UNIX™ SUPPORT FROM BERKELEY

4.3 BSD with NFS

Programmer's
Reference Manual

PRM

UNIX is a trademark of Bell Laboratories

UNIX Programmer’s Reference: Milssitiil -

(PRM)

4.3 Berkeley Software Distribation
Virtual VAX-11 Version-= -

April, 1986

Computer Systems Researglt{Froup:
Computer Science: Division= e
Department of Electrical Engineeringatd’C6mputer Sciengé™
Univessity of California.
Berkeley; California 94720

.

e g v
o i bW

i,

- UNIX Programmer’s Reference Manual
(PRM)

4.3 Berkeley Software Distribution
Virtual VAX-11 Version

April, 1986

Computer Systems Research Group
Computer Science Division
Department of Electrical Engineering and Computer Science
University of California
Berkeley, California 94720

Copyright 1979, 1980, 1983, 1986 Regents of the University of
California. Permission to copy these documents or any portion
thereof as necessary for licensed use of the software is granted
to licensees of this software, provided this copyright notice and
statement of permission are included.

Copyright 1979, AT&T Bell Laboratories, Incorporated.
Holders of UNIX™/32V, System III, or System V software
licenses are permitted to copy these documents, or any portion
of them, as necessary for licensed use of the software, provided
this copyright notice and statement of permission are included.

This manual reflects system enhancements made at Berkeley
and sponsored in part by the Defense Advanced Research
Projects Agency (DoD), Arpa Order No. 4871 monitored by
the Naval Electronics Systems Command under contract No.
N00039-84-C-0089. The views and conclusions contained in
these documents are those of the authors and should not be
interpreted as representing official policies, either expressed or
implied, of the Defense Research Projects Agency or of the US
Government.

Those manual pages labeled “Sun Microsystems Rel 3.0" are
Copyright © 1986 Sun Microsystems, Inc. and MT XINU, Inc.,
all rights reserved. Permission to copy is subject to condi-
tions in your license with MT XINU, Inc.

-1-

TABLE OF CONTENTS

2. System Calls

- 4,3BSD

intro e e e e e e s e s e s s s e o introduction to system calls and error numbers
accept e e o o s o s e e e e s e e e e e e e s o acceptaconnectionon asocket
BCCESS < o o o = o o o o o s o s o o o o o oo s oo« determine accessibility of file
BCCL o o o o o o o o o e o e o s s o s s e e oo e+ s+« turnaccountingon or off
adjtime e e« « o s o« o correct the time to allow synchronization of the system clock
bind e e o 6 o s s s e s e s s e e s e e e e e e s oo o bindaname toasocket
brk e e o e o e s e s e e e e s s e s e e e e« changedatasegment size
Chdif v ¢« ¢ ¢ ¢ ¢« e e o e ¢ e o o o s oo o+« changecurrent working directory
chmod e o e o e s o s e s e e e s e s e s e s e e e ee e changemodeof file
ChHOWN ¢ ¢ ¢ e c ¢ « o e o e o e s s o s o s+ o+ changeownerand group of a file
CArOOL ¢ ¢« ¢ ¢ ¢ ¢ e o o ¢ s e o o s o o o s s s s s s o o o o changerootdirectory
ClOSE ¢ o e o o o o e o e oo s o s o s a a oo easeoeso oo deletea descriptor
CONMECL o « o o o o o e o« o o o« o« o o o« o o o+ o » initiate a connection on a socket
CTEAL o o o o o o o o o o o o o a o s o e o o o o oo oo oo+ o createanew file
AUD ¢ ¢ ¢ ¢ ¢ ¢ e e e e o e o o s s e e e e e e e e oo duplicatea descriptor
execve e e o o o e o e s s e e e s e s et s e e s e e e e e e e e o executeafile
€Xit o ¢ e o e e e e e s e e e s o s e e e s e s e e s e e e .« terminatea process
fentl ¢ ¢ ¢ e e e e e e e e e o e e e e e s e s e s e e e e e e e o filecontrol
flock e o o e oo e oo e oo applyorremovean advisory lock on an open file
FOrK ¢ ¢ o ¢ o e e 6 6 e e e o o o e e s s o o 06 e e s o s s o Createa new process
fsync .« ¢ ¢ e e e oo e synchronizea file’s in-core state with that on disk
getdirentries e o e s o o o« getsdirectory entries in a filesystem independent format
getdomainname e e e e o s e s e s s e s e e oo get/set name of current domain
getdtablesize . . ¢ ¢« ¢ ¢ ¢ ¢ ¢ ¢ o s e 0 o o e e e o o o getdescriptor table size
getgid e e 6 o o s o o s s e s s s s s e s e e e e e e e« o getgroupidentity
GELETOUPS o o o o o o o o o o o o o o s o o o o s o o o « o o o getgroup access list
gethostid ¢ « ¢« ¢ ¢« ¢« ¢ ¢ ¢« ¢ e o ¢ oo . o . get/setunique identifier of current host
gethostname e e e e e e s e e s e e e e s s e e e« o get/set name of current host
getitimer o ¢ v ¢ ¢ ¢ ¢ o e o o e o o s s o o o o« o get/setvalueof interval timer
eLPAZESIZE o ¢ ¢ ¢ o o 4 4 o e 4 o 4 e e e s e s s s e . e . o getsystem pagesize
GELDEEINAME ¢ o « o o « o o s o « o s o o s » o o o « o get name of connected peer
getp_grp e e e e o o o s s 0 o e e s s e e e e e s e s e o o o getprocessgroup
getpid ¢ ¢ ¢ o .t ot et e e s e e e e e e e e e« o getprocess identification
QELPTiOTILY ¢ ¢ ¢ « ¢ o ¢ e o o e o o o o « o « o get/set program scheduling priority
getrlimit« + ... ¢« .. control maximum system resource consumption
QELTUSAZE o o ¢ « o o« o o s o o o » « o » » getinformation about resource utilization
getsockname e o o s e s s s s s e s s e e e s s s e e s e e« getsocket name
etSOCKOPL o o ¢ ¢ ¢ ¢ ¢ ¢ ¢ o s e o s s o o s+« » getand set options on sockets
gettimeofday 6t e e s e e e e e s e e e e s s e e e e e e get/setdateand time
getuid ¢ o o o ¢ 0 e e e e e e e s e s e e e e e e e e e .« getuseridentity
HOCLL ¢ ¢ 6 e e e e o e e e e o e e e e s e s e e e e e e« o controldevice
Kill ¢« ¢ ¢ ¢ ¢ o o o o ¢ e o o oo 0oeeeseeeeso o sendsignaltoaprocess
Killpg o ¢« ¢« o« ¢« ¢« o o o o o o o o s s o o s o+ o sendsignaltoa process group
LHNK o ¢ e o ¢ ¢ ¢ e o o o e o oo oo eeoeeeeses. . makea hardlinktoafile
listen e o e o o e o s e e e s e e s e e e« listenfor connections on a socket
ISEEK ¢ ¢ o« o o « o 4 o s 2.0 s.0 s e e s s s s e o s s s . moveread/write pointer
MKAIT ¢ ¢ o ¢ o ¢ « ¢ e o o s o o o s s s s s s s « o« « » « o makea directory file
MKNOd « ¢ o e o ¢ ¢ o o s s s s e s s s oo oo oo oo makeaspecialfile
MOUNL + o o o o s o s o s o s e o o 0 o 0 00 s oo oo s« o mountfilesystem
NESSVE 4 ¢ ¢ e ¢ o e e ¢ e o o o s o o s o o e o s oseeeseoso NFSdaemons
OPENl « v « » o o o « o « « « « » opena file for reading or writing, or create a new file
pipe e e e e e s s s s e e s s s s s . Createan interprocess communication channel
Profil ¢ ¢t it s e et e e i e e e e e e e e e e executiontime profile

June 1986

-ii- Table of Contents
PLTace o o o o e o o o o o e o
QUOLA ¢ o o o o o o o s o o o
quotactl . . ¢ e o e s o e o e
read ¢ o o o 0 ¢ o 0 o o o
readlink « ¢ ¢ o o o o o o
eboOt ¢ ¢ ¢ e o o o o o
TECV o o o o o 0 0 s o o @
TeName .« o o o o
rmdir e e o s o

e e e o s o o o s s e e s e e e s s« processtrace
e o s o e oo s s e e s+ o manipulatedisk quotas
e e oo s e e oo e s o« manipulatedisk quotas
e o o o o oo 0 e oo a o e e e e s e s o readinput
e e e e o es e e s readvalueof asymboliclink
- c o e s s e e e e« rebootsystem or halt processor
e o o o e s e e s s« receivea messagefrom asocket
© s o e e e e e s e e e e e e e e changethenameof afile
o 06 e o e a o e e s ce s e o s s s s o Temoveadirectory file

SEleCt o o o o o o o o o o e s e o o o s 0 s s o s oo Synchronousl/O multiplexing
SeNd + ¢ ¢ o o s s s o o o s s s s s e e s s s s+ o sendamessagefrom a socket
SELZTOUPS o o o o o o o o o o s o o s o o o o s s o s o o s o« Setgroup access list

Setpgl'p @ © © o ® o o o o 6 o © o © o © © & °© © o © O o o o o o o Setprocessgl‘oup

SELqUOLZ « « o o o « o o o o o o « o « « « « «» enable/disable quotas on a file system
setregid o ¢ o ¢ o ¢ e o o o o e 0 0o e e e s s o« o setrealand effective groupID
SetreUid o ¢ o ¢ ¢ ¢ ¢ o e s o o o o s o s o s oo oo setrealand effective user ID’s
shutdown < . « « ¢ ¢ ¢ e o s e o « « « o shutdown part of a full-duplex connection
SIgDIOCK ¢ « o o o o o o o o o o o o o o s o oo s e e e e e e+« blocksignals
sigpause . . < . « ¢ « o o o atomically release blocked signals and wait for interrupt
SIGTEtUIN o « c ¢ o « ¢ o o s o o o s s o s « s o« o« s o « o« « o o returnfrom signal
SigSEtmasK ¢ o ¢ o ¢ o ¢ ¢ o o 0 o o o s o s o e s o e« o o Setcurrentsignal mask
SIgStaCk o ¢ o ¢ ¢ o ¢ o o o e o o e s e e o o o o setand/or getsignal stack context
sigvec © e o e o s e e s e e e e e e e e e e o o Softwaresignal facilities
SOCKEL ¢ ¢ o ¢ ¢ o e o o ¢ o o o o o o o o« o » createan endpoint for communication
socketpair © e o e e o e e o e e e e s s s e e o Createa pairof connected sockets
stat © o o e o o s s 00 e e e s s s e e o0 s eo s e oo« getfilestatus
StatfS ¢ ¢ ¢ o ot 6 et o e e o 0 s 0 e s e e e o s o« getfilesystem statistics
SWAPON o « « « « « « « » « « « - add aswap device for interleaved paging/swapping
SYymlink « ¢ ¢ ¢ ¢« e« o o o o ¢ o o s e o o s o« o o o« o » makesymboliclink to a file
sync © o s o 6 o s e o e s s s o s s e e o e o e s s e o« Uupdatesuper-block
Syscall ¢ ¢ttt i e i e e e e s e e e e e e e e e o s o Iindirectsystem call
ITUNCALE o o c o « o o« o o o« o o o s o o o« o o « o truncatea file to a specified length
UMASK ¢ o o o o ¢ o o o o o o o e o o s oo oo o« o o setfilecreation mode mask
unlink © e © o e o s s s e e s e s e e e e e s e e« o Tremovedirectory entry
UNMOUNL ¢ ¢ o o o o « o « « o o o o 0 c s s.o o « o o o« s« « o Temove a filesystem
utimes © e o o 0 e s e o s e e s 00 e s s e e s e o e e e e o setfiletimes
vfork¢.¢.. ...« Spawnnew processin a virtual memory efficient way
vhangup « ¢« ¢ ¢« e ¢ ¢ o ¢+ o o « o virtually “hangup” the current control terminal
wait

e o o s o o e s e s e s s e s e e e e o oo o« o wWaitfor processto terminate

WTItE ¢ o o o o e o o o o o o o o o o s o s o o o 0 o s e o o o o Writeoutput

3. C Library Subroutines

INtT0 e« ¢ ¢ o o o o o
abort . ¢ ¢ e o o o @
absS ¢ ¢ e ¢ 0 0 0 o e
alarm . ¢ e e 4 0 o o

e o e s o e e e 0 e e s o o Iintroduction to C library functions
e e e o e o o s s s s e s e o s e e e e« e+ generateafault
© e s s s s e e e s e e e e s e e o« integerabsolute value
e e e e o e s e e o« sSchedulesignal after specified time
« e o s e o s e e e e e e« o Iinversehyperbolic functions
assert e o o o s e s 0 e o s e o e e o s e s e s e e e+ program verification
atof © e e e e s e s sie e e e s e e s s eeess s convert ASCII to numbers
bstring e o e s o oo s e e s s e s e e e e o s e« o bitandbytestring operations

byteorder e e e e e s e e s o o convertvalues between host and network byte order
CTYPL ¢ o o o o o o o o s o e o o e o e o s o« s o o o o o o s s « o DESencryption
ctime

s 6 s e s s e s s s e s s s e s s s s s s+ convertdateand timeto ASCII
CLYPE o o o o o e e o o o s s o s s o o s o o« o s « » character classification macros

CUISES ¢ o « o o o« « o s « o = « » « « screen functions with “optimal” cursor motion
dbm e o o o e o s s o s s e s e s s s s e s e e e e s o databasesubroutines
June 1986

4.3BSD

Table of Contents - iii -

dir€CLOTY « o « o o e % e o e o o o s o s o o o s o e« s o o« directoryoperations
€CVE o o o o o o s o s o o s s o s s s s s s e s s e e s s e e s oOUtputconversion
end e o o o s o o e s o e s s s s s s s s e e e e s s oo lastlocationsin program
€f 4 e e s e e e s e e s e e e e e e e s e e e e e e e oo errorfunctions
€her « o ¢ o o ¢ e e o ¢ o e o o e o e o s « o o oo monitor traffic on the Ethernet
€XECl 4« s e 4 e e e e e s e s e s e e e e e e e oo« exeuteafile
€Xit o o ¢ ¢ o o ¢ o o o « o » » terminate a process after flushing any pending output
EXP e e o s o e s s s e e s s e s e s e e e e+« exponential, logarithm, power
fclose e o e o e s o s e s s e e e e e e aeeeees e Ccloseorflusha stream
fEITOT @ o o o o o o o o o o o o e o e s s o o s s o o « « « Stream status inquiries
floor «......... absolutevalue, floor, ceiling, and round-to-nearest functions
fopen © o o o o o e s o o o e s e e s e s e s e s e e e s s s s s s Openastream
fread « + ¢ ¢ ¢ o o e o s s s s e s s e s s e s« o bufferedbinary input/output
freXp ¢ ¢ ¢ ¢« ¢ ¢ ¢ c ¢ o e o o e e o e s o o« o splitinto mantissa and exponent
fSEEK ¢ ¢ 4 ¢ c ¢ ¢ s e e o s s e s e s e e e e s e e e e e . o Tepositiona stream
getc e e e s o s e s e e e e e e e e e e oo« getcharacter or word from stream
getdisk e o o e o o s e 0 e s e s e e o e oo s getdisk description by its name
eV ¢ ¢ ¢ ¢ ¢ ¢« ¢ s s o s e e e s s s e s oo oo o Vvaluefor environment name
getfsent . o ¢« ¢ ¢ ¢ e ¢ s e e e e e e o e o oo o getfilesystem descriptor file entry
BELZTENL ¢ « ¢ ¢ o o o o o o o e o o s o o s s oo s s oo o« o« getgroupfileentry
gethostbyname .« o ¢ ¢« ¢« o ¢ ¢« ¢ ¢ ¢ ¢ o ¢« o o o o o s o « o getnetwork host entry
getlogin & & ¢ ¢ 4t e e e et e e e e e e e e e e e e e e s« getloginname
getmntent e s e o o s e s e e e s e oo oo o getfilesystem descriptor file entry
getnetenl o o ¢ ¢ o o o ¢ ¢ o o o o o o s s s s s e e e s e o o getnetworkentry
GEtNEtgrent < o ¢ ¢ ¢ ¢ ¢ o c o ¢ o s s o 0o o o s e o o o o getnetwork group entry
GEOPL ¢ ¢ ¢ ¢ o ¢ o o ¢ o e o s s e e o s s o s e o o getoption letter from argv
GELPASS ¢ ¢ o ¢ ¢ o o s ¢ o s s s o s o s o s 0 e e e s e oo o o Teada password
GELPTOTOENL ¢ « o ¢ e o o o « o o o o o o o o o o o o o« o o o« o o getprotocol entry
BELPW ¢ ¢ ¢ ¢ ¢ o ¢ s o e o s e o o s e s e s e e e e e o+ o getnamefrom uid

