIN COS
EXP LN SQRT ARCTAN
ODD TRUNC ROUND ORO
WRD eHR SUCC PRED
EOLN EOF 'IORESULT MEMAVAIL
MAXAVAIL AD DR SIZEOF POS
LENGTH LENGTH

11. 1'.1 Arithmetic functions

11.1.2' Predicates

11.1.3 Transfei'functions
---------------~-~

WRD(x) : The value x .(a variable or expression) is treated as
the WORD (unsigned integer) value of x.

11.1.4 Further standard functions

33

pascal/MT+ Release 5 ~angu~ge Reference and Applications Gui~e

12." . Input and Output

I Pascal/MT+supports all Standard Pascal I/O facilities.

In addition to the standard I/O facilities, Pascal/MT+ provides
a mechanism by which Pascal/MT+ programmers can write their own
character level I/O drivers in" Pascal/MT+. This facility" allows the

'ROM based program to be system independent and allows the user to use
the input and output format conversion routines with strings,_ '1/0
ports, etc. -

The re-directed I/O facility is simple and easy' to" .use. The
user must simply place the address of a routine, in square brackets,
after the left parenthesis and before the parameter list in a READ,
WRIT"E 0 r WRITELN staterne·nt.

"EXAMPLE :.

READ ([ADDR (getch)]i •••);

WRITELN (~ ADDR (putch)], ."..);

The "getch" and "putch" routine~ may be written in pascal/MT+ or
in "assembly language. The parameter requirements for "these routine~
are as follows:

"FUNCTION getch : CHAR;

PROCEDURE putch(outpu~ch: CHAR);

The declaration 6f these "routines mu~t be as shown. The names
need not be getch/putch, but the parameters, none for getch and one

"for putch I. must be .exac·tly as shown, and the compi J. er does not
check. The user may assign. the address of the procedure to an integer
using the ADDR function and then specify this integer (e.g.
READ([P] , •••) which does not save execution time but does save typing
time. Note that because EOLN and EOF require a file on which to
operate READLN and EOF/EOLN cannot be used with Ie-directed I/O.

34

pasca1/MT+ Release 5 Languag~ Reference and Applications Gui~e

12.1 . ~he,procedur~ read
------------~-----

12.2 The procedure readln
---~----------------

<readcall>

<read or readln>

< fi levar>

<var1ist>

· .­.. -
· .-· .-
· .-· .-
· .­... -

<read or'readln> {({<filevar> ,} {<varlist>})}

READ I READLN

<variable>

<variable> {,<va~iable>}

12.3 The procedure write

12.4 'The procedre wtiteln

<writecall>

<write or writeln>

<expr1 ist>

<wexpr>

<width expr>

<dec expr>

· .-· .-
· .­.. -
· .-· .-
· .-· .-
· .-· .-
· .-· .-

<write or writeln> {({<fi1evar> ,} {exprlist})}

WRITE I WRITELN

<wexpr> {,<wexpr>}

< expression> {: <wid th expr> {:'<dec exp.r>}}

<ex,pression>

<expression>

12.5 Additional procedurep

See section 10.1.1

NOTES:
When reading or writing variables of type ,WORD the input

is in HEX and the output is in HEX. When reading variables of
type integer the user may force HEX input'by preceeding the
number with a '$' character. (e.g. $1F32)

35

pascal/MT+ Release 5 Language Reference and ~pplications Guide .

13.0· Programs
.--------

<program>

<program heading>

<module heading>

<prog parms>

.­.-

· .-· .-
· .-· .-
· .-· .-

<program heading> <block> • I
<module heading> .

<label declaration part>
<constant definition part>
<type definition part>
<variable declaration part>
<procfunc declaration part>
MODEND •

PROGRAM <identifier> (<prog parms>) ;

~ODULE ~identifier> ;

<identifier> {)<identifier>}

Identical to the standard with the addition of modules
see section 14.0.

36

pasca1/MT+ Release 5 La~guage 'Reference' and App1 ications Guide

l4.~ Modular Compilation.

~asca1/MT+ supports a flexible m~du1ar ~ompilation system.
Unlike other systems used for Pascal, such as UNITs, thePascal/MT~
system allows an easy transition from large monolithic programming to
modular programming without a great deal of pre-planning. Progr~m ma~
be developed in a monolithic fashion until they become too large' to
manage (or compile) and then split into modules at that time. The
pasca1/MT+ modular compilation system allows full access to procedures
and var iab1es in any module from any other module. A- compi~l'er 'togg 1e
i s p r OV ide d to allow the use r ton hid e n (i • e. m,a k e p r i vat e) any 9 r 0 u 1=

of variables or procedures. See section 2.5 in the applications guide
for a discussion of the $E toggle.

The structure of a'module is similar to that of a program. It
begins with the reserved word MODULE followed by an identifier anc
~emi- colon(e~g. MODULE TESTl;) and ends with the reserved word,MODENI
followed by a dot (e.g. MODEND.). In between these two lines the
programmer may declare label, const, type, var, procedure and functior
sections just as in a program. Unlike a program, however, there is nc
BEGIN •• END section after the procedure· and function dec1ara~ions, just
the word MODEND followed by a dot (.) .

Example:

MODULE MODI;

'<label, const, type, var declarations>

<procedure~/ function declarations and bodies>

MODEND.

In order to access variables, procedures and functions in othel
modules (or in the main program)' a new reserved word~ EXTERNAL, ha~
been added and is used for two purpo~es.

First, the word EXTERNAL may be placed after the colon an(
before the type in a GLOBAL variable declaration denoting that thi:
variable list is not actually to be allocated in this module but i:
really' in another module. No storage is allocated for variable:
declared in this way.

Example:

I,J,K : EXTERNAL INTEGER; (* in another module *)

R: EXTERNAL RECORD

END;

(* again in another module *)
(* some fields *)

37

pascal/MT+ Release 5 Language Reference and Applications G~iQe

Note that the pascal/MT~ system requires that the' user be
responsible for matching declarations id~ntically as the compiler and'
linker do not have the "ability to t~pe check.

Second, the EXTERNAL word is used· to
functions which exist in other modules.
appear before the first normal procedure or
the module/program.

declare procedures and
These declarations must

function declaration in

Note, just as in variable declaration the pascal/MT+ system
requires that the user make sure that the 'number and typ~ of
parameters match exactly and that the returned type match exactly for
functions as the compiler and linker do not have the ability to type
check across modules. .

The user should note that in pascal/MT+ external' names are
significant only to seven characte'rs and not eight. When interfacing
to assembly language the~user must limit the length of identifiers
accessable by assembly language to six characters (see section 13.2 of
the applications g~ide 'for more information on external identifier
naming conventions).

Listed below ~re a main program skeleton and a module ,skeleton.
The mai'n program references variables and subprograms in the module
and the module references variables and subprograms in the' main
program. The only differences between a main program and a-module are
that at the beginning of a main program there are sixteen bytes of
header code and a main program body following the proce~~ies and
functions. ' ,

38

pas~al/MT+ . Release 5 . Language Reference and A~plication~ Guide

M~in Program Example:

PRQGRAM EXTERNAL_DEMO~

<label, constant, ~ype declarations>

VAR

I,J INTEGER; (* AVAILABLE 'IN OTHER MODULES *) ,

,K,L : EXTERNAL INTEGER; (* LOCATED ELSEWHERE *)

EXTERNAL PROCEDURE SORT(VAR Q:LIST; LEN:INTEGER); ,

EXTERNAL FUNCTI9N IOTEST:INTEGER;

PROCEDURE PROCl;
BEGIN

IF IOTEST = 1 THEN
(* CALL'A~ EXTERNAL FUNC NORMALLY *)

END;

BEGIN
SORT (••••)
(* CALL AN EXTERNAL PROe NORMALLY *)

END.

39

pascal/MT+ Release 5 Language'Reference and Applications Guide

Modl:lle Example: (Note. these. are separate files)'

MODULE MODULE_DEMO;

< label, const, type declarations>

VAR

I,J

K,L

EXTERNAL INTEGER;

INTEGER;

EXTERNAL PROCEDURE PROel;

PROCEDURE SORT{~ ••);

FUNCTION IOTEST:INTEGER;

(* USE THOSE FROM MAIN-PROGRAM *)'

(* DEFINE THESE HtRE *)

(* USE THE ONE FROM THE "MAIN PROG *)

(* DEFINE SORT HERE *)

(* DEFINE IOTEST HERE *)

<maybe other procedures and functions here>

MODEND.

40

pascal/MT+ Release 5 Language Reference and Applications Guide

pascal/MT+ Applications Guide

41

pascal/MT+ Release 5 Language Reference and Applications qui~e

pascal/MT+ ~PPLICATIONS GUIDE:

Table of Contents

1.0

2.0

3.0

4.0

5.0

Introduction ••••••••••••••••••••••••
1.1
1.2
1.3

Purpose of Applications Guide ••
Compile and run a sample program.
Contents of Distribution disk ••••

Comp'iler Operation· •••••••••••••••••••••

.
.... ' ...

2.1
2.2
2.3
2.4
2.5
2.6

System requirements for running Pascal/MT+~.
Run time requirements for Pascal/MT+.
Invocation ••••••
Compilation data •.
Compi~er toggles.
Error messages.

Linker operation~ •••••••••••
3.1 Invocation and commands ••
3.2 Attributes of linkable modules ••
3.3 Using other 1inkers •••••• ~ •••••

Data Types~.
4.1 CHAR ••••••••••••
4.2 BOOLEAN.
4.3 INTEGER.
4.4 REAL.
4 • 5 ByTE ••.•••••
4.6 WORD.
4 • 7 STRING ••

4.7.1
4.7.2
4.7.3

Definition'.
As~ignment ••
Comparisons.

4.8 SET •••• 0 ••••••••••••

. . . .

10 •

• eo· • •

Summary of built-in procedures and parameters ••
5.1 MOVERIGHT, MOVELEFT.
5.2 EXIT ••• .
5.3 TSTBIT, SETBIT, CLRBIT.
5.4 SHR, SHL ••••• .,
5.5 HI, LO, SWAP.
5.6 ADOR ••
5.7 WAIT.· •, .
5.8 SIZEOF.) ..
5.9 FILLCHAR ••
5.10 LENGTH.
5.11 CONCAT.
5.12 COPY.
5.13 POS ••• . .,
5.14 ~'~LETE • . . .

42

Page

45
45
45
48

49
.52
53
53
54
54
59

60
60
63
64

65
65
65
66
67
68,
68
68
68
70
72
73

74
75
77
78
79
80
81
82
83
84

,85
86
87
88
89

pascal/MT+ Release '5 Language Reference and Applications Guide

6.~

7.~

8.~

11.~

12.~

13.~

l4.~

15.~

16,. ~

5.15 INSERT ••• · ·
,5.16 ASSIGN ••• · e.- • ·
5.17 WNB, GNB. · · . . -. . · · .
5.18 BLOCKREAD, BLOCKWRITE •• · ·
5.19 OPEN, OPENX ••••.•• . . . · · . ·
5. 2~ CLOSE, CLOSEDEL. . .'. . . . · ., · ·
5.21 PURGE ••••••• ~ •••••••• . . · . . . · . . ·
5.22 IORESULT ••••••••••••••• · . · . . .
5.23 MEMAVAIL, MAXAVAIL.: •• · ~ . · . · .
5.24 Quick reference guide to built-in routines •• o •

Interrupt procedures •••••••••••••••
INLINE and Mini assembler.
7.1
7.2

Syntax •••• ~ •••••••••••
'Applications •• ; ••••••
7.2.1 Code examples •••

· . . . ·
1.2.2 Constant data generation.

· . . .

INP and OUT arrays ••••••••••••••••••••••••••••••••

Chaining •••••• .
Disassembler •••
10.1 Instructions •••••
10.2 Sample ••••••••

Debugger ••••••••••••••••••••
11.1 Introduction ••
ll.2-Commands •••••

. .

. . . .

·
.. .

· ~

. . . .
Run-time Environment ••
12.1 Library routines.
12.2 Cqnsole I/O ••••••
12~3 File I/O •••••••••
12.4 ROM 'environments ••

. . . .- ·
pascal/MT+ Assembly Interfacing.
1 3 • 1 As s em b 1 e r s • • • • • • • • • • • • • • •
13.2 Naming considerations. • ••••
13.3 variable accessing ••••••••••
13.4 Parameter passing ••••
13.5 Restrictions •••••••••

Run-time error handl ing .0 .. · . .
14.1 Range checking ••••• ' •• . . . · . .

·0

.
14.2 Exception checking ••• · . . ,
14.'3 User supplied handlers •• · . .
Ind ex ••••••
Appendices ••• ~ •••••••••••••
l6.1 0 Error messages. • •••• · ·0· . . .

430

90
91
92
93
94
95
96
87
98
99

10~

1~3

1~3

103
1~4
1~5

106

107

ll~
110
III

119
.12~

12i

124
124
128
129
129

133
133
133
133
136
138

139
139
140
140

141

147
147

pascal/MT+ Release 5 Language'Reference and Applications Guide

16.2 Reserved words ••••••• , ••••••••••••••• .- ••••••• , 155
16.3,Language syntax description................. 156
16.4 Summary of option swi tches an.d toggles...... 164,

44

Pascal/MT+ Release 5 Language Reference and Applications Guide

1.0 Introduction

1.1 Purpose of Applications Guide
-----~-----------------------

The 'Pascal/MT+ system is a complex series of programs; moduleE
and run-time library subroutines. This applications ~uide is intendec
to help the pascal/MT+ user to understand how to use the.~features of
Pascal(MT+. The applications guide contains information on how' tc
operate the compiler, linker, debugger and disassembler; a descriptior
of the implementation of Pascal/MT+ data types; a summary of built-ir
features and examples of their usage; run-time considerations
including interfacing with ~ther languages; and a list bf the compiler
error messages with the most common cause for each message.

I.? Compile and run a sample program

Before compiling and running the sample program described in
this section be sure. that you have made ~ backu~ of all of the disks
included with this software release.

The follow~ng is a step-by-step guide to the basic "operation of
the Pascal/MT+ system. You will compile, link and execute a sample
program under the CP/M operating system. NOTE: If the pascal/MT+
system you have purchased generates code for other than 8080/Z80 type
CPUs then refer to the CPU applications guide for further information
regarding the execution -of programs on the target CPU.

The following 'di~cussion assu~e~ that the ciomputer on which 'you
are about to execute pascal/MT+ has two 8" floppy disks: If you have
other than this configuration then make the appropriate adjustments.
Please read all the "documentation before attempting to operate the
software so that you have an idea of what is being done.

STEP ONE: Put a CP/M syst~m on your COpy
disk with the compiler on it or transfer
distribution disk to your system disk.

of the distribution
the files from the

STEP TWO: Place the disk now containing the compiler and CP/M
into your 'A:~"drive.·

STEP THRE~: Place your COpy of the sample programs diskette into
your 'B:' drive.

.
STEP FOUR: Boot your system and remain logged into the 'A:'

drive.

45

pascal/MT+ Release 5 Language" Reference and Applications Guide

" STEP FIVE: Type the" following comm~nd «cr> signifi~s you typing
the return key on your system keyboard) :"

MTPLUS B:CALC(cr>

STEP SIX: The compiler should load and display the mess~ge"
'Pascal/MT+ S.xx' ,where 'xx' is the sub-release number for the verSlon
of the software which you have. The compiler should process the CALC
program by displaying the following: (or something close; we reserve
the right to change without reprinting all the manuals) •

Pascal/MT+ 5.xx

Code Gen:8~
+++++
Source lines: 87

phase 1
Available Memory: nnnrin
User Table Space: nnnnn
#1##
Remaining Memory: nnnnn
Phase 2
8080
SUBREAL
ADDREAL
TF
CALC
CALCULAT

Lines :
Errors:
Code
Da ta ":
Compilation

87
o

1734
42

Completed

{after pre-defined symbols}.

STEP SEVEN: After the compilation is complete verify that the
compiler properly placed the" CALC.ERL file on the destination disk by
typing 'DIR B:CALC.ERL' and having the CP/M system display:

B: CALC ERL

STEP EIGHT: ~ow to 1 ink the prog ram 1" Type:

LINKMT B:CALC,B:TRANCEND,B:FPREALS,B:PASLIB/S

followed by the retu~n ,key. You should see the following' output:

LINK/MT+ 5~00

Processing file- B:CALC .ERL
Processing file-" B:TRANtEND~ERL

pascal/MT+ Release ,5 Language Reference and Applications Guide

processing file- B:FPREALS .ERL
P~ocessing file- B:PASLIB .ERL

Undefined Symb.ol~:

No Un'defined Symbols

nnnn (decimal) records written to CALC .COM

Total Da ta:
Total Code:
Remaining :

nnnnH bytes
nnnnH bytes
nnnnH bytes

Link/MT+ processing completed

STEP NINE: N~w verify that the lipker placed the CALC.COM file
on : the destination disk by typing: 'DIR B:CALC~COM' and receiving the
response:

B: CALC COM

from 'CP/M.

STEP TEN: Now to run the program!_ Type 'B:CALC' and you should
be greeted with the message: 'ENTER FIRST OPERAijD? '. Respond· with
'5.5' and <return>. Then the message 'Rl= .ss00000E+0l' sh~uld appear
followed by 'ENTER SECOND OPERAND? '. Respond with '99.256' followed
by <return>. Then'· the message' "R2= • 992s60lE+0'2' ,should appear
followed by 'ENTER OPERATOR:' followed by a list of operators.
Respond with '+' followed by <return> Finally the result, '104.756,'
should be printed followed by 'TYPE <ESCAPE) TO STOP'~' Type <e~c~pe>
and that's it!. .

pascal/MT+ . Release 5 Languag~ Refererice and Appli~ations Guide

1.3 Contents of Distribution disk

MTPLUS.COM
MTl????OVL
MT2????OVL
MT3????OVL
MT4 ???? .. OVL
LINKMT.COM
PASLIB.ERL
FPREALS.ERL
TRANCEND.ERL
BCDREALS.ERL
DIS????COM
PATCHER.COM
DEBUGGER.ERL

(compiler)

(overlays for the ???? CPU)
(linker)
(Run-time library object)
(Floating point REAL routines)
(Floating point transcendental routines)
(BCD Fixed point REAL routines)·
(Disassembler)
(Pa tch appl ication program) .
(symbolic debugger library)

Additional files are present on the disks. Consult the
applications note which accompanies the ~oftware~ A number
of example programs, the source for the run-time library and
other support tools such as the disassembler, etc. are supplied
with varidus configurations of the system. .

~ote: The PaScal/MT+ system uses the_extension .ERL for
Extended ReLocatable files. These are, for the most part,
fully compatible Microsoft relocatable format (~or' 8080/Z80
CPUs) but may contain extended record formats if the .
disassembler is being used. See section 3 and 10 6f the
applications guide.

48

pascal/MT+ Release 5 Language Reference ·and Appl icatioris Guide

2.0 Compiler ope~ation

The compiler is named MTPLUS.COM and uses four overlays. Input
files may be located on any disk and the names are arbitrary. The
file may have any extension but if specified with ·a blank extension
(e.g. TESTI) and not found with a blank extension then the compiler
will search for a file with a .SRC extension. followed by searqhing for
a file with a .PAS extension. If no match is made then an error
message will be issued: 'Unable to open input file'. MTPLU$. .-creates a
relocatable file <name>.ERL which must be linked with LINK/MT+ to the
routines in the runtime package. See section 3 for details regarding
I inking.

The compi Ie r· accepts a number 0 f n option swi tches n - followi ng the
·name of the input file on the command line. These options switches
are in the form of,a string prec~eded by a '$' (dollar sign) cha~~cter
and are single. letters followed by zero or more parameter characters.
The parameter string extends from the $ to the end of the line and
spaces are ignored (i.e. $PXRB is the same as $PX RB). They are
listed below:

49

pascal/MT+ Release 5 Language Reference and Applications Guide .

Compiler switch

Rd

nd

Pd

x

D

Ed

Td

Q

C

'A

B

Z

Meaning ..

Put the .ERL file on 'd:'

The .OVL file in (n=l •• 4)
is on 'd:'

,Put the .PRN file on 'd:.'

Generate an eXtended REL file
including disassembler records

Generate debugger information
in the object code and write
the .PSY file to the drive
specified by the R option

The MTERRS.TXT file is on 'd:'

Put the PASTEMP.TOK file on 'd:"

Quiet, suppress any unnecessary
console messages

Continue 'on error, default is to
pause and let operator interact

'on each error, one at a time.

Automatically call the linker at
the end of compilation and link

. the .ERL file with the standard
library only. The .CO~ file will
be placed on the same disk as
the .ERL file

Use BCD rather than floati~g·point
for the real numbers

Generate Z80 optimized code (for
8080/Z80 version only)

50

pascal/MT+ Release 5 Language Reference and Applications Guide

Where a drive number is shown for the .PRN file the user me
specify 'X, ~hich will cause the .PRN file to be displayed on tt
console. An· example which ex.ecutes the compiler,· reads the sour.c
from the A: drive, places the .ERL file 'on B:, the .PRN file on tt

I console and ~utomatically calls ~he linker is as follows:

The defaul ts
R

1 •• 4

P

X

D

E

T

Q

C

A

B

Z

MTPLUS A:TESTPROG $RB PX A

for the compiler switches are:
.ERL file on same disk as source file

.OVL files are on the default disk

no .PRN file

non-extended file generated

no debugger, information in object file
and no .PSY file written

MTERRS.TXT on default disk'

PASTEMP.TOK on default'disk

Compiler is verbose

Compiler stops and asks on each error

Compiler does not automatically 'ch~in.to linker

Floating point reals are the default

Generate seSe-only code (for 80Se/Z80 version on

Various versions of the compiler will have a mechanism fo
changing these. default versions by a patch' o.r a setup program
Cons~ltany applications notes which came with your package for mor
information. '

51

pascai/MT+ Release 5 Language Referen~e and Applications Guide

2.1 System requirements for runni~g Pascal/MT+

The Pascal/MT+ system requires a B080 or Z80 CPU running the
CP/M operating system in which to operate. Other versions may execute'
with other operating systems· and / or CPUs in the future, please
consult any applications notes which' came with your package for
further details. .

