Pascal/MT+ Release 5 Language Reference and Applications Guide

Pascal/MT+
Release 5

Language Reference
. and
Applications Guide

Copyright (c): 1988 by MT MicroSYSTEMS
All Rights Reserved

Worldwide

MT MicroSYSTEMS
1562 Kings Cross Drive
Cardiff-by-the-sea, CA. 92807

pascal/MT+ Relgase 5 'Lénguége Reference and Applications. Guide -

COPYRIGHT

'c°pyr1ght (c) 1989 by MT MlcroSYSTEMS., All rights reserved. No part
of this publication. may be reproduced, transmitted, transcribed,
stored in a retrieval system, or translated into any language or
‘computer language, in any form or by :any means, electronic,
mechanical, magnetlc, optical, chemical, manual or otherwise, without
prior written permission of MT MlcroSYSTEMS, 1562 Kings Cross Drive,
Cardiff, California, 92607. ‘ '

Permission is granted to reproduce or abstract the example programs
_shown in the enclosed figures for the purpose of inclusion within the
reader's programs.

DISCLAIMER

MT MicroSYSTEMS makes no -cepresentations or warranties with respect to
the contents hereof and specifically disclaims any implied warranties
of merchantability or fitness for any partlcular purpose. Further, MT
MicroSYSTEMS reserves the rlght to revise this publication and to make
changes from time to time in the content hereof without obligation of
MT'MicroSYSTEMS,to notify any person of such revision or changes.

TRADEMARKS

Pascal/MT+ is a trademark of MT MicroSYSTEMS. Credit -is given to
Digital Research of California for its trademarks: CP/M, MP/M—SB,
SID, and MAC. Credit is given to Microsoft of. Washington state for
its trademarks: MACRO-80, FORTRAN-88 and LINK-88. Any referenceto
CP/M, MP/M, SID, MAC, M88, FORTRAN, and L88 also refer to the’
‘appropriate trademarked software packages.

Pascal/MT+ Release 5 - Language Reference and Applications Guide

Table of Contents: Page.

9.9 System OVerVieV.V..v..-.o;...-.....o.-...o...-..-o 8

LANGUAGE GUIDE
1.0 Introduction...................’....ﬂ...........i—.. 16

2.0 Summary of the language............ ceecececocna cene 11

3.0 Notation, Terminology, and vocabulary............. 12
4.9 Identlflers, Numbers and StringsS.eeeieececeacecesas . 13
5.0 vConstant definitionS.ieiceeececeeeeseooccnceaneneas 14

6.0 Data type definitionS..iceieeeccesceccceccececneccans 15
6 1 SimpPle LYDPeS.ueeeeeeccoseacccccsosocsaccaccesss 15
6.1.1 SCAlar LYPeS.ccesesocecsscaccascsasccccnan 15
6.1.2 Standard tYPeS.ceeecccescccscscscsnocccnss 15
H.1.3 Subrange typeS..eeececsceccsssccacsaceacnss 15

6.2 Structured LypPeS.ceceeeeeccecaccacccccccnnnnns 16
6.2.1 Array types............................. 16
6.2.2 RECOId LYPES.eesecsvsscocaassnsssasacssns 17
Fe2.3 Set LYPeS.iceececoccssccocscccsccccssoccss 17
6.2.4 File LYyPeS.iceeeseesosciosenssaancacsoans " 18 -

6.3 P01nter types................................. 18

7.8 Declarations and denotations of variables......c... 19
7.1 Entire varlables.............................. 20

7.2 Component varlables........................... 20
7.2.1.Indexed variableS..ceceeececcacsacencens 20

7.2.2 Field designatorS.cecescesecessecconocsas 20

7.2.3 File buffersS..ececececsccececcscsscscncans 20

7.3 Referenced variableS.eeeeeeecceaoscsossnccsces 20

8.0 EXPresSsSionS....c.cicececesecesessccccoscecsaoscccasns 21
B.l OPEratoOrS.cceceeceeecescocscaosccoscsascacnsnans 22
8.1.1 The OpPerator NOteececececcesseeccosccsss 22

8.1.2 Multiplying operatorS..ceeceeececcecceccens 22

8.1.3 Adding OperatoOrS..cceesscssccssacssscsas 22

8.1.4 Relational operatorS.ceeceececececcccecccns 22

8.2 Function designatorS.eveeseesaceseccsconescnns 22

9.0 StatementsS...cceceieesceasnssoscccccscccsscsccccoscscecs 23
9.1 Simple StatemenNtS.ccceseccscccsscecaossossoscscne 23
9.1.1 Assignment statementS...eeeeececresasncs’ 23

9.1.2 Procedure statementS..ceeeeececccocsences 24

9.1.3 Goto statementS.cieecceececocccccoccccane 24

9.2 Structured statementS.eccececcecsccccscccsssocscas 24
9.2.1 Compound statementS....ccceeececcocccnns 24

Pascal/MT+ Release 5 - Language Reference and Applicatiqns,Guide

Table of Contents Page

gog System Overview.o..o.ooo..couo..oc00.'0"‘00'00000' 8

LANGUAGE GUIDE

1.0 IntroductioN.cieeeceeececoceocnaceasceacocasacnnaa 1o
2.8 Summary of the 1angUage..eeeeeeececeeseonioenneess 11
3.0 Notation, Terminology, and vocabulary........c.000 12
4.0 Idenfiffers, Numbers and Strings........;......... 13
5.0 bonstaht definitions.;.;.......................... 14

6.0 Data type definitionS.i.ieecececcecrssecscocaacnnne 15
6 1] SImple tYPeS.ceeeeeecesccosescscossoscssscncasaes 15
6.1.1 Scalar tYPeS.eeescesesorsasssascacnncasan 15
.1.2 Standard typeS..cccedececccscesocscccnns 1{
£.1.3 Subrange typeS..cececccccsscssscocccssacs 1b-

6.2 Structured typeS....ceececcecccoccccscccsaccnns 16
£.2.1 Array tyPeS.iceeecesascccceccscssoccnccscisoe 16
6.2.2 RECOrd tYPES.eesecevcscssocsonssscocases 17
6.2.3 Set tLYPeS.cieetsceenscssscscscassscconcccscs 17
6.2.4 File LypPeS..euieeeeeceeinccessasnassanans 18 -

6.3 P01nter types................................. 18

7.0 Declaratlons and denotations of varlables......... 19
7.1 Entire varlables.............................. 20

7.2 Component variableS...ceveeeeeeeeeeeeeneceonnaes 20
7.2.1.Indexed variableS..cececccccecosccocncascs 20

7.2.2 Field designatorS.cceseececcsooccecccnns 20

7.2.3 File buffersS..ceeeececeeccececcsacsascnnsns 20

7.3 Referenced variableS..e.eceeeeceoceeeecssscoses 20

8.0 EXPreSSiONS...cccescecssscscsscsscscacssscoscsssscsaes 21
B.l OPEratorS.cceeceeesocesocssscscnssssassnsassns 22
8.1.1 The OpPerator NOt:ceeeeeeceesscasecscocsas 22

8.1.2 Multiplying OpPEeratoOrS.ececescecccocscoccccs 22

8.1.3 Adding OperatoOrS.eeecesscscccscecscccsccscs 22

8.1.4 Relational operatorS.ccecceccecccccccccsns 22

8.2 Function designatorsS..seeeeccececccescscccccns 22

0.0 StatementS...ceceercecesoscasscscoscsccccccnoscnsces 2i
9.1 Simple sStatemenNtS.cececeecccccocscoscscsancconcosscs 23
9.1.1 Assignment statementS..ceccececceccccesccs’ 23

9.1.2 Procedure statementS...eceseccescscccess 24

9.1.3 Goto statementS..c.cccecrccececccccocsccnce 24

9.2 Structured statementS...ceececceiecccccecccccnns 24
9.2.1 Compound statements..................... 24

Pascal/MT+ Release 5 Language Reference and Applications Guide

Pascal/MTf APPLICATIONS GUIDE:

Table of Contents ' Page

1.0 IntrodUCtioNeieeceesceeeeecsecoccscceecsoncenacess 45 -
1.1 Purpose of Applications Guide...eeeeeeeeeeoss 45
1.2 Compile and run a sample Program.....ceeeceess 45
1.3 Contents of Distributien disk.........:.....;, 48

ompiler Operation...c.ceeceeenceeceeeaiennnanannns 49
1 System requirements for running Pascal/MT+.... 52
2 Run time requirements for Pascal/MT+.c.eceee.. 53
3 INVoCatioN.weeeceeesescsaocoscsosescscsaseatonss 53
4 Compilation data..ceeeecececccacecenncnnnncnns 54
S Compiler toggleS.cessecsccsccsccecccsscsnsacncces 54
f ErrOr MESSAJES.eueeeessccsosssorsasasooncocacnnns 59

3.8 Linker operatlon................ csocsesesse 714
3.1 Invocation and commands.......................‘ 6a
3.2 Attributes of linkable modUleS...eeiveeeseeees 63
3.3 Using other linkerS..eciececcccccccccccaccncsecs 64

aTypesoooboo.O-ooooo..ooo.-coo.ooo.cooooooo.t. 65

¢«

CHAR......00.‘0...0.‘0.0............0.I..Q‘..l 65

t

1

e2 BOOLEAN. et eeeaceeasesasoocsceosssssssascscnsse 65
e3 INTEGER.: ettt eeeeeecocsocsosassossnscssocccese 56
ed REAL. . ceeteeeeeceseccacscccosscscscssnsoanssasns 67
.5
-6
7

BYTE‘....0.0.0.....00‘...0000.00000.000.0000.... 68

woRDoo-l.ooo-no.ooooonQ.ocoooono.....oooooooon 58

STRING . eecesesaanssssossccsncoscscsoccssssscsose 68
4.7.1 DefinitioNeeeeeeeescceccococcosososcsancas 68
4.7.2 ASSignNment...ceeeceecsssccoccccsssssoasasnscs 70.
4.,7.3 COMPAriSONS.ceessessssssssssiosssasscascscs 72

4.8 SET..QQ.....'....Q..‘....‘.....0,0.0‘...0.....‘. 73

e-b.b.b.b¢>m>o

5.8 Summary of built-in procedures and parameters..... 74
5.1 MOVERIGHT, MOVELEFT...‘.......l.......l’.’... 75

EXIT.-oooooaooooo.n‘.o-...oooo.o.o.'.oooouooo 77

.3 TSTBIT, SETBIT, CLRBIT.:eveevoacansoncenncnens 78
e4 SHR, SHLuuu:euesouosoonsoooacsonanacancasnannns 79
e5 HI, LO;, SWAP.uiveeseneeansonsnconcssoansannns 84
e6 ADDR.csvscenesnescosssesssesneascasanasansans 81
B 3 5 82 -

STZEOF e s eveeasenoooesassoseensascencanacsasos 83
FILLCHAR. ¢ veeueoeosoasacsoasossosanasaenonns 84
LENGTH: ¢ e e eevunsroossneosanascennanaanonssses 85
CONCAT. e e e eeveeennacoescoasasenconcscssesans 86

COPY'..’....0......'...0....‘..O.._.......l..'.. 87

. . . L[] L[]

S HWOVOJAOAU D WN
v

[LECNCURCUETRTET NGRS, N T R
L]

—

W QR

. POS.coo.oo.ooooo...o..oo.n.oo‘.ooocoo.oo-vooo 88

5.14 DELETE'._...ooo..‘..o.oooo-0’0-.00.0-.-‘...00.00. 89

pascal/MT+ Release 5 Language Reference and Applications Guide

11.0

12.0

13.0

14.0

15.0

16.0

5015 INSE’RT..-..";....I..l...'.’.l'.Q‘.......'.b.':

5.16 ASSIGN.........O....’.......C.....‘..-.."...
5.17 WNB, GNB.oveeueeeusoneaonasoacoansenoiossaness
5.18 BLOCKREAD, BLOCKWRITE. .+ o ovvnsonrnsnnrnrnnnns
5.19 OPEN, OPENX:.eesoeonoanaeonenneoeoceannonnnes

5.2@ CLOSE' CLOSEDEL..o...oIQ...O..O......Q....O..

5:2] PURGE:ceceteeececocccossossnscscccscsassscnonsosns
5.22 IORESULT.'..0.........‘.'........'0.0'...‘.'O
5.23 MEMAVATIL, MAXAVAIL..::coeecocccccccconsoncsss
5.24 Quick reference guide to built-in routines...

Interrupt prOCEdUIESO..oo.o..o...ooo.000000....‘00

- INLINE and Mini assembler..cccecececccceccsncencas

7 l Syntax.oo.olo..Qo...o.co000000000000000-.0.0.

7 2 Appllcatlons...-0000Ou.o.oo..uc'.o.0000000000

7.2.]1 Code eXamMpPleS.iceecoscsoscsoscoscsscsossass
7.2.2 Constant data generation....ceceeeccans

INP and OUT arrays....0000....ooo.o000...000.-;.-00

Chaining.on0...0‘0.0.c.oo...o.coo‘-.-o.ucc.oo‘..ooo.’

Disassemblerooo...'.o-.-A.aoootaooooo....o....oooo

lgol Instructions...o'-00-00000.0..0.0000;0._..0‘0 .

lﬂ-z Sample.ooooo..ooooo.ooooooo-00.&.....0....0.

Debuggercao.oo.ooco.o-.o-.'oooo....Ao.ooo..o'o’o‘.‘o.
ll.l Introduction-o.ooooootooooooool.o.o-.o..o.o.

v 110'2 CommandSO.oo-coo...o.o.-..0...0..-..n-o.o;.oo

Run-time Environment...ceccececocsccccceccccccacss
12.1 Library routinesS..cceecesesoccccccccsoconcas
12.2 Console I/0cececccccecnsscncscacscscnsacanasns
12.3 File I/0ccecccessasccccccccssccscscncosnccsscss
12.4 ROM environmentS..cceceeescecaccccccnscscnscss

Pascal/MT+ : Assembly Interfacing...ceceececceccss
13.]1 AssemblerS.ceeecccsccesccccscscscccscscsnsccse
13.2 Naming considerationS.cceccecccccccccasassscse
13.3 Variable accessSing.cececeaceccccccccscscccns
13.4 Parameter PasSSiNg.ccececsccccscscssssssscsses
13.5 RestrictionS.ceeeeececiocccossooncsccsssacnccscs

Run-time error handling.ccecececcsesccscccecscces
l14.1-Range cheCking.ceceeeacsceascossccsesssocscnsnse
14.2 Exception checkingeceeedeeseeeessoscscssscsce
14.3 User supplied handlerS.cceccccecccccccccsces

Index..oioooooo000...0oo..b‘ooo..o..oon..o'o...o.‘

Appendlces...oooo.I00..0Iooo...'...no..ooo.ooo..o
llerrOl’ messages..oo0...‘0..00..0....00.0..‘0.

100

103
103
163
104
105

106
167

110
110

S 111

119
120 -
121

124
124
128
129
129

133
133
133

133

136
138
139
139
140

140

141
147
147

Pascal/MT+ Release 5 Language Reference and Appliéations Guide

16.2 Rése‘rved 'words.......I.....O....I...I.......I" 155
16.3 Language syntax descriptioN.ccceccececccccsscs 156
16.4 Summary of option switches and toggles...... 164

pascal/MT+ Release 5 Language Reference and Applications Guide

0.0 System Overview

PLEASE NOTE: THE PURPOSE OF THIS DOCUMENTATION IS NOT TO TEACH
THE Pascal LANGUAGE BUT RATHER TO DESCRIBE IN DETAIL THE SPECIFIC -
IMPLEMENTATION CALLED Pascal/MT+. WE STRONGLY RECOMMEND THAT THE USER
PURCHASE EITHER Jensen and Wirth or Addyman and Wilson AS Pascal
TEXTS (BOTH ARE AVAILABLE FROM BOOKSTORES AND BYTE MAGAZINE-, AND BOTHA
ARE PUBLISHED BY SPRINGER / VERLAG IN NEW YORK CITY.

Contained in this manual is the documentation for the Pascal/MT+
software system. The Pascal/MT+ package consists of the following
software components:

Pascal/MT+ compiler

Link/MT+ - linker \ .
PASLIB.ERL run-time library relocatable object file
RTP/MT+ run-time library source file

Debug/MT+ run-time debugging tool

Disasm/MT+ disassembler

Patch/MT+ System patch application program

~ Also included -is a group of wutility programs written in
Pascal/MT+ which are included for user information as well as thelr
1ntr1n51c value as tools.

‘The Pascal/MT+ system has evolved from an original goal as an
assembly 1language replacement tool & into a full ISO (International
Standards Organization) Standard Pascal system 1ncludlng capability
for modular compilation. The Pascal/MT+ compiler is a completely new
compiler designed from the beginning to implement - the entire Pascal
language and 1is not a revision of our popular Pascal/MT package.
Pascal/MT+ and Pascal/MT have been used for such diverse applications
as multi-processor measurment machines, process controllers, business
"applications and software tool development (compilers, assemblers,

etc.). 2ll of the features and facilities present in our Pascal/MT
system which has been sold to over 16086 users are present in
Pascal /MT+. Conformance to the IS0 standard has required some

syntactic changes from Pascal/MT but - the functionality of our
extensions to the Pascal language remain the same as Pascal/MT.

The Pascal/MT+ system-is designed to be an effective tool both
in computer resource and human resource utilization. The Pascal/MT+
compiler, linker, debugger and disassembler have been des1gned with an
‘eye to practical wuser needs such as minimum waiting time and
visibility. We are dedicated to the construction of useful software
"power tools" which amplify the creative power of the
programmer/engineer. If after having read this manual and/or having
‘used the Pascal/MT+ system, you have any ideas for improving the
usability of our software please write or call. We would be glad to
hear from you.

Pascal/MT+ Release 5 ‘Language Reference and Applications Guide

‘Pascal/MT+ Language Guide

pascal/MT+ Release 5 Language Reference and Applications Guide

1.0 Introduction

The purpose of this language guide is to define the language
features of Pascal/MT+. This gquide assumes that the reader is-
familiar with the Jensen and Wirth and/or the 1ISO. draft standard
(currently DPS/7185). The standard Pascal features which are
different in Pascal/MT+ than those in the standard and in Jensen and
Wirth's 'Report' are described by section. - In each section BNF
(Backus Normal Form) syntax is provided for reference. The complete
BNF description of the language is present in section - 16.3 of the
applications guide. Each section corresponds to Wirth's 'Report'
beginning with section 2. :

10

Pascal/MT+ Release 5.,Langpage Reference and Applications Guide

2.0° Summary of the language

The language compiled'by Pascal/MT+ 1is 1identical to the IS0
draft standard (DPS/7185 as of 18/1/88) with the following additions:

Additional pre-defined scalar types: BYTE, WORD, STRING
Expressions may contain the pre-declared INP array
Assignments may be made to the pre-declared OUT array
For 16-bit CPU systems INPW and OUTW for WORD I/O
Operators on integers & (and), !,| (or), and ~,\,? ‘(not)
Else on CASE statement '
Interrupt and External procedures

Additional built-in procedures and functions

_Modular compilation facilities

Re-directable I/0 facilities (user written char I/0)

11

pascal/MT+ Release 5 ‘Language Reference and Applications Guide

3.6 - Notation, termlnology, and vocabulary

<letter> ::=A | B| C| DI|E]F|IG|HI|II|JI
KILIMIN]J]OIPIQIRI|ISITI
vulvIiwliXxl]l Yl z]lalblcl]lada)]
el £flglh] il Jj Il kl]1]mln]
nlolplaglrls|t]lul]lv]w]
xlylz] e
<digit> ::=@ |1 | 2|1 3] 415161718191} .
A| B|C|DJE|F {only allowed in HEX numbers}
<special symbol> ::= {reserved w d are listed in section 16.2}
‘ + - | * | / I = 1 &1 < 1 > |
<=1 > 1)y -t 1 1 {1 1y |
CE T I R S I S LR B

{the following .are additional or substitutions:}

(« > 1~ P N 1 2 1 v 1 1 1 $ | &

is"a synonym for [

is a synonym for]

\, and ? are synonyms (see section 8.1.1)

‘and | are synonyms = (see section 8.1.2)"
o (see section 8.1.3)

«~ N o

2 e

The symbol '@' is a legal letter in addition to those listed in
the 'Report'. This has been added because all of our run-time library
routine are written using this special character and this allowed us
to decide which routines should be written in Pascal and which should
be written in assembly language.

A comment beginning with '(*' must end with '#*)", A comment
beginning with '{' must end with '}'., To allow nested comments the
begin comment delimiter must be the same as the end comment

delimiter. Thus, in Pascal/MT+ the following is legal:

(* outer comment ...{ inner comment....}...outer comment %)

12

.pPascal/MT+ Release 5 -Language Reference and Applications Guide

4.0 Identifiers, numbers, and strings

T ————— — ————_— —— ———— — — —— ———— — ——— —— -

<iaentifier>

<letter> {<letter or digit or underscore>}
<letter or digit>

<letter> | <digit> |

<digit sequence>

<digit> {<digit>}
<unsigned integer>

$ <digit sequence> |

: <digit sequence>

<unsigned real> ::= <unsigned integer> . <digit sequence> i
<unsigned integer> . <digit sequence>

E <scale factor> . I
<unsigned integer> E <scale factor> -

e an
LT Y
LI

<unsigned number> ::= <unsigned integer | <unsigned real>
<{scale factor> . ::= <unsigned integer> | <sign><unsigned integer>
<sign> 2=+ | - .
<string> " ::= ' <character> {<character>}' | '!
All identifiers are significant to 8 characters. External

identifiers are significant to either six or seven characters
depending upon usage (see section 14 of the language guide and section
13.2 of the applications guide) The underscore character (_) is legal
between letters and digits in an identifier and 1is ignored by the
compiler (i.e. A B is equivalent to AB). Identifiers may begin with
an '@'. This is to allow declaration of "external run-time - routines
within a Pascal program. Users are, in general, advised to avoid the
"'@' character to eliminate the chance of conflict with run-time
routine names. ' - -

Numbers may be hex as well as decimal. Placing & '$' in front
of an integer number causes it to be interpreted as a hex number by
the compiler. The symbol <digit> now includes: ‘'a', 'B', 'C', 'D',
'E' and 'F'. ThesSe may be upper or lower case.)

13

Pascal/MT+ Release 5 Language Reference and Applications Guide

6.0 Data type difinitions

<simple type> |
<{structured type> |
<pointer type>
<identifier> = <type>

<type>

1]
[

<type definition> ::

6.1 Simple types

{scalar type> |-
<{subrange type> |
<type identifier>
<type identifier> ::= <identifier>

<simple typé>

6.1.1 Scalar types

<scalar type> ::= (<identifier> { , <identifier>})

5.1.2° Standard.fypes

-
—— — - —————— ———

The following types-are standard in Pascal/MT+

INTEGER

REAL
"BOOLEAN

CHAR

BYTE
WORD
STRING

. Three additional standard types exist in Pascal/MT+. See the
applications guide for information on representation and usage of all
standard and structured types.

STRING : Packed array [#..n] of char;

byte ¢ is dynamic length byte
bytes 1..n are characters.

BYTE

: Subrange @..255 with special attribute that
it is compatible also with CHAR type
WORD .: Unsigned native machine word.

Guaranteed to be the same size as a pointer.
(1ntegers and pointers are different sizes
in some 16/32 bit machines).

15

pascal/MT+ Release 5 Language Reference and Applications Guide

6.1.3 Subrange types

-—— —————— — o —— — oo

<subrange type> ::= <constant> .. <constant>

6.2 Structured types

<structured type> ee

<unpacked structured type> |
: PACKED <unpacked structured "type>
<unpacked structured type> ::= <array type> |

<record type> |

<set type>. |

<file type>

The reserved word PACKED 1is detected and handled by the Pascal/MT+
compiler as follows: ’

All structures are packed at the BYTE level even if the

PACKED reserved word is not found. The user is refered
. to section 13.0 in the applications guide for a

description of how-fields and contiguous variables

are allocated for various target machines.

6.2.1 Array types

<array type> . ::= <normal array> |

: <string array>

STRING <max length>»

[<intconst>] |

<empty> _

<unsigned integer> |

<int const id>

<identifier> ' '
ARRAY [<index type> {,<index type>}] OF’
<component type>

<simple type>

<type>

<string . array>
<max length>

e oo

es o0

<intconst>

<int const id>
<normal array>

'<index type>
<component typed>

[

. es es
es e

Variables of type STRING have a default length of 81 bytes (8¢
data characters). A different 1length: can be specified in square
- brackets following the word STRING. The length must be a constant
(either 1literal o¢r declared e.g. STRING[5] or STRING([xyz] (where xyz
is a constant (xyz=18))) and represents the 1length of the DATA
portion (i.e. one more byte is actually allocated for the length).

16

Pascal/MT+ Release 5

Record types

6.2"2

<record ty§e> :
<field list> :

<fixed part> :
{record section> :

<variant part>

[
oo

<variant>

<case label list>
{case label>
<tag field>

e o9 oo
nnn

6.2.3° Set types

<set type>
<base type>

e oo

£3
.
-
.

=

The maximum - range of a base type is @..255.
not

of [@6..100008] 1is

Language Reference and Applications Guide

RECORD <field list> END

<fixed part> |

<fixed part> ; <variant part> |

<variant part>

<recard sectiond> {;<record section>}
<field identifier> {,<field identifier>} :
<empty>

CASE <tag field> <type 1dent1f1er> OF
<variantd> {;<variant>}

<case label 1list> : (<field list>) |

‘<type>

"<empty>

<case label> {,<case labeld>}
<constant>

_<identifier> : |

<empty>

SET OF <base type>
<simple type>

For example, a set
legal but the set of CHAR or set of §..255 is

legal but set of 6..256 is not..

17

pascal/MT+ Release 5 Language Reference and Applications Guide

6.2.4 File types

<file type> ::= file {of <type>}

Untyped files are allowed. They are used for CHAINING (see 9.0
in applications guide) and are also used with BLOCKREAD and BLOCKWRITE
procedures (see 5.18 in applications guide). The user should be
extremely careful when using untyped files.

When wishing to read a file of ASCII characters. and using
implied <conversions for integers and reals the user should use the
pre-defined type TEXT. TEXT is NOT exactly the same as FILE OF CHAR
but has conversion implied in READ and WRITE procedure calls and also
may be used with READLN and WRITELN.

6.3 Pointer types

<pointer type> ::= °~ <type identifier>

'Pointer types are identical to the standard except that’ weak
type checking exists when the RELAXED type checking feature of the
compiler is enabled (the default) (see sections 2.6 - in the

applications guide). 1In this case pointers and WORDs used as pointers
are compatible in all cases.