" getpwent e o o o o s s o e e s e s e e e e e e e e oo o getpassword fileentry

4.3BSD

GEIIPCENT & & ¢ o ¢ e ¢ o o o o o o o o o o o a o s o s o s o e+ oo getrpcentry
GELTPCPOIT ¢ ¢ ¢ o « o e o o o o o e o o o o o o o o o o o o o get RPC port number
GELS ¢ ¢ ¢ o ¢ s o o s s e e o o e e s e e e s e e e« o getastringfrom astream
GEISETVENL ¢ o o o o o e o o o o o o o o o o o o o o o s s s o+ o getserviceentry
GELLYENt ¢ « o ¢ o ¢ o o o o o o o o o 0 0 0 e 0 o s o o oo o getttysfileentry
getusershell . ¢ o ¢ ¢ ¢ ¢ ¢ ¢ ¢ o o ¢t e e e o oo e e oo oo getlegal user shells
getwd . . o . . s st et e e e e e« o getcurrent working directory pathname
hypot <« ¢ ¢ ¢ ¢ ¢« ¢ ¢ o ¢ s s o o« o« o Euclidean distance, complex absolute value
je€€ .+ ¢ ¢ 4 s e e e e e e e s e« . s coOpysign, remainder, exponent manipulations
INEt ¢ ¢« ¢ ¢ ¢« ¢ ¢ e e e o e o oo oo s oo o Internet address manipulation routines
infnan signalsinvalid floating-point operations on a VAX (temporary)
INILGTOUPS ¢ ¢ ¢ ¢ ¢ ¢ o ¢ e e o o o e o o s s s o« « o » Iinitialize group access list
insque e e e e e e o e e e e e e e e e e insert/removeelementfrom a queue
JO e e e e e e e e e e e s e s s e s s e 0 s e e e s s e e e oo Dbesselfunctions
lgamma e e o s o s s s o e s e s e s s e e s e e e e s o loggamma function
1ib2648 e s e e e e s e s e s e e« subroutines for the HP 2648 graphics terminal
malloC ¢ ¢ ¢ ¢ ¢ ¢« t s e et e e e e s e s e e s s e e« . memoryallocator
math . .. e e e e eeoeeo oo introductionto mathematical library functions
mKktemp e o e e s s s e s s s s s s e s e s e e s s s s makeaunique file name
monitor e o e o o 4 e s s s a s s e e s e e e e e s e o prepareexecution profile
MOUNt + « o « o« v oo o o « o« « o« « » » Kkeep track of remotely mounted filesystems
IMDP ¢ o o o o o o o0 0e0eeee0se0e0e s o multipleprecision integer arithmetic
ndbm . ¢t i e i e e e e s e e e e e e e oo databasesubroutines
NMICE ¢ ¢ o ¢ e ¢ o o o o s o s o o o o s s s o o o o o o« o« Setprogram priority
nlist e o e o s s s e e e s e s e s e e e e s e e« getentriesfrom name list
ns 6 e e e et e e aeeeeesess XeroxNS(tm) addressconversion routines

June 1986

-jv - Table of Contents

pause e o o o e s o s e s e s s s s s s e s e s e e e s s e s« Stopuntilsignal
PEITOT o« o « o o o o o e o o s e s o o o o o o o s s o o o o« System error messages
plot e o o o o o o s o e s s e e s e e e e e e e e e e e o s o« graphicsinterface
POPEN ¢ « « e o o o e o o o o o o s o s oo oo« o Iinitiate /O to/from a process
Printf ¢« ¢ ¢ ¢ ¢ ¢ ¢ ¢ o e s s o e s e o e e e e« o formatted outputconversion
psignal e o e e e e e s s s e s e o e e e e e s s s e« s Systemsignal messages
putc © o o o e s e 0 e e e e e e e s e e o e o putcharacteror word on a stream
puts 6 ¢ o ¢ e 6 6 0 e e e s e e e e e s e s e e e e putastringonastream
gsort e o o o s c e s e e 0 e e e e 0 e e e s e e e s e s s e s« quickersort
rand e e e o o o e o o s e e e ce s e e e e s s« randomnumber generator
random Dbetter random number generator; routines for changing generators
remd ¢ .« ¢ e e oo o s o o o o routines for returning a stream to a remote command
TEZEX o o o o o o o o o o o o o o o o o o o s o s s s o o regularexpression handler
TESOIVET & ¢ ¢ ¢ o o o o e o o e o o e« s o o s s o e o s o o o « o resolver routines
rexec e o o o e o e s e s e e o e e s s s s e o returnstream toa remote command
TNUSETS « « « « o« o« « « « + « «» » return information about users on remote machines
TQUOLA ¢ o o « e o e e o s o o o s« o o « « « « implement quotas on remote machines
IStAL o o o o o o o o o o o o o o o o o o o getperformance data from remote kernel
rwall . . ¢ o s e e s e e e e e s s s e e s« Writetospecified remote machines
SCANdIT ¢ o o o o o o o ¢ o o o o o o 0 0 s 6000 e e s oo o Scanadirectory
scanf e o o o o o e s o e e s e e e e e e e e s o« formattedinputconversion
setbuf .« ¢ ¢ ¢ o e e e o e e e o s e e e e e .o o assignbufferingtoa stream
SELJMP ¢ o o o o o o o o o o o o o o o s 0 e 0 o0 0 s s s e+« non-localgoto
SEtUid ¢ ¢ ¢ o ¢ e e ¢ o 4 e o o o e e e 0 o e s s e e s s s o SetuserandgrouplD
siginterrupt . . ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ o o o« o o allow signals to interrupt system calls
signal © e e s 00 e e s s e e ees o simplified software signal facilities
SIN © ¢ ¢ ¢ o ¢ o e o 00 e e e e oo o trigonometricfunctionsand their inverses
SIDh & ¢ o o ¢ ¢ 6 6 e o o ¢ e ¢ o e acoeoseeeseee. o hyperbolicfunctions
Sleep ¢ o ¢ ¢ ¢ ¢ e ¢ s e e e e e e e e e e o suspendexecution for interval
spray e e o o e o e s e s e e e s s e o o Scatter datain order to check the network
sqrt e o o o e e o o o s s s s e 0 e s s e s e s s s e o e« cCuberoot, square root
Stdi0 ¢ o ¢ ¢ o e ¢ e e e e e s oo oo o o standard buffered input/output package
SIPINE « o o o o ¢ o o s o s o 6 o s 0 0 e e s e s s 0 e e e oo Stringoperations
SLLY © « e e e s e e s e e e e e s e es oo setandgetterminal state (defunct)
SWAD ¢ ¢ ¢ ¢ o 6 o e o o 0 o s 6 s 0 6 6 e e s e e o0 o0 e s o Swapbytes
SYSIO ¢ ¢ ¢ ¢ ¢ o e e o 6o s o o s 0 e 6 e e e s e e e s s o controlsystem log
SYSEIM ¢ ¢ ¢ o o o o o o s o o o s o s s e o e e 0o s o o« issueashell command
TEIMCAP « o« o o o ¢ o o o o« o« « « « o « o » terminal independent operation routines
time e e e e t e s o s s s s s e e e s e s e e s e e e e s e« getdateandtime
TIMES ¢ o ¢ ¢ ¢ o ¢ ¢ o o o o e e e o o o o o ¢ s o0 ¢ o s « s o getprocesstimes
TLYNAME « o« o o o ¢ o o o o o ¢ o o s o« s s o s o o o« o« « o findname of a terminal
ualarm ¢ o e ¢ e 4 e e e e e e oo« oo schedulesignal after specified time
UNGELC « o o o o e o o« o o s o o o o o o o o pushcharacter back into input stream
usleep o o e e e e e e s e e e e e e s e suspendexecution for interval
ULIME ¢ ¢ ¢ ¢ ¢ o ¢ o o ¢ e o o e o s o o e o s e s o oo oo oo« o setfiletimes
Vallo€ o ¢ ¢ ¢ ¢ ¢ ¢ ¢ e e e e e e o 00 s e o e e oo alignedmemory allocator
VATATES ¢ o o o o o o o o o o o o o« o o o o o o o o o « « « » Vvariable argument list
vlimit e e s e coe e e e s e e« o control maximum system resource consumption
VImMES . . o o s ¢ e e e e e e oo« getinformation about resource utilization
ypclnt e e o o s s e e s o s e s s e e s e s e e s« Yyellow pagesclient interface
yPpasSWd. . ¢ « ¢ ¢ ¢ 4 e s o e s e« .+« o« o updateuser password in yellow pages

3F. Fortran Library

intro © o e e oo e e e s e s e e e introductionto FORTRAN library functions
QDOTL ¢ ¢ ¢« ¢ ¢ ¢ ¢ e o e e e e o e s o o 0 e e e oo o o abnormaltermination
access e e o o o e o s e e o o s s e e e s s s e« determine accessibility of a file

June 1986 4.3BSD

Table of Contents -v-

- alarm e« e e s e s e s s e s e s s e executeasubroutineafter a specified time
bessel e e e e s o s e s s e s e e e e s eeess oftwokindsforinteger orders
Dit « o o ¢ e e o o e e s o« o and,or,xor, not, rshift, Ishift bitwise functions
Chdir & ¢ o o ¢ ¢ e ¢ e e o e ¢ e s s e o e e oo oo changedefaultdirectory
Chmod « ¢ ¢ ¢ ¢ ¢« ¢ ¢ o ¢ e o e o s o o s oeeoesseeo Cchangemodeofafile
€liME & o o o e o ¢ ¢ o o a s o ¢« o o o o o o o o+ o returnelapsed execution time
€Xil o ¢ o o o o o s o e s s s e e s s e s e s s o« terminate process with status
fdate =« « « « ¢ ¢« o o ¢ o e s o o o oo o« o returndateand time in an ASCII string
AmMin ¢ « ¢« ¢ ¢ ¢ ¢t 4 4t e e e e s e e e e e e e s e e s returnextreme values
flush « ¢ o e e ¢ ¢ ¢ e o e e e oo oeoeseeseses flushoutputtoa logical unit
fork e o e o e e s s o s s s s s e s e s e s s s s createacopy of this process
fSEEK ¢« ¢ ¢« o ¢ e ¢ o o o e o e s s e e s e e« o« repositiona file on a logical unit
BELATE < o ¢ o o o e o o o o e s s s s s s o s o o o returncommand line arguments
BBLC ¢ ¢ ¢ o ¢ e o s s o o o s s e s e s e o s« o getacharacter from a logical unit
getcwd ¢ ¢ e ¢ e ¢ e e e e o o o s o o o getpathname of current working directory
GetENV ¢ ¢ ¢ ¢ ¢ e o o s e o e o s s e s oo o o getvalueof environment variables
BELIOg ¢ ¢ ¢ ¢ o e e e e e o e e s s o e e e e e e e e o« getusersloginname
getpid e o o 6 5 o e o o s s e e e e 0 e s e e e e e e e e e e e o getprocessid
getuid e e o o e o s e e e e e es e e getuserorgroup ID of the caller
hostim & ¢ ¢ o ¢ ¢ ¢ o o ¢ ¢ o e o e o o oo oo o 0o getnameof current host
idate e o e e e e e e s e e s e e e o returndateor timein numerical form
index © o o o o o o 6 o o o e s e e e e e e e e s o tell about character objects
JOINIt ¢ ¢ ¢« ¢ o e ¢ o ¢ o e o o o e o ooeeeeso. changef771/0 initialization
Kill o o e o o ¢ o o ¢ e e o e o e oeeeseeessss. sendasignaltoa process
Ink o o ¢ o o ¢ ¢ e ¢ e c o oo cooeseseos o makealink toan existing file
IoC ¢ ¢ ¢ e 6 e o o e e e e e e e e e e e e oo o oo returntheaddressof an object
IoONE ¢ o e e e o 4t e e e e s e e e s e e e e s e s s« Iinteger object conversion
mMalloC ¢ ¢ ¢ o ¢ ¢ e e e 6 e e s o e s s s a0 e eee e oo memoryallocator
perror e e o o s o o s e s e e e e e e e e e e e s e s o getsystem error messages
PIOt ¢« ¢ ¢ ¢t e et e e e e e oo« f£77]library interface to plot (3X) libraries.
PULC ¢ ¢ ¢ o ¢ e o o e o o s ¢ o s« s« o Writeacharacter to a fortran logical unit
gsort @ ¢ o o o o o e o o o 6 o s o e e e s e e s e s e e e e e e e o s Qquicksort
TANA ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ o o o o s e s s s 6 e e e e s e s s s o returnrandom values
TandoOm < o o ¢ o o ¢ e o o e o s e o e oo oo o« Dbetter random number generator
TENAME o o o o o o o o o o o o o o o ¢ o s o s o o o o o o oo s o o Tenamea file
signal < . . . 0ttt e et e e e e e e e ..o changetheaction for asignal
Sleep ¢ ¢« ¢ ¢ ¢ ¢ ¢t 4 e e e e s e e e e s oo o suspend execution for an interval

stat © o o e e s e o s s s e s e e e s e e s e e e e e e e s« o getfilestatus
SYStEM ¢ o ¢ ¢ ¢ o ¢ o o o o o o o0 0000000 oo executea UNIX command
time © o 6 6 6 o o s o s s s e s s e e e e e e e e e e e o« returnsystem time
TOPENl e o o o o o o o o o s o o s o e s o o o o s oo oeeoeess f77tapel/O
traper © o o o o o o o o s e e s e e e e e e e e e e s s o traparithmeticerrors

ITAPOV ¢ ¢ o o o o o o o o o o o o o o « » o o trapand repair floating point overflow
trpfPe ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ e e e e e e e o o« o o trapand repair floating point faults
ILYNAM ¢ & ¢« ¢ ¢ ¢ o o o ¢ o e o o o s s s o s s o o o findname of a terminal port
unlink & ¢ ¢ ¢ ¢ ¢ o e ¢t c e e e e e e e e e e e ..o .. Tremoveadirectory entry
WAL o ¢ o e e e e e e o e o s s e e s e s e s« o Wwaitfora processtoterminate

4. Special Files

4.3BSD

INtT0 ¢« ¢« « ¢ ¢ ¢ ¢« o ¢« « « « « « o introduction to special files and hardware support
acc e e e o e s s s s e s s e s s e e eeessasess ACCLH/DHIMP interface
ad e o s o e o s e e s s s s s s s s e s s e e oo DataTranslation A/D converter
QTP o o o o o o o o o o o o e s s o e o o o e s+ o+« AddressResolution Protocol
autoconf e eo diagnostics from the autoconfiguration code
bk « e e e e oo linediscipline for machine-machine communication (obsolete)
cons © e o o o o s o e e e o e s s e e e e e s s ess VAX-11 console interface

June 1986

-vi-

Table of Contents

1

crl e e e o e e e s s e e s o s e eoe s e s ee e VAXS8600console RLO2 interface
€SS e o o o e o e e s e s oo eass s e s e+ DECIMP-11ALH/DH IMP interface
€L o o o o o o e o s o o s 0o s s e e s e e o e e e s o+« phototypesetter interface
ddn . ¢ ¢ ¢ e e e o0 e 0 e e oo e oo DDNStandard Mode X.25 IMP interface
de < e coseceasoeecessesess DECDEUNA 10 Mb/s Ethernet interface
dh . ¢.ceeeeeeocoesseoe DH-11/DM-11 communications multiplexer
dhbu . ¢ ¢ ¢ ¢ o s e 000 e s s e e e e oo DHU-11communications multiplexer
dm¢c DECDMC-11/DMR-11 point-to-point communications device
© o e o e o s 0 e s 0 e s es s es e e o s s s DMF-32 terminal multiplexor
e e o o e s e s s e s s e s e e e e e e e e s o DMZ-32terminal multiplexor
e o o s e e s s e o e s a e s e e oo e e s s e DN-11autocall unit interface
ArUmM o o o ¢ ¢ ¢ o o e o o e e o o o o s s 0o o000 e0e e« o pagingdevice
e o e o e o o s e e e esesseeoes e e e e DZ-11 communications multiplexer
e e e o o s s e s e e s e esseseseeees 3Com10Mb/sEthernetinterface
e o s o s o s s e s e s es e e e e s e s Xerox3Mb/sEthernetinterface
e ¢ e o o e s e o e e s s easoseaseeoe e Excelan 10 Mb/s Ethernet interface
e o e o 06 o e s o o o s s s e s e s s e e e s e e e e s consolefloppyinterface
hdh . ¢ ¢ e ¢ e ¢t c o oo e ocsooesseeees ACCIF-11/HDH IMP interface
c oo e e e eeseecesseesses RK6-11/RK0O6 and RKO7 moving head disk
BP o ¢ c c o e e o oo 0oeeceecoeeseseeosss MASSBUSdisk interface
ht e cos oo ecess s TM-03/TE-16,TU-45TU-77 MASSBUS magtape interface
BY ¢ c e ccooeceeoesesosceoeoss NetworkSystemsHyperchannel interface-
icmp e e e o s e o e e oo eseseceee s s o Internet Control Message Protocol
AP ¢ ¢ e ¢ e o ¢t e e e e e o e o e e s e o o o XeroxInternet Datagram Protocol
ik © e o e e e e oo eeeeses oo Ikonasframe buffer, graphics device interface
il c e e o ee oo e e e oo oo Interlan NI1010 10 Mb/s Ethernet interface
IMP ¢ ¢ o ¢ oo o o o 0 0000600 eoeeseescessess 1822network interface
IMP o ¢ ¢ o e c e e 0 e ¢ s s c c s e o e o o e oo« o« IMPraw socketinterface
inet © e o o e o o o s s e o e e e s e e e e e s s oo Internetprotocol family
ID o ¢ e o e e o e o o o oo e s et o000 e ess e e« InternetProtocol
ix e e e e e e e e ee e e e cese s s Interlan Np100 10 Mb/s Ethernet interface
KE ¢ c ¢ e oo oo eeosoeoeeeoeossosesesesss KL-11/DL-11W line clock
lo e e e s e o e o e o e e e e o« o softwareloopback network interface
Ip © © ¢ o o o o o o o s o o o o e e e 0 s e o e e e s e e e e s o o o lineprinter
MEM ¢ o o o o ¢ o o o 0 6 s s c c s s o 6 s c o s o o e s oo o oo MmMainmemory
Mt o e c o oecoeeceeceeceseeses TM78/TU-78 MASSBUS magtape interface
MO ¢ ¢ ¢ ¢ o e ¢ o e o s o o s oo oo osesese0 e UNIXmagtape interface
np e e c o e e e s s e e 0o s e s s e Interlan Np100 10 Mb/s Ethernet interface
DS e ¢ o oo 0eeeeesssseess XeroxNetwork Systems(tm) protocol family
nsip softwarenetwork interface encapsulating ns packets in ip packets.
null e o o o o o e o o o o s s e s e s e e e e e e e e e s s e s e e o datasink
Pl ¢« ¢ ¢t it i it e e e eeeeseee.. DECCSSPCL-11B Network Interface
Ps e« oo e e oo EvansandSutherland Picture System 2 graphics device interface
PLY =~ ¢ ¢ o e e o e e s e o s s o s s s o o o s s o oo o« pseudo terminal driver
€ ¢ e e o e o s e0e 000000 e+ DECDEQNA Q-bus10 Mb/s Ethernet interface
X e ¢ e e s e s s e e s e s s eesee e s o DECRXO02floppy disk interface