In a CP/M environment the minimum requirement is l40K of
simultaneous on-line storage (i.e. the equivalent of two 5.25 in.
mini-floppy disks). The design·goal for Pascal/MT+ is. that it will
operate in a .CP/M system with a miriimum of 44K of Trarisient Program
Area (TPA). (this is typically available in a 48K CP/M system) • It
.is suggested that a ~inimum workable system for ·larger programs
include at least 300K bytes of fl~ppy disk' and 52K ofTPA.

52

pascal/MT+ Release 5 Language Ref~rence and Applications Guide

2.2 Run-time requirements for Pascal/MT+
-----------------------~-------~----

The Pascal/MT+ system generates programs which utilize a variety
of run-time support subroutines which are extracted from PASLIB.
These run-time routines handle such needs as multiply and divide on
those processors which do not have such hardware and file inpu.t .. and
output interface to the operating system.

, .

For programs which. are ~un under the CP/M operatirig_ system the
minimum r~n-time overhead 1S typically in the 2K to 3K byte~range.,
This includes support routines and text file I/O routines for integert
characters and strings. Additional modules will be included for
routines which utilize REAL numbers, non-text file I/O, transcendental
routines, etc.

For programs which are run in' a stand-alone manner the user is
required to' write console/file I/O· drivers for the target system.
Complete source for the run-time library subroutines is provided. and
·the applications note which accompanies the system describes the
implementation of the I/O drivers for the syste~ in question.· The
~ser ~hould refer to section 12.4 for examples of how to c~~ate stand
alone systems.

, 2 •. 3 Invocation

To execute the P~scal/MT+ compiler type:

MTPLUS <filename> {optional parameters preceeded by $}

EXAMPLE:

MTPLUS CALC

MTPLUS CALC $RB

{output CALC.ERL to default drivel.

{output CALC.ERL to drive B:}

See section 2.~ above for more information about the
compiler options.

pascal/MT+ Release 5 Langtiage Reference and Applications Guide

2.4 Compilation'data

The Pascal/MT+ compiler will output a number of messages and
characters during the compilation. For users who often wonder what is
happening the pascal/MT+ compiler will periodically output characters
d uri ng the fir s t two ph as e s 0 f the corn pi I a t ion (P ha s e ~ and Ph as e '1)
to keep the user happy knowing that the compiler has not gone off to
meet its maker.,

A 1+' is put out to the console for every 16 source code lines
syntax scanned during Phase~. At the beginning of PHASE I the
available memory space is displayed. , This is the number of bytes (in
decimal) of memory before generation of the s~bol table.
~pproximately 3K 'worth of' symbol table space is consumed by
pre-defined identifiers. See section 2.5 on reducing this space by
eliminating unneeded declarations of built-in routines. When a
procedure or function is found a Ii' is output to the console •. At the
completion of PHASE I the number of bytes remaining in memory is
displayed in decimal.

PHASE.2 generates-object code. When the body of each procedure
is ,enco\.lntered the name of the procedure is output so that the user
can see where the compiler is in the compilation ~f, the program-

(

Pascal/MT users will note that the compiler does not put the absolu,
addresses of the- -proceaures out at compile time _ but the relati~e
addresses for this module. The linker /M (Map) option wil·l l~st the
absolute addresses of the procedures in each module. Upon completion
the following l_ines are displayed: .

Lines :
Errors:
Code
Data . .

Lines of source code compil-ed (in decimal) •
number- of errors detected.
bytes of code generated (in decimal) •
byies ot data reserved -(in decimal) •

2.5 Compiler toggles

The compiler toggle signals the compiler that the user wishes to
enable or disable certain options. The format of this toggle is
(*$ *) or {$ } where the blanks are filled in with the
toggle. The compiler does not accept blanks before the key letter or
trailing or im~edded blanks in names but will skip over leading blan~s
(e.g. {$E +} is the same as {$E+}, but {$ E +} will be ignored).

EXAMPLES:

(*$ E+*)
{$p} -
{$I D:USERF~LE.LIB}

Pascal/MT+Release 5 Language Reference and Applications Guide

$E+ and $E- controls the generation of entry point records in
the reloca~able file. $E+ causes the global variables and all
procedures and functions to be available as entry points (i.e.
available to be referenced by EXTERNAL declarations in other modules) •
$E- supresses ,the generation of these records thus causing the
variables, procedures, and' functions to be logically private. The
default state is $E+ and the toggle may be turned on and off at will.

$S+ enables stack frame allocation of procedure / function
parameters and, local variables. This must be t~rned on before the
word PROGRAM or MODULE and, unlike Pascal/MT, cannot' b~ .turned off
within a separately compiled unit. Global variables in either
programs or modules are always allocated statically. Modules which
use $8+ may be mixed with modules which do not.

$I<filename> catises the compilet to include the named file in
the sequence of Pascal source statements. Filename specification
includes drive name and' extension in CP/M standard format.

The $Z nnnn toggle is used to initialize the stack ,pointer to
nnnnH in non-CP/M environments. In a CP/M environment the hardware
stack'is initialized by loading the value in' absolute location 0006
into the stack pointer register.' If -the $Z toggle is used then
gerieratiqn of the CP/M type initialization is supressed.

$T+, $T-, $W+ and $W- control, ~he strict type, checking /
non-portable warning facility. These features are tight~y coupled
(i.e. strict type checking implies warning non-p6rtable usage and visa
versa). The default state is $T- ($W-) in which type checking is.
relaxed and warning messages ate not generated. This mai be turned on
and off throughout the source code as desired.

~

$R+ and $R- control the compiler's generation of run-time code
which will perform. range checking on array subscript~ng and storing
into subrange variables. The default state is $R- (off) and this
toggle may be turned on' and' off throughout the source code as desired.

$X+ and $X- control the compiler's generation of run-time code
which will perform run-tim~ error checking and error handling for what
is termed exceptions. Excepti~ns are:

Zero divide
String overflow / truncation
Heap overflow

The system philosophy under which pascal/MT+ operates states zero
divide and string overflow are treated in a "reasonable" manner when
exception checking i~ disabled. Zero divide returns the maximum'~alue
for the data type and string overflow results in truncation, of the
string rather than modification of adjacent memory areas. The default
state is' $X- and may be ch~nged throughout the 'source code as desired.
The user is di'rected to section '14 for' more discussion of run-time
error handling 'and options.

55

pascal/MT+ Release 5 Language Reference and Applications Guide

The $p and $L+, .$L- toggles control the listing gener~ted by the
first pass of the c9mpiler. $P will cause a form~e~d character
(CHR(12» to be inserted into the ~PRN file. $L+ .and $L- are used to
switch the lLsting on and off t~roughout the sourde program and may be
placed wherever desired. .

The $Cn toggle can be used by the user to reduce run-time object
code memory requirements when using REAL arithmetic. The user can, if
available, specify a restart instruction number and the compiler will
then change all calls to the @XOP routine (see section 12.1) into. a
restart instruction. This will cause all 3 bytes call· instructions to
shrink to one byte call instructions. The user specifies In' in the
range 0 •• 7 and the compiler generates RST n instructions. In a CP/M
environment the restarts which are not available because of CP/M usage
are: 0 and 7. MP/M users and others should consult their hardware
documentation for more. details. This facility is available only in
the 8080/Z80 systems (using restarts). Similar facilities may be
available in· other CPU syst~ms. ·Consult the appropriate C~U
applications guid~ for details.

56

pascal/MT+ Release 5 Language Reference and Applications Guide

The $Kn toggles ar·e used to remove unneeded bui.l t-in . routine
defiriition from the symbol table to, make more room ~or user symbols.
The value n (~ •• 6)· is used to control various groups of routines.
These may ,be used in any combination b~t these toggles MUST appear
before the word PROGRAM or MODULE to be effective. The value n is
selected as follows:

Group

1

2

3

4

5

6

7

Routines Removed

ROUND, TRUNC, EXP, LN, ARCTAN
SQRT, COS, SIN

COPY r INSERT, POS, DELETE, LENGTH
CONCAT

GNB, WNB, CLOSEDEL, OPENX, BLOCKREAD
BLOCKWRITE

CLOSE, OPEN, PURGE, CHAIN, CREATE

WRD, HI, LO, SWAP"ADDR, SIZEOF, INLINE~
EXIT, PACK, UNPACK

IORESULT, PAGE; NEW, DISPOSE

SUCC, PRED, EOF, EOLN

TSTBIT, CLRBIT, SETBIT, SHR, SHL

THE USER SHOULD NOTE THAT THIS ONLY REMOVES THE NAMES FROM THE
PRE-DEFINED SYMBOL TABLE TO MAKE ROOM FOR USER SYMBOLS. THESE
ROUTINES ARE ONLY INCLUDED IN THE USER'S PROGRAM BY THE, LINKER
IF THEY ARE USED IN THE PROGRAM.

57

Pascal/MT+ Release 5 Language' Refe rence and Appl ications ,Guide

Listed below is a summary of available cqmpiler toggles

Compiler Toggles Defaul t
----~-----------

$E +/-

$8 +/-

$I <name)

$R +/-

$T +/-
. $W +/-

$X +/­

.$p

$L +/-

$Kn

$2 nnn-n

SCn

Controls entry point generation

Controls recursive/static variables

Includes another source file into
the input $tream (e.g. {$I XXX.LIB})

Controls range checking code

, .
Controls strict type checking and
gener~tion of warning messages

Controls eXception'checking code

Enter a formfeed in the .PRN file

$E+

$8-

$R-

$T­
$W-

$X-

Controls the listing o~ source code$L+

Al~~ws for Killing built-in routines
to save space in symbol tabl e .(n=" •• 7.)

Initialize hardware stack to nnnnH ,
(4efault is,coritents of location "006
at the begining of execution)

Use RST n instiuctions for REAL operations
(default is_to use CALL instructions)

58

Pas'cal/MT+, Release 5. ,Language Reference and Appl ications .Guide,

2.6 Error messages

Compilation errors are 'numbers -which have the same
those in Jensen and Wirth's 'User Manual and Report'.
messages, brief explanations, and some causes of the error
in the appendix.

59

meaning as
The errors
are fQund

pascai/MT+ Release 5 Language Reference and Applications Guide

3.0 Linker operat~on

3.1 Invocqtion and commands

LINK/MT+ is used by typing "its name followed by a space followed
~y the main program and modules to b~ linked separated by commas. The
output is directed to the same disk as the main program unless the
user spec i f i es an output file name followed by an equal sign ,9_efore
the main program name. Examples are shown below:

EXAMPLE:

LINKMT CALC,TRANCEND,FPREALS,P~SLIB/S

LINKMT B:CALC~CALC,TRANCEND,FPREALS PASLIB/S {CALC.COM is put to B:}

The above command will link one of the demo programs with the
run t:ime package., The items to be linked may be preceed~d 'by a drive
letter:

LINKMT A:CALC,D:TRANCEND,F:FPREALS,B:PASLIB/S

The linker al16ws th~ user to place a number of' "switches"
following the'file names in the list. These switches are pre6eeded by

'a slash (I) and are a single letter with a parameter on the P and D
switches.

The examples above show the use of the /S switch which informs
the linker to search the~ module as a library and extract only the
necessary routines. A /M following the last file named in the
parameter, list generates "a, map. A /L following the la'st module named
causes the linker to display module code and data locations as they
are being linked. A /E following the last module causes the linker to
display all routines including those which begin with $, ? or @ which
are reserved for run-time library routine names.

In order to support relocation of object code and data areas the
linker supports the /p and /D switches. The /p switch controls the
location of the object code (ROM) and the /D switch controls ,the
location of the data areas (RAM). The syntax is: /P:nnnn or /D:nnnn
where "nnnn" is a hexadec imal number in the, range (?J •• rFFF.

Using the /D 'switch will also allow ~inking of larger programs
because the data area is not reserved in memory during the linking
operation. The user should note that local file operations are' ,not
guaranteed if this is used because the system depends upon the linker
zeroing the data area to ma~~ this facility work properly.

Using the'/p switch and /D switch does not cause the ,linker to,

60

· Pascal/MT+ Release 5 Language Reference and Applications Guide

leave empty space at the beginning, of the .COM file. Other linkers
(In particular L80) will generate a s'ignificant ammount of disk space."
to force the program to load at the proper address in a CP/M"
environment. The philosophy of LINK/MT+ is ,that if the /P switch is
used the user really wants to move the program to another system for
execution. This means that if the user specifies /P:8000 that the
first byte of the .COM file will be the byte to be placed at location
8000H and not 32K of zeroes before the first byte. In addition, if
the user specifies /0 the linker will not sa~e any of the data ~rea in
the .COM file. This is a good way for reducing the'data st.Orage on
disk for programs since only the code will be loade~ from dis~ and not
uninitialized data areas. '

These switches (/p and /0) may be specified after the last
routine to be loaded and ma¥ be in any order.

The /H:nnnn switch is provided to allow the linker to generate a
.HEX file instead ofJa .COM file. The nnnn value is in HEX and is
totally independent of ~he default relocation value of l00H (passibly
.overridden by the /P switch). This means that the user may relocate
the program to execute at say 1000H but generate the .HEX file 'to have
addre~ses starting at 8000H. (the user would use /P:ID00/~:8000) ~

The user in a CP/M environment must typically use the SUBMIT
fa~ility for typing repetitive se~uences such as linking multiple
files together over and over and over again. The LINK/MT+ linker
allows the user "to enter this data into a' file and have .the linker
process the file names from the file. This process is considerably
faster than. submit. The user must specify a file with an ex,tension of
.C~O and follow this file name with a /F (e.g. CFILES/F).' The linker
will read inp~t ftom this file and process the names. The input from'
the file is qoncatenated logically between the data' on the left of the
file name and the data on the tight of the IF switch. The total input
buffer is 256 bytes.

Listed below is a. s~mrnary of the switches:

61

pascal/MT+ Release 5 Language Reference and Applications Guide

Linker Switch.Summary
---------------------I

/S Search preceeding name as ~ library
extracting only the required routines

/L List module~ as they are being linked

/M List all entry points in tabular form

/E List entry points beginning with $i ? or @
in addition to other entry points

/P:nnnn - Relocate obje9t code to nnnnH

/D:nnnn - Relocate data area to nnnnH

/W Write a SID compatible, .SYM file
(written·to the same disk as the .COM file)

·/H:nnnn - Write the output as a .HEX file with
nnnnH as the'starting location for the

/F

hex format. This is totally independent of
the Ip switch (no .COM file produced if
this switch is used)

Take preceeding file name as a .CMD file
containlng file names (one per line)

62

pascal/MT+ Release 5' Language Reference and Application~ Guide

The linker will take up to thirty two names on the command line
(or command file input) for files to b~ linked.

Errots encountered in the .linking process are self explanatory
such as 'unable to open input file: xxxxxxxx' an~ 'Duplicate symbol.­
xxxxxxx' •

3.2 Attributes of linkable modules
-------------------------~----

Link/MT+ will link Pascal/MT+ ~ain programs, Pascal/MT+ modules,
and assembly language modules created by M8~ or RMAC. Link/MT+
supports those features of the Microsoft relocatable format required
for Pascal/MT+. These do not include: External plus offset, . Exte~nal
minus· offset, ,COMMON", inJtialized DATA areas in the DATA segment, and
request library search. Also Link/MT+·demands that the data size and
program size rec·ords· preceed the first byte of dat·a to be loaded.
This is the case wi th the Pascal/MT+ compiler, M8~ and RMAC but. no t
with such compilers as FORTRAN. MT MicroSYSTEMa recommen~s using the
linker supplied with the other language processor be used if mixed
linking of Pascal and alien modules (other than assembly language) is
to be performed.

63

Pascal/MT+ Release 5 Languag~ Reference and Applications Guide

3.3 Using other linkers

If the user has not specified that the disassemble~ is to be used then
the .ERL file produced by the P~sc~l/MT~ compiler is totally Microsoft
compatible. As shown in section 15 linking with other languages such
as FORTRAN may be done using specially constructed routines which
translate Pascal/MT+ parameter lists .into FORTRAN parameter lists~
Other linkers, particularly the L80 linker from Microsoft, may not be
able to link a program which Link/MT+. can h~ndle due to memory
limitations imposed by the design of these other linkers.

. 64

pasca1/MT+ Release 5 Language Reference and Applications Guide

4.~ Data Types

This section describes how the standard Pascal data types are
implemented in Pasca1/MT+. A summary of the data types appears in the
following table.

'Data type
CHAR

, BOOLEAN
INTEGER,
INTEGER
BYTE
WORD
BCD REAL
FLOATING REAL
STRING
SET

4.1 CHAR

Size
1 8-bit-byte
1 8-bit-byte
1 8-bit-byte
2 8-bit-bytes
1 8-bit-byte
2 8-bit-bytes

1" S':'bit-bytes
4 8-bit-bytes
.1: •• 25 6 by t e s

32 8-bit-bytes

Range
0 •• 255
false • .-true
0 •• 255 .
-32768 •• 32767
-'~ •• 255
0 •• 65535 .
lS digits,4 decimal
1"E-17 •• 10E+17

0 •• 255

The data type CHAR is implemented using one 8-bit byte for .each
character. The reserved word, ~ACKED is assumed on arrays of CHAR.
CHAR var iab1es may have the range 0 f CHR (0) •• CHR (255). When· pushed
on the stack' a' CHAR var iab1e is 16 bi ts wi th the high order byte
containing 0". This is to allow ORO, ODD, CHR and 'WRD to a1~ work
together.

4.2 BOOLEAN

The data type BOOLEAN is implemented using one 8-bit byte for
each BOOLEAN variable. When pushed on the stack ,8 bits of " are
pushed to provide compatibility with built in operators and routines.
The reserved word PACKED is allowed but does not compress the data
structure any more than one byte per element (this occurs with and
without the packed instruction). ORO (TRUE) = """1 and ORO (FALSE) =
"""". The· BOOLEAN operators AND, OR and NOT operate only on ONE byte •.
The user is refered to'the &, ! and - operators (see section 8 of the
language guide) for. I6-bit boolean operators.

Ixlxl.xlxlxlxlxI0/11 (X means don't care)

65

pasca~/MT+ Release 5 Language 'Reference and Applications Guide

4.3 INTEGER

The data type INTEGER is implemented using' two 8-bit bytes for
each INTEGER variable. The order of the bytes is CPU dependent. In
the 8080, 8085, Z80, 8086 and 8088 the low byte is in lower numbered
address and the high order 8 bits are in the higher numbered address.'
In the 68000 and Z8000 the high byte is in the low numbered add~ess
and the low byte is in the higher numbered address. MAXINT = 32767
and. INTEGERS can have the range -32768 •• 32767. An integer subr-ange'
declared to· be within the 0 •• 2~S occupies only one byte of memory
instead of two bytes. Integer constants may be hexadecimal numbers by
preceeding the hex number with a dollar sign (e.g. $0F3B).

66

pascal/MT+ . Release 5 . Lang~age Reference and ·Applications Guide

4.4 REAL

The implementation of the data type REAL in Pascal/MT+ has been
done in two different ways to serve the needs of two different market
areas.

For business applications· the REAL data type has been
implemented in BCD with 18 digits and 4' fixed decimal pla~es.
Automatic rounding is done after the fourth place during calc~lations
and also at the specified place if formatted output is used. The

- format of a REAL BCD number· is: bytes 1 •• 9 are dig.its .packed two to
the byte, and byte 13 contains the sign: 3 for positive and $FF for
negative.

I· 1 1 2 1 3 .. 1 4 1 5 1.6 1 7. I 8 I 9 I 10 I
low mem Idldldldldldldld·ldldldldldldl·.dldldldl sign I hi mem

For scientific and engineering applications the REAL· ·data type
has peen implemented using binary floating point. The ·floating point
used in Pascal/MT+ is fully compatible with the AMD 9511 hardware
floating point unit (also being secon·d sou-rced by Intel). Thirty-two
(32) bits (4-bytes) of data are required to implement ~ floating point
number. The first byte contains the mantissa sign, the exponent sign
and the exponent. The remaining three bytes contain the mantissa.
The precision of this format is approximately 6.5 digits. The re~der
is referred to the AMD 9511 hardware manual for further details·
regard ing the bi'nary format.

1 I.
low mem lexp sign/mantissa sign/exponentl ms

.1 I

ms = most significant bits
Is = least significant bits

I
1 Is I high mem
I· . . I

Pascal/MT+ implements this floating point data type in both
software and hardware. The standard floating point package system
comes with software run-time. The source for the run-time package is

.used to modify port addresses for the ~5ll to adapt this version of
the run-time package to the user's system. The equate HARDWARE is
used to control inclusion of the desired'floating point routines into
the run-time package.

67

pascaliMT+" Release 5 Languag~ Reference and Applications Guide

4.5 Byte

The BYTE da ta type occupi e's a: sing.le byte." It is compa tible
with both INTEGER and CHAR types. This ·can be very useful when
manipulating control characters, handling character arithmetic, etc.
Characters and integers may be assign~d to a BYTE.

4 .6 Word

WORD is an unsigned: native machine word. All" arithmetic
performed on expressions of typ~ WORD is unsigned. In addition "all
comparisons are also uns.igned. The WORD data type is designed such
that it" is alw~ys the ~~me size as pointers. This particularly
important in the 16-bit CPUs in which the integer size is .16-bits but
typically the pointer size is 32-bits.

4.7 String

4.7.1 Definition

The pre-declared type STRING is like a packed array of
characters in which the byte ~ contains the dynamic length of the
string and bytes 1 through n contain the characters. Strings may
b~ up to 255 characters i~ length. The default)ength is 80
characters which may be altered when a variable of type string is
declared (see example below) •

The string "This is a Wottle" is sixteen characters in length.
The following diagram shows how these characters are stored in a
string declared to be 20 characters in length.

low mem 1161Tlhllisi Ilisl lal IWloltltlllel?I?I?I?1 high mem

If the number of characters in the string is less
declared length, those bytes on the end are not defined.
the length is stored in the first byte and the total number
required for the string is 17~

68

than ,the
Note that
of " bytes

Pascal/MT+ Release 5 Language R~ference and Applications Guide·

EXAMPLE:

VAR
LONG STR:
SHOR"T STR: .
VERY LONG STR

STRING;
STRING[10];
STRING[2SS];

{This may contain up to 80 characters}
{This may contain up to 10 character~}
{This may contain up to 255 characters,
the maximum allowed. }

69

pasca1/MT+ Release 5 Language. Reference and Applications Guide

4.7.2 Assignment

Assignment to a string variable may be made via the assignment
statement, reading into a string variable using READ or READLN, or the
pre-defined string functions and procedures.