18

Péscai/MT+ Release-5 Language Reference and Applications Guide

7.0 Declarations and denotations of variables

. <variable> ::= <var> |
<external var> |
<absolute var>

<external var> ::= EXTERNAL <var>
<absolute var> ::= ABSOLUTE [<constant>] <var>

<var> ~ ::= <Centire variable> |
<component variable> |
<referenced variable>

ABSOLUTE variables may be declared if the user knows the address
at compile time. The user declares variable(s) to be absolute using
special syntax. in .a VAR declaration. ABSOLUTE .variables are. not
allocated any space in the user's data segment by the compiler and the
user is responsible for making sure that no compiler allocated
variables conflict with the absolute wvariables. . 'NOTE: STRING
VARIABLES MAY NOT EXIST AT LOCATIONS <= 1@@BH. This is done so that
the run-time routines can detect . the difference between a string
address' and a character on the top of the stack. Characters have- the
high byte of § when present on the stack. After the <colon . (:) and
before the type of the wvariable(s) the user places the keyword
ABSOLUTE followed by the address of the variable in brackets ([...]):

Examples:

I: ABSOLUTE [$8600] INTEGER;
SCREEN: ABSOLUTE ($C@88] ARRAY[#..15] OF ARRAY[6..63] OF CHAR;

19

pascal/MT+ Release 5 Languége-Referénce and Applications Guide

7.1 Entire variables

<entire variable> s:= <variable identifier>
¢variable identifier> ::= <identifier> o
7.2. Component variables

:= <indexed variable> |
<field designator> |
<file buffer>

<component variable>

7.2.1 Indexed variables .

array variable> [<expression> {,<expression>}j

<indexed variable> H
: variable) :

<array variable>

o oo
won
AN

STRING variables are to be treated-as a PACKED array of CHAR for
subscripting purposes. The wvalid range is @..maxlength where
maxlength is 88 for a default length (see section 7.0).

7.2.2 Field deésignators

<field designator>
{record variable> .
<field identifier>

:= <record variable> . <field identifier>
:= <variable>" ‘
:= <identifier>

s ¢ oo

7.2.3 File buffers

<file buffer> ::= <file variable> °
<file variable> ::= <variable>
7.3 Referenced variables

pointer variable> ©
variable>

<referenced variable)> :
<pointer variable> I

AN

20

‘Pascal/MT+ Release 5 Language Reference and Applications Guide

8.0 Expressions

- <unsigned constant> ::= <unsigned number> |
<{string> |
NIL |
<constant identifier>

<factor> ::= <variable> |

<unsigned constant> |

<function designator> |

(<expressiond) |

NOT <factor>

<{set> t:= [<element list>]

<element list> ::= <elementd> {,<element>} [
<empty>

<element> - :3:= <expression> |

<expression> .. <expression> _

= <factor> <mult1p1y1ng operator> <factor>-

= <term> I
<{simple expression> <add1ng operator> <term> |
'<adding operator> <term>

<expression> ::= <simple expression> ' |
I <51mple expression®> <relational operator>

"<simple expression>

<{term> -
<simple expression>

: The pre-declared array INP is used in expressions to return a
byte from an I/0 port. The INP array is of type BYTE and-therefore
may be used with integers and CHAR variables. The array is indexed by
an expression. If the expression is a constant the compiler will
-generate in-line code for the port access. Otherwise a subroutine is
called for variable port numbers. The INPW array is present on the
16-bit CPU system for WORD oriented input ports. Allowable range for
port numbers is CPU dependent, 8..255 for 8088/286, see the specific
processor applications’ guide for more information on non-8@888 type
CPUs. .

Example:
X := INP[$55];

x := INP[baseaddr+9];
'x may be of type BYTE, CHAR or INTEGER

An additional category of operators on 16-bit variables are &,!
(also |), and.~ (also \ and ?) denoting AND, OR and ONE's complement
NOT, respectively. These have the same precedence as their
equivalent booleah operators and- accept any type of operand with a
size <= 2 bytes. ‘ .

21

paScai/MT% Release 5 Language Reference and Applications Guide

8.1 Operators

8.1l.1 The operator not.

<logical not operator> :z:= NOT | =~ | \ | ?

~ (synonyms _and ?) is a NOT operator for non-booleans.

'8.1.2 Multiplying operators

—— —— ——— T t——— —— T ——— -

<multiplying operator> ::=* | / | DIV | MOD | AND | &

& is an AND operator on non-booleans.

8.1.3 Adding operators

<adding operator>-::=+ | - | OR | | | 1}

! (synonym |) is an OR operator on non-booleans.

'8.1.4 Relational operators

<function designator> ::= <function identifier> |
<function identifier> (<parm> {,<parm>)
<function identifier> ::= <identifier>

22

Pascal/MT+ Release 5 Language Reference and.Applications Guide

9.0 Statements

<statement), ::= <label> : <unlabelled statement> |
' : <unlabelled statement)
<unlabelled statementd> ::= <simple statement> [
{structured statement)>
<label> : ::= <unsigned integer>

9.1 Simple Statements

<{simple statement

:= <assignment statement> |
<procedure statement> |
<goto statement> |
<empty statement>

<empty statement> ::= <empty>

9.1.1 Assignment statements

<assi§nment statement> ::= <variable> := <expression> o

<function identifier> := <expression

Pascal/MT+ implements a pre-declared BYTE array called OUT to
which may be assigned items of type integer, byte, or char. OUT is
indexed by an expression. The range is CPU dependent and 1is @..255
for 8080, 8085, and Z8@. For 16-bit CPU systems the pre-declared WORD
array OUTW 1is also present. For 8085 systems the system accepts the
strings: RIM85 and SIM85 as-subscripts for INP and OUT. RIM85 -and
SIM85 are not stored in the symbol table but are examined for using a
- string comparision therefore users not compiling to "an 8@85 target
machine -are not penalized. Consult the CPU applications guide for
more information. As in the case of INP, if the expression is a
constant the compiler will generate in-line code for the port access.
Otherwise a subroutine is called to handle variable port numbers.

OUT[portnuﬁ] := $88;

To the list-of exceptions to assignment compatibility add:

1. 1Integer expfessions may be assigned to variables of
type pointer. For example:

TYPE X = RECORD .

‘(* field declarations *)
END;

23

pascal/MT+ Release 5 Language Reference and Applications Guide

VAR P “X; :
I : INTEGER;

® ® 0 6 & 00 90 00 00 0

P := I+l;

e o0

2. Expre551ons of type CHAR may be assxgned to variables
of type STRING. i

3. Variables of type CHAR and 1iteral characters may
be assigned to variables of type BYTE.

4. Expressions evaluatlng to the type WORD may be
assigned to pointer variables.

5. Expressions evaluating to the type INTEGER may be
assigned to variables of type WORD

9.1.2 Procedure statements

- ——— — —————— ———————— - —

<procedure statementd ::= <{procedure identifier>’ (<parm> {:<parm>}) |
:) . <procedure identifier>
<procedure identifier>

::= <identifier>
<parm> ::= <procedure identifier> |
<function identifier> |
<expression> |

<variable>

'9.1.3 Goto statements

<goto statement> ::= goto <label>

9.2 Structured statements

<{structured statement>

:= <repetitive statment> |
<conditional statement> |
<compound statement> -
<with statement>

9.2.1 Compound statments

<compound statement> ::= BEGIN <statement> {,<{statement>} END

24

Pascal/MT+ Release 5 Language Reference and Applications Guide

9.2.2 Conditional statments

Y3

:= {case statement> |

<conditiona1‘statemeﬁt>
<if statement>

8.2.2.1 If statements

<if statement> ::= IF <expression> THEN <statementd> ELSE <statement)> |
’ IF <expression> THEN <statement)>

<case statement> ::= CASE <expression> OF
: <case list> {,<case list>}
{ELSE <statement>}

END
<case list> ::= <label list> : <statement> |
: <empty> .
<label list> ::= <case label> {,<case label>}
" Pascal/MT+ implements an ELSE clause on the case statement. in

addition 1if the .selecting expression does not match any of the case
selectors the program flow will "drop through" the case statement.
This 1is different than the standard which says this condition is an
error. : '

Example{

CASE CH OF
'A' : WRITELN('A')
'Q' : WRITELN('Q')
ELSE
WRITELN('NOT A OR Q')
END

-
’
-
1

9.2.3 Repetitive statements

———— ———— - ———— - ———— -

{repetitive statement> ::= <repeat statement)> |
<while statement> |

<for statement)>

25

pascal/MT+ Release 5 Language Reference and Applications Guide

9.2.3.1 While statements

——————— ——— — - —————

<while statement> ::= WHILE <expreéssion> DO <statement>

8.2.3.2 Repeat statements

e

<repeat statement> ::= REPEAT <statement> {,<{statement>} UNTIL <expression>

9.2.3.3 For statements

FOR <ctrlvard> := <for list> DO <statement)

<for statement> ::=

<for list> - ::= <expression> DOWNTO <expression> |
: - <expression> TO <expression>

<ctrlvar> ::= <variable>

9.2.4 With statements

ITH <record variable list> DO <statment>
record variabled> {,<record variable>l}

<with statement> s:=
<record variable list> ::=

oy

. The user should note. that the ISO standard differs £from Jensen
and Wirth in that only LOCAL variables are allowed as FOR loop control
variables. This prevents such programming errors as the inadvertant
use of a GLOBAL variable as a FOR control variable when burried 5
levels deep in nesting.

In a recursive stack frame environment the user is limited to 16
.FOR and / or WITH statements in a single procedure / function. This
is so that the compiler can allocate a fixed number of temporary
‘locations (16 words) in the data segment for the procedure / function.
This environment is present in all CPUs except the 8080 / 280 default
environment (static allocation). The 8888 / Z88 enter the stack frame
environment using the $S switch.

Pascal/MT+ Release 5 Language

16.0 Procedure declarations

<procedure qeclaratidn>

" <block>

<procedure heading>

<parmlist>

.<fparm>'
<parm group>_

<conformant array>
<conarray2>

<indxtyp>

<ordtypid5

<scalar type identifier>

<subrénge type identifier>

<label declaration part>

<constant definition part>

<type definition part>

.

.
(3

e !
.0

o o

v
(1)

L1}

.o

"

Reference and Applications Guide

<procedure heading> <block>

<label declaration part>

<constant definition part>

<type definition part>

<variable declaration part>
<procfunc declaration part>

<statement part>

EXTERNAL <procedure heading>

PROCEDURE <identifier> <parmlist> |

PROCEDURE <identifier> ;

PROCEDURE INTERRUPT [<constant>] :

(" <fparm> {,<fparmd>})

<{procedure heading> |
<function heading> I
VAR <parm group>

<{parm group>

<identifier> {,<identifier>}

<type identifier>

<identifier> {,<identifier>}

<conformant array>

.

ARRAY [l<indxtyp> {;<indxtyp} 1 OF

<conarray2>

<type identifier> |
<conformant array>

<identifier> .. <idehtifier>

<scalar type identifier>

<{subrange type identifier>

<identifier>
<identifier>

<empty> |
LABEL <label> {,<label>}

<empty> |

CONST
<constant definition>
{;<constant definition}

<empty> |

TYPE
<type ‘definition>

27

4

I

<ordtypid>

Pascal/MT+ Release 5 Languége Reference and Applications Guide

{:<type definition>} ;.

<variable declaration part> ::= <empty> |
:) VAR
<variable declaration®
{;<variable declaration>} ;

[4

<procfﬁnc part>

{<proc or funcd> ; }

<proc or func>

<procedure declaration)d |
<function declaration>

<{statement part>

<compound statement>

28

Pascal/MT+ Release 5 Langﬁage Reference and Applications Guide

. A special procedure type is implemented in Pascal/MT+, the
jnterrupt procedure. The user selects the vector to be associated
with each interrupt. - The procedure is declared as follows:

\ .
PROCEDURE INTERRUPT([vector number] procname;

The user is referred to section 6.8 of the applications "guide -
for more information on using INTERRUPT procedures.

) The user should note that the IS0 standard has added the
CONFORMANT -ARRAY SCHEMA for passing arrays of similar structure (i.e.
same number of dimensions, compatible index type, ans same element
type), but different upper and lower bounds. The user may now pass,
for example, an array dimensioned as 1..1¢ and an array 2..58 to a
procedure which expecting an array. The user defines the-array as a
VAR parameter and in the process of declaring the array the user
defines also variables. to hold the upper and lower bound of the array.
These upper and lower bound items are filled in at RUN-TIME by the
generated code. The user should note that in order to pass arrays in
this manner the index type must be compatible with the type of the
conformant array bounds. '

Below is an example of passing two arrays to a procedure which .
displays the contents of the arrays on the file OUTPUT: :

29

pPascal/MT+ Release 5 Language Reference and Applications Guide

PROGRAM DEMOCON;

TYPE \ ‘
NATURAL = @..MAXINT; (* FOR USE IN CONFORMANT ARRAY DECLARATION *)

VAR

Al : ARRAY [1..10] OF INTEGER;

A2 : ARRAY [2..20] OF INTEGER:
PROCEDURE DISPLAYIT(

VAR ARl : ARRAY [LOWBOUND..HIBOUND:NATURAL] OF INTEGER
):
" (* THIS DECLARATION DEFINES THREE VARIABLES:
AR1 + THE PASSED ARRAY

LOWBOUND: THE LOWER BOUND OF ARl (PASSED AT RUN-TIME)
HIBOUND : THE UPPER BOUND OF ARl (PASSED AT RUN-TIME)

*)
VAR

I : NATURAL;
.(* COMPATIBLE WITH THE INDEX TYPE OF THE CONFORMANT ARRAY *)

" BEGIN v ‘
FOR I := LOWBOUND TO HIBOUND DO
WRITELN('INPUT ARRAY[',I,'}="',AR1[1])
END;

BEGIN (* MAIN PROGRAM *)

DISPLAYIT(Al); . (* CALL DISPLAYIT AND PASS Al EXPLICITLY AND
. o 1 AND 16 IMPLICITLY ¥*) :

DISPLAYIT (A2) (* CALL DISPLAYIT AND PASS A2 EXPLICITLY AND
o 2 AND 26 IMPLICITLY %) :

END.

30

Pascal/MT+ Release 5 <Language Reference and Applications Guide

10.1 Standard pfocedures-
. ———— e

The following is a 1list of Pascal/MT+ built-in procedures
(except I/0 which are listed in section 16.1.1). See the applications
guide for parameters and usage. These procedures are pre-declared in
a scope surrounding the program therefore any ‘user routines of the
same name will take precedence.

NEW DISPOSE EXIT INSERT
DELETE COPY CONCAT

16.1.1 File handling procedures

All standard file handling procedures are included. 1In addition
the procedure ASSIGN(f,string) is added where £ is a file and string
is a 1literal or wvariable string. ASSIGN assigns the external file
name contained in string to the file f£. It 1is wused preceeding a
RESET or REWRITE. See section 5.16 in the Applications Guide for
details.

Listed below are the names of the file handling procedures:

GET PUT " RESET REWRITE

ASSIGN CLOSE CLOSEDEL PURGE

OPEN " OPENX BLOCKREAD BLOCKWRITE
CHAIN PAGE :

Pascal/MT+ Release 5 Language Reference and Applications Guide

1a;1.2 Dynamic allocation procedures

In addition to NEW and DISPOSE, MEMAVAIL and MAXAVAIL are alsu

included. See section 5.23 of the applications guide for a
description of these functions. ‘

16.1.3 Data transfer procedures

— . — — —— ———— ————t—— o —— — — -

32

Pascal/MT+ Release 5 Language Reference and Applications Guide

11.0 Function declarations

<function decl> ::= EXTERNAL <function heading> |
<function heading> <block>

<functon heading> ::= FUNCTION <identifier> <parmlist> : <result type>
FUNCTION <identifier> : <result type> ; :

i |

<result type> ::= <type identifier>

11.1 Standard functions

——— — ———— — —— —————————

Listed»below are the names of the standard functions supported:

ABS SOR sIN cos

EXP LN : SQRT ARCTAN
ODD TRUNC ROUND ORD

WRD ~ CHR succ PRED
EOLN EOF ‘TORESULT MEMAVAIL
MAXAVAIL ADDR SIZEOF . POS
LENGTH LENGTH

11.1.1 Arithmetic functiors

——— . ———— —— — ——— T~ ——

11.1.2 Predicates

11.1.3 Transfer functions

—— — —— ———— ———— — o —— el

WRD(x) : The value x (a variable or expression) 1is treated as
the WORD (unsigned integer) value of x.

11.1.4 Further standard functions

33

pascal/MT+ Release 5 Language Reference and Applications Guide

12.8 ° Input and Output

PaséalVMT+.supperts all Standard Pascal I/0 facilities.

In addition to the standard I/0 facilities, Pascal/MT+ provides
a mechanism by which Pascal/MT+ programmers can write their own
character level I/O drivers in Pascal/MT+. This facility - allows the
"ROM based program to be system independent and allows the user to use
the input and output format conversion routines with strings, 'I/0
ports, etc. ‘

The re-directed I/0 facility is simple and easy to |use. The
user must simply place the address of a routine, in square brackets,
after the left parenthesis and before the parameter llst in a READ,
" WRITE or WRITELN statement. _

EXAMPLE :-
READ([ADDR(getch) 1, ...);

WRITELN([ADDR(putch)], ...);

The "getch" and "putch" routines may be written in Pascal/MT+ or
in assembly language. The parameter requirements for ‘these routines
" are as follows:

'FUNCTION getch : CHAR;

PROCEDURE putch(outputch: CHAR);

The declaration of these routines must be as shown. The names
need not be getch/putch, but the parameters, none for getch and one
-for putch, must be .exactly as shown, and the compiler does not
check. The user may assign the address of the procedure to an integer
using the ADDR function and then specify this integer (e.qg.
READ([P},...) which does not save execution time but does save typing
time. Note that because EOLN and EOF require a file on which to
operate READLN and EOF/EOLN cannot be used with re-directed I1/0.

34

Pascal/MT+ Release 5 Language Reference and Applications Guide

12.1- The procedure read

12.2 The procedure reédln‘
. {

<readcall> ::= <read or readln> {({<filevar> ,} {<varlist>})}'

<read or readln> ::= READ | READLN

<filevar> ::= <variable>

<varlist> ’ .2:= <(variable> {,<variable>}

12.3 The procgdure write

12.4 :Thelprocedre wtiteln

<w;itecall> ::= <write or writeln> {({<filevar$ +} {exprlist})}

<write or writeln> ::= WRITE | WRITELN

<exprlist> s:= <wexpr> {,<wexpr>}

<wexpr> 2= <expreésion> {:<width expr> {5<dec exp:)}}
<width expr> ::= <expression>

<dec expr> | . s:= fexpression>

12.5 Additional procedures

See section 10.1.1

NOTES: . .
' When reading or writing variables of type WORD the input
is in HEX and the output is in HEX. When reading variables of
type integer the user may force HEX input by preceeding the
number with a '$' character. (e.g. $1F32)

35

pascal/MT+ Release 5 Language Reference and Applications Guide
13.8. Programs

<program> := <program heading> <block> . |
<module heading>

<label declaration part>
<constant definition part>
<type definition part>
<variable declaration part>
<procfunc declaration part>
MODEND .

<program heading> ::= PROGRAM <identifier> (<prog parms>) ;

<module heading> ::= MODULE <identifier> ;

<prdg parms> ::= <identifier> {,<identifier>}

Identical to the standard with the addition of modules
see section-14.0.

36

Pascal/MT+ Releqsé 5 Language Reference and Applications Guide

14.6 Modular Compilation.

Pascal/MT+ supports a flexible modular compilation system.
Unlike other systems used for Pascal, such as UNITs, the ‘Pascal/MT+
system allows an easy transition from large monolithic programming to
modular programming without a great deal of pre-planning. Program may
be developed in a monolithic fashion until they become too 1large to
manage (or compile) and then split into modules at that time. The
Pascal/MT+ modular compilation system allows full access to procedures
and variables in any module from any other module. A compiler toggle
is provided to allow the user to "hide" (i.e. make private) any grouf
of variables or procedures. See section 2.5 in the appllcatlons guide
for a discussion of the $E toggle. :

The structure of a module is similar to that of a program. It
begins with the reserved word MODULE followed by an identifier anc
semi- colon(e.g. MODULE TEST1;) and ends with the reserved word. MODENI
followed by a dot (e.g. MODEND). In between these two 1lines the
programmer may declare label, const, type, var, procedure and functior
sections just as in a program. Unlike a program, however, there is nc
. BEGIN..END section after the procedure and function declaratlons, just
the word MODEND followed by a dot (.) .

Example:

MODULE MOD1;

‘<label, const, typé, var declarations®
<§rocédureﬂ/ function declarations and bodies>

MODEND.

In order to access variables, procedures and functions in othe:
modules (or in the main program) a new reserved word, EXTERNAL, ha:
been added and is used for two purposes.

First, the word EXTERNAL may be placed after the <colon an
before the type in a GLOBAL variable declaration denoting that thi
variable list is not actually to be allocated in this module but i
really in another module. No storage is allocated for variable
declared in this way.

Example:

1,3,k : EXTERNAL INTEGER; (* in another module *)

R: EXTERNAL RECORD (* again in another module *)
' eee’ (* some fields *)
END;

37

‘pPascal/MT+ ' Release 5 Language Reference and Applications Guide

' Note that the Pascal/MT+ system requires that the’ user be
responsible for matching declarations identically as the compiler and
11nker do not have the’ ab111ty to type check.

Second, the EXTERNAL word is used' to declare procedures and
functions which exist 1in other modules. These declarations must
appear before the first normal procedure or function declaration in
the module/program. ‘

Note, just'as in variable declaration the Pascal/MT+ system
requires that the wuser make sure that the number and type of
parameters match exactly and that the returned type match exactly for

functions as the compiler and linker do not have the ab111ty to type
check across modules.

- The user should note that 1in Pascal/MT+ external names are
significant only to seven characters and not eight. When interfacing
to assembly language the” user must 1limit the 1length of identifiers
accessable by assembly language to six characters (see section 13.2 of

the applications guide ‘for more information on external identifier
naming conventions).

Listed below are a main program skeleton and a module .skeleton.
The main program references variables and subprograms in the module
and the module references variables and subprograms in the "main
program. The only differences between a main program and a module are
that at the beginning of a main program there are sixteen bytes of
‘header code and a main program body following the procedures and
functions. o -

- 38

Pascal/MT+ Release 5. Language Reference and Applications Guide

Main Program Example:

PRQGRAM EXTERNAL DEMO;

<label, constant, type declarations>

VAR

'I1,J : INTEGER; (* AVAILABLE 'IN OTHER MODULES *)

L]

K,L : EXTERNAL INTEGER; (* LOCATED ELSEWHERE *)
EXTERNAL PROCEDURE SORT(VAR Q:LIST; LEN:INTEGER);
EXTERNAL FUNCTION IOTEST:INTEGER;

. PROCEDURE PROC1;
BEGIN
IF IOTEST = 1 THEN
(* CALL AN EXTERNAL FUNC NORMALLY *)

END;

BEGIN
SORT(....)

(* CALL AN EXTERNAL PROC NORMALLY *%*)
END.

39

Pascai/MT+ 'Release 5 Languége~Referénce and Applications Guide

Module Example: (the_these_are separate files)

MODULE MODULE_DEMO;

< label, const, type declarations>

VAR
I,J : EXTERNAL INTEGER; (* USE THOSE FROM MAIN™ PROGRAM *)
K,L : INTEGER; (* DEFINE THESE HERE *)
EXTERNAL PROCEDURE PROCl; (* USE THE ONE FROM THE ‘MAIN PROG *)
PROCEDURE SORT(:..); (* DEFINE SORT HERE *)
FUNCTION IOTEST:INTEGER; (* DEFINE IOTEST HERE *)

<maybe other procedures'and functions here>

"MODEND.

Pascal/MT+ Release 5 Language Reference and Applications Guide

Pascal/MT+ Applications Guide

41

Pascal/MT+' Release 5 Language Reference and Applications Guide

Pascal/MT+ APPLICATIONS GUIDE’

Table of Contents | Page

—— . - —— —— o —— - ———— ————

1.0 INtrodUCEIoN...setescceceseacesncoscscacsananannns 45
1.1 Purpose of Applications Guide..eeeeoecocacees 45
1.2 Compile and run a sample PrograM.ccecesceccese 45
1.3 Contents of Distribution disk................ 48

Co mpller OpPerationN.iceeceeeeecesescsnssesssnscccansa 49
2.1 System requirements for running Pascal/MT+.... 52
2.2 Run time requirements for Pascal/MT+.cceeecess 53
2.3 INVOoCAtioN.eeeeseeeeeeoccecscscoascsnccsanacasnss 53
2.4 Compilation dat@..cieceeeeecscscosccassscsssnssns 54
2.5 Compiler toggleS...ceeeeeeeeesceccocnoanceasnnes 54
2 6 Error meSSa8geS.ceecececsccscccocccsasoosssccsscces 59
3.0 Linker operation.icceeececesccecscscccensssossssscnsnaes 60

3.1 Invocation and commandS..ccecececcccsccecosscscss 60

3.2 Attributes of linkable moduleS.ececeececcccnns 63

3.3 Using other llnkers........................... 64

L@ TYPECS:eeeseeeeeesocossscssssssosansassscssaaces . 65
] CHAR. eceeeesvocscosooscnssssnssscssssssccscsccsss 65
2 BOOLEAN. ¢ eevosecssseoecsosasasoccccsnossasosscs 65
3 INTEGER . eeceeeceacesccscascacssocccscsososssosscssssss 66
4 REAL.veevocccns ceeccessssesssecccssensssasnes 67
5
6
7

BYTE..-‘....-o.’.ooc.oooboooooocooo.-.o.o.o'oo... 68_

WORDOoaoo.o-oo‘o..oooooooo.ooccto...ooo..oo... 68

STRING . ceesoectcososcsossscsscccscscscsccssccsasse 68
4.7.1 Definition.cceeeeeceecosccesscosssoanessns 68
4.7.2 Assignment..ccececcececccccscroncsasscnns 70
4.7.3 COmMPAriSONSeeeceeccccascsscssscscscssscosssas 72

4.8 SET....Q..O..'...'............-..............Q 73

ummary of built-in procedures and parameters..... 74
MOVERIGHT, MOVELEFT.:ccecoececcscccccscosccccsces 75
EXIT.'...l.'.00.0-.0......".0..00.00...00... 77
TSTBIT, SETBIT, CLRBIT:sceccscccccsccccscccss 78
SHR, SHL.:.cecoeesorososccccncaccccssonsocsncscccs 79
HI, LO, SWAP...cecececososccscsscvsassosscassncns 80

ADDR.Q....00..0..ooo.o'..‘o.....'oo.00000000.. 81

N

SIZEOF . e e eveoucesosasssoccasssnnncannsasenes 83
FILLCHAR. : e etoeoocrossncsoscasannnonsnnsanans . B84
LENGTH. covnseoaosssocsescesoasassoanassasaaes 8BS
CONCAT . e evenueesosneccnseonnsssonnsscannnnns 86

COPYI...I0~.QOOO.....Q'.Q......0.0......'0..... 87

1
2
3
4
5
6
7 WAL T e.:eeeeeooeaonoconsaonsssssoosaasccaccscscs 82
8
9
10
1
.1
1
1

1
2
3 POS i eecececosscosoosccsocosssssosncosscscscsssssscccesa 88
4

':‘ELETE..-..o;oooc..o.-'oo..-ooo.00000000006... 89

42

éascél/MT+ Release 5 Languagé Reference and Applications Guide

5015 INSERT-o-oooo-o.oocoo.o.ooooo-ouooooc--ooo--o 9@
.5.16 ASSIGN...I.....OI.......l.".0'...00......0.. 91
5.17 WNB GNB.Q..‘0‘..........‘...‘....‘...l...... 92
5.18 BLOCKREAD, BLOCKWRITE . e oo soseccccccccscosccccac 93
5.19 OPEN, OPENX.eee“eoeesoscesscsoscscsccssscsecsccecss . 94
5.20 CLOSE, CLOSEDEL: tsececccescsasoossscssscsscssnscs 85
5¢2] PURGE:iceceecocccocosccsccsccsosccsoscsasconsscscsa 96
5.¢22 IORESULT . e eeesseceosossossscsseascnccossccncsnscs 87
5.23 MEMAVAIL, MAXAVAIL...cesoeesocccsccccsocsccas 98
5.24 Quick reference guide to built-in routines... 99

6.0 Interrupt procedureS.ccece.e. cecserssscecsisecntccsnce 100

7.8 INLINE and Mini assembler..cccececcecesccesssccanse 193
7.1l SYNt@X.eeeesseooossosseosscoscescssossscoscscccsans 183

7.2 “APPlicatioNS.cceceecececccsscsasosccsccssccnccccsns 103
7.2.1 Code eXampPleS.cesecssssscsscenssssccncnss 104

7.2.2 Constant data generatioN.eecececscsceees 185

8.9 INP and OUT arraysooooouoco ooooo ® © 06 06 06000 e 90 80080 00 lGG
9.0 Chaining.oo..lo..o.oo..o.o.;.o....-oo.c00.0000?00.. lg?

lgog Disassemblero.000..00O..000..0..00.0'.0900.....00. ’ llg
1001 InstruCtionSQQQOI..o.oc.‘ooo.00.00000..0.‘000 llg
1002 Sampleoo....o.l‘_.o..'....0..0...0.9.0.00...‘ 111

llog DEbuggeroooonoooot00.0.00000.ooloo.oo...'.’oo..o.o 119
ll l Introductlono...00.00..00....0.....00‘.0.0.0 .129
ll 2 CommandS. #0000 0000000000000 000 eo 0000000000 . 121

12.6 Run-time Environment....ccceieeeeccccaccsocccccan 124
12.1 Library routineS..ceceeececccscscsccsassscccnccss 124
12.2 Console I/0.ceeccsscoccscccscssosescsccnsons 128
12.3 File I/0cececesccocsssensasssacsscsasssssnsss 129
12.4 ROM environmentS.ceeecesccoccsccccsscosccsscss 129

13.0 Pascal/MT+ : Assembly Interfacing....... cecsccocns 133
13.1 AssemblerS.ccceececccsscscsccsncocsoscacansns 133
13.2 Naming considerationS..ccecccececcccccccsnccs 133
13.3 Variable accessSinNgeseececsccescascccces cececse 133
13.4 Parameter pPasSinNg.ceccecceccescssesscsoscocsnne 136
13.5 ReStrictioNS.cecescecccosscccccsacsnncsasoncs 138

14.¢ Run-time error handling.....cccoeeeeercaccnccccns 139
14 lRange checklng...........QI.I.I..D.......O.. 139

14 2Except1°n checklng.......‘...0...,.......“.. N .146

14.3 User supplied handlersS...cceeecececcnccoaion 140

1500 Index-.oooootoooooc--oogoooooloooo’oouoo.o.’;oo.'o. 141
16'.6 Appendices.'..‘.......'.-....‘......O..;‘OO;.‘....... 147
: 16.1 EIrOr MESSAgESeeesseessscesscssscscscascscns 147

43.

pascal/MT+ Release 5 Language Reference and Applications Guide

16.2 Reserved WOrdé......,..;............;........ 155
16.3.Language syntax descriptioN.ececcecccecsceceancs 156
16.4 Summary of option switches and toggles...... 164.