PRB8R %EE

=

spp e 6 6 066 0600 0 e e e e « « « « « « Xerox Sequenced Packet Protocol
b ¢ ¢ o e o e c e o cc e oo oo linediscipline for digitizing devices
TCP o o o o o o o o o o o o o o o o o « « « « Internet Transmission Control Protocol

UM ¢ ¢ o o o e oo o6 c0oeeeeeesesesss TM-11/TE-10 magtape interface
tMSCP « = e e o o o e o s s e s aeoeaeassos o DECTMSCP magtape interface
ts © e e o s s e s s e e e e e e e e e e e e e s e s e e« TS-11 magtape interface
17122 e o o o s o « o+ o general terminal interface
12 S, VAX-11/730 and VAX-11/750 TUS8 console cassette interface
Uda . o e e e et e e e e e e e e e oo e e e UDA-50disk controller interface
udp e ¢ e e o o s o e e e e e e e e e e e e« Internet User Datagram Protocol

June 1986 . 4.3BSD

Table of Contents - vii -

up e s e e s e e e s e e e e e« unibusstorage module controller/drives
UL o o o e o s s e s s o o s o o o« » UNIBUSTUA4S tri-density tape drive interface
uu e e o s s s e e e seeeeeses TUS8/DECtape Il UNIBUS cassette interface
VA o o s o o o e o s s s e s s s e e e e e e e e e e s o DBenson-Varian interface
VP e o o o o s o s o 0 s s e s a0 e s e e e e e s e s e s Versate interface
VV e e o e o o s o e o oo e s e e eeee e e ProteonproNET 10 Megabit ring

5. File Formats

4.3BSD

L-deviceS « « ¢ « ¢ o« ¢ o e e e s s o s s e o oo oo UUCPdevice description file
L-dialcodeS . « ¢« ¢ ¢ « « ¢ ¢ e ¢ ¢« e o s oo+ oo« UUCPphonenumber index file
LaliaseS « « « « ¢ ¢ ¢« ¢ ¢ ¢ ¢ o e« o s s oo oo o000+ UUCPhostname alias file
L.cmds e e e e e e eseeeee s ess UUCPremote command permissions file
LSYS ¢ ¢ ¢ ¢ e e o oo eeosoeeoeoesessess UUCPremote host description file
USERFILE . . . ¢ e e ¢ e e e s oo o0 oo UUCPpathname permissions file
QOUL ¢ ¢ o o ¢ ¢ o o e o oo oo e e o e oo assemblerand link editor output
ACCL o o o o o o o s o e o o s o e s o e o oo o oo s oo executionaccounting file
AlidSES .+ ¢ ¢ ¢ ¢ ¢ e o ¢ e e o e o s s e s e e e s s o« o o aliasesfilefor sendmail
BT o e ¢ o o o s o s e s e e s s s e e e e s e aaa. archive(library) file format
COTE o e o ¢ o o o o s s o s s o s e o o s o o o o o+ formatof memoryimage file
AbX ¢ ¢ ¢ ¢ e ¢ ¢ o o o s 000 e 0000000+« dbxsymboltableinformation
dir e o o e o o s e s o o s s s e s e s e e e e e e s s e e o Fformatof directories
disktab ¢ ¢ ¢ o ¢« ¢ o ¢ ¢ o o e o e s e e s s e oo e e oo diskdescription file
dump < c ¢ ¢ e ¢ o o e o e e e oo o000 s e« Iincrementaldump format
€XPOTIS « ¢ o o o e o o s o o s o o o « o o o « « o NFS file systems being exported
£S ¢ o ¢ e o e e e e e e o e e e e e e oo e e« Fformatof filesystem volume
fstab e o e s s o e e e s e e s e s e e o o o staticinformation about filesystems
gettytab s ¢ st e e et e e e o« .« terminal configuration data base
group © o e o s s o e s s e e s s e s e e e e e s e e e s e o groupfile
BOSES ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ o ¢ ¢ o o o o e o o o e o o oo o« o« hostname data base
hoStS.QUIV o ¢ ¢ e ¢ ¢ o« o o o o o e e o o o o s s o s o s o o listof trusted hosts
map3270 databasefor mapping ascii keystrokes into IBM 3270 keys
mtab ¢« ¢ ¢ e o e s o e e e e o 0 e e e e e e oo o« o mountedfilesystem table
NELZTOUD « o o o o o o o o o s o o o o s o o 0 o 0 oo oo o listof network groups
NELWOIKS ¢ ¢ o o ¢ ¢ o ¢ o o o o o e e o o e o o « o« o+« network name data base
PaSSWA ¢ ¢ o ¢ o o o o o o o o o e o 0 0000000000 o passwordfile
phones e e o s s e s e s e e 0o e e s e e« remotehost phonenumber data base
plot e o o o e e s o e e e e e o s e e e e e e s s e s e e« o graphicsinterface
PrINtCAP ¢ ¢ ¢ o ¢ o o o e o o e o s o « o o o« o « « « o printer capability data base
ProtocOlS o« ¢ o ¢ ¢ ¢ o ¢ ¢ s o o o s e s e s s s s oo o o protocol name data base
TEMOLE o o o ¢ o o o o o o o o o o« « o o s = o « « o « o remote host description file
TESOLVET ¢ ¢ o ¢ ¢ ¢ e o e ¢ o o o o o o o s o o o o o o o« resolver configuration file
IMtaD ¢« ¢ ¢« ¢« ¢ ¢ ¢ ¢ ¢ e e e e o e e oo o o o remotely mounted file system table
services o o s e s e s s e s e e e e e e e e e s e e s s s« servicenamedata base
StAD o ¢ o 4 4 et e e e o e e e s s e e e e e e e e e e e o Symboltabletypes
TAT o o o o o o o o o o o s o s o o o s o o o o o o o o o o« tapearchive file format
TEIMCAD « o o o o o o o s o o s o o o« o o o« o o o « « terminal capability data base
TP ¢ ¢ e o st ¢ o o e o e o o e oo 0s e s e e eeeeoe e+ DEC/magtapeformats
TLYS ¢ ¢ o o o o o s e o o s o o s o o o o o s o s s o o terminalinitialization data
194 o/ TR e s e s s s o 2 i e e s o s e+ « o primitive system data types
ULMP o « o ¢ o o o o s o o o o o o o s o s 06000600 0e0ees 000 loginrecords
uuencode .« . ¢ . ¢ s . s e e s s s e e o s« s o formatof anencoded uuencode file
viont¢..... Ffontformatsforthe Benson-Varian or Versatec
vgrindefs ¢ .. ¢ vgrind'slanguage definition data base
ypfiles e s e s e e e oo e+ .. theyellowpages database and directory structure

June 1986

INTRO(2) UNIX Programmer’s Manual , INTRO (2)

NAME .
intro — introduction to system calls and error numbers

SYNOPSIS
#include <sys/errno.h>

DESCRIPTION
This section describes all of the system calls. Most of these calls have one or more error
returns. An error condition is indicated by an otherwise impossible return value. This is
almost always —1; the individual descriptions specify the details. Note that a number of
system calls overload the meanings of these error numbers, and that the meanings must be
interpreted according to the type and circumstances of the call.

As with normal arguments, all return codes and values from functions are of type integer
unless otherwise noted. An error number is also made available in the external variable
errno, which is not cleared on successful calls. Thus errno should be tested only after an
error has occurred.

The following is a complete list of the errors and their names as given in <sys/errno.h>.

0 Error O
Unused.

1 EPERM Not owner
Typically this error indicates an attempt to modify a file in some way forbidden
except to its owner or super-user. It is also returned for attempts by ordinary users
to do things allowed only to the super-user.

2 ENOENT No such file or directory
This error occurs when a file name is specified and the file should exist but doesn’t,
or when one of the directories in a path name does not exist.

3 ESRCH No such process
The process or process group whose number was given does not exist, or any such
process is already dead.

4 EINTR Interrupted system call
An asynchronous signal (such as interrupt or quit) that the user has elected to catch
occurred during a system call. If execution is resumed after processing the signal
and the system call is not restarted, it will appear as if the interrupted system call
returned this error condition.

-5 EIO 1/O error

Some physical I/0 error occurred during a read or write. This error may in some
cases occur on a call following the one to which it actually applies.

6 ENXIO No such device or address
I/0 on a special file refers to a subdevice that does not exist, or beyond the limits of
the device. It may also occur when, for example, an illegal tape drive unit number
is selected or a disk pack is not loaded on a drive.

7 E2BIG Arg list too long
An argument list longer than 20480 bytes (or the current limit, NCARGS in
<sys/param.h>) is presented to execve.

8 ENOEXEC Exec format error
A request is made to execute a file that, although it has the appropriate permissions,
does not start with a valid magic number, (see a.out(5)).

9 EBADF Bad file number
Either a file descriptor refers to no open file, or a read (resp. write) request is made
to a file that is open only for writing (resp. reading).

4th Berkeley Distribution June 30, 1986 1

INTRO(2) UNIX Programmer’s Manual . - INTRO(2)

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

ECHILD No children
Wait and the process has no lwmg or unwaited-for children.

EAGAIN No more processes
In a fork, the system’s process table is full or the user is not allowed to create any
more processes.

ENOMEM Not enough memory
During an execve or break, a program asks for more core or swap space than the sys-
tem is able to supply, or a process size limit would be exceeded. A lack of swap
space is normally a temporary condition; however, a lack of core is not a temporary
condition; the maximum size of the text, data, and stack segments is a system
parameter. Soft limits may be increased to their corresponding hard limits.

EACCES Permission denied
An attempt was made to access a file in a way forbidden by the protection system.

EFAULT Bad address
The system encountered a hardware fault in attempting to access the arguments of a
system call.

ENOTBLK Block device required
A plain file was mentioned where a block device was required, e.g., in mount.

EBUSY Device busy
An attempt to mount a device that was already mounted or an attempt was made to
dismount a device on which there is an active file (open file, current directory,
mounted-on file, or active text segment). A request was made to an exclusive access
device that was already in use.

EEXIST File exists ,
An existing file was mentioned in an inappropriate context, e.g., link.

EXDEV Cross-device link
A hard link to a file on another device was attempted.

ENODEV No such device
An attempt was made to apply an inappropriate system call to a device, e.g., to read
a write-only device, or the device is not configured by the system.

ENOTDIR Not a directory
A non-directory was specified where a directory is required, for example, in a path
name or as an argument to chdir.

EISDIR Is a directory
An attempt to write on a directory.

EINVAL Invalid argument
Some invalid argument: dismounting a non-mounted device, mentioning an unk-
nown signal in signal, or some other argument inappropriate for the call. Also set
by math functions, (see math(3)).

ENFILE File table overflow _
The system’s table of open files is full, and temporarily no more opens can be
accepted.

EMFILE Too many open files
As released, the limit on the number of open files per process is 64. Getdtablesize(2)
will obtain the current limit. Customary configuration limit on most other UNIX
systems is 20 per process. '

4th Berkeley Distribution June 30, 1986 2

INTRO(2) UNIX Programmer’s Manual INTRO (2)

25

26

27

28

29

30
31
32
33
34
35
36

37

38
39

40

ENOTTY Inappropriate ioctl for device
The file mentioned in an ioct! is not a terminal or one of the devices to which this
call applies.

ETXTBSY Text file busy .
An attempt to execute a pure-procedure program that is currently open for writing.
Also an attempt to open for writing a pure-procedure program that is being exe-
cuted.

EFBIG File too large
The size of a file exceeded the maximum (about

ENOSPC No space left on device
A write to an ordinary file, the creation of a directory or symbolic link, or the crea-
tion of a directory entry failed because no more disk blocks are available on the file
system, or the allocation of an inode for a newly created file failed because no more
inodes are available on the file system.

ESPIPE Illegal seek
An lseek was issued to a socket or pipe. This error may also be issued for other
non-seekable devices.

EROFS Read-only file system
An attempt to modify a file or directory was made on a device mounted read-only.

EMLINK Too many links
An attempt to make more than 32767 hard links to a file.

EPIPE Broken pipe
A write on a pipe or socket for which there is no process to read the data. This con-
dition normally generates a signal: the error is returned if the signal is caught or
ignored.

EDOM Argument too large
The argument of a function in the math package (3M) is out of the domain of the
function.

ERANGE Result too large
The value of a function in the math package (3M) is unrepresentable within
machine precision.

EWOULDBLOCK Operation would block
An operation that would cause a process to block was attempted on an object in
non-blocking mode (see fentl(2)).

EINPROGRESS Operation now in progress
An operation that takes a long time to complete (such as a connect(2)) was
attempted on a non-blocking object (see fenzl(2)).

EALREADY Operation already in progress
An operation was attempted on a non-blocking object that already had an operation
in progress.

ENOTSOCK Socket operation on non-socket
Self-explanatory.

EDESTADDRREQ Destination address required
A required address was omitted from an operation on a socket.

EMSGSIZE Message too long
A message sent on a socket was larger than the internal message buffer or some
other network limit.

23! pytes).

4th Berkeley Distribution June 30, 1986 3

INTRO(2) UNIX Programmer’s Manual INTRO(2)

41
42
43
44

45

46
47
438
49

50
51
52
| 33

54
55
56

57

EPROTOTYPE Protocol wrong type for socket
A protocol was specified that does not support the semantics of the socket type

requested. For example, you cannot use the ARPA Internet UDP protocol with type
SOCK_STREAM.

ENOPROTOOPT Option not supported by protocol
A bad option or level was specified in a getsockopt (2) or setsockopt (2) call.

EPROTONOSUPPORT Protocol not supported
The protocol has not been configured into the system or no implementation for it
exists.

ESOCKTNOSUPPORT Socket type not supported
The support for the socket type has not been configured into the system or no
implementation for it exists.

EOPNOTSUPP Operation not supported on socket
For example, trying to accept a connection on a datagram socket.

EPFNOSUPPORT Protocol family not supported
The protocol family has not been configured into the system or no implementation
for it exists.

EAFNOSUPPORT Address f amily not supported by protocol family
An address incompatible with the requested protocol was used. For example, you
shouldn’t necessarily expect to be able to use NS addresses with ARPA Internet pro-
tocols.

EADDRINUSE Address already in use
Only one usage of each address is normally permitted.

EADDRNOTAVAIL Can't assign requested address
Normally results from an attempt to create a socket with an address not on this
machine.

ENETDOWN Network is down
A socket operation encountered a dead network.

ENETUNREACH Network is unreachable
A socket operation was attempted to an unreachable network.

ENETRESET Network dropped connection on reset
The host you were connected to crashed and rebooted.

ECONNABORTED Software caused connection abort
A connection abort was caused internal to your host machine.

ECONNRESET Connection reset by peer
A connection was forcibly closed by a peer. This normally results from a loss of
" the connection on the remote socket due to a timeout or a reboot.

ENOBUFS No buffer space available
An operation on a socket or pipe was not performed because the system lacked
sufficient buffer space or because a queue was full.