EXAM~LE:

PROCEDURE ASSIGN;
VAR

LONG STR
SHORT STR

BEGIN

STRING;
STRING[12];

LONG STR : = 'Thi s str ing may conta in as ma·ny as eighty cha racters I.;
WRIT~LN(LONG_STR);

WRITE(ltype in a string 10 characters or less: .);
READLN (SHORT STR); ..
WRITELN(SHORT_STR);

SHORT STR := COPY(LONG STR,l,ll);
WR!TELN(ICOPY{LONG STR~.)=· ,SHORT STR);

END- - -,

Output:

This string may contain as many as eighty characters
type in a string 10 characters or less: .{.123456} (USER INPUT)
123456 .
COPY(LONG_STR ••)=This string rn

Individual characters in a string variable are accessed as if
the string is an array of characters. Thus, normal array

.subscripting via. constants, variables, and expressions allows
assignment and access to individual bytes within the string. Access
to the string over its entire declared length is legal and does not
cause a run-time error even if an access is made to a portion of· the
string which is beyond the current dynamic length. If ·the string is
actually 20 ch~racters' long ~nd the. declared length is 30 then
STRING[25] is accessible. .

70

pascal/MT+ . Release 5. Language Reference and· Application~ Guide

EXAMP.LE

PROCEDURE ACCESS;
VAR .

I : INTEGER;
BEGIN

I := 15;
LONG STR := '1234S6789abcdef';
WRIT~LN(LONG_STR);
WRITELN(LONG STR[6], LONG STR[i-S]);
LONG_STR[16]-:= '*1; -
WRITELN(LONG STR[16]);
WRITELN(LONG-STR); (* will still only write IS-characters *)

END; - .

output:

123456789abcdef
6a
*
1234S6789abcdef

71

Pasc~l/MT+ Reiease 5 Langu~ge Reference and Applications.G~ide

4.7.3 Comparisons

compar"isons are vaiid between two variables of type string
(regardless of their length) or between a variable and a literal'
string. Literal strings are sequences of characters between sing~e
quote marks. Comparisons may also be made between a strin'g and" a
character. The compiler 'forces' the character to become a string by
'using the CONCAT buffer, therefore comparison rif the result of the
CONCAT function and a character is not meaningful as this~~ould
result in an always equal comparison.

EXAMPLE

PROCEDURE COMPARE;

VAR
81,82
CH1

BEGIN

8TRING[10];
CHAR;

81 := '012345678';
8,1 : = '222345678';

IF 81 < 81 THEN
WR I TEL N (S 1 " i s 1 e sst ha n " s 2) ;

Sl := 'alpha beta';
IF 81 = 'alpha beta '. THEN

WRITELN('trai1ing blanks dont matter')
ELSE

WRITELN('trailing blanks ~ount');
IF. 81 =' alpha beta' THEN

WRITELN('b1anks in frd~t don"t matter')
EL8E

WRITELN('b1anks in front do matter');
IF 81 = 'alpha beta' THEN

W R I T E LN (S 1 " = " S 1) ;
81 :.= 'Z';
CH1 := ~Z';

IF 81 = CH1 THEN
WRITELN('strings and chars may be compared');

END;

Output:

012345678 < 222345678
trailing blanks don't matter
b~anks in front do matter
alpha beta ='a1pha beta
strings arid cha~s may be compared.

72

Pascal/MT+ Release 5 Language Ref~rence and Applications Guide

4.8 SET

The SET data type is always stored as a 32 byte item. Each
element of the set is stored as one bit. The low order bit of each
byte is the first bit in that byte of the set. Shown below is the set ·A· .. ·Z· (bits 65 •• 122)

Byte number 00 01 ·02 03 04 05 06 07 08 09 0A 0B 0C ••• IF

Contents

73

pa'scal/MT+ Release 5 Language Reference and Applications Guide

5.0 Summary of built-in- procedures and par~meters
----------------------------------~----------. -

This section provides descriptions and, examples of pascal/MT+
built-in procedures and functions. Each routine is described
syntactically followed by a description of the parameters and an
example program using the procedure or function. Section 5.24
provides a quick reference summary of all the built-in procedures a~d
functions.

74

Pascal/MT+ Release 5 L~nguage Reference and Applications Guice

5. 1 MOVE, MOVERIGH'T, MOVELEFT

PROCEDURE MOVE (SOURCE, DESTINATION, NUM BYTES)
PROCEDURE MdVELEFT (SOURCE, DESTINATION, NUM-BYTES)
PROCEDURE MOVERIGHT(SOURCE, DESTINATION, NUM BYTES)

These procedures move the number of bytes contained in NUM BYTES
·from the location named in SOURCE to the location named in
DESTINATION. MOVELEFT moves from the left end of the source to ·the
left end of the destination. MOVE is a synonym for MOVtLEFT.
MOVERIGHT moves from the right end of the source to the right end of
the destination (the parameters passed to MOVERIGHT 'speci~y the left
hand end of the source and destination) •

The source and destination may be any type of variable and both
need not be.of the same type. These may also be pointers to variables
or int~gers 'used as' pointers~ They may not be named or literal
constants. The number of bytes is an ·integer expression greater than
0.

Watch out for these problems: 1) Since no checking is· performed
as to whether the number of bytes is greater than the size of the
destination, spilling over into the data storage adjacent ~o the
destination will occur if the destination }s not large enough to hold
the number of bytes; 2) Moving ~ bytes moves nothing; 3) No type
checking is done; 'Along with freedom comes responsibility'.

MOVELEFT and MOVERIGHT are used to transfer bytes from ·pne data
. structure to another or to move data around within a single data
structure. The move is done on a byte level so the data structure
type is ignored. MOVERIGHT 1"s useful for transfering bytes from the
low end of an array to the high end. Without this procedure a FOR
loop would be required to pick 'up each cha~acter and put it down at a
higher address. MOVERIGHT is also much, much faster. MOVERIGHT is
.ideal to use in an insert~character routine whose purpos~ is to make
room for characters in a buffer.

MOVELEFT is useful for transferring bytes from one array to
another, deleting characters from a buffer, or moving the values in
one data structure to another. .

75

pascaliMT+ . Release 5 Lqnguag~ Reference and Applications Guide

EXAMPLE:

PROCEDURE MOVE_DEMO;
CONST

STRINGSZ = 80;
VAR

. BUFFER: STRING[STRINGSZ];
LINE : STRING;

PROCEDURE INSRT(VAR DEST : STRING; INDEX: INTEGER; VAR .SOURCE
BEGIN

IF LENGTH (SOURCE) <= STRINGSZ - LENGTH (DEST) THEN
BEGIN

MOVERIGHT(DEST[INDEX],DEST[INDEX+LENGTH(SOURCE)],
. LENGTH(DEST)-INDEX+l);

MOVELErT(SOURCE[l] , DEST[INDEX], .LENGTH(SOURCE»;
DEST[0] :=CHR(ORD(DeST[0]) + LENGTH(SOURCE»

END;
END; .'

BEGIN
WRITELN{'MOVE DEMO •••••• ');
BUFFER := 'Juay J. Smith/ 335 Drive/ Lovely, Ca. 95666';
WRITELN(BUFFER);
LINE := 'Roland ';
INSRT(BUFFER, POS('5' ,BUFFER)+2,LINE);
WRITELN{BUFFER);

END;

THE OUTPUT FROM THIS PROC~DURE:

MOVE DEMO ••••••
,iudy-J. Smi thl 355 Drivel .Lovely, Ca. 95666
.Judy J. Smi thl 355 Roland 'Dr ivel Lovely, Ca. 95666

76

STRING);

pasca1/MT+ Release 5 Language Reference and Applications Guide

5.2 EXIT

PROCEDURE EXIT;

Procedure EXIT will exit the current procedure/function or' main
program. EXIT will also load the registers and re-enab~e interrupts
before exiting if EXIT is used in an INTERRUPT procedure. EXIT-is the
equiva1ent'of the RETURN statement in FORTRAN or BASIC. It is usually
executed as a statement fo~lowing a test.

EXAMPLE:

PROCEDURE EXITTEST;
{" EXIT THE CURREN~ FUNCTION OR MAIN PROGRAM. }

PROCEDURE EXITPROC(BOOL :" BOOLEAN); .
BEGIN

IF BOOL THEN
BEGIN

WRITELN('EXITING EXITPROC');
EXIT; "" .

END;
WRITELNf'STILL IN EXIT~ROC, ABOUT TO LEAVE NORM~LLY');

END;

BEGIN"
·WRITELN('EXITTEST .•••••• ·);
EXITPROC(TRUE)";
WRITELN('IN" EXITTEST AFTER 1ST CALL TO EXITPROC');
EXITPROC(FALSE);
WRITELN('IN EXITTEST AFTER 2ND CALL Tb"EXITPROC');:
EXIT;
WRITELN('THIS LINE WILL NEVER BE PRINTER');

END;

Output:
EXITTEST ••••.••
EXITING EXITPROC
IN EXITTEST AFTER 1ST CALL TO EXITPROC
STILL IN EXITPROC, ABOUT TO LEAVE NORMALLY
IN EXITTEST AFTE~ 2ND CALL "TO EXITPROC

77

Pascal/MT+ Release 5 Language Reference and Applications Guide

5.3 TSTBIT, SETBIT, C~RBIT

'FUNCTION TSTBIT{ BASIC VAR, BIT NUM) , : BOOLEAN;
PROCEDURE SETBIT{VAR BASIC-VAR, BIT-NUM);
PROCEDURE CLRBIT{VAR BASIC VAR, BIT NUM)i

BASIC VAR is any 8 .or 16 bi t variable such as integer, char,
byte, word; or boolean. BIT NUM is 0 •• 15 with bit 0 on the right.
Attempting to set bit 10 of an 8-bit variable does not caus~ an error
but has no effect on the end result.

TSTBIT returns TRUE if the designated bit in the basic var is
on, and returns FALSE if the bit is off. SETBIT sets the designated
bit iI) the parameter. 'CLRBIT· clears the designated ,bit" in the'
parameter.

. These procedures are useful for generating wait lo6ps or
altering incoming data by, flipping a bit where needed. Antit~er
application is in manipulating a bit mappped screen.

EXAMPLE:

PROCEDURE TST SET_CLR~BITS;

VAR
. I 'INTEGER;

BEGIN
WRITELN('TST SET CLR_BITS ••••••• ');
I ': = 0; -
SETBIT(I,S);
IF I = 32 THEN

IF TSTBIT{I,S) THEN
WRITELN (, I=' , I) ;

CLRBIT(I,S)i
IF I = 0 THEN

IF NOT (TSTBIT{I,S» THEN
WRITELN (' I=' ,I);

end;

Output:
TST SET CLR BITS •••••••
1=32
r"=0

78

Pascal/MT+ 'Release 5 -Language Reference and Applications Guide

5.4 SHR, SHL

FUNCTION SHR (BASIC VAR, ·NUM) :. I~TEGER;
FUNCTION SHL(BASIC VAR, NUM) : INTEGER;

BASIC VAR is an 8 or 16 bit variable. NUM is an integer
expression.- SHR shifts the BASIC VAR by NUM bits to the right

. inserting ~. bits. SHL shifts the BASIC VAR bi NUM bits to the left
inserting ~ bits.

The uses of SHR and SHL are generally obvious. ·Suppose a 10 bit
value is to be obtained from two separate input ports. Use SHL to
read them in:

X := 'SHL(iNP[e] & $l-F, 3) 1 (INP[9]' & $lF);

The above example reads from port I 8, masks out the three high
bits returned from the INP array, and shifts the resul~left. Next,
this result is logically ORld with the input"from PO!t i 9 which has
also beeri masked.

The following procedure de~onstrates the expected result of
executing these two functions.

EXAMPLE:

PROCEDURE SHIFT DEMO;
VAR I : INTEGER;
BEGIN

WRITELN('SHIFT DEMO ••• ! •••• ');

I := 4;" -"
WRITELN (, 1=' , I) ;
WRITELN (' SHR (1,2) =' , SHR (1,2» ;
VlRITELN (, SHL (I ,4) =' , SHL (1,4)) ;

end;

Output:
SHIFT DEMO ••••••••
1=4
SHR(I,2)=l
SHL(I,4)=64

Pascal/MT+ Release 5 "Language Reference and Appl ications. Guide

5.5 HI, LO, SWAp·

FUNCTION HI (BASIC VAR)": INTEGER;
FUNCTION LO(BASIC-VAR) INTEGER;
FUNCTION SWAP (BASIC-VAR) INTEGER;

HI returns the upper 8 bits of BASIC VAR (an 8 or 16 bit
variabl~) in the lower 8 bits of the result~ LO returns the low~r 8
bits with the upper 8 bits forced to zero. SWAP returns the upper 8
bits of basic var in the lower 8 bits of the result and the lowei 8
bits of basic v~r in the upper "8 "bits of the result. passing an 8 bit
variable to HI causes the resul t to be " and passing 8 bi ts· to LO does
nothing.

These functions enhance Pascal/MT+'s abilities to read and write
to I/O ~orts. 1£ a data item has 16 bits of information to send to a
port which can handle 8 bits at a time, use LO and HI to send the low
byte followed by th~ high byte. Similarly, reading 16 bits worth of
data from a port which sends 8 bits at a time may be performed" by
SWAPing the first 8 bits into the high byte:

OUT[6] := LO(B);
OUT [6] : = HI (B) ;
B := SWAP(INP[7]) ! INP[7];

The following example shows what the expected results of these
functions should ,be:

EXAMPLE:

"PROCEDURE HI LO SWAP;.
VAR "- -

HL : INTEGER;
BEGIN"

WRITELN('HI LO SWAP ••••••• ');
HL := $104;- -
WRITELN('HL=' ,HL);
IF HI(HL) = 1 THEN

WRITELN (' HI (HL)=' ,HI (HL»;
IF LO(HL) = 4 THEN

WRITELN (' LO (HL) =' , LO (HL)) ;
IF SWAP(HL) = $0ft0l THEN

WRITELN('SWAP(HL)=' ,SWAP(HL»;
END;

Output:
HI(HL)=l
LO(HL)=4
SWAP(HL)=1025

80

pascal/MT+ Release 5 Language Reference and Applications Guide

5.6 ADDR

FUNCTION ~DDR(VARIABLE REFERENCE) INTEGER;

. .

ADDR returns the address of the variable referenced. Variable
reference includes procedure/function names, subscripted variables and
record fields. It does not include named constan~s7 user defined
"types, or .any item which does not occupy code or data space.

This function is used to return the address of anything: compile
time tables generated by INLINE, the address of,a data structure to be
used in a move statement, etc.

EXAMPLE:

PROCEDURE ADDR_DEMO(PARAM INTEGER);
VAR

REC : RECORD
J : INTEGER;
BOOL : BOOLEAN;

END;
ADDRESS : INTEGER;
R : REAL;
51 : ARR~Y[l •• 10]. OF CHAR;

BEGIN
WRITELN('ADDR DEMO ••••• ');

. WRITELN('ADDR(ADDR DEMO)=' ,ADDR(ADDR DEMO»;
WRITELN('ADDR(PARAM)=' ,ADDR(PARAM»;­
WRITELN (' ADDR.(REC) =' ,ADDR (REe)) ;
WRITELN (' ADDR (REC .J) I, ADDR (REC .J» ;
WRITELN('ADDR(ADDRESS)=' ,ADDR(ADDRESS»;
WRITELNC'ADDR(R)=' ,ADDR(R»;
WRITELNC'ADDR(S1)=' ,ADDR(S1»;

end;

Output is system dependent

81

pasca1/MT+ Release 5 Language' Reference and ~pp1ications Guide

5.7 WAIT

. PROCEDURE WAlfT (PORTNUM , MASK, POLARITY);

PORTNUM and MASK are literal or named constants. POLARITY is a
boolean constant.

WAIT generates a tight status wait loop:
IN portnum
ANI mask
J?? $-4

where ?? is Z if polarity is false and is NZ if polarity is true.

EXAMPLE:

PROC~DU~E WAIT_DEMO;
CONST

CONSPORT = $·F7 i (* fo r EXO NOBUS-Z COMPUTER '*)
CONSMASK = $01;

BEGIN
WRITELN('WAIT DEMO ••••••• ');
WRITELN('WAITING FOR.A CHARACTER');

_ WAI~(CONSPORT,CONSMAXK,TRUE);
WRITELN('THANKS!');

end;

82

pascal/MT+ .Release 5 . Lang~age Reference and Applications Guide

5.8 SIZEOF

FU~CTION SI~EOF(VARIABLE OR T~PE NAME) : INTEGER;

Parameter may be any variable: character, array, record, etc, or
any user defined type. SIZEOF returns the size of the parameter "in
bytes. - It is used in move statements for the number of bytes to be

"moved. With SIZEOF the programmer does not need to keep changing
constants as the program evolves:

EXAMPLE: "

PROCEDURE SIZE DEMO;
VAR -

B : ARRAY[l •• l~] OF~CHAR;
A : ARRAY[1 •• l5] OF CHARi

BEGIN
WRITELN('SIZE DEMO ••••••• ');
A := '*******w*******';
B := '0123456789';
WRI'rELN('SIZEOF(A)=' ,SIZEOF(A),I SIZEOF(B)=I ,SIZEOF(B»;
MOVE(B,A,SIZEOF(B»; .
WRITELN('A= ',A);

end;

Output:

SIZEOF(A)=15 SIZEOF(B)=10
01.23456789*****

83

pasca1/MT+ Release 5 Language Reference and Applications Guide

5.9 FILLCHAR

PROCEDURE FILLCHAR (DESTINATION., LENGTH, CHARACTER);

DESTINATION is a packed array of characters. It may be
subscripted. LENGTH is an integer expression. CHARACTER is a 1iter~1
or variable of type char. Fill the DESTINATION (a packed array of
characters) with the number of CHARACTERs specified by LENGTH.

The purpose.of FILLCHAR is to provide a fast method of filling
in large data structures with the same data. For instance, blanking
out buffers is done with FILLCHAR.

EXAMPLE:

PROCEDURE FILL_DEMO;
VAR

. BUFFER: PACKED ARRAY[1 •• 256] OF CHAR;
BEGI.N

F ILLCHAR (BUFFER, 256,' r);
END;

84

{BLANK THE BUFFER}

pascaljMT+ Release 5 Language Reference and Applications Guide

5.10 LENGTH

FUN~TION LENGTH(STRING) .: INTEGER;

Returns the integer value of the length of the string .•

EXAMPLE:

PROCEDURE LENGTH_DEMO;
VAR

Sl : STRING [401 ;
BEGIN

Sl := 'This string is 33 characters long';
WRITELN('LENGTH OF ',Sl,'=' ~LENGTH(Sl»;
WRITELN('LENGTH OF EMPTY STRING = ',LENGTH("»;

end;

. Output:

LENGTH OF This string is 33 characters 10ng=33
LENGTH OF EMPTY STRING = 0

85

pascal/MT+ Release 5 Languag~ Reference and Applications Guide

5.11 CONCAT

FUNCTION CO~CAT(SOURCE1, SOURCE2, •••• , SOURCEn) : STRING;

Return a string in which all sources in the parameter list are
concatenated. The sources may be string variables, string literals,
or characters.

EXA~PLE:

PROCEDURE CONCAT~DEMO;
VAR·

51,52 5TRING;
BEGIN

,51 := 'left link, right link';
S2 := 'root root root';
WRITELN(51,'/' ,52);
sl := CONCAT(Sl,' ',52,'!!!!!!');

, WRITELN (51) ;
end;

Output:

left link, right link/root root root
left'link, right link' root root root!!!!!!

86

Pascal/MT+ Release 5 Language R~ference and Applications Guide

5.12 COpy

FUNCTION FOPY (. SOURCE, LOCATION, NUM_BYTES) : .. STRING;

. SOURCE must be a string. LOCATION and NUM BYTES are integer
expressions. Return a string which contains the number of characters
specified in NUM BYTES from SOURCE beginning at the index specified in
LOCATION.

EXAMPLE:

PROCEDURE COpy DEMO;
BEGIN -
. LONG STR := 'Hi from Cardiff-by-the-sea'i

WRITELN(COPY(LONG STR,9,LENGTH(LONG STR)-9+1));
end· - -,

Output:

Cardiff-by-the~sea

87

pasc'al/MT+ Release 5 . Language Reference and Applications Guide,

5.13 POS

FUNCTION POpe PATTERN, SOURCE'> : INTEGER;

Return the integer value of th€ position of the first occurence
of PATTERN in SOURCE. If the pattern is not found a zero is returned.
SOURCE is a string and PATTERN is a string, a ~haracter, or a literal.

EXAMPLE:

PROCEDURE POS_DEMO;
VAR

STR,PATTERN : STRING;
CH : CHAR;

BEGIN
STR := 'MT MicroSYSTEMS';
PATTERN := 'croSY';
CH := 'T';
W~ITELN('pos of • ,PATTERN,' in • ,STR,' is ., POS(PATTERN,STR»;
WRITELNC-'pos of,' ,CH,' in • ,STR,' is ',POS(CH;STR});
WRIT~LN (' pos of " z' I in I ,STR, I is I ,POS (' Zl ,STR» ';

end;

output:
pos of croSY in MT MicroSYSTEMS is 6
pos of T in MT MicroSYSTEMS is 2
pos of IZI in MT MicroSYSTEMS is 0

. 88

Pascal/MT+ Release 5 Language Refe~ence and Applications Guide

5.14 DELETE

PROCEDURE DELETE(TARGET, INDEX, SIZE);

TARGET is a string.
Remove SIZE characters
INDEX.

EXAMPLE:

PROCEDURE DELETE_DEMO;
VAR
. LONG STR : STRING;
BEGIN -

INDEX and SIZE are integer expressions.
from TARGET beginning at the oyte"narned ·in

LONG STR :=' 'get rid of the leading blanks';
WRITRLN(LONG STR);
DELETE(LONG STR,l,POS('g' ,LONG STR)-l)i
WRITELN(LONG STR); -

END; -

Output!
get rid of the leading blanks

get rid of the l~~ding blanks

· .
pascal/MT+' Rele~se 5 Lan9uage Referenc~ and Applications Guide

5.15 INSERT

PROC~DURE INSERT{ SOURCE, DESTINATION, INDEX);

DESTINATION is a string. SOURCE is a character or string,
literal or variable. INDEX. is an integer expression. Insert the
SOURCE into the DESTINATION at the Iodation specified in INDEX.