44

Pascal/MT+ Release 5_.Language Reference and Applications Guide

l.0 Introduction

—— e — — — - ————

1.1 Purpose of Applications Guide

- — — - ——— — ——— ———— ——— —— —— ——— —————

The 'Pascal/MT+ system is a complex series of programs, modules
and run-time library subroutines. This applications guide is intendec
to help the Pascal/MT+ user to understand how to use the.-features of
Pascal/MT+. The applications guide contains information on how tc
operate the compiler, linker, debugger and disassembler; a descriptior
of the implementation of Pascal/MT+ data types; a summary of built-ir
features and examples of their wusage; run-time considerations
including interfacing with other languages; and a list of the compiler
" error messages with the most common cause for each message.

1.2 Compile and run a sample program

s e ——— ————_—— — - — — - — - — — ——— —t—

Before compiling and running the sample program described in
this section be sure that you have made a backup of all of the disks
included with this software release.

i The following is a step-by-step guide to the basic operation of
the Pascal/MT+ system. You will compile, link and execute a sample
program under the CP/M operating system. NOTE: 1If the Pascal/MT+
system you have purchased generates code for other than 8080/Z88 type
CPUs then refer to the CPU applications guide for further information
regarding the execution 'of programs on the target CPU.

The following discussion assumes that the computer on which you
are about to execute Pascal/MT+ has two 8" floppy disks. If you have
other than this configuration then make the appropriate adjustments.
Please read all the ‘documentation before attempting to operate the
software so that you have an idea of what is being done.

STEP ONE: Put a CP/M system on your COPY of the distribution
disk with the compiler on it or transfer the files from the
distribution disk to your system disk.

STEP TWO: Place the disk now containing the compiler and CP/M
into your 'A:% drive.’

STEP THREE: Place your COPY of the sample programs diskette into
your 'B:' drive.

STEP FOUR: Boot your system and remain logged into the 'A:'!
drive. : : :

45

pascal/MT+ Release 5 Language Reference and Applications Guide

. STEP FIVE: Type the following command (<cr> signifies you typing
the return key on your system keyboard) :

MTPLUS B:CALC<Lcr®>

STEP SIX: The compiler should 1load and display the message
'Pascal/MT+ 5.xx' where 'xx' is the sub-release number for the version
of the software which you have. The compiler should process the CALC
program by displaying the following: (or something close; we reserve
the right to change without reprinting all the manuals).)

Pascal/MT+ 5.xx

Code Gen:80
+4++++
Source lines: 87

Phase 1

Available Memory: nnnnn :

User Table Space: nnnnn {after pre-defined symbols}
iR XX - - : ‘
Remaining Memory: nnnnn

Phase 2

80849

SUBREAL

ADDREAL

TF

CALC

CALCULAT

Lines 87
Errors 2
Code 1734 .
Data ' @ 42
Compilation Completed

¢ ee 00 oo

STEP SEVEN: After the compilation is complete verify that the
compiler ©properly placed the CALC.ERL file on the destination disk by
typing 'DIR B:CALC.ERL' and having the CP/M system display:

B: CALC ERL

STEP EIGHT: Now to link the program! Type:
LINKMT é:CALC,B:TRANCEND,B:FPREALS,B:PASLIB/S
followed by the returh key. You should see the following-output:'
LINK/MT+ 5.00 | |

Processing file- B:CALC .ERL
Processing file-~' B:TRANCEND.ERL

AR

Pascal/MT+ Release 5 Language Reference and Applications Guide

Processing file- B:FPREALS .ERL
Processing file- B:PASLIB .ERL

Undefined Symbols:

No Undefined Symbols

nnnn (decimal) records written to CALC .COM

Total Data: nnnnH bytes
Total Code: nnnnH bytes
Remaining : nnnnH bytes

Link/MT+ processing completed

STEP NINE: Now verify that the linker placed the CALC.COM file
on - the destination disk by typing: 'DIR B:CALC.COM' and receiving the
response: o

B: CALC COM

" from CP/M.

STEP TEN: Now to run the program!_. Type 'B:CALC' and you should
be greeted with the message: 'ENTER FIRST OPERAND? '. Respond- with
'5.5' and <return>. Then the message 'Rl= .5500000E+61' should appear
followed by 'ENTER SECOND OPERAND? '. Respond with '99.256' followed
by <return>. Then -the message 'R2= .9925601E+02' should appear
followed by 'ENTER OPERATOR:' followed by a 1list of operators.
Respond with '+' followed by <return> Finally the result, '1864.756°'
should be printed followed by 'TYPE <ESCAPE> TO STOP'. Type <escape>
and that's it!. -

47"

pascal/MT+ Release 5 Language Reference and Applications Guide

1.3 Contents of Distribution disk

MTPLUS.COM (compiler)
MT12?22?.0VL
MT2?22?22 .0VL
MT3?222?2.0VL

MT4222?.0VL (overlays for the ???? CPU)
LINKMT.COM (linker))
PASLIB.ERL (Run-time library object)
FPREALS.ERL (Floating point REAL routines)
TRANCEND. ERL (Floating point transcendental routines)
BCDREALS.ERL (BCD Fixed point REAL routines)
- DIS??2??.COM (Disassembler)
PATCHER.COM (Patch application program)
DEBUGGER. ERL (symbolic debugger library)

Additional files are present on the disks. Consult the

applications note which accompanies the software. A number
of example programs, the source for the run-time library and
other support tools such as the disassembler, etc. are supplied
with various configurations of the system.

Note: The PaScal/MT+ system uses the_extension .ERL for
Extended ReLocatable files. These are, for the most part,
fully compatible Microsoft relocatable format (for 8¢88/Z80
CPUs) but may contain extended record formats if the
disassembler is being used. See section 3 and 18 of the
applications guide.

48

Pascal/MT+ Release 5 Language Reference -and Applications Guide

2.0 Compiler operation

The compiler is named MTPLUS.COM and uses four overlays. Input
files may be 1located on any disk and the names are arbitrary. The
file may have any extension but if specified with 'a blank extension
(e.g. TEST1l) and not found with a blank extension then the compiler
will search for a file with a .SRC extension. followed by searching for
a file with a .PAS extension. 1If no match is made then an error
message will be issued: 'Unable to open input file'. MTPLUS.creates a
relocatable file <name>.ERL which must be linked with LINK/MT+ to the
routines in the runtime package. See section 3 for details regarding
linking.

The compiler accepts a number of "option switches" following the
name of the input file on the command line. These options switches
are in the form of a string preceeded by a '$' (dollar sign) character
and are single. letters followed by zero or more parameter characters.
The parameter string extends from the $ to the end of the 1line and
spaces are ignored (i.e. $PXRB 1is the same as $PX RB). They are
listed below: : '

a9

Pascal/MT+ Release 5 Language Reference and Applications Guide

Compiler switch

—— v — — o — - - ———— ———

Rd

nd

Pd

Ed

Td

Meaning

Put the .ERL file on 'd:'

The .OVL file #n (n=l..4)
is on 'd:" '

- Put the .PRN file on 'd:'’

Generate an eXtended REL file
including disassembler records

Generate debugger information

. in the object code and write

the .PSY file to the drive
specified by the R option

The MTERRS.TXT file is on 'd:'
Put the PASTEMP.TOK file on 'd:'

Quiet, suppress any unnecessary
console messages

Continue 'on error, default is to
pause and let operator interact

‘on each error, one at a time.

Automatically call the linker at
the end of compilation and link

. the .ERL file with the standard

library only. The .COM file will
be placed on the same disk as
the .ERL file

Use BCD rather than floating:point
for the real numbers

Generate 280 optimized code (for
80808/280 version only)

50

Pascal/MT+ Release 5 Lénguage Reference and Applications Guide

Where a drive number is shown for the .PRN file the wuser m:
specify 'X' which will cause the .PRN file to be displayed on tt
console. An-example which executes the compiler, - reads the sourc
from Fhe‘ A: drive, places the .ERL file -on B:, the .PRN file on tt}
console and automatically calls the linker is as follows:

MTPLUS A:TESTPROG $RB PX A

The defaults for the compiler switches are:

R .ERL file on same disk as source file
1..4 .OVL files are on the default disk
.P no .PRN file

X non-eitended file generated

D no debugger information in object file

and no .PSY file written

E MTERRS.TXT on default disk:

T PASTEMP.TOK on default disk

o} Compiler is verbose

C Compiler stops and asks on each error

A Compiler does not automatically chain to linker
B Floating point reals are the defauit

.Z Generate 8080-only code (for 808@/280 version on

Various versions of the compiler will have a mechanism fo
changing these default versions by a patch ' or a setup program
Consult any applications notes which came with your package for mor
information. ’

51

pascal/MT+ Release 5 Language Reference and Applications Guide

2.1 System requirements for running Pascal/MT+

, The Pascal/MT+ system requires a 868¢ or 288 CPU running the
CP/M operating system in which to operate. Other versions may execute-
with other operating systems and / or CPUs in the future, please

consult any applications notes which' came with your package for
further details. ‘ .

In a CP/M environment the minimum requirement 1is 148K of
simultaneous on-line storage (i.e. the equivalent of two 5.25 in.
mini-floppy disks). The design-goal for Pascal/MT+ is that it will
operate in a CP/M system with a minimum of 44K of Transient Program
Area (TPA). (this is typically available in a 48K CP/M system). It
.is suggested that a minimum workable system for larger programs
include at least 300K bytes of floppy disk and 52K of TPA.

52

Pascal/MT+ Release 5 Language Reference and Applications Guide

2.2 Run-time requirements for Pascal/MT+

The Pascal/MT+ system generates programs which utilize a variety
of run-time support subroutines which are extracted £from PASLIB.
These run-time routines handle such needs as multiply and divide on
those processors which do not have such hardware and £file input. and
output interface to the operating system.

For programs which are run under the CP/M operating. system the
minimum run-time overhead 1is typically in the 2K to 3K byte range..
This includes support routines and text file I/0 routines for integer,
characters and strings. Additional modules will be included for
routines which utilize REAL numbers, non-text file I/0, transcendental
routines, etc.

For programs which are run in a stand-alone manner the wuser Iis
required to write <console/file 1I/0 - drivers for the target system.
Complete source for the run-time library subroutines is provided. and
‘the applications note which accompanies the system describes the
implementation of the I/O drivers for the system in question. - The
user -should refer to section 12.4 for examples of how to create stand
alone systems. ' '

2.3 Invb;ation

To execufe the Pascal/MT+ compiler type:

| MTPLUS <filename> foptional parameters preceeded by $}
EXAMPLE: |
MTPLUS CALC {output CALC.ERL to default drivel.
MTPLUS CALC $RB {output CALC.ERL to drive B:}

See section 2.8 above for more information about the
compiler options.

5%

~Pascal/MT+ Release 5 Language Reference and Applications Guide

2.4 Compilation data

The Pascal/MT+ compiler will output a number of messages and
characters during the compilation. For users who often wonder what is
“happening the Pascal/MT+ compiler will periodically output characters
during the first two phases of the compilation (Phase § and Phase °1)

to keep the user happy knowing that the compller has not gone off to
meet its maker.

A '+' is put out to the console for every 16 source code lines
syntax scanned during Phase 4g. At the beginning of PHASE 1 the
available memory space is displayed. . This is the number of bytes (in
decimal) of memory before generation of the symbol table.
Approximately 3K worth of symbol table space is consumed by
pre-defined identifiers. See section 2.5 on reducing this space by
eliminating unneeded declarations of built-in routines. When a
procedure or function is found a '#' is output to the console. At the
completion of PHASE 1 the number of bytes remaining in memory is
displayed in decimal.

PHASE 2 generates object code. When the body of each procedure
is encountered the name of the procedure is output so that the user
can see where the compiler is 1in the compilation of.- the program
Pascal/MT users will note that the compiler does not put the absolu’
addresses of the procedures out at compile time but the relative
addresses for this module. The linker /M (Map) option will list the
absolute addresses of the procedures in each module. Upon completion
‘the following lines are displayed: ' '

Lines : Lines of source code compiled (in decimal).
Errors: number of errors detected. '

Code : bytes of code generated (in decimal).

Data : bytes of data reserved (in decimal).

2.5 Compiler toggles

The compiler toggle signals the compiler that the user wishes to
enable or disable certain options. The format of this toggle is
(*S *) or {$ } where the blanks are filled in with the
toggle. The compiler does not accept blanks before the key letter or
trailing or imbedded blanks in names but will skip over leading blanks
(e.g. {SE +} is the same as {$E+}, but {$ E +} will be ignored).

EXAMPLES:
(*$E+¥)

{spr}
{$1 D:USERFILE.LIB}

54

Pascal/MT+ Release 5 Language Reference and Applications Guide .

$E+ and SE- controls the generation of entry point records in
the relocatable file." SE+ causes the global wvariables and all
procedures and functions to be avdilable as entry points (i.e.
available to be referenced by EXTERNAL declarations in other modules).
$E- supresses .the generation of these records thus causing the
variables, procedures, and " functions to be logically private. The
default state is S$E+ and the toggle may be turned on and off at will.

$S+ enables stack frame allocation of procedure / function
parameters and - local wvariables. This must be turned on before the
word PROGRAM or MODULE and, unlike Pascal/MT, cannot be turned off

within a separately compiled unit. Global variables 1in either
programs or modules are always allocated statically. Modules which
use $S+ may be mixed with modules which do not. '

$1<fiiename> causes the compiler to include the named file in
the sequence of Pascal source statements. Filename specification
includes drive namé and' extension in CP/M standard format. S

The $Z nnnn toggle is used to initialize the stack pointer to
nnnnH in non-CP/M environments. 1In a CP/M environment the hardware
stack 'is initialized by loading the value in absolute 1location 0006
into the stack pointer register." If -the $Z toggle is used then
generation of the CP/M type initialization is supressed. - ’

$T+, $T-, $W+ and S$W- control the strict type . checking /
non-portable warning facility. These features are tightly coupled
(i.e. strict type checking implies warning non-portable usage and visa
versa) . The default state is $T- ($W-) in which type checking Iis.
relaxed and warning messages are not generated. This may be turned on
and off throughout the source code as desired.

SR+ and $R- control the compiler's generation of run-time code
which will perform range checking on array subscripting and storing
into subrange variables. The default state 1is $R- (off) and this
toggle may be turned on and off throughout the source code as desired.

-$X+ and $X- control the compiler's generation of run-time code
which will perform run-time error checking and error handling for what
is termed eXceptions. Exceptions are:

Zero divide
String overflow / truncation
Heap overflow

The system philosophy under which Pascal/MT+ operates states =zero
divide and string overflow are treated in a "reasonable" manner when
exception checking is disabled. - Zero divide returns the maximum value
for the data type and string overflow results in truncation of the
string rather than modification of adjacent memory areas. The default
state is $X- and may be changed throughout the source code as desired.
The user is directed to section 14 for more discussion of run-time
error handling and options.

55

pascal/MT+ Release 5 Language Reference and applications Guide

The $P and $L+, .SL- toggles control the listing generated by the
first pass of the compiler. $P will <cause a formfeed character
(CHR(12)) to be inserted into the .PRN file. $L+ and $L- are used to
switch the listing on and off throughout the source program and may be
placed wherever desired.

The $Cn toggle can be used by the user to reduce run-time object
code memory requirements when using REAL arithmetic. The user can, if
available, specify a restart instruction number and the compiler will
then change all <calls to the @XOP routine (see section 12.1) into. a
restart instruction. This will cause all 3 bytes call instructions to
shrink to one byte call instructions. The user specifies 'n' in the
range 0..7 and the compiler generates RST n instructions. 1In a CP/M
environment the restarts which are not available because of CP/M usage
are: ¢ and 7. MP/M users and others should consult their hardware
documentation for more . details. This facility is available only in_
the 8p480/283 systems (using restarts). Similar facilities may be
available in" other CPU systems. Consult the appropriate CPU
applications guide for details.

56

Pascal/MT+ Release 5 Langﬁage Refefence and Applications Guide

~ The $Kn toggles are used to remove unneeded built-in routine
definition from the symbol table to make more room for user symbols.
The value n (@..6) is used to control various groups of routines.
These may be used 1in any combination but these toggles MUST appear
before the word PROGRAM or MODULE to be effective. The wvalue n is
selected as follows:

Group Routines Removed

g ROUND, TRUNC, EXP, LN, ARCTAN
: SQRT, COS, SIN

1 COPY, INSERT, POS, DELETE, LENGTH
CONCAT

2 GNB, WNB, CLOSEDEL, OPENX, BLOCKREAD
BLOCKWRITE

3 CLOSE, OPEN, PURGE, CHAIN, CREATE

4 WRD, HI, LO, SWAP, ADDR, SIZEOF, INLINE,

| EXIT, PACK, UNPACK

5 TORESULT, PAGE; NEW, DISPOSE

6 succ, PRED, EOF, EOLN

7 TSTBIT, CLRBIT, SETBIT, SHR, SHL

‘THE USER SHOULD NOTE THAT THIS ONLY REMOVES THE NAMES FROM THE
PRE-DEFINED SYMBOL TABLE TO MAKE ROOM FOR USER SYMBOLS. THESE
ROUTINES ARE ONLY INCLUDED IN THE USER'S PROGRAM BY THE. LINKER
IF THEY ARE USED IN THE PROGRAM.

57

Pascal/MT+ Release 5 Language Reference and Applications Guide

Listed below is a

summary of available compiler toggles

Compiler:Toggles Default
SE +/- Controls entry point generation S$E+
$S +/- Controls recursive/static variables $S-
$I <name> Includes another source file into
the input stream (e.g. {$I XXX.LIB})
SR +/~ Controls range checking code SR-
ST +/- ,) ’
CSW +/- Controls strict type checking and
generation of warning messages $T-
-~ $ w—
$X +/- Controls eXception checking code $X-
SP Enter a formfeed in the .PRN file
SL +/- Controls the listing of source code .SL+
$Kn Allows for Killing built-in routines
to save space in symbol table (n=g..7)
$Z nnnn Initialize hardware stack to nnnnH .
: (default is contents of location @086
at the begining of execution)
$Cn Use RST n instructions for REAL operations

(default is_to use CALL instructions)

58

Pascal/MT+ Release 5. -.Language Reference and Applications Guide

2.6 Error messages

Compilation errors are numbers which have the same meaning as
those in Jensen and Wirth's ‘User Manual and Report'. The errors .

messages, brief explanations, and some causes of the error are found
in the appendix.

59

Pascal/MT+ Release 5 Language Reference and Applications Guide

3.0 Linker operation

3.1 Invocation and commands

LINK/MT+ is used by typing its name followed by a space followed
by the main program and modules to be linked separated by commas. The
output is directed to the same disk as the main program unless the
user spec1f1es an output file name followed by an equal 51gn before
the main program name. Examples are shown below:

EXAMPLE:

LINKMT CALC,TRANCEND,FPREALS,PASLIB/S

LINKMT B:CALC£CALC,TRANCEND,FPREALS.PASLIB/S {CALC.COM is put to

The above command will link one of the demo programs with the
run time package. The items to be linked may be preceeded by a drive
letter: ‘ '

LINKMT A:CALC,D:TRANCEND,F:FPRBALS,B:?ASLIB/S

The linker allows the user to place a number of "switches"
following the file names in the list. These switches are preceeded by
‘a slash (/) and are a single letter with a parameter on the P and D
switches. Co . ‘ '

The examples above show the use of the /S switch which informs
the 1linker to search the- module as a library and extract only the
necessary routines. A /M following the last £file named in the
parameter - list generates 'a map. A /L following the last module named
causes the linker to display module code and data locations as they
are being linked. A /E following the last module causes the linker to
display all routines including those which begin with $§, ? or @ which
are reserved for run-time library routine names.

In order to support relocation of object code and data areas the
linker supports the /P and /D switches. The /P switch controls the
location of the object code (ROM) and the /D switch controls the
location of the data areas (RAM). The syntax is: /P:nnnn or /D:nnnn
where "nnnn" is a hexadecimal number in the range 8..FFFF.

Using the /D ‘'switch will also allow 11nk1ng of larger programs
because the data area is not reserved in memory during the linking
operation. The user should note that local file operations are .not
guaranteed if this is used because the system depends upon the linker
zeroing the data area to make this facility work properly. :

Using the~/P switch and /D-switch'does not cause the .linker to.

60

B:}

Pascal/MT+ Release S LangUaée Reference and Applications Guide

leave empty space at the beglnnlng of the .COM file. Other linkers
(in particular L8¢) will generate a significant ammount of disk space.
to force the program to 1load at the proper address in a CP/M
environment. The philosophy of LINK/MT+ is that if the /P switch is
used the user really wants to move the program to another system for
execution. This means that if the user specifies /P:886868 that the
first byte of the .COM file will be the byte to be placed at location
8080H and not 32K of zeroes before the flrst byte. In addition, |if
the user specifies /D the linker will not save any of the data area in
the .COM file. This is a good way for reducing the data storage on
'dlsk for programs since only the code will be loaded from disk and not
uninitialized data areas. :

These switches (/P and /D) may be specified after the last
routine to be loaded and may be in any order. .

The /H:nnnn switch is provided to allow the linker to generate a
.HEX file instead of-a .COM file. The nnnn value is in HEX and Iis
totally independent of the default relocation value of 18¢H (possibly
overridden by the /P switch). This means that the user may relocate
" the program to execute at say 1DB@H but generate the .HEX file 'to have
addresses starting at 80@@H. (the user would use /P:1D@@/H:80600) .

The user in a CP/M environment must typically use the SUBMIT
facility for typing repetitive sequences such as linking multiple:
files together over and over and over again. The LINK/MT+ 1linker
allows the user 'to enter this data into a-file and have.the linker
process the file names from the file. This . process 1is considerably
faster than submit. The user must specify a file with an extension of
.CMD and follow this file name with a /F (e.g. CFILES/F). The linker
will read input from this file and process the names. The input from-
the file is concatenated logically between the data on the left of the
file name and the data on the right of the /F switch. The total input
buffer is 256 bytes.

- Listed below is a summary of the switches:

61

Pascal/MT+ Release 5 Language'Reference and Applications Guide

Linker Switch Summary

/S - Search preceeding name as a‘iibrary
- extracting only the required routines

/L - List modules as they are being linked
/M - List all entry points in tabular form

JE = List entry points beginning with $, ? or @
: in addition to other entry points

/P:nnnn - Relocate object code to nnnnH

/D:nnnn - Relogaté data area to nnnnH

/W - Write a SID compatible. .SYM file
(written to the same disk as the .COM file)

*/H:nnnn - Write the output as a .HEX file with
nnnnH as the starting location for the
hex format. This is totally independent of
the /P switch (no .COM file produced if
this switch is used) -

/F - Take preceeding file name as a .CMD file

containing file names (one per line)

62

Pascal/MT+ Release 5- Language Reference and Applications Guide

The linker will take up to thirty two names on the command line
(or command file input) for files to be linked. '

Errots encountered in the linking process are self explanatory

- such as 'unable to open input file: xxxxxxxx' and 'Duplicate symbol -
XXXXXXX"' . :

3.2 Attributes of linkable modules

Link/MT+ will 1ink Pascal/MT+ main programs, Pascal/MT+ modules,
and assembly language modules created by M88 or RMAC. Link/MT+
supports those features of the Microsoft relocatable format required
for pascal/MT+. These do not include: External plus offset, External
minus "offset, COMMON; initialized DATA areas in the DATA segment, and
" request library search. Also Link/MT+ demands that the data size and
program size records- preceed the first byte of data to be loaded.
This is the case with the Pascal/MT+ compiler, M8 and RMAC but . not
with such compilers as FORTRAN. MT MicroSYSTEMS recommends using the
linker supplied with the other language processor be used if mixed

linking of Pascal and alien modules (other than assembly language) is
to be performed. : '

63

Pascal/MT+ Release 5 Language Reference and Applications Guide

3.3 Using other linkers

- ——— . —— —— - - — > -

If the user has not specified that the disassembler is to be used then
the .ERL file produced by the Pascal/MT+ compiler is totally Microsoft
compatible. As shown in section 15 linking with other languages such -
as FORTRAN may be done using specially constructed routines which
translate Pascal/MT+ parameter lists into FORTRAN parameter 1lists.
Other 1linkers, particularly the L8¢ linker from Microsoft, may not be
able to link a program which Link/MT+. can handle due to memory
limitations imposed by the design of these other linkers.