EISCONN Socket is already connected
A connect request was made on an already connected socket; or, a sendto or sendmsg
request on a connected socket specified a destination when already connected.

ENOTCONN Socket is not connected
An request to send or receive data was disallowed because the socket is not con-
nected and (when sending on a datagram socket) no address was supplied.

4th Berkeley Distribution June 30, 1986 " 4

INTRO(2) UNIX Programmer’s Manual INTRO(2)

58 ESHUTDOWN Can't send after socket shutdown
A request to send data was disallowed because the socket had already been shut
down with a previous shutdown (2) call.

59 unused

60 ETIMEDOUT Connection timed out
A connect or send request failed because the connected party did not properly
respond after a period of time. (The timeout period is dependent on the communi-
cation protocol.)

61 ECONNREFUSED Connection refused
No connection could be made because the target machine actively refused it. This

usually results from trying to connect to a service that is inactive on the foreign
host.

62 ELOOP Too many levels of symbolic links
A path name lookup involved more than 8 symbolic links.

63 ENAMETOOLONG File name too long
A component of a path name exceeded 255 (MAXNAMELEN) characters, or an
entire path name exceeded 1023 (MAXPATHLEN-1) characters.

64 EHOSTDOWN Host is down
A socket operation failed because the destination host was down.

65 EHOSTUNREACH Host is unreachable
A socket operation was attempted to an unreachable host.

66 ENOTEMPTY Directory not empty
A directory with entries other than “.”
or rename call.

69 EDQUOT Disc quota exceeded -
A write to an ordinary file, the creation of a directory or symbolic link, or the crea-
tion of a directory entry failed because the user’s quota of disk blocks was
exhausted, or the allocation of an inode for a newly created file failed because the
user’s quota of inodes was exhausted.

70 ESTALE Stale NFS file handle
A client referenced a an open file, when the file has been deleted.

.71 EREMOTE Too many levels of remote in path
An attempt was made to remotely mount a file system into a path which already
has a remotely mounted component.

and “..” was supplied to a remove directory

DEFINITIONS
Process ID
Each active process in the system is uniquely identified by a positive integer called a
process ID. The range of this ID is from 0 to 30000.

Parent process ID
A new process is created by a currently active process; (see fork(2)). The parent pro-
cess ID of a process is the process ID of its creator.

Process Group ID
Each active process is a member of a process group that is identified by a positive
integer called the process group ID. This is the process ID of the group leader. This
grouping permits the signaling of related processes (see killpg(2)) and the job control
mechanisms of csh(1).

4th Berkeley Distribution June 30, 1986 5

INTRO(2) UNIX Programmer’s Manual ~ INTRO(2)

Tty Group ID
Each active process can be a member of a terminal group that is identified by a posi-
tive integer called the tty group ID. This grouping is used to arbitrate between multi-
ple jobs contending for the same terminal; (see csi(1) and zzy(4)).

Real User ID and Real Group ID
Each user on the system is identified by a positive integer termed the real user ID.

Each user is also a member of one or more groups. One of these groups is distinguished
from others and used in implementing accounting facilities. The positive integer
corresponding to this distinguished group is termed the real group ID.

All processes have a real user ID and real group ID. These are initialized from the
equivalent attributes of the process that created it.

Effective User Id, Effective Group Id, and Access Groups
Access to system resources is governed by three values: the effective user ID, the
effective group ID, and the group access list.

The effective user ID and effective group ID are initially the process’s real user ID and
real group ID respectively. Either may be modified through execution of a set-user-ID
or set-group-ID file (possibly by one its ancestors) (see execve(2)).

The group access list is an additional set of group ID’s used only in determining
resource accessibility. Access checks are performed as described below in “File Access
Permissions™.

Super-user
A process is recognized as a super-user process and is granted special privileges if its
effective user ID is 0.

Special Processes .
The processes with a process ID’s of 0, 1, and 2 are special. Process O is the scheduler.

Process 1 is the initialization process init, and is the ancestor of every other process in
the system. It is used to control the process structure. Process 2 is the paging daemon.

Descriptor
An integer assigned by the system when a file is referenced by open(2) or dup(2), or
when a socket is created by pipe(2), socket(2) or socketpair(2), which uniquely
identifies an access path to that file or socket from a given process or any of its chil-
dren.

" File Name ' '
Names consisting of up to 255 (MAXNAMELEN) characters may be used to name an
ordinary file, special file, or directory.

These characters may be selected from the set of all ASCII character excluding O
(null) and the ASCII code for / (slash). (The parity bit, bit 8, must be 0.)

Note that it is generally unwise to use #, 2, [or] as part of file names because of the
special meaning attached to these characters by the shell.

Path Name
A path name is a null-terminated character string starting with an optional slash (/),
followed by zero or more directory names separated by slashes, optionally followed
by a file name. The total length of a path name must be less than 1024 (MAXPATH-
LEN) characters.

If a path name begins with a slash, the path search begins at the root directory. Other-
wise, the search begins from the current working directory. A slash by itself names
the root directory. A null pathname refers to the current directory.

4th Berkeley Distribution June 30, 1986 6

INTRO(2) UNIX Programmer’s Manual INTRO(2)

Directory
A directory is a special type of file that contains entries that are references to other
files. Directory entries are called links. By convention, a directory contains at least
two links, . and .., referred to as dot and dot-dot respectively. Dot refers to the direc-
tory itself and dot-dot refers to its parent directory.

Root Directory and Current Working Directory
Each process has associated with it a concept of a root directory and a current workmg
directory for the purpose of resolving path name searches. A process’s root directory
need not be the root directory of the root file system.

File Access Permissions
Every file in the file system has a set of access permissions. These permissions are
used in determining whether a process may perform a requested operation on the file
(such as opening a file for writing). Access permissions are established at the time a
file is created. They may be changed at some later time through the chmod (2) call.

File access is broken down according to whether a file may be: read, written, or exe- -
cuted. Directory files use the execute permission to control if the dxrectory may be .
searched.

File access permissions are interpreted by the system as they apply to three different
classes of users: the owner of the file, those users in the file’s group, anyone else.
Every file has an independent set of access permissions for each of these classes. When
an access check is made, the system decides if permission should be granted by check-
ing the access information applicable to the caller.

Read, write, and execute/search permissions on a file are granted to a process if:
The process’s effective user ID is that of the super-user.

The process’s effective user ID matches the user ID of the owner of the file and the
owner permissions allow the access.

The process’s effective user ID does not match the user ID of the owner of the file, and
either the process’s effective group ID matches the group ID of the file, or the group ID
of the file is in the process’s group access list, and the group permissions allow the
access.

Neither the effective user ID nor effective group ID and group access list of the process
match the corresponding user ID and group ID of the file, but the permissions for
“other users” allow access.

Otherwise, permission is denied.
Sockets and Address Families

A socket is an endpoint for communication between processes. Each socket has queues
for sending and receiving data.

Sockets are typed according to their communications properties. These properties
include whether messages sent and received at a socket require the name of the
partner, whether communication is reliable, the format used in naming message reci-
pients, etc.

Each instance of the system supports some collection of socket types: consult
socket (2) for more information about the types available and their properties.

Each instance of the system supports some number of sets of communications proto-
cols. Each protocol set supports addresses of a certain format. An Address Family is
the set of addresses for a specific group of protocols. Each socket has an address
chosen from the address family in which the socket was created.

4th Berkeley Distribution June 30, 1986 7

INTRO(2) UNIX Programmer’s Manual INTRO(2)

SEE ALSO
intro(3), perror(3)

4th Berkeley Distribution June 30, 1986 8

ACCEPT(2) UNIX Programmer’s Manual ACCEPT(2)

NAME
accept - accept a connection on a socket

SYNOPSIS
#include <sys/types.h>
#include <sys/socket.h>

ns = accept(s, addr, addrlen)
int ns, s;

struct sockaddr saddr;

int saddrlen;

DESCRIPTION

The argument s is a socket that has been created with socker(2), bound to an address with
bind(2), and is listening for connections after a listen(2). Accept extracts the first connection
on the queue of pending connections, creates a new socket with the same properties of s and
allocates a new file descriptor, ns, for the socket. If no pending connections are present on
the queue, and the socket is not marked as non-blocking, accept blocks the caller until a con-
nection is present. If the socket is marked non-blocking and no pending connections are
present on the queue, accept returns an error as described below. The accepted socket, ns,
may not be used to accept more connections. The original socket s remains open.

The argument addr is a result parameter that is filled in with the address of the connecting
entity, as known to the communications layer. The exact format of the addr parameter is
determined by the domain in which the communication is occurring. The addrlen is a value-
result parameter; it should initially contain the amount of space pointed to by addr; on return
it will contain the actual length (in bytes) of the address returned. This call is used with
connection-based socket types, currently with SOCK_STREAM.

It is possible to selecz(2) a socket for the purposes of doing an accept by selecting it for read.

RETURN VALUE
The call returns -1 on error. If it succeeds, it returns a non-negative integer that is a descrip-
tor for the accepted socket.

ERRORS
The accept will fail if:
[EBADF] The descriptor is invalid.
[ENOTSOCK] The descriptor references a file, not a socket.
[EOPNOTSUPP] The referenced socket is not of type SOCK_STREAM.
[EFAULT] The addr parameter is not in a writable part of the user address space.
[EWOULDBLOCK] The socket is marked non-blocking and no connections are present to be
accepted.
SEE ALSO

bind(2), connect(2), listen(2), select(2), socket(2)

" 4.2 Berkeley Distribution May 22, 1986 1

UNIX Programmer’s Manual

This page intentionally left almost blank.

ACCESS(2) UNIX Programmer’s Manual_ ' ACCESS(2)

NAME
access — determine accessibility of file

SYNOPSIS
#include <sys/file.h>

#define R_OK 4 /+ test for read permission »/

#define W_OK 2 /+ test for write permission s/

#define X_OK 1 /s test for execute (search) permission s/
#define F_OK 0 /= test for presence of file s/

accessible = access(path, mode)
int accessible;
char spath;
int mode;
DESCRIPTION
Access checks the given file path for accessibility according to mode, which is an inclusive or
of the bits R_OK, W_OK and X_OK. Specifying mode as F_OK (i.e., 0) tests whether the
directories leading to the file can be searched and the file exists.

The real user ID and the group access list (including the real group ID) are used in verifying
~ permission, so this call is useful to set-UID programs.

Notice that only access bits are checked. A directory may be indicated as writable by access,
but an attempt to open it for writing will fail (although files may be created there); a file may
look executable, but execve will fail unless it is in proper format.

RETURN VALUE
If path cannot be found or if any of the desired access modes would not be granted, then a -1
value is returned; otherwise a 0 value is returned.

ERRORS
Access to the file is denied if one or more of the following are true:

[ENOTDIR] A component of the path prefix is not a directory.
[EINVAL] The pathname contains a character with the high-order bit set.

[ENAMETOOLONG]
A component of a pathname exceeded 255 characters, or an entire path name
exceeded 1023 characters.

[ENOENT] The named file does not exist.
[EACCES] Search permission is denied for a component of the path prefix.

[ELOOP] Too many symbolic links were encountered in translating the pathname.

[EROFS] Write access is requested for a file on a read-only file system.

[ETXTBSY] Write access is requested for a pure procedure (shared text) file that is being
executed.

[EACCES] Permission bits of the file mode do not permit the requested access, or search

permission is denied on a component of the path prefix. The owner of a file
has permission checked with respect to the “owner” read, write, and execute
mode bits, members of the file’s group other than the owner have permission
checked with respect to the “group” mode bits, and all others have permis-
sions checked with respect to the “other”” mode bits.

[EFAULT] Path points outside the process’s allocated address space.

[EIO] An I/0 error occurred while reading from or writing to the file system.
SEE ALSO

chmod(2), stat(2)

4th Berkeley Distribution May 22, 1986 ' 1

ACCT (2) UNIX Programmer’s Manual ' ACCT(2)

NAME
acct - turn accounting on or off

SYNOPSIS
acct(file)
char sfile;

DESCRIPTION
The system is prepared to write a record in an accounting file for each process as it ter-
minates. This call, with a null-terminated string naming an existing file as argument, turns on
accounting; records for each terminating process are appended to file. An argument of 0
causes accounting to be turned off.

The accounting file format is given in acct(5).
This call is permitted only to the super-user.

NOTES
Accounting is automatically disabled when the file system the accounting file resides on runs
out of space; it is enabled when space once again becomes available.

RETURN VALUE
On error -1 is returned. The file must exist and the call may be exercised only by the super-
user. It is erroneous to try to turn on accounting when it is already on.

ERRORS
Acct will fail if one of the following is true:
[EPERM] The caller is not the super-user.’
[ENOTDIR] A component of the path prefix is not a directory.
[EINVAL] The pathname contains a character with the high-order bit set.
[ENAMETOOLONG]

A component of a pathname exceeded 255 characters, or an entire path name
exceeded 1023 characters.

[ENOENT] The named file does not exist.

[EACCES] Search permission is denied for a component of the path prefix, or the path
name is not a regular file.

[ELOOP] Too many symbolic links were encountered in translating the pathname.

[EROFS] The named file resides on a read-only file system.

[EFAULT] File points outside the process’s allocated address space.

[EIO] An I/O error occurred while reading from or writing to the file system.
SEE ALSO

acct(5), sa(8)

BUGS
No accounting is produced for programs running when a crash occurs. In particular non- -
terminating programs are never accounted for.

4th Berkeley Distribution May 22, 1986 ' 1

ADJTIME(2) UNIX Programmer’s Manual ADJTIME(2)

NAME

adjtime - correct the time to allow synchronization of the system clock

SYNOPSIS

#include <sys/time.h>

adjtime(delta, olddelta)
struct timeval sdelta;
struct timeval solddelta;

DESCRIPTION

Adjtime makes small adjustments to the system time, as returned by gertimeofday(2), advanc-
ing or retarding it by the time specified by the timeval delta. If delta is negative, the clock is
slowed down by incrementing it more slowly than normal until the correction is complete. If
delta is positive, a larger increment than normal is used. The skew used to perform the
correction is generally a fraction of one percent. Thus, the time is always a monotonically
increasing function. A time correction from an earlier call to adjtime may not be finished
when adjtime is called again. If olddelta is non-zero, then the structure pointed to will con-
tain, upon return, the number of microseconds still to be corrected from the earlier call.

This call may be used by time servers that synchronize the clocks of computers in a local area
network. Such time servers would slow down the clocks of some machines and speed up the
clocks of others to bring them to the average network time. ’

The call adjtime(2) is restricted to the super-user.

RETURN VALUE

A return value of 0 indicates that the call succeeded. A return value of -1 indicates that an
error occurred, and in this case an error code is stored in the global variable errno.

ERRORS

The following error codes may be set in errno:
[EFAULT] An argument points outside the process’s allocated address space.
[EPERM] The process’s effective user ID is not that of the super-user.

SEE ALSO

date(1), gettimeofday(2), timed(8), timedc(8),
TSP: The Time Synchronization Protocol for UNIX 4.3BSD, R. Gusella and S. Zatti

4.3 Berkeley Distribution May 15, 1986 1

BIND(2) UNIX Programmer’s Manual BIND(2)

NAME

bind - bind a name to a socket
SYNOPSIS

#include <sys/types.h>

#include <sys/socket.h>
bind(s, name, namelen)
int s;

struct sockaddr sname;
int namelen;

DESCRIPTION
Bind assigns a name to an unnamed socket. When a socket is created with socker(2) it exists
in a name space (address family) but has no name assigned. Bind requests that name be
assigned to the socket.

NOTES
Binding a name in the UNIX domain creates a socket in the file system that must be deleted
by the caller when it is no longer needed (using unlink(2)).

The rules used in name binding vary between communication domains. Consult the manual
entries in section 4 for detailed information. ;

RETURN VALUE
If the bind is successful, a 0 value is returned. A return value of -1 indicates an error, which
is further specified in the global errno.

ERRORS
The bind call will fail if:

[EBADF] S is not a valid descriptor.
[ENOTSOCK] S is not a socket.

[EADDRNOTAVAIL]
The specified address is not available from the local machine.

[EADDRINUSE] The specified address is already in use.

[EINVAL] The socket is already bound to an address.

[EACCES] The requested address is protected, and the current user has inadequate
permission to access it.

[EFAULT] The name parameter is not in a valid part of the user address space.

The following errors are specific to binding names in the UNIX domain.
[ENOTDIR] A component of the path prefix is not a directory.
[EINVAL] The pathname contains a character with the high-order bit set.

[ENAMETOOLONG]
A component of a pathname exceeded 255 characters, or an entire path name
exceeded 1023 characters.

[ENOENT] A prefix component.of the path name does not exist.

[ELOOP] Too many symbolic links were encountered in translating the pathname.
" [EIO] An [/O error occurred while making the directory entry or allocating the
inode.
[EROFS] The name would reside on a read-only file system.

4.2 Berkeley Distribution May 22, 1986 1

BIND(2) : UNIX Programmer’s Manual BIND(2)

[EISDIR] A null pathname was specified.

SEE ALSO .
connect(2), listen(2), socket(2), getsockname(2)

4.2 Berkeley Distribution May 22, 1986 2

BRK(2) 4 UNIX Programmer’s Manual BRK(2)

NAME

brk, sbrk -~ change data segment size

SYNOPSIS

#include <sys/types.h>

char »brk(addr)
char saddr;

char ssbrk(incr)
int incr;

DESCRIPTION

Brk sets the system’s idea of the lowest data segment location not used by the program (called
the break) to addr (rounded up to the next multiple of the system’s page size). Locations
greater than addr and below the stack pointer are not in the address space and will thus cause
a memory violation if accessed.

In the alternate function sbrk, incr more bytes are added to the program’s data space and a
pointer to the start of the new area is returned.

When a program begins execution via execve the break is set at the highest location defined by
the program and data storage areas. Ordinarily, therefore, only programs with growing data
areas need to use sbrk.

The getrlimit(2) system call may be used to determine the maximum permissible size of the
data segment; it will not be possible to set the break beyond the rlim_max value returned
from a call to getrlimit, e.g. “etext + rlp—rlim_max.” (see end(3) for the definition of erext).

RETURN VALUE

Zero is returned if the brk could be set; -1 if the program requests more memory than the
system limit. -Sbrk returns -1 if the break could not be set.

ERRORS

Sbrk will fail and no additional memory will be allocated if one of the following are true:
[ENOMEM] The limit, as set by setrlimit(2), was exceeded.

[ENOMEM] The maximum possible size of a data segment (compiled into the system) was
exceeded. s

[ENOMEM] Insufficient space existed in the swap area to support the expansion.

SEE ALSO

BUGS

execve(2), getrlimit(2), malloc(3), end(3)

Setting the break may fail due to a temporary lack of swap space. It is not possible to distin-
guish this from a failure caused by exceeding the maximum size of the data segment without
consulting getrlimit.

4th Berkeley Distribution ' May 22, 1986 , 1

CHDIR(2) UNIX Programmer’s Manual CHDIR(2)

NAME .
chdir - change current working directory

SYNOPSIS
chdir(path)
char spath;

DESCRIPTION
Path is the pathname of a directory. Chdir causes thls directory to become the current work-
ing directory, the starting point for path names not beginning with *“/”.

In order for a directory to become the current directory, a process must have execute (search)
access to the directory.

RETURN VALUE)
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned
and errno is set to indicate the error.

ERRORS
Chdir will fail and the current working directory will be unchanged if one or more of the fol-
lowing are true:

[ENOTDIR] A component of the path prefix is not a directory.
[EINVAL] The pathname contains a character with the high-order bit set.

[ENAMETOOLONG]
A component of a pathname exceeded 255 characters or an entire path name
exceeded 1023 characters.

[ENOENT] The named directory does not exist.

[ELOOP] Too many symbolic links were encountered in translating the pathname.

[EACCES] Search permission is denied for any component of the path name.

[EFAULT] Path points outside the process’s allocated address space.

[EIO] An I/O error occurred while reading from or writing to the file system.
SEE ALSO

chroot(2)

4th Berkeley Distribution August 26, 1985 1

CHMOD(2) UNIX Programmer’s Manual CHMOD(2)

" NAME
chmod - change mode of file

SYNOPSIS
chmod(path, mode)
char spath;
int mode;

fchmod(fd, mode)
int fd, mode;

DESCRIPTION
The file whose name is given by path or referenced by the descriptor fd has its mode changed
to mode. Modes are constructed by or’ing together some combination of the following,
defined in <sys/inode.h>:

ISUID 04000 set user ID on execution

ISGID 02000 set group ID on execution

ISVTX 01000 ‘sticky bit’ (see below)

IREAD 00400 read by owner

IWRITE 00200 write by owner

IEXEC. 00100 execute (search on directory) by owner
00070 read, write, execute (search) by group
00007 read, write, execute (search) by others

If an executable file is set up for sharing (this is the default) then mode ISVTX (the ‘sticky
bit’) prevents the system from abandoning the swap-space image of the program-text portion
of the file when its last user terminates. Ability to set this bit on executable files is restricted
to the super-user. :

If mode ISVTX (the ‘sticky bit’) is set on a directory, an unprivileged user may not delete or
rename files of other users in that directory. For more details of the properties of the sticky
bit, see sticky(8).

Only the owner of a file (or the super-user) may change the mode.

Writing or changing the owner of a file turns off the set-user-id and set-group-id bits unless
the user is the super-user. This makes the system somewhat more secure by protecting set-
.user-id (set-group-id) files from remaining set-user-id (set-group-id) if they are modified, at the
expense of a degree of compatibility.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned
and errno is set to indicate the error.

ERRORS
Chmod will fail and the file mode will be unchanged if:

[ENOTDIR] A component of the path prefix is not a directory.
[EINVAL] The pathname contains a character with the high-order bit set.

[ENAMETOOLONG]
A component of a pathname exceeded 255 characters, or an entire path name
exceeded 1023 characters.

[ENOENT] The named file does not exist.

[EACCES] Search permission is denied for a component of the path prefix.
[ELOOP] Too many symbolic links were encountered in translating the pathname.
[EPERM] The effective user ID does not match the owner of the file and the effective

user ID is not the super-user.

4th Berkeley Distribution May 13, 1986 1

CHMOD(2) UNIX Programmer’s Manual CHMOD(2)

[EROFS] The named file resides on a read-only file system.

[EFAULT] Path points outside the process’s allocated address space.

[EIO] An /O error occurred while reading from or writing to the file system.

Fchmod will fail if:

[EBADF] The descriptor is not valid.

[EINVAL] Fd refers to a socket, not to a file.

[EROFS] The file resides on a read-only file system.

[EIO] An I/O error occurred while reading from or writing to the file system.
SEE ALSO

chmod(1), open(2), chown(2), stat(2), sticky(8)

4th Berkeley Distribution May 13, 1986 ’ 2

CHOWN(2) _ UNIX Programmer’s Manual CHOWN(2)

NAME
chown - change owner and group of a file

'SYNOPSIS
chown(path, owner, group)
char spath;
int owner, group;
fchown(fd, owner, group)
int fd, owner, group;

DESCRIPTION .
The file that is named by path or referenced by fd has its owner and group changed as
specified. Only the super-user may change the owner of the file, because if users were able to
give files away, they could defeat the file-space accounting procedures. The owner of the file
may change the group to a group of which he is a member.

On some systems, chown clears the set-user-id and set-group-id bits on the file to prevent
accidental creation of set-user-id and set-group-id programs.

Fchown is particularly useful when used in conjunction with the file locking primitives (see
flock(2)).
One of the owner or group id’s may be left unchanged by specifying it as -1.

If the final component of path is a symbolic link, the ownership and group of the symbolic
link is changed, not the ownership and group of the file or directory to which it points.

RETURN VALUE
Zero is returned if the operation was successful; -1 is returned if an error occurs, with a more
specific error code being placed in the global variable errno.

ERRORS
Chown will fail and the file will be unchanged if:

[ENOTDIR] A component of the path prefix is not a directory.
[EINVAL] The pathname contains a character with the high-order bit set.

[ENAMETOOLONG]
A component of a pathname exceeded 255 characters, or an entire path name
exceeded 1023 characters.

[ENOENT] The named file does not exist.
[EACCES] Search permission is denied for a component of the path prefix.

[ELOOP] Too many symbolic links were encountered in translating the pathname.
[EPERM] The effective user ID is not the super-user.

[EROFS] The named file resides on a read-only file system.

[EFAULT] Path points outside the process’s allocated address space.

[EIO] An /O error occurred while reading from or writing to the file system.
Fchown will fail if:

[EBADF] Fd does not refer to a valid descriptor.

[EINVAL] Fd refers to a socket, not a file.

[EPERM] The effective user ID is not the super-user.

[EROFS] The named file resides on a read-only file system.

4th Berkeley Distribution May 22, 1986 1

CHOWN(2) UNIX Programmer’s Manual CHOWN(2)

[EIO] An /O error occurred while reading from or writing to the file system.

SEE ALSO
chown(8), chgrp(1), chmod(2), flock(2)

‘4th Berkeley Distribution May 22, 1986 2

CHROOT (2) UNIX Programmer’s Manual - CHROOT(2)

NAME
chroot - change root directory
SYNOPSIS

chroot(dirname)
char sdirname;

DESCRIPTION)
Dirname is the address of the pathname of a directory, terminated by a null byte. Chroot
causes this directory to become the root directory, the starting point for path names beginning
with “/”,
In order for a directory to become the root directory a process must have execute (search)
access to the directory.
This call is restricted to the super-user.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned
and errno is set to indicate an error.

ERRORS
Chroot will fail and the root directory will be unchanged if one or more of the following are
true:

[ENOTDIR] A component of the path name is not a directory.
[EINVAL] The pathname contains a character with the high-order bit set.

[ENAMETOOLONG]
A component of a pathname exceeded 255 characters, or an entire path name
exceeded 1023 characters.

[ENOENT] The named directory does not exist.

[EACCES] Search permission is denied for any component of the path name.

[ELOOP] _ Too many symbolic links were encountered in translating the pathname.

[EFAULT] Path points outside the process’s allocated address space.

[EIO] An [/O error occurred while reading from or writing to the file system.
SEE ALSO '

chdir(2)

4.2 Berkeley Distribution August 26, 1985 1

CLOSE(2) UNIX Programmer’s Manual CLOSE(2)

NAME

close - delete a descriptor

SYNOPSIS

close(d)
int d;

DESCRIPTION

The close call deletes a descriptor from the per-process object reference table. If this is the
last reference to the underlying object, then it will be deactivated. For example, on the last
close of a file the current seek pointer associated with the file is lost; on the last close of a
socket(2) associated naming information and queued data are discarded; on the last close of a
file holding an advisory lock the lock is released (see further flock(2)).

A close of all of a process’s descriptors is automatic on exit, but since there is a limit on the
number of active descriptors per process, close is necessary for programs that deal with many
descriptors.

When a process forks (see fork(2)), all descriptors for the new child process reference the same
objects as they did in the parent before the fork. If a new process is then to be run using
execve(2), the process would normally inherit these descriptors. Most of the descriptors can
be rearranged with dup2(2) or deleted with close before the execve is attempted, but if some of
these descriptors will still be needed if the execve fails, it is necessary to arrange for them to
be closed if the execve succeeds. For this reason, the call “fentl(d, F_SETFD, 1) is provided,
which arranges that a descriptor will be closed after a successful execve; the call “fcntl(d,
F_SETFD, 0)” restores the default, which is to not close the descriptor.

RETURN VALUE

Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned
and the global integer variable errno is set to indicate the error.

ERRORS

Close will fail if:
[EBADF] D is not an active descriptor.

SEE ALSO

accept(2), flock(2), open(2), pipe(2), socket(2), socketpair(2), execve(2), fcntl(2)

4th Berkeley Distribution May 22, 1986 1

CONNECT(2) UNIX Programmer’s Manual CONNECT(2)

NAME
connect - initiate a connection on a socket

SYNOPSIS
#include <sys/types.h>
#include <sys/socket.h>

connect(s, name, namelen)
int s;

struct sockaddr sname;
int namelen;

DESCRIPTION
The parameter s is a socket. If it is of type SOCK_DGRAM, then this call specifies the peer
with which the socket is to be associated; this address is that to which datagrams are to be
sent, and the only address from which datagrams are to be received. If the socket is of type
SOCK_STREAM, then this call attempts to make a connection to another socket. The other
socket is specified by name, which is an address in' the communications space of the socket.
Each communications space interprets the name parameter in its own way. Generally, stream
sockets may successfully connect only once; datagram sockets may use connect multiple times
to change their association. Datagram sockets may dissolve the association by connecting to
. an invalid address, such as a null address.

RETURN VALUE '
If the connection or binding succeeds, then O is returned. Otherwise a -1 is returned, and a
more specific error code is stored in errno.

ERRORS
The call fails if:
[EBADF] S is not a valid descriptor. ‘
[ENOTSOCK] S is a descriptor for a file, not a socket.
[EADDRNOTAVAIL]

The specified address is not available on this machine.
[EAFNOSUPPORT] Addresses in the specified address family cannot be used with this

‘ socket.
[EISCONN] The socket is already connected.
[ETIMEDOUT] Connection establishment timed out without establishing a connection.

[ECONNREFUSED] The attempt to connect was forcefully rejected.

[ENETUNREACH] The network isn’t reachable from this host.

[EADDRINUSE] The address is already in use.

[EFAULT] . The name parameter specifies an area outside the process address space.

[EINPROGRESS] The socket is non-blocking and the connection cannot be completed
immediately. It is possible to select(2) for completion by selecting the
socket for writing.

[EALREADY] The socket is non-blocking and a previous connection attempt has not
. yet been completed.

The following errors are specific to connecting names in the UNIX domain. These errors may
not apply in future versions of the UNIX IPC domain.

[ENOTDIR] A component of the path prefix is not a directory.

4.2 Berkeley Distribution May 22, 1986 1

CONNECT(2) UNIX Programmer’s Manual CONNECT(2)

[EINVAL] The pathname contains a character with the high-order bit set.

[ENAMETOOLONG]

A component of a pathname exceeded 255 characters, or an entire path name
exceeded 1023 characters.

[ENOENT] The named socket does not exist.

[EACCES] Search permission is denied for a component of the path prefix.

[EACCES] Write access to the named socket is denied.

[ELOOP] Too many symbolic links were encountered in translating the pathname.
SEE ALSO

accept(2), select(2), socket(2), getsockname(2)

4.2 Berkeley Distribution May 22, 1986 2

CREAT(2) UNIX Programmer’s Manual CREAT(2)

NAME

creat - create a new file

SYNOPSIS

creat(name, mode)
char sname;

DESCRIPTION

NOTES

This interface is made obsolete by open(2).

Creat creates a new file or prepares to rewrite an existing file called name, given as the
address of a null-terminated string. If the file did not exist, it is given mode mode, as
modified by the process’s mode mask (see umask(2)). Also see chmod(2) for the construction
of the mode argument.

If the file did exist, its mode and owner remain unchanged but it is truncated to 0 length.
The file is also opened for writing, and its file descriptor is returned.

The mode given is arbitrary; it need not allow writing. This feature has been used in the past
by programs to construct a simple, exclusive locking mechanism. It is replaced by the
O_EXCL open mode, or flock(2) facility.

RETURN VALUE .

The value -1 is returned if an error occurs. Otherwise, the call returns a non-negative
descriptor that only permits writing.

ERRORS

Creat will fail and the file will not be created or truncated if one of the following occur:
[ENOTDIR] A component of the path prefix is not a directory.
[EINVAL] The pathname contains a character with the high-order bit set.

[ENAMETOOLONG]
A component of a pathname exceeded 255 characters, or an entire path name
exceeded 1023 characters.

[ENOENT] The named file does not exist.

[ELOOP] Too many symbolic links were encountered in translating the pathname.
[EACCES] Search permission is denied for a component of the path prefix.

[EACCES] The file does not exist and the directory in which it is to be created is not

writable.
[EACCES] The file exists, but it is unwritable.
[EISDIR] The file is a directory.

[EMFILE] There are already too many files open.
[ENFILE] The system file table is full.

[ENOSPC] The directory in which the entry for the new file is being placed cannot be
extended because there is no space left on the file system containing the
directory.

[ENOSPC] There are no free inodes on the file system on which the file is being created.

[EDQUOT] The directory in which the entry for the new file is being placed cannot be
extended because the user’s quota of disk blocks on the file system containing
the directory has been exhausted.

4th Berkeley Distribution May 22, 1986 i

CREAT(2) UNIX Programmer’s Manual CREAT(2)

[EDQUOT] The user’s quota of inodes on the file system on which the file is being
created has been exhausted.

[EROFS] The named file resides on a read-only file system.

[ENXIO] The file is a character special or block special file, and the associated device
does not exist.

[ETXTBSY] The file is a pure procedure (shared text) file that is being executed.

[EIO] An I/O error occurred while making the directory entry or allocating the
inode.

[EFAULT] Name points outside the process’s allocated address space.

[EOPNOTSUPP]
The file was a socket (not currently implemented).

SEE ALSO
open(2), write(2), close(2), chmod(2), umask(2)

4th Berkeley Distribution May 22, 1986 2

DUP(2) UNIX Programmer’s Manual DUP(2)

NAME
dup, dup2 - duplicate a descriptor

SYNOPSIS
newd = dup(oldd) -
int newd, oldd;

dup2(oldd, newd)
int oldd, newd;

DESCRIPTION
Dup duplicates an existing object descriptor. The argument oldd is a small non-negative
integer index in the per-process descriptor table. The value must be less than the size of the
table, which is returned by gerdtablesize(2). The new descriptor returned by the call, newd, is
the lowest numbered descriptor that is not currently in use by the process.

The object referenced by the descriptor does not distinguish between references using o/dd
and newd in any way. Thus if newd and oldd are duplicate references to an open file, read(2),
write(2) and Iseek(2) calls all move a single pointer into the file, and append mode, non-
blocking I/O and asynchronous I/O options are shared between the references. If a separate
pointer into the file is desired, a different object reference to the file must be obtained by issu-
ing an additional open(2) call. The close-on-exec flag on the new file descriptor is unset.

In the second form of the call, the value of newd desired is specified. If this descriptor is
already in use, the descriptor is first deallocated as if a c/ose(2) call had been done first.

RETURN VALUE
The value -1 is returned if an error occurs in either call. The external variable errno indi-
cates the cause of the error.

ERRORS
Dup and dup? fail if:
[EBADF] Oldd or newd is not a valid active descriptor
[EMFILE] Too many descriptors are active.

SEE ALSO

accept(2), open(2), close(2), fcntl(2), pipe(2), socket(2), socketpair(2), getdtablesize(2)

4th Berkeley Distribution May 13, 1986 1

EXECVE(2) UNIX Programmer’s Manual EXECVE(2)

NAME

execve — execute a file

SYNOPSIS

execve(name, argy, envp)
char *name, sargv{], senvp(};

DESCRIPTION

Execve transforms the calling process into a new process. The new process is constructed
from an ordinary file called the new process file. This file is either an executable object file, or
a file of data for an interpreter. An executable object file consists of an identifying header,
followed by pages of data representing the initial program (text) and initialized data pages.
Additional pages may be specified by the header to be initialized with zero data. See a.out(5).

An interpreter file begins with a line of the form “#! interpreter”. When an interpreter file is
execve’d, the system execve’s the specified interpreter, giving it the name of the originally
exec’d file as an argument and shifting over the rest of the original arguments.

There can be no return from a successful execve because the calling core image is lost. This is
the mechanism whereby different process images become active.

The argument argv is a null-terminated array of character pointers to null-terminated charac-
ter strings. These strings constitute the argument list to be made available to the new process.
By convention, at least one argument must be present in this array, and the first element of
this array should be the name of the executed program (i.e., the last component of name).

The argument envp is also a null-terminated array of character pointers to null-terminated
strings. These strings pass information to the new process that is not directly an argument to
the command (see environ(7)).

Descriptors open in the calling process remain open in the new process, except for those for
which the close-on-exec flag is set (see close(2)). Descriptors that remain open are unaffected
by execve.

Ignored signals remain ignored across an execve, but signals that are caught are reset to their
default values. Blocked signals remain blocked regardless of changes to the signal action.
The signal stack is reset to be undefined (see sigvec(2) for more information).

Each process has real user and group IDs and an effective user and group IDs. The rea/ ID
identifies the person using the system; the effective ID determines his access privileges.
Execve changes the effective user and group ID to the owner of the executed file if the file has
the “set-user-ID” or “set-group-ID” modes. The real user ID is not affected.

The new process also inherits the following attributes from the calling process:

process ID see getpid(2)
parent process ID see getppid (2)
process group ID see getpgrp(2)
access groups see getgroups(2)
working directory see chdir(2)

root directory see chroot (2)
control terminal see (ty(4)
resource usages see getrusage(2)
interval timers see getitimer (2)
resource limits see getrlimit (2)
file mode mask see umask(2)
signal mask see sigvec(2), sigmask(2)

When the executed program begins, it is called as follows:

4th Berkeley Distribution ‘ May 22, 1986 1

EXECVE(2) ' UNIX Programmer’s Manual EXECVE(2)

main(argc, argv, envp)

int argc;

char ssargv, *senvp;
where argc is the number of elements in argv (the “arg count™) and argv is the array of char-
acter pointers to the arguments themselves.

Envp is a pointer to an array of strings that constitute the environment of the process. A
pointer to this array is also stored in the global variable “environ”. Each string consists of a
name, an “=", and a null-terminated value. The array of pointers is terminated by a null
pointer. The shell sh(1) passes an environment entry for each global shell variable defined
when the program is called. See environ(7) for some conventionally used names.

RETURN VALUE .
If execve returns to the calling process an error has occurred; the return value will be -1 and
the global variable errno will contain an error code.

ERRORS
Execve will fail and return to the calling process if one or more of the following are true:

[ENOTDIR] A component of the path prefix is not a directory.
[EINVAL] The pathname contains a character with the high-order bit set.

[ENAMETOOLONG]
A component of a pathname exceeded 255 characters, or an entire path name
exceeded 1023 characters.

[ENOENT] The new process file does not exist.

[ELOOP] Too many symbolic links were encountered in translating the pathname.
[EACCES] Search permission is denied for a component of the path prefix.
[EACCES] The new process file is not an ordinary file.

[EACCES] The new process file mode denies execute permission.

[ENOEXEC] The new process file has the appropriate access permission, but has an invalid
magic number in its header.

[ETXTBSY] The new process file is a pure procedure (shared text) file that is currently
open for writing or reading by some process.

[ENOMEM] The new process requires more virtual memory than is allowed by the
imposed maximum (getrlimit(2)).

[E2BIG] The number of bytes in the new process’s argument list is larger than the
system-imposed limit. The limit in the system as released is 20480 bytes
(NCARGS in <sys/param.h>.

[EFAULT] The new process file is not as long as indicated by the size values in its
header.
[EFAULT] Path, argv, or envp point to an illegal address.
[EIO] An l/O error occurred while reading from the file system.
CAVEATS

If a program is setuid to a non-super-user, but is executed when the real uid is “root”, then
the program has some of the powers of a super-user as well.

SEE ALSO
exit(2), fork(2), execl(3), environ(7)

4th Berkeley Distribution May 22, 1986 ‘ 2

EXIT(2) ~ UNIX Programmer’s Manual EXIT(2)

NAME
_exit - terminate a process

SYNOPSIS
_exit(status)
int status;

DESCRIPTION
_exit terminates a process with the following consequences:

All of the descriptors open in the calling process are closed. This may entail delays, for exam-
ple, waiting for output to drain; a process in this state may not be killed, as it is already
dying. .

If the parent process of the calling process is executing a wait or is interested in the
SIGCHLD signal, then it is notified of the calling process’s termination and the low-order
eight bits of status are made available to it; see waiz(2).

The parent process ID of all of the calling process’s existing child processes are also set to 1.
This means that the initialization process (see intro(2)) inherits each of these processes as
well. Any stopped children are restarted with a hangup signal (SIGHUP).

Most C programs call the library routine exit(3), which performs cleanup actions in the stan-
dard I/O library before calling _exit.

RETURN VALUE
This call never returns.

SEE ALSO
fork(2), sigvec(2), wait(2), exit(3)

4th Berkeley Distribution May 22, 1986 1

FCNTL(2)

NAME

UNIX Programmer’s Manual FCNTL(2)

fentl - file control

SYNOPSIS

#include <fcntl.h>
res = fentl(fd, cmd, arg)

int res;

int fd, cmd, arg;

DESCRIPTION

Fcntl provides for control over descriptors. The argument fd is a descriptor to be operated on
by ¢cmd as follows:

F_DUPFD

F_GETFD

F_SETFD

F_GETFL
F_SETFL
F_GETOWN

F_SETOWN

Return a new descriptor as follows:

Lowest numbered available descriptor greater than or equal to arg.

Same object references as the original descriptor.

New descriptor shares the same file pointer if the object was a file.

Same access mode (read, write or read/write).

Same file status flags (i.e., both file descriptors share the same file status flags).

The close-on-exec flag associated with the new file descriptor is set to remain
open across execv(2) system calls.

Get the close-on-exec flag associated with the file descriptor fd. If the low-
order bit is 0, the file will remain open across exec, otherwise the file will be
closed upon execution of exec. -

Set the close-on-exec flag associated with fd to the low order bit of arg (0 or 1
as above).

Get descriptor status flags, as described below.
Set descriptor status flags.

Get the process ID or process group currently receiving SIGIO and SIGURG
signals; process groups are returned as negative values.

Set the process or process group to receive SIGIO and SIGURG signals; pro-
cess groups are specified by supplying arg as negative, otherwise arg is inter-
preted as a process ID.

The flags for the F_GETFL and F_SETFL flags are as follows:

FNDELAY

FAPPEND

FASYNC

RETURN VALUE

Non-blocking I/O; if no data is available to a read call, or if a write operation
would block, the call returns -1 with the error EWOULDBLOCK.

Force each write to append at the end of file; corresponds to the O_APPEND
flag of open(2).

Enable the SIGIO signal to be sent to the process group when I/O is possible,
e.g., upon availability of data to be read.

Upon successful completion, the value returned depends on cmd as follows:

F_DUPFD
F_GETFD
F_GETFL

A new file descriptor.
Value of flag (only the low-order bit is defined).
Value of flags.

F_GETOWN Value of file descriptor owner.

other

Value other than -1.

4.2 Berkeley Distribution May 22, 1986 1

FCNTL(2) UNIX Programmer’s Manual ' FCNTL(2)

Otherwise, a value of -1 is returned and errno is set to indicate the error.

ERRORS .
Fentl will fail if one or more of the following are true:
[EBADF] Fildes is not a valid open file descriptor.

[EMFILE] Cmd is F_DUPFD and the maximum allowed number of file descriptors are
currently open.

[EINVAL] Cmd is F_DUPFD and arg is negative or greater than the maximum allow-
able number (see getdtablesize(2)).

[ESRCH] Cmd is F_SETOWN and the process ID given as argument is not in use.
SEE ALSO
close(2), execve(2), getdtablesize(2), open(2), sigvec(2)

BUGS
The asynchronous I/O facilities of FNDELAY and FASYNC are currently available only for
tty and socket operations. :

4.2 Berkeley Distribution May 22, 1986 ' 2

FLOCK(2) UNIX Programmer’s Manual ’ FLOCK (2)

NAME

flock - apply or remove an advisory lock on an open file

SYNOPSIS

#include <sys/file.h>

#define LOCK_SH
#define LOCK_EX
#define LOCK_NB
#define LOCK_UN

flock(fd, operation)
int fd, operation;

/s shared lock =/

/+ exclusive lock =/

/s don’t block when locking »/
/+ unlock s/

0 &N

DESCRIPTION

NOTES

Flock applies or removes an advisory lock on the file associated with the file descriptor fd. A
lock is applied by specifying an operation parameter that is the inclusive or of LOCK_SH or
LOCK_EX and, possibly, LOCK_NB. To unlock an existing lock operation should be
LOCK_UN.

" Advisory locks allow cooperating processes to perform consistent operations on files, but do

not guarantee consistency (i.e., processes may still access files without usmg advisory locks -
possibly resulting in inconsistencies).

The locking mechanism allows two types of locks: shared locks and exclusive locks. At any
time multiple shared locks may be applied to a file, but at no time are multiple exclusive, or
both shared and exclusive, locks allowed sim_ultaneously on a file.

A shared lock may be upgraded to an exclusive lock, and vice versa, simply by specifying the
appropriate lock type; this results in the previous lock being released and the new lock applied
(possibly after other processes have gained and released the lock).

Requesting a lock on an object that is already locked normalily causes the caller to be blocked
until the lock may be acquired. If LOCK_NB is included in operation, then this will not hap-
pen; instead the call will fail and the error EWOULDBLOCK will be returned.

Locks are on files, not file descriptors. That is, file descriptors duplicated through dup(2) or
fork(2) do not result in multiple instances of a lock, but rather multiple references to a single
lock. If a process holding a lock on a file forks and the child explicitly unlocks the file, the
parent will lose its lock.

Processes blocked awaiting a lock may be awakened by signals.

RETURN VALUE

Zero is returned if the operation was successful; on an error a -1 is returned and an error
code is left in the global location errno.

ERRORS

The flock call fails if:
[EWOULDBLOCK] The file is locked and the LOCK_NB option was specified.

[EBADF] The argument fd is an invalid descriptor.
[EINVAL] The argument fd refers to an object other than a file.
SEE ALSO

open(2), close(2), dup(2), execve(2), fork(2)

4.2 Berkeley Distribution May 22, 1986 ' 1

FORK(2) UNIX Programmer’s Manual FORK (2)

NAME
fork — create a new process

SYNOPSIS
pid = fork()
int pid;
DESCRIPTION
Fork causes creation of a new process. The new process (child process) is an exact copy of the
calling process except for the following:

The child process has a unique process ID.

The child process has a different parent process ID (i.e., the process ID of the parent
process).

The child process has its own copy of the parent’s descriptors. These descriptors refer-
ence the same underlying objects, so that, for instance, file pointers in file objects are
shared between the child and the parent, so that an /seek(2) on a descriptor in the child
process can affect a subsequent read or write by the parent. This descriptor copying is
also used by the shell to establish standard input and output for newly created processes
as well as to set up pipes.

The child processes resource utilizations are set to 0; see setrlimit(2).

RETURN VALUE
Upon successful completion, fork returns a value of 0 to the child process and returns the pro-
cess ID of the child. process to the parent process. Otherwise, a value of -1 is returned to the
parent process, no child process is created, and the global variable errno is set to indicate the
error.

ERRORS
Fork will fail and no child process will be created if one or more of the following are true:

[EAGAIN] The system-imposed limit on the total number of processes under execution
would be exceeded. This limit is configuration-dependent.

[EAGAIN] The system-imposed limit MAXUPRC (<sys/param.h>) on the total number
of processes under execution by a single user would be exceeded. '

[ENOMEM] There is insufficient swap space for the new process.

SEE ALSO
execve(2), wait(2)

3rd Berkeley Distribution May 22, 1986 1

FSYNC(2) , UNIX Programmer’s Manual FSYNC(2)

NAME
fsync - synchronize a file’s in-core state with that on disk

SYNOPSIS
fsync(fd)
int fd;
DESCRIPTION
- Fsync causes all modified data and attributes of fd to be moved to a permanent storage dev-
ice. This normally results in all in-core modified copies of buffers for the associated file to be
written to a disk.

Fsync should be used by programs that require a file to be in a known state, for example, in
building a simple transaction facility.

RETURN VALUE

A 0 value is returned on success. A -1 value indicates an error.
ERRORS

The fsync fails if:

[EBADF] Fd is not a valid descriptor.

[EINVAL] Fd refers to a socket, not to a file.

[EIO] An I/0 error occurred while reading from or writing to the file system.
SEE ALSO ’

sync(2), sync(8), update(8)

4.2 Berkeley Distribution May 22, 1986 1

GETDIRENTRIES (2) - UNIX Programmer’s Manual GETDIRENTRIES (2)

NAME

getdirentries — gets directory entries in a filesystem independent format

SYNOPSIS

#include <sys/dir.h>

cc = getdirentries(fd, buf, nbytes, basep)
int cc, f£d;
char sbuf;

int nbytes;
long sbasep

DESCRIPTION

Getdirentries attempts to put directory entries from the directory referenced by the file
descriptor fd into the buffer pointed to by duf, in a filesystem independent format. Up to
nbytes of data will be transferred. Nbytes must be greater than or equal to the block size
associated with the file, see stat(2). Sizes less than this may cause errors on certain filesys-
tems.

The data in the buffer is a series of direct structures each containing the following entries:

unsigned long d_fileno;

unsigned short d_reclen;

unsigned short d_namlen;

char d_name[MAXNAMELEN + 1]; /# see below */

The d__fileno entry is a number which is unique for each distinct file in the filesystem. Files
that are linked by hard links (see link(2)) have the same d_ fileno. The d_reclen entry is
the length, in bytes, of the directory record. The d_name entry contains a null terminated
file name. The d_namlen entry specifies the length of the file name. Thus the actual size of
d__name may vary from 2 to MAXNAMELEN + 1.

The structures are not necessarily tightly packed. The d_reclen entry may be used as an
offset from the beginning of a direct structure to the next structure, if any.

Upon return, the actual number of bytes transferred is returned. The current position
pointer associated with fd is set to point to the next block of entries. The pointer is not
necessarily incremented by the number of bytes returned by getdirentries. If the value
returned is zero, the end of the directory has been reached. The current position pointer
may be set and retrieved by lseek(2). Getdirentries writes the position of the block read

_into the location pointed to by basep. It is not safe to set the current position pointer to

any value other than a value previously returned by Iseek(2) or a value previously
returned in the location pointed to by basep or zero.

RETURN VALUE

If successful, the number of bytes actually transferred is returned. Otherwise, a —1 is
returned and the global variable errno is set to indicate the error.

SEE ALSO

open(2), 1seek(2)

ERRORS

Getdirentries will fail if one or more of the following are true:
[EBADF] fd is not a valid file descriptor open for reading.
[EFAULT] Either duf or basep point outside the allocated address space.

[EINTR] A read from a slow device was interrupted before any data arrived by the
delivery of a signal.

Sun Microsystems Rel 3.0 19 August 1985 1

GETDIRENTRIES (2) UNIX Programmer’s Manual GETDIRENTRIES (2)

[E1I0] An I/0 error occurred while reading from or writing to the file system.

Sun Microsystems Rel 3.0 19 August 1985 2

GETDOMAINNAME (2) UNIX Programmer’s Manual GETDOMAINNAME (2)

NAME
getdomainname, setdomainname — get/set name of current domain

SYNOPSIS
getdomainname(name, namelen)
char sname;
int namelen;

setdomainname(name, namelen)
char sname;
int namelen;

DESCRIPTION
Getdomainname returns the name of the domain for the current processor, as previously set
by setdomainname. The parameter namelen specifies the size of the name array. The
returned name is null-terminated unless insufficient space is provided.

Setdomainname sets the domain of the host machine to be name, which has length namelen.
This call is restricted to the super-user and is normally used only when the system is
bootstrapped.

The purpose of domains is to enable two distinct networks that may have host names in
common to merge. Each network would be distinguished by having a different domain
name. At the current time, only the yellow pages service makes use of domains.

RETURN VALUE _
If the call succeeds a value of O is returned. If the call fails, then a value of —1 is returned
and an error code is placed in the global location errno.

ERRORS
The following errors may be returned by these calls:

[EFAULT] The name parameter gave an invalid address.

[EPERM] The caller was not the super-user. This error only applies to setdomain-
name.

BUGS
Domain names are limited to 255 characters.

Sun Microsystems Rel 3.0 19 August 1985 1

UNIX Programmer’s Manual

This page intentionally left almost blank.

GETDTABLESIZE(2) UNIX Programmer’s Manual GETDTABLESIZE(2)

NAME
getdtablesize - get descriptor table size

SYNOPSIS
nfds = getdtablesize()
int nfds;

DESCRIPTION .
Each process has a fixed size descriptor table, which is guaranteed to have at least 20 slots.
The entries in the descriptor table are numbered with small integers starting at 0. The call
getdtablesize returns the size of this table.

SEE ALSO
close(2), dup(2), open(2), select(2)

4.2 Berkeley Distribution June 28, 1985 . 1

GETGID(2) UNIX Programmer’s Manual GETGID(2)

NAME
getgid, getegid - get group identity

SYNOPSIS

) #include <sys/types.h>

gid = getgid()
gid_t gid;
egid = getegid() '
gid_t egid;

DESCRIPTION '
Getgid returns the real group ID of the current process, getegid the effective group ID.
The real group ID is specified at login time.

The effective group ID is more transient, and determines additional access permission during
execution of a “set-group-ID” process, and it is for such processes that gezgid is most useful.

SEE ALSO
" getuid(2), setregid(2), setgid(3)

4.2 Berkeley Distribution January 7, 1986 1

GETGROUPS(2) i UNIX Programmer’s Manual GETGROUPS(2)

NAME
getgroups - get group access list

SYNOPSIS
#include <sys/param.h>

ngroups = getgroups(gidsetlen, gidset)
int ngroups, gidsetlen, sgidset;

DESCRIPTION :
Getgroups gets the current group access list of the user process and stores it in the array gid-
set. The parameter gidsetlen indicates the number of entries that may be placed in gidser.
Getgroups returns the actual number of groups returned in gidset. No more than NGROUPS,
as defined in <sys/param.h>, will ever be returned.

RETURN VALUE
A successful call returns the number of groups in the group set. A value of -1 indicates that
an error occurred, and the error code is stored in the global variable errno.

ERRORS
The possible errors for getgroup are:

[EINVAL] The argument gidsetlen is smaller than the number of groups in the group set.
[EFAULT] The argument gidset specifies an invalid address.

SEE ALSO
setgroups(2), initgroups(3X)

BUGS
The gidset array should be of type gid_t, but remains integer for compatibility with earlier
systems.

4.2 Berkeley Distribution May 13, 1986 1

GETHOSTID(2) UNIX Programmer’s Manual GETHOSTID(2)

NAME
gethostid, sethostid - get/set unique identifier of current host

SYNOPSIS
hostid = gethostid()
long hostid;
sethostid(hostid)
long hostid;

DESCRIPTION
Sethostid establishes a 32-bit identifier for the current processor that is intended to be unique
among all UNIX systems in existence. This is normally a DARPA Internet address for the
local machine. This call is allowed only to the super-user and is normally performed at boot
time.

Gethostid returns the 32-bit identifier for the current processor.

SEE ALSO
hostid(1), gethostname(2)

BUGS
32 bits for the identifier is too small.

4.2 Berkeley Distribution ‘November 28, 1985 1

GETHOSTNAME(2) UNIX Programmer’s Manual GETHOSTNAME((2)

NAME
gethostname, sethostname - get/set name of current host

SYNOPSIS
gethostname(name, namelen)
char sname;
int namelen;

sethostname(name, namelen)
char sname; -
int namelen;

DESCRIPTION
Gethostname returns the standard host name for the current processor, as previously set by
sethostname. The parameter namelen specifies the size of the name array. The returned
name is null-terminated unless insufficient space is provided.

Sethostname sets the name of the host machine to be name, which has length namelen. This
call is restricted to the super-user and is normally used only when the system is bootstrapped.

RETURN VALUE
If the call succeeds a value of 0 is returned. If the call fails, then a value of -1 is returned
and an error code is placed in the global location errno.

ERRORS
~ The following errors may be returned by these calls:

[EFAULT] The name or namelen parameter gave an invalid address.

[EPERM] The caller tried to set the hostname and was not the super-user.
SEE ALSO

gethostid(2)

BUGS ‘
Host names are limited to MAXHOSTNAMELEN (from <sys/param.h>) characters,
currently 64.

4.2 Berkeley Distribution May 22, 1986 1

GETITIMER (2) UNIX Programmer’s Manual GETITIMER(2)

NAME
getitimer, setitimer - get/set value of interval timer
SYNOPSIS
#include <sys/time.h> .
#define ITIMER_REAL 0 /+ real time intervals s/
#define ITIMER_VIRTUAL 1 /= virtual time intervals »/
#define ITIMER_PROF 2 /jc user and system virtual time »/

getitimer(which, value)

int which;

struct itimerval svalue;
setitimer(which, value, ovalue)
int which;

struct itimerval cvalue, sovalue;

DESCRIPTION
The system provides each process with three interval timers, defined in <sys/time.h>. The
getitimer call returns the current value for the timer specified in which in the structure at
value. The setitimer call sets a timer to the specified value (returning the previous value of
the timer if ovalue is nonzero).

A timer value is defined by the itimerval structure:

struct itimerval {
struct timeval it_interval; /= timer interval »/
struct timeval it_value; /= current value »/
|4
If it_value is non-zero, it indicates the time to the next timer expiration. If it_interval is non-
zero, it specifies a value to be used in reloading it_value when the timer expires. Setting
it_value to 0 disables a timer. Setting iz_interval to 0 causes a timer to be disabled after its
next expiration (assuming iz_value is non-zero).

Time values smaller than the resolution of the system clock are rounded up to this resolution
(on the VAX, 10‘ milliseconds).

The ITIMER_REAL timer decrements in real time. A SIGALRM signal is delivered when
this timer expires.

The ITIMER_VIRTUAL timer decrements in process virtual time. It runs only when the
process is executing. A SIGVTALRM signal is delivered when it expires.

The ITIMER_PROF timer decrements both in process virtual time and when the system is
running on behalf of the process. It is designed to be used by interpreters in statistically
profiling the execution of interpreted programs. Each time the ITIMER_PROF timer expires,
the SIGPROF signal is delivered. Because this signal may interrupt in-progress system calls,
programs using this timer must be prepared to restart interrupted system calls.

NOTES
Three macros for manipulating time values are defined in <sys/time.h>. Timerclear sets a
time value to zero, timerisset tests if a time value is non-zero, and timercmp compares two
time values (beware that >= and <= do not work with this macro).

RETURN VALUE
If the calls succeed, a value of 0 is returned. If an error occurs, the value -1 is returned, and
a more precise error code is placed in the giobal variable errno.

4.2 Berkeley Distribution August 26, 1985 1

GETITIMER (2) UNIX Programmer’s Manual - GETITIMER (2)

ERRORS
The possible errors are:

[EFAULT] The value parameter specified a bad address.
[EINVAL] A value parameter specified a time was too large to be handled.

SEE ALSO
sigvec(2), gettimeofday(2)

4.2 Berkeley Distribution August 26, 1985 2

GETPAGESIZE(2) UNIX Programmer’s Manual _ GETPAGESIZE (2)

NAME
getpagesize — get system page size
SYNOPSIS
pagesize = getpagesize()
int pagesize;
DESCRIPTION
Getpagesize returns the number of bytes in a page. Page granularity is the granularity of
many of the memory management calls.

The page size is a system page size and may not be the same as the underlying hardware page
size.

SEE ALSO
sbrk(2), pagesize(1)

4.2 Berkeley Distribution May 15, 1985 1

GETPEERNAME(2) " UNIX Programmer’s Manual GETPEERNAME(2)

NAME

getpeername - get name of connected peer
SYNOPSIS

getpeername(s, name, namelen)

int s;

struct sockaddr sname;
int snamelen;

DESCRIPTION
Getpeername returns the name of the peer connected to socket s. The namelen parameter
should be initialized to indicate the amount of space pointed to by name. On return it con-
tains the actual size of the name returned (in bytes). The name is truncated if the buffer pro-
vided is too small.

DIAGNOSTICS

A 0 is returned if the call succeeds, -1 if it fails.
ERRORS

The call succeeds unless:

[EBADF] The argument s is not a valid descriptor.

[ENOTSOCK] The argument s is a file, not a socket.
[ENOTCONN] The socket is not connected.
[ENOBUFS] Insufficient resources were available in the system to perform the operation.

[EFAULT] The name parameter points to memory not in a valid part of the process
address space.

SEE ALSO
' accept(2), bind(2), socket(2), getsockname(2)

4.2 Berkeley Distribution May 13, 1986 1

GETPGRP(2) UNIX Programmer’s Manual GETPGRP(2)

NAME
getpgrp - get process group
SYNOPSIS
pgrp = getpgrp(pid)
int pgrp;
int pid;
DESCRIPTION
The process group of the specified process is returned by getpgrp. If pid is zero, then the call
applies to the current process.

Process groups are used for distribution of signals, and by terminals to arbitrate requests for
their input: processes that have the same process group as the terminal are foreground and
may read, while others will block with a signal if they attempt to read.

This call is thus used by programs such as csi(1) to create process groups in implementing job
control. The TIOCGPGRP and TIOCSPGRP calls described in 1y(4) are used to get/set the
process group of the control terminal.

SEE ALSO
setpgrp(2), getuid(2), tty(4)

4.2 Berkeley Distribution August 26, 1985 _ 1

GETPID(2) UNIX Programmer’s Manual GETPID(2)

NAME

getpid, getppid - get process identification
SYNOPSIS

pid = getpid()

int pid;

ppid = getppid(

int ppid;

DESCRIPTION
Getpid returns the process ID of the current process. Most often it is used to generate
uniquely-named temporary files.

Getppid returns the process ID of the parent of the current process.

SEE ALSO
gethostid(2)

4th Berkeley Distribution May 13, 1986 1

GETPRIORITY (2) UNIX Programmer’s Manual GETPRIORITY (2)

NAME

getpriority, setpriority — get/set program scheduling priority

SYNOPSIS

#include <sys/resource.h>
prio = getpriority(which, who)
int prio, which, who;
setpriority(which, who, prio)
int which, who, prio;

DESCRIPTION

The scheduling priority of the process, process group, or user, as indicated by which and who

is obtained with the getpriority call and set with the setpriority call. Which is one of

PRIO_PROCESS, PRIO_PGRP, or PRIO_USER, and who is interpreted relative to which (a

process identifier for PRIO_PROCESS, process group identifier for PRIO_PGRP, and a user -
ID for PRIO_USER). A zero value of who denotes the current process, process group, or

user. Prio is a value in the range =20 to 20. The default priority is 0; lower priorities cause

more favorable scheduling.

The getpriority call returns the highest priority (lowest numerical value) enjoyed by any of the
specified processes. The setpriority call sets the priorities of all of the specified processes to
the specified value. Only the super-user may lower priorities.

RETURN VALUE

Since getpriority can legitimately return the value -1, it is necessary to clear the external vari- -
able errno prior to the call, then check it afterward to determine if a -1 is an error or a legiti-
mate value. The setpriority call returns O if there is no error, or -1 if there is.

ERRORS

Getpriority and setpriority may return one of the following errors:
[ESRCH] No process was located using the which and who values specified.
[EINVAL] Which was not one of PRIO_PROCESS, PRIO_PGRP, or PRIO_USER.

In addition to the errors indicated above, setpriority may fail with one of the following errors
returned:

[EPERM] A process was located, but neither its effective nor real user ID matched the
effective user ID of the caller.
[EACCES] A non super-user attempted to lower a process priority.
SEE ALSO

nice(1), fork(2), renice(8)

4th Berkeley Distribution May 22, 1986 |

GETRLIMIT(2) _ UNIX Programmer’s Manual GETRLIMIT(2)

NAME
getrlimit, setrlimit - control maximum system resource consumption

SYNOPSIS
#include <sys/time.h>
#include <sys/resource.h>

getrlimit(resource, rip)
int resource;
struct rlimit srlp;

setrlimit(resource, rip)
int resource;
struct rlimit srlp;

DESCRIPTION
Limits on the consumption of system resources by the current process and each process it
creates may be obtained with the getrlimit call, and set with the setrlimit call.

The resource parameter is one of the following:
RLIMIT_CPU the maximum amount of cpu time (in seconds) to be used by each process.
RLIMIT_FSIZE the largest size, in bytes, of any single file that may be created.

RLIMIT_DATA the maximum size, in bytes, of the data segment for a process; this defines
how far a program may extend its break with the sbrk(2) system call.

RLIMIT_STACK the maximum size, in bytes, of the stack segment for a process; this defines
how far a program’s stack segment may be extended. Stack extension is
performed automatically by the system.

RLIMIT_CORE the largest size, in bytes, of a core file that may be created.

RLIMIT_RSS the maximum size, in bytes, to which a process’s resident set size may
grow. This imposes a limit on the amount of physical memory to be given
to a process; if memory is tight, the system will prefer to take memory
from processes that are exceeding their declared resident set size.

A resource limit is specified as a soft limit and a hard limit. When a soft limit is exceeded a
process may receive a signal (for example, if the cpu time is exceeded), but it will be allowed
to continue execution until it reaches the hard limit (or modifies its resource limit). The
rlimit structure is used to specify the hard and soft limits on a resource,

struct rlimit (
int rlim_cur; /= current (soft) limit »/
int rlim_max; /+ hard limit »/
)
Only the super-user may raise the maximum limits. Other users may only alter riim_cur
within the range from 0 to rlim_max or (irreversibly) lower rlim_max.

An “infinite” value for a limit is defined as RLIM_INFINITY (Ox7ffffffY).

Because this information is stored in the per-process information, this system call must be
executed directly by the shell if it is to affect all future processes created by the shell; /imit is
thus a built-in command to csa(1).

The system refuses to extend the data or stack space when the limits would be exceeded in the
normal way: a break call fails if the data space limit is reached. When the stack limit is
reached, the process receives a segmentation fault (SIGSEGV); if this signal is not caught by a
handler using the signal stack, this signal will kill the process.

4th Berkeley Distribution . May 13, 1986 1

GETRLIMIT (2) _ UNIX Programmer’s Manual GETRLIMIT(2)

A file I/O operation that would create a file that is too large will cause a signal SIGXFSZ to
be generated; this normally terminates the process, but may be caught. When the soft cpu
time limit is exceeded, a signal SIGXCPU is sent to the offending process.

RETURN VALUE
A 0 return value indicates that the call succeeded, changing or returning the resource limit.
A return value of -1 indicates that an error occurred, and an error code is stored in the global
» location errno.
ERRORS
The possible errors are:
[EFAULT] The address specified for rlp is invalid.

[EPERM] The limit specified to setrlimit would have
raised the maximum limit value, and the caller is not the super-user.

SEE ALSO
csh(1), quota(2), sigvec(2), sigstack(2)

BUGS
There should be /imit and unlimit commands in sa(1) as well as in csh.

4th Berkeley Distribution May 13, 1986 2

GETRUSAGE(2)

NAME

UNIX Programmer’s Manual

GETRUSAGE (2)

getrusage - get information about resource utilization

SYNOPSIS
#include <sys/time.h>
#include <sys/resource.h>

#define RUSAGE_SELF 0
#define RUSAGE_CHILDREN -1
getrusage(who, rusage)

int who;

struct rusage srusage;

DESCRIPTION

/s calling process s/
/= terminated child processes =/

Getrusage returns information describing the resources utilized by the current process, or all

its terminated child processes.

The who parameter is one of RUSAGE_SELF or

RUSAGE_CHILDREN. The buffer to which rusage points will be filled in with the following

structure:

struct rusage {
struct timeval ru_utime;
struct timeval ru_stime;
int ru_maxrss;
int ru_ixrss;
int ru_idrss;
int ru_isrss;
int ru_minflt;
int ru_majflt;
int ru_nswap;
int ru_inblock;
int ru_oublock;
int ru_msgsnd;
int ru_msgrcv;.
int ru_nsignals;
int ru_nvesw;
int ru_nivesw;
J5
The fields are interpreted as follows:
ru_utime

ru_stime
process(es).

ru_maxrss

”

ru_ixrss an “integr.

/# user time used »/
/= system time used »/

/+ integral shared text memory size »/
/» integral unshared data size »/
/+ integral unshared stack size »/
/+ page reclaims +/

/= page faults s/

/% swaps »/

/# block input operations »/

/# block output operations */

/+ messages sent »/

/» messages received »/

/» signals received */

/» voluntary context-switches »/
/+ involuntary context switches »/

the total amount of time spent executing in user mode.
the total amount of time spent in the system executing on behalf of the

the maximum resident set size utilized (in kilobytes).
value indicating the amount of memory used by the text seg-

ment that was also shared among other processes. This value is expressed in
units of kilobytes # seconds-of-execution and is calculated by summing the
number of shared memory pages in use each time the internal system clock
ticks and then averaging over 1 second intervals.

ru_idrss

an integral value of the amount of unshared memory residing in the data seg-

ment of a process (expressed in units of kilobytes » seconds-of-execution).

ru_isrss

an integral value of the amount of unshared memory residing in the stack

segment of a process (expressed in units of kilobytes » seconds-of-execution).

4th Berkeley Distribution

May 13, 1986 1

GETRUSAGE(2) UNIX Programmer’s Manual GETRUSAGE(2)

ru_minflt the number of page faults serviced without any I/O activity; here I/O activity

is avoided by “reclaiming” a page frame from the list of pages awaiting real-
location.

ru_majflt the number of page faults serviced that required I/O activity.

ru_nswap the number of times a process was “swapped” out of main memory.

ru_inblock the number of times the file system had to perform input.

ru_outblock the number of times the file system had to perform output.

ru_msgsnd the number of IPC messages sent.

ru_msgrcv the number of IPC messages received.

ru_nsignals the number of signals delivered.

ru_nvesw the number of times-a context switch resulted due to a process voluntarily
giving up the processor before its time slice was completed (usually to await
availability of a resource).

ru_nivesw the number of times a context switch resulted due to a higher priority process
becoming runnable or because the current process exceeded its time slice.

NOTES o
The numbers ru_inblock and ru_outblock account only for real I/0; data supplied by the cach-
ing mechanism is charged only to the first process to read or write the data.

ERRORS
The possible errors for getrusage are:

[EINVAL] The who parameter is not a valid value.

[EFAULT] The address specified by the rusage parameter is not in a valid part of the
process address space.

SEE ALSO
gettimeofday(2), wait(2)

BUGS
There is no way to obtain information about a child process that has not yet terminated.

4th Berkeley Distribution . May 13, 1986 ’ 2

GETSOCKNAME(2) ' UNIX Programmer’s Manual GETSOCKNAME (2)

NAME
getsockname - get socket name
SYNOPSIS
getsockname(s, name, namelen)
int s;

struct sockaddr sname;
int *namelen;

DESCRIPTION ‘
Getsockname returns the current name for the specified socket. The namelen parameter
should be initialized to indicate the amount of space pointed to by name. On return it con-
tains the actual size of the name returned (in bytes).

DIAGNOSTICS .
A 0 is returned if the call succeeds, -1 if it fails.

ERRORS'
The call succeeds unless:

[EBADF] The argument s is not a valid descriptor.
[ENOTSOCK] The argument s is a file, not a socket.
[ENOBUFS] Insufficient resources were available in the system to perform the operation.

[EFAULT] The name parameter points to memory not in a valid part of the process
address space.

SEE ALSO
bind(2), socket(2)

BUGS :
Names bound to sockets in the UNIX domain are inaccessible; getsockname returns a zero
length name.

4.2 Berkeley Distribution May 15, 1985 1

GETSOCKOPT(2) UNIX Programmer’s Manual GETSOCKOPT(2)

NAME
getsockopt, setsockopt - get and set options on sockets

SYNOPSIS
#include <sys/types.h>
#include <sys/socket.h>

getsockopt(s, level, optname, optval, optlen)
int s, level, optname;

char soptval;

int soptlen;

setsockopt(s, level, optname, optval, optlen)
int s, level, optname;

char soptval;

int optlen;

DESCRIPTION
Getsockopt and setsockopt manipulate options associated with a socket. Options may exist at
multiple protocol levels; they are always present at the uppermost “socket™ level.

When manipulating socket options the level at which the option resides and the name of the
option must be specified. To manipulate options at the ‘“socket” level, /evel is specified as
SOL_SOCKET. To manipulate options at any other level the protocol number of the
appropriate protocol controlling the option is supplied. For example, to indicate that an
option is to be interpreted by the TCP protocol, /evel should be set to the protocol number of
TCP; see getprotoent(3N). '

The parameters optval and optlen are used to access option values for setsockopt. For get-
sockopt they identify a buffer in which the value for the requested option(s) are to be
returned. For getsockopt, optlen is a value-result parameter, initially containing the size of the
buffer pointed to by optval, and modified on return to indicate the actual size of the value
returned. If no option value is to be supplied or returned, optval may be supplied as 0.

Optname and any specified options are passed uninterpreted to the appropriate protocol
module for interpretation. The include file <sys/socket.h> contains definitions for ‘“socket”
level options, described below. Options at other protocol levels vary in format and name;
consult the appropriate entries in section (4P).

Most socket-level options take an int parameter for optval. For setsockopt, the parameter
should non-zero to enable a boolean option, or zero if the option is to be disabled.
SO_LINGER uses a struct linger parameter, defined in <sys/socket.h>, which specifies the
desired state of the option and the linger interval (see below).

The following options are recognized at the socket level. Except as noted, each may be exam-
ined with getsockopt and set with setsockopt. :

SO_DEBUG toggle recording of debugging information
SO_REUSEADDR toggle local address reuse

SO_KEEPALIVE tosggle keep connections alive
SO_DONTROUTE toggle routing bypass for outgoing messages
SO_LINGER linger on close if data present
SO_BROADCAST toggle permission to transmit broadcast messages
SO_OOBINLINE toggle reception of out-of-band data in band

SO_SNDBUF set buffer size for output

SO_RCVBUF set buffer size for input

SO_TYPE get the type of the socket (get only)
SO_ERROR get and clear error on the socket (get only)

4.2 Berkeley Distribution May 23, 1986 1

GETSOCKOPT (2) UNIX Programmer’s Manual GETSOCKOPT(2)

SO_DEBUG enables debugging in the underlying protocol modules. SO_REUSEADDR indi-
cates that the rules used in validating addresses supplied in a bind(2) call should allow reuse
of local addresses. SO_KEEPALIVE enables the periodic transmission of messages on a con-
nected socket. Should the connected party fail to respond to these messages, the connection
is considered broken and processes using the socket are notified via a SIGPIPE signal.
SO_DONTROUTE indicates that outgoing messages should bypass the standard routing facil-
ities. Instead, messages are directed to the appropriate network interface according to the
network portion of the destination address.

SO_LINGER controls the action taken when unsent messags are queued on socket and a
close(2) is performed. If the socket promises reliable delivery of data and SO_LINGER s set,
the system will block the process on the close attempt until it is able to transmit the data or
until it decides it is unable to deliver the information (a timeout period, termed the linger
interval, is specified in the setsockopt call when SO_LINGER is requested). If SO_LINGER is
disabled and a close is issued, the system will process the close in a manner that allows the
process to continue as quickly as possible.

The option SO_BROADCAST requests permission to send broadcast datagrams on the
socket. Broadcast was a privileged operation in earlier versions of the system. With proto-
cols that support out-of-band data, the SO_OOBINLINE option requests that out-of-band
data be placed in the normal data input queue as received; it will then be accessible with recv
or read calls without the MSG_OOB flag. SO_SNDBUF and SO_RCVBUF are options to
adjust the normal buffer sizes allocated for output and input buffers, respectively. The buffer
size may be increased for high-volume connections, or may be decreased to limit the possible
backlog of incoming data. The system places an absolute limit on these values. Finally,
SO_TYPE and SO_ERROR are options used only with setsockopt. SO_TYPE returns the
type of the socket, such as SOCK_STREAM; it is useful for servers that inherit sockets on
startup. SO_ERROR returns any pending error on the socket and clears the error status. It
may be used to check for asynchronous errors on connected datagram sockets or for other
asynchronous errors. :

RETURN VALUE

A 0 is returned if the call succeeds, -1 if it fails.

ERRORS

The call succeeds unless:

[EBADF] The argument s is not a valid descriptor.
[ENOTSOCK] The argument s is a file, not a socket.
[ENOPROTOOPT] The option is unknown at the level indicated.

[EFAULT] The address pointed to by optval is not in a valid part of the process
address space. For getsockopt, this error may also be returned if optlen
is not in a valid part of the process address space.

SEE ALSO

BUGS

ioctl(2), socket(2), getprotoent(3N)

Several of the socket options should be handled at lower levels of the system.

4.2 Berkeley Distribution May 23, 1986 2

GETTIMEOFDAY (2) UNIX Programmer’s Manual GETTIMEOFDAY (2)

NAME
gettimeofday, settimeofday - get/set date and time

SYNOPSIS
#include <sys/time.h>

gettimeofday(tp, tzp)
struct timeval stp;
struct timezone stzp;

settimeofday(tp, tzp)
struct timeval stp;
struct timezone stzp;

DESCRIPTION
The system’s notion of the current Greenwich time and the current time zone is obtained
with the gettimeofday call, and set with the settimeofday call. The time is expressed in
seconds and microseconds since midnight (0 hour), January 1, 1970. The resolution of the
system clock is hardware dependent, and the time may be updated continuously or in “ticks.”
If tzp is zero, the time zone information will not be returned or set.

The structures pointed to by ¢p and ¢zp are defined in <sys/time.h> as:

struct timeval {
long tv_sec; /# seconds since Jan. 1, 1970 »/
long tv_usec; /» and microseconds »/

b

struct timezone { ‘
int tz_minuteswest; /% of Greenwich »/
int tz_dsttime; /= type of dst correction to apply »/
4 ,
The timezone structure indicates the local time zone (measured in minutes of time westward
from Greenwich), and a flag that, if nonzero, indicates that Daylight Saving time applies
locally during the appropriate part of the year.

Only the super-user may set the time of day or time zone.

RETURN
A O return value indicates that the call succeeded. A -1 return value indicates an error
occurred, and in this case an error code is stored into the global variable errno.

ERRORS
The following error codes may be set in errno:

[EFAULT] An argument address referenced invalid memory.
[EPERM] A user other than the super-user attempted to set the time.

SEE ALSO
date(1), adjtime(2), ctime(3), timed(8)

4th Berkeley Distribution May 14, 1986 1

GETUID(2) UNIX Programmer’s Manual GETUID(2)

NAME
getuid, geteuid - get user identity

SYNOPSIS
#include <sys/types.h>
uid = getuid()
uid_t uid;
euid = geteuid()
uid_t euid;

DESCRIPTION
Getuid returns the real user ID of the current process, geteuid the effective user ID.

The real user ID identifies the person who is logged in. The effective user ID gives the pro-
cess additional permissions during execution of ‘“set-user-ID”” mode processes, which use
getuid to determine the real-user-id of the process that invoked them.

SEE ALSO
getgid(2), setreuid(2)

4th Berkeley Distribution January 7, 1986 : _ 1

IOCTL(2) UNIX Programmer’s Manual IOCTL(2)

NAME
ioctl - control device

SYNOPSIS
#include <sys/ioctl.h>

ioctl(d, request, argp)
int d;
unsigned long request;
char sargp;
DESCRIPTION
Ioctl performs a variety of functions on open descriptors. In particular, many operating
characteristics of character special files (e.g. terminals) may be controlled with ioct/ requests.
The writeups of various devices in section 4 discuss how ioct/ applies to them.

An ioctl request has encoded in it whether the argument is an “in” parameter or “out”
parameter, and the size of the argument argp in bytes. Macros and defines used in specifying
an ioctl request are located in the file <sys/ioctl.h>.

RETURN VALUE
If an error has occurred, a value of -1 is returned and errno is set to indicate the error.

ERRORS :
Toctl will fail if one or more of the following are true:

[EBADF] D is not a valid descriptor.
[ENOTTY] D is not associated with a character special device.

[ENOTTY] The specified request does not apply to the kind of object that the descriptor
d references.

[EINVAL] Request or argp is not valid.

SEE ALSO
execve(2), fentl(2), mt(4), tty(4), intro(4N)

4th Berkeley Distribution March 4, 1986 1

KILL(2) UNIX Programmer’s Manual KILL(2)

NAME

kill - send signal to a process

SYNOPSIS

kill(pid, sig)
int pid, sig;

DESCRIPTION

Kill sends the signal sig to a process, specified by the process number pid. Sig may be one of
the signals specified in sigvec(2), or it may be 0, in which case error checking is performed but
no signal is actually sent. This can be used to check the validity of pid.

The sending and receiving processes must have the same effective user ID, otherwise this call
is restricted to the super-user. A single exception is the signal SIGCONT, which may always
be sent to any descendant of the current process.

If the process number is 0, the signal is sent to all processes in the sender’s process group; this
is a variant of killpg(2).

If the process number is -1 and the user is the super-user, the signal is broadcast universally
except to system processes and the process sending the signal. If the process number is -1
and the user is not the super-user, the signal is broadcast universally to all processes with the
same uid as the user except the process sending the signal. No error is returned if any process
could be signaled.

For compatibility with System V, if the process number is negative but not -1, the signal is
sent to all processes whose process group ID is equal to the absolute value of the process
number. This is a variant of killpg(2).

Processes may send signals to themselves.

RETURN VALUE

Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned
and errno is set to indicate the error.

ERRORS .

Kill will fail and no signal will be sent if any of the following occur:
[EINVAL] Sig is not a valid signal number.

[ESRCH] No process can be found corresponding to that specified by pid.

[ESRCH] The process id was given as 0 but the sending process does not have a process
group.

[EPERM] The sending process is not the super-user and its effective user id does not

match the effective user-id of the receiving process. When signaling a process
group, this error was returned if any members of the group could not be sig-
naled.

SEE ALSO '

getpid(2), getpgrp(2), killpg(2), sigvec(2)

4th Berkeley Distribution ‘ May 14, 1986 \

KILLPG(2) UNIX Programmer’s Manual KILLPG(2)

NAME
killpg - send signal to a process group
SYNOPSIS
killpg(pgrp, sig)
int pgrp, sig;
DESCRIPTION
Killpg sends the signal sig to the process group pgrp. See sigvec(2) for a list of signals.

The sending process and members of the process group must have the same effective user ID,
or the sender must be the super-user. As a single special case the continue signal SIGCONT
may be sent to any process that is a descendant of the current process.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned
and the global variable errno is set to indicate the error.

ERRORS ’
Killpg will fail and no signal will be sent if any of the following occur:

[EINVAL] Sig is not a valid signal number.
[ESRCH] No process can be found in the process group specified by pgrp.

[ESRCH] The prdcess group was given as 0 but the sending process does not have a .
process group.

[EPERM] The sending process is not the super-user and one or more of the target
processes has an effective user ID different from that of the sending process.

SEE ALSO
kill(2), getpgrp(2), sigvec(2)

4th Berkeley Distribution May 14, 1986 1

LINK(2)

NAME

UNIX Programmer’s Manual LINK (2)

link - make a hard link to a file

SYNOPSIS
link(namel, name2)
char snamel, sname2;

DESCRIPTION
A hard link to namel is created; the link has the name name2. Namel must exist.

With hard links, both name! and name2 must be in the same file system. Unless the caller is
the super-user, namel must not be a directory. Both the old and the new link share equal
access and rights to the underlying object.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned
and errno is set to indicate the error.

ERRORS
Link will fail and no link will be created if one or more of the following are true:

[ENOTDIR] A component of either path prefix is not a directory.

[EINVAL] Either pathname contains a character with the high-order bit set.

[ENAMETOOLONG]

A component of either pathname exceeded 255 characters, or entire length of
either path name exceeded 1023 characters.

[ENOENT] A component of either path prefix does not exist.

[EACCES] A component of either path prefix denies search permission.

[EACCES] The requested link requires writing in a directory with a mode that denies
write permission.

[ELOOP] Too many symbolic links were encountered in translating one of the path-
names.

[ENOENT] The file named by namel does not exist.

[EEXIST] The link named by name2 does exist.

[EPERM] The file named by namel is a directory and the effective user ID is not
super-user.

[EXDEV] The link named by name2 and the file named by name! are on different file
systems.

[ENOSPC] The directory in which the entry for the new link is being placed cannot be
extended because there is no space left on the file system containing the
directory.

[EDQUOT] The directory in which the entry for the new link is being placed cannot be
extended because the user’s quota of disk blocks on the file system containing
the directory has been exhausted.

[EIO] An I/O error occurred while reading from or writing to the file system to
make the directory entry.

[EROFS] The requested link requires writing in a directory on a read-only file system.

[EFAULT] One of the pathnames specified is outside the process’s allocated address
space.

SEE ALSO

4th Berkeley Distribution

symlink(2), unlink(2)

August 26, 1985 1

LISTEN(2) UNIX Programmer’s-Manual LISTEN(2)

NAME
listen - listen for connections on a socket

SYNOPSIS
listen(s, backlog)
“int s, backlog;

DESCRIPTION
To accept connections, a socket is first created with socker(2), a willingness<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>