
UNIX™ SUPPORT FROM BERKELEY

4.3 BSD with NFS

Programmer's
Reference Manual

PRM

UNIX is a trademark of Bell Labor..atories

UNIX Programmer's Refere .. ;~
(PRM)

4.3 Berkeley Software Disftihfitiolt<
Virtual VAX-II VertROD'·i;

April, 1986

·. .
D ni)' ;:, ~r,.~;:..

(. : .'..,.~ . .. ,
~. "$.".,

'"'''') ---,; .~;..,;

. ..
:- e ,.' .. ~.,. ; ~~.
j.. \,l.; ~ ...

· UNIX Programmer's Reference Manual
(PRM)

4.3 Berkeley Software Distribution
Virtual VAX-II Version

April, 1986

Computer Systems Research Group
Computer Science Division

Department of Electrical Engineering and Computer Science
University of California

Berkeley, California 94720

Copyright 1979, 1980, 1983, 1986 Regents of the University of
California. Permission to copy these documents or any portion
thereof as necessary for licensed use of the software is granted
to licensees of this software, provided this copyright notice and
statement of permission are included.

Copyright 1979, AT&T Bell Laboratories, Incorporated.
Holders of UNIX™/32V,. System nI, or System V software
licenses are permitted to copy ithese documents, or any portion
of them, as necessary for licensod use of the software, provided
this copyright notice and state$ent of permission are included.

This manual retlects system eDhancements made at Berkeley
and sponsored in part by the Defense Advanced Research
Projects Agency (000), Arpa Order No. 4871 monitored by
the Naval Electronics Systems Command under contract No.
NOOO39-84-C-0089. The views and conclusions contained in
these documents are those of the authors and should not be
interpreted as representing official policies, either expressed or
implied, of the Defense Research Projects Agency or of the US
Government.

Those manual pages labeled "Sun Microsystems ReI 3.0" are
Copyright 0 1986 Sun Microsystems. Inc. and MT XINu. Inc .•
all rights reserved. Permission to copy is subject to condi­
tions in your license with MT XINu. Inc.

-i-

TABLE OF CONTENTS

· • • •• introduction to system calls and error numbers • • • • • accept a connection on a socket
• • • • • • • • • • • • • • • •• determine accessibility of file . . . • • • • • turn accounting on or off

correct the time to allow synchronization of the system clock

2. System Calls

intro
accept
access
acct
adjtime
bind
brk
chdir
chmod
chown
chroot
close
connect

• • • • • • • • • • . . • • • • • • • • • • • • • .• bind a name to a socket

4.3BSD

creat
dup
execve

·

• • • • •• change data seglllent size
change current working directory

change mode of file
change owner and group of a file

• • • • • • • • • • • •• change root directory
• • • • •• delete a descriptor
initiate a connection on a socket

• • • • • create a new file
• • • • • • • • • • • duplicate a descriptor

• • • • • • • • • • • •• execute a file
exit • • • • • • • • • • • • • • • • • terminate a process
fcntl • • • • • • • • • • • • • • • • • •• file control
:O.ock • • • • • • • • • • • • • •• apply or remove an advisory lock on an open file
fork •• create a new process
fsync
getdirentries
getdomainname
getdtablesize
getgid
getgroups
gethostid
gethostname
getitimer
getpagesize
getpeername

• • • • synchronize a file's in-core state with that on disk
gets directory entries in a filesystem independent format

• • • • • • •• get/set name of current domain
• • • • • • •• get descriptor table size

• • • • • • • • • • • • get group identity
get group access list

• • • • get/set unique identi1ier of current host
• • • • • • • • get/set name of current host

• • • • get/set value of interval timer
• • • • • • • • • • • • • •• get system page size get name of connected peer

getpgrp
getpid
getpriority
getrlimit
getrusage
getsockname
getsockopt
gettimeofday
getuid

. get process group
get process identi1ication

get/set program scheduling priority
control maximum system resource consumption

get information about resource utilization

ioctl
kill
killpg
link
listen
}seek

mkdir
mknod
mount
nfssvc
open
pipe
profil

· . . .

.

• • • • • • • • • • • • • • • • • •• get socket name
• • • • • • • • • •• get and set options on sockets

• • • • • • • • • • get/set date and time

. . .
. .

• • • • • • • • • get user identity
• • • • • • • • • • control device

. .
send signal to a process

send signal to a process group
make a hard link to a file

listen for connections on a socket
move read/write pointer

• • • • • make a directory file
• • • • • • • • • • • • .' make a special file

• • • •• mount file system
• • • • • • • • • • NFS daemons

open a file for reading or writing. or create a new file
create an interprocess communication channel

• • • • • • • • • • • • •• execution time profile

June 1986

-ii-

ptrace
quota
quotactl
read
readlink
reboot

· . .
.

recv . . ·

. . .0 •

. .
. . . .
. . . .

· . . .
· ·

· . .

·
·

. . .

....

Table of Contents

. process trace
manipulate disk. quotas
manipulate disk quotas

read input
read value of a symbolic link

reboot system or halt processor
receive a message from a socket

change the name of a file rename
rmdir
select
send

· . remove a directory file
synchronous I/O multiplexing
send a message from a socket

set group access list
set process group

enable/disable quotas on a file system
set real and effective group ID

setgroups
setpgrp
setquota
setregid
setreuid
shutdown
sigblock
sigpause
sigreturn
sigsetmask
sigstack
sigvec
socket
socketpair
stat

• l' • •

. . · .

· .
.

. . . .
. . . set real and effective user ID"s

shut down part of a full-duplex connection . . -. ~. block signals
atomically release blocked signals and wait for interrupt

• • • • • • • •• return from signal

• • • •
• • • • •• set current signal mask

set and/or get signal stack context
• • • • • • •• software signal facilities
· . .

create an endpoint for communication
create a pair of connected sockets ·

statfs · get file status
get file system statistics

add a swap device for interleaved paging/swapping
make symbolic link to a file

update super-block
indirect system call

truncate a file to a specified length
. . .

.
·

·

. . set file creation mode mask
· . . · . . remove directory entry · remove a file system · set file times

spawn new process in a virtual memory efficient way
virtually "hangup" the current control terminal · ~ wait for process to terminate

swapon
sy:m1ink
sync
syscall
truncate
umask
unlink
unmount
utimes
vfork
vhangup
wait
write · . write output

3. C Library Subroutines

intro introduction to C library functions
abort
abs
alarm
&Sinh
assert
atof
bstring
byteorder
crypt
ctime
ctype
curses
dbm

lune 1986

. . .

. . . . · generate a fault
integer absolute value

schedule signal after specified time
• .' inverse hyperbolic functions

• .• • • • • • • • •• program verification
• • • ", convert ASCII to numbers

• • • • • • • • • • •• bit and byte string operations
convert values between host and network byte order

. • • • • • • • • • . • • DES encryption
• • • • • • •• convert date and time to ASCII
• • • • • • •• character classification macros

screen functions with "optimal" cursor motion
• • • • • • • • • • •• data base subroutines

4.3BSD

Tab~ 0/ Contents -iii-

4.3BSD

directory
ecvt
end
erf
ether
execl
exit
exp
fclose
ferror
iloor
fopen
fread
frexp
fseek
getc
getdisk

. . .

getenv
getfsent
getgrent
gethostbyname
getlogin
getmntent
getnetent
getnetgrent
getopt
getpass
getprotoent
getpw
getpwent
getrpcent
getrpcport
gets

. . .

.
directory operations output conversion

last locations in program
• • •• error functions

monitor traffic on the Ethernet . . . execute a file
terminate a process after ilushing any pending output

• • • • • • • • • • •• exponential. logarithm. power
• • • • • • • • • • • • • • close or ilush a stream

• • • • • • • • • • • • • • stream status inquiries
absolute value. iloor. ceiling. and round-to-nearest functions

.

. .. ' ..

. . . .

• • • • • • •• open a stream
buffered binary input/output

split into mantissa and exponent
• • • • • •• reposition a stream
get character or word from stream

get disk description by its name
value for environment name

get file system descriptor file entry
get group file entry get network host entry

get login name
get file system descriptor file entry

get network entry
get network group entry

get option letter from argv
read a password

get protocol entry
get name from uid

get password file entry
get rpc entry

• • • •. get RPC port number
get a string from a stream

getservent
getttyent
getusershell
getwd

. • • •• get service entry
get ttys file entry

hypot
ieee
inet
infnan
initgroups
insque

. . . .
jO
19amma
lib2648
malIoc
math
mktemp
monitor

.

. get legal user shells
get current working directory pathname

Euclidean distance. complex absolute value
copysign. remainder. exponent manipulations

• • • • • • • • • •• In~et address manipulation routines
signals invalid iloating-point operations on a VAX. (temporary)

• • • • • • • •• initialize group access list
insertIremove element from a queue

. • • • • • • • • • • • • • • • • •• bessel functions

... log gamma function
subroutines for the lIP 2648 graphics terminal

memory allocator
introduction to mathematical library functions

make a unique file name
prepare execution profile

keep track of remotely mounted :filesystems
• • • .. multiple precision integer arithmetic

• • • • • • • • • • • • •• data base subroutines

mount
mp
ndbm
nice
nlist
ns

•••• ". • • • • • .'_ .-- •.• • • • • • • • • .'- •••. - •.• ~.'. set. program priority
• • • • • • • • • • • • • • • • • • • •• get entries from name list

Xerox NS(tm) address conversion routines

June 1986

- iv-

·
.

.
. . . .

Table of Contents

stop until signal
system error messages

graphics interface

. initiate 110 to/from a process
formatted output conversion

system signal messages
put character or word on a stream

pause
perror
plot
popen
print!
psignal
putc
puts
qsort
rand
random
rcmd
regex
resolver
rexec

• •• put a string on a stream
• •• quicker sort

• •• random number generator
• • • • •• better random number generator: routines for changing generators

• • • • • • • • • •• routines for returning a stream to a remote command · regular expression handler

rnusers
rquota
rstat

· .
• • . • • • • • • • • • • • • • • • • •• resolver routines

• • • • • • • • • •• return stream to a remote command
• • • • • •• return information about users on remote machines

• • • • • • • • • •• implement quotas on remote machines . . get performance data from remote kernel write to specified remote machines ~ rwall
scandir
sc:anf
setbuf
setjmp
setuid
siginterrupt
signal

• .• • •• scan a directory
formatted input conversion
assign buffering to a stream

· . . . · · . .
. • •

· .
.

· .

. . .
. . . non-local goto

set user and group ID
. allow signals to interrupt system calls ~ simplified software signal facilities

trigonometric functions and their iilVerses
hyperbolic functions

sin · sinh
sleep
spray
sqrt
stdio
string
stty
swab
syslog
system
termcap
time

· ". suspend execution for interval
scatter data in order to check the network · · cube root. square root

standard buffered input/output package . . · · . . ·
. . . .

· . .

.

. . . . ·

. . . . " string operations
set and get terminal state (defunct) swap bytes

control system log
issue a shell command

terminal independent operation routines
get date and time
get process times

find name of a terminal
schedule signal after specified time

times
ttyname
ualarm
ungetc
usleep
utime
va1loc
varargs
vlimit
vtimes
ypclnt
yppasswd.

push character back into input stream
suspend execution for interval

set 1i1e times
aligned memory allocator

variable argument list
control maximum system resource consumption

• • •• get information about resource utilization
yellow pages client interface

update user password in yellow pages

· . · . .
. . . .

.
· . .

3F. Fortran Library

intro introduction to FORTRAN library functions
• • • • • •• abnormal termination abort · ,.

access determine accessibility of a file

June 1986 4.3BSD

Table 01 Contents'

• alarm
bessel
bit
chdir
chmod
etime
exit
fdate
1lmin
llush
fork
fseek
getarg
getc
getcwd
getenv
getlog
getpid
getuid
hostnm.
idate
index
ioinit
kill
link.

.
. . ·

.

-v-

execute a subroutine after a specified time
• • • • • • • •• of two kinds for integer orders

and. or. xor. not. rshift.lshift bitwise functions · .
. . .

· . . .

. . . change default directory
change mode of a file

return elapsed execution time
terminate process with status

return date and time in an ASCII string
return extreme values

llush output to a logical unit
• • • •• create a copy of this process

. reposition a file on a logical unit
return command line arguments

get a character from a logical unit get pathname of current working directory
get value of environment variables

• •• get user·s login name

. . . .
get process id . . . get user or group ID of the caller

get name of current host
return date or time in numerical form

tell about character objects
• • • • • • • • • • • eo • • • • • • • • • • • • • change f77 110 initialization

send a signal to a process
make a link to an existing file

return the address of an object
integer object conversion

• • • • •• memory allocator
get system error messages

f77 library interface to plot (3X) libraries.

. '.
loe
long
malloe
perror
plot
putc
qsort
rand
random
rename
signal
sleep
stat
system
time
topen
traper
trapov
trpfpe
ttynam.
unlink.
wait

· write a character to a fortran logical unit
• •. quick sort · . . • • • • • • •• return random values

better random number generator
• • • • • • • • • • • • • • • • •• renam.e a file

• • •• change the action for a signal
suspend execution for an interval

. <- . get file status
execute a UNIX command

return system time

• • • • !'

· f77 tape 110 trap arithmetic errors
trap and repair lloating point over1low

trap and repair lloating point faults · . . find name of a terminal port · .
• . .0. . . • . • • • . • • • . • • • • . • • •

remove a directory entry
wait for a process to terminate

4. Special Files

intro · introduction to special files and hardWare support
ACC LHlDH IMP interface

Data Translation AID converter
Address Resolution Protocol

diagnostics from the autocon1iguration code
line discipline for machine-machine communication (obsolete)

4.3BSD

ace
ad
arp
autoconf
bk
cons

.
. VAX.-ll console interface

June 1986

- vi-

crl
CBS

ct
ddn
de
dh
dhu
dmc
dmf
dmz
dn

Table of Contents

• •• V AJ{ 8600 console RL02 interface­
• •• DEC IMP-11A LHlDH IMP interface

• • • • • • • • • • • • •• phototypesetter interface
• • • • • • • • • • • •• DDN Standard Mode X.25 IMP interface

• • • • • • • • • • • • • • • • • • •• DEC DEUNA 10 Mh/s Ethernet interface
• • • • • • • • •• DH-llIDM-11 communications multiplexer

• • • • • • • • • • • • • DHU-11 communications mUltiplexer
• • • • • • • • •• DEC DMC-11IDMR-ll point-to-point communications device

• • • • • • • • • DMF-32, terminal multiplexor
• • • • • • • • • • • •• DMZ-32 terminal multiplexor

• •• DN-1t autocall unit interface
drum
dz

• • • • • • . • • • • • • • . • • • • • • • • • • . • .. paging device
• • • • DZ-11 communications mUltiplexer

ec
en
ex
A
hdh
hk
hp
ht
hy
icmp
idp
ik
il
imp
imp
inet
ip
ix
kg
10
lp
mem
mt
mtio
np
ns
nsip
null
pel
ps
pty
qe
rx
spp
tb
tcp
tm

• • • • • • • • 3Com 10 Mb/s Ethernet interface
• •• Xerox 3 Mh/s Ethernet interface

• •• Excelan 10 Mb/s Ethernet interface
• •• console Aoppy interface

• •• ACC IF-11IHDH IMP interface
• • • • • • • • • .. • • • • • • • •• RK6-11IRK06 and RK07 moving head disk

• ••••••••• 0 ••••••••••••• It • •• MASSBUS disk interface

• 4> • .. • • • • • • • €I •

.
TM-031TE-16.TU-45.TU-77 MASSBUS magtape interface

Network Systems Hyperchannel interface·
Internet Control Message Protocol
Xerox Internet Datagram Protocol

Ikonas frame bulfer. graphics device interface
• • • • Interlan NIIOtO to Mb/s Ethernet interface

• • • • • • • 1822 network interface
• • • • • • • • • • • • • • • IMP raw socket interface

• •• Internet protocol family
• • • • • • • • • • • • • Internet Protocol

• • • • Interlan Np100 10 Mb/s Ethernet interface
• • • • • • • • • • • • • • • • • •• KL-11IDL-11 W line clock

software loopback network interface
• • • • • • • • . .• line printer

• • • • • • • • .. • • • Gl e.. main memory
• • • • •• TM781TU-78 MASSBUS magtape interface

• • • • • • • • • • •• UNIX magtape interface
• • •. ' • • • • • •• Interlan Np100 10 Mh/s Ethernet interface

• • • • • • • • • • Xerox Network Systems(tm) protocol family
• • • •• software network interface encapsulating ns packets in ip packets.

• . • .• data sink
o • • • • • • • • • • • • • • • • • • •• DEC CSS PCL-11 B Network Interface

• • •• Evans and Sutherland Picture System 2 graphics device interface
• • • • • • • • CI • • • • • • • CI • • • • • • • • • •• pseudo terminal driver

tmscp
ts

DEC DEQNA Q-bus 10 Mb/s Ethernet interface
DEC RX02 Aoppy disk interface

Xerox Sequenced Packet Protocol
line discipline for digitizing devices

Internet Transmission Control Protocol
• • • •• TM-111TE-10 magtape interface

DEC TMSCP magtape interface
• • • • • • • • • • • • TS-ll magtape interface

tty
tu
uda
udp

• •• general terminal interface
V AJ{-111730 and V AJ{-111750 TU58 console cassette interface

• • • • • • • • • • • • •• UDA-50 disk controller interface
• •• Internet User Datagram Protocol

June 1986 4.3BSD

Table of Contents - vii-

up
ut
uu
va
vp
vv

....
.

. . . . unibus storage module controller/drives
UNIBUS TU45 tri-density tape drive interface

TU58IDECtape n UNIBUS cassette interface
Benson-Varian interface

Versatec interface
Protean proNET 10 Megabit ring

5. File Formats

4.3BSD

L-devices
L-dialcodes
L.aliases
L.cmds
L.sys
USERFILE

....

UUCP device" description file UUCP phone number index file
UUCP hostname alias file

• • •• UUCP remote command permissions file
• • • • UUCP remote host description ftle

• • • • • UUCP pathname permissions ftle
• • • • • • • •• assembler and link. editor output

• • • • • • • • • • • • • •• execution accounting ftle
••• eo

a.out
acct
aliases
ar
core
dbx

.
aliases file for sendmail

archive (library) ftle format
format of memory image ftle

dbx symbol table information
• • • • • • • • • • format of directories

• • • • • • • • • • • • • • • •• disk description ftle
incremental dump format

NFS file systems being exported
• • • • • • • •• format of file system volume

. .
dir
disktab
dump
exports
fs
fstab
gettytab
group
hosts
hosts.equiv
map3270
mtab

.
. .
. . .

. . .

. . .

.
. . .

static information about ftlesystems
terminal configuration data base

group file
. host name data base . . . list of trusted hosts

database for mapping ascii keystrokes into mM 3270 keys mounted file system table
list of network groups

network name data base
password ftle

• • • • • • • •• remote host phone number data base
. . . .

. . • • • • • • • • • • • •• graphics interface

netgroup
networks
passwd
phones
plot
printcap
protocols
remote
resolver
rmtab
services
stab

. printer capability data base

tar
termcap
tp . . .

• •• protocol name data base
• • • • • • • • • • • • •• remote host description file

• • • • • • • • • • • • • • • • •• resolver configuration :file

.
.

. . .
remotely mounted file system table

• • • • • • •• service name data base
symbol table types

tape archive file format terminal capability data base DEC/mag tape formats
terminal initialization data

primitive system data types . . . • • • • • • • • • •• login records
format of an encoded uuencode file

font formats for the Benson-Varian or Versatec
• • •• vgrind·s language definition data base

ttys
types
utmp
uuencode
vfont
vgrindefs
ypfiles the yellowpages database and directory structure

June 1986

INTRO (2) UNIX Programmer's Manual INTRO (2)

NAME
intra - introduction to system calls and error numbers

SYNOPSIS
#include <sys/errno.h>

DESCRIPTION
This section describes all of the system calls. Most of these calls have one or more error
returns. An error condition is indicated by an otherwise impossible return value. This is
almost always -1: the individual descriptions specify the details. Note that a number of
system calls overload the meanings of these error numbers. and that the meanings must be
interpreted according to the type and circumstances of the call.

As with normal arguments. all return codes and values from functions are of type integer
unless otherwise noted. An error number is also made available in the external variable
erma. which is not cleared on successful calls. rhus erma should be tested only after an
error has occurred.

The following is a complete list of the errors and their names as given in <sys/errrwh >.
o Error 0

Unused.

1 EPERM Not owner
Typically this error indicates an attempt to modify a :file in some way forbidden
except to its owner or super-user. It is also returned for attempts by ordinary users
to do things allowed only to the super-user.

2 ENOENT No such file or directory
This error occurs when a file name is specified and the file should exist but doesn't.
or when one of the directories in a path name does not exist. _

3 ESRCH No such process
The process or process group whose number was given does not exist. or any such
process is already dead.

4 EINTR Interrupted system call
An asynchronous signal (such as interrupt or quit) that the user has elected to catch
occurred during a system call. If execution is resumed after processing the signal
and the system call is not restarted. it will appear as if the interrupted system call
returned this error condition.

- 5 EIO 110 error
Some physical 110 error occurred during a read or write. This error may in some
cases occur on a call following the one to which it actually applies.

(l ENXIO No such device or address
110 on a special:file refers to a subdevice that does not exist. or beyond the limits of
the device. It may also occur when. for example. an illegal tape drive unit number
is selected or a disk pack is not loaded on a drive.

1 E2BIG Arg list too long
An argument list longer _ than 20480 bytes (or the current limit. NCARGS in
<sys/paramh» is presented to execve.

8 ENOEXEC Exec format error
A request is made to execute a :file that. although it has the appropriate permissions.
does not start with a valid magic number, (see a.out(5)).

9 EBADF Bad file number
Either a file descriptor refers to no open file. or a read (resp. write) request is made
to a file that is open only for writing (resp. reading).

4th Berkeley Distribution June 30. 1986 1

INTRO(2) UNIX Programmer"s Manual INTRO(2)

10 ECHILD No children
Wait and the' process has no living or unwaited-for children.

11 EAGAIN No more processes
In a fork. the system"s process table is full or the user is not allowed to create any
more processes.

12 ENOMEM Not enough memory
During an execve or break, a program asks for more core or swap space than the sys­
tem is able to supply. or a process size limit would be exceeded. A lack of swap
space is normally a temporary condition: however. a lack of core is not a temporary
condition; the maximum size of the text. data. and stack segments is a system
parameter. Soft limits may be increased to their corresponding hard limits.

13 EACCES Permission denied
An attempt was made to acc~ a :file in a way forbidden by the protection system.

14 EFAULT Bad address
The system encountered a hardware fault in attempting to access the arguments of a
system call.

15 ENOTBLK Block device required
A plain :file was mentioned where a block device was required. e.g •• in 'TIIQU1'tt •

16 EBUSY Device busy
An attempt to mount a device that was already mounted or an attempt was made to
dismount a device on which there is an active :file (open :fi.le. current directory.
mounted-on IDe. or active text segment). A request was made to an exclusive access
device that was already in use.

17 EEXIST File exists
An existing :file was mentioned in an inappropriate context. e.g •• link.

18 EXDEV Cross-device link
A hard link to a :file on another device was attempted.

19 ENODEV No such device
An attempt was made to apply an inappropriate system call to a device. e.g .• to read
a write-only device. or the device is not con:fi.gured by the system.

20 ENOTDm Not a directory
A non-directory was speci:fi.ed where a directory is required. for example. in a path
name or as an argument to chdir.

21 EISDm Is a directory
An attempt to write on a directory.

22 EINV AL Invalid argument
Some invalid argument: dismounting a non-mounted device. mentioning an unk­
nown signal in signal, or some other argument inappropriate for the call. Also set
by math functions. (see math(3)).

23 ENFILE File table overflow .
The system"s table of open :files is full. and temporarily no more opens can be
accepted.

24 EMFILE Too many open :files
As released. the limit on the number of open :files per process is 64. Getdtablesize(2)
will obtain. the current limit. Customary configuration limit on most other UNIX
systems is 20 per process.

4th Berkeley Distribution June 30.1986 2

INTRO(2) UNIX. Programmer's Manual INTRO(2)

25 ENOTTY Inappropriate ioctl for device
The file mentioned in an ioctl is not a terminal or one of the devices to which this
call applies.

26 ETXTBSY Text file busy
An attempt to execute a pure-procedure program that is currently open for writing.
Also an attempt to open for writing a pure-procedure program that is being exe­
cuted.

27 EFBIG File too large
The size of a file exceeded the maximum (about 231 bytes).

28 ENOSPC No space left on device
A write to an ordinary file. the creation of a directory or symbolic link. or the crea­
tion of a directory entry failed because no more disk blocks are available on the file
system. or the allocation of an inode for a newly created file failed because no more
inodes are available on the file system.

29 ESPIPE Illegal seek
An lseek was issued to a socket or pipe. This error may also be issued for other
non-seekable devices.

30 EROFS Read-only file system
An attempt to modify a file or directory was made on a device mounted read-only.

31 EMLINK Too many links
An attempt to make more than 32767 hard links to a file.

32 EPIPE Broken pipe
A write on a pipe or socket for which there is no process to read the data. This con­
dition normally generates a signal: the error is returned if the signal is caught or
ignored. .

33 EooM Argument too large
The argument of a function in the math package (3M) is out of the domain of the
function.

34 ERANGE Result too large
The value of a function in the math package (3M) is unrepresentable within
machine precision.

35 EWOULDBLOCK. Operation would block
An operation that would cause a process to block was attempted on an object in
non-blocking mode (see !cntl(2)).

36 EINPROGRESS Operation now in progress
An operation that takes a long time to complete (such as a connect(2)) was
attempted on a non-blocking object (see !cntl(2)).

37 EALREADY Operation already in progress
An operation was attempted on a non-blocking object that already had an operation
in progress.

38 ENOTSOCK Socket operation on non-socket
Self-explanatory.

39 EDESTADDRREQ Destination address required
A required address was omitted from an operation on a socket.

40 EMSGSIZE Message too long
A message sent on a socket was larger than the internal message buffer or some
other network limit.

4th Berkeley Distribution June 30. 1986 3

INTRO(2) UNIX Programmer's Manual INTRO(2)

41 EPROTOTYPE Protocol wrong type for socket
A protocol was specified that does not support the semantics of the socket type
requested. For example, you cannot use the ARPA Internet UDP protocol with type
SOCK_STREAM.

42 ENOPROTOOPT Option not supported by protocol
A bad option or level was specified in a getsoclcopt(2) or setsockopt(2) call.

43 EPRQTONOSUPPORT Protocol not supported
The protocol has not been configured into the system or no implementation for it
exists.

44 ESOCKTNOSUPPORT Socket type not supported
The support for the socket type has not been configured into the system Qr no
implementation for it exists.

45 EOPNOTSUPP Operation not supported on socket
For example. trying to accept a connection on a datagram socket.

46 EPFNOSUPPORT Protocol family not supported
The protocol family has not been configured into the system or no implementation
for it exists.

47 EAFNOSUPPORT Address family not supported by protocol family
An address incompatible with the requested protocol was used. For example. you
shouldn't necessarily expect to be able to use NS addresses with ARPA Internet pro­
tocols.

48 EADDRINUSE Address already in use
Only one usage of each address is normally permitted.

49 EADDRNOTAV AIL Can't assign requested address .
Normally results from an attempt to create a socket with an address not on this
machine.

50 ENETDOWN Network is down
A socket operation encountered a dead network.

51 ENETUNREACH Network is.unreachable
A socket operation was attempted to an unreachable network.

52 ENETRESET Network dropped connection on reset
The host you were connected to crashed and rebooted.

53 ECONNABORTED Software caused connection abort
A connection abort was caused internal to your host machine.

54 ECONNRESET Connection reset by peer
A connection was forcibly closed by a peer. This normally results from a loss of

. the connection on the remote socket due to a timeout or a reboot.

55 ENOBUFS No buffer space available
An operation on a socket or pipe was not performed because the system lacked
sufiicient buffer space or because a queue was full.

56 EISCONN Socket is already connected
A connect request was made on an already connected socket: or. a sendto or sendmsg
request on a connected socket specified a destination when already connected.

57 ENOTCONN Socket is not connected
An request to send or receive data was disallowed because the socket is not con­
nected and (when sending on a datagram socket) no address was supplied.

4th Berkeley Distribution June 30,1986 4'

INTRO (2) UNIX Programmer's Manual INTRO(2)

58 ESHUTDOWN Can't send after socket shutdown
A request to send data was disallowed because the socket had already been shut
down with a previous shutdown(2) ca11.

59 unused

60 ETIMEDOUT Connection timed out
A connect or send request failed because the connected party did not properly
respond after a period of time, (The timeout period is dependent on the communi­
cation protocol.)

61 ECONNREFUSED Connection refused
No connection could be made because the target machine actively refused it. This
usua11y results from trying to connect to a service that is inactive on the foreign
host.

62 ELOOP Too many levels of symbolic links
A path name lookup involved more than 8 symbolic links.

63 ENAMETOOLONG File name too long
A component of a path name exceeded 255 (MAXNAMELEN) characters. or an
entire path name exceeded 1023 (MAXPATHLEN-1) characters.

64 EHOSTDOWN Host is down
A socket operation failed because the destination host was down.

65 EHOSTUNREACH Host is unreachable
A socket operation was attempted to an unreachable host.

66 ENOTEMPTY Directory not empty
A directory with entries other than and ' •... ~ was supplied to a remove directory
or rename ca11.

69 EDQUOT Disc quota exceeded .
A write to an ordinary file. the creation of a directory or symbolic link. or the crea­
tion of a directory entry failed because the user's quota of disk blocks was
exhausted. or the a11ocation of an inode for a newly created file failed because the
user's quota of inodes was exhausted,

70 ESTALE Stale NFS file handle
A client referenced a an open file. when the file has been deleted .

. 71 EREMOTE Too many levels of remote in path
An attempt was made to remotely mount a file system into a path which already
has a remotely mounted component.

DEFINITIONS
Process ID

Each active process in the system is uniquely identified by a positive integer ca11ed a
process ID. The range of this ID is from 0 to 30000.

Parent process ID
A new process is created by a currently active process: (see !ork(2)). The parent pro­
cess ID of a process is the process ID of its creator.

Process Group ID
Each active process is a member ofa process group that is identified by a positive
integer ca11ed the process group ID. This is the process ID of the group leader. This
grouping permits the signaling of related processes (see kiUpg(2)) and the job control
mechanisms of csh(l).

4th Berkeley Distribution June 30. 1986 5

INTRO (2) UNIX Programmer's Manual INTRO(2)

Tty Group ID
Each active process can be a member of a terminal group that is identified by a posi­
tive integer called the tty group ID. This grouping is used to arbitrate between multi­
ple jobs contending for the same terminal; (see csh(l) and tty(4)).

Real User ID and Real Group ID
Each user on the system is identified by a positive integer termed the real user ID.

Each user is also a member of one or more groups. One of these groups is distinguished
from others and used in implementing accounting facilities. The positive integer
corresponding to this distinguished group is termed the real group ID.

All processes have a real user ID and real group ID. These are initialized from the
equivalent attributes of the process that created it.

Effective User Id, Effective Group Id, and Access Groups
Access to system resources is governed by three values: the effective user ID. the
effective group ID, and the group access list.

The effective user ID and effective group ID are initially the process's real user ID and
real group ID respectively. Either may be modified through execution of a set-user-ID
or set-group-ID file (possibly by one its ancestors) (see execve(2)).

The group access list is an additional set of group ID's used only in determining
resource accessibility. Access checks are performed as described below in "File Access
Permissions" ,

Super-user
A process is recognized as a super-user process and is granted special privileges if its
effective user ID is O.

Special Processes
The processes with a process ID's of 0, 1, and 2 are special. Process 0 is the scheduler.
Process 1 is the ihitialization process init, and is the ancestor of every other process in
the system. It is used to control the process structure. Process 2 is the paging daemon.

Descriptor
An integer assigned by the system when a file is referenced by open(2) or dup(2), or .
when a socket is created by pipe(2), socket(2) or socketpair(2), which uniquely
identifies an access path to that file or socket from a given process or any of its chil­
dren .

. File Name
Names consisting of up to 255 (MAXNAMELEN) characters may be used to name an
ordiJ:lary file, special file. or directory.

These characters may be selected from the set of all ASCII character excluding 0
(null) and the ASCII code for / (slash). (The parity bit. bit 8. must be 0.)

Note that it is generally unwise to use *. 7. [or] as part of file names because of the
special meaning attached to these characters by the shelL .

Path Name
A path name is a null-terminated character string starting with an optional slash (I).
followed by zero or more directory names separated by slashes. optionally followed
by a file name. The total length of a path name must be less than 1024 (MAXPATH­
LEN) characters.

If a path name begins with a slash. the path search begins at the root directory. Other­
wise. the search begins from the current working directory. A slash by itself names
the root directory. A null pathname refers to the current directory.

4th Berkeley Distribution June 30. 1986 6

INTRO(2) UNIX Programmer's Manual INTRO(2)

Directory
A directory is a special type of file that contains entries that are references to other
files. Directory entries are called links. By convention. a directory contains at least
two links •. and ..• referred to as dot and dot-dot respectively. Dot refers to the direc­
tory itself and dot-dot refers to its parent directory.

Root Directory and Current Working Directory
Each process has associated with it a concept of a root directory and a current working
directory for the purpose of resolving path name searches. A process's root directory
need not be the root directory of the root file system.

File Access Permissions
Every file in the file system has a set of access permissions. These permissions are
used in determining whether a process may perform a requested operation on the file
(such as opening a file for writing). Access permissions are established at the time a
file is created. They may be changed at some later time through the chmod(2) call.

File access is broken down according to whether a file may be: read. written. or exe­
cuted. Directory files use the execute permission to control if the directory may be
searched.

File access permissions are interpreted by the system as they apply to three different
classes of users: the owner of the file. those users in the file's group. anyone else.
Every file has an independent set of access permissions for each of these classes. When
an access check is made. the system decides if permission should be granted by check­
ing the access information applicable to the caller.

Read. write. and execute/search permissions on a file are granted to a process if:

The process's effective user ID is that of the super-user.

The process's effective user ID matches the user ID of the owner of the file and the
owner permissions allow the access.

The process's effective user ID does not match the user ID of the owner of the file. and
either the process's effective group ID matches the group ID of ihe file. or the group ID
of the file is in the process's group access list. and the group permissions allow the
access.

Neither the effective user ID nor effective group ID and group access list of the process
match the corresponding user ID and group ID of the file. but the permissions for
.. other users" allow access.

Otherwise. permission is denied.

Sockets and Address Families

A socket is an endpoint for communication between processes. Each socket has queues
for sending and receiving data.

Sockets are typed according to their communications properties. These properties
include whether messages sent and received at a socket require the name of the
partner, whether communication is reliable, the format used in naming message reci­
pients. etc.

Each instance of the system supports some collection of socket types: consult
socket(2) for more information about the types available and their properties.

Each instance of the system supports some number of sets of communications proto­
cols. Each protocol set supports addresses of a certain format. An Address Family is
the set of addresses for a specific group of protocols. Each socket has an address
chosen from the address family in which the socket was created.

4th Berkeley Distribution June 30, 1986 7

INTRO(2)

SEE·ALSO
bltro(3).perror(3)

4th Berkeley Distribution

UNIX Programmer's Manual INTRO(2)

June 3D, 1986 8.;

ACCEPT(2) UNIX Programmer's Manual ACCEPT(2)

NAME
accept - accept a connection on a socket

SYNOPSIS
#ioclude <sys/types.h>
#ioclude <sys/socket.h>

os - accept(s, addr, addrleo)
iot ns, S;
struct sockaddr .addr;
iot .addrlen;

DESCRIPTION
The argument s is a socket that has been created with socket(2), bound to an address with
bind(2), and is listening for connections after a Iisten(2). Accept extracts the first connection
on the queue of pending connections, creates a new socket with the same properties of s and
allocates a new file descriptor, ns, for the socket. If no pending connections are present on
the queue, and the socket is not marked as non-blocking, accept blocks the caller until a con­
nection is present. If the socket is marked non-blocking and no pending connections are
present on the queue, accept returns an error as described below. The accepted socket, ns,
may not be used to accept more connections. The original socket s remains open.

The argument addr is a result parameter that is filled in with the address of the connecting
entity, as known to the communications layer. The exact format of the addr parameter is
determined by the domain in which the communication is occurring. The addrlen is a value­
result parameter; it should initially contain the amount of space pointed to by addr; on return
it will contain the actual length (in bytes) of the address returned. This call is used with
connection-based socket types, currently with SOCK_STREAM.

It is possible to select(2) a socket for the purposes of doing an accept by selecting it for read.

RETURN VALVE
The call returns -Ion error. If it succeeds, it returns a non-negative integer that is a descrip­
tor for the accepted socket.

ERRORS
The accept will fail if:

[EBADF] The descriptor is invalid.

[ENOTSOCK]

[EOPNOTSUPP]

[EFAULT]

The descriptor references a file, not a socket.

The referenced socket is not of type SOCK--.STREAM.

The addr parameter is not in a writable part of the user address space.

[EWOULDBLOCK] The socket is marked non-blocking and no connections are present to be
accepted.

SEE ALSO
bind(2), connect(2), listen(2), select(2), socket(2)

4;2 Berkeley Distribution May 22, 1986

UNIX Programmer's Manual

This page intentionally left almost blank.

ACCESS(2) UNIX Programmer's Manual ACCESS(2)

NAME
access - determine accessibility of file

SYNOPSIS
#include <sys/file.h>

#define R_OK 4 I. test for read permission .1
I. test for write permission .1 #define W_OK 2

#define LOK 1 I. test for execute (search) permission .1
I. test for presence of file .1 #define F_OK 0

accessible - access(path, mode)
int accessible;
char .path;
int mode;

DESC1UPTION
Access checks the given file path for accessibility according to mode, which is an inclusive or
of the bits R_OK, W _OK and X_OK. Specifying mode as F _OK (i.e., 0) tests whether the
directories leading to the file can be searched and the file exists.

The real user ID and the group access list (including the real group ID) are used in verifying
permission, so this call is useful to set-UID programs.

Notice that only access bits are checked. A directory may be indicated as writable by access,
but an attempt to open it for writing will fail (although files may be created there); a file may
look executable, but execve will fail unless it is in proper format.

RETURN VALUE
If path cannot be found or if any of the desired access modes would not be granted, then a -1
value is returned; otherwise a 0 value is returned.

ERRORS
Access to the file is denied if one or more of the following are true:

[ENOTDIR] A component of the path prefix is not a directory.

[EINVAL] The pathname contains a character with the high-order bit set.

[ENAMETOOLONG]

[ENOENT]

[EACCES]

[ELOOP]

[EROFS]

[ETXTBSy]

[EACCES]

[EFAULT]

[EIO]

SEE ALSO

A component of a pathname exceeded 255 characters, or an entire path name
exceeded 1023 characters.

The named file does not exist.

Search permission is denied for a component of the path prefix.

Too many symbolic links were encountered in translating the pathname.

Write access is requested for a file on a read-only file system.

Write access is requested for a pure procedure (shared text) file that is being
executed.

Permission bits of the file mode do not permit the requested access, or search
permission is denied on a component of the path prefix. The owner of a file
has permission checked with respect to the "owner" read, write, and execute
mode bits, members of the file's group other than the owner have permission
checked with respect to the "group" mode bits, and all others have permis­
sions checked with respect to the "other" mode bits.

Path points outside the process's allocated address space.

An 110 error occurred while reading from or writing to the file system.

chmod(2), stat(2)

4th Berkeley Distribution May 22, 1986

ACCT(2) UNIX .Programmer's Manual ACCT(2)

acct - turn accounting on or off

SYNOPSIS
acct(file)
char -file;

DESCRIPTION

NOTES

The system is prepared to write a record in an accounting file for each process as it ter­
minates. This call, with a null-terminated string naming an existing file as argument, turns on
accounting; records for each terminating process are appended to file. An argument of 0
causes accounting to be turned off.

The accounting file format is given in acct(5).

This call is permitted only to the super-user.

Accounting is automatically disabled when the file system the accounting file resides on runs
out of space; it is enabled when "Space once again becomes available.

RETURN VALUE
On error -I is returned. The file must exist and the call may be exercised only by the super­
user. It is erroneous to try to turn on accounting when it is already on.

ERRORS
Acct will fail if one of the following is true:

[EPERM] The caller is not the super-user."

[ENOTDIR] A component of the path prefix is not a directory.

[EINV AL] The pathname contains a character with the high-order bit set~

[ENAMETOOLONG]

[ENOENT]

[EACCES]

[ELOOP]

[EROFS]

[EFAULT]

[EIO]

A component of a pathname exceeded 255 characters, or an entire path name
exceeded 1023 characters.

The named file does not exist.

Search permission is denied for a component of the path prefix, or the path
name is not a re8J,llar file.

Too many symbolic links were encountered in translating the pathname.

The named file resides on a read-only file system.

File points outside the process's allocated address space.

An 110 error occurred while reading from or writing to the file system.

SEE ALSO

BUGS

acct(5), sa(8)

No accounting is produced for programs running when a crash occurs. In particular non- "
terminating programs are never accounted for.

4th Berkeley Distribution May 22, 1986

ADJTIME(2) UNIX Programmer's Manual ADJTIME(2)

NAME
~djtime - correct the time to allow synchronization of the system clock

SYNOPSIS
#include <sys/time.h>

adjtime(delta, olddelta)
struct timeval .delta;
struct timeval .olddelta;

DESCRIPTION
Adjtime makes small adjustments to the system time, as returned by gettimeofday(2), advanc­
ing or retarding it by the time specified by the timeval delta. If delta is negative, the clock is
slowed down by incrementing it more slowly than normal until the correction is complete. If
delta is positive, a larger increment than normal is used. The skew used to perform the
correction is generally a fraction of one percent. Thus, the time is always a monotonically
increasing function. A time correction from an earlier call to adjtime may not be finished
when adjtime is called again. If old delta is non-zero, then the structure pointed to will con­
tain, upon return, the number of microseconds still to be corrected from the earlier call.

This call may be used by time servers that synchronize the clocks of computers in a local area
network. Such time servers would slow down the clocks of some machines and speed up the
clocks of others to bring them to the average network time.

The call adjtime(2) is restricted to the super-user.

RETURN VALUE
A return value of 0 indicates that the call succeeded. A return value of -1 indicates that an
error occurred, and in this case an error code is stored in the global variable ermo.

ERRORS
The following error codes may be set in e"no:

[EFAULT]

[EPERM]

SEE ALSO

An argument points outside the process's allocated address space.

The process's effective user ID is not that of the super-user.

date(1), gettimeofday(2), timed(8), timedc(8),
TSP: The Time Synchronization Protocol for UNIX 4.3BSD, R. Gusella and S. Zatti

4.3 Berkeley Distribution May 15, 1986

BIND(2) UNIX Programmer's Manual BIND(2)

NAME
bind - bind a name to a socket

SYNOPSIS
#inelude <sys/types.1I>
#include <sys/socket.h>

bind(s. n~ namelen)
int s;
struct sockaddr *name;
int namelen;

DESCRlPfION

NOTES

Bind assigns a name to an unnamed socket. When a socket is created with socket(2) it exists
in a name space (address family) but has no name assigned. Bind requests that name be
assigned to the socket.

Binding a name in the UNIX domain creates a socket in the file system that must be deleted
by the caller when it is no longer needed (using unlink(2».

The rules used in name binding vary between communication domains. Consult the manual
entries in section 4 for detailed information.

RETURN VALUE.
If the bind is successful, a 0 value is returned. A return value of -1 indicates an error, which
is further specified in the global e"no.

ERRORS
The bind call will fail if:

fEBADF] S is not a valid descriptor.

[ENOTSOCK] S is not a socket.

[EADDRNOTAVAIL]

[EADDRINUSE]

[EINVAL]

The specified address is not available from the local machine.

The specified address· is already in use.

The socket is already bound to an address.

[EACCES] The requested address is protected, and the current user has inadequate
permission to access it.

[EFAULT] The name parameter is not in a valid part of the user address space.

The following errors are specific to binding names in the UNIX domain.

[ENOTDIR] A component of the path prefix is not a directory.

[EINV AL] The pathname contains a character with the high-order bit set.

[ENAMETOOLONG]
A component of a pathname exceeded 255 characters, or an entire path name
exceeded 1023 characters.

[ENOENT1.. A prefix component. of the path name does not exist.

[ELOOP] Too many symbolic links were encountered in translating the pathname.

[EIO] An 1/0 error occurred while making the directory entry or allocating the
inode.

[EROFS] The name would reside on a read~nly file system.

4.2 Berkeley Distribution May 22, 1986 1

BIND(2) UNIX Programmer's Manual BIND(2)

[EISDIR] A null path name was specified.

SEE ALSO
connect(2), listen(2), socket(2), getsockname(2)

4.2 Berkeley Distribution May 22, 1986 2

BRK(2) UNIX Programmer's Manual BRK(2)

NAME
brk, sbrk - change data segment size

SYNOPSIS
#include <sysltypes.h>

char -brk(addr)
char -addt;

char *Sbrk(incr)
int ina;

DESCRIPI10N
Brk sets the system's idea of the lowest data segment location not used by the program (called
the break) to addr (rounded up to the next multiple of the system's page size). Locations
greater than addr and below the stack pointer are not in the address space and will thus cause
a memory violation if accessed. .

In the alternate function sbrk, incr more bytes are added to the program's data space and a
pointer to the start of the new area is returned.

When a program begins execution via execve the break is set at the highest location defined by
the program and data storage areas. Ordinarily, therefore, only programs with growing data
areas need to use sbrk.

The getrlimit(2) system call may be used to determine the maximum permissible size of the
data. segment; it will not be possible to set the break beyond the rlim_max value returned
from a call to getrlimit, e.g. "etext + rlp-rlim_max." (see end(3) for the definition of etext).

RETURN VALUE
Zero is returned if the brk could be set; -1 if the program requests more memory than the
system limit. Sbrk returns -1 if the break could not be set.

ERRORS
Sbrk will fail and no additional memory will be allocated· if one of the following are true:

[ENOMEM1 The limit, as set by setrlimit(2), was exceeded.

[ENOMEM] The maximum possible size of a data segment (compiled into the system) was
exceeded. .

[ENOMEM] Insufficient space existed in the swap area to support the expansion.

SEE ALSO

BUGS

execve(2), getriimit(2), malloc(3), end(3)

Setting the break may fail due to a temporary lack of swap space. It is not possible to distin­
guish this from a failure caused by exceeding the maximum size of the data segment without
consulting getrlimit.

4th Berkeley Distribution May 22, 1986

CHDIR(2) UNIX Programmer's Manual CHDIR(2)

NAME
chdir - change current working directory

SYNOPSIS
chdir(path)
char .path;

DESCRIPTION
Path is the pathname of a directory. Chdir causes this directory to become the current work­
ing directory, the starting point for path names not beginning with "r.
In order for a directory to become the current directory, a process must have execute (search)
access to the directory.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned
and errno is set to indicate the error.

ERRORS
Chdir will fail and the current working directory will be unchanged if one or more of the fol­
lowing are true:

[ENOTDIR] A component of the path prefix is not a directory.

[EINVAL] The pathname contains a character with the high-order bit set.

[ENAMETOOLONG] .

[ENOENT]

[ELOOP]

[EACCES]

[EFAULT]

[EIO]

SEE ALSO
chroot(2) .

A component of a pathname exceeded 255 characters, or an entire path name
exceeded 1023 characters.

The named directory does not exist.

Too many symbolic links were encountered in translating the pathname.

Search permission is denied for any component of the path name.

Path points outside the process's allocated address space.

An I/O error occurred while reading from or writing to the file system.

4th Berkeley Distribution August 26, 1985

CHMOD(2) UNIX Programmer's Manual CHMOD(2)

NAME
chmod .;. change mode of file

SYNOPSIS
chmod(path, mode)
char .path;
int mode;

fchmod(fd, mode)
int fd, mode;

DESCRIPTION
The file whose name is given by path or referenced by the descriptor Jd has its mode changed
to mode. Modes are constructed by or'ing together some combination of the following,
defined in <syslinode.h>:

ISUID 04000 set user ID on execution
ISGID 02000 set group ID on execution
ISVTX 01000 'sticky bit' (see below)
lREAD 00400 read by owner
IWRITE 00200 write by owner
IEXEC 00100 execute (search on directory) by owner

00070 read, write, execute (search) by group
00007 read, write, execute (search) by others

If an executable file is set up for sharing (this is the default) then mode ISVTX (the 'sticky
bit') prevents the system from abandoning the swap-space image of the program-text portion
of the file when its last user terminates. Ability to set this bit on executable files is restricted
to the super-user.

If mode ISVTX (the 'sticky bit') is set on a directory, an unprivileged user may not delete or
rename files of other users in that directory. For more details of the properties of the sticky
bit, see stic/cy(8).

Only the owner of a file (or the super-user) may change the mode.

Writing or changing the owner of a file turns off the set-user-id and set-group-id bits unless
the user is the super-user. This makes the system somewhat more secure by protecting set­
user-id (set-group-id) files from remaining set-user-id (set-group-id) if they are modified, at the
expense of a degree of compatibility.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned
and e"no is set to indicate the error.

ERRORS
Chmod will fail and the file mode will be unchanged if:

[ENOTDIR] A component of the path prefix is not a directory.

[EINV AL] The pathname contains a, character with the high-order bit set.

[ENAMETOOLONG]

[ENOENT]

[EACCES]

[ELOOP]

[EPERM]

A component of a pathname exceeded 255 characters, or an entire path name
exceeded 1023 characters.

The named file does not exist.

Search permission is denied for a component of the path prefix.

Too many symbolic links were encountered in translating the pathname.

The effective user ID does not match the owner of the file and the effective
user ID is not the super-user.

4th Berkeley Distribution May 13, 1986

CHMOD(2) UNIX Programmer's Manual CHMOD(2)

[EROFS] The named file resides on a read-only file system.

[EFAULT] Path points outside the process's allocated address space.

[EiO] An 1/0 error occurred while reading from or writing to the file system.

Fchmod will fail if:

[EBADF]

[EINVAL]

[EROFS]

IEIO]

SEE ALSO

The descriptor is not valid.

Fd refers to a socket, not to a file.

The file resides on a read-only file system.

An 110 error occurred while reading from or writing to the file system.

chmod(1), open(2), chown(2), stat(2), sticky(8)

4th Berkeley Distribution May 13, 1986 2

CHOWN(2) UNIX Programmer's Manual CHOWN(2)

NAME
chown - change owner and group of a file

'SYNOPSIS
chown(path, owner, group)
char .path;
int owner, group;

fchown(fd, owner, group)
int fd, owner, group;

DESCRIPTION
The file that is named by path or referenced by fd has its owner and group changed as
specified. Only the super-user may change the owner of the file, because if users were able to
give files away, they could defeat the file-space accounting procedures. The owner of the file
may change the group to a group of which he is a member.

On some systems, chown clears the set-user-id and set-group-id bits on the file to prevent
accidental creation of set-user-id and set-group-id programs.

Fchown is particularly useful when used in conjunction with the file locking primitives (see
jlock(2».

One of the owner or group id's may be left unchanged by specifying it as -1.

If the final component of path is a symbolic link, the ownership and group of the symbolic
link is changed, not the ownership and group of the file or directory to which it points.

RETURN VALUE
Zero is returned if the operatiQn was successful; -1 is returned if an error occurs, with a more
specific error code being placed in the global variable errno.

ERRORS
Chown will fail and the file will be unchanged if:

[ENOTDIR] A component of the path prefix is not a directory.

[EINVAL] The pathname contains a character with the high-order bit set.

[ENAMETOOLONG]
A component of a pathname exceeded 255 characters, or an entire path name
exceeded 1023 characters.

[ENOENT]

[EACCES]

[ELOOP]

[EPERM]

[EROFS]

The named file does not exist.

Search permission is denied for a component of the path prefix.

Too many symbolic links were encountered in translating the pathname.

The effective user 10 is not the super-user.

The named file resides on a read-only file system.

[EFAULT] Path points outside the process's allocated address space.

[EIO] An 110 error occurred while reading from or writing to the file system.

Fchown will fail if:

[EBADF]

[EINVAL]

[EPERM]

[EROFS]

Fd does not refer to a valid descriptor.

Fd refers to a socket, not a file.

The effective user ID is not the super-user.

The named file resides on a read-only file system.

4th Berkeley Distribution May 22, 1986 1

CHOWN(2) UNIX Programmer's Manual CHOWN(2)

[EIO] An 110 error occurred while reading from or writing to the file system.

SEE ALSO
chown(8), chgrp(1), chmod(2), flock(2)

4th Berkeley Distribution May 22, 1986 2

.CHROOT(2) UNIX Programmer's Manual CHROOT(2)

NAME
chroot - change root directory

SYNOPSIS
chroot(dimame)
char -dimame;

DESCRlP110N
Dirname is the address of the pathname of a directory, terminated by a null byte. Chroot
causes this directory to become the root directory, the starting point for path names beginning
with "/".

In order for a directory to become the root directory a process must have execute (search)
access to the directory.

This call is restricted to the super-user.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned
and e"no is set to indicate an error.

ERRORS
Chroot will fail and the root directory will be unchanged if one or more of the following are
true:

[ENOTDIR] A component of the path name is not a directory.

[EINV AL] The pathname contains a character with the high-order bit set.

[ENAMETOOLONG]
A component of a pathname exceeded 255 characters, or an entire path name
exceeded 1023 characters.

[ENOENT]

[EACCES]

[ELOOP]

[EFAULT1

[EIO]

SEE ALSO
chdir(2)

The named directory does not exist.

Search permission is denied for any component of the path name.

Too many symbolic links were encountered in translating the pathname.

Path points outside the process's allocated address space.

An I/O error occurred while reading from or writing to the file system.

4.2 Berkeley Distribution August 26, 1985 I

CLOSE(2) UNIX Programmer's Manual CLOSE(2)

NAME
close - delete a descriptor

SYNOPSIS
close(d)
int d;

DESCRIPTION
The close call deletes a descriptor from the per-process object reference table. If this is the
last reference to the underlying object, then it will be deactivated. For example, on the last
close of a file the current seek pointer associated with the file is lost; on the last close of a
sockel(2) associated naming information and queued data are discarded; on the last close of a
file holding an advisory lock the lock is released (see further flock(2».

A close of all of a process's descriptors is automatic on exit, but since there is a limit on the
number of active descriptors per process, close is necessary for programs that deal with many
descriptors.

When a process forks (see jork(2», all descriptors for the new child process reference the same
objects as they did in the parent before the fork. If a new process is then to be run using
execve(2), the process would normally inherit these descriptors. Most of the descriptors can
be rearranged with dup2(2) or deleted with close before the execve is attempted, but if some of
these descriptors will still be needed if the execve fails, it is necessary to arrange for them to
be closed if the execve succeeds. For this reason, the call "fcntl(d, F _SETFD, 1)" is provided,
which arranges that a descriptor will be closed after a successful execve; the call "fcntl(d,
F _SETFD, 0)" restores the default, which is to not close the descriptor.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned
and the global integer variable errno is set to indicate the error.

ERRORS
Close will fail if:

[EBADF] D is not an active descriptor.

SEE ALSO
accept(2), tlock(2), open(2), pipe(2), socket(2), socketpair(2), execve(2), fcntl(2)

4th Berkeley Distribution May 22,1986

CONNECT(2) UNIX Programmer's Manual CONNECT(2)

NAME
connect - initiate a connection on a socket

SYNOPSIS
#include <sys/types.h>
#include <sys/socket.h>

connect(s, name, namelen)
int s;
struct sockaddr .name;
int namelen;

DESCRIPTION
The parameter s is a socket. If it is of type SOCK_DGRAM, then this call specifies the peer
with which the socket is to be associated; this address is that to which datagrams are to be
sent, and the only address from which datagrams are to be received. If the socket is of type
SOCK-STREAM, then this call attempts to make a connection to another socket. The other
socket is specified by name. which is an address in'the communications space of the socket.
Each communications space interprets the name parameter in its own way. Generally. stream
sockets may successfully connect only once; datagram sockets may use connect multiple times
to change their association. Datagram sockets may dissolve the association by connecting to

, an invalid address, such as a null address.

RETURN VALVE
If the connection or binding succeeds, then 0 is returned. Otherwise a -1 is returned, and a
more specific error code is stored in erma.

ERRORS
The call fails if:

[EBADF]

[ENOTSOCK]

S is not a valid descriptor.

S is a descriptor for a file, not a socket.

[EADDRNOTAVAIL]
The specified address is not available on this machine.

[EAFNOSUPPORT] Addresses in the specified address family cannot be used with this
socket.

[EISCONN] The socket is already connected.

[ETIMEDOUT] Connection establishment timed out without establishing a connection.

[ECONNREFUSED] The attempt to connect was forcefully rejected.

[ENETUNREACH] The network isn't reachable from this host.

[EADDRINUSE] The address is already in use.

[EFAULT] . The name parameter specifies an area outside the process address space.

[EINPROGRESS] The socket is non-blocking and the connection cannot be completed
immediately. It is possible to select(2) for completion by selecting the
socket for writing.

[EALREADY] The socket is 'non-blocking and a previous connection attempt has not
yet been completed.

The following errors are specific to connecting names in the UNIX domain. These errors may
not apply in future versions of the UNIX IPC domain.

[ENOTDIR] A component of the path prefix is not a directory.

4.2 Berkeley Distribution May 22, 1986

CONNECT(2) UNIX Programmer's Manual CONNECT(2)

[EINVAL] The pathname contains a character with the high-order bit set.

[ENAMETOOLONG]

[ENOENT]

[EACCES]

[EACCES]

[ELOOP]

SEE ALSO

A component of a pathname exceeded 255 characters, or an entire path name
exceeded 1023 characters.

The named socket does not exist.

Search permission is denied for a component of the path prefix.

Write access to the named socket is denied.

Too many symbolic links were encountered in translating the pathname.

accept(2), select(2), socket(2), getsockname(2)

4.2 Berkeley Distribution May 22,1986 2

CREAT(2) UNIX Programmer's Manual CREAT(2)

NAME
creat - create a new file

SYNOPSIS
creat(name, mode)
char -name;

DESCRIPTION

NOTES

This interface is made obsolete by open(l).

Creal creates a new file or prepares to rewrite an existing file called name, given as the
address of a null-terminated string. If the file did not exist, it is given mode mode, as
modified by the process's mode mask (see umask(2». Also see chmod(2) for the construction
of the mode argument.

If the file did exist, its mode and owner remain unchanged but it is truncated to 0 length.

The file is also opened for writing, and its file descriptor is returned.

The mode given is arbitrary; it need not allow writing. This feature has been used in the past
by programs to construct a simple, exclusive locking mechanism. It is replaced by the
O_EXCL open mode, or jlock(2) facility.

RETURN VALUE
The value -1 is returned if an error occurs. Otherwise, the call returns a non-negative
descriptor that only permits writing.

ERRORS
Creal will fail and the file will not be created or truncated if one of the following occur:

[ENOTDIR] A component of the path prefix is not a directory.

[EINV AL] The pathname contains a character with the high-order bit set.

[ENAMETOOLONG]

[ENOENT]

[ELOOP]

[EACCES]

(EACCES]

[EACCES}

[EISDIR)

[EMFILE]

[ENFILE]

[ENOSPC]

[ENOSPC]

[EDQUOTJ

A component of a pathname exceeded 255 characters, or an entire path name
exceeded 1023 characters.

The named file does not exist.

Too many symbolic links were encountered in translating the pathname.

Search permission is denied for a component of the path prefix.

The file does not exist and the directory in which it is to be created is not
writable.

The file exists, but it is unwritable.

The file is a directory.

There are already too many files open.

The system file table is full.

The directory in which the entry for the new file is being placed cannot be
extended because there is no. space left on the file system containing the
directory.

There are no free inodes on the file system on which the file is being created.

The directory in which the entry for the new file is being placed cannot be
extended because the user's quota of disk blocks on the file system containing
the directory has been exhausted.

4th Berkeley Distribution May 22, 1986 1

CREAT(2)

[EDQUOT]

[EROFS]

[ENXIO]

[ETXTBSY]

[EIO]

UNIX Programmer's Manual CREAT(2)

The user's quota of inodes on the file system on which the tile is being
created has been exhausted.

The named tile resides on a read-only file system.

The file is a character special or block special tile, and the associated device
does not exist.

The file is a pure procedure (shared text) tile that is being executed.

An 110 error occurred while making the directory entry or allocating the
inode.

[EF AULT] Name points outside the process's allocated address space.

[EOPNOTSUPP]
The file was a socket (not currently implemented).

SEE ALSO
open(2), write(2), close(2), chmod(2), umask(2)

4th Berkeley Distribution May 22,1986 2

DUP(2) UNIX Programmer's Manual DUP(2)

NAME
dup, dup2 - duplicate a descriptor

SYNOPSIS
newd - dup(oldd)
illt newel, oldd;

dnp2(oldel, newd)
int oldel, newd;

DESCRIPTION
Dup duplicates an existing object descriptor. The argument oldd is a small non-negative
integer index in the per-process descriptor table. The value must be less than the size of the
table, which is returned by getdtablesize(2). The new descriptor returned by the call, newd. is
the lowest numbered descriptor that is not currently in use by the process.

The object referenced by the descriptor does not distinguish between references using oldd
and newd in any way. Thus if newd and oldd are duplicate references to an open file, read(2),
write(2) and iseek(2) calls all move a single pointer into the file, and append mode, non­
blocking 110 and asynchronous 110 options are shared between the references. If a separate
pointer into the file is desired, a different object reference to the file must be obtained by issu­
ing an additional open(2) call. The close-on~xec flag on the new file descriptor is unset.

In the second. form of the call, the value of newd desired' is specified. If this descriptor is
already in use, the descriptor is first deallocated as if a c/ose(2) call had been done first.

RETURN VALUE
The value -1 is returned if an error occurs in either call. The external variable ermo indi­
cates the cause of the error.

ERRORS
Dup and dup2 fail· if:

[EBADF] Oldd or newd is not a valid active descriptor

[EMFILE] Too many descriptors are active.

SEE AlSO
accept(2), open(2), close(2), fcntl(2), pipe(2), socket(2), socketpair(2), getdtablesize(2)

4th Berkeley Distribution May 13, 1986 1

EXECVE(2) UNIX Programmer's Manual EXECVE(2)

NAME
execve - execute a file

SYNOPSIS
execve(name, argv, envp)
char -name, -argv(], *envp(J;

DESCRIPTION
Execve transforms the calling process into a new process. The new process is constructed
from an ordinary file called the new process file. This file is either an executable object file, or
a file of data for an interpreter. An executable object file consists of an identifying header,
followed by pages of data representing the initial program (text) and initialized data pages.
Additional pages may be specified by the header to be initialized with zero data. See a.out(5).

An interpreter file begins with a line of the form "#! interpreter". When an interpreter file is
execve'd, the system execve's the specified interpreter, giving it the name of the originally
exec'd file as an argument and shifting over the rest of the original arguments.

There can be no return from a successful execve because the calling core image is lost. This is
the mechanism whereby different process images become active.

The argument argv is a null-terminated array of character pointers to null-terminated charac­
ter strings. These strings constitute the argument list to be made available to the new process.
By convention, at least one argument must be present in this "array, and the first element of
this array should be the name of the executed program (i.e., the last component of name).

The argumentenvp is also a null-terminated array of character pointers to null-terminated
strings. These strings pass information to the new process that is not directly an argument to
the command (see environ(7».

Descriptors open in the calling process remain open in the new process, except for those for
which the close-on-exec flag is set (see c/ose(2». Descriptors that remain open are unaffected
byexecve.

Ignored signals remain ignored across an execve, but signals that" are caught are reset to their
default values. Blocked signals remain blocked regardless of changes to the signal action.
The signal stack is reset to be undefined (see sigvec(2) for more information).

Each process has real user and group IDs and an effective user and group IDs. The real ID
identifies the person using the system; the effective ID determines his access privileges.
Execve changes the effective user and group ID to the owner of the executed file if the file has
the "set-user-ID" or "set-group-ID" modes. The real user ID is not affected.

The new process also inherits the following attributes from the calling process:

process ID see getpid (2)
parent process ID see getppid(2)
process group ID see getpgrp(2)
access groups see getgroups(2)
working directory see chdir(2)
root directory see chroot(2)
control terminal see tty(4)
resource usages see getrusage(2)
interval timers see getitimer(2)
resource limits see getrlimit(2)
file mode mask see umask(2)
signal mask see sigvec(2), sigmask(2)

When the executed program begins, it is called as follows:

4th Berkeley Distribution May 22, 1986

EXECVE(2) UNIX Programmer's Manual EXECVE(2)

main(argc, argv, en vp)
int argc;
char *.argv, .. en vp;

where argc is the number of elements in argv (the "arg count") and argv is the array of char­
acter pointers to the arguments themselves.

Envp is a pointer to an array of strings that constitute the environment of the process. A
pointer to this array is also stored in the global variable "environ". Each string consists of a
name, an •• =", and a null-terminated value. The array of pointers is terminated by a null
pointer. The shell sh(1) passes an environment entry for each global shell variable defined
when the program is called. See environ(7) for some conventionally used names.

RETURN VALUE ,
If execve returns to the calling process an error has occurred; the return value will be. -1 and
the global variable e"no will contain an error code.

ERRORS
Execve will fail and return to the calling process if one or more of the following are true:

[ENOTDIR] A component of the path prefix is not a directory.

[EINV AL] The pathname contains a character with the high-order bit set.

[ENAMETOOLONG]
A component of a pathname exceeded 255 characters, or an entire path name
exceeded 1023 characters.

[ENOENT] The new process file does not exist.

[ELOOP] Too many symbolic links were encountered in translating the pathname.

[EACCES] Search permission is denied for a component of the path prefix.

[EACCES1 The new process file is not an ordinary file.

[EACCES1 The new process file mode denies execute permission.

[ENOEXEC] The new process file has the appropriate access permission, but has an invalid
magic number in its header.

[ETXTBSY] The new process file is a pure procedure (shared text) file that is currently
open for writing or reading by some process.

[ENOMEM] The new process requires more virtual memory than is allowed by the
imposed maximum (getrlimit(2».

[E2BIG] The number of bytes in the new process's argument list is larger than the
system-imposed limit. The limit in the system as released is 20480 bytes
(NCARGS in <sys/param.h>.

[EFAULT] The new process file is not as long as indicated by the size values in its
header.

[EF A UL T] Path, argv, or envp point to an illegal address.

[EIO] An 110 error occurred while reading from the file system.

CAVEATS
If a program is setuid to a non-super-user, but is executed when the real uid is "root", then
the program has some of the powers of a super-user as well.

SEE ALSO
exit(2), fork(2), execl(3), environ(7)·

4th Berkeley Distribution May 22, 1986 2

EXIT(2) UNIX Programmer's Manual EXIT(2)

NAJ.'\1E
_exit - terminate a process

SYNOPSIS
_exit(status)
int status;

DESCRIPTION
_exit terminates a process with the following consequences:

All of the descriptors open in the calling process are closed. This may entail delays, for exam­
ple, waiting for output to drain; a process in this state may not be killed, as it is already
dying.

If the parent process of the calling process is executing a wait or is interested in the
SIGCHLD signal, then it is notified 'of the calling process's termination and the low-order
eight bits of status are made available to it; see wait(2).

The parent process ID of all of the calling process's existing child processes are also set to 1.
This means that the initialization process (see intro(2» inherits each of these processes as
well. Any stopped children are restarted with a hangup signal (SIGHUP).

Most C programs call the library routine exit(3), which performs cleanup actions in the stan­
dard I/O library before calling _exit.

RETURN VALUE
This call never returns.

SEE ALSO
fork(2), sigvec(2), wait(2), exit(3)

4th Berkeley Distribution May 22,1986

FCNTL(2) UNIX Programmer's Manual FCNTL(2)

fcnt! - file control

SYNOPSIS
#include <fcntl.h>

res = Ccntl(fd, cmd, arg)
int res;
int Cd, cmd, arg;

DESCRIPTION
Fencl provides for control over descriptors. The argument Jd is a descriptor to be operated on
by emd as follows:

F _DUPFD Return a new descriptor as follows:

Lowest numbered available descriptor greater than or equal to argo

Same object references as the original descriptor.

New descriptor shares the same file pointer if the object was a file.

Same access mode (read, write or read/write).

Same file status flags (Le., both file descriptors share the same file status flags).

The close-on-exec flag associated with the new file descriptor is set to remain
open across execv(2) system calls.

Get the close-on-exec flag associated with the file descriptor Jd. If the low­
order bit is 0, the file will remain open across exee, otherwise the file will be
closed upon execution of exec.

Set the close-on-exec flag associated with Jd to the low order bit of arg (0 or 1
as above).

Get descriptor status flags, as described below.

F _SETFL Set descriptor status flags.

F _GETOWN Get the process ID or process group currently receiving SIGIO and SIGURG
signals; process groups are returned as negative values.

F _SETOWN Set the process or process group to receive SIGIO and SIGURG signals; pro­
cess groups are specified by supplying arg as negative, otherwise arg is inter­
preted as a process ID.

The flags for the F _ GETFL and F _SETFL flags are as follows:

FNDELA Y Non-blocking 1/0; if no data is available to a read call, or if a write operation
would block, the call returns -1 with the error EWOULDBLOCK.

FAPPEND Force each write to append at the end of file; corresponds to the O_APPEND
flag of open(2).

Enable the SIGIO signal to be sent to the process group when 110 is possible,
e.g., upon availability of data to be read. -

FASYNC

RETURN VALUE
Upon successful completion, the value returned depends on emd as follows:

F_DUPFD
F_GETFD
F_GETFL
F_GETOWN
other

4.2 Berkeley Distribution

A new file descriptor.
Value of flag (only the low-order bit is defined).
Value of flags.
Value of file descriptor owner.
Value other than -1.

May 22, 1986

FCNTL(2) UNIX Programmer's Manual FCNTL(2)

Otherwise, a value of -1 is returned and errno is set to indicate the error.

ERRORS
Fentl will fail if one or more of the following are true:

[EBAOF]

[EMFILE1

[EINVAL]

[ESRCH]

Fildes is not a valid open file descriptor.

Cmd is F _DUPFO and the maximum allowed number of file descriptors are
currently open.

Cmd is F _DUPFO and arg is negative or greater than the maximum allow­
able number (see getdtablesize(2».

Cmd is F _SETOWN and the process 10 given as argument is not in use.

SEE ALSO

BUGS

close(2), execve(2), getdtablesize(2), open(2), sigvec(2)

The asynchronous I/O facilities of FNOELA Y and F ASYNC are currently available only for
tty and socket operations.

4.2 Berkeley Distribution May 22, 1986 2

FLOCK(2) UNIX Programmer's Manual FLOCK(2)

NAME
flock - apply or remove an advisory lock on an open file

SYNOPSIS
#include <sys/fUe.h>

#define LOCK_SH
#define LOCK_EX
#define LOCK_NB
#define LOCK_UN

fJock(Cd, operation)
int Cd, operation;

1
2
4
8

I. shared lock ./
I. exclusive lock .1
I. don't block when locking .1
I. unlock .1

DESCRIPTION
Flock applies or removes an advisory lock on the file associated with the file descriptor Jd. A
lock is applied by specifying an operation parameter that is the inclusive or of LOCK_SH or
LOCK_EX and, possibly, LOCK_NB. To unlock an existing lock operation should be
LOCK_UN.

o Advisory locks allow cooperating processes to perform consistent operations on files, but do
not guarantee consistency (Le., processes may still access files without using advisory locks
possibly resulting in inconsistencies).

NOTES

The locking mechanism allows two types of locks: shared locks and exclusive locks. At any
time multiple shared locks may be applied to a file, but at no time are multiple exclusive, or
both shared and exclusive, locks allowed simultaneously on a file.

A shared lock may be upgraded to an exclusive lock, and vice versa, simply by specifying the
appropriate lock type; this results in the previous lock being released and the new lock applied
(possibly after other processes have gained and released the lock).

Requesting a lock on an object that is already locked normally causes the caller to be blocked
until the lock may be acquired. If LOCK_NB is included in operation, then this will not hap­
pen; instead the call will fail and the error EWOULDBLOCK will be returned.

Locks are on files, not file descriptors. That is, file descriptors duplicated through dup(2) or
Jork(2) do not result in multiple instances of a lock, but rather multiple references to a single
lock. If a process holding a lock on a file forks and the child explicitly unlocks the file, the
parent will lose its lock.

Processes blocked awaiting a lock may be awakened by signals.

RETURN VALUE
Zero is returned if the operation was successful; on an error a -1 is returned and an error
code is left in the global location errno.

ERRORS
The flock call fails if:

[EWOULDBLOCK] The file is locked and the LOCK_NB option was specified.

[EBADF] The argl:mentJd is an invalid descriptor.

[EINVAL] The argument Jd refers to an object other than a file.

SEE ALSO
open(2), ciose(2), dup(2), execve(2), fork(2)

4.2 Berkeley Distribution May 22, 1986

FORK(2) UNIX Programmer's Manual FORK(2)

NAME
fork - create a new process

SYNOPSIS
pid = forkO
int picl;

DESCRIPTION
Fork causes creation of a new process. The new process (child process) is an exact copy of the
calling process except for the following:

The child process has a unique process ID.

The child process has a different parent process ID (Le., the process ID of the parent
process).

The child process has its own copy of the parent's descriptors. These descriptors refer­
ence the same underlying objects, so that, for instance, file pointers in file objects are
shared between the child and the parent, so that an Iseek(2) on a descriptor in the child
process can affect a subsequent read or write by the parent. This descriptor copying is
also used by the shell to establish standard input and output for newly created processes
as well as to set up pipes.

The child processes resource utilizations are set to 0; see setrlimit(2}.

RETURN VALVE
Upon successful completion, fork returns a value of 0 to the child process and returns the pro­
cess ID of the child process to' the parent process. Otherwise, a value of -1 is returned to the
parent process, no child process is created, and the global variable ermo is set to indicate the
error.

ERRORS
Fork will fail and no child process will be created if one or more of the following are true:

[EAGAIN]

[EAGAIN]

[ENOMEM]

SEE ALSO

The system-imposed limit on the total number of processes under execution
would be exceeded. This limit is configuration-dependent.

The system-imposed limit MAXUPRC «syslparam.h» on the total number
of processes under execution by a single user would be exceeded. .

There is insufficient swap space for the new process.

execve(2), wait(2)

3rd Berkeley Distribution May 22, 1986

FSYNC(2) UNIX Programmer's Manual

NAME
fsync - synchronize a file's in-core state with that on disk

SYNOPSIS
fsyoc(fd)
iot fd;

DESCRIPTION

FSYNC(2)

Fsync causes all modified data and attributes of fd to be moved to a permanent storage dev­
ice. This normally results in all in-core modified copies of buffers for the associated file to be
written to a disk.

Fsync should be used by programs that require a file to be in a known state, for example, in
building a simple transaction facility.

RETURN VALUE
A 0 value is returned on success. A -1 value indicates an error.

ERRORS
The /.sync fails if:

[EBADF] Fd is not a valid descriptor.

[EINVALJ

[EIO] .

SEE ALSO

Fd refers to a socket, not to a file.

An I/O error occurred while reading from or writing to the file system.

sync(2), sync(8), update(8)

4.2 Berkeley Distribution May 22, 1986

GETDIRENTRIES (2) UNIX. Programmer's Manual GETDIRENTRIES (2)

NAME
getdirentries - gets directory entries in a filesystem independent format

SYNOPSIS
#include <sys/dir.h.>

cc = getdirentriesCfd, buf, nbytes, basep)
int cc, fd;
char*buf;
intnbytes;
long *basep

DESCRIPTION
Getdirenlries attempts to put directory entries from the directory referenced by the file
descriptor fd into the buffer pointed to by buf. in a :filesystem independent format. Up to
nbytes of data will be transferred. Nbytes must be greater than or equal to the block size
associated with the :file. see stat(2). Sizes less than this may cause errors on certain filesys­
tems.

The data in the buffer is a series of direct structures each containing the following entries:

unsigned long d_fileno:
unsigned short d_rec1en:
unsigned short d_namlen:
char d_name[MAXNAMELEN + 1]: /* see below */

The dJleno entry is a number which is unique for each distinct file in the filesystem. Files
that are linked by hard links (see link(2) have the same dJleno. The d_reclen entry is
the length. in bytes, of the directory record. The d_name entry contains a null terminated
file name. The d_namlen entry specifies the length of the :file name. Thus the actual size of
d_name may vary from 2 to MAXNAMELEN + 1.

The structures are hot necessarily tightly packed. The d_reclen entry may be used as an
offset from the beginning of a direct structure to the next structure, if any.

Upon return. the actual number of bytes transferred is returned. The current position
pointer associated with fd is set to point to the next block of entries. The pointer is not
necessarily incremented by the number of bytes returned by getdirentries. If the value
returned is zero, the end of the directory has been reached. The current position pointer
may be set and retrieved by lseek(2). Getdirenlries writes the position of the block read
into the location pointed to by basep. It is not safe to set the current position pointer to

. any value other than a value previously returned by lseek(2) or a value previously
returned in the location pointed to by basep or zero.

REI'URN VALUE
If successful. the number of bytes actually transferred is returned. Otherwise. a -1 is
returned and the global variable erma is set to indicate the error.

SEE ALSO
open(2). lseek(2)

ERRORS
Getdirentries will fail if one or more of the following are true:

[EBADF] fd is not a valid :file descriptor open for reading.

[EFAULT] Either buf or basep point outside the allocated address space.

[EINTR] A read from a slow device was interrupted before any data arrived by the
delivery of a signal.

Sun Microsystems Rel 3.0 19 August 1985 1

GETDIRENTRIES (2) UNIX Programmer's Manual GETDIRENTRIES (2)

[EIO] An I/O error occurred while reading from or writing to the :tile system.

Sun Microsystems Re13.0· 19 August 1985 2

GETDOMAINNAME (2) UNIX Programmer's Manual GETDOMAINNAME (2)

NAME
getdomainname, setdomainname - get/set name of current domain

SYNOPSIS
getdomainnameCname, namelen)
char *Dame;
int namelen;

setdomainnameCname, namelen>
char *Dame;
int namelen;

DESCRIPTION
Getdonu.zinnarne returns the name of the domain for the current processor, as previously set
by setdomainnarne, The parameter namelen speci1ies the size of the name array. The
returned name is null-terminated unless insufficient space is provided.

Setdonu.zinnarne sets the domain of the host machine to be name. which has length namelen.
This call is restricted to the super-user and is normally used only when the system is
bootstrapped.

The purpose of domains is to enable two distinct networks that may have host names in
common to merge. Each network would be distinguished by having a different domain
name. At the current time. only the yellow pages service makes use of domains.

RETURN VALUE
If the call succeeds a value of 0 is returned. If the call fails. then a value of -1 is returned
and an error code is placed in the global location ermo.

ERRORS

BUGS

The following errors may be returned by these calls:

[EFAULT] The name parameter gave an invalid address.

[EPERM] The caller was not the super-user. This error only applies to setdomain­
name.

Domain names are limited to 255 characters.

Sun Microsystems Re13.0 19 August 1985 1

UNIX Programmer's Manual

This page intentionally left almost blank.

GETDTABLESIZE (2) UNIX Programmer's Manual

NAME
getdtablesize - get descriptor table size

SYNOPSIS
nfds = getdtablesizeO
int nfds;

DESCRIPTION

GETDTABLESIZE (2)

Each process has a fixed size descriptor table, which is guaranteed to have at least 20 slots.
The entries in the descriptor table are numbered with small integers starting at O. The call
getdtablesize returns the size of this table.

SEE ALSO
close(2), dup(2), open(2), select(2)

4.2 Berkeley Distribution June 28, 1985

GE:rGID(2) UNIX Progranuner's Manual

NAME
getgid, getegid - get group identity

SYNOPSIS
#include <sysltypes.h>

gid - getgidO
gid_t gid;

egid = getegidO
gid_t egid;

DESCRIPTION

GETGID(2)'

Getgid returns the real group ID of the current process, getegid the effective group ID.

The real group ID is specified at login time.

The effective group ID is more transient, and determines additional access permission during
execution of a "set-group-ID" process, and it is for such processes that getgit! is most useful.

SEE AlSO
getuid(2), setregid(2), setgid(3)

4.2 Berkeley Distribution January 7, 1986 1

GETGROUPS (2) UNIX Programmer's Manual GETGROUPS (2)

NAME
getgroups - get group access list

SYNOPSIS
#include <sys/param.h>

ngroups = getgroups(gidsetlen, gidset)
int ngroups, gidsetien, .gidset;

DESCRIPTION
Getgroups gets the current group access list of the user process and stores it in the array gid­
set. The parameter gidset/en indicates the number of entries that may be placed in gidset.
Getgroups returns the actual number of groups returned in gidset. No more than NGROUPS,
as defined in <sys/param.h>, will ever be returned.

RETURN VALVE
A successful call returns the number of groups in the group set. A value of -1 indicates that
an error occurred, and the error code is stored in the global variable errno.

ERRORS
The possible errors for getgroup are:

[EINVAL]

[EFAULT]

The argument gidsetlen is smaller than the number of groups in the group set.

The argument gidset specifies an invalid address.

SEE ALSO

BUGS

setgroups(2), initgroups(3X)

The gidset array should be of type gid_t, but remains integer for compatibility with earlier
systems.

4.2 Berkeley Distribution May 13, 1986

GETHOSTID (2) UNIX PrOgrainmer~s Manual

NA!\1E .
gethostid, sethostid - get/set unique identifier of current host

SYNOPSIS
hostid "" gethostidO
long hostid;

sethostid(hostid)
long hostid; .

DESCRIPTION

GETHOSTID (2)

Sethostid establishes a 32-bit identifier for the current processor that is intended to be unique
among all UNIX systems in existence. This is normally a DARPA Internet address for the
local machine. This call is allowed only to the super-user and is normally performed at boot
time.

Gethostid returns the 32-bit identifier for the current processor.

SEE ALSO
hostid(1), gethostname(2)

BUGS
32 bits for the identifier is too small.

4.2 Berkeley Distribution . November 28, 1985 1

GETHOSTNAME (2) UNIX Programmer's Manual GETHOSTNAME (2)

NAME
gethostname, sethostname - get/set name of current host

SYNOPSIS
gethostname(name, namelen)
char .name;
int namelen;

sethostname(name, namelen)
char .name;
int namelen;

DESCRIPI'ION
Gethostname returns the standard host name for the current processor, as previously set by
sethostname. The parameter name/en specifies the size of the name array. The returned
name is null-terminated unless insufficient space is provided.

Sethostname sets the name of the host machine to be name, which has length name/en. This
call is restricted to the super-user and is normally used only when the system is bootstrapped.

RETURN VALUE
If the call succeeds a value of 0 is returned. If the call fails, then a value of -1 is returned
and an error code is placed in the global location errno.

ERRORS
The following errors may be returned by these calls:

[EFAULT] The name or name/en parameter gave an invalid address.

[EPERM] The caller tried to set the hostname and was not the super-user.

SEE ALSO
gethostid(2)

BUGS
Host names are limited to MAXHOSTNAMELEN (from <sys/param.h» characters,
currently 64.

4.2 Berkeley Distribution May 22, 1986

GETITIMER (2) UNIX Programmer's Manual GETITIMER(2)

NAME
getitimer, setitimer - get/set value of interval timer

SYNOPSIS
#include <sys/time.h>

#define ITIMER_REAL 0
#define ITIMER_ VIRTUAL 1
#define mMER-PROF 2

getitimer(whicb. value)
int which;
struc:t itimerval .value;

setitimer(whicb. value, ovalue)
int which;
struct itimerval .value, .ovalue;

I. reaI.time intervals .1
I. virtual time intervals ./
/. user and system virtual time ./

DESCRIPTION

NOTES

The system provides each process with three interval timers, defined in <sys/time.h>. The
getitimer call returns the current value for the timer specified in which in the structure at
value. The setitimer call sets a timer to the specified value (returning the previous value of
the timer if ovalue is nonzero).

A timer value is defined by the itimerval structure:

struct itimerval {

};

struct timeval iCinterval;
struct timeval iC value;

/. timer interval ./
/. current value ./

If icvalue is non-zero, it indicates the time to the next timer expiration. If iCinterval is non­
zero, it specifies a value to be used in reloading icvalue when the timer expires. Setting
icvalue to 0 disables a timer. Setting it_interval to 0 causes a timer to be disabled after its
next expiration (assuming iCvalue is non-zero).

Time values smaller than the resolution of the system clock are rounded up to this resolution
(on the VAX, 10 milliseconds).

The ITIMER_REAL timer decrements in real time. A SIGALRM signal is delivered when
this timer expires.

The ITIMER_ VIRTUAL timer decrements in process virtual time. It runs only when the
process is executing. A SIGVTALRM signal is delivered when it expires.

The ITIMER_PROF timer decrements both in process virtual time and when the system is
running on behalf of the process. It is designed to be used by interpreters in statistically
profiling the execution of interpreted programs. Each time the ITIMER_PROF timer expires,
the SIGPROF signal is delivered. Because this signal may interrupt in-progress system calls,
programs using this timer must be prepared to restart interrupted system calls.

Three macros for manipulating time values are defined in <sys/time.h>. Timerclear sets a
time value to zero, timerisset tests if a time value is non-zero, and timercmp compares two
time vaiues (beware that>= and <= do not work with this macro).

RETURN VALUE
If the calls succeed, a value of 0 is returned. If an error occurs, the value -1 is returned, and
a more precise error code is placed in the global variable e"no.

4.2 Berkeley Distribution August 26, 1985

GETITIMER (2) UNIX Programmer's Manual GETITIMER (2)

ERRORS
The possible errors are:

[EFAULT] The value parameter specified a bad address.

[EINVAL] A value parameter specified a time was too large to be handled.

SEE ALSO
sigvec(2), gettimeofday(2)

4.2 Berkeley Distribution August 26, 1985 2

GETfAGESIZE(2) UNIX Programmer's Manual

NAME
getpagesize - get system page size

SYNOPSIS
pagesize = getpagesize()
int pagesize;

DESCRIPTION

GETP AGESIZE (2)

Getpagesize returns the number of bytes in a page. Page granularity is the granularity of
many of the memory management calls.

The page size is a system page size and may not be the same as the underlying hardware page
size.

SEE AlSO
sbrk(2), pagesize(1)

4.2 Berkeley Distribution May 15; 1985 1

GETPEERNAME (2) UNIX Programmer's Manual

NAME
getpeername - get name of connected peer

SYNOPSIS
getpeername(s, name, namelen)
int s;
struct sockaddr .name;
int .namelen;

DESCRIPTION

GETPEERNAME (2)

Getpeername returns the name of the peer connected to socket s. The name/en parameter
should be initialized to indicate the amount of space pointed to by name. On return it con­
tains the actual size of the name returned (in bytes). The name is truncated if the buffer pro­
vided is too small.

DIAGNOSTICS
A 0 is returned if the call succeeds, -1 if it fails.

ERRORS
The call succeeds unless:

[EBADF] The argument s is not a valid descriptor.

[ENOTSOCK] The argument s is a file, not a socket.

[ENOTCONN] The socket is not connected.

[ENOBUFS] Insufficient resources were available in the system to perform the operation.

[EF AUL T] The name parameter points to memory not in a valid part of the process
address space.

SEE ALSO
accept(2), bind(2), socket(2), getsockname(2)

4.2 Berkeley Distribution May 13, 1986

-
GETPGRP(2) UNIXPtogrammer's Manual GETPGRP(2)

NAL\1E
getpgrp - get process group

SYNOPSIS
pgrp ,. getpgrp(pid)
int pgrp;
int pid;

DESCRIPTION
The process group of the specified process is returned by getpgrp. If pid is zero, then the call
applies· to the current process.

Process groups are used for distribution of signals, and by terminals to arbitrate requests for
their input: processes that have the same process group as the terminal are foreground and
may read, while others will block with a signal if they attempt to read.

This call is thus used by programs such as csh(1 ~ to create process groups in implementing job
control. The TIOCGPGRP and TIOCSPGRP calls described in tty(4) are used to get/set the
process group of the control terminal.

SEE ALSO
setpgrp(2), getuid(2), tty(4)

4.2 Berkeley Distribution August 26, 1985 1

GETPID(2) UNIX Programmer's Manual

NAME
getpid, getppid - get process identification

SYNOPSIS
pid - getpidO
int picl;

ppid .. getppidO
int ppid;

DESCRIPI10N

GETPID(2)

Getpid returns the process ID of the current process. Most often it is used to generate
uniquely-named temporary files.

Getppid returns the process ID of the parent of the current process.

SEE AlSO
gethostid(2)

4th Berkeley Distribution May 13, 1986

GETPRIORITY (2) UNIX Programmer's Manual GETPRIORITY (2)

NAME
getpriority, setpriority - get/set program scheduling priority

SYNOPSIS
#iocIude <sys/resource.h>

prio = getpriority(which, who)
iot prio, which, who;

setpriority(which, who, prio)
iot which, who, prio;

DESCRIPTION
The scheduling priority of the process, process group, or user, as indicated by which and who
is obtained with the get priority call and set with the set priority call. Which is one of
PRIO_PROCESS, PRIO_PGRP, or PRIO_USER, and who is interpreted relative to which (a
process identifier for PRIO_PROCESS, process group identifier for PRIO_PGRP, and a user
ID for PRIO_USER). A zero value of who denotes the current process, process group, or
user. Prio is a value in the range -20 to 20. The default priority is 0; lower priorities cause
more favorable scheduling.

The get priority call returns the highest priority (lowest numerical value) enjoyed by any of the
specified processes. The setpriorily call sets the priorities of all of the specified processes to
the specified value. Only the super-user may lower priorities.

RETURN VALUE
Since getpriorily can legitimately return the value -1, it is necessary to clear the external vari- .
able e"no prior to the call, then check it afterward to determine if a -1 is an error or a legiti­
mate value. The setpriorily call returns 0 if there is no error, or -1 if there is.

ERRORS
Getpriority and set priority may return one of the following errors:

[ESRCH]

[EINVALJ

No process was located using the which and who values specified.

Whichwas not one ofPRIO_PROCESS, PRIO_PGRP, or·PRIO_USER.

In addition to the errors indicated above, set priority may fail with one of the following errors
returned:

[EPERM]

[EACCES]

SEE ALSO

A process was located, but neither its effective nor real user ID matched the
effective user ID of the caller.

A non super-user attempted to lower a process priority.

nice(1), fork(2), renice(8)

4th Berkeley Distribution May 22, 1986

GETRLIMIT (2) UNIX Programmer's Manual GETRLIMIT (2)

NAME
getrlimit, setrlimit - control maximum system resource consumption

SYNOPSIS
#include <sys/time.h>
#include <sys/resource.h>

getrlimit(resource, rip)
int resource;
struct rlimit .rlp;

setrlimit(resource, rip)
int resource;
struct rlimit .rlp;

DESCRIPTION
Limits on the consumption of system resources by the current process and each process it
creates may be obtained with the getrlimit call, and set with the setrlimit call.

The resource parameter is one of the following:

RLIMIT _CPU the maximum amount of cpu time (in seconds) to be used by each process.

RLIMIT _FSIZE the largest size, in bytes, of any single file that may be created.

RLIMIT _DATA the maximum size, in bytes, of the data segment for a process; this defines
how far a program may extend its break with the sbrk(2) system call.

RLIMIT _STACK the maximum size, in bytes, of the stack segment for a process; this defines
how far a program's stack segment may be extended. Stack extension is
performed automatically by the system.

RLIMIT_CORE the largest size, in bytes, of a core file that may be created.

RLIMIT _RSS the maximum size, in bytes, to which a process's resident set size may
grow. This imposes a limit on the amount of physical memory to be given
to a process; if memory is tight, the system will prefer to take memory
from processes that are exceeding their declared resident set size.