64

Pascal/MT+ Release 5 Language Reference and Applications Guide

4.0 Data Types

- - — o —

) This section describes how the standard Pascal data types are
implemented in Pascal/MT+. A summary of the data types appears in the
following table. -

‘Data type Size ‘ Range

CHAR 1 8-bit-byte g..255

- BOOLEAN 1 8-bit-byte false..true

INTEGER 1 8-bit-~byte B..255 .

INTEGER 2 8-bit-bytes -32768..32767

BYTE 1 8-bit-byte g..255

WORD 2 8-bit-bytes ..65535 .

BCD REAL 10 8-bit-bytes . 18 digits,4 decimal

FLOATING REAL 4 8-bit-bytes 10E-17..10E+17

STRING - l..256 bytes = = e

SET ' 32 8-bit-bytes @..255 '
4.1 CHAR

The data type CHAR is implemented using one 8-bit byte for .each
character. . The reserved word PACKED is assumed on arrays of CHAR.
CHAR variables may have the range of CHR(Z) .. CHR(255). When pushed
on the stack a CHAR variable 1is 16 bits with the high order byte
containing @#8. This is to allow ORD, ODD, CHR and WRD to all work
together. ' '

4.2 BOOLEAN

The data type BOOLEAN is implemented using one 8-bit byte for
each BOOLEAN variable. When pushed on the stack ,8 bits of @ are
pushed to provide compatibility with built in operators and routines.
The reserved word PACKED 1is allowed but does not compress the data
structure any more than one byte per element (this occurs with and
without the packed instruction). ORD(TRUE) = @801 and ORD(FALSE) =
go08. The BOOLEAN operators AND, OR and NOT operate only on ONE byte..
The wuser is refered to the &, ! and ~ operators (see section 8 of the
language guide) for 16-bit boolean operators. -

[XTXIXTXTXTXTXI8/11 (X means don't care)

65

Péscal/MT+ Release 5 Language~Referehce and Applications Guide

4.3 INTEGER

The data type INTEGER is implemented using two 8-bit bytes for
each INTEGER wvariable. The order of the bytes is CPU dependent. 1In
the 8p808, 8085, Z80, 8086 and 8888 the low byte is in 1lower numbered
address and the high order 8 bits are in the higher numbered address.’
In the 688606 and 2806806 the high byte is in the low numbered address
and the 1low byte is in the higher numbered address. MAXINT = 32767
and. INTEGERS can have the range -32768..32767. An integer subrange’
declared to -be within the @..255 occupies only one byte of memory
instead of two bytes. 1Integer constants may be hexadecimal numbers by
preceeding the hex number with a dollar sign (e.g. $0F3B).

66

Pascal/MT+ Release 5 . Language Reference and Applications Guide-

4.4 REAL

The 1mp1ementat10n of the data type REAL in Pascal/MT+ has been
done 1in two different ways to serve the needs of two different market
areas.

For business applications: the REAL data type has been
implemented in BCD with 18 digits and 4 - fixed decimal places.
Automatic rounding is done after the fourth place during calculations
and also at the specified place if formatted output is wused. The
-format of a REAL BCD number is: bytes 1..9 are digits packed two to
the byte, and byte 18 contains the sign: @ for positive and $FF for
negative.

sign | hi mem

——— — . — —— —— ————— - - — _— — — — — ———— — —— —— —— ———— ———

For scientific and englneerlng applications the REAL' data type
has been implemented using binary floating point. The floating point
used in Pascal/MT+ is fully compatible with the AMD 9511 hardware
floating point unit (also being second sourced by Intel). Thirty-two
(32) bits (4-bytes) of data are required to implement a floating point
number. The first byte contains the mantissa sign, the exponent sign
and the exponent. The rema1n1ng three bytes contain the mantissa.
The precision of this format is approximately 6.5 digits. The reader
is referred to the AMD 9511 hardware manual for further details’
regarding the binary format.

] | T

low mem |exp sign/mantissa sign/exponent| ms | | 1s | high mem

———— — —— —— ——— — ——— —— ———— ————— — - — — —— — —— — ————— ———— ———

ms = most significant bits
ls = least significant bits

Pascal/MT+ implements this floating point data type in both
software and hardware. The standard floating point package system
comes with software run-time. The source for the run-time package is
-used to modify port addresses for the 9511 to adapt this version of
the run-time package to the user's system. The equate HARDWARE is
used to control inclusion of the desired floating point routines into
the run-time package.

67

Pascal/MT+ Release 5 Language Reference and Applications Guide

4.5 Byte

The BYTE data type occupies a single byte. - It is compatible
with both INTEGER and CHAR types. This -can be very useful when
manipulating control characters, handling character arithmetic, etc.
Characters and integers may be assigned to a BYTE. '

4.6 Word

WORD is an unsigned. native machine word. All arithmetic
performed on expressions of type WORD is unsigned. 1In addition all
comparisons are also unsigned. The WORD data type 1is designed such
that it is always the same size as pointers. This particularly
important in the 16-bit CPUs in which the integer size is 16-bits but
typically the pointer size is 32-bits.

4.7 .String

4.7.1 Definition

The pre-declared type STRING 1is 1like a packed array of

characters in which the byte @ contains the dynamic 1length of the
string and bytes 1 through n contain the characters. Strings may.
be up to 255 characters in 1length. The default length is 89

characters which may be altered when a variable of type string is
declared (see example below).

The string "This is a Wottle" is sixteen characters in length.
The following diagram shows how these characters are stored in a
string declared to be 20 characters in length.

low mem TIG6[TIh[I[s] T1ilsT Tal TwWloltTtlITel?21?27?2]2] high mem

—— — — — —————— —— ——— —— T~ —— — - — ———— ——— - — — — ——— - —————

If the number of characters in the string is 1less than _the
declared length, those bytes on the end are not defined. Note that
the length is stored in the first byte and the total number of ' bytes
requ1red for the string is 17. '

- 68

Pascal/MT+ Release 5 Language Reference and Applications Guide

EXAMPLE:
VAR ' ’
LONG STR: STRING; - {This may contain up to 88 characters]}
SHORT STR: STRING([18]; {This may contain up to 1@ characters}

VERx;EONG_STR ¢ STRING[255]; {This may contain up to 255 characters,
. the maximum allowed. }

69

Pascal/MT+ Release 5 Language Reference and Applications Guide

4.7.2 Assignment

Assignment to a string variable may be made via the assignment
statement, reading into a string variable using READ or READLN, or the
pre-defined string functions and procedures.

EXAMPLE:

PROCEDURE ASSIGN;

VAR ‘
LONG_STR : STRING;
SHORT STR : STRING[12];

BEGIN

LONG STR := 'This string may contaln as many as eighty characters'-
WRITELN(LONG _STR) ;

WRITE('type in a string 18 characters or less : ');
READLN(SHORT STR) ;.. ‘

WRITELN(SHORT STR) ;

SHORT STR := COPY(LONG_STR,1,11);
WRITELN ('COPY{LONG_STR..)=',6SHORT_STR);
END; ,

Output:

This string may contain as many as eighty characters
type in a string 18 characters or less : {123456} (USER INPUT)
123456 :

COPY (LONG_STR..)=This string m

Individual characters in a string variable are accessed as if

the string 1is an array of characters, »Thus, normal array
.subscripting via. constants, variables, and expressions allows
assignment and access to individual bytes within the string. Access

to the string over its entire declared length is 1legal and does not
cause a run-time error even if an access is made to a portion of. the
string which 1is beyond the current dynamic length. 1If ‘the string is
actually 26 characters long and the declared 1length 1is 38 then
STRING([25] is accessible.

70

pascal/MT+ Release 5. Language Reference and Applications Guide

EXAMPLE

PROCEDURE ACCESS;

VAR .
I : INTEGER;
BEGIN
I := 15;

LONG STR := '123456789abcdef';

WRITELN(LONG_STR);

WRITELN(LONG STR{6], LONG STR{[i-5]);

LONG_STR[16] := '*'; -

WRITELN (LONG_STR[161]); ’

WRITELN(LONG_STR); (* will still only write l5-characters *)
END; '

Output:

123456789abcdef

6a
*

123456789abcdef

71

Pascal/MT+ Release 5 Language Reference and Applications Guide

4.7.3 Comparisons

Comparisons are valid between two variables of type string
" (regardless of their 1length) or between a variable and a literal
string. Literal strings are sequences of characters between single
quote marks. Comparisons may also be made between a string and a
character. The compiler 'forces' the character to become a string by
‘using the CONCAT buffer, therefore comparison of the result of the
CONCAT function and a character 1is not meaningful as this-would
result in an always equal comparison. '

EXAMPLE

PROCEDURE COMPARE;

VAR :
S1,S2 : STRING[10];
CH1 : CHAR; '

BEGIN .

S1 := '012345678"';
:= '222345678"';

IF S1 < S1 THEN |
WRITELN(S1,' is less than ',s2);

S1 := 'alpha beta';

IF S1 = 'alpha beta ‘- THEN
WRITELN('trailing blanks dont matter')

ELSE .
WRITELN('trailing blanks count');

IF 81 = ' alpha beta' THEN
WRITELN('blanks in front don''t matter')

ELSE .

WRITELN('blanks in front do matter');
IF S1 = 'alpha beta' THEN
WRITELN(S1,' = ',81);
S1 := '2"';
CH1 := 'Z°';
IF S1 = CHl THEN
WRITELN('strings and chars may be compared');
END;

.

Output:

012345678 < 222345678

trailing blanks don't matter
blanks in front do matter

alpha beta = alpha beta ..
strings and chars may be compared

72

Pascal/MT+ Release 5 Language Reference and Applications Guide.

The SET data type is always stored as a 32 byte item. Each
element of the set is stored as one bit. The low order bit of each
byte is the first bit in that byte of the set. Shown below is the set
'A'..'Z' (bits 650.122) ' ’ K

Byte number 60 61 -62 83 84 65 66 67 08 69 6A @B 6C ... 1F

Contents 00 00 00 00 60 00 60 9@ FE FF FF 07 060 ... 08

73

~Pascal/MT+ Release 5 Languagé Reference and Applications Guide

5.8 Summary of built-in' procedures and parameters

- ——— — ——— o — ——— — — —— ——— ———————— . — —— ————— ——— ——

This section provides descriptions and. examples of Pascal/MT+

built-in procedures and functions. = Each routine |is described
syntactically followed by a description of the parameters and an
example program using the procedure or function. Section 5.24

provides a quick reference summary of all the built-in procedures and
functions. ’ ' .

74

Pascal/MT+ Release 5 Language Reference and Applications Guide

5.1 MOVE ,MOVERIGHT, MOVELEFT

PROCEDURE MOVE (SOURCE, DESTINATION, NUM_ BYTES)
PROCEDURE MOVELEFT (SOURCE, DESTINATION, NUM_BYTES)
' PROCEDURE MOVERIGHT (SOURCE, DESTINATION, NUM_BYTES)

These procedures move the number of bytes contained in NUM BYTES

~from the location named in SOURCE to the 1location named in
DESTINATION. MOVELEFT moves from the left end of the source to ‘'the
left end of the destination. MOVE 1is a synonym for MOVELEFT.

MOVERIGHT moves from the right end of the source to the right end of
the destination (the parameters passed to MOVERIGHT specify the left
hand end of the source and destination).

The source and destination may be any type of variable and both
need not be of the same type. These may also be pointers to variables
or integers wused as” pointers. They may not be named or literal
constants. The number of bytes is an integer expression greater than
8. ‘ . : . o

Watch out for these problems: 1) Since no checking is performed
as to whether the number of bytes is greater than the size of the
destination, spilling over into the data storage adjacent to the
destination will occur if the destination is not large enough to hold
the number of bytes; 2) Moving @ bytes moves nothing; 3) No type
checking is done; 'Along with freedom comes responsibility’'.

MOVELEFT and MOVERIGHT are used to transfer bytes from one data
.structure to another or to move data around within a single data
structure. The move is done on a byte level so the data structure
type is ignored. MOVERIGHT is useful for transfering bytes from the
low end of an array to the high end. Without this procedure a FOR
loop would be required to pick up each character and put it down at a
higher address. MOVERIGHT is also much, much faster. MOVERIGHT is
.ideal to use in an insert-character routine whose purpose is to make
room for characters in a buffer.

MOVELEFT is useful for transferring bytes from one array to

another, deleting characters from a buffer, or moving the values in
one data structure to another.

75

pPascal/MT+ Release 5 Language Reference and Applications Guide

EXAMPLE:

PROCEDURE MOVE DEMO;

CONST -
STRINGSZ = 88;

VAR
BUFFER : STRING[STRINGSZ];
LINE : STRING;

PROCEDURE INSRT (VAR DEST : STRING; INDEX : INTEGER; VAR SOURCE
BEGIN : :

IF LENGTH(SOURCE) <= STRINGSZ - LENGTH(DEST) THEN
BEGIN

MOVERIGHT (DEST[INDEX], DEST[INDEX+LENGTH(SOURCE)],
" LENGTH(DEST)-INDEX+1); :

MOVELEFT (SOURCE([1], DEST[INDEX], .LENGTH(SOURCE)) ;

DEST[@] :=CHR(ORD(DEST({8]) + LENGTH(SOURCE))

END;
END; .
BEGIN
WRITELN('MOVE DEMO..ee..');) .
BUFFER := 'Judy J. Smith/ 335 Drive/ Lovely, Ca. 95666"';
WRITELN (BUFFER) ; - '
LINE := 'Roland ';

INSRT(BUFFER, POS('5',BUFFER)+2,LINE); -
WRITELN (BUFFER) ; ‘

END; _
THE OUTPUT FROM THIS PROCEDURE:
MOVE DEMO...... ;

Judy J. Smith/ 355 Drive/ Lovély, Ca. 95666
Judy J. Smith/ 355 Roland Drive/ Lovely, Ca. 95666

.76

STRING) ;

Pascal/MT+ Release 5 Language Reference and Applications Guide

5.2 ° EXIT

PROCEDURE EXIT;

Procedure EXIT will exit the current procedure/function or- main
program. EXIT will also load the registers and re-enable interrupts
before exiting if EXIT is used in an INTERRUPT procedure. EXIT is the
equivalent ‘'of the RETURN statement in FORTRAN or BASIC. It is usually
executed as a statement following a test.

EXAMPLE:

PROCEDURE EXITTEST;
{ EXIT THE CURRENT FUNCTION OR MAIN PROGRAM. }

PROCEDURE’EXITPROC(BOOL.§ BOOLEAN) ;

BEGIN
IF BOOL THEN
BEGIN
WRITELN ('EXITING EXITPROC');
EXIT; :
END; .
WRITELN('STILL IN EXITPROC, ABOUT TO LEAVE NORMALLY');
END; .

BEGIN . B
"WRITELN ('EXITTEST.ceeeee');
EXITPROC (TRUE) ; .) »
WRITELN ('IN EXITTEST AFTER 1ST CALL TO EXITPROC');
EXITPROC (FALSE) ; .. o ‘
WRITELN ('IN EXITTEST AFTER 2ND CALL TO EXITPROC');
EXIT; :
WRITELN('THIS LINE WILL NEVER BE PRINTER');

END; :

Output:
EXITTEST. ® ® & 8 & o
EXITING EXITPROC

IN EXITTEST AFTER 1ST CALL TO EXITPROC
STILL IN EXITPROC, ABOUT TO LEAVE NORMALLY

IN EXITTEST AFTER 2ND CALL ‘TO EXITPROC

77

Pascal/MT+ Release 5 Language Reference and Applications Guide

5.3 TSTBIT, SETBIT, CLRBIT

FUNCTION TSTBIT(BASIC_VAR, BIT_NUM) : BOOLEAN;
PROCEDURE SETBIT (VAR BASIC_VAR, BIT NUM);
PROCEDURE CLRBIT (VAR BASIC_VAR, BIT_NUM);

BASIC VAR is any 8 or 16 bit variable such as integer, char,
byte, word, or boolean. BIT NUM is @..15 with bit 6 on the right.
Attempting to set bit 16 of an 8 bit variable does not cause an error
but has no effect on the end result.

TSTBIT returns TRUE if the designated bit in the basic var |is
on, and returns FALSE if the bit is off. SETBIT sets the designated
bit in the parameter. ~ CLRBIT clears the designated bit in the
parameter.

These procedures are useful for generating wait 1loops or
altering 1incoming data by . flipping a bit where needed. Another
application is in manipulating a bit mappped screen. :

EXAMPLE :

PROCEDURE TST_SET_CLR BITS;

VAR .
.1 : -INTEGER; , ,
BEGIN : o
WRITELN('TST SET CLR BITS.......');
I :=0;
SETBIT(I,5);
IF I = 32 THEN
IF TSTBIT(I,5) THEN
WRITELN('I=',I);
CLRBIT(I,5);
IF I = @ THEN
IF NOT (TSTBIT(I,5)) THEN
WRITELN('I=',I);
end;

Output:

TST SET CLR BITS.eeeces
I=32 ~— = :
I=¢

78

Pascal/MT+ 'Rélease 5 -Language Reference and Applications Guide

5.4 SHR, SHL
FUNCTION SHR(BASIC VAR, NUM) : INTEGER;
FUNCTION SHL(BASIC:VAR, NUM) : INTEGER;
BASIC VAR is an 8 or 16 bit wvariable. NUM 1is an int?ger
. expression.,” SHR shifts the BASIC VAR by NUM bits to the right

~inserting @ bits. SHL shifts the BASIC_VAR by NUM bits to the left
inserting @ bits.

The uses of SHR and SHL are generally obvious. Suppose a 10 bit
value is to be obtained from two separate input ports. Use SHL to
read them in:

X :=‘$HL(1NP[8] & $1F, 3) ! (IﬁP[9]-&'$1F);

The above example reads from port # 8, masks out the three high
bits returned from the INP array, and shifts the result left. Next,
this result is logically OR'd with the input from port §# 9 which has
also been masked.

The following procedure demonstrates the expeéted result of
executing these two functions.

EXAMPLE:

PROCEDURE SHIFT DEMO;
VAR I : INTEGER;

BEGIN
WRITELN (' SHIFT_DEMO...sssee');
I :=4;

WRITELN('I=',I); ‘

WRITELN('SHR(I,2)="',SHR(I,2))

WRITELN('SHL(I,4)='",SHL(I,4))
end;

.
’
.
’

Output:

SHIFT DEMO:veoeoesw
I=4

_SHR(I,2)=1
SHL(I,4)=64

Pascal/MT+ Release 5 -Language Reference and'Applications.Guide

5.5 HI, LO, SWAP:

—— s —— ——— ———

FUNCTION HI (BASIC VAR) : INTEGER;
- FUNCTION LO(BASIC_VAR) : INTEGER;
FUNCTION SWAP(BASIC_VAR) : INTEGER;

HI returns the upper 8 bits of BASIC VAR (an 8 or 16 bit
variable) in the 1lower 8 bits of the result, LO returns the lower 8
bits with the upper 8 bits forced to zero. SWAP returns the upper 8
bits of basic var in the lower 8 bits of the result and the lower 8
bits of basic var in the upper 8 bits of the result. Passing an 8 bit
variable to HI causes the result to be ¢ and passing 8 bits to LO does

nothing.

These functions enhance Pascal/MT+'s abilities to read and write
to I/0 ports. If a data item has 16 bits of information to send to a
port which can handle 8 bits at a time, use LO and HI to send the low
byte followed by the high byte. Similarly, reading 16 bits worth of
data from a port which sends 8 bits at a time may be performed by
SWAPing the first 8 bits into the high byte:

OUT[6] := LO(B);
OUT([6] := HI(B);
B := SWAP(INP[7]) ! INP[7];

_ The following example shows what the expected results of these
functions should be:

EXAMPLE:

'PROCEDURE HI_LO_SWAP;,
VAR
HL : INTEGER;
BEGIN .
WRITELN('HI LO SWAP..eses.');
HL := $1@4;"
WRITELN('HL="',HL);
IF HI(HL) = 1 THEN
WRITELN ('HI(HL)=',HI(BL));
IF LO(HL) = 4 THEN
WRITELN('LO(HL)="',LO(HL)) ;
IF SWAP(HL) = $06401 THEN
WRITELN('SWAP(HL)="',SWAP(HL)) ;
END; ’

Output:
HI(HL)=1
LO(HL)=4"
SWAP (HL)=1625

80

Pascal/MT+ Release 5 Language Reference and Applications Guide

5.6 ADDR

FUNCTION ADDR(VARIABLE REFERENCE) : INTEGER;

ADDR returns the address of the variable referenced. Variable
reference includes procedure/function names, subscripted variables and
record fields. It does not include named constants, user defined
types, or .any item which does not occupy code or data space.

This function is used to return the address of anything: compile
time tables generated by INLINE, the address of.a data structure to be
used in a move statement, etc.

EXAMPLE:

PROCEDURE ADDR_DEMO(PARAM : INTEGER);
VAR
REC : RECORD
J : INTEGER;
BOOL : BOOLEAN;
END; '
ADDRESS : INTEGER;
R : REAL;
S1 : ARRAY[1l..10] OF CHAR;

BEGIN
WRITELN('ADDR DEMO.....')'
WRITELN (' ADDRTADDR DEMO)",ADDR(ADDR DEMO)) ;
WRITELN (' ADDR (PARAM) ="' ,ADDR (PARAM)) ;
WRITELN('ADDR(REC)="' ,ADDR(REC)) ;
WRITELN('ADDR(REC.J) ', ADDR(REC.J));
WRITELN (' ADDR (ADDRESS)="' ,ADDR (ADDRESS)) ;
WRITELN('ADDR(R)="',ADDR(R));
WRITELN('ADDR(S1)="',ADDR(S1l));

end; .

Output is system dependent

81

Pascal/MT+ Release 5 Languége'Reference and Abplications Guide

5.7 . WAIT

. PROCEDURE WALT(PORTNUM , MASK, POLARITY);

PORTNUM and MASK are literal or named constants. POLARITY is
boolean constant.

WAIT generates a tight status wait loop:
IN portnum ,

ANI mask
J?? $-4

where ?? is Z if polarity is false and is Nz if polarity is true.

EXAMPLE:

PROCEDURE WAIT_DEMO;

CONST . .
CONSPORT = $F7; (* for EXO NOBUS-Z COMPUTER *)
CONSMASK = $01; :

BEGIN

WRITELN (*WAIT DEMO.......')'
WRITELN('WAITING FOR A CHARACTER')’
. WAIT(CONSPORT'CONSMAXK TRUE) ; -
WRITELN (' THANKS!');
end;

82

Pascal/MT+ Release 5 Language Reference and Applications Guide

5.8~ SIZEOF

FUNCTION SIZEOF(VARIABLE OR TYPE NAME) : INTEGER;

Parameter may be any variable: character, array, record, etc, or
any user defined type. SIZEOF returns the size of the parameter -"in
bytes. =~ It 1is used in move statements for the number of bytes to be
"moved. With SIZEOF the programmer does not mneed to keep changing
constants as the program evolves:

EXAMPLE:

PROCEDURE SIZE_DEMO;

VAR
B : ARRAY[1..18] OF _.CHAR;
A : ARRAY[1..15] OF CHAR;
BEGIN : . _
WRITELN('SIZE DEMO.oceeoes');
A := '*******?*******';
B := '0123456789"';

WRITELN ('SIZEOF(A)="',SIZEOF(A),' SIZEOF(B)=',SIZEOF(B)):;
MOVE(B,A,SIZEOF(B)) ;
WRITELN ('A= ',A);

end;

Output:

- STIZEOF (A)=15 SIZEOF (B)=10
3123456789****%

83

pascal/MT+ Release § Language Reference and Applications Guide

5.9 FILLCHAR

PROCEDURE FILLCHAR(DESTINATION, LENGTH, CHARACTER);

DESTINATION is a packed array of characters. It may be
subscripted. LENGTH is an integer expression. CHARACTER is a literal
or variable of type char. Fill the DESTINATION (a packed array of
characters) with the number of CHARACTERs specified by LENGTH.

The purpose of FILLCHAR is to provide a fast method of filling
in large data structures with the same data. For instance, blanking
out buffers is done with FILLCHAR. '

EXAMPLE:

PROCEDURE FILL DEMO;

VAR ’
. BUFFER : PACKED ARRAY[1..256] OF CHAR;
BEGIN : .
FILLCHAR (BUFFER,256,' '); {BLANK THE BUFFER}
END;

84

Pascal/MT+ Release 5 Language Reference and Applications Guide

5.10 LENGTH

- v = —

FUNCTION LENGTH(STRING) -: INTEGER;

Returns the integerlvalue of the length of the string.

EXAMPLE:

PROCEDURE LENGTH_DEMO;

VAR
S1 : STRING({49];
BEGIN)
S1 := 'This string is 33 characters long';

WRITELN('LENGTH OF ',S1,'="',LENGTH(Sl));
WRITELN (' LENGTH OF EMPTY STRING = ' ,LENGTH(''));
end; ' ' :
‘Output:

LENGTH OF This string is 33 characters long=33
LENGTH OF EMPTY STRING = @

85

pascal/MT+ Release 5 Language Reference_and'Applications Guide

5.11 CONCAT

- — e v —

FUNCTION CONCAT(SOURCEl, SOURCE2, , SOURCEn) : STRING;

Return a string in which all sources in the parameter 1list are .
concatenated. The sources may be string variables, string literals,
or characters. . ’

EXAMPLE :

PROCEDURE CONCAT. DEMO;

VAR- v
S1,S2 : STRING;

BEGIN ' :
81 := 'left link, right link';

S2 := 'root root root';

WRITELN(S1,'/',S2);

sl := CONCAT(S1l,' ',S2,'1111t11%);

"WRITELN(S1); ‘ : :
end;

Optput:

left link, right link/root root root
left '1ink, right link root root root!!

[
[T
[
-

86

Pascal/MT+ Release 5 Language Reference and Applications Guide -

5.12 COPY

FUNCTION FOPY(‘SOURCE, LOCATION, NUM_BYTES) :..STRING;

. SOURCE must be a strlng. LOCATION and NUM BYTES are integer
expre551ons. Return a string which contains the number of characters
specified in NUM_ BYTES from SOURCE beglnn1ng at the index spec1f1ed in
LOCATION.

EXAMPLE :
PROCEDURE COPY DEMO;
BEGIN
- LONG STR := 'Hi from Cardlff -by-the-sea’';

WRITELN(COPY(LONG STR,9,LENGTH (LONG STR) -9+1));
end;

Output:

Cardiff-by-the-sea

87

Pascal/MT+ Release 5 ,LangQage Reference and Applications Guide .

FUNCTION POS(PATTERN, SOURCE) : INTEGER;

Return the integer value of the position of the first occurence
of PATTERN in SOURCE. 1If the pattern is not found a zero is returned.
SOURCE i§ a string and PATTERN is a string, a character, or a literal.