EXAMPLE:

PROCEDURE INSERT DEMO;
VAR -

LONG STR : STRING;
S1 :-STRING[10];

BEGIN
LONG STR : = 'Rememb.er f:,uke';
S1 :~ 'the Force,';
INSERT{S1,LONG STR,10);
W.RITELN (LONG STR);
INSERT.(' to use' ,LONG STR, 10) ;
WRITELN{LONG STR); -

end· -,

Output:
Remember the Force, Luke
Remember to use the Force, Luke

90

Pascal/MT+ Release 5 ·Language Reference and Applications Guide

5.16 ASSIGN

PROCEDURE ASSIGN(FILE, NAME);

This procedure is used to assign an external file name to a file
variable prior to a RESET or a REWRITE. FILE is a file name, NAME is
a literal or a variable string containing the name of the file to be
created. FILE must be of type TEXT to use the special dev'fce names
below.

The user should note that standard Pascal defines a "local"
file. Pascal/MT+ implements this facility using temporary file names
in the form PASTMPxx.$$$ where xx is sequentially assigned starting at
zero at the beginning of each·program. If an external file REWRITE is
not ·preceeded by an ASSIGN then a temporary file name will also be
assigned to this file before creation.·

NAME is. normally a CP/M disk file name in the standard format:
.d:filename.ext but can also be a special device name:

Device names

CON:

KBD:

TRM:

LST:

When used as input will echo. input characters
and echo CR as CR/LF and backspace. [CHR(8)] as
backspace, space,' backspace

When used as output will echo CR as CR/LF and
- CP/M will expand tabs to every 8 6haracter
positions.

CP/M console, input device only.
Np echo or interpretation

·CP/M conso~e, output device only.
No interpretation

CP/M printer, output device only.
No' interpretation inciuding no tab expansion

Examples of ASSIGN usage:

ASSIGN(F,'A:MT280.0VL');
ASSIGN(CONIN,'CON:') ;
ASSIGN(KEYBOARD,'KBD:');
ASSIGN(CRT,'TRM:');
ASSIGN(PRINTFILE,'LST:') ;

91 .

· .
pascal/MT+ Release 5. Language Reference·and Applications Guide

5 • 17' WNB, GNB

FUNCTION GNB(FILEVAR: FILE OF PAOC) :CHAR;-,
FUNCTION WNB(FILEVAR: FILE OF CHAR; CH:CHAR) BOOLEAN;

These functions allow the user to have BYTE level access to a
file in'a high speed manner. PAOC is any type which is fundamentally.
a Packed Array Of Char. The size of the packed array is optimall; in
the range 128 •• 4095.

GNB will allo'w the user to read, a file a byte-at-a-time. It is
a function which returns a val.ue. of type CHAR. The EOF function will
be valid when the physical end-of-file is reached but not based upon
any data in the file (s~ch as Ctrl/Z in CP/M TEXT files) •

WNB will allow the user to write a file a byte-at-a-time. It· is
a function which requires a file and a character to write. It returns
a boolean value which is true if there was an error while writing that
byte to .the file., No interpretation is done 'on the bytes which· ar.e
written.

The reason GNB and WNB'are used (as opposed to FA, GET/PUT
com bin a t ion s) i s t hat .. the y are s i g n i f i can t 1 Y fa s t e r •

92

Pascal/MT+ Release 5 Language Reference and Applications Guide

5.18 BLOCKREAD, BLOCKWRITE

BLOCKREAD (F:FILEVAR; BUF:ANY; VAR IOR:INTEGER; SZ,RB:INTEGER);
BLOCKWRITE(F:FILEVAR; BUF:ANY; VAR IOR:INTEGER; SZ,RB:lNTEGER);

These procedures are used for direct CP/M disk access. FILEVAR'
is an untyped file (FILE;). BUF is any variable which is large enough
to hold the data. lOR is an integer which receives the returned value
from the CP/M BOOS. SZ is the number of bytes to transfer· .. -and RB. is
the relative block number.

The data is transfered either to or from the users BUF variable
for the specified number of bytes.

. .

For CP/M environments the SZ must be an multiple of 128 and. RB
must be in the range ~ •• 127.

93

pascal/MT+ Release 5 Lariguag~ Reference and Applications Guide

5.19 OPEN, OPENX

PROCEDURE OPE~ (FILE, TITLE, RESULT);
PROCEDURE OPENX (FILE, TITLE, R~SULT,· EXTENT);

The OPEN and OPENX procedures ,are provided 'to increase the
flexibility of Pascal/MT+ and to provide compatlbility with previous
releases·of Pascal/MT. FILE is any file type variable. TITLE is a
string. RESULT is a VAR INTEGER parameter. EXTENT is an INTEGER
expression.

The OPEN procedure is exactly the same as executing an
ASSIGN(FILE,TITLE), RESET(FILE) and RESULT := IORESULT sequence.

The OPENX procedure will set· the extent number in the file
control block before ~pening the file to support CP/M file extent
manipulation.

EXAMPLES:

OPEN (INFILE, 'A:FNAME.DAT', RESULT)~

OPENX(INFILE, 'C:TESTNAME.FIL", RESULT, RECNUM DIV 128);

94

pascal/MT+ Release.5· Language Reference and Applications Guide

5.20 CLOSE, CLQSEDEL

.PROCEDUR~ CLOSE (fILE~ RESULT);
PROCEDURE CLOSEDEL (FILE, RESULT);

The CLOSE and CLOSEDEL procedures are used for closing' and
closing with delete respectivel~. The CLOSE procedure must be called
to guarantee that data written to a file using any method is p~operly
purged from the file buffer to the disk. The CLOSEDEL i~~normally
used on temporary files to delete them after use •. FILE and RESULT are
the same as used in OPEN (see section 5.19).

Files are implicitly closed when an open file is RESET or at the
normal end of progra~ execution. No more than 10 sim~ltaneous1y open
files will be automatically closed. The user may have more than 10
files open simultaneously but on1y.the first ten files opened will be
automatically closed.

95

pasca1/MT+ Release 5 Language Reference "and Applications Guide

5.21 PURGE

.PROCEDURE PURGE(FILE)~

The PURGE procedure is used to delete a file whose name is
stored in a string. The user. must first ASSIGN the name to the file"
and then execute PURGE. Note: in a CP/M environment there is. no
return ~a1ue from CP/M 6n file deletions and the IORESUL~ will always
be 0 after a PURGE.

EXAMPLE:

ASSIGN(F,'B:BADFILE.BAD')~

PURGE(F) ; (* DELETE B:BADFILE.BAD *)

96

pascal/MT+ Release 5 Language Reference and Applications Guide

5.22 IORESULT

FUNCTION ~ORESUL~ INTEGER;

After each I/O operation the value which is returned by the
IORESULT function is set by the run-time library routines. In genetal
the value of IORESULT is system dependent and on CP/M reflects the
result of the returned value from the BDOS. In a CP/M .environment the

.general rule is that 255 means an error and any -other varue is.~n good
result. This is not the case in CLOSE and WRITE/PUT/WNB. In these
procedures a non-zero IORESULT value means error. .

EXAMPLE:

ASSIGN(F,'C:HELLO');
RESET(F) ;

IF IORESULT = 255 THEN
WRITELN('C:HELLO IS NOT PRESENT');

Listed below are IORESULT val~es for CP/M:

PROCEDURE VALUES

CLOSE 255 MEANS ERROR, ANYTHING ELSE IS OK-
RESET 255 MEANS ERROR, ANYTHING ELSE IS OK
REWRITE 255 MEANS ERROR, ANYTHING ELSE IS OK
READ/READLN/GET _ <>- ~ MEANS END OF FILE, ~ MEANS OK
PAGE/WRITE/WRITELN/PUT <> ~ MEANS ERROR, ~ MEANS OK

97

pascal/MT+ Release 5 Language Reference and Applications Guide

5.23

FUNCTION
FUNCTION

MEMAVAIL, MAXAVAIL

MEMAVAIL
MAXAVAIL :

INTEGER;
INTEGER;

The functions MEMAVAIL and MAXAVAIL are used in conjunction with
NEW and DISPOSE to manage the HEAP memory area ~n pascal/MT+. The
MEMAVAIL' function returns the largest total available memory at any
given time irrespective of: fragmentation. The MAXAVAIL function "'will
first garbage collect and then report the largest block available.
The MAXAVAIL function can be used to force a garbage collect before a
time sensitive section of programming.

The Pascal/MT+ system supports fully the NEW and DISPOSE
mechanism defined by ·the Pascal. Standard. In the CP/M env'ironment the
HEAP area grows from the end of the data area and the stack frame (for
recursion) grows from the top of memory down. The hardware stack
register in a CP/M environment is pre-loaded with the contents of
absolute' location 0006 unless the $2 toggle is used to override this.
The -stack frame g rows starting at 512' bytes - below the ini tial i zed
hardware value. The user should refer to section 2.5 of the
applicatio~s guide for more information on the $2 toggle. - .

98

Pascal/MT+ Release 5 . Language Reference and Applications Guide

5.24 Quick re~erence ~uide to built-ins
-----------------------~----------

In alphabetical order within each group:

Character array manipulation routines:

PROCEDU~E FILLCHAR (DESTINATION, LENGTH, CHARACTER);
PROCEDURE MOVELEFT (SOURCE, DESTINATION; ~UM_BYTES);.
PROCEDURE MOVERIGHT(SOURCE, DESTINATION, NUM_BYTES);

Bit and byte manipulation routines:

PROCEDURE
FUNCTION
FUNCTION
PROCEDURE
FUNCTION
FUNCTION
FUNCTION
FUNCTION

CLRBIT(
HI . . (
LO (
SETBIT(
SHL (
SHR (
SWAP (
TSTBIT(

BASIC VAR, BIT_NUM);
BASIC-VAR) : INTEGER;
BASIC-VAR) INTEGER;
BASIC-VAR, BIT NUM);
BASIC-VAR, NUMf
BASIC-VAR, NUM)
BASIC-VAR)
BASIC VAR, BIT_NUM)

INTEGER;
INTEGER;
INTEGER;
BOOLEAN; .

String handling routines:

FUNCTION CONCAT (
FUNCTION COpy (
PROCEDURE DELETE (
PROCEDURE INSERT (
FUNCTION LENGTH (
FUNCTION POS (

SOURCEl, SOURCE2, ••• ,SQURCEn
SOURCE, LOCATION, NUM BYTES)
TARGET, INDEX, SIZE); .
SOURCE, DESTINATI~N, INDEX).;
STRING)
PATTERN, SOURCE)

: STRING;
: STRING;

INTEGER
INTEGER

File handling routines:

PROCEDURE
PROCEDURE.
PROCEDURE
PROCEDURE
PROCEDURE
FUNCTION
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
FUNCTION

ASSIGN
BLOCKREAD (
BLOCKWRITE-(
CLOSE (
CLOSEDEL (
GNB (
IORESULT

FILE, NAME);
FILE, BUF, lOR, NUMBYTES,·RELBLK»)
FILE, BUF, lOR, 'NUMBYTES, RELBLN);
FILEi RESULT); .
FILE, RESULT);
FI LE) :. CHAR

OPEN
OPENX
PURGE
WNB

(FILE, TITLE,
(FILE, TITLE,

: INTEG~R;
RESULT);
RESULT, EXTENT);

(FILE)i
(FILE, CHAR) : BOOLEAN;

Miscellaneous routines: ,.

FUNCrION
PROCEDURE
FUNCTION
FUNCTIQN
FUNCTION
PROCEDURE

ADDR VARIABLE REFERENCE INTEGER;
EXIT;
MAXAVAIL : INTEGER;
MEMAVAIL : INTEGER;
SrZEOF(VARIABLE OR TYPE NAME) : INTEGER;
WAIT (PORTNUM, MASK, POLARITY);

qq

pascal/MT+ Release 5 Language Reference and Applications Guide

6.0 Interrupt procedures

A special procedure type is implemented in pascal/MT+: the
interrupt procedure. The user selects the vector to be associated
with each interrupt. The procedure is declared as follows:

PROCEDURE INTERRUPT [<vec num>] <ident,ifier> ;

Interrupt procedures may not have parameters lists but may hava
local variables and access global variables. The compiler generates
code at the begining'of the program to load the, vector 'with the
procedure address. For 8080/Z80 systems the vector number should be
in the range of 0 •• 7. For other systems consul t 'the ,appl ica tions
guide, for ttle appropriate processor. For Z80 mode 2 interrupts the
user may 'declare an ABSOULUTE variable to allocate an lnterupt table
and theri use the ADDR function to fill in this table. The INLINE
facility woule be used· in a Z80 environment to initialize the
I-register.

: , The compiler' generates code to push the register~ at the
begining of procedure execution and pop the registers and re-enable
interrupts at the end of execution of the pLocedure. The compiler
implements two built-in procedures ENABLE and DISABLE ~o,control the
'hardware interrupt flag.

The
re-entrant
variables
CP/M users
re-enables

user should note that the' system does not: ,generate
code. Typically interrupt procedures will set glo~al
and nqt perform other procedure calls or input / output.
should note that I/O through the 'CP/M BDOS' typicall~
interrupts.

Listed below is a simple example program which waits for one of
four switches to ~nterrupt~and then toggles the state of a light which
is attach~d to the s~itch. The I/O ports for the light~ are 0 •• 3 and
the switches interrupt using'restarts 2, 3, 4 and 5.

100

'pascal/MT+ Release,S Language Reference and Applications Guide

PROGRAM I,NT_DEMO;

CONST
LIGHTl = 0; (* DE~INE I/O PORT CONSTANTS *)
LIGHT2 = 1;
LIGHT3 = 2;
LIGHT4 = 3;

SWITCHl = 2; (* DEFINE INTERRUPT VECTORS *)
SWITCH2 = 3;
SWITCH3 = 4;
SWITCH4 = 5;

VAR
LIGHT STATE: ARRAY [LIGHTl •• LIGHT4] OF BOOL~AN;
SWITCH PUSH ARRAY [~IGHTl •• LIGHT4] OF BOOLEAN;

,
I : tIGHTl •• LIGHT4;

PROCEDURE INTERRUPT [SWITCHl) INTI;
BEGIN

SWITCH PUSH(LIGHTl] ':= TRUE
E"ND; -

PROCEDURE INTERRUPT [SWITCH2] INT2;
BEGIN

SWITCH PUSH[LldHT2] := TRUE
END; -

PROCEDURE INTERRUPT [SWITCH3] INT3;
BEGIN

SWITCH PUSH[LIGHT3] := TRUE
END; -

PROCEDURE INTERRUPT [SWITCH4] INT4;
BEGIN "

SWITCH PUSH[LIGHT4] := TRUE
END; -

BEGIN (* MAIN PROGRAM *)

(* INITIALIZE BOTH ARRAYS *)

FOR I := LIGHTl TO LIGHT4 DO
BEGIN

LIGHT STATE(I] := FALSE; (* ALL LIGHTS OFF *)'
SWITCl!'PUSH[I] := FALSE; '(* NO INTERRUPTS YET *)

END; -

ENABLE; (* LET THE USERS HAVE AT IT'! *)

REPEAT

1(;11

pascal/MT+ Release 5 Language Reference and Applications Guide

REPEAT (* UNTIL INTERRUPT *) .
UNTIL SWITCH PUSH[LIGHTl] OR SWITCH PUSH[LIGHT2] OR

SWITCH-PUSH[LIGHT3] OF SWITCH:PUSH[LIGHT4]i

FOR I := LIGHTI TO LIGHT4 DO (* SWITCH LIGHTS *)
IF SWITCH PUSH[I] THEN

BEGIN -
SWITCH PUSH[I] := FALSE; !

LIGHT STATE [I] .: = NOT LIGHT STATE [I]; (* TOGGLE IT *)
. OUT[IT := LIGHT STATE[I] -

END -

UNTIL FALSE; (* FOREVER DO THIS LOOP *)

END. (* OF PROGRAM *)

,~?

Pascal/MT+ 'Release ~ . Lan9uage Reference and Appl ications G'uide

7.0 INLINE AND,Mini assembler

Pascal/MT+ has a very ~se'ful built-in feature called INLINE.
This feature allows the user to insert data in the middle of a
Pascal/MT+ procedure or function. In this way small machine code
sequences and constant tables may be inserted into a Pascal/MT+
program without using externally assembled routines.

7.1 Syntax

The syntax for the INLINE feature is very similar to that of a
procedure call in Pascal. The word INLINE is usedfo~lowed by a left
parenthesis I (I followed by any number of arguments separated by the
slash 1/1. character and term~nated by a right parenthesis I) I.' The
arguments between the slashes must be constants or variable references
which evaluate to, constants. These constants can be of any of the

.following types: CHAR, STRING,' BOOLEAN, INTEGER or' REAL. The 'user
should note that a STRING in quotes does not generate a length byte
but simply the data for the string. Note that .in stack frame
addr~ssing (either by using $S+ or on.'more sophisticated CPUs)
variables will evaluate to the offset into the appropriate data
segment. For CPUs which use static'addresssing (e.g. 8080, 8085 ~nd
Z80) the address is the absolute address of the data.'

Literal constants'which are of type integer will, be allocated
one byte if the value falls in the range 0 •• 255. This is riot the case
for named, declared, integer constants which will always be allocated
two bytes.

In addition to constant data the pascal/MT+ system also provides
a built-in Mini assembler feature for 8080/8085 CPUs. The user' may
place the assembly language mnemno~ic after a double quote and the
first phase of the compiler will translate this m~emonic into the
appropriate hex value. (e.g. "MOV A,M will translate into $7E). In the
future this may be extended to handle other processors.

EXAMPLE

INLINE (.. LHLD /
VARl /
"SHLD /
VAR2);

7.2 Applications

(* LHLD OPCODE FOR 8080 *)
(* REFERENCE VARIABLE *)
(* SHLD OPCODE FOR 8080 *)
(* REFERENCE VARIABLE *)

The INLINE facility can be used to insert native machine code or
to build compile-time tables. Th~ following two sections giv~
exampl es 0 f each 0 f these uses'.

103

pascal/MT+ Release 5 Languag~ Reference and Applications Guide

7.2~1 Code examples

The code below gives an example of how' to use the INLINE
facility to write a procedure which call~ CP/M and returns a value~
This routine is present in the run-time library as @BDOS.

EXAMPLE:

FUNCTION @BDOS(FUNC:INTEGER; PARM:WORD) :INTEGERI
CONST

CPMENTRYPOINT = 5; (* SO IT ALLOCATES 2 BYTES *)
VAR

RESULT . INTEGER; (* 80 WE CAN STORE IT HERE *) .
BEGIN

INLINE($2A / Fl:JNC / (* .LHLD FUNC *)
$4D / (* MOV C,L *)
$2A / PARM / (* LH.LD PARM *)
$EB / (* XCHG *)
$CD / CPMENTRYPOINT / (* CALL BDOS *)
$6F / (* MOV L,A *)
$26 / $~0 / (* MVI H,~ *).
$22 / RESULT) ; (* SHLD RESULT *)

@BDOS . - RESULT; (* SET FUNCToION VALUE *) .-
END;

. 104

Pascal/MT+ Release 5 Language Reference and Applications Guide

7~2.2 Constant data g~neration

The program fragment below demonstrates how the INLINE facility
can be used to construct a compile time table:

EXAMPLE:

PROGRAM DEMO_INLINE;

TYPE
IDFIELD = ARRAY [1 •• 4]-OF ARRAY [l •• le] OF CHAR;

VAR
TPTR : ~ IOFIELD;

PROCEDURE TABLE;
BEGIN .

INLINE (I MTMICROSYS' /
'SOF'IWARE • /
I POWER I /

I TOOLS ••.••• ');
END;

BEGIN (* MAIN PROGRAM *)
TPTR := -ADDR(TABLE);

WRITELN(TPTR~[3]);

END.

(* SHOULD WRITE 'POWER , *)

pascal/MT+ Release 5 L~riguaqe Reference and Applications Guide

8.~ INP and OUT arrays
-----------~-----~

The pasbal/MT+ syste·m provides a feature which allows direct
~anipulation of Input and Output haidware ports. Two pre-declared
arrays, INP and OUT, are provided which are of type BYTE and may be
subscripted with port number constants and expressions. The INP array
may be used only in expressions and the OUT array may be used only on
the LEFT hand side of an assignment statement. .For those processors
which have WORD Input and Output ports two additional arrays INPW ahd
OUTW are also declared.

The following discussion is specific to the 8~8~ ·and .Z80 type
CPUs. The arrays may be subscripted with integer expressions in the
range 0 •• 255. If constant subscripts are used the code. is generated
in-line. If expressions are used a call is made to the appropriate
run-time .libr~ry routin~s to handl~ var~able port I/O. If the values
from INP. are assigned to variables of type INTEGER the most
significant byte wil~ contain 00.

For use with the 8085 the Pascal/MT+ system supports the
built-in names RIM8S and SIM85 which allow direct manipulation of the
RIM· and 81M ports on the 8085 CPU. RIM85 may be used to subscript the
INP array and SIM8S ~ay be used to subscript the OUT array~

106

p~scal/MT~ 'Release ~, La~guage Reference and Applications Guide

g.e Chaining

TheFe are times when programs exceed th~ memory ~vailable and
"also many times when segmentatiqn of programs for ,compilation and
maintenance purposes is desired. The pascal/MT+ system provides' a
"chaining" mechanism in which one program may transfer control to
another program.

The user must declare an untyped file '(FILE;) and use the ASSIGN
and RESET procedures to initialize the file. Following this ~he user
may execute a call to the CHAIN procedure passing the name of the file
variable as a single parameter. The run-time l~bra~y routine will
then perform the appropriate functions to load in the file opened by
the user using the RESET statement. The size of the various programs
does not matter. This means that a small program may chain to a large
one and a large program may chain to a small one. If 'the user desires
to co~municate between the chained program the user may choose to
commu~icate in two ways: shared global variables and ABSOLUTE
variables. '

Using the shared global variable method the user must guarantee
that at least the first section of global variables.be exactly the
same in the two programs that wish to communicate. The remainder of
the" global ,variables need not be the same and the decla,ration of
external variables in the global section will not affect this mapping.
In addition to having matching declarations the user must use the /D
option s,wi tch available in the linker (see section" 3 'of the
applications guide) to place the variables at the same location in all
programs that wish to communicate.

Using the ABSOLUTE variable method .the user would typically
define a record which is used as a communication area and then de£ine
this record at an absolute location in each module. This does not
require the use of the~ /D 0 switch in the linker but does require
knowledge of the memory used by the program and the system.

0"

Listed below are two example programs which communicate with
each other using the ABSOLUTE variable method and the first program
will CHAIN to the second program which will print the results of the
first program's execution:

pascal/MT+ Release 5 Language-Reference and Applications Guide

EXAMPLE:

PROGRAM P.ROGl;

TYPE
COMMAREA = RECORD

I,J,K
END~

VAR

INTEGER

GLOBALS : ABSOLUTE [$8000] COMMAREA;
CHAINFIL: FILE;

BEGIN (* MAIN PROGRAM #1 *)
WITH GLOBALS DO

BEGIN
I. : = 3;
J := 3;
K := I * J

END;

ASS-IGN(CHAINFIL,'A:PROG2.COM') ;
RESET(CHAINFIL); .
IF IORESULT = 255 THEN

BEGIN
WRITELN·C-' UNABLE TO OPEN PROG 2. COM I) ;

EXIT
END;

CHAIN (CHAINFIL)
END. (* END PROGl *)

Pascal/MT+ Release 5 Language Reference and Applications Guide

(* PROGRAM 12 IN CHAIN DEMONST~ATION *)

PRdGRAM PROG2;

TYPE
COMMAREA = RECORD

VAR

I,J,K : INTEGER
END;

dLOBALS : ABSOLUTE [$8000] COMMAREA;

BEGIN (* PROGRAM 12 ~)
WITH GLOBALS DO

WRITELN('RESULT OF ',I,' TIMES ',J,' IS =', K)

END. (*RETURN~ ~O OPERATING SYSTEM WHEN COMPLETE i

pascal)MT+ . Release 5 Languag~ Reference and Applications Guide

10.0 Disassembler

The disassembler component" of the. Pascal/MT+ package combines
the .PRN file produced by the first phase of the compiler with the
.ERL file produced by the last phase of the compiler into a human
readable file which contains. assembly language coding interspersed'
w~th the Pascal/MT+ statements. This allows investigation into the
code produced by the compiler and provides the" necessary information
when it is required to debug the object code at the machine .~code
1 evel •

The disassembler is a stand-alone program which is invoked by
specifying the name of the disassembler, the name of the .PRN file,
the name of the .ERL file .and the name of the output file:.

DIS???? <input name) {<desiination name) {,L=nnn}}

10.1 Instructions

He. r e ? ? ? ? i s the t yp e 0 f CP U (e • g. 80 a 0, z a 0, 6 a K , 80 a 6 , etc.).
The disassembler looks for a .ERL and a .• PRN file with <input name) as
a prefix. These files may be on ·any disk but-both-must be on the same
disk~ The destination file name may be a CP/M file name· ~r a
Pascal/MT+ device name such as CON: or LST:. The default destination
name is CON:. The L=nhn parameter allows the user to specify the
number of lines per page.on the output device. This is useful wh~n
using printers such as the T.I. a10 which has a 6-lines-per-inch or
a-lines-per-inch switch. '.' Using a~lines-per-inch the user should
specify (for 11"· paper) that the paper has aalines. This can save
considerable ammounts of paper. To use the L= option the user MUST
specify the <destination name~.

ll~

Pascal/MT+ Release, 5- 'Language Reference and Applications ~uide

1~.2 Sample

the
The following Pascal/MT+ program was compiled and run through

disassembler and produced the following output (for an 8080/Z8~):

Input program:

PROGRAM PPRIMEi
CONST

SIZE=8193;
VAR

PRIME: ARRAY[~ •• SIZE] OF BOOLEAN;
I,J,K,L: INTEGER;
COUNT: INTEGER;
CH : CHA~;
MAX:' 3 •• SIZE;

EXTERNAL PROCEDURE XI;­
EXTERNAL PROCEDURE X2;
EXTERNAL PROCEDURE X3;

(*$P*)

PROCEDURE TESTl(A,B,C:INTEGER);
BEGIN

B:=SUCC(SUCC(SUCC(A+A»);
C:=A+B;
WHILE C<=MAX DO

BEGIN .
PRIME[Cl :=FALSE;
C:=C+B;

END;
END; (* TESTl *)

(*$P*)

BEGIN
MAX := SIZE;
WRITE (, G ') ;
READ(CH);
FOR L := 1 TO l~ DO

BEGIN
COUNT:=~;

FILLCHAR(PRIME,SIZEOF(PRIME) ,CHR(TRUE»;

FOR I:=~ TO MAX DO

END;

IF PRIME[I] THEN
BEGIN

TESTI(I,J,K);
COUNT:=SUCC(COUNT)i

END;

WRITELN (COUNT) ;

Pascal/MT+ ReleaseS Language Reference and Applications Guide

WRITE('E');
END.

112

Pascal/MT+ Release 5 Language Reference and Applications Guide

Output from disassembler:

The user will note that references to program locations are
followed by a ~ing1e quote (1000') and references to data
locations are followed by a double quote (0000").

The user will also note that the operand of instructions which
reference external variables point to the previous reference
and the final reference contains absolute 0000. The list of
external chains is following the disassembly of the program.

pascal/MT+ 5.00 Copyright (c) 1980 by MT MicroSYSTeMS Page i 1
Disassembly of: TESTIT

S'tmt Nest Source Statement / Symbolic Object Code

1

PRIME'
L
K
J
I
COUNT
CH
MAX

o

EQU '0000
EQU 2000
EQU 2002
EQU 2004
EQU 2006
EQU 2008
EQU 200A
EQU 200C

PROGRAM.PPRIME;

~G00

0008
0010
0013

DB
DB
JMP
JMP

00,00,~0,00,00,00,00,00

00,00,00,00,00,00,00,00
0000 .
0000

2 0 CONST
3 1, . SIZ·E=8190;
4 1 VAR
5 1 PRIME: ARRAY[0 •• SIZE] OF BOOLEAN;
6 1 I,J,K,L: INTEGER;
7 1 COUNT: INTEGER;
8 1 CH : CHAR;
9 1, MAX:' 0 •• ~IZE;

10 1
11 1 EXTERNAL PROCEDURE Xl;
12 1 EXTERNAL PROCEDURE X2;
13 1 EXTERNAL PROCEDURE X3;
14 1
15 1 (*$P*)
16 1
17 1 PROCEDURE TEST1(A,B,C:INTEGER);
18 l' BEGIN

TESTl:

CALL

113

pascal/MT+ Release 5 Langua·ge Reference and Applications Guide

0019 POP H
001A SHLD 230E"
001D Pop· H
001E SHLD 2310"
3321 POP H
0022 SHLD 2312"
0025 CALL ee00

19 2 B:=SUGC(SUCC(SUCC(A+A»);

0328 LHLD 2012"
(332B XCHG
0(32C L-HLD 2312"
302F DAD D
0030 INX H
00.31 INX H
0032 INX H
0033 SHLD ~. 2010"

20 2 C:=A+B;

0036 LHLD 2012"
0039 XCHG
003A LHLD 2010"
003D DAD D
003E SHLD 200E" ..

. 21··' 2 WHILE C<=MAX DO

0041 LHLD 200E"
0044 PUSH H
0045 LHLD 200C"
Cf048 PUSH H
0049 CALL 0000
004C ·POP PSW
0G4D JNC 0~6D'

22 2 BEGIN
23 3 PRIME[C] :=FALSE;

0050 LXI H,0000"
0053 XCHG
0054 LHLD 200E"
0057 DAD D
0058 PUSH H
0059 LXI H,0000
005C ~CHG
005D POP H
005E MOV M,E

24 3 . C:=C+B;

0(35F LHLD 230E"
0062 XCHG
0063 LHL~ 20·10"

114

Pascal/MT+ Release 5 Lan'guage Reference and Applications Guide

~~66 DAD D
~~67' SHLD 2~0E"

25 3 1 END;

006A JMP 0041'

26 2 END; (* TESTl *)

~06D RET

27 1.
28 1 (*$P*)
29 1
30 I BEGIN

0~6E LHLD ~~06
0~71 SPHL
~072 CALL 0~~0

31 1 MAX . - SIZE; .-
0075 . LXI H,IFFE
0078 SHLD 200C" .

32 I WRI TE ('G ') ;

007B LXI H,0~"~
007E PUSH H
007F CALL' ~000

00S'2 LXI H,0047
0~85 PUSH H
~"86 CALL 00~~

0089 CALL ~00~

33 1 READ (CH) ;

00SC LXI H,200A"
0~SF PUSH H
0090 LXI H,0~0~

0093 PUSH H
0094 CALL ~08~'
0097 CALL 0000

34 I FOR L := 1 TO I~ DO

009A LXI H,0.001
009D PUSH H
009E LXI H,000A
00AI PUSH H
0~A2 POP D
00A3 POP H
00A4 DCX ~ H
0~A5 SHLD 20'00 "
00AS INX H

pascal/MT+' Rel~ase 5 L~nguaqe Reference and Applications Guide

00A9 PUSH H
00AA PUSH D
00AB CALL 0000
00AE SHLD 2014"
00B1 LHLD 20'00"
00B4 INX H
00B5 SHLD 2000"
00B8 LHLD 2014"
0088 DCX H
0'~BC SHLD 2014"
(30BF MOV A,H
00C0 ORA L
00C1 JZ' 012C'

35 1 BEGIN
36 2 COUNT;=0;

00C4 LXI li,0000
00C7 SHLD 2008"

37 2 FILLCHAR(PRIME,SIZEOF(PRIME) ,CHR(TRUE»;

00<;:A LXI H,0000"
00CD PUSH H
00CE LXI H,1FFF
0001 PUSH H
0002 LXI H,~001
0005 PUSH H
0006 CALL 0000

, 38 2
39 2 . FOR I:=0 TO MAX DO

0009 LXI H,0000
000C PUSH H
000D LHLD 200C"
00E0 PUSH H
00E1 POP D
00E2 POP H

·00E3 DCX H
00E4 SHLD 2006"
00E7 INX H
00E8 PUSH H
00E9 PUSH D
00EA CALL 00AC'
00ED SHLD 2016"
00F0 LHLD 2006"
0GF3 INX ~ H
00F4 SHLD 2006"
00F7 LHLD ,2016"
0f3FA DCX H
00FB SHLD 2016"
0eFE MOV A,H
00FF ORA L
01e0 jz 0129'

116

pascal/~T+ Release 5· "Language Reference and Application~ 9uide

40 2 IF PRIME[I] THEN

0103 LXI " H,000~"
0106 XCHG
0107 LHLD 20~6"
010A DAD D
0108 MOV A,M
010C RAR
(310D JNC 0126'

41 2 BEGIN
42 3 TEST1(I,J,K);

0110 LHLD 2006"
0113 PUSH H
0114 LHLD 2004"
0117 PUSH ... H
0118 LHLD 2002"
011B PUSH H
011C CALL 0013'

43 3 COUNT:=SUCC(COUNT);

011F" LHLD 2008"
0122 INX H
0123 SHLD 2008"

44 3 END;

(3126 JMP 00F0'

45 2 END;

0129 " JMP 00Bl'

46 "I " WRITELN (COUNT) ;

012C LHLD 2008"
01"2F" PUSH H
013O LXI H,007C'
0133 PUSH H"
0134 CALL 0095' "
0137 CALL 0087'
013A CALL 0000
013D CALL 0000

47 1 VIR I TE (, E') ;

~140 LXI H,0131'
0143 PUSH H
0144 CALL 0135'
0147 LXI H,,0045
014A PUSH H
0148 CALL 0138'

Pascal/MT+ Release 5 Language ·Reference and Applications Guide

014E CALL 00-8A'

48 1 END.

0151 CALL 0000

External reference chain @WIN --> 013B
External reference chain @CHW --) 014F
External reference chain @RCH --) 0098
External reference chain "@PST --) 0017
External reference chain @PLD --) 0026
External reference chain @CRL --) 0l3E
External reference chain @LEI --) 004A
External reference chain @FIN --> 00EB
External reference chain @SFB --) 0145
External reference chain @DWD '~-) 0l4C
External reference chain @INI --) 0.073
External reference chain~@HLT --) 0152
External reference chain OUTPUT --) 0141
Exte'rnal reference chain INPUT --) 0091
External reference chain FILLCH --) 0007

'118

pascal/MT+ Release 5 Language Reference and Applications Guide

11.0 Debugg er

T~e Pascal/MT+ debugger is a component of the Pascal/MT+ system
which 1S linked into the object program along, with the run-time
support library (from DEBUGGER.ERL). The user must link the debugger
as the first module of the program so that execution begins with the
debugger when the program is run •.

The compiler produces a .PSY file for each module- when~the' D
switch is., specified to the MTPLUS program. These .PSY files contain
records for each procedure, function and variable' declared in the
program. The address fields for each of these items is module
relative. Link/MT+ will process these .PSY files and create a .SYP
file containing absolute add.resses for the procedures, functions and
va·riables. The debugger then uses this .SYP file for symbolic
variable display, sym,bolic breakpoints, etc. '

The debugger can display variables, set breakpoints, single step
. a statement at a time, display symbol tables, and display entry and
~xit from procedures and functions.

The debugg~r can be used in a non-CP/M environment if the user
responds with simply <return> to the. debugger's request for the .SYP
file name. This disables only the symbolic facilities but retains the'
~ isplay by address· ·facil i ties.

The following two sections describe how to include the debugger
cod~ in an 6bject program and how to operate the debugger.

llq

pascal/MT+ ' Release 5 Langua~e Reference and Applications Guid~

11.1 'Instructions

. To inc1~de debugger information into the object program the user
must specify the 0 switch to MTPLUS.COM·. The compiler will then
produce, a .PSY file to the same disk as the .ERL file. In addition
the compiler will generate code at the begining of each line and' at
the begining and end of of each procedure and function. The $0 toggle
controls the generation of this code. The default state of $0 is on
($D+) when the 0 switch is specified to MTPLUS.COM. 'The user may ~urn
the $0 toggle off ($O-) around procedures and functions which '~have
been debugged or' are time critical. The $Dtoggle (as described in
section 2.5 of the app1icati~ns guide) may be switched 6n and off as
desired around procedures and functions.

Link/MT+ (as described above) creates a .COM and a .SYP file
from the ,. ERL ,and .PSY f}les create'd by, the compiler.

The debugger wi)l ask for the name of the symbol table file when
executed. The user should respond with the name of the .SYP file or
<return> for no symbols. The debugger will then respond with '+>".
The user may then enter any of the debugger commands and proceed to
debug the program under test.

120

pas~al/MT+ . Release 5 . Lang~age Reference and Application~ Guide

11.2 Commands

The debugger converts items whenever possible into the form
expected by the user (i.e. decimal for integers, TRUE 1 FALSE for
boo1eans, etc.). When this is not possible the debugger will display
the data in HEX and ASCII. Listed below are the syntax elements dnd
then the commands.

The term <name> is either a variable name, a proc~dure 1
function name, or a prefixed variable name. A.prefixed name is a
variable name pr~fixed with a procedure / function name. Names are 1
to 8 characters long and follow the syntax of the Pascal compiler.
Underscores are allowed and ignored (e.g. A B is exactly the same as
AB) • This syntax is ~sed to display 10caT variables and parameters.
If two procedures each have a 109a1 procedure of the same name only
the first procedure linked will .be aV.ailab1e for symbolic display •.

'The term <nurn> is. either a decimal number or, if prefixed by.·.a
'$1 character, a hexadecimal number. Decimal numbers fall in the
range ~ •• 32767. Hexadecimal numbers in the range e •• FFFF (for' 64K
machines, the range is larger for 8086/8088, Z8e~~ and ~8000).

<name>

<nurn>

::= <identifier>
<identifier>
<nurn>

<id~ntifier>

: : = $ <hex 'number> I
<decimal number>

, '"' ,

pascal/MT+ Release 5 Language 'Reference and Applications Guide

Command Syntax

DV <name> {A}

Meaning

Display Variable - variable display
by <name>. If this is a pointer var
the contents of the pointer is displayed
unless followed by A which causes the
data pointed to by the pointer to be
displayed. (e.g. DS STR).

The following· commands are used when symbols are not available
or when fields within records or array elements are to be displayed:

Each of these commands ,is foll~wed by a parameter in the form:

<parm> ::= [<name> 1 <num>] {A} {[+ 'I -] <num>}

Examples:

(*, Pascal declarations: *)

TYPE
PAOC = ARRAY [1 •• 40] OF CHAR;

VAR
ABC INTEGER;
PTR ApAOC;

Example of <parm>:

ABC
PTR
ABC+10
PTR +10
ABC-3
PTRA-3
$3FFD
$4238
$3FFD+$5B
$423S +49

PROCl:!
PROC2:J +9

an integer
entire array
arbitrary location
PTR [11]
arbitrary'location
arbitrary location

32 bytes pointed to by 423B
32 bytes at 4058
32 bytes pointed to by contents

of 423S + 49

local variable
offset from local pointer

122

Pascal/MT+ Release 5 Language Reference and Applications Guide

DI <parm>
DC '<parm>

. DL <parm>
DR <parm>
DB <parm>
DW <parm>
DS <parm>
DX <parm>

Display Integer
Display Character:
Display Logical (Boolean)
Display Real
Display Byte
Display Word
Display String
Display.eXtended (structures)
This is always displayed in HEX / ASCII format

The follow~ng commands allow control of the user program:

TR
T<num>

BE'
GO

sa <name>
'RB <name>

E+

E-

PN
VN <name>

Trace - Execute one line and return
Trace <num> lines and return

BEgin executi~n (start program from beginning)
Contin~e execution from a breakpoint

Set breakpoint at beginning of procedure <name>
Remove breakpoint at procedure <name>

Enable display entry and ex i t of' each ·proc·ed.ure or
function 'during execution
Disable entry / exit display

Display procedure names from .Syp file
Displ'ay all variables associated with procedure
<name>

123

pascal/MT+ Release 5 Language Reference and Applications Guide

12.0 Run-time Environment

The code generated by the'pascal/MT+ compiler is true, native
machin~ code. Run-time library routines are required on each,
processor to support files and any other features which are not
supported by the native hardware but are required to implement the
entire Pascal language. The followin~ information is specific to the
8080/Z80, CP/M implementation of pascal/MT+. 'The reader is referred
to the applications notes for other CPUs. .

The pascal/~T+ compiler generates program modules which have a
very simple structure. At the beginning of the module is, located a
jump table containing a jump to each procedure or function in the
·module. Space is reserved at the beginning of the jump table for the
main program and this jump is unus~d if the module is a MODULE and not
a PROGRAM. In addition, in a PROGRAM there are 16-bytes of header
information (in the 8080/Z80 version these are NOPs) which may be used
in future ve~sions· for hardware dependent initializa~ion. At the
beginning of the main program the compiler generates code to load the
stack pointer based upon the contents of location 6 (+4200 if
necessary) which is the CP/M standard. ROM based users will' typically
wish to· place some INLINE code there to re-initialize the' SP. Also
the compiler generates a call to th~ @INI routine which initializes
the INPUT and OUTPUT text files and the stack frame poirite~ used when.
the' $S+ toggle is activated. Again ROM based users 'will typi~ally
wish to re-write the @INI routine to suit their needs.

The Pascal/MT+ system requires subroutines from the ·run-time
"library in order to support the whole of the Pascal language. Some
processors requir~ less run-time support than others but. in general
all I/O is done via library routines and SET variables are manipulated
via library routines. Only the run-time routines needed for a
particular program are actuarly 16aded when·the program is linked with
Link/MT+.

Included in this section is also a discussion of how to adapt
the run-time routines for non-CP/M operation as is required for ROM
based systems.

12.1 Library routines

Listed below are the names of all the run-time library routines
and their function. For a description 6f their, parameters and more
detailed information the user is refered to the" source code which
accompan'ies this software package.

124

pascal/MT+ Release 5 Language Reference and Applications Guide

ROUTINE

@CHN

@MUL

@MUX

@FIN

@EQD
@NED
@GTD
@LTD
@GED
@LED

@EQS
@NES
@GES
@LES

@HLT

@PST
@PLD

@SADo
@SSB
@SML
@SIN
@BST
@BSR

@DYN
@LNK
@ULK

@EQA
@NEA
@GTA
@LTA
@GEA
@LEA

@XJP

@LBA
@ISB
@CNC
@CCH

@RCH
@CRL

FUNCTION

Program chaining routine

Integer multiply I6-bit stack

Integer multiply I6-bit register

FOR loop initialization helper_

.
String comparison routines for
=, <>, >', <, >=, and <=

Set equality
Set in-equality
Set superset
Set subset

End of prog~am halt routine, return to CP/M

Store ret addr temporarily
. Return ret addr to stack·

Set union
Set difference
Set intersection
Set membership
Buil~ singleton set
~uildo subrange set

Load/Store in .stack frame. mode routine
Allocate stack variable space
De-allocate stack variable space

Array comparison routines'
=, <>, >, <, >= and <=

Table Case Jump routine

Load concat string buffer address
Init string buffer
Concatenate a string to the buffer
Concatenate a char to the buffer

Read a char from a file
'Write a ~ewl.ine (CR) to a file

pascal/MT+ Release 5 Language 'Reference and Appl ications Guide

@CWT

@INP
@OUT

@WIN
@RST

TSTBIT
SETBIT
CLRBIT

SHL
SHR

@EQI
@NEI
@GTI
@LTI
@GEI
@LEI

@EQB
@NEB
@GTB
@LTB
@GEB
@LEB

@SFB
@DWD
@SIA
@SOA
@DIO

@INI

@STR

@GETCH

@WCH

@,DIV
@MOD
@XDIVD

@MVL
MOVE
MOVELE

@MVR
MOVERI

@.PUTCH

Wait for EOLN to be true on a file

Handle variable port input
Handle variable port output

Write an integer to a file
Read a string from a file

Test for a bit on
Turn a bit on
Turn a bit off

Shift a word left
Shift a word right

Integer comparisons

Boolean comparisons

Set global FIB address
Set default width and decimal places
Reset input vector
Reset output vector
Set I/O vectors to default addresses

Run-time initialization

String store

Read a char from a file onto stack

Write a string to a file

16-bit DIV software routine
l6-bit MOD software routine
utility divide routine used by @WIN

Block move left end to left end. stack parms

Block move right end to right end stack parms

Write a char from stack

126

pascal/MT+ Release 5 Langua~e Reference and Applications Guide

@LEAD
@CHW
@CHWl

@EQR
@,NER
@GTR
@LTR
@GER
@LER

@RRL
@WRL

@RAD
@RSB
@RML
@RDV
@RNG
@RAB

@XOP

SQ~T

TRUNC
ROUND

IOERR

CHAIN

OPEN
OPENX
BLOCKR
BLOCKW
CREATE
CLOSE
CLOSED
GNB
WNB
PAGE
EOLN
EOF
RESET
REWRIT
GET
PUT
ASSIGN
PURGE
IORESU

COpy
INSERT
DELETE

Handle width in char outputs
Write a char to a file
entry point used by.@WCH and others

Real comparisons
=, <>, >, <, >=, and <=

Read a real from a file
Write a real to a file

Real add
Real subtract
Real multiply
Real divide
Real negate'
Real absolute value'

Real utility load/store routine

Real square root

Pascal built-in functions

Used for unimplement I/O,routine~,

Pascal interface for @CHN

Run time support for files

pascal/MT+ Release 5 Language Reference and Applications Guide

12.2

POS

@WNC
@RNC
@RIN
@S21
@RNB
@WNB

@BDOS

@SPN
@NOK

@NEW
@DSP
MEMAVA.
MAXAVA

Console I/O

Run time support for ~trings

Write next char to a file
Read next char from a file
Read integer from a file
Convert string to integer
Read n bytes from a file
Writ~ n bytes to a file

Call CP/M directly

Check .for device names
Check for legal file names

Allocate memory for NEW procedure
Deallocate memory for DISPOSE procedure
MEMAVAIL' function
MAXAVAIL function

In Pascal/MT+ all I/O·is file I/O a~d. is vectored through the
@SYSIN and @SYSOUT vectors which are located in and initialized by the
@J:NI routine to point to the @RNC (read-next-char) routine fo·r input
and @WNC routine (write-next-char) for output. When re-directed I/O
is Used the @SIA and @SOA routines are used to change th~se vectors,
and the @DIO routine is used to reset these vectors at the end of a
re-directed I/O statement.

. In environments w.here··minimum space is a concern and no file I/O
is being us~d the user may simply rewrite the @RNC and .@WNC routines
and provide tota~ console I/O support. Note that ~hese routines must

.. manip.ulate the INPUT FIB FEOF and FEOLN boolean variables if EOF, EOLN
and READLN are to operate properly.

Tn the CP/M environmen~ on 8080 and Z80 machines the @RNC and
@WNC routines call GET and PUT which call @RNB and @WNB which call
@BDOS and therefore cause about 2K bytes of software to be loaded even
for a program which does console I/O only.

Users which ne~d to operate in ROM 'environments should see
section 12.4.

·128

~ascal/MT+' Releas~ 5 L~nguage Reference and Applications Guide

File I/O

In Pascal/MT+ all the file I/.O routines (with the exception of
the conversion routines) are written in Pascal and supplied in source
code form. The reader will note that when looking at these routines
one will see a definition of a data structure called a ~IB or
file-information-block. This FIB contains information about· the
current state of the file, a sector ·buffer, an' FCB and other
information. The organization of the FIB is known to all tl}e' Pascal
routines and to some of the assembly language routines and ·~hould not
be changed lightly.

In addition the reader will note that some of the routines have
more parameters than normally found for those routines (such as
RESET). The compiler recognizes when these built~in routines are
being called and, passes the bu~fer size along with the FIB address
when calling· these routines. Also the ,RESET routine is extra special
in that the buffer size is passed as -1 if the file is a TEXT file so
that interpretation of special characters and EOF can be handled
properly.

12.4 ROM environments

The user may wish to. run programs written in pascal/MT+ in a ROM
based system. This has been a design goal from the beginning and ha~
been done successfully by. many users. In order to perform formatted
I/O in a ROM based environment the user must either use re-dir'ected
I/O for all READ and WRITE statements or rewrite the @RNC and @WNC
routines mentioned in seGtion· 12.2. In. addition the user of a ROM
based system may wish to shorten and/or eliminate the INPUT and OUTPUT
FIB s~orage located in the @INI module. This storage is required for
TEXT file I/O compatibility but may not be needed in a ROM. based
environment. The' user should be cautious and make sure that any

,changes to INPUT and OUTPUT are also handled correspondingly in @RST
and @CWT.

Listed below are three skeletons for the @INI, @RNC and @WNC
routines which can be used in ROM environments. The user should study
the source code included with the package for add~tional details such
as HEAP usage in ROM, etc.

129

pascal/MT+ Release 5 Language "Reference and Applications Guide

;-------------------------------------~--~----------------------i
SAMPLE INITIALIZATION ROUTINE i

. ;------------r--------------------~----------------~------------i
PUBLIC
PUBLIC
PUBLIC
PUBLIC

PUBLIC·

EXTRN
EXTRN

@INI:
LXI
SHLD

LXI
S.HLD

••• ADD
i

DSEG

@.SYSIN: DS
@SYSOUT: DS

INPUT: OS
OUTPUT: DS

RET
END

@INI
@SYSIN
@SYSOUT
INPUT

OUTPUT

@RNC
@WNC

H,@RNC
@SYSIN

H,@WNC
@SYSOUT

MORE HERE

2
"2

1
1

iSYSTEM INPUT VECTOR
"iSYSTEM OUTPUT VECTOR
iDEFAULT INPUT FIB
iTHIS MUST BE PRESENT EVEN "IF NO
iFILE I/O IS DONE
iAGAIN MUST BE PRESENT EVEN IF NO
iFILE I/O IS DONE

FOR HEAP, ETC. PRUNE FROM STANDARD @INI

iDUMMY FIB
iDUMMY FIB

;AND THAT'S A"SIMPLE ONE

130

Pascal/MT+ Release 5 Language Reference and Applications Guide

;-~---------------------------~----~--~----------------------~--i
;. SAMPLE @RNC ~ READ NEXT CHARACTER ROUTINE i

;--~------7---i

@RNC:
PUBLIC @RNC

; INCLUDE CODE HERE TO GET CHARACTER INTO A-REG AND
i ECHO IT. ALSO IF USER WANTS TO SIMULATE CON: THE
; THE DRIVER MUST ECHO BACKSPACE AS <BACKSPACE, ~PACE,

i BACKSPACE> AND CR AS CR/LF

MOV
MVI
XTHL

PCHL
END

L,A
H,0

iPUT FUNC VALUE ON STACK AND
iRET ADDR IN HL

. iRETURN'

pascal/MT+ Release 5 tanguag.e Reference and Applications Guide

;-------------------------~------------------~-----~------------i
SAMPLE, @WNC - WRITE NEXT CHARACTER ROUTINE' ;

; --------------------------.-----------"--.--------------------~--.-;

@WNC:

PUBLIC @WNC

POP
XTHL

H iGET RET ADDR
iPUT IT BACK AND GET PARM CHAR

i CODE HERE TO WRITE CHARACTER IN L-REG TO OUTPUT DEVICE
i IF USER WANTS TO SIMULATE CON: COMPLETELY THE USER
; MUST OUTPUT CR AS CR/LF

RET
END

pascal/·MT+. Release 5 . Language Reference and Applicatio~s·.Guid~

Pascal/MT+.: ·Assembly Interfacing

This section of the applications guide is intended to provide
information for those Pascal/MT+ customers who wish to write and call
assembly language routines from a pascal/MT+ program. Included i~ a
list of assemblers, required naming conventions, variable accessing,
parameter passing conventions and restrictions on what assembly
language features can be linked with LINK/MT+.

13.1 Assemblers

·The assemblers~used with Pascal/MT+ must generate the same
relocatable format as the compiler. The' 8080 and Z80 versions of the
Pascal/MT+ system ,generate Microsoft compatible relocatable files.
This is a bit stream relocatable format and is described in section 3
of this applications guide. This format is generated by the Microsoft
M80 and the Digital Research RMAC asse~blers. Both of' these
assemblers have been used successfully by MT MicroSYSTEMS to generate
the run-time library.

13.2 Naming Considerations

The assemblers and the Pascal/MT+ compiler each generate entry
point. and external reference records in the relocatable file format.
These records contain external symbol names. The Microsoft format
allows for up to 7 character names but most assemblers only generate 6
character names 'and ·the "pascal/MT+ compiler will use al"l '7 characters.
This means that if a variable is to be located in a Pascal/MT+ program
and accessable to an assembly language routine by name, the user
should limit the name to 6 characters.

In addition, M80 allows symbols to begin with $.and RMAC allows
symbols to begin with ? neither of which is a legal identifier
character in pascal/MT+. M80 also does not consider $ to be a
non-significant character but RMAC does. This means that in M80 the
symbol A$B is actually placed in the relocatable file as A$B but in
RMAC the same symbol would be in the file as AB. When using RMAC the
use of $'to simu~ate the underscore (~) is often used but not
transportable to M80.

13.3 Variable accessing

Accessing assembly language variables from Pascal and Pascal·
variables from· assembly language is very simple.

Pascal/MT+ Release 5 Language Reference and Applications Guide

"To access assembly iangu~ge variables trom Pascal the variables
should be declared" as PUBLIC in the "assembly language module and as
EXTERNAL in the Pascal/MT+ program:

EXAMPLE:

; ASSEMBLY LANGUAGE PROGRAM FRAGMENT

PUBLIC XYZ

DSEG

XYZ DS 32 ;ACCESSABLE BY PASCAL

END

(* PASCAL PROGRAM FRAGMENT *)

VAR
XYZ : EXTERNAL PACKED ARRAY [1 •• 32] OF CHAR;

To access Pascal/MT+ GLOBAL variables from an assembly language
program the user must declare the name to be EXTRN in the assembly
language ·program and simply as a global variable (make" sure the $E+
toggle is on!) :

EXAMPLE:

; ASSEMBLY LANGUAGE PROGRAM FRAGMENT

EXTRN PQR

LXI H,PQR ;GET ADDR OF PASCAL VARIABLE

.. END

(* PASCA~ PROGRAM FRAGMENT *)

VAR (* ~N GLOBALS *)
PQR : INTEGER;'

134

(* ACCESSABLE BY ASM ROUTINE *)

pascal/MT+ Release 5 Language Reference and Applications Guide

In addition to accessing the variables by name the user must
know how the variables are allocated in memory. Se~tion 4·of this

'applications guide discusses the stora~e allocation and format of each
built-in scalar data type. Variables allocated.· in the GLOBAL data
area are ~llocated essentially in the order shown. The exception
being that variables which are in an identifier list before a type
(e.g. A,B,C : INTEGER) are allocated in reverse order (i.e. C first,
followed by B, followed by A). In some CPUs (such as the Z8000 and
68000) each variable declared on a separate line is allocated on a
EVEN memory address boundary. Variablas allocated on the same' line
which are not an even number of bytes in length~ in par~icular
characters~ bytes, and booleans, are packed together in mem6~y and.
then space is left, if necessary, between the end of that declaration
and the next:

EXAMPLE:

A I~TEGER;
B .: CHAR;
I,J,K BYTE;
L INTEGER;

STORAGE LAYOUT:

+0 A LSB (or MSB if Z8000/68000)
+1 A MSB (or LSB if Z8000/68000)
+2 B

8080/Z80/6809/8086 Z8000/68000
+3 K +3 empty space
+4 J +4 K
+5 I . +5 J

. +6 L LSB +6 I
+7 L MSB +7 empty space

·+8 L MSB
+9 L LSB

Structured data types: ARRAYs, RECORDs and SETs require
additional explanation:

ARRAYs are stored in ROW major order. This means that A: ARRAY
[1 •• 3,1 •• 3] OF CHAR stored as:

+0 A[I,l] ..
+1 A [1 ,2]
+2 A[I,3]

+3 A[2,1]
+4 A [2,2]
+5 A[2,3]

pascal/MT+ Release 5 Language Reference and Applications Guide

+6 A[3,I]
+7 A[3,2]
+8 A[3,3]

This is logically a one dimensional array of vectors. In
pascal/MT+ all arrays are logically one dimensional arrays of some
other type.

RECORDs are stored in the same manner as global variables.

SETs are alw~ys stored as 32 byte items~ Each element of the
set is stored as one bit. SETs are byte oriented and the low order
bit of each byte is the first bit in that byte of the set.' Shown
below is the set 'A' •. 'Z':

Byte number

0001 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F 10 IF

The first bit is bit 65 ($41) and is found in byte 8 bit 1. The
last bit is bit 90 and is found in byte·ll bit 2. In this discussion
bit 0 is the least significant bit in the byte.

13.4 Parameter passing

. When calling'an assembly language routine from Pascal'or calling
a Pascal routine from assembly language ~arameters are passed on the
stack. Upon entry to the routine the top of the stack contains the
return address. Underneath th~ re£urn address are the parameters in
reverse order from declaration: (A,B:INTEGER; C:CHAR) W9uld result in·
C· on top of '8 on to'p of A.' Each parameter requires at- least one
16-bit WORD of stack space. A character or boolean is passed as a
l6-bit word witn a high order byte of 00. VAR parameters are passed
by ~ddress. The address represents the byte of the actual variable
with the lowest memory address.

Non-scalar parameters (excluding SETs): are always passed 'by
address. If the parameter is a value parameter then code is generated
by the compiler in a Pascal routine to cail @MVL to move the data.
SET parameters are passed by value on the stack and the @SS2 routine
is· used to .store the .. m away.

The example below shows a typical parameter list at entry to a
procedure:

PROCEDURE DEMO(I,J : INTEGER; VAR Q:STRING; C,D:CHAR);

AT ENTRY, STACK: +0
+1

RETURN ADDRESS
RETURN ADDRESS

136

pascal/MT+ Release 5· ·Language Reference and Applications Guide

+2 D
+3 BYTE OF 00
+4 C
+5 BYTE OF 00
+6 ADDRESS OF ACTUAL STRING
+7 ADDRESS OF ACTUAL STRING
+8 J (LSB ON 8080, MSB ON Z8k, 68k)
+9 J . (MSB ON 808~, LSB ON Z8k,. 68k)
+10 I (same as ..1)
+11 I (same as J)

SETs are ~·tored on the stack with the least significant byte on
top (low address) and the most significant byte on 'bottom (high
address). Function values are returned on the stack. They are placed
"logically" underneath the return address .before the return is
executed. They therefore remain on the top of the stack after the
calling progra~ is re~entered after the return.

Users 'who wish to call routines written in alien .(to the Pascal
environment) languages such as PL/I or FORTRAN should observe the
following rules:

a) All parameters should be VAR (address)

b) Declare the alien routine in the other language as
an EXTERNAL WORD.

c) Declare a local variable which will hold the
address of.the alien routine.

d) Using the ADDR function take the addr of the
EXTERNAL WORD and assign it to the local
variable.

e) Call an assem~ly language routine passing ~ll the
param~ters and the local variable containing· the
address of the alien routine.

f) This assembly language routine should remove the
addresses from the stack and create a parameter list
compatible with the alien language.

g) The assembly language routine should then use the
address passed in the WORD to actually call the
alien routine.

h) The us"er should bewa re of mix ing . prog rams which
deal with REAL numbers as the format for the reals
is likely· to be significantly different between
the two languages •

. i) The user should. ,also beware of assumptions the
alien language system makes. about who owns what
memory resources such as PL/I ALLOCATE and ~ascal

pascal/MT+ Release 5 Language Reference and Applications Guide

HEAP space.

13.5 Restrictions

The user should beware of the following restrictions that are
pla~ed upon program which are linkable with the Link/MT+ lin~er:

a) COMMON is not supported

b) Use of assembly language which would generate
external + offset records (e.g. LXI H,EXTVAR+l)
should be avoided .

c) Use of DB 'and DW in the DSEG of an assembly language
routine is not supported. Use the DB and DW in
the CSEG for non-ROM based applications.

d) Use of the Request Library search featvre is 'not
supported by Link/MT+:

138

Pasca1/MT+ Release 5 Language Reference and Applications Guide

14.0 Run-time error handling

,
The Pascal/MT+ system supports two types of run-time checking:

range and exception. Range checking is performed on array subscripts
and on subrange assignments. The default condition of the system is
that these checks are disabled. The user may enable them around 'any
section of coding desired using the $R and $X toggles (see section 2.5
of the applications guide). This section describes the implementation
of this mechanism and how users may take advantage of tnis mechanism

·to handle. run-time errors in a non-standard manner.

The general philosophy is that error checks and error routines
will set boolean flags. These boolean flags along with an error code
will be loaded onto·the stack.and the built-in routine @ERR is called
with these two parameters. The @ERR routine will then test the
boolean parameter. If it is false then no error has occurred and .the
@ERR routine will exit back to the compiled code and execution
continues. If it is true the @ERR routine will print an error message
and allow the user to continue or abort.

14.1

Listed below are the error numbers passed to the @ERR ro·ut.ine:

Value

1

i

3

4

Range checking

Meaning

Divide by 0 check

Heap overflow check

String overflow chesk

Range check

When range checking is enabled the compiler generates calls to
@CHK for each array subscript and subrange assignment. The @CHK
routine leaves a boolean on the stack and the compiler generates calls
to @ERR after the @CHK call. If range checking is disabled and a
subscript falls· outside the valid range, unpredictable results will
occur. For subrange assig~ments the value will be truncated at th~
byte level.

139

pascal/MT+ Release 5 Language Reference and Applications Guide

14.2 Exception checking

When exception checking is enabled the compiler will load the.
error flags (zero divide, string overflow, and heap overflow) as
needed and call the @ERR routine after each operation which could set
the flags. If exception checking is disabled the run-time routines
attempt to provide a friendly action if possible: divide by zero
results in a maximum value being returned, heap overflow d~es nothing
and string overflow truncates. -

14.3 User supplied handlers

It "is possible for the user to write an @ERR routine to be used
instead of the system ·routine. The user should declare the routine'
as:

PROCEDURE @ERR(ERROR:BOOLEAN; ERRNUM:INTEGER);

The routine will be called, as mentioned above, each time an
error check is needed and this routine should check the ERROR variable
and exit if it is FALSE." The user may decide the appropr~ate action
if the value is true. The values of ERR~U~ are as show in section
~4.0

140

Pascal/MT+ Release 5 Lan9uage'Reference and Applications Guide

COM file

ERL fi 1 e

PSY file

SYP file

68000

8080

ABSOLUTE

ARRAY

BCD

BCDREALS

CHAIN

COMMON

-CP/M·

DISABLE

ENABLE

EXTERNAL

FLOATING

FPREALS

HEX

INLINE

INP

INTERRUPT

47, 48, 49, 50, 60, 61,·62, 108, 120

8, 46, 47, 48, 49, 50, 51, 53, 64, 110,
119, 120

50, 51, 119, 120

119, 120, 123

66, 121, 135

21, 23, 26, 45, 46, 48, 50, 51, 52, 56,
66, 100, 103, 106, 110
111 124, 128, 133, 135

19,54,55,98,103,107,108,109,113,
119, 127

15, 16, 20, 27, 29, 55, 65, 68 70, 75,
83, 84, ,92, 106, 125, 135, 136

48, 50, 65, 67, 71

48

6, 18, 31, 43, 51, 57, 107, 108, 109,
113, 118, 125, 127

45, 63

45, 46, 47, 52, 53, 55, ~6, 61, 91, 92,
93, 94, 96, 97, 98, 100, 104, 110, 119,
124, 125, 128

.54, 55, 100, 119, 123

18, 54, 55, 77, 100, 101, 1"')"?
~ '

11, 13, 19, 27, 31, 33, 37,- 38, 39, 40,
55, 63, 91, 103, 107, 111, 11~:, 118, 1~:34J

134

48, 50, 51, 65, 67

46, 47, 48, 60

12, 13, 35, 60, 61, 62, 66, 103, 121, 123

6, 43, 57, 81, 100, 103, 104, 105, 124

4, 6, 11, 21, 23, 30, 34, 35, 43, 49,
53, 58, 61, 63, 70, 79, 80, 91, 100, 106,
110, 111, 118, 124, 126, 128, 129, 130

6, 11, 27, 29, 43, 77, 100, 101, 102

141

Pascal/MT+ Release 5 Language .Reference and Applications Guide

LINKMT

MODEND

MODULE

MTPLUS

NIL

OPTION

PASLIB

ROM

STRING

TRANCEND

WOR.D.

WRD

,Z80 .

zeooo

46., 48, 60

36., 37, 40

5, 36., 37, 38, 39, 40, 42, 45, 53, 54, 55,
57, 60, 62, 63, 107, 119, 124, 129, 134

46, 48, 49, 51, 53, 119, 120

21

44, 49, 50, 53, 54., 55,.107, 110

34., 60, 124, 128, 129

11., 13, 14, 15, 16, 19, 20, 21, 23, 24, 31,
34., 42, 49, 53, 55., 65, 68'1 69'1 70., 72'1 76,
85, 86, 87, 88, 89, 90., 91, 94, 96.,· 99, 103
123 .. 125, 126, 128, 136

46, 48, 60 .

11, 12, 15, 16, 18, 19, 21, 23, 24, 26, 33,
35., 37, 38 .. 42, 44 .. 55., 57., 65, 68, 78.,
103, 104., 106., 123, 126, 136

·33., 57, 65

21, 23., 26, 45., 48, 50, 51, 52', 56, 66,
100, 103.,. 106, 110, 111, 121, 124, 128,

. 133, 135

66, 121, 135

142'

pascal/MT+ Release 5 L~nguage Reference and Applications Guide

16."

16.1

Appendices

Error messages
I

1: Error in simple type
Selt-explanatory.

2: Identifier expected
Self-explanatory.

, 3: 'PROGRAM' expected
Self-explanatgry

4: ')' expected
Self-explanatory

5:' ': I expected
Possibly a = used in a VAR declaration

6: III ega 1 s ymb 01 C po s sib 1 y m iss i ng I;' 0 n 1 in e a bo v e)
Symbol encountered is not allowed in th~ syntax at this point.

7: Error in parameter list
Syntactic error in parameter list declaration.

8: 'OF I expected .
,Self-explanatory.

9: 'C' expe<?ted
Self-explanatory.

1": Error in type
Syntactic error 'in TYPE declaration.

11: 1(' expected
Self-explanatory.

12: '] I expected
Self-explanatory.

13: 'END' expected
All procedures, functions, and blocks of statements
must have an 'END'. Check for mismatched BEGIN/ENDs.

14: ';' expected, C poss i bly on 1 ine above)
Statement separator required here.

15: Integer expected
~elf~explanatory.

147

pascal/MT+ ReleaseS Languag·e Reference and Applications Guide

16: '=' expected
Possibly a : used in a TYPE or CONST declara~ion. ,

'17: 'BEGIN' expected
Self-explanatory.

18: Error in declaration part·
Typically an illegal backward reference to a type in
a pointer declaration.

19: error in <field-list>
Syntactic error in a record declaration

20: '.' expected
Self-explanatory.

21: '*' 'expected.
Self-explanatory.

50: Error in constant
'Syntactic error in a literal c~n~tant

51: ':=' expected
Self-explanatory.

52: 'THEN' expected
Self-explanatory.

53: 'UNTIL' expected
Can result ~rom mismatched begin/end sequences

54: 'DO' expected
Syntactic error.

55: 'TO' or 'DOWNJO' expe~ted in FOR statement
Sel f-explana to rye'

56: 'IF' expected
Self-explanatory.

57: "FILE' expected
Probably an error in a TYPE declaration.

58: Error in <factor> (bad expression)
Syntactic error in expression at factor level.

59: Error in variable
Syntactic error in expression at variable level.

99: MODEND expected
Each MODULE must end with MODEND.

101: Identifier'declared twice
Name already' in visible symbol table.

148

Pascal/MT+ Release 5· Language Reference and Application~ Guide

1~2: Low bound exceeds high bound . .
For subranges the lower bound must be <= high bound.

I

1~3: Identifie~ is not of the a~propriate class
A variable name used as a type, or a type used
as a variable, etc. can cause this error.

104: Undeclared identifier
The specified identifier is not in the visible·
symbol table.

105: sign not ai10wed
Signs are not allowed on non-in~eger/non-rea1 constarits.

106: Number expected
This error can often come from making the compiler totally
confused in an expression as it·checks for numbers after all
other possibilities have been exhausted.

107: Incompatible subrange types
(e.g. 'A' •• 'Z'. is not comp.atible with 0 •• 9).

108: ·File not allowed here
File comparison and assignment is not_allowed.

109: Type must not be real
Self-explanatory.

110: <tagfield> type must be scalar or subrange
Self-expla~atory.

111: Incompatible with <tagfield> part
Selector in a CASE-variant record is not
compatible with the <tagfield> type .

112: Index type ~ust noi be real
An array may not be declared with real dimensions

lr3: Index type must be a scalar or a subrange
Self-explanatory •.

114: Base type must not be real
Base type of a set may be scalar or subrange.

115: Base type must be a scalar or a subrange
Self-explan~tory.

116: Error in type of standard procedure parameter
Self-explanatory.

117: Unsatisified forward reference
A/forwardly declared .pointer was-never de.fined.

pascal/MT+ Release 5 Language"Reference and Applications Guide

118: Forward reference type identifier i~ variable declaration
The user has attempted to declare"a ~ariable as a pointer
to a type which has not yet been declared.

I

119: Re-specified params not OK for a forward declared procedure
Self-explanatory.

120: Function result type must be scalar, subrange or pointer
A function has been. declared with a string or other non-scalar
type as its value. This is not allowed.

121: File vaiue parameter not allowed
Files must be passed as VAR parameters.

122: A forward declared function's result fype can't be re-sgecified
.Self-explanatory. .

123: Missing result .type in function. declaration
Self-explanatory.

125: Error in type of standard procedure parameter
Th~s is often caused by not having'the parameters in the
proper order for built-in procedures or by attempting to read/write
pointers, enumerated types, etc.

126: Number of parameters does not agree with declaration _
Self-explanatory.

127: Illegal parameter"substitution
Type of parameter does not exactly match the
corresponding forma~ parameter.

128: Result type does not agree "with declaration
When assigning to a function .result, the types must be compatible.

129: Type conflict of operands'
Self-explanatory.

130: Expression is not of set type
Self-explanatory.

131: Tests on equality allowed only
Occurs when comparing sets for other than equality.

133: File comparison not allowed
File control blocks may not be compared as they~contain multiple
fields which are not available to the user.'

134: Illegal type of "operand (s)
The operands do. not match those required fOf this operator.

" 135: Type of opara~d must be boolean
The operands to AND, OR and NOT must be BOOLEAN;

136: Set" element ~ype must be scalar or subrange

150

~Q~~Q~/n~T ~~~~~se ~ Language Reference and Applications Guide

Self-explanatory.

137: Set element types must be compatible
Sel~-explanatory.

138: Type of variable is not array
A subscript has been specified on a non-array variable.

119: Index type is not compatible with the declaration
Occurs when indexing into an array with the wrong type of
indexing expression.

140: Type of variable is not record
Attempting to access a non-record data structure.
with the 'dot' form or the 'with' statement.

l~l: Type of variable must be file or pointer
Occurs when an~up arrow follows a variable which is not
of type pointer or file.

142: Illegal parameter solution
Self-explanatory.

143: Illegal type of loop control variable
Loop control variables may be only local non-real scalars.

1 4 4: I 11 ega 1 t yp e· . 0 f ex pre s s ion .
The expression used as a selecting expression in a case
statement must be a non-real scalar.

145: Type conflict
Case selector is. not the same type as the selecting expression.

146: Assignment of files not allowed
Self-explanatory.

147: Label type incomp~tible with selecting expression
Case selector is not the same type as the selectinge~pression.

148: Subrange bounds must ·be scalar
Self-explanatory •.

149: Index type must be integer
Self-explanatory.

150: Assignment to standard function is not allowed
Self-explanatory.

151: Assignment to formal function is not allowed
Self-explanatory.

152: No such field in this record
Self-explanatory.

153: ~ype error in read

151

pascal/MT+ Release 5 L~nguage Reference and Applications ~uide

Self-explanatory~

154: Actual parameter, must be a variable
Occurs *hen attempting to pass an expression as a VAR paraeter.

ISS: Control variable cannot be formal or non-local
The control variable in a FOR loop must be LOCAL.

156: Multidefined case label
Self-explanatory.

157: Too many cases in case statement
Occurs when jump table generated for case overflows its bounds.

158: No such variant in this record
Self-explanatory.

159: Rea'l or string tag~ields not allowed
Self-explanatory.

160: Previous declaration was not forward

161: Again forward declared

162: Parameter size must be constant

163: Missing variant in declaration
Occurs when using NEW/DISPOSE and a variant does not
exist.

164: Substition of standard proc/func not allowed

165: Multidefined l~bel
Label more than one statement with same label.

166: Mu1tideclared label
Declare same label more than once.

167: Undeclared label
Label on statement has not been de1careed,.

168: Undefined label
A declared label was not used to label a statement.

l69: Error in base set

170: Value parameter expected

171: Standard file was re-declared

172: Undeclared external file

174: Pa'sca1 function or procedure expect'ed
Sel f-explana tory. .

152

pa~cal/MT+. Release ~ . Language Reference and Applications G~ide

183: External declaration not allowed at this nesting level
Self-explanatory.

i87: Attempt to open libraFy·unsuccessful
Self-explanatory. .

191: No private files
Files may not be declared other than in the GLOBAL
variable section of a program or module·as they must
be statically allocated.

193: Not enough room for this operation
Self-explanatory.

194: Comment must appear at top of program

201: Error in real nl,lffiber - digIt expected
Self-explanatory.

202: String constant must not exceed source line

203: Integer constant exceeds range
. Range on integer constants are -32768 •• 32767

250: Too many scopes of nested identifiers
There is a limit of 15 nesting levels at compile-time.
This .includes WITH and procedure nesting.

251: Too many nested procedures or functions .
There is· a limit of 15 nesting levels at execution
time.

253: Procedure too long
A procedure has gener-ated ·code which has overflowed
the internal procedure buffer. Reduce the size of
the procedure .and ·try again. The limit is target.
machine dependen~. Consult the CPU applications note
for more information.

259: Expression too complicated
The users expression is too compilated (i.e. too many
recursive calls needed to compile it). The user should
reduce the compi1cation using temporary variable

397: Too many FOR or WITH statrnents in a procedure
Only 16 FOR and / or WITH statments are allowed in
a single procedure (in recursive mode only)

400: Illegal character in text
A character which is a non-Pascal special character
was found outside of a quoted string.

401: Unexpected end of input
End. encountereq before returning to outer level.

153

pasca1/MT+ Release 5 Language ·Reference and Applications Guide

4~2: Error in writing code file, not enough room
Self-explanatory.

I

433: Error in reading include file
Self-explanatory.

404: Error in writing list file, not enough room
Self-explanatory.

405: Call not allowed in separate procedure
Self-explanatory.

406: Include file not legal
Self-explanatory.

407: 'Symbo1Tab1 e Overflow

497: Error in closing code file.
An error occured when the .ERL file was closed.
Make more room on the destination disk and try again.

154

pasca1/MT+ Release 5 Language Reference and Applications Guide

16 _.2 Reserved Words

The following are the reserved words in Pascal/MT+:

MOD, NIL, IN, OR, AND, NOT, IF, THEN, ELSE,
CASE, OF, REPEAT, UNTIL, WHILE, DO, FOR, TO,
DOWNTO, BEGIN, END, WITH, GOTO, CONST, VAR,
TYPE, ARRAY, RECORD, SET, FILE, FUNCTION,
PROCEDURE, LABEL, PACKED, PROGRAM

Pascal/MT+ also has extended reserved words:'

ABSOLUTE, EXTERNAL

155

pascal/MT+ Release 5 Language 'Reference and Applications Guide

16.3· Language syntax description

·<letter> · .- A B I c I D E I F I G H I I J I · .-
K L I M I N 0 I p I Q R I s T 1
u v I w I x '1 1 z 1 a b 1 c d. I
e f I 9 1 h i 1 j 1 k 1 1 m n I
n 0 1 p 1 q r '1 s I t u 1 v wi
x y I z 1 .@

<digit> · .- ~ 1 2 I 3 4 I 5 I 6 I 7 1 8 I 9 · .-
A B C I D E I F {only allowed in HEX numbers}

<special symbol > .. - {reserved words are listed in section 16.2l
+ I * / I = <> I < 1 > 1
<= I >= ') . 1] 1 { 1 } I . - 1 ; 1 1 I .- ,

{the foilowing are additional or substitutions:}
(. I .) I 1 \ I ? I I I I $ I &

(. is a synonym for [
.) is a synonym for.]

, \, and? are synonyms
!, and I are synonyms

(see section 8.1.1)
(see section 8.l~2)
(see section 8.1.3) &

<identifier>

<letter or digit>

<d ig'i t sequence>

<unsigned integer>

< unsigned real>

<unsigned number>

<scale factor>

<sign>

<string>

· .­.. -
· .-· .,-
· .­.. -
... -.. -

· .-· .-

· .-· .-
· .­.. -

<letter> {<letter or digit or underscor~>}.

<letter> I <digit>

<digit> {<digit>}
. .

$ <digit sequence>
<d ig it sequence>

<unsigned integer> • '<dig it sequence>
<unsigned integer> • <digit sequence>
E <scale factor>
<unsigned integer> E <scale factor>

<unsigned integer I <unsigned real>

<unsigned integer> I <sign><unsigned integer>

~:= + I - .

::~ , <character> {<character>}' , ,

·<constant identifier> · .-· .- <identifier>

<constant> · .-· .- <uns igned number
<sign><unsigned.number>

156

pas6al/MT+ . Release 5 . Language Reference and Applications Guide

<constant identifier>
<sign><constant identifier>
<string>

<6onstant definition> ::= <id~ntifier) = <constant>

<type> ::= <simple type>
<structured type>

"<pointer type>

<type definition> ::= <identifier> = <type>

<simple type> ::= <scalar type>
<subrange type>
<~ype identifier>

<type identifier> ::=.<identifier>

<scalar type> :.:= (<id.entifier> { , <identifier>})"

<subrange type> ::= <constant> •• <constant>

<structured type> · .-· .- <unpacked structured type>
PACKEO <unpa?ked structured type>

<unpacked structured type> · .-· .- <array type>
<record type>
<set type>
<file type>

<array type>

< s t ring a r ray>

<max leng.th>

< intconst>

<int const id>

<normal array>

<index type>

· .-· .-

· .-· .-

<normal array> I
< stFing array»

STRING-<max· length>

. : :=. [<intconst>] I
<empty>

.. -· .-

· .-· .-
· .-· .-
~ .. -· .-

<unsigned integer>
<int const id>

<identifi-er>

ARRAY [<index type> {,<index type>}] OF
<component type>

<simple type>

<component type> ::= .<type>

<record type>

<field list>

::= RECORD <field list> END

.. -.. - <fixed part>
<fixed part> ; <variant part>

. pascal/MT+ . Rele~se 5 i~nguag~ Reference and Applications Guide

<;variant part>

<fixed' part> ::= <record section> {;<record section>}
. I

<record section) ::= <field ide~tifier>~{,<field identifier>}
<empty>

.<variant part> ::= CASE <tag .field> <type identifier> OF
<variant> {;<vaiiant>}

<variant> ::= <case label list> : «field list».
<empty>

<case label list> ::= <case label> {,<case label>}

<case label> ::= <co~stant>

<tag field> ::= <identifier>
<empty>

<set type> · .-· .- SET OF <base type>

<base type> · .-· .- <simple type}

< file type> · .-· .- file {of <type>}

<variable> ::= <var>
<external var>
<absolute var>

<external var> ::= EXTERNAL <var>

<absolute var> ::= ABSOLUTE [<constant>] <var>

<var> ::= <entire variabl~>
<component variable> I

.. < re feren'ced var iable>

Declaration of variables of type STRING:

<identifier>{,<identifier>} : STRING {[<constant>]}

<entire variable> ::= <variable identifier>

<variable identifier> ::= <identifier>

<component variable> ::= <indexed variable> I
<field designator> J

<file buffer>

<type> I

<indexed variable> ::= <array variable> [<expression> {,<expressio~>}]

<array variable> ::= <varia~le>

<field designato~> ::= <record variable> • <field identifier> .

. 158

pascal/MT+ Release 5 Language Reference and Applications Guide

<record variable> ::= <variable>

<field id~ntifier> ::= <identifier>

<file buffer> ::= <file variable> ~

<file variable> ::= <variable>

<referenced variable~ · .-· .- <pointer variable> ~

'<pointer variable> · .-· .- <variable>

<unsigned constant> ::= <unsigned number>
<string>

< factor>

<set>

<element list>

<element>

NIL· ,
<constant .identifier>

::= <variable>

· .-· .-
· .-· .-

· .-· .-

<unsigned constant>
<function designator>
(<expression>)
<logical not operator> <factor>

[<element list>]

<element> {,<element>,J
<empty~

<expression>
<expression> •• <expression>

1
1
I
I

< term>

<simple expression>

· .-· .-
· .-· .-

<factor> <multiplying operator> <factor>

<term> . 1
<simple expression> <adding operator>· <term> ,I
<adding operator> <term>

<expression> · .-· . - <simple expression>
<simple expression> <relational operator>

<simple expression>

<logical not operator> ::= NOT \ ?

- (synonyms \ and ?) is a NOT operator for non-pooleans.

<multiplying operator> ::=, * 1 / 1 DIV 1 MOD 1 AND I &

& is an AND operator on non-booleans.

<adding operator>,::::= + I, - OR

(synonym 11 is ~n OR operator on non-booleans.

<relational operators> ::= = 1 <>. I < I <= I > I >= I IN

pascal/MT+ Release 5 Language Reference and Applications Guide

<function designator> ::= <function identifier>
<function identifier> (,<parm> "{,<parm))

<function identifier> ::= <identifier>

<statement> ::= <label> : <unlabelled statement>
<unlabelled statement)

<unlabelled statement> ::= <simple statement>
<structured statement>

<label> ::= <unsigned integer>

<simple statement ::= <assignment. statement>
<procedure statement>
<gpto statement>
<empty statement>

<empty statement> ::= <empty>

< ass ignm~nt statement> :: = <var iabl e> : = <exp·ression> I·
<function identifier> := <expression>

<procedure statement> <procedure identifier>

<procedure identifier>·

<?roc~dure idehtifier>:":= <identifier>

.. -.. -

<parm>

<gete statement) .. -.. -

::~ <proced~re identifier>
<function identifier>
<expression>
<vaFiable>

gete '<label>

<structured statement> ::~ <repetitive statment>
<conditional statement>
<compound statement>
<with statement>

<parm> {,<parm'>}

<compound statement> ::= BEGIN <statement> {,<statement>} END

<conditional statement> ::= <case statement>
<if statement>

<if statement> .. -.. - IF <expression> THEN <statement> ELSE <statement>
IF· <expression> THEN <statement>

<case sta tement> :: = C;\SE <exp·ression> OF
< ca s eli s t> {, < cas e. 1 i s t> }
{ELSE <statement>}
END

160

Pasc~l/MT+ R~lease 5 .Langu~ge Reference and Applications Guide

<case list~

<label 1istf>

::= <label list> : <statement> I
<empty>

::= <case label> {,<case label>1

<repetitive statement> ::= <repeat statement>
<while statement>
<for statement>

<while statement> ::= WHILE <expression> DO <statement>

<repeat statement> ::= REPEAT <statement> {,<statement>} UNTIL <expression'

<for statement> · .-· .-
<for list> · .-· .-

<ctrlvar> · .-· .-
<with statement>

FOR <ctrlvar> := <for list> DO <statement>

<expression> DOWNTO <expression>
<expression> TO <expression>

-
<variable>

· .­... - WITH <record variable list> DO <statment>

<record variable list> · .-· .- <record variable> {,<record variable>}
".

<procedure declaration>

<block>

<procedure heading>

<parmlist>

<fparm>

<parm group>

<conformant array>

<conarra·y2> .

::= EXTeRNAL <procedure heading> I .
<proc~dure fieading> <block>

::= <label declaration part>
<constant definition part> .
<typedefinitiori part>
<variable declaration part>
<procfunc declaration part)
<statement p~rt>

-::= PROCEDURE <identifier> <parmlist>
PROCEDURE <identifier> ;
PROCEDURE INTERRUPT [~constant>] ;

::= (<fparm> {,<fparm>})

::= <procedure heading>
<function heading>
VAR <parm group>
<parm group>

::= <identifier> {,<identifier>}
<type id~ntifier> .

<identifier> {,<identifier>}
<conform'ant array>

::= ARRAY [<indxtyp> {;<indxtyp}] OF.
<conarray2>

::= .<type i~entifi~r>
<conformant array>

161

pascal/MT+ Release 5 Language Reference and Applications Gui~e

<indxtyp>

<ordtypid>

<label declaration part>

<constant definition part>

<type definition part>

· .-· .-
· .­... -

· .-· .-

· .-· .-

<identifier~ •• <identifiar>.: <ordtypid>

<scal~r type identifier>
<subrange type identifier>

<empty> I
LABEL <label> {,<label>} ;

<empty> I
CONST

<constant definition>
{;<constant definition} ";

: : = <empty> I
TYPE

<type definition>
{; <type "defini tion>} ;

<va r iabl e decla ra tion pa rt> .": : = <empty> I

<procfunc part>

<proc or" func>

<st~tement part>

VAR
<variable declaration>
{;<variable declaration>} ;

::= {<proc or"func>-; }

::= <procedure declaration>
<function declaration>

::= <compound statement>

<function decl> ::= EXTERNAL <function heading> I
<function heading> <block>

<functon heading> ::= FUNCTION <)deniifier> <p~rmlist> : <result type> ;
FUNCTIO.N < identifier> : <resul t type>;

<result type> ::= <type"ideritifier>

<readcall> ::= <read or readln> {({<filevar> ,} {<varlist>})}

<read or readln> ::= READ I READLN"

<filevar> ::= <variable>

<var·list> ::= <.,variable> {,<variable>} .

<writecall> ::= <write or writeln> {({<filevar> ,} "{exprlist})}

<write or writeln> ::= WRITE I WRITELN

<exprlist> ::= <wexpr> ~{,<wexpr}

<wexpr> ::= (expression> {:<width expr> {:<dec expr>"}}

162

Pascal/MT+ Release 5 Language Reference and Applications Guide

<width expr>

<dec expr>1

<program>

<program heading>

::= <expression>

::= <expression>

:= <program heading> <block> • I

.. -.. -

<module heading>
<label declaration part>
<constant definition part>
<type definition part>
<variable declaration part>
<procfunc declaration part>
MODEND •

PROGRAM <identifier> <prog pa rms>

<module heading> ::= MODULE <iden~ifier> ;

<prog parms> ::= <identifier> {,<identifier>}

, h ~

;

pascal/MT+ Release 5 Language Reference and Ap~lications Guide

16.4 summary of option switches "and toggles

Compiler command line: (see ·section 2.0)

MTPLUS <filename~·{$ option switches}

Compil~r switches: (see section 2.0)

Rd
nd
Pd
X
D
Ed

" TOd

Q
A
B
Z

route .ERL file to disk d:
get .OVL file in from disk" d: (n=l •• 4)

. route .PRN file to disk d:
generate disassembler records in .ERL file
generate debugger calls and .PSY file
get MTERRS.TXT file from disk d:
put PASTEMP.TOK (temporary') file on disk d:
Quiet option
Auto chain to linke~
Use BCD reals
Generate Z80 code (8080/Z80 version only)

Com pi 1 e r tog g 1 e s :' (s e e sec t ion 2. 5)

$E
$S
$I
$R
$T
$W
$X
$p
$L
$K

$C

controls entry point generation
control~'recursion
include file control
controIs range checking
controls strict type checking
controls non-ISO warnings
controls' exception checking
inserts formfeed in .PRN f.ile
controls listing (on/off)
allows removal of pre-defined routines
from symbol table to save memory space
controls use of RST instructions in
REAL operations

Linker command line: (see section 3.0)

LINKMT <filename> {,<filename} {option switches}

or

164

Pa'sca1/MT~ . Release .5" La~guage Reference and App1 ications Guide

LINKMT <fi1ename)=<fi1ename> {,<filename>} {option ~witches}

I
"Linker swi tches: (see "section 3.1)

/S
/L
/M
/E
/P:nnnn
/D:nnnn
/H:nnnn
/W
/F

library search
load display
load map table display
extended /M (includes ?, $, @)
org program at nnnnH
org data at nnnnH .
write .HEX file addresses start with nnnnH
write .. SYM file
previous file is a command file

Disassembler command line: (see section 1~.~)

DIS???? <input name> {<destination name) {,L=nnn}}

Deb~gger commands: (see section 11.~)

DV
DI
DC
DL
DR
DB
DW
DS
DX
TR
Tn
BE
GO
SB
RB
E+
E­
PN
VN
??