A resource limit is specified as a soft limit and a hard limit. When a soft limit is exceeded a
process may receive a signal (for example, if the cpu time is exceeded), but it will be allowed
to continue execution until it reaches the hard limit (or modifies its resource limit). The
rlimit structure is used to specify the hard and soft limits on a resource,

struct rlimit {
int
int

};

dim_cur,
dim_max;

/. current (soft) limit ./
/. hard limit ./

Only the super-user may raise the maximum limits. Other users may only alter rlim_cur
within the range from 0 to rlim_max or (irreversibly) lower rlim_max.

An "infinite" value for a limit is defined as RLIM_INFINITY (Ox7fffffft).

Because this information is stored in the per-process information, this system call must be
executed directly by the shell if it is to affect all future processes created by the shell; limit is
thus a built-in command to csh(1).

The system refuses to extend the data or stack space when the limits would be exceeded in the
normal way: a break· call fails if the data space limit is reached. When the stack limit is
reached, the process receives a segmentation fault (SIGSEGV); if this signal is not caught by a
handler using the signal stack, this signal will kill the process.

4th Berkeley Distribution May 13, 1986

GETRLIMIT (2) UNIX Programmer's Manual GETRLIMIT (2)

A file I/O operation that would create a file that is too large will cause a signal SIGXFSZ to
be generated; this normally terminates the process, but may be caught. When the soft cpu
time limit is exceeded, a signal SIGXCPU is sent to the offending process.

RETURN VALUE
A 0 return value indicates that the call succeeded, changing or returning the resource limit.
A return value of -1 indicates that an error occurred, and an error code is stored in the global
location errno.

ERRORS
The possible errors are:

[EFAULT] The address specified for rip is invalid.

[EPERM] The limit specified to setrlimit would have
raised the maximum limit value, and the caller is not the super-user.

SEE ALSO
csh(1), quota(2), sigvec(2), sigstack(2)

BUGS
There should be limit and unlimit. commands in sh(1) as well as in csh.

4th Berkeley Distribution May 13, 1986 2

GETRUSAGE(2) UNIX Programmer's Manual GETRUSAGE (2)

NAME
getrusage - get information about resource utilization

SYNOPSIS
#inc1ude <sys/time.h>
#include <sys/resource.h>

#define RUSAGE_SELF 0
#define RUSAGE_CHILDREN -1

/. calling process ./
/. terminated child processes .1

getrusage(who, rusage)
int whO;
struct rusage .rusage;

DESCRIPTION
Getrusage returns information describing the resources utilized by the current process, or all
its terminated child processes. The who parameter is one of RUSAGE_SELF or
RUSAGE_CHILDREN. The buffer to which rusage points will be filled in with the following
structure:

struct rusage (
struct timeval ru_utime; /. user time used ./
struct timeval ru_stime; /. system time used ./
int ru_maxrss;
int ru_ixrss; /. integral shared text memory size ./
int ru_idrss; /. integral unshared data size ./
int ru_isrss; /. integral unshared stack size ./
int ru_mintlt; /. page reclaims ~/
int ru_majtlt; /. page faults ./
int ru_nswap; /. swaps ./
int ru_inblock; /. block input operations ./
int ru_oublock; /. block output operations ./
int ru_msgsnd; /. messages sent .1
int ru_msgrcv; . /. messages received ./
int ru_nsignals; /. signals received .1
int ru_nvcsw; /. voluntary context-switches ./
int ru_nivcsw; /. involuntary context switches ./

);

The fields are interpreted as follows:

ru_utime

ru_stime

the total amount of time spent executing in user mode.

the total amount of time spent in the system executing on behalf of the
process(es).

the maximum resident set size utilized (in kilobytes).

an "integral" value indicating the amount of memory used by the text seg­
ment that was also shared among other processes. This value is expressed in
units of kilobytes • seconds-of-execution and is calculated by summing the
number of shared memory pages in use each time the internal system clock
ticks and then averaging over 1 second intervals.

an integral value of the amount of unshared memory residing in the data seg­
ment of a process (expressed in units of kilobytes * seconds-of-execution).

an integral value of the amount of unshared memory residing in the stack
segment of a process (expressed in units of kilobytes. seconds-of-execution).

4th Berkeley Distribution May 13, 1986

GETRUSAGE(2) UNIX Programmer's Manual GETRUSAGE(2)

NOTES

ru_majflt

ru_nswap

ru_inblock

ru_outblock

ru_msgsnd

ru_msgrcv

ru_nsignals

ru_nvcsw

the number of page faults serviced without any I/O activity; here I/O activity
is avoided by "reclaiming" a page frame from the list of pages awaiting real­
location.

the number-of page faults serviced that required 1/0 activity.

the number of times a process was "swapped" out of main memory.

the number of times the file system had to perform input.

the number of times the file system had to perform output.

the number of IPC messages sent.

the number of IPC messages received.

the number of signals delivered.

the number of times-a context switch resulted due to a process voluntarily
giving up the processor before its time slice was completed (usually to await
availability of a resource).

the number of times a context switch resulted due to a higher priority process
becoming runnable or because the current process exceeded its time slice.

The numbers ru_inblock and ru_outblock account only for real 1/0; data supplied by the cach­
ing mechanism is charged only to the first process to read or write the data.

ERRORS
The possible errors for getrusage are:

[EINV AL] The who parameter is not a valid value.

[EFAULT] The address sp~cified by the rusage parameter is not in a valid part of the
process address space.

SEE ALSO
gettimeofday(2), wait(2)

BUGS
There is no way to obtain information about a child process that has not yet terminated.

4th Berkeley Distribution May 13, 1986 2

GETSOCKNAME (2) UNIX Programmer's Manual GETSOCKNAME(2)

NAME
getsockname - get socket name

SYNOPSIS
getsockname(~ name, namelen)
int s;
struct sockaddr -name;
int -namelen;

DESCRIPTION
Getsockname returns the current name for the specified socket. The name/en parameter
should be initialized to indicate the amount of space pointed to by name. On return it con­
tains the actual size of the name returned (in bytes).

DIAGNOSTICS
A 0 is returned if the call succeeds, -1 if it fails.

ERRORS-
The call succeeds unless:

[EBAOF] The argument s is not a valid descriptor.

[ENOTSOCK] The argument s is a file, not a socket.

[ENOBUFS] Insufficient resources were available in the system to perform the operation.

[EF AULT] The name parameter points to memory not in a valid part of the process
address space.

SEE ALSO

BUGS

bind(2}, socket(2)

Names bound to sockets in the UNIX domain are inaccessible; getsockname returns a zero
length name.

4.2 Berkeley Distribution May 15, 1985

GETSOCKOPT (2) UNIX Programmer's Manual GETSOCKOPT (2)

NAl\1E
getsockopt, setsockopt - get and set options on sockets

SYNOPSIS
#include <sys/types.h>
#ioclude <sys/socket.h>

getsockopt(s, level, optoame, optval, optleo)
iot s, level, optname;
char *optval;
iot *optlen;

setsockopt(s, level, optname, optval, optleo)
iot s, level, optname;
char *optval;
iot optleo;

DESCRIPTION
Getsockopt and setsockopt manipulate options associated with a socket. Options may exist at
multiple protocol levels; they are always present at the uppermost "socket" level.

When manipulating socket options the level at which the option resides and the name of the
option must be specified. To manipulate options at the "socket" level, level is specified as
SOL_SOCKET. To manipulate options at any other level the protocol number of the
appropriate protocol controlling the option is supplied. For example, to indicate that an
option is to be interpreted by the TCP protocol, level should be set to the protocol number of
TCP; see getprotoent(3N). .

The para~eters optval and opt/en are used to access option values for setsockopt. For get­
sockopt they identify a buffer in which the value for the requested option(s) are to be
returned. For getsockopt, opt/en is a value-result parameter, initially containing the size of the
buffer pointed to by optva/, and modified on return to indicate the actual size of the value
returned. If no option value is to be supplied or returned, optva/ may be supplied as O.

Optname and any specified options are passed uninterpreted to the appropriate protocol
module for interpretation. The include file <sys/socket.h> contains definitions for "socket"
level options, described below. Options at other protocol levels vary in format and name;
consult the appropriate entries in section (4P).

Most socket-level options take an int parameter for optval. For setsockopt, the parameter
should non-zero to enable a boolean option, or zero if the option is to be disabled.
SO_LINGER uses a struct linger parameter, defined in <sys/socket.h>, which specifies the
desired state of the option and the linger interval (see below).

The following options are recognized at the socket level. Except as noted, each may be exam­
ined with getsockopt and set with setsockopt.

SO_DEBUG toggle recording of debugging information
SO_REUSEADDR toggle local address reuse
SO_KEEPALIVE to~e keep connections alive
SO_DONTROUTE toggle routing bypass for outgoing messages
SO_LINGER linger on close if data present
SO_BROADCAST toggle permission to transmit broadcast messages
SO_OOBINLINE toggle reception of out-of-band data in band
SO_SNDBUF set buffer size for output
SO_RCVBUF set buffer size for input
SO_TYPE get the type of the socket (get only)
SO_ERROR get and clear error on the socket (get only)

4.2 Berkeley Distribution May 23,1986 1

GETSOCKOPT (2) UNIX Programmer's Manual GETSOCKOPT (2)

SO_DEBUG enables debugging in the underlying protocol modules. SO_REUSEADDR indi­
cates that the rules used in validating addresses supplied in a bind(2) call should allow reuse
of local addresses. SO_KEEPALIVE enables the periodic transmission of messages on a con­
nected socket. Should the connected party fail to respond· to these messages, the connection
is considered broken and processes using the socket are notified via a SIGPIPE signal.
SO_DONTROUTE indicates that outgoing messages should bypass the standard routing facil­
ities. Instead. messages are directed to the appropriate network interface according to the
network portion of the destination address.

SO_LINGER controls the action taken when unsent messags are queued on socket and a
close(2) is performed. If the socket promises reliable delivery of data and SO_LINGER is set,
the system will block the process on the close attempt until it is able to transmit the data or
until it decides it is unable to deliver the information (a timeout period, termed the linger
interval, is specified in the setsockopt call when SO_LINGER is requested). If SO_LINGER is
disabled and a close is issued, the system will process the close in a manner that allows the
process to continue as quickly as possible. .

The option SO_BROADCAST requests permission to send broadcast datagrams on the
socket. Broadcast was a privileged operation in earlier versions of the system. With proto­
cols that support out-of-band data, the SO_OOBINLINE option requests that out-of-band
data be placed in the normal data input queue as received; it will then be accessible with recv
or read calls without the MSG..;.OOB nag. SO_SNDBUF and SO_RCVBUF are options to
adjust the normal buffer sizes allocated for output and input buffers, respectively. The buffer
size may be increased for high-volume connections, or may be decreased to limit the possible
backlog of incoming data. The system places an absolute limit on these values. Finally,
SO_TYPE and SO_ERROR are options used only with setsockopt. SO_TYPE returns the
type of the socket, such as SOCK_STREAM; it is useful for servers that inherit sockets on
startup. SO_ERROR returns any pending error on the socket and clears the error status. It
may be used to check for asynchronous errors on connected datagram sockets or for other
asynchronous errors.

RETURN VALUE
A 0 is returned if the call succeeds, -1 if it fails.

ERRORS
The call succeeds unless:

[EBADF] The argument s is not a valid descriptor.

[ENOTSOCK] The argument s is a file, not a socket.

[ENOPROTOOPT] The option is unknown at the level indicated.

[EF AUL T] The address pointed to by optval is not in a valid part of the process
address space. For getsockopt, this error may also be returned if opt/en
is not in a valid part of the process address space.

SEE ALSO
ioctl(2), socket(2), getprotoent(3N)

BUGS
Several of the. socket options should be handled at lower levels of the system.

4.2 Berkeley Distribution May 23, 1986 2

GETTIMEOFDAY (2) UNIX Programmer's Manual GETTIMEOFDAY (2)

NAME
gettimeofday, settimeofday - get/set date and time

SYNOPSIS
#:include <sys/time.h>

gettimeofday(tp, tzp)
struct timeval .tp;
struet timezone .tzp;

settimeofday(tp, tzp)
struet timeval .tp;
struet timezoDe .tzp;

DESCRIPTION
The system's notion of the current Greenwich time and the current time zone is obtained
with the gettimeofday call, and set with the settimeofday call. The time is expressed in
seconds and microseconds since midnight (0 hour), January 1, 197(}. The resolution of the
system clock is hardware dependent, and the time may be updated continuously or in "ticks."
If tzp is zero, the time zone information will not be returned or set.

The structures pointed to by tp and tzp are defined in <sys/time.h> as:

struct timeval {
long tv_sec;
long tv_usee;

};

/. seconds since Jan. 1, 1970./
/. and microseconds ./

struct timezone {
int tz_minuteswest; /. of Greenwich ./
int tz_dsttime; /. type of dst correction to apply ./

};

The time zone structure indicates the local time zone (measured in minutes of time westward
from Greenwich), and a flag that, if nonzero, indicates that Daylight Saving time applies
locally during the appropriate part of the year.

Only the super-user may set the time of day or time zone.

RETURN
A 0 return value indicates that the call succeeded. A -1 return value indicates an error
occurred, and in this case an error code is stored into the global variable ermo.

ERRORS
The following error codes may be set in ermo:

[EF AUL T] An argument address referenced invalid memory.

[EPERM] A user other than the super-user attempted to set the time.

SEE ALSO
date(1), adjtime(2), ctime(3), timed(8)

4th Berkeley Distribution May 14, 1986 1

GETUID(2) UNIX Programmer's Manual

NAME
getuid, geteuid - get user identity

SYNOPSIS
#inc1ude <sys/types.h>

uid - getuidO
uid_t uid;

euid = geteuidO
uid_t euid;

DESCRIPTION

GETUID(2)

Getuid returns the real user ID of the current process, geteuid the effective user ID.

The real user ID identifies the person who is logged in. The effective user ID gives the pro­
cess additional permissions during execution of "set-user-ID" mode -processes, which use
getuid to determine the real-user-id of the process that invoked them.

SEE ALSO
getgid(2), setreuid(2)

4th Berkeley Distribution January 7, 1986

IOCTL(2) UNIX Programmer's Manual IOCTL(2)

NAJ.\1E
ioctl - control device

SYNOPSIS
#include <sys/ioctl.h>

ioctl(d, reques~ argp)
int d;
unsigned long request;
char -argp;

DESCRIPTION
loctl performs a variety of functions on open descriptors. In particular, many operating
characteristics of character special files (e.g. terminals) may be controlled with ioctl requests.
The writeups of various devices in section 4 discuss how ioetl applies to them.

An ioetl request has encoded in it whether the argument is an "in" parameter or "out"
parameter, and the size of the argument argp in bytes. Macros and defines used in specifying
an ioetl request are located in the file <syslioctl.h>.

RETURN VALUE
If an ~rror has occurred, a value of -1 is returned and errno is set to indicate the error.

ERRORS
loctl will fail if one or more of the following are true:

[EBADF]

[ENOTTY]

[ENOTTY]

[EINVAL]

SEE ALSO

D is not a valid descriptor.

D is not associated with a character special device.

The specified request does not apply to the kind of object that the descriptor
d references.

Request or argp is not valid.

execve(2), fcntl(2), mt(4), tty(4), intro(4N)

4th Berkeley Distribution March 4, 1986

KILL (2) UNIX Programmer's Manual KILL(2)

NAME
kill - send signal to a process

SYNOPSIS
kilI(pid, sig)
int pid, sig;

DESCRIPTION
Kill sends the signal sig to a process, specified by the process number pid. Sig may be one of
the signals specified in sigvec(2), or it may be 0, in which case error checking is performed but
no signal is actually sent. This can be used to check the validity of pid.

The sending and receiving processes must have the same effective user ID, otherwise this call
is restricted to the super-user. A single exception is the signal SIGCONT, which may always
be sent to any descendant of the current process.

If the process number is 0, the signal is sent to all processes in the sender's process group; this
is a variant of kiJIpg(2).

If the process number is -1 and the user is the super-user, the signal is broadcast universally
except to system processes and the process sending the signal. If the process number is -1
and the user is not the super-user, the signal is broadcast universally to all processes with the
same uid as the user except the process sending the signal. No error is returned if any process
could be signaled. '

For compatibility with System Y, if the process number is negative but not -1, the signal is
sent to all processes whose process group ID is equal to the absolute value of the process
number. This is a variant of kiJIpg(2).

Processes may send signals to themselves.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned
and errno is set to indicate the error.

ERRORS
Kill will fail and no signal will be sent if any of the following occur:

[EINV AL] Sig is not a valid signal number.

[ESRCH]

[ESRCH]

[EPERM]

SEE ALSO

No process can be found corresponding to that specified by pid.

The process id was given as 0 but the sending process does not have a process
group.

The sending process is not the super-user and its effective user id does not
match the effective user-id of the receiving process. When signaling a process
group, this error was returned if any members of the group could not be sig­
naled.

getpid(2), getpgrp(2), killpg(2), sigvec(2)

4th Berkeley Distribution May 14, 1986

KILLPG(2) UNIX Programmer's Manual KILLPG(2)

NAME
killpg - send signal to a process group

SYNOPSIS
killpg(pgrp, sig)
int pgrp, sig;

DESCRIPTION
Killpg sends the signal sig to the process group pgrp. See sigvec(2) for a list of signals.

The sending process and members of the process group must have the same effective user 10,
or the sender must be the super-user. As a single special case the continue signal SIGCONT
may be sent to any process that is a descendant of the current process.

RETURN VALVE
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned
and the global variable e"no is set to indicate the error.

ERRORS
Killpg will fail and no signal will be sent if any of the following occur:

[EINV AL] Sig is not a valid signal number.

[ESRCH]

[ESRCH]

[EPERM]

SEE AlSO

No process can be found in the process group specified by pgrp.

The process group was given as 0 but the sending process does not have a
process group.

The sending process is not the super-user and one or more of the target
processes has an effective user 1D different from that of the sending process.

kill(2), getpgrp(2). sigvec(2)

4th Berkeley Distribution May 14, 1986

LINK(2) UNIX Programmer's Manual LINK(2)

NAME
link - make a hard link to a file

SYNOPSIS
Iink(namel, name2)
char .namel, .name2;

DESCRIPTION
A hard link to name1 is created; the link has the name name2. Name1 must exist.

With hard links, both name I and name2 must be in the same file system. Unless the caller is
the super-user, name1 must not be a directory. Both the old and the new link share equal
access and rights to the underlying object.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned
and ermo is set to indicate the error.

ERRORS
Link will fail and no link will be created if one or more of the following are true:

[ENOTDIR] A component of either path prefix is not a directory.

[EINVAL] Either pathname contains a character with the high-order bit set.

[ENAMETOOLONG]

[ENOENT]

[EACCES]

[EACCES]

[ELOOP]

[ENOENT]

[EEXIST]

[EPERM]

[EXDEV]

[ENOSPC]

[EDQUOT]

[EIO]

[EROFS]

[EFAULT]

SEE ALSO

A component of either pathname exceeded 255 characters, or entire length of
either path name exceeded 1023 characters.

A component of either path prefix does not exist.

A component of either path prefix denies search permission.

The requested link requires writing in a directory with a mode that denies
write permission.

Too many symbolic links were encountered in translating one of the path­
names.

The file named by name1 does not exist.

The link named by name2 does exist.

The file named by name 1 is a directory and the effective user ID is not
super-user.

The link named by name2 and the file named by name 1 are on different file
systems.

The directory in which the entry for the new link is being placed cannot be
extended because there is no space left on the file system containing the
directory.

The directory in which the entry for the new link is being placed cannot be
extended because the user's quota of disk blocks on the file system containing
the directory has been exhausted.

An I/O error occurred while reading from or writing to the file system to
make the directory entry.

The requested link requires writing in a directory on a read-only file system.

One of the pathnames specified is outside the process's allocated address
space.

symlink(2), unlink(2)

4th Berkeley Distribution August 26, 1985

LISTEN(2) UNIXiPropammer's'Manua! LISTEN(2)

NAME
listen - listen for connections on a socket

SYNOPSIS
listeo(~ backlog)
int S, backlog;

DESCRIPTION
To accept, connections, a socket is first created with socket(2), a willingness to accept incom­
ing connections and a queue limit for incoming connections are specified with listen(2), and
then the connections are accepted with accept(2). The listen call applies only to sockets of
type SOCK..STREAM or SOCK..SEQPACKET.

The backlog parameter defines the maximwn length the queue of pending connections may
grow to. If a connection request arrives with the queue full the client may receive an error
with an indication of ECONNREFUSED, or. if the underlying protocol supports retransmis­
sion, the request may be ignored so that retries may succeed.

RETURN VALUE
A 0 return value indicates success; -1 indicates an error.

ERRORS
The call fails if:

[EBADF]

[ENOTSOCK]

[EOPNOTSUPP]

SEEALSO

The argument s is not a valid descriptor.

The argument s is not a socket.

The socket is not of a type that supports the operation listen.

accept(2), connect(2), socket(2)

BUGS
The backlog is currently limited (silently) to 5.

4.2 Berkeley Distribution May 14, 1986 1

LSEEK(2) UNIX Programmer's Manual LSEEK(2)

NAME
lseek - move readlwrit~ pointer

SYNOPSIS
#include <sys/file.h>

#define L_SET 0
#define L_INCR 1
#define L_XTND 2

I. set the seek pointer .1
I. increment the seek pointer .1
I. extend the file size .1

pos - lseek(d, offset, whence)"
off_tpos;
int d;
off_t offset;
int whence;

DESCRIPI'ION

NOTES

The descriptor d refers to a file or device open for reading andlor writing. Lseek sets the file
pointer of d as follows:

If whence is L_SET, the pointer is set to offSet bytes.

If whence is L_INCR, the pointer is set to its current location plus offSet.

If whence is L_XTND, the pointer is set to the size of the file plus offSet.

Upon successful completion, the resulting pointer location as measured in bytes from begin­
ning of the file is returned. Some devices are incapable of seeking. The value of the pointer
associated with such a device is undefined.

Seeking far beyond the end of a file, then writing, creates a gap or "hole", which occupies no
physical space and reads as zeros.

RETURN VALUE
Upon successful completion, the current file pointer value is returned. Otherwise, a value of
-1 is returned and e"no is set to indicate the error.

ERRORS
Lseek will fail and the file pointer will remain unchanged if:

[EBADF] Fildes is not an open file descriptor.

[ESPIPE] Fildes is associated with a pipe or a socket.

[EINVAL] Whence is not a proper value.

SEEALSO '
duP(2), open(2)

BUGS
This document's use of whence is incorrect English, but maintained for historical reasons.

4th Berkeley Distribution February 24, 1986

-
MKDIR(2) UNIX Programmer's Manual MKDIR(2)

NAl'\1E
mkdir - make a directory file

SYNOPSIS
mkdir(path, mode)
char .path;
iot mode;

DESCRIPTION
1I1kdir creates a new directory file with name path. The mode of the new file is initialized
from mode. (The protection part of the mode is modified by the process's mode mask; see
umask(2».

The directory's owner ID is set to the process's effective user ID. The directory's group ID is
set to that of the parent directory in which it is created.

The low-order 9 bits of mode are modified by the process's file mode creation mask: all bits
set in the process's file mode creation mask are cleared. See umask(2).

RETURN VALUE
A 0 return value indicates success. A -1 return value indicates an error, and an error code is
stored in errno.

ERRORS
Alkdir will fail and no directory will be created if:

[ENOTDIR] A component of the path prefix is not a directory.

[EINV AL] The pathname contains a character with the high-order bit set.

[ENAMETOOLONG]

[ENOENT1

[EACCES]

[ELOOP]

[EPERM1

[EROFS]

[EEXIST]

[ENOSPC]

[ENOSPC]

[ENOSPC]

[EDQUOT]

[EDQUOT]

[EDQUOT]

A component of a pathname exceeded 255 characters, or an entire path name
exceeded 1023 characters.

A component of the path prefix does not exist.

Search permission is denied for a component of the path prefix.

Too many symbolic links were encountered in translating the pathname.

The path argument contains a byte with the high-order bit set.

The named file resides on a read-only file system.

The named file exists.

The directory in which the entry for the new directory is being placed cannot
be extended because there is no space left on the file system containing the
directory.

The new directory cannot be created because there there is no space left on
the file system that will contain the directory.

There are no free inodes on the file system on which the directory is being
created.

The directory in which the entry for the new directory is being placed cannot
be extended because the user's quota of disk blocks on the file system con­
taining the directory has been exhausted.

The new directory cannot be created because the user's quota of disk blocks
on the file system that will contain the directory has been exhausted.

The user's quota of inodes on the file system on which the directory is being
created has been exhausted.

4.2 Berkeley Distribution August 26, 1985

MKDIR(2)

[EIO]

[EIO]

[EFAULT]

SEE ALSO

UNIX Programmer's Manual MKDIR(2)

An I/O error occurred while making the directory entry or allocating the
inode.

An 110 error occurred while reading from or writing to the file system.

Path points outside the process's allocated address space.

chmod(2), stat(2), umask(2)

4.2 Berkeley Distribution August 26, 1985 2

MKNOD(2) UNIX Programmer's Manual MKNOD(2)

NAME
mknod - make a special file

SYNOPSIS
mknod(path, mode, dey)
char .path;
int mode, der,

DESCRIPTION
Mknod creates a new file whose name is path. The mode of the new file (including special file
bits) is initialized from mode. (The protection part of the mode is modified by the process's
mode mask (see umask(2))). The first block pointer of the i-node is initialized from dev and
is used to specify which device the special file refers to.

If mode indicates a block or character special file, dev is a configuration dependent
specification of a character or block 1/0 device. If mode does not indicate a block special or
character special device, dev is ignored.

Mknod may be invoked only by the super-user.

RETURN VALUE
Upon successful completion a value of 0 is returned. Otherwise, a value of -1 is returned and
elmo is set to indicate the error.

ERRORS
Mknod will fail and the file mode will be unchanged if:

[ENOTDIR1 A component of the path prefix is not a directory.

[EINV AL] The pathname contains a character with the high-order bit set.

[ENAMETOOLONG]

[ENOENT]

[EACCES]

[ELOOP]

[EPERM]

[EPERM]

[EIO]

[ENOSPC]

[ENOSPC]

[E1)QUOT]

[EDQUOT]

[EROFS]

[EEXIST]

A component of a pathname exceeded 255 characters, or an entire path name
exceeded 1023 characters.

A component of the path prefix does not exist.

Search permission is denied for a component of the path prefix.

Too many symbolic links were encountered in translating the pathname.

The process's effective user ID is not super-user.

The pathname contains a character with the high-order bit set.

An 110 error occurred while making the directory entry or allocating the
inode.

The directory in which the entry for the new node is being placed cannot be
extended because there is no space left on the file system containing the
directory.

There are no free inodes on the file system on which the node is being
created.

The directory in which the entry for the new node is being placed cannot be
extended because the user's quota of disk blocks on the file system containing
the directory has been exhausted .

. The user's quota of inodes on the file system on which the node is being
created has been exhausted.

The named file resides on a read-only file system.

The named file exists.

4th Berkeley Distribution May 23, 1986

MKNOD(2) UNIX Programmer's Manual MKNOD(2)

[EFAULT] Path points outside the process's allocated address space.

SEE ALSO
chmod(2), stat(2), umask(2)

4th Berkeley Distribution May 23, 1986 2

MOUNT(2) UNIX Programmer's Manual MOUNT(2)

NAME
mount - mount :file system

SYNOPSIS
#include <syslmount.h>
mount(~ dir, :flags, data)
inttype;
char*<iir;
int :flagS;
caddr_t data;

DFSCRIPTION
mount attaches a :file system to a directory. After a successful return. references to direc­
tory dlr will refer to the root directory on the newly mounted :file system. Dir is a pointer
to a null-terminated string containing a path name. Dir must exist already. and must be a
directory. Its old contents are inaccessible while the :file system is mounted.

The flags argument determines whether the :file system can be written on. and if set-uid
execution is allowed. Physically write-protected and magnetic tape :file systems must be
mounted read-only or errors will occur when access times are updated. whether or not any
explicit write is attempted.

Type indicates the type of the :filesystem. It must be one of the types de:fined in mount.h.
Data is a pointer to a structure which contains the type speci:fic arguments to mount. Below
is a list of the :filesystem types supported and the type specific arguments to each:

MOUNT UFS
struct ufs_args {

char *fspec: 1* Block special file to mount *1

include
include

<nfs/nfs.h>
< netinetlin.h >

struct nfs_args {

}:
REI'URN VALUE

struct sockaddr_in
fhandle_t *fh:
int flags:
int wsize:
int
int
int

rsize:
timeo:
retrans:

addr; 1 file server address *1
1* File handle to be mounted */
1* flags */
1* write size in bytes *1
1* read size in bytes *1
1* initial timeout in .1 sees *1
1* times to retry send *1

Mount returns 0 if the action occurred. and -1 if special is inaccessible or not an appropri­
ate :file. if name does not exist. if special is already mounted. if name is in use. or if there
are already too many :file systems mounted. .

ERRORS
Mount will fail when one of the following occurs:

[EPERM] The caller is not the super-user.

[ENOTBLK] Special is not a block device.

[ENXIO] The major device number of special is out of range (this indicates no device
driver exists for the associated hardware).

[EBUSY] Dir is not a directory. or another process currently holds a reference to it.

Sun Microsystems ReI 3.0 19 August 1985 1

MOUNT(2) UNIX Programmer's Manual MOUNT (2)

[EBUSY]

[EBUSY]

[EBUSY]

[ENOTDIR]

[EPERM]

No space remains in the mount table.

The super block for the file system had a bad magic number or an out of
range block size.

Not enough memory was available to read the cylinder group information
for the file system. .

A component of the path prefix in special or name is not a directory.

The pathname of special or name contains a character with the high-order
bit set.

[ENAMETOOLONG]

[ENOENT]

[EACCES]

[EFAULT]

[ELOOP]

[EIO]

The pathname of special or name was too long.

Special or name does not exist.

Search permission is denied for a component of the path prefix of special or
name.

Special or name points outside the process's allocated address space.

Too many symbolic links were encountered in translating the pathname of
special or name .

An 110 error occurred while reading from or writing to the :file system.

SEE ALSO
unmount(2), mount(8)

BUGS
Too many errors appear to the caller as one value.

Sun Microsystems Re13.0 19 August 1985 2

NFSSVC(2) UNIX Programmer's Manual

NAME
nfssvc. async_daemon - NFS daemons

SYNOPSIS
nfssvc(soclU
intsock;

async_daemonO

DESCRIPTION

NFSSVC (2)

Nfssvc starts an NFS daemon listening on socket sock. The socket must be AF_INET. and
SOCK_DGRAM (protocol UDPIIP). The system call will return only if the process is
killed.

Async_daerrwTl. implements the NFS daemon that handles asynchronous I/O for an NFS
client. The system call never returns.

BUGS
These two system calls allow kernel processes to have user context.

SEE ALSO
mountd(8)

Sun Microsystems ReI 3.0 20 August 1985 1

OPEN(2) UNIX Programmer's Manual OPEN(2)

NAME
open - open a file for reading or writing, or create a new file

SYNOPSIS
#include <sys/file.h>

open(path, flags, mode)
char .path;
int flags, mode;

DESCRIPTION
Open opens the file path for reading andlor writing, as specified by the flags argument and
returns a descriptor for that file. The flags argument may indicate the file is to be created if it
does not already exist (by specifying the O_CREAT flag), in which case the file is created with
mode mode as described in chmod(2) and modified by the process' umask value (see
umask(2».

Path is the address of a string of ASCII characters representing a path name, terminated by a
null character. The flags specified are formed by or'ing the following values

O_RDONL Y open for reading only
0_ WRONLY open for writing only
O_RDWR open for reading and writing
O_NDELA Y do not block on open
O_APPEND append on each write
0_ CREA T create file if it does not exist
O_TRUNC truncate size to 0
O_EXCL error if create and file exists

Opening a file with O_APPEND set causes each write on the file to be appended to the end.
If 0_ TRUNC is specified and the file exists, the file is truncated to zero length. If O_EXCL
is set with O_CREAT, then if the file already exists, the open. returns an error. This can be
used to implement a simple exclusive access locking mechanism. If O_EXCL is set and the
last component of the path name is a symbolic link, the open will fail even if the symbolic link
points to a non-existent name. If the O_NDELAY flag is specified and the open call would
result in the process being blocked for some reason (e.g. waiting for carrier on a dialup line),
the open returns immediately. The first time the process attempts to perform i/o on the open
file it will block (not currently implemented).

Upon successful completion a non-negative integer termed a file descriptor is returned. The
file pointer used to mark the current position within the file is set to the beginning of the file.

The new descriptor is set to remain open across execve system calls; see c/ose(2).

The system imposes a limit on the number of file descriptors open simultaneously by one pro­
cess. Getdtablesize(2) returns the current system limit.

ERRORS
The named file is opened unless one or more of the following are true:

[ENOTDIR] A component of the path prefix is not a directory.

[EINVAL] The pathname contains a character with the high-order bit set.

[ENAMETOOLONG]

[ENOENT]

[ENOENTJ

A component of a pathname exceeded 255 characters, or an entire path name
exceeded 1023 characters.

0_ CREA T is not set and the named file does not exist.

A component of the path name that must exist does not exist.

4th Berkeley Distribution May 14, 1986

OPEN(2)

[EACCES]

[EACCES]

[EACCES]

[ELOOP]

[EISDIR]

[EROFS]

[EMFILE]

[ENFILE]

[ENXIO]

[ENOSPC]

[ENOSPC]

[EDQUOT]

[EDQUOT]

[EIO]

UNIX Programmer's Manual OPEN(2)

Search permission is denied for a component of the path prefix.

The required permissions (for reading and/or writing) are denied for the
named flag.

O_CREAT is specified, the file does not exist, and the directory in which it is
to be created does not permit writing.

Too many symbolic links were encountered in translating the pathname.

The named file is a directory, and the arguments specify it is to be opened for
writting.

The named file resides on a read-only file system, and the file is to be
modified.

The system limit for open file descriptors per process has already been
reached.

The system file table is full.

The named file is a character special or block speciaifile, and the device asso­
ciated with this special file does not exist.

O_CREAT is specified, the file does not exist, and the directory in which the
entry for the new file is being placed cannot be extended because there is no
space left on the file system containing the directory.

O_CREAT is specified, the file does not exist, and there are no free inodes on
the file system on which the file is being created.

O_CREAT is specified, the file does not exist, and the directory in which the
entry for the new fie is being placed cannot be extended because the user's
quota of disk blocks on the file system containing the directory has been
exhausted.

O_CREAT is specified, the file does not exist, and the user's quota of inodes
on the file system on which the file is being created has been exhausted.

An I/O error occurred while making the directory entry or allocating the
inode for O_CREA T.

[ETXTBSY] The file is a pure procedure (shared text) file that is being executed and the
open call requests write access.

[EFAULT] Path points outside the process's allocated address space.

[EEXIST] O_CREAT and O_EXCL were specified and the file exists.

[EOPNOTSUPP]
An attempt was made to open a socket (not currently implemented).

SEE ALSO
chmod(2), close(2), dup(2), getdtablesize(2), Iseek(2),read(2), write(2), umask(2)

4th Berkeley Distribution May 14, 1986 2

PIPE(2) UNIX Programmer's Manual PIPE (2)

NAME
pipe - create an interprocess communication channel

SYNOPSIS
pipe(fildes)
iot fildes(2];

DESCRIPTION
The pipe system call creates an 110 mechanism called a pipe. The file descriptors returned
can be used in read and write operations. When the pipe is written using the descriptor
fildes[l] up to 4096 bytes of data are buffered before the writing process is suspended. A read
using the descriptor jildes[O] will pick up the data.

It is assumed that after the pipe has been set up, two (or more) cooperating processes (created
by subsequent/ork calls) will pass data through the pipe with read and write calls.

The shell has a syntax to set up a linear array of processes connected by pipes.

Read calls on an empty pipe (no buffered data) with only one end (all write file descriptors
closed) returns an end-of-file.

Pipes are really a special case of the socketpair(2) call and, in fact, are implemented as such in
the system.

A signal is generated if a write on a pipe with only one end is attempted.

RETURN VALVE
The function value zero is returned if the pipe was created; -1 if an error occurred .

. ERRORS
The pipe call will fail if:

[EMFILE] Too many descriptors are active.

[1?NFILE] The system file table is full.

[EFAULT] The fildes buffer is in an invalid area of the process's address space.

SEE AlSO

BUGS

sh(I), read(2), write(2), fork(2), socketpair(2)

Should more than 4096 bytes be necessary in any pipe among a loop of processes, deadlock
will occur.

4th Berkeley Distribution August 26, 1985

UNIX Programmer's Manual

This page intentionally left almost blank.

PROFIL(2) UNIX Programmer's ManuaJ. PROFIL(2)

NAL'\1E
profit - execution time profile

SYNOPSIS
profil(buff, bufsiz, offset, scale)
char -buff;
int bufsiz,. offset, scale;

DESCRIPTION
Buff points to an area of core whose length (in bytes) is given by bufsiz. After this call, the
user's program counter (pc) is examined each clock tick (10 milliseconds); offset is subtracted
from it, and the result multiplied by scale. If the resulting number corresponds to a word
inside buff, that word is incremented.

The scale is interpreted as an unsigned, fixed-point fraction with 16 bits of fraction: Ox 1 0000
gives a 1-1 mapping of pc's to words in buff; Ox8000 maps each pair of instruction words
together.

Profiling is turned off by giving a scale of 0 or 1. It is rendered ineffective by giving a bufsiz
of O. Profiling is turned off when an execve is executed, but remains on in child and parent
both after a fork. Profiling is turned off if an update in buff would cause a memory fault.

RETURN VALUE
A 0, indicating success, is always returned.

SEE ALSO
gprof(1), setitimer(2), monitor(3)

4th Berkeley Distribution May 14, 1986

PTRACE(2) UNIX Programmer's Manual PTRACE(2)

NAME
ptrace - process trace

SYNOPSIS
#include <sys/signal.h>
#include <sys/ptrace.h>

ptrace(request, pi~ addr, data)
int request, pi~ -addr, data;

DESCRIPTION
Ptrace provides a means by which a parent process may control the execution of a child pro­
cess, and examine and change its core image. Its primary use is for the implementation of
breakpoint debugging. There are four arguments whose interpretation depends on a request
argument. Generally, pid is the process ID of the traced process, which must be a child (no
more distant descendant) of the tracing process. A process being traced behaves normally
until it encounters some signal whether internally generated like "illegal instruction" or exter­
nally generated like "interrupt". See sigvec(2) for the list. Then the traced process enters a
stopped state and its parent is notified via wait(2). When the child is in the stopped state, its
core image can be examined and modified using ptrace. If desired, another ptrace request can
then cause the chil~ either to terminate or to continue, possibly ignoring the signal.

The value of the request argument determines the precise action of the call:

PT _TRACE_ME
This request is the only one used by the child process; it declares that the process is to be
traced by its parent. All the other arguments are ignored. Peculiar results will ensue if
the parent does not expect to trace the child.

PT _READ_I. PT _READ_D
The word in the child process's address space at addr is returned. If I and D space are
separated (e.g. historically on a pdp-II), request PT _READ _I indicates I space,
PT _READ _D D space. Addr must be even on some machines. The child must be
stopped. The input data is ignored.

PT_READ_U
The word of the system's per-process data area corresponding to addr is returned. Addr
must be even on some machines and less than 512. This space contains the registers and
other information about the process; its layout corresponds to the user structure in the
system.

PT _WRITE_I, PT _ WRITE_D
The given data is written at the word in the process's address space corresponding to
addr, which must be even on some machines. No useful value is returned. If I and D
space are separated, request PT _ WRITE_I indicates I space, PT _ WRITE_D D space.
Attempts to write in pure procedure fail if another process is executing the same file.

PT_WRITE_U
The process's system data is written, as it is read with request PT_READ_U. Only a few
locations can be written in this way: the general registers, the floating point status and
registers, and certain bits of the processor status word.

PT _CONTINUE
The data argument is taken as a signal number and the child's execution continues at
location addr as if it had incurred that signal. Normally the signal number will be either
o to indicate that the signal that caused the stop should be ignored, or that value fetched
out of the process's image indicating which signal caused the stop. If addr is (int .)1 then
execution continues from where it stopped.

4th Berkeley Distribution May 23, 1986

PTRACE(2) UNIX Programmer's Manual PTRACE(2)

PT_KILL
The traced process terminates.

PT_STEP
Execution continues as in request PT _CONTINUE; however, as soon as possible after
execution of at least one instruction, execution stops again. The signal number from the
stop is SIGTRAP. (On the VAX-II the T-bit is used and just one instruction is exe­
cuted.) This is part of the mechanism for implementing breakpoints.

As indicated, these calls (except for request PT_TRACE_ME) can be used only when the sub­
ject process has stopped. The wait call is used to determine when a process stops; in such a
case the "termination" status returned by wait has the value 0177 to indicate stoppage rather
than genuine termination.

To forestall possible fraud, ptrace inhibits the set-user-id and set-group-id facilities on subse­
quent execve(2) calls. If a traced process calls execve, it will stop before executing the first
instruction of the new image showing signal SIGTRAP.

On a VAX-II, "word" also means a 32-bit integer, but the "even" restriction does not apply.

RETURN VALUE
A 0 value is returned if the call succeeds. If the call fails then a -1 is returned and the global
variable errno is set to indicate the error.

ERRORS
[EIO] The request code is invalid.

[ESRCH]

[EI0]

[EI0]

[EPERM]

The specified process does not exist.

The given signal number is invalid.

The specified address is out of bounds.

The specified process cannot be traced.

SEE ALSO

BUGS

wait(2), sigvec(2), adb(1)

Ptrace is unique and arcane; it should be replaced with a special file that can be opened and
read and written. The control functions could then be implemented with ioctl(2) calls on this
file. This would be simpler to understand and have much higher performance.

The request PT _TRACE_ME call should be able to specify signals that are to be treated nor­
mally and not cause a stop. In this way, for example, programs with simulated floating point
(which use "illegal instruction" signals at a very high rate) could be efficiently debugged.

The error indication, -1, is a legitimate function value; errno.(see intro(2», can be used to
disambiguate.

It should be possible to stop a process on occurrence of a system call; in this way a completely
controlled environment could be provided.

4th Berkeley Distribution May 23, 1986 2

QUOTA(2) UNIX Programmer's Manual QUOTA(2)

NAME
quota - manipulate disk quotas

SYNOPSIS
#include <syslquota.h>

quota(cmel. uiel. arg, addr)
int cm.d, uiel. arg;
char *8.ddr;

DFSCRIPTION
N.B.: This call is not implemented in the NFS version of the system. The quota call mani­
pulates disk quotas for file systems that have had quotas enabled with setquota(2). The
cmd parameter indicates a command to be applied to the user ID uid. Arg is a command
specific argument and addr is the address of an optional. command specific. data structure
that is copied in or out of the system. The interpretation of arg and addr is given with each
command below.

O-SETDLIM
Set disc quota limits and current usage for the user with ID uid. Arg is a major­
minor device indicating a particular file system. Addr is a pointer to a struct dqblk
structure (defined in <sys'lquota.h ». This call is restricted to the super-user.

O-GETDLIM
Get disc quota limits and current usage for the user with ID uid. The remaining
parameters are as for Q_SETDLIM.

O-SETDUSE
Set disc usage limits for the user with ID uid. Arg is a major-minor device indicat­
ing a particular file system. Addr is a pointer to a struct dqusage structure (defined
in <syslquota.h ». This call is restricted to the super-user.

O-SYNC
Update the on-disc copy of quota usages. Arg is a major-minor device indicating
the file system to be sync'ed. If the arg parameter is specified as NODEV. all file
systems that have disc quotas will be sync·ed. The uid and addr parameters are
ignored.

O-SETUID
Change the calling process's quota limits to those of the user with ID uid. The arg
and addr parameters are ignored. This call is restricted to the super-user.

Q_SETWARN
Alter the disc usage warning limits for the user with ID uid. Arg is a major-minor
device indicating a particular file system. Addr is a pointer to a struct dqwarn
structure (defined in <syslquota.h ». This call is restricted to the super-user.

O-DOWARN
Warn the user with user ID uid about excessive disc usage. This call causes the sys­
tem to check its current disc usage information and print a message on the terminal
of the caller for each file system on which the user is over quota. If the user is
under quota. his warning count is reset to MAX_ '* _WARN (defined in
<syslquota.h ». If the arg parameter is specified as NODEV. all file systems that
have disc quotas will be checked. Otherwise. arg indicates a specific major-minor
device to be checked. This call is restricted to the super-user.

RlITURN VALUE
A successful call returns O. otherwise the value -1 is returned and the global variable
erma indicates the reason for the failure.

4.2 Berkeley Distribution May 15. 1986 1

QUOTA (2) UNIX Programmer's Manual QUOTA(2)

ERRORS
A quota call will fail when one of the following occurs:

[EINV AL] The kernel has not been compiled with the QUOTA option.

[EINV AL] emil is invalid.

[ESRCH] No disc quota is found for the indicated user.

[EPERM] The call is priviledged and the caller was not the super-user.

[ENODEV]

[EFAULT]

[EUSERS]

The arg parameter is being interpreted as a major-minor device and it indi­
cates an unmounted file system.

An invalid addr is supplied: the associated structure could not be copied in
or out of the kernel.

The quota table is full.

SEE ALSO

BUGS

setquota(2). quotaon(8). quotacheck(8)

There should be some way to integrate this call with the resource limit irtterface provided
by setrlimit(2) and getrlimit(2). .

The Australian spelling of disk is used throughout the quota facilities in honor of the
implementors.

4.2 BerkeleY'Distribution May 15. 1986 2

QUOTACI1.(2) UNIX Programmer's Manual QUOTACI1.(2)

NAME
quotactl - manipulate disk quotas

SYNOPSIS
#include <ufslquota.h>

quotactl(cmd, special, uid, addr)
intcmd;
char *SpeCial;
intuid;
caddr_t addr;

DESCRIPTION
The quotactl call manipulates disk quotas. The cmd parameter indicates a command to be
applied to the user ID uid. Special is a pointer to a null-terminated string containing the
path name of the block special device for the file system being manipulated. The block spe­
cial device must be mounted. Addr is the address of an optional. command specific. data
structure which is copied in or out of the system. The interpretation of addr is given with
each command below.

~QUOTAON
Turn on quotas for a file system. Addr is a pointer to a null terminated string con­
taining the path name of file containing the quotas for the :file system. The quota
1i1e must.exist; it is normally created with the quotacheck(8) program. This call is
restricted to the super-user.

~QUOTAOFF
Turn off quotas for a file system. This call is restricted to the super-user.

~GETQUOTA
Get disk quota limits and current usage for user uid. Addr is a pointer to a struct
dqblk structure (defined in <ufslquotah ». Only the super-user may get the quo­
tas of a user other than himself.

~SETQUOTA
Set disk quota limits and current usage for user uid. Addr is a pointer to a struct
dqblk structure (defined in <ufslquotah ». This call is restricted to the super­
user.

~SETQLIM
Set disk quota limits for user uid. Addr is a pointer to a struct dqblk structure
(defined in <ufslquotah ». This call is restricted to the super-user.

~SYNC
Update the on-disk copy of quota usages. This call is restricted to the super-user.

RETURN VALUE
Upon successful completion. a value of 0 is returned. Otherwise. a value of -1 is returned
and erma is set to indicate the error.

ERRORS
A quotactl call will fail when one of the following occurs:

[EINV AL] Cmd is invalid.

The call is privileged and the caller was not the super-user. [EPERM]

[EINVAL] The special parameter is not a mounted file system or is a mounted file sys­
tem without quotas enabled.

[ENOTBLK] The special parameter is not a block device.

Sun Microsystems Re13.0 20 August 1985 1

QUOTACfL(2) UNIX Programmer's Manual QUOTACfL(2)

[EFAULT]

[EINVAL]

[EUSERS]

An invalid addr is supplied: the associated structure could not be copied in
or out of the kernel.

The addr parameter is being interpreted as the path of a quota file which
exists but is either not a regular file or is not on the file system pointed to
by the special parameter,

The quota table is full.

SEE ALSO

BUGS

quotaon(8). quotacheck(8)

There should be some way to integrate this call with the resource limit interface provided
by setrlimit(2) and getrlimit(2). Incompatible with Melbourne quotas.

Sun Microsystems ReI 3.0 20 August 1985 2

READ(2) UNIX Programmer's Manual READ(2)

NAME
read, ready - read input

SYNOPSIS
cc = read(d, buf, nbytes)
int cc, d;
char -buC;
int nbytes;

#inc1ude <sys/types.h>
#inc1ude <sys/uio.h>

cc = readv(~ iov, iovcnt)
int cc, d;
struct iovec -ioV;
int iovcnt;

DESCRIPTION
Read attempts to read nbytes of data from the object referenced by the descriptor d into the
buffer pointed to by buf Readv performs the same action, but scatters the input data into the
iovent buffers specified by the members of the lov array: iov[O], iov[1], ... , iov[iovcnt - 1].

For readv, the iovee structure is defined as

struct iovec {
caddct iov _base;
int iov_len;

};
Each lovee entry specifies the base address and length of an area in memory where data
should be placed. Readv will always fill an area completely before proceeding to the next.

On objects capable of seeking, the read starts at a position given by the pointer associated
with d (see Iseek(2». Upon return from read, the pointer is incremented by the number of
bytes actually read.

Objects that are not capable of seeking always read from the current position. The value of
the pointer associated with such an object is undefined.

Upon successful completion, read and ready return the number of bytes actually read and
placed in the buffer. The system guarantees to read the number of bytes requested if the
descriptor references· a normal file that has that many bytes left before the end-of-file, but in
no other case.

If the returned value is 0, then end-of-file has been reached.

RETURN VALUE
If successful, the number of bytes actually read is returned. Otherwise, a -1 is returned and
the global variable ermo is set to indicate the error.

ERRORS
Read and ready will fail if one or more of the following are true:

[EBADF] D is not a valid file or socket descriptor open for reading.

Buf points outside the allocated address. space.

An 1/0 error occurred while reading from the file system.

[EFAULT]

[EIO]

[EINTR] A read from a slow device was interrupted before any data arrived by the
deli very of a signal.

(EINVAL] The pointer associated with d was negative.

4th Berkeley Distribution May 23, 1986' 1

READ(2) UNIX Programmer's Manual READ(2)

[EWOULDBLOCKJ
The file was marked for non-blocking 110, and no data were ready to be read.

In addition, readv may return one of the following errors:

[EINVALJ

[EINVAL]

[EINVAL]

[EFAULT]

SEE ALSO

[ovent was less than or equal to 0, or greater than 16.

One of the iov_len values in the iov array was negative.

The sum of the iov_len values in the iov array overflowed a 32-bit integer.

Part of the iov points outside the process's allocated address space.

dup(2), fcntl(2), open(2), pipe(2), select(2), socket(2), socketpair(2)

4th Berkeley Distribution May 23, 1986 2

READLINK(2) UNIX Programmer's Manual READLINK(2)

NAME
readlink - read value of a symbolic link

SYNOPSIS
cc = readliok(path, buf. bufsa)
iot cc;
char .path, .but;
iot bufsiz;

DESCRIPTION
Readlink places the contents of the symbolic link name in the buffer but. which has size buf
siz. The contents of the link are not null terminated when returned.

RETURN VALUE
The call returns the count of characters placed in the buffer if it succeeds, or a -1 if an error
occurs, placing the error code in the global variable mono.

ERRORS
Readlink will fail and· the file mode will be unchanged if:

[ENOTDIR] A component of the path prefix is not a directory.

[EINV ALI The pathname contains a character with the higb-order bit set.

[ENAMETOOLONG]

[ENOENT]

[EACCES1

[ELOOP]

[EINVAL]

[EIO]

[EFAULT]

SEE ALSO

A component of a pathname exceeded 255 characters, or an entire path name
exceeded 1023 characters.

The named file does not exist.

Search permission is denied for a component of the path prefix.

Too many symbolic links were encountered in translating the pathname.

The named file is not a symbolic link.

An 1/0 error occurred while reading from the file system.

Buj extends outside the process's allocated address space.

stat(2), Istat(2), symlink(2)

4.2 Berkeley Distribution August 26, 1985

REBOOT(2) UNIX Programmer's Manual REBOOT(2)

NAME
reboot - reboot system or halt processor

SYNOPSIS
#ioclude <sys/reboot.h>

reboot(howto)
iot howto;

DESCRIPTION
Reboot reboots the system, and is invoked automatically in the event of unrecoverable system
failures. Howto is a mask of options passed to the bootstrap program. The system call inter­
face permits only RB_HAL T or RB_AUTOBOOT to be passed to the reboot program; the
other flags are used in scripts stored on the console storage media, or used in manual
bootstrap procedures. When none of these options (e.g. RB_AUTOBOOT) is given, the sys­
tem is rebooted from file "vmunix" in the root file system of unit 0 of a disk chosen in a pro­
cessorspecific way. An automatic consistency check of the disks is then normally performed.

The bits of howto are:

RB_HALT
the processor is simply halted; no reboot takes place .. RB_HALT should be used with
caution.

RB_ASKNAME
Interpreted by the bootstrap program itself, causing it to inquire as to what file should
be booted. Normally, the system is booted from the file "xx(O,O)vmunix" without
asking.

RB_SINGLE
Normally, the reboot procedure involves an automatic disk consistency check and
then multi-user operations. RB_SINGLE prevents the consistency check, rather sim­
ply booting the system with a single-user shell on the console. RB_SINGLE is inter­
preted by the init(8) program in the newly booted system. This switch is not avail­
able from the. system call interface.

Only the super-user may reboot a machine.

RETURN VALUES
If successful, this call never returns. Otherwise, a -1 is returned and an error is returned in
the global variable errno.

ERRORS
[EPERM] The caller is not the super-user.

SEE ALSO
crash(8), halt(8), init(8), reboot(8)

BUGS
The notion of "console medium", among other things, is specific to the VAX.

4th Berkeley Distribution May 9, 1985

RECY(2) UNIX Programmer's Manual RECY(2)

NAME
recv, recvfrom, recvmsg - receive a message from a socket

SYNOPSIS
#inc1ude <sys/types.h>
#inc1ude <sys/socket.h>

cc = recv(s, but, len, flags)
int cc, s;
char .buf;
int len, flags;

ce ,. recvfrom(s, buf, len, flags, from, fromlen)
int cc, s;
char .buf;
int len, flags;
struet sockaddr .from;
int .Cromlen;

cc := recvmsg(s, msg, flags)
int cc, s;
struet msghdr msg(];
int flags;

DESCRIPTION
Recv, recvfrom, and recvmsg are used to receive messages from a socket.

The recv call is normally used only on a connected socket (see connect(2», while recvfrom and
recvmsg may be used to receive data on a socket whether it is in a connected state or not.

If from is non-zero, the source address of the message is filled in. From/en is a value-result
parameter, initialized to the size of the buffer associated with from, and modified on return to
indicate the actual size of the address stored there. The length of the message is returned in
cc. If a message is too long to fit in the supplied buffer, excess bytes may be discarded
depending on the type of socket the message is received from (see socket(2».

If no messages are available at the socket, the receive call waits for a message to arrive, unless
the socket is nonblocking (see ioctl(2» in which case a cc of -1 is returned with the external
variable ermo set to EWOULDBLOCK.

The select(2) call may be used to determine when more data arrives.

The flags argument to a recv call is formed by or'ing one or more of the values,

#define MSG_OOB Oxl /. process out-of-band data ./
#define MSG_PEEK Ox2 I. peek at incoming message ./

The recvmsg call uses a msghdr structure to minimize the number of directly supplied param­
eters. This structure has the following form, as defined in <sys/socket.h>:

struct msghdr {
caddct mss-name;
int mss-namelen;
struct iovec .ms8-iov;
int mss-iovlen;
caddct mS8-accrights;
int mss-accrightslen;

} ;

I. optional address ./
/. size of addre:-;s ./

I. scatter/gather array ./
/. # elements in mS8-iov .;
I. access rights sent/received ./

Here msg_name and msg_namelen specify the destination address if the socket is uncon­
nected; msg_name may be given as a null pointer if no names are desired or required. The
msg_iov and msg_iovlen describe the scatter gather locations, as described in read(2). A

4.2 Berkeley Distribution May 23, 1986

RECV(2) UNIX Programmer's Manual RECY(2)

buffer to receive any access rights sent along with the message is specified in msg_accrights,
which has length msg_accrightslen. Access rights are currently limited to file descriptors,
which each occupy the size of an int.

RETURN VALUE
These calls return the number of bytes received, or -1 if an error occurred.

ERRORS
The calls fail if:

[EBADF] The argument s is an invalid descriptor.

[ENOTSOCK] The argument s is not a socket.

[EWOULDBLOCK] The socket is marked non-blocking and the receive operation would
block.

[EINTR]

[EFAULT]

SEE ALSO

The receive was interrupted by delivery of a signal before any data was
available for the receive.

The data was specified to be received into a non-existent or protected
part of the process address space.

fcntl(2), read(2), send(2), select(2), getsockopt(2), socket(2)

4.2 Berkeley Distribution May 23, 1986 2

RENAME (2) UNIX ProgI'ammer's Manual RENAME(2)

NAME
rename - change the name of a file

SYNOPSIS
rename(from, to)
char .from, .to;

DESCRIPTION
Rename causes the link named from to be renamed as to. If to exists, then it is first removed.
Both from and to must be of the same type (that is, both directories or both non-directories),
and must reside on the same file system.

Rename guarantees that an instance of to will always exist, even if the system should crash in
the middle of the operation.

If the final component of from is a symbolic link, the symbolic link is renamed, not the file or
directory to which it points.

CAVEAT
The system can deadlock if a loop in the file system gI'aph is present. This loop takes the
form of an entry in directory "a", say "alfoo", being a hard link to directory "b", and an
entry in directory "b", say "bihar", being a hard link to directory "a". When such a loop
exists and two separate processes attempt to perform "rename alfoo bihar" and "rename
bihar alfoo", respectively, the system may deadlock attempting to lock both directories for
modification. Hard links to directories should· be replaced by symbolic links by the system
administrator.

RETURN VALUE
A 0 value is returned if the operation succeeds, otherwise rename retunis -1 and the global
variable ermo indicates the reason for the failure.

ERRORS
Rename will fail and neither of the argument files will be affected if any of the following are
true:

[EINV AL] Either pathname contains a character with the high-order bit set.

[ENAMETOOLONG]

[ENOENT]

[EACCES]

[EACCES]

[EPERM]

[EPERM]

[ELOOP]

[ENOTDIR]

[ENOTDIR]

[EISDIR]

[EXDEV]

A component of either pathname exceeded 255 characters, or the entire
length of either path name exceeded 1023 characters.

A component of the from path does not exist, or a path prefix of FIto does
not exist.

A component of either path prefix denies search permission.

The requested link requires writing in a directory with a mode that denies
write permission.

The directory containing from is marked sticky, and neither the containing
directory nor from are owned by the effective user ID.

The to file exists, the directory containing to is marked sticky, and neither the
containing directory nor to are owned by the effective user ID.

Too many symbolic links were encountered in translating either pathname.

A component of either path prefix is not a directory.

From is a directory, but to is not a directory.

To is a directory, but from is not a directory.

The link named by to and the file named by from are on different logical dev­
ices (file systems). Note that this error code will not be returned if the

4.2 Berkeley Distribution MaY.22, 1986

RENAME(2)

[ENOSPC]

[EDQVOT]

[EIO]

[EROFS]

[EFAULT]

[EINVAL]

[ENOTEMPTY]

SEE ALSO
open(2)

UNIX Programmer's Manual RENAME (2)

implementation permits cross-device links.

The directory in which the entry for the new name is being placed cannot be
extended because there is no space left on the file system containing the
directory.

The directory in which the entry for the new name is being placed cannot be
extended because the user's quota of disk blocks on the file system containing
the directory has been exhausted.

An I/O error occurred while making or updating a directory entry.

The requested link requires writing in a directory on a read-only file system.

Path points outside the process's allocated address space.

From is a parent directory of to, or an attempt is made to rename "." or ••.. ".

To is a directory and is not empty.

4 , Rerkelev Distribution May 22, 1986 2

RMDIR(2) UNIX Programmer's Manual , RMDIR(2)

NAME
. rmdir - remove a directory file

SYNOPSIS
rmdir(path)
char .path;

DESCRIPI'ION
Rmdir removes a directory file whose name is given by path. The directory must not have any
entries other than "." and ".

RETURN VALUE
A 0 is returned if the remove succeeds; otherwise a -1 is returned and an error code is stored
in the global location erma.

ERRORS
. The named file is removed unless one or more of the following are true:

[ENOTDIR] A component of the path is not a directory.

[EINV AL] The pathname contains a character with the high-order bit set.

[ENAMETOOLONG]

[ENOENT]

A component of a pathname exceeded 255 cha~cters, or an entire path name
exceeded 1023 characters.

The named directory does not exist.

[ELOOP] Too many symbolic links were encountered in translating the pathname.

[ENOTEMPTY]
The named directory contains files other than "." and " in it.

[EACCES] Search permission is denied for a component of the path prefix.

[EACCES]

[EPERM]

[EBUSY]

[EIO]

[EROFS]

[EFAULT]

SEE ALSO

Write permission is denied on the directory containing the link to be
removed.

The directory containing the directory to be removed is marked sticky, and
neither the containing directory nor the directory to be removed are owned
by the effective user 10.

The directory to be removed is the mount point for a mounted file system.

An 110 error occurred while deleting the directory entry or deallocating the
inode.

The directory entry to be removed resides on a read-only file system.

Path points outside the process's allocated address space.

mkdir(2), unlink(2)

4.2 Berkelev Distribution Anand ,jill 1 Q~'\

SELECT(2) UNIX Programmer's Manual SELECT(2)

NAME
select - synchronous 110 multiplexing

SYNOPSIS
#include <sys/types.h>
#include <sys/time.h>

nfound = select(nfds, readfds, writefds, exceptfds, timeout)
int nfound, nfds;
Cd_set .readfds, .writefds, .exceptfds;
struct timeval .timeout;

FD_SET(fd, &Cdset)
FD_CLR(fd, &fdset)
FD_ISSET(fd, Mdset)
FD_ZERO(&fdset)
int fd;
Cd_set fdset;

DESCRIPTION
Select examines the 110 descriptor sets whose addresses are passed in readfds, writefds, and
exceptfds to see if some of their descriptors are ready for reading, are ready for writing, or
have an exceptional condition pending, respectively. The first nfds descriptors are checked in
each set; i.e. the descriptors from 0 through nfds-l in the descriptor sets are examined. On
return, select replaces the given descriptor sets with subsets consisting of those descriptors that
are ready for the requested operation. The total number of ready descriptors in all the sets is
returned in nfound.

The descriptor sets are stored as bit fields in arrays of integers. The following macros are pro­
vided for manipulating such descriptor sets: FD _ZERO(&fdset) initializes a descriptor set
fdset to the null set. FD _SET{fd. &fdset) includes a particular descriptor fd in fdset.
FD_CLR{fd. &fdset) removes fd from fdset. FDjSSET{fd. &fdset) is nonzero if fd is a
member of fdset, zero otherwise. The behavior of these macros is undefined if a descriptor
value is less than zero or greater than or equal to FD_SETSIZE, which is normally at least
equal to the maximum number of descriptors supported by the system.

If timeout is a non-zero pointer, it specifies a maximum interval to wait for the selection to
. complete. If timeout is a zero pointer, the select blocks indefinitely. To affect a poll, the
timeout argument should be non-zero, pointing to a zero-valued timeval structure.

Any of readfds, writefds, and exceptjds may be given as zero pointers if no descriptors are of
interest. .

RETURN VALUE
Select returns the number of ready descriptors that are contained in the descriptor sets, or -1
if an error occurred. If the time limit expires then select returns O. If select returns with an
error, including one due to an interrupted call, the descriptor sets will be unmodified.

ERRORS
An error return from select indicates:

[EBADF]

[EINTR]

[EINVALJ

One of the descriptor sets specified an invalid descriptor.

A signal was delivered before the time limit expired and before any of the
selected events occurred.

The specified time limit is invalid. One of its components is negative or too
large.

4.2 Berkeley Distribution May 15, 1986

SELECT(2) UNIX Programmer's Manual SELECT(2)

SEE ALSO

BUGS

accept(2), connect(2), read(2), write(2), recv(2), send(2), getdtablesize(2)

Although the provision of getdtablesize(2) was intended to allow user programs to be written
independent of the kernel limit on the number of open files, the dimension of a sufficiently
large bit field for select remains a problem. The default size FD_SETSIZE (currently 256) is
somewhat larger than the current kernel limit to the number of open files. However, in order
to accommodate programs which might potentially use a larger number of open files with
select, it is possible to increase this size within a program by providing a larger definition of
FD_SETSIZE before the inclusion of <sys/types.h>.

Select should probably return the time remaining from the original timeout, if any, by modi­
fying the time value in place. This may be implemented in future versions of the system.
Thu~ it is unwise to assume that the timeout value will be unmodified by the select call.

4.2 Berkeley Distribution May 15, 1986 2

SEND(2) UNIX Programmer's Manual SEND(2)

NAME
send, sendto, sendmsg - send a message from a socket

SYNOPSIS
#include <sys/types.h>
#include <sys/socket.h>

cc ... send(s, msg, len, flags)
int cc, s;
char -msg;
int len, flags;

cc :a sendto(s, msg, len, flags, to, tolen)
int cc, s;
char -msg;
int len, flags;
struct sockaddr -to;
int to len;

cc ... sendmsg(s, msg, flags)
int cc, s;
struct msghdr msg();
int flags;

DESCRIPTION
Send, sendto, and sendmsg are used to transmit a message to another socket. Send may be
used only when the socket is in a connected state, while sendto and sendmsg may be used at
any time.

The address of the target is given by to with tolen specifying its size. The length of the mes­
sage is given by len. If the message is too long to pass atomically through the underlying pro­
tocol, then the error EMSGSIZE is returned, and the message is not transmitted.

No indication of failure to deliver is implicit in a send. Return values of -1 indicate some
locally detected errors.

If no messages space is available at the socket to hold the message to be transmitted, then
send normally blocks, unless the socket has been placed in non-blocking 110 mode. The
select(2) call may be used to determine when it is possible to send more data.

The flags parameter may include one or more of the following:

#define MSG_OOB Oxl /- process out-of-band data ./
#define MSG_DONTROUTE Ox4 /- bypass routing, use direct interface .1

The flag MSG_OOB is used to send "out-of-band" data on sockets that support this notion
(e.g. SOCK_STREAM); the underlying protocol must also support "out-of-band" data.
MSG_DONTROUTE is usually used only by diagnostic or routing programs.

See recv(2) for a description of the msghdr structure.

RETURN VALUE
The call returns the number of characters sent, or - t if an error occurred.

ERRORS
[EBADF]

[ENOTSOCK]

[EFAULT]

[EMSGSIZE]

4 , J\prKPlev Di!;tribution

An invalid descriptor was specified.

The argument s is not a socket.

An invalid user space address was specified for a parameter.

The socket requires that message be sent atomically, and the size of the
message to be sent made this impossible.

May 14, 1986

SEND(2) UNIX Programmer's Manual SEND(2)

[EWOULDBLOCK] The socket is marked non-blocking and the requested operation would
block.

[ENOBUFS]

[ENOBUFS]

SEE ALSO

The system was unable to allocate an internal buffer. The operation
may succeed when buffers become available.

The output queue for a network interface was full. This generally indi­
cates that the interface has stopped sending, but may be caused by tran­
sient congestion.

fcntl(2), recv(2), select(2), getsockopt(2), socket(2), write(2)

4.2 Berkeley Distribution May 14, 1986 2

SETGROUPS (.2) UNIX Programmer's Manual

NAME
setgroups - set group access list

SYNOPSIS
#include <sys/param.h>

setgroups(ngroups, gidset)
int ngroups, .gidset;

DESCRIPTION

SETGROUPS (2)

Setgroups sets the group access list of the current user process according to the array gidset.
The parameter ngroups indicates the number of entries in the array and must be no more
than NGROUPS, as defined in <sys/param.h>.

Only the super-user may set new groups.

RETURN VALUE
A 0 value is returned on success, -1 on error, with a error code stored in errno.

ERRORS
The setgroups call will fail if:

[EPERM] The calle'r is not the super-user.

[EFAULT] The address specified for gidset is outside the process address space.

SEE ALSO

BUGS

getgroups(2), initgroups(3X)

The gidset array should be of typegid_t, but remains integer for compatibility with earlier
systems;

.d. , Rprlcp\pv ni~trihution May 13, 1986

SETPGRP(2)

NAME
setpgrp - set process group

SYNOPSIS
setpgrp(pid, pgrp)
int pid, pgrp;

DESCRIPrION

UNIX Programmer's Manual SETPGRP(2)

Setpgrp sets the process group of the specified process pid to the specified pgrp. If pid is zero,
then the call applies to the current process.

If the invoker is not the super-user, then the affected process must have the same effective
user-id as the invoker or be a descendant of the invoking process.

RETURN VALUE
Setpgrp returns when the operation was successful. If the request failed, -1 is returned and
the global variable e"no indicates the reason.

ERRORS
Setpgrp will fail and the process group will not be altered if one of the following occur:

[ESRCH] The requested process does not exist.

[EPERM] The effective user ID of the requested process is different from that of the
caller and the process is not a descendent of the calling process.

SEE ALSO
getpgrp(2)

4th ~erkeley Distributio.n May 9,1985 1

SETQUOT A (2) UNIX Programmer's Manual SETQUOTA(2)

NAME
setquota - enable/disable quotas on a file system

SYNOPSIS
setquota(special, file)
char .special. .file;

DESCRIPTION
Disc quotas are enabled or disabled with the setquota call. Special indicates a block special
device on which a mounted file system exists. If file is nonzero, it specifies a file in that file
system from which to take the quotas. If file is 0, then quotas are disabled on the file system.
The quota file must exist; it is normally created with the quotacheck(8) program.

Only the super-user may turn quotas on or off.

SEE ALSO
quota(2), quotacheck(8), quotaon(8)

RETURN VALUE
A 0 return value indicates a successful call. A value of -1 is returned when an error occurs
and errno is set to indicate the reason for failure.

ERRORS

BUGS

Setquota will fail when one of the following occurs:

[ENOTDIR] A component of either path prefix is not a directory.

[EINVAL] Either pathnamecontains a character with the high-order bit set.

[EINVAL] The kernel has not been compiled with the QUOTA option.

[ENAMETOOLONG]

[ENODEV]

[ENOENT]

[ELOOP]

[EPERM]

[ENOTBLK]

[ENXIO]

[EROFS]

[EACCES]

[EACCES]

[EACCES]

[EIO]

[EFAULT]

A component of either pathname exceeded 255 characters, or the entire
length of either path name exceeded 1023 characters.

Special does not exist.

File does not exist.

Too many symbolic links were encountered in translating either pathname.

The caller is not the super-user.

Special is not a block device.

The major device number of special is out of range (this indicates no device
driver exists for the associated hardware).

File resides on a read-only file system.

Search permission is denied for a component of either path prefix.

File resides on a file system different from special.

File is not a plain file.

An VO error occurred while reading from or writing to the file containing the
quotas.

Special or path points outside the process's allocated address space.

The error codes are in a state of disarray; too many errors appear to the caller as one value.

4.2 Berkeley Distribution , August 26, 1985

SETREGID (2) UNIX Programmer's Manual SETREGID (2)

NAME
setregid - set real and effective group ID

SYNOPSIS
setregid(rgid, egid)
int rgid, egid;

DESCRIPTION
The real and effective group ID's of the current process are set to the arguments.
Unprivileged users may change the real group ID to the effective group ID and vice-versa;
only the super-user may make other changes.

Supplying a. value of -1 for either the real or effective group ID forces the system to substitute
the current ID in place of the -1 parameter.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned
and e"no is set to indicate the error.

ERRORS
[EPERM]

SEE ALSO

The current process is not the super-user and a change other than changing
the effective group-id to the real group.id was specified.

. getgid(2), setreuid(2), setgid(3)

4.2 Berkeley Distribution May 15. 1985

SETREUIO (2) UNIX Programmer's Manual

NAME
setreuid - set real and effective user ID's

SYNOPSIS
setreuid(ruid, euid)
iot ruid, euid;

DESCRIPTION

SETREUIO (2)

The real and effective user 10's of the current process are set according to the arguments. If
ruid or euid is -1, the current uid is filled in by the system. Unprivileged users may change
the real user 10 to the effective user 10 and vice-versa; only the super-user may make other
changes.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned
and errno is set to indicate the error.

ERRORS
[EPERM1

SEE ALSO

The current process is not the super-user and a change other than changing
the effective user-id to the real user-id was specified.

getuid(2), setregid(2), setuid(3)

4th Berkeley Distribution May 9, 1985

. SHUTDOWN (2) UNIX Programmer's Manual

NAME
shutdown - shut down part of a full-duplex connection

SYNOPSIS
shutdown(s, how)
int s, boW;

DESCRIPTION

SHUTDOWN(2)

The shutdown call causes all or part of a full-duplex connection on the socket associated with
s to be shut down. If how is 0, then further receives will be disallowed. If how is I, then
further sends will be disallowed. If how is 2, then further sends and receives will be disal­
lowed.

DIAGNOSTICS
A 0 is returned if the call succeeds, -1 if it fails.

ERRORS
The call succeeds unless:

[EBADF] S is not a valid descriptor.

[ENOTSOCK] S is a file, not a socket.

[ENOTCONN] The specified socket is not connected.

SEE ALSO
connect(2), socket(2)

4.2 Berkeley Distribution May 15, 1985 . 1

SIGBLOCK(2)

NAME
sigblock - block signals

SYNOPSIS
#include <signal.h>

sigblock(mask);
iot mask;

mask = sigmask(sigoum)

DESCRIPTION

UNIX Programmer's Manual SIGBLOCK(2)

Sigblock causes the signals specified in mask to be added to the set of signals currently being
blocked from delivery. Signals are blocked if the corresponding bit in mask is a 1; the macro
sigmask is provided to construct the mask for a given signum.

It is not possible to block SIGKILL, SIGSTOP, or SIGCONT; this restriction is silently
imposed by the system.

RETURN VALUE
The previous set of masked signals is returned.

SEE ALSO
kill(2), sigvec(2), sigsetmask(2)

4.2 Berkeley Distribution May 14, 1986

SIGPAUSE(2) UNIX Programmer's Manual SIGPAUSE(2.)

NAME
sigpause - atomically release blocked signals and wait for interrupt

SYNOPSIS
sigpause(sipaask)
iot sigmask;

DESCRIPTION
Sigpause assigns sigmask to the set of masked signals and then waits for a signal to arrive; on
return the set of masked signals is restored. Sigmask is usually 0 to indicate that no· signals
are now to be blocked. Sigpause always terminates by being interrupted. returning -1 with
ermo set to EINTR.

In normal usage, a signal is blocked using sigblock(2), to begin a critical section, variables
modified on the occurrence of the signal are examined to determine that there is no work to
be done, and the process pauses awaiting work by using sigpause with the mask returned by
sigblock. - .

SEE AISO
sigblock(2), sigvec(2)

4th Berkeley Distribution May 15, 1986 1

SIGRETURN (2) UNIX Programmer's Manual SIGRETURN (2)

NAME
sigreturn - return from signal

SYNOPSIS
#ioclude <sigoai.h>

struct sigcootext {
iot sc_oostack;
iot scmask;
iot sc_sp;
iot sc3p;
iot sc_ap;
iot sc_pc;
iot sc_ps;
};
sigreturn(scp);
struct sigcootext .scp;

DESCRIPTION

NOTES

Sigreturn allows users to atomically unmask, switch stacks, and return from a signal context.
The processes signal mask and stack status are restored from the context. The system call
does not return; the users stack pointer, frame pointer, argument pointer, and processor status
longword are restored from the context. Execution resumes at the specified pc. This system
call is used by the trampoline code, and /ongjmp(3) when returning from a signal to the previ­
ously executing program.

This system call is not available in 4.2BSD, hence it should not be used if backward compati­
bility is needed.

RETURN VALUE
If successful, the system call does not return. Otherwise, a value of -1 is returned and errno
is set to indicate the error.

ERRORS
Sigreturn will fail and the process context will remain unchanged if one of the following
occurs.

[EFAULT]

[EINVAL]

SEE ALSO

Scp points to memory that is not a valid part of the process address space.

The process status longword is invalid or would improperly raise the privilege
level of the process.

sigvec(2), setjmp(3)

4.3 Berkeley Distribution June 30, 1985

SIGSETMASK(2) UNIX Programmer's Manual

NAME
sigsetmask - set current signal mask

SYNOPSIS
#include <sipal.h>

sipetmask(mask);
jnt mask;

mask - sigmask(signum)

DESCRIPTION

SIGSETMASK(2)

Sigsetmask sets the current signal mask (those signals that are blocked from delivery). Signals
are blocked if the corresponding bit in mask is a 1; the macro sigmask is provided to con­
struct the mask for a given signum.

The system quietly disallows SIGKILL, SIGSTOP, or SIG<;ONT to be blocked.

RETURN VALUE
The previous set of masked signals is returned.

SEEALSO
ki11(2), sigvec(2), sigblock(2), sigpause(2)

4.2 Berkeley Distribution May 14, 1986 1

SIGSTACK(2) UNIX Programmer's Manual SI(JSTACK(2)

sigstack - set and/or get signal stack context

SYNOPSIS
#inc:lude <signal.h>

strod sigstack {
caddct ss_sp;
iot ss_oostack;

};
sigstack(sly 055);

strod sigstack -Sly -OSS;

DESCRIPTION

NOTES

Sigstack allows users to define an alternate stack on which signals are to be processed. If ss is
non-zero, it specifies a signal stack on which to deliver signals and tells the system if the pro­
cess is currently executing on that stack. When a signal's action indicates its handler should
execute on the signal sta,ck (specified with a sigvec(2) call), the system checks to see if the pro­
cess is currently executing on that stack. If the process is not currently executing on the signal
stack, the system arranges a switch to the signal stack for the duration of the signal handler's
execution. If oss is non-zero, the current signal stack state is re~rned.

Signal stacks are not "grown" automatically, as is done for the normal stack. If the stack
overflows unpredictable results may occur.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned
and ermo is set to indicate the error.

ERRORS
Sigstack will fail and the signal stack context will remain unchanged if one of the following
occurs.

[EFAULT]

SEE ALSO

Either ss or oss points to memory that is not a valid part of the process
address space.

sigvec(2), setjmp(3)

4.2 Berkeley Distribution June 30, 1985

SIGVEC(2) UNIX Programmer's Manual SIGVEC(2)

NAME
sigvec - software signal facilities

SYNOPSIS
#include <signai.b>

struct sigvec {
iot
iot
iot

);

(-sv _handler>o;
sv_mask;
sv_flags;

sigvec(sig, vee, ovec)
iot sig;
struct sigvec -vee, -ovec;

DESCRIPTION
The system defines a set of signals that may be delivered to a process. Signal delivery resem­
bles the oceurence of a hardware interrupt: the signal is blocked from further occurrence, the
current process context is saved, and a new one is built. A process may specify a handler to .
which a signal is delivered, or specify that a signal is to be blocked or ignored. A process may
also specify that a default action is to be taken by the system when a signal occurs. Normally,
signal handlers execute on the current stack of the process. This may be changed, on a per­
handler basis, so that signals are taken on a special signal Slack.

All signals have the same priority. Signal routines execute with the signal that caused their
invocation blocked, but other signals may yet occur. A glob81 signal mask defines the set of
signals currently blocked from delivery to a process. The signal mask for a process is initial­
ized from that of its parent (normally 0). It may be changed with a sigblock(2) or sigsel­
mask(2) call, or when a signal is delivered to the process.

When a signal condition arises for a process, the signal is added to a set of signals pending for
the process. If the signal is not currently blocked by the process then it is delivered to the
process. When a signal is delivered, the current state of the process is saved, a new signal
mask is calculated (as described below), and the signal handler is invoked. The call to the
handler is arranged so that if the signal handling routine returns normally the process will
resume execution in the context from before the signal's delivery. If the process wishes to
resume in a different context, then it must arrange to restore the previous context itself.

When a signal is delivered to a process a new signal mask is installed for the duration of the
process' signal handler (or until a sigblock or sigsetmask call is made). This mask is formed
by taking the current signal mask, adding the signal to be delivered, and or'ing in the signal
mask associated with the handler to be invoked.

Sigvec assigns a handler for a specific signal. If vec is non-zero, it specifies a handler routine
and mask to be used when delivering the specified signal. Further, if the SV _ONSTACK bit
is set in sv..../lags. the system will deliver the signal to the process on a signal stack, specified
with sigstack(2). If ovec is non-zero, the previous handling information for the signal is
returned to the user.

The following is a list of all signals with names as in the include file <signa/.h>:

SIGHUP 1 hangup
SIGINT 2 interrupt
SIGQUIT 3- quit
SIGILL 4. illegal instruction
SIGTRAP 5. trace trap
SIGIOT 6. lOT instruction
SIGEMT ,. EMT instruction

4th Berkeley Distribution January 8, 1986 1

SIGVEC(2) UNIX Programmer's Manual SIGVEC(2) .

NOTES

SIOFPE 8. floating point exception
SIOKILL 9 kill (cannot be caught, blocked, or ignored)
SIOBUS 10. bus error
SIGSEGV 11. segmentation violation
SIGSYS 12. bad argument to system call
SIGPIPE 13 write on a pipe with no one to read it
SIGALRM 14 alarm clock
SIGTERM 1 S software termination signal
SIGURG 16- urgent condition present on socket
SIGSTOP 17t stop (cannot be caught, blocked, or ignored)
SIGTSTP 1St stop signal generated from keyboard
SIGCONT 19- continue after stop (cannot be blocked)
SIGCHLO 20- child status has changed
SIGTTIN 21 t background read attempted from control terminal
SIGTTOU 22t background write attempted to control terminal
SIGIO 23- i/o is possible on a descriptor (seefcnt/(2»
SIGXCPU 24 cpu time limit exceeded (see setrlimit(2»
SIGXFSZ 2S file size limit exceeded (see setrlimit(2»
SIGVT ALRM 26 virtual time alarm (see setitimer(2»
SIGPROF 27 profiling timer alarm (see setitimer(2»
SIGWINCH 28- window size change
SIGUSRI 30 user defined signal 1
SIGUSR2 31 user defined signal 2

The starred signals in the list above cause a core image if not caught or ignored.

Once a signal handler is installed, it remains installed until another sigvec call is made, or an
execve(2) is performed. The default action for a signal may be reinstated by setting
sv_handler to SIG_OFt; this default is termination (with a core image for starred signals)
except for signals marked with - or t. Signals marked with - are discarded if the action is
SIG_DFt; signals marked with t cause the process to stop. If sv_handler is SIG_IGN the sig­
nal is subsequently ignored, and pending instances of the signal are discarded.

If a caught signal occurs during certain system calls, the call is normally restarted. The call
can be forced to terminate prematurely with an EINTR error return by setting the
SV _INTERRUPT bit in sv.../lags. The affected system calls are read(2) or write(2) on a slow
device (such as a terminal; but not a file) and during a wait(2).

After a fork(2) or vfork(2) the child inherits all signals, the signal mask, the signal stack, and
the restart/interrupt flags.

Execve(2) resets all caught signals to default action and resets all signals to be caught on the
user stack. Ignored signals remain ignored; the signal mask remains the same; signals that
interrupt system calls continue to do so.

The mask specified in vee is not allowed to block SIGKILL, SIGSTOP, or SIGCONT. This is
done silently by the system.

The SV _INTERRUPT flag is not available in 4.2BSD, hence it should not be used if back­
ward compatibility is needed.

RETURN VALUE
A 0 value indicated that the call succeeded. A -1 return value indicates an error occurred
and errno is set to indicated the reason.

ERRORS
Sigvee will fail and no new signal handler will be installed if one of the following occurs:

4th Berkeley Distribution January 8, 1986 2

SIGVEC(2) UNIX Programmer's Manual SIGVEC(2)

[EFAULT]

[EINVAL]

[EINVAL]

[EINVAL]

Either vee or ovec points to memory that is not a valid part of the process
address space.

Sig is not a valid signal number.

An attempt is made to ignore or supply a handler for SIGKlLL or SIGSTOP.

An attempt is made to ignore SIGCONT (by default SIGCONT is ignored).

. SEE ALSO
kiU(l), ptrace(2), kiU(2), sigblock(2), sigsetmask(2), sigpause(2), sigstack(2), sigvec(2),
setjmp(3), siginterrupt(3), tty(4)

NOTES (VAX-H)

BUGS

The handler routine can be declared:

handler(sig, code, scp)
int sig, code;
struct sigcontext *scp;

Here sig is the signal number, into which the hardware faults and traps are mapped as defined
below. Code is a parameter that is either a constant as given below or, for compatibility mode
faults, the code provided by the hardware (Compatibility mode faults are distinguished from
the other SIGILL traps by having PSL_CM set in the psI). Scp is a pointer to the sigcontext
structure (defined in <signal.h»,used to restore the context from before the signal.

The following defines the mapping of hardware traps to signals and codes. All of these sym­
bols are defined in <signal.h>:

Hardware condition Signal Code

Arithmetic traps:
Integer overflow SIGFPE FPE_INTOVF _TRAP
Integer division by zero SIGFPE FPE_INTDIV _TRAP
floating overflow trap SIGFPE FPE_FLTOVF _TRAP
floating/decimal division by zero SIGFPE FPE_FL TDIV _TRAP
floating underflow trap SIGFPE FPE_FLTUND_TRAP
Decimal overflow trap SIGFPE FPE_DECOVF _TRAP
Subscript-range SIGFPE FPE_SUBRNG_ TRAP
floating overflow fault SIGFPE FPE_FL TOVF _FAULT
floating divide by zero fault SIGFPE FPE_FLTDIV _FAULT
floating underflow fault SIGFPE FPE_FL TUND_FAULT

Length access control SIGSEGV
Protection violation SIGBUS
Reserved instruction SIGILL ILL_RESAD_FAUL T
Customer-reserved instr. SIGEMT
Reserved operand SIGILL ILL_PRIVIN_FAULT
Reserved addressing SIGILL ILL_RESOP _FAULT
Trace pending SIGTRAP
Bpt instruction SIGTRAP
Compatibility-mode SIGILL hardware supplied code
Chme SIGSEGV
Chms SIGSEGV
Chmu SIGSEGV

This manual page is still confusing.

4th Berkeley Distribution January 8, 1986 3

SOCKET(2) UNIX Programmer's Manual SOCKET(2)

NAME
socket - create an endpoint for communication

SYNOPSIS
#include <sys/types.h>
#include <sys/socket.h>

s .. socket(domai~ type, protocol)
int s, domain, type, protoco~

DESCRIPTION
Socket creates an endpoint for communication and returns a descriptor.

The domain parameter specifies a communications domain within which communication will
take place; this selects the protocol family which should be used. The protocol family gen­
erally is the same as the address family for the addresses supplied in later operations on the
socket. These families are defined in the include file <.sys!socket.h>. The currently under­
stood. formats are

PF_UNIX
PF_INET
PF_NS
PF_IMPLINK

(UNIX internal protocols),
(ARPA Internet protocols),
(Xerox Network Systems protocols), and
(IMP "host at IMP" link layer).

The socket has the indicated type, which specifies the semantics of communication. Currently
defined types are:

SOCK_STREAM
SOC~DGRAM
SOCK_RAW
SOCK_SEQ PACKET
SOCK_RDM

A SOCK_STREAM type provides sequenced, reliable, two-way connection based byte
streams. An out-of-band data transmission mechanism may be supported. A
SOCK_DGRAM socket supports datagrams (connectionless, unreliable messages of a fixed
(typically small) maximum length). A SOCK_SEQ PACKET socket may provide a sequenced,
reliable, two-way connection-based data transmission path for datagrams of fixed maximum
length; a consumer may be required to read an entire packet with each read system call. This
facility is protocol specific, and presently implemented only for PF _NS. SOCK_RA W sockets
provide access to internal network protocols and interfaces. The types SOCK_RAW, which is
available only to the super-user, and SOCK_RDM, which is planned, but not yet imple­
mented, are not described here.

The protocol specifies a particular protocol to be used with the socket. Normally only a single
protocol exists to support a particular socket type within a given protocol family. However, it
is possible that many protocols may exist, in which case a particular protocol must be
specified in this manner. The protocol number to use is particular to the "communication
domain" in which communication is to take place; see protocols(3N).

Sockets of type SOCK_STREAM are full-duplex byte streams, similar to pipes. A stream
socket must be in a 'connected state before any data may be sent or received on it. A connec- .
tion to another socket is created with a connect(2) call. Once connected, data may be
transferred using read(2) and write(2) calls or some variant of the send(2) and recv(2) calls.
When a session has been completed a close(2) may be performed. Out-of-band data may also
be transmitted as described in send(2) and received as described in recv(2).

The communications protocols used to implement a SOCK_STREAM insure that data is not
lost or duplicated. If a piece of data for which the peer protocol has buffer space cannot be
successfully transmitted within a reasonable length of time, then the connection is considered

4.2 Berkeley Distribution May 23, 1986

SOCKET(2) UNIX Programmer's Manual SOCKET(2)

broken and calls will indicate an error with -1 returns and with ETIMEDOUT as the specific
code in the global variable ermo. The protocols optionally keep sockets "warm" by forcing
transmissions roughly every 'minute in the absence of other activity. An error is then indi­
cated if no response can be elicited on an otherwise idle connection for a extended period
(e.g. 5 minutes).' A . SIGPIPE signal is raised if a process sends on a broken stream; this
causes naive processes, which do not handle the signal. to exit .

. SOCK_SEQ PACKET sockets employ the same system calls as SOCK_STREAM sockets. The
only difference is' that read(2) calls will return only the amount of data requested, and any
remaining in the arriving packet will be discarded.

SOCK..DGRAM and SOCK..RA W sockets allow sending of datagrams to correspondents
named in send(2) calls. Datagrams are generally received with recvjrom(2), which returns the
next datagram with its return address.

An Jcnt/(2) call can be used to specify a process group to receive a SIGURG signal when the
out-of-band data arrives. It may also enable non-blocking YO and asynchronous notification
of YO events via SIGIO.

The operation of sockets is controlled by socket level options. These options are defined in
the file <Sys/socket.h>. Setsockopt(2) and getsockopt(2) are used to set and get options,
respectively.

RETURN VALUE
A -1 is returned if an error occurs, otherwise the return value is a descriptor referencing the
socket.

ERRORS
The socket call fails if:

[EPROTONOSUPPORT]

[EMFILE]

[ENFILE)

[EACCESS]

[ENOBUFS]

SEE ALSO

The protocol type or the specified protocol is not supported within this
domain.

The per-process descriptor table is full.

The system file table is full.

Permission to create a socket of the specified type and/or protocol is
denied.

Insufficient buffer space is available. The socket cannot be created until
sufficient resources are freed.

accept(2), bind(2), connect(2), getsockname(2), getsockopt(2), ioctl(2), listen(2), read(2),
recv(2), select(2), send(2), shutdown(2), socketpair(2), write(2)
"An Introductory 4.3BSD Interprocess Communication Tutorial." (reprinted in UNIX
Programmer's Supplementary Documents Volume 1, PS1:7) "An Advanced 4.3BSD Interpro­
cess Communication Tutorial." (reprinted in UNIX Programmer's Supplementary Documents
Volume 1, PSl:8)

4.2 Berkeley Distribution May 23, 1986 2

SOCKETPAIR (2) UNIX Programmer's Manual SOCKETPAIR (2)

NAME
socketpair - create a pair of connected sockets

SYNOPSIS
#ioclude <sys/types.h>
#ioclude <sys/socket.h>

socketpair(d, type, protocol, sv)
iot d, type, protocol;
iot sv(2);

DESCRIPTION
The socketpair call creates an unnamed pair of connected sockets in the specified domain d,
of the specified type, and using the optionally specified protocol. The descriptors used in
referencing the new sockets are returned in sv[O] and sv(1]. The two sockets are indistinguish­
able.

DIAGNOSTICS
A 0 is returned if the call succeeds, -I if it fails.

ERRORS
The call succeeds unless:

[EMFILE] Too many descriptors are in use by this process.

[EAFNOSUPPORT] The specified address family is not supported on this machine.

lEPROTONOSUPPORT]
The specified protocol is not supported on this machine.

[EOPNOSUPPORT] The specified protocol does not support creation of socket pairs.

[EF AUL T] The address sv does not specify a valid part of the process address
space.

SEE ALSO
read(2), write(2), pipe(2)

BUGS
This call is currently implemented only for the UNIX domain.

4.2 Berkeley Distribution May 15, 1985

STAT(2) UNIX Programmer's Manual STAT(2)

NAME
stat, Istat, fstat - get file status

SYNOPSIS
#include <sys/types.h>
#include <sys/stat.h>

stat(path. boO
char .path;
struct stat • buf;

lstat(path. boO
char .path;
struct stat .buf;

fstat(fd. boO
int fd;
struct stat .buf;

DESC~PIION
Stat obtains information about the file path. Read, write or execute permission of the named
file is not required, but all directories listed in the path name leading to the file must be
reachable.

Lstal is like stat except in the case where the named file is a symbolic link, in which case {stat
returns information about the link, while stat returns information about the file the link refer­
ences.

Fstat obtains the same information about an open file referenced by the argument descriptor,
such as would be obtained by an open call.

BuJ is a pointer to a stat structure into which information is placed concerning the file. The
contents of the structure pointed to by buJ

struct stat {

};
scatime

dev_t
ino_t
u_short
short
short
short
dev_t
olet
time_t
int
time_t
int
time_t
int
long
long
long

scdev;
scino;
scmode;
scnlink;
scuid;
scgid;
st_rdev;
scsize;
scatime;
scsparel;

/. device inode resides on ./
/. this inode's number ./
/. protection ./
/. number or hard links to the file ./
/. user-id of owner ./
/. group-id orowner ./
/. the device type, for inode that is device ./
/. total size of file ./
/. file last access time ./

scmtime; /. file last modify time ./
scspare2;
scctime; /. file last status change time ./
scspare3;
sCblksize; /. optimal blocksize for file system i/o ops ./
sCblocks; /. actual number of blocks allocated ./
scspare4[2];

Time when file data was last read or modified. Changed by the following system
calls: mknod(2), utimes(2), read(2), and write(2). For reasons of efficiency,
scatime is not set when· a directory is searched, although this would be more
logical.' .

4th Berkeley Distribution May 12, 1986

STAT(2) UNIX Programmer's Manual STAT(2)

scmtime Time when data was last modified. It is not set by changes of owner, group, link
count, or mode. Changed by the following system calls: mknod(2), utimes(2),
write(2). .

scctime Time when file status was last changed. It is set both both by writing and chang­
ing the i-node. Changed by the following system calls: chmod(2) chown(2),
link(2), mknod(2), rename(2), unlink(2), utimes(2), write(2).

The status information word scmode has bits:
#define S_IFMT 0170000 I. type of file ./
#define S_IFDIR 0040000 I. directory ./
#define S_IFCHR 0020000 /. character special .1
#define S_IFBLK 0060000 I. block special .1
#define S_IFREG 0100000 I. regular ./
#define S_IFLNK 0120000 /. symbolic link./
#define S_IFSOCK 0140000 I. socket./
#define S_ISUID 0004000 /. set user id on execution ./
#define S_ISGID 0002000 /. set group id on execution ./
#define S_ISVTX 0001000 /. save swapped text even after use ./
#define S_IREAD 0000400 /. read permission, owner./
#define S_IWRITE 0000200 I. write permission, owner./
#define S_IEXEC 0000100 I. execute/search permission, owner .1

The mode bits 0000070 and 0000007 encode group and others permissions (see chmod(2».

RETURN VALUE
Upon successful completion a value of 0 is returned. Otherwise, a value of -1 is returned and
e"no is set to indicate the error.

ERRORS
Stat and Istat will fail if one or more of the following are true:

[ENOTDIR] A component of the path prefix is not a directory.

[EINV AL] The pathname contains a character with the high-order bit set.

[ENAMETOOLONG]
A component of a pathname exceeded 255 characters, or an entire path name
exceeded 1023 characters.

[ENOENT]

[EACCES]

[ELOOP]

The named file does not exist.

Search permission is denied for a component of the path prefix.

Too many symbolic links were encountered in translating the pathname.

[EF AULT] Buf or name points to an invalid address.

[EIO] An 1/0 error occurred while reading from or writing to the file system.

Fstat will fail if one or both of the following are true:

[EBADF] Fildes is not a valid open file descriptor.

[EFAULT]

[EIO]
CAVEAT .

Buf points to an invalid address.

An I/O error occurred while reading from or writing to the file system.

The fields in the stat· structure currently marked scsparel ,scspare2, and scspare3 are
present in preparation for inode time stamps expanding to 64 bits. This, however, can break
certain programs that depend on the time stamps being contiguous-(in calls to ulimes(2».

4th Berkeley Distribution May 12, 1986 2

STAT(2) UNIX Programmer's Manual STAT(2)

SEE AlSO
chmod(2), chown(2), utimes(2)

BUGS
Applying /stat to a socket (and thus to a pipe) returns a zero'd buffer, except for the blocksize
field, and a unique device and inode number.

4th Berkeley Distribution May 12, 1986 3
.~ - .. , _-----

STATFS (2) UNIX Programmer's Manual STATFS(2)

NAME
statfs - get :file system statistics

SYNOPSIS
#include <sys/vfs.h>

statfsCpath, buf)
char *path;
struct statfs abuf;

fstatfsCt"d, buf)
int fd;
struct statfs abuf;

DESCRIPTION
Statls returns information about a mounted :file system. Path is the pathname of any :file
within the mounted :filesystem. Bul is a pointer to a statls structure defined as fpllows:

typedef struct {
long val[2];

} fsid_t;

struct statfs {
long
long
long
long
long
long
long
fsid_t

};
long

f_type;
f_bsize;
f_blocks;
f_bfree;
f_bavai1;
f_:files;
f_1free;
f_fsid;
f_spare[7];

la type of info. zero for now *1
1* fundamental:file system block size *1
1* total blocks in :file system *1
1* free blocks *1
1* free blocks available to non-superuser *1
1* total file nodes in :file system *1
1* free :file nodes in fs *1
1* :file system id *1
1* spare for later *1

Fields that are undefined for a particular :file system are set to -1. Fstatls returns the
same information about an open :file referenced by descriptor Id.

REfURN VALUE
Upon successful completion. a value of 0 is returned. Otherwise. -1 is returned and the

. global variable errno is set to indicate the error.

ERRORS
Statls fails if one or more of the following are true:

[ENOTDIR] A component of the path prefix is not a directory.

[EPERM] The pathname contains a character with the high-order .bit set.

[ENAMETOOLONG]

[ENOENT]

[EACCES]

[EFAULT]

[BLOOP]

[EIO]

The pathname was too long.

The named :file does not exist.

Search permission is denied for a component of the path prefix.

Bul or 1UZ1Tle points to an invalid address.

Too many symbolic links were encountered in translating the pathname.

An I/O error occurred while reading from or writing to the :file system.

sUn Microsystems ReI 3.0 19 August 1985 1

STATFS(2) UNIX. Programmer"s Manual STATFS(2)

Fstatfs fails if one or both of the following are true:

[EBADF] Fildes is not a valid open:file descriptor.

[EFAULT] Bufpoints to an invalid address.

[ElO] An I/O error occurred while reading from or writing to the file system.

Sun Microsystems Re13.0 19-August 1985

SWAPON(.2) UNIX Programmer's Manual SWAPON(2)

NAME
swapon - add a swap device for interleaved paging/swapping

SYNOPSIS
swapon(special}
char .special;

DESCRIPTION _
Swapon makes the block device special available to the system for allocation for paging and
swapping. The names of potentially available devices are known to the system and defined at
system configuration time. The size of the swap area on special is calculated at the time the
device is first made available for swapping.

RETURN VALUE
If an error has occurred, a value of -1 is returned and ermo is set to indicate the error.

ERRORS
Swapon succeeds unless:

[ENOTDIR] A component of the path prefix is not a directory.

[EINV AL] The pathname contains a character with the high-order bit set.

[ENAMETOOLONG]

[ENOENT]

[EAeCES]

[ELOOP]

[EPERM]

[ENOTBLK]

[EBUSY]

[EINVAL]

[ENXIO]

[EIO]

[EFAULT]

A component of a pathname exceeded 255 characters, or an entire path name
exceeded 1023 characters.

The named device does not exist.

Search permission is denied for a component of the path prefix.

Too many symbolic links were encountered in translating the pathname.

The caller is not the super-user.

Special is not a block device.

The device specified by special has already been made available for swapping

The device configured by special was not configured into the system as a swap
device.

The major device number of special is out of range (this indicates no device
driver exists for the associated hardware).

An 1/0 error occurred while opening the swap device.

Special points outside the process's allocated address space.

SEE ALSO

BUGS

swapon(8), config(8)

There is no way to stop swapping on a disk so that the pack may be dismounted.

This call will be upgraded in future versions of the system.

4th Berkelev Distribution March 9, 1986

S),MLINK(2) UNIX Programmer's Manual SYMLINK(2)

NAME
symlink - make symbolic link to a file

SYNOPSIS
symlink(namel, name2)
char -namel, -name2;

DESCRIPI10N
A symbolic link name2 is created to namel (name2 is the name of the file created, namel is
the string used in creating the symbolic link). Either name may be an arbitrary path name;
the files need not be on the same file system.

RETURN VALUE
Upon successful completion, a zero value is returned. If an error occurs, the error code is
stored in e"no and a -1 value is returned.

ERRORS
. The symbolic link is made unless on or more of the following are true:

[ENOTDIR] A component of the name2 prefix is not a directory.

[EINV AL]. Either namel or name2 contains a character with the high-order bit set.

[ENAMETOOLONG]

[ENOENT]

[EACCES]

[ELOOP]

[EEXIST]

[EIO]

[EROFS]

[ENOSPC]

[ENOSPC]

[ENOSPC]

[EDQUOT]

[EDQUOT]

[EDQUOT]

[ElO]

[EFAULT]

SEE ALSO

A component of either pathname exceeded 255 characters, or the entire
length of either path name exceeded 1023 characters.

The named file does not exist.

A component of the name2 path prefix denies search permission.

Too many symbolic links were encountered in translating the pathname.

Name2 already exists.

An I/O error occurred while making the directory entry for name2, or allocat­
ing the inode for name2, or writing out the link contents of name2.

The file name2 would reside on a read-only file system.

The directory in which the entry for the new symbolic link is being placed
cannot be extended because there is no space left on the file system contain­
ing the directory.

The new symbolic link cannot be created because there there is no space left
on the file system that will contain the symbolic link.

There are no free inodes on the file system on which the symbolic link is
being created.

The directory in which the entry for the new symbolic link is being placed
cannot be extended because the user's quota of disk blocks on the file system
containing the directory has been exhausted.

The new symbolic link cannot be created because the user's quota of disk
blocks on the file system that will contain the symbolic link has been
exhausted.

The user's quota of inodes on the file system on which the symbolic link is
being created has been exhausted.

An I/O error occurred while making the directory entry or allocating the
inode.

Namel or name2 points outside the process's allocated address space.

link(2), In(1), unlink(2)

4.2 Berkeley Distribution August 26, 1985

SYNC(2)

NA.i.'1E
sync - update super-block

SYNOPSIS
sync()

DESCRIPTION

UNIX Programmer's Manual SYNC(2)

Sync causes all information in core memory that should be on disk to be written out. This
includes modified super blocks, modified i-nodes, and delayed block 1/0.

Sync should be used by programs that examine a file system, for example fsck, df, etc. Sync is
mandatory before a boot.

SEE ALSO
fsync(2), sync(8), update(8)

. BUGS
The writing, although scheduled, is not necessarily complete upon return from sync.

4th Berkeley Distribution June 30, 1985

SYSCALL (2)' UNIX· Programm~r's Manual SYSCALL(2)

NAME
syscall - indirect system call

SYNOPSIS
#include <syscall.h>

sysc:all(number, arg, •••) (VAX-II)

DESCRIPTION
Syscall performs the system call whose assembly language interface has the specified number.
register arguments rO andrl and further arguments argo Symbolic constants for system calls
can be found in the header file <syscall.h>. .

The rO value of the system call is returned.

DIAGNOSTICS
When the C-bit is set, syscall returns -1 and sets the external variable errno (see intra(2».

BUGS
There is no way to simulate system·calls such as pipe(2), which return values in r~ster rl.

. _ 4~~~I'keley Distribution April 16, 1986

TRUNCATE (2) UNIX Programmer's Manual TRUNCATE (2)

NAME
truncate - truncate a file to a specified length

SYNOPSIS
truncate(path, length)
char .path;
ofLt length;

Ctruncate(Cd, length)
int Cd;
oiLt length;

DESCRIPTION
Truncate causes the tile named by path or referenced by fd to be truncated to at most length
bytes in size. If the file previously was larger than this size, the extra data is lost. With /trun­
cate, the file must be open for writing.

RETURN VALUES
A value of 0 is returned if the call succeeds. If the call fails a -1 is returned, and the global
variable errno specifies the error.

ERRORS
Truncate succeeds unless:

[ENOTDIR] A component of the path prefix is not a directory.

[EINVAL] The pathname contains a character with the high-order bit set.

[ENAMETOOLONG]

[ENOENT]

[EACCES]

[EACCES]

[ELOOP]

[EISDIR]

[EROFS]

[ETXTBSY]

[EIO]

[EFAULT]

A component of a path name exceeded 255 characters, or an entire path name
exceeded 1023 characters.

The named file does not exist.

Search permission is denied for a component of the path prefix.

The ~amed tile is not writable by the user.

Too many symbolic links were encountered in translating the pathname.

The named tile is a directory.

The named file resides on a read-only file system.

The tile is a pure procedure (shared text) file that is being executed.

An I/O error occurred updating the inode.

Path points outside the process's allocated address space.

Ftruncate succeeds unless:

[EBADF]

[EINVAL]

[EINVALJ

The fd is not a valid descriptor.

The fd references a socket, not a file.

The fd is not open for writing.

SEE ALSO
open(2)

BUGS
These calls should be generalized to allow ranges of bytes in a file to be discarded.

4.2 Berkeley Distribution March 29, 1986

UMASK(2) UNIX Programmer's Manual

NAME
umask - set file creation mode mask

SYNOPSIS
oumask = umask(numask)
int oumask, numask;

DESCRIPTION

UMASK(2)

Umask sets the process's file mode creation mask to numask and returns the previous value of
the mask. The low-order 9 bits of numask are used whenever a file is created, clearing
corresponding bits in the file mode (see chmod(2». This clearing allows each user to restrict
the default access to his files.

The value is initially 022 (write access for owner only). The mask is inherited by child
processes.

RETURN VALUE
The previous value of the file mode mask is returned by the call.

SEE ALSO
chmod(2), mknod(2), open(2)

4th Berkeley Distribution May 9, 1985 1

UNLINK(2) UNIX Programmer's Manual UNLINK(2)

NAME
unlink - remove directory entry

SYNOPSIS
unlink(path)
char .path;

DESCRIPTION
Unlink removes the entry for the file path from its directory. If this entry was the last link to
the file, and no process has the file open, then all resources associated with the file are
reclaimed. If, however, the file was open in any process, the actual resource reclamation is
delayed until it is closed, even though the directory entry has disappeared.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned
and erma is set to indicate the error.

ERRORS
The unlink succeeds unless:

[ENOTDIR] A component of the path prefix is not a directory.

[EINV AL] The pathname contains a character with the high-order bit set.

[ENAMETOOLONG]

[ENOENT]

[EACCES]

[EACCES]

[ELOOP]

[EPERM]

[EPERM]

[EBUSY]

[EIO]

[EROFS]

[EFAULT]

SEE ALSO

A component of a path name exceeded 255 characters, or an entire path name
exceeded 1023 characters.

The named file does not exist.

Search permission is denied for a component of the path prefix.

Write permission is denied on the directory containing the link to be
removed.

Too many symbolic links were encountered in translating the pathname.

The named file is a directory and the effective user ID of the process is not
the super-user.

The directory containing the file is marked sticky, and neither the containing
directory nor the file to be removed are owned by the effective user ID.

The entry to be unlinked is the mount point for a mounted file system.

An I/O error occurred while deleting the directory entry or deallocating the
inode.

The named file resides on a read-only file system.

Path points outside the process's allocated address space.

close(2), link(2), rmdir(2)

4th Berkeley Distribution May 22, 1985

UNMOUNT(2) UNIX. Programmer's Manual UNMOUNT(2)

NAME
unmount - remove a file system

SYNOPSIS
umnountCname}
char *D.alD.e;

DESCRIPrION
Unmount announces to the system that the directory na.m.e is no longer to refer to the root
of a mounted file system. The directory na.m.e reverts to its ordinary interpretation.

REI'URN VALUE
Unmount returns 0 if the action occurred: -1 if if the directory is inaccessible or does not
have a mounted file system. or if there are active files in the mounted :file system.

ERRORS
Unmount may fail with one of the following errors:

[EPERM] The caller is not the super-user,

[EINV AL] Name is not the root of a mounted file system.

[EBUSY] A process is holding a reference to a :file located on the :file system.

[ENOTDIR] A component of the path prefix is not a directory.

[EPERM] The pathname contains a character with the high-order bit set.

[ENAMETOOLONG]

[ENOENT]

[EACCES]

[EFAULT]

[ELOOP]

[ElO]

The pathname was too long.

narn.e does not exist.

Search permission is denied for a component of the path prefix.

narn.e points outside the process's allocated address space.

Too many symbolic links were encountered in ~anslating the pathname.

An VO error occurred while reading from or writing to the :file system.

SEE ALSO
mount(2), mount(8). umount(8)

BUGS
The error codes are in a state of disarray: too many errors appear to the caller as one value.

Sun Microsystems ReI 3.0 19 August 1985 1

UTIMES(2) UNIX Programmer's Manual UTIMES(2)

NAME
utimes - set file times

SYNOPSIS
#inc1ude <sys/time.h>

utimes(file, tvp)
char -file;
struct timeval tvp(2);

DESCRIPTION
The utimes call uses the "accessed'" and "updated" times in that order from the tvp vector to
set the corresponding recorded times for file.

The caller must be the owner of the file or the super-user. The "inode-changed" time of the
file is set to the current time.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned
and ermo is set to indicate the error.

ERRORS
Utime will fail if one or more of the following are true:

[ENOTDIR) A component of the path prefix is not a directory.

[EINVAL] The pathname contains a character with the high~rder bit set.

[ENAMETOOLONG]

[ENOENT1

[ELOOP]

[EPERM]

[EACCES]

[EROFS]

[EFAULT1

[EIO]

SEE ALSO
stat(2)

A component of a pathname exceeded 255 characters, or an entire path name
exceeded 1023 characters.

The named file does not exist.

Too many symbolic links were encountered in translating the pathname.

The process is not super-user and not the owner of the file.

Search permission is denied for a component of the path prefix..

The file system containing the file is mounted read-only.

File or tvp points outside the process's allocated address space.

An 110 error occurred while reading or writing the affected inode.

4th Berkeley Distribution August 26, 1985

UNIX Programmer's Manual

This page intentionally left almost blank.

VFORK(2) UNIX Programmer's Manual VFORK(2)

NAME
vfork - spawn new process in a virtual memory efficient way

SYNOPSIS
pid = vforkO
int pid;

DESCRIPTION
Vfork can be used to create new processes without fully copying the address space of the old
process, which is horrendously inefficient in a paged environment. It is useful when the pur­
pose of fork(2) would have been to create a new system context for an exeeve. Vfork differs
from fork in that the child borrows the parent's memory and thread of control until a call to
exeeve(2) or an exit (either by a call to exit(2) or abnormally.) The parent process is
suspended while the child is using its resources.

Vfork returns 0 in the child's context and (later) the pid of the child in the parent's context.

Vfork can normally be used just like fork. It does not work, however, to return while running
in the childs context from the procedure that called vfork since the eventual return from vfork
would then return to a no longer existent stack frame. Be careful, also, to call _exit rather
than exit if you can't exeeve, sin~e exit will flush and close standard 110 channels, and thereby
mess up the parent processes standard 110 data structures. (Even with fork it is wrong to call
exit since bu·ffered data would then be flushed twice.)

SEE AlSO
fork(2), execve(2), sigvec(2), wait(2),

DIAGNOSTICS

BUGS

Same as for fork.

This system call will be eliminated when proper system sharing mechanisms are implemented.
Users should not depend on the memory sharing semantics of vfork as it will, in that case, be
made synonymous to fork.

To avoid a possible deadlock situation, processes that are children in the middle of a vfork are
never sent SIGTTOU or SIGTTIN signals; rather, output or ioetls are allowed and input
attempts result in an end-of-file indication.

4th Berkeley Distribution June 30, 1985

VHANGUP(2) . UNIX Programmer's Manual VHANGUP(2)

NAME
vhangup - virtually "hangup" the current control terminal

SYNOPSIS
vhangup()

DESCRIPTION
Vhangup is used by the initialization process init(8) (among others) to arrange that users are
given "clean'" terminals at login, by revoking access of the previous users' processes to the
terminal. To effect this, vhangup searches the system tables for references to the control ter­
minal of the invoking process, revoking access permissions on each instance of the terminal
that it finds. Further attempts to access the terminal by the affected processes will yield i/o
errors (EBADF). Finally, a hangup signal (SIGHUP) is sent to the process group of the con­
trol terminal.

SEE ALSO
init (8)

BUGS
Access to the control terminal via /dev/tty is still possible.

This call should be replaced by an automatic mechanism that takes place on process exit.

4th Berkeley Distribution June 30, 1985

WAIT(2) UNIX Programmer's Manual WAIT(2)

NAME
wait, wait3 - wait for process to terminate

SYNOPSIS
#include <sys/wait.h>

pid ... wait(status)
int phi;
union wait -status;

pid = wait(O)
int pid;

#include <sys/dme.h>
#include <sys/resource.h>

pid :II wait3(status, options, rosage)
int pid;
union wait -status;
int opdons;
struct rosage -rosage;

DESCRIPTION

NOTES

Wait causes its caller to delay until a signal is received or one of its child processes ter­
minates. If any child has died since the last wait, return is immediate, returning the process
id and exit status of one of the terminated children. If there are no children, return is
immediate with the value -1 returned.

On return from a successful wait call, status is nonzero, and the high byte of status contains
the low byte of the argument to exit supplied by the child process; the low byte of status con­
tains the termination status of the process. A more precise definition of the status word is
given in <sys/wait.h>.

Wait3 provides an alternate interface for programs that must not block when collecting the
status of child processes. The status parameter is defined as above. The options parameter is
used to indicate the call should not block if there are no processes that wish to report status
(WNOHANG), and/or that children of the current process that are stopped due to a
SIGTTIN, SIGTTOU, SIGTSTP, or SIGSTOP signal should also -have their status reported
(WUNTRACED). If rusage is non-zero, a summary of the resources used by the terminated
process and all its children is returned (this information is currently not available for stopped
processes).

When the WNOHANG option is specified and no processes wish to report status, wait3
returns a pid of O. The WNOHANG and WUNTRACED options may be combined by or'ing
the two values.

See sigvec(2) for a list of termination statuses (signals); 0 status indicates normal termination.
A special status (0177) is returned for a stopped process that has not terminated and can be
restarted; see ptrace(2). If the 0200 bit of the termination status is set, a core image of the
process was produced by the system.

If the parent process terminates without waiting on its children, the initialization process
(process ID = 1) inherits the children.

Wait and wait3 are automatically restarted when a process receives a signal while awaiting
termination ora child process.

RETURN VALUE
If wait returns due to a stopped or terminated child process, the process ID of the child is
returned to the calling process. Otherwise, a value of -1 is returned and errno is set to

4th Berkeley Distribution June 30, 1985

WAIT(2) UNIX Programmer's Manual WAIT(2)

indicate the error.

Wait3 returns -1 if there are no children not previously waited for; 0 is returned if
WNOHANG is specified and theJ'e are no stopped or exited children.

ERRORS
Wait will fail and return immediately if one or more of the following are true:

[ECHILD] The calling process has no existing unwaited-for child processes.

[EFAULT]

SEEALSO
exit(2)

The status or rusage arguments point to an illegal address.

4th Berkeley Oistribution June 30, 1985 2

WRITE(2) UNIX Programmer's Manual WRITE(2)

NAME
write, writev - write output

SYNOPSIS
cc = write(~ buC, nbytes)
int cc, d;
char -buf;
int nbytes;

#include <sys/types.h>
#include <sys/uio.h>

cc - writev(~ iov, iovcnt)
int cc, d;
strud iovec .ior,
int iovcnt;

DESCRIPTION
Write attempts to write nbytes of data to the object referenced by the descriptor d from the
buffer pointed to by buf. Writev performs the same action, but gathers the output data from
the iovcnt buffers specified by the members "of the iov array: iov[O], iov[1], ... , iov[iovcnt - 1].

For writev, the iovec structure is defined as

struct iovec {
caddctiov_base;
int iov _len;

};

Each iovec entry specifies the base address and length of an area in memory from which data
should be written. Writev will always write a complete area before proceeding to the next.

On objects capable of seeking, the write starts at a position given by the pointer associated
with d, see /seek(2). Upon return from write, the pointer is incremented by the number of
bytes actually written.

Objects that are not capable of seeking always write from the current position. The value of
the pointer associated with such an object is undefined.

If the real user is not the" super-user, then write clears the set-user-id bit on a file. This
prevents penetration of system security by a user who "captures" a writable set-user-id file
owned by the super-user.

When using non-blocking 110 on objects such as sockets that are subject to flow control, write
and writev may write fewer bytes than requested; the return value must be noted, and the
remainder of the operation should be retried when possible.

RETURN VALUE "
Upon successful completion the number of bytes actually written is returned. Otherwise a -1
is returned and the global variable ermo is set to indicate the error. "

ERRORS
Write and writev will fail and the file pointer will remain unchanged if one or more of the fol­
lowing are true:

[EBADF]

[EPIPE]

[EPIPE]

D is not a valid descriptor open for writing.

An attempt is made to write to a pipe that is not open for reading by any
process.

An attempt is made to write to a socket of type SOCK..STREAM that is not
connected to a peer socket.

4th Berkeley Distribution May 14, 1986

WRITE(2)

[EFBIG]

[EFAULT]

[EINVAL)

[ENOSPC]

[EDQUOT]

UNIX Programmer's Manual WRITE(2)

An attempt was made to write a file that exceeds the process's file size limit
or the maximum file size.

Part of ioy or data to be written to the file points outside the process's allo­
cated address space.

The pointer associated with d was negative.

There is no free space remaining on the file system containing the file.

The user's quota of disk blocks on the file system containing the file has been
exhausted.

[EIO] An 110 error occurred while reading from or writing to the file system.

[EWOULDBLOCK]
The file was marked for non-blocking 110, and no data could be written
immediately.

In addition, writev may return one of the following errors:

[EINV AL] Ioycnt was less than or equal to 0, or greater than 16.

[EINVAL]

[EINVAL]

SEE ALSO

One of the ioy_len values in the ioyarray was negative.

The sum of the ioy _len values in the ioy array overflowed a 32-bit integer.

fcntl(2), Iseek(2), open(2), pipe(2), select(2)

4th Berkeley Distribution May 14, 1986 2

INTRO(3) UNIX Programmer's Manual INTRO(3)

NAME
intro - introduction to C library functions

DFSCRIPrION

FILES

This section describes functions that m.ay be found in various libraries. The library func­
tions are those other than the functions which directly invoke UNIX system primitives.
described in section 2. Most of these functions are accessible from the C library. libc.
which is automatically loaded by the C compiler cc(l), and the Pascal compiler pc(l). The
link editor ld(l) searches this library under the '-lc' option. The C library also includes
all the functions described in section 2.

A subset of these functions are available from Fortran: they are described separately in
intro(3F).

The functions described in this section are grouped into various sections:

(3) The straight "3" functions are the standard C library functions.

(3N) These functions constitute the internet network library.

(3S) These functions constitute the 'standard I/O package'. see stdio(3S) for more details.
Declarations for these functions may be obtained from the include file <stdio.h >.

(3C) These routines are included for compatibility with other systems. In particular. a
number of system call interfaces provided in previous releases of 4BSD have been
included for source code compatibility. Use of these routines should. for the most
part. be avoided. The manual page entry for each compatibility routine indicates
the proper interface to use.

(3M) These functions constitute the math library. libm. When functions in the math
library (see math(3M)) are passed values that are undefined or would generate
answers that are out of range. they call the in/nan routine. By default this routine
returns the VAX reserved floating point value which causes the process to get a
floating point exception (see sigvec(2)). Programs that wish to take other action
should define their own version of in/nan (see in/nan(3M) for details), The math
library is loaded as needed by the Pascal compiler pe(l). C programs that wish to
use this library need to specify the "-1m" option,

(3R) These functions constitute the RPC service library. librpcsvc. In order to get the
link editor to load this library. use the -lrpcsvc option of cc. Declarations for
these functions may be obtained from various include files <rpcsvc!*,h > .

. (3X) These functions constitute minor libraries and other miscellaneous run-time facili­
ties. Most are available only when programming in C. These functions include
libraries that provide device independent plotting functions. terminal independent
screen management routines for two dimensional non-bitmap display terminals. and
functions for managing data bases with inverted indexes. These functions are
located in separate libraries indicated in each manual entry.

llib/libc.a
lusr/lib/libm.a
lusr/lib/libc_p.a
lusr/lib/libm-p.a

the C library
the math library

the C library compiled for profiling
the math library compiled for profiling

SEE ALSO
stdio(3S). math(3M), intro(2). cc(l), Id(l). nm(l)

LIST OF FUNCTIONS
Name

abort

4th Berkeley Distribution

Appears on Page

abort. 3

Description

generate a fault

June 30. 1986 1

INTRO(3) UNIX Programmer's Manual INTRO(3)

abs abs.3 integer absolute value
acos sin.3m inverse trigonometric function
acosh asinh.3m inverse hyperbolic function
alarm alarm.3c schedule signal after specified time
alloca malloc.3 memory allocator
arc plot.3x graphics interface
asctime ctime.3 convert date and time to ASCII
asin sin.3m inverse trigonometric function
asinh asinh.3m inverse hyperbolic function
assert assert.3x progran:i verification
atan sin.3m inverse trigonometric function
atan2 sin.3m inverse trigonometric function
atanh asinh.3m inverse hyperbolic function
atof atof.3 convert ASCII to numbers
atoi atof.3 convert ASCII to numbers
atol atof.3 convert ASCII to numbers
hemp bstring.3 bit and byte string operations
heopy bstring.3 bit and byte string operations
bzero bstring.3 bit and byte string operations
cabs hypot.3m complex absolute value
calloc malloc.3 memory allocator
cbrt sqrt.3m cube root
ceil floor.3m integer no less than
circle plot.3x graphics interface
clearerr ferror.3s stream status inquiries
closedir directory.3· directory operations
closelog syslog.3 control system log
closepl plot.3x graphics interface
cont plot.3x graphics interface
copysign ieee.3m copy sign bit
cos sin.3m trigonometric function
cosh sinh.3m hyperbolic function
crypt crypt.3 DES encryption
ctime ctime.3 convert date and time to ASCII
curses curses.3:x: screen functions with "optimal'" cursor motion
dbminit dbm.3x data base subroutines

. delete dbm.3x data base subroutines
drem ieee.3m remainder
ecvt ecvt.3 output conversion
edata end.3 last locations in program
encrypt crypt. 3 DES encryption
end end.3 last locations in program
endfsent getfsent.3x get file system descriptor file entry
endgrent getgrent.3 get group file entry
endhostent gethostbyname.3n get network host entry
endnetent getnetent.3n get network entry
endprotoent getprotoent.3n get protocol entry
endpwent getpwent.3 get password file entry
endservent getservent.3n get service entry
environ exec1.3 execute a file
erase plot.3x graphics interface
erf erf.3m error function
erfc erf.3m complementary error function

4th Berkeley Distribution June 30. 1986 2

INTRO(3)

etext
ether
exec
exece
execl
execle
execlp
exect
execv
execvp
exit
exp
expml
fabs
fclose
fcvt
feof
ferror
fetch
mush
ffs
fgetc
fgets
fileno
1irstkey
floor
fopen
fprintf
fputc
fputs
fread
free
frexp
fscanf
fseek
ftell

. ftime
fwrite
gcvt
getc
getchar
getdiskbyname
getenv
getfsent
getfs1ile
getfsspec
getfstype
getgrent
getgrgid
getgrnam
gethostbyaddr
gethostbyname
gethostent

4th Berkeley Distribution

UNIX Programmer's Manual INTRO(3)

end.3
ether.3r
exec!.3
exec!.3
execl.3
execl.3
execl.3
execl.3
exec!.3
execl.3
exit.3
exp.3m
exp.3m
floor. 3m
fclose.3s
ecvt.3
ferror.3s
ferror.3s
dbm.3x
fclose.3s
bstring.3
getc.3s
gets.3s
ferror.3s
dbm.3x
floor.3m
fopen.3s
printf.3s
putc.3s
puts.3s
fread.3s
malloc.3
frexp.3
scanf.3s
fseek.3s
fseek.3s
time.3c
fread.3s
ecvt.3
getc.3s
getc.3s
getdisk.3x
getenv.3
getfsent.3x
getfsent.3x
getfsent.3x
getfsent.3x
getgrent.3
getgrent.3
getgrent.3
gethostbyname.3n
gethostbyname.3n
gethostbyname.3n

last locations in program
monitor traffic on the Ethernet
execute a file
execute a file
execute a file
execute a file
execute a file
execute a file
execute a file
execute a file
terminate a process after flushing any pending output
exponential
exp(x)-l
absolute value
close or flush a stream
output conversion
stream status inquiries
stream status inquiries
data base subroutines
close or flush a stream
bit and byte string operations
get character or word from stream
get a string from a stream
stream status inquiries
data base subroutines
integer no greater than
open a stream
formatted output conversion
put character or word on a stream
put a string on a stream
buffered binary input/output
memory allocator
split into mantissa and exponent
formatted input conversion
reposition a stream
reposition a stream
get date and time
buffered binary input/output
output conversion
get character or word from stream
get character or word from stream
get disk description by its name
value for en,,{ironment name
get file system descriptor file entry
get file system descriptor file entry
get file system descriptor file entry
get file system descriptor file entry
get group file entry
get group file entry
get group file entry
get network host entry
get network host entry
get network host entry

June 30. 1986 3

INTRO(3)

getlogin
getnetbyaddr
getnetbyname
getnetent
getpass
getprotobyname
getprotobynumber
getprotoent
getpw
getpwent
getpwnam.
getpwuid
getrpcport
gets
getservbyname
getservbyport
getservent
getw
getwd
gmtime
gtty
havedisk
htonl
htons
hypot
index
inet_addr
inet_lnaof'
inet~makeaddr
inet_netof
inet_network
infnan
initgroups
initstate
insque
isalnum

. isalpha
isascii
isatty
iscntrl
isdigit
islower
isprint
ispunct
isspace
isupper
jO

. j1
jn
label
Idexp
19amma
lib2648

4th Berkeley Distribution

UNIX Programmer's Manual- INTRO (3)

getlogin.3
getnetent.3n
getnetent.3n
getnetent.3n
getpass.3
getprotoent.3n
getprotoent.3n
getprotoent.3n
getpw.3
getpwent.3
getpwent.3
getpwent.3
getrpcport.3r
gets.3s
getservent.3n
getservent.3n
getservent.3n
getc.3s
getwd.3
ctime.3
stty.3c
rstat.3r
byteorder.3n
byteorder.3n
hypot.3m
string.3
iriet.3n
inet.3n
inet.3n
inet.3n
inet.3n
infnan.3m
initgroups.3x
random.3
insque.3
ctype.3
ctype.3
ctype.3
ttyname.3
ctype.3
ctype.3
ctype.3
ctype.3
ctype.3
ctype.3
ctype.3
jO.3m
jO.3m
jO.3m
plot.3x
frexp.3
19amma.3m
lib2648~3x

get login name
get network entry
get network entry
get network entry
read a password
get protocol entry
get protocol entry
get protocol entry
get name from uid
get password file entry
get password file entry
get password file entry
get RPC port number
get a string from a stream
get service entry
get service entry
get service entry
get character or word from stream
get current working directory patbname
convert date and time to ASCll
set and get terminal state (defunct)
determine if remote machine has disk
convert values between host and network byte ordE
convert values between host and network byte ordE
Euclidean distance
string operations
Internet address manipulation routines
Internet address manipulation routines
Internet address manipulation routines
Internet address manipulation routines
Internet address manipulation routines
signals exceptions
initialize.group acceSs list
better random number generator
insert/remove element from a queue
character classification macros
character classification 'macros

. character classification macros
:lind name of a terminal
character classification macros
character classification macros
character classification macros
character classification macros
character classification macros
character classification macros·
character c1assi:lication macros
bessel function
bessel function
bessel function
graphics interface
split into mantissa and exponent
log gamma function: (formerly gamma.3m)
subroutines for the HP2648 graphics terminal

June 30, 1986 4

INTRO(3)

line
linemod
localtime
log
log10
loglp
10gb
longjmp
malloc
mktemp
mod!
moncontrol
monitor
monstartup
mount
move
nextkey
nice
nlist
ntohl
ntohs
opendir
openlog
openpl
pause
pelose
perror
point
popen
pow
printf
psignal
putc
putchar
puts
putw

. qsort
rand
random
rcmd
re_comp
re_exec
readdir
realloc
remque
rewind
rewinddir
rexec
rindex
rint
rnusers
rquota
rresvport

4th Berkeley Distribution

UNIX Programmer"s Manual INTRO(3)

plot.3x
plot.3x
ctime.3
exp.3m
exp.3m
exp.3m
ieee.3m
setjmp.3
malloc.3
mktemp.3
frexp.3
monitor.3
monitor.3
monitor.3
mount.3r
plot.3x
dbm.3x
nice.3c
nlist.3
byteorder.3n
byteorder.3n
directory.3
syslog.3
plot.3x
pause.3c
popen.3
perror.3
plot.3x
popen.3
exp.3m
printf.3s
psigna1.3
putc.3s
putc.3s
puts.3s
putc.3s
qsort.3
rand.3c
random.3
rcmd.3x
regex.3
regex.3.
directory .3
malloc.3
insque.3
fseek.3s
directory.3
rexec.3x
string.3
floor.3m
rnusers.3r
rquota.3r
rcmd.3x

graphics interface
graphics interface
convert date and time to ASCII
natural logarithm
logarithm to base 10
log(l+x) .
exponent extraction
non-local goto
memory allocator
make a unique file name
split into mantissa and exponent
prepare execution profile
prepare execution profile
prepare execution profile
keep track of remotely mounted 1ilesystems
graphics interface
data base subroutines
set program priority
get entries from name list
convert values between host and network byte order
convert values between host and network byte order
directory operations
control system log
graphics interface .
stop until signal
initiate 110 to/from a process
system error messages
graphics interface
initiate 110 to/from a process
exponential x**'j
formatted output conversion
system signal messages
put character or word on a stream
put character or word on a stream
put a string on a stream
put character or word on a stream
quicker sort
random number generator
better random number generator
routines for returning a stream to a remote command
regular expression handler
regular expression handler
directory operations
memory allocator
insert/remove element from a queue
reposition a stream
directory operations
return stream to a remote command
string operations
round to nearest integer
return number of users on remote machine
implement quotas on remote machines
routines for returning a stream to a'remotecommand

June 30. 1986 5

INTRO(3)

rstat
.ruserok
rusers
rwall
scalb
scandir
scanf
seek.dir
setbuf
setbuffer
setegid
seteuid
setfsent .
setgid
setgrent
sethostent
setjmp
setkey
setlinebuf
setnetent
setprotoent
setpwent
setrgid
setruid
setservent
setstate
setuid
signal
sin
sinh
sleep
space
spray
sprintf
sqrt
srand

- srandom
sscanf
stdio
store
streat
strcmp
strcpy
strlen
strncat
strncmp
strncpy
stty
swab
sys_errlist
sys_nerr
sys_siglist
syslog

4th Berkeley Distribution·

UNIX Programmer's Manual INTRO(3)

rstat.3r
rcmd.3x
rnusers.3r
rwall.3r
ieee.3m
scandir.3
scanf.3s
directory.3
setbuf.3s
setbuf.3s
setuid.3
setuid.3
getfsent.3x
setuid.3
getgrent.3
gethostbyname.3n
setjmp.3
crypt.3
setbuf.3s
getnetent.3n
getprotoent.3n
getpwent.3
setuid.3
setuid:3
getservent.3n
random.3
setuid.3
signa1.3
sin.3m
sinh.3m
sleep.3
plot.3x
spray.3r

_ printf.3s
sqrt.3m
rand.3c
random.3
scanf.3s
intro.3s
dbm.3x
string.3
string.3
string.3
string. 3
string.3
string.3
string.3
stty.3c
swab. 3
perror.3
perror.3
psignal.3
syslog.3-

get performance data from remote kernel
routines for returning a stream to a remote commaIl
return information about users on remote machine
write to specified remote machines
exponent adjustment
scan a directory
formatted input conversion
directory operations
assign buffering to a stream
assign buffering to a stream
set user and group ID
set user and group ID
get file system descriptor file entry
set user and group ID
get group file entry
get network host entry
non-local goto
DES encryption
assign buffering to a stream
get network entry
get protocol entry
get password file entry
set user and group ID
set user and group ID
get service entry
better random number generator
set user and group ID
simplified software signal facilities
trigonometric function
hyperbolic function
suspend execution for interval
graphics interface
scatter data in order to check the network
formatted output conversion
square root
random number generator
better random number generator
formatted input conversion
standard buffered input/output package
data base subroutines
string operations
string operations
string operations
string operations
string operations
string operations
string operations
set and get terminal state (defunct)
swap bytes
system error messages
system error messages
system signal messages
control system log

June 30,1986 6-

INTRO(3)

system
tan
tanh
telldir
tgetent
tget1lag
tgetnum
tgetstr
tgoto
time
times
timezone
tputs
ttyname
ttyslot
ungetc
utime
valloc
varargs
vlimit
vtimes
yO
yl
yn
yppasswd

4th Berkeley Distribution

UNIX Programmer's Manual INTRO (3)

system.3
sin.3m
sinh.3m
directory .3
termcap.3x
termcap.3x
termcap.3x
termcap.3x
termcap.3x
time.3c
times.3c
ctime.3
termcap.3x
ttyname.3
ttyname.3
ungetc.3s
utime.3c
valloc.3
varargs.3
vlimit.3c
vtimes.3c
jO.3m·
jO.3m
jO.3m
yppasswd.3r

issue a shell command
trigonometric function
hyperbolic function
directory operations
terminal independent operation routines
terminal independent operation routines
terminal independent operation routines
terminal independent operation routines
terminal independent operation routines
get date and time
get process times
convert date and time to ASCII
terminal independent operation routines
find name of a terminal
find name of a terminal
push character back into input stream
set1iletimes
aligned memory allocator
variable argument list
control maximum system resource consumption
get information about resource utilization
bessel function
bessel function
bessel function
update user password in yellow pages

June 30. 1986 7

ABORT(3) UNIX Programmer's Manual ABORT(3)

NAME
abort - generate a fault

DESCRlPl10N
Abort executes an instruction which is illegal in user mode. This causes a signal that normally
terminates the process with a core dump, which may be used for debugging.

SEE ALSO
adb(1), sigvec(2), exit(2)

DIAGNOSTICS
Usually "Illegal instruction - core dumped" from the shell.

BUGS
The abortO function does not flush standard 110 buffers. Use fflush (3S).

7th Edition May 27, 1986 1

ABS(3)

NAME
abs - integer absolute value

SYNOPSIS
abs(i)
int i;

DESCRIP110N

UNIX Programmer's Manual

Abs returns the absolute value of its integer operand.

SEE AlSO
floor(3M) for Jabs

BUGS

ABS(3)

Applying the abs function to the most negative integer generates a result which is the most
negative integer. That is,

abs(Ox80000000)

returns Ox80000000 as a result.

7th Fditinn May 15, 1985

------- --------- -- ------- ~~~~---- -----------

ALARM(3C) UNIX Programmer's Manual ALARM(3C)

NAME
alarm - schedule signal after specified time

SYNOPSIS
aJarm(seconds)
unsigned seconds;

DESCRIPTION
This interface is made obsolete by seddmer(2).

Alarm causes signal SIGALRM, see sigvec(2), to be sent to the invoking process in a number
of seconds given by the argument. Unless caught or ignored, the signal terminates the pro­
cess.

Alarm. requests are not stacked; successive calls reset the alarm. clock. If the argument is 0,
any alarm. request is canceled. Because of scheduling delays, resumption of execution of when
,the signal is caught may be delayed an arbitrary amount. The longest specifiable delay time is
2147483647 seconds.

The return value is the amount of time previously remaining in the alarm. clock.

SEE ALSO
sigpause(2), sigvec(2), signal(3C), sleep(3), ualarm.(3), usleep(3)

4th Berkeley Distribution May 27, 1986 1

ASINH(3M) . UNIX Programmer's Manual

NAME
asinh, acosh, atanh - inverse hyperbolic functions

SYNOPSIS
#include <math.h>

double asinh(x)
double X;

double acosh(x)
double X;

double atanh(x)
double X;

DESCRIPTION

ASINH(3M)

These functions compute the designated inverse . hyperbolic functions for real arguments.

ERROR (due to Roundoff etc.)
These functions inherit much of their error from 10g1p described in exp(3M). On a VAX,
acosh is accurate to about 3 uJps, asinh and atanh to about 2 uJps. An uJp is one Unit in the
Last Place carried.

DIAGNOSTICS
Acosh returns the reserved operand on a VAX if the argument is less than 1.

Atanh returns the reserved operand on a V AX if the argument has absolute value bigger than
or equal to 1.

SEE ALSO
math(3M), exp(3M), infnan(3M)

AUTHOR
W. Kahan, Kwok-Choi Ng

4.3 Berkeley Distribution May 12, 1986

ASS.ERT(3)

NAME
assert - program verification

SYNOPSIS
#incJude <assert.h>

assert(expression)

DESCRIPTION

UNIX Programmer's Manual ASSERT(3)

Assert is a macro that indicates expression is expected to be true at this point in the program.
It causes an exit(2) with a diagnostic comment on the standard output when expression is
false (0). Compiling with the cc(1) option -DNDEBUG effectively deletes assert from the pro­
gram.

DIAGNOSTICS
'Assertion failed: file fline n.' F is tbe source file and n the source line number of the assert
statement.

7th Edition May 12, 1986

ATOF(3) UNIX Programmer's Manual ATOF(3)

NAME
atof, atoi, atol - convert ASCII to numbers

SYNOPSIS
double atof(nptr)
char *nptt;

atoi(nptr)
char *nptt;

long atol(nptr)
char *nptt;

DESCRIPTION
These functions convert a string pointed to by nptr to floating, integer, and long integer
representation respectively. The first unrecognized character ends the string.

Ato! recognizes an optional string of spaces, then an optional sign, then a string of digits
optionally containing a decimal point, then an optional 'e' or 'E' followed by an optionally
signed integer.

Atoi and atol recognize an optional string of spaces, then an optional sign, then a string of
digits.

SEE ALSO
scanf(3S)

BUGS
There are no provisions for overflow.

7th Edition May 15, 1985

BSTRING(3) UNIX Programmer's Manual BSTRING(3)

NAME
bcopy, hemp, bzero, Ws - bit and byte string operations

SYNOPSIS
bcopy(sre, dst, length)
char -8re, -dst;
int length;

bcmp(bl, bl, length)
char -bl, -bl;
int length;

bzero(b, length)
char -b;
int length;

ffs(i)
int i;

DESCRIPIlON

BUGS

The functions heopy, hemp, and bzero operate on variable length strings of bytes. They do
not check for null bytes as the routines in string(3) do.

Beopy copies length bytes from string sre to the string dst.

Bemp compares byte string b 1 against byte string b2, returning zero if they are identical, non­
zero otherwise. Both strings are assumed to be length bytes long.

Bzero places length 0 bytes in the string b 1.

Fft find the first bit set in the argument passed it and returns the index of that bit. Bits are
numbered starting at 1. A return value of 0 indicates the value passed is zero.

The heopy routine take parameters backwards from strepy.

4.2 Berkeley Distribution May 15, 1985 1

,

BYTEORDER(3N) UNIX Programmer's Manual BYTEORDER(3N)

NAME
htonl, htons, ntohl, ntohs - convert values between host and network byte order

SYNOPSIS
#inc1ude <sys/types.h>
#inc1ude <netinetlin.h>

netlonl - htonl(hostlonl);
u_lonl netlong, hostlong;

netshort - htons(hostshort);
u_short netshort, hostshort;

hostlonl - ntohl(netlonl);
u_lonl hostlong, netlong;

hostshort - ntohs(netshort);
u_short hostshort, netshort;

DESCRIPTION
These routines convert 16 and 32 bit quantities between network byte order and host byte
order. On machines such as the SUN these routines are defined as null macros in the include
file <netinet/in.h>.

These routines are most often used in conjunction with Internet addresses and ports as
returned by gethostbyname(3N) and getservent(3N).

SEE ALSO

BUGS

gethostbyname(3N), getservent(3N)

The V AX handles bytes backwards from most everyone else in the world. This is not
expected to be fixed in the near future.

4.2 Berkeley Distribution May 15, 1986

CRYPT(3) UNIX Progtammer's Manual CRYPT(3)

NAME
crypt, setkey, encrypt - DES encryption

SYNOPSIS
cbar .crypt(key, salt)
cbar .key, .salt;

setkey(key)
char .key;

encrypt(block, edftag)
char .block;

DESCRIPTION
Crypt is the password encryption routine. It is based on the NBS Data Encryption Standard,
with variations intended (among other things) to frustrate use of hardware implementations of
the DES for key search.
The first argument to crypt is normally a user's typed password. The second is a 2-character
string chosen from the set [a-zA-Z0-9.1]. The salt string is used to perturb the DES algorithm
in one of 4096 different ways, after which the password is used as the key to encrypt repeat­
edly a constant string. The returned value points to the encrypted password, in the same
alphabet as the salt. The first two characters are the·salt itself.

The other entries provide. (rather primitive) access to the actual DES algorithm. The argu­
ment of setkey is a character array of length 64 containing only the characters with numerical
value 0 and 1. If this string is divided into groups of 8, the low-order bit in each group is
ignored, leading to a 56-bit key which is set into the machine.

The argument to the encrypt entry is likewise a character array of length 64 containing O's and
l's: The argument array is modified in place to a similar array representing the bits of the
argument after having been subjected to the DES algorithm using the key set by seticey. If
edjlag is 0, the argument is encrypted; if non-zero, it is decrypted.

SEE ALSO
passwd(1), passwd(5), 10gin(1), getpass(3)

BUGS
The return value points to static data whose content is overwritten by each call.

7th Edition May 15, 1985 1

CTIME(3) UNIX Programmer's Manual CTIME(3)

NAME
ctime, localtime, gmtime, asctime, timezone - convert date and time to ASCII

SYNOPSIS
char .ctime(clock)
loog .clock;

#ioclude <time.h>

struct tm .localtime(clock)
loog .clock;

struct tm .gmtime(clock)
loog .clock;

char .asctime(tm)
struct tm .tm;

char .timezone(zooe, dst)

DESCRIPTION
Ctime converts a time pointed to by clock such- as returned by time(2) into ASCII and returns
a pointer to a 26-character string in the following form. All the fields have constant width.

Sun Sep 1601:03:52 1973\n\0

Localtime and gmtime return pointers to structures containing the broken-down time. Local­
time corrects for the time zone and possible daylight savings time; gmtime converts directly to
GMT, which is the time UNIX uses. Asctime converts a broken-down time to ASCII and
returns a pointer to a 26-character string.

The structure declaration from the include file is:

struct tm {

};

int tm_sec;
int tm_min;
int tm_hour;
int tm_mday;
int tm_mon;
int tm_year;
int tm_ wday;
int tm_yday;
int tm_isdst;

/. 0-59 seconds./
/. 0-59 minutes./
/. 0-23 hour./
/. 1-31 day of month ./
/.0-11 month./
/.0- year - 1900./
/. 0-6 day of week (Sunday,.. 0) ./
/. 0-365 day of year ./
/. nag: daylight savings time in effect ./

When local time is called for, the program consults the system to determine the time zone
and whether the U.S.A., Australian, Eastern European, Middle European, or Western Euro­
pean daylight saving time adjustment is appropriate. The program knows about various pecu­
liarities in time conversion over the past 10-20 years; if necessary, this understanding can be
extended.

Timezone returns the name of the time zone associated with its first argument, which is meas­
ured in minutes westward from Greenwich. If the second argument is 0, the standard name is
used, otherwise the Daylight Saving version. If the required name does not appear in a table
built into the routine, the difference from GMT is produced; e.g., in Afghanistan timezone(­
(60.4+30), 0) is appropriate because it is 4:30 ahead of GMT and the string GMT + 4:30 is
produced.

SEE ALSO
gettimeofday(2), time(3)

BUGS - .
The return values point to static data whose content is overwritten by each call.

4th Berkeley Distribution May 27,1986

CTYPE(3) UNIX Programmer's Manual CTYPE(3)

NAME
isalpha, isupper, islower, isdigit, isxdigit, isalnum, isspace, ispunct. isprint, isgraph, iscntrl,
isascii, toupper, tolower, toascii - character classification macros

SYNOPSIS
#include <etype.h>

isalpha(c)

DESCRIPTION
These macros classify ASCII-coded integer values by table lookup. Each is a predicate return­
ing nonzero for true, zero for false. Isascii and toascii are defined on all integer values; the
rest are defined only where isascii is true and on the single non-ASCII value EOF (see
stdio(3S».

isa/pha
isupper

is/ower

isdigit

isxdigit

isalnum

iss pace

ispunct

is print

isgraph

iscntr/

isascii

tolower
toupper_

toascii

SEE ALSO
ascii(7)

7th Edition .

c is a letter

c is an upper case letter

c is a lower case letter

c is a digit

c is a hex digit

c is an alphanumeric character

c is a space, tab, carriage return, newline, vertical tab, or formfeed

c is a punctuation character (neither control nor alphanumeric)

c is a printing character, code 040(8) (space) through 0176 (tilc:te)

c is a printing character, similar to isprint except false for space.

c is a delete character (0177) or ordinary control character (less than 040).

c is an ASCII character, code less than 0200

c is converted to lower case. Return value is undefined if not isupper(c}.

c is converted to upper case. Return value is undefined if not islower(c}.

c is converted to be a valid ascii character.

May 12,1986

CURSES(3X) UNIX Programmer's Manual CURSES(3X)

NAME
curses - screen functions with "optimal" cursor motion

SYNOPSIS
cc [flags] tiles -lcurses -ltermap [libraries]

DESCRIPTION
These routines give the user a method of updating screens with reasonable optimization.
They keep an image of the current screen, and the user sets up an image of a new one. Then
the refresh() tells the routines to make the current screen look like the new one. In order to
initialize the routines, the routine initser() must be called before any of the other routines that
deal with windows and screens are used. The routine endwin() should be called before exit­
ing.

SEE ALSO
Screen Updating and Cursor Movement Optimization: A Library Package, Ken Arnold,
ioCtl(2), getenv(3), tty(4), termcap(5)

AUTIIOR
Ken Arnold

FUNCTIONS
addch(ch)
addstr(str)
box(win, vert,bor)
cbreakO
clear()
clearok(scr, boolt)
clrtobotO
clrtoeolO
delchO
deletelnO
delwin(win)
echoO
endwinO
eraseO
flusok(win,boolt)
getchO .
getcap(name)
getstr(str)
gettmode()
getyx(win,y,x)
inchO
initscr()
insch(c)
insertlnO
leaveok(win,boolt)
longname(termbuf,name)
move(y,x)
mvcur(lasty ,lastx,newy ,newx)
newwin(lines,cols,begin_y,begin_x)
nlO
nocbreakO
noechoO
nonlO
norawO

4th Berkeley Distribution

add a character to sulser
add a string to sulser
draw a box around a window
set cbreak mode
clear sulser
set clear flag for ser
clear to bottom on sulser
clear to end of line on sulser
delete a character
delete a line
delete win
set echo mode
end window modes
erase sulser
set flush-on-refresh flag for win
get a char through sulser
get terminal capability name
get a string through sulser
get tty modes
get (y,x) co-ordinates
get char at current (y,x) co-ordinates
initialize screens
insert a char
insert a line
set leave flag for win
get long name from termbuf
move to (y,x) on sulser
actually move cursor
create a new window
set newline mapping
unset cbreak mode
unset echo mode
unset newline mapping
unset raw mode

April 23, 1986

CURSES(3X) UNIX Programmer's Manual CURSES(3X)

overlay(win 1, win2)
overwrite(win 1, win2)
printw(fmt,arg 1 ,arg2, .•.)
rawO
refreshO
resettyO
savettyO
scanw(fmt,argl,arg2, ...)
scroll(win) .
scrollok(win,boolf)
setterm(name)
standendO
standout()
subwin(win,lines,cols,begin_y,begin_x)
touchline(win,y,sx,ex)
touchoverlap(win 1, win2)
touchwin(win)
unctrl(ch)
waddch(win,ch)
waddstr(win,str)
wclear(win)
wclrtobot(win)
wclrtoeol(win)
wdelch(win,c)
wdeleteln(win)
werase(win)
wgetch(win)
wgetstr(win,str)
winch(win)
winsch(win,c)
winsertln(win)
wmove(win;y,x)
wprintw(win,fmt,argl,arg2, .. ~)
wrefresh(win)
wscanw(win,fmt,argl,arg2, ...)
wstandend(win) -
wstandout(win)

overlay win 1 on win2
overwrite win 1 on top of win2
printf on sulser
set raw mode
make current screen look like sulser
reset tty flags to stored value
stored current tty Hags
scanf through sulser
scroll win one line
set scroll flag
set term variables for name
end standout mode
start standout mode
create a subwindow
mark line y sx through sy as changed
mark overlap of winl on win2 as changed
"change" all of win
printable version of eh
add char to win
add string to win
clear win
clear to bottom of win
clear to end of line on win
delete char from win
delete line from win
erase win
get a char through win
get a string through win
get char at current (y,x) in win
insert char into win
insert line into win
set current (y,x) co-ordinates on win
printf on win
make screen look like win
scanf through win
end standout mode on win
start standout mode on win

4th Berkeley Distribution April 23, 1986 2

DBM(3X) UNIX Programmer's Manual DBM(3X)

NAME
dbminit, fetch, store, delete, firstkey, nextkey - data base subroutines

SYNOPSIS
#inc1ude <dbm.h>

typedef struct {
char .dptr;
int dsize;

} datum;

dbminit(file)
char .file;

datum fetch(key)
datum key;

store(key, content)
datum key, content;

delete(key)
datum key;

datum firstkeyO

datum nextkey(key)
datum key;

DESCRIPTION
Note: the dbm library has been superceded by ndbm(3), and is now implemented using ndbm.
These functions maintain key/content pairs in a data base. The functions will handle very
large o(a billion blocks) databases and will access a keyed item in one or two file system
accesses. The functions are obtained with the loader option -ldbm.

Keys and contents are described by the datum typedef. A datum specifies a string of dsize
bytes pointed to by dptr. Arbitrary binary data, as well as normal ASCII strings, are allowed.
The data base is stored in two files. One file is a directory containing a bit map and has '.dir'
as its suffix. The second file contains all data and has '.pag' as its suffix.

Before a database can be accessed, it must be opened by dbminit. At the time of this call, the
files file.dir and file.pag must exist. (An emptY.database is created by creating zero-length
'.dir' and '.pag' files.)

Once open, the data stored under a key is accessed by fetch and data is placed under a key by
store. A key (and its associated contents) is deleted by delete. A linear pass through all keys
in a database may be made, in an (apparently) random order, by use of firstkey and nextkey.
Firstkey will return the first key in the database. With any key nextkey will return the next
key in the database. This code will traverse the data base:

for (key = firstkeyO; key.dptr != NULL; key = nextkey(key»

DIAGNOSTICS
All functions that return an int indicate errors with negative values. A zero return indicates
ok. Routines that return a datum indicate errors with a null (0) dptr.

SEE AISO
ndbm(3)

BUGS
The' .pag' file will contain holes so that its apparent size is about four times its actual content.
Older UNIX systems may create real file blocks for these. holes when touched. These files
cannot be copied by normal means (cp, cat, tp, tar, ar) without filling in the holes.

4th Berkeley Distribution May 12, 1986

DBM(3X) UNIX Programmer's Manual DBM(3X)

Dptr pointers returned by these subroutines point into static storage that is changed by subse­
quent calls.

The sum of the sizes of a key/content pair must not exc~ed the internal block size (currently
1024 bytes). Moreover all key/content pairs that hash together must fit on a single block.
Store will return an error in the event that a disk block fills with inseparable data. .

Delete does not physically reclaim file space, although it does make it available for reuse.

The order of keys presented by firstkey and nextkey depends on -a hashing function, not on
anything interesting.

4th Berkeley Distribution May 12, 1986 2

DIRECTORY (3) UNIX Programmer's Manual DIRECTORY(3)

NAME
opendir, readdir, telldir, seekdir, rewinddir, closedir - directory operations

SYNOPSIS
#include <sysltypes.h>
#inclucle <sysldir.h>

OIR eopendir(fUename}
char efilename;

struct direct ereaddir(dirp)
DIR edirp;

long telldir(dirp)
OIR edirp;

seekdir(dirp, loe)
OIR edirp;
long loe;

rewinddir(dirp)
OIR edirp;

closedir(dirp)
DlR edirp;

OESCRlPl'lON
Opendir opens the directory named by filename and associates a directory stream with it.
Opendir returns a pointer to be used to identify the directory stream in subsequent operations.
The pointer NULL is returned if filename cannot be accessed, or if it cannot malloc(3) enough
memory to hold the whole thing.

Readdir returns a pointer to the next directory entry. It returns NULL upon reaching the end
of the directory or detecting an invalid seekdir operation.

Telldir returns the current location associated with the named directory stream.

Seekdir sets the position of the next readdir operation on the directory stream. The new posi­
tion reverts to the one associated with the directory stream when the telldir operation was per­
formed. Values returned by telldir are good only for the lifetime of the DIR pointer from
which they are derived. If the directory is closed and then reopened, the telldir value may be -
invalidated due to undetected directory compaction. It is safe to use a previous telldir value
immediately after a call to opendir and before any calls to readdir.

Rewinddir resets the position of the named directory stream to the beginning of the directory.

Closedir closes the named directory stream and frees the structure associated with the DIR
pointer.

Sample code which searchs a directory for entry "name" is:

len = strlen(name);

SEE ALSO

dirp = opendirC. ");
for (dp = readdir(dirp); dp != NULL; dp = readdir(dirp»

if (dp->d_namlen == len && !strcmp(dp->d_name, name» (
closedir(dirp);

}
closedir(dirp);

return FOUND;

return NOT_FOUND;

open(2), close(2), read(2), Iseek(2), dir(5)

4.2 Berkeley Distribution September 24, 1985

ECVT(3) UNIX Programmer's Manual ECVT(3)

NAME
ecvt, fcvt, gcvt - output conversion

SYNOPSIS
char -ecvt(value9 ndigit, decpt, sign)
double value;
int ndigit, -decpt, -sign;

char .Ccvt(value9 ndigit, decpt, sign)
double value;
int ndigit, -decpt, -sign;

char .gcvt(value, ndigit, but)
double value;
char -buf;

DESCRIPTION
Ecvt converts the value to a null-terminated string of ndigit ASCII digits and returns a pointer
thereto. The position of the decimal point relative to the beginning of the string is stored
indirectly through deept (negative means to the left of the returned digits). If the sign of the
result is negative, the word pointed to by sign is non-zero, otherwise it is zero. The low-order
digit is rounded.

Fcvt is identical to ecvt, except that the correct digit has been rounded for Fortran F-format
output of the number of digits specified by ndigits 0

Gcvt converts the value to a null-terminated ASCII string in bu/ and returns a pointer to buf
It attempts to produce ndigit significant digits in Fortran F format if possible, otherwise E for­
mat, ready for printing. Trailing zeros may be suppressed.

SEE ALSO
printf(3)

BUGS
The return values point to static data whose content is overwritten by each call.

7th Edition May 15, 1985

END(3) UNIX Programmer's Manual END(3}

NAME
end, etext, edata - last locations in program

SYNOPSIS
extern end;
extern etext;
extern edam;

DESCRIPTION
These names refer neither to routines nor to locations with interesting contents. The address
of etext is the first address above the program text, edata above the initialized data region,
and end above the uninitialized data region.

When execution begins, the program break coincides with end. but it is reset by the routines
brk(2}, malloc(3}, standard input/output (stdio(3S», the profile (-p) option of cc(1), etc. The
current value of the program break is reliably returned by 'sbrk(O)" see brk(2}.

SEE ALSO
brk(2), malloc(3)

7th Edition May 12, 1986

ERF(3M)

NAME
erf, erfc - error functions

SYNOPSIS
#indude <math.h>

double erf(x)
double X;

double erfc(x)
double X;

DESCRIPTION

UNIX Programmer's Manual

Erf(x) returns the error function of x; where erf(x):= (2/v'1I')f~exp(-t2)dt.
Erfc (x) returns 1.O-erf(x).

ERF(3M)

The entry for erfc is provided because of the extreme loss of relative accuracy if erf(x) is
called for large x and the result subtracted from 1. (e.g. for x = 10, 12 places are lost).

SEE ALSO
math(3M)

4.3 Berkeley Distribution May 12, 1986

ETHER (3R) UNIX Programmer's Manual

NAME
ether - monitor traffic on the Ethernet

SYNPOSIS
#include <rpcsvc/ether.h.>

RPC INFO
program number:

ETHERPROG

xdr routines:
xdr_etherstat(xdrs. es)

XDR *Xdrs:
struct etherstat *es;

xdr_etheraddrsCxdrs. ea)
XDR *Xdrs:
struct etheraddrs *ea:

xdr_etherhtable(xdrs.hm)
XDR*xdrs:
. struct etherhmem **hm;

xdr_etherhmem(xdrs. hm)
XDR*Xdrs:
struct etherhmem **hm;

xdr_etherhbody(xdrs. hm)
XDR *Xdrs:
struct etherhmem *hm:

xdr_addrmask(xdrs.am)
XDR*Xdrs:
struct addrmask *am:

ETHER (3R)

Xdr _etherhmem processes a single etherhmem structure. Xdr _etherhtahle processes
an array of HASHSIZE *struct etherhmems. The **etherhmem field of etheraddrs is
actually a hashtable. that is. it is a pointer to an array of HASHSIZE hmem pointers.

procs:

7th Edition

ETHERPROC_GETDATA
no args. returns struct etherstat

ETHERPROC_ON
no args or results. puts server in promiscuous mode

ETHERPROC_OFF
no args or results. puts server in promiscuous mode

ETHERPROC_GETSRCDATA
no args. returns struct etheraddrs with information
about source of packets

ETHERPROC_GETDSTDATA
no args. returns struct etheraddrs with information
about destination of packets

ETHERPROC_SELECTSRC
takes struct mask as argument. no results
sets a mask for source

ETHERPROC_SELECTDST
takes struct mask as argument. no results
sets a mask for dst

ETHERPROC_SELECTPROTO
takes struct mask as argument. no results
sets a mask for proto

10 August 1985 1

ETHER(3R) UNIX Programmer's Manual

ETHERPROC_SELECTLNTH
takes struct mask as argument. no results
sets a mask for Inth

structures:
I.
• all ether stat's except src. dst addresses
.1

struct etherstat {

}:
I.

structtimeval e_time:
unsigned long e_bytes:
unsigned long e~ckets:
unsigned long e_bcast:
unsigned long e_size[NBUCKETS];
unsigned long eJrOto[NPROTOS];

• member of address hash table
.1

struct etherhmem {
inth_addr:
unsigned h_cnt:

}:
1*

struct etherhmem *h_nxt:

• src. dst address info
*1
structetheraddrs {

}:
I.

struct timeval e_time:
unsigned long e_bytes:
unsigned long e-packets:
unsigned long e_bcast:
struct etherhmem **e_addrs:

* for size. a_addr islowvalue. a_mask is high value
*1
struct addrmask {

inta_addr:
int a_mask: I. 0 means wild card *1

}:
SEE ALSO

traffic(?).etherfUld(?).etherd(?)

7th Edition 10 August 1985

ETHER(3R)

2

EXECL(3) UNIX Progi'ammer's Manual EXECL(J)

NAME
execl, execv, execle, execlp, execvp, exec, execve, exect, environ - execute a file

SYNOPSIS
exec:l(name, argO, argt, .. ., argo, 0)
char -name, -argO, -argt, •• ., -argo;

execv(name, argv)
char -name, -argv[);

exec:le(name, argO, argt, .• ., argo, 0, envp)
char -name, -argO, _argt, .• ., -argo, -envp[);

exect(name, argv, envp)
char _name, -argv[), -envp[);

extern char --environ;

DESCRIPTION
These routines provide various interfaces to the execve system call. Refer to execve(2) for a
description of their properties; only brief descriptions are provided here.

Exec in all its forms overlays the calling process with the named file, then transfers to the
entry point of the core image of the file. There can be no return fro~ a successful exec; the
calling core image is lost.

The name argument is a pointer to the name of the file to be executed. The pointers arg[0],
arg[J] .•. address null-terminated strings. Conventionally arg[0] is the name of the file.

Two interfaces are available. exec/ is useful when a known file with known arguments is
being calJed; the arguments to exec/ are the character strings constituting the file and the argu-.
ments; the first argument is conventionally the same as the file name (or its last component).
A 0 argument must end the argument list.

The execv version is useful when the number of arguments is unknown in advance; the argu­
ments to execv are the name of the file to be executed and a vector of strings containing the
arguments. The last argument string must be followed by a 0 pointer.

The exect version is used when the executed file is to be manipulated with ·ptrace(2). The
program is forced to single step a single instruction giving the parent an opportunity to mani­
pulate its state. On the V AX-II this is done by setting the trace bit in the process status long­
word.

When a C program is executed, it is called as follows:

main(argc, argv, envp)
int argc;
char __ argv, .. envp;

where argc is the argument count and argv is an array of character pointers to the arguments
themselves. As indicated, argc is conventionally at least one and the first member of the
array points to a string containing the name of the file.

Argv is directly usable in another execv because argv[argc] is o.
Envp is a pointer to an aI cay of strings that constitute the environment of the process. Each
string consists of a name, an "=", and a null-terminated value. The array of pointers is ter­
minated by a null pointer. The shell sh(I) passes an environment entry for each global shell
variable defined when the program is called. See environ(7) for some conventionally used
names. The C run-time start-off routine places a copy of envp in the global cell environ,
which is used by execv and exec/ to pass the environment to any subprograms executed by the
current program.

4.2 Berkeley Distribution April 25, 1986

EXECL(3) UNIX Programmer's Manual EXECL(3)

FILES

Exec/p and execvp are called with the same arguments as execl and execv, but duplicate the
shell's actions in searching for an executable file in a list of directories. The directory list is
obtained from the environment.

Ibinlsh shell, invoked if command file found by execlp or execvp

SEE AlSO
execve(2), fork(2), environ(7), csh(1)

DIAGNOSTICS

BUGS

If the file cannot be found, if it is not executable, if it does not start with a valid magic
number (see a.out(S», if maximum memory is exceeded, or if the arguments require too much
space, a return constitutes the diagnostic; the return value is -1. Even for the super-user, at
least one of the execute-permission bits must be· set for a file to be executed.

-
. If execvp is called to execute a file that turns out to be a shell command file, and if it is

impossible to execute the ·shell, the values of argvlO] and argvl-I] will be modified before
return.

4.2 Berkeley Distribution April 25, 1986 2

EXIT(3) UNIX Programmer's Manual

NAME
exit - terminate a process after flushing any pending output

SYNOPSIS
exit(status)
int status;

DESCRIPTION

EXIT(3)

Exit terminates a process after calling the Standard 1/0 library function _cleanup to flush any
buffered output. Exit never returns.

SEE ALSO
exit(2), intro(3)

4.2 Berkeley Distribution May 12, 1986

EXP(3M) UNIX Programmer's Manual EXP(3M)

NAME
exp, expml, 10g.loglO, loglp, pow - exponential, logarithm, power

SYNOPSIS
#include <math.h>

double exp(x)
double X;

double expml(x)
double X;

double log(x)
double X;

double loglO(x)
double X;

double loglp(x)
double X;

double pow(~y)
double ~y;

DESCRIPTION
Exp returns the exponential function of x.

Expml returns exp(x)-l accurately even for tiny x.

Log returns the natural logarithm of x.

LoglO returns the logarithm of x to base 10.

Loglp returns 10g(1 +x) accurately even for tiny x.

Pow(x,y) returns xY•

ERROR (due to Roundoff etc.)
exp(x), log(x), expml(x) and loglp(x) are accurate to within an ulp, and 10glO(x) to within
about 2 uips; an ulp is one Unit in the Last Place. The error in pow(x,y) is below about 2 ulps
when its magnitude is moderate. but increases as pow(x,y) approaches the over/underflow
thresholds until almost as many bits could be lost as are occupied by the floating-point
format's exponent field; that is 8 bits for VAX D and 11 bits for IEEE 754 Double. No such
drastic loss has been exposed by testing; the worst errors observed have been below 20 ulps
for VAX D, 300 ulps for IEEE 754 Double. Moderate values of pow are accurate enough that
pow(integer,integer) is exact until it is bigger than 2 .. 56 on a VAX, 2 .. 53 for IEEE 754.

DIAGNOSTICS

='lOTES

Exp, expm I and pow return the reserved operand on a VAX when the correct value would
overflow, and they set errno to ERANGE. Pow(x,y) returns the reserved operand on a VAX
and sets errno to EDOM when x < 0 and y is not an integer.

On a V AX, errno is set to EDOM and the reserved operand is returned by log unless x > 0,
by loglp unless x > -l.

The functions exp(x)-l and 10g(1 +x) are called expml and logpl in BASIC on the
Hewlett-Packard HP-71 B and APPLE Macintosh, EXP I and LN 1 in Pascal, exp 1 and 10g1
in C on APPLE Macintoshes, where they have been provided to make sure financial calcula­
tions of «l+x)**n-l)/x, namely expml(n*loglp(x»/x, will be accurate when x is tiny. They
also provide accurate inverse hyperbolic functions.

4th Berkeley Distribution . May 27, 1986 1

~XP(3M) UNIX Programmer's Manual EXP(3M)

Pow(x,O) returns x .. O = 1 for all x including x = 0, 00 (not found on a VAX), and NaN (the
reserved operand on a V AX). Previous implementations of pow may have defined x .. O to be
undefined in some or all of these cases. Here are reasons for returning u*O = 1 always:

(1) Any program that already tests whether x is zero (or infinite or NaN) before computing
x**O cannot care whether 0**0 = 1 or not. Any program that depends upon 0 .. 0 to be
invalid is dubious anyway since that expression's meaning and, if invalid, its conse­
quences vary from one computer system to another.

(2) Some Algebra texts (e.g. Sigler's) define x .. O .. 1 for all x, including x == O. This is com­
patible with the convention that accepts a[O] as the value of polynomial

p(x) = a[O]*u*O + a[l]*x .. 1 + a[2]*x .. 2 + ... + a[n]*u*n

at x - 0 rather than reject a[O]*O .. O as invalid.

(3) Analysts will accept 0**0 = 1 despite that x**y can approach anything or nothing as x
and y approach 0 independently. The reason for setting 0 .. 0 - I anyway is this:

If x(z) and y(z) are any functions analytic (expandable in power series) in z around z = 0,
and if there x(O) - y(O) .. 0, then x(z)"y(z) - I as z - O.

(4) If 0 .. 0 OIl I, then 00**0 = 110 .. 0 = 1 too; and then NaN**O = 1 too because x .. O =
for all finite and infinite x, i.e., independently of x.

SEE ALSO
math(3M), infnan(3M)

AUTHOR
Kwok-Choi Ng, W. Kahan

4th Berkeley Distribution May 27, 1986 2

FCLOSE(3S) UNIX Programmer's Manual FCLOSE(3S)

NAME
fclose, mush - close or flush a stream

SYNOPSIS
#include <stdio.h>

fclose(stream)
FILE _stream;

ftlush(stream)
FILE -stream;

DESCRIPTION
Fc/ose causes any buffers for the named stream to be emptied, and the file to be closed.
Buffers allocated by the standard input/output system are freed.

Fc/ose is performed automatically upon calling exil(3).

Fflush causes any buffered data for the named output stream to be written to that file. The
stream remains open.

SEE ALSO
close(2), fopen(3S), setbuf(3S)

DIAGNOSTICS
These routines return EOF if stream is not associated with an output file, or if buffered data
cannot be transferred to that file.

7th Edition May 15, 1985

FERROR(3S) UNIX Programmer's Manual FERROR(3S)

NAME
ferror, feof, clearerr, fileno - stream status inquiries

SYNOPSIS
#include <stdio.h>

feof(stream)
FILE -stream;

ferror(stream)
FILE -stream

clearerr(stream)
FILE -stream

fileno(stream)
FILE -stream;

DESCRIPTION
Feo! returns non-zero when end of file is read on the named input stream, otherwise zero.
Unless cleared by cieare", the end-of-file indication lasts until the stream is closed.

Fe"or returns non-zero when an error has occurred reading or writing the named stream, oth­
erwise zero. Unless cleared by cieare", the error indication lasts until the stream is closed.

Cleare" resets the error and end-of-file indicators on the named stream.

Fileno returns the integer file descriptor associated with the stream, see open(2).

Currently all of these functions are implemented as macros; they cannot be redeclared.

SEE AlSO
fopen(3S), open(2)

4th Berkeley Distribution May 14, 1986

FLOOR(3M) UNIX Programmer's Manual FLOOR(3M)

NAME
fabs, floor, ceil, rint - absolute value, floor, ceiling, and round-to-nearest functions

SYNOPSIS
#include <matb.b>

double Ooor(x)
double X;

double ceil(x)
double X;

double fabs(x)
double X;

double rint(x)
double X;

DESCRIPTION

NOTES

Fabs returns the absolute value I x I.
floor returns the largest integer no greater than x.

Ceil returns the smallest integer no less than x.

Rint returns the integer (represented as a double precision number) nearest x in the direction
of the prevailing rounding mode.

On a VAX, rint(x) is equivalent to adding half to the magnitude and then rounding towards
zero.

In the default rounding mode, to nearest, on a machine that conforms to IEEE 754, rint(x) is
the integer nearest x with the additional stipulation that if I rint(x)-x I = 112 then rint(x) is
even. Other rounding modes can make rint act like floor, or like ceil, or round towards zero.

Another way to obtain an integer near x is to declare (in C)
double x; int k; k = x;

Most C compilers round x towards 0 to get the integer k, but some do otherwise. If in doubt,
use floor, ceil, or rint first, whichever you intend. Also note that, if x is larger than k can
accommodate, the value of k and the presence or absence of an integer overflow are hard to
predict.

SEE ALSO
abs(3), ieee(3M), math(3M)

4th Berkeley Distribution May 12, 1986

FOPEN(3S) UNIX Programmer's Manual FOPEN(3S)

NAME
fopen, freopen, fdopen - open a stream

SYNOPSIS
#include <stdio.h>

FILE .fopen(filename, type)
char .filename, .type;

FILE .freopen(filename, type, stream)
char .filename, .type;
FILE .stream;

FILE .fdopen(fildes, type)
char .type;

DESCRIPTION
Fopen opens the tile named by filename and associates a stream with it. Fopen returns a
pointer to be used to identify the stream in subsequent operations.

Type is a character string having one of the following values:

"r" open for reading

"w" create for writing

"a" append: open for writing at end of file, or create for writing

In addition, each type may be followed by a "+" to have the file opened for reading and writ­
ing. "r+" positions the stream at the beginning of the file, "w+" creates or truncates it, and
"a+" positions it at the end. Both reads and writes may be used on read/write streams," with
the limitation that an !seek. rewind. or reading an end-of-file must be used between a read and

"a write or vice-versa.

Freopen substitutes the named file in place of the open stream. It returns the original value
of stream. The original stream is closed.

Freopen is typically used to attach the preopened constant names, stdin, stdout, stderr, to
specified files.

Fdopen associates a stream with a file descriptor obtained from open. dup. creat. or pipe(2).
The type of the stream must agree with the mode of the open" file.

SEE ALSO
open(2), fclose(3)

DIAGNOSTICS

BUGS

Fopen and /reopen return the pointer NULL if filename cannot be accessed, if too many files
are already open, or if other resources needed cannot be allocated.

Fdopen is not portable to systems other than UNIX.

The read/write types do not exist on all systems. Those systems without read/write modes
will probably treat the type as if the" +" was not present. These are unreliable in any event.

In order to support the same number of open files as does the system, Jopen must allocate
additional memory for data structures using calloc after 20 files have been opened. This con­
fuses some programs which use their own memory allocators. An undocumented routine,
J-prealloc, may be called to force immediate allocation of all internal memory except for
buffers. .

4th Berkeley Distribution May 27, 1986

FREAD(3S) UNIX Programmer's Manual

NAME
fread, fwrite - buffered binary input/output

SYNOPSIS
#include <stdio.h>

fread(ptr, sizeqf(.ptr), nitems, stream)
FILE .stream;

fwrite(ptr, sizeof(.ptr), nitems, stream)
FILE .stream;

DESCRIPTION

FREAD(3S)

Fread reads, into a block beginning at ptr, nitems of data of the type of .ptr from the named
input stream. It returns the number of items actually read.

If stream is stdin and the standard output is line buffered, then any partial output line will be
- flushed before any call to read(2) to satisfy the fread.

Fwrite appends at most nitems of data of the type of .ptr beginning at ptr to the named out­
put stream. It returns the number of items actually written.

SEE AlSO
read(2), write(2), fopen(3S), getc(3S), putc(3S), gets(3S), puts(3S), printf(3S), scanf(3S)

DIAGNOSTICS
Fread and fwrite return 0 upon end of file or error.

4th Berkeley Distribution May 15, 1985

FREXP(3) UNIX Programmer's Manual FREXP(3)

NAME
frexp, ldexp, modf - split into mantissa and exponent

SYNOPSIS
double frexp(value, eptr)
double value;
int .eptr;

double Idexp(value, exp)
double value;

double modf(value, iptr)
double value, .iptr;

DESCRIPTION
Frexp returns the mantissa of a double value as a double quantity, x, of magnitude less than 1
and stores an integer n such that value - X. 2n indirectly through eptr.
Ldexp returns the quantity value. zexP.

Mod/returns the positive fractional part of value and stores the integer part indirectly through
iptr.

7th Edition May 15, 1985

FSEEK(3S) UNIX Programmer's Manual FSEEK(3S)

NAME
fseek, ftell, rewind - reposition a stream

SYNOPSIS
#include <stdio.b>

fseek(st:ream. offset, ptmame)
FILE -stream;
long offset;

long ftell(stream)
FILE -stream;

rewind(stream)

DESCRIFI10N
Fseek sets the position of the next input or output operation on the stream. The new position
is at the signed distance offset bytes from the beginning, the current position, or the end of the
file, according as ptrname has the value 0, 1, or 2.

Fseek undoes any effects of ungetc(3S).

Ftell returns the current value of the offset relative to the beginning of the file associated with
the named stream. It is measured in bytes on UNIX; on some other systems it is a magic
cookie, and the only foolproof way to obtain an offset for fseek.

Rewind(stream) is equivalent to fseek(stream. OL, 0).

SEE ALSO
lseek(2), fopen(3S)

DIAGNOSTICS
Fseek returns -1 for improper seeks, otherwise zero.

7th Edition February 24, 1986

GETC(3S) UNIX Programmer's Manual GETC(3S)

NAME
getc, getchar, fgetc, getw - get character or word from stream

SYNOPSIS
#ioclude <stdio.h>

iot getc(stream)
FILE .stream;

iot getchar()

iot fgetc(stream)
FILE .stream;

iot getw(stream)
FILE .stream;

DESCRIPTION
Getc returns the next character from the named input stream.

GetcharO is identical to getc(stdin).

Fgetc behaves like getc, but is a genuine function, not a macro; it may be used to save object
text.

Getw returns the next iot (a 32-bit integer on a VAX-Ii) from the named input stream. It
returns the constant EOF upon end of file or error, but since that is a good integer value, feof
and jerror(3S) should be used to check the success of getw. Getw assumes no special align­
ment in the file.

SEE ALSO
clearerr(3S), fopen(3S), putc(3S), gets(3S), scanf(3S), fread(3S), ungetc(3S)

DIAGNOSTICS

BUGS

These functions return the integer constant EOF at end of file, upon read error, or if an
attempt is made to read a file not opened by jopen. The end-of-file condition is remembered,
even on a terminal, and all subsequent attempts to read will return EOF until the condition is
cleared with ciearerr(3S).

Because it is implemented as a macro, getc treats a stream argument with side effects
incorrectly. In particular, 'getc(.f+ +);' doesn't work sensibly.

7th Edition May 14, 1986

GETDISKBYNAME (3) UNIX Programmer's Manual GETDISKBYNAME (3)

NAME
getdiskbyname - get disk description by its name

SYNOPSIS
#include <disktab.h>

struct disktab •
getdiskbyname(name)
char .name;

DESCRIPTION
Getdiskbyname takes a disk name (e.g. rm03) and returns a structure describing its geometry
information and the standard disk partition tables. All information obtained from the disk­
tab(5) file.

<disktab.h> has the following form:

I.
• Copyright (c) 1983 Regents of the University of California.
• All rights reserved. The Berkeley software License Agreement
• specifies the terms and conditions for redistribution.
•
• @(#)disktab.h 5.2 (Berkeley) 10/1185
./

/.
• Disk description table, see disktab(5)
./

#define DISKTAB "/etc/disktab"

struct disktab {
char .d_name; /. drive name .1
char .d_type; I. drive type .1
int d_secsize; I. sector size in bytes ./
int d_ntracks; /. # tracks/cylinder ./
int d_nsectors; I. # sectorsltrack ./
int d_ncylinders; /. # cylinders ./
int d_rpm; I. revolutions/minute ./
int d_badsectforw; I. supports DEC bad144 std ./
int d_sectoffset; I. use sect rather than cyl offsets ./
struct partition { .

int p_size; /. #sectors in partition ./
short p_bsize; /. block size in bytes ./
short p_fsize;l. frag size in bytes .1

} d_partitions[8];
};

struct disktab .getdiskbynameO;

SEE ALSO

BUGS

disktab(S)

This information should be obtained from the system for locally available disks (in particular,
the disk partition tables).

4.2 Berkeley Distribution May 12, 1986

GETENV(3) UNIX Programmer's Manual

NAME
getenv - value for environment name

SYNOPSIS
char .getenv..(name)
char .name;

DESCRIPfION

GETENV(3)

Getenv searches the environment list (see environ(7» for a string of the form name-value and
returns a pointer to the string value if such a string is present, otherwise getenv returns the
value 0 (NULL).

SEE ALSO
environ(7), execve(2)

7th Edition May 15, 1985

GETFSENT (3) UNIX Programmer's Manual GETFSENT (3)

NAME-
getfsent, getfsspec, getfsfile, getfstype, setfsent. endfsent - get file system descriptor file entry

- .
SYNOPSIS

#include <fstab.h>

struct fstab .getfsentQ

struet fstab .getfsspec(spec)
char .spec;

struct fstab .getfsfile(file)
char .file;

struct fstab .getfstype(type)
char .type;

int setfsentQ

int endfsentQ .

DESCRIPTION .

FILES

Getjsent, getjsspec. getjstype, and getjsfile each return a pointer to an object with the following
structure containing the broken-out fields of a line in the file system description file,
<fstab.h>.

struct fstab {
char
char
char
int
int

};

.fs_spec;

.fs_file;

.fs_type;
fLfreq;
fLPassno;

The fields have meanings described in fttab(5).

Getftent reads the next line of the file, opening the file if necessary.

Setjsent opens and rewinds the file.

Endftent closes the file.

Getjsspec and getjsfile sequentially search from the beginning of the file until a matching spe­
cial file name or file system file name is found, or until EOF is encountered. Getjstype does
likewise, matching on the file system type field.

letc/fstab

SEE ALSO
fstab(S)

DIAGNOSTICS
Null pointer (0) returned on EOF or error.

BUGS
All information is contained in a static area so it must be copied int is to be saved.

4th Berkeley Distribution May 12, 1986

GETGRENT (3) UNIX Programmer's Manual GETGRENT (3)

NAME
getgrent, getgrgid, getgrnam, setgrent, endgrent - get group file entry

SYNOPSIS
#include <grp.h>

struct group -getgrentO

struct group -getgrgid(gid)
int gid;

struct group -getgrnam(name)
char -name;

setgrentQ

endgrentQ

DESCRIPTION

FILES

Getgrent. getgrgid and getgrnam each return pointers to an object with the following structure
containing the broken-out fields of a line in the group file.

I_ grp.h 4.1 83/05/03 -/

struct group { /- see getgrent(3) -/
char *gr_name;
char *gr_passwd;
int gr-sid;
char **gr_mem;

};

struct group *getgrentO, *getgrgidO, *getgmamO;

The members of this structure are:

gr_name The name of the group.
gr_passwd The encrypted password of the group.
gr'-sid The numerical group-IDe
gr_mem Null-terminated vector of pointers to the individual member names.

Getgrent simply reads the next line while getgrgid and getgrnam search until a matching gid
or name is found (or until EOF is encountered). Each routine picks up' where the others leave
off so successive calls may be used to search the entire file.

A call to setgrent has the effect of rewinding the group file to allow repeated searches.
Endgrent may be called to close the group file when processing is complete.

/etc/group

SEE ALSO
getiogin(3), getpwent(3), group(5)

DIAGNOSTICS
A null pointer (0) is returned on EOF or error.

BUGS
All information is contained in a static area so it must be copied if it is to be saved.

7th Edition May 15, 1985

GETHOSTBYNAME (3N) UNIX Programmer's Manual GETHOSTBYNAME(3N)

NAME
gethostbyname, gethostbyaddr, gethostent, sethostent, endhostent - get network host entry

SYNOPSIS
#include <netdb.h>

extern int h_errno;

struct hostent .gethostbyname(name)
char .name;

struct hostent .gethostbyaddr(addr, leu~ type)
char .addr; int len, type;

struct hostent .gethostent()

sethostent(stayopen)
int stayopen;

endhostentO

DESCRIPTION
Gethostbyname and gethostbyaddr each return a pointer to an object with the following struc­
ture. This structure contains either the information obtained from the name server,
named(8), or broken-out fields from a line in lete/hosts. If the local name server is not run­
ning these'routines do a lookup in jete/hosts.

struct hostent {

};

char .h_name;
char uh_aliases;
int h_addrtype;
int h_length;
char uh_addclist;

/. official name of host ./
/ .. alias list ./
/. host address type ./
/. length of address ./
/. list of addresses from name server ./

#define h_addr h_addclist[O] /. address, for backward compatibility ./

The members of this structure are:

h_name Official name of the host.

h_aliases A zero terminated array of alternate names for the host ..

h_addrtype The type of address being returned; currently always AF _INET.

h_Iength The length, in bytes, of the address.

h_addclist A zero terminated array of network addresses for the host. Host addresses are
returned in network byte order.

h_addr The first address in h_addclist; this is for backward compatiblity.

Sethostent allows a request for the use of a connected socket using TCP for queries. If the
stayopen flag is non-zero, this sets the option to send all queries to the name server using TCP
and to retain the connection after each call to gethostbyname or gethostbyaddr.

Endhostent closes the TCP connection.

DIAGNOSTICS
Error return status from gethostbyname and gethostbyaddr is indicated by return of a null
pointer. The external integer h_errno may then be checked to see whether this is a temporary
failure or an invalid or unknown host.

h_errno can have the following values:

HOST_NOT_FOUND No such host is known.