EXAMPLE:

PROCEDURE POS_DEMO;
VAR
STR,PATTERN : STRING; .
CH : CHAR; '
BEGIN :
STR := 'MT MicroSYSTEMS';
PATTERN := 'croSY'; :
CH := 'T'; v
WRITELN('pos of ',PATTERN,' in ',STR,' is ', POS(PATTERN,STR));
WRITELN ('pos of.',CH,' in ',STR,' is ',POS(CH,STR));
WRITELN ('pos of ''z'' in ',STR,' is ',POS('z',STR));
end; ,

Output:

" pos of croSY in MT MicroSYSTEMS is 6
pos of T in MT MicroSYSTEMS is 2

pos of '2' in MT MicroSYSTEMS is @

88

Pascal/MT+ ‘Release 5 Language Reference and Applications Guide

5.14 DELETE

PROCEDURE DELETE(TARGET,

INDEX, SIZE);

TARGET is a string. INDEX and SIZE are integer expressions,

Remove SIZE characters from TARGET beginning at the byte named in
INDEX. ’
EXAMPLE:
PROCEDURE DELETE_DEMO;
VAR .
. LONG_STR : STRING;
BEGIN ‘ ,
LONG STR := ' “get rid of the leading blanks';

WRITELN (LONG_STR) ;

DELETE (LONG STR,1,P0S('g’

WRITELN(LONE_STR);
END;

Output:

get rid of the leading blanks

+LONG_STR)-1) ;

get rid of the leading blanks

Pascal/MT+ Release 5 Lénguagé Reference and Applications Guide

5.15 INSERT

PROCEDURE INSERT(SOURCE, DESTINATION, INDEX) ;

DESTINATION is a string. SOURCE is a character or string,
literal or wvariable. INDEX 1is an integer expression. 1Insert the
SOURCE into the DESTINATION at the location specified in INDEX.

EXAMPLE :

PROCEDURE INSERT DEMO;

VAR -
LONG_STR : STRING;
S1 : STRING[18];

BEGIN ‘
LONG STR := 'Remember Luke';
S1 := 'the Force,';
INSERT (S1,LONG_STR,10) ;
WRITELN (LONG_STR);
INSERT(' to use ' ,LONG_STR,10);
WRITELN (LONG_STR);

end;

Output:

Remember the Force, Luke
Remember to use the Force, Luke

90

éascai/MT+ Release 5 Language Reference and Applications Guide

5.16 ASSIGN

PROCEDURE ASSIGN(FILE, NAME);

Thls procedure is used to assign an external file name to a file

variable prior to a RESET or a REWRITE. FILE is a file name, NAME is
a literal or a variable string containing the name of the file to be

created. FILE must be of type TEXT to use the special device names
below. ‘ ‘

The user should note that standard Pascal defines a "local"
file. Pascal/MT+ implements this facility using temporary file names
in the form PASTMPxx.$$$ where xx is sequentially assigned starting at
zero at the beginning of each .program. 1If an external file REWRITE is
not preceeded by an ASSIGN then a temporary file name will also be
assigned to thls file before creation.

NAME is,normally a CP/M disk file name in the standard format:
.d:filename.ext but can also be a special device name:

Device names

When used as input will echo. input charécters

CON: -
: and echo CR as CR/LF and backspace. [CHR(B)] as

backspace, space, backspace
When used as output will echo CR as CR/LF and
"CP/M will expand tabs to every 8 character
positions.

KBD: - CP/M console, input device only.
No echo or interpretation .

TRM: - ‘CP/M console, output device only.
No interpretation

LST: - CP/M printer, output device only.
: No interpretation including no tab expansion

Examples of ASSIGN usage:

ASSIGN(F,'A:MT280.0VL');
ASSIGN (CONIN,'CON:") ;
ASSIGN (KEYBOARD,'KBD:') ;
ASSIGN (CRT,'TRM:");
ASSIGN (PRINTFILE,'LST:');

91 .

pascal/MT+ Release 5. Laﬁguage'Referencefand Applications Guide

5.17 - WNB, GNB

FUNCTION GNB(FILEVAR: FILE OF PAOC):CHAR;Ar
"FUNCTION WNB(FILEVAR: FILE OF CHAR; CH:CHAR) : BOOLEAN;

These functions allow the user to have BYTE level access to a
file 1in 'a high speed manner. PAOC is any type which is fundamentally.
a Packed Array Of Char. The size of the packed array is optimally in
the range 128..4895. :

GNB will allow the user to read-a file a byte-at-a-time. It |is
a function which returns a value of type CHAR. The EOF function will
be valid when the physical end-of-file is reached but not based upon
any data in the file (sqph as Ctrl/Z in CP/M TEXT files).

WNB will allow the user to write a file a byte-at-a-time. 1It.is
a function which requires a file and a character to write. It returns
a boolean value which is true if there was an error while writing that
byte to the file.. No interpretation is done on the bytes which. are
- written.) / : '

- The reason GNB and WNB are used (as dpposed to F°, GET/PUT
combinations) is that they are significantly faster.

92

Pascal/MT+ Release 5 Language Réference and Applications Guide

5.18 BLOCKREAD, BLOCKWRITE

BLOCKREAD (F:FILEVAR; BUF:ANY; VAR IOR:INTEGER; SZ,RB:INTEGER);
BLOCKWRITE(F:FILEVAR; BUF:ANY; VAR IOR:INTEGER; SZ,RB:INTEGER);

These procedures are used for direct CP/M disk access. FILEVAR-
is an untyped file (FILE;). BUF is any variable which is large enough
to hold the data. 1IOR is an integer which receives the returned value
from the CP/M BDOS. SZ is the number of bytes to transfer-and RB is
the relative block number, :

The data is transfered either to or from the users BUF variable
for the specified number of bytes. :

For CP/M environments the SZ must be an multiple of 128 and RB
must be in the range @..127. : ‘

93

Pascal/MT+ Release 5 Language Reference and Applications Guide

5.19 - OPEN, OPENX

—— - ——— — ——— ——

PROCEDURE OPEN (FILE, TITLE, RESULT);
PROCEDURE OPENX (FILE, TITLE, RESULT,'EXTENT):

The OPEN and OPENX procedures .are provided to increase the
flexibility of Pascal/MT+ and to provide compatibility with previous
releases of Pascal/MT. FILE is any file type variable. TITLE 1is "a

string. RESULT is a VAR INTEGER parameter. EXTENT is an INTEGER
~expression. : -

The OPEN procedure 1is exactly the same as exeéuting an
ASSIGN(FILE,TITLE), RESET(FILE) and RESULT := IORESULT sequence.

The OPENX procedure will set: the extent number 1in the file

control block before %opening the file to support CP/M file extent
manipulation. : ,

EXAMPLES:
OPEN (INFILE, 'A:FNAME.DAT', RESULT);

OPENX(INFILE, 'C:TESTNAME.FIL', RESULT, RECNUM DIV 128);

- 94

Pascal/MT+ ‘Release.s‘ Language Reference and Applications Guide

5.20 CLOSE, CLOSEDEL

. PROCEDURE CLOSE (FILE, RESULT);
PROCEDURE CLOSEDEL (FILE, RESULT);

The CLOSE and CLOSEDEL procedures are used for «closing and
closing with delete respectively. The CLOSE procedure must be called
to guarantee that data written to a file using any method is properly
purged from the file buffer to the disk. The CLOSEDEL is_normally

used on temporary files to delete them after use.. FILE and RESULT are
the same as used in OPEN (see section 5.19).

Files are implicitly closed when an open file is RESET or at the
normal end of program execution. No more than 1§ simultaneously open
files will be automatically closed. The user may have more than 18

files open simultaneously but only.the first ten files opened will be
automatically closed. : '

95

pPascal/MT+ Release 5 Language Reference ‘and Applications Guide

- 5.21 PURGE

.PROCEDURE PURGE(FILE);

The PURGE procedure is used to delete a file whose name Iis
stored 1in a string. The user must first ASSIGN the name to the file"
and then execute PURGE. Note: in a CP/M environment there 1is . no
return value from CP/M on file deletions and the IORESULT will always
be @ after a PURGE. ‘

EXAMPLE:
ASSIGN(F,'B:BADFILE.BAD');

PURGE (F) ; (* DELETE B:BADFILE.BAD *)

96

Pascal/MT+ Release 5 Lahguage.Reference and Applications Guide

5.22 IORESULT

FUNCTION {ORESULT : INTEGER;

After each I/0 operation the value which 1is returned by the
IORESULT function is set by the run-time library routines. In general
the value of TIORESULT is system dependent and on CP/M reflects the
result of the returned value from the BDOS. 1In a CP/M environment the

-general rule is that 255 means an error and any other value is.an good
result. This is not the case in CLOSE and WRITE/PUT/WNB In these
procedures a non-zero IORESULT value means error.

EXAMPLE:

ASSIGN(F,'C:HELLO'");
RESET(F) ;

IF IORESULT = 255 THEN
WRITELN('C:HELLO IS NOT PRESENT');
Listed below aré'IORESULT values for CP/M:

PROCEDURE VALUES

CLOSE 255 MEANS ERROR, ANYTHING ELSE IS OK:
RESET 255 MEANS ERROR, ANYTHING ELSE IS OK -
REWRITE 255 MEANS ERROR, ANYTHING ELSE IS OK

READ/READLN/GET <> @ MEANS END OF FILE, @ MEANS OK

PAGE/WRITE/WRITELN/PUT <> 0 MEANS ERROR, 8 MEANS OK

97

Pascal/MT+ Release 5 Language Reference and Applications Guide

5.23 MEMAVAIL, MAXAVAIL

FUNCTION MEMAVAIL : INTEGER;

FUNCTION MAXAVAIL : INTEGER;

- The functions MEMAVAIL and MAXAVAIL are used in conjunction with
NEW and DISPOSE to manage the HEAP memory area in Pascal/MT+. The

MEMAVAIL = function returns the largest total available memory at any
given time irrespective of fragmentation. The MAXAVAIL function -will
first garbage collect and then report the largest block available.
The MAXAVAIL function can be used to force a garbage collect before a
time sensitive section of programming.

The Pascal/MT+ system supports fully the NEW and DISPOSE
mechanism defined by the Pascal Standard. In the CP/M environment the
HEAP area grows from the end of the data area and the stack frame (for
recursion) grows from the top of memory down. The hardware stack
register in a CP/M environment is pre-loaded with the contents of
absolute location @006 unless the $Z toggle is used to override this.
The 'stack frame grows starting at 512 bytes- below the initialized
hardware value. The wuser should refer to section 2.5 of the
applications guide for more information on the $Z toggle.

98

Pascal/MT+ Release 5 "Language Reference and Applications Guide

5.24 Quick reference guide to built-ins

In alphabetical order within each group:

Character array manipulation routines:
PROCEDURE FILLCHAR (DESTINATION, LENGTH, CHARACTER);
PROCEDURE MOVELEFT (SOURCE, DESTINATION, NUM_BYTES) ;
PROCEDURE MOVERIGHT(SOURCE, DESTINATION, NUM_BYTES) ;

Bit and byte manipulation routines:

PROCEDURE CLRBIT(BASIC VAR, BIT NUM);

FUNCTION HI ~ (BASIC VAR) : INTEGER;
FUNCTION LO (BASIC VAR) : INTEGER;
PROCEDURE SETBIT(BASIC VAR, BIT NUM);

FUNCTION SHL (BASIC_VAR, NUMY : INTEGER;
FUNCTION SHR (BASIC VAR, NUM) : INTEGER;
FUNCTION SWAP (BASIC VAR) : INTEGER; .
FUNCTION TSTBIT(BASIC_ VAR, BIT NUM) : BOOLEAN;

String handling routines:

FUNCTION CONCAT SOURCEl, SOURCE2,...,SOURCEn)

(: STRING;
FUNCTION COPY (SOURCE, LOCATION, NUM BYTES) : STRING;
PROCEDURE DELETE (TARGET, INDEX, SIZE)7
PROCEDURE INSERT (SOURCE, DESTINATION, INDEX);
FUNCTION LENGTH (STRING) : INTEGER
(: INTEGER

"FUNCTION POS PATTERN, SOURCE)

File handling routines:
PROCEDURE ASSIGN = (FILE, NAME);

PROCEDURE BLOCKREAD (FILE, BUF, IOR, NUMBYTES, RELBLK)j;
PROCEDURE BLOCKWRITE(FILE, BUF, IOR, NUMBYTES, RELBLN);

PROCEDURE CLOSE (FILE, RESULT);

PROCEDURE CLOSEDEL (FILE, RESULT);

FUNCTION GNB (FILE) “:. CHAR

PROCEDURE IORESULT : INTEGER;
PROCEDURE OPEN (FILE, TITLE, RESULT);
PROCEDURE OPENX (FILE, TITLE, RESULT, EXTENT);
PROCEDURE PURGE (FILE);

FUNCTION WNB (

FILE, CHAR) : BOOLEAN;
Miscellaneous routines:

FUNCTION ADDR (VARIABLE REFERENCE) ¢ INTEGER;
PROCEDURE EXIT; .

FUNCTION MAXAVAIL INTEGER;

FUNCTION MEMAVAIL : INTEGER;

FUNCTION SIZEOF(VARIABLE OR TYPE NAME) :
PROCEDURE WAIT (PORTNUM, MASK, POLARITY);

INTEGER;

99

Pascal/MT+ Release 5 Language Reference and Applications Guide

6.0 Interrupt procedures

A special procedure type 1is implemented in Pascal/MT+: the
interrupt procedure. The user selects the vector to be associated
with each interrupt. The procedure is declared as follows:

PROCEDURE INTERRUPT [<vec num>] <identifier> ;

'

Interrupt procedures may not have parameters ‘lists but may have
local wvariables and access global variables. The compiler generates
code at the begining of the program to 1load the vector -with the
procedure address. For 8088/280 systems the vector number should be
in the range of #..7. For other systems consult the .applications
guide - for the appropriate processor. For Z8f mode 2 interrupts the
user may declare an ABSOULUTE variable to allocate an interupt table
and then wuse ‘the ADDR function to fill in this table. The INLINE
facility woule be wused - in a 2806 environment to initialize the
I-register.

. The compiler generates code to push the registers at the
begining of procedure execution and pop the registers and re-enable
interrupts at the end of execution of the procedure. The compiler

implements two Dbuilt-in procedures ENABLE and DISABLE to- control the
‘hardware interrupt flag.

The user should note that the "system does not. generate
re-entrant code. Typically interrupt procedures will set global
variables and not perform other procedure calls or input / output.
CP/M users should note that I/0O through the <CP/M BDOS typically
re—-enables interrupts. : o

Listed below is a simple example program which waits for one of
four switches to interrupt. and then toggles the state of a light which
is attached to the switch. The I/0 ports for the llghts are @..3 and
the switches interrupt using restarts 2, 3, 4 and 5.

100

'Pascal/MT+ Release 5 Language Reference and Applications Guide

PROGRAM INT DEMO;

CONST |
LIGHT1 = g; (* DEFINE I/O PORT CONSTANTS *)
LIGHT2 = 1; : .
LIGHT3 = 2;
LIGHT4 = 3;
SWITCHl = 2; (* DEFINE INTERRUPT VECTORS *)
SWITCH2 = 3;
SWITCH3 = 4;
SWITCH4 = 5;
VAR

LIGHT STATE : ARRAY [LIGHT1l..LIGHT4] OF BOOLEAN;
SWITCH_PUSH : ARRAY [LIGHTl..LIGHT4] OF BOOLEAN;

I : LIGHTl .. LIGHT4;

PROCEDURE INTERRUPT | SWITCH1] INTI1;

BEGIN
_ SWITCH _PUSH{LIGHT1] -:= TRUE
END;
PROCEDURE INTERRUPT [SWITCH2] INT2;
BEGIN ' ,)
SWITCH_PUSH[LIGHTZ] := TRUE
END; ' '
PROCEDURE INTERRUPT [SWITCH3] INT3;
BEGIN . v
SWITCH PUSH[LIGHT3] := TRUE
END;
PROCEDURE INTERRUPT [SWITCH4] INT4;
BEGIN - :) ’
SWITCH PUSH[LIGHT4] := TRUE
END;

BEGIN (* MAIN PROGRAM *)
(* INITIALIZE BOTH ARRAYS *)
FOR I := LIGHT1 TO LIGHT4 DO

BEGIN

LIGHT STATE([I] := FALSE; (f ALL LIGHTS OFF *)
SWITCH PUSH[I] := FALSE; (* NO INTERRUPTS YET *)
END;

ENABLE; (* LET THE USERS HAVE AT IT! ¥*)

REPEAT

141

pascal/MT+ Release 5 Language 'Reference and Applications Guide

REPEAT (* UNTIL INTERRUPT *)
UNTIL SWITCH PUSH[LIGHT1] OR SWITCH PUSH[LIGHTZ] OR
SWITCH_PUSH[LIGHT3] OF SWITCH_PUSH[LIGHT4],

FOR I := LIGHT1 TO LIGHT4 DO (* SWITCH LIGHTS %)
IF SWITCH_PUSH[I] THEN
BEGIN
SWITCH PUSH[I] := FALSE; '
. LIGHT STATE([I] -:= NOT LIGHT STATE[I], (* TOGGLE IT *)
OUT[IT := LIGHT_ STATE[I]
END

UNTIL FALSE; (* FOREVER DO THIS LOOP %)

END. (* OF PROGRAM *)

109

Pascal/MT+ Release 5 . Language Reference and Applications Guide

7.0 INLINE AND Mini assembler

Pascal/MT+ has a very useful built-in feature called INLINE,
This feature allows the user to insert data in the middle of a
Pascal/MT+ procedure or function. 1In this way small machine code
sequences and constant tables may be inserted into a Pascal/MT+
program without using externally assembled routines.

7.1 Syntax

The syntax for the INLINE feature is very similar to that of a
Procedure call in Pascal. The word INLINE is used followed by a left
parenthesis ' (' followed by any number of arguments separated by the
slash. '/' character and terminated by a right parenthesis ')'. The
arguments between the slashes must be constants or variable references
which evaluate to constants. These constants can be of any of the
.following types: CHAR, STRING, BOOLEAN, INTEGER or REAL. The user
should note that a STRING in quotes does not generate a length byte
but 'simply the data for the string. Note that in stack frame
addressing (either by using $S+ or on -more sophisticated CPUs)
variables will evaluate to the offset into the appropriate data
segment. For CPUs which use static addresssing (e.g. 8088, 8085 and
Z280) the address is the absolute address of the data. :

Literal constants which are of type integer will -be allocated
one byte if the value falls in the range §..255. This is not the case
for named, declared, integer constants which will always be allocated
two bytes. . ‘ .

In addition to constant data the Pascal/MT+ system also provides
a built-in Mini assembler feature for 8¢8¢/8885 CPUs. The user may
place the assembly 1language mnemnonic after a double quote and the
first phase of the compiler will translate this mnemonic into the
appropriate hex value (e.g. "MOV A,M will translate into $7E). 1In the
future this may be extended to handle other processors.

EXAMPLE

INLINE("LHLD / : (* LHLD OPCODE FOR 8@88 *)
VAR1 / (* REFERENCE VARIABLE *)
"SHLD / (* SHLD OPCODE FOR 8@88 *)
VAR2)i (* REFERENCE VARIABLE *)

7.2 Applications

The INLINE facility can be used to insert native machine code or
to build compile-time tables. The following two sections give
examples of each of these uses. ' :

193

Pascal/MT+. Release 5 Language Reference and Applications Guide

7.2.1 Code examples

————— — ————— ——

The code below gives an example of how' to use the INLINE
facility to write a procedure which calls CP/M and returns a value.
This routine is present in the run-time library as @BDOS.

EXAMPLE:

FUNCTION @BDOS (FUNC:INTEGER; PARM:WORD) : INTEGER;

CONST .
CPMENTRYPOINT = 5; (* SO IT ALLOCATES 2 BYTES ¥*)
VAR S :
 RESULT : INTEGER; (* SO WE CAN STORE IT HERE *)
BEGIN) |
INLINE($2A / FUNC / (* LHLD FUNC *)
$4D / (* MOV C,L *)
$2A / PARM / (* LHLD PARM *)
$SEB / . (* XCHG *)
$CD / CPMENTRYPOINT / (* CALL BDOS *)
$6F / - (* MOV L,A *)
$26 / $09 / (* MVI H,0 *).
$22 / RESULT); (* SHLD RESULT *)
@BDOS := RESULT; (* SET FUNCTION VALUE *)
END; ‘

- 104

Pascal/MT+ Release 5 Language Reference and Applications Guide

7.2.2 Constant data géneratioh

The program fragment below demonstrates how the INLINE facility
can be used to construct a compile time table:

EXAMPLE :
PROGRAM DEMO_INLINE;

TYPE
IDFIELD = ARRAY [1..4] OF ARRAY [l..10] OF CHAR;

VAR
TPTR : “IDFIELD;

PROCEDURE TABLE;

BEGIN
INLINE('‘MTMICROSYS' /
L ' SOFTWARE v/
' POWER vy
'"TOOLS.ccee');
END; '

BEGIN (* MAIN PROGRAM *)
TPTR := ADDR(TABLE);

WRITELN (TPTR"[3]); (* SHOULD WRITE 'POWER o *)

END.

A

Pascal/MT+ Release 5 Language Reference and Applications Guide

8.0 INP and OUT arrays

The Pastal/MT+ system provides a feature which allows direct
manipulation of 1Input and Output hardware ports. Two pre-declared .
arrays, INP and OUT, are provided which are of type BYTE and may be
subscripted with port number constants and expressions. The INP array
may be used only in expressions and the OUT array may be used only on
the LEFT hand side of an assignment statement. .For those processors
which have WORD Input and Output ports two additional arrays INPW and
OUTW are also declared. ‘

The following discussion is specific to the 8¢8¢ "and .Z8¢ type
CPUs. The arrays may be subscripted with integer expressions in the
range @..255. 1If constant subscripts are used the code 1is generated
in-line. If expressions are used a call is made to the appropriate
run-time library routines to handle variable port I/0. 1If the wvalues
from INP are assigned to wvariables of type INTEGER the most
significant byte will contain §@.

For use with the 8@¢85 the Pascal/MT+ system supports the
built-in names RIM85 and SIM85 which allow direct manipulation of the
RIM and SIM ports on the 8885 CPU. RIM85 may be used to subscript the
INP array and SIM85 may be used to subscript the OUT array.

106

Pascal/MT+ "Release 5. Language Reference and Applications Guide

'9.8 Chaining

There are times when programs exceed the memory available and
‘also many times when segmentation of programs for compilation and
maintenance purposes is desired. The Pascal/MT+ system provides a
"chaining" mechanism in which one program may transfer control to
another program. ’

The user must declare an untyped file (FILE;) and use the ASSIGN
and RESET procedures to initialize the file. Following this the |user
may execute a call to the CHAIN procedure passing the name of the file
variable as a single parameter. The run-time library routine will
then perform the appropriate functions to load in the file opened by
the user using the RESET statement. The size of the various programs
does not matter. This means that a small program may chain to a large
one and a large program may chain to a small one. If the user desires
to communicate between the chained program the user may choose to
communicate in two ways: shared global wvariables and ABSOLUTE
variables. :

_ Using the shared global variable method the user must guarantee
that at 1least the first section of global variables be exactly the
same in the two programs that wish to communicate. The remainder of
the 'global variables need not be the same and the declaration of
external variables in the global section will not affect this mapping.
In addition to having matching declarations the user must use the /D
option switch available 1in the 1linker (see section:- 3 of the
applications guide) to place the variables at the same location in all
programs that wish to communicate. :

Using the ABSOLUTE variable method the wuser would typically .
define a record which is used as a communication area and then define
this record at an absolute location in each module. This does not
require the wuse of the. /D. switch 1in the linker but does require
knowledge of the memory used by the program and the system.

Listed below are two example programs which communicate with
each other wusing the ABSOLUTE variable method and the first program
will CHAIN to the second program which will print the results of the
first program's execution:

Pascal/MT+ Release 5 Language~Referehce and Applications Guide

EXAMPLE :
PROGRAM PROGI;

TYPE
COMMAREA = RECORD"
I,J,K : INTEGER
END;

. VAR ' :
GLOBALS : ABSOLUTE [$8000] COMMAREA;
- CHAINFIL: FILE;

BEGIN (* MAIN PROGRAM #1 *)
WITH GLOBALS DO
BEGIN
I
J
K
END;

-e we

3
3
I

ee oo oo

* J

ASSIGN (CHAINFIL,'A:PROG2.COM');
RESET (CHAINFIL) ;
IF IORESULT = 255 THEN
BEGIN ‘
WRITELN('UNABLE TO OPEN PROG2.COM');
EXIT :
END;

CHAIN (CHAINFIL) .
END. (* END PROG1 *)

108

Pascal/MT+ Release 5 Languaée Reference and Applications Guide

(* PROGRAM #2 IN CHAIN DEMONSTRATION *)
PROGRAM PROG?2;

TYPE
COMMAREA = RECORD
I,J,K : INTEGER
END;

VAR
GLOBALS : ABSOLUTE [$8888] COMMAREA;

BEGIN (* PROGRAM #2 *)
WITH GLOBALS DO
WRITELN ('RESULT OF ',I,' TIMES ',J,' IS =', K)

END. - (* RETURNS ‘TO OPERATING SYSTEM WHEN COMPLETE *

pascal/MT+ Release 5 Language Reference and Applications Guide

10.0 Disassembler

The disassembler component of the .Pascal/MT+ package combines
the .PRN file produced by the first phase of the compiler with the
.ERL file produced by the last phase of the <compiler into a human
readable file which contains. assembly language coding interspersed
with the Pascal/MT+ statements. This allows investigation into the
code produced by the compiler and provides the necessary information

when it is required to debug the object code at the machine _code
level. .

The disassembler is a stand-alone program which is invoked by
specifying the name of the disassembler, the name of the .PRN file,
the name of the .ERL file and the name of the output file:

DIS???? <input name> {<destination name> {,L=nnn}}

1g.1 Instructions

Here ???? is the type of CPU (e.g. 8688, 280, 68K, 88386, etc.).
The disassembler looks for a .ERL and a .PRN file with <input name> as
a prefix. These files may be on any disk but both must be on the same

disk. The destination file name may be a CP/M file name or a
Pascal/MT+ device name such as CON: or LST:. The default destination
name is CON:. The L=nnn parameter allows the user to specify the

number of lines per page.on the output device. This 1is useful when
using printers such as the T.I. 81¢ which has a 6-lines-per-inch or
8-lines-per-inch switch. . . Using 8-lines-per-inch the wuser should
specify (for 11" ©paper) that the paper has 88 lines. This can save’
considerable ammounts of paper. To use the L= option the user MUST
specify the <destination name>.

110

Pascal/MT+- Release 5 "Language Reference and Applications Guide

The following Pascal/Mf+ program was compiled and run through
the disassembler and produced the following output (for an 8688/Z80):

Input program:

PROGRAM PPRIME;

CONST
SIZE=8190;

VAR v ‘

PRIME: ARRAY[@#..SIZE] OF BOOLEAN;

I,3,K,L: INTEGER;

COUNT: INTEGER;

CH : CHAR;

MAX: @8..SIZE;

EXTERNAL PROCEDURE X1;-
EXTERNAL PROCEDURE X2;
EXTERNAL PROCEDURE X3;

(*SP¥)
PROCEDURE TEST1 (A,B,C:INTEGER);
BEGIN
B:=SUCC(SUCC(SUCC(A+A)));
C:=A+B;
WHILE C<=MAX DO
BEGIN .
PRIME[C] :=FALSE; -
C:=C+B;
END;
END; (* TEST1 %)

(*$P*)

BEGIN
‘MAX := SIZE;
WRITE('G');
READ(CH) ;
FOR L := 1 TO 16 DO
BEGIN
COUNT:=9;
FILLCHAR (PRIME,SIZEOF (PRIME) ,CHR(TRUE)) ;

FOR I:=¢ TO MAX DO

IF PRIME[I] THEN

BEGIN '
TEST1(I,J,K);
COUNT:=SUCC(COUNT) ;
END; z

END;
WRITELN (COUNT) ;

Pascal/MT+ Release 5 Language Reference and Applications Guide

WRITE('E');
END.

112

Pascal/MT+ Release 5 Language Reference and Applications Guide

output from disassemblér:

The user will note that references to program locations are
followed by a single quote (1068') and references to data
locations are followed by a double quote (g@gg").

The user will also note that the operand of instructions which
reference external variables point to the previous reference
and the final reference contains absolute @9@@8. The list of
external chains is following the disassembly of the program.

Pascal/MT+ 5.80 Copyright (c) 198¢ by MT MicroSYSTEMS Page §
Disassembly of: TESTIT

stmt ‘Nest Source Statement / Symbolic Object Code

PRIME = EQU 0000
L | EQU 2000
K EQU 2002
J - EQU 2004
I EQU 2006
COUNT EQU 2008
CH EQU 208A
MAX EQU 208C
1 g PROGRAM .PPRIME;
3000 DB 0%,00,00,00,00,00,00,00
6008 _ DB 66,006,00,00,00,080,00,00
6010 JMP 2000
8013 JIMP 6000
2) CONST
3 1. . SIZE=8198;
4 1 VAR |
5 1 PRIME: ARRAY[@..SIZE] OF BOOLEAN;
6 1 I,J3,K,L: INTEGER;
7 1 COUNT: INTEGER;
8 1 CH : CHAR;
9 1 MAX: @..SIZE;
10 1
11 1 EXTERNAL PROCEDURE X1;
12 1 EXTERNAL PROCEDURE X2;
13 1 EXTERNAL PROCEDURE X3;
14 1 :
15 1 (*SP*)
16 1
17 1 PROCEDURE TEST1(A,B,C:INTEGER);
18 1 - BEGIN
TEST1:
8616 - CALL 0000

113

Pascal/MT+ Release 5 Language Reference and Applications Guide

ge19 POP " H
. BolAa SHLD 200E"

g@1D POP’ H
Gg1E { SHLD 2010"
6021 POP H
222 SHLD 2012"
3825 CALL 00009

19 2 B:=SUCC(SUCC(SUCC(A+A)));
ga28 LHLD 2012"
6g2B : XCHG
gag2c LHLD 2012"
6@ 2F DAD D
gB30 INX H
3831 INX H
0032 INX H
g@g33 - SHLD -~ 201@"

20 2 C:=A+B;
6g36 . LHLD 2012"
3639 XCHG .
@03Aa LHLD 2010"
@A 3D DAD D
G03E SHLD 200E"

217 2 WHILE C<=MAX DO
ge41l .. LHLD 200E"
go44 PUSH H
6045 LHLD =~ 2@gcC"
po48 PUSH H
6849 CALL 0000
ggac - ‘POP PSW
G34D JNC _ @peD!

22 2 BEGIN

23 3 PRIME([C] :=FALSE;
0050 LXI H,00008"
G653 XCHG
2054 LHLD 200E"
8057 . DAD D
6058 PUSH H
AB59 LXI H,0000
8085C XCHG -
gOSD POP H
BQ@5E MOV M,E

24 3 " C:=C+B;
GO5F LHLD 20Q0E"
0062 XCHG
9063 LHLD 2010"

114

Pascal/MT+ Release 5 Language Reference and

2066

6867

25

BO6A
26
gB6D

27
28
29
30

GO6E
6671
6072

31

6075
eg78

32

0078
@e7E

A07F
9082
6085
8086
BA8Y

33

gescC
Go8F
6690
2093
8094
@097

34

GO9A
669D
00@SE
6oAl
BoA2
BOBA3
BoA4
BBAS
GBA8

2

==

DAD . D .

SHLD 200E"
END;

JMP eg41"

END; (* TEST1 *)

RET

(*$P*)

BEGIN

LHLD 8006
SPHL .

CALL 0e00
MAX := SIZE;

LXI H,1FFE
SHLD 2g@eCc"

WRITE('G');

LXI H,0000
PUSH H ’
- CALL’ 1035 3%]
LXI H,0047
PUSH . H

CALL 0000
CALL ' 0000

" READ(CH) ;

LXI H, 268A"
PUSH H

LXI H,0000
PUSH H

CALL pesg’
CALL peoo

FOR L := 1 TO 18 DO

LXI
PUSH
LXI
PUSH
POP
POP
DCX
SHLD
INX

[\~
Q
[\
et

rv

,000A

goa"

oM ommmm

Applications Guide

Pascal/MT+ Release 5 'L_anguag.e’ Reference and Applications Guide

BBA9 PUSH H

goAA PUSH D
gBAB CALL = g@gnoo
@GOAE SHLD 2614"
goBY LHLD 2008"
gBB4 INX H
GBBS SHLD 2000"
goB8 LHLD 2014"
@@BB DCX H
gABC SHLD 2014"
GOBF : MOV A,H
BBCo ORA L
gocl _ JZ- g12c’
35 1 BEGIN
36 2 COUNT:=0;
peC4 : © LXI H,0000
GBC7 : SHLD 2008"
37 2 FILLCHAR(PRIME,SIZEOF (PRIME) ,CHR(TRUE)) ;
GacA LXI H,0000"
g@CcD _ PUSH H
GOBCE = LXI H, 1FFF
g8D1 PUSH H
gOoD2 LXI H, 3601
G 3D5 PUSH H
geD6 CALL 000
- 38 2
39 2 * FOR I:=@ TO MAX DO
goD9 LXI H, 0000
g8DC PUSH H -
g@DD LHLD 2008C"
GOEQ . PUSH - H ~
BOEL POP D
_ BOE2 POP H
- @8E3 . - DCX H
BOE4 SHLD 20086"
GAET7T INX H :
goES PUSH H
@0BE9Q PUSH D
@OBEA CALL gaAC!
@BED SHLD 2016"
GOFQ LHLD 2006"
BBF3 INX ° H
GOF4 SHLD 2006"
BeF7 LHLD 2p16"
8OBFA DCX H
GOFB SHLD 2016"
GOFE MOV A,H
GBFF ORA L
glo0g Jz 129"

116

Pascal/MT+ . Release 5. -Lénguage Reference and Applications Guide

46 2 IF PRIME[I] THEN

6163 LXI H,80088"

6106 XCHG o

6107 LHLD 2006"

g10A DAD D

g10B MOV A,M

g10C RAR

316D JINC 6126°
41 2 _ BEGIN

2110 LHLD 20086"

@113 PUSH . H

@114 LHLD 20084"

117 - : PUSH - H

g118 " LHLD 2002"

811B - PUSH . H

g11C CALL 6B13"
43 3 o COUNT :=SUCC (COUNT) ;

@11F LHLD 2608"

8122 INX H

6123 SHLD 20088"
44 3 END;_

6126 . JIMP GOFg’
45 2 END;

6129 : - JMP ggB1"
46 1 " WRITELN (COUNT) ;

612C LHLD 20088"

G12F PUSH H

6138 LXI H,@887C"

¢133 PUSH H

0134 CALL g@95"'

3137 CALL p087"

g13A CALL g000

¢13D CALL 2000
47 1 WRITE('E');

3140 LXI - H,0131'

143 PUSH H

6144 CALL g135'

6147 LXI H,0045

@142 . PUSH H

B14B © CALL - p138'

' pascal/MT+ Release 5 Language Reference and Applications Guide

B14E
48
6151

External
External
External
External
External
External
External
External
External
External
External
External
External
External
External

CAaLL

1 END.

CALL

reference
reference
reference

reference

reference
reference
reference
reference
reference
reference
reference
reference
reference
reference
reference

Po8A"

poeo

chain @WIN
chain @CHW
chain @RCH
chain @PST
chain @PLD
chain @CRL
chain QLEI
chain @FIN
chain @SFB
chain @DWD
chain @INI
chain_ @HLT

chain OUTPUT

chain INPUT

chain FILLCH

‘118

.P13B

BGl4F
p98
pBl17
po26

B13E .

0o4A
POEB
8145
g14C
6B73
@152
p141
91
88D7

Pascal/MT+ Release 5 Language Reference and Applications Guide

11.0 Debugger

The Pascal/MT+ debugger is a component of the Pascal/MT+ system
which 1is 1linked into the object program along with the run-time
support library (from DEBUGGER.ERL). The user must link the debugger
as the first module of the program so that execution begins with the
debugger when the program is run. -

The compiler produces a .PSY file for each module- when_. the D
switch 1is. specified to the MTPLUS program. These .PSY files contain
records for each procedure, function and variable declared in the
program. The address fields for each of these items is module
relative. Link/MT+ will process these .PSY files and create a .SYP
file containing absolute addresses for the procedures, functions and
variables. The debugger then wuses this .SyP file for symbolic
variable display, symbolic breakpoints, etc. ‘

The debugger can display variables, set breakpoints, single step
a statement at a time, display symbol tables, and display entry and
exit from procedures and functions. ’

The debugger can be used in a non-CP/M environment 1f the user
responds with simply <return> to the. debugger's request for the .SYP
file name. This disables only the symbolic facilities but retains the-
display by address facilities.

The following two sections describe how to include the debugger
code in an ob]ect program and how to operate the debugger.

119

Pascal/MT+ - Release 5 Language'Reference andvApblications Guide

11.1 ‘Instructions

To include debugger information into the object program the user
must specify the D switch to MTPLUS.COM. The compiler will then
produce a .PSY file to the same disk as the .ERL file. 1In addition
the compiler will generate code at the begining of each 1line and- at
the begining and end of of each procedure and function. The $D toggle
controls the generation of this code. The default state of $D is on
($D+) when the D switch is specified to MTPLUS.COM. The user may turn
the $D toggle off ($D-) around procedures and functions which "have
been debugged or are time critical. The $D toggle (as described in
section 2.5 of the applications guide) may be switched on and off as
desired around procedures and functions.

Link/MT+ (as described above) creates a .COM and a .SYP file
from the .ERL.and .PSY files created by the compiler. :

The debugger will ask for the name of the symbol table file when
executed. The user should respond with the name of the .SYP file or
<return> for no symbols. The debugger will then respond with '+>".
The user may then enter any of the debugger commands and proceed to
debug the program under test. ' '

120

Pascal/MT+ _Release 5. LangQage Reference and Applications Guide

11.2 Commands

The debugger converts items whenever possible into the form
expected by the wuser (i.e. decimal for integers, TRUE / FALSE for
booleans, etc.). When this is not possible the debugger will display
the data in HEX and ASCII. Listed below are the syntax elements and
then the commands. ' '

The term <name> 1is either a variable name, a procedure /
function name, or a prefixed variable name. A prefixed name is a
variable name prefixed with a procedure / function name. Names are 1
to 8 characters 1long and follow the syntax of the Pascal compiler.
Underscores are allowed and ignored (e.g. A B is exactly the same as
AB) . This syntax is used to display local variables and parameters.
If two procedures each have a local procedure of the same name only
the first procedure linked will be available for symbolic display.’

‘'The term <num> is either a decimal number or, if prefixed by -a
'$* character, a hexadecimal number. Decimal numbers fall in the
range @..32767. Hexadecimal numbers in the range @..FFFF (for 64K
machines, the range is larger for 8086/8088, 28000 and 68000).

<name> ::= <identifier> : <identifier> |
<identifier> . |
<num>

<num> ::= $ <hex number> |

<decimal number>

Pascal/MT+ Release 5 Language Reference and Appliéations Guide

Command Syntax _ Meaning

DV <name> {"} Display Vvariable - variable display
S by <name>. 1If this is a pointer var
the contents of the pointer is displayed
unless followed by * which causes the
data pointed to by the pointer to be
displayed. (e.g. DS STR).

The following commands are used when symbols are not available
or when fields within records or array elements are to be displayed:

Each of these commands_is followed by a parameter in the form:
<parﬁ> ::= [<name> | <num>] {"} {[+ | -] <num>}
Examples: |
(*_Pascal declarations: *)
PAOC =. ARRAY [1..46] OF CHAR;
-VAR

" ABC : INTEGER;
PTR : "PAOC;

Example of <parﬁ>:

"ABC an integer -

PTR" entire array

ABC+10 B arbitrary location

PTR"+10 PTR"[11]

ABC-3 arbitrary location

PTR"-3 arbitrary location

$3FFD :

$423B° 32 bytes pointed to by 423B

$3FFD+$5B 32 bytes at 4@58

$423B"+49 32 bytes pointed to by contents
of 423B + 49 :

PROC1:1I local variable

PROC2:J"+9 offset from local pointer

122

Pascal/MT+ Release 5 Language Reference and Applications Guide

DI <parmd> Display Integer

DC <parm> Display Character.

DL <parm> Display Logical (Boolean)

DR <parm> Display Real

DB <parm> Display Byte

DW <parmd> Display Word

DS <parm> Display String

DX <parm> Display eXtended (structures)

This is always displayed in HEX / ASCII format

The following commands allow control of the user program:

TR Trace - Execute one line and return

T<num> Trace <num> lines and return

BE - BEgin exeéutiqn (start program from beginning)

GO ' Continue execution from a breakpoint

SB <name> Set breakpoint at beginning of procedure <name>

‘RB <name> Remove breakpoint at procedure <name>

E+ Enable display entry and exit of each procedure or
function during execution '

E- Disable entry / exit display

PN ' Display procedure names from .SYP file

VN <name> Display all variables associated with procedure
<name> - :

123

pascal/MT+' Release 5 Language Reference and Applications Guide

12.0 Run-time Environment

The code generated by the Pascal/MT+ compiler is . true, native
machine code. Run-time 1library routines are required on each-:
processor to support files and any other features which are not
supported by the native hardware but are required to implement the
entire Pascal language. The following information is specific to the
8¢86/288, CP/M implementation of Pascal/MT+. "The reader is referred
to the applications notes for other CPUs.

The Pascal/MT+ compiler generates program modules which have a
very simple structure. At the beginning of the module is located a
jump table containing a jump to each procedure or function 1in the
module. Space is reserved at the beginning of the jump table for the
main program and this jump is unused if the module is a MODULE and not
a PROGRAM. 1In addition, in a PROGRAM there are 16-bytes of header
information (in the 8088/288 version these are NOPs) which may be used
in future versions for hardware dependent initialization. At the
beginning of the main program the compiler generates code to load the
stack pointer based upon the contents of 1location 6 (+4200 if
necessary) which is the CP/M standard. ROM based users will typically
wish to place some INLINE code there to re-initialize the SP. Also
the compiler generates a call to the @QINI routine which initializes
the INPUT and OUTPUT text files and the stack frame pointer used when,
the $S+ toggle is activated. Again ROM based users will typlcally
wish to re-write the @INI routine to suit thelr needs.

The Pascal/MT+ system requires subroutines from the run-time
library in order to support the whole of the Pascal language. Some
processors require less run-time support than others but .in general
all 1/0 is done via library routines and SET variables are manipulated
via 1library routines. Only . the run-time routines needed for a
particular program are actually loaded when the program is linked with
L1nk/MT+.

Included in this section is also a discussion of how to adapt
the run-time routines for non-CP/M operation as is required for ROM
based systems.

12.1 Library routines

Listed below are the names of all the run- tlme library routines
and their function. For a descrlptlon of their parameters and more
-detailed information the user is refered to the source code which
accompanies this software package. o '

124

Pascal/MT+ Release 5 Language Reference and Applications Guide

ROUTINE FUNCTION

@ CHN Program chaining routine

eMUL Integer multiply 16-bit stack

@MUX Integer multiply 16-bit register
@FIN FOR loop initialization helper.
@EQD .

" @NED .

€GTD .

@LTD .

@GED Strlng comparison routines for
@LED ' <>' >’ <, >—' and <"'

@EQS Set equality

@NES - Set in-equality

@GES Set superset

@LES Set subset

@HLT End of program halt routine, return to CP/M
@PST Store ret addr temporarily

@PLD "Return ret addr to stack

@SAD Set union

@SsSB . Set difference

@SML Set intersection

@SIN Set membership

@BST Build singleton set

@BSR Build, subrange set

@DYN . Load/Store in stack frame mode routine
@LNK Allocate stack variable space

@ULK De-allocate stack variable space
@EQA

@NEA

@GTA

@LTA ,

@GEA Array comparison routines®

@LEA =, <>, >, <, >= and <=

@xJp Table Case Jump routine

@LBA Load concat string buffer address
@ISB Init string buffer

@CNC Concatenate a string to the buffer
@CCH Concatenate a char to the buffer
€RCH Read a char from a file

" @CRL ‘Write a newline (CR) to a file

Pascal/MT+ Release 5 Language Reference and Applications Guide

@CWT Wait for EOLN to be true on a file

@INP Handle variable port input

eouT Handle variable port output

GWIN Write an integer to a file

@RST Read a string from a file

TSTBIT Test for a bit on

SETBIT Turn a bit on

CLRBIT Turn a bit off

SHL Shift a word left

SHR Shift a word right

@EQI

@NEI

BGTI

@LTI

QGEI .

@LEI Integer comparisons

@EQB

@NEB

@GTB

@LTB

@GEB :

@LEB Boolean comparisons

@SFB Set global FIB address

@DWD Set default width and decimal places
@SIA Reset input vector

@SoA Reset output vector.

€DIO Set I/O vectors to default addtesses
@INI . Run-time initialization

@STR String store

@GETCH Read a char from a file onto stack
@WCH Write a string to a file

@DIV l16-bit DIV software routine

@MOD 16-bit MOD software routine

@XDIVD utility divide routine used by @WIN
@MVL

MOVE . .
MOVELE Block move left end to left end. stack parms
@MVR

MOVERI Block move right end to right end stack parms
@PUTCH Write a char from stack

"126

Pascal/MT+ Release 5 Language Reference and Applications Guide

@LEAD
QCHW
@CHW1
I
QEQR
8NER
€GTR
€LTR
@GER
@LER

@RRL
@WRL

@RAD
@RSB
@RML
@RDV.
@RNG
@RAB
gXxop
SQRT

TRUNC
ROUND

IOERR
CHAIN

OPEN
OPENX

BLOCKR -

BLOCKW
CREATE
CLOSE
CLOSED
GNB
WNB
PAGE
EOLN
EOF
RESET
REWRIT
GET
PUT
ASSIGN
PURGE
IORESU

copy
INSERT
- DELETE

Handle width in char outputs
Write a char to a file
entry point used by @WCH and others

Real comparisons ‘
=y <>, > <' =, and <=

Read a real from a file
Write a real to a file

Real add

Reéal subtract
Real multiply
Real divide
Real negate -

- Real absolute wvalue

Real utility load/store routine -

Real square root

. Pascal built-in functions .

Used for unimplement I/O routines

Pascal interface for @CHN

Run time support for files

Pascal/MT+ Release 5 Language Reference and Applications Guide

POS Run time support for strings
@WNC Write next char to a file

@RNC Read next char from a file

€RIN Read integer from a file

es21 Convert string to integer

@RNB ‘ Read n bytes from a file

@WNB Write n bytes to a file

@ BDOS ’ Call CP/M directly .

@ SPN ‘ Check for device names

@NOK Check for legal file names

@NEW Allocate memory for NEW procedure
@Dsp Deallocate memory for DISPOSE procedure
MEMAVA MEMAVAIL' function

MAXAVA MAXAVAIL function

12.2 Console I/0

In Pascal/MT+ all 1/0-is file I/0 and is vectored through the
@SYSIN and @SYSOUT vectors which are located in and initialized by the
@INI routine to point to the @RNC (read-next-char) routine for input
and @WNC routine (write-next-char) for output. When re-directed 1I/0
is used the @SIA and @SOA routines are used to change these vectors:
and the @DIO routine is used to reset these vectors at the end of a
re-directed I/0 statement. :

In environments where-minimum space is a concern and no file I/0
is being used the user may simply rewrite the @RNC and @WNC routines
‘and provide total console I/0 support. Note that these routines must
".manipulate the INPUT FIB FEOF and FEOLN boolean variables if EOF, EOLN
and READLN are to operate properly.

In the CP/M environment on 8688 and Z8¢ machines the @RNC and
@WNC routines call GET and PUT which call @RNB and @WNB which call
@BDOS and therefore cause about 2K bytes of software to be loaded even
for a program which does console I/0 only.

Users which need to operate in ROM ‘environments should see
section 12.4. '

128

Pascal/MT+ Release 5 Language Reference and Applications'Guide

12.3 File I/0

- ——— — -

In Pascal/MT+ all the file I/0 routines (with the exception of
the conversion routines) are written in Pascal and supplied in source
code form. The reader will note that when looking at these routines
one will see a definition of a data structure called a FIB or
file-information-block. This FIB contains information about the
current state of the file, a sector ‘buffer, an ' FCB and other
information. The organization of the FIB is known to all the Pascal

routines and to some of the assembly language routines and ‘should not
be changed lightly.

In addition the reader will note that some of the routines have
more parameters than normally found for those routines (such as
RESET). The compiler recognizes when these built-in routines are
being called and_ passes the buffer size along with the FIB address
when calling' these routines. Also the -RESET routine is extra special
in that the buffer size is passed as -1 if the file is a TEXT file so
that 1nterpretatlon of special characters and EOF can be handled
properly.

12.4 ROM environments

The user may wish to. run programs written in Pascal/MT+ in a ROM
based system. This has been a design goal from the beginning and has
been done successfully by many users. In order to perform formatted
1/0 in a ROM based environment the user must either use re-directed
I/0 for all READ and WRITE statements or rewrite the @RNC and @WNC
routines mentioned in seection-12.2. 1In. addition the user of a ROM
based system may wish to shorten and/or eliminate the INPUT and OUTPUT
FIB storage located in the @INI module. This storage is required for
TEXT file I/O compatibility but may not be needed in a ROM. based:
environment. The user should be cautious and make sure that any
.changes to INPUT and OUTPUT are also handled correspondingly in @RST
and QCWT.

Listed below are three skeletons for the @INI, @RNC and @WNC
routines which can be used in ROM environments. The user should study
the source code included with the package for additional details such
as HEAP usage in ROM, etc.

129

- Pascal/MT+ Release 5 Language?Referehce and Applications Guide

PUBLIC @INI

PUBLIC @SYSIN = ;SYSTEM INPUT VECTOR
PUBLIC @SYSOUT +SYSTEM OUTPUT VECTOR
PUBLIC INPUT ;DEFAULT INPUT FIB

; THIS MUST BE PRESENT EVEN .IF NO
- ;FILE I/0 IS DONE
PUBLIC- OUTPUT ;AGAIN MUST BE PRESENT EVEN IF NO

;FILE I/0 IS DONE
EXTRN @RNC

EXTRN @WNC

@INI:
LXI H,@RNC
SHLD @SYSIN
LXI H, @WNC
SHLD @SYSOouUT
;
; ... ADD MORE HERE FOR HEAP, ETC. PRUNE FROM STANDARD @INI
; .
DSEG
@SYSIN: DS 2
@SYSOUT: DS 2
INPUT: DS 1 ;DUMMY FIB
OUTPUT: DS 1 ;DUMMY FIB
RET - ;AND THAT'S A SIMPLE ONE

END

130

Pascal/MT+ Release 5 Language Reference and Applications Guide

PUBLIC @RNC

INCLUDE CODE HERE TO GET CHARACTER INTO A-REG AND
ECHO IT. ALSO IF USER WANTS TO SIMULATE CON: THE
THE DRIVER MUST ECHO BACKSPACE AS <BACKSPACE, SPACE,
BACKSPACE> AND CR AS CR/LF

Ne %o N %

MOV’ L,A

MVI H,0

XTHL "~ ;PUT FUNC VALUE ON STACK AND
“;RET ADDR IN HL

PCHL ; RETURN’

END

pascal/MT+ Release 5 Language Reference and Applications Guide

PUBLIC @WNC

GWNC:

pPOP H ;GET RET ADDR
XTHL ;PUT IT BACK AND GET PARM CHAR

CODE HERE TO WRITE CHARACTER IN L-REG TO OUTPUT DEVICE
IF USER WANTS TO SIMULATE CON: COMPLETELY THE USER
MUST OUTPUT CR AS CR/LF

wo we wo

RET
END

Pascal/MT+ Release 5 Language Reference and Applications-Guide

13.0 Pascal/MT+_§.Assemb1y Interfacing

This section of the applications guide is intended to provide
information for those Pascal/MT+ customers who wish to write and call
assembly language routines from a Pascal/MT+ program. Included 1is a
list of assemblers, required naming conventions, variable accessing,
parameter passing conventions and restrictions on what assembly
language features can be linked with LINK/MT+.

13.1 Assemblers

‘The assemblers.used with Pascal/MT+ must generate the same .
relocatable format as the compiler. The 8688 and Z8¢ versions of the
Pascal/MT+ system .generate Microsoft compatible relocatable files.
This 1is a bit stream relocatable format and is described in section 3
of this applications guide. This format is generated by the Microsoft
M8@ and the Digital Research RMAC assemblers. Both of - these
assemblers have been used successfully by MT MicroSYSTEMS to generate
the run-time library. ,

13.2 Naming Considerations

The assemblers and the Pascal/MT+ compiler each generate entry
point and external reference records in the relocatable file format.
These records contain external symbol names. The Microsoft format
allows for up to 7 character names but most assemblers only generate 6
character names ‘and -‘the Pascal/MT+ compiler will use all 7 characters.
This means that if a variable is to be located in a Pascal/MT+ program
and accessable to an assembly 1language routine by name, the |user
should limit the name to 6 characters.

In addition, M8¢ allows symbols to begin with $§ and RMAC allows
symbols to begin with ? neither of which 1is a legal identifier
character in pPascal/MT+. MB# also does not consider $ to be a
non-significant character but RMAC does. This means that in M8g the
symbol AS$B is actually placed in the relocatable file as A$B but in
RMAC the same symbol would be in the file as AB. When using RMAC the
use of $ to simulate the underscore (.) 1is often used but not
transportable to M80. '

13.3 Variable accessing

—— — — — ——— - —— - —— - ———

Aéceséing assembly lgnguage variables from Pascal and Pascal -
variables from assembly language is very simple. ' ’

Pascal/MT+ Release 5 Language Reference and Applications Guide

“To access assembly language varlables from Pascal the variables

should be declared as PUBLIC in the assembly language module and as
EXTERNAL in the Pascal/MT+ program:

EXAMPLE:

; ASSEMBLY LANGUAGE PROGRAM FRAGMENT
PUBLIC XYZ

DSEG

XYZ DS 32 ; ACCESSABLE BY PASCAL

END

(* PASCAL PROGRAM FRAGMENT *)

VAR :
XYZ : EXTERNAL PACKED ARRAY [1..32] OF CHAR;

To access Pascal/MT+ GLOBAL variables from an assembly lanéuage
program the wuser must declare the name to be EXTRN in the assembly

language -program and simply as a global variable (make sure the $E+
toggle is on!):

EXAMPLE:

; ASSEMBLY LANGUAGE PROGRAM FRAGMENT

EXTRN POR

LXI H,PQR ;:GET ADDR OF PASCAL VARIABLE

-END
(* PASCAL PROGRAM FRAGMENT *)

VAR (* IN GLOBALS *) .
PQR : INTEGER; (* ACCESSABLE BY ASM ROUTINE ¥*)

134

Pascal/MT+ Release 5 Language Reference and Applications Guide

In addltlon to accessing the varlables by name the user must
know how the variables are allocated in memory. Section 4.0f this
-applications guide discusses the storage allocation and format of each
built-in scalar data type. Variables allocated.. in the GLOBAL data
area are allocated essentially in the order shown. The exception
being that variables which are in an identifier 1list before a type
(e.g. A,B,C : INTEGER) are allocated in reverse order (i.e. C first,
followed by B, followed by A). 1In some CPUs (such as the 280068 and.
680008) each variable declared on a separate line is allocated on a
EVEN memory address boundary. Variables allocated on the same 1line
which are not an even number of bytes in length, in particular
characters, bytes, and booleans, are packed together in memory and
then space is left, if necessary, between the end of that declaration
and the next:

EXAMPLE:
A : INTEGER;
B .: CHAR;
I1,J3,K : BYTE;
L : INTEGER;

STORAGE LAYOUT:

+0 A LSB (or MSB if Z8000/68000)
+1 A MSB (or LSB if Z8000/68000)

+2 B
- 8080/280/6809/8886 28000/68000

+3 K ' +3 empty space
+4 J +4 K '
+5 I 45 J
.+6 L LSB +6 I
+7 L MSB '+7 empty space

: . .+8 L MSB

+9 L LSB
Structured data types: ARRAYs, RECORDs and SETs require

additional explanation: : {

ARRAYs are stored in ROW major order. This means that A: ARRAY
[1..3,1..3] OF CHAR stored as:

+0 A[l,l]‘
+1 A[l,2]
+2 A[1l,3]

+3 A[2,1]

+4 A[2,2]
+5 A[2,3]

138,

Pascal/MT+ ' Release 5 'Language Reference and Applications Guide

+6 A[3,1)]

+7 A[3,2]

+8 A[3,3]
]

This is logically a one dimensional array of vectors. In
Pascal/MT+ all arrays are 1logically one dimensional arrays of some
other type. . ‘ '

RECORDs are stored in the same manner as global variables.

SETs are always stored as 32 byte items; Each element of the
set is stored as one bit. SETs are byte oriented and the low order

bit of each byte is the first bit in that byte of the set. Shown
below is the set 'A'..'2': _

Byte number

00 61 082 @3 54 65 06 67 08 @69 OA @B @6C @D PE OF 10 ... 1F

e er et e e e e ew an e emer e esEr eren e Smee e e - - ——

20 00 00 00 @0 GO0 60 68 FE FF FF ¢7 60 00 00 00 60 ... 80

The first bit is bit 65 ($41) and is found in byte 8 bit 1. The
last bit is bit 9¢ and is found in byte. 11 bit 2. 1In this discussion
bit ¢ is the least significant bit in the byte.

13.4 Parameter passing

When calling an assembly language routine from Pascal or calling
a Pascal routine from assembly language parameters are passed on the
stack. Upon entry to the routine the top of the stack contains the
return address. Underneath the return address are the parameters in
reverse order from declaration: (A,B:INTEGER; C:CHAR) would result in.
C on top of ‘B on top of A. Each parameter requires at- least one
16-bit WORD of stack space. A character or boolean is passed as a
16-bit word with a high order byte of @#@. VAR parameters are passed
by address. The address represents the byte of the actual variable
with the lowest memory address. A ‘

Non-scalar parameters (excluding SETs): are always passed by
address. If the parameter is a value parameter then code is generated
by the <compiler 1in a Pascal routine to call @MVL to move the data.
SET parameters are passed by value on the stack and the @SS2 routine
is used to store them away.

The example below shows a typical parameter list at entry to a
procedure: :

PROCEDURE DEMO(I,J : INTEGER; VAR Q:STRING; C,D:CHAR);

AT ENTRY. STACK: +0 RETURN ADDRESS
: - +1 RETURN ADDRESS

- 136

Pascal/MT+ .

SETs
top (low
address) .
"logically"
executed.

Release 5. Language Reference and Applications Guide

+2 D
+3 BYTE OF 08
+4 Cc ’

+5 BYTE OF 90

+6 - ADDRESS OF ACTUAL STRING
+7 ADDRESS OF ACTUAL STRING
+8 J (LSB ON 8886, MSB ON 28k, 68k)
+9 J (MSB ON 8880, LSB ON Z8k, 68Kk)
+10 I (same as J)

+11 I (same as J)

are stored on the stack with the least significaht byte

address) and the most significant byte on bottom (high
Function values are returned on the stack. They are placed
underneath the return address .before the return i
They therefore remain on the top of the stack after the

calling program is re-entered after the return.

Users who wish to call routines written in alien (to the

environment) languages such as PL/I or FORTRAN should observe the

following rules:

a)

b)
c)

d)
e)
£)

g)

h)

All parameters should be VAR (address)

Declare the alien routine in the other languége as
an EXTERNAL WORD.

Declare a local variable which will hold the
address of the alien routine.

Using the ADDR function take the addr of the
EXTERNAL WORD and assign it to the 1local
variable.

Call an assembly language routine passing all the
parameters and the local variable containing: the

address of the alien routine.

This assembly language routine should remove the
addresses from the stack and create a parameter llst
compatible with the alien language.

The assembly 1anguage routine should then use the
address passed in the WORD to actually call the
alien routine.

The user should beware of mixing programs which
deal with REAL numbers as the format for the reals
is likely - to be significantly different between
the two languages.

The user should .also beware of assumptioné the

alien language system makes.about who owns what
memory resources such as PL/I ALLOCATE and Pascal

137

Pascal/MT+ Release 5 Language Reference and Applications Guide

'HEAP space,

13.5 Restrictions

The user should beware of the following restrictions that
placed upon program which are linkable with the Link/MT+ linker:

a) COMMON is not supported

b) Use of assembly language which would generate
external + offset records (e.g. LXI H,EXTVAR+l)
should be avoided '

c) Use of DB -and DW in the DSEG of an assembly language -
routine is not supported. Use the DB and DW in
the CSEG for non-ROM based applications.

d) Use of the Request Library search feature is not
supported by Link/MT+.

138

are

Pascal/MT+ Release 5 Language Reference and Applications Guide

14.8 Run-time error handling

- —— - —— - — " ————— — S~ S e

The'Pascal/MT+ system supports two types of run-time checking:
range and exception. Range checking is performed on array subscripts
and on subrange assignments. The default condition of the system is
that these checks are disabled. The user may enable them around any
section of coding desired using the $R and $X toggles (see section 2.5
of the applications guide). This section describes the implementation
of this mechanism and how users may take advantage of this mechanism
‘to handle run-time errors in a non-standard manner. ’

The general philosophy is that error checks and error routines
will set boolean flags. These boolean flags along with an error code
will be loaded onto the stack.and the built-in routine ERR is called
with these two parameters. The @ERR routine will then test the
boolean parameter. If it is false then no error has occurred and . the
@ERR routine will exit back to the compiled code and execution
continues. If it is true the @ERR routine will print an error message
and allow the user to continue or abort.

Listed below are the error numbers passed to the @ERR routine:

Value Meaning
1 Divide by @ check
2 ' Heap overflow check
3 String overflow check
4 Range check

14.1 Range checking

When range checking is enabled the compiler generates calls to
@CHK for each array subscript and subrange assignment. The @CHK
routine leaves a boolean on the stack and the compiler generates calls
to @ERR after the @CHK call. If range checking is disabled and a
subscript falls outside the valid range, unpredictable results will

occur. For subrange assignments the value will be truncated at the
byte level.

139

pascal/MT+ Release 5 Language Reference and Applications Guide

14.2 Exception checking

When exception checking is enabled the compiler will 1load the .
error flags (zero divide, string overflow, and heap overflow) as
needed and call the @RERR routine after each operation which could set
the flags. If exception checking is disabled the run-time routines
attempt to provide a friendly action 1if ©possible: divide by zero

results 1in a maximum value being returned, heap overflow does nothing
and string overflow truncates.

14.3 - User supplied handlers

It is possible for the user to write an @ERR routine to be used

instead of the system routine. The user should declare the routine-
as: :

| PROCEDURE @ERR(ERROR:BOOLEAN; ERRNUM:INTEGER);

-~

~~ The routine will be called, as mentioned above, each time an
error check is needed and this routine should check the ERROR variable
and exit if it is FALSE. The user may decide the appropriate action
if the value is true. The values of ERRNUM are as show in section
14.0 :

140

Pascal/MT+ Release 5 Lanauagse Reference and Aprlications Guide

COM file

ERL file

P3Y file
SYP file
68000

- 80%0

ABRZDLUTE
ARRAY

ECD
BCDREALS

CHAIN

COMMON

CP/M’

DISABLE
ENABLE

EXTERNAL

 FLOATING
FPREALS
HEX
INLINE

INP

INTERRUPT

47, 43, 49, S0, 60, 61,.62, 163, 120

3, 46, 47, 48, 49, 50, 51, 53, 64, 110,
119, 120 ‘ '

50, Si, 119, 120

119, 120, 123

66, 121, 135

21, 23, 26, 45, 44, 48, 50, 51, 52, Sé,
66, 100, 103, 104, 110

111 124, 128, 133, 135

19, S4, 55, 98, 103, 107, 163, 109, 113,
119, 127

15, 16, 20, 27, 29, 55, 65, 68 70, 75,
83, 284, 92, 104, 125, 125, 13246

43, 350, &3, 67, 71
48

6, 18, 31, 43, 51, 57, 107, 103, 109,
112, 118, 125, 127

45, 63
45, 46, 47, 52, 52, 55, 56, &1, 91, 92,

23, 941 96, 97, 938, 100, 104, 110, 1197
124, 125, 122 ’

54, 55, 100, 11%, 123

18, 54, ¢

S5, 77. 100, 101, 128
11, 13, 19, 27, 31, 33, 37+ 28, 39, 40,
855, 6%, 91, 102, 107, 111, 112, 112, 123,
134

43, S0, 51, 65, 67

46, 47, 48, 60

12, 13, 35, 60, b1, &2, 66, 103, 121, 123
&, 432, 57, 21, 100, 103, 104, 105, 124
4, 6, 11, 21, 23, 30, 34, 35, 43, 49,

53, 58, &1, &3, 70, 79, S0, 91, 100, 10é,
110, 111, 118, 124, 126, 123, 127, 130

&, 11, 27, 29, 43, 77, 100, 101, 102

141

Pascal/MT+ Release 5 Lansuage Reference and Applications Guide

LINKMT 36, 48, 60

MODEND 36, 37. 40

MODULE 5, 36, 37, 38, 29, 40, 42, 45, 52, 54, S5,
57, 60, 62, 63, 107, 119, 124, 129, 134

MTPLUS 46, 43, 49, 51, 53, 119, 120

NIL 21

OPTION 44, 49, 50, 53, S4, 55..107, 110

PASLIE 8., 46, 47, 48, 53, &0

ROM . 34, 60, 124, 128, 129

STRING 11, 13, 14, 15, 1&, 19, 20, 21, 23, 24, 31,

34, 42, 49, 53, 55, 65, &8, 6. 70, 72, 76,
35, 861 87, 88, 89, 20, 7?1, 94, 9L, 99, 1032
123. 125, 126, 128, 1346

TRANCEN’Q 46, 43, 60

WORD. 11, 12, 1S5, 16> 18, 19, 21, 23, 24, 26, I3,
35, 37, 3B, 42, 44, 55, 57. 65. 62. 73,
103, 104, 10&, 123, 126, 136

WRD 33, 57, 65 ' |

2180 . 21, 23, 26, 45, 48, S50, 51, 52, Sé&. &6,
. 100, 103, 106, 110, 111, 121, 124, 128,
133, 135 .

Z3000 66, 121, 133

142

Pascal/MT+ Release 5 Language Reference and Applications Guide

16.0 Appendices

16.1 @rror meséages

l: Error in simple type
Self-explanatory.

2: Identifier expected
Self-explanatory.

. 3: 'PROGRAM' expected
Self-explanatory

4: ') expectea
Self-explanatory

5: ': ' expected ‘ :
Possibly a = used in a VAR declaration

6: Illegal symbol (possibly missing ';' on line abeve) ,
Symbol encountered is not allowed in the syntax at this point.

7: Error in parameter list
' Syntactlc error in parameter list declaratlon.

8: 'OF' expected .
- -Self-explanatory.

9: '(' expected _
Self-explanatory.

16: Error in type
Syntactic error in TYPE declaratlon.

11: '[' expected
Self-explanatory.

12: ']' expected
Self-explanatory.

13: 'END' expected

All procedures, functions, and blocks of statements
must have an 'END'. Check for mismatched BEGIN/ENDs.

14: ';' expected (possibly on line‘above)
Statement separator required here.

15: Integer exbected
Self-explanatory.

147

Pascal/MT+‘ Release 5 Language Reference and Applications Guide

16: '=' expected .
Possibly a : used in a TYPE or CONST declaration.

~17: 'BEGIN' expected
Self-explanatory.

18: Error in declaration part

Typically an illegal backward reference to a type in
a pointer declaration.

19: error in <field-list>
Syntactic error in a record declaration

20: '.' expected
' Self-explanatory.

21: '*' ‘expected,
Self-explanatory.

56: Error in constant
'Syntactic error in a literal constant

51: ':=' expected
Self-explanatory.

- 52: 'THEN' expected
Self-explanatory.

53: '"UNTIL' expected :
Can result from mismatched begin/end sequences

54: 'DO' expected
Syntactic error.

55: 'TO' or 'DOWNTO' expected in FOR statement
Self-explanatory.

56: 'IF' expected
Self-explanatory.

57: 'FILE' expected
Probably an error in a TYPE declaration.

58: Error in <factor> (bad expression)
Syntactic error in expression at factor level.

59: Error in variable
Syntactic error in expression at variable level.

9%: MODEND expected

Each MODULE must end with MODEND.

1¢01: Identifier declared twice ~
Name already in visible symbol table.

148

Pascal/MT+ Release 5- Language Reference and Applications Guide

162: Low bound exceeds high bound

For subranges the lower bound must be <= high bound.
!

193: Identifier is not of the appropriate class
A variable name used as a type, or a type used
as a variable, etc. can cause this error.

164: Undeclared identifier
The specified identifier is not in the visible
symbol table.

165: sign not allowed
Signs are not allowed on non-integer/non-real constants.

106: Number expected

This error can often come from making the compller totally
confused in an expression as it checks for numbers after all
other possibllltles have been exhausted.

167: Incompatible subrange types
- (e.g. '"A'..'Z2Z' is not comgatible with 8..9).

108: File not allowed here
File comparison and assignment is not_allowed.

109: Type must not be real
Self-explanatory.

116: <tagfield> type must be scalar or subrange
Self-explanatory.

111: Incompatible with <tagfield> part
Selector in a CASE-variant record is not
compatible with the <tagfield> type

112: Index type must not be real
An array may not be declared with real dimensions

113: Index type must be a scalar or a subrange
Self-explanatory.

114: Base type must not be real
Base type of a set may be scalar or subrange.

115: Base type must be a scalar or a subrange
' Self-explanatory.

116: Error in type of standard procedure barameter
Self-explanatory.

117: Unsatisified forward reference
A ‘forwardly declared .pointer was never defined.

Pascal/MT+ Release 5 Language Reference and Applications Guide

118: Forward reference tybe identifier in variable declaration
. The user has attempted to declare a variable as a pointer
to a type which has not yet been declared.
t

119: Re-specified params not OK for a forward declared procedure
Self-explanatory.

12¢: Function result type must be scalar, subrange or p01nter
A function has been.declared with a string or other non-scalar
type as its value. This is not allowed.

121: File value parameter not allowed
Files must be passed as VAR parameters.

122: A forward declared function' S result type can't be re-specified
.Self-explanatory.

123: Missing result.typé in function. declaration
- Self-explanatory.

125: Error in type of standard procedure parameter
This is often caused by not having the parameters in the
proper order for built-in procedures or by attempting to read/write
pointers, enumerated types, etc.

126: Number of parameters does not agree w1th declaratlon
' Self-explanatory.

127: Illegal parameter substitution
- Type of parameter does not exactly match the
corresponding formal parameter.

128: Result type does not agree with declaration
When assigning to a function result, the types must be compatible.

129: Type confllct of operands
Self- explanatory.

130: Expression is not of set type
Self-explanatory.

131: Tests on equality allowed only
Occurs when comparing sets for other than equality.

133: File comparison not allowed
File control blocks may not be compared as they-contain multiple
fields which are not available to the user.:

134: Illegal type of operand(s) ,
The operands do not match those required for this operator.

©135: Type of operand must be boolean:) '
The operands to AND, OR and NOT must be BOOLEAN.

136: Set element type must be scalar or subrange

1590

rascaismiT neledse 5 Language Reference and Applications Guide

137:
138:

139:
149:
141:

142:

- 143:

L144:

145:
146:
147:
148:
149:
1508:
151:
152:

153:

Self-explanatory.

Set element types must be compatlble
Self-explanatory.

Type of variable is not array
A subscript has been specified on a non-array variable.

Index type is not compatible with the declaration
Occurs when indexing into an array with the wrong type of
indexing expression.

Type of variable is not record
Attempting to access a non-record data structure.
with the 'dot' form or the 'with' statement.

Type of variable must be file or pointer
Occurs when an.up arrow follows a variable which is not
of type pointer or file. -

Illegal parameter sclution
Self-explanatory.

Illegal type of loop control variable
Loop control variables may be only local non-real scalars.

Illegal type of expression
The expression used as a selecting expression in a case
statement must be a non- real scalar.

Type conflict

Case selector is. not the same type as the selectlng expression.

A551gnment of files not allowed
Self-explanatory. -

Label type incompatible with selecting expression
Case selector is not the same type as the selecting expression.

Subrange bounds must ‘be scalar
Self-explanatory.

Index type must be integer
Self-explanatory.

Assignment to standard function is not allowed
Self—explanatory.

Assignment to formal function is not allowed
Self-explanatory.

No such field in this record
Self-explanatory.

P

Type error in read

151

- pascal/MT+ Release 5 Language Reference and Applications Guide

154;
155:
156
157:
A158:
159:

160:
161:
162:

163:
164:
165:
166:
167:

168:

169:
176:
171:
172:

174

Self-explanatory.

Actual parameter must be a variable
Occurs when attempting to pass an expression as a VAR paraeter,

Control variable cannot be formal or non-local
The control variable in a FOR loop must be LOCAL.

Multidefined case label
Self-explanatory.

Too many cases in case statement
Occurs when jump table generated for case overflows its bounds.

No such variant in this record
Self-explanatory.

Real or.string tagfields not allowed
Self-explanatory.

Previous declaration was not forward
Again forward declared
Parameter size must be constant

Missing variant in declaration A
Occurs when using NEW/DISPOSE and a variant does not .
exist.

Substition of standgrd prog/func not allowed

"Multidefined label

Label more than one statement with same label.

Multideclared label |
Declare same label more than once.

Undeclared label
Label on statement has not been delcareed.

Undefined label
A declared label was not used to label a statement.

Error in base set

value parametéf expécted

Standard file was re—decléred
Undeclared external file

éaséal function or procedure expected

Self-explanatory.

152

Pascal/MT+ Release 5 .Language Reference and Applications Guide

183: External declaration not allowed at this nesting level
Self-explanatory. :

187: Attempt to open library unsuccessful
Self-explanatory.

191: No private files
Files may not be declared other than in the GLOBAL
variable section of a program or module.as they must
be statically allocated.

193: Not enough room for this operation
Self-explanatory.

' 194: Comment must appear at_top of program

201: Error in real number - digit expected
Self—explanatory. _

2062: String constant must not exceed source line

203: Integer constant exceeds range
" _Range on integer constants are -32768..32767

25@: Too many scopes of nested identifiers
: There is a limit of 15 nesting levels at compile-time.
This .includes WITH and procedure nesting.

251: Too many nested procedures or functions
- There is-a limit of 15 nesting levels at execution
time.

253: Procedure too long
A procedure has generated -code which has overflowed
the internal procedure buffer. Reduce the size of
the procedure .and try again. The limit is target,
machine dependent. Consult the CPU applications note
for more information.

259: Expression too complicated
The users expression is too compilated (i.e. too many
recursive calls needed to compile it). The user should
reduce the compilcation using temporary variable

397: Too many FOR or WITH statments in a procedure
Only 16 FOR and / or WITH statments are allowed in
a single procedure (in recursive mode only)

4060: Illegal character in text
A character which is a non-Pascal special character
was found outside of a quoted string.

401: Unexpected end of input
End. encountered before returning to outer level.

153

pascal/MT+ Release § Languége'Reference and Applications Guide

402: Error in writing code file, not enough room
Self-explanatory.

. ! ’

463: Error in reading include file

Self-explanatory.

404: Error in writing list file, not enough room
Self-explanatory.

405: Call not allowed in separate procedure
Self-explanatory.

4¢6: Include file not legal
Self-explanatory.

467: Symbol Table Overflow
497: Error in élosing code file.

An error occured when the .ERL file was closed.
Make more room on the destination disk and try again.

154

pascal/MT+ Release 5 Language Reference and Applications Guide

16.2 Reserved Words

The following are the reserved words in Pascal/MT+:
MOD, NIL, IN, OR, AND, NOT, IF, THEN, ELSE,
CASE, OF, REPEAT, UNTIL, WHILE, DO, FOR, TO,
DOWNTO, BEGIN, END, WITH, GOTO, CONST, VAR,
TYPE, ARRAY, RECORD, SET, FILE, FUNCTION,
PROCEDURE, LABEL, PACKED, PROGRAM

Pascal/MT+ also has extended reserved words:’

ABSOLUTE, EXTERNAL

155

' pascal/MT+ Release 5 Language Reference and Applications Guide

16.3 . Language syntax description
<letter> ::=A [B| C|D|E|F|G|HII|J]I
K| LIMIN]J]OIPIQIRIS]|TI
viviwlxlylzlalbl]ec]| d,l
el £flglhlil3ilk]1l]|mj|n]
nlolplaglrlsltlulv]wl]
x lylzl.e
<digit> =:::=¢ | 1 | 2| 31415161l 718129]
a| B|C|DI|E]|F {only allowed in HEX numbers}
<{special symbol ::= {reserved words are listed in section 16.2}
- I <> < 1 > |

o A +

{

Lo* 1/ 1 =
(O D I I O e T R G S A
P 2 D T L A

{the following are additional or substitutions:}

(« 1 b =1 N ° 2 1 v 1 1 I $ | &
. (. is a synonym for [

.) is a synonym for.]

“, \, and ? are synonyms (see section 8.1l.1)

!, and | are synonyms (see section 8.1.2)

&

(see section 8.1.3)

<identifier> - t:= <letter> {<letter or digit or underscored>}.
<letter or digit> ::= <letter> | <digit> |
<digit sequence> ::= <digit> {<digit>}

<unsigned integer> ::= § <digft seéuence> |
<digit sequence>

- <unsigned real> ::= <unsigned integer> . <digit sequence> - I
, <unsigned integer> . <digit sequence>

E <scale factor> l

<unsigned integer> E <scale factor>

<unsigned number> ::= <unsigned integer | <unsigned real>

<scale factor> ::= <unsigned integer> | <sign><unsigned integer>
<sign> ti= + | -
<string> . ::= ' <character> {<character>}' | '!

.<constant identifier> ::= <identifier>

<constant> ::= <unsigned number |
: <sign><unsigned number> |

156

pascal/MT+ Release 5. Language Reference and Applications Guide

<constant identifier> |
<sign><constant identifier> |
<string>

<constant definition® ::= <identifier® = <constant>

<type>

o
(Y3
]

<simple type>]
<structured type> |
<pointer type>

<type definition>

<identifier> = <type>

<simple type>

<scalar type> |

<subrange type> |

<type identifier>

<type identifier> ::=.<identifier>

<{scalar type)v::= (<identifier> { , <identifier>})

<subrange type> ::= <constant> .. <constant>

<structured type$::= <unpacked structured typé> |
PACKED <unpacked structured type>

<unpacked structured type> ::= <array type> |
<record type> |
<set type> ~ |
<file type>

<array type> © ::= <normal array> |
<string array>>

<string array> ti= STRING*<méX'1ength>

<max length> ~t:=-[<intconst>] |
<empty>
<intconst> ::= <unsigned integer> |

<int const id>
<int const id> ::= <identifier>

<normal array> ::= ARRAY [<index type> {,<index type>}] OF
<{component type>

<index type> t:= <simple type>
<{component type> ::= <type)>
<record type> ::= RECORD <field list> END

<field 1list> . ::= <fixed part> . | |
~ <fixed part> ; <variant part> |

' pascal/MT+ Release 5 Language Reference and Applications Guide

<variant part>
<fixed part> ::= <record section> {;<record sectioﬁ>}

. {
<record section> ::= <field identifier>. {,<field 1dent1f1er>} : <type>

<empty>
<variant part> ::= CASE <tag field> <type 1dent1f1er> OF
: <variantd> {;<variant>}
<variant> ~ ::= <case label list> : (<fie1d list>) |
<empty>

<case label listS ::= <case label> {,<case label>}

<case label> ::= <constant>
<tag field> ::= <identifier> : |
: ‘ <empty>

<set type> ::= SET Of <base type>

<base type> ::= <simple type>

<file tybe) ::= file {of <type>}
<variable> " 1:= <vard |

<external var>
<absolute var>

<external var> ::

EXTERNAL <var>
<absolute var> ::= ABSOLUTE [<constant>] <var>
<var> " s:= <entire variable) |
’ <component variable> |
Kreferenced variable>
Declaration of variables of type STRING:
<identifier>{,<identifier>} : STRING {[<constant>]}
<entiré variable> ::= <variable identifier>
<variable identifier> ::= <identifier>
<component variable> ::= <indexed variable> |
‘ <field designator> |
<file buffer>
<indexed variable> ::= <array variable> [<expression> {,<expressiod>}]

<array variable> 3= <variable>

<field designafof> ::= <record variable> . <field identifier>

. 158

Pascal/MT+ Release 5 Lahguage Reference and Applications Guide

<record variable> ::= <variable>
<field identifier> ::= <identifier>

<file buffer> t:= <file variable> *

<file variabled> ::= <variable>

~

<referenced variable) ::= <pointer variable>
‘<pointer variable> ::= <variable>

<unsigned constant> ::= <unsigned number> |
<string> I
NIL- . |
<constant identifier>

<variable>

<unsigned constant>

<function designator>

(<expression>)

<logical not operator> <factor>

.0
.0
"

<factor>

{set> t:= [<element list>]

<element list> ::= <element> {,<element>} I
: <empty> '

<element> ::= <expression> I
<expression> .. <expression>

<termd> ::= <factor> <multiplying operator> <factor>
<simple expression> ::= <termd - ‘ |
<simple expression> <adding operator> <term> .|
<adding operator> <term> :
<expression> ::= <simple expression> |
<simple expression> <relational operator>
<simple expression®>
<logical not operator> ::= NOT | ~ | \N | ?
~ (synonyms \ and ?) is a NOT operator for non-booleans.
<multiplying operator> ::=;*"| / | DIV | MOD | AND | &
& is an AND operator on non-booleans.
<adding operator>.::=+ | - | OR | | | !

! (synonym |) is an OR operator on non-booleans.

<relational operators> ::= = | <> | < | <= | > | >= | IN

pascal/MT+ Release 5 Language'heference and Applications Guide

<function designator> ::= <function identifier>
<function identifier> (.<parm> {,<parm>)

<function identifier> ::= <identifier>

<statement>

<label> : <unlabelled statement> |
<unlabelled statement)

<unlabelled statement> ::= <simple statement> |

<{structured statement>

<label> s

<unsigned integer>
<simple statement ::= <assignment statement> |
- <procedure statement> |
<goto statement> |
<empty statement)>
<empty statement> ::= <empty>

<assignm&nt statement> ::= <variable> := <expression> B
‘ - <function identifier> :=- <expre551on>

<procedure statement> ::= <procedure identifier> (<parm> {,<parm>}) |
<procedure identifier>"

<identifier>

I

<procedure identifier>::

<procedure identifier> |
<function identifier> |
. <expression> |
<variable>

<{parm>

<goto statement> ::= goto ‘<label>

 <structured statement> ::= <repetitive statment> |
<conditional statement> |
<compound statement> |
<with statement> '

<compound statement> ::= BEGIN <statement) {,<statement>} END

<conditional statementd ::= <case statement> |
: : <if statement>

<if statementd> ::= IF <expre551on> THEN <statement> ELSE <statement> |
IF <expression> THEN <statement>

<case statement> ::= CASE <expression> OF

' ' Ccase list> {,<case list>}
{ELSE <statement>}

END

160

Pascal/MT+ Release 5 Language Reference and Applications Guide

<case list> ::= <label 1list> : <statement> |

<empty>
<1§be1 list) ::= <case label> {,(case label>}

<repetitive statement> ::= <repeat stétement>]
<while statement> |
<for statement>
"<while statement)> ::= WHILE <expression> DO <statement>
<repeat statement> ::= REPEAT <statement> {,<{statement>} UNTIL <expression

<for statementd> ::= FOR <ctrlvard> := <for 1list> DO <statement>

<for list> ::= <expression> DOWNTO <expression> |
<expression> TO <expression>
<ctrlvar> ‘::= <variable>
<with statement> 1:= WITH <record variable list> DO <statment>

<record variable list> ::= <record variable> {,<record variable>}

<procédure declaration>» ::= EXTERNAL <procedure heading> |
<procedure heading> <block>

<block>

]

<label declaration part>
<constant definition part>
<type definition part>
<variable declaration part>
<procfunc declaration part>
{statement part>

..
(L]

= PROCEDURE <identifier> <parmlist> = |
PROCEDURE <identifier> ; I
PROCEDURE INTERRUPT [Xconstant>] ;

<procedure heading> -

<parmlist> (<fparm> {,<fparm>})

(1]
L]

<procedure heading> |
<function heading> |
VAR <parm group> |
<{parm group>

<fparm>

<identifier> {,<identifier>} :
<type identifier> I

<identifier> {,<identifier>} :
<conformant array>

<parm group>

ARRAY [<indxtyp> {;<indxtyp}] OF
{conarray2> -

<conformant array>

<type identifier> |
<conformant array>

<conarrayz>_'

161

Pascal/MT+ Rélease 5 Language Reference and Applications Guide

<indxtyp> ‘ ::= <identifier> .. <identifier> : <ordtypid>

Cordtypid> ::= <scalar type identifier> |
: <subrange type identifier>

<label declaration part> t:= <empty> |
: LABEL <label> {,<labeld>} ;

<constant definition part> ::= <empty> l
: CONST

<constant definition>
{;<constant definition} ;

<type definition part> ::= <empty> |
: TYPE
<type definition>
{;<type ‘definition>} ;

<variable declaration part)> .-::= <empty> |
: VAR
<variable declaration>
{;<variable declaration>} ;

<procfunc part>

{<proc or- funcd> .; }

<procedure declaration> |
<function declaration>

<proc or func>

(1]
.

<statement part> ::= <compound statement>

<function decl> ::= EXTERNAL <function heading> |
<function heading> <block>

<functon heading> ::= FUNCTION <identifier> <parmlist> : <result type> ; |
. FUNCTION <identifier> : <result type> ;

<result type> ::= <type identifier>

<readcall> ::= <read or readln> {({<filevar> ,} {<varlist>})}

<read or readlnd> ::= READ | READLN

<filevar> s:= <variable>
<varlist> ::= (variable> {,<variable>}
<writecall> ::= <write or writeln> {({<filevar> ,} {exprlist})}

<write or writeln> ::= WRITE | WRITELN
<exprlist> - t:= <wexpr> -{,<wexpr} -

<wexpr> "t:= <expression> {:<width expr> {:<dec expr>}}

162

Pascal/MT+ Release 5 Language Reference and Applications Guide

<width expr> ::= <expression>
<dec expr>, ::= <expression>
<program> := <program heading> <block> . |

<module heading>
<label declaration part>
<constant definition part>
<type definition part>
<variable declaration part>
<procfunc declaration part>
MODEND .)

<program heading> ::= PROGRAM <identifier> (<prog parms>) ;4
<module heading> ::= MODULE <identifier> ;

<prog parms> . 1:= <identifier> {,<identifier>}

181

Pascal/MT+ Release 5 Languagé Reference and Applications Guide

16.4 . Summary of opt1on switches ‘and toggles

- e - ——— - —— ——— - —— — —— ———— ——— -

Compiler command line: (see section 2.8)

MTPLUS <filename> {$ option switches}

Compiler switches:

NW DO,

Compiler toggles:

SE
$S
$I
$R
ST
SW
$X
$p
SL
$K

$C

Linker command line:

T ———— — - o ——— ———

(see section 2.8)

route .ERL file to disk d:
get .OVL file #n from disk d: (n=1..4)

“route .PRN file to disk d:

generate disassembler records in .ERL file
generate debugger calls and .PSY file

get MTERRS.TXT file from disk d: ,
put PASTEMP.TOK (temporary) file on disk d:
Quiet option

Auto chain to linker

Use BCD reals

Generate 288 code (868@/280 version only)

(seée section 2.5)

controls entry p01nt generation
controls-recursion

include file control

controls range checking

controls strict type checking

controls non-ISO warnings

controls exception checking

inserts formfeed in .PRN file

controls listing (on/off)

allows removal of pre-defined routines
from symbol table to save memory space
controls use of RST instructions in
REAL operations

(see section 3.8)

—— —— — — —— ——— — —— T —— — -t

LINKMT <filename> {,<filename} {option switches}

or

164

Pascal/MT+ Release 5 Language Reference and Applications Guide

LINKMT <fiiename>=<filename> {,<filename>} {option switches}

‘Linker switches: (see section 3.1)

————_— — — —— T ——— — —-————— — ——— - > — — — ——— — ————

/S library search

/L load display

/M load map table display

/E extended /M (includes ?, $, Q)

/P:nnnn org program at nnnnH .

/D:nnnn org data at nnnnH ‘

/H:nnnn write .HEX file addresses start with nnnnH
/W write .SYM file

/F previous file is a command file

Disassembler command line: (see section 10.8)

———— — —— ————— ———— —————— —— ———————— " —— ——— T ——— —————

DIS??2?? <input name> {<destination name®> {,L=nnn}}

Debugger commands: (see section 11.0)

DV Display variable

DI Display integer.

DC Display character ,
DL Display logical (boolean)
DR - . Display real

DB Display byte

DW - Display word

DS Display string

DX Display extended

TR o . trace one line

Tn _trace n lines

BE begin exec at main program
GO continue after breakpoint
SB : set breakpoint

RB remove breakpoint

E+ entry/exit display on

E- entry/exit display off

PN display all procedure names
VN display variable names

2?2 HELP! - display command summary

165

Pascal/MT+ User“’s Manual.Addendum (Release 5.1)

f.Section

— — — — — s —

III

Pascal/MT+ Release S.1

-User”’s Guide Addenda
.“NoYembeh 10, 1780

bopvright (c) 1930 by MT ﬂicrosvstgm#'

Contents:

Introduction

Released software status
Functional additions
Manual modifications
Validation suite results

Pascai/NT¥ User)s Manual Addendum (Release S.1)°

Section 1 ‘Introduction

This manual addendum contains a number of verwy impPortant notes

.reqabdins Pascal/MT+ S.1. The user should READ CAREFULLY all sections
of this dorument BEFUORE UUINb Pascal/MT+.

) We have str1ved to make Pascal/NT+_one of the finest software
toals available and we are convinced that we have attained this soal.
We welcome any comments and constructive criticism resardins

Pascal/MT+. If wvou have any pProblems Please let us know as soon as
Possible,. S ‘ : ’ ’

" This document contains notes on the status of the Pascal/MT+

.Product with resards to desisn s90als (i.e. memory spPace). In
addition, documentation on new features added since the manual | was
printed and decumentation on a few minor features which were

impliemented in a 'different way than specified in the printed manual is
also included.

Good luck_with Pascal/MT+ and happy Pascal prosrammins!

Pascal/MT+ User’s Manual Addendum (Release S5.1)

Section II Released software status

The enclosed software (if vou have Purchased more than Just the
manual) will run in & MINIMUM S2ZK CP/M SYSTEM. This means: IN A
SYSTEM WITH A STANDARD SIZE BIOS OF <= 7423 BYTES AND A STANDARD CP/M
1.3/71.4/2 BDOS (4K-3K bytes) AND 52K OF CONTIGUOUS MEMORY. THE SYSTEM
SHOULD OPERATE.

. Your BOOS (not BRICGS) should be no lower in memory than address
OBICOOH. You can check this by locadine in DDT (or DEBUG if wvou have
coas) and listing location 0005 (commandilS). The address shown for
the Jump instruction will be the address of a Jjump to some code which
will eventually Jump to the BRDOS. List the address shown as the
oprerand of the Jump instruction and vyou should find you way easily
from there. This means a TPA (transient prosram area) size of

(S52K-35K=47K) is reauired!!!!! We recommend that anvy attempts at larse
proaram develorment be done in a system with at least 54K and the more
the merrcier. " The svstem will dvnamically adart to more memory if

available.

The compiler/library has been Put throush the Pascal validation
suite and the results are attached in the validation suite rerport. We
have been usina the compiler to compile itself, assembhlers. editars,
linkers, etc. for the last courle of months and are confidant of
stable oareration. - Please, if vyou suspect a problem USE THE
DISASSEMBLER to verify that the compiler is generatins incorrect code
before calling! In addition: we KINDLY REQUEST! that wou have the

following information handy before callina!!!:
CP/M VERSION (1.3/1.4/2.0/2.1/2.2 OR equivalent information)
MEMORY SIZE .

CPU TYPE (8020 / Z80 / 80285, ETC.)

YOUR PASCAL/MT+ SERIAL NUMBER AND APPROUXIMATE DATE PURCHASED
YOUR COMPANY NAME '

DIASSEMBLED LISTING OF THE PROGRAM SECTION IN GUESTION

AND REMEMBER: IF YOU HAVE NOT SENT IN YDUR LICENSE AGREEMENT

Pascal/MT+ User“s Manual Addendum (Release S.1)

Section III

Functionai Additions

Since the Pascal/MT+ manual was printed we have modified a

number of minor impPlementation details and have also added a number of
The l1ist below describes each in detail:

features.

1.

w

WORD VARIABLE INPUT/QUTPUT

RE-DIRECTED I/0 OF STRINGS

u

E OF # ON COMPILER COMMAND LINE

[BN s 80 . s . ® e ® s ® s o0 e naso0ssesm = as []
e s e o e "0 - . e s s ¢ s 8 s s e s -« s . a8 e

WORD 1/0 as described on page 35 of the manual is
not imrPplemented using READ and WRITE. Two new Procedures:

READHEX (VAR F:TEXT: VAR W:ANYTYPE: SIZE:1..2):

WRITEHEX(VAR F:TEXT3 EXP : ANYTYPE; SIZE:1..2)3

have been implemepted allowing HEX I/O‘on'variabies'of‘
any 1 or two byvyte tvyrpe such as inteser, char, bvyte,

subranse, enumerated and word.

e e w8 [[e a . s a s w 2 5 n s e [
s s 8 s - .= - s a8 e s a8 as .

The use of READ and STRING variables is not allowed when
re—directed I/0 is used. This is because the @RST routine
attempts to read directlvy from the CP/M console device
when no file is specified. The user should re—~uwrite the
@RST routine te Perform anwv. and all inpPut and editins
functions desired for the tarset svystem console device.
NOTE: THIS DOES NOT AFFECT PROGRAMS DO NOT USE RE-DIRECTED

1/0

The compiler also allows the use of the # character as
the ortion string sisnal character on the command line.
This is because the CP/M SUBMIT program does not allow
the user to Place strinss with $ in them in-the submit
file. MWith other software the user must place a dummvy
parameter and then pPut this Parameter on the command line

when callineg submit even if this is not really a variable
Pparameter to the submit file. Usins the alternate form

4

Pascal/MT¥ User‘s Manual Addendum (Release S5.1)

(e.a. #PC X RB) allows insertian of this directly into
the .SUB.F@le

L]
1]
(1]

¢ "LOCAL" "TEMPORARY" FILES IN A RECURSIVE ENVIRONMENT o

Locally declared files in a recursive environment may
not be used as "temporary" files unless the user
explicitly zeroces the file (using FILLCHAR) or does
an ASSIGN(Lfile>»“”) to initalize the file. The user
should also note that such locally decliared files will

be left oren and in limbo when the pProcedure is exitted
unless explictly CLOSEd.

>

¢ PHASE Z CONSOLE OUTPUT :

The outrut produced by Phase 2 of the compiler consists
of the Procedure or Function name and its offset from the
begining of the module in decimal. This is output when
the Procedure/function body is actualily encountered

(i.e. if A contains B which contains C then the autrput
would he C followed by B followed by A).

4

: USE OF TRM: DEVICE

6. Non-echo input (TRMf) is only orerative on QP/M version
2.%X syvystems '

! USE OF WRITE/WRITELN WITH FUNCTIONS WHICH FERFORM 1/0 3

~N

The user should not use the WRITE/WRITELN procedures to
outrput the value of any functions which crerate on files
(such as GNB) because the file pointers will become
modified by the readins routines and therefore the outrput
will suddenly be done to the input file!

: NGN-TEXT FILE END-OF-FILE HANDLING :
TremrIsroTIIIIIIOIIIITITIOIISILICIOIILIOITIioeiTorooriioiIiiisesie

Because CP/M does not keer any information resarding
rpartially filled sectors at the end of a non~TEXT file

it is impossible to make EOF(<Lnon—-text—filel) wark

prorperly unless the size of the record is exactivy a multirle
of 123 bytes. The sussested wav of workins around this
operatine svstem problem is to keep a count of the mumber

of records in the file or have a special end-of-file record.

o

- " s e nacaaew [K] [- ® v -
- s a e s s e ew o aw a e . aas .

NEW COMPILER OVERLAYS (MT18S.0QVL AND MTS&0.QVL)

..

\c' .
.

Two new overlay file s are pPresent. MT135.0VL was created

by breakins the previocusly larse Phase 1 and initialization
into two serarate overlayvs (MT180 and MT125). MTS30.0VL

has been added to write the .PSY file for the debusser.

The l1ocation of this file is contralled by the OVL #2 option
switch. Note: MTS20.0VL is not necessary (and never 1oaded)
‘unless the debusser is reaquestéd.

s se w8 eu 88
.

" s nenass -
s s . " s 0o 0 e .

HEAP MANAGEMENT ROUTINES - FULL VERSUS STACK

10, The run—time library contains a "stack" oriented HEAP
manasement module which suprlies only NEW and DISPOSE.
A seprarate module (FULLHEAP.ERL) is suppPlied which fullw
implements NEW / DISPOSE / MEMAVAIL / MAXAVAIL and must
_ be explicitlv named on the command line when desired.
PASLIB was settins too bis to keer on adding and addine and...

: NEW ERROR MESSAGES :
11. Three new errors have been added:

496 - invalid operand to INLINE

398 - Implementation restriction (normalilw
used for arravs and sets which are ton
big to be manirulated or allocated)

Pascal/MT+ User’s Manual Addeﬁdum (Release S.1)

999 — Compiler Totally Confused

Bec :::::::::::::::a:::::::::::::::::::::::f
: REGARDING AUTOMATIC CLOSING OF QUTPUT FILES :
12, On pase 95 of the user”’s suide the manuzl discusses automatic

closing of UPEN files. This has been e€liminated from the
Packase for the time beins due to 2 desire not to force
ROM based users to include the ENTIRE FILE PACKAGE in their
prasrams without re-writine a larse pPortion of the run—time. -
This feature mavy be added in a later release.

: UTILITY MODULE :

.13, A file called MUTILMOD.SRC is on the dlqtrlbutzon d1<L and
contains three routines:

FUNCTION KEYPRESSED : BOOLEANS
(% returns true when a key struck #)

PROCEUURE EXTRACT(VAR F:TEXT3 VAR S:STRING)S
(# extracts the file name strins from an oren file #)

‘PROCEDIURE RENAME(VAR F:TEXTS NEWNAME:STRING)
(# used after an assian to change the name of a file)

: PATCHER PROGRAM s

i4. The PATCHER.COM prosram has been eliminated.

¢ NEW $K TOGGLES IMPLEMENTED :

15. - Additional %$K toeales have been imeplemented.
(note a serarate $K switch is required for each group)

Group Routines Removed

8 ’ RESET. REWRITE, GET,» PUT, ASSIGN
. MOVELEFT., MOVERIGHT. FILLCHAR

' Pascal/MT+ User“s Manual Addendum (Release 5.1)

24 REALD, READLN

10 WRITE, WRITELN
11 STBIT, CLRRIT. SETRIT. SHL»> SHR
12 .MEMAVAIL. MAXAVAIL
13 - SEEKREAD. SEEKWRITE
14 RIMES:; SIMSS, WAIT
15 READHEX, WRITEHEX
: 8065 RIM AND SIM
is. The pPre—defined I/0 names RIMSS and SiMES have been:

changsed to a function and a pProcedurest
FUNCTION RIMZS : BYTE:

. .PROCEDURE SIM35 (VAL: BYTE):

17. **%******'
% ~ %

#* RANDOM ACCESS FILE 1 /7 0 %

* 3#

************************************%**********

Since the manual was printed we settled on houw
random access files will work:

a. You must have CP/M version 2
b. A random access file and a seguential file’
are not compPatible because!

a sé¢quential is totally a stream aof bvtes
a random file is allocated as fallows:

if the recordsize is < 12¢ bvtes then
as many records as will fit in a sector
will be pPacked into a sector and the
remainder of the sector left garbase

if the recordsize is 2= 122 bvtes then

the record will besin on a secter boundary
.and be allocated an intesral number of sectors
(i.e. records do not besin in the middle of a
sector but will spPan sectors as necessary)

Pascal/MT+ User’s Manual Addendum (Release 5. 1)

c. Random access files are accessed via:
PROCEDURE SEEKREAD (VAR'F=ANYFILETYPE:'RECNUM=INTEBER):
FROCEDURE SEEKWRITE (VAR F:ANYFILETYFE: RECNUM:INTEGER);

Recnum starts at O

IORESULT contains the CP/M return code for the access
Both these Procedures work with the file windouw
variable (e.s. F*~). The user should assien to

the window variable before SEEKWRITE and assisn from
the window variable after a SEEKREAD.:

THE USER IS REFERRED TO THE TESTRIO.SRC PROGRAM ON THE
DISTRIBUTION DISK!

MEMORY LAYQUT UNDER CP/M

s s g 8¢
*3 S as 0 B0

iJsers have requested to know how to find the end

of the Pascal allocated data area. In Pascal/MT+
there is a svystem variable SYSMEM which at run—-time
.Ppoints to the end of the allocated data. Even in
Programs which use the FULLHEAP module the SYSMEM
Ppointer is urpdated. The run-time evaluation stack
is pointed to by the hardware SP resister and
the recursion stack is Ppointed to by a variable called
@SFP (stack frame pointer). Both SYSMEM and @3SFP .
may be declared as EXTERNAL WORD and accessed by
the user for spPecial requirements.

[
'y

RUN-TIME PACKAGE SOURCE CODE

-
0

.,
[]

The run—-time Packase source code coemes in four
arours of files (.LIE and .IDOX):

CPMIO

|

Pascal routines for file input/cutpPut

RTP - Assembwv lansuase support routines
(use MACRO-80 or RMAC to assemble)

FP - Floatine Point run time routines

BCD - BCD real routines

To extract a gsiven module from these "libraries"
the user should find the desired name in the

Pascal/MT+ User’s Manual.Addendum (Release S.1).

-
e
L

e

index and then use the SPLIT program to extract

the modules. The SPLIT prosram expects a “library"
file and a file containine a list of file names
which are to be extracted. The library will be

and individual files will be created for the
requested files.

: AMD® S5 11 HARIDWARE ARITHMETIC! ! =

To use the AMD9511 the user must use
DECCONV.LIE, XCONFIG.LIB and FP.MAC :
Edit the XCONFIG.LIB file and chanse the HARDWARE

equate to TRUE and get ADATA and ACTRL to the
1/3 port addresses for the 9511.

Then assemble FP.MAC and this will create a neuw

FP.REL which shoule be combiried with the supplied
PFLT.ERL and then renamed FPREALS.ERL. The user can
coembine them using MTLIB.COM and the COMBIME.CMD file.
Now hardware floatins point mavy be linked with pProsrams.

When usins the 9511 the user may wish to declare and
call @I®S which is a parameterless procedure which
initializes the 9511 chip. Some aold 2511 chips did
not eproperly reset using the hardware reset line and
this software routine will convince the 2311 that all
is ok and ready to so. This should be called as the
first statement of the main Prosram. i

: I 5@ STA N oODARD :
Q. Ilsers who wish to receive a copy of the pPropPosed
IZ0 standard to which we have been workine should
contact MT MicroSYSTEMS., We have a limited number
of copies available for $20.00. 0Only users whe
are vervy fluent in Pascal and compilers should be
interested as the standard document is very terse
and sometimes very confusing!
¢t BCD AND FLOATING FOINT REAL CUONSIDERATIONS :

1. USERS SHOULD NOTE: WHEN USING REAL NUMEERS EITHER

10

Pascal/MT+ llser’s Manuai Addendum (Release S.1)

‘BCDREALS OR FPREALS MUST BE LINKED WITH THE PROGRAM
BEFORE PASLIB. ALSO IF TRANSCENDENTALS ARE UISED

IN FLOATING POINT PROGRAMS "TRANCEND" SHOULL BE
LINKED BEFORE FPREALS. ALS0 NO SGRT ROUTINE IS
AVAILAERLE IN THE BCD REALS PACKAGE.

(1]
(1]
(1]
[1]
(1]
(1)
(1]
(1}
(1)
(1]
[1]
1]
[1]
(1]
(1]
(1]
(1]
(1]
[1]
(1]
(1]
.
(1)
e
(1)
se
e
[T]
(1]
(1]
1]
(1]
1)
(1]
"
(1]
[T
e
L1}
(1]
[1}
(1]
(1]
a8
(1]
L 1)
L1}
(1]
[1]
[13
L 1)
(1)
(1]
1]
(1]
(1]
(1]
LL]
L1}
(1]
(1]
(1]

‘CP/M COMMAND LINE EXTRACTION

b

20

22. To use CP/M command line info the user should declare
an absolute variable (PACKED ARRAY [0,.1271 OF CHAR)S
with an address of %80 and then move this to a strinse
(STRINGL1271). "The user should note that the first
character of this string will tyepicaly contain a blank.

VAR : :
CPMCMDBUF : ABSOLUTE [$20]1 PACKED ARRAY [0..1271 OF CHAR:
CPMCMDSTR ¢ STRINGL1Z2713

'BEGIN .
MOVE (CPMCMIEUF , CPMCMOSTR, 128) 3

END.

USE OF RESTARTS FOR REALS AND RECURSION

In a2 similar manner to the $C togsle used for callins

the @XOP routine for real numbers using restarts.,

the $0 togsle has been added to perform the same
operation with recursive madules. Every call to the

@DYN routine will be converted to a restart n (where n

is the Parameter to $2 (e.s. {($6 S)). NOTE:

FOR BOTH THIS FEATURE AND $C THE SWITCH MUST BE BOTH IN
MODULES AND IN THE MAIN PROGRAM =0 THAT THE RESTART VECTOR
LOAD CODE 1S GENERATED AT THE BEGINING OF THE MAIN PROGRAM.

rd
W

i1

Pascal/MT+ User‘s Manual Addendum (Release S.1)

Sectiaon IV

Manual Modifications

" Listed below

Pase

Pase

Page

Page

are manual cerrections:

43 and Pase 4 - section S5.22 is on Pase 97 not 37 .

o2 — svstem now requires S2K (not 42K)

72 - second assisnment statment should be to 32
compariscen should be €1 < S2 A
outpPut should read "is less than" rather than <

S0 - Add HL=240 after CQutput:

Zi — Remove the reserved word NOT from svntax
and add <logical not crerator>

32 - add GNB/WNB to list of file pProc/func

12

Pascal/MT+ User‘s Manual Addendum (Release S5.1)

Section V Validation suite results

The Pascal validation suite (a -collection of more than 200
programs) has been run with Pascal/MT+. We have endeavored to Pass
all of the "conformance" test and have succeeded in all but three
cases. *Only one of these cases is inherent in the compiler itsel#f,
the other two have to do with the precision of our floatinsg Point
Ppackase and output formattine in our fleoating pPoint. In addition we
have discovered & pPrograms in the ‘“conformance" section which we
believe to actually be incorrect. We have listed belocw the prosram
names (as found in the suite) and the results of the tests which
failed: :

Name Reason failed

6.2.2-3 ‘The standard states that forwardly declared Pointers
must not reference backwards if there are is a
tyre in the current block with the same name.
This is quite compilcated but will pProbablvy bc fixed
in a future version of the compiler

b.6.6.2-3 Our square root routine is not (as is typical with
‘ floating Point) empirically accurate (e.=. QRT(7)
=4,99999. '

4£.9.4-4 Cur floatins point output. conversion routine doeﬂ nat

match specifically the formats specified bwy the standard.

We will revise this later

#%3%% Errors in the validation suite e3¢

&.1.2-2 The standard specifies that identifiers may be of anvy

lengath but- does not specify to what desgsree these identifiers

must be unique. This test uses names with uniqueness
past the Sth character.

6;4.3.5—1 This test attempted to declare a file of a variable name

5.6.3.1-1 This test does not meet the reéuirement far identical
tyrpes in VAR pParameter Passins

$5.6.3.4-2 This test is svyntactically incorrect

6.9.4-6 This test wrote “ARAAAR“:1 and expected to have onlvy
. one A outrput. The standard .savs that all characters
are output.

,6.9{4—7 This test writesb(TRUE=5,FALSE:5) and exrects to
aet “TRUE FALSEZ not 7 TRUEFALSE” as specified by
the standard . ’ : :

Pascal /MT+ User’s

&.

2

.5-4

Manua].éddepdum {Release S.1)-

This test attempts to have a CTAZE statement with:
selectors of —-1000 and +1i000. This test should

have been included in the implementation defined
or quality sections because the standard does not

state the required ranae of case statement celertorﬂ
which must be accepted

14

	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	A-11
	A-12
	A-13
	A-14