Display variable
Display integer.
Display character
Display logical (boolean)

. Dis P 1 a y r e"a 1
Display byte
Display" word
Disp-lay string
Display extended
t'race one 1 ine
trace n lines
begin exec at main program
continue after breakpoint
set breakpoint
remove breakpoint
entry/exit display on
entry/exit display off
display all procedure names
display variable names
HELP! - display command summary

165

Pascal/MT+ User's Manual Addendum (Release 5.1>

Section

I
1"1
III
IV
V

Pascal/MT+ Release 5.1

. User's Guide Addenda

. '-November 10, 1980

CoPYri9ht (c) 1980 by MT MicrosYstems

Contents:

TOf?ic

Introduction
Released software status
Functional additions
Manual modifications
Validation suite results

1 .

Pascal/MT+ User's Manual Addendum <Release 5.1)

Section I Introduction

This ·manual addendum cont~in~ a number of verY important notes
resa~dins Pascal/MT+ 5.1. The user should READ CAREFULLY all sections
of this document BEFORE USING Pascal/MT+.

We have strived to make Pascal/MT+. one of the finest software
tools available and we are convinced that we have attained this soal.
We welcome any comments and constructive criticism resacdins
Pascal/MT+. If yOU have. any problems please let us know as soon as
possible;

This document contains notes on the status of the Pascal/MT+
.product with - resards ~o design 90als (i.e. memory space). In
addition, documentation on new fea~ures added since the manual was
printed' and' doclJmenta.tion on a few minor featlJres which wert­
implemented in a'different way than specified in the printed manual is
al so inc llJded.

Good luck with Pascal/MT+ and happy Pascal prosrammin9!
">

2

Pascal/MT+ Use~~s Manual Addendum (Release 5.1)

Section II Released s~~tw~~e status
~-------------~---~-------------------.

The enclosed software (if YOU have pu~chased mo~e than Just the
manual) will ~un in a MINIMUM 52K CP/M SYSTEM. This means: IN A
SYSTEM WITH A STANDARD SIZE BIOS OF <= 768 BYTES AND A STANDARD CPIM
1.3/1.4/2 BDOS (4K-5K bytes) AND 52K OF CONTIGUOUS MEMORY, THE SYSTEM'
SHOULD OPERATE.

You~ BDOS (not BIOS) should be no lowe~ in memory than address'
OBCOOH. You can check this by 10adin9 in DDT (o~ DEBUG if yOU have
CDOS) and listin9 location 0005 (command:L5). The add~ess shown fo~
the Jump inst~uctionwill be the add~ess of a Jump to some code. which
will eventuallY Jump to the BOOS. List the add~ess shown as the
ope~and of the Jump inst~uction and YOU should find YOU way easily
fro~ there. This means a TPA (t~ansient program area) size of
(52K-5K=47K) is requi~ed!!!!! We ~ecommend that any attempts at large·
pr09~am development'be done in a system with at least 56K and the mor~
t~e me~rier. The system will dynamicallY adapt to mo~e memo~~ if
~vailable.

The compile~/libra~y has been put th~ough the Pascal validation
suite and the ~esults a~e attached in the validation suite ~eport. We
have been using the compile~ to compil~ itself, assemblers, editors,
linkers, etc. for the last couple of months and a~e confidant of
stable ope~ation. Please, if you suspect a p~oblem USE THE
DISASSEMBLER to ve~ify th~t the compiler is gene~atin9 inco~~ect code
befo~e calling! In addition: we KINDLY REQUEST! that YOU have the
following in~o~mation' handy befo~e calling!!!:

CP/M VERSION (1.3/1.4/2.0/2.1/2.2 OR equivalerit information)

MEMORY SIZE

CPU TYPE (8080 1 zao 1 8085, ETC.)

YOUR PASCAL/MT+ SERIAL NUMBER AND APPROXIMATE DATE PURCHASED

YOUR COMPANY NAME

DIASSEMBLED LISTING OF THE PROGRAM SECTION IN QUESTION

AND REMEMBER: IF YOU HAVE NOT SENT IN YOUR LICENSE AGREEMENT
DON~T CALL, WE WILL NOT HELP YOU!!!!!

3

Pascal/MT+ User's Manual Addendum (Release 5.1)

Section III Functional Additions

Since the Pascal/MT+ manual was printed we have modified a
number of minor implementation details and have also added a number of
features. The list below describes each in detail:

·•..... " • •••••••••••••• ! •••••••••••••••••• " •••••••••••••••••••••••••.•••••

WORD VARIABLE INPUT/OUTPUT
· · · · · · · . · .

1. WORD I/O as desc~ibed on page 35 of the manual 1s
not implemented using READ and WRITE. Two new procedures.:

READHEX (VAR F:TEXT; VAR W:ANYTYPE; SIZE:l •• 2);

WRITEHEX(VAR'F:TEXT; EXP : ANYTYPE; SIZE:l •• 2);

have been implemented allowin9 HEX 1/0 on" variables"of
any 1 or two byte" type such as integer~ char, byte,
subrange, enumerated and word.

: : : : : : : : : : : :.:

· · RE-DIRECTED 1/0 OF STRINGS . .
• ••••• e .••••••••••••••••••••••••••••••••••••••• Q ••••••••••••••••• · .
2. The use of READ and STRING variables is not allowed when

re-directed I/O is used. This is because the @RST routine
at~empts to read directly from the CPIM console device
whe~ no file is specified. The user should re-wri~e the
@RST routine ~o perform any and all input and editin9
functions desired for the target system console device.
NOTE: THIS DOES NOT AFFECT PROGRAMS DO NOT USE "RE-DIRECTED
I/O

· . · .
: USE OF # ON CPMPILER COMMAND LINE · · · · · . · .
3. The ~ompiler also"allows the use of the # character as

the option string si9nal character on the command line.
This is because the CP/M SUBMIT pr09ram does not allGw
the user to place st~ings with $ in them in"the submit
file." With other software the user must place a dummy
param~ter and then put this parameter on the command lin~
whe~ calling submit even if this is not really a variable
parameter to the sub~it file. Using the alternate form

4

Pascal/MT+ User"s Manual Addendum (Release 5.1)

(e.9. #PC X RB) 'allows insertion of this directly into
the .SUBfile

· . · . ~ . · . · .
: "LOCAL" IITEMPORARY II FILES IN A RECURSIVE ENVIRONMENT
· · ·
• w •

4. Locally declared files in a recur~ive environment may
not be used as IItempor-ar-Y" files unless the user­
explicitlY z~roes the file (usin9 FILLCHAR) or- does
an ASSIGN«file>,"") to initalize the file. The user
should also note that slJch locally declar-ed files will
be left open and in limbo when the pr-ocedure is exitted
IJnless exp1.ictly CLOSEd.

· '
~ ~ .•...

PHASE 2 CONSO~E OUTPUT
· · · · · · • •••••••••••• a·a •••••••••••••••••••••••••• a ••••• a ••• a •••••••••.••• · .

5. The output produced by Phase 2 of the compil~r consists
of the Procedur-e or Function name and its offset from the
be9inin9 of the module in decimal. This is output when
the procedur-e/function bodY is actuallY encountered,
(i.e. if A contains B which contains C then the outp~t
would be C followed by B followed by A).

· . · .
· · · · . · · USE OF TRM: DEVICE . :.
· · · · • • • • • • • • • a • · -..... -.......... -.......................... .
6. Non~echQ input (TRM:) is only operative on CP/M version

2.x systems

· . · .
· · · · USE OF WRITE/WRITELN WITH FUNCTIONS WHICH PERFORM 1/0

· .
• e. e • • ~ •

7. The user should not use the WRITE/WRITELN procedures to.
output the value of iny functions which oper-ate on files
(such as GNB) because the file pointer-s will become
modi~ied by the reading routines and therefor-e the output
will suddenly be done to the input file! .

5

.. ~ ~ ~ · . ~

· ·
NON-TEXT FILE END-OF-FILE HANDLING . . .

• •• ·1· • • • • • •• ; • • • • • • • • • • • • • • • • • • •• • • • •••••••••••••••••••••••• e e .••••••••••••••••••••••••••••••••••••••

s. Because CP/M does not keep any information re9ardin9
partially filled sectors at the ~nd of a non-TEXT file
it is impossible" to make EOF«non-text-file» work
properly unl~ss the size of the record is exactlY a multiple
of 128 bytes. The sU9gested way ~f workin9 around this
operatin9" system problem is to keep a count of 'the .Rumber
of records in the file or have a special end-of-file record.

· . · .
NEW COMPILE~ OVERLAYS (MT185.0VL AND MT580.0V~)

• •• w .••• 0 ••• · ,.. ~ .
9. Two new ove~lay files a~e p~esent. MT185.0VL was created

by breakir;9 the previously large Phase l' an'd initial izati'ern
into two separate overlays (MT180 and MT185). MT580.0VL
has been added to write the .PSY file for the debu9ger.
The location of this file is controlled by the OVL #2 option
switch. Note: MT580.0VL is not necessary (and never loaded)
unless the debu9ger is ~equestid.

• • • . • . • • . . . • • . • • • •0. . . • . . · . ~ ~
· ·
~ HEAP MANAGEMENT ROUTINES - FULL VERSUS STACK, . . · ' .. .
• ••••••• w, ••••••••••••••••••• , •••••••••••••••••••••••• ' ••••••••••••• - .

10. The rlJrt-tirne 1 ibrary contains a "stack" oriented HEAP
managemeht module' which supplies only NEW and DISPOSE.
A separate module (FULLHEAP.ERL) is supplied which fully
im~leme~ts NEW / DISPOSE / MEMAVAIL / MAXAVAIL and must
be expl,icitly named on the command line whe~ desired.
PASLIB waS gettin9 too bi9 to keep on addin9 and addin9 and •••

· .. . · .. .
NEW ERROR MESSAGES

· . · .. .
11. Three new errors have been added:

496 invalid operand to INLINE

398 Implementation restriction (normally
used for arrays and sets which are too
bis to be manipulated or allocated)

6

Pascal/MT+ User~s Manual Addendum <Release 5.1)

999 - Compiler TotallY ~onfused

· .
; • • r •. a •

· ·
REGARDING AUTOMATIC CLOSING OF OUTPUT FILES · ·

· . · .
12. On page 95 of the user~s guide the manual discusses ~utomatic

closing of OPEN files. This has been elimin~ted from the
package for the time being due to a desire not to ~~rce
ROM based users to include the ENTIRE FILE PACKAGE in their
programs without re-writin9 a large portion of the run-time.
This feature may be added in a later release.

" . . · . ~ . · ~ . -.

· ·
UTILITY MODULE

· · · ·
· . · ~ .

13. A file called ~TILMOD.SRC is on the distribution disk and
contains three r9utines:

FUNCTION KEYPRESSED: BOOLEAN;
<* returns true when a key struck *>

PROCEDURE EXTRACTeVAR F:TEXT; VAR S:STRING);
<* extracts the file name string from an open fil~ *)

"PROCEDURE RENAME(VAR F:TEXT; NEWNAME:STRING);
<* used after an assi9n to change the name of a file *)

· . · .
PATCHER PROGRAM

• a • • • • •
• •••• a .•••••••••••••••••••••• a •••••. a •• a

14. The PATCHER.COM pr09ram has been eliminated.

• • • • • • • • • • • • • a •
• •••••••••••• a .•• • • ••• •

· ·
NEW $K TOGGLES IMPLEMENTED

· . · .
15. Additional $K"to99les have been implemented.

(note a separate $K switch is required for each group)

Group

8

Routines Removed

RESET, REWRITE, GET, PUT, ASSIGN
MOVELEFT, MOVERIGHT, FILLCHAR

7

Pascal/MT+ Use~~s Manual Addendum (Release 5.1)

9 READ7 READLN

10 WRITE7 WRITELN

11 TSTBIT7 CLRBIT7 SETBIT, SHL7 SHR

12MEMAVAIL7 MAXAVAIL

13 SEEKREAD7 SEEKWRITE

14 RIM85; SIM85, WAIT

15 READHEX7 WRITEHEX

• •• II •••••••••••••••••• · ~
· ·
: 8085 RIM ANP SIM . . .
· . · .

16. The p~e-defined 1/0 names RIM8S and SIMaS have been·
changed to a function and a p~ocedu~e:

FUNCTION RIM85 : BYTE;

.. PROCEDURE SIM85 (VAL: BYTE);

17. ***
* * * R.A N D 0 M ACCESS FILE I 10*

* *

Since the manual was p~inted we settled on how - " random access files will wo~k:

a. You must have CPIM ve~~ion 2
b. A random access file and a sequential file"

a~e not compatible because:

a s.quential is totallY a stream of bytes
a ~andom file is allocated as follows:

if the ~ecordsize is < 128 bytes then
as many ~ecords as will fit in a sector
will be packed into a secto~ and the
remainder of the secto~ left garbage

if the ~eco~dsize is)= 128 bytes then
the record will begin on a sector ~oundary

,and be. allocate~an integ~al number of sectors
(i.e. records do not begin in the middle of a
secto~ but will span sectors ~s necessa~y)

8

Pascal/MT+ User~s Manua~ ·Addendum (Release 5.1)

c. Random access files are accessed via:

PROCEDURE SEEKREAD(VAR 'F:ANYFILETYPE; RE6NUM:INTEGER);

PROCEDURE SEEKWRITE(VAR F:ANYFILETYPE; RECNUM:INTEGER);

Recnum starts at 0
IORESULT contains the
Both these procedures
variable (e.9. FA).
the window variable
the window variable

CP/M return code for the access
work with the file window

The us~r should assi9n to
before SEEKWRITE and ass ~.sn f om
after a SEEKREAD.·

THE USER IS REFERRED TO THE TESTRIO.SRC PROGRAM ON THE
DISTRIBUTION DISK!

• •••. _ ••• e .••• · ~ ~ .
· : .

MEMORY LAYOUT UNDER CP/M . .
· .
• ••••• a.- ••

18. Users have requested to know how to find th~ end
of the Pascal allocated data a ea. In Pascal/MT+ .
there is a system variabJe SYSMEM which at run-time
points to the end of the all~cated data. 'Even in
pr09 ams which use the FULLHEAP module the SYSMEM
point~r is updated. The ~u~-time evaluation.stack
is pointed to by the hardwa e SP e9ister and
the ecursion stack is pointed to b~ a variable ~alled
@SF.P (stack f ame pointe). 80th SYSMEM and @SFP
may be de~lared a~ EXTERNAL WORD and accessed by
the user for special equirements.

· . ". · .
. '

RUN-TIME PACKAGE SOURCE CODE

. .
· . · .

19. The un-time package sou ce code comes in four
g oups of files (.LIB and .IDX):

CPMIO Pascal routines fo file input/outPut

RTP - Assembly language suPpo t routines
(use MACRO-80 or RMAC to assemble)

FP Floatin9 point run time routin~s

BCD BCD real outines

To extract a siven modul e' from these "' ibraries"
the user should find the desi ed name in the

9 .

Pascal/MT+ User-·'s Manual. Add~ndum (Release 5.1),

index ~nd then use the SPLIT pr-osram to extract
the modules. The SPLIT pr-ogram expects a "library"
file'and a file containing a list of fil~ n~mes
which are to be extracted. The libr~rY will be
and individual files will. be created f('r the
reqlJested fi lese

· . · .
· · :
· · A M D 951 1 H A ·R D WAR E A R I T H MET Ie! I. • . .

.~~ · .. ' · .. -...... .

To use the AMD9511 the user must use
DECCONV.LIB, XCONFIG.LIB and FP.MAt
Edit the XCONFIG.LIB file and chanse the HARDWARE
equate to TRUE and set ADATA and ACTRL to the
110 port'addressesfor- the 9511.

Then ~ssemble FP.MAC and this will create a' new
FP.REL which shoule be combi~ed with the supplied
PFLT.ERL and then renamed FPREALS.ERL. The user can
combine them using MTLIB.COM and the COMBINE.CMD file.
Now hardware floating point may be linked withprogr-ams.

Wh~n using the 9511 the use~ may wish to declare and
call @I95 which is a parameter-less procedure.which
initializes the 9511 chip. Some old 9511 chi~s ~id
not proper-ly ~eset usins th~ hardwa~e reset line and
this softwa~e r-outine will convince the 9511 that all
is ok and r-eady to so. This should be called ~s the
fi~st statement of the main prosram.

· . ~ · .
I S (I S TAN DAR D

· ·
• •• a .•••••••••••• · .. : -...... .

20. Use~s who wish to receive a COpy of the proposed
ISO standard to which we have been working should
contact MT MicroSYSTEMS. We have a limited number­
of copies available for $20.00. Only use~s who
are very fluent in Pascal and compilers should be
interested as the standard document is very terse
and sometimes ve~y confusing!

· ~ . · .. .
BCD AND FLOATING POINT REAL CONSIDERATIONS

· · · ·
· . · .

21. USERS SHOULD ~bTE: WHEN USING REAL' NUMBERS EITHER

10 '

Pascal/MT+ User's Manual Addendum (Release 5.1)

-BCDREALS CiR FF'REALS MUST B.E LINKED WITH THE PROGRAM
BEFORE PASLIB. ALSO IF TRANSCENDENTALS ARE USED
IN FLOATING POINT PROGRAMS "TRANCEND" SHOULD BE
LINKED BEFORE FPREALS. ALSO NO SQRT ROUTINE IS
AVAILABLE IN THE BCD REALs PACKAGE.

· . · .
· ·
· ·

·CP/M COMMAND LINE EXTRACTION

: -: : : : : :-: : : : : : :

22. To· use CP/M command line info the user ~hould declare
an absolute variable (PACKED ARRAY (0 •• 127J OF CHAR);
with an address of S80 and then move this to a string
(STRINGC127J). "The user should note that the first
character of this string will tvpicalv contain a blank.

VAR
CPMCMDBUF
CPMCMDSTR

ABSOLUTE [S80J PACKED ARRAY (0 .. 127J ·OF CHAR;
STRINGC 127J;

BEGIN
MOVE(CPMCMDB~F,CPMCMDSTR,128);

END.

· . ". ·
· · : USE OF RESTARTS FOR REALS AND RECURSION . . · . · ~~ .

23. In a similar manner to the $C tog9le used for calling
toe @XOP routi-ne fc.r real numbers using restarts,
the $Q t099le has been added to perform the same "
operation ·with recursive lTIodlJles. Every call to the
@DYN routine will be converted to a restart n (where n
is the parameter to SQ (e.g. (SQ 5). NOTE:
FOR BOTH THIS.FEATURE AND $CTHE SWITCH MUST BE BOTH IN
MODULES AND IN THE MAIN PROGRAM SO THAT THE RESTART VECTOR
LOAD CODE IS GENERATED AT THE BEGINING OF THE MAIN PROGRAM.

11

Pascal/MT+ User's Manual Addendum (Releas~ 5.1)

Sectic.n IV Manual. Modificati6ns

I
Listed below are manual corrections:

1. Page 43 and Page 6 - section 5.22 is on page 97 not 87

2. Page 52

3. Page 72

4.

5. Page 21

system now requires 52K (not 48K)

second assignment statm~nt should be to 52
comparison should be 81 < S2
outplJt sholJld read lIis less than" rather thar. <.~

Add HL=260 after Output:

Remove the reserved word NOT from syntax
and add <lo~ical not operator>

6. Page 32 - add GNB/WNB to list of file proc/func

12 .

Pascal/MT+ User's Manual' Addendum (Release 5.1)

Section V Validation suit~ results

The Pascal validation suite (a ·collection of more than 200
pro9rams) has been run with Pascal/MT+. W~ have endeavored to pass
all of the IIconformance ll test and have succeeded in all but thr~e
cases. 'Only one of these cases is inherent in the compiler itself,
the other two have to do with the precision of our floating point
pa~kage and output formatting in our floatin~ point. In addition"we
have discovered 6 programs in the IIcc.nfc.rrnance" section which we
believe to actuallY be incorrect. We have listed below the program
names (as found in the suite) and the results of the tests which
failed:

Name Reasc.n fai 1 ed

6.2~2-3 'The standard states that forwardly declared pointers
mu~t not reference backwards if there ar~ is a
type in the current block with the same name.
This is quite compilcated but will probably be fixed
in a future version of the compiler

6~6.6.2-3 Our square root routine is not (as is typical with
floating point) empiricallY ~ccurate (e.9~ SQRT(25)
=4.99999.

6.9.4-4 Our floating point output. conVersion routine ~oes not
match specifically the formats specified by the standard.
We will revise this later

**** Errors in the validation suite ****
6.1.2-3 The standard specifies that identifiers may be of any

1~n9t~ but~does not specify to what de9re~ these identifiers
must be unique. This test uses names with uniqueness
past the'8th character.

6.4.3.5-1 This test attempted to declare a file of a variable name

6.6.3.1-1 This test d~es not meet the requirement for identical
types in VAR parameter passin9

6.6.3.4-2 This test is syntacticallY incorrect

6.9.4-6 This test wrote 'AAAAA':l an~ expected to have only
oni A output. The standard ·says that all characters
are c.utput.

6.9.4-7 This test writes (TRUE:5,FALSE:5) and expects to.
get 'TRUE FALSE' not ' TRUEFALSE' as specified by
the standard""

13

Pasc~l/MT+ Use~'s Manua) .Addendum (Release 5.1)~

. 6.8.3.5-4 This test attempts to have a CASE statement with·
selectors of -1000 and +1000. This test should
have been included in the implementation' defined
or quality sections because the standard does not
state the 'required ·range of case statement selectors
which must be accepted

14

	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	A-11
	A-12
	A-13
	A-14