4.2 Berkeley Distribution May 20, 1986

GETHOSTBYNAME(3N) UNIX Programmer's Manual GETHOSTBYNAME (3N)

FILES

TRY_AGAIN

NO_RECOVERY

NO_ADDRESS

This is usually a temporary error and means that the local
server did not receive a response from an authoritative
server. A retry at some later time may succeed.

This is a non-recoverable error.

The requested name is valid but does not have an IP
address; this is not a temporary error. This means another
type of request to the name server will result in an answer.

letc/hosts

SEE ALSO
hosts(5), resolver(3), named(8)

CAVEAT

BUGS

Gethostent is defined, and sethostent and endhostent are redefined, when libc is built to use
only the routines to lookup in /etc/hosts and not the name server.

Gethostent reads the next line of /etc/hosts, opening the file if necessary.

Sethostent is redefined to open and rewind the file. If the stayopen argument is non-zero, the
hosts data base will not be closed after each call to gethostbyname or gethostbyaddr. Endhos­
tent is redefined to close the file.

All information is contained in a static area so it must be copied if it is to be saved. Only the
Internet address format is currently understood.

4.2 Berkeley Distribution May 20, 1986 2

-- ---------------------------- ---

GETLOGIN (3) UNIX Pr~grammer's Manual GETLOGIN (3)

NAME
getlogin - get login name

SYNOPSIS
char .getloginO

DESCRIPTION

FILES

Getlogin returns a pointer to the login name as found in !etc!utmp. It may be used in conc

junction with getpwnam to locate the correct password file entry when the same userid is
shared by several login names.

If get/ogin is called within a process that is not attached to a terminal, or if there is no entry
in !etc!utmp for the process's terminal,· getiogin returns a NULL pointer (0). A reasonable
procedure for determining the login name is to first call getiogin and if it fails, to call
getpwuid(getuidO).

/etc/utmp

SEE ALSO
getpwent(3), utmp(5), ttyslot(3)

DIAGNOSTICS
Returns a NULL pointer (0) if name not found.

BUGS
The return values point to static data whose content is overwritten by each call.

7th Edition May 9, 1986

GETMNTENT (3) . UNIX Programmer's Manual GETMNTENT (3)

NAME
setmntent. getmntent. addmntent. endmntent. hasmntopt - get :file system descriptor :file
entry

SYNOPSIS
#include <stdio.h>
#include <mntent.h.>

FILE *SetmntentWep, type)
char *fiJ.ep;
char *type;

struct mntent *getmntentCfUep)
FILE *fiJ.ep;

int addmntentWep, mnt)
FILE *fiJ.ep;
struct mntent *DlD.t;

char a:hasmntopt(mnt. opt)
struct mntent *DlD.t;
char *Opt;

int endmntentWep)
FILE *fiJ.ep;

DFSCRIPTION
These routines replace the get/sent routines for accessing the :file system description :file
letcl/stab. They are also used to access the mounted :file system description :file letclmtab.

Setmntent opens a :file system description :file and returns a :file pointer which can then be
used with getmntent. addmntent. or endmntent. The type argument is the same as in
/open.(3). Getmntent reads the next line from jilep and returns a pointer to an object with
the following structure containing the broken-out :fields of a line in the :filesystem descrip­
tion :file. <mntent.h>. The :fields have meanings described in /stab(5).

struct mntent {
. char *mnt_fsname; Ia: :file system name a:1

char *mnt_dir; Ia: :file system path pre:6.x *1
char *mnt_type; Ia: 4.2. nfs. swap. or xx a:1
char *mnt_opts; 1* roo quota. etc. *1
int mnt_freq; 1* dump frequency. in days *1

};
int mnt-passno; 1* pass number on parallel fsck *1

Addmntent adds the mntent structure mnt to the end of the open :file ftlep. Note that filep
has to be opened for writing if this is to work. Hasmntopt scans the mnt_opts :field of the
mntent structure mnt for a substring that matches opt. It returns the address of the sub­
string if a match is found. 0 otherwise. Endmntent closes the :file.

letc/fstab
letclmtab

SEE ALSO
fstab(5).getfsent(3)

Sun Microsystems Rei 3.0 12 March 1985 1

GETMNTENT (.3) UNIX Programmer"s Manual GETMNTENT (3)

DIAGNOSTICS
Null pointer (0) returned on EOF or error.

BUGS
The returned mn.tent structure points to static information that is overwritten in each call.

Sun Microsystems ReI 3.0 12 March 1985 2

GETNETENT (3N) UNIX Programmer's Manual GETNETENT (3N)

NAME
getnetent, getnetbyaddr, getnetbyname, setnetent, endnetent - get network entry

SYNOPSIS
#include <netdb.h>

struct netent .getnetentO

struct netent .getnetbyname(name)
char .name;

struct netent .getnetbyaddr(net, type)
long net;
int type;

setnetent(stayopen)
int stayopen;

endnetentO

DESCRIPTION

FILES

Getnetent, getnetbyname, and getnetbyaddr each return a pointer to an object with the follow­
ing structure containing the broken-out fields of a line in the network data base,
jete/networks .

struct

};

netent {
char
char
int
unsigned long

.n_name;
•• n_aliases;
n_addrtype;
n_net;

The members of this structure are:

n_name The official name of the network.

f. official name of net .f
f. alias list .f
f. net number type .f
f. net number ./

n_aliases A zero terminated list of alternate names for the network.

n_addrtype The type of the network number returned; currently only AF _INET.

n_net The network number. Network numbers are returned in machine byte order.

Getnetent reads the next line of the file, opening the file if necessary.

Setnetent opens and rewinds the file. If the stayopen flag is non-zero, the net data base will
not be closed after each call to getnetbyname or getnetbyaddr.

Endnetent closes the file.

Getnetbyname and getnetbyaddr sequentially search from the beginning of the file until a
matching net name or net address and type is found, or until EOF is encountered. Network
numbers are supplied in host order.

fetcfnetworks

SEE ALSO
networks(5)

DIAGNOSTICS

BUGS

Null pointer (0) returned on EOF or error.

All information is contained in a static area so it must be copied if it is to be saved. Only
Internet network numbers are currently understood. Expecting network numbers to fit in no
more than 32 bits is probably naive.

4.2 Berkeley Distribution May 19, 1986

GETNETGRENT (3N) UNIX. Programmer's Manual GETNETGRENT (3N)

NAME
getnetgrent. setnetgrent. endnetgrent. innetgr - get network group entry

SYNOPSIS
innetgr{n.etgroup, machine. user, domain)
char *D.etgroup, -machine, *User, *domain;

setnetgrent(netgroup)
char *D.etgroup

endnetgrentO

getnetgrentCmachinep, userp, domainp)
char **lDaChinep, **USerp, **<iomainp;

DESCRIPrION

FILES

Inngetgr returns 1 or O. depending on whether netgroup contains the machine. user. domain
triple as a member. Any of the three strings machine. user. or domain can be NULL. in
which case it signifies a wild card.

Getnetgrent returns the next member of a network group. After the call. machinep will
contain a pointer to a string containing the name of the machine part of the network group
member. and similarly for userp and domainp. If any of machinep. userp or domainp is
returned as a NULL pointer. it signifies a wild card. Getnetgrent will malloc space for the
name. This space is released when a endnetgrent call is made. Getnetgrent returns lit it
succeeding in obtaining another member of the network group. 0 if it has reached the end of
the group.

Setnetgrent establishes the network group from which getnetgrent will obtain members.
and also restarts calls to getnetgrent from the beginning of the list. If the previous setnet­
grent call was to a different network group. a endnetgrent call is implied. Endnetgrent
"frees the space allocated during the getnetgrent calls.

/ etc/netgroup
/ etc/yp/ domain/netgroup
/ etc/yp/ domainlnetgroup. byuser
/ etc/yp/ domain/netgroup. byhost

Sun Microsystems ReI 3.0 1 February 1985 1

GETOPT(3) UNIX Programmer's Manual GETOPT(3)

NAME
getopt - get option letter from argv

SYNOPSIS
int getopt(argc, argv, optstring)
int argC;
char .. argv;
char .optstring;

extern char .optarg;
extern int optind;

DESCRIPTION
Getopt returns the next option letter in argv that matches a letter in optstring. Optstring is a
string of recognized option letters; if a letter is followed by a colon, the option is expected to
have an argument that mayor may not be separated from it by white space. Optarg is set to
point to the start of the option argument on return from getopt.

Getopt places in optind the argv index of the next argument to be processed. Because optind
is external, it is normally initialized to zero automatically before the first call to getopt.

When all options have been processed (i.e., up to the first non-option argument), getopt
returns EOF. The special option - may be used to delimit the end of the options; EOF will
be returned, and - will be skipped.

DIAGNOSTICS
Getopt prints an error message on stderr and returns a question mark (?) when it encounters
an option letter not included in optstring.

EXAMPLE
The following code fragment shows how one might process the arguments for a command that
can take the mutually exclusive options a and b, and the options f and 0, both of which
require arguments:

main(argc, argv)
int argc;
char .. argv;
{

int c;
extern int optind;
extern char *optarg;

while «c = getopt(argc, argv, "abf:o:"» != EOF)
switch (c) {

4.3 Berkeley Distribution

case 'a':
if (bflg)

else

break;
case 'b':

if (aflg)

else

break;

errfig++;

aflg++;

errfig++;

bprocO;

May 27, 1986

GETOPT(3) UNIX Programmer's Manual GETOPT(3)

}

case 'f:

case '0':

case '?':
default:

}
if (errtlg) (

ifile := optarg;
break;

ofile = optarg;
break;

erri1g++;
break;

fprintf(stderr, ·Usage: ... ");
exit(2);

}
for (; optind < argc; optind + +) {

}

HISTORY

BUGS

Written by Henry Spencer, working from a Bell Labs manual page. Modified by Keith Bostic
to behave more like the System V version.

It is not obvious how '-' standing alone should be treated; this version treats it as a non­
option argument, which is not always right.

Option arguments are allowed to begin with '-'; this is reasonable but reduces the amount of
error checking possible.

Getopt is quite flexible but the obvious price must be paid: there is much it could do that it
doesn't, like checking mutually exclusive options, checking type of option arguments, etc.

4.3 Berkeley Distribution May 27, 1986 2

GETPASS(3)

NAME
geipass - read a password

SYNOPSIS
. char *getpass(prompt)

char *prompt;

DESCRIPTION

UNIX Programmer's Manual GETPASS(3)

Getpass reads a password from the file Idev/tty, or if that cannot be opened, from the stan­
dard input, after prompting with the null-terminated string prompt and disabling echoing. A
pointer is returned to a null-terminated string of at most 8 characters.

FILES
/dev/tty

SEE ALSO
crypt(3)

BUGS
The return value points to static data whose content is overwritten by each call.

7th Edition May 15, 1985·

UNIX Programmer's Manual

This page intentionally left almost blank.

GETPROTOENT (3N) UNIX Programmer's Manual GETPROTOENT(3N)

NAME
getprotoent, getprotobynumber, getprotobyname, setprotoent, endprotoent - get protocol
entry

SYNOPSIS
#include <netdb.h>

struct protoent -getprotoentO

struct protoent -getprotobyname(name)
char -name;

struct protoent -getprotobynumber(proto)
int proto;

setprotoent(stayopen)
int stayopen

endprotoentO

DESCRIPTION·

FILES

Getprotoent, getprotobyname, and getprotobynumber each return a pointer to an object with
the following structure containing the broken-out fields of a line in the network protocol data
base, fete/protocols.

struct protoent (
char -p_name;
char .. p_aliases;
int p_proto;

};

The members of this structure are:

/- official name of protocol -/
/- alias list -/
/- protocol number -/

p_name The official name of the protocol.

p_aliases A zero terminated list of alternate names for the protocol.

p_proto The protocol number.

Getprotoent reads the next line of the file, opening the file if necessary.

Setprotoent opens and rewinds the file. If the stayopen flag is non-zero, the net data base will
not be closed after each call to getprotobyname or getprotobynumber.

Endprotoent closes the file.

Getprotobyname and getprotobynumber sequentially search from the beginning of the file until
a matching protocol name or protocol number is found, or until EOF is encountered.

/ etc/protocols

SEE ALSO
protocols(5)

DIAGNOSTICS

BUGS

Null pointer (0) returned on EOF or error.

All information is contained in a static area so it must be copied if it is to be saved. Only the
Internet protocols are currently understood.

4.2 Berkeley Distribution May 19, 1986

GETPW(3C)

NAME
getpw - get name from uid

SYNOPSIS
getpw(uid, buf)
cbar -but;

DESCRIPTION

UNIX Programmer's Manual

Getpw is made obsolete by getpwuid(3).

GETPW(3C)

Getpw searches the password file for the (numerical) uid, and fills in bufwith the correspond­
ing line; it.returns non-zero if uid could not be found. The line is null-terminated.

FILES
letclpasswd

SEE ALSO
getpwent(3).passwd(5)

DIAGNOSTICS
Non-zero return on error.

7th Edition May 27.1986

GETPWENT (3) UNIX Programmer's Manual GETPWE:r:-rr (3)

NAME
getpwent, getpwuid, getpwnam, setpwent, endpwent, setpwfile - get password file entry

SYNOPSIS
#include <pwd.h>

struct passwd _getpwuid(uid)
int uid;

struct passwd _getpwnam(name)
char -name;

struct passwd -getpwentO

setpwentO

endpwentO

setpwftle(name)
char -name;

DESCRIPTION

FILES

Getpwent, getpwuid and getpwnam each return a pointer to an object with the following struc­
ture containing the broken-out fields of a line in the password file.

I- pwd.h 4.1 83/05/03 -I

struct passwd (I- see getpwent(3) -I
char _pw _name;
char _pw _passwd;
int pw_uid;
int pw-&id;
int pw _quota;
char _pw _comment;
char _pw -secos;
char _pw _dir;
char _pw _shell;

};

struct passwd -getpwentO, -getpwuidO, -getpwnamO;

The fields pw_quota and pw_comment are unused; the others have. meanings described in
passwd(5).

Searching of the password file is done using the ndbm database access routines. Setpwent
opens the database; endpwent closes it. Getpwuid and getpwnam search the database (opening
it if necessary) for a matching uid or name. EOF is returned if there is no entry.

For programs wishing to read the entire database, getpwent reads the next line (opening the
database if necessary). In addition to opening the database, setpwent can be used to make
getpwent begin its search from the beginning of the database.

Setpwfile changes the default password file to name thus allowing alternate password files to
be used. Note that it does not close the previous file. If this is desired, endpwent should be
called prior to it.

letc!passwd·

SEE ALSO
getiogin(3), getgrent(3), passwd(5)

7th Edition May 15, 1986

GETPWENT (3) UNIX Programmer's Manual GETPWENT (3)

DIAGNOSTICS
The routines getpwent, getpwuid, and getpwnam, return a null pointer (0) on EOF or error.

BUGS
All information is contained in a static area so it must be copied if it is to be saved.

7th Edition May 15, 1986 2

GETRPCENT (3N) UNIX Programmer's Manual GETRPCENT (3N)

NAME
getrpcent. getrpcbyname. getrpcbynumber - get rpc entry

SYNOPSIS
#include <netcib.h>

struct rpcent *getrpcentO

struct rpcent *getrpcbyname(name)
char *l1ame;

struct rpcent *getrpcbynumberlnumber)
intnumber;

setrpcent(stayopen)
int stayopen

endrpcentO

DESCRIPTION

FILES

Getrpcent. getrpcbynome. and getrpcbynumher each return a pointer to an object with the
follOWing structure containing the broken-out fields of a line in the rpc program number
data base. letclrpc.

struct rpcent {

}:

char *r_name:
char **r_aliases:
long r_number:

The members of this structure are:

1* name of server for this rpc program *1
1* alias list *1
1* rpc program number *1

r_name The name of the server for this rpc program.

r_aliases A zero terminated list of alternate names for the rpc program.

r_number The rpc program number for this service.

Getrpcent reads the next line of the file. opening the file if necessary.

Setrpcent opens and rewinds the file. If the stayopen flag is non-zero. the net data base will
not be closed after each call to getrpcent (either directly. or indirectly through one of the
other "getrpc" calls).

Endrpcent closes the file.

Getrpcbynome and getrpcbynumber sequentially search from the beginning of the file until a
matching rpc program name or program number is found. or until EOF is encountered.

letc/rpc
letc/ypldoTTUlinnomelrpc.bynumber

SEE ALSO .
rpc(5).rpcinfo(8).ypservices(8)

DIAGNOSTICS
Null pointer (0) returned on EOF or error.

BUGS
All information is contained in a static area so it must be copied if it is to be saved.

Sun Microsystems ReI 3.0 26 September 1985 1

GETRPCPORT (3R) UNIX Programmer's Manual

NAME
getrpcport - get RPC port num~

SYNOPSIS
int getrpcportOlost. prognum, versnUJD, proto)

char-host;
int prognum, versnum, proto;

DFSCRIPTION

GETRPCPORT (3R)

Getrpcport returns the port number for version vermum. of the RPC program. prognum. run­
ning on host and using protocol proto. It returns 0 if it cannot contact the portmapper. or if
prognum. is not registered. If prognum. is registered but not with version vermum.. it will
return that port number.

Sun Microsystems ReI 3.0 21 October 1985 1

GETS(3S) UNIX Programmer's Manual

NAME
gets, fgets - get a string from a stream

SYNOPSIS
#include <stdio.h>

char -gets(s)
char -s;

char -fgets(s, n, stream)
char -s;
FILE -stream;

DESCRIPTION

GETS(3S)

Gets reads a string into s from the standard input stream stdin. The string is terminated by a
newline character, which is replaced in s by a null character. Gets returns its argument.

Fgets reads n-l characters, or up through a newline character, whichever comes first, from
the stream into the string s. The last character read into s is followed by a null character.
Fgets returns its first argument.

SEE ALSO
puts(3S), getc(3S), scanf(3S), fread(3S), ferror(3S)

DIAGNOSTICS
Gets and fgets return the constant pointer NULL upon end of file or error.

BUGS
GelS deletes a newline, fgels keeps it, all in the name of backward compatibility.

7th Edition May 15, 1985

GETSERVENT (3N) UNIX Programmer's Manual GETSERVENT(3N)

NAME
getservent, getservbyport, getservbyname, setservent, endservent -. get service entry

SYNOPSIS
#incJude <netdb.b>

struc:t senent .getsenent()

struc:t senent .getsenbyname(name, proto)
char .name, .proto;

struc:t senent .getsenbyport(port. proto)
int port; char .proto;

setsenent(stayopen)
int stayopen

endsenent()

DESCRIPTION

FILES

Getservent, getservbyname, and getservbyport each return a pointer to an object with the fol­
lowing structure containing the broken-out fields of a line in the network services data base,
/etc/services.

struct servent {
char -s_name;
char us_aliases;
int s_port;
char .s_proto;

};

The members of this structure are:

I. official name of service .1
I. alias list .1
I. port service resides at .1
I. protocol to use .1

s_name The official name of the service.

s_aliases A zero terminated list of alternate names for the service.

s_port The port number at which the service resides. Port numbers are returned in net-
work byte order.

s_proto The name of the protocol to use when contacting the service.

Getservent reads the next line of the file, opening the file if necessary.

Setservent opens and rewinds the file. If the stayopen Oag is non-zero, the net data base will
not be closed after each call to getservbyname or .IR getServbyport .

Endservent closes the file.

Getservbyname and getservbyport sequentially search from the beginning of the file until a
matching protocol name or port number is found, or until EOF is encountered. If a protocol
name is also supplied (non-NULL), searches must also match the protocol.

letclservices

SEE ALSO
getprotoent(3N), services(5)

DIAGNOSTICS

BUGS

Null pointer (0) returned on EOF or error.

All information is contained in a static area so it must be copied if it is to be saved. Expect­
ing port numbers to fit in a 32 bit quantity is probably naive.

4.2 Berkeley Distribution . May 19, 1986

GETTTYENT (3) UNIX Programmer's Manual GETTTYENT (3)

NAME
getttyent, getttynam, setttyent, endttyent - get ttys file entry

SYNOPSIS
i¥include <ttyent.h>

sti'Uct ttyent .getttyentO

struct ttyent .getttynam(name)
char .name;

setttyentO

endttyentO

DESCRIPTION
Getttyent, and getttynam each return a pointer to an object with the following structure cona

taining the broken-out fields of a line from the tty description file.

I.
• Copyright (c) 1983 Regents of the University of California.
• All rights reserved. The ~erkeley software License Agreement
• specifies the terms and conditions for redistribution.
•
• @(i¥)ttyent.h 5.1 (Berkeley) 5/30/85
.1

struct ttyent { I. see getttyent(3) .1

};

char
char
char
int
char
char

.ty_name;

.tY-8etty;

.ty_type;
. ty _status;
.ty _window;
.ty _comment;

I. t~rminal· device name .1
/. command to execute, usually getty ./
/. terminal type for termcap (3X) ./
/. status flags (see below for defines) ./
/. command to start up window manager ./
/. usually the location of the terminal ./

i¥define ITY _ON Oxl I. enable logins (startup getty) ./
/. allow root to login ., i¥define ITY _SECURE Ox2

extern struct ttyent .getttyentO;
extern struct ttyent .getttynamO;

ty_name

ty..getty

is the name of the character-special file in the directory "'dev". For various
reasons, it must reside in the directory "'dev".

is the command (usually getty(8» which is invoked by init to initialize tty line
characteristics. In fact, any arbitrary command can be used; a typical use is
to initiate a terminal emulator in a window system.

is the name of the default terminal type connected to this tty line. This is typi­
cally a name from the termcap(5) data base. The environment variable
'TERM' is initialized with this name by getty(8) or /ogin(l).

ty_status is a mask of bit fields which indicate various actions to be allowed on this tty
line. The following is a description of each flag.

ITY _ON Enables logins (i.e., init(8) will start the specified "getty"
command on this entry).

ITY _SECURE Allows root to login on this terminal. Note that 'ITY _ON'
must be included for this to be useful.

4.3 Berkeley Distribution May 20,1986

GETTTYENT (3) UNIX Programmer's Manual GETTTYENT(3)

FILES

ty _window is the command to execute for a window system associated with the line. The
window system will be started before the command specified in the ty..getty
entry is executed. If none is specified, this will be null.

ty _comment is the trailing comment field, if any; a leading delimiter and white space will
be removed.

Getttyent reads the next line from the ttys file, opening the file if necessary; setttyent rewinds
the file; endttyent closes it.

Getttynam searches from the beginning of the file until a matching name is found (or until
EOF is encountered).

/etc/ttys

SEEAlSO
login(l), ttyslot(3), ttys(S), gettytab(S). termcap(S), getty(8), init(8)

DIAGNOSTICS
Null pointer (0) returned on EOF or error.

BUGS
All information is contained in a static area so it must be copied if it is to be saved.

4.3 Berkeley Distribution May 20, 1986 2

GETUSERSHELL(3) UNIX Programmer's Manual GETUSERSHELL (3)

NAME
getusershell, setusershell, endusershell - get legal user shells

SYNOPSIS
char .getusershellO

setusershellO

endusershellO

DESCRIPI10N

FILES

Getusershell returns a pointer to a legal user shell as defined by the system manager in the file
/ete/shells. If /ete/shells does not exist, the two standard system shells /bin/sh and /bin/csh
are returned.

Getusershell reads the next line (opening the file if necessary); setusershell rewinds the file;
endusershell closes it.

letclshells

DIAGNOSTICS
The routine getusershell returns a null pointer (0) on EOF or error.

BUGS
All information is contained in a static area so it must be copied if it is to be saved.

4.3 Berkeley Distribution November 8, 1985

GETWD(3) UNIX Programmer's Manual

NAME
getwd - get current working directory pathname

SYNOPSIS
char *getwd(pathname)
char *pathname;

DESCRIPTION

GETWD(3)

Getwd copies the absolute pathname of the current working directory to palhname and
returns a pointer to the result. -

UMITATIONS
Maximum pathname length is MAXPATHLEN characters (1024), as defined in
<syslparam.h>.

DIAGNOSTICS
Getwd returns zero and places a message in path name if an error occurs.

4.2 Berkeley Distribution . May 12, 1986

HYPOT(3M) UNIX Programmer's Manual HYPOT(3M)

NAME
hypot, cabs - Euclidean distance, complex absolute value

SYNOPSIS
#include <math.h>

double hypot(x,y)
double x,y;

double c:abs(z)
struct {double x,y;} Z;

DESCRIPTION
Hypot(x,y) and cabs(x,y) return sqrt(ux+y*y) computed in such a way that underflow will not
happen, and overflow occurs only if the final result deserves it.

hypot(oo,v) = hypot(v,oo) = +00 far all v, including NaN.

ERROR (due to Roundoff, etc.)

NOTES

Below 0.97 ulps. Consequently hypot(5.0,12.0) = 13.0 exactly; in general, hypot and cabs
return an integer whenever an integer might be expected.

The same cannot be said for the shorter and faster version of hypot and cabs that is provided
in the comments in cabs.c; its error can exceed 1.2 ulps.

As might be expected, hypot(v,NaN) and hypot(NaN,v) are NaN for all finite v; with "reserved
operand" in place of "NaN", the same is true on a VAX. But programmers on machines other
than a VAX (it has no 00) might be surPrised at first to discover that hypot(±oo,NaN) = +00.
This is intentional; it happens because hypot(oo,v) = +00 for all v, finite or infinite. Hence
hypot(oo,v) is independent of v. Unlike the reserved operand on a VAX, the IEEE" NaN is
designed to disappear when it turns out to be irrelevant, as it does in hypot(oo,NaN).

SEE ALSO
math(3M), sqrt(3M)

AUTHOR
W. Kahan

4th Berkeley Distribution May 12, 1986

IEEE(3M) UNIX Programmer's Manual IEEE(3M)

NAME
copysign, drem, finite, 10gb, scalb - copysign, remainder, exponent manipulations

SYNOPSIS
#include <math.h>

double copysign(x,y)
double x,y;

double drem(x,y)
double x,y;

int finite(x)
double X;

double logb(x)
double X;

double scalb(x,n)
double X;

int n;

DESCRIPTION
These functions are required for, or recommended by the IEEE standard 754 for
floating-point arithmetic.

Copysign(x,y) returns x with its sign changed to y's.

Drem(x,Y) returns the remainder r := x - n*y where n is the integer nearest the exact value of
xly; moreover if In - x/y I = 112 then n is even. Consequently the remainder is computed
exactly and Irl ~ ly1/2. But drem(x,O) is exceptional; see below under DIAGNOSTICS.

Finite(x) = 1 just when -00 < x < +00,

= 0 otherwise (when Ixl = 00 or x is NaN or
x is the VAX's reserved operand.)

Logb(x) returns x's exponent n, a signed integer converted to double-precision floating-point
and so chosen that 1 :s; Ixl/2**n < 2 unless x = 0 or (only on machines that conform to
IEEE 754) Ixl = 00 or x lies between 0 and the Underflow Threshold; see below under
"BUGS".

Scalb(x,n) = x*(2**n) computed, for integer n, without first computing 2 .. n.

DIAGNOSTICS
IEEE 754 defines drem(x,O) and drem(oo,y) to be invalid operations that produce a NaN. On
a VAX, drem(x,O) returns the reserved operand. No 00 exists on a VAX.

IEEE 754 defines logb(±oo) = +00 and 10gb(0) = -00, and requires the latter to signal
Division-by-Zero. But on a VAX, 10gb(0) = 1.0 - 2.0**31 = -2,147,483,647.0. And if the
correct value of scalb(x,n) would overflow on a VAX, it returns the reserved operand and sets
ermo to ERANGE.

SEE ALSO
floor(3M), math(3M), infnan(3M)

AUTHOR

BUGS

Kwok-Choi Ng

Should drem(x,O) and 10gb(0) on a VAX signal invalidity by setting ermo = EDOM? Should
10gb(0) return -1.7e38?

4.3 Berkeley Distribution May 12, 1986

IEEE(3M) UNIX Programmer's Manual IEEE(3M)

IEEE 754 currently specifies that logb(denormaiized no.) = logb(tiniest normalized no. > 0)
but the consensus has changed to the specification in the new proposed IEEE standard p854,
namely that logb(x) satisfy

1 !:> scalb(lxl,-logb(x» < Radix ... = 2 for IEEE 754
for every x except 0, 00 and NaN. Almost every program that assumes 754's specification will
work correctly if 10gb follows 854's specification instead.

IEEE 754 requires copysign(x,NaN) = ±x but says nothing else about the sign of a NaN. A
NaN (Not a Number) is similar in spirit to the VAX's reserved operand, but very different in
important details. Since the sign bit of a reserved operand makes it look negative,

copysign(x,reserved operand) = -x;
should this return the reserved operand instead?

4.3 Berkeley Distribution May 12, 1986 2

INET(3N) UNIX Programmer's Manual INET(3N)

NAME
ineLaddr, inet_network, ineLntoa, ineLmakeaddr, ineLlnaof, ·ineLnetof - Internet address
manipulation routines

SYNOPSIS
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>

unsigned long inecaddr(cp)
char .cp;

unsigned long ineCnetwork(cp)
char .cp;

char .inecntoa(in)
struct in_addr in;

struct in_addr ineCmakeaddr(ne~ Ina)
int ne~ Ina;·

int ineClnaof(in)
strUct in_addr in;

int inecnetof(in)
struct in_addr in;

DESCRIPTION
The routines ineCaddr and inecnetwork each interpret character strings representing numbers
expressed in the Internet standard "." notation, returning numbers suitable for use as Internet
addresses' and Internet network numbers, respectively .. The routine ineCnloa takes an Inter­
net address and returns an ASCII string representing the address in "." notation. The routine
inecmakeaddr takes an Internet network number and a local network address and constructs
an Internet address from it. The routines inecnetof and inet_lnaofbreak apart Internet host
addresses, returning the network number and local network address part, respectively.

All Internet address are returned in network order (bytes ordered from left to right). All net­
work numbers and local address parts are returned as machine format integer values.

INTERNET ADDRESSES
Values specified using the"." notation take one of the following forms:

a.b.c.d
a.b.c
a.b
a

When four parts are specified, each is interpreted as a byte of data and assigned, from left to
right, to the four bytes of an Internet address. Note that when an Internet address is viewed
as a 32-bit integer quantity on the V AX the bytes referred to above appear as "d.c.b.a". That
is, V AX bytes are ordered from right to left.

When a three part address is specified, the last part is interpreted as a 16-bit quantity and
placed in the right most two bytes of the network address. This makes the three part address
format convenient for specifying Class B network addresses as "128.net.host".

When a two part address is supplied, the last part is interpreted as a 24-bit quantity and
placed in the right most three bytes of the network address. This makes the two part address
format convenient for specifying Class A network addresses as "net. host" .

When only one part is given, the value is stored directly in the network address without any
byte rearrangement.

4.2 Berkeley Distribution May 27,1986 1

INET(3N) UNIX Programmer's Manual INET(3N)

All numbers supplied as "parts" in a "." notation may be decimal, octal, or hexadecimal, as
specified in the C language (i.e., a leading Ox or OX implies hexadecimal; otherwise, a leading
o implies octal; otherwise, the number is interpreted as decimal).

SEE ALSO
gethostbyname(3N), getnetent(3N), hosts(5), networks(5),

DIAGNOSTICS

BUGS

The value -1 is returned byinecaddr and ineCnetwork for malformed requests.

The problem of host byte ordering versus network byte ordering is confusing. A simple way
to specify Class C network addresses in a manner similar to that for Class B and Class A is
needed. The string returned by inecntoa resides in a static memory area.
Inecaddr should return a struct in_addr.

4.2 Berkeley Distribution May 27, 1986 2

INFNAN(3M) UNIX Programmer's Manual INFNAN(3M)

NAME
infnan - signals invalid floating-point operations on a VAX (temporary)

SYNOPSIS
#include <~th.h>

double infnan(iarg)
int iug;

DESCRIPTION
At some time in the future. some of the useful properties of the Infinities and NaNs in the
IEEE standard 754 for Binary Floating-Point Arithmetic will be simulated in UNIX on the
DEC V AX by using its Reserved Operands. Meanwhile, the Invalid, Overflow and
Oivide-by-Zero exceptions of the IEEE standard are being approximated on a VAX by calls
to a procedure in/nan in appropriate places in /ibm. When better exception-handling is
implemented in UNIX, only in/nan among the codes in /ibm will have to be changed. And
users of libm can design their own in/nan now to insulate themselves from future changes.

Whenever an elementary function code in !ibm has to simulate one of the aforementioned
IEEE exceptions, it calls infnan(iarg) with an appropriate value of iarg. Then a resex:ved
operand fault stops computation. But in/nan could be replaced by a function with the same
name that returns some plausible value, assigns an apt value to the global yariable errno, and
allows computation to resume. Alte,rnatively, the Reserved Operand Fault Handler could be
changed to respond by returning that plausible value, etc. instead of aborting.

In the table below, the first two columns show various exceptions signaled by the IEEE stan­
dard, and the default result it prescribes. The third column shows what value is given to iarg
by functions in !ibm when they invoke infnan(iarg) under analogous circumstances on a VAX.
Currently in/nan stops computation under all those circumstances. The last two columns
offer an alternative; they suggest a setting for errno and a value for a revised in/nan to return.
And a C prograJP. to implement that suggestion follows. .

IEEE IEEE
Signal Default iarg errno

Invalid NaN EDOM EDOM
Overflow ±oo ERANGE ERANG~
Div-by-O ±oo ±ERANGE ERANGE or EDOM

(HUGE =- 1.7e38 ... nearly 2.0**127)

ALTERNATIVE in/nan:

#include <math.h>
#include <ermo.h>
extern int ermo;
double infnan(iug)
int iug;
(

switch(iug) (
case ERANGE: ermo = ERANGE; retum(HUGE);

in/nan

o
HUGE
±HUGE

case -ERANGE: errno = EDOM; return(-HUGE);
default: ermo = EDOM; returli(O);
}

}

SEE ALSO
math(3M), intro(2), signal(3).

ERANGE and EOOM are defined in <errno.h>. See intro(2) for explanation of EOOM and
ERANGE.

4.3 Berkeley Distribution May 27, 1986

INITGROUPS (3) UNIX Programmer's Manual

N.A!'\1E
initgroups - initialize group access list

SYNOPSIS
initgroups(name, basegid)
char -name;
int basegid;

DESCRIPTION

INITGROUPS (3)

Initgroups reads through the group file and sets up, using the setgroups(2) call, the group
access list for the user specified in name. The basegid is automatically included in the groups
list. Typically this value is given as the group number from the password file.

FILES
/etc/group

SEE ALSO
setgroups(2)

DIAGNOSTICS
Initgroups returns -1 if it was not invoked by the super-user.

BUGS
Initgroups uses the routines based on getgrent(3). If the invoking program uses any of these
routines, the group structure will be overwritten in the call to initgroups. .

4.2 Berkeley Distribution May 12, 1986

INSQUE(3) UNIX Programmer's Manual

NAME
insque, remque - insert/remove element from a queue

SYNOPSIS
struct qelem (

};

struct qelem .~forw;
struct qelem .q_back;
char q_data[);

in5que(elem, pred)
struct qelem .elem, .pred;

remque(elem)
struct qelem .elem;

DESCRIPTION

INSQUE(3)

Insque and remque manipulate queues built from doubly linked lists. Each element in the
queue must in the form of "struct qelem". Insque inserts elem in a queue immediately after
pred; remque removes an entry elem from a queue.

SEE AlSO
"VAX Architecture Handbook", pp. 228-235.

4.2 Berkeley Distribution May 20, 1986 1

JO(3M) UNIX Programmer's Manual JO(3M)

NA..'VIE
jO, j 1, jn, yO, y 1, yn - bessel functions

SYNOPSIS
#indude <math.h>

double jO(x)
double X;

double jl(x)
double X;

double jn(n,x)
iot 0;
double X;

double yO(x)
double X;

double .yl(x)
double X;

double yn(n,x)
iot ~;
double X;

DESCRIPTION
These functions calculate Bessel functions of the first and second kinds for real arguments and
integer orderS.

DIAGNOSTICS
On a VAX, negative arguments cause yO, yl and yn to return the reserved operand and set
errno to EDOM.

SEE ALSO
math(3M), infnan(3M)

4th Berkeley Distribution May 12, 1986

LGAMMA(3M) UNIX Programmer's Manual LGAMMA(3M)

NAME
Igamma - log gamma function

SYNOPSIS
#include <math.h>

double 19amma(x)
double X;

DESCRIPTION
Lgamma returns In I r(x) I where r(x) = r; tx- 1 e-t dt

r(x) = 1f/(r(1-x) sin(1I"x»

The external integer signgam returns the sign of r(x) .

IDIOSYNCRASIES

for x> 0 and
for x < 1.

Do not use the expression signgam*exp(lgamma(x» to compute g := r(x). Instead use a pro­
gram like this (in C):

Ig = 19amma(x); g = signgam*exp(lg);

Only after 19amma has returned can signgam be correct. Note too thai r(x) must overflow
when x is large enough, underflow when -x is large enough, and spawn a division by zero
when x is a non positive integer.

Only in the UNIX math library for C was the name gamma ever attached to Inr. Elsewhere,
for instance in IBM's FORTRAN library, the name GAMMA belongs to r and the name
ALGAMA to lnr in single precision; in double the names are DGAMMA and DLGAMA.
Why should C be different?

Archaeological records suggest that C's gamma originally delivered In(r(I x I ». Later, the pro­
gram gamma was changed to cope with negative arguments x in a more conventional way, but
the documentation did not reflect that change correctly. The most recent change corrects
inaccurate values when x is almost a negative integer, and lets r(x) be computed without con­
ditional expressions. Programmers should not assume that 19amma has settled down.

At some time in the future, the name gamma will be rehabilitated and used for the gamma
function, just as is done-in FORTRAN. The reason for this is not so much compatibility
with FORTRAN as a desire to achieve greater speed for smaller values of Ixl and greater
accuracy for larger values.

Meanwhile, programmers who have to use the name gamma in its former sense, for what is .
now [gamma, have two choices: .

1) Use the old math library, libom.

2) Add the following program to your others:
#include <math.h>
double gamma(x)
double X;
{

return (lgamma(x»;

DIAGNOSTICS
The reserved operand is returned on a V AX for negative integer arguments, ermo is set to
ERANGE; for very large arguments over/underflows will occur inside the [gamma routine.

SEE ALSO
math(3M), infnan(3M)

4.3 Berkeley Distribution May 12, 1986

LIB2648 (3X) UNIX Programmer's Manual LIB2648 (3X)

NAME
Iib2648 - subroutines for the HP 2648 graphics terminal

SYNOPSIS
#include <stdio.h>

typedef ehar _bitmat;
FILE -trace;

cc file.c -12648

DESCRIPTION
Lib2648 is a general purpose library of subroutines useful for interactive graphics on the
Hewlett-Packard 2648 graphics terminal. To use it you must call the routine ttyinitO at the
beginning of execution, and doneO at the end of execution. All terminal input and output
must go through the routines rawchar, readline, outchar, and olftstr.

Lib2648 does the necessary AUF handshaking if getenv("TERM'j returns "hp2648", as it will
. if set by tset(1). Any other value, including for example "2648", will disable handshaking.

Bit matrix routines are provided to model the graphics memory of the 2648. These routines
are generally useful, but are specifically useful for the update function which efficiently
changeS what is on the screen to what is supposed to be on the screen. The primative bit
matrix routines are newmat, mat, and setmat.

The file trace, if non-null, is expected to be a file descriptor as returned by [open. If so,
lib2648 will trace the progress of the output by writing onto this file. It is provided to make
debugging output feasible for graphics programs without messing up the screen or the escape
sequences being sent. Typical use of trace will include:

switch (argv[I][I)) (
case'T':

trace = fopen("trace", "w");
break;

if (trace)
fprintf(trace, "x is %d, y is %s\n·, x, y);

dumpmat("before update", xmat);

ROUTINES
agoto(x, y)

Move the alphanumeric cursor to position (x, y), measured from the upper left comer
of the screen.

aoft'() Tum the alphanumeric display off.

aonO Tum the alphanumeric display on.

areaclear(rmin, emin, rmax, emax)
Clear the area on the graphics screen bordered by the four arguments. In normal
mode the area is set to I'll black, in inverse video mode it is set to all white.

beep() Ring the bell on the terminal.

bitcopy(dest, sre, rows, cols) bitmat dest,
Copy a rows by cols bit matrix from src to (user provided) dest.

clearaO
Clear the alphanumeric display.

4.2 Berkeley Distribution May 27, 1986

LlB2648 (3X)

CleargO

UNIX Programmer's Manual LlB2648 (3X)

Clear the graphics display. Note that the 2648 will only clear the part of the screen
that is visible if zoomed in.

curoft'() Tum the graphics cursor off.

curonO Tum the graphics cursor on,

dispmsg(str. X, y, mulen) char -str;
Display the message str in graphics text at position (x. y). The maximum message
length is given by max/en, and is needed for dispmsg to know how big an area to
clear before drawing the message. The lower left comer of the first character is at (x.
y).

done() Should be called before the program exits. Restores the tty to normal, turns off graph­
ics screen, turns on alphanumeric screen, flushes the standard output, etc.

draw(x, y)
Draw a line from the pen location. to (x. y). As with all graphics coordinates, (x. y) is
measured from the bottom left comer of the screen. (x. y) coordinates represent the
first quadrant of the. usual Cartesian system.

drawbox(r, c. color, rows. cols)
Draw a rectangular box on the graphics screen. The lower left comer is at location (r,
c). The box is rows rows high and cols columns wide. The box is drawn if color is 1,
erased if color is O. (r. c) absolute coordinates represent row and column on the
screen, with the origin at the lower left. They are equivalent to (x, y) except for being
reversed in order.

dumpmat(msg, m. rows. cols) char -msg; hitmat m;
If trace is non-null, write a readable ASCII representation of the matrix m on trace.
Msg is a label to identify the output.

emptyrow(m. rows. coIs. r) bitmat m;
Returns 1 if row r of matrix m is all zero, else returns O. This routine is provided
because it can be implemented more efficiently with a knowledge of the internal
representation than a series of calls to mat.

error(msg) char -msg;
Default error handler. Calls message(msg) and returns. This is called by certain rou­
tines in lib2648. It is also suitable for calling by the user program. It is probably a
good idea for a fancy graphics program to supply its own error procedure which uses
setjmp(3) to restart the program.

gdefault()
Set the terminal to the default graphics modes.

goft'() Tum the graphics display off.

gonO· Tum the graphics display on.

koft'() Tum the keypad off.

konO Tum the keypad on. This means that most special keys on the terminal (such as the
alphanumeric arrow keys) will transmit an escape sequence instead of doing their
function locally.

line(xl, yl, x2, y2)
Draw a line in the current mode from (xl, yl) to (x2, y2). This is equivalent to
move(xl, yl); draw(x2, y2); except that a bug in the terminal involving repeated lines
from the same point is compensated for.

4.2 Berkeley Distribution May 27, 1986 2

LIB2648 (3X) UNIX Programmer's Manual LIB2648 (3X)

lowleftO
Move the alphanumeric cursor to the lower left (home down) position.

mat(m, rows, cols, r, c) bitmat m;
Used to retrieve an element from a bit matrix. Returns 1 or 0 as the value of the [r,
c] element of the rows by cols matrix m. Bit matrices are numbered (r, c) from the
upper left comer of the matrix, beginning at (0, 0). R represents the row, and c
represents the column.

message(str) char -str;
Display the text message str at the bottom of the graphics screen.

minmu(g, rows, cols, min. cmin, rmax, cmu) bitmat g;
int _rmin, -cnlin, -rmax, -cmu;

Find the smallest rectangle that contains all the 1 (on) elements in the bit matrix g.
The coordinates are returned in the variables pointed to by rmin, cmin, rmax, cmax.

move(x, y)
Move the pen to location (x, y). Such motion is internal and will not cause output
until a subsequent sync().

movecurs(x, y)
Move the graphics cursor to location (x, y).

bitmat newmat(rows, cols)
Create (with malloc(3» a new bit matrix of size rows by cols. The value created (e.g. a
pointer to the first location) is returned. A bit matrix can be freed directly with free.

outchar(c) char c;
Print the character c on the standard output. All output to the terminal should go
through this routine or outstr.

outstr(str) char -str;
Print the string str on the standard output by repeated calls to outchar.

printg()
Print the graphics display on the printer. The printer must be configured as device 6
(the default) on the HPIB.

char rawchar()
Read one character from the terminal and return it. This routine or read line should
be used to get all input, rather than getchar(3).

rboft'() Tum the rubber band line off.

rbonO Tum the rubber band line on.

char -rdchar(c) char c;
Return a readable representation of the character c. If c is a printing character it
returns itself, if a control character it is shown in the AX notation, if negative an apos­
trophe is prepended. Space returns -, rubout returns "1.

NOTE: A pointer to a static place is returned. For this reason, it will not work to
pass rdchar twice to the same Jprintjlsprintj call. You must instead save one of the
values in your own buffer with strepy.

readline(prompt, msg, maxlen) char .prompt, .msg;
Display prompt on the bottom line of the graphics display and read one line of text
from the user, terminated by a newline. The line is placed in the buffer msg, which
has size maxlen characters. Backspace processing is supported.

setclear()
Set the display to draw lines in erase mode. (This is reversed by inverse video mode.)

4.2 Berkeley Distribution May 27,1986 3

LIB2648 (3X) UNIX Programmer's Manual LIB2648 (3X)

setmat(m, rows, cols, r, C, val) bitmat m;
The basic operation to store a value in an element of a bit matrix. The [r. c] element
of m is set to val, which should be either 0 or 1.

setset() Set the display to draw lines in normal (solid) mode. (This is reversed by inverse
video mode.)

setxor()
Set the display to draw lines in exclusive or mode.

sync() Force all accumulated output to be displayed on the screen. This should be followed
by fflush(stdout). The cursor is not affected by this function. Note that it is normally
never necessary to call sync, since rawchar and readline call sync() and fJlush(stdout)
automatically.

togvidO
Toggle the state of video. If in normal mode, go into inverse video mode, and vice
versa. The screen is reversed as well as the internal state of the library.

ttyinitO
. Set up the terminal for processing. This routine should be called at the beginning of

execution. It places the terminal in CBREAK mode, turns off echo, sets the proper
modes in the terminal, and initializes the library.

update(mold, mnew, rows, cols, baser, basec) batmat mold, mnew;

vidinvO

Make whatever changes are needed to make a window on the screen look like mnew.
Mold is what the window on the screen currently looks like. The window has size
rows by cols, and the lower left comer on the screen of the window is [baser. basec}.
Note: update was not intended to be used for the entire screen. It would work but be
very slow and take 64K bytes of memory just for mold and mnew. It was intended
for 100 by 100 windows with objects in the center of them, and is quite fast for such
windows.

Set inverse video mode.

vidnormO
Set normal video mode.

zermat(m, rows, cols) bitmat m;
Set the bit matrix m to all zeros.

zoomn(size)
Set the hardware zoom to value size. which can range from 1 to 15.

zoomoft'()
Tum zoom off. This forces the screen to zoom level 1 without affecting the current
internal zoom number.

zoomonO
Turn zoom on. This restores the screen to the previously specified zoom size.

DIAGNOSTICS

FILES

The rcutine error is called when an error is detected. The only error currently detected is
overflow of the buffer provided to readline.

Subscripts out of bounds to setmat return without setting anything.

lusr/lib/lib2648.a

4.2 Berkeley Distribution May 27, 1986 4

LIB2648 (3X) . UNIX Programmer's Manual LIB2648 (3X)

SEE ALSO
fed(l)

AUTHOR

BUGS

Mark Horton

This library is not supported. It makes no attempt to use all of the features of the terminal,
only those needed by fed. Contributions from users will be accepted for addition to the
library.

The HP 2648 terminal is somewhat unreliable at speeds over 2400 baud, even with the AErF
handshaking. In an effort to improve reliability, handshaking is done every 32 characters.
(The manual claims it is only necessary every 80 characters.) Nonetheless, 110 errors some­
times still occur.

There is no way to control the amount of debugging output generated on trace without modi­
fying the source to the library.

4.2 Berkeley Distribution May 27,1986 5

MALLOC(3) UNIX Programmer's Manual MALLOC(3)

NAME
malloc, free, realloc, calloc, alloca - memory allocator

SYNOPSIS
char .malloc(size)
unsigned size;

free(ptr)
char .ptr;

char .realloc(ptr. size)
char .ptr;
unsigned size;

char .caIloc(nelem. elsize)
unsigned nelem. elsize;

char .alloca(size)
int size;

DESCRIPTION
Malloc and free provide a general-purpose memory allocation package. Mal/oc returns a
pointer to a block of at least size bytes beginning on a word boundary.

The argument to free is a pointer to a block previously allocated by malloc; this space is made
available for further allocation, but its contents are left undisturbed.

Needless to say, grave disorder will result if the space assigned by malloc is overrun or if
some random number is handed to free. .

Malloc maintains multiple lists of free blocks according to size, allocating space from. the
appropriate list. It calls sbrk (see brk(2» to get more memory from the system when there is
no suitable space already free.

Realloc changes the size of the block pointed to by ptr to size bytes and returns a pointer to
the (possibly moved) block. The contents will be unchanged up to the lesser of the new and
old sizes. .

In order to be compatible with older versions, realloc also works if ptr points to a block freed
since the last call of malloc. real/oc or calloc; sequences of free, malloc and real/oc were previ­
ously used to attempt storage compaction. This procedure is no longer recommended.

Calloc allocates space for an array of nelem elements of size elsize. The space is initialized to
zeros.

Alloca allocates size bytes of space in the stack frame of the caller. This temporary space is
automatically freed on return.

Each of the allocation routines returns a pointer to space suitably aligned (after possible
pointer coercion) for storage of any type of object. If the space is of pagesize or larger, the
memory returned will be page-aligned.

SEE ALSO
brk(2), pagesize(2)

DIAGNOSTICS

BUGS

Malloc. real/oc and calloc return a null pointer (0) if there is no available memory or if the
arena has been detectably corrupted by storing outside the bounds of a block. MaUoe may be
recompiled to check the arena very stringently on every transaction; those sites with a source
code license may check the source code to see how this can be done.

When realloc returns 0, the block pointed to by ptr may be destroyed.

4th Berkeley Distribution May 14, 1986 1

MALLOC(3) UNIX Programmer's Manual MALLOC(3)

The current implementation of mal/oc does not always fail gracefully when system memory
limits are approached. It may fail to allocate memory when larger free blocks could be bro­
ken up, or when limits are exceeded because the size is rounded up. It is optimized for sizes
that are powers of two.

AI/oca is machine dependent; its use is discouraged.

4th Berkeley Distribution May 14, 1986 2

MATH(3M) UNIX Programmer's Manual MATH(3M)

NAME
math - introduction to mathematical library functions

DESCRIPTION
These functions constitute the C math library, !ibm. The link editor searches thi$ library
under the "-1m" option. Declarations for these functions may be obtained from the include
file <math.h>. The Fortran math library is described in "man 3f intro".

LIST OF FUNcrIONS
Name Appears on Page

acos
acosh
asin
asinh
atan
atanh
atan2
cabs
cbrt
ceil
copysign
cos
cosh
drem
erf
erfc
exp
expml
fabs
floor
hypot
infnan
jO
jl
jn
19amma
log
10gb
log10
loglp
pow
rint
scalb
sin
sinh
sqrt
tan
tanh
yO
yl
yn

NOTES

sin. 3m
asinh.3m
sin. 3m
asinh.3m
sin. 3m
asinh.3m
sin. 3m
hypot.3m
sqrt.3m
floor.3m
ieee. 3m
sin.3m
sinh.3m
ieee. 3m
erf.3m
erf.3m
exp.3m
exp.3m
floor. 3m
floor. 3m
hypot.3m
infnan.3m
jO.3m
jO.3m
jO.3m
19amma.3m
exp.3m
ieee. 3m
exp.3m
exp.3m
exp.3m
floor.3m
ieee.3m
sin. 3m
sinh.3m
sqrt.3m
sin.3m
sinh.3m
jO.3m
jO.3m
jO.3m

Description

inverse trigonometric function
inverse hyperbolic function
inverse trigonometric function
inverse hyperbolic function
inverse trigonometric function
inverse hyperbolic function
inverse trigonometric function
complex absolute value
cube root
integer no less than
copy sign bit
trigonometric function
byperbolic function
remainder
error function
complementary error function
exponential
exp(x)-l
absolute value
integer no greater than
Euclidean distance
signals exceptions

E"or Bound (ULPs)

3
3
3
3
1
3
2
1
1
o
o
1
3
o

.???
?11
1
1
o
o
1

bessel function 111
bessel function 111
bessel function 111
log gamma function; (formerly gamma.3m)
natural logarithm 1
exponent extraction 0
logarithm to base 10 3
log(l+x) 1
exponential x .. y 60-500
round to nearest integer 0
exponent adjustment 0
trigonometric function 1
hyperbolic function 3
square root 1
trigonometric function 3
hyperbolic function 3
bessel function 111
bessel function ???
bessel function ???

In 4.3 BSD, distributed from the University of California in late 1985, most of the foregoing
functions come in two versions, one for the double-precision "0" format in the DEC

4th Berkelev Distribution Mav 27.1986 1

MATH(3M) UNIX Programmer's Manual MATH(3M)

VAX-II family of computers, another for double-precision arithmetic conforming to the
IEEE Standard 754 for Binary Floating-Point Arithmetic. The two versions behave very
similarly, as should be expected from programs more accurate and robust than was the norm
when UNIX was born. For instance, the programs are accurate to within the numbers of ulps
tabulated above; an u/p is one Unit in the Last Place. And the programs have been cured of
anomalies that aftlicted the older math library !ibm in which incidents like the following had
been reported:

sqrt(-1.0) .. 0.0 and log(-1.0) = -1.7e38.
cos(1.0e-ll) > cos(O.O) > 1.0.
pow(x,l.O) ~ x when x - 2.0, 3.0,4.0, ... , 9.0.
pow(-l.O,l.OelO) trapped on Integer Overflow.
sqrt(1.0e30) and sqrt(l.Oe-30) were very slow.

However the two versions do differ in ways that have to be explained, to which end the fol­
lowing notes are provided.

DEC VAX-ll D_Ooatinl-point:

This is the format for which· the original math library !ibm was developed, and to which this
manual is still principally dedicated. It is the double-precision format for the PDP-II and
the earlier VAX-ll machines; VAX-lls after 1983 were provided with an optional "G" for­
mat closer to the IEEE double-precision format. The earlier DEC MicroVAXs have no 0
format, only G double-precision. (Why? Why not?) .

Properties of 0 _floating-point:
Wordsize: 64 bits, 8 bytes. Radix: Binary.
Precision: 56 significant bits, roughly like 17 significant decimals.

If x and x' are consecutive positive D_floating-point numbers (they differ by 1
u/p), then

"1.3e-17 < 0.5 .. 56 < (x'-x)/x S 0.5 .. 55 < 2.8e-17.
Range: Overflow threshold = 2.0 •• 127 = 1.7e38.

Underflow threshold .. 0.5 .. 128 = 2.ge-39.
NOTE: THIS RANGE IS COMPARATIVELY NARROW.
Overflow customarily stops computation.
Underflow is customarily flushed quietly to zero.
CAUTION:

It is possible to have x ~ y and yet x-y .. 0 because of underflow.
Similarly x > y > 0 cannot prevent either x.y = 0 or ylx .. 0 from
happening without warning.

Zero is represented ambiguously.
Although 2 •• 55 different representations of zero are accepted by the
hardware, only the obvious representation is ever produced. There is no -0
ona VAX.

00 is not part of the V AX architecture.
Reserved operands:

of the 2 .. 55 that the hardware recognizes, only one of them is ever produced.
Any floating-point operation upon a reserved operand, even a MOVF or
MOVO, customarily stops computation, so they are not much used.

Exceptions:
Divisions by zero and operations that overflow are invalid operations that
customarily stop computation or, in earlier machines, produce reserved
operands that will stop computation.

Rounding:
Every rational operation (+, -, ., I) on a VAX (but not necessarily on a
PDP-II), if not an overlunderflow nor division by zero, is rounded to within
half an ulp, and when the rounding erro~ is exactly half an u/p then rounding

4th Berkeley Distribution May 27, 1986 2

MATH(3M) UNIX Programmer's Manual MATH(3M)

is away from O.

Except for its narrow range, D _floating-point is one of the better computer arithmetics
designed in the 1960's. Its properties are reflected fairly faithfully in the elementary functions
for a VAX distributed in 4.3 BSD. They over/underflow only if their results have to lie out of
range or very nearly so, and then they behave much as any rational arithmetic operation that
over/underflowed would behave. Similarly. expressions like 10g(0) and atanh(l) behave like
110; and sqrt(-3) and acos(3) behave like 0/0; they all produce reserved operands andlor stop
computation! The situation is described in more detail in manual pages.

This response seems excessively punitive, so it is destined to be replaced at
some time in the foreseeable future by a more flexible but still uniform scheme
being developed to handle all floating-point arithmetic exceptions neatly. See
infnan(3M) for the present state of affairs.

How do the functions in 4.3 BSD's new /ibm for UNIX compare with their counterparts in
DEC's VAX/VMS library? Some of the VMS functions are a little faster, some are a little
more accurate, some are more puritanical about exceptions (like pow(O.O,O.O) and
atan2(0.0,0.0», and most occupy much more memory than their counterparts in !ibm. The
VMS codes interpolate in large table to achieve speed and accuracy; the !ibm codes use tricky
formulas compact enough that all of them may some day fit into a ROM.

More important, DEC regards the VMS codes as proprietary and guards them zealously
against unauthorized use. But the !ibm codes in 4.3 BSD are intended for the public domain;
they may be copied freely provided their provenance is always acknowledged, and provided
users assist the authors in their researches by reporting experience with the codes. Therefore
no user of UNIX on a machine whose arithmetic resembles V AX D _floating-point need use
anything worse than the new !ibm.

IEEE STANDARD 754 Floating-Point Arithmetic:

Tliis standard is on its way to becoming more widely adopted than any other design for com­
puter arithmetic. VLSI chips that conform to some version of that standard have been pro­
duced by a host of manufacturers, among them ...

Intel i8087, i80287 National Semiconductor 32081
Motorola 68881 Weitek WTL-I032, ·1165
Zilog Z8070 Western Electric (AT&T) WE32106.

Other implementations range from software, done thoroughly in the Apple Macintosh,
through VLSI in the Hewlett-Packard 9000 series, to the ELXSI 6400 running ECL at 3
Megaflops. Several other companies have adopted the formats of IEEE 754 without, alas,
adhering to the standard's way of handling rounding and exceptions like over/underflow. The
DEC VAX G_floating-point format is very similar to the IEEE 754 Double format, so similar
that the C programs for the IEEE versions of most of the elementary functions listed above
could easily be converted to run on a MicroVAX, though nobody has volunteered to do that
yet.

The codes in 4.3 BSD's !ibm for machines that conform to IEEE 754 are intended primarily
for the National Semi. 32081 and WTL 1164/65. To use these codes with the Intel or Zilog
chips, or with the Apple Macintosh or ELXSI 6400, is to forego the use of better codes pro­
vided (perhaps freely) by those companies and designed by some of the authors of the codes
above. Except for atan, cabs, cbrt, erf, erjC, hypot, jO-jn, igamma, pow and yO-yn. the
Motorola 68881 has all the functions in !ibm on chip, and faster and more accurate; it, Apple,
the i8087, Z8070 and WE321 06 all use 64 significant bits. The main virtue of 4.3 BSD's !ibm
codes is that they are intended for the public domain; they may be copied freely provided
their provenance is always acknowledged, and provided users assist the authors in their
researches by reporting experience with the codes. Therefore no user of UNIX on a machine
that conforms to IEEE 754 need use anything worse than the new !ibm.

4th Berkeley Distribution May 27,1986 3

MATH(3M) UNIX Programmer's Manual MATH(3M)

Properties of IEEE 754 Double-Precision:
Wordsize: 64 bits, 8 bytes. Radix: Binary.
Precision: 53 significant bits, roughly like 16 significant decimals.

If x and x' are consecutive positive Double-Precision numbers (they differ by
1 ulp), then
1.1e-16 < 0.5 .. 53 < (x'-x)/x S 0.5 .. 52 < 2.3e-16.

Range: Overflow threshold = 2.0 •• 1024 "" 1.8e308
Underflow threshold == 0.5 •• 1022 - 2.2e-308
Overflow goes by default to a signed 00.
Underflow is Gradual, rounding to the nearest integer multiple of 0.5 .. 1074 =
4.ge-324.

Zero is represented ambiguously as +0 or -0.
Its sign transforms correctly through multiplication or division, and is
preserved by addition of zeros with like signs; but x-x yields +0 for every
finite x .. The only operations that reveal zero's sign are division by zero and
copysign(x,±O). In particular, comparison (x > y, x ~ y, etc.) cannot be
affected by the sign of zero; but if finite x = y then 00 = lI(x-y) ¢ -lI(y-x) =
-00.

00 is signed.
it persists when added to itself or to any finite number. Its sign transforms
correctly through multiplication and division, and (finite)/±oo = ±O
(nonzero)/O = ±oo. But 00-00, 00.0 and 00/00 are, like 0/0 and sqrt(-3),
invalid operations that produce NaN

Reserved operands:
there are 2 .. 53-2 of them, all called NaN (Not a Number). Some, called Sig­
naling NaNs, trap any floating-point operation performed upon them; they are
used to mark missing or uninitialized values, or nonexistent elements of
arrays. The rest are Quiet NaNs; they are the default results of Invalid Opera­
tions, and propagate through subsequent arithmetic operations. If x # x then
x is NaN; every other predicate (x > y, x ... y, x < y, ...) is FALSE if NaN is
involved.
NOTE: Trichotomy is violated by NaN.

Rounding:

Besides being FALSE, predicates that entail ordered comparison,
rather than mere (in)equality, signal Invalid Operation when NaN is
involved.

Every algebraic operation (+, -, ., I, y) is rounded by default to within half an
ulp, and when the rounding error is exactly half an ulp then the rounded
value's least significant bit is zero. This kind of rounding is usually the best
kind, sometimes provably so; for instance, for every x = 1.0, 2.0, 3.0, 4.0, ... ,
2.0 .. 52, we find (xl3.0).3.0 == x and (xlI0.0).1O.0 == x and ... despite that
both the quotients and the products have been rounded. Only rounding like
IEEE 754 can do that. But no single kind of rounding can be proved best for
every circumstance, so IEEE 754 provides rounding towards zero or towards
+00 or towards -00 at the programmer's option. And the same kinds of
rounding are specified for Binary-Decimal Conversions, at least for magni­
tudes between roughly l.Oe-l0 and l.Oe37.

Exceptions:
IEEE 754 recognizes five kinds of floating-point exceptions, listed below in
declining order of probable importance.

Exception Default Result

Invalid Operation NaN, or FALSE

4th Berkeley Distribution May 27, 1986 4

MATH(3M) UNIX Programmer's Manual MATH(3M)

Overflow ±oo
Divide by Zero ±oo
Underflow Gradual Underflow
Inexact Rounded value

NOTE: An Exception is not an Error unless handled badly. What makes a
class of exceptions exceptional is that no single default response can be satis­
factory in every instance. On the other hand, if a default response will serve
most instances satisfactorily, the unsatisfactory instances cannot justify abort­
ing computation every time the exception occurs.

For each kind of floating-point exception, IEEE 754 provides a Rag that is raised
each time its exception is signaled, and stays raised until the program resets it. Pro­
grams may also test, save and restore a flag. Thus, IEEE 7 54 provides three ways by
which programs may cope with exceptions for which the default result might be unsa­
tisfactory:

1) Test for a condition that might cause an exception later,. and branch to avoid the
exception.

2) Test a flag to see whether an exception has occurred since the program last reset
its flag.

3) Test a result to see whether it is a value that only an exception could have pro­
duced.
CAUTION: The only reliable ways to discover whether Underflow has occurred
are to test whether products or quotients lie closer to zero than the underflow
threshold, or to test the Underflow flag. (Sums and differences cannot underflow
in IEEE 754; if x ¢ y then x-y is correct to full precision and certainly nonzero
regardless of how tiny it may be.) Products and quotients that un$lerflow gradu­
ally can lose accuracy gradually without vanishing, so comparing them with zero
(as one might on a V AX) will not reveal the loss. Fortunately, if a gradually
underflowed value is destined to be added to something bigger than the
underflow threshold, as is almost always the case, digits lost to gradual underflow
will not be missed because they would have been rounded off anyway. So gra­
dual underflows are usually provably ignorable. The same cannot be said of
underflows flushed to O.

At the option of an implementor conforming to IEEE 754, other ways to cope with
exceptions may be provided:

4) ABORT. This mechanism classifies an exception in advance as an incident to be
handled by means traditionally associated with error-handling statements like
·ON ERROR GO TO Different languages offer different forms of this state­
ment, but most share the following characteristics:

No means is provided to substitute a value for the offending operation's result
and resume computation from what may be the middle of an expression. An
exceptional result is abandoned.

In a subprogram that lacks an error-handling statement, an exception causes the
sut. program to abort within whatever program called it, and so on back up the
chain of calling subprograms until an error-handling statement is encountered or
the whole task is aborted and memory is dumped.

5) STOP. This mechanism, requiring an interactive debugging environment, is
more for the programmer than the program. It classifies an exception in advance
as a symptom of a programmer's error; the exception suspends execution as near
as it can to the offending operation so that the programmer can look around to
see how it happened. Quite often the first several exceptions tum out to be quite

4th Berkeley Distribution May 27, 1986 5

MATH(3M) UNIX Programmer's Manual MATH(3M)

BUGS

unexceptionable, so the programmer ought ideally to be able to resume execution
after each one as if execution had not been stopped.

6) ... Other ways lie beyond the scope of this document.

The crucial problem for exception handling is the probl~m of Scope, and the problem's solu­
tion is understood, but not enough manpower was available to implement it fully in time to
be distributed in 4.3 BSD's !ibm. Ideally, each elementary function should act as if it were
indivisible, or atomic, in the sense that ...

i) No exception should be signaled that is not deserved by the data supplied to that func­
tion.

ii) Any exception signaled should be identified with that function rather than with one of its
subroutines.

iii) The internal behavior of an atomic function should not be disrupted when a calling pro­
gram changes from one to another of the five or so ways of handling exceptions listed
above, although the definition of the function may be correlated intentionally with
exception handling.

Ideally, every programmer should be able conveniently to tum a debugged subprogram into
one that appears atomic to its users. But simulating all three characteristics of an atomic
function is still a tedious affair, entailing hosts of tests and saves-restores; work is under way
to ameliorate the inconvenience.

Meanwhile, the functions in !ibm are only approximately atomic. They signal no inappropri ..
ate exception except possibly ...

Over/U nderflow
when a result, if properly computed, might have lain barely within range, and

Inexact in cabs, cbrt, hypot, log 10 and pow
when it happens to be exact, thanks to fortuitous cancellation of errors.

Otherwise, ...
Invalid Operation is signaled only when

any result but NaN would probably be misleading.
Overflow is signaled only when

the exact result would be finite but beyond the overflow threshold.
Divide-by-Zero is signaled only when

a function takes exactly infinite values at finite operands.
Underflow is signaled only when

the exact result would be nonzero but tinier than the underflow threshold.
Inexact is signaled only when

greater range or precision would be needed to represent the exact result.

When signals are appropriate, they are emitted by certain operations within the codes, so a
subroutine-trace may be needed to identify the function with its signal in case method 5)
above is in use. And the codes all take the IEEE 754 defaults for granted; this means that a
decision to trap all divisions by zero could disrupt a code that would otherwise get correct
results despite division by zero.

SEE ALSO
An explanation of IEEE 754 and its proposed extension p854 was published in the IEEE
magazine MICRO in August 1984 under the title • A Proposed Radix- and
Word-length-independent Standard for Floating-point Arithmetic· by W. J. Cody et al. The
manuals for Pascal, C and BASIC on the Apple Macintosh document the features of IEEE
754 pretty well. Articles in the IEEE magazine COMPUTER vol. 14 no. 3 (Mar. 1981), and
in the ACM SIGNUM Newsletter Special Issue of Oct. 1979, may be helpful although they
pertain to superseded drafts of the standard.

4th Berkeley Distribution May 27, 1986 6

MATH(3M) UNIX Programmer's Manual MATH(3M)

At[THOR
W. Kahan, with the help of Z-S. Alex Liu, Stuart I. McDonald, Dr. Kwok-Choi Ng, Peter
Tang.

4th Berkeley Distribution May 27, 1986 7

MKTEMP(3) UNIX Programmer's Manual MKTEMP(3)

NAME
mktemp - make a unique file name

SYNOPSIS
char -mktemp(template)
char _template;

mkstemp(template)
char -template;

DESCRIPTION
Mktemp creates a unique file name, typically in a temporary filesystem, by replacing template
with a unique file name, and returns the address of the template. The template should con­
tain a file name with six trailing X's, which are replaced with the current process id and a
unique letter. Mkstemp makes the same replacement to the template but returns a file
descriptor for the template file open for reading and writing. Mkstemp avoids the race
between testing whether the file exists and opening it for use.

SEE ALSO
getpid(2), open(2)

DIAGNOSTICS
Mkstemp returns an open file descriptor upon success. It returns -1 if no suitable file could be
created.

7th Edition May 14, 1986

MONITOR(3) UNIX Programmer's Manual MONITOR(3)

NAME
monitor, monstartup, moncontrol - prepare execution profile

SYNOPSIS
mooitor(lowpc, highpc, buffer, bufsize, nfunc)
iot (.lowpc)Q, (.highpc)();
short buffer(];

moostartup(lowpc, highpc)
iot (.lowpc)Q, (.highpc)Q;

moocootrol(mode)

DESCRIPTION
There are two different forms of monitoring available: An executable program created by:

cc-p ...
automatically includes calls for the prof{ 1) monitor and includes an initial call to its start-up
routine monstartup with default parameters; monitor need not be called explicitly except to
gain fine control over profil buffer allocation. An executable program created by:

cc -pg ...

. automatically includes calls for the gprof{l) monitor.

Monstartup is a high level interface to profil(2). Lowpc and highpc specify the address range
that is to be sampled; the lowest address sampled is that of low pc and the highest is just below
highpc. Monstartup allocates sp,ce using sbrk(2) and passes it to monitor (see below) to
record a histogram of periodically sampled values of the program counter, and of counts of
calls of certain functions, in the buffer. Only calls of functions compiled with the profiling
option -p of cc(1) are recorded.

To profile the entire program, it is sufficient to use

extern etext();

monstartup«int) 2, etext);

Etext lies just above all the program text, see end(3).

To stop execution monitoring and write the results on the file mon.out. use

monitor(O);

then prof{ 1) can be used to examine the results.

Moncontrol is used to selectively control profiling within a program. This works with either
prof{l) or gprof{l) type profiling. When the program starts, profiling begins. To stop the col­
lection of histogram ticks and call counts use moncontrol(O); to resume the collection of histo­
gram ticks and call counts use moncontrol(1). This allows the cost of particular operations to
be measured. Note that an output file will be produced upon program exit irregardless of the
state of moncontrol.

Monitor is a low level interface to profil(2). Lowpc and highpc are the addresses of two func­
tions; buffer is the address of a (user supplied) array of bu/size short integers. At most n/unc
call counts can be kept. For the results to be significant, especially where there are small,
heavily used routines, it is suggested that the buffer be no more than a few times smaller than
the range of locations sampled. Monitor divides the buffer into space to record the histogram
of program counter samples over the range low pc to highpc, and space to record call counts of
functions compiled with the -p option to cc(1).

4th Berkeley Distribution May 15, 1985

MONITOR(3) UNIX Programmer's Manual

To profile the entire program, it is sufficient to use

extern etextO;

monitor«int) 2, etext, buf, bufsize, nfunc);

FILES
mon.out

SEE ALSO
cc(l), prof(l), gprof(1), profil(2), sbrk(2)

4th Berkeley Distribution May 15, 1985

MONITOR(3)

2

MOUNT (3R) UNIX Programmer's Manual

NAME
mount - keep track of remotely mounted :fi.lesystems

SYNOPSIS
#include <rpcsvc/mount.h.>

RPC INFO
program number:

MOUNTPROG

xdr routines:
xdr_exportbody(xdrs. ex)

XDR*Xdrs:

procs:

struct exports *ex:
xdr_exportsCxdrs. ex);

XDR*xdrs:
struct exports **ex;

xdr_fhandle(xdrs. fh);
XDR*Xdrs:

. fhandle_t *fp:
xdr_fhstatus(xdrs. fhs):

XDR*Xdrs:
struct fhstatus *fhs:

xdr-&roups(xdrs. gr);
XDR*Xdrs:
muct groups *gr;

xdr_mountbody(xdrs. ml)
XDR*Xdrs;
struct mountlist *ml;

xdr_mountlist(xdrs. ml):
XDR*Xdrs:
struct mountlist **ml;

xdr_path(xdrs. path);
XDR*Xdrs:
char **path:

MOUNTPROC_MNT
argument of xdr_path. returns fhstatus.
Requires unix authentication.

MOUNTPROC_DUMP
no args. returns struct mountlist

MOUNTPROC_UMNT
argument of xdr_path. no results.
requires unix authentication.

MOUNTPROC_UMNTALL
no arguments. no results.
requires unix authentication.
umounts a11 remote mounts of sender.

MOUNTPROC_EXPORT
MOUNTPROC_EXPORTALL

no args. returns struct exports

versions:
MOUNTVERS_ORIG

structures:

Sun Microsystems ReI 3.0 10 August 1985

MOUNT(3R)

1

MOUNT(3R) UNIX Programmer's Manual MOUNT(3R)

SEE ALSO

struct mountlist { 1* what is mounted *1
char *ml_name:
char *m.l-path:
struct mountlist *ml_nxt:

}:
struct fhstatus {

int fhs~tus:
fhandle_t fhs_fh:

}:
1*
* List of exported directories
* An export entry with ex--8roups
* NULL indicates an entry which is exported to the world,
*1
struct exports {

dev_t
char

}:

struct groups
struct exports

struct groups {

ex_dey: 1* dey of directory *1
ex_name: 1 name of directory *1
ex~oups: 1 groups allowed to mount this entry *1
*ex_next:

char *&-name:

}:
struct groups *&-next:

mount(8), showmount(8), mountd(8C), NFS Protocol Spec, section 3.

Sun Microsystems ReI 3.0 10 August 1985 2

MP(3X) UNIX Programmer's Manual MP(3X)

NAME
madd, msub, mult, mdiv, pow, gcd, invert, rpow, msqrt, mcmp, move,_min, omin, fmin,
m_in, mout, omout, fmout, m_out, sdiv, itom - multiple precision integer arithmetic

SYNOPSIS
#include <mp.h>
#include <stdio.h>

typedef struct mint { int len; short .val; } MINT;

madd(a, b, c)
msub(a, b, c)
mult(a, b, c)
mdiv(a, b, q, r)
pow(a, b, m, c)
gcd(a, b, c)
invert(a, b, c)
rpow(a, n, c)
msqrt(a, b, r)
mcmp(a, b)
move(a9 b)
min(a)
omin(a)
fmin(a, t)
m_in(a, n, t)
mout(a)
omout(a)
fmout(a, t)
m_out(a, n, t)
MINT -a, .b, .c, .m, .q, .r;
FILE -f;
int n;

sdiv(a, n, q, r)
MINT.a, .q;
short n;
short .r;

MINT .itom(n)

DESCRIPTION
These routines perform arithmetic on integers of arbitrary length. The integers are stored
using the defined type MINT. Pointers to a MINT can be initialized using the function ftom
which sets the initial value to n. After that, space is managed automatically by the routines.

madd, msub and mull assign to c the sum, difference and product, respectively, of a and b.
mdiv assigns to q and r the quotient and remainder obtained from dividing a by b. sdiv is
like mdiv except that the divisor is a short integer n and the remainder is placed in a short
whose address is given as r. msqrt produces the integer square root of a in b and places the
remainder in r. rpow calculates in c the value of a raised to the ("regular" integral) power n,
while pow calculates this with a full mUltiple precision exponent b and the result is reduced
modulo m. gcd returns the greatest common denominator of a and b in c, and invert com­
putes c such that a*c mod b = 1, for a and b relatively prime. mcmp returns a negative, zero
or positive integer value when a is less than, equal to or greater than b, respectively. move
copies a to b. min and mout do decimal input and output while omin and om out do octal
input and output. More generally, fmin and fmout do decimal input and output using file J,
and m_in and m_out do 110 with arbitrary radix n. On input, records should have the form
of strings of digits terminated by a newline; output rec~rds have a similar form.

4.3 Berkeley Distribution May 23, 1986

MP(3X) UNIX Programmer's Manual MP(3X)

Programs which use the multiple-precision arithmetic library must be loaded using the loader
flag -Imp.

FILES
lusr/include/mp.h
lusr/libllibmp.a

include file
object code library

SEE ALSO
dc(1), be(1)

DIAGNOSTICS

BUGS

Illegal operations and running out of memory produce messages and core images.

Bases for input and output should be <= 10.

dc(1) and bc(1) don't use -this library.

The input and output routines are a crock.

pow is also the name of a standard math library routine.

4.3 Berkeley Distribution May 23,1986 2

NDBM(3) UNIX Programmer's Manual NDBM(3)

NAME
dbm_open, dbm_close, dbmjetch, dbm_store, dbm_delete, dbm_firstkey, dbm_nextkey,
dbm_error, dbm_clearerr - data base subroutines

SYNOPSIS
#include <ndbm.h>

typedeC strutt {
char -dptr;
int dsize;

} datum;

DBM -dbm_open(file, flags, mode)
char -file;
int flags, mode;

void dbm_close(db)
D~M -db;

datum dbm_Cetch(db, key)
DBM -db;
datum key;

int dbm_store(db, key, content, flags)
DBM -db;
datum key, content;
int flags;

int dbm_delete(db, key)
DBM -db;
datum key;

datum dbm_firstkey(db)
DBM -db;

datum dbm.-:nextkey(db)
DBM -db;

int dbm_error(db)
DBM -db;

int dbm31earerr(db)
DBM -db;

DESCRIPTION
These functions maintain key/content pairs in a data base. The functions will handle very
large (a billion blocks) databases and will access a keyed item in one or two file system
accesses. This package replaces the earlier dbm(3x) library, which managed only a single
database.

Keys and contents are described by the datum typedef. A datum specifies a string of dsize
bytes pointed to by dptr. Arbitrary binary data, as well as normal ASCII strings, are allowed.
The data base is stored in two files. One file is a directory containing a bit map and has '.dir'
as its suffix. The second file contains all data and has '.pag' as its suffix.

Before a database can be accessed, it must be opened by dbm_open. This will open and/or
create the files file .dir and file .pag depending on the flags parameter (see open(2».

Once open, the data stored under a key is accessed by dbmJetch and data is placed under a
key by dbm_store. The flags field can be either DBM_INSERT or DBM_REPLACE.
DBM_INSERT will only insert new entries into the database and will not change an existing
entry with the same key. DBM_REPLACE will replace an existing entry if it has the same

4.3 Berkeley Distribution May 20, 1986

NDBM(3) UNIX Programmer's Manual NDBM(3)

key. A key (and its associated contents) is deleted by dbm_delete. A linear pass through all
keys in a database may be made, in an (apparently) random order, by use of dbmJirstkey and
dbm_nextkey. DbmJirstkey will return the first key in the database. Dbm_nextkey will
return the next key- in the database. This code will traverse the data base:

for (key = dbm_firstkey(db); key.dptr!= NULL; key = dbm_nextkey(db»

Dbm_e"or returns non-zero when an error has occurred reading or writing the database.
Dbm_cleare" resets the error condition on the named database.

DIAGNOSTICS

BUGS

All functions that return an int indicate errors with negative values. A zero return indicates
ok. Routines that return a datum indicate errors with a null (0) dptr. If dbm_store called with
aflags value of DBM_INSERT finds an existing entry with the same key it returns 1.

The • .pag' file will contain holes so that its apparent size is about four times its actual content.
Older UNIX systems may create real file blocks for these holes when touched. These files
cannot be copied by normal means (cp, cat, tp, tar, ·ar) without filling in the holes.

Dptr pointers returned by these subroutines point into static storage that is changed by subse­
quent calls.

The sum of the sizes of a key/content pair must not exceed the internal block size (currently
4096 bytes). Moreover all key/content pairs that hash together must fit on a single block ..
Dbm_store will return an error in the event that a disk block fills with inseparable data.

Dbm_delete does no.t physically reclaim file space, although it does make it available for reuse.

The order· of keys presented by dbm"Jirstkey and dbm_nextkey depends on a hashing func­
tion, not on anything interesting.

SEE ALSO
dbm(3X)

4.3 Berkeley Distribution May 20,1986 2

NICE(3C) UNIX Programmer's Manual NICE(3C)

NAME
nice - set program priority

SYNOPSIS
nice(inu)

DESCRIPTION
This interface is obsoleted by setpriority(2).

The scheduling priority of the process is augmented by incr. Positive priorities get less ser­
vice than normal. Priority lOis recommended to users who wish to execute long-running
programs without flak from the administration.

Negative increments are ignored except on behalf of the super-user. The priority is limited to
the range -20 (most urgent) to 20 (least).

The priority of a process is passed to a child process by fork(2). For a privileged process to
return to normal priority from an unknown state, nice should be called successively with argu­
inents -40 (goes to priority -:-20 because of truncation), 20 (to get to 0), then 0 (to maintain
compatibility with previous versions of this call).

SEE ALSO
nice(l), setpriority(2), fork(2), renice(8)

4th Berkeley Distribution May 9,1985

NLIST(3) UNIX Programmer's Manual NLIST(3)

NAME
nlist - get entries from name list

SYNOPSIS
#include <nlist.h>

nlist(filename. nl)
char .filename;
struct nlist nlll;

DESClUPI'ION
Ntist examines the name list in the given executable output file and selectively extracts a list
of values. The name list consists of an array of structures containing names, types and
values. The list is terminated with a null name. Each name is looked up in the name list of
the file. If the name is found, the type and value of the name are inserted in the next two
fields. If the name is not found, both entries are set to O. See a.out(5) for the structure
declaration.

This subroutine is useful for examining the system name list kept in the file Ivmunix. In this·
way programs can obtain system addresses that are up to date.

SEE ALSO
a.out(5)

DIAGNOSTICS
If the file cannot be found or if it is not a valid namelist -I is returned; otherwise, the
number of unfound namelist entries is returned.

The type entry is set to 0 if the symbol is not found.

4th Berkeley Distribution May 15, 1985

NS(3N) UNIX Programmer's Manual NS(3N)

NAME
ns_addr, os_ntoa - Xerox NS(tm) address conversion routines

SYNOPSIS
#include <sys/types.h>
#include <netns/ns.h>

struet ns_addr ns_addr(cp)
char .cp;

char .ns_ntoa(ns)
struct ns_addr as;

DESCRIPTION
The routine ns_addr interprets character strings representing XNS addresses, returning binary
information suitable for use in system calls. ns_ntoa takes XNS addresses and returns ASCII
strings representing the address in a notation in common use in the Xerox Development
Environment: "

<network number>.<host number>.<port number>
Trailing zero fields are suppressed, and each number is printed in hexadecimal, in a format
suitable for input to ns_addr. Any fields lacking super-<iecimal digits will have a trailing "H"
appended.

Unfortunately, no universal standard exists for representing XNS addresses. An effort has
been made to insure that ns_addr be compatible with most formats in common use. It will
first separate an address into 1 to 3 fields using a single delimiter chosen from period (". "),
colon (":") or pound-sign ("#"). Each field is then examined for byte separators (colon or
period). If there are byte separators, each subfield separated is taken to be" a small hexade­
cimal number, and the entirety is taken as a network-byte-ordered quantity to be zero
extended in the high-network-order bytes. Next, the field is inspected for hyphens, in which"
case the field is assumed to be a number in decimal notation with hypheos separating the mil­
lenia. Nex~ the field is assumed to be a number: It is interpreted as hexadecimal if there is a
leading "Ox" (as in C), a trailing "H" (as in Mesa), or there are any super-<iecimal digits
present. It is interpreted as octal is there is a leading "0" and there are no super-octal digits.
Otherwise, it is converted as a decimal number.

SEE ALSO
hosts(5), networks(5),

DIAGNOSTICS

BUGS

None (see BUGS).

The string returned by ns_ntoa resides in a static memory area.
ns_addr should diagnose improperly formed input, and there should be an unambiguous way
to recognize this.

4.3 Berkeley Distribution " May 12, 1986 1

PAUSE(3C)

NAME
pause - stop until signal

SYNOPSIS
pause()

DESCRIPTION

UNIX Programmer's Manual PAUSE(3C)

Pause never returns normally. It is used to give up control while waiting for a signal from
kiJ/(2) or an interval timer, see setitimer(2). Upon termination of a signal handler started
during a pause, the pause call will return.

RETURN VALUE
Always returns -1.

ERRORS
Pause always returns:

[EINTR] The call was interrupted.

SEE ALSO
kill(2), select(2), sigpause(2)

4th Berkeley Distribution May 9, 1985

PERROR(3) UNIX Programmer's Manual PERROR(3)

NAME
perror, sYLerrlist, sys_nerr - system error messages

SYNOPSIS
perror(s)
char -s;

iDt sys_Derr;
char -sys_errlistf1;

DESCRlPl'lON
Pe"or produces a short error message on the standard error file describing the last error
encountered during a call to the system from a C program. First the argument string s is
printed, then a colon, then the message and a new-line. Most usefully, the argument string is
the name of the program which incurred the error. The error number is taken from the exter­
nal variable e"no (see intro(2», which is set when errors occur but not cleared when non-
erroneous calls are made. -

To simplify variant formatting of messages, the vector of message strings sys_e"list is pro­
vided; e"no can be used as an index in this table to get the message string without the new­
line. Sys_ne" is the number of messages provided for in the table; it should be checked
because new error codes may be added to the system before they are added to the table.

SEE ALSO
intro(2), psignal(3)

4th Berkeley Distribution May 15, 1985 1

PLOT(3X) UNIX Programmer's Manual PLOT(3X)

NAME
plot: openpl, erase, label, line, circle, arc, move, cont, point, linemod, space, closepl - graphics
interface

SYNOPSIS
opeoplO

erase()

label(s)
char s[);

lioe(xl, yl, xl, y2)

circle(~ y, r)

arc(~ y, xl, yO, xl, yl)

mo,e(~ y)

coot(~ y)

poiot(~ y)

lioemod(s)
char 51); .

5pace(xO, yO, xl, yl)

closeplO

DESCRIPTION
. These subroutines generate graphic output in a relatively device-independent manner. See

plot(5) for a description of their effect. Openpl must be used before any of the others to open
the device for writing. Closepl flushes the output.

String arguments to label and linemod are null-terminated, and do not contain newlines.

Various flavors of these functions exist for different output devices. They are obtained by the
following ld(I) options:

-I,lot
-1300
-l3OOs
-1450
-14013
-14014

device-independent graphics stream on standard output for plot(1) filters
GSI 300 terminal
GSI 300S terminal
GSI 450 terminal
Tektronix 4013 terminal
Tektronix 4014 and 4015 terminals with the Enhanced Graphics Module (Use -14013
for 4014's or 4015's without the Enhanced Graphics Module)

-Iplotaed
AED 512 color graphics terminal

-Iplotbg BBN bitgraph graphics terminal
-Iplotdumb

Dumb terminals without cursor addressing or line printers
-Iplot DEC Gigi terminals
-lvtO DEC vt 1 00 terminals
-lplot2648

Hewlett Packard 2648 graphics terminal
-lplot7221

Hewlett Packard 7221 graphics terminal
-Iplotimageo

Imagen laser printer (default 240 dots-per-inch resolution).

7th Edition May 15, 1986

PLOT(3X) UNIX Programmer's Manual PLOT(3X)

On many devices, it is necessary to pause after eraseO, otherwise plotting commands are lost.
The pause is normally done by the tty driver if at login time, tset found a df field in the
termcap(5) entry for the terminal. If a pause is needed but not automatically being generated,
add

tlush(stdout);
sleep(1);

after each eraseO.

SEE ALSO
plot(5), plot(l G), plot(3F), graph(l G)

7th Edition May 15, 1986 2

POPEN(3) UNIX Programmer's Manual POPEN(3)

NAME
popen, pclose - initiate 1/0 tolfrom a process

SYNOPSIS
#include <stdio.h>

FILE -popen(command, type)
char -command, -type;

pclose(stream)
FILE -stream;

DESCRIPTION
The arguments to popen are pointers to null-terminated strings containing respectively a shell
command line and an YO mode, either "r" for reading or "w" for writing. It creates a pipe
between the calling process and the command to be executed. The value returned is a stream
pointer that can be used (as appropriate) to write to the standard input of the command or
read from its standard output.

A stream opened by popen should be closed by pclose, which waits for the associated process
to terminate and returns the exit status of the command.

Because open files are shared, a type "r" command may be used as an input filter, and a type
"w" as an output filter.

SEE ALSO
pipe(2), fopen(3S), fclose(3S), system(3), wait(2), sh(l)

DIAGNOSTICS

BUGS

Popen returns a null pointer if files or processes cannot be created, or the shell cannot' be
accessed. .

Pclose returns -1 if stream is not associated with a 'popened' command.

Buffered reading before opening an input filter may leave the standard input of that filter
mispositioned. Similar problems with an output filter may be forestalled by careful buffer
flushing, for instance, with jj1ush, see jclose(3S).

Popen always calls sh, never calls csh.

7th Edition May 15, 1985

PRINTF(3S) UNIX Programmer's Manual PRINTF(3S)

NAME
printf, fprintf, sprintf - formatted output conversion

SYNOPSIS
#include <stdio.h>

printf(format [, arg] ...)
char .format;

fprintf(stream, format [, arg] ...)
FILE .stream;
char .format;

sprintf(s, format [, arg] ...)
char .S, format;

#include <Vararg5.h>
_dopmt(format, args, stream)
char .format;
va_list .args;
FILE .stream;

DESCRIPTION
Print/ places output on the standard output stream stdout. Fprintj places output on the
named output stream. Sprint/places 'output' in the string s, followed by the character '\0'.
All of these routines work by calling the internal routine _doprnt, using the variable-length
argument facilities of. varargs(3).

Each of these functions converts, formats, and prints its arguments after the first under con­
trol of the first argument. The first argument is a character string which contains two types of
objects: plain characters, which are simply copied to the output stream, and conversion
specifications, each of which causes conversion and printing of the next successive arg print/.

Each conversion specification is introduced by the character %. The remainder of the conver­
sion specification includes in the following order

• Zero or more of following flags:

• a '#' character specifying that the value should be converted to an "alternate
form", For c, d, s, and u, conversions, this option has .. no effect For 0

conversions, the precision of the number is increased to force the first charac­
ter of the output string to a zero. For x(X) conversion, a non-zero result has
the string OX(OX) prepended to it. For e, E, C, g, and G, conversions, the result
will always contain a decimal point, even if no digits follow the point (nor­
mally, a decimal point only appears in the results of those conversions if a
digit follows the decimal point). For g and G conversions, trailing zeros are
not removed from the result as they would otherwise be.

• a minus sign • -' which specifies left adjustment of the converted value in the
indicated field;

• a" character specifying that there should always be a sign placed before the
number when using signed conversions.

• a space specifying that a blank should be left before a positive number during
a signed conversion. A' +' overrides a space if both are used.

• an optional digit string specifying a field width; if the converted value has fewer char­
acters than the field width it. will be blank-padded on the left (or right, if the left­
adjustment indicator has been given) to make up the field width; if the field width
begins with a zero, zero-padding will be done instead of blank-padding;

7th Edition May 14, 1986 1

PRINTF(3S) UNIX Programmer's Manual PRINTF(3S)

• an optional period '.' which serves to separate the field width from the next digit
string; •

• an optional digit string specifying a precision which specifies the number of digits to
appear after the decimal point, for e- and f-conversion, or the maximum number of
characters to be printed from a string;

• the character I specifying that a following d, 0, x, or u corresponds to a long integer
argo

• a character which indicates the type of conversion to be applied.

A field width or precision may be '.' instead of a digit string. In this case an integer arg sup­
plies the field width or precision.

The conversion characters and their meanings are
dox The integer arg is converted to decimal, octal, or hexadecimal notation respectively.

f The float or double arg is converted to decimal notation in the style '[-]ddd.ddd'
where the number of d's after the decimal point is equal to the precision specification
for the argument. If the precision is missing, 6 digits are given; if the precision is
explicitly 0, no digits and no decimal point are printed.

e The float or double arg is converted in the style '[-]d.ddde±dd' where there is one
digit before the decimal point and the number after is equal to the precision
specification for the argument; when the precision is missing, 6 digits are produced.

g The float or double arg is printed in style d, in style f, or in style e, whichever gives
full precision in minimum space.

c The character arg is printed.

s Arg is taken to be a string (character pointer) and characters from the string are
printed until a null character or until the number of characters indicated by the preci­
sion specJfication is reached; however if the precision is 0 or missing all characters up
to a null are printed.

u The unsigned integer arg is converted to decimal and printed (the result will be in the
range 0 through MAXUINT, where MAXUINT equals 4294967295 on a VAX-II and
65535 on a PDP-Ii).

0/0 Print a '%'; no argument is converted.

In no case does a non-existent or small field width cause truncation of a field; padding takes
place only if the specified field width exceeds the actual width. Characters generated by print!
are printed by putc(3S).

Examples
To print a date and time in the form 'Sunday, July 3, 10:02', where weekday and month are
pointers to null-termin~ted strings:

printf("%s, %s %d, %02d:%02d", weekday, month, day, hour, min);

To print 11" to 5 decimals:

printf("pi = %.5(", 4.atan(1.0»;

SEE ALSO
putc(3S), scanf(3S), ecvt(3)

BUGS
Very wide fields (> 128 characters) fail.

7th Edition May 14, 1986 2

PSIGNAL(3) UNIX Programmer's Manual

N~ •
psignal, sYLsiglist - system signal messages

SYNOPSIS
psignal(sig, s)
unsigned sig;
char *s;

char *sys_siglist();

DESCRIPTION

PSIGNAL(3)

PsignaJ produces a short message on the standard error file describing the indicated signal.
First the argument string s is printed, then a colon, then the name of the signal and a new­
line. Most usefully, the argument string is the name of the program which incurred the signal.
The signal number should be from among those found in <signal.h>.

To simplify variant formatting of signal names, the vector of message strings sys_siglist is pro­
vided; the signal number can be used as an index in this table to get the signal name without
the newline. The define NSIG defined in <signal.h> is the number of messages provided for
in the table; it . should be checked because new signals may be added to the system before they
are added to the table. .

SEE ALSO
sigvec(2), perror(3)

4.2 Berkeley Distribution May 15, 1985

PUTC(3S) UNIX Programmer's Manual PUTC(3S)

NAl'\1E
putc, putchar, fputc, putw - put character or word on a stream

SYNOPSIS
#include <stdio.h>

int putc(c, stream)
char c;
FILE .stream;

int putchar(c)

int fputc(c, stream)
FILE .stream;

int putw(w, stream)
FILE .stream;

DESCRIPTION
Pute appends the character e to the named output stream. It returns the character written.

Putehar(e) is defined as pute(e, stdout).

Fpute behaves like pute, but is a genuine function rather than a macro.

Putw appends word (that is, int) w to the output stream. It returns the word written. Putw
neither assumes nor causes special alignment in the file.

SEE ALSO
fopen(3S), fclose(3S), getc(3S), puts(3S), printf(3S), fread(3S)

DIAGNOSTICS

BUGS

These functions return the constant EOF upon error. Since this is a good integer, jerror(3S)
should be used to detect putw errors.

Because it is implemented as a macro, pute treats a stream argument with side effects improp­
erly. In particular

putc(c, .f++);

doesn't work sensibly.

Errors can occur long after the call to pute.

7th Edition November 6, 1985

PUTS(3S) UNIX Programmer's Manual

NAME
puts, fputs - put a string on a stream

SYNOPSIS
#include <stdio.h>

puts(s)
char -s;

fputs(s, stream)
char .s;
FILE .stream;

DESCRlPI'ION

PUTS(3S)

Puts copies the null-terminated string s to the standard output stream stdout and appends a
newline character.

Fputs copies the null-terminated string s to the named output stream.

Neither routine copies the terminal null character.

SEE ALSO

BUGS

fopen(3S), gets(3S), putc(3S), printf(3S), ferror(3S)
fread(3S) for fwrite

Puts appends a newline, !puts does not, all in the name of backward compatibility.

7th Edition May 15, 1985 1

QSORT(3) UNIX Programmer's Manual QSORT(3)

NAME
qsort - quicker sort

SYNOPSIS
qsort(base, Del, width,compar)
char -base;
int (-compar)();

DESCRIPTION
Qsort is an implementation of the quicker-sort. algorithm. The first argument is a pointer to
the base of the data; the second is the number of elements; the third is the width of an ele­
ment in bytes; the last is the name of the comparison routine to be called with two arguments
which are pointers to the elements being compared. The routine must return an integer less
than, equal to, or greater than 0 according as the first argument is to be considered less than,
equal to, or greater than the second.

SEE ALSO
sort(1)

4th Berkeley Distribution May IS, 1985

RAND(3C) UNIX Programmer's Manual

NAME
rand, srand - random number generator

SYNOPSIS
srand(seed)
int seed;

randO

DESCRIPTION

RAND(3C)

The newer random(3) should be used in new applications; rand remains for compatibilty.

Rand uses a multiplicative congruential random number generator with period 232 to return
successive pseudo-random numbers in the range from 0 to 231 _1.

The generator is reinitialized by calling sTand with 1 as argument. It can be set to a random
starting point by calling sTand with whatever you like as argument.

SEE ALSO
random(3)

7th Edition September 29, 1985

RANDOM(3) UNIX Programmer's Manual RANDOM(3)

NAME
random, srandom, initstate, setstate - better random number generator; routines for changing
generators

SYNOPSIS
long randomO

srandom(seed)
int seed;

char -initstate(seed, state, n)
unsigned seed;
char _state;
int n;

char -setstate(state)
char _state;

DESCRIPTION
Random uses a non-linear additive feedback random number generator employing a default
table of size 31 long integers to return successive pseudo-random numbers in the range from 0
to 231 _1. The period of this random number generator is very large, approximately
16x(231 _1).

Random/srandom have (almost) the same calling sequence and initialization properties as
rand/srand. The difference is that rand(3) produces a much less random sequence - in fact,
the low dozen bits generated by rand go through a cyclic pattern. All the bits generated by
random are usable. For example, "randomO&O 1 " will produce a random binary value.

Unlike srand, srandom does not return the old seed; the reason for this is that the amount of
state information used is much more than a single word. (Two other routines are provided to
deal with restarting/changing random number generators). Like rand(3), however, random
will by default produce a sequence of numbers that can be duplicated by calling srandom with
1 as the seed.

The initstate routine allows a state array, passed in as an argument, to be initialized for future
use. The size of the state array (in bytes) is used by initstate to decide how sophisticated a
random number generator it should use - the more state, the better the random numbers will
be. (Current "optimal" values for the amount of state information are 8, 32, 64, 128, and 256
bytes; other amounts will be rounded down to the nearest known amount. Using less than 8
bytes will cause an error). The seed for the initialization" (which specifies a starting point for
the random number sequence, and provides for restarting at the same point) is also an argu­
ment. lnitstate returns a pointer to the previous state information array.

Once a state has been initialized, the setstate routine provides for rapid switching between
states. Setstate returns a pointer to the previous state array; its argument state array is used
for further random number generation until the next call to initstate or setstate.

Once a state array has been initialized, it may be restarted at a different point either by cal­
ling initstate (with the desired seed, the state array, and its size) or by calling both setstate
(with the state array) and srandom (with the desired seed). The advantage of calling both set­
state and srandom is that the size of the state array does not have to be remembered after it is
initialized.

With 256 bytes of state information, the period of the random number generator is greater
than 269, which should be sufficient for most purposes.

AUTHOR
Earl T. Cohen

4.2 Berkeley Distribution September 29, 1985

RANDOM(3) UNIX Programmer's Manual RANDOM(3)

DIAGNOSTICS
If inttstate is called with less than 8 bytes of state information, or if setstate detects that the
state information has been garbled, error messages are printed on the standard error output.

SEE ALSO
rand(3)

BUGS
About 2/3 the speed of rand(3C).

4.2 Berkeley Distribution September 29, 1985 2

RCMD(3) UNIX Programmer's Manual RCMD(3)

NAME
rcmd, rresvport, ruserok - routines for returning a stream to a remote command

SYNOPSIS
rem - rcmd(abost, ioport, locuser, remuser, cmd, fd2p);
cbar --abost;
iot ioport;
char -Ioc:user, _remuser, -cmd;
iot _fd2p;

5 - rresvport(port);
iot -port;

ruserok(rhost, superuser, ruser, luser);
char -rbost;
iot superuser;
char _ruser, -Iuser;

DESCRIPTION
Rcmd is a routine used by the super-user to execute a command on a remote machine using
an authentication scheme based on reserved port numbers. Rresvport is a routine which re­
turns a descriptor to a socket with an address in the privileged port space. Ruserok is a rou­
tine used by servers to authenticate clients requesting service with rcmd. All three functions
are present in the same file and are used by the rshd(8C) server (among others).

Rcmd looks up the host -ahost using gethostbyname(3N), returning -1 if the host does not ex­
ist. Otherwise .ahost is set to the standard name of the host and a connection is established
to a server residing at the well-known Internet port inport.

If the connection s~cceeds, a socket in the Internet domain of type SOCK_STREAM is re­
turned to the caller, and given to the remote command as stdin and stdout. If fd2p is non­
zero, then an auxiliary channel to a control process will be set up, and a descriptor for it will
be placed in -fd2p. The control process will return diagnostic output from the command
(unit 2) on this channel, and will also accept bytes on this channel as being UNIX signal
numbers, to be forwarded to the process group of the command. If fd2p is 0, then the stderr
(unit 2 of the remote command) will be made the same as the stdout and no provision is
made for sending arbitrary signals to the remote process, although you may be able to get its
attention by using out-of-band data.

The protocol is described in detail in rshd(8C).

The "esvport routine is used to obtain a socket with a privileged address bound to it. This
socket is suitable for use by rcmd and several other routines. Privileged Internet ports are
those in the range 0 to 1023. Only the super-user is allowed to bind an address of this sort to
a socket.

Ruserok takes a remote host's name, as returned by a gethostbyaddr(3N) routine, two user
names and a flag indicating whether the local user's name is that of the super-user. It then
checks the files letclhosts.equiv and, possibly, .rhosts in the current working directory (normal­
ly the local user's home directory) to see if the request for service is allowed. A 0 is returned
if the machine name is listed in the "hosts.equiv" file, or the host and remote user name are
found in the ".rhosts" file; otherwise ruserok returns -1. If the superuser flag is 1, the check­
ing of the "host.equiv" file is bypassed. If the local domain (as obtained from gethost­
name(2» is the same as the remote domain, only the machine name need be specified.

SEE ALSO
rlogin(1 C), rsh(1 C), intro(2), rexec(3), rexecd(8C), rlogind(8C), rshd(8C)

4.2 Berkeley Distribution May 14, 1986

RCMD(3) UNIX Programmer's .Manual RCMD(3)

DIAGNOSTICS
Rcmd returns a valid socket descriptor on success. It returns ·1 on error and prints a. diagnos­
tic message on the standard error.

Rresvport returns a valid, bound socket descriptor on success. It returns ·1 on error with the
global value e"no set according to the reason for failure. The error code EAGAIN is overo
loaded to mean •• All network ports in use."

4.2 Berkeley Distribution May 14, 1986 2

REGEX(3) UNIX Programmer's Manual REGEX(3)

NAME
re_comp, re_exec - regular expression handler

SYNOPSIS
char _re_comp(s)
char -s;

re_exec(s)
char -s;

DESCRIPTION
Re30mp compiles a string into an internal form suitable for pattern matching. Re_exec
checks the argument string against the last string passed to re_comp.
Re_comp returns 0 if the string s was compiled successfully; otherwise a string containing an
error message is returned. If re_comp is passed 0 or a null string, it returns without changing
the currently compiled regular expression.

Re_exec returns 1 if the string s matches the last compiled regular expression, 0 if the string s
failed to match the last compiled regular expression, and -1 if the compiled regular expression
was invalid (indicating an internal error).

The strings passed to both re_comp and re_exec may have trailing or embedded newline char­
acters; they are terminated by nulls. The regular expressions recognized are described in the
manual entry for ed(l), given the above difference.

SEE ALSO
ed(1), ex(1), egrep(1), fgrep(1), grep(1)

DIAGNOSTICS
Re_exec returns -1 for an internal error.

Re_comp returns one of the following strings if an error occurs:

No previous regular expression.
Regular expression too long.
unmatched \{,
missing l.
too many \N pairs.
unmatched 'J.

3rd Berkeley Distribution May 15, 1985

RESOLVER (3) UNIX Programmer's Manual RESOLVER (3)

NAME
reLmkquery, res_send, res_init, dn_comp. dn3xpand - resolver routines

SYNOPSIS
#include <sys/types.h>
#include <netinet/in.b>
#include <arpa/nameser.h>
#include <resolv.h>

res_mkquery(op, dname, class, type, data, datalen, neWIT, but, butlen)
int op;
char -dname;
int class, type;
char -data;
int datalen;
struct me -newrr;
char -buf;
int butlen;

res_send(msg, msglen, answer, anslen)
char .msg;
int msglen;
char .answer;
int anslen;

res_init()

dn_comp(exp_dn, comp_dn, lengt~ dnptrs, lastdnptr)
char .exp_dn, *comp_dn;
int length;
char __ dnptrs, .-lastdnptr;

dn_expand(msg, eomorig, comp_dn, exp_dn, length)
. char -msg, .eomorig, .comp_dn, exp_dn;
int length;

DESCRIPTION
These routines are used for making, sending and interpreting packets to Internet domain
name servers. Global information that is used by the resolver routines is kept in the variable
-,es. Most of the values have reasonable defaults and can be ignored. Options stored in
-,es.options are defined in resolv.h and are as follows. Options are a simple bit mask and are
or'ed in to enable. .

RES_INIT
True if the initial name server address and default domain name are initialized (i.e.,
res_in;t has been called).

RES_DEBUG
Print debugging messages.

RES_AAONLY
Accept authoritative answers only. Res_send will continue until it finds an authorita­
tive answer or finds an error. Currently this is not implemented.

RES_USEVC
Use TCP connections for queries instead of UDP.

RES_STA YOPEN
Used with RES_USEVC to keep the TCP connection open between queries. This is
useful only in programs that regularly do many queries. UDP should be the normal
mode used.

4th Berkeley Distribution 15 November 1985 1

RESOLVER (3) UNIX Programmer's Manual RESOLVER (3)

FILES

RES_IGNTC
Unused currently (ignore truncation errors, i.e., don't retry with TCP).

RES_RECURSE
Set the recursion desired bit in queries. This is the default. (reLsend does not do
iterative queries and expects the name server to handle recursion.)

RES_DEFNAMES
Append the default domain name to single label queries. This is the default.

Res_init

reads the initialization file to get the default domain name and the Internet address of the ini­
tial hosts running the name server. If this line does not exist, the host running the resolver is
tried. Res_mlcquery makes a standard query message and places it in bu/. Res_mkquery will
return the size of the query or -1 if the query .is larger than buflen. Op is usually QUERY but
can be any of the query types defined in nameser.h. Dname is the domain name. If dname
consists of a single label and the RES_DEFNAMES flag is enabled (the default), dname will
be appended with the current domain name. The current domain name is defined in a system
file and can be overridden by the environment variable LOCALDOMAIN. New" is currently
unused but is intended for making update messages.

Res_send sends a query to name servers and 'returns an answer. It will call res_init if
RES_INIT is not. set, send the query to the local name server, and handle timeouts and re­
tries. The length of the message is returned or -1 if there were errors.

Dn_expand expands the compressed domain name comp_dn to a full domain name. Expand­
ed names are converted to upper case. Msg is a pointer to the beginning of the message,
exp_dn is a pointer to a buffer of size length for the result. The size of compressed name is
returned or -1 if. there was an error.

Dn_comp compresses the domain name exp_dn and stores it in comp_dn. The size of the
compressed name is returned or -1 if there were errors. length is the size of the comp_dn.
Dnptrs is a list of pointers to previously compressed names in the current message. The first
pointer points to to the beginning of the message and the list ends with NULL. lastdnptr is a
pointer to the end of the array pointed to dnptrs. A side effect is to update the list of pointers
for labels inserted into the message by dn_comp as the name is compressed. If dnptr is
NULL, we don't try. to compress names. If iastdnptr-is NULL, we don't update the list.

letclresolv.conf see resolver(5)

SEE ALSO
named(8), resolver(5), RFC882, RFC883, RFC973, RFC974, SMM:ll Name Server Opera­
tions Guide for BIND

4th Berkeley Distribution 15 November 1985 2

REXEC(3) UNIX Programmer's Manual REXEC(3)

NAME
rexec - return stream to a remote command

SYNOPSIS
rem - rexec:(ahost, inport, user, passwd, cmd, fd2p);
char .. ahost;
int inport;
char -user, -passwd, -cmd;
int _fd2p;

DESCRIPTION
Rexec looks up the host *ahost using gethostbyname(3N), returning -1 if the host does not ex­
ist. Otherwise -ahost is set to the standard name of the host. If a username and password are
both specified, then these are used to authenticate to the foreign host; otherwise the environ­
ment and then the user's .netrc file in his home directory are searched for appropriate infor­
mation. If all this fails, the user is prompted for the information.

The port inport specifies which well-known DARPA Internet port to use for the connection;
the call "getservbyname("exec", "tCP")" (see getservent(3N» will return a pointer to a struc­
ture, which contains the necessary port. The protocol for connection is described in detail in
rexecd(8C).

If the connection succeeds, a socket in the Internet domain of type SOCK-STREAM is re­
turned to the caller, and given to the remote command as stdin and stdout. If /d2p is non­
zero, then an auxiliary channel to a control process will be setup, and a descriptor for it will
be placed in -/d2p. The control process will return diagnostic output from the command
(unit 2) on this channel, and will also accept bytes on this channel as being UNIX signal'
numbers, to be forwarded to the process group of the command. The diagnostic information
returned does not include remote authorization failure, as the secondary connection is set up
after authorization has been verified. If /d2p is 0, then the stderr (unit 2 of the remote com­
mand) will be made the same as the stdout and no provision is made for sending arbitrary sig- .
nals to the remote process, although you may be able to get its attention by using out-of-band
data.

SEE ALSO
rcmd(3), rexecd(8C)

4.2 Berkeley Distribution May 14,1986 1

RNUSERS (3R) UNIX Programmer's Manual

NAME
musers. rusers - return information about users on remote machines

SYNOPSIS
#include <rpcsvc/rusers.h>

rnusersChost}
char-host

rusersChost, up)
char-host
struct utmpidlearr *Up;

DFSCRIPTION

RNUSERS (3R)

Rnusers returns the number of users logged on to Iwst (-1 if it cannot determine that
number). Rusers fills the utmpidlearr structure with data about host. and returns 0 if suc­
cessful. The relevant structures are:

struct utmparr { /- RUSERSVERS_ORIG -/
struct utmp **Uta_arr:
int uta_cnt

I:
struct utmpidle {

I:

struct utmp ui_utmp:
unsigned ui_idle:

struct utmpidlearr { /- RUSERSVERS_IDLE -/
struct utmpidle **Uia_arr:
int uia_cnt

}:

RPC INFO
program number:

RUSERSPROG

xdr routines:

procs:

int xdr_utmp(xdrs. up)
XDR *Xdrs:
struct utmp *Up:

int xdr_utmpidle(xdrs. ui):
XDR *xdrs:
struct utmpidle *ui:

int xdr_utmpptr(xdrs. up):
XDR*Xdrs:
struct utmp **Up:

int xdr_utmpidleptr(xdrs. up):
XDR *xdrs:
struct utmpidle **Up:

int xdr_utmparr(xdrs. up):
XDR *Xdrs:
struct utmparr *Up:

int xdr_utmpidlearr(xdrs. up):
XDR *Xdrs:
struet utmpidlearr *Up:

Sun Microsystems Rei 3.0 10 August 1985 1

\

RNUSERS (3R) UNIX Programmer's Manual RNUSERS (3R)

No arguments. returns number of users as an unsigned long.
RUSERSPROC_N~

No arguments. returns utmparr or utmpidlearr. depending on version number.
RUSERSPROC_ALLN~

No arguments. returns utmparr or utmpidlearr. depending on version number.
Returns listing even for utmp entries satisfying nonuser() in utmp.h.

versions:
RUSERSVERS_ORIG
RUSERSVERS_IDLE

structures:

SEE ALSO
rusers(1).rusersd(8c)

Sun Microsystems Rel 3.0 10 August 1985 2

RQUOTA(3R) UNIX Programmer's Manual RQUOTA(3R)

NAME
rquota - implement quotas on remote machines

SYNPOSIS
#include <rpcsvc/rquota.h>

RPC INFO
program number:

RQUOTAPROG

xdr routines:
xdr--8etquota_args{xdrs. gqa):

proes:

XDR-xdrs:
struct getquota_args *gqa:

xdr--8etquota_rslt(xdrs. gqr):
XDR-xdrs:
struct getquota_rslt *gqr:

xdr_rquota(xdrs. rq):
XDR-xdrs:
struct rquota *rq:

RQUOTAPROC_GETQUOTA
RQUOTAPROC_GETACTTVEQUOTA

Arguments of struct getquota_args .
. Returns struct getquotaJslt.
Uses UNIX authentication.
Returns quota only on filesystems with quota active.

versions:
RQUOTA VERS_ORIG

structures:
struct getquota_args {

char *gqa-pathp:

}:
1*

int gqa_uid:

* remote quota structure
*,
struct rquota {

1* path to filesystem of interest *1
1* inquire about quota for uid *1

int r~bsize: 1* block size for block counts *1
bool_t r~active: 1* indicates whether quota is active *1
u_Iong r~bhardlimit: 1* absolute limit on disk blks alloc *1
u_Iong r~bsoftlimit: 1* preferred limit on disk blks *1
u_Iong r~curblocks: 1* current block count *1
u_Iong r~fhardlimit: 1* absolute limit on allocated files *1
u_Iong r~fsoft1imit: 1* preferred file limit *1
u_Iong r~curfiles: 1* current # allocated files *1
u_Iong r~btimeleft: 1* time left for excessive disk use *1

}:
u_Iong r~ftimeleft: 1* time left for excessive files *1

enum gqr_status {
~OK-l.
~NOQUOTA - 2.
~EPERM-3

1* quota returned *1
1* noquota for uid *1
1* no permission to access quota *1

}:

Sun Microsystems ReI 3.0 10 August 198-5 1

RQUOTA(3R) UNIX Programmer·s Manual RQUOTA(3R)

struct getquota_rslt {
enum. gqr~tus gqr_status: 1* discriminant *1

};
struct rquota gqr_rquota: 1* valid if status - <L.OK *1

SEE ALSO
quota(l). quotact1(2)

Sun Microsystems ReI 3.0 10 August 1985 2

RSTAT (3R) UNIX Programmer's Manual

NAME
havedisk. rstat - get performance data from remote kernel

SYNOPSIS
#include <rpcsvc/rstat.h>

havediskChost}
char-host;

rstatChost, statp)
char -host;
struct statstime *Statp;

DESCRIPTION

RSTAT (3R)

Havedislc returns 1 if host has a disk. 0 if it does not. and -1 if this cannot be determined.
Rstat fills in the statstime structure for host. and returns 0 if it was successful. The
relevant structures are:

struct stats { 1* RSTATVERS_ORIG *1
int cp_time[CPUST A TES]:
int dk_xfer[DK_NDRIVE]:
unsigned v -pgpgin: 1* these are cumulative sum *1
unsigned v -pgpgout:
unsigned v -pswpin:
unsigned v -pswpout;
unsigned v_intr:
int if_ipackets:
int if_ierrors:
int if_opackets:
int if_oerrors:
int if_collisions:

}:
struct statsswtch { 1* RSTATVERS_SWTCH *1

. int cp_time[CPUSTATES]:
int dk_xfer[DK_NDRIVE]:

};

unsigned v-pgpgin: I- these are cumulative sum-I
unsigned v -pgpgout:
unsigned v -pswpin:
unsigned v -pswpout:
unsigned v _intr:
int if_ipackets:
int if_ierrors;
int if_opackets;
int if_oerrors:
int if_collisions;
unsigned v _swtch;
long avenrun[3]:
struct timeval boottime

struct statstime { 1* RSTATVERS_TIME */

7th Edition

int cp_time[CPUSTATES]:
int dk_xfer[DK_NDRIVE]:
unsigned v -pgpgin: I- these are cumulative sum */
unsigned v _pgpgout:
unsigned v -pswpin:
unsigned v -pswpout:

10 August 1985 1

RSTAT(3R) UNIX. Programmer"s Manual RSTAT(3R)

};

RPC INFO

unsigned v _intr:
int if_ipackets:
int if_ierrors:
int if_opackets:
int if_oerrors:
int if_collisions;
unsigned v _swtch:
long avenrun[3]:
struct timeval boottime:
struct timeval curtime:

program number:
RSTATPROO

xdr routines:

proes:

int xdr_stats{xdrs. stat)
XDR-xdrs;
struct stats *Stat:

int xdr_statsswtch(xdrs. stat)
XDR*Xdrs:
struct statsswtch *Stat:

int xdr_statstime(xdrs. stat)
XDR-xdrs:
struct statstime *Stat:

int xdr_timeva1(xdrs. tv)
XDR-xdrs:
struct timeval *tv:

RSTATPROC_HA VEDISK
Takes no argUments. returns long which is true if remote host has a disk.

RSTATPROC_STATS
Takes no arguments. return struct stats""". depending on version.

versions:
RSTATVERS_ORIG
RSTATVERS_SWTCH
RSTATVERS_TIME

SEE ALSO
perftneter(l).ruP(1).rstatd(8c)

7th Edition 10 August 1985 2

RWALL(3R) UNIX Programmer's Manual

NAME
rwall - write to specified remote machines

SYNOPSIS
#include <rpcsvc/rwall.h>

rwall(host, msg);
char *host, *D1Sg;

DESCRIPTION

RWALL(3R)

Rwoll causes host to print the string msg to all its users. It returns 0 if successful.

RPC INFO.
program number:

WALLPROG

procs:
W ALLPROC_ WALL

Takes string as argument (wrapstring), returns no arguments.
Executes woll on remote host with string.

versions:
RSTATVERS_ORIG

SEE ALSO
rwall(l), shutdown(8). rwalld(8C)

Sun Microsystems Rel3.0 10 August 1985 1

UNIX. Programmer·s Manual

This page intentionally left almost blank ..

SCANDIR(3} UNIX Programmer's Manual . SCANDIR(3)

NAME
scandir, alphasort - scan a directory

SYNOPSIS
#include <sys/types.h>
#include <sys/dir.h>

scandir(dimame, namelist, select, compar)
char .dimame;
struct direct .(.namelist());
int (.select)();
int (.compar)();

alphasort(dl, dl)
struct direct •• dl, .. dl;

DESCRIPTION
Scandir reads the directory dirname and builds an array of pointers to directory ·entries using
malloc(3}. It returns the number of entries in the array and a pointer to the array through
namelist.

The select parameter is a pointer to a user supplied subroutine which is called by scandir to
select which entries are to be included in the array. The select routine is passed a pointer to a
directory entry and should return a non-zero value if the directory entry is to be included in
the array. If select is null, then all the directory entries will be included.

The compar parameter is a pointer to a user supplied subroutine which is passed to qsort(3} to
sort the completed array. If this pointer is null, the array is not sorted. A/phasort is a routine
which can be used for the compar parameter to sort the array alphabetically.

The memory allocated for the array can be deallocated with free (see malloc(3)} by freeing
each pointer in the array and the array itself.

SEE ALSO
directory(3}, malloc(3),qsort(3), dir(5}

DIAGNOSTICS
Returns -1 if the directory cannot be opened for reading or if malloc(3} cannot allocate
enough me~ory to hold all the data structures.

4.2 Berkeley Distribution September 17, 1985

SCANF(3S) UNIX Programmer's Manual SCANF(3S)

NAME
scanf, fscanf, sscanf - formatted input conversion

SYNOPSIS
#include <stdio.h>

scanf(format [, pointer] . ..)
char -format;

fscanf(stream, format [, pointer] . ..)
FILE -stream;
char -format;

sscanf(s, format [, pointer] . ..)
char -5. -format;

DESCRIPTION
Scanf reads from the standard input stream stdiD. Fscanf reads from the named input stream.
Sscanf reads from the character string s. Each function reads characters, interprets them
according to a format, and stores the results in its arguments. Each expects as arguments a
control string format, described below, and a set of pointer arguments indicating where the
converted input should be stored.

The control string usually contains conversion specifications, which are used to direct
interpretation of input sequences. The control string may contain:

1. Blanks, tabs or newlines, which match optional white space in the input.

2. An ordinary character (not %) which must match the next character of the input stream.

3. Conversion specifications, consisting of the character 0/0, an optional assignment suppressG

ing character -, an optional numerical maximum field width, and a conversion character.

A conversion specification directs the conversion of the next input field; the result is placed in
the variable pointed to by the corresponding argument, unless assignment suppression was
indicated by -. An input field is defined as a string of non-space characters; it extends to the
next inappropriate character or until the field width, if specified, is exhausted.

The conversion character indicates the interpretation of the input field; the corresponding
pointer argument must usually be of a restricted type. The following conversion characters
are legal:

% a single '%' is expected in the input at this point; no assignment is done.

d a decimal integer is expected; the corresponding argument should be an integer pointer.

o an octal integer is expected; the corresponding argument should be a integer pointer.

x a hexadecimal integer is expected; the corresponding argument should be an integer
pointer.

s a character string is expected; the corresponding argument should be a character pointer
pointing to an array of characters large enough to accept the string and a terminating '\0',
which will be added. The input field is terminated by a space character or a newline.

c a character is expected; the corresponding argument should be a character pointer. The
normal skip over space characters is suppressed in this case; to read the next non-space
character, try '%ls'. If a field width is given, the corresponding argument should refer to
a character array, and the indicated number of characters is read.

e a floating point number is expected; the next field is converted accordingly and stored
f through the corresponding argument, which should be a pointer to afloat. The input for­

mat for floating point numbers is an optionally signed string of digits possibly containing
a decimal point, followed by an optional exponent field consisting of an E or e followed

7th Edition May 15, 1985 1

SCANF(3S) UNIX Proirammer's Manual SCANF(3S)

by an optionally signed integer.

indicates a string not to be delimited by space characters. The left bracket is followed by
a set of characters and a right bracket; the characters between the brackets define a set of
characters making up the string. If the first character is not circumflex (A), the input field
is all characters until the first character not in the set between the brackets; if the first
character after the left bracket is A, the input field is all characters until the first character
which is in the remaining set of characters between the brackets. The corresponding
argument must point to a character array.

The conversion characters d, 0 and x may be capitalized or preceded by I to indicate that a
pointer to long rather than to iot is in the argument list. Similarly, the conversion characters
e or f may be capitalized or preceded by I to indicate a pointer to double rather than to float.
The conversion characters d, 0 and x may be preceded by h to indicate a pointer to short
rather than to iot.

The scan! functions return the number of successfully matched and assigned input items.
This can be used to decide how many input items were found. The constant EOF is returned
upon end of input; note that this is different from 0, which means that no conversion was
done; if conversion was intended, it was frustrated by an inappropriate character in the input.

For example, the call

int i; float x; char name(50);
scanf("%d%f%s", &i, &x, name);

with the input line

25 54.32E-I thompson

will assign to i the value 25, x the value 5.432, and name will contain 'thompson\O'. Or,

int i; float x; char name(50);
scanf("%2d%f%*d%[1234567890r, &i, &x, name);

with input

56789 0123 56a72

will assign 56 to i, 789.0 to x, skip '0123', and place the string '56\0' in name. The next call
to getchar will return 'a'.

SEE AlSO
atof(3), getc(3S), printf(3S)

DIAGNOSTICS
The scan! functions return EOF on end of input, and a short count for missing or illegal data
items.

BUGS
The success of literal matches and suppressed assignments is not directly determinable.

7th Edition May 15; 1985 2

SETBUF(3S) UNIX Programmer's Manual SETBUF(3S)

NAME
setbuf, setbuffer, setlinebuf - assign buffering to a stream

SYNOPSIS
#include <stdio.h>

setbuf(stream, buf)
FILE -stream;
char -but,

setbuffer(stream, but, size)
FILE -stream;
char -buf;
int size;

setlinebuf(stream)
FILE -stream;

DESCRIPI'ION
The three types of buffering available are unbuffered, block buffered, and line buffered. When·
an output stream is unbuffered, information appears on the destination file or terminal as
soon as written; when it is block buffered many characters are saved up and written as a
block; when it is line buffered characters are saved up until a newline is encountered or input
is read from stdin. Fflush (see fclose(3S» may be used to force the block out early. Normally
all files are block buffered. A buffer is obtained from malloc(3) upon the first getc or putc(3S)
on the file. If the standard stream stdout refers to a terminal it is line buffered. The standard
stream stderr is always unbuffered.

Setbuf is used after a stream has been opened but before it is read or written; The character
array buf is used instead of an automatically allocated buffer. If buf is the constant pointer
NULL, input/output will be completely unbuffered. A manifest constant BUFSIZ tells how big
an array is needed:

char buf[BUFSIZ];

Setbuffer, an alternate form of setbu!. is used after a stream has been opened but before it is
read or written. The character array buf whose size is determined by the size argument is
used instead of an automatically allocated buffer. If buf is the constant pointer NULL,
input/output will be completely unbuffered.

Setlinebuf is used to change stdout or stderr from block buffered or unbuffered to line
buffered. Unlike setbuf and setbuffer it can be used at any time that the file descriptor is
active.

A file can be changed from unbuffered or line buffered to block buffered by using /reopen (see
fopen(3S». A file can be changed from block buffered or line buffered to unbuffered by using
/reopen followed by setbuf with a buffer argument of NULL.

SEE ALSO

BUGS

fopen(3S), getc(3S), putc(3S), malloc(3), fclose(3S), puts(3S), printf(3S), fread(3S)

The standard error stream should be line buffered by default.

The setbuffer and setlinebuf functions are not portable to non-4.2BSD versions of UNIX. On
4.2BSD and 4.3BSD systems, setbuf always uses a suboptimal buffer size and should be
avoided. Setbuffer is not usually needed as the default file I/O buffer sizes are optimal.

4th Berkeley Distribution May 12, 1986 1

SETJMP(3) UNIX Proarammer's Manual SETJMP(3)

NAME·
setjmp, longjmp - non-local goto

SYNOPSIS
#inc:lude <setjmp.h>

setjmp(env)
jmp_but enr,

longjmp(env, val)
jmp_but enr,

_setjmp(env)
jmp_but enr,

_Iongjmp(env, val)
jmp_but enr,

DESCRIPTION
These routines are useful for dealing with errors and interrupts encountered in a low-level
subroutine of a program.

Setjmp saves its stack environment in env for later use by longjmp. It returns value O.

Longjmp restores the environment saved by the last call of setjmp. It then returns in such a
way that execution continues as if the call of setjmp had just returned the value val to the
function that invoked setjmp. which must not itself have returned in the interim. All accessi­
ble data have values as of the time /ongjmp was called.

Setjmp and ,longjmp save and restore the sign~ mask sigmask(2), while _setjmp and _longjmp
manipulate only the C stack and registers.

ERRORS
If the contents of the jmp_but are corrupted, or correspond to an environment that has
already returned, /ongjmp calls the routine /ongjmperror. If /ongjmperror returns the program
is aborted. The default version of /ongjmpe"or prints the message "longjmp botch" to stan­
dard error and returns. User proarams wishing to. exit more aracefully can write their own
versions of /ongjmpe"or.

SEE ALSO
sigvec(2), sigstack(2), signal(3)

4th Berkeley Distribution January 9, 1986

SETUID(3) UNIX Programmer's Manual

NAME
setuid, seteuid, setruid, setgid, setegid. setrgid - set user and group 10

SYNOPSIS
#include <sys/types.h>

setuid(uid)
seteuid(euid)
setruid(ruid)
uid_t uid, euid, ruid;

setgid(gid)
setegid(egid)
setrgid(rgid)
gid_t gid, egid, rgid;

D~ON _

SETUID(3)

Setuid (setgid) sets both the real and effective user 10 (group ID) of the current process to as
specified. .

Seteuid (setegid) sets the effective user 10 (group 10) of the current process.

Setruid (setrgid) sets the real user 10 (group 10) of the current process.

These calls are only permitted to the super-user or if the argument is the real or effective 10.

SEE ALSO
setreuid(2), setregid(2), getuid(2), getgid(2)

DIAGN~CS
Zero is returned if the user (group) 10 is set; -1 is returned ·otherwise.

4.2 Berkeley Distribution May 12, 1986 1

SIGINTERRUPT(3) UNIX Programmer's Manual SIGINTERRUPT (3)

NAME
siginterrupt - allow signals to interrupt system calls

SYNOPSIS
siginterrupt(sig, flag);
int sig, flag;

DESCRIPI'ION

NOTES

Siginterrupt is used to change the system call restart behavior when a system call is inter­
rupted by the specified signal. If the flag is false (0), then system calls will be restarted if they
are interrupted by the specified signal and no data has been transferred yet. System call res­
tart is the default behavior on 4.2 BSD.

If the flag is true (1), then restarting of system calls is disabled. If a system call is interrupted
by the specified signal and no data has been transferred, the system call will return -1 with
ermo set to EINTR. Interrupted system calls that have started transferring data will return
the amount of data actually transferred. System call interrupt is the signal behavior found on
4.1 BSD and AT&T System V UNIX systems.

Note that the new 4.2 BSD signal handling semantics are not altered in any other way. Most
notably, signal handlers always remain installed until explicitly changed by a subsequent
sigvec(2) call, and the signal mask operates as documented in sigvec(2). Programs may switch
between restartable and interruptible system call operation as often as desired in the execu-
tion of a program. .

Issuing a siginterrupt(3) call during the execution of a signal handler will cause the new action
to take place on the next signal to be caught.

This library routine uses an extension of the sigvec(2) system call that is not available in
4.2BSD, hence it should not be used if backward compatibility is needed.

RETURN VALUE
A 0 value indicates that the call succeeded. A -1 value indicates that an invalid signal
number has been supplied.

SEE ALSO
sigvec(2), sigblock(2), sigpause(2), sigsetmask(2).

4.3 Berkeley Distribution May 15, 1985

SIGNAL(3C) UNIX Programmer's Manual SIGNAL(3C)

NAME
signal - simplified software signal facilities

SYNOPSIS
#indude <signal.h>

(.signal(sig, func»()
int (.Cunc)();

DESCRIPl10N
Signal is a simplified interface to the more general sigvec(2) facility.

A signal is generated by some abnormal event, initiated by a user at a terminal (quit, inter­
rupt, stop), by a program error (bus error, etc.), by request of another program (kill), or when
a process is stopped because it wishes to access its control terminal while in the background
(see tty(4». Signals are optionally generated when a process resumes after being stopped,
when the status of child processes changes, or when input is ready at the control terminal.
Most signals cause termination of the receiving process if no action is taken; sonie signals
instead cause the process receiving them to be stopped, or are simply discarded if the process
has not requested otherwise. Except for the SIGKILL and SIGSTOP signals, the signal call
allows signals either to be ignored or to cause an interrupt to a specified location. The follow­
ing is a list of all signals with names as in the include file <signal.h>:

SIGHUP 1 hangup
SIGINT 2 interrupt
SIGQUIT 3. quit
SIGILL 4. illegal instruction
SIGTRAP 5. trace trap
SIGIOT 6. lOT instruction
SIGEMT 7. EMT instruction
SIGFPE 8. floating point exception
SIGKILL 9 kill (cannot be caught or ignored)
SIGBUS 10. bus error
SIGSEGV 11. segmentation violation
SIGSYS 12. bad argument to system call
SIGPIPE 13 write on a pipe with no one to read it
SIGALRM 14 alarm clock
SIGTERM 15 software termination signal
SIGURG 16- urgent condition present on socket
SIGSTOP 17t stop (cannot be caught or ignored)
SIGTSTP 18t stop signal generated from keyboard
SIGCONT 19- continue after stop
SIGCHLD 20- child status has changed
SIGTTIN 21 t background read attempted from control terminal
SIGTTOU 22t background write attempted to control terminal
SIGIO 23 - i/o is possible on a descriptor (see /cntl(2»
SIGXCPU 24 cpu time limit exceeded (see setrlimit(2»
SIGXFSZ 25 file size limit exceeded (see setrlimit(2»
SIGVT ALRM 26 virtual time alarm (see setitimer(2»
SIGPROF 27 profiling timer alarm (see setitimer(2»
SIGWINCH 28 - Window size change
SIGUSRI 30 User defined signal 1
SIGUSR2 31 User defined signal 2

The starred signals in the list above cause a core image if not caught or ignored.

4th Berkeley Distribution May 20, 1986

SIGNAL(3C) UNIX Programmer's Manual SIGNAL(3C)

If June is SIG_DFt, the default action for signal sig is reinstated; this default is termination
(with a core image for starred signals) except for signals marked with. or t. Signals marked
with. are discarded if the action is SIG_DFt; signals marked with t cause the process to
stop. If June is SIG_IGN the signal is subsequently ignored and pending instances of the sig­
nal are discarded. Otherwise. when the signal occurs further occurrences of the signal are
automatically blocked and June is called.

A return from the function unblocks the handled signal and continues the process at the point
it was interrupted. Unlike previous signal facilities, the handler June remains installed after a
signal has been delivered.

If a caught signal occurs during certain system calls, causing the call to terminate prematurely,
the call is automatically restarted. In particular this can occur during a read or write(2) on a
slow device (such as a terminal; but not a file) and during a wait(2).

The value of signal is the previous (Qr initial) value of June for the particular signal.

After a Jork(2) or vJork(2) the child inherits all signals. Execve(2) resets all caught signals to
the default action; ignored signals remain ignored.

RETURN VALUE
The previous action is returned on a successful call. Otherwise, -1 is returned and errno is
set to indicate the error.

ERRORS
Signal will fail and no action will take place if one of the following occur:

[EINV AL] Sig is not a valid signal number.

[EINVAL] An attempt is made to ignore or supply a handler for SIGKlLL or SIGSTOP.

[EINVAL] An attempt is made to ignore SIGCONT (by default SIGCONT is ignored).

SEE ALSO
kill(l). ptrace(2), kill(2), sigvec(2). sigblock(2), sigsetmask(2), sigpause(2), sigstack(2),
setjmp(3), tty(4)

NOTES (VAX-H)
The handler routine can be declared:

handler(sig, code, scp)

Here sig is the signal number, into which the hardware faults and traps are mapped as defined
below. Code is a parameter which is either a constant as given below or, for compatibility
mode faults, the code provided by the hardware. Scp is a pointer to the struet sigeontext used
by the system to restore the process context from before the signal. Compatibility mode
faults are distinguished from the other SIGILL traps by having PSL_CM set in the psI.

The following defines the mapping of hardware traps to signals and codes. All of these sym­
bols are defined in <signal.h>:

Hardware condition

Arithmetic traps:
Integer overflow
Integer division by zero
Floating overflow trap
Floating/decimal division by zero
Floating underflow trap
Decimal overflow trap
Subscript-range
Floating overflow fault

4th Berkeley Distribution

Signal

SIGFPE
SIGFPE
SIGFPE
SIGFPE
SIGFPE
SIGFPE
SIGFPE
SIGFPE

May 20, 1986

Code

FPE_INTOVF _TRAP
FPE_INTDIV _TRAP
FPE_Ft TOVF _TRAP
FPE_FL TDIV _TRAP
FPE_FLTUND_TRAP
FPE_DECOVF _TRAP
FPE_SUBRNG_ TRAP
FPE_FtTOVF_FAULT

2

SIGNAL(3C) UNIX Programmer's Manual SIGNAL(3C)

Floating divide by zero fault
Floating underflow fault

Length access control
Protection violation
Reserved instruction
CustomerGreserved instr.
Reserved operand
Reserved addressing
Trace pending
Bpt instruction
Compatibility-mode
Chme
Chms
Chmu

4th Berkeley Distribution

SIGFPE FPE_FLTDIV_FAULT
SIGFPE FPE_FLTUND_FAULT
SIGSEGV
SIGBUS
SIGILL ILL_RESAD_FAULT
SIGEMT
SIGILL ILL_PRIVIN_FAULT
SIGILL ILL_RESOP _FAULT
SIGTRAP
SIGTRAP
SIGILL hardware supplied code
SIGSEGV
SIGSEGV
SIGSEGV

May 20, 1986 3

SIN(3M) UNIX Programmer's Manual SIN(3M)

NAME
sin, cos, tan, asin, acos, atan, atan2 - trigonometric functions and their inverses

SYNOPSIS
#include <math.h>

double sin(x)
double X;

double cos(x)
double X;

double tan(x)
double X;

double asin(x)
double X;

double acos(x)
double X;

double atan(x)
double X;

double atan2(y,x)
double y,x;

DESCRIPTION
Sin, cos and tan return trigonometric functions of radian arguments x.

Asin returns the arc sine in the range -7r12 to 7r/2.

Acos returns the arc cosine in the range 0 to 7r.

Atan returns the arc tangent in the range -7r/2 to 7r/2.

On a VAX,
atan2(y,x) := atan(y/x)

sign(y)*(7r - atan(I y Ix I»
o
sign(y)*7r/2

if x > 0,
if x < 0,
if x = y = 0, or
if x = 0 ~ y.

DIAGNOSTICS

NOTES

On a V AX, if I x I > 1 then asin(x) and acos(x) will return reserved operands and errno will be
set to EDOM.

Atan2 defines atan2(0,0) = 0 on a V AX despite that previously atan2(0,0) may have generated
an error message. The reasons for assigning a value to atan2(0,0) are these:

(1) Programs that test arguments to avoid computing atan2(0,0) must be indifferent to its
value. Programs that require it to be invalid are vulnerable to diverse reactions to that
invalidity on diverse computer systems.

(2) Atan2 is used mostly to convert from rectangular (x,y) to polar (r,O) coordinates that
must satisfy x = r*cosO and y = I*sinO. These equations are satisfied when (x=O,y=O) is
mapped to (r=O,O=O) on a V AX. In general, conversions to polar coordinates should be
computed thus:

r := hypot(x,y); '" := y(x2+y2)
o := atan2(y,x).

(3) The foregoing formulas need not be altered to cope in a reasonable way with signed zeros
and infinities on a machine that conforms to IEEE 754; the versions of hypot and atan2
provided for such a machine are designed to handle all cases. That is why atan2(±0,-0)

4th Berkeley Distribution May 12, 1986

SIN(3M) UNIX Programmer's Manual

== ±r, for instance. In general the formulas above are equivalent to these:
r : == Y(x.x + y.y); if r = 0 then x : = copysign(I ,x);
if x> 0 then 8:= 2.atan(y/(r+x»

else 8 : = 2.atan«r-x)/y);

SIN(3M)

except if r is infinite then atan2 will yield an appropriate multiple of 11"/4 th~t would otherwise
have to be obtained by taking limits.

ERROR (due to Roundoff etc.)
Let P stand for the number stored in the computer in place of 11" == 3.14159 26535 89793
23846 26433 Let "trig" stand for one of "sin", "cos· or "tan". Then the expression
"trig(x)" in a program actually produces an approximation to trig(x.'II"IP), and "atrig(x)"
approximates (P/r).atrig(x). The approximations are close, within 0.9 ulps for sin, cos and
atan, within 2.2 ulps for tan, asin, acos and atan2 on a VAX. Moreover, P ,. 'It in the codes
that run on a VAX.

In the codes that run on other machines, P differs from 11" by a fraction of an ulp; the
difference matters only if the argument x is huge, and even then the difference is likely to be
swamped by the uncertainty in x. Besides, every trigonometric identity that does not involve
11" explicitll is satisfied equally well regardless of whether P == r. For instance,
sin2(x)+cos (x) == 1 and sin(2x) == 2 sin(x)cos(x) to within a few ulps no matter how big x
may be. Therefore the difference between P and 'II" is most unlikely to affect scientific and
engineering com"putations.

SEE ALSO
math(3M), hypot(3M), sqrt(3M), infnan(3M)

AUTHOR
Robert P. Corbett, w. Kahan, Stuart I. McDonaid, Peter Tang and, for the codes for IEEE
754, Dr. Kwok-Choi Ng.

4th Berkeley Distribution May 12, 1986 2

SINH(3M) UNIX Programmer's Manual

NAME
sinh, cosh, tanh - hyperbolic functions

SYNOPSIS
#include <math.h>

double sinh(x)
double X;

double cosh(x)
double X;

double tanh(x)
double X;

DESCRlYl10N
These functions compute the designated hyperbolic functions for real arguments.

ERROR (due to Roundoff etc.)
Below 2.4 ulps; an ulp is one Unit in the Last Place.

DIAGNOSTICS

SINH(3M)

Sinh and cosh return the reserved operand on a VAX if the correct value would overflow.

SEE ALSO
math(3M), infnan(3M)

AUTHOR
W. Kahan, Kwok-Choi Ng

4th Berkeley Distribution. May 12, 1986

SLEEP(3) UNIX Programmer's Manual SLEEP(3)

NAME
sleep - suspend execution for interval

SYNOPSIS
sleep(sec:onds)
unsigned seconds;

DESCRIPTION
The current process is suspended from execution for the number of seconds specified by the
argument. The actual suspension time may be up to 1 second less than that requested,
because scheduled wakeups occur at· fixed I-second intervals, and an arbitrary amount longer
because of other activity in the system.

The routine is implemented by setting an interval timer and pausing until it occurs. The pre­
vious state of this timer is saved and restored. If the sleep time exceeds the time to the
expiration of the previous timer, the process sleeps only until the signal would have occurred,
and the signal is sent 1 second later.

SEE ALSO
setitimer(2), sigpause(2), usleep(3)

4th Berkeley Distribution May 12, 1986 1

SPRAY (3R) UNIX Programmer's Manual

NAME
spray - scatter data in order to check the network

SYNOPSIS
#include <rpcsvc/spray.h>

RPC INFO
program number:

SPRAYPROG

xdr routines:
xdr_sprayarr(xdrs. arr):

proes:

XDR*Xdrs:
struct sprayarr *arr:

xdr_spraycumul(xdrs. cumul):
XDR*xdrs:
struct spraycumul *Cumul:

SPRA YPROC_SPRA Y
Takes no arguments. returns no value.
Increments a counter in server daemon.

SPRAY (3R)

The server does not return this call. so the caller should have a timeout of O.
SPRAYPROC_GET

Takes no arguments. returns struct spraycumul with value of counter and clock.
SPRA YPROC_CLEAR

Takes no arguments and returns no value.
Zeros out counter and clock.

versions:
SPRA YVERS_ORIG

structures:
struct spraycumul {

unsigned counter:
struct timeval clock:

}:
struct sprayarr {

int *data.
int !nth

}:
SEE ALsO

spray(8).sprayd(8)

7th Edition 10 August 1985 1

UNIX Programmer"s Manual

This page intentionally left almost blank.

SQRT(3M) UNIX Programmer's Manual

NAME
cbrt, sqrt - cube root, square root

SYNOPSIS
#include <matb.b>

double cbrt(x)
double X;

double sqrt(x)
double X;

DESCRIPTION
Cbrt(x) returns the cube root of x.

Sqrt(x) returns the square root of x.

DIAGNOSTICS
On a VAX, sqrt(negative) returns the reserved operand and sets e"no to EDOM .

ERROR (due to Roundoff etc.)
Cbrt is aCcurate to within 0.7 ulps.
Sqrt oli a VAX is accurate to within 0.501 ulps.

SQRT(3M)

Sqrt on a machine that conforms to IEEE 754 is correctly rounded in accordance with the
rounding mode in force; the error is less than half an ulp in the default mode
(round-ta-nearest). An ulp is one Unit in the Last Place carried.

SEE ALSO
math(3M), infnan(3M).

AUTHOR
W. Kahan

4.3 Berkeley Distribution May 12, 1986

STDIO(3S) UNIX Programmer's Manual STDIO(3S.)

NAME
stdio - standard buffered input/output package

SYNOPSIS
#include <stdio.h>

FILE -stdin;
FILE -stdout;
FILE -stderr;

DESCRIPTION
The functions described in section 3S constitute a user-level buffering scheme. The in-line
macros getc and putc(3S) handle characters quickly. The higher level routines gets, jgets,
scanf, /Scanf, fread, puts, jputs, print/, fPrint/, fwrite all use getcand putc; they can be freely
intermixed.

A file with associated buffering is called a stream, and is declared to be a pointer to a defined
type FILE. Fopen(3S) creates certain descriptive data for a stream and returns a pointer to
designate the stream in all further transactions. There are three normally open streams with
constant pointers declared in the include file and associated with the standard open files:

stdin standard input file
stdout standard output file
stden standard error file

A constant 'pointer' NULL (0) designates no stream at all.

An integer constant EOF (-1) is returned upon end of file or error by integer functions that
deal with streams.

Any routine that uses the standard input/output package must include the header file
<stdio.h> of pertinent macro definitions. The functions and constants mentioned in sections
labeled 3S are declared in the include file and need no further declaration. The constants,
and the following 'functions' are implemented as macros; redeclaration of these names is peri­
lous: getc, getchar, putc, putchar, jeof, je"or, fi/eno.

SEE ALSO
open(2), close(2), read(2), write(2), fread(3S), fseek(3S), f-(3S)

DIAGNOSTICS

BUGS

The value EOF is returned uniformly to indicate that a FILE pointer has not been· initialized
with jopen, input (output) has been attempted on an output (input) stream, or a FILE pointer
designates corrupt or otherwi~ unintelligible FILE data.

For purposes of efficiency, this implementation of the standard library has been changed to
line buffer output to a terminal by default and attempts to do this transparently by flushing
the output whenever a read(2) from the standard input is necessary. This is almost always
transparent, but may cause confusion or malfunctioning of programs which use standard i/o
routines but use read(2) themselves to read from the standard input.

In cases where a large amount of computation is done after printing part of a line on an out­
put terminal, it is necessary to ffiush(3S) the standard output before going off and computing
so that the output will appear.

The standard buffered functions do not interact well with certain other library and system
functions, especially vfork and abort.

LIST OF FUNCTIONS
Name Appears on Page Description

dearerr ferror.3s stream status inquiries

4th Berkeley Distribution May 13,1986 1

STDIO(3S)

fclose
fdopen
feof
ferror
mush
fgete
fgets
fileno
fopen
fprintf
fpute
fputs
fread
freopen
fscanf
fseek
ftell
fwrite
gete
getchar
gets
getw
printf
putc
putehar
puts
putw
rewind
scanf
setbuf
setbuffer
setlinebuf
sprintf
sscanf
ungete

Iclose.3s
fopen.3s
ferror.3s
ferror.3s
fclose.3s
getc.3s
gets.3s
ferror.3s
fopen.3s
printf.3s
pute.3s
puts.3s
fread.3s
fopen.3s
scanf.3s
fseek.3s
fseek.3s·
fread.3s
getc.3s
getc.3s
gets.3s
ge~c.3s
printf.3s
putc.3s
pute.3s
puts.3s
pute.3s
fseek.3s
scanf.3s
setbuf.3s
setbuf.3s
setbuf.3s
printf.3s
scanf.3s
ungete.3s

4th Berkeley Distribution

UNIX Programmer's Manual

close or tlush a stream
open a stream
stream status inquiries
stream status inquiries
close or tlush a stream
get character or word from stream
get a string from a stream
stream status inquiries
open a stream
formatted output conversion
put character or word on a stream
put a string on a stream
buffered binary input/output
open a stream
formatted input conversion
reposition a stream
reposition a stream
buffered binary input/output
get character or word from stream
get character or word from stream
get a string from a stream
get character or word from stream
formatted output conversion
put character or word on a stream
put character or word on a .stream
put a string on a stream
put character or word on a stream
reposition a stream
formatted input conversion
assign buffering to a stream
assign buffering to a stream
assign buffering to a stream
formatted output conversion
formatted input conversion
push character back into input stream

May 13, 1986

STDIO(3S)

2

STRING(3) UNIX Programmer's Manual STRING(3)

NAME
strcat, strneat, stremp, strncmp, strepy, strnepy, strlen, index, rindex - string operations

SYNOPSIS
*inc:lude <strings.h>

char *strcat(sl, s2)
char *sl, *sl;

char *strncat(sl, s2, n)
char *51, *sl;

strcmp(sl, s2)
char *51, *sl;

strncmp(sl, sl, n)
char *sI, *sl;

char *strcpy(sl,s2)
char *51, .sl;

char *strncpy(sl, s2, n)
char *sI, *sl;

strlen(s)
char *s;

char *index(s, c)
char *1, C;

char *rindex(s, 'c)
char *1, C;

DESCRIPTION
These functions operate on null-terminated strings. They do not check for overflow of any
receiving string.

Streat appends a copy of string s2 to the end of string sl. Strneat copies at most n characters.
Both return a pointer to the null-terminated result.

Stremp compares its arguments and returns an integer greater than, equal to, or less than 0,
according as s1 is lexicographically greater than, equal to, or less than s2. Stmemp makes the
same comparison but looks at at most n characters.

Strepy copies string s2 to s1. stopping after the null character has been moved. Strnepy copies
exactly n characters, truncating or null-padding s2; the target may not be null-terminated if
the length of s2 is n or more. Both return-s1.

Str/en returns the number of non-null characters in s.

Index (rindex) returns a pointer to the first (last) occurrence of character e in string s, or zero
if e does not occur in the string.

4th Berkeley Distribution May IS, 1985 1

STTY(3C) UNIX Programmer's Manual

NAME
stty, gtty - set and get terminal state (defunct)

SYNOPSIS
#include <sgtty.h>

stty(Cd, buf)
int Cd;
sttuct sgttyb -bur;

gtty(Cd, buf)
int Cd;
sttuct sgttyb -bur;

DESCRIPTION
This interface is obsoleted by ioctl(2).

STTY(3C)

Stty sets the state of the terminal associated with fd. Gtty retrieves the state of the terminal
associated withfd. To set the state of a terminal the call must have write permission.

The stty call is actually "ioctl(fd, TIOCSETP, buf)", while the gtty call is "ioctl(fd,
TIOCGETP, buf)". See ioctl(2) and tty(4) for an explanation.

DIAGNOSTICS
If the call is successful 0 is returned, otherwise -1 is returned and the global variable errno
contains the reason for the failure.

SEE ALSO
ioctl(2), tty(4)

4.2 Berkeley Distribution May 15, 1985

SWAB(3)

NAME
swab - swap bytes

SYNOPSIS
swab(from, to, nbytes)
char .from, .to;

DESCRIPTION

UNIX Programmer's Manual SWAB(3)

Swab copies nbytes bytes pointed to by from to the position pointed to by to, exchanging adja­
cent even and odd bytes. It is useful for carrying binary data between PDP 11 's and other
machines. Nbytes should be even.

7th Edition May 15, 1985 1

SYSLOG(3) UNIX Programmer's Manual SYSLOG(3)

NAME
syslog, openlog, closelog, setlogmask - control system log

SYNOPSIS
#include <syslog.h>

openlog(ident, logopt, facility)
char .ident;

syslog(priority, message, parameters •••)
char .message;

closelog()

sedogmask(maskpri)

DESCRIPTION
Syslog arranges to write message onto the system log maintained by sys/ogd(8). The message
is tagged with priority. The message looks like a printf(3) string except that %m is replaced by
the current error message (collected from errno). A trailing newline is added if needed. This
message will be read by syslogd(8) and written to the system console, log files, or forwarded to
syslogd on another host as appropriate.

Priorities are encoded as a facility and a level. The facility describes the part of the system
generating the message. The level is selected from an ordered list:

LOG_EMERG A panic condition. This is normally broadcast to all users.

LOG_ALERT A condition that should be corrected immediately, such as a corrupted
system database. . .

LOG_CRIT Critical conditions, e.g., hard device errors.

LOG_ER:R Errors.

LOG_WARNING Warning messages.

LOG_NOTICE Conditions that are not error conditions, but should possibly be handled
specially.

LOG_INFO Informational messages.

LOG_DEBUG Messages that contain information normally of use only when debugging
a program.

If syslog cannot pass the message to syslogd, it will attempt to write the message on
/dev/conso/e if the LOG_CONS option is set (see below).

If special processing is needed, openlog can be called to initialize the log file. The parameter
ident is a string that is prepended to every message. Logopt is a bit field indicating logging
options. Current values for logopt are:

LOG_PID log the process id with each message: useful for identifying instantiations
of daemons.

LOG_CONS Force writing messages to the console if unable to send it to syslogd.
This option is safe to use in daemon processes that have no controlling
terminal since syslog will fork before opening the console.

LOG_NOELA Y Open the connection to syslogd immediately. Normally the open is
delayed until the first message is logged. Useful for programs that need
to manage the order in which file descriptors are allocated.

LOG_NOWAIT Don't wait for children forked to log messages on the console. This
option should be used by processes that enable notification of child ter­
mination via SIGCHLO, as syslog may otherwise block waiting for a

4.2 Berkeley Distribution May 15, 1986

SYSL09(3) UNIX Programmer's Manual SYSLOG(3)

child whose exit status has already been collected.

The facility parameter encodes a default facility to be assigned to all messages that do not
have an explicit facility encoded:

LOG_KERN Messages generated by the kernel. These cannot be generated by any
user processes.

Messages generated by random user processes. This is the default facil­
ity identifier if none is specified.

LOG_DAEMON

LOG_AUTH

The mail system.

System daemons, such as jtpd(8). routed(8), etc.

The authorization system: /ogin(l), su(1), getty(8), etc.

The line printer spooling system: [pr(l), ipc(8), ipd(8), etc.

Reserved for local use. Similarly for LOG_LOCALl through
LOG_LOCAL7.

Closelog can be used to close the log file.

Setlogmask sets the log priority mask to maskpri and returns the previous mask. Calls to sys­
log with a priority not set in maskpri are rejected. The mask for an individual priority pri is
calculated by the macro LOG_MASK(pri); the mask for all priorities up to and including top­
prj is given by the macro LOG_UPTO(topprz). The default allows all priorities to be logged.

EXAMPLES
syslog(LOG_ALERT, "who: internal error 23");

openlog("ftpd", LOG_PID, LOG_DAEMON);
setlogmask(LOG_UPTO(LOG_ERR»;
syslog(LOG_INFO, 'Connection from host %d", CallingHost);

syslog(LOG_INFOILOG_LOCAL2, "foobar error: %m");

SEE ALSO
logger(1), syslogd(8)

4.2 Berkeley Distribution May 15, 1986 2

SYSTEM(3) UNIX Programmer's Manual

NAME
system - issue a shell command

SYNOPSIS
system(string)
char .string;

DESCRIPTION

SYSTEM(3)

System causes the string to be given to sh(1) as input as if the string had been typed as a com­
mand at a terminal. The current process waits until the shell has completed, then returns the
exit status of the shell.

SEE ALSO
popen(3S), execve(2), wait(2)

DIAGNOSTICS
Exit status 127 indicates the shell couldn't be executed.

7th Edition May 15, 1985

TERMCAP(3X) UNIX Programmer's Manual TERMCAP (3X)

NAME
tgetent, tgetnum, tgetflag, tgetstr, tgoto, tputs - terminal independent operation routines

SYNOPSIS
char PC;
char .BC;
char .Up;
short ospeed;

tgetent(bp, name)
char .bp, .name;

tgetnnm(id)
char .id;

tgetflag(id)
char .iet;
char •
tgetstr(id, area)
char .id, .. area;

char •
tgoto(cm, destcol, destline)
char .cm;

tpnts(ep, affcnt, oute)
register ehar .ep;
int dcnt;
int (.oute)O;

DESCRIPTION
These functions extract and use capabilities from the terminal capability data base
termeap(5). These are low level routines; see curses(3X) for a higher level package.

Tgetent extracts the entry for terminal name into the buffer at bp. Bp should be a character
buffer of size 1024 and must be retained through all subsequent calls to tgetnum. tgetflag, and
tgetstr. Tgetent returns -1 if it cannot open the termeap file, 0 if the terminal name given does
not have an entry, and 1 if all goes well. It will look in the environment for a TERMCAP
variable. If found, and the value does not begin with a slash. and the terminal type name is
the same as the environment string TERM, the TERMCAP string is used instead of reading
the termcap file. If it does begin with a slash, the string is used as a path name rather than
leteltermeap. This can speed up entry into programs that call tgetent. as well as to help debug
new terminal descriptions or to make one for your terminal if you can't write the file
leteltermeap.

Tgetnum gets the numeric value of capability id. returning -1 if is not given for the terminal.
Tgetjlag returns 1 if the specified capability is present in the terminal's entry, 0 if it is not.
Tgetstr returns the string value of the capability id. places it in the buffer at area, and
advances the area pointer. It decodes the abbreviations for this field described in termeap(5),
except for cursor addressing and padding information. Tgetstr returns NULL if the capability
was not found.

Tgata returns a cursor addressing string decoded from em to go to column desteal in line dest­
line. It uses the external variables UP (from the up capability) and BC (if be is given rather
than bs) if necessary to avoid placing \n, AD or A@ in the returned string. (Programs which
call tgoto should be sure to tum off the XT ADS bit(s), since tgata may now output a tab.
Note that programs using termcap should in general tum off XTABS anyway since some ter­
minals use control I for other functions, such as nondestructive space.) If a % sequence is
given which is not understood, then tgata re~urns "OOPS".

4th Berkeley Distribution May 15, 1985 1

TERMCAP(3X) UNIX Programmer's Manual TERMCAP(3X)

FILES

Tputs decodes the leading padding information of the string ep; a.ffcnt gives the number of
lines affected by the operation, or 1 if this is not applicable, oute is a routine which is called
with each character in tum. The external variable ospeed should contain the output speed of
the terminal as encoded by stty(3). The external variable PC should contain a pad character
to be used (from the pc capability) if a null r@) is inappropriate.

lusr/lib/libtermcap.a -ltermcap library
letc/termcap data base

SEE ALSO
ex(1), curses(3X), termcap(5)

AUTHOR
William Joy

4th Berkeley Distribution May 15, 1985 2

---------- -----~-----~------------~-----

TIME(3C) UNIX.Programmer's Manual

NAME
time, ftime - get date and time

SYNOPSIS
IODg time(O)

IODg time(tloc)
IODg .tloc;

#iDclude <sysltypes.h>
#iDclude <sys/timeb.h>
ftime(tp)
struc:t timeb .tp;

DESCRIPTION
These iDterfaces are obsoleted by gettimeofday(l).

Time returns the time since 00:00:00 GMT, Jan. I, 1970, measured in seconds.

If tloe is nonnull, the return value is also stored in the place to which tloe points.

TIME(3C)

The [time entry fills in a structure pointed to by its argument, as defined by <sysltimeb.h>:

I.
• Copyright (c) 1982 Regents of the University ofCalifomia.
• All rights reserved. The Berkeley software License Agreement
• specifies the terms and conditions for redistribution.
•
• @{#)timeb.h6.2 (Berkeley) 6/8/85
.1

I.
• Structure returned by ftime system call

.• 1
struct timeb
{

};

time_t time;
unsigned short millitm;
short timezone;
short dstflag;

The structure contains the time since the epoch in seconds, up to 1000 milliseconds of more­
precise interval, the local time zone (measured in minutes of time westward from Greenwich),
and a nag that, if nonzero, indicates that Daylight Saving time applies locally during the
appropriate part of the year.

SEE ALSO
date(1), gettimeofday(2), settimeofday(2), ctime(3)

. 4th Berkeley Distribution May 9, 1985 1

TIMES(3C)

NAME
times - get process times

SYNOPSIS
#include <sys/types.h>
#include <sys/times.h>

times(buffer)
struc:t tlDs .buffer;

DESCRIPTION

UNIX Programmer's Manual

This interface is obsoleted by lIetrusage(2).

TIMES(3C)

Times returns time-accounting information for the current process and for the terminated
child processes of the current process. All times are in 11HZ seconds, where HZ is 60.

This is the structure returned by times:
I.
• Copyright (c) 1982 Regents of the University of California.
• All rights reserved. The Berkeley software License Agreement
• specifies the terms and conditions for redistribution.
•
• @(#)times.h 6.2 (Berkeley) 6/8/85
.1

/.
• Structure returned by timesO
./

struct tms {

};

time_t tms_utime;
time_t tms_stime;
time_t tms_cutime;
time_t tms_cstime;

/. u~r time .1
/. system time .1
/. user time, children .1
I. system time, children .1

The children times are the sum of the children's process times and their children's times.

SEE ALSO
time(1), getrusage(2), wait3(2), time(3)

4th Berkeley Distribution . May 9,.1985

TTYNAME(3) UNIX Programmer's Manual TTYNAME(3)

NAME
ttyname, isatty, ttyslot - find name of a terminal

SYNOPSIS
char .ttyname(filedes)

isatty(filedes)

ttyslotO

DESCRIFl'ION

FILES

Ttyname returns a pointer to the null-terminated path name of the terminal device associated
with file descriptor filedes (this is a system file descriptor and has nothing to do with the stan­
dard 110 FILE typedet).

]satty returns 1 if filedes is associated with a terminal device, 0 otherwise.

Ttyslot returns the number of the entry in the ttys(5) file for the control terminal of the
current process ..

fdevf.
fetc/ttys

SEE ALSO
ioct1(2), ttys(5)

DIAGNOSTICS

BUGS

Ttyname returns a null pointer (0) if Jiledes does not describe a terminal device in directory
'/dev',

Ttyslot returns 0 if 'fetc/ttys' is inaccessible or if it cannot determine the control te~inal.

The return value points to static data whose content is overwritten by each call.

7th Edition May 15, 1985 1

UALARM(3) UNIX Programmer's Manual UALARM(3)

NAME
ualarm - schedule signal after specified time

SYNOPSIS
,unsigned uaIarm(value, inte"al)
unsigned value;
unsigned inte"al;

DESCRIPTION
This is a simplified interface to setitimer(l).

Ualarm causes signal SIGALRM, see signal(3C), to be sent to the invoking process in a
number of microseconds given by the value argument. Unless caught or ignored, the signal
terminates the process.

If the interval argument is non-zero, the SIGALRM signal will be sent to the process every
interval microseconds after the timer expires (e.g. after value microsecondS have passed).

Because of scheduling delays, resumption of execution of when the signal is caught may be
delayed an arbitrary amount. The longest specifiable delay time (on the vax) is 2147483647
microseconds.

The return value is the amount of time previously remaining in the alarm clock.

SEE ALSO
getitimer(2), setitimer(2), sigpause(2), sigvec(2), signal(3C), sleep(3), alarm(3), usleep(3)

4.3 Berkeley Distribution May 13, 1986

-------_._----------_ .. - --------------------

. UNGETC (35) UNIX Programmer's Manual

NAME
ungetc - push character back into input stream

SYNOPSIS
#include <stdio.h>

ungetc(c, stream)
FILE -stream;

DESCRIPTION

UNGETC(3S)

Ungetc pushes the character c back on an input stream. That character will be returned by
the next getc call on that stream. Ungetc returns c.

One character of pushback is guaranteed provided something has been read from the stream
and the stream is actually buffered. Attempts to push EOF are rejected.

Fseek(3S) erases all memory of pushed back--eharacters.

SEE ALSO
getc(3S), setbuf(3S), fseek(3S)

DIAGNOSTICS
Ungetc returns EOF if it can't push a character back.

7th Edition Mav IS_ 19R5

USLEEP(3) UNIX Programmer's Manual USLEEP(3)

NAME
usleep - suspend execution for interval

SYNOPSIS
usleep(useconds)
unsigned useconds;

DESCRIPTION
The current process is suspended from execution for the number of microseconds specified by
the argument. The actual suspension time may be an arbitrary amount longer because of
other activity in the system or because of the time spent in processing the call.

The routine is implemented by setting an interval timer and pausing until it occurs. The pre­
vious state of this timer is saved and restored. If the sleep time exceeds the time to the
expiration of the previous timer, the process sleeps only until the signal would have occurred,
and the signal is sent a short time later.

This routine is implemented using setitimer(2); it requires eight system calls each time it is
invoked. A similar but less compatible function can be obtained with a single select(2); it
would not restart after signals, but would not interfere with other uses of setitimer.

SEE ALSO
setitimer(2), getitimer(2), sigpause(2), ualarm(3), sleep(3), alarm(3)

4_3 Berkelev Distribution May 15, 1986

UTIME(3C) UNIX Programmer's Manual UTIME(3C)

NAME
utime - set file times

SYNOPSIS
#include <sys!types.h>

urime(file, timep)
char .file;
time_t timep(2);

DESCRIPTION
This interface is obsoleted by utimes(2).

The utime call uses the 'accessed' and 'updated' times in that order from the timep vector to
set the corresponding recorded times for file.

The caller must be the owner of the file or the super-user. The 'inode-changed' time of the
file is set to the current time.

SEE ALSO
utimes(2), stat(2)

4th Berkeley Distribution May 9, 1985

VALLOC(3C) UNIX Programmer's Manual VALLOC(3C)

NAME
valloc - aligned memory allocator

SYNOPSIS
char .valloc(size)
unsigned size;

DESCRIPTION
Valloe is obsoleted by the current version of malloe, which aligns page-sized and larger alloca­
tions.

Valloc allocates size bytes aligned on a page boundary. It is implemented by calling malloc(3)
with a slightly larger request, saving the true beginning of the block allocated, and returning a
properly aligned pointer.

DIAGNOSTICS

BUGS

Valloc returns a null pointer (0) if there is no available memory or if the arena has been
detectably corrupted by storing outside the bounds of a block.

Vfree isn't implemented.

3rd Berkeley Distribution May 12, 1986 1

VARARGS(3) UNIX Programmer's Manual VARARGS(3)

NAME
varargs - variable argument list

SYNOPSIS
#inelude <varargs.h>

/unction(va_alist)
va_del
va_list pvar;
V8_start(pvar);
f - V8_ara<Pvar, type);
vlLend(pvar); .

DESCRIPTION
This set of macros provides a means of writing portable procedures that accept variable argu­
ment lists. Routines having variable argument lists (such as printf(3» that do not use varargs
are inherently nonportable, since different machines use different argument passing conven­
tions.

va_alist is used in a function header to declare a variable argument list.

va_del is a declaration for va_alist. Note that there is no semicolon after va_del.

va_list is a type which can be used for the variable pvar, which is used to traverse the list.
One such variable must always be declared.

va_start(pvar) is called to initialize pvar to the beginning of the list.

va_ara<Pvar, type) will return the next argument· in the list pointed to by pvar. Type is the
type to which the expected argument will be converted when passed as an argument. In stan­
dard C, arguments that are char or short should be accessed as int, unsigned char or unsigned
short are converted to UDsigned int, and Ooat arguments are converted to double. Different
types can be mixed, but it is up to the routine to know what type of argument is expected,
since it cannot be determined at runtime.

va_end(pvar) is used to finish up.

Multiple traversals, each bracketed by V8_start ...va_end, are possible.

EXAMPLE

BUGS

#inelude <varargs.h>
execl(va_alist)
vlLdel
(

}

va_list ap;
char -file;

. char -args(1 00];
intargno = 0;

va_start(ap);
file = va_arg(ap, char -);
while (args[argno+ +) = va_arg(ap, char .»

,
V8_end(ap);
return execv(file, args);

It is up to the calling routine to determine how many arguments there are, since it is not pos­
sible to determine this from the stack frame. For example, execl passes a 0 to signal the end
of the list. Print! can tell how many arguments are supposed to be there by the format.

VARARGS(3) UNIX Programmer's Manual VARARGS(3)

The macros va_start and va_end may be arbitrarily complex; for example, va_start might con­
tain an opening brace, which is closed by a matching brace in va_end. Thus, they should only
be used where tliey could be placed within a single complex statement.

7th Edition May 15, 1986 2

~~-~--~--~- -~~.~.~-~

VLIMIT(3C) UNIX Programmer's Manual VLIMIT(3C)

NAME
vlimit - control maximum system resource consumption

SYNOPSIS
#include <sys/vlimit.h>

vlimit(resource, value)

DESCRIPTION
This facility is superseded by getrlimit(2).

Limits the consumption by the current process and each process it creates to not individually
exceed value on the specified resource. If value is specified as -1, then the current limit is
returned and the limit is unchanged. The resources which are currently controllable are:

LIM_NORAISE
A pseudo-limit; if set non-zero then the limits may not be raised. Only the
super-user may remove the noraise restriction.

LIM_CPU the maximum number of cpu-seconds to be used by each process

LIM_FSIZE the largest single file which can be created

LIM':"DATA the maximum growth of the data+stack region via sbrk(2) beyond the end of
the program text

LIM_STACK the maximum size of the automatically-extended stack region

LIM_CORE the size of the largest core dump that will be created.

LIM_MAXRSS a soft ~limit for the amount of physical memory (in bytes) to be given to the
program. If memory is tight, the system will prefer to take memory from
processes which are exceeding their declared LIM_MAXRSS.

Because this information is stored in the per-process information this system call must be exe­
cuted directly by the shell if it is to affect all future processes created by the shell; limit is thus
a built-in command to csh(1).

The system refuses to extend the data or stack space when the limits would be exceeded in the
normal way; a break call fails if the data space limit is reached, or the process is killed when
the stack limit is reached (since the stack cannot be extended, there is no way to send a sig­
nal!).

A file i/o operation which would create a file which is too large will cause a signal SIGXFSZ
to be generated, this normally terminates the process, but may be caught. When the cpu time
limit is exceeded, a signal SIGXCPU is sent to the offending process; to allow it time to pro­
cess the signal it is given 5 seconds grace by raising the cpu time limit.

SEE ALSO
csh(l)

BUGS
LIM_NO RAISE no longer exists.

4th Berkeley Distribution May 12, 1986

VTIMES(3C) UNIX Programmer's Manual VTIMES(3C)

NAME
vtimes - get information about resource utilization

SYNOPSIS
#include <sys/vtimes.h>

vtimes(pacvm, ch_vm)
struct vtimes .pac vm, .ch_ vm;

DESCRIPTION
This facility is superseded by getrusage(2).

Vtimes returns accounting information for the current process and for the terminated child
processes of the current process. Either par _vm or ch_vm or both may be 0, in which case
only the information fqr the pointers which are non-zero is returned.

After the call, each buffer contains information as defined by the contents of the include file
lusr linc/udelsyslvtimes.h:

struct vtimes {
int vm_utime; /. user time (.HZ) ./
int vm_stime; /. system time (.HZ) ./
/. divide next two by utime+stime to get averages ./
unsigned vm_idsrss; /. integral of d+s rss ./
unsigned vm_ixrss; /. integral of text rss ./
int vm_maxrss; /. maximum rss ./
int vm_majflt; /. major page faults ./
int vm_minflt; /. minor page faults ./
int vm_nswap; /. number of swaps ./
int vm_inblk; /. block reads ./
int vm_oublk; /. block writes ./

};
The vm_utime and vm_stime fields give the user and system time respectively in 60ths of a
second (or 50ths if that is the frequency of wall current in your locality.) The vm_idrss and
vm_ixrss measure memory usage. They are computed by integrating the number of memory
pages in use each over cpu time. They are reported as though computed discretely, adding
the current memory usage (in 512 byte pages) each time the clock ticks. If a process used 5
core pages over 1 cpu-second for its data and stack, then vm_idsrss would have the value
5.60, where vm_utime+vm_stime would be the 60. Vm_idsrss integrates data and stack seg­
ment usage, while vm_ixrss integrates text segment usage. Vm_maxrss reports the maximum
instantaneous sum of the text+data+stack core-resident page count.

The vm_majJlt field gives the number of page faults which resulted in disk activity; the
vm_minflt field gives the number of page faults incurred in simulation of reference bits;
vm_nswap is the number of swaps which occurred. The number of file system input/output
events are reported in vm_inblk and vm_oublk These numbers account only for real i/o; data
supplied by the caching mechanism is charged . only to the first process to read or write the
data.

SEE ALSO
time(2), wait3(2), getrusage(2)

4th Berkeley Distribution May 12, 1986 1

YPCLNT(3N) . UNIX. Programmer·s Manual YPCLNT(3N)

NAME
ypclnt yp-8et_defauIt_domain yp_bind yp_unbind yp_match yp_first yp_next yp_all
yp_order yp_master yperr_string ypprot_err - yellow pages client interface

SYNOPSIS
#include <rpcsvc/ypclnt.h>

J'P_bindCindomainl;
char *indomaiD;

void J'P_unbindCindomain}
char *indomaiD;

J'P~_default_domain(outdomainl;
char **OutdomaiD;

t.P_matchCindomaiD, inmap, iDkey, iDkeylen, outval, outvallen)
char *indomaiD;
char :ainm.ap;
char *iDk.ey;
int iiJ.k.eylen;
char **outval;
int *outvallen;

J'P_firstCindomaiD, inmap, outkey, outkeylen, outval, outvallen)
char *indomaiD;
char :ainm.ap;
char **Outkey;
int *Outkeylen;
char **Outval;
int *outvallen;

J'P_nextCindomain, inmap, inkey, inkeylen, outkey,outkeylen, outval, outvallen},
char *indomaiD;
char :ainm.ap;
char ainkey;
int ink.eylen;
char **Outkey;
int *Outk.eylen;
char **outval;
int *outvallen;

J'P_all(indomain, inmap, incallback},
char *indomaiD;
char :ainm.ap;
struct ypall_callback. incallback;

J'P_orderOndomaiD, inmap, outorder};
char -mdomaiD;
char :ainm.ap;
int *outorder;

J'P_masterOndomain, inmap, outname);
char -mdomaiD;
char :ainm.ap;
char **outname;

char *YIJerr _string(incode)
intincode;

Sun Microsystems ReI 3.0 14 September 1985 1

YPCLNT(3N)

ypprot_errOncode)
unsigned int incode;

DESCRIPTION

UNIX. Programmer's Manual YPCLNT(3N)

This package of functions provides an interface to the yellow pages (yp) network lookup
service, The package can be loaded from the standard library. llibllibc.a. Refer to
ypfiles(5) and ypserv(8) for an overview of the yellow pages. including the definitions of
TTUlp and domain • and a description of the various servers. databases. and commands that
comprise the YP.

All input parameters names begin with in. Output parameters begin with out. Output
parameters of type char ** should be addresses of uninitialized character pointers. Memory
is allocated by the yP client package using malloc(3). and may be freed if the user code has
no continuing need for it. For each outkey and outvol. two extra bytes of memory are allo­
cated at the end that contain NEWLINE and NULL. respectively. but these two bytes are
not reflected in outkeylen or outvallen , indoTTUlin and inTTUlP strings must be non-null and
null-terminated. String parameters which are accompanied by a count parameter may not
be null. but may point to null strings. with the count parameter indicating this. Counted
strings need not be null-terminated.

All functions in this package of type int return 0 if they succeed. and a failure code
(YPERR_xxxx) otherwise. Failure codes are described under DIAGNOSTICS below.

The yP lookup calls require a map name and a domain name. at minimum. It is assumed
that the client process knows the name of the map of interest. Client processes should fetch
the node's default domain by calling yp--,et_default_domainO , and use the returned
outdomain as the indoTTUlin parameter to successive YP calls.

To use the yP services. the client process must be "bound" to a YP server that serves the
appropriate domain using yp _bind. Binding need not be done explicitly by user code; this
is done automatically whenever a yP lookup function is called. yp_bind can be called
directly for processes that make use of a backup strategy (e.g .. a local file) in cases when yP
services are not available.

Each binding allocates (uses up) one client process socket descriptor; each bound domain
costs one socket descriptor. However. mUltiple requests to the same domain use that same
descriptor. yp_unbind() is available at the client interface for processes that explicitly
manage their socket descriptors while accessing mUltiple domains. The call to yp_unbind()
make the domain unbound. and free all per-process and per-node resources used to bind it.

I! an RPC failure results upon use of a binding. that domain will be unbound automati­
cally. At that point. the ypclnt layer will retry forever or until the operation succeeds.
provided that ypbind is running. and either

a) the client process can't bind a server for the proper domain. or

b) RPC requests to the server fail.

I! an error is not RPC-related. or if ypbind is not running. or if a bound ypserv process
returns any answer (success or failure). the ypclnt layer will return control to the user
code. either with an error code. or a success code and any results.

yp_match returns the value associated with a passed key. This key must be exact; no pat­
tern matching is available.

ypJrst returns the:first key-value pair from the named map in the named domain.

yp_Ttext() returns the next key-value pair in a named map. The inkey parameter should be
the outkey returned from an initial call to ypJrstO (to get the second key-value pair) or
the one returned from the nth call to YP_Ttext() (to get the nth + second key-value pair).

Sun Microsystems ReI 3.0 14 September 1985 2

YPCLNT(3N) UNIX Programmer's Manual YPCLNT(3N)

The concept of 1irst (and. for that matter. of next) is particular to the structure of the yP

map being processing: there is no relation in retrieval order to either the lexical order within
any original (non-yp) data base. or to any obvious numerical sorting order on the keys.
values. or key-value pairs. The only ordering guarantee made is that if the ypJrst() func­
tion is called on a particular map. and then the yp_ne:x;t() function is repeatedly called on
the same map at the same server until the call fails with a reason of YPERR_NOMORE.
every entry in the data base will be seen exactly once. Further. if the same sequence of
operations is performed on the same map at the same server. the entries will be seen in the
same order.

Under conditions of heavy server load or server failure. it is possible for the domain to
become unbound. then bound once again (perhaps to a different server) while a client is
running. This can cause a break in one of the enumeration rules: specific entries may be seen
twice by the client. or not at all. This approach protects the client from error messages that
would otherwise be returned in the midst of the enumeration. The next paragraph
describes a better solution to enumerating all entries in a map.

yp_all provides a way to transfer an entire map from server to client in a single request
using TCP (rather than UDP as with other functions in this package). The entire transac­
tion take place as a single RPC request and response. You can use yp _all just like any other
yP procedure. identify the map in the normal manner. and supply the name of a function
which will be called to process each key-value pair within the map. You return from the
call to yp_all only when the transaction is completed (successfully or unsuccessfully). or
your "foreach" function decides that it doesn't want to see any more key-value pairs,

The third parameter to yp _all is
struct ypall_callback *incallback {

int (*foreach)O:
char *data:;

1:
The function foreach is called

foreachCinstatus, inkey. inkeyle~ inval, invalle~ indata);
int instatus;
char *inkey;
int inkeylen;
char *invaI;
int invalllen;
char *indata;

The instatus parameter will hold one of the return status values defined in
<rpcsvc/yp_prot.h> - either YP_TRUE or an error code. (See ypprot_err , below. for a
function which converts a yP protocol error code to a ypclnt layer error code.)

The key and value parameters are somewhat different than defined in the synopsis section
above. First. the memory pointed to by the inkey and inval parameters is private to the
yp_all function. and is overwritten with the arrival of each new key-value pair. It is the
responsibility of the foreach function to do something useful with the contents of that
memory. but it does not own the memory itself. Key and value objects presented to the
foreach function look exactly as they do in the server's map - if they were not newline­
terminated or null-terminated in the map. they won't be here either.

The indata parameter is the contents of the incallback->data element passed to yp_all. The
data element of the callback structure may be used to share state information between the
foreach function and the mainline code. Its use is optional. and no part of the yP client
package inspects its contents - cast it to something useful. or ignore it as you see fit.

Sun Microsystems ReI 3.0 14 September 1985 3

YPCLNT(3N) UNIX Programmer's Manual YPCLNT(3N)

FILES

The foreach function is a Boolean, It should return zero to indicate that it wants to be
called again for further received key-value pairs, or non-zero to stop the :O.ow of key-value
pairs. If foreach returns a non-zero value, it is not called again: the functional value of
yp _all is then O.

yp_order returns the order number for a map.

yp_nuuter returns the machine name of the master yP server for a map.

yperr _string returns a pointer to an error message string that is null-terminated but con­
tains no period or newline.

ypprot_fIIT takes a yP protocol error code as input, and returns a ypclnt layer error code,
which may be used in turn as an input to yperr _string.

lusr/includelrpcsvclypclnt.h
lusr/includelrpcsvclyp-prot,h

SEE ALSO
yp1iles(5), ypserv(8),

DIAGNOSTICS
All integer functions return 0 if the requested operation is successful, or one of the follow­
ing errors if the operation fails.

#de1ine YPERR_BADARGS
#de1ine YPERR_RPC
#de1ine YPERR_DOMAIN
#de1ine YPERR_MAP
#de1ine YPERR_KEY
#de1ine YPERR_ YPERR
#de1ine YPERR_RESRC
#de1ine YPERR_NOMORE
#de1ine YPERR_PMAP
#de1ine YPERR_ YPBIND
#de1ine YPERR_ YPSERV
#de1ine YPERR_NODOM

1 1* args to function are bad *1
2 1* RPC failure - domain has been unbound *1
3 1* can't bind to server on this domain *1
4 1* no such map in server's domain *1
5 1* no such key in map *1
6 1* internal yp server or client error *1
7 1* resource allocation failure *1
8 1* no more records in map database *1
9 1* can't communicate with portmapper *1
10 1* can't communicate with ypbind *1
11 1* can't communicate with ypserv *1
12 1* local domain name not set *1

Sun Microsystems ReI 3.0 14 September 1985 4

YPPASSWD (3R) UNIX Programmer's Manual YPP ASSWD (3R)

NAME
yppasswd - update user password in yellow pages

SYNPOSIS
#include <rpcsvclyppasswd.h>

yppasswd(oldpass, newpw)
char *Oldpass .
stru.c1; passwd *D.ewpw;

DESCRIPTION
If oldpass is indeed the old user password. this routine replaces the password entry with
newpw, It returns 0 if successful.

RPC INFO
program number:

YPPASSWDPROG

xdr routines:
xdr--PPasBWd(xdrs. yp)

XDR*Xdrs;
struct yppasswd *yp:

xdr~asswd(xdrs.pw)
XDR*xdrs;

proes:
struct passwd *pw:

YPPASSWDPROC...;.,UPDATE
T~ struct yppasswd as argument. returns integer.
Same behavior as yppasswd() wrapper.
Uses UNIX authentication.

versions:
yPP ASSWDVERS_ORIG

structures:
struct yppasswd {

char *Oldpass; 1* old (unencrypted) password *1
struct passwd newpw: 1* new pw structure *1

}:
SEE ALSO

yppasswd(1).yppasswdd(8C)

Sun Microsystems Rei 3.0 10 August 1985 1

INTRO(3F) UNIX Programmer's Manual INTRO(3F)

NAME
intro - introduction to FORTRAN library functions

DESCRIPTION
This section describes those functions that are in the Fortran run time library. The functions
listed here provide an interface from 177 programs to the system in the same manner as the C
library does for C programs. They are automatically loaded as needed by the Fortran com­
piler 177(1), except for the graphics interface routines. Those must be explicitly requested, see
plot(30.

The math intrinsics required by the 1977 Fortran standard are available, although not
described here. In addition, the abs, sqrt, exp, log, sin, and cos intrinsics have been extended
for double complex values. They may be referenced using the generic names listed above, or
they may be referenced using their specific names that consist of the generic names preceded
by either cd or z. For example, if zz"is double complex, then sqrt(zz), zsqrt(zz), or cdsqrt(zz)
compute the square root of zz. The dcmplx intrinsic forms a double complex value from two
double precision variables or expressions, and the name of the specific function for the conju­
gate of a double complex value is dconjg.

Most of these functions are in libU77.a. Some are in libF77.a or libI77.a. A few intrinsic
functions are described for the sake of completeness.

For efficiency, the SCCS 10 strings are not normally included in the a.out file. To include
them, simply declare

external f77lid

in any 177 module.

UST OF FUNCTIONS
Name Appears on Page Description

abort abort.3f abnormal termination
access access.3f determine accessibility of a file
alarm alarm.3f execute a subroutine after a specified time
and bit.3f bitwise and
arc plot.3f f77 interface to plot(3x)
bessel besse1.3f bessel functions of two kinds for integer orders
box plot.3f f77 interface to plot(3x)
chdir chdir.3f change default directory
chmod chmod.3f change mode of a file
circle plot.3f f77 interface to plot(3x)
clospl plot.3f f77 interface to plot(3x)
cont plot.3f f77 interface to plot(3x)
ctime time.3f return system time
dtfrac flmin.3f return extreme values
dflmax flmin.3f return extreme values
dflmin flmin.3f return extreme values
drand rand.3f return random values
drandm random.3f better random number generator
dtime etime.3f return elapsed execution time
erase plot.3f f77 interface to plot(3x)
etime etime.3f return elapsed execution time
exit exit.3f terminate process with status
falloe malloc.3f memory allocator
fdate fdate.3f return date and time in an ASCII string
ffrac flmin.3f return extreme values

4.2 Berkeley Distribution May 27,1986

INTRO(3F) UNIX Programmer's Manual INTRO(3F)

fgetc getc.3f get a character from a logical unit
flmax flmin.3f return extreme values
flmin flmin.3f return extreme values
flush flush.3f flush output to a logical unit
fork fork.3f create a copy of this process
fpecnt trpfpe.3f trap and repair floating point faults
(putc putc.3f write a character to a fortran logical unit
free malloc.3f memory allocator
fseek fseek.3f reposition a file on a logical unit
fstat stat.3f get file status
ftell fseek.3f reposition a file on a logical unit
gerror perror.3f get system error messages
getarg getarg.3f return command line arguments
getc getc.3f get a character from a logical unit
getcwd getcwd.3f get pathname of current working di~ory
getenv getenv.3f get value of environment variables
getgid getuid.3f get user or group ID of the caller
getlog getlog.3f get user's login name
getpid getpid.3f get process id
getuid getuid.3f get user or group ID of the caller
gmtime time.3f return system time
hostnm hostnm.3f get name of current host
iargc getarg.3f return command line arguments
idate idate.3f return date or time in numerical form
iermo perror.3f get system error messages
index index.3f tell about character objects
inmax flmin.3f return extreme values
ioinit ioinit.3f change f77 110 initialization
irand rand.3f return random values
irandm random.3f better random nuinber generator
isatty ttynam.3f find name of a terminal port
itime idate.3f return date or time in numerical form
kill kill.3f send a signal to a process
label plot.3f f77 interface to piot(3x)
len index.3f tell about character objects
line plot.3f f77 interface to plot(3x)
linemd plot.3f f77 interface to plot(3x)
link link.3f make a link to an existing file
lnblnk index.3f tell about character objects
loc loc.3f return the address of an object
long long.3f integer object conversion
Ishift bit.3f left shift
Istat stat.3f get file status
ltime time.3f return system time
malloc malloc.3f memory allocator
move plot.3f f77 interface to plot(3x)
not bit.3f bitwise complement
openpl plot.3f f77 interface to plot(3x)
or bit.3f bitwise or
perror perror.3f get system error messages
point plot.3f f77 interface to plot(3x)
putc putc.3f write a character to a fortran logical unit
qsort qsori.3f quick sort

4.2 Berkeley Distribution May 27,1986 2

INTRO(3F) UNIX Programmer's Manual INTRO(3F)

rand rand.3f return random values
random random.3f better random number generator
rename rename.3f rename a file
rindex index.3f tell about character objects
rshift bit.3f right shift
short long.3f integer object conversion
signal signal.3f change the action for a signal
sleep sleep.3f suspend execution for an interval
space plot.3f f77 interface to plot(3x)
stat stat.3f get file status
symlnk symlnk.3f make a symbolic link
system system.3f execute a UNIX command
tclose topen.3f f77 tape 110
time time.3f return system time
topen topen.3f f77 tape 110
traper traper.3f trap arithmetic errors
trapov trapov.3f trap and repair floating point overflow
tread topen.3f f77 tape 110
trewin topen.3f f77 tape 110
trpfpe trpfpe.3f trap and repair floating point faults
tskipf topen.3f f77 tape 110
tstate topen.3f f77 tape 110
ttynam ttynam.3f find name of a terminal port

-twrite topen.3f f77 tape 110
unlink unlink.3f remove a directory entry
wait wait.3f wait for a process to terminate
xor bit.3f bitwise" exclusive or

4.2 Berkeley Distribution May 27, 1986 3

ABORT(3F) UNIX Programmer's Manual ABORT(3F)

NAME
abort - abnormal termination

SYNOPSIS
subroutine abort (string)
charactef*(.) string

DESCRIPI10N

FILES

Abort cleans up the 110 buffers and then terminates execution. If string is given, it is written
to logical unit 0 preceded by "abort:".

If the -g flag was specified during loading, then execution is terminated by calling abort (3)
which aborts producing a core file in the current directory. If -g was not specified while load­
ing, then ••• Execution terminated is written on logical unit 0 and execution is terminated.

Ifthe./77_dump..Jlagenvironment variable has been set to a value which begins with y, abort
(3) is called whether or not -g was specified during loading. Similarly, if the value of
./77_dump..Jlag begins with n, abort is not called.

lusr/libllibF77.a

SEE ALSO
abort(3)

BUGS
String is ignored on the PDPl!.

4.2 Berkeley Distribution June 7, 1985 1

ACCESS(3F) UNIX Programmer's Manual

NAME
access - determine accessibility of a file

SYNOPSIS
integer function access (name, mode)
character*(*) name, mode

DESCRIPTION

ACCESS(3F)

Access checks the given file, name, for accessibility with respect to the caller according to
mode. Mode may include in any order and in any combination one or more of:

FILES

r test for read permission
w test for write permission
x test for execute permission

(blank) test for existence

An error code is returned if either argument is illegal, or if the file cannot be accessed in all of
the specified modes. 0 is returned if the specified access would be successful.

lusr/lib/libU77.a

SEE ALSO
access(2), perror(3F)

BUGS
Pathnames can be no longer than MAXPATHLEN as defined in <sys/param.h>.

4.2 Berkeley Distribution May 27, 1986

ALARM(3F) UNIX RI'ogrammer's Manual ALARM(3F)

NAME
alarm - execute a subroutine after a specified time

SYNOPSIS
integer function alarm (time, proc)
integer time
external proc

DESCRIPTION

FILES

This routine arranges for subroutine proc to be called after time seconds. If time is "0", the
alarm is turned off and no routine will be called. The returned value will be the time remain­
ing on the last alarm.

/usrllibllibU77.a

SEE AlSO

BUGS

alarm(3C). sleep(3F), signal(3F)

Alarm and sleep interact. If sleep is called after alarm, the alarm process will never be called.
SIGALRM will occur at the lesser of the re~aining alarm time or the sleep time.

~~ __ M~v 14\ 10R4\

BESSEL(3F) UNIX Programmer's Manual

NAME
bessel functions - of two kinds for integer orders

SYNOPSIS
function besjO (x)

function besjl (x)

function besjn (0, x)

function besyO (x)

function besyl (x)

function besyo (0, x)

double precision function dbesjO (x)
double precision x

double precision function dbesjl (x)
double precision x

double precision function dbesjn (0, x)
double precision x

double precision function dbesyO (x)
double precision x

double precision function dbesyl (x)
double precision x

double precision function dbesyo (n, x)
double precision x

DESCRIPTION·

BESSEL(3F)

. These functions calculate Bessel functions of the first and second kinds for· real 'arguments and
integer orders.

DIAGNOSTICS
Negative arguments cause besyO. besyl. and besyn to return a huge negative value. The system
error code will be set to EDOM (33).

FILES
lusr/lib/libF77 .a

SEE ALSO
jO(3M), perror(3F)

4.2 Berkelev Distribution May IS, 1985

BIT(3F) UNIX Programmer's Manual BIT(3F)

NAME
bit - and, or, xor, not, rshift, Ishift bitwise functions

SYNOPSIS
(intrinsic) function and (wordl, wordl)

(intrinsic) function or (wordl, wordl)

(intrinsic) function xor (wordl, wordl)

(intrinsic) function not (word)

(intrinsic) function nhift (word, nbits)

(intrinsic) function Ishift (word, nbits)

DESCRIPTION

FILES

These bitwise functions are built into the compiler and return the data type of their
argument(s). Their arguments must be integer or logical values.

The bitwise combinatorial functions return the bitwise "and" (and), "or" (or), or "exclusive
or" (xor) of two operands. Not returns the bitwise complement of fts operand.

Lshift; or rshift with a negative nbits, is a logical left shift with no end around carry. Rshift,
or lshiftwith a negative nbits, is an arithmetic right shift with sign extension. No test is made
for a reasonable value of nbits.' -

These functions may be used to create a variety of general routines, as in the following state­
ment function definitions:

integer bitse~ bitclr, getbi~ word, bitnum

biuet(word, bitnum) = or(word,lshift(l,bitnum»
bitclr(word, bitnum) - and(word,not(lshift(1,bitnum)))
getbit(word, -bitnum) - and(nhift(word,bitnum),l)

These functions are generated in-line by the il7 compiler.

4.2 -.BerkeleY.J)istrihution_ Anril 30. 1986

CHDIR(3F) UNIX Programmer's Manual

NAME
chdir - change default directory

SYNOPSIS
integer function chdir (dimame)
character.(.) dirname

DESCRIPTION

CHDIR(3F)

The default directory for creating and locating files will be changed to dirname. Zero is
returned if successful; an error code otherwise.

FILES
/usr/lib/libU77.a

SEE ALSO
chdir(2), cd(1), perror(3F)

BUGS
Pathnames can be no longer than MAXPATHLEN as defined in <sys/param.h>.

Use of this function may cause inquire by unit to fail.

4.2 Berkeley Distribution May 15, 1985

CHMOD(3F) UNIX Programmer's Manual CHMOD(3F)

NAME
chmod - change mode of a file

SYNOPSIS
integer function cbmocl (name, mode)
cbaracter.(.) name, mocle

DESCRIPTION
This function changes the filesystem mode of file name. Mode can be any specification recog­
nized by chmod(I). Name must be a single pathname.

The normal returned value is O •. Any other value will be a system error number.

FILES
lusr/libllibU77 .a
Ibinlchmod

SEE ALSO
chmod(l)

BUGS

exec'ed to change the mode.

Pathnames can be no longer than MAXPATHLEN as defined in <sys/param.h>.

4.2 Berkeley Distribution May IS, 1985 1

ETIME(3F) UNIX Programmer's Manual

NAME
etime, dtime - return elapsed execution time

SYNOPSIS
function etime (turay)
real tarray(l)

function dtime (tarray)
real tarray(l)

DESCRIPflON

ETIME(3F)

These two routines return elapsed runtime in seconds for the calling process. Dtime returns
the elapsed time since the last call to dtime, or the start of execution on the first call.

The argument array returns user time in the first element and system time in the second ele­
ment. The function value is the sum of user and system time.

The resolution of all timing is 11HZ sec. where HZ is currently 60.

FILES
lusrllibllibU77 .a

SEE ALSO
times(2)

4.2 Berkeley Distribution May 15, 1985

EXIT(3F) UNIX Programmer's Manual

NAME
exit - terminate process with status

SYNOPSIS
subroutine exit (status)
integer status

DESClUPIlON

EXIT(3F~

Exit flushes and closes all the process's files, and notifies the parent process if it is executing a
wait. The low-order 8 bits of status are available to the parent process. (Therefore status
should be in the range 0 - 255)

This call will never return.

The C function exit may cause cleanup actions before the final 'sys exit'.

FILES
lusrllibllibF77 .a

SEE ALSO
exit(2), fork(2), fork(3F), wait(2), wait(3F)

4.2 Berkeley Distribution May 15, 1985 1

FDATE(3F) UNIX Programmer's Manual

NAME
fdate - return date and time in an ASCII string

SYNOPSIS
subroutine fdate (string)
character-(.) . string

character.(.) function Cdate()

. DESCRIPTION

FDATE(3F)

Fdate returns the current date and time as a 24 character string in the format described under
ctime(3). Neither 'newline' nor NULL will be included.

Fdate can be called either as a function or as a subroutine. If called as a function, the calling
routine must define its type and length. For example:

character.24 fdate
external fdate

write(.,.) fdateO

FILES
lusr/lib/lib U77.a

SEE ALSO
ctime(3), time(3F), itime(3F), idate(3F), Itime(3F)

4.2 Berkeley Distribution May 27, 1986

FLMIN(3F) UNIX Programmer's Manual FLMIN(3F)

NAME
, flmin, flmax, ffrac, dflmin, dtlmax, dffrac, inmax - return extreme values

SYNOPSIS
function flminO

function flmaxO

function fI'rac:()

double precision function dflmiDO

double precision function dflmaxO

double precision functioD dffrac()

function inmaxO

DESCRlPI'ION

FILES

Functions flmin and flmax return the minimum and maximum positive floating point values
respectively. Functions dflmin and dflmax return the minimum and maximum positive dou­
ble precision floating point values. Function inmax returns the maximum positive integer
value.

The functions ffrac and dffrac return the fractional accuracy of single and double precision
floating point numbers respectiv.ely. This is the difference between 1.0 and the smallest real
number greater than 1.0.

These functions can be used by programs that must scale algorithms to the numerical range of
the processor.

lusr/libllibF77.a

4.2 Berkeley Distribution June 7, 1985 1

FLUSH(3F) UNIX Programmer's Manual

NAME
flush - flush output to a logical unit

SYNOPSIS
subroutine flush (lunit)

DESCRIPTION

FLUSH(3F)

Flush causes the contents of the buffer for logical unit [unit to be flushed to the associated file.
This is most useful for logical units 0 and 6 when they are both associated with the control
terminal.

FILES
lusr/lib/libI77 .a

SEEAISO
fclose(3S)

4.2 Berkeley Distribution May 15, 1985

FORK(3F) UNIX Programmer's Manual FORK(3F)

NAME
fork - create a copy of this process

SYNOPSIS
integer function forkO

DESCRIPfION

FILES

Fork creates a copy of the calling process. The only distinction between the 2 processes is
that the value returned to one of them (referred to as the 'parent' process) will be the process
id of the copy. The copy is usually referred to as the 'child' process. The value returned to
the 'child' process will be zero.

All logical units open for writing are flushed before the fork to avoid duplication of the cono
tents of I/O buffers in the external file(s).

If the returned value is negative, it indicates an error and will be the negation of the system
error code. See perror(3F).

A corresponding exec routine has not been provided because there is no satisfactory way to
retain open logical units across the exec. However, the usual function of fork/exec can be per­
formed using system(3F).

lusr/libllibU77 .a

SEE AlSO
fork(2), wait(3F), kill(3F), system(3F), perror(3F)

4,2 Berkeley Distribution May 27, 1986

FSEEK(3F) UNIX Programmer's Manual

NAME
fseek, ftell - reposition a file on a logical unit

SYNOPSIS
integer function fseek (Iunit, offset, from)
integer offset, from

integer function ftell (lunit)

DESCRIPTION

FSEEK(3F)

lunit must refer to an open logical unit. offset is an offset in bytes relative to the position
specified by from.- Valid values for from are:

FILES

o meaning 'beginning of the file'
1 meaning 'the current position'
2 meaning 'the end of the file'

The value returned by /seek will be 0 if successful, a system error code otherwise. (See
perror(3F» -

Ftell returns the current position of the file associated with the specified logical unit. The
value is an offset, in bytes, from the beginning of the file. If the value returned is negative, it
indicates an error and will be the negation of the system error code. (See perror(3F»

lusr/lib/libU77.a

SEE ALSO
fseek(3S), perror(3F)

4.2 Berkeley Distribution May 27,1986 1

GETARG(3F) UNIX Programmer1s Manual

NAME
getarg, iargc - return command line arguments

SYNOPSIS
subroutine getarg (~ arg)
character.(.) arg

function iarge 0
DESCRIPTION

GETARG(3F)

A call to getarg will return the klh command line argument in character string argo The Oth
argument is the command name.

large returns the index of the last command line argument.

FILES
/usrllibllibU77.a

SEE ALSO
getenv(3F), execve(2)

4th Berkeley Distribution May 15, 1985 1

GETC(3F) UNIX Programmer's Manual

NAME
getc, fgetc - get a character from a logical unit

SYNOPSIS
integer function getc (char)
character char

integer function fgetc (Ion it, char)
character char

DESCRIPTION

GETC(3F)

These routines return the next character from a file associated with a fortran logical unit,
bypassing normal fortran 110. Getc reads from logical unit 5, normally connected to the con­
trol terminal input.

FILES

The value of each function is a system status code. Zero indicates no error occurred on the
read; -1 indicates end of file was detected. A positive value will be either a UNIX system
error code or an f77 110 error code. See perror(3F).

lusrllibllib un.a

SEE ALSO
getc(3S), intro(2), perror(3F)

4.2 Berkeley Distribution May 27,1986

GETCWD(3F) UNIX Programmer's Manual

NAME
getcwd - get pathname of current working directory

SYNOPSIS
integer function getcwd (dimame)
character.(.) dimame

DESCRIPTION

GETCWD(3F)

The pathname of the default directory for creating and locating files will be returned in dire
name. The value of the function will be zero if successful; an error code otherwise.

FILES
lusrllib/libU77.a

SEE ALSO
chdir(3F), perror(3F)

BUGS
Pathnames can be no longer than MAXPATHLEN as defined in <sys!param.h>.

GETENV(3F) UNIX Programmer's Manual

NAME
getenv - get value of environment variables

SYNOPSIS
subroutine getenv (ename, evalue)
character.(.) ename, evalue

DESCRIPTION

GETENV(3F)

Getenv searches the environment list (see environ(7» for a string of the form ename-value
and returns value in evalue if such a string is present, otherwise fills evalue with blanks.

FILES
lusr/lib/libU77 .a

SEE ALSO
environ(7), execve(2)

4.2 Berkeley Distribution May IS, 1985

GETLOG(3F) UNIX Programmer's Manual

NAME
getlog - get user's login name

SYNOPSIS
subroutine getlog (name)
character.(.) name

character.(.) function getlog()

DESCRIPTION

GETLOG(3F)

Getlog will return the user's login name or all blanks if the process is running detached from a
terminal.

FILES
lusrllibllibU77 .a

SEE ALSO
getlogin(3)

May 15. 1985 1

GETPID (3.F) UNIX Programmer's Manual

NAME
getpid - get process id

SYNOPSIS
integer function getpidO

DESCRIPTION
Getpid returns the process ID number of the current process.

FILES
lusrllibllibU77 .a

SEE ALSO
getpid(2)

4.2 Berkeley Distribution May 15, 1985

GETPID(3F)

GETUID(3F) UNIX Programmer's Manual

NAME
getuid, getgid - get user or group ID of the caller

SYNOPSIS
integer function getuidO

integer function getgidO

DESCRIPTION
These functions return the real user or group ID of the user of the process.

FILES
lusr/lib/libU71.a

SEE ALSO
getuid(2)

4.2 Berkeley Distribution May 15, 1985

GETUID(3F)

1

HOSTNM(3F) UNIX Programmer's Manual

NAME
hostnm - get name of current host

SYNOPSIS
integer function hostnm (name)
character.(.) name

DESCRIPTION _

HOSTNM(3F)

This function puts the name of the current host into character string name. The return value
should be 0; any other value indicates an error.

FILES
lusrllib/libU77 .a

SEE ALSO
gethostname(2)

4.2 Berkeley Distribution May 15, 1985

IDATE(3F) UNIX Progl,'ammer~s Manual

NAME
idate, itime - return date or time in numerical form

SYNOPSIS
subroutine ldate (iarray)
integer iarray(3)

subroutine itime (iarray)
integer iarray(3)

DESCRIPTION

IDATE(3F)

1date returns the current date in ia"ay. The order is: day, mon, year. Month will be in the
range 1-12. Year will be ~ 1969.

1time returns the current time in ia"ay. The order is: hour, minute, second.

FILES
lusrllibllibU77.a

SEE ALSO
ctime(3F), fdate(3F)

4.2 Berkeley Distribution May 15, 1985 1

INDEX(3F) UNIX Programmer's Manual INDEX(3F)

NAME
index, rindex, lnblnk, len - tell about character objects

SYNOPSIS
(intrinsic) function index (string, substr)
character.(.) string, substr

integer function rindex (string, substr)
character.(.) string, substr

function lnblnk (string)
character.(.) string

(intrinsic) function len (string)
character.(.) string

DESCRIPTION

FILES

Index (rindex) returns the index of the first (last) occurrence of the substring substr in string,
or zero if it does not occur. Index is an f'n intrinsic function; rindex is a library routine.

Lnblnk returns the index of the last non-blank character in string. This is useful since all f77
character objects are fixed length, blank padded. Intrinsic function len returns the size of the
character object argument.

lusr/lib/libF77 .a

4.2 Berkelev Distribution May IS, 1985

IOINIT(3F) UNIX Programmer's Manual IOINIT (3F.)

NAME
ioinit - change il7 I/O initialization

SYNOPSIS
logical function 10init (cctl, b~ apnci, prefix, vrbose)
logical cctl, b~ 'pod, vrbose
cbaracter.(.) prefix

DESClUPl10N
This routine will initialize several global parameters in the il7 110 system, and attach exter­
nally defined files to logical units at run time. The effect of the flag arguments applies to logi­
cal units opened after ioinit is called. The exception is the preassigned units, S and 6, to
which eetl and buo will apply at any time. Ioinit is written in Fortran-77.

By default, carriage control is not recognized on any logical unit. If eetl is .true. then carriage
control will be recognized on formatted output to all logical units except unit 0, the diagnostic
channel. Otherwise tlie default will be restored.

By default, trailing and embedded blanks in input data fields are ignored. If bzro is .true. then
such blanks will be treated as zeros. Otherwise the default will be restored.

By default, all files opened for sequential access are positioned at their beginning. It is some­
times necessary or convenient to open at the END-OF-FILE so that a write will append to the
existing data. If apnd is .true. then files opened subsequently on any logical unit will be posi­
tioned at their end upon opening. A value of .false. will restore the default behavior.

Ioinit may be used to associate file names with Fortran logical unit numbers through environ­
ment variables (see "Introduction to the il7 110 Library" for a more general way of doing
this). If the argument prefix is a non-blank string, then names of the form prefixNN will be
sought in the program environment. The value associated with each such name found will be
used to open logical unit NN for formatted sequential access. For example, if il7 program
my program included the call

call ioinit (.true., .false., .false., 'FORT, .false.)

then when the following sequence

% setenv FORTOI mydata
% setenv FORT12 myresults
% myprogram

would result in logical unit 1 opened to file mydata and logical unit 12 opened to file
myresults. Both files would be positioned at their beginning. Any formatted output would
have column 1 removed and interpreted as carriage control. Embedded and trailing blanks
would be ignored on input.

If the argument vrbose is .true. then ioinit will report on its activity.

The effect of

call ioinit (.true., . true. , .false., n, .false.)

can be achieved without the actual call by including "-1166" on the j77 command line. This
gives carriage control on all logical units except 0, causes files to be opened at their beginning,
and causes blanks to be interpreted as zero's.

The internal flags are stored in a labeled common block with the following definition:

integer.2 ieof, ictl, ibzr

4.~~~rkeley Distribution May 27, 1986 1

IOINIT(3F) UNIX Programmer's Manual

common /ioiflgl ieof, ictl, ibzr

FILES
/usr/lib/libI77 .i
/usr/lib/libI66.a

SEE ALSO

f77 110 library
sets older fortran I/O modes

getarg(3F), getenv(3F), "Introduction to the f77 110 Library"

BUGS

IOINIT(3F)

Prefix can be no longer than 30 characters. A pathname associated with an environment
name can be no longer than 255 characters.

The" +" carriage control does not work.

4.2 Berkeley Distribution May 27, 1986 2

KILL(3F) UNIX Programmer's Manual

NAME
kill - send a signal to a process

SYNOPSIS
function kill (pid, signum)
integer pid, signum

DESCRIPI'ION

KILL(3F)

Pid must be the process id of one of the user's processes. Signum must be a valid signal
number (see sigvec(2». The returned value will be 0 if successful; an error code otherwise.

FILES
/usrl1ibllibU77 .a

SEE ALSO
- kill(2), sigvec(2), signal(3F), fork(3F), perror(3F)

LINK(3F) UNIX Programmer's Manual

NAME
link - make a link to an existing file

SYNOPSIS
function link (name I, name2)
characteu(.) namel, name2

integer function symlnk (namel, name2)
character.(.) namel, name2

DESCRIPTION

LINK(3F)

Name1 must be the pathname of an existing file. Name2 is a pathname to be linked to file
name1. Name2 must not already exist. The returned value will be 0 if successful; a system
error code otherwise.

Symlnk creates a symbolic link to name 1.

FILES
lusrllib/libU77 .a

SEE ALSO
link(2), symlink(2), perror(3F), unlink(3F)

BUGS
Pathnames can be no longer than MAXPATHLEN as defined in <sys/param.h>.

4.2 Berkeley Distribution May IS, 1985

LOC(3F) UNIX Programmer's Manual LOC(3F)

NAME
loc return the address of an object

SYNOPSIS
(unction loc (arg)

DESCRIPTION
The returned value will be the address of argo

FILES
/usrllibnibU77 .a

4.2 Berkeley Distribution May 15, 1985 1

LONG(3F) UNIX Programmer's Manual

NAME
long, short - integer object conversion

SYNOPSIS
integer-4 function long (int2)
integer-2 int2

integer-2 f~nc:tion short (int4)
integer_4 int4

DESCRIPTION

LONG(3F)

These functions provide conversion between short and long integer objects. Long is useful
when constants are used in calls to library routines and the code is to be compiled with "·i2".
Short is useful in similar context when an otherwise long object must be passed as a short
integer.

FILES
/usrllib/libF77 .a

4.2 Berkeley Distribution May 15, 1985

MALLOC(3F) UNIX Programmer's Manual MALLOC(3F)

NAl\1E
malloc, free, falloc - memory allocator

SYNOPSIS
subroutine malloc (size, adelr)
integer size, adelr

subroutine free (adelr)
integer adelr

subroutine (alloc (nelem, elsize, clean, basevec, adelr, offset)
integer nelem, elsiz~ clean, adelr, offset

DESCRIPTION
Malloe, fal/oe and free provide a general-purpose memory allocation package. Mal/oc returns

. in addr the address of a block of at least size bytes beginning on an even-byte boundary.

Falloe allocates space for an array. of nelem elements of size elsize and returns the address of
the block in addr. It zeros the block if clean is 1. It returns in offset an index such that the
storage may be addressed as basevec(offset+J} ... basevec(offset+nelem}. Falloe gets extra bytes
so that after address arithmetic, all the objects so addressed are within the block.

The argument to free is the address of a block previously allocated by mal/oe or /al/oc; this
space is made available for further allocation, but its contents are left undisturbed. To free
blocks allocated by /al/oe. use addr in calls to free. do not use basevec(offset+ J).

Needless to say, grave disorder will result if the space assigned by mal/ocor/al/oc is overrun or
if some random number is han4ed to free.

DIAGNOSTICS
Mal/oc and /al/oe set addr to 0 if there is no· available memory or if the arena has been detect­
ably corrupted by storing outside the bounds of a block .

. The following·example shows how to obtain memory and use it within a subprogram:

integer addr, work(1), offset

call falloc (n, 4, 0, work, addr, offset)
do 10 i-I, n
work(offset+i) = ...

10 continue

The next example reads in dimension information, allocates space for two arrays and two vec­
tors, and calls subroutine doit to do the computations:

integer addr, dummy(1), offs
read -, k, 1, m
indml = 1
indm2 = indm 1 + k-l
indm3 = indm2 + l-m
indsym = indm3 + bm
Isym - n-(n+ 1)/2
indv = indsym + lsym
indtot = indv + m
call falloc (indtot, 4, 0, dummy, addr, offs)
call doit(dummy(indml +offs), dummy(indm2+offs),

dummy(indm3+offs), dummy(indsym +offs),
dummy(indv +offs), m, n, lsym)

end

May 15, 1985 1

MALLOC(3F) UNIX Programmer's Manual

subroutine doit(arrl, arr2, arr3, vsym, vee, m, n, lsym)
real arrl(k,l), arr2(l,m), arr3(k,m), vsym(lsym), v2(m)

FILES
lusrllibllibU77 .a

SEE ALSO
malloc(3)

4.3 Berkeley Distribution May 15, 1985

MALLOC(3F)

2

P~RROR(3F) UNIX Programmers Manual PERROR(3F)

NAME
perror, gerror, ierrno - get system error messages

SYNOPSIS
subroutine perror (string)
character.(.) string

subroutine gerror (string)
character.(.) string

character.(.) function gerror()

function ienuoO

DESCRIPTION

FILES

Perror will write a message to fortran logical unit 0 appropriate to the last detected system
error. String will be written preceding the standard error message. .

Gerror returns the system error message in character variable string. Gerror may be called
either as a subroutine or as a function.

Ierrno will return the error number of the last detected system error. This number is updated
only when an error actually occurs. Most routines and I/O statements that might generate
such errors return an error code after the call; that value is a more reliable indicator of what
caused the error condition.

/usrllibllibU77 .a

SEE ALSO

BUGS

NOTES

intro(2), perror(3)
D. L. Wasley, Introduction to the j77 110 Library

String in the call.to perror can be no longer than 127 characters.

The length of the string returned by gerror is determined by the calling program.

UNIX system error codes are described in intro(2). The f77 I/O error codes and their mean­
ings are:

100 "error in format"
101 "illegal unit number"
102 "formatted i/o not allowed"
103 "unformatted i/o not allowed"
104 "direct i/o not allowed"
105 "sequential i/o not allowed"
106 "can't backspace file"
107 "off beginning of record"
108 "can't stat file"
109 "no • after repeat count"
110 "off end of record"
111 "truncation failed"
112 "incomprehensible list input"
113 "out of free space"
114 "unit not connected"
115 "invalid data for integer format term"
116 "invalid data for logical format term"

PERROR(3F) UNIX Programmer's Manual PERROR(3F)

117 "'new' file exists"
118 "can't find 'old' file"
119 "opening too many files or unknown system error"
120 "requires seek ability"
121 "illegal argument"
122 "negative repeat count"
123 "illegal operation for unit"
124 "invalid data for d, e, f, or g format term"

4.2 Berkelev Distribution June 7, 1985 2

PLOT(3F) UNIX Programmer's Manual PLOT(3F)

NAME
plot: openpl et al. - il7 library interface to plot (3X) libraries.

SYNOPSIS
, subroutine openplO

subroutine erase()

subroutine label(str)
character str.(.)

subroutine Une(ixl, iyl, ixl, iy2)

subroutine box(ixl, iyl, ix2, iy2)
Draw a rectangle and leave the cursor at (ix2,iy2).

subroutine circle(ix, iy, ir)

subroutine arc(ix, iy, ixO, iyO, ixl, iyl)

subroutine move(ix, iy)

subroutiDe coDt(ix, iy)

subroutiDe poiDt(~ iy)

subroutine Iinemd(str)
character str.(.)

subroutiDe space(ixO, iyO, ixl, iyl)

subroutine closplO

DESCRIPTION
These are interface subroutines, in the library -/j77plot, allowingj77 users to c~l the plot(3X)
graphics routines which generate graphic output in a relatively device-independent manner.
The j77 subroutine names are the same as the C function names except that linemod and
c/osepl have been shortened to linemd and c1ospl-, See plot(5) and plot(3X) for a description
of their effect.

Only the first 255 character in string arguments to label and linemd are used.

This library- must be specified in the j77(1) command before the device specific graphics
library; for example, to compile and load a FORTRAN -program in prog.j to run on a Tek­
tronix 4014 terminal:

m prog.t -U77plot -14014

See plot(3X) for a complete list of device specific plotting libraries.

SEE ALSO
plot(5), plot(1 G), plot(3X), graph(1 G)

4.3 Berkeley Distribution April 30, 1986 1

PUTC(3F) UNIX Programmer's Manual

NAME
putc, fputc - write a character to a fortran logical unit

SYNOPSIS
integer function putc (char)
character char

integer function fputc (lunit, char)
character char

DESCRIPTION

PUTC(3F)

These funtions write a character to the file associated with a fortran logical unit bypassing
normal fortran 110. Pute writes to logical unit 6, normally connected to the control terminal
output.

The value of each function will be zero unless some error occurred; a system error code other­
wise. See perror(3F).

FILES
lusrllib/libU77 .a

SEE ALSO
putc(3S), intro(2), perror(3F)

4.2 Berkeley Distribution May 15, 1985

QSORT(3F) UNIX Programmer's Manual

NAME
qsort - quick sort

SYNOPSIS
subroutine qsort (array, len, isize, compar)
. external compar
integer.l com par

DESCRlFl'lON

QSORT(3F)

One dimensional a"ay contains the elements to be sorted. len is the number of elements in
the array. isize is the size of an element, typically -

4 for integer and real
8 for double precision or complex
16 for double complex
(length of character object) for character arrays

Compat' is the name of a user supplied integer.2 function that will determine the sorting
order. This function will be called with 2 arguments that will be elements of a"ay. The func­
tion must return -

FILES

negative if arg 1 is considered to precede arg 2
zero if ai'g 1 is equivalent to arg 2
positive if arg 1 is considered to follow arg 2

On return, the elements of a"ay will be sorted.

/usrnibnibU77.a

SEE ALSO
qsort(3) ,

4.2 Berkeley Distribution May 15, 1985 1

RAND(3F) UNIX Programmer's Manual RAND(3F)

NAME
rand, drand, irand - return random values

SYNOPSIS
function irand (itlag)

function rand (iflag)

double precision function drand (iflag)

DESCRIPTION

FILES

The newer random(3t) should be used in new applications; rand remains for compatibilty.

These functions use rand(3C) to generate sequences of random numbers. If ijlag is '1', the
generator is restarted and the first random value is returned. If ijlag is otherwise non-zero, it
is used as a new seed for the random number generator, and the first new random value is
returned.

[rand returns positive integers in the range 0 through 2147483647. Rand and drand return
values in the range O. through 1.0 .

lusrllibllibF77 .a

SEE ALSO

BUGS

random(3F), rand(3C)

The algorithm returns a 15 bit quantity on the PDPll; a 31 bit quantity on the VAX. [rand.
on the PDP11 calls rand(3C) twice to form a 31 bit quantity, but bit 15 will always be O.

4.2 Berkeley Distribution May 15, 1985

RANDOM(3F) UNIX Programmer's Manual

NAME
random, drandm, irandm - better random number generator

SYNOPSIS
function irandm (iflag)

function random (ifJag)

double precision function drandm (iflag)

DESCRIPl10N

RANDOM(3F)

These functions use random(3) to generate sequences of random numbers, and should be used
rather than the older functions described in man 3/ rand. If iflag is non-zero, it is used as a
new seed for the random number generator, and the first new random value is returned.

Irandm returns positive integers in the range 0 through 2147483647 (2 •• 31-1). Random and
drandm return values in the range O. through 1.0 by dividing the integer random number
from random(3) by 2147483647 .

FILES
lusrllibnibF77.a

SEEALSO
random(3)

4.3 Berkeley Distribution May IS, 1985

RENAME(3F) UNIX Programmer's Manual

NAME
rename - rename a file

SYNOPSIS
integer function rename (from, to)
character.(.) from, to

DESCRIPTION

RENAME(3F)

From must be the pathname of an existing file. To will become the new pathname for the file.
If to exists, then both from and to must be the same type of file, and must reside on the same
filesystem. If to exists, it will be removed first.

The returned value will be 0 if successful; a system error code otherwise.

FILES
lusrllibllibU77.a

SEE ALSO
rename(2), perror(3F)

BUGS
Pathnames can be no longer than MAXPATHLEN as defined in <Syslparam.h>.

4.2 Berkeley Distribution May 15, 1985

SIGNAL(3F) UNIX Programmer's Manual SIGNAL(3F) .

NAME
signal - change the action for a signal

SYNOPSIS
integer function signal(signum, proc, flag)
integer signum, flag
external proc

DESCRIPTION

FILES

When a process incurs a signal (see signal(3C» the default action is usually to clean up and
abort. The user may choose to write an alternative signal handling routine. A call to signal is
the way this alternate action is specified to the system.

Signum is the signal number (see signal(3C». If flag is negative, then proc must be the name
of the user signal handling routine. If flag is zero or positive, then proc is ignored and the
value of flag is passed to the system as the signal action definition. In particular, this is how
previously saved signal actions can be restored. Two possible values for flag have specific
meanings: 0 means -use the default action- (See NOTES below), 1 means -ignore this signal-.

A positive returned value is the previous action definition. A value greater than 1 is the
address of a routine that was to have been called on occurrence of the given signal. The
returned. value can be used in subsequent calls to signal in order to restore a previous action
definition. A negative returned value is the negation of a system error code. (See pe"or(3F»

lusrllib/libU77 .a

SEEALSO

NOTES

signal(3C), kill(3F), kill(1)

m arranges to trap certain signals when a process is· started. The only way to restore the
default r17 action is to save the returned value from the first call to signal.

If the user signal handler is called, it will be passed the signal number as an integer argument.

4.2 Berkeley Distribution May 15, 1985 1

SLEEP(3F) UNIX Programmer's Manual SLEEP{3F)

NAME
sleep - suspend execution for an interval

SYNOPSIS
subroutine sleep (itime)

DESCRIPTION
Sleep causes the calling process to be suspended for itime seconds. The actual time can be up
to 1 second less than itime due to granularity in system timekeeping.

FILES
lusrllibllibU77 .a

SEE ALSO
sleep(3)

4.2 Berkeley Distribution May 15, i98S

STAT(3F) UNIX Programmer's Manual

NAME
stat, Istat, fstat - get file status

SYNOPSIS
integer function stat (name, statb)
character.(.) name
integer statb(12)

integer function Istat (name, statb)
character.(.) name
integer statb(12)

integer function fstat (JUDit, statb)
integer statb(12)

DESCRIPTION

STAT(3F)

These routines return detailed information about a file. Stat and Istat return information
about file name; fitat returns information about the file associated with fortran logical unit
/unit. The order and meaning of the information returned in array statb is as described for the
structure stat under stat(2). The "spare" values are not included .

. The value of either function will be zero if successful; an error code otherwise.

FILES
lusrllibllibU77 .a

SEE ALSO
stat(2), access(3F), perror(3F), time(3F)

BUGS
Pathnames can be no longer than MAXPATHLEN as defined in <Sys/param.h> .

4.2 Berkeley Distribution . May 15, 1985 1

SYSTEM(3F) UNIX Programmer's Manual

NAME
system - execute a UNIX command

SYNOPSIS
integer function system (string)
character.(.) string

DESCRIPI10N

SYSTEM(3F)

System causes string to be given to your shell as input as if the string had been typed as a
command. If environment variable SHELL is found, its value will be used as the command
interpreter (shell); otherwise sh(1) is used.

FILES

The current process waits until the command terminates. The returned value will be the exit
status of the shell. See wait(2) for an explanation of this value.

lusr/libllibU77 .a

SEE ALSO
exec(2), wait(2), system(3)

BUGS
String can not be longer than NCARGS-50 characters, as defined in <syslparam.h>.

4.2 Berkeley Distribution May IS, 1985

TIME(3F) UNIX Programmer's Manual

NAME
time, ctime, ltime, gmtime - return system time

SYNOPSIS
integer function time()

cbarac:ter.(.) function ctime (stime)
integer stime

subroutine ltime (stim~ tarray)
integer stim~ tarray(9)

subroutine gmtime (stim~ tarray)
integer stim~ tarray(9)

DESCRIPTION

TIME(3F)

Time returns the time since 00:00:00 GMT, Jan. 1, 1970, measured in seconds. This is the

FILES

value of the UNIX system clock. .

Clime converts a system time to a 24 character ASCII string. The format is described under
ctime(3). No '.newline' or NULL will be included.

Ltime and gmtime disect a UNIX time into month, day, etc., either for the local time zone or
as GMT. The order and meaning of each element returned in tarray is described under
ctime(3).

lusr/libllibU77 .a

SEEALSO
ctime(3), itime(3F), idate(3F), fdate(3F)

4.2 Berkeley Distribution May 15, 1985 1

TOPEN(3F) UNIX Programmer's Manual TOPEN(3F)

NAME
topen, tclose, tread, twrite, trewin, tskipf, tstate - f77 tape VO

SYNOPSIS
integer function topen (tlu, devnam, label)
integer tIu
character.(.) devnam
logical label

integer function tclose (tIu)
integer tIu

integer function tread (tlu, buffer)
integer tIu
charaetef*(.) buffer

integer function twrite (tIu, buffer)
integer tIu
charaeter.(.) buffer

integer function trewin (tlu)
integer tIu

integer function tskipf (tIu, nfiles, nrecs)
integer tIu, nfiles, nrecs

integer function tstate (tIu, fileno, recno, errf, eoff, eotf, tcsr)
integer tlu, fileno, recno, tcsr
logical errf, eoff, eotf

DESCRIPTION
These functions provide a simple interface between f77 and magnetic tape devices. A "tape
logical unit", tlu, is "topen"ed in much the same way as a normal f77 logical unit is
"open"ed. All other operations are performed via the tlu. The tlu has no relationship at all
to any normal f77 logical unit.

Topen associates a device name with a tlu. Tlu must be in the range 0 to 3. The logical argu­
ment label should indicate whether the tape includes a tape. label. This is used by trewin
below. Topen does not move the tape. The normal returned value is o. If the value of the
function is negative, an error has occured. See pe"or(3F) for details.

Tclose closes the tape device channel and removes its association with tlu. The normal
returned value is O. A negative value indicates an error.

Tread reads the next physical. record from tape to buffer. Buffer must be of type character.
The size of buffer should be large enough to hold the largest physical record to be read. The
actual number of bytes read will be returned as the value of the function. If the value is 0,
the end-of-file has been detected. A negative value indicates an error.

Twrite writes a physical record to tape from buffer. The physical record length will be the
size of buffer. Buffer must be of type character. The number of bytes written will be
returned. A value of 0 or negative indicates an error.

Trewin rewinds the tape associated with tlu to the beginning of the first data file. If the tape
is a labelled tape (see topen above) then the label is skipped over after rewinding. The normal
returned value is O. A negative value indicates an error.

4.2 Berkeley Distribution May 15, 1985

TOPEN(3F) UNIX Programmer's Manual TOPEN(3F)

FILES

Tskipf allows the user to skip over files and/or records. First, nfi/es end-of-file marks are
skipped. If the current file is at EOF, this counts as 1 file to skip. (Note: This is the way to
reset the EOF status for a tlu.) Next, nTecs physical records are skipped over. The normal
returned value is O. 1\ negative value indicates an error. .

Finally, tstate allows the user to determine the logical state of the tape I/O channel and to see
the tape drive control status register. The values of fi/eno and Tecno will be returned and indi­
cate the current file and record number. The logical values e"f. eoJJ, and eot/ indicate an
error has occurred, the current file is at EOF. or the tape has reached logical end-of-tape.
End-of-tape (EOT) is indicated by an empty file. often referred to as a double EOF mark. It
is not allowed to read past EOT although it is allowed to write. The value of teST will reflect
the tape drive control status register. See ht(4) for details.

lusr/libllibU77 .a
SEEAlSO

ht(4), perror(3F), rewind(l)

4.2 Berkeley Distribution May 15, 1985 2

TRAPER(3F) UNIX Programmer's Manual

NAME
traper - trap arithmetic errors

SYNOPSIS
integer function traper (mask)

DESCRIPTION
NOTE: This routine applies only to the v AX. It is ignored on the PDPll.

TRAPER(3F)

Integer overflow and floating point underflow are not normally trapped during execution. This
routine enables these traps by setting status bits in the process status word. These bits are
reset on entry to a subprogram, and the previous state is restored on return. Therefore, this
routine must be called inside each subprogram in which these conditions should be trapped.
If the condition occurs and trapping is enabled, signal SIGFPE is sent to the process. (See
signal(3C»

The argument has the following meaning:

value meaning
o do not trap either condition
1 trap integer overflow only
2 trap floating underflow only
3 trap both the above

The previous value of these bits is returned.

FILES
lusr/lib/libF77 .a

SEE ALSO
signal(3C), signal(3F)

4.2 Berkeley Distribution May 15, 1985

TRAPOvqF) UNIX Programmer's Manual TRAPOV(3F)

NAME
trapov - trap and repair floating point overflow

SYNOPSIS
subroutine trapov (numesg, rtnval)
double precision rtnval

DESCRIPTION

FILES

NOTE: This routine applies only to the older VAX 11/780'5. V AX computers made or
upgraded since spring 1983 handle errors differently. See trp/pe(3F) for the newer error
handler. This routine has always been ineffective on the VAX 1117 50. It is a null routine on
the PDPll.

This call sets up signal handlers to trap arithmetic exceptions and the use of illegal operands.
Trapping arithmetic exceptions allows the user's program to proceed from instances of float­
ing point overflow or divide by zero. The result of such operations will be an illegal floating
point value. The subsequent use of the illegal operand will be trapped and the operand
replaced by the specified value.

The first numesg occurrences of a floating point arithmetic error will cause a message to be
written to the standard error file. If the resulting value is used, the value given for rtnval will
replace the illegal operand generated by the arithmetic error. Rtnval must be a double preci­
sion value. For example, "OdO" or "dflmaxO".

lusr/lib/libF77.a

SEE ALSO

BUGS

trpfpe(3F), signal(3F), range(3F)

Other arithmetic exceptions can be trapped but not repaired.

There is no way to distinguish between an integer value of 32768 and the illegal floating point
form. Therefore such an integer value may get replaced while repairing the use of an illegal
operand.

4.2 Berkeley Distribution May 15, 1985 1

TRPFPE(3F) UNIX Programmer's Manual TRPFPE(3F)

NAME
trpfpe, fpecnt - trap and repair floating point faults

SYNOPSIS
subroutine trpfpe (numesg, rtnval)
double precision rtnval

integer function fpecnt 0

common Ifpefltl fperr
logical fperr

DESCRIPTION

FILES

NOTE: This routine applies only to Vax computers. It is a null routine on the PDPll.

Trpfpe sets up a signal handler to trap arithmetic exceptions. If the exception is due to a
floating point arithmetic fault, the result of the operation is replaced with the rtnval specified.
Rtnval must be a double precision value. For example, "OdO" or "dflmaxO".

The first numesg occurrences of a floating point arithmetic error will cause a message to be
written to the standard error file. Any exception that can't be repaired will result in the
default action, typically an abort with core image.

Fpecnt returns the number of faults since the last call to trpfpe.

The logical value in the common block labelled fpeflt will be set to .true. each time a fault
occurs.

lusr/lib/libF77 .a

SEE ALSO

BUGS

signal(3F), range(3F)

This routine works only for faults, not traps. This is primarily due to the Vax architecture.

If the operation involves changing the stack pointer, it can't be repaired. This seldom should
be a problem with the f77 compiler, but such an operation might be produced by the optim­
izer.

The POLY and EMOD opcodes are not dealt with.

4.2 Berkeley Distribution May 15, 1985

TTYNAM(3F) UNIX Programmer's Manual TTYNAM(3F)

NAME
ttynam, isatty - find name of a terminal port

SYNOPSIS
charaeter.(.) function ttynam (lunit)

logical function isatly (lunit)

DESCRIPTION
Ttynam returns a blank padded path name of the teI'D)inal device associated with logical unit
lunit.

FILES

]satty returns .true. if [unit is associated with a terminal device, .false. otherwise.

Idev/­
lusrllibllibU77.a

DIAGNOSTICS
Ttynam returns an empty string (all blanks) if [unit is not associated with a terminal device in
directory '/dev'.

4.2 Berkeley Distribution May 15, 1985 1

UNLlNK(3F) UNIX Programmer's Manual

NAME
unlink - remove a directory entry

SYNOPSIS
integer function unlink (name)
characteu(.) name

DESCRIPTION

UNLlNK(3F)

Unlink causes the directory entry specified by pathname name to be removed. If this was the
last link to the file, the contents of the file are lost. The returned value will be zero if success­
ful; a system error code otherwise.

FILES
/usrllib/libU77.a

SEE ALSO
unlink(2), link(3F), filsys(5), perror(3F)

BUGS
Pathnames can be no longer than MAXPATHLEN as defined in <sys/param.h>.·

4.2 Berkeley Distribution May 15, 1985

WAIT(3F) UNIX Programmer's Manual

NAME
wait - wait for a process to terminate

SYNOPSIS
integer function wait (status)
integer status

DESCRIPTION

WAIT.(3F)

Wait causes its caller to be suspended until a signal is received or one of its child processes
terminates. If any child has terminated since the last wait, return is immediate; if there are
no children, return is immediate with an error code.

If the returned value is positive, it is the process ID of the child and status is its termination
status (see wait(2». If the returned value is negative, it is the negation of a system error code.

/usrllibllibU77 .a

SEE AlSO
wait(2), signal(3F), kill(3F), perror(3F)

4.2 Berkeley Distribution May 15, 1985 1

INTRO(4) UNIX Programmer's Manual INTRO(4)

NAME
intro - introduction to special files and hardware support

DESCRIPTION
This section describes the special files, related driver functions, and networking support avail­
able in the system. In this part of the manual, the SYNOPSIS section of each configurable
device gives a sample specification for use in constructing a system description for the
config(8) program. The DIAGNOSTICS section lists messages which may appear on the con­
sole and/or in the system error log lusrladmlmessages due to errors in device operation; see
sys/ogd(8) for more information.

This section contains both devices which may be configured into the system, "4" entries, and
network: related information, "4N", "4P", and "4F' entries; The networking support is intro­
duced in intro(4N).

VAX DEVICE SUPPORT
This section describes the hardware supported on the DEC VAX-ll. Software support for
these devices comes in two forms. A hardware device may be supported with a character or
block device driver, or it may be used within the networking subsystem and have a network
inter/ace driver. Block and character devices are accessed through files in the file system of a
special type; c.f. mknod(8). Network interfaces are indirectly accessed through the interpro­
cess communication facilities provided by the system; see socket(2).

A hardware device is identified to the system at configuration time and the appropriate device
or network interface driver is then compiled into the system. When the resultant system is
booted, the autoconfiguration facilities in the system probe for the device on either the
UNIBUS (or Q-buS) or MASSBUS and, if found, enable the software support for it. If a
UNIBUS device does not respond at autoconfiguration time it is not accessible at any time
afterwards. To enable a UNIBUS device which did not autoconfigure, the system will have to
be rebooted. If a MASSBUS device comes "on-line" after the autoconfiguration sequence it
will be dynamically autoconfigured into the running system.

The autoconfiguration system is described in autoconf(4). A list of the supported devices is
given below.

SEE ALSO
intro(4), intro(4N), autoconf(4), config(8).

Building 4.3BSD UNIX Systems with Config (SMM:2)

. UST OF DEVICES
The devices listed below are supported in this incarnation of the system. Pseudo-devices are
not listed. Devices are indicated by their functional interface. If second vendor products
provide functionally identical interfaces they should be usable with the supplied software.
(Beware, however, that we promise the software works ONLY with the hardware indicated on
the appropriate manual page.) Occasionally, new devices of a similar type may be added sim­
ply by creating appropriate table entries in the driver.

acc
ad
css
crI
ct
ddn
de
dh
dhu
dmc

ACC LHlDH IMP communications interface
Data translation AID interface
DEC IMP-IIA communications interface
VAX 8600, 8650 console RL02 disk
CI AIT or APS phototypesetter
ACC ACP625 DDN Standard Mode X.25 IMP interface
DEC DEUNA lOMb/s Ethernet controller
DH-Il emulators, terminal multiplexor
DHU-ll terminal multiplexor
DEC DMC-IlIDMR-l1 point-to-point communications device

4th Berkeley Distribution June 1, 1986

INTRO(4) UNIX Prosrammer's Manual INTRO(4)

dmf DEC DMF-32 terminal multiplexor and parallel printer interface
dmz DEC DMZ-32 terminal multiplexor
dn DEC ON-II autodialer interface
dz DZ-II terminal multiplexor
ec 3Com 10Mb/s Etbernet controller
en Xerox 3Mb/s Ethernet controller (obsolete)
ex Excelan lOMb/s Ethernet controller
fl V AX-1l1780 console floppy interface
bdb ACC IF-IlIHDH IMP interface
bk RK6;'111RK06 and RK07 moving bead disk
bp MASSBUS disk interface (with RP06, RM03, RMOS, etc.)
bt TM03 MASSBUS tape drive interface (with TE-16, TU-4S, TU-77)
by DR-liB or 01-13 interface to an NSC Hypercbannel
ik Ikonas frame buffer graphics gevice interface
il Interlan 10 I 0, 10 I OA 10Mbls Ethernet controller
ix Interlan NP-lOO 10Mbls Ethernet controller
kg KIA lIDL-ll W line clock
lp LP-l1 parallel line printer interface
mt TM78 MASSBUS tape drive interface
np Interlan NP-l00 lOMbls Ethernet controller. (intelligent mode)
pel DEC PCL-II communications interface
ps Evans and Sutherland Picture System 2 graphics interface
qe DEC DEQNA Q-bus 10 Mb/s Ethernet interface
rx DEC RX02 floppy interface
tm TM-I1ITE-IO tape drive interface
tmscp TMSCP-compatible tape controllers (e.g., TU81, TKSO)
ts TS-l1 tape drive interface
tu VAX-111730 TUS8 console cassette interface
uda DEC UDA-SO disk controller
un DR-II W interface to Ungermann-Bass
up Emulex SC-21V, SC-31 UNIBUS disk controller
ut UNIBUS TU-4S tape drive interface
uu TUS8 dual cassette drive interface (DLI1)
va Benson-Varian printer/plotter interface
vp Versatec printer/plotter interface
vv Proteon proNET 10Mb/s and 80Mb/s ring network interface

4tb Berkeley Distribution JUlle 1, 1986 2

INTRO(4N) UNIX Programmer's Manual INTRO(4N)

NAME
networking - introduction to networking facilities

SYNOPSIS
#include <sys/socket.h>
#include <Detlroute.h>
#include <netlif.h>

DESCRIPTION
This section briefly describes the networking facilities available in the system. Documenta­
tion in this part of section 4 is broken up into three areas: protocol families (domains), proto­
cols, and network interfaces. Entries describing a protocol family are marked "4F," while
entries describing protocol use are marked "4P." Hardware support for network interfaces are
found among the standard "4" entries.

All network protocols are associated with a speciftc protocol family. A protocol family pro­
vides basic services to the protocol implementation to allow. it to function within a specific
network environment. These services may include packet fragmentation and reassembly,
routing, addressing, and basic transport. A protocol family may support multiple" methods of
addressing, though the current protocol implementations do not. A protocol family is nor­
mally comprised of a number of protocols, one per socket(2) type. It is not required that a
protocol family support all socket types. A protocol family may contain multiple protocols
supporting the same socket abstraction. "

A protocol supports one of the socket abstractions detailed in socket(2). A specific protocol
may be accessed either by creating a socket of the appropriate type and protocol family, or by
requesting the protocol explicitly when creating a socket. Protocols normally accept only one
type of address fO(Dlat, usually determined by the addressing structure inherent in the design
of the protocol family/network architecture. Certain semantics of the basic socket abstrac­
tions are protocol specific. All protocols are expected to support the basic model for their
particular socket type, but may, in addition, provide Don-standard facilities or extensions to a
mechanism. For example, a protocol supporting the SOCK-STREAM abstraction may allow
more than one byte of out-of-band data to be transmi!led per out-of-band message.

A network interface is similar to a device interface. Network interfaces comprise the lowest
layer of the networking subsystem, interacting with the actual transport hardware. An inter­
face may support one or more protocol families andlor address formats. The SYNOPSIS sec­
tion of each network interface entry gives a sample specification of the related drivers for use
in providing a system description to the conjig(8) program. The DIAGNOSTICS section lists
messages which may appear on the console andlor in the system error log, lusr/adm/messages
(see syslogd(8», due to errors in device operation.

PROTOCOLS
The system currently supports the DARPA Internet protocols and the Xerox Network
Systems(tm) protocols. Raw socket interfaces are provided to the IP protocol layer of the
DARPA Internet, to the IMP link layer (1822), and to the lOP protocol of Xerox NS. Con­
sult the appropriate manual pages in this section for more information regarding the support
for each protocol family.

ADDRESSING
Associated with each protocol family is an address format. The following address formats are
used by the system (and additional formats are defined for possible future implementation):

#define AF _UNIX
#define AF _INET
#define AF _IMP LINK
#define AF _PUP
#define AF _NS

4.2 Berkeley Distribution

1
2
3
4
6

/. local to host (pipes, portals) ./
/. internetwork: UDP, TCP, etc .• /
/. arpanet imp addresses ./
/. pup protocols: e.g. BSP ./
/. Xerox NS protocols ./

June 1, 1986 1

INTRO(4N) UNIX Programmer's Manual INTRO(4N)

#define AF _HYLINK 15 I. NSC Hyperchannel.1

ROUTING
The network facilities provided limited packet routing. A simple set of data structures
comprise a "routing table" used in selecting the appropriate network interface when transmit­
ting packets. This table contaiIlS a single entry for each route to a specific network or host. A
user process, the routing daemon, maintains this data base with the aid of two socket-specific
ioctl(2) commands, SIOCADDRT and SIOCDELRT. The commands allow the addition and
deletion of a single routing table entry, respectively. Routing table manipulations may only
be carried out by super-user.

A routing table entry has the following form, as defined in <netlroute.h>;

rt_hash;
struct rtentry {

uJong
struct
struct
short
short
u_Iong
struct

sockaddr rt_dst;
sockaddr rt-&ateway;
rt_flags;
rt_refcnt;
rt_use;
ifnet .rt_ifp;

};

with rt...Jlags defined from,

#define RTF_UP
'#define . RTF_GATEWAY
#define RTF_HOST
#define RTF_DYNAMIC

Oxl
Ox2
Ox4
OxlO

I. route usable .1
I. destination is a gateway .1
I. host entrY (net otherwise) ./
I. created dynamically (by redirect) .1

Routing table entries come in three flavors: for a specific host, for all hosts on a specific net­
work, for any destination not matched by entries of the first two types (a wildcard route).
When the system is booted and addresses are assigned to the network interfaces, each proto­
col family installs a routing table entry for each interface when it is ready for traffic. Nor­
mally the protocol specifies the route through each interface as a "direct" connection to the
destination host or network. If the route is direct, the transport layer of a protocol family .
usually requests the packet be sent to the same host specified in the packet. Otherwise, the
interface is requested to address the packet to the gateway listed in the routing entry (i.e. the
packet is forwarded).

Routing table entries installed by a user process may not specify the hash, reference count,
use, or interface fields; these are filled in by the routing routines. If a route is in use when it
is deleted (rerefcnt is non-zero), the routing entry will be marked down and removed from
the routing table, but the resources associated with it will not be reclaimed until all references
to it are released. The routing code returns EEXIST if requested to duplicate an existing
entry, ESRCH if requested to delete a non-existent entry, or ENOBUFS if insufficient
resources were available to install a new route. User processes read the routing tables through
the Idevlkmem device. ~1"he reuse field contains the number of packets sent along the route.

When routing a packet, the kernel will first attempt to find a route to the destination host.
Failing that, a search is made for a route to the network of the destination. Finally, any route
to a default ("wildcard") gateway is chosen. If multiple routes are present in the table, the
first route found will be used. If no entry is found, the destination is declared to be unreach­
able.

4.2 Berkeley Distribution June 1, 1986 2

INTRO(4N) UNIX Programmer's Manual INTRO(4N)

A wildcard routing entry is specified with a zero destination address value. Wildcard routes
are used only when the system fails to find a route to the destination host and network. The
combination of wildcard routes and routing redirects can provide an economical mechanism
for routing traffic.

INTERFACES
Each network interface in a system corresponds to a path through which messages may be
sent and received. A network interface usually has a hardware device associated with it,
though certain interfaces such as the loopback interface, 10(4), do not.

The following ioetl calls may be used to manipulate network interfaces. The ioetl is made on
a socket (typically of type SOCK_DGRAM) in the desired domain. Unless specified other­
wise, the request takes an ifrequest structure as its parameter. This structure has the form

struct ifreq {
char ifcname[16]; /. name of interface (e.g. "ecO·) ./
union {

struct
struct
struct
short
int

} ifr_ifru;
#define ifcaddr
#define ifcdstaddr
#defineifr_broadaddr
#define ifcflags
#define ifcmetric
};

SIOCSIFADDR

sockaddrifru_addr,
sockaddr ifru_dstaddr,
sockaddr ifru_broadaddr,
ifru_flags;
ifru_metric;

ifcifru.ifru_addr /. address ./
ifcifru.ifru_dstaddr /. other end of p-to-p link ./
ifcifru.ifru_broadaddr /. broadcast address ./
ifr _ifru.ifru_flags /. flags ./
ifcifru.ifru_metric /. routing metric ./

Set interface address for protocol family. Following the address assignment, the "ini­
tialization" routine for the interface is called.

SIOCGIFADDR
Get interface address for protocol family.

SIOCSIFDSTADDR
Set point to point address for protocol family and interface.

SIOCGIFDSTADDR
Get point to point address for protocol family and interface.

SIOCSIFBRDADDR
Set broadcast address for protocol family and interface.

SIOCGIFBRDADDR
Get broadcast address for protocol family and interface.

SIOCSIFFLAGS
Set interface flags field. If the interface is marked down, any processes currently rout­
ing packets through the interface are notified; some interfaces may be reset so that
incoming packets are no longer received. When marked up again, the interface is
reinitialized.

SIOCGIFFLAGS
Get interface flags.

SIOCSIFMETRIC
Set interface routing metric. The metric is used only by user-level routers.

4.2 Berkeley Distribution June I, 1986 3

INTRO(4N) UNIX Programmer's Manual INTRO(4N)

SIOCGIFMETRIC
Get interface metric.

SIOCGIFCONF
Get interface configuration list. This request takes an ifcon/ structure (see below) as a
value-result parameter. The ifc_len field should be initially set to the size of the buffer
pointed to by ifc_buj. On return it will contain the length, in bytes, of the
configuration list.

/.
• Structure used in SIOCGIFCONF request.
• Used to retrieve interface configuration
• for machine (useful for programs which
• must know all networks accessible) . . /

struct ifconf {
int ifc_Ien; /. size of associated buffer ./
union {

caddr_t ifcu_buf;
struct ifreq .ifcu_req;

} ifc_ifcu;
#define ifc_buf ifc_ifcu.ifcu_buf
#define ifc_req ifc_ifcu.ifcu_req
};

SEE ALSO

/. buffer address ./
/. array of structures returned ./

socket(2), ioct1(2), intro(4), config(8), routed(8C)

4.2 Berkeley Distribution June 1, 1986 4

ACC(4) UNIX Programmer's Manual ACC(4)

NAME
acc - ACC LHlDH IMP interface

SYNOPSIS
pseudo-device imp
device ac:cO at ubaO csr 167600 vectQr accrint accxint

DESCRIPTION
The ace device provides a Local Host/Distant Host interface to an IMP. It is normally used
when participating in the DARPA Internet. The controller itself is not accessible to users, but
instead provides the hardware support to the IMP interface described in imp(4). When
configuring, the imp pseudo-device must also be included.

DIAGNOSTICS
ac:c%d: not alive. The initialization routine was entered even though the device did not
autoconfigure. This indicates a system problem.

acc:%d: can't initialize. Insufficient UNIBUS resources existed to initialize the device.· This is
likely to occur when the device is run on a buffered data path on an 111750 and other net­
work interfaces are also configured to use buffered data paths, or when it is configured to use
buffered data paths on an 111730 (which has none).

ac:c%d: imp doesn't respond, icsr-~b. The driver attempted to initialize the device, but the
IMP failed to respond after 500 tries. Check the cabling.

acc%d: stray xmit interrupt, csr-Ofob. An interrupt occurred when no output had previously
been started.

acc%d: output, error, ocsr=Ofob, icsr=-Ofob. The device indicated a problem sending data on out­
put.

acc%d: input error, csr-Ofob. The device indicated a problem receiving data on input.

ac:c%d: bad length-Ofod. An input operation resulted in a data transfer of less than 0 or more
than 1008 bytes of data into memory (according to the word count register). This should
never happen as the maximum size of a host-IMP message is 1008 bytes.

4.2 Berkeley Distribution May 15, 1985

AD(4) UNIX Programmer's Manual AD(4)

NAME
ad - Data Translation AID converter

. SYNOPSIS
device adO at ubaO csr 0170400 vector adintr

DESCRIPTION

FILES

Ad provides the interface to the Data Translation AID converter. This is not a real-time
driver, but merely allows the user process to sample the board's channels one at a time. Each
minor device selects a different AID board.

The driver communicates to a user process by means of ioctls. The AD_CHAN ioctl selects
which channel of the board to read. For example,

. chan - 5; ioctl(fd. AD_CHAN, &chan);
selects channel 5. The AD_READ ioctl actually reads the data and returns it to the user pro­
cess. An example is

ioctl(fd, AD_READ, &data);

/dev/ad

DIAGNOSTICS
None ..

4.2 Berkeley Distribution May 15, 1985 1

ARP(4P) UNIX Programmer's Manual ARP(4P)

NAME
arp - Address Resolution Protocol

SYNOPSIS
pseudo-device ether

DESCRIPTION
ARP is a protocol used to dynamically map between DARPA Internet and lOMb/s Ethernet
addresses. It is used by all the lOMbls Ethernet interface drivers. It is not specific to Internet
protocols or to 10Mb/s Ethernet, but this implementation currently supports only that combi­
nation.

ARP caches Internet-Ethernet address mappings. When an interface requests a mapping for
an address not in the cache, ARP queues the message which requires the mapping and broad­
casts a message on the associated network requesting the address mapping. If a response is
provided, the new mapping is cached and any pending message is transmitted. ARP will
queue at most one packet while waiting for a mapping request to be responded to; only the
most recently "transmitted" packet is kept. .

To facilitate communications with systems which do not use ARP, ioctls are provided to
enter and delete entries in the Internet-to-Ethernet tables. Usage:

#include <sys/ioctl.h>
#include <sys/socket.h>
#include <netlif.h>
strue! arpreq arpreq;

ioctl(s, SIOCSARP, (caddr_t)&arpreq);
ioctl(s, SIOCGARP, (caddr_t)&arpreq);
ioctl(s, SIOCDARP, (caddr_t)&arpreq);

Each ioctl takes the same structure as an argument. SIOCSARP sets an ARP entry,
SIOCGARP gets an ARP entry, and SIOCDARP deletes an ARP entry. These ioctls may be
applied to any socket descriptor s, but only by the super-user. The arpreq structure contains:

I •
• ARP iocd request
.1

struct arpreq {

};

struct sockaddr
struct sockaddr
int

I. arp_flags field values .1
#define ATF_COM

arp_pa; I. protocol address .1
arp_ha; I. hardware address .1
arp_flags;l. flags .1

#define A TF _PERM Ox04
Ox02/. completed entry (arp_ha valid) .1
I. permanent entry .1

#define A TF _PUBL Ox08
#define ATF _USETRAILERS Ox 1 0

I. publish (respond for other host) .1
I. send trailer packets to host .1

the address family for the arp-pa sockaddr must be AF _INET; for the arp_ha sockaddr it
must be AF _ UNSPEC. The only flag bits which may be written are A TF _PERM,
A TF _PUBL and ATF _USETRAILERS. ATF _PERM causes the entry to be permanent if the

. ioctl call succeeds. The peculiar nature of the ARP tables may cause the ioctl to fail if more
than 8 (permanent) Internet host addresses hash to the same slot. ATF _PUBL specifies that
the ARP code should respond to ARP requests for the indicated host coming from other
machines. This allows a host to act as an "ARP server," which may be useful in convincing
an ARP-only machine to talk to a non-ARP machine.

4.2 Berkeley Distribution May 15, 1986

ARP(4P) UNIX Programmers Manual ARP(4P)

ARP is also used to negotiate the use of trailer IP encapsulations; trailers are an alternate
encapsulation used to allow efficient packet alignment for large packets despite variable-sized
headers. Hosts which wish to receive trailer encapsulations so indicate by sending gratuitous
ARP translation replies along with replies to IP requests; they are also sent in reply to IP
translation replies. The negotiation is thus fully symmetrical, in that either or both hosts may
request trailers. The ATF_USETRAILERS flag is used to record the receipt of such a reply,
and enables the transmission of trailer packets to that host.

ARP watches passively for hosts impersonating the local host (i.e. a host which responds to an
ARP mapping request for the local host's address).

DIAGNOSTICS
duplicate IP address!! seot from ethemet address: %x:%x:%x:%x:%x:%x. ARP has discovered
another host on the local network which responds to mapping requests for its own Internet
address.

SEE ALSO

BUGS

ec(4), de(4), il(4), inet(4F), arp(8C), ifco~fig(8C)
"An Ethernet Address Resolution Protocol," RFC826, Dave Plummer, Network Information
Center, SRI.
''Trailer Encapsulations," RFC893, S.l. Leffler and MJ. Karels, Network Information Center,
SRI.

ARP packets on the Ethernet use only 42 bytes of data; however, the smallest legal Ethernet
packet is 60 bytes (not including CRC). Some. systems may not enforce the minimum packet
size, oth~rs will.

4.2 Berkeley Distribution May 15, 1986 2

AUTOCONF(4) UNIX Programmer's Manual AUTOCONF(4)

NAME
autoconf - diagnostics from the autoconfiguration code

DESCRIPTION
When UNIX bootstraps it probes the innards of the machine on which it is running and
locates controllers, drives, and other devices, printing out what it finds on the console. This
procedure is driven by a system configuration table which is processed by config(8) and com­
piled into each kernel.

On the VAX, devices in NEXUS slots are normally noted, thus memory controllers, UNIBUS
and MASS BUS adaptors. Devices which are not supported which are found in NEXUS slots
are noted also. The Q-bus on the MICROV AX is configured in the same way as the
UNIBUS.

MASSBUS devices are located by a very deterministic procedure since MASSBUS space is
completely probe-able. If devices exist which are not configured they will be silently ignored;
if devices exist of unsupported type they will be noted

UNIBUS devices are located by probing to see if their control-status registers respond. If not,
they are silently ignored. If the control status register responds but the device cannot be
made to interrupt, a diagnostic warning will be printed on the console and the device will not
be available to the system.

Normally, the system uses the disk from which it was loaded as the rOot filesystem. If that is
not possible, a generic system will pick its root device as the "best" available device
(MASSBUS disks are better than SMD UNIBUS disks are better than RK07's; the device
must be drive 0 to be considered). If such a system is booted with the RB_ASKNAME
option (see reboot(2», then the name of the root device is read from the console terminal at
boot time, and any available device may be used.

SEE ALSO
intro(4), boot(8), config(8)

DIAGNOSTICS
cpu type %d not configured. You tried to boot UNIX on a cpu type which it doesn't (or at
least this compiled version of UNIX doesn't) understand.

mba%d at tr%d. A MASSBUS adapter was found in tr%d (the NEXUS slot number). UNIX
will call it mba%d.

%d mba's not configured. More MASSBUS adapters were found on the machine than were
declared in the machine configuration; the excess MASSBUS adapters will not be accessible.

uba%d at tr%d. A UNIBUS adapter was found in tr%d (the NEXUS slot number). UNIX
will call it uba%d.

dr32 unsupported (at tr %d). A DR32 interface was found in a NEXUS, for which UNIX
does not have a driver.

ci unsupported (at tr %d). A CI interface was found in a NEXUS, for which UNIX does not
have a driver.

mcr%d at tr%d. A memory controller was found in tr%d (the NEXUS slot number). UNIX
will call it mcr%d.

5 mer's unsupported. UNIX supports only 4 memory controllers per cpu.

mpm unsupported (at tr%d). Multi-port memory is unsupported in the sense that UNIX does
not know how to poll it for Ece errors.

%s%d at mba%d drive %d. A tape formatter or a disk was found on the MASSBUS; for disks
%s%d will look like "hpO", for tape formatters like "ht1". The drive number comes from the
unit plug on the drive or in the TM formatter (not on the tape drive; see below).

4th Berkeley Distribution May 15, 1986

AUTOCONF(4) UNIX Programmer's Manual AUTOCONF(4)

%s%d at %s%d slave %d. (For MASSBUS devices). Which would look like "tuO at htO slave
0", where tuO is the name for the tape device and htO is the name for the formatter. A tape
slave was found on the tape formatter at the indicated drive number (on the front of the tape
drive). UNIX will call the device, e.g., tuo.
%s%d at uba%d csr 0/00 vee 0/00 ipl %x. The device %s%d, e.g. dzO was found on uba%d at
control-status register address %0 and with device vector %0. The device interrupted at prior­
ity level %x.

%s%d at uba%d csr 0/00 zero vector. The device did not present a valid interrupt vector, rather
presented 0 (a passive release condition) to the adapter.

%s%d at uba%d csr 0/00 didn't interrupt. The device did not interrupt, likely because it is bro­
ken, hung, or not the kind of device it is advertised to be.

%s%d at %s%d slave %d. (For UNIBUS devices). Which would look like "upO· at scO slave
0", where upO is the name of a disk drive and scO is the name of the controller. Analogous to
MASSBUS case.

4th Berkeley Distribution May 15, 1986 2

BK(4) UNIX Programmer's Manual BK(4)

NAME
bk - line discipline for machine-machine communication (obsolete)

SYNOPSIS
pseudo-device bk

DESCRIPTION
This line discipline provides a replacement for the old and new tty drivers described in tty(4)
when high speed output to and especially input from another machine is to be transmitted
over a asynchronous communications line. The discipline was designed for use by the Berke­
ley network. It may be suitable for uploading of data from microprocessors into the system.
If you are going to send data over asynchronous communications lines at high speed into the
system, you must use this discipline, as the system otherwise may detect high input data rates
on terminal lines and disables the lines; in any case the processing of such data when normal
terminal mechanisms are involved saturates the system.

The line discipline is enabled by a sequence:

#include <sgtty.b>
int ldisc = NETLDISC, fildes; •••
ioctl(fildes, TIOCSETD, &ldisc);

A typical application program then reads a sequence of lines from the terminal port, checking
header and sequencing information on each line and acknowledging receipt of each line to the

. sender, who then transmits another line of data. Typically several hundred bytes of data and
a smaller amount of control information will be received on each handshake.

The old standard teletype discipline can be restored by doing:

Idisc'"" OTTYDISC;
ioctl(fildes, TIOCSETD, &ldisc);

While in networked mode, normal teletype output functions take place. Thus, if an 8 bit out­
put data path is desired, it is necessary to prepare the output line by putting it into RA W
mode using ioctl(2). This must be done before changing the discipline with TIOCSETD, as
most ioctl(2) calls are disabled while in network line-discipline mode.

When in network mode, input processing is very limited to reduce overhead. Currently the
input path is only 7 bits wide, with newline the only recognized character, terminating an
input record. Each input record must be read and acknowledged before the next input is read
as the system refuses to accept any new data when there is a record in the buffer. The buffer
is limited in length, but the system guarantees to always be willing to accept input resulting in
512 data characters and then the terminating newline.

User level programs should provide sequencing and checksums on the information to guaran­
tee accurate data transfer.

SEE ALSO
tty(4)

DIAGNOSTICS
None.

BUGS
The Purdue uploading line discipline, which provides 8 bits and uses timeout's to terminate
uploading should be incorporated into the standard system, as it is much more suitable for
microprocessor connections.

4th Berkeley Distribution May 15, 1985

CONS(4) UNIX Programmer's Manual CONS(4)

NAME
cons - V AX-ll console interface

DESCRIPTION

FILES

The console is available to the processor through the console registers, It acts like a normal
terminal, except that when the local functions are not disabled,control-P puts the console in
local console mode (where the prompt is "»>"). The operation of the console in this mode
varies slightly per-processor.

On an 111780 or 785 the processor is not stopped by entering local console mode. The CPU
may be halted with the "halt" command, which may be abbreviated to "h." Conversational
mode is re-entered by using the command "set t p" (set terminal program) if the processor is
still running, or "continue" if it is halted. The latter command may be abbreviated "c". If
you hit the break key on the console, then the console LSI-ll will go into OOT (console
debugger mode). Hit a "P" (upper-case letter p; "proceed") to get out of this mode.

On: an 111750 or an 111730 the processor is halted whenever the console is not in conversa­
tional mode, and typing "C" returns to conversational mode. When in console mode on an
111750 which has a remote diagnosis module, a AD will put you in remote diagnosis mode,
where the prompt will be "ROM>", The command "ret" will return from remote diagnosis
mode to local console mode.

The VAX 8600 (8650) console normally works in the same way as the 111750, except that
there are many additional modes and commands. In the normal mode control-P halts the
processor, and "c" or "continue" returns to conversational mode. If HEX debug is enabled,
control-P does not halt the CPU; the "halt" command stops the CPU as on the 111780.

With the above proviso's the console works like any other UNIX terminal.

/dev/console

SEE ALSO
ny(4), reboot(8)
VAX Hardware Handbook

4th Berkeley Distribution May 19, 1986

CRL(4) UNIX Programmer's Manual CRL(4)

NAME
crl - V AX 8600 console RL02 interface

DESCRIPTION

FILES

This is a simple interface to the DEC RL02 disk unit which is part of the console subsystem
on the VAX 8600 and 8650. Access is given to the entire RL02 disk; the pack format is the
same as that of RL02 disks on other controllers. As on other VAX console media, transfers
are done a word at a time using privileged registers (Le., slowly).

All I/O is raw; the seek addresses in raw transfers should be a multiple of 512 bytes and a
mUltiple of 512 bytes should be transferred, as in other "raw" disk interfaces. (Although the
sector size is actually 256 bytes, the driver allows operations only on 512-byte boundaries.)

/dev/crl

SEE ALSO
arff(8V)

4.3 Berkeley Distribution May21,l986

CSS(4) UNIX Programmer's Manual CSS(4)

NAME
css - DEC IMP-llA LH/DH IMP interface

SYNOPSIS
pseudo-device imp .
device cssO at ubaO csr 167600 flags 10 vector cssrint cssxint

DESCRIPrlON
The css device provides a Local Host/Distant Host interface to an IMP. It is normally used
when participating in the DARPA IntemeL The controller itself is not accessible to users, but
instead provides the hardware support to the IMP interface described in imp(4). When
configuring, the imp pseudo-device is also included.

DIAGNOSTICS
csso/ed: not alive. The initialization routine was entered even though the device did not
autoconfigure. This is indicates a system problem.

csso/ed: caa't initialize. Insufficient UNIBUS resources existed to initialize the device. This is
likely to occur when the device is run on a buffered data path on an 111750 and other net­
work interfaces are also configured to use buffered data paths, or when it is configured to use
buffered data paths on an 111730 (which has none).

css%d: imp doesn't respond, icsr=%b. The driver attempted to initialize the device, but the
IMP failed to respond after 500 tries. Check the cabling.

css%d: stray output interrupt csr-%b; An interrupt occurred when no output had previously
been started.

css%d: output error, ocsr=O/Ob icsr-%b. The device indicated a problem sending data on out­
put.

css%d: recv error, csr-%b. The device indicated a problem receiving data on input.

css%d: bad length-o/od. An input operation resulted in a data transfer of less than 0 or more
than 1 008 bytes of data into memory (according to the word count register). This should
never happen as the maximum size of a host-IMP message is 1 008 bytes.

4.2 Berkeley Distribution May 15, 1985 1

CT(4) UNIX Programmer's Manual CT(4)

NAME
ct - phototypesetter interface

SYNOPSIS
device ctO at ubaO csr 0167760 vector ctintr

DESCRIPTION
This provides an interface to a Graphic Systems C/ AfT phototypesetter or an Autologic APS­
MicroS using a DR 11 C interface. Bytes written on the file specify font, size, and other con­
trol information as well as the characters to be flashed. The coding is not described here.

Only one process may have this file open at a time. It is write-only.

FILES
/dev/cat

SEE ALSO
troff(l)
Phototypesetter interface specification

DIAGNOSTICS
None.

4th Berkeley Distribution May 16, 1986

DDN(4) UNIX Programmer's Manual DDN(4)

NAME
ddn - DON Standard Mode X.2S IMP interface

SYNOPSIS
device ddnO at ubaO csr 166740 vector ddnintr

DESCRIPrION
The ddn device provides a DON Standard Mode X.2S interface to an IMP using the ACC
ACP62S X.2S board. It is normally used for connecting to the Defense Data Network
(DON). The controller itself is not accessible to users, but instead provides a network inter­
face for the Internet Protocol described in ip(4P).

SEE ALSO
intro(4N), ip(4P)

DIAGNOSTICS
ddno/ed: not alive. The initialization routine was entered even though the device did not
autoConfigure~ This indicates a system problem.

ddn%d: failed getting UBA resources for len %d. Insufficient UNIBUS resources existed to
initialize the device. This is likely to be a shortage of UNIBUS mapping registers.

ddn%d: couldn't get X25 init buffer. This indicates that an mbuf could not be allocated for
sending the initialization message to the ACP62S:

DDN: illegal Xl5 address length!
DDN: illegal Xl5 address format!
These errors indicate a problem with the called X.2S address received from the IMP on an
incoming call .

. X25 RESET on ·lcn - %d. This indicates that an unexpected X.2S RESET was received on
the indicated LCN.

Xl5 INTERRUPT on len - o/ed, code = %d. This indicates that an unexpected X.2S INTER-
RUPT Packet was received on the indicated LCN. .

ddn%d: failed to get supr msg bfr!. This indicates that an mbuf could not be allocated for
sending a supervisor message to the ACP62S.

Any other error message from ddn%d: indicates a serious etror detected by either the driver
or the ACP62S firmware. -

4.3 Berkeley Distribution May 16, 1986 1

DE(4) UNix Programmer's Manual DE(4)

NAME
de - DEC DEUNA 10 Mb/s Ethernet interface

SYNOPSIS
device deO at ubaO csr 174510 vector deintr

DESCRIPTION
The de interface provides access to a 10 Mb/s Ethernet network through a Digital Equipment
UNIBUS Network Adapter (DEUNA).

Each of the host's network addresses is specified at boot time with an SIOCSIF ADDR ioctl.
The de interface employs the address resolution protocol described in arp(4P) to dynamically
map between Internet and Ethernet addresses on the local network.

The interface normally tries to use a "trailer" encapsulation to minimize copying data on
input and output. The use of trailers is negotiated with ARP. This negotiation may be dis­
abled, on a per-interface basis, by setting the IFF _NOTRAILERS flag with an SIOCSIF­
FLAGS ioctl.

DIAGNOSTICS
de%d: hardware address %s. This is a normal autoconfiguration message noting the 6 byte
physical ethernet address of the adapter.

de%d: oerror, Oags=%b tdrerr-%b (len-%d). The hardware indicated an error in transmitting
a packet to the cable. The status and error flags are reported.

de%d: ierror, ftags=%b lenerr=%b (len==%d). The hardware indicated an error.in reading a
packet from the cable. The status and error flags are reported.

de%d: can't handle afOIod. The interface was handed a message with addresses formatted in an
unsuitable address family; the packet was dropped. .

de%d: bu1l'er unavailable. The interface received more packets than it had buffers allocated to
receive them. .

de%d: address change failed, csrO-%b csrl-0/0b. The interface was unable to reprogram its
physical ethernet address. This may happen with very early models of the interface. This
facility is used only when the controller is not the first network interface configured for XNS.

The following messages indi~ate a probable hardware error performing the indicated opera­
tion during autoconfiguration or initialization. The two control and status registers should
indicate the nature of the failure. See the hardware manual for details.

de%d: reset failed, csrO=%b csrl-%b.

de%d: ppcb failed, csrO-%b csrl-0/0b.

de%d: read addr failed, csrO-o/eb csrl-%b.

de%d: wtring failed, csrO=%b csrl=%b .

.. de%d: wtmode failed, csrO=%b csrl-%b.

SEE ALSO
intro(4N), inet(4F), arp(4P)

4.2 Berkeley Distribution May 16, 1986

DH(4) UNIX Programmer's Manual DH(4)

NAME
dh - DH-IllDM-Il communications multiplexer

SYNOPSIS
device dhO at ubaO csr 0160020 vector dhrint dh~int
device dmO at ubaO csr 0170500 vector dmintr

DESCRIPTION

FILES

A dh-II provides 16 communication lines; dm-Il 's may be optionally paired with dh-II 's to
provide modem control for the lines.

Each line attached to the DH-ll communications multiplexer behaves as described in tty(4).
Input and output for each line may independently be set to run at any of 16 speeds; see tty(4)
for the encoding.

Bit i of flags may be specified for a db to say that a line is not properly connected, and that
the line should be treated as hard-wired with carrier always present. Thus specifying "flags
Ox0004" in the specification of dhO would cause line ttyh2 to be treated in this way.

The dh driver monitors the rate of input on each board, and switches between the use of
character-at-a-time interrupts and input silos. While the silo is enabled during periods of
high-speed input, the driver polls for input 30 times per second.

I dev Itty[h-o][0-9a-t]
Idev/ttyd[0-9a-t]

SEE ALSO
tty(4)

DIAGNOSTICS
dh%d: NXM. No response from UNIBUS-on a dma transfer within a timeout period. This is
often followed by a UNIBUS adapter error. This occurs most frequently when the UNIBUS
is heavily loaded and when devices which hog the bus (such as rk07's) are present. It is not
serious.

dh%d: silo overflow. The character input silo overflowed before it could be serviced. This can
happen if a hard error occurs when the CPU is running with elevated priority, as the system
will then print a message on the console with interrupts disabled. It is not serious.

4th Berkeley Distribution May 16, 1986 1

DHU(4) UNIX Programmer's Manual DHU(4)

NAME
dhu - DHU-ll communications multiplexer

SYNOPSIS
device dhuO at ubaO tsr 0160440 vector dhurint dhuxint

DESCRIPTION

FILES

A DHU-ll provides 16 communication lines.

Each line attached to the DHU-ll communications multiplexer behaves as described in
tty(4). Input and output for each line may independently be set to run at any of 13 speeds
(50,200 and 38400 baud are not available); see tty(4) for the encoding.

Bit i of flags may be specified for a DHU-ll to say that a line is not properly connected, and
that the line should be treated as hard-wired with carrier always present. Thus specifying
"flags Ox0004" in the specification of dhuO would cause line ttyS2 to be treated in this way.

The DHU-ll driver normally uses input silos and delays receiver interrupts by 20 mil­
liseconds ·rather than taking an interrupt on each input character.

Idev/tty[S-Z][0-9a-f]

SEEAISO
tty(4)

DIAGNOSTICS

NOTES

dhu(%d,%d): NXM fault. No response from UNIBUS on a DMA transfer within a timeout
period. This is often followed by a UNIBUS adapter error. This occurs most frequently
when the UNIBUS is heavily loaded and when devices which hog the bus (such as RK07s) are
present. It is not serious.

dhu%d: silo overflow. The character input silo overflowed before it could be serviced. This
can happen if a hard error occurs when the CPU is running with elevated priority, as the sys­
tem may then print a message on the console with interrupts disabled.

The driver currently does not make full use of the hardware capabilities of the DHU-ll, for
dealing with XONIXOFF tlow-control or hard-wired lines for example.

Altl\ough the devices are not the same, a DHU-ll can convince the DH-ll autoconfiguration
code that it is a DH-ll.

The 4 4O-way cables are a pain.

4.3 Berkeley Distribution April 27, 1986

DMC(4) UNIX Programmer~s Manual DMC(4)

NAME
dmc - DEC DMC-Il1DMR-ll point-to-point communications device

SYNOPSIS
device dmcO at ubaO csr 167600 vector dmcrint dmcxint

DESCRIPflON
The dmc interface provides access toa point-to-point communications device which runs at
either 1 Mb/s or 56 Kb/s. DMC-ll 's communicate using the DEC DDCMP link layer proto­
col.

The dmc interface driver also supports a DEC DMR-l1 providing point-to-point communica­
tion running at data rates from 2.4 Kb/s to 1 Mb/s. DMR-ll's are a more recent design and
thus are preferred over DMC-l1 'so The NXMT and NRCV constants in the driver should be
increased in this case, as the DMR can accept up to 64 transmit and receive buffers, as
opposed to 7 for the DMC. '

The configuration flags specify how to set up the device,
o - full duplex DDCMP (normal mode)
1 - DDCMP Maintence mode (generally useless)
2 - DDCMP Half Duplex, primary station
3 DDCMP Half Duplex, secondary station

Several device error counters are available via "adb", for more information see the adb script
, lusrllib/adb/dmcstats, or the DMCII technical manual. '

The host's address must be specified with an SIOCSIFADDR ioctl, and the destination
address specified with a SIOCSIFDSTADDR ioctl, before the interface will transmit or
receive any packets.

ROUTING
The driver places a HOST entry in the kernel routing tables for the address given in the
SIOCSIFDST ADDR ioctl. To use the DMC as a link between local nets, the route to the
remote net must be added manually with the route(8) command, or by the use of the ,routing
process routed(8) on each end of the link.

DIAGNOSTICS
dmc%d: bad control 0/00. A bad parameter was passed to the dmcload routine.

dmc:%d: unknown address type %d. An input packet was received which contained a typ~ of
address unknown to the driver.

DMC fatal error 00I00. A fatal error in DDMCP occurred, causing the device to be restarted.

DMC soft error 00I00. A non-fatal error in DDMCP has occurred.

dmc%d: af%d not supported. The interface was handed a message which has addresses format­
ted in an unsuitable address family.

SEE ALSO

BUGS

intro(4N), inet(4F)

The current version of the driver uses a link-level encapsulation so that multiple protocol
types may be used. It is thus incompatible with earlier drivers, including the 4.2BSD version.

4.2 Berkeley Distribution May 21, 1986

DMF(4) UNIX Programmer's Manual DMF(4)

NAME
dmf - DMF-32, terminal multiplexor

SYNOPSIS
device dmtD at uba? csr 0160340

vector dmfsrint dmfsxint dmfdaint dmfdbint dmfrint dmfxint dmflint

DESCRIPTION

FILES

The dmf device provides 8 lines of asynchronous serial line support. The first two of these
have full modem control. The device also provides a line printer port similar to the LP-ll.
Other features of the DMF-32 are not supported. During autoconfiguration, the driver exam­
ines the configuration of each DMF-32 and adjusts the interrupt vectors so that fewer vector
locations are used if possible.

Each line attached to a DMF-32 serial line port behaves as described in tty(4). Input and out­
put for each line may independently be set to run at any of 16 speeds; see tty(4) for the
encoding.

Bit i of flags may be specified for a dmf to to say that a line is not properly connected, and
that the line should be treated as hard-wired with carrier always present. Thus specifying
"flags Ox04" in the specification of dmjO would cause line ttyA2 to be treated in this way.
Flags should be set for all lines without hardware support for modem control.

The serial line part of the dmf driver normally enables the input silos with a short timeout (30
milliseconds); this allows multiple characters to be received per interrupt during periods of
high-speed input.

A line printer port on dmfn is designated by a minor device number of the form 128+n .•
Columns and lines per page may be changed from the default 132 columns and 66 lines by
encoding the number of columns in bits 8-15 of flags and the number of lines in bits 16-23.
This device does not provide the fancy output canonicalization features of the Ip(4) driver.

Idev/tty[A-CE-I][0-7]
Idev/ttyd[0-7]
Idev/lp

SEE ALSO
tty(4)

DIAGNOSTICS

BUGS

dmPIod: NXM line %d. No response from UNIBUS on a DMA transfer within a timeout
period. This is often followed by a UNIBUS adapter error. This occurs most frequently
when the UNIBUS is heavily loaded and when devices which hog the bus (such as RK07s) are
present. It is not serious.

dmPlod: silo overflow. The character input silo overflowed before it could be serviced. This
can happen if a hard error occurs when the CPU is running with elevated priority, as the sys­
tem will then print a message on the console with hiterrupts disabled. It is not serious.

dmfsrint, dmfsxint, dmfdaint, dmfdbint. One of the unsupported parts of the dmf interrupted;
something is amiss, check your interrupt vectors for a conflict with another device.

It should be possible to set the silo timeout with a configuration file option, as the value is a
trade-off between efficiency and response time for flow control and character echo.

4.2 Berkeley Distribution May 16, 1986

DMZ(4) UNIX Programmer's Manual DMZ(4)

NAME
dmz - DMZ-32 terminal multiplexor

SYNOPSIS
device dmzO at uba? csr 0160540

vector dmzrinta dmzxinta dmzrintb dmzxintb dmzrintc dmzxintc

DESCRIPTION

FILES

The dmz device provides 24 lines of asynchronous serial line support. Modem control on all
ports is available as an option for the H3014 distribution panel.

Each line attached to a DMZ-32 serial line port behaves as described in tty(4). Input and
output for each line may independently be set to run at any of 16 speeds; see tty(4) for the
encoding.

Bit i of flags may be specified for a dmz to tQ say that a line is not properly connected, and
that the line should be treated as hard-wired with carrier always present. Thus specifying
"flags OxOOOOO4" in the specification of dmzO would cause line ttya2 to be treated in this way.

The dmz driver normally enables the input silos with a short timeout (30 milliseconds); this
allows multiple characters to be received per interrupt during" periods of high-speed input.

Idev/tt)«(abcefg][O-9a-n]

SEE ALSO
tty(4)

DIAGNOSTICS

BUGS

dmz%d: NXM line %d. No response from the UNIBUS on a DMA transfer within a timeout
period. This is often followed by a UNIBUS adapter error. This OCCUfS most frequently
when the UNIBUS is heavily loaded and when devices which hog the bus (such as RK07s) are
present. It is not serious.

dmz%d: silo overflow. The character input silo overflowed before it could be serviced. This
can happen if a hard error occurs when the CPU is running with elevated priority, as the sys­
tem will then print a message on the console with interrupts disabled. It is not serious.

It should be possible to set the silo timeout with a configuration file option, as the value is a
trade-off between efficiency and response time for flow control and character echo. "

4.2 Berkeley Distribution April 7, 1986 1

DN(4) UNIX Programmer's Manual DN(4)

NAME
dn - ON-II autocall unit interface

SYNOPSIS
device dnO at uba? csr 0160020 vector dnintr

DESCRIPTION

FILES

The dn device provides an interface through a DEC DN-ll (or equivalent such as the Able
Quadracall) to an auto-call unit (ACU). To place an outgoing call one forks a sub-process
which opens the appropriate call unit file, Idev/cua? and writes the phone number on it. The
parent process then opens the corresponding modem line /dev/cul? When the connection has
been established, the open on the modem line, Idev /cul? will return and the process will be
connected. A timer is normally used to timeout the opening of the modem line.

The codes for the phone numbers are:

0-9 dial 0-9
* dial * (':' is a synonym)
'# dial '# (';' is a synonym)

delay 20 milliseconds
< end-of-number ('e' is a synonym)
.. delay for a second dial tone ('w' is a synonym)
f force a hangup of any existing connection

The entire telephone number must be presented in a single write system call.

By convention, even numbered call units are for 300 baud modem lines, while odd numbered
units are for 1200 baud lines. For example, /dev/cuaO is associated with a 300 baud modem·
line, /dev/cu/O, while /dev/cuaJ is associated with a 1200 baud modem line, /devlcu/J. For
devices such as the Quadracall which simulate multiple ON-II units, the minor device indi­
cates which outgoing modem to use.

Idev/cua?
Id~v/cul?

call units
associated modem lines

SEE AlSO
tip(lC)

DIAGNOSTICS
Two error numbers are of interest at open time.

[EBUSY] The dialer is in use.

[ENXIO] The device doesn't exist, or there's no power to it.

4th Berkeley Distribution May 15, 1985 1

DRUM(4) UNIX Programmer's Manual DRUM(4)

NAME
drum - paging device

DESCRIPTION

FILES

BUGS

This file refers to the paging device in use by the system. This may actually be a subdevice of
one of the disk drivers, but in a system with paging interleaved across multiple disk drives it
provides an indirect driver for the multiple drives.

/dev/drum

Reads from the drum are not allowed across the interleaving boundaries. Since these only
occur every .5Mbytes or so, and since the system never allocates blocks across the boundary,
this is usually not a problem.

4th Berkeley Distribution May 15, 1985 1

DZ(4) UNIX Programmer's Manual DZ(4)

NAME
dz - DZ-11 communications multiplexer

SYNOPSIS
device dzO at ubaO csr 0160100 vector dzrint dzxint

DESCRIPTION

FILES

A DZ 11 provides 8 communication lines with partial modem control, adequate for UNIX
dialup use. Each line attached to the DZII communications multiplexer behaves as described
in tty(4) and may be set to run at any of 16 speeds; see tty(4) for the encoding.

Bit i of flags may be specified for a dz to say that a line is not properly connected, and that
the line should be treated as hard-wired with carrier always present. Thus specifying "flags
Ox04" in the specification of dzO would cause line tty02 to be treated in this way.

The dz driver monitors the rate of input on each board, and switches between the use of
character-at-a-time interrupts and input silos. While the silo is enabled during periods of
high-speed input, the driver polls for input 30 times per second.

Idev/tty[0-9][0-9]
Idev/ttyd[0-9a-t] dialups

SEE ALSO
tty(4)

DIAGNOSTICS
dzOfod: silo overflow. The 64 character input silo overflowed before it could be serviced. This
can happen if a hard error occurs when the CPU is "running with elevated priority, as the sys­
tem will then print a message on the console with interrupts disabled. It is not serious.

4th Berkeley Distribution May 16, 1986

EC(4) UNIX Programmer's Manual EC(4)

NAME
ec - 3Com 10 Mb/s Ethernet interface

SYNOPSIS
device ecO at ubaO csr 161000 vector ecrint eccoUide ecxint flap 0

DESCRIPTION
The ec interface provides access to a 10 Mb/s Ethernet network through a 3com controller.

The hardware has 32 kilobytes of dual-ported memory on the UNIBUS. This memory is used
for internal buffering by the board, and the interface code reads the buffer contents directly
through the UNIBUS. The address of this memory is given in the flags field in the
configuration file. The first interface normally has its memory at Unibus address O.

Each of the host's network addresses is specified at boot time with an SIOCSIFADDR ioctl.
The ec interface employs the address resolution protocol described in arp(4P) to dynamically
map between Internet and Ethernet addresses on the local network.

The interface normally tries to use a "trailer" encapsulation to minimize copying data on
input and output. The use of trailers is negotiated with ARP. This negotiation may be dis­
abled, on a per-interface basis, by setting the IFF _NOTRAILERS flag with an SIOCSIF­
FLAGS ioct1.

The interface software implements an exponential backoff algorithm when notified of a colli­
sion on the cable. This algorithm utilizes a 16-bit· mask and the VAX-II 's interval timer in
calculating a series of random backoff values. The algorithm is as follows:

I. Initialize the mask to be alii's.

2. If the mask is zero, 16 retries have been made and we give up.

3. Shift the mask left one bit and formulate a backoff by masking the interval timer with
the smaller of the complement of this mask and a 5-bit mask, resulting in a pseudo­
random number between 0 and 31. This produces the number of slot times to delay,
where a slot is 51 microseconds.

4. Use the value calculated in step 3 to delay before retransmitting the packet. The delay
is done in a software busy loop.

DIAGNOSTICS
ec%d: send error. After 16 retransmissions using the exponential backoff algorithm described
above, the packet was dropped.

ec:%d: input error (oft'set-%d). The hardware indicated an error in reading a packet off the
cable or an illegally sized packet. The buffer offset value is printed for debugging purposes.

ec%d: can't handle af%d. The interface was handed a message with addresses formatted in an
unsuitable address family; the packet was dropped.

SEE AlSO

BUGS

intro(4N), inet(4F), arp(4P)

The hardware is not capable of talking to itself. The software implements local sending and
broadcast by sending such packets to the loop interface. This is a kludge.

Backoff delays are done in a software busy loop. This can degrade the system if the network
experiences frequent collisions.

4.2 Berkeley Distribution May 16, 1986 1

EN(4) UNIX Programmer's Manual EN(4)

NAME
en - Xerox 3 Mb/s Ethernet interface

SYNOPSIS
device enO at ubaO csr 161000 vector enrint enxint encollide

DESCRIPfION
The en interface provides access to a 3 Mb/s Ethernet network. Due to limitations in the
hardware, DMA transfers to and from the network must take place in the lower 64K bytes of
the UNIBUS address space, and thus this must be among the first UNIBUS devices enabled
after boot.

Each of the host's network addresses is specified at boot time with an SIOCSIFADDR ioctl.
The station address is discovered by probing the on-board Ethernet address register, and is
used to verify the protocol addresses. No packets will be sent or accepted until a network
address is supplied.

The interface software implements an exponential backoff algorithm when notified of a colli­
sion on the cable. This algorithm utilizes a 16-bit mask and the V AX-11 's interval timer in
calculating a series of random backoff values. The algorithm is as follows:

1. Initialize the mask to be all 1 'so

2. If the mask is zero, 16 retries have been made and we give up.

3. Shift the mask left one bit and formulate a backoff by masking the interval timer with
the mask (this is actually the two's complement of the value).

4. Use the value calculated in step 3 to delay before retransmitting the packet.

The interface handles both Internet and NS protocol families. It normally tries to use a
''trailer'' encapsulation to minimize copying data on input and output. The use of trailers is
negotiated with ARP. This negotiation may be disabled, on a per-interface basis, by setting
the IFF _NOTRAILERS flag with an SIOCSIFFLAGS ioctl.

DIAGNOSTICS
en%d: output error., The hardware indicated an error on the previous transmission.

en%d: send enor. After 16 retransmissions using the exponential backoff algorithm described
above, the packet was dropped.

en%d: input error. The hardware indicated an error in reading a packet off the cable.

en%d: can't handle af%d. The interface was handed a message with addresses formatted in an
unsuitable address family; the packet was dropped.

SEE ALSO

BUGS

intro(4N), inet(4F)

The device has insufficient buffering to handle back to back packets. This makes use in a pro­
duction environment painful.

The hardware does word at a time DMA without byte swapping. To compensate, byte swap­
ping of user data must either be done by the user or by the system. A kludge to byte swap
only IP packets is provided if the ENF _SW ABIPS flag is defined in the driver and set at boot
time with an SIOCSIFFLAGS ioctl.

4.2 Berkeley Distribution May 16, 1986

EX(4) UNIX Programmer's Manual EX(4)

NAME
ex - Excelan 10 Mb/s Ethernet interface

SYNOPSIS
device exO at ubaO csr 164000 vector excdiDt

DESCRIPTION
The ex interface provides access to a 10 Mb/s Ethernet network through an Excelan controller
used as a link-layer interface. .

Each of the host's network addresses is specified at boot time with an SIOCSIF ADDR ioctl.
The ex interface employs the address resolution protocol described in arp(4P) to dynamically
map between Internet and Ethernet addresses on the local network.

The interface normally tries to use a "trailer" encapsulation to minimize copying data on
input and output. The use of trailers is negotiated with ARP. This negotiation may be dis­
abled. on a per-interface basis, by setting the IFF _NOTRAILERS flag with an SIOCSIF­
FLAGS ioctl.

DIAGNOSTICS
ex%d: HW %c. %e, NX %c. %c, hardware address %s. This provides firmware revisions levels,
and is expected during autoconfiguration.

..

ex%d: can't initialize. There was a failure in allocating unibus resources for the device.

ex%d: conftgurationfailed; cc - %x. The hardware indicated an error when trying to initalize
itself. The error code returned is described at length in the device Reference Manual.

ex%d: receive error %b. The hardware indicated an error in reading a packet from the cable.
Specific Error bits are provided

ex%d: transmit error %b. The hardware indicated an error in transmitting a packet to the
cable or an illegally sized packet. Specific Error bits are provided

ex%d: can't handle af%d. The interface was handed a message with addresses formatted in an
unsuitable address family; the packet was dropped.

SEE ALSO
intro(4N), inet(4F), arp(4P)

4.2 Berkeley Distribution May 16, 1986 1

FL(4) UNIX Programmer's Manual FL(4)

NAME
fl - console floppy interface

DESCRIPTION

FILES

This is a simple interface to the DEC RXO 1 floppy disk unit, which is part of the console
LSI-II subsystem for VAX-1l/780's. Access is given to the entire floppy consisting of 77
tracks of 26 sectors of 128 bytes.

All i/o is raw; the seek addresses in raw transfers should be a multiple of 128 bytes and a mul­
tiple of 128 bytes should be transferred, as in other "raw" disk interfaces.

/dev/floppy

SEE ALSO
arff(8V)

DIAGNOSTICS
None.

BUGS
Multiple console floppies are not supported.

If a write is given with a count not a multiple of 128 bytes then the trailing portion of the last
sector will be zeroed.· .

4th Berkeley Distribution May 21, 1986

HOH(4) UNIX Programmer's Manual HOH(4)

NAME
hdh - ACe IF-l1/HOH IMP interface

SYNOPSIS
pseudo-device imp
device hdhO at ubaO csr 166740 vector hdhintr

DESCRIPTION
The hdh device provides an HOLC Host (HOH) interface to an IMP. It is normally used
when participating in the DARPA Internet. The controller itself is not accessible to users, but
instead provides the hardware support to the IMP interface described in imp(4). When
configuring, the imp pseudo-device must also be included.

DIAGNOSTICS
hdh%d: not alive. The initialization routine was entered even though the device did not
autoconfigure. This indicates a system problem.

hdh%d: cannot get chan %d uba resources, Insufficient UNIBUS resources existed to initialize
the device. This is likely to be a shortage of UNIBUS mapping registers.

hdh%d: LINE up, This indicates that both the HOLC and HOH protocols have declared the
link to the IMP alive.

hdh%d: LINE DOWN. This indicates that the link to the IMP has died.

hdh%d: HOST SEQUENCE ERROR
hdh%d: IMP SEQUENCE ERROR
hdh%d: HOST DATA ERROR
hdh%d: TIMEOUT
These errors indicate that an HOH protocol error has been detected,

hdh%d: cannot get supervisor cmnd buffer. This error indicates that an mbu/ could not be
allocated to send a command to the IF-li/HOH.

Any other error message from hdh%d: indicates a serious error detected by either the driver
or the IF-llIHOH firmware.

4.3 Berkeley Distribution August 8, 1985 1

HK(4) UNIX Programmer's Manual HK(4)

NAME
hk - RK6-11/RK06 and RK07 moving head disk

SYNOPSIS
cootroller hkO at uba? csr 0177440 vector ridotr
disk rkO at hkO drive 0

DESCRIPTION
Files with minor device numbers 0 through 7 refer to various portions of drive 0; minor dev­
ices 8 through 15 refer to drive 1, etc. The standard device names begin with "hk" followed
by the drive number and then a letter a-h for partitions 0-7 respectively. The character?
'stands here for a drive number in the range 0-7.

The block files access the disk via the system's normal buffering mechanism and may be read
and written without regard to physical disk records. There is also a 'raw' interface which pro­
vides for direct transmission between the disk and the user's read or write buffer. A single
read or write call results in exactly one 110 operation and therefore raw 110 is considerably
more efficient when many words are transmitted. The names of the raw files conventionally
begin with an extra 'r.'

In raw 110 counts should be a multiple of 512 bytes (a disk sector). Likewise seek calls
should specify a multiple of 512 bytes.

DISK SUPPORT

FILES

The origin and size (in sectors) of the pseudo-disks on each drive are as follows:

RK07 partitions:
disk start
hk?a 0
hk?b 15906
hk?c 0
hk?d 25938
hk?f 41844
hk?g 25938

RK06 partitions
disk
hk?a
hk?b
hk?c

start
O.
15906
o

length
15884
10032
53790
15884
11792
27786

length
15884
11154
27126

cyl
0-240
241-392
0-814
393-633
634-814
393-813

cyl
0-240
241-409
0-410

On a dual RK-07 system partition hk?a is used for the root for one drive and partition hk?g
for the lusr file system. If large jobs are to be run using hk?b on both drives as swap area pro­
vides a 10Mbyte paging area. Otherwise partition hk?c on the other drive is used as a single
large file system.

Idevlhk[0-7][a-h]
Idev/rhk[0-7][a-h]

block files
raw files

SEE ALSO
hP(4), uda(4), up(4), syslogd(8)

DIAGNOSTICS
rk%d%c bard error so%d cs2==%b ds=%b er=%b. An unrecoverable error occurred during
transfer of the specified sector of the specified disk partition. The contents of the cs2, ds and
er registers are printed in octal and symbolically with bits decoded. The error was either
unrecoverable, or a large number of retry attempts (including offset positioning and drive
recalibration) could not recover the error.

4th Berkeley Distribution June 1, 1986

HK(4)

. BUGS

HK(4)

rk%d: write locked. The write protect switch was set on the drive when a write was
attempted. The write operation is not recoverable.

rk%d: not ready. The drive was spun down or off line when it was accessed. The i/o opera­
tion is not recoverable.

rk%d: not ready (came back!). The drive was not ready, but after printing the message about
being not ready (which takes a fraction of a second) was ready. The operation is recovered if
no further errors occur.

rk%d%c: soft ecc: sn%d. A recoverable ECC error occurred on the specified sector in the
specified disk partition. This happens normally a few times a week. If it happens more fre­
quently than this the sectors where the errors are occurring should be checked to see if certain
cylinders on the pack, spots on the carriage of the drive or heads are indicated.

hk%d: lost interrupt. A timer watching the controller detected no interrupt for an extended
period while an operation was outstanding. This indicates a hardware or software failure.
There is currently a hardWare/software problem with spinning down drives while they are
being accessed which causes this error to occur. The error causes a UNIBUS reset, and retry
of the pending operations. If the controller continues to lose interrupts, this error will recur a
few seconds later .

In raw 110 read and write(2) truncate ·file offsets to S12-byte block boundaries, and write
scribbles on the tail of incomplete blocks. Thus, in programs that are likely to access raw
devices, read, write and Iseek(2) should always deal in S12-byte multiples.

DEC-standard error logging should be supported.

A program to analyze the logged error information (even in its present reduced form) is
needed.

The partition tables for the file systems should be read off of each pack, as they are never
quite what any single installation would prefer, and this would make packs more portable.

The rk07g partition size in rk.c disagrees with that in letc/disktab.

4th Berkeley Distribution June 1, 1986 2

HP(4) UNIX Programmer's Manual HP(4)

NAME
hp - MASSBUS disk interface

SYNOPSIS
disk hpO at mbaO drive 0

DESCRIPTION
Files with minor device numbers 0 through 7 refer to various portions of drive 0; minor dev­
ices 8 through 15 refer to drive I, etc. The standard device names begin with "hp" followed
by the drive number and then a letter a-h for partitions 0-7 respectively. The character?
stands here for a drive number in the range 0-7.

The block file's access the disk via the system's normal buffering mechanism and may be read
and written without regard to physical disk records. There is also a 'raw' interface which pro­
vides for direct transmission between the disk and the user's read or write buffer. A single
read or write call results in exactly one 110 operation and therefore raw 110 is considerably
more efficient when many words are transmitted. The names of the raw files conventionally
begin with an extra 'r.'

In raw 110 counts should be a multiple of 512 bytes (a disk sector). Likewise seek calls
should specify a multiple of 512 bytes.

DISK SUPPORT
This driver handles both standard DEC controllers and Emulex SC750 andSC780 controllers.
Standard DEC drive types are recognized according to the MASSBUS drive type register. For
the Emulex controller the drive type register should be configured to indicate the drive is an
RM02. When this is encountered, the driver checks the holding register to find out the disk
geometry and, based on this information~ decides what the drive type is. The following disks
are supported: RM03, RM05, RP06, RM80, RP05, RP07, ML11A, ML11B, CDC 9775, CDC
9730, AMPEX Capricorn (32 sectors/track), FUJITSU Eagle (48 sectors/track), Fujitsu 2361,
and AMPEX 9300. The origin and size (in sectors) of the pseudo-disks on each drive are as
follows:

RM03 partitions
disk start length cyls
hp?a 0 15884 0-99
hp?b 16000 33440 100-309
hp?c 0 131680 0-822
hp?d 49600 15884 309-408
hp?e 65440 55936 409-758
hp?f 121440 10080 759-822
hp?g 49600 82080 309-822

RM05 partitions
disk start length cyls

. hp?a 0 15884 0-26
hp?b 16416 33440 27-81
hp?c 0 500384 0-822
hp?d 341696 15884 562-588
hp?e 358112 55936 589-680
hp?f 414048 86176 681-822
hp?g 341696 158528 562-822
hp?h 49856 291346 82-561

RP06 partitions
disk start length cyls
hp?a 0 15884 0-37
hp?b 15884 33440 38-117

4th Berkeley Distribution June I, 1986

HP(4) UNIX Programmer's Manual HP(4)

hp?c 0 340670 0-814
hp?d 49324 15884 118·155
hp?e 65208 55936 156·289
hp?f 121220 219296 290-814
hp?g 49324 291192 118·814

RM80 partitions
disk start length cyls
hp?a 0 15884 0-36
hp?b 16058 33440 37·114
hp?c 0 242606 0-558
hp?d 49910 15884 115·151
hp?e 68096 55936 152·280
hp?f 125888 120466 281·558
hp?g 49910 192510 115·558

RP05 partitions
disk start length cyls
hp?a 0 15884 0-37
hp?b 15884 33440 38·117
hp?c 0 171798 0-410
hp?d 2242 15884 118-155 .
hp?e 65208 55936 156·289
hp?f 121220 50424 290-410
hp?g 2242 122320 118-410

RP07 partitions
disk start length cyls
hp?a ,0 15884 0-9
hp?b 16000 66880 10-51
hp?c 0 1008000 0-629
hp?d 376000 15884 235·244
hp?e 392000 307200 245-436
hp?f 699200 308600 437-62.9
hp?g 376000 631800 235·629
hp?h 83200 291346 52-234

CDC 9775 partitions
disk start length cyls
hp?a 0 15884 0-12
hp?b 16640 66880 13-65
hp?c 0 1077760 0-841
hp?d 376320 15884 294-306
hp?e 392960 307200 307-546
hp?f 700160 377440 547-841
hp?g 376320 701280 294-841
hp?h 84480 291346 66-293

CDC 9730 partitions
disk start length cyls
hp?a 0 15884 0-49
hp?b 16000 33440 50-154
hp?c 0 263360 0-822
hp?d 49600 15884 155-204

. hp?e 65600 55936 205·379
hp?f 121600 141600 380-822

4th Berkeley Distribution June 1, '1986 2

HP(4)

FILES

UNIX Programmer's Manual

hp?g 49600 213600 155-822

AMPEX Capricorn partitions
disk start length
hp?a 0 15884
hp?b 16384 33440
hp?c 0 524288
hp?d 342016 15884
hp?e 358400 55936
hp?f 414720 109408
hp?g 342016 182112
hp?b 50176 291346

FUJITSU Eagle partitions
disk start-
hp?a 0
hp?b 16320
hp?c 0
hp?d 375360
hp?e 391680
hp?f 698880
hp?g 375360
hp?b 81520

FUJITSU 2361 partitions

length
15884
66880
808320
15884
55936
109248
432768
291346

cyls
0-31
32-97
0-1023
668-699
700-809
810-1023
668-1023
98-667

cyls
0-16
17-86
0-841
391-407
408-727
728-841
391-841
87-390

disk start length cyls
hp?a 0
hp?b . 16640
hp?c 0
hp?d 376320
hp?~ 392960
hp?f 700160
hp?g 363520
hp?h 84480

AMPEX 9300 partitions
disk start
hp?a 0
hp?b 16416
hp?c 0
hp?d 341696
hp?e 358112
hp?f 414048
hp?g 341696
hp?h 49856

15884 0-12
66880 13-65
1077760 0-841
15884 294-306
307200 307-546
377408 547-841
701248 294-841
291346 66-293

length
15884
33440
495520
15884
55936
81312 .
153664
291346

cyl
0-26
27-81
0-814
562-588
589-680
681-814
562-814
82-561

HP(4)

It is unwise for all of these files to be present in one installation, since there is overlap in
addresses and protection becomes a sticky matter. The hp?a partition is normally used for
the root file system, the hp?b partition as a paging area, and the hp?c partition for pack-pack
copying (it maps the entire disk). On disks larger than about 205 Megabytes, the hp?h parti­
tion is inserted prior to the hp?d or hp?g partition; the hp?g partition then maps the
remainder of the pack. All disk partition tables are calculated using the diskpart(8) program.

/dev/hp[0-7][a-h]
/dev/rhp[0-7][a-h]

block files
raw files

4th Berkeley Distribution June 1, 1986 3

HP(4) UNIX Programmer's Manual HP(4)

SEE ALSO
hk(4), uda(4), uP(4)

DIAGNOSTICS

BUGS

hp%d%c:: hard error sn%d mbsr-%b erl=%b er2=%b. 'An unrecoverable error occurred dur­
ing transfer of the specified sector of the specified disk partition. The MASSBUS status regis­
ter is printed iii hexadecimal and with the error bits decoded if any error bits other than
MBEXC and DTABT are set. In any case the contents of the two error registers are also
printed in octal and symbolically with bits decoded. (Note that er2 is what old rp06 manuals
would call er3; the terminology is that of the rm disks). The error was either unrecoverable,
or a large number of retry attempts (including offset positioning and drive recalibration) could
not recover the error.

hp%d: write locked. The write protect switch was set on the drive when a write was
attempted. The write operation is not recoverable.

hp%d: not ready_ The drive was spun down or off line when it was accessed. The YO opera­
tion is not recoverable.

hp%d%c:: soft eee snW. A recoverable ECC error occurred on the specified sector of the
specified· disk partition. This happens normally a few times a week. If it happens more fre­
quently than this the sectors where the errors are occurring should be checked to see if certain
cylinders on the pack, spots on the carriage of the drive or heads are indicated.

During autoconfiguration one of the following messages may appear on the console indicating
the appropriate drive type was recognized. The last message indicates the drive is of a unk­
nown type.

hp%d: 9775 (direct).
hp%d: 9730 (direct).
hp%d: 9300.
hp%d: 9762.
hp%d: capricorn.
hp%d: eagle.
hp%d: 2361.
hpo/ed: nttacks %d, nsectors %d: unknown device.

In raw YO read and write(2) truncate file offsets to 512-byte block boundaries, and write
scribbles on the tail of incomplete blocks. Thus, in programs that are likely to access raw
devices, read, write and /seek(2) should always deal in 512-byte multiples.

DEC-standard error logging should be supported.

A program to analyze the logged error information (even in its present reduced form) is
needed. .

The partition tables for the file systems should be read off of each pack, as they are never
quite what any single installation would prefer, and this would make packs more portable.

4th Berkeley Distribution June 1, 1986 4

HT(4) UNIX Programmer's Manual HT(4)

NAME
ht - TM-03/TE-16,TU-45,TU-77 MASSBUS magtape interface

SYNOPSIS
master htO at mba? drive ?
tape tuO at htO slave 0

DESCRIPTION
The tm-03/transport combination provides a standard tape drive interface as described in
mtio(4). All drives provide both 800 and 1600 bpi; the TE-16 runs at 45 ips, the TU-45 at 75
ips, while the TU-77 runs at 125 ips and autoloads tapes.

SEE ALSO
mt(l), tar(l), tp(l), mtio(4), tm(4), ts(4), mt(4), ut(4)

DIAGNOSTICS

BUGS

tu%d: no write ring. An attempt was made to write on the tape drive when no write ring was
present; this message is written on the terminal of the user who tried to access the tape.

tu%d: not online. An attempt was made to access the tape while it was oflline; this ·message is
written on the terminal of the user who tried to access the tape.

tu%d: can't change density in mid-tape. An attempt was made to write on a tape at a different
density than is already recorded on the tape. This message is written on the terminal of the
user who tried to switch the density.

tu%d: hard error bno/od mbsr=%b er=%b ds=%b. A tape error occurred at block bn; the ht
error register and drive status register are printed in octal with the bits symbolically decoded.
Any error is fatal on non-raw tape; when possible the. driver will have retried the operation
which failed several times before reporting the error.

If any non-data error is encountered on non-raw tape, it refuses to do anything more until
closed.

4th Berkeley Distribution June 1, 1986

HY(4) UNIX Programmer's Manual HY(4)

NAME
hy - Network Systems Hyperchannel interface

SYNOPSIS
device hyO at ubaO csr 0172410 vector hyint

DESCRIPTION
The hy interface provides access to a Network Systems Corporation Hyperchannel Adapter.

The network to which the interface is attached is specified at boot time with an SIOeSI·
F AD DR ioctl. The host's address is discovered by reading the adapter status register. The
interface will not transmit or receive packets until the network number is known.

DIAGNOSTICS
byOlod: unit number Ox%x port %d type %x microcode level Ox%x. Identifies the device during
autoconfiguration.

byo/'od: can't bandle af%d. The interface was handed a message with addresses formatted in an
unsuitable address family; the packet was dropped. .

by«'lod: can't initialize. The interface was unable to allocate UNIBUS resources. This is usually
due to having too many network devices on an 111750 where there are only 3 buffered data
paths.

hy%d: NEX ~ Non Existent Memory. Non existent memory error returned from hardware.

hy«'/od: BAR overflow. Bus address register overflow error returned from hardware.

hyo/'od: Power Off bit se~ trying to reset. Adapter has lost power, driver will reset the bit and
see if power is still out in the adapter.

hyG/od: Power Off Error, network shutdown. Power was really off in the adapter, network con­
nections are dropped. Software does not shut down the network unless power has been off for
a while.

hy«'lod: RECVD MP> MPSIZE (Ofod). A message proper was received that is too big. Prob­
able a driver bug. Shouldn't happen.

hy%d: xmit error - len> by_olen [Ofod > OfodJ. Probable driver error. Shouldn't happen.

hyOfod: DRIVER BUG - INVALID STATE %d. The driver state machine reached a non­
existent state. Definite driver bug.

hyo/'od: watchdog timer expired. A command in the adapter has taken too long to complete.
Dri ver will abort and retry the command.

by«'/od: adapter power restored. Software was able to reset the power off bit, indicating that the
power has been restored.

SEE ALSO

BUGS

intro(4N), inet(4F)

If the adapter does not respond to the status command issued during autoconfigure, the
adapter is assumed down. A reboot is required to recognize it.

The adapter power fail interrupt seems to occur sporadically when power has, in fact, not
failed. The driver will believe that power has failed only if it can not reset the power fail
latch after a "reasonable" time interval. These seem to appear about 2-4 times a day on some
machines. There seems to be no correlation with adapter rev level, number of ports used etc.
and whether a machine will get these "bogus powerfails". They don't seem to cause any real
problems so they have been ignored.

4.2 Berkeley Distribution May 15, 1985

ICMP(4P) UNIX Programmer's Manual ICMP(4P)

NAME
icmp - Internet Control Message Protocol

SYNOPSIS
#include <sys/socket.h>
#include <netinetlin.h> .

s = socket(AF_INET, SOCK_RAW, proto);

DESCRIPTION
ICMP is the error and control message protocol used by IP and the Internet protocol family.
It may be accessed through a "raw socket" for network monitoring and diagnostic functions.
The proto parameter to the socket call to create an ICMP socket is obtained from
getprotobyname(3N). ICMP sockets are connectioniess, and are normally used with the
send to and recv/rom calls, though the connect(2) call may also be used to fix the destination
for future packets (in which case the read(2) or recv(2) and write(2) or send(2) system calls
may be used).

Outgoing packets automatically have an IP header prepended to them (based on the destina­
tion address). Incoming packets are received with the IP header and options intact.

DIAGNOSTICS
A socket operation may fail with one of the following errors returned:

[EISCONN] when trying to establish a connection on a socket which already has one, or
'when trying to send a datagram with the destination address specified and the
socket is already connected;

[ENOTCONN] when trying to send a datagram, but no destination address is specified, and
the socket hasn't been connected;

[ENOBUFS] when the system runs out of memory for an internal data structure;

[EADDRNOTAVAIL]

SEE ALSO

when an attempt is made to create a socket with a network address for which
no network interface exists.

send(2), recv(2), intro(4N), inet(4F), iP(4P)

4.3 Berkeley Distribution May 16, 1986

IDP(4P) UNIX Programmer's Manual IDP(4P)

NAME
idp - Xerox Internet Datagram Protocol

SYNOPSIS
#include <sys/socket.b>
#include <netas/ns.b>
#include <netns/idp.b>

5 - socket(AF _N~ SOCILDGRAM, 0);

DESCRIPTION
IDP is a simple, unreliable datagram protocol which is used to support the SOCILDGRAM
abstraction for the Internet protocol family. IDP sockets are connectioniess, and are normally
used with the send to and recvfrom calls, though the connect(2) call may also be used to fix the
destination for future packets (in which case the recv(2) or read(2) and send(2) or write(2) sys­
tem calls may be used).

Xerox protocols are built vertically on top of IDP. Thus, IDP address formats are identical
to those used by SPP. Note that the IDP port space is the same as the SPPport space (i.e. a
IDP port may be "connected" to a SPP port, with certain options enabled below). In addi­
tion broadcast packets may be sent (assuming the underlying network supports this) by using
a reserved "broadcast address"; this address is network interface dependent.

DIAGNOSTICS
A socket operation may fail with one of the following errors returned:

[EISCONN] when trying to establish a connection on a socket which already has one, or
when trying to send a datagram with the destination address specified and the
socket is already connected;

[ENOTCONN] when trying to send a datagram, but no destination address is specified, and
the socket hasn't been connected;

[ENOBUFS] when the system runs out of memory for an internal data structure;

[EADDRINUSE]
when an attempt is made to create a socket with a port which has already
been allocated;

[EADDRNOTAVAIL]

SOCKET OPrlONS

when an attempt is made to create a socket with a network address for which
no network interface exists.

[SO_HEADERS_ON_INPUT]
When set, the first 30 bytes of any data returned from a read or recv from
will be the initial 30 bytes of the IDP packet, as described by
struct idp {

};

u_short idp_sum;
u_short idp_len;
u_char idp_tc;
u_char idp_pt;
struct ns_addr idp_dna;
struct DS_addr idp_sna;

This allows the user to determine the packet type, and whether the packet
was a multi-cast packet or directed specifically at the local host. When
requested, gives the current state of the option, (NSP _RA WIN or 0).

[SO_HEADERS_ON_OUTPUT]
When set, the first 30 bytes of any data sent will be the initial 30 bytes of the

4.3 Berkelev Distribution Julv 30_ 1985

IOP(4P) UNIX Programmer's Manual IOP(4P)

lOP packet. This allows the user to determine the packet type, and whether
the packet should be multi-cast packet or directed specifically at the local
host. You can also misrepresent the sender of the packet. When requested,
gives the current state of the option. (NSP _RA WOUT or 0).

[SO_OEFAULT_HEAOERS]
The user provides the kernel an lOP header, from which it gleans the Packet
Type. When requested, the kernel will provide an lOP header, showing the
default packet type, and local and foreign addresses, if connected.

[SO_ALL_PACKETS]
When set, this option defeats automatic processing of Error packets, and
Sequence Protocol packets.

[SO_SEQNO] . When requested, this returns a sequence number which is not likely to be
repeated until the machine crashes or a very long time has passed. It is use­
ful in constructing Packet Exchange Protocol packets.

SEE ALSO
send(2), recv(2), intro(4N), ns(4F)

4.3 Berkeley Distribution July 30, 1985 2

IK(4) UNIX Programmer's Manual IK(4)

NAME
ik - Ikonas frame buffer, graphics device interface

SYNOPSIS
device ikO at uba? csr 0172460 vector ikintr

DESCRIPTION

FILES

Ik provides an interface to an Ikonas frame buffer graphics device. Each minor device is a
different frame buffer interface board. When the device is opened, its interface registers are
mapped, via virtual memory, into the user processes address space. This allows the user pro­
cess very high bandwidth to the frame buffer with no system call overhead.

Bytes written or read from the device are DMA'ed from or to the interface. The frame buffer
XY address, its addressing mode, etc. must be set up by the user process before calling write
or read.

Other communication with the driver is via ioctls. The IK-GETADDR ioctl returns the vir­
tual address where the user process can find the interface registers. The IK_ W AITINT ioctl
suspends the user process until the ikonas device has interrupted (for whatever reason - the
user process has to set the interrupt enables).

/dev/ik

DIAGNOSTICS
None.

BUGS
An invalid access (e.g., longword) to a mapped interface register can cause the system to crash
with a machine check. A user process could possibly cause infinite interrupts hence bringing
things to a crawl.

4.2 Berkeley Distribution May 15, 1985

IL(4) UNIX Pr!>ll'ammer'sManual IL(4)

NAME
il - Interlan NI I 0 10 10 Mb/s Ethernet interface

SYNOPSIS
device ilO at ubaO csr 164000 vector ilrint ilcint

DESCRlPfION
The iI interface provides access to a 10 Mb/s Ethernet network through an Interlan 10 I 0 or
I o lOA controller.

Each of the host's network addresses is specified at boot time with an SIOCSIFADDR ioctl.
The iI interface employs the address resolution protocol described in arp(4P) to dynamically
map between Internet and Ethernet addresses oil the local network.

The interface normally tries to use a "trailer" encapsulation to minimize copying data on
input and output. The use of trailers is negotiated with ARP. This negotiation may be dis­
abled, on a per-interface basis, by setting the IFF _NOTRAILERS flag with an SIOCSIF-
FLAGS ioctl. .

DIAGNOSTICS
il%d: input error. The hardware indicated an error in reading a packet off'the cable or an ille­
gally sized packet.

iI%d: can't handle af%d. The interface was handed a message with addresses formatted in an
unsuitable address family; the packet was dropped.

il%d: setaddr didn't work. The interface was unable to reprogram. its physical ethernet
address. This may happen with very early models of the interface. This facility is used only
when the controller is not the first network interface configured for XNS. The oldest interface
tested (2.7.1.0.1.45) has never failed in this way.

The following messages indicate a probable hardware error performing the indicated opera­
tion during autoconfiguration or initialization. The status field, in the control and status regis­
ter (the low-order four bits) should indicate the nature of the failure. See the hardware
manual for details.

il%d: reset failed, csr-%b.

il%d: status failed, csr-%b.

il%d: hardware diag failed, csr-%b.

il%d: verifying setaddr, csr=%b.

il%d: stray xmit interrupt. csr-%b.

il%d: can't initialize.

SEE AlSO
intro(4N), inet(4F), arp(4P)

4.2 Berkeley Distribution June 1, 1986

IMP(4) UNIX Programmer's Manual IMP(4)

NAME
imp - 1822 network interface

SYNOPSIS
pseudo-device imp [count I

DESCRIPTION
The imp interface, as described in BBN Report 1822, provides access to an intelligent mes­
sage processor normally used when participating in the Department of Defense ARPA net­
work. The network interface communicates through a device controller, usually an ACC
LHlDH or HDH or a DEC IMP· 1 lA, with the IMP. The interface is "reliable" and "flow­
controlled" by the host-IMP protocol.

To configure IMP support, at least one of acc(4), css(4) or hdh(4) must be included. The
optional count specifies the total number of IMP connections. The network number on which
the interface resides is specified at boot time using the SIOCSIF ADDR ioctl. The host
number is discovered through receipt ofNOOP message$ from the IMP.

The network interface is always in one of four states: up, down, initializing, or going down.
When the system is booted, the interface is marked down. If the hardware controller is suc­
cessfully probed, the interface enters the initializing state and transmits three NOOP messages
to the IMP. It then waits for the IMP to respond with two or more NOOP messages in reply.
When it receives these messages it enters the up state. The "going down" state is entered
only when notified by the IMP of an impending shutdown. Packets may be· sent· through the
interface only while it is in the up state. Outgoing packets are dropped with the error ENET - .
DOWN returned to the caller if the interface is in any other state.

DIAGNOSTICS
imp%d: not configured. A hardware interface could not be attached during autoconfiguration
because too few IMP pseudo-devices were configured.

imp%d: leader error. The IMP reported an error in a leader (1822 message header). This
causes the interface to be reset and any packets queued up for transmission to be purged.

imp%d: going down in 30 seconds.
imp%d: going down for hardware PM.
imp%d: going down for reload software.
imp%d: going down for emergency reset. The Network Control Center (NCC) is manipulating
the IMP. By convention these messages are reported to all hosts on an IMP.

imp?: host %x. lost %d rfnms. The IMP had messages outstanding to the host listed, but no
RFNM (Request for Next Message) messages were received from the IMP in 127 seconds.
The software state for that host is reinitialized.

imp%d: interface reset. The host has received an interface reset message from the IMP.

imp%d: address reset to x%x (%dI%d). The host has received a NOOP message which caused
it to reset its notion of its current address. The Internet address is printed in hexadecimal,
with the host and IMP numbers following. This indicates that the address originally set by
ifconfig(8) was incorrect, that the IMP has undergone an identity crisis, or that communica­
tion between the IMP and the host is being garbled.

imp%d: data error. The IMP noted an error in data transmitted. The host-IMP interface is
reset and the host enters the init state (awaiting NOOP messages).

imp%d: interface reset. The reset process has been completed.

imp%d: marked down. After receiving a "going down in 30 seconds" message, and waiting 30
seconds, the host has marked the IMP unavailable. Before packets may be sent to the IMP
again, the IMP must notify the host, through a series of NOOP messages, that it is back up.

4.2 Berkeley Distribution May 16, 1986 1

IMP(4) UNIX Programmer's Manual IMP (4)

impOfod: can't handle af%d. The interface was handed a message with addresses formatting in
an unsuitable address family; the packet was dropped. .

SEE ALSO
intro(4N), inet(4F), acc(4), css(4), hdh(4), implog(8), implogd(8)

4.2 Berkeley Distribution May 16, 1986 2

IMP(4P) UNIX Programmer's Manual IMP(4P)

NAME
imp - IMP raw socket interface

SYNOPSIS
#include <sys/socket.h>
#include <netinetlin.h>
#include <netimp/iCimp.h>

5 - socket(AF _IMPUNK, SOCILRA W, proto);

DESCRIPTION
The raw imp socket provides direct access to the imp(4) network interface. Users send pack­
ets through the interface using the send(2) calls, and receive packets with the recv(2), calls.
All outgoing packets must have an 1822 96-bit leader on the front. Likewise, packets received
by the user will have this leader on the front. The 1822 leader and the legal values for the
various fields are defined in the include file <netimplif_imp.h>. The raw imp interface
automatically installs the length and destination address in the 1822 leader of all outgoing
packets; these need not be filled in by the user.

If the protocol selected, proto, is zero, the socket will receive all IMP messages except RFNM
and incompletes which are not input data for a kernel protocol. If proto is non-zero, only
messages for the specified link type will be received.

DIAGNOSTICS ,
An operation on a socket may fail with one of the following errors:

[EISCONN] when trying to establish a connection on a socket which already has one, or
when trying to send a datagram with the destination address specified and the
socket is already connected;

[ENOTCONN] when trying to send a datagram, but no destination address is specified, and
. the socket hasn't been connected;

[ENOBUFS] when the system runs out of memory for an internal data structure;

[ENOBUFS] eight messages to the destination host are outstanding, and another eight are
already queued for output;

[EADDRNOTA VAIL]
when an attempt is made to create a socket with a network address for which
no network interface exists.

SEE ALSO
intro(4N), inet(4F), imp(4)

4.2 Berkeley Distribution May 16, 1986

INET(4F) UNIX Programmer's Manual INET(4F)

NAME
inet - Internet protocol family

SYNOPSIS
#include <sys/types.h>
#include <netinetlin.h>

DESCRIPTION
The Internet protocol family is a collection of protocols layered atop the Internet Protocol (IP)
transport layer, and utilizing the Internet address format. The Internet family provides proto­
col support for the SOCK_STREAM, SOCK_DGRAM, and SOCK_RAW socket types; the
SOCK_RAW interface provides access to the IP protocol.

ADDRESSING
Internet addresses are four byte quantities, stored in network standard format (on the VAX
these are word and byte reversed). The include file <netinet/in.h> defines this address as a
discriminated union.

Sockets bound to the Internet protocol family utilize the following addressing structure,

struct sockaddr _in {
short sin_family;
u_short sin_port;
struct in_addr sin_addr;
char sin_zero[8];

};

Sockets may be created with the··local address .INADDR_ANY to effect "wildcard" matching
on incoming messages. The address in a connect(2) or sendto(2) call may be given as
INADDR_ANY to mean "this host." The distinguished address INADDR_BROADCAST is
allowed as a shorthand for the broadcast address on the primary network if the first network
configured supports broadcast.

PROTOCOlS
The Internet protocol family is comprised of the IP transport protocol, Internet Control Mes­
sage Protocol (ICMP), Transmission Control Protocol (TCP), and User Datagram Protocol
(UDP). TCP is used to support the SOC~STREAM abstraction while UDP is used to sup­
port the SOC~DGRAM abstraction. A raw interface to IP is available by creating an Inter­
net socket of type SOCK_RAW. The ICMP message protocol is accessible from a raw socket.

The 32-bit Internet address contains both network and host parts. It is frequency-encoded;
the most-significant bit is clear in Class A addresses, in which the high-order 8 bits are the
network number. aass B addresses use the high-order 16 bits as the network field, and Class
C addresses have a 24-bit network part. Sites with a cluster of local networks and a connec­
tion to the DARPA Internet may chose to use a single network number for the cluster; this is
done by using subnet addressing. The local (host) portion of the address is further subdivided
into subnet and host parts. Within a subnet, each subnet appears to be an individual net­
work; externally, the entire cluster appears to be a single, uniform network requiring only a
single routing entry. Subnet addressing is enabled and examined by the following ioctl(2)
commands on a datagram socket in the Internet domain; they have the same form as the
SIOCIFADDR command (see intro(4N».

SIOCSIFNETMASK Set interface network mask. The network mask defines the network part
of the address; if it contains more of the address than the address type
would indicate, then subnets are in use.

SIOCGIFNETMASK
Get interface network mask.

4.2 Berkeley Distribution June 1, 1986

INET(4F) uNIx Programmer's Manual

SEE AlSO
ioctl(2), socket(2), intro(4N), tcp(4P), udp(4P), ip(4P), icmp(4P)

An Introductory 4.3BSO Interprocess Communication Tutorial (PSl:7).

An Advanced 4.3BSD Interprocess Communication Tutorial (PSl:8).·

CAVEAT

INET(4F)

The Internet protocol support is subject to change as the Internet protocols develop. Users
should not depend on details of the current implementation, but rather the services exported.

4.2 Berkeley Distribution June I, 1986 2

IP(4P) UNIX Programmer's Manual IP(4P)

NAME
ip - Internet Protocol

SYNOPSIS
#include <sys/socket.h>
#include <netinetlin.h>

5 - socket(AF _INET, SOCK_RAW, proto);

DESCRIPI10N
IP is the transport layer protocol used by the Internet protocol family. Options may be set at
the IP level when using higher-level protocols that are based on IP (such as TCP and UDP).
It may also be accessed through a "raw socket" when developing new protocols, or special
purpose applications.

A single generic option is supported at the IP level, IP _OPTIONS, that may be used to pro­
vide IP options to be transmitted in the IP header of each outgoing packet. Options are set
with setsockopt(2) and examined with getsockopt(2) • . The format of IP options to be sent is
that specified by the IP protocol specification, with one exception: the list of addresses for
Source Route options must include the first-hop gateway at the beginning of the list of gate­
ways. The first-hop gateway address will be extracted from the option list and the size
adjusted accordingly before use. IP options may be used with any socket type in the Internet
family.

Raw IP sockets are connectionless, and are normally used with the sendto and recvfrom calls,
though the connect(2) call may also be used to fix the destination for future packets (in which
case the read(2) or recv(2) and write(2) or send(2) system calls may be used).

If proto is 0, the default protocol IPPROTO_RAW is used for outgoing packets, and only
incoming packets destined for that protocol are received. If proto is non-zero, that protocol
number will be used on outgoing packets and to filter incoming packets.

Outgoing packets automatically have an IP header prepended to them (based on the destina­
tion address and the protocol number the socket is created with). Incoming packets are
received with IP header and options intact.

DIAGNOSTICS
A socket operation may fail with one of the following errors returned:

[EISCONN] when trying to establish a connection on a socket which already has one, or
when trying to send a datagram with the destination address specified and the
socket is already connected; .

[ENOTCONN] when trying to send a datagram, but no destination address is specified, and
the socket hasn't been connected;

[ENOBUFS] when the system runs out of memory for an internal data structure;

[EADDRNOTAVAIL]
when an attempt is made to create a socket with a network address for w.hich
no network interface exists.

The following errors specific to IP may occur when setting or getting IP options:

[EINV AL] An unknown socket option L.ame was given.

[EINV AL] The IP option field was improperly formed; an option field was shorter than
the minimum value or longer than the option buffer provided.

SEE ALSO
getsockopt(2), send(2), recv(2), intro(4N), icmp(4P), inet(4F)

4.2 Berkeley Distribution May 16, 1986

IX(4) UNIX Programmer's Manual IX(4)

NAME
ix - Interlan Npl00 lO Mb/s Ethernet interface

SYNOPSIS
device npO at ubaO csr 166000 vector npintr

DESCRIPl'ION
The ix interface provides access to a 10 Mb/s Ethernet network through an Interlan NplOO
controller used as a link-layer interface.

This interface is unusual in that it requires loading firmware into the controller before it may
be used as a network interface. This is accomplished by opening a character special device,
and writing data to it. A program to load the image is provided in lusrlsrc/new/np 1 00. The
sequence of commands would be:

Jnpload np.image (/dev/np<board #> if other than npOO]
sleep 10
ifconftg ixO ...

Each of the host's network addresses is specified at boot time· with an SIOCSIFADDR ioctl.
The ix interface employs the address resolution protocol described in arp(4P) to dynamically
map between Internet and Ethernet addresses on the local network.

The interface normally tries to use a "trailer" encapsulation to minimize copying data on
input and output. The use of trailers is negotiated with ARP. This negotiation may be dis­
abled, on a per-interface basis, by setting the IFF _NOTRAILERS flag with an SIOCSIF­
FLAGS ioct1.

DIAGNOSTICS
ix%d: Req failed, cmd %x, stat %x, ust error .%x, %x. The firmware in the controller refused to
honor a request from in initializing packet . level communiCations. The board may need to be
reset and reloaded. Or, you may not have allowed enough time between loading the board
and issuing the request to begin unix network operation.

ix%d: can't initialize. The interface was unable to obtain unibus resources required for opera­
tion.

ix%d: failed to reinitialize DLA module. The interface got sick after attempting to reprogram
its physical ethernet address. Try reloading the firmware. The attempt is made. only when
this interfaces is not the first one configured for XNS.

ix%d: can't handle afOAJd. The interface was handed a message with addresses formatted in an
unsuitable address family; the packet was dropped. .

ix%d: stray xmit interrupt, npreq-%x. This may happen if the board is reloaded while net­
work processes are still running.

ixrint: cqe error %x, %x, %x. This will result if an ifconfig(8c) request is made at an inoppor­
tune time, such as not allowing enough time after loading the firmware. After 100 such errors
are logged, the unix network driver will shut itself down, saying: .

ixrint: shutting down unix dla. The recourse is to reload the firmware and allow more time.

SEE ALSO
intro(4N), inet(4F), arp(4P), np(4).

4.2 Berkeley Distribution May 16, 1986 1

KG(4) UNIX Programmer's Manual KG(4)

NAME
kg - KL-II/DL-ll W line clock

SYNOPSIS
device kgO at ubaO csr 0176500 vector kglock

DESCRIPTION
A kl-ll or ell-II w can be used as an alternate real time clock source. When configured, cer­
tain system statistics and, optionally, system profiling work will be collected each time the
clock interrupts. For optimum accuracy in profiling, the dl-ll w should be configured to inter­
rupt at the highest possible priority level. The kg device driver automatically calibrates itself
to the line clock frequency.

SEE ALSO
kgmon(8), conftg(8)

4.2 Berkeley Distribution May 15, 1985

LO(4) UNIX Programmer's Manual LO(4)

NAME
10 - software loopback network interface

SYNOPSIS
pseudo-cievice loop

DESCRIPTION
The loop interface is a software loopback mechanism which may be used for performance
analysis, software testing, and/or local communication. As with other network interfaces, the
loopback interface must have network addresses assigned for each address family with which
it is to be used. These addresses may be set or changed with the SIOCSIF ADDR ioctl. The
loopback interface should be the last interface configured, as protocols may use the order of
configuration as an indication of priority. The loopback should never be configured first
unless no hardware interfaces exist.

DIAGNOSTICS
10%«1: can't handle af%d. The interface was handed a message with addresses formatted in.an
unsuitable address family; the packet was dropped.

SEE ALSO

BUGS

intro(4N), inet(4F), ns(4F)

Previous versions of the system enabled the loopback interface automatically, using a nonm

standard Internet address (127.1). Use of that address is now discouraged; a reserved host
address for the local network should be used instead.

4.2 Berkeley Distribution· May 21, 1986 1

LP(4) UNIX Programmer's Manual LP(4)

NAME
Ip - line printer

SYNOPSIS
device IpO at ubaO csr 0177514 vector Ipintr

DESCRIPTION

FILES

Lp provides the interface to any of the standard DEC line printers on an LP-ll parallel inter­
face. When it is opened or closed, a suitable number of page ejects is generated. Bytes writ­
ten are printed.

The unit number of the printer is specified by the minor device after removing the low 3 bits,
which act as per-<ievice parameters. Currently only the lowest of the low three bits is inter­
preted: if it is set, the device is treated as having a 64-character set, rather than a full 96-
character set. In the resulting half-ASCII mode, lower case letters are turned into upper case
and certain characters are escaped according to the following table:

{ ~
} ~ , .

The driver correctly interprets carriage returns, backspaces, tabs, and form feeds. Lines
longer than the maximum page width are truncated. The default page width is 132 columns.
This may be overridden by specifying, for example, "flags 256" .

/~ev/lp

SEE ALSO
lpr(l)

DIAGNOSTICS
None.

4th Berkeley Distribution May 15, 1985

MEM(4) UNIX Programmer's Manual MEM(4)

NAME
mem, kmem - main memory

DESCRIP1'ION

FILES

Mem is a special file that is an image of the main memory of the computer. It may be used,
for example, to examine (and even to patch) the system.

Byte addresses in mem are interpreted as physical memory addresses. References to non­
existent locations cause errors to be returned.

The file kmem is the same as 'mem except that kernel virtual memory rather than physical
memory is accessed. Only kernel virtual addresses that are mapped to memory are allowed.
The file kUmem also refers to kernel virtual memory, but may be used to access areas mapped
to UNIBUS address space and other 110 areas. It forces all accesses to use word (short
integer) accesses. Examining and patching device registers is likely to lead to unexpected
results when read-only or write-only bits are present.

On VAX 111780 the 110 space begins at physical address 20000000(16); on an 111750 1/0
space addresses are of the form fxxxxx(16). On all VAX'en per-process data for the current
process is UP AGES long, and ends at virtual address 80000000(16).

Idev/mem
IdevlkIriem
IdevlkUmem

4th Berkeley Distribution May 16, 1986 1

MT(4) UNIX Programmer's Manual MT(4)

NAME
mt - TM78/TU-78 MASSBUS magtape interface

SYNOPSIS
master mtO at mba? drive ?
tape muO at mtO slave 0

DESCRIPTION
The tm78/tu-78 combination provides a standard tape drive interface as described in mtio(4).
Only 1600 and 6250 bpi are supported; the TU-78 runs at 125 ips and autoloads tapes.

SEE ALSO
mt(l), tar(l), tp(l), mtio(4), tm(4), ts(4), ut(4)

DIAGNOSTICS

BUGS

mu%d: no write ring. An attempt was made to write on the tape drive when no write ring was
present; this message is written on the terminal of the user who tried to access the tape.

muW: not online. An attempt was made to access the tape while it was oftline; this message
is written on the terminal of the user who tried to access the tape.

muOfod: caD't change density in mid-tape. An attempt was made to write on a tape at a
different density than is already recorded on the tape. This message is written on the termi­
nal of the user who tried to switch the" density.

muo/od: hard error bnOfod mbsr=Ofob er-Ofox ds""Ofob. A tape error occurred at block bn; the mt
error register and drive status register are printed in octal with the bits symbolically decoded.
Any error is fatal on non-raw tape; when possible the driver will have retried the operation
which failed several times before reporting the error.

muW: blank tape. An attempt was made to read a blank tape (a tape without even end-of-ftle
marks).

muOfod: otlline. During an i/o operation the device was set oftline. If a non-raw tape was used
in the access it is closed.

If any non-data error is encountered on non-raw tape, it refuses to do anything more until
closed.

Becalise 800 bpi tapes are not supported; the numbering of minor devices is inconsistent with
triple-density tape units. Unit 0 is drive 0, 1600 bpi.

4th Berkeley Distribution June 1, 1986

MTIO(4) UNIX Programmer's Manual MTIO(4)

NAME
mtio - UNIX magtape interface

DESCRIPTION
The files mtO • mt15 refer to the UNIX magtape drives, which may be on the MASSBUS
using the TM03 formatter ht(4), or TM78 formatter, mt(4), or on the UNIBUS using either
the TMII or TSII formatters tm(4), TU45 compatible formatters, ut(4), or ts(4). The follow­
ing description applies to any of the transport/controller pairs. The files mtO. ...• mt7 are
800bpi (or the transport's lowest density), mt8 • ...• mtl5 are 1600bpi (or the trao,sport's
second density), and mtl6 • ... , mtl3 are 6250bpi (or the transport's third density). (But note
that only 1600 bpi is available with the TSll.) The files mtO, ... , mt3,mt8, ... , mtl l, and
mtl6, ... , mtl9 are rewound when closed; the others are not. When a file open for writing is
closed, two end-of-files are written. If the tape is not to be rewound it is positioned with the
head between the two tapemarks.

A standard tape consists of a series of 1024 byte records terminated by an end-of-file. To the
extent possible, the system makes it possible, if inefficient, to treat the tape like any other file.
Seeks have their usual meaning and it is possible to read or write a byte at a time. Writing in
very small units is inadvisable, however, because it uses most of the tape in record gaps.

The mt files discussed. above are useful when it is desired to access the tape in a way compati­
ble with ordinary files. When foreign tapes are to be dealt with, and especially when long
records are to be read or written, the '11lw' interface is appropriate. The associated files are
.named nntO. ..., rmtl3. but the same minor-device considerations as for the regular files still
apply. A number of other ioctl operations are available on raw magnetic tape. The following
definitions are from <sys/mtio.h>:

I •
• Structures and definitions for mag tape io control commands
.1

I. structure for MTIOCTOP - mag tape op command .1
struct mtop {

};

short mCop;
daddr_tmCcount;

I. operations .1
#define MTWEOF 0
#define MTFSF 1
#define MTBSF 2
#define MTFSR 3
#define MTBSR 4
#define MTREW 5
#define MTOFFL 6
#define MTNOP 7
#define MTCACHE 8
#define MTNOCACHE 9

I. operations defined below .1
I. how many of them .1

I. write an end-of-file record .1
I. forw~ space file .1
I. backward space file .1
I. forward space record .1
I. backward space record.1
I. rewind.1
I. rewind and put the drive offline .1
I. no operation, sets status only .1
I. enable controller cache .1
I. disable controller cache .1

I. structure for MTIOCGET - mag tape get status command .1

struct mtget {
short mctype; I. type of magtape device .1

I. the following two registers are grossly device dependent .1
short mCdsreg; I. "drive status" register .1
short mcerreg; I. "error" register .1

4.2 Berkeley Distribution May 16, 1986 1

MTIO(4) UNIX Programmer's Manual MTIO(4)

FILES

I. end device-dependent registers .1
short mcresid; I. residual count .1

I. the following two are not yet implemented .1
daddctmcfileno; I. file number of current position .1
daddctmCblkno; I. block number of current position .1

I. end not yet implemented .1
};

I •
• Constants for mCtype byte. These are the same
• for other controllers compatible with the types listed .
• 1

#define MT _ISTS
#define MT _ISHT
#define MT _ISTM
#define MT _ISMT
#define MT _ISUT
#define MT _ISCPC OX06
#define MT _ISAR
#define MT _ISTMSCP Ox08

OxOI
Ox02
OX03
Ox04
OxOS

Ox07

I. mag tape io control commands .1

I. TS-ll .1
I. TM03 Massbus: TE16, TU4S, TU77 .1
I. TMlllTElO Unibus .1
I. TM78ITU78 Massbus .1
I. SI TU45 emulation on Unibus .1

I. SUN.I
I. SUN.I

I. DEC TMSCP protocol (TU8l, TK50) .1

#define MTIOCTOP _IOW(m, 1, struct mtop)
#define MTIOCGET _IOR(m, 2, struct mtget)
#define MTIOCIEOT _10(m,3)

I. do a mag tape op .1
I. get tape status .1
I. ignore EOT error .1
I. enable EOT error .1 #define MTIOCEEOT _IO(m, 4)

#ifndef KERNEL
#define DEFT APE
#endif

"/dev/rmt12"

Each read or write call reads or writes the next record on the tape. In the write case the
record has the same length as the buffer given. During a read, the record size is passed back
as the number of bytes read, provided it is no greater than the. buffer size; if the record is
long, an error is indicated. In raw tape 1/0 seeks are ignored. A zero byte count is returned
when a tape mark is read, but another read will fetch the first record of the new tape file.

Idev/mt?
Idev/rmt?

SEE ALSO
mt(1), tar(1), tp(1), ht(4), tm(4), ts(4), mt(4), ut(4)

BUGS
The status should be returned in a device independent format.

The special file naming should be redone in a more consistent and understandable manner.

4.2 Berkeley Distribution May 16, 1986 2

NP(4) UNIX Programmer's Manual NP(4)

NAME
np - Interlan Np100 10 Mb/s Ethernet interface

SYNOPSIS
device npO at ubaO csr 166000 vector npintr

DESCRIPTION
The NP device provides access to an Interlan N pI 00 Ethernet interface for control functions.

This interface is unusual in that it requires loading firmware into the controller before it may
be used as a network link-level interface. This is accomplished by opening a character special
device, and writing data to it. It is also possible to do post-mortem debugging of firmware
failures by reading the local memory of the device.

A program to load the image is provided in lusrlsrclnew/np 1 00. The sequence of commands
would be:

'1# .Inpload np.image [/dev/npOO]
'1# sleep 10
'1# ifconfig ixO ...

Multiple control processes are allowed by opening separate minor devices; secondary inter­
faces are specified by shifting the interface number by 4 bits.

The device also responds to commands passed through the driver by the following ioctls:

NPRESET
kills off all active network processes.

NPSTART
begins execution of the board at the specified address (usually Ox400).

NPNETBOOT
downloads the image from a server on the network. [Contact MICOM-INTERLAN
for details.]

DIAGNOSTICS
npW: Bad Maintenance command: %x!. An invalid ioctl was passed to the np driver.

np%d: Panic NPtOO bad buffer chain. An error occurred in an read or write operation causing
it to run out of buffers before it finished the operation. This indicates a kernel failure rather
than a device failure. .

NPtOO unit %d not (ound!. A failure occurred during initialization, such that the unibus
address expected for the board was found to be bad. Probably indicates hardware problems
with the board, as do the following:

NPlOO Unit %d timed out!

NP100 Unit %d Failed diagnostics!
Status (rom CSRO: %x.

Panic (rom NPlOO unit %d!\nPanic: Message: %s. An occurrence on the board was deemed
serious enough to have the vax print it out.

NPlOO unit 'I#%d available!. The board was successfully loaded and started.

np%d: Bad Req: %x.. The board made a maintenance request to the vax that it did not
understand.

4.2 Berkeley Distribution May 21, 1986

NP(4) UNIX Programmer's Manual NP(4)

np%d: No more room on Command Queue!. The np driver allowed an internal resource to be
exhausted. This should never happen.

There are 110 other diagnostic messages that can be enabled by setting bits in a debugging
mask. Consult the driver for details.

SEE ALSO
intro(4N). inet(4F). arp(4P). ix(4)

4.2 Berkeley Distribution May 21. 1986 2

NS(4F) UNIX Programmer's Manual NS(4F)

NAME
ns - Xerox Network Systems(tm) protocol family

SYNOPSIS
options NS
options NSIP
pseudo-deVice ns

DESCRIPTION
The NS protocol family is a collection of protocols layered atop the Internet Datagram Proto­
col (IDP) transport layer, and using the Xerox NS address formats. The NS family provides
protocol support for the SOCK_STREAM, SOCILDGRAM, SOCK_SEQPACKET, and
SOCK_RA W socket types; the SOCILRA W interface is a debugging tool, allowing you to
trace all packets entering, (or with toggling kernel variable, additionally leaving) the local host.

ADDRESSING
NS addresses are 12 byte quantities, consisting of a --4 byte Network number, a 6 byte Host
number and a 2 byte port number, all stored in network standard format. (on the VAX these
are word and byte reversed; on the Sun they are not reversed). The include file <netns/ns.h>
defines the NS address as a structure containing unions (for quicker comparisons).

Sockets in the Internet protocol family use the following addressing structure:

struct sockaddcns {
short

};

struct ns_addr
char

sns_family;
sns_addr;
sns_zero[2];

where an ns_addr is composed as follows:

union ns_host {
u_char
l.cshort

};

union ns_net {
u_char
u_short

};

struct ns_addr {

c_host[6];
s_host[3];

c_net[4];
s_net[2];

union ns_net x_net;
union ns_host x_host;
u_short x_port;

};

Sockets may be created with an address of all zeroes to effect "wildcard" matching on incom­
ing messages. The local port address specified in a bind(2) call is restricted to be greater than
NSPO RT _RESERVED (= 3000, in <netns/ns.h» unless the creating process is running as the
super-user, providing a space of protected port numbers.

PROTOCOLS
The NS protocol family supported by the operating system is comprised of the Internet
Datagram Protocol (lOP) idp(4P), Error Protocol (available through IDP), and Sequenced
Packet Protocol (SPP) spp(4P).

4.3 Berkeley Distribution July 30, 1985

NS(4F) UNIX Programmer's Manual NS(4F)

SPP is used to support the SOCK_STREAM and SOCK_SEQ PACKET abstraction, while
IDP is used to support the SOCK_DGRAM abstraction. The Error protocol is responded to
by the kernel to handle and report errors in protocol processing; it is, however, only accessible
to user programs through heroic actions.

SEE ALSO
intro(3), byteorder(3N), gethostbyname(3N), getnetent(3N), getprotoent(3N), getservent(3N),
ns(3N), intro(4N), spp(4P), idp(4P), nsip(4)
Internet Transport Protocols, Xerox Corporation document XSIS-028112
An Advanced 4.3BSD Interprocess Communication Tutorial

4.3 Berkeley Distribution July 30, 1985 2

NSIP(4) UNIX Programmer's Manual NSIP(4)

NAME
nsip - software network interface encapsulating ns packets in ip packets.

SYNOPSIS
options NSIP
#include <netns/ns_if.h>

DESCRIPTION
The nsip interface is a software mechanism which may be used to transmit Xerox NS(tm)
packets through otherwise uncooperative networks. It functions by prepending an IP header,
and resubmitting the packet through the unix IP machinery.

The super-user can advise the operating system of a willing partner by naming an IP address
to be associated with an NS address. Presently. only specific hosts pairs are allowed, and for
each host pair, an artificial point-to-point interface is constructed. At some future date, IP
broadcast addresses or hosts may be paired with NS networks or hosts.

Specifically, a socket option of SO_NSIP _ROUTE is set on a socket of family AF _NS, type
SOCK..DGRAM, passing the following structure:

struct nsip_reQ { .

};

struct sockaddr rQ_ns; /. must be ns format destination ./
struct sockaddr rQ_ip; /. must be ip format gateway ./
short rQ_flags;

DlAGNOSTICS
nsip%ci: can't handle af%d. The interface was handed a message with addresses formatted in
an unsuitable address family; the packet was dropped.

SEE AlSO

BUGS

intro(4N), ns(4F)

It is absurd to have a separate pseudo-device for each pt-to-pt link. There is no way to
change the IP address for an NS host once the the encapsulation interface is set up. The
request should honor flags of RTF _ GATEWAY to indicate remote networks, and the absence
of RTF_UP should be a clue to remove that partner. This was intended to postpone the
necessity of rewriting reverse ARP for the en device, and to allow passing XNS packets
through an Arpanet-Milnet gateway, to facilitate testing between some co-operating universi­
ties.

4.3 Berkeley Distribution July 30, 1985

NULL(4)

NAl'\1E
null - data sink

DESCRIPTION

UNIX Programmer's Manual

Data written on a null special file is discarded.

Reads from a null special file always return 0 bytes.

FILES
/dev/null

7th Edition May 15, 1985

NULL(4)

PCL(4) UNIX Programmer's Manual PCL(4)

NAME
pel - DEC CSS PCL-lt B Network Interface

SYNOPSIS
device pdO at uba? csr 164200 vector pclxint pclrint

DESCRIPTION
The pel device provides an IP-only interface to the DEe ess peL-It time division multi­
plexed network bus. The controller itself is not accessible to users.

The hosts's address is specified with the SIOCSIFADDR ioct1. The interface will not transmit
or receive any data before its address is defined.

As the PCL-l-l hardware is only capable of having 15 interfaces per network, a single-byte
host-on-network number is used, with range [1..15] to match the TOM bus addresses of the
interfaces.

The interface currently only supports the Internet protocol family and only provides "natural"
(header) encapsulation.

DIAGNOSTICS
pcl4Yod: can't init. Insufficient UNIBUS resources existed to initialize the device. This is likely
to occur when the device is run on a buffered data path on an 111750 and other network
interfaces are also configured to use buffered data· paths, or when it is configured to use
buffered data paths on an 111730 (which has none).

pcl%d: can't handle af%d. The interface was handed a message with addresses formatted in
an unsuitable address family; the packet was dropped.

pcl%d: stray xmit interrupt. An interrupt occurred when no output had previously been
started.

pcl%d: master. The TOM bus had no station providing "bus master" timing signals, so this
interface has assumed the "master" role. This message should only appear at most once per
UNIBUS INIT on a single system. Unless there is a hardware failure, only one station may
be master at at time.

pcl%d: send error, tc:r-O/Ob, tsr-%b. The device indicated a problem sending data on output.
If a "receiver oftline" error is detected, it is not normally logged unless the option
PCL_ TESTING has been selected, as this causes a lot of console chatter when sending to a
down machine. However, this option is quite useful when debugging problems with the pel
interfaces.

pcl%d: rev error, rc:r=%b rsr=%b. The device indicated a problem receiving data on input.

pcl%d: bad len-%d. An input operation resulted in a data transfer of less than 0 or more
than 1008 bytes of data into memory (according to the word count register). This should
never happen as the maximum size of a PCL message has been agreed upon to be 1008 bytes
(same as ArpaNet message).

SEE ALSO
intro(4N), inet(4F)

4.2 Berkeley Distribution May 21, 1986

PS(4) UNIX Programmer's Manual PS(4)

NAME
ps - Evans and Sutherland Picture System 2 graphics device interface

SYNOPSIS
device psO at uba? ~r 0172460 vector psclockintr pssystemintr

DESCRIPTION
The ps driver provides access to an Evans and Sutherland Picture System 2 graphics device.
Each minor device is a new PS2. When the device is opened, its interface registers are
mapped, via virtual memory, into a user process's address space. This allows the user process
very high bandwidth to the device with no system call overhead.

DMA to and from the PS2 is not supported. All read and write system calls will fail. All data
is moved to and from the PS2 via programmed 110 using the device's interface registers.

Commands are fed to and from the driver using the following ioctls:

PSIOGETADDR
Returns the virtual address through which the user process can access the device's
interface registers. .

PSIOAUTOREFRESH
Start auto refreshing the screen. The argument is an address in user space where the
following data resides. The first longword is a count of the number of static refresh
buffers. The next count longwords are the addresses in refresh memory where the
refresh buffers lie, The driver will cycle through these refresh buffers displaying them
one by one on the screen.

PSIOAUTOMAP
Start automatically passing the display file through the matrix processor and into the
refresh buffer. The argument is an address in user memory where the following data
resides. The first longword is a count of the number of display files to operate on.
The next count longwords are the address of these display files. The final longword is
the address in refresh buffer memory where transformed coordinates are to be placed
if the driver is not in double buffer mode (see below).

PSIODOUBLEBUFFER
Cause the driver to double buffer the output from the map that is going to the refresh
buffer. The argument is again a user space address where the real arguments are
stored. The first argument is the starting address of refresh memory where the two
double buffers are located. The second argument is the length of each double buffer.
The refresh mechanism displays the current double buffer, in addition to its static
refresh lists, when in double buffer mode.

PSIOSINGLEREFRESH
Single step the refresh process. That is, the driver does not continually refresh the
screen.

PSIOSINGLEMAP
Single step the matrix process. The driver does not automatically feed display files
through the matrix unit.

PSIOSINGLEBUFFER
Tum off double buffering.

PSIOTIMEREFRESH
The argument is a count of the number of refresh interrupts to take before turning off
the screen. This is used to do time exposures.

PSIOWAITREFRESH
Suspend the user process until a refresh interrupt has occurred. If in TIMEREFRESH

4.2 Berkeley Distribution May 21, 1986 1

PS(4) UNIX Programmer's Manual PS(4)

mode, suspend until count refreshes have occurred.

PSIOSTOPREFRESH
Wait for the next refresh, stop all refreshes, and then return to user process.

PSIOWAITMAP
Wait until a map done interrupt has occurred.

PSIOSTOPMAP
Wait for a map done interrupt, do not restart the map, and then return to the user.

FILFS
/dev/ps

DIAGNOSTICS

BUGS

PI device intr.
PI dma iDtr. An interrupt was received from the device. This shouldn't happen, check your
device configuration for overlapping interrupt vectors.

An invalid access (e.g., longword) to a mapped interface register can cause the system to crash
with a machine check. A user process could possibly cause infinite interrupts hence bringing
things to a crawl..

4.2 Berkeley Distribution May 21, 1986 2

PTY(4) UNIX Programmer's Manual PTY(4)

NAME
pty - pseudo terminal driver

SYNOPSIS
pseudo-device pty [count]

DESCRIPTION
The pty driver provides support for a device-pair termed a pseudo terminal. A pseudo termi­
nal is a pair of character devices, a master device and a slave device. The slave device pro­
vides processes an interface identical to that described in tty(4). However, whereas all other
devices which provide the interface described in tty(4) have a hardware device of some sort
behind them, the slave device has, instead, another process manipulating it through the mas­
ter half of the pseudo terminal. That is, anything written on the master device is given to the
slave device as input and anything written on the slave device is presented as input on the
master device.

In configuring, if an optional "count" is given in the specification, that number of pseudo tera
minal pairs are configured; the defaUlt count is 32.

The following ioetl calls apply only to pseudo terminals:

TIOCSTOP
Stops output to a terminal (e.g. like typing AS). Takes no parameter.

TIOCSTART
Restarts output (stopped by TIOCSTOP or by typing AS). Takes no parameter.

TIOCPKT
Enable/disable packet mode. Packet mode is enabled by specifying (by reference) a
nonzero parameter and disabled by specifying (by reference) a zero parameter. When
applied to the master side of a pseudo terminal, each subsequent read from the termi­
nal will return data written on the slave part of the pseudo terminal preceded by a
zero byte (symbolically defined as TIOCPKT _DATA), or a single byte reflecting con.;.
trol status information. In the latter case, the byte is an inclusive-or of zero or more
of the bits:

TIOCPKT~FLUSHREAD
whenever the read queue for the terminal is flushe4.

TIOCPKT _FLUSHWRITE
whenever the write queue for the terminal is flushed.

TIOCPKT _STOP
whenever output to the terminal is stopped a la AS.

TIOCPKT_START
whenever output to the terminal is restarted.

TIOCPKT _DOSTOP
whenever estopc is AS and ,-startc is AQ.

TIOCPKT _NOSTOP
whenever the start and stop characters are not AsrQ.

While this mode is in use, the presence of control status information to be read from
the master side may be detected by a select for exceptional conditions.

This mode is used by riogin(lC) and rlogind(8C) to implement a remote-echoed,
locally AsrQ flow-controlled remote login with proper back-flushing of output; it can
be used by other similar programs.

TIOCUCNTL
Enable/disable a mode that allows a small number of simple user iOCI/ commands to

4.2 Berkeley Distribution May 19, 1986

PTY(4) UNIX Programmer's Manual PTY(4)

FILES

be passed through the pseudo-terminal, using a protocol similar to that of TIOCPKT.
The TIOCUCNTL and TIOCPKT modes are mutually exclusive. This mode is
enabled from the master side of a pseudo terminal by specifying (by reference) a
nonzero parameter and disabled by specifying (by reference) a zero parameter. Each
subsequent read from the master side will return data written on the slave part of the
pseudo terminal preceded by a zero byte, or a single byte reflecting a user control
operation on the slave side. A user control command consists of a special ioetl opera­
tion with no data; the command is given as UIOCCMD(n), where n is a number in
the range 1-255. The operation value n will be received as a single byte on the next
read from the master side. The ioetl UIOCCMD(O) is a no-op that may be used to
probe for the existence of this facility. As with TIOCPKT mode. command opera­
tions may be detected with a select for exceptional conditions.

TIOCREMOTE
A mode for the master half of a pseudo terminal, independent of TIOCPKT. This
mode causes input to the pseudo terminal to be flow controlled and not input edited
(regardless of the terminal mode). Each write to the control terminal produces a
record boundary for the process reading the terminal. In normal usage, a write of
data is like the data typed as a line on the terminal; a write of 0 bytes is like typing an
end-of-fi.le character. TIOCREMOTE can be used when doing remote line editing in
a window manager, or whenever flow controlled input is required.

/dev/pty[p-r][0-9a-f]
/dev/tty[p-r][O-9a-f]

master pseudo terminals
slave pseudo terminals

DIAGNOSTICS
None.

4.2 Berkeley Distribution May 19,1986 2

QE(4) UNIX Programmer's Manual QE(4)

NAME
qe - DEC DEQNA Q-bus 10 Mb/s Ethernet interface

SYNOPSIS
device qeO at uba? csr 174440 vector qeintr

DESCRIPTION
The qe interface provides access to a 10 Mb/s Ethernet network through the DEC DEQNA
Q-bus controller.

Each of the host's network addresses is specified at boot time with an SIOCSIFADDR ioctl.
The qe interface employs the address resolution protocol described in arp(4P) to map dynami­
cally between Internet and Ethernet addresses on the local network.

The interface normally tries to use a "trailer" encapsulation to minimize copying data on
input and output. The use of trailers is negotiated with ARP. This negotiation may be dis­
abled, on a per-interface basis, by setting the IFF _NOTRAILERS flag with an SIOCSIF­
FLAGS ioctl.

SEE ALSO
inet(4F), intro(4N), arp(4P)

4.3 Berkeley Distribution June 3, 1986

RX(4) UNIX Programmer's Manual RX(4)

NAME
rx - DEC RX02 floppy disk interface

SYNOPSIS
controller fxO at ubaOcsr 0177170 vector mntr
disk rxO at fxO drive 0
disk rxl at fxO drive 1

DESCRIPTION
The rx device provides access to a DEC RX02 floppy disk unit with M8256 interface module
(RX211 configuration). The RX02 uses 8-inch, single-sided, soft-sectored floppy disks (with
pre-formatted industry-standard headers) in either single or double density.

Floppy disks handled by the RX02 contain 77 tracks, each with 26 sectors (for a total of
2,002 sectors). The sector size is 128 bytes for single density, 256 bytes for double density.
Single density disks are compatible with the RXO 1 floppy disk unit and with IBM 3740 Series
Diskette 1 systems.

In addition to normal ('block' and 'raw') i/o, the driver supports formattina of disks for either
density and the ability to invoke a 2 for 1 interleaved sector mapping compatible with the
DEC operatina system RT-l1.

. The minor device number is interpreted as follows:

NOTES

Bit Description
o Sector interleaving (1 disables interleaving)
1 Logical sector 1 is on track 1 (0 no, 1 yes)
2 Not used, reserved
Other Drive number

The two drives in a single RX02 unit are treated as two disks attached to a single controller.
Thus, if there are two RX02's on a system, the drives on the first RX02 are "rxO" and Urx 1",
while the drives on the second are "rx2" and "rx3".

When the device is opened, the density of the disk currently in the drive is automatically
determined. If there is no floppy in the device, open will fail.

The interleaving parameters are represented in raw device names by the letters 'a' through 'd'.
Thus, unit 0, drive 0 is called by one of the following names:

Mapping Device name Starting track
interleaved /dev/mOa 0
direct /dev/mOb 0
interleaved /dev/mOe 1
direct /dev/mOd 1

The mapping used on the 'c~ device is compatible with the DEC operating system RT-l1.
The 'b' device accesses the sectors of the disk in strictly sequential order. The 'a' device is the
most efficient for disk-to-disk copying. This mapping is always used by the block device.

I/O requests must start on a sector boundary, involve an integral number of complete sectors,
and not go off the end of the disk.

Even though the storage capacity on a floppy disk is quite small, it is possible to make filesys­
tems on double density disks. For example, the command

%mkfs/dev/rxO 100113140965123204
makes a file system on the double density disk in rxO with 436 kbytes available for file
storage. Using tar(1) gives a more efficient utilization of the avaiiable space for file storage.
Single density diskettes do not provide sufficient storage capacity to hold file systems.

4.2 Berkeley Distribution May IS, 1985 1

RX(4) UNIX Programmer's Manual

A number of ioctl(2) calls apply to the rx devices, and have the form
#include <vaxubalrxreg.h>
ioctl(fildes, code, arg)
int .arg;

The applicable codes are:

RXIOC_FORMA T

RX(4)

Format the diskette. The density to use is specified by the arg argument,
zero gives single density while non-zero gives double density.

RXIOC_GETDENS
Return the density of the diskette (zero or non-zero as above).

RXIOC_ WDDMK On the next write, include a deleted data address mark in the header of
the first sector.

RXIOC_RDDMK Return non-zero if the last sector read contained a deleted data address
mark in its header, otherwise return O.

ERRORS

FILES

The following errors may be returned by the driver:

[ENODEV] Drive not ready; usually because no disk is in the drive or the drive door is
open.

[ENXIO]

[EIO]

[EBUSY]
'..

[EBADF]

Nonexistent drive (on open); offset is too large or not on a sector boundary or
byte count is not a multiple of the sector size (on read or write); or bad
(undefined) ioctl code.

A physical error other than "not ready", probably bad media or unknown for­
mat.·

Drive has been opened for exclusive access.

No write access (on format), or wrong density; the latter can only happen if the
. disk is changed without closing the device (i.e., calling close(2)).

/dev/rx?
/dev/rrx?[a-d]

SEE ALSO
rxformat(8V), newfs(8), mkfs(8), tar(1), arff(8V)

DIAGNOSTICS

BUGS

rx%d: hard error, trk %d psec %d cs",,%b, db=%b, err=%x, %x, %x, %x. An unrecoverable
error was encountered. The track and physical sector numbers, the device registers and the
extended error status are displayed.

rx%d: state %d (reset). The driver entered a bogus state. This should not happen.

A floppy may not be formatted if the header info on sector 1, track 0 has been damaged.
Hence, it is not possible to format completely degaussed disks or disks with other formats
than the two known by the hardware.

If the drive subsystem is powered down when the machine is booted, the controller won't
interrupt.

4.2 Berkeley Distribution May 15, 1985 2

SPP(4P) UNIX Programmer's Manual SPP(4P)

NAME
spp - Xerox Sequenced Packet Protocol

SYNOPSIS
#include <sys/socket.h>
#include <netns/ns.h>
s = socket(AF _NS, SOCK_STREAM, 0);

#include <netns/sp.h>
s == socket(AF_NS, SOCK_SEQPACKET, 0);

DESCRIPTION
The SPP protocol provides reliable, flow-controlled, two-way transmission of data. It is a
byte-stream protocol used to support the SOCK_STREAM abstraction. SPP uses the stan­
dard NS(tm) address fonnats.

Sockets utilizing the SPP protocol are either "active" or "passive". Active sockets initiate
connections to passive sockets. By default SPP sockets are created active; to create a passive
socket the listen(2) system call must be used after binding the socket with the bind(2) system
call. Only passive sockets may use the accept(2) call to accept incoming connections. Only
active sockets may use the connect(2) call to initiate connections.

Passive sockets may "underspecify" their location to match incoming connection requests
from multiple networks. This technique, termed "wildcard addressing", allows a single server
to provide service to clients on multiple networks. To create a socket which listens on all net­
works, the NS address of all zeroes must be bound. The SPP port may still be specified at
this time; if the port is not specified the system will assign one. Once a connection has been
established the socket's address is fixed by the peer entity's location. The address assigned
the socket is the address associated with the network interface through which packets are
being transmitted and received. Normally this address corresponds to the peer entity's net­
work.

If the SOCK_SEQ PACKET socket type is specified, each packet received has the actual 12
byte sequenced packet header left for the user to inspect:
struct sphdr {

u_char
#define SP _EM Ox 1 0

u3har
u_short
u_short
u_short
u_short
u_short

};

sp_dt;
sp_sid;
sp_did;
sp_seq;
sp_ack;
sp_alo;

/. connection control./
/. end o/message./
/. datastream type ./

This facilitates the implementation of higher level Xerox protocols which make use of the
data stream type field and the end of message bit. Conversely, the user is required to supply
a 12 byte header, the only part of which inspected is the data stream type and end of message
fields.

For either socket type, packets received with the Attention bit sent are interpreted as out of
band data. Data sent with send(... , ... , ... , MSG_OOB) cause the attention bit to be set.

DIAGNOSTICS
A socket operation may fail with one of the following errors returned:

[EISCONN] when trying to establish a connection on a socket which already has
one;

4.3 Berkeley Distribution July 30, 1985

SPP(4P) UNIX Programmer's Manual SPP(4P)

[ENOBUFS] when the system runs out of memory for an internal data structure;

[ETIMEDOUT] when a connection was dropped due to excessive retransmissions;

[ECONNRESET] when the remote peer forces the connection to be closed;

[ECONNREFUSED] when the remote peer actively refuses connection establishment (usually
because no process is listening to the port);

[EADDRINUSE] when an attempt is made to create a socket with a port which has
already been allocated;

[EADDRNOTA VAIL]
when an attempt is made to create a socket with a network address for
which no network interface exists.

SOCKET OPTIONS
SO_DEFAULT_HEADERS

when set, this determines the data stream type and whether the end of
message bit is to be set on every ensuing packet.

This specifies the maximum ammount of user data in a single packet.
The default is 576 bytes - sizeof(struct spidp). This quantity affects win­
dowing - increasing it without increasing the amount of buffering in the
socket will lower the number of unread packets accepted. Anything
larger than the default will not be forwarded by a bona fide XEROX
product internetwork router. The data argument for the setsockopt call
must be an unsigned short.

SEE ALSO

BUGS

intro(4N), ns("4F)

There should be some way to reflect record boundaries in a stream. For stream mode, there
should be an option to get the data stream type of the record the user process is about to
receive.

4.3 Berkeley Distribution· July 30, 1985 2

TB(4) UNIX Programmer's Manual TB(4)

NAME
tb - line discipline for digitizing devices

SYNOPSIS
pseudo-device tb

DESCRIPTION
This line discipline provides a polled interface to many common digitizing devices which are
connected to a host through a serial line. When these devices stream data at high speed, the
use of the line discipline is critical in minimizing the number of samples that would otherwise
be lost due to buffer exhaustion in the tty(4) handler.

The line discipline is enabled by a sequence:

#include <sys/tablet.b>
iot Idisc - TBLDISC~ fildes; •••
ioctl(fild~ TIOCSETD, &ldisc); -

A typical application program then polls the digitizing device by reading a binary data struc­
ture which contains: the current X and Y positions (in the device coordinate space), up-down
status of the buttons or pen stylus, proximity information (when available), and a count of the
number of samples received from the input device since it was opened. In addition, devices
such as the GTCO append tilt and pressure informatiop. to the end of the aforementioned
structure. For the Polhemus 3-D digitizer the structure read is completely different. Refer to
the include file for a complete description.

While in tablet mode, normal teletype input and output functions take place. Thus, if an 8
bit output data path is desired, it is necessary to prepare the output line by putting it into
RAW mode using ioct/(2). This must be done before changing the discipline with
TIOCSETO, as most ioctl(2) calls are disabled while intablet line-discipline mode.

The line discipline supports ioct/(2) requests to get/set the operating mode, and to get/set the
tablet type and operating mode by or-ing the two values together.

The line discipline supports digitizing devices which are compatible with Hitachi, GTCO, or
Polhemus protocol formats. For Hitachi there are several formats with that used in the newer
model HOG-Ill I B the most common.

SEE ALSO
tty(4)

DIAGNOSTICS
None.

4.3 Berkeley Distribution J.une 1, 1986 1

TCP(4P) UNIX Programmer's Manual TCP(4P)

NAME
tcp - Internet Transmission Control Protocol

SYNOPSIS
#inc1ude <sys/socket.h>
#inc1ude <netinetlin.h>

5 .. socket(AF _INET. SOCK_STREAM. 0);

DESCRIPTION
The TCP protocol provides reliable, flow-controlled, two-way transmission of data. It is a
byte-stream protocol used to support the SOCK..STREAM abstraction. TCP uses the stan­
dard Internet address format and, in addition, provides a per-host collection of "port
addresses". Thus, each address is composed of an Internet address specifying the host and
network, with a specific TCP port on the host identifying the peer entity.

Sockets utilizing the tcp protocol are either "active" or "passive". Active sockets initiate con­
nections to passive sockets. By default TCP sockets are created active; to create a passive
socket the listen(2) system call must be used after binding the socket with the bind(2) system
call. Only passive sockets may use the accept(2) call to accept incoming connections. Only
active sockets may use the connect(2) call to initiate comiections.

Passive sockets may "underspecify" their location to match incoming connection requests
from multiple networks. This technique, termed "wildcard addressing", allows a single server
to provide service to clients on multiple networks. To create a socket which listens on all net;.
works, the Internet address INADDR_ANY must be bound. The TCP port may still be
specified at this time; if the port is not specified the system will assign one. Once a connec­
tion has been established the socket's address is fixed by the peer entity's location. The

. address assigned the socket is the address associated with the network interface through which
packets are being transmitted and received. Normally this address corresponds to the peer
entity's network.

TCP supports one socket option which is set with setsockopt(2) and tested with getsockopt(2).
Under most circumstances, TCPsends data when it is presented; when outstanding data has
not yet been acknowledged, it gathers small amounts of output to be sent in a single packet
once an acknowledgement is received. For a small number of clients, such as window systems
that send a stream of mouse events which receive no replies, this packetization may cause
significant delays. Therefore, TCP provides a boolean option, TCP _NODELA Y (from
<netinet/tcp.h>, to defeat this algorithm. The option level for the setsockopt call is the proto­
col number for TCP, available from getprotobyname(3N).

Options at the IP transport level may be used with TCP; see ip(4P). Incoming connection
requests that are source-routed are noted, and the reverse source route is used in responding.

DIAGNOSTICS
A socket operation may fail with one of the following errors returned:

[EISCONN] . when trying to establish a connection on a socket which already has
one;

[ENOBUFS] when the system runs out of memory for an internal data structure;

[ETIMEDOUT] when a connection was dropped due to excessive retransmissions;

[ECONNRESET] when the remote peer forces the connection to be closed;

[ECONNREFUSED] when the remote peer actively refuses connection establishment (usually
because no process is listening to the port);

[EADDRINUSE] when an attempt is made to create a socket with a port which has
already been allocated;

4.2 Berkeley Distribution May 16, 1986

TCP(4P) UNIX Programmer's Manual TCP(4P)

[EADDRNOTA VAIL]

SEE AlSO

when an attempt is made to create a socket with a network address for
which no network interface exists.

getsockopt(2), socket(2), intro(4N), inet(4F), ip(4P)

4.2 Berkeley Distribution May 16,1986 2

TM(4) UNIX Programmer's Manual TM(4)

NAME
tm - TM-lI/TE-10 magtape interface

SYNOPSIS
controller tmO at uba? csr 0172520 vector tmintr
tape teO at tmO drive 0

DESCRIPTION
The tm-Illte-lO combination provides a standard tape drive interface as described in mtio(4).
Hardware implementing this on the VAX is typified by the Emulex TC-Il controller operat­
ing with a Kennedy model 9300 tape transport, providing 800 and 1600 bpi operation at 125
ips.

SEE ALSO
mt(l), tar(l), tp(1), mtio(4), ht(4), ts(4), mt(4), ut(4)

DIAGNOSTICS

BUGS

te%d: no write ring. An attempt was made to write on the tape drive when no write ring was
present; this message is written on the terminal of the user who tried to access the tape.

teOfod: not online. An attempt was made to access the tape while it was om.ine; this message is
written on the terminal of the user who tried to access the tape.

teOfod: can't switch density in mid-tape. An attempt was made to write on a tape at a different
density than is already recorded on the tape. This message is written on the terminal of the
user who tried to switch the density.

teo/od: hard error bnOfod er-Ofob. A tape error occurred at block bn; the tm error register is
printed in octal with the bits symbolically decoded. Any error is fatal on non-raw tape; when
possible the driver will have retried the operation which failed several times before reporting
the error.

teOfod: lost interrupt. A tape operation did not complete within a reasonable time, most likely
because the tape was taken off-line during rewind or lost vacuum. The controller should, but
does not, give an interrupt in these cases. The device will be made available again after this
message, but any current open reference to the device will return an error as the operation in
progress aborts.

If any non-data error is encountered on non-raw tape, it refuses to do anything more until
closed.

4th Berkeley Distribution May 15, 1985

TMSCP(4) UNIX Programmer's Manual TMSCP(4)

NAME
tmscp - DEC TMSCP magtape interface

SYNOPSIS
controller tmscpO at uba? csr 0174500 vector tmscpintr
tape tmsO at tmscpO drive 0 ..

DESCRIPTION
Tape controllers compatible with the DEC Tape Mass Storage Control Protocol (TMSCP)
architecture such as the TU81 and the TK50 provide a standard tape drive interface as
described in mtio(4). The controller communicates with the host through a packet oriented
protocol. Consult the file <vax/tmscp.h> for a detailed description of this protocol.

DIAGNOSTICS
tmscp controller failed to init. The controller initialization procedure failed. This probably
indicates a hardware problem.

tmscp%d: sa 00/00, state %d. (Additional status information given after a hard 1/0 error.) The
values of the controller status register and the internal driver state are printed.

tmscp%d: random interrupt ignored. An unexpected interrupt was received (e.g. when no ilo
was pending). The interrupt is ignored.

tmscp%d: interrupt in unknown state %d ignored. An interrupt was received when the driver
was in an unknown internal state. Indicates a hardware problem or a driver bug.

tmscpo/od: fatal error (0%0). The controller detected a "fatal error" in the status returned to
the host. The contents of the status register are displayed.

OFFLINE. (Additional status information given after a hard 1/0 error.) A hard 110 error
occurred because the drive was not on-line.

The following errors are interpretations of TMSCP error messages returned by the controller
to the host. Each is preceded by either tmscp%d: hard error or tmscp%d: soft error.

controller error, event 00/00.

host memory access error, event 0%0, addr 0%0.

tape transfer error, unit %d, grp Ox%x, event 0%0.

STI error, unit %d, event 0%0.

STI Drive Error Log, unit %d, event 0%0 . .
STI Formatter Error Log, unit o/od, event 0%0.

unknown error, unit o/od, format 0%0, event 0%0.

SEE ALSO
mt(l), tar(l), tp(l), mtio(4), tm(4), ts(4), ut(4), dmesg(8)

4.3 Berkeley Distribution June 3, 1986

TS(4) UNIX Programmer's Manual TS(4)

NAME
ts - TS-ll magtape interface

SYNOPSIS
controller zsO at uba? csr 0172520 vector tsintr
tape tsO at zsO drive 0

DESCRIPTION
The ts-ll combination provides a standard tape drive interface as described in mtio(4). The
ts-l1 operates only at 1600 bpi, and only one transport is possible per controller.

SEE ALSO
mt(l), tar(l), tp(1), mtio(4), ht(4), tm(4), mt(4), ut(4)

DIAGNOSTICS

BUGS

ts%d: no write ring. An attempt was made to write on the tape drive when no write ring was
present; this message is written on the terminal of the user who tried to access the tape.

ts%d: not online. An attempt was made to access the tape while it was omine; this message is
written on the terminal of the user who tried to access the tape.

tsOfod: hard error bnOfod xsO ... Ofob. A hard error occurred on the tape at block bn; status register
o is printed in octal and symbolically decoded as bits.

If any non-data error is encountered on non-raw tape, it refuses to do anything more until
dosed.

The device lives at the same address as a tm-ll tm(4); as it is very difficult to get this device
to interrupt, a generic system assumes that a ts is present whenever no tm-ll . exists but the
csr responds and a ts-l1 is configured. This does no harm as long as a non-existent ts-ll is
not accessed.

4th Berkeley Distribution May 15, 1985

TTY(4) UNIX Programmer's Manual TTY(4)

NAME
tty - general terminal interface

SYNOPSIS
#include <sgtty.h>

DESCRIPTION
This section describes both a particular special file Idev/tty and the terminal drivers used for
conversational computing.

Une disciplines.

The system provides different line disciplines for controlling communications lines. In this
version of the system there are two disciplines available for use with terminals:

old The old (Version 7) terminal driver. This is sometimes used when using the stan­
dard shell sh(1).

new The standard Berkeley terminal driver, with features for job control; this must be
used when using esh(l).

Line discipline switching is accomplished with the TIOeSETD ioetl:

int Idisc - LDISC;
.ioctl(f, TIOCSETD, &ldisc);

where LDISe is OTTYDISe for the standard tty driver and NTTYDISe for the "new"
driver. The standard (currently old) tty driver is discipline 0 by convention. Other discip­
lines may exist for special purposes, such as use of communications lines for network connec­
tions. The current line discipline can be obtained with the TIOeGETD ioetl. Pending input
is discarded when the line discipline is ·changed.

All of the low-speed asynchronous communications ports can use any of the available line dis­
ciplines, no matter what hardware is involved. The remainder of this section discusses the
"old" and "new" disciplines.

The control terminal.

When a terminal file is opened, it causes the process to wait until a connection is established.
In practice, user programs seldom open these files; they are opened by getty(8) or rlogind(8C)
and become a user's standard input and output file.

If a process which has no control terminal opens a terminal file, then that terminal file
becomes the control terminal for that process. The control terminal is thereafter inherited by
a child process during a /ork(2), even if the control terminal is closed.

The file Idev/tty is, in each process, a synonym for a control terminal associated with that pro­
cess. It is useful for programs that wish to be sure of writing messages on the terminal no
matter how output has been redirected. It can also be used for programs that demand a file
name for output, when typed output is desired and it is tiresome to find out which terminal is
currently in use.

A process can remove the association it has with its controlling terminal by opening the file
Idev/tty and issuing an

ioctl(f, TIOCNOTIY, 0);

This is often desirable in server processes.

Process groups.

Command processors such as esh(1) can arbitrate the terminal between different jobs by plac­
ing related jobs in a single process group and associating this process group with the terminal.
A terminal's associated process group may be set using the TIOeSPGRP ioctl(2):

4th Berkeley Distribution May 19, 1986 1

TTY(4) UNIX Programmer's Manual TTY (4)

ioctl(ftldes, TIOCSPGRP, &pgrp);

or examined using TIOCGPGRP, which returns the current process group in pgrp. The new
terminal driver aids in this arbitration by restricting access to the terminal by processes which
are not in the current process group; see Job access control below.

Modes.

The terminal drivers have three major modes, characterized by the amount of processing on
the input and output characters:

cooked The normal mode. In this mode lines of input are collected and input editing is
done. The edited line is made available when it is completed by a newline, or
when the cbrke character (normally undefined) or ceofe character (normally an
EOT, control-D, hereafter AD) is entered. A carriage return is usually made
synonymous with newline in this mode, and replaced with a newline whenever it is
typed. All driver functions (input editing, interrupt generation, output processing
such as delay generation and tab expansion, etc.) are available in this mode.

CBREAK This mode eliminates the character, word, and line editing input facilities, making
the input character available to the user program as it is typed. Flow control,
literal-next and interrupt processing are still done in this mode. Output processing
is done.

RAW This mode eliminates all input processing and makes all input characters available
as they are typed; no output processing is done either. .

The style of input processing can also be very different when the terminal is put in non­
blocking I/O mode; see the FNDELA Y flag described in jCntl(2). In this case a read(2) from
the control terminal will never block, but rather return an error indication (EWOULD­
BLOCK) if there is no input available.

A process may also request that a SIGIO signal be sent it whenever input js present and also
whenever output queues fall below the low-water mark. To enable this mode the FASYNC
flag should be set usingfentl(2).

Input editing.

A UNIX terminal ordinarily operates in full-duplex mode. Characters may be typed at any
time, even while output is occurring, and are only lost when the system's character input
buffers become completely choked, which is rare, or when the user has accumulated the max­
imum allowed number of input characters that have not yet been read by some program.
Currently this limit is 256 characters. In RAW mode, the terminal driver throws away all
input and output without notice when the limit is reached. In CBREAK or cooked mode it
refuses to accept any further input and, if in the new line discipline, rings the terminal bell.

Input characters are normally accepted in either even or odd parity with the parity bit being
stripped off before the character is given to the program. By clearing either the EVEN or
ODD bit in the flags word it is possible to have input characters with that parity discarded
(see the Summary below.)

In all of the line disciplines, it is possible to simulate terminal input using the TIOCSTI ioetl,
which takes, as its third argument, the address of a character. The system pretends that this
character was typed on the argument terminal, which must be the control terminal except for
the super-user (this call is not in standard version 7 UNIX).

Input characters are normally echoed by putting them in an output queue as they arrive. This
may be disabled by clearing the ECHO bit in the flags word using the stty(3C) call or the
TIOCSETN or TIOCSETP ioells (see the Summary below).

4th Berkeley Distribution May 19, 1986 2

TTY(4) UNIX Programmer's Manual TTY(4)

In cooked mode, terminal input. is processed in units of lines. A program attempting to read
will normally be suspended until an entire line has been received (but see the description of
SIGTTIN in Job access control and of FIONREAD in Summary, both below.) No matter how
many characters are requested in the read call, at most one line will be returned. It is not,
however, necessary to read a whole line at once; any number of characters may be requested
in a read, even one, without losing information.

During input, line editing is normally done, with the erase character sg_erase (by default,
DELETE) logically erasing the last character typed and the sg_kill character (default, AU:
control-U) logically erasing the entire current input line. These characters never erase beyond
the beginning of the current input line or an eof. These characters may be entered literally by
preceding them with '\ '; the '\ ' will normally be erased when the character is typed.

The drivers normally treat either a carriage return or a newline character as terminating an
input line, replacing the return with a newline and echoing a retum and a line feed. If the
CRMOD bit is cleared in the local mode word then the processing for carriage return is dis­
abled, and it is simply echoed as a return, and does not terminate cooked mode input.

. In the new driver there is a literal-next" character (normally AV) which can be typed in both
cooked and CBREAK. mode preceding any character to prevent its special meaning to the ter­
minal handler. This is to be preferred to the use of '\ ' escaping erase and kill characters, but
'\ • is retained with its old function in the new line discipline.

The new terminal driver also provides two other editing characters in normal mode. The'
word-erase character, normally AW, erases the preceding word,' but not any spaces before it.
For the purposes of·W, a word is defined as a sequence of non-blank characters, with tabs
counted as blanks. Finally. the reprint character, normally AR, retypes the pending input
beginning on a new line. Retyping occurs automatic311y in cooked mode if characters which
would normally be erased from. the screen are fouled by program output.

Input echoin. and redisplay

The terminal driver has several modes (not present in standard UNIX Version 7 systems) for
handling the echoing. of terminal input, controlled by bits in a local mode word.

Hardcopy terminals. When a hardcopy'terminal is in use, the LPRTERA bit is normally set in
the local mode word. Characters which are logically erased are then printed out backwards
preceded by '\' and followed by'" in this mode.

CRT terminals. When a CRT terminal is in use, the LCRTBS bit IS normally set in the local
mode word.' The terminal driver then echoes the proper number of erase characters when
input is erased; in the normal case where the erase character is a AH this causes the cursor of
the terminal to back up to where it was before the logically erased character was typed. If the
input has become fouled due to interspersed asynchronous output, the input is automatically
retyped.

Erasing characters from a CRT. When a CRT terminal is in use, the LCRTERA bit may be
set to cause input to be erased from the screen with a "backspace-space-backspace" sequence
when character or word deleting sequences are used. A LCRTKIL bit may be set as well,
causing the input to be erased in this manner on line kill sequences as well.

Echoing of control characters. If the LCTLECH bit is set in the local state word, then non­
printing (control) characters are normally echoed as AX (for some X) rather than being echoed
unmodified; delete is echoed as '1.

The normal modes for use on CRT terminals are speed dependent. At speeds less than 1200
baud, the LCRTERA and LCRTKILL processing is painfully slow, and stty(1) normally just
sets LCRTBS and LCTLECH; at speeds of 1200 baud or greater all of these bits are normally
set. Stty(1) summarizes these option settings and the use of the new terminal driver as
"newcrt."

4th Berkeley Distribution May 19, 1986 3

TTY(4) UNIX Programmer's Manual TTY(4)

Output processing.

When one or more characters are written, they are actually transmitted to the terminal as
soon as previously-written characters have finished typing. (As noted above, input characters
are normally echoed by putting them in the output queue as they arrive.) When a process pro­
duces characters more rapidly than they can be typed, it will be suspended when its output
queue exceeds some limit. When the queue has drained down to some threshold the program
is resumed. Even parity is normally generated on output. The EOT character is not transmit­
ted in cooked mode to prevent terminals that respond to it from hanging up; programs using
RAW or CBREAK mode should be careful.

The terminal drivers provide necessary processing for cooked and CBREAK. mode output
including delay generation for certain special characters and parity generation. Delays are
available after backspaces AH, form feeds AL, carriage returns AM, tabs AI and newlines AJ. The
driver will also optionally expand tabs into spaces, where the tab stops are assumed to be set
every eight columns, and optionally convert newlines to carriage returns followed _by newline.
These functions are controlled by bits in the tty flags word; see Summary below.

The terminal drivers provide for mapping between upper and lower case on terminals lacking
lower case, and for other special processing on deficient terminals.

Finally, in the new terminal driver, there is a output flush character, normally AO, which sets
the LFLUSHO bit in the local mode word, causing subsequent output to be flushed until it is
cleared by a program or more input is typed. This character has effect in both cooked and
CBREAK modes and causes pending input to be retyped if there is any pending input. An
ioetl to flush the characters in the input or output queues, TIOCFLUSH, is also available.

Upper case terminals and Hazeltines

If the LCASE bit is set in the tty flags, then all upper-case letters are mapped into the
corresponding lower-case letter. The upper-case letter may be generated by preceding it by
'\'. Upper case letters are preceded by a '\' when output. In addition, the. following escape
sequences can be generated on output and accepted on input:

for I {}
use \' \! \A \(\)

To deal with Hazeltine terminals, which do not understand that - has been made into an
ASCII character, the LTILDE bit may be set in the local mode word; in this case the charac­
ter - will be replaced with the 'character' on output.

Flow controL

There are two characters (the stop character, normally AS, and the start character, normally
AQ) which cause output to be suspended and resumed respectively. Extra stop characters
typed when output is already stopped have no effect, unless the start and stop characters are
made the same, in which case output resumes.

A bit in the flags word may be set to put the terminal into TANDEM mode. In this mode the
system produces a stop character (default AS) when the input queue is in danger of
overflowing, and a start character (default AQ) when the input has drained sufficiently. This
mode is useful when the terminal is actually another machine that obeys those conventions.

Line control and breaks.

There are several ioet! calls available to control the state of the terminal line. The
TIOCSBRK ioet! will set the break bit in the hardware interface causing a break condition to
exist; this can be cleared (usually after a delay with sleep(3» by TIOCCBRK. Break condi­
tions in the input are reflected as a null character in RAW mode or as the interrupt character
in cooked or CBREAK mode. The TIOCCDTR ioct! will clear. the data terminal ready condi­
tion; it can be. set again by TIOCSDTR.

4th Berkeley Distribution May 19, 1986 4

TTY(4) UNIX Programmer's Manual TTY(4)

When the carrier signal from the dataset drops (usually because the user has hung up his ter­
minal) a SIGHUP hangup signal is sent to the processes in the distinguished process group of
the terminal; this usually causes them to terminate. The SIGHUP can be suppressed by set­
ting the LNOHANG bit in the local state word of the driver. Access to the terminal by other
processes is then normally revoked, so any-further reads will fail, anq programs that read a
terminal and test for end-of-file on their input will terminate appropriately.

It is possible to ask that the phone line be hung up on the last close with the TIOCHPCL
ioetl; this is normally done on the outgoing lines and dialups.

Interrupt characters.

There are several characters that generate interrupts in cooked and CBREAK mode; all are
sent to the processes in the control group of the terminal, as if a TIOCGPGRP ioetl were
done to get the process group and then a killpg(2) system call were done, except that these
characters also flush pending input ~d output when typed at a terminal (Il' 'fa TIOCFLUSH).
The characters shown here are the defaults; the field names in the structures (given below) are
also shown. The characters may be changed.

"c Lintrc (ETX) generates a SIGINT signal. This is the normal way to stop a process
which is no longer interesting, or to regain control in an interactive program.

A\ Lquite (FS) generates a SIGQUIT signal. This is used to cause a program to ter­
minate and produce a core image, if possible, in the file core in the current directory.

AZ Lsuspc (EM) generates a SIGTSTP signal, which is used to suspend the current pro­
cess group.

Ay Ldsuspc (SUB) generates a SIGTSTP signal as AZ does, but the signal is sent when a .
program attempts to read the ~Y, rather than when it is typed.

Job access controL

When using the new terminal driver, if a process which is not in the distinguished process
group of its control terminal attempts to read from that terminal its process group is sent a
SIGTTIN signal. This signal normally causes the members of that process group to stop. If,
however, the process is ignoring SIGTTIN, has SIGTTIN blocked, or is in the middle of pro­
cess creation using vfork(2», the read will return -1 and set e"no to EIO.

When using the new terminal driver with the L TOSTOP bit set in the local modes, a process
is prohibited from' writing on its control terminal if it is not in the distinguished process
group for that terminal. Processes which are holding or ignoring SIGTTOU signals or which
are in the middle of a vfork(2) are excepted and allowed to produce output. Terminal/window
sizes. In order to accommodate terminals and workstations with variable-sized windows, the
terminal driver provides a mechanism for obtaining and setting the current terminal size.
The driver does not use this information internally, but only stores it and provides a uniform
access mechanism. When the size is changed, a SIGWINCH signal is sent to the terminal's
process group so that knowledgeable programs may detect size changes. This facility was
added in 4.3BSO and is not available in earlier versions of the system.

Summary of modes.

Unfortunately, due to the evolution of the terminal driver, there are 4 different structures
which contain various portions of the driver data. The first of these (sgttyb) contains that
part of the information largely common between version 6 and version 7 UNIX systems. The
second contains additional control characters added in version 7. The third is a word of local
state added in 4BSD, and the fourth is another structure of special characters added for the
new driver. In the future a single structure may be made available to programs which need to
access all this information; most programs need not concern themselves with all this state.

4th Berkeley Distribution May 19, 1986 5

TTY (4) UNIX Programmer's Manual

Basic modes: sgtty.

The basic ioctls use the structure defined in <sgtty.h>:

struct sgttyb {

};

char sll-ispeeci;
char Sll-ospeed;
char
char
short

sll-erase;
sll-kill;
Sll-flags;

TTY(4)

The sg_ispeed and sg_ospeed fields describe the input and output speeds of the device accord­
ing to the following table, which corresponds to the DEC DH-Il interface. If other hardware
is used, impossible speed changes are ignored. Symbolic values in the table are as defined in
<sgtty.h>.

BO 0
B50 I
B75 2
Bll0 3
BI34 4
BI50 5
B200 6
B300 7
B600 8
BI200 9
B1800 10
B2400 II
B4800 12
B9600 13
EXTA 14
EXTB 15

(hang up dataphone)
50 baud
75 baud
110 baud
134.5 baud
150 baud
200 baud
300 baud
600 baud
1200 baud
1800 baud
2400 baud
4800 baud
9600 baud
External A
External B

Code conversion and line control required for IBM 2741 's (134;-5 baud) must be implemented
by the user's program. The half-duplex line discipline required for the 202 dataset (1200
baud) is not supplied; full-duplex 212 datasets work fine.

The sg_erase and sg_kill fields of the argUment structure specify the erase and kill characters
respectively. (Defaults are DELETE and AU.)

The sgJ/ags field of the argument structure contains several bits that determine the system's
treatment of the terminal:

ALLDELA Y 0177400 Delay algorithm selection
BSDELAY 0100000 Select backspace delays (not implemented):
BSO 0
BSI 0100000
VTDELA Y 0040000 Select form-feed and vertical-tab delays:
FFO 0
FFI 0040000
CRDELA Y 0030000 Select carriage-return delays:
CRO 0
CRI 0010000
CR2 0020000
CR3 0030000
TBDELAY 0006000 Select tab delays:
TABO 0

4th Berkeley Distribution May 19, 1986 6

TTY(4) UNIX Programmer's Manual TTY(4)

TAB 1
TAB2
XTABS
NLDELAY
NLO
NLI
NU
NL3
EVENP
ODDP
RAW
CRMOD
ECHO
LCASE
CBREAK
TANDEM

0002000
0004000
0006000
0001400 Select new-line delays:
o
0000400
0001000
0001400
0000200 Even parity allowed on input
0000100 Odd parity allowed on input
0000040 Raw mode: wake up on all characters, 8-bit interface
0000020 Map CR into LF; output LF as CR-LF
00000 1 0 Echo (full duplex)
0000004 Map upper case to lower on input and lower to upper on output
0000002 Return each character as soon as typed
000000 1 Automatic Bow control .

The delay bits specify how long transmission stops to allow for mechanical or other move­
ment when certain characters are sent to the terminal. In all cases a value of 0 indicates no
delay.

Backspace delays are currently ignored but might be used for Terminet 300's.

If a form-feed/vertical tab delay is specified, it lasts for about 2 seconds.

Carriage-return delay type 1 lasts about .08 seconds and is suitable for the Terminet 300.
Delay type 2 lasts about .16 seconds and is suitable for the VTOS and the TI 700. Delay type
3 is suitable for the concept-l00 and pads lines to be at least 9 characters at 9600 baud.

New-line delay type 1 is dependent on the'current column and is tuned for Teletype model
37's. Type 2 is useful for the VTOS and is about.l0 seconds. Type 3 is unimplemented and
is O.

Tab delay type 1 is dependent on the amount of movement and is tuned to the Teletype
model 37. Type 3, called XTABS, is not a delay at all but causes tabs to be replaced by the
appropriate number of spaces on output.

The Bags for even and odd parity control parity checking on input and generation on output
in cooked and CBREAK mode (unless LPASS8 is enabled, see below). Even panty is gen­
erated on output unless ODDP is set and EVENP is clear, in which case odd parity is gen­
erated. Input characters with the wrong parity, as determined by EVENP and ODDP, are
ignored in cooked and CBREAK mode.

RAW disables all processing save output Bushing with LFLUSHO; full 8 bits of input are
given as soon as it is available; all 8 bits are passed on output. A break condition in the input
is reported as a null character. If the input queue overfiows in raw mode all data in the input
and output queues are discarded; this applies to both new and old drivers.

CRMOD causes input carriage returns to be turned into new-lines, and output and echoed
new-lines to be output as a carriage return followed by a line feed.

CBREAK is a sort of half-cooked (rare?) mode. Programs can read each character as soon as
typed, instead of waiting for a full line; all processing is done except the input editing: charac­
ter and word erase and line kill, input reprint, and the special treatment of \ and EOT are
disabled.

TANDEM mode causes the system to produce a stop character (default AS) whenever the
input queue is in danger of overfiowing, and a start character (default AQ) when the input
queue has drained sufficiently. It is useful for Bow control when the 'terminal' is really
another computer which understands the conventions.

4th Berkeley Distribution May 19, 1986 7

TTY(4) UNIX Programmer's Manual TTY(4)

Note: The same "stop" and "start" characters are used for both directions of flow control; the
estopc character is accepted on input as the character that stops output and is produced on
output as the character to stop input, and the estartc character is accepted on input as the
character that restarts output and is produced on output as the character to restart input.

Basic ioctls

A large number of ioctl(2) calls apply to terminals. Some have the general form:

#ioclude <sgtty.h>

ioctl(filde~ code, arg)
struet sgttyb .arg;

The applicable codes are:

TIOCGETP Fetch the basic parameters associated with the terminal, and store in the
pointed-to sgttyb structure.

TIOCSETP Set the parameters according to the pointed-to sgttyb structure. The interface
delays until output is quiescent, then throws away any unread characters,
before changing the modes.

TIOCSETN Set the parameters like TIOCSETP but do not delay or flush input. Input is
not preserved, however, when changing to or from RAW.

With the following codes arg is ignored.

TIOCEXCL Set "exclusive-use" mode: no further opens are permitted until the file has
been closed.

TIOCNXCL Tum off "exclusive-use" mode.

TIOCHPCL When the file is closed for the last time, hang up the terminal. This is useful
when the line is associated with an ACU used to place outgoing calls.

With the following codes arg is a pointer to an iot.

TIOCGETD arg is a pointer to an iot into which is placed the current line discipline
number.

TIOCSETD arg is a pointer to an iot whose value becomes the current line discipline
number.

TIOCFLUSH If the iot pointed to by arg has a zero value, all characters waiting in input or
output queues are flushed. Otherwise, the value of the iot is for the FREAD
and FWRITE bits defined in <sys/file.h>; if the FREAD bit is set, all charac­
ters waiting in input queues are flushed, and if the FWRITE bit is set, all
characters waiting in output queues are flushed.

The remaining calls are not available in vanilla version 7 UNIX. In cases where arguments
are required, they are described; arg should otherwise be given as O.

TIOCSTI the argument points to a character which the system pretends had been typed
on the terminal.

TIOCSBRK the break bit is set in the terminal.

TIOCCBRK the break bit is cleared.

TIOCSDTR data terminal ready is set.

TIOCCDTR data terminal ready is cleared.

TIOCSTOP output is stopped as if the "stop" character had been typed.

TIOCSTART output is restarted as if the "start" character had been typed.

4th Berkeley Distribution May 19, 1986 8

TTY(4) UNIX Programmer's Manual TTY(4)

TIOCGPGRP arg is a pointer to an iot into which is placed the process group ID of the
process group for which this terminal is the control terminal.

TIOCSPGRP arg is a pointer to an int which is the value to which the process group ID for
this terminal will be set.

TIOCOUTQ returns in the iot pointed to by arg the number of characters queued for out­
put to the terminal.

FIONREAD returns in the iot pointed to by arg the number of characters immediately
readable from the argument descriptor. This works for files, pipes, and termi­
nals.

Tchars

The second structure associated with each terminal specifies characters that are special in both
the old and new terminal interfaces: The following structure is defined in <syslioctl.h>, which
is automatically included in <sgtty.h>:

struct tchan {
char
char
char
char
char
char

};

Liotrc;
Lquitc;
Lstartc;
Lstopc;
LeofC;
Lbrkc;

I. interrupt .1
I. quit .1
I. start output .1
I. stop output .1
I. end-of-file .1
I. input delimiter (like nl) .1

The default values for these characters are AC, A\, AQ, AS, AD, and -1. A character value of .. 1
eliminates the effect of that character. The Cbrkc character, by default -1, acts like a new­
line in that it terminates a 'line,' is echoed, and is passed to the program. The 'stop' and
'start' characters may be the same, to produce a toggle effect. It is probably counterproduc­
tive to make other special characters (including erase and kill) identical. The applicable ioetl
calls are:

TIOCGETC Get the special characters and put them in the specified structure.

TIOCSETC Set the special characters to those given in the structure.

Local mode

The third structure associated with each terminal is a local mode word. The bits of the local
mode word are:

LCRTBS
LPRTERA
LCRTERA
LTILDE
LMDMBUF
LLITOUT
LTOSTOP
LFLUSHO
LNOHANG
LETXACK
LCRTKIL
LPASS8
LCTLECH
LPENDIN
LDECCTQ
LNOFLSH

000001 Backspace on erase rather than echoing erase
000002 Printing terminal erase mode
000004 Erase character echoes as backspace-space-backspace
000010 Convert - to' on output (for Hazeltine terminals)
000020 Stop/start output when carrier drops
000040 Suppress output translations
000100 Send SIGTTOU for background output
000200 Output is being flushed
000400 Don't send hangup when carrier drops
001000 Diablo style buffer hacking (unimplemented)
002000 BS-space-BS erase entire line on line kill
004000 Pass all 8 bits through on input, in any-mode
010000 Echo input control chars as AX, delete as "?
020000 Retype pending input at next read or input character
040000 Only AQ restarts output after AS, like DEC systems
100000 Inhibit flushing of pending 110 when an interrupt character is typed.

4th Berkeley Distribution May 19, 1986 9

TTY(4) UNIX Programmer's Manual TTY(4)

The applicable ioctl functions are:

TIOCLBIS arg is a pointer to an int whose value is a mask containing the bits to be set
in the local mode word.

TIOCLBIC arg ,is a pointer to an int whose value is a mask containing the bits to be
cleared in the local mode word.

TIOCLSET arg is a pointer to an int whose value is stored in the local mode word.

. TIOCLGET arg is a pointer to an int into which the current local mode word is placed.

Local special chars

The final control structure associated with each terminal is the Itchars structure which defines
control characters for the new terminal driver. Its structure is:

struct ltchars {

};

char Csuspc;
char Cdsuspc;
char Crpmte;
char Cflushe;
char C werase;
char Clnexte;

/. stop process signal .1
/. delayed stop process signal .1
/. reprint line ./
/. flush output (toggles) .1
I. word erase ./
I. literal next character ./

The default values for these characters are 4Z, 4Y, 4R, 40, 4W, and 4V. A value of -1 disables
the character.

The applicable ioctl functions are:

TIOCSLTC arg is a pointer to an Itchars structure which defines the new local special charac­
ters.

TIOCGL TC arg is a pointer to an Itchars structure into which is placed the current set of
local special characters. '

Window/terminal sizes

Each terminal has provision for storage of the current terminal or window size in a winsize
structure, with format:

struct winsize {
unsigned short
unsigned short
unsigned short
unsigned short

};

ws_row;
ws_col;
ws_xpixel;
ws_ypixel;

I. rows, in characters .1
I. columns, in characters .1
I. horizontal size, pixels ./
/. vertical size, pixels ./

A value of 0 in any field is interpreted as "undefined;" the entire structure is zeroed on final
close.

The applicable ioctl functions are:

TIOCGWINSZ
arg is a pointer to a struct winsize into which will be placed the current terminal or
window size information.

TIOCSWINSZ
arg is a pointer to a struct winsize which will be used to set the current terminal or
window size information. If the new information is different than the old informa­
tion, a SIGWINCH signal will be sent to the terminal's process group.

4th Berkeley Distribution May 19, 1986 10

TIY(4)

FILES
Idev/tty
Idev/tty*
idev/console

SEE ALSO

UNIX Programmer's Manual

csh(l), stty(l), tset(l), ioct1(2), sigvec(2), stty(3C), getty(8)

4th Berkeley Distribution May 19, 1986

TIY(4)

11

TU(4) UNIX Programmer's Manual TU(4)

NAME
tu ~ VAX-111730 and VAX-111750 TU58 console cassette interface

SYNOPSIS
options MRSP (for VAX-111750's with an MRSP prom)

DESCRIPTION

FILES

The lu interface provides access to the VAX 111730 and 111750 TU58 console cassette
drive(s).

The interface supports only block i/o to the TU58 cassettes. The devices are normally mani­
pulated with the arff(8V) program using the "r' and "m" options.

The device driver is automatically included when a system is configured to run on an 111730
or 111750.

The TU58 on an 111750 uses the Radial Serial Protocol (RSP) to communicate with the cpu
over a serial line. This protocol is inherently unreliable as it has no flow control measures
built in. On an 111730 the Modified Radial Serial Protocol is used. This protocol incor­
porates flow control measures which insure reliable data transfer between the cpu and the
device. Certain 111750's have been modified to use the MRSP prom used in the 111730. To
reliably use the console TU58 on an 111750 under UNIX, the MRSP prom is required. For
those 111750's without an MRSP prom, an unreliable but often useable interface has been
developed. This interface uses an assembly language "pseudo-dma" routine to minimize the
receiver interrupt service latency. To include this code in the system, the configuration must
not specify the system will run on an 11/730 or use an MRSP prom. This unfortunately
makes it impossible to configure a single system which will properly handle TU58's on both
an 111750 and an 111730 (unless both machines have MRSP proms).

Idev/tuO
Idev/tul (only on a VAX-111730)

SEE ALSO
arff(8V)

DIAGNOSTICS ,

BUGS

tu%d: no bp, active %d. A transmission complete interrupt was received with no outstanding
i/o request. This indicates a hardware problem.

tu%d protocol error, state=%s, op=%x, cnt=%d, block=%d. The driver entered an illegal
state. The information printed indicates the illegal state, operation currently being executed,
the i/o count, and the block number on the cassette.

tu%d receive state error, state=O!os, byte == %x. The driver entered an illegal state in the
receiver finite state machine. The state is shown along with the control byte of the received
packet.

tu%d: read stalled. A timer watching the controller detected no interrupt for an extended
period while an operation was outstanding. This usually indicates that one or more receiver
interrupts were lost and the transfer is restarted (111750 only).

tu%d: hard error bn%d, pk_mod %0. The device returned a status code indicating a hard
error. The actual error code is shown in octal. No retries are attempted by the driver.

The V AX-111750 console interface without MRSP prom is unuseable while the system is
multi-user, it should be used only with the system running single-user and, even then, with
caution.

4th Berkeley Distribution May 15, 1985

UDA(4) UNIX Programmer's Manual UDA(4)

NAME
uda - UDA-50 disk controller interface

SYNOPSIS
controller udaO at ubaO csr 0172150 vector udintr
disk raO at udaO drive 0

DESCRIPTION
This is a driver for the DEC UDA-50 disk controller and for other compatible controllers.
The UDA-50 communicates with the host through a packet oriented protocol termed the
Mass Storage Control Protocol (MSCP). Consult the file <vaxlmscp.h> for a detailed descrip­
tion of this protocol.

Files with minor device numbers 0 through 7 refer to various portions of drive 0; minor dev­
ices 8 through 15 refer to drive 1. etc. The standard device names begin with "ra" followed
by the drive number and then a letter a-h for partitions 0-7 respectively. The character?
stands here for a drive number in the range 0-7.

The block files access the disk via the system's normal buffering mechanism and may be read
and written without regard to' physical disk records. There is also a 'raw' interface which pro­
vides . for direct transmission between the disk and the user's read or write buffer. A single
read or write call results in exactly one 1/0 operation and therefore raw 1/0 is considerably
more 'efficient when many words are transmitted. The names of the raw files conventionally
begin with an extra 'r.'

In raw 1/0 counts should be a multiple of 512 bytes (a disk sector). Likewise seek calls
should specify a multiple of 512 bytes.

DISK SUPPORT
This driver configures th~ drive type of each drive when it is first opened. A partition table in
the driver is required for each type of disk. The origin and size (in sectors) of the pseudo­
disks on each drive are shown below. Not all partitions begin on cylinder boundaries, as on
other drives, because previous drivers used one partition table for all drive types. Variants of
the partition tables are com~on; check the driver and the file letcldisktab(disktab(5» for
other possibilities.

RC25 partitions
disk
ra?a
ra?b
ra?c
ra?g

RD52 partitions
disk
ra?a
ra?b
ra?c
ra?g

RD53 partitions
disk
ra?a
ra?b
ra?c
ra?g
ra?h

RA60 partitions
disk
ra?a

4th Berkeley Distribution

start
o
15884
o
25916

start
0
15884
0
25650

start
0
15884
0
49324
15884

start
0

length
15884
10032
50902
24986

length
15884
9766
60480
34830

length
15884
33440
138672
89348
122788

length
15884

May 16, 1986 1

UDA(4) UNIX Programmer's Manual UDA(4)

FILES

ra?b
ra?c
ra?d
ra?e
ra?f
ra?g
ra?h

RA80 partitions
disk
ra?a
ra?b
ra?c
ra?e
ra?f
ra?g
ra?h

RA81 partitions

15884
0
49324
131404
49324
242606
49324

start
0
15884
0
49324
49324
49910
131404

33440
400176
82080
268772
350852
157570
193282

length
15884
33440
242606
193282
82080
192696
111202

disk start length
ra?a 0 15884
ra?b 16422 66880
ra?c 0 891072
ra?d 375564 15884
ra?e 391986 307200
ra?f 699720 191352
ra?g 375564 515508
ra?h 83538 291346

same as 4.2BSD ra?g
same as 4.2BSD ra?h

same as old Berkeley ra?g
same as 4.2BSD ra?g

same as 4.2BSD

RA81 partitions witli 4.2BSD-compatible partitions
disk start length
ra?a 0 15884
ra?b 16422 66880
ra?c 0 891072
ra?d 49324 82080
ra?e 131404 759668
ra?f 412490 478582
ra?g 375564 515508
ra?h 83538 291346

same as 4.2BSD ra?g
same as 4.2BSD ra?h
same as 4.2BSD ra?f

The ra?a. partition is normally used for the root file system, the ra?b partition as a paging
area, and the ra?c partition for pack-pack copying (it maps the entire disk).

/dev/ra[0-9][a-f]
/dev/rra[0-9][a-f]

DIAGNOSTICS
uda: ubinfo %x. (VAX 111750 only.) When allocating UNIBUS resources, the driver found it
already had resources prevIously allocated. This indicates a bug in the driver.

udasa %0, state %d. (Additional status information given after a hard i/o error.) The values
of the UDA-50 status register and the internal driver state are printed.

uda%d: random interrupt ignored. An unexpected interrupt was received (e.g. when no i/o was
pending). The interrupt is ignored.

4th Berkeley Distribution May 16, 1986 2

UDA(4) UNIX Programmer's Manual UDA(4)

BUGS

uda%d: interrupt in unknown state o/od ignored. An interrupt was received when the driver was
in an unknown internal state. Indicates a hardware problem or a driver bug.

uda%d: fatal error (0/00). The UDA-50 indicated a "fatal error" in the status returned to the
host. The contents of the status register are displayed.

OFFLINE. (Additional status information given after a hard i/o error.) A hard i/o error
occurred because the drive was not on-line.

status %0. (Additional status information given after a hard i/o error.) The status information
returned from the UDA·50 is tacked onto the end of the hard error message printed on the
console.

uda: unknown packet. An MSCP packet of unknown type was received from the UDA-50.
Check the cabling to the cont!oller.

The following errors are interpretations of MSCP error messages returned by the UDA-50 to
the host.

uda%d: %s error, controller error, event 00/00.

uda%d: %s error, host memory access error, event 0%0, addr 00/00.

uda%d: %s error, disk transfer error, unit %d.

uda%d: %s error, SDI error, unit %d, event 00/00.

uda%d: %s error, small disk error, unit %d, event 0%0, cyl %d.

uda%d: %s error, unknown error, unit %d, format 0%0, event 0%0.

The partition tables attempt to combine compatibility with previous drivers and functionality;
this is impossible. The best solution would be to read the partition tables off the drive.

4th Berkeley Distribution May 16, 1986 3

UDP(4P) UNIX Programmer's Manual UDP(4P)

NAME
udp - Internet User Datagram Protocol

SYNOPSIS
#inc:lude <sys/socket.h>
#inc:lude <netinetlin.h>

s - socket(AF _INET, SOCK_DGRAM, 0);

DESCRIPTION
UDP is a simple, unreliable datagram protocol which is used to support the SOCK_DGRAM
abstraction for the Internet protocol family. UDP sockets are connectionless, and are nor­
mally used with the sendto and recvfrom calls, though the connect(2) call may also be used to
fix the destination for future packets (in which case the recv(2) or read(2) and send(2) or
write(2) system calls may be used).

UDP address formats are identical to those used by TCP. In particular UDP provides a port
identifier in addition to the normal Internet address format. Note that the UDP port space is
separate from the TCP port space (Le. a UDP .port may not be "connected" to a TCP port).
In addition broadcast packets may be sent (assuming the underlying network supports this) by
using a reserved "broadcast· address"; this address is network interface dependent.

Options at the IP transport level may be used with UDP; see ip(4P).

DIAGNOSTICS
A socket operation may fail with one of the following errors returned:

[EISCONN] when trying to establish a connection on a socket which already has one, or
when trying to send a datagram with the destination address specified and the
socket is already connected;

[ENOTCONN] when trying to send a datagram, but no destination address is specified, and
the socket hasn't been connected;

[ENOBUFS] when the system runs out of memory for an internal data structure;

[EADDRINUSE]
when an attempt is made to create a socket with a port which has already
been allocated;

[EADDRNOTAVAIL]
when an attempt is made to create a socket with a network address for which
no network interface exists.

SEE AlSO
getsockopt(2), recv(2), send(2), socket(2), intro(4N), inet(4f), ip(4P)

4.2 Berkeley Distribution May 16, 1986 1

UP(4) UNIX Programmer's Manual UP(4)

NAME
up - unibus storage module controller/drives

SYNOPSIS
controller scO at uba? esr 0176700 vector upintr
disk upO at scO drive 0

DESCRIPTION
This is a generic UNIBUS storage module disk driver. It is specifically designed to work with
the Emulex SC-21 and SC-31 controllers. It can be easily adapted to other controllers
(although bootstrapping will not necessarily be directly possible.)

Files with minor device numbers 0 through 7 refer to various portions of drive 0; minor dev­
ices 8 through 15 refer to drive I, etc. The standard device names begin with "up" followed
by the drive number and then a letter a-h for partitions 0-7 respectively. The character?
stands here for a drive number in the range 0-7.

The block files access the disk via the system's normal buffering mechanism and may be read
and written without regard to physical disk records. There is also a 'raw' interface which pro­
vides for direct transmission between the disk and the user's read or write buffer. A single
read or write call results in exactly one 1/0 operation and therefore raw 1/0 is considerably
more efficient wben many words are transmitted. The names of the raw files conventionally
begin with an extra 'r.'

In raw 110 counts should be a multiple of 512 bytes (a disk sector). Likewise seek calls
should specify a multiple of 512 bytes.

DISK SUPPORT
The driver interrogates the controller's bolding register to determine the type of drive
attached. The driver recognizes seven different drives: CDC 9762, CDC 9766, AMPEX
DM980, AMPEX 9300, AMPEX Capricorn, FUJITSU 160, and FUJITSU Eagle (the Eagle is
not supported by the SC-21). The origin and size of the pseudo-disks on each drive are as fol­
lows:

CDC 9762 partitions
disk start
hp?a 0
hp?b 16000
hp?c 0
hp?d 49600
hp?e 65440
hp?f 121440
hp?g 49600

length
15884
33440
131680
15884
55936
10080
82080

CDC 9766 300M drive partitions:
disk start length
up?a 0 15884
up?b 16416 33440
up?c 0 500384
up?d 341696 15884
up?e 358112 55936
up?f 414048 861760
up?g 341696 158528
up?h 49856 291346

AMPEX DM980 partitions
disk start length
hp?a 0 15884
bp?b 16000 33440

4th Berkeley Distribution

cyls
0-99
100-309
0-822
309-408
409·758
759-822
309-822

cyl
0-26
27-81
0-822
562-588
589-680
681-822
562-822
82-561

cyls
0-99
100-309

May 16, 1986 1

UP(4) UNIX Programmer's Manual

hp?c
hp?d
hp?e
hp?f
hp?g

o
49600
65440
121440
49600

131680
15884
55936
10080
82080

AMPEX 9300 300M drive partitions:

0-822
309-408
409-758
759-822
309-822

disk start length cyl
up?a 0 15884 0-26
up?b 16416 33440 27-81
up?c 0 495520 0-814
up?d 341696 15884 562-588
up?e 358112 55936 589-680
up?f 414048 81312 681-814
up?g 341696 153664 562-814
up?h 49856 291346 82-561

AMPEX Capricorn 330M drive partitions:
disk start length cyl
hp?a 0 15884 0-31
hp?b 16384 33440 32-97
hp?c 0 524288 0-1023
hp?d 342016 15884 668-699
hp?e 358400 55936 700-809
hp?f 414720 109408 810-1023
hp?g 342016 182112 668-1023
hp?h 50176 291346 98-667

FUJITSU 160M drive partitions:
disk start length
up?a 0 15884
upTh 16000 33440
up?c 0 263360
up?d 49600 15884
up?e 65600 55936
up?f 121600 141600
up?g 49600 213600

FUJITSU Eagle partitions
disk start·
hp?a 0
hp?b 16320
hp?c 0
hp?d 375360
hp?e 391680
hp?f 698880
hp?g 375360
hp?h 83520

length
15884
66880
808320
15884
55936
109248
432768
291346

cyl
0-49
50-154
0-822
155-204
205-379
380-822
155-822

cyls
0-16
17-86
0-841
391-407
408-727
728-841
391-841
87-390

UP(4)

It is unwise for all of these files to be present in one installation, since there is overlap in
addresses and protection becomes a sticky matter. The up?a partition is normally used for
the root file system, the up?b partition as a paging area, and the up?c partition for pack-pack
copying (it maps the entire disk). On 160M drives the up?g partition maps the rest of the
pack. On other drives both up?g and up?h are used to map the remaining cylinders.

4th Berkeley Distribution May 16, 1986 2

UP(4)

FILES
/dev/up[0-7][a-h]
/dev/rup[0-7][a-h]

UNIX Programmer's Manual

block files
raw files

UP(4)

SEE ALSO
hk(4), hp(4), uda(4)

DIAGNOSTICS

BUGS

up%d%c: hard error sn%d csl=%b erl-%b erl-%b. An unrecoverable error occurred during
transfer of the specified sector in the specified disk partition. The contents of the cs2, er 1 and
er2 registers are printed in octal and symbolically with bits decoded. The error was either
unrecoverable, or a large number of retry attempts (including offset positioning and drive
recalibration) could not recover the error.

up%d: write locked. The write protect switch was set on the drive when a write was
attempted. The write operation is not recoverable.

up%d: not ready. The drive was spun down or off line when it was accessed. The i/o opera­
tion is not recoverable.

up%d: not ready (flakey). The drive was not ready, but after printing the message about being
not ready (which takes a fraction of a second) was ready. The operation is recovered if no
further errors. occur.

up%d%c: soft ece sn%d. A recoverable ECC error occurred on the specified sector of the
specified disk partition. This happens normally a few times a week. If it happens more fre­
quently than this the sectors where the errors are occurring should be checked to see if certain
cylinders on the pack, spots on the carriage of the drive or heads are indicated.

sc%d: lost interrupt. A timer watching the controller detecting no interrupt for an extended
period while an operation was outstanding. This indicates a hardware-or software failure.
There is currently a hardware/software problem with spinning down drives while they are
being accessed which causes this error to occur. The error causes a UNIBUS reset, and retry
of the pending operations. If the controller continues· to lose interrupts, this error will recur a
few seconds later.

In raw 110 read and write(2) truncate file offsets to 512-byte block boundaries, and write
scribbles on the tail of incomplete blockS. Thus, in programs that are likely to access raw
devices, read. write and Iseek(2) should always deal in 512-byte multiples.

A program to analyze the logged error information (even in its present reduced form) is
needed.

The partition tables for the file systems should be read off of each pack, as they are never
quite what any single installation would prefer, and this would make packs more portable.

4th Berkeley Distribution May 16, 19~6 3

UT(4) UNIX Programmer's Manual UT(4)

NAME
ut - UNIBUS TU45 tri-density tape drive interface

SYNOPSIS
controller u10 at ubaO csr 0172440 vector urintr
tape tjO at u10 drive 0

DESCRIPTION
The ut interface provides access to a standard tape drive interface as describe in mtio(4).
Hardware implementing this on the VAX is typified by the System Industries SI 9700 tape
subsystem. Tapes may be read or written at 800, 1600, and 6250 bpi.

SEE ALSO
mt(1), mtio(4)

DIAGNOSTICS .

BUGS

tj%d: no write riol. An attempt was made to write on the tape drive when no write ring was
present; this message is written on the terminal of the user who tried to access the tape.

tj%d: not online. An attempt was made to access the tape while it was omine; this message is
written on the terminal of the user who tried to access the tape.

tj%d: can't cbange density in mid-tape. An attempt was made to write on a tape at a different
density than is already recorded on the tape. This message is written on the terminal of the
user who tried to switch the density.

ut%d: soft error bn%d csl=%b er=%b cs2-%b ds-%b. The formatter indicated a corrected'
error at a density other than 800bpi. The data transferred is assumed to be correct.

ut%d: bard error bnlYod cs1=%b er=%b cs2=%b ds=%b. A tape error occurred at block bn.
Any error is fatal on nOD-raw tape; when possible the driver will have retried the operation
which failed several times before reporting the error.

tj%d: lost interrupt. A tape operation did not complete within a reasonable time, most likely
because the tape was taken off-line during rewind or lost vacuum. The controller should, but
does not, give an interrupt in these cases. The device will be made available again after this
message, but any current open reference to the device will return an error as the operation in
progress aborts.

If any non-data error is encountered on non-raw tape, it refuses to do anything more until
closed.

4.2 Berkeley Distribution May 15, 1985

UU(4) UNIX Programmer's Manual UU(4)

NAME
uu - TUS8/DECtape II UNIBUS cassette interface

SYNOPSIS
options UUDMA
device uuO at ubaO csr 0176500 vector uurintr uuxintr

DESCRIPTION

NOTES

The uu device provides access to dual DEC TUS8 tape cartridge drives connected to the
UNIBUS via a DLlI-W interface module.

The interface supports only block ito to the TUS8 cassettes. The drives are normally manipu­
lated with the arJf(8V) program using the "m" and ur' options.

The driver provides for an optional write and verify (read after write) mode that is activated
by specifying the "a" device.

The TUS8 is treated as a single device by the system even though it has two separate drives,
"uuO" and "uul". If there is more than one russ unit on a system, the extra drives are
named "uu2", "uu3" etc. .

Assembly language code to assist the driver in handling the receipt of data (using a pseudo­
dma approach) should be included when using this driver, specify "options UUDMA" in the
configuration file.

ERRORS

FILES

The following errors may be returned:

[ENXIO] Nonexistent drive (on open); offset is too large or bad (undefined) ioctl code.

[EIO] Open failed, the device could not be reset.

[EBUSY] Drive in use.

Idev/uu?
Idev/uu?a'

SEE ALSO
- tu(4), arff(8V)

DIAGNOSTICS
uu%d: no bp, active %d. A transmission complete interrupt was received with no outstanding
ito request. This indicates a hardware problem.

uu%d protocol error, state.%!, op-%x, cnt-%d, bloc:k-Ofed. The driver entered an illegal
state. The information printed indicates the illegal state, the operation currently being exe­
cuted, the ito count, and the block number on the cassette.

uu%d: break received, transfer restarted. The TUS8 was sending a continuous break signal
and had to be reset. This may indicate a hardware problem, but the driver will attempt to
recover from the error.

uu%d receive state error, state = %s, byte==%x. The driver entered an illegal state in the
receiver finite state machine. The state is shown along with the control byte of the received
packet.

uu%d: read stalled. A timer watching the controller detected no interrupt for an extended
period while an operation was outstanding. This usually indicates that one or more receiver
interrupts were .lost and the transfer is restarted.

uu%d: hard error bn~ pk_mod 0/00. The device returned a status code indicating a hard
error. The actual error code is shown in octal. No retries are attempted by the driver.

4.2 Berkeley Distribution May 15, 1985

VA(4) UNIX Programmer's Manual VA(4)

NAME
va - Benson-Varian interface

SYNOPSIS
controller vaO at ubaO csr 0164000 vector vaintr
disk vzO at vaO drive 0

DESCRIPfION

FILES

(NOTE: the configuration description, while counter-intuitive, is actually as shown above.)

The Benson-Varian printer/plotter in normally used with the line printer system. This
description is designed for those who wish to drive the Benson-Varian directly.

In print mode, the Benson-Varian uses a modified ASCII character set. Most control charac­
ters print various non-ASCII graphics such as daggers, sigmas, copyright symbols, etc. Only
LF and FF are used as format effectors. LF Ilcts as a newline, advancing to the beginning of
the next line, and FF advances to the top of the next page.

In plot mode, the Benson-Varian prints one raster line at a time. An entire raster line of bits
(2112 bits == 264 bytes) is sent, and then the Benson-Varian advances to the next raster line.

Note: The Benson-Varian must be sent an even number of bytes. If an odd number is sent,
the last byte will be lost. Nulls can be used in print mode to pad to an even number of bytes.

To use the Benson-Varian yourself, you must realize that you cannot open the device,
/dev/vaO if there is a daemon active. You can see if there is an active daemon by doing a
/pq(l) and seeing if there are any files being printed. Printing should betumed . off using
/pc(8). .

To set the Benson-Varian into plot mode include the file <sys/vcmd.h> and use the following
ioctl(2) call

ioctl(fileno(va), VSETSTATE, plotmd);

where p/otmd is defined to be

int plotmd[]= { VPLOT, 0, 0 };

and va is the result of a call to jopen on stdio. When you finish using the Benson-Varian in
plot mode you should advance to a new page by sending it a FF after putting it back into
print mode, i.e. by

int prtmd(] = { VPRINT, 0, 0 };

ftlush(va);
ioctl(fileno(va), VSETSTATE, prtmd);
write(fileno(va), "\t\0", 2);

/dev/vaO

SEE ALSO
vfont(5), lpr(1), Ipd(8), vp(4)

DIAGNOSTICS
The following error numbers are significant at the time tile device is opened.

[ENXIO] The device is already in use.

[EIO] The device is offline.

The following message may be printed on the console.

va%d: npr timeout. The device was not able to get data from the UNIBUS within the timeout
period, most likely because some other device was hogging the bus. (But see BUGS below).

4th Berkeley Distribution May 14, 1986

VA(4)

. BUGS

UNIX Programmer's Manual VA(4)

The 1 's (one's) and rs (lower-case el's) in the Benson-Varian's standard character set look very
similar; caution is advised.

The interface hardware is rumored to have problems which can play havoc with the UNIBUS.
We have intermittent minor problems on the UNIBUS ~here our va lives, but haven't ever
been able to pin them down completely.

4th Berkeley Distribution May 14, 1986 2

VP(4) UNIX Programmer's Manual VP(4)

NAME
vp - Versatec interface

SYNOPSIS
device vpO at ubaO csr 0177510 vector vpintr vpintr

DESCRIPTION

FILES

The Versatec printer/plotter· is normally used with the line printer system. This description is
designed for those who wish to drive the Versatec directly.

To use the Versatec yourself, you must realize that you cannot open the device, /dev/vpO if
there is a daemon active. You can see if there is a daemon active by doing a lpq(l), and see­
ing if there are any files being sent. Printing should be turned off using lpc(8).

To set the Versatec into plot mode you should include <sys/vcmd.h> and use the ioctl(2) call

ioctl(fileno(vp), VSETSTATE, piotmd);

where plotmd is de~ed to be

int plotmd[] - { VPLOT, 0, 0 -};

and vp is the result of a call to jopen on stdio. When you finish using the Versatec in plot
mode you should eject paper by sending it a EOT after putting it back into print mode, i.e. by

int prtmd[] - { VPRINT, 0, 0 };

ftlush(vp);
ioctl(fileno(vp), VSETSTATE, prtmd);
write(fileno(vp), "\04", 1);

/dev/vpO

SEE AlSO
vfont(5), lpr(l), Ipd(8), vtroff(l), va(4)

DIAGNOSTICS

BUGS

The following error numbers are significant at the time the device is opened.

[ENXIO] The device- is already in use.

[EIO] The device is oftline.

The configuration part of the driver assumes that the device is set up to vector print mode
through 0174 and plot mode through 0200. As the configuration program can't be sure which
vector interrupted at boot time, we specify that it has two interrupt vectors, and if an inter­
rupt comes through 0200 it is reset to 0174. This is safe for devices with one or two vectors
at these two addresses. Other configurations with 2 vectors may require changes in the driver.

4th Berkeley Distribution May 14, 1986

VV(4) UNIX Programmer's Manual VV(4)

NAME
V'i - Proteon proNET 10 Megabit ring

SYNOPSIS
device nO at ubaO csr 0161000 vector vvrint vvxint

DESCRIFI10N
The vv interface provides access to a 10 Mb/s ProteonproNET ring network.

The network address of the interface must be specified with an an SIOCSIFADDR ioctl
before data can be transmitted or received. It is only permissible to change the network
address while the interface is marked • down·.

The host's hardware address is discovered by putting the interface in digital loopback mode
(not joining the ring) and sending a broadcast packet from which the hardware address is
extracted.

Transmit timeouts are detected through use of a watchdog routine. Lost input interrupts are
checked for when packets are sent out.

If the installation is running CTL boards which use the old broadcast address of 0 instead of
the new address ofOxff, the define OLD_BROADCAST should be specified in the driver.

The driver can use "trailer" encapsulation to minimize copying data on input and output.
This may be disabled, on a per-interface basis, by setting the IFF _NOTRAILERS nag with an
SIOCSIFFLAGS ioctl.

DIAGNOSTICS
vv%d: host %d. The software announces the host address discovered during
autoconfiguration.

vv%d: can't initialize. The software was unable to discover the address of this interface, so it
deemed "dead" will not be enabled.

vv%d: error vvocsr-%b. The hardware indicated an error on the previous transmission.

vv%d: output timeout. The token timer has fired and the token will be recreated.

vv%d: error. mesr-%b. The hardware indicated an error in reading a packet off the ring.

en%d: can't handle af'Yod. The interface was handed a message with addresses formatted in an
unsuitable address family; the packet was dropped.

vv%d: vs_olen-%d. The ring output routine has been handed a message with a preposterous
length. This results in an immediate panic: vs_olen.

SEE ALSO

BUGS

intro(4N), inet(4F)

The encapsulation of trailer packets in the 4.2BSD version of this driver was incorrect (the
packet type was in V AX byte order). As a result, the trailer encapsulation in this version is
not compatible with the 4.2BSD V AX version.

4.2 Berkeley Distribution . May 16, 1986 1

L-DEVICES (5) UNIX Programmer's Manual L-DEVICES (5)

NAME
L-devices - UUCP device description file

DESCRIPTION
The L-devices file is consulted by the UUCP daemon uucico(8C) under the direction of
L.sys(5) for information on the devices that it may use. Each line describes exactly one dev­
ice.

A line in L-devices has the form:

Caller Device Call_Unit Class Dialer [Expect Send]

Each item can be separated by any number of blanks or tabs. Lines beginning with a '#' char­
acter are comments; long lines can be continued by appending a '\' character to the end of the
line.

Caller denotes the type of connection, and must be one of the following:

ACU Automatic call unit, e.-g., autodialing modems such as the Hayes Smartmodem 1200
or Novation "Smart Cat".

DIR Direct connect; hardwired line (usually RS-232) to a remote system.

DK AT&T Datakit.

MICOM
Micom Terminal switch.

PAD X.25 PAD connection.

PCP GTE Telenet PC Pursuit.

SITEK Sytek high-speed dedicated modem port connection.

TCP Berkeley TCP/IP or 3Com UNET connection. These are mutually exclusive. Note
that listing TCP connections in L-devices is superfluous; uucico does not even bother
to look here since it has all the information it needs in L.sys(5).

Device is a device file in /dev/ that is opened to use the device. The device file must be owned
by UUCP, with access modes of 0600 or better. (See chmod(2».

CalL Unit is an optional second device file name. True automatic call units use a separate
device file for data and for dialing; the Device field specifies the data port, while the CalLunit
field specifies the dialing port. If the Call_unit field is unused, it must not be left empty.
Insert a dummy entry as a placeholder, such as "0" or "unused."

Class is an integer number that specifies the line baud (for dialers and direct lines) or the port
number (for network connections).

The Class may be preceded by a non-numeric prefix. This is to differentiate among devices
that have identical Caller and baud, but are distinctly different. For example, "1200" could
refer to all Bell 212-compatible modems, "V 1200" to Racal-Vadic modems, and "C 1200" to
CCITT modems, all at 1200 baud. Similarly, "W1200" could denote long distance lines,
while "L1200" could refer to local phone lines.

Dialer applies only to ACU devices. This is the "brand" or type of the ACU or modem.

DF02 DEC DF02 or DF03 modems.

DF1l2 Dec DFl12 modems. Use a Dialer field of DF1l2T to use tone dialing, or DF1l2P
for pulse dialing.

att AT&T 2224 2400 baud modem.

cds224 Concord Data Systems 224 2400 baud modem.

4.3 Berkeley Distribution April 24, 1986

L-OEVICES (5) UNIX Programmer's Manual L-OEVICES (5)

FILES

dnll DEC ON II Unibus dialer.

hayes Hayes Smartmodem 1200 and compatible autodialing modems. Use a Dialer field of
hayestone to use tone dialing, or hayespulse for pulse dialing. It is also permissible
to include the letters 'T' and 'P' in the phone number (in L.sys) to change to tone or
pulse midway through dialing. (Note that a leading 'T' or'P' will be interpreted as a
dialcode!)

hayes2400

novation

Hayes Smartmodem 2400 and compatible modems. Use a Dialer field of
hayes2400tone to use tone dialing, or hayes2400pulse for pulse dialing.

Novation "Smart Cat" autodialing modem.

penril Penril Corp "Hayes compatible" modems (they really aren't or they would use the
hayes entry.)

rvmac:s Racal-Vadic 820 dialer with 831 adapter in a MACS configuration.

va212 Racal-Vadic 212 autodialing modem.

va8Us Racal-Vadic 811s dialer with 831 adapter.

va820 Racal-Vadic 820 dialer with 831 adapter.

vadic Racal-Vadic 3450 and 3451 series autodialing modems.

ventel Ventel 212 + autodialing modem.

vmac:s Racal-Vadic 811 dialer w~th 831 adapter in a MACS configuration.

Expect/Send is an optional Expect/Send script for getting through a smart port selector, or for
issuing special commands to the modem. The syntax is identical to that of the Expect/Send
script of L.sys. The difference is that the L-devices script is used before the connection is
made, while the L.sys script is used after ..

lusr/lib/uucp/L-devices
lusr/lib/uucp/UU AIOSIL-devices L-devices example

SEE ALSO
uucp(1 C), uux(1 C), L.sys(5), uucico(8C)

4.3 Berkeley Distribution April 24, 1986 2

L-DIALCODES(5) UNIX Programmer's Manual L-DIALCODES (5)

NAME
L-dialcodes - UUCP phone number index file

DESCRIPTION

FILES

The L-dialcodes file defines the mapping of strings from the phone number field of L.sys(5) to
actual phone numbers.

Each line in L-dialcodes has the form:

alpha_string phone_number

The two items can be separated by any number of blanks or tabs. Lines beginning with a '#'
character are comments.

A phone number in L.sys can be preceded by an arbitrary alphabetic character string; the
string is matched against the list of alpha_strings in L-dialcodes. If a match is found,
phone_number is substituted for it. If no match is found, the string is discarded.

L-dialcodes is commonly used either of two ways:

(1) The alphabetic strings are used as prefixes to denote area codes, zones, and other com­
monly used sequences. For example, if L-dialcodes included the following lines:

chi 1312
mv 1415

In L.sys you could enter:

chi vax Any ACU 1200 chi5551234 ogin:-ogin: nuucp
mvpyr Any ACU 1200 mv5556001 ogin:-ogin: Uuucp

instead of

chivax Any ACU 1200 13125551234 ogin:-ogin: nuucp
mvpyr Any ACU 1200 14155556001 ogin:-ogin: Uuucp

(2) All phone numbers are placed in L-dia/codes, one for each remote site. L.sys then refers
to these}:)y name. For example, if L-dialcodes contains the following lines:

chivax 13125551234
mvpyr 14155556601

then L.sys could have:

chivax Any ACU 1200 chivax ogin:-ogin: nuucp
mvpyr Any ACU 1200 mvpyr ogin:-ogin: Uuucp

This scheme allows a site administrator to give users read access to the table of phone
numbers, while still protecting the login/password sequences in L.sys.

lusr/lib/uucp/L-dialcodes
lusr/lib/uucp/UU AIDS/L-dialcodes L-dialcodes example

SEE ALSO
uucp(1 C), uux(1 C), L.sys(5), uucico(8C).

4.3 Berkeley Distribution April 24, 1986

L.AUASES (5) UNIX Programmer's Manual L.ALIASES (5)

NAME
L.aliases - UUCP hostname alias file

DESCRIPTION

FILES

The L.aliases file defines mapping (aliasing) of system names for uucp. This is intended for
compensating for systems that have changed names, or do not provide their entire machine
name (like most USG systems). It is also useful when a machine's name is not obvious or
commonly misspelled.

Each line in L.aliases is of the form:

real_name alias_name

Any amount of whitespace may separate the two items. Lines beginning with a '#' character
are comments.

All occurrences of alias_name are mapped to real_name by uucico(8C), uucp(1), and uux(I).
The mapping occurs regardless of whether the name was typed in by a user or provided by a
remote site. An exception is the -5 option of uucico; only the site's real hostname (the name in
L.sys(5» will be accepted there. .

Aliased system names should not be placed in L.sys; they will not be used.

lusrllib/uucp/L.aliases lusrllib/uucp/UUAIDSIL.aliases L.aliases example

SEE ALSO
uucp(lC), uux(lC), L.sys(5), uucico(8C).

4.3 Berkeley Distribution May 10, 1986 . 1

L.CMDS(5) UNIX Programmer's Manual L.CMDS(5)

NAME
L.cmds - UUCP remote command permissions file

DESCRIPTION

FILES

The L.cmds file contains a list of commands, one per line, that are permitted for remote exe­
cution via uux(1 C).

The default search path is Ibin:/usrlbin:/usr/ucb. To change the path, include anywhere in the
file a line of the form:

PATH =lbin:/usr/bin:/usr/ucb

Normally, an acknowledgment is mailed back to the requesting site after the command com­
pletes. If a command name is suffixed with ,Error, then an acknowledgment will be mailed
only if the command fails. If the command is suffixed with ,No, then no acknowledgment will
ever be sent. (These correspond with the -z and -8 options of UUX, respectively.)

For most sites, L.cmds should only include the lines:

rmail
ruusend

News sites should add:

PATH =lbin:/usrlbin:/usr/ucb:/usr/new
mews,Error

While file names supplied as arguments to uux commands will be checked against the list of
accessible directory trees in USERFILE(5), this check can be easily circumvented and should
not be depended upon. In other words, it is unwise to include any commands in L.cmds that
accept local file names. In particular, sh(l) and csh(l) are extreme risks.

It is common· (but haZardous) to include uucp(1 C) in L.cmds; see the NOTES section of
USERFILE.

lusr/lib/uucp/L.cmds
lusr/lib/uucp/UUAIDSIL.cmds L.cmds example.

SEE ALSO
uucp(lC), uux(IC), USERFILE(5), uucico(8C), uuxqt(8C)

4.3 Berkeley Distribution April 24, 1986

L.SYS(S) UNIX Programmer's Manual L.SYS(S)

NAME
L.sys - UUCP remote host description file

DESCRIPTION
The L.sys file is consulted by the UUCP daemon uucico(8C) for information on remote sys­
tems. L.sys includes the system name, appropriate times to call, phone numbers, and a login
and password for the remote· system. L.sys is thus a privileged file, owned by the UUCP
Administrator; it is accessible only to the Administrator and to the superuser.

Each line in L.sys describes one connection to one remote host, and has the form:

System Times Caller Class Device/Phone_Number [Expect Send] .••.

Fields can be separated by any number of blanks or tabs. Lines beginning with a 'j' character
are comments; long lines can be continued by appending a '" character to the end of the line.

The first five fields (System through DeviceIPhone..Number) specify the hardware mechanism
that is necessary to make a connection to a remote host, such as a modem or network.
Uucico searches from the top down through L.sys to find the desired System; it then opens the
L-devices(S) file and searches for the first available device with the same Caller, Class, and
(possibly) Device. ("Available" means that the device is ready and not being used for some­
thing else.) Uucico attempts a connection using that device; if the connection cannot be made
(for example, a dialer gets a busy signal), uucico tries the next available device. If this also
fails, it returns to L.sys to look for another line for the same System. If none is found. uucico
gives up.

System is the hostname of the remote system. Every machine with which this system com­
municates via UUCP should be listed, regardless of who calls whom. Systems not listed in
L.sys will not be permitted a connection. The local hostname should not appear here for
security reasons.

Times is a comma-separated list of the times of the day and week that calls are permitted to
this System. Times is most commonly used to restrict long distance telephone calls to those
times when rates are lower. List items are constructed as:

keywordhhmm-hhmmlgrade;retTY_time

Keyword is required, and must be one of:

Any Any time, any day of the week.

WIt Any weekday. In addition, Mo, Tu, We,Th, Fr, Sa, and Su can be used for Monday
through Sunday, respectively.

Evening When evening telephone rates are in effect, from 1700 to 0800 Monday through Fri­
day, and all day Saturday and Sunday. Evening is the same as Wlt1700-0800,Sa,Su.

Night When nighttime telephone rates are in effect, from 2300 to 0800 Monday through
Friday, all day Saturday, and from 2300 to 1700 Sunday. Night is the same as
Any2300-0800,ss,Su0800-1700.

NonPeak
This is a slight modification of Evening. It matches when the USA X.2S carriers
have their lower rate period. This is 1800 to 0700 Monday through Friday, and all
day Saturday and Sunday. NonPeak is the same as AnyJ800-0700,Sa,Su.

Never Never call; calling into this System is forbidden or impossible. This is intended for
polled connections, where the remote system calls into the local machine periodi­
cally. This is necessary when one of the machines is lacking either dial-in or dial-out
modems.

4.3 Berkeley Distribution April 24, 1986 1

L.SYS(5) UNIX Programmer's Manual L.SYS(5)

The optional hhmm-hhmm subfield provides a time range that modifies the keyword. hhmm
refers to hours and minutes in 24-hour time (from 0000 to 2359). The time range is permit­
ted to ·wrap· around midnight, and will behave in the obvious way. It is invalid to follow the
Evening, NonPeak, and Night keywords with a time range.

The grade subfield is optional; if present, it is composed of a 'I' (slash) and single character
denoting the grade of the connection, from 0 to 9, A to Z, or a to z. This specifies that only
requests of grade grade or better will be transferred during this time. (The grade of a request
or job is specified when it is queued by uucp or uux.) By convention, mail is sent at grade C,
news is sent at grade d, and uucp copies are sent at grade D. Unfortunately, some sites do not
follow these conventions, so it is not 100% reliable.

The retry_lime subfield is optional; it must be preceded by a ';' (semicolon) and specifies the
time, in minutes, before a failed connection may be tried again. (This restriction is in addi­
tion to any constraints imposed by the rest of the Time field.) By default, the retry time starts
at 10 minutes and gradually increases at each failure, until after 26 tries uucico gives up com­
pletely (MAX RETRIES). If the retry time is too small, uucico may run into MAX RETRIES
too soon.

Caller is the type of device used:

ACU Automatic call unit or auto-dialing modem such as the Hayes Smartmodem 1200 or
Novation "Smart Cat". See L-devices for a list of supported modems. ..

DIR Direct connect; hardwired line (usually RS-232) to a remote system.

MICOM
Micom Terminal Switch.

PAD X.25 .PAD connection.

PCP GTE Telenet PC Pursuit. See L-devices for configuration details.

SYTEK Sytek high-speed dedicated modem port connection.

TCP Berkeley TCP/IP or 3Com UNET connection. These are mutually exclusive. TCP
ports do Dot need entries in L-devices since all the necessary information is contained
in L.sys. If several alternate ports or network connections should be tried, use multi­
ple L.sys entries.

Class is usually the speed' (baud) of the device, typically 300, 1200, or 2400 for ACU devices
and 9600 for direct lines. Valid values are device dependent, and are specified in the
L-<1evices file. .
On some devices, the baud may be preceded by a non-numeric prefix. This is used in
L-devices to distinguish among devices that have identical Caller and baud, but yet are dis­
tinctly different. For example, 1200 could refer to all Bell 212-compatible modems, V1200 to
Racal-Vadic modems, and C1200 to CCITT modems, all at 1200 baud.

On TCP connections, Class is the port number (an integer number) or a port name from
/etc/services that is used to make the connection. For standard Berkeley TCP/IP, UUCP nor­
mally uses port number 540.

Device/Phone_Number varies based on the Caller field. For ACU devices, this is the phone
number to dial. The number may include: digits 0 through 9; '/# and • for dialing those sym­
bols on tone telephone lines; - (hyphen) to pause for a moment, typically two to four seconds;
.. (equal sign) to wait for a second dial tone (implemented as a pause on many modems).
Other characters are modem dependent; generally standard telephone punctuation characters
(such as the slash and parentheses) are ignored, although uucico does not guarantee this.

The phone number can be preceded by an alphabetic string; the string is indexed and con­
verted through the L-dialcodes(5) file.

4.3 Berkeley Distribution April 24, 1986 2

L.SYS(5) UNIX Programmer's Manual L.SYS(5)

For DIR devices, the Device/Phonejlumber field contains the name of the device in /dev that
is used to make the connection. There must be a corresponding line in L-devices with identi­
cal Caller, Class, and Device fields.

For TCP and other network devices, Device/Phone_Number holds the true network name of
the remote system, which may be different from its UUCP name (although one would hope
not),

Expect and Send refer to an arbitrarily long. set of strings that alternately specify what to
expect and what to send to login to the remote system once a physical connection has been
established. A complete set of expect/send strings is referred to as an expect/send script, The
same syntax is used in the L-devices tile to interact with the dialer prior to making a connec­
tion; there it is referred to as a chat script. The complete format for one expect/send pair is:

expect-timeout-send-expect-timeout send
Expect and Send are character strings. Expect is compared against incoming text from the
remote host; send is sent back when expect is matched. By default, the send is followed by a
'\r' (carriage return). If the expect string is not matched within timeout seconds (default 45),
then it is assumed that the match failed. The' expect-send-expec(notation provides a limited
loop mechanism; if the first expect string failS to match, then the send string between the
hyphens is transmitted, and uucico waits for the second expect string. This can be repeated
indefinitely. When the last expect string fails, uucico hangS up and logs that the connection
failed.

The timeout can (optionally) be specified by appending the parameter '-nn' to the expect
string, when nn is the timeout time in seconds.

Backslash escapes that may be imbedded in the expect or send strings include:

\b Generate a 3/10 second BREAK.
\bn Where n is a single-digit number;

\c
\d
\r
\s
\n
\xxx

generate an nllO second BREAK.
Suppress the \r at the end of a send string.
Delay; pause for 1 second. (Send only.)
Carriage Return.
Space.
Newline.
Where xxx is an octal constant;
denotes the correspondin~ ASCII character. •

As a special case, an empty pair of double-quotes •• in the expect string is interpreted as
"expect nothing"; that is, transmit the send string regardless of what is received. Empty
double-quotes in the send string cause a lone '\r' (carriage return) to be sent.

One of the following keywords may be substituted for the send string:

BREAK Generate a 3/10 second BREAK
BREAKn Generate an nllO second BREAK
CR Send a Carriage Return (same as "").
EOT Send an End-Of-Transmission character, ASCII \004.

NL
PAUSE
PAUSEn
P_ODD
P_ONE
P_EVEN
P_ZERO

4.3 Berkeley Distribution

Note that this will cause most hosts to hang up.
Send a Newline.
Pause for 3 seconds.
Pause for n seconds.
Use odd parity on future send strings.
Use parity one on future send strings.
Use even parity on future send strings. (Default)
Use parity zero on future send strings.

April 24, 1986 3

L.SYS(5) UNIX Programmer's Manual L.SYS(5)

FILES

Finally, if the expect string consists of the keyword ABORT, then the string following is used
to arm an abort trap. If that string is subsequently received any time prior to the completion
of the entire expect/send script, then uucico will abort, just as if the script had timed out. This
is useful for trapping error messages from port selectors or front-end processors such as "Host
Unavailable" or "System is Down."

For example:

M" MM ogin:-ogin: nuucp ssword: ufeedme

This is executed as, "When the remote system answers, expect nothing. Send a carriage
return. Expect the remote to transmit the string 'ogin:'. If it doesn't within 45 seconds, send
another carriage return. When it finally does, send it the string 'nuucp'. Then expect the
string 'ssword:'; when that is received, send 'ufeedme'."

lusr/lib/uucp/L.sys
lusr/lib/uucp/UU AIDS/L.sys L.sys example

SEE ALSO

BUGS

uucp(1 C), uux(1 C), L-devices(5), services(5), uucico(8C)

"ABORT" in the send/expect script is expressed "backwards," that is, it should be written"
expect ABORT" but instead it is " ABORT expect". .

Several of the backslash escapes in the send/expect strings are confusing and/or different from
those used by AT&T and Honey-Danber UUCP. For example, '\b' requests a BREAK., while
practically everywhere else '\b' means backspace. '\t' for tab and '\f for formfeed are not
implemented. '\s' is a kludge; it would be more sensible to be able to delimit strings with
quotation marks. .

4.3 Berkeley Distribution April 24, 1986 4

~~-.- ... - --.--

USERFILE(S) UNIX Programmer's Manual USERFILE (5)

NAME
USERFILE - UUCP pathname permissions file

DESCRIPTION

FILES

The USERFILE file specifies the file system directory trees that are accessible to local users
and to remote systems via UUCP.

Each line in USERFILE is of the form:

[/oginname),[system1 [c] pathname [pathname] [pathname]

The first two items are separated by a comma; any number of spaces or tabs may separate the
remaining items. Lines beginning with a '#' character are comments. A trailing '" indicates
that the. next line is a continuation of the current line.

Loginname is a login (from letclpasswd) on the local machine.

System is the name of a remote machine, the same name used in L.sys(S).

c denotes the optional callback field. If a c appears here, a remote machine that calls in will
be told that callback is requested, and the conversation will be terminated. The local system
will then immediately call the remote host back.

Pathname is a pathname prefix that is permissible for this login and/or system.

When uucico(8C) runs in master role or uucp(1 C) or uux(1 C) are run by local users, the per­
mitted pathnames are those. on the first line with a /ogihname that matches the name of the
user who executed the command. If no such line exists, then the first line with a null (miss­
ing) /oginname field is used. (Beware: uucico is often run by the superuser or the UUCP
administrator through cron(8).)

When uucico runs in slave role, the permitted pathnames are those on the first line with a sys­
tem field that matches the hostname of the remote machine. If no such line exists, then the
first line with a null (missing) system field is used.

Uuxqt(8) works differently; it knows neither a login name nor a hostname. It accepts the
pathnames on the first line that has a null system field. (This is the same line that is used by
uucico when it cannot match the remote machine's hostname.)

A line with both /oginname and system null, for example

, lusrlspoolluucppubUe

can be used to conve\1iently specify the paths for both "no match" cases if lines earlier in
USERFILE did not define them. (This differs from older Berkeley and all USG versions,
where each case must be individually specified. If neither case is defined earlier, a "null" line
only defines the "unknown login" case.)

To correctly process /oginname on systems that assign severallogins per UID, the following
strategy is used to determine the current /oginname:

1) If the process is attached to a terminal, a login entry exists in letc!utmp, and the UID
for the utmp name matches the current real UID, then /oginname is set to the utmp
name.

2) If the USER environment variable is defined and the UID for this name matches the
current real UID, then /oginname is set to the name in USER.

3) If both of the above fail, call getpwuid(3) to fetch the first name in lelclpasswd that
matches the real UID.

4) If all of the above fail, the utility aborts.

lusr/lib/uucp/USERFILE

4.3 Berkeley Distribution April 24, 1986

USERFILE (5) UNIX Programmer's Manual USERFILE (5)

/usr/lib/uucp/UU AIDS/USERFILE USERFILE example

SEE ALSO

NOTES

uucp(1 C), uux(1 C), L.cmds(5), L.sys(5), uucico(8C), uuxqt(8C)

The UUCP utilities (uucico, uucp, UUX, and uuxqt) always have access to the UUCP spool files
in /usr/spoo/!uucp, regardless of pathnames in USERFILE.

If oucp is listed in L.cmds(5), then a remote system will execute uucp on the local system with
the USERFILE privileges for its login, not its hostname.

Uucico freely switches between master and slave roles during the course of a conversation,
regardless of the role it was started with. This affects how USERFILE is interpreted.

WARNING

BUGS

USERFILE restricts access only on strings that the UUCP utilities identify as being path­
names. If the wrong holes are left in other UUCP control files (notably L.cmds), it can be easy
for an intruder to open files anywhere in the file system. Arguments to uucp(1 C) are safe,
since it assumes all of its non-option arguments are files. Uux(1C) cannot make such assump­
tions; hence, it is more dangerous.

The UUCP Implementation Description explicitly states that all remote login names must be
listed in USERFILE. This requirement is not enforced by Berkeley UUCP, although it is by
USG UUCP.

Early versions of 4.2BSD uuxqt(8) erroneously check UUCP spool files against the USERFILE
pathname permissions. Hence, on these systems it is necessary to specify /usr/spoo/!uucp as a
valid path on the USERFILE line used by uuxqt. Otherwise, all uux(lC) requests are
rejected with a ·PERMISSION DENIED" message.

4.3 Berkeley Distribution April 24, 1986 2

A.OUT(5) UNIX Programmer's Manual A.OUT(5)

NAME·
a.out - assembler and link editor output

SYNOPSIS
#include <a.out.h>

DESCRIPTION
A.out is the output file of the assembler as(1) and the link editor [d(l). Both programs make
a.out executable if there were no errors and no unresolved external references. Layout infor~
mation as given in the include file for the VAX-It is:

I.
• Header prepended to each a.out file .
• 1

struct exec {

};

long
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned

a_magic;
a_text;
a_data;
a_bss;
a_syms;
a3ntry;
a_trsize;
a_drsize;

#define OMAGIC 0407
#define NMAGIC0410
#define ZMAGIC 0413

/.

I. magic number.1
I. size of text segment .1
/. size of initialized data ./
I. size of uninitialized data ./
/. size of symbol table ./
/. entry point ./
/. size of text relocation ./
/. size of data relocation ./

/. old impure format ./
/. read-only text ./
/. demand load format ./

• Macros which take exec structures as arguments and tell whether
• the file has a reasonable magic number or offsets to text I symbols I strings . . /

#define N_BADMAG(x) \
«(x}.a_magic)!=OMAGIC && «x).a_magic)!=NMAGIC && «x).a_magic)!=ZMAGIC)

#define N_ TXTOFF(x) \
«x).a_magic==ZMAGIC? 1024: sizeof (struct exec»

#define N_SYMOFF(x) \
(N_TXTOFF(x) + (x).a_text+(x).a_data + (x).a_trsize+(x).a_drsize)

#define N_STROFF(x) \
(N_SYMOFF(x) + (x).a_syms)

The file has five sections: a header, the program text and data, relocation information, a sym­
bol table and a string table (in that order). The last three may be omitted if the program was
loaded with the '-s' option of ld or if the symbols and relocation have been removed by
strip(1).

In the header the sizes of each section are given in bytes. The size of the header is not
included in any of the other sizes.

When an a.out file is executed, three logical segments are set up: the text segment, the data
segment (with uninitialized data, which starts off as all 0, following initialized), and a stack.
The text segment begins at 0 in the core image; the header is not loaded. If the magic
number in the header is OMAGIC (0407), it indicates that the text segment is not to be
write-protected and shared, so the data segment is immediately contiguous with the text seg­
ment. This is the oldest kind of executable program and is rarely used. If the magic number

4th Berkeley D~stribution May 19, 1986

A.OUT(5) UNIX Programmer's Manual A.OUT(5)

is NMAGIC (0410) or ZMAGIC (0413), the data segment begins at the first 0 mod 1024 byte
boundary following the text segment, and the text segment is not writable by the program; if
other processes are executing the same file, they will share the text segment. For ZMAGIC
format, the text segment begins at a 0 mod 1024 byte boundary in the a.out file, the remain­
ing bytes after the header in the first block are reserved and should be zero.. In this case the
text and data sizes must both be multiples of 1024 bytes, and the pages of the file will be
brought into the running image as needed, and not pre-loaded as with the other formats. This
is especially suitable for very large programs and is the default format produced by ld(1).

The stack will occupy the highest possible locations in the core image, growing downwards
from USRSTACK (from <machine/vmparam.h». The stack is automatically extended as
required. The data segment is only extended as requested by brk(2).

After the header in the file follow the text, data, text relocation data relocation, symbol table
and string table in that order. The text begins at the byte 1024 in the file for ZMAGIC for­
mat or just after the header for the other formats. The N_TXTOFF macro returns this abso­
lute file position when given the name of an exec structure as argument. The data segment is
contiguous· with the text and immediately followed by the text relocation and then the data
relocation information. The symbol table follows all this; its position is computed by the
N_SYMOFF macro. Finally, the string table immediately follows the symbol table at a posi­
tion which can be gotten easily using N_STROFF. The first 4 bytes of the string table are not
used for string storage, but rather contain the size of the string table; this size INCLUDES the
4 bytes, the minimum string table size is thus 4.

The layout of a symbol table entry and the principal flag values that distinguish symbol types
are given in the include file as follows:

/ .
• Format of a symbol table entry . . /

struct nlist {
union {

char
long

} n_un;

.n_name; /. for use when in-core ./
n_strx; /. index into file string table ./

unsigned char n_type; /. type flag, i.e. N_ TEXT etc; see below ./
char n_other;
short n_desc; /. see <stab.h> ./
unsigned n_ value; ;. value of this symbol (or offset) ./

n_desc t .• used internally by ld ./

/ .
• Simple values for n_type . . /

#define
#define
#define
#define
#define
#define
#define

N_UNDF
N_ABS
N_TEXT
N_DATA
N_BSS
N_COMM
N_FN

#define N_EXT
#define N_ TYPE

4th Berkeley Distribution

OxO
Ox2
Ox4
Ox6
Ox8
Ox12
Oxlf

01
Oxle

/. undefined ./
/. absolute ./
/. text ./
/. data ./
/. bss ./
/. common (internal to ld) ./
/. file name symbol ./

/. external bit, or'ed in ./
/. mask for all the type bits ./

May 19, 1986 2

A.OUT(S) UNIX Programmer's Manual A.OUT(S)

/.
• Other permanent symbol table entries have some of the N_STAB bits set.
• These are given in <stab.h>
./

#define N_ST AB OxeO /. if any of these bits set, don't discard ./

/.
• Format for namelist·values • . /

#define N_FORMAT "%08x"

In the a.out file a symbol's n_un.n_strx field gives an index into the string table. A n_strx
value of 0 indicates that no name is associated with a particular symbol table entry. The field
n_un.n_name can be used to refer to the symbol name only if the program sets this up using
n_strx and appropriate data from the string table.

If a symbol's type is undefined external, and the value field is non-zero, the symbol is inter­
preted by the loader ld as the name of a common region whose size is indicated by the value
of the symbol.

The value of a byte in the text or data which is not a portion of a reference to an undefined
external symbol is exactly that value which will appear in memory when the file is executed.
If a byte in the text or data involves a reference to an undefined external symbol, as. indicated
by the relocation information, then the value stored in the file is an offset from the associated
external symbol. When the file is processed by the link editor and . the external symbol
becomes defined, the value of the symbol will be added to the bytes in the file.

If relocation information is present, it amounts to eight bytes per relocatable datum as in the
following structure: .

/. .
• Format of a relocation datum . . /

struct relocation_info {

};

int caddress;
unsigned r_symbolnum:24,

r_pcrel:l,
clength:2,
cextern:l,
:4;

/. address which is relocated ./
/. local symbol ordinal ./
/. was relocated pc relative already ./
/.O-byte, 1 =word, 2=long ./
/. does not include value of sym referenced ./
/. nothing, yet ./

There - is no relocation information if a_trsize+~drsize--O. If r_extern is 0, then
r_symbolnum is actually a D_type for the relocation (i.e. N_ TEXT meaning relative toseg­
ment text origin.)

SEE ALSO

BUGS

adb(I), as(1), Id(1), nm(1), dbx(l), stab(S), strip(1)

Not having the size of the string table in the header is a loss, but expanding the header size
would have meant stripped executable file incompatibility, and we couldn't hack this just
now.

4th Berkeley Distribution May 19, 1986 3

ACCT(5) UNIX Programmer's Manual

NAME
acct - execution accounting file

SYNOPSIS
#inc1ude <sys/acct.h>

DESCRIPTION

ACCT(5)

The acct(2) system call arranges for entries to be made in an accounting file for each process
that terminates. The accounting file is a sequence of entries whose layout, as defined by the
include file is:

I.
• Copyright (c) 1982 Regents of the University of California.
• All rights reserved. The Berkeley software License Agreement
• specifies the terms and conditions for redistribution.
•
• @(#)acct.h 6.4 (Berkeley) 10/28/85
./

I.
• Accounting structures;
• these use a comp_t type which is a 3 bits base 8
• exponent, 13 bit fraction "floating point" number.
• Units are l/AHZ seconds . . /

typedef u_short comp_t;

struct acct
{

char ac_comm[1 0];
comp_t ac_utime;
comp_t ac_stime;
comp_t ac_etime;
time_t ac_btime;
uid_t ac_uid;
gid_t ac-iid;
short ac_mem;
comp_t ac_io;
dev_t ac_tty;
char ac_flag;

};

#define AFORK. 0001
#define ASU 0002
#define ACOMPAT 0004
#define ACORE 0010
#define AXSIG 0020

/.

/. Accounting command name .1
I. Accounting user time .1
I. Accounting system time ./
I. Accounting elapsed time ./
/. Beginning time ./
/. Accounting user ID./
/. Accounting group ID .1
/. average memory usage ./
/. number of disk 10 blocks ./
I. control typewriter ./
/. Accounting flag ./

/. has executed fork, but no exec ./
/. used super-user privileges ./
I. used compatibility mode ./
/. dumped core ./
/. killed by a signal ./

• 11 AHZ is the granularity of the data encoded in the various
• comp_t fields. This is not necessarily equal to hz . . /

#define AHZ 64

#ifdef KERNEL

7th Edition May 19, 1986

ACCT(5)

struct acct
struct inode
#endif

UNIX Programmer's Manual

acctbuf;
*acctp;

ACCT(5)

If the process was created by an execve(2), the first 10 characters of the filename appear in
ac_comm. The accounting flag contains bits indicating whether execve(2) was ever accom­
plished, and whether the process ever had superauser privileges.

SEE ALSO
acct(2), execve(2), sa(8)

7th Edition May 19, 1986 ·2

ALIASES(5) UNIX Programmer's Manual ALIASES(5)

NAME
aliases - aliases file for sendmail

SYNOPSIS
/usr/lib/aliases

DESCRIPTION
This file describes user id aliases used by /usr//ib/sendmail. It is formatted as a series of lines
of the form

name: name_I, name2, name_3, ...
The name is the name to alias, and the name_n are the aliases for that name. Lines begin­
ning with white space are continuation lines. Lines beginning with • #' are comments.

Aliasing occurs only on local names. Loops can not occur, since no message will be sent to
any person more than once.

After aliasing has been done, local and valid recipients who have a ... forward" file in their
home directory have messages forwarded to the list of users defined in that file.

This is only the raw data file; the actual aliasing information is placed into a binary format in
the files /usr//ib/a/iases.dir and /usr//ib/a/iases.pag using the program newa/iases(1). A
newa/iases command should be executed each time the aliases file is changed for the change to
take effect.

SEE ALSO

BUGS

newaliases(I), dbm(3X), sendmail(8)
SENDMAIL Installation and Operation Guide.
SEND MAIL An Internetwork Mail Router.

Because of restrictions in dbm(3X) a single alias cannot -contain more than about 1000 bytes
of information. You can get longer aliases by "chaining"; that is, make the last name in the
alias be a dummy name which is a continuation alias.

4th Berkeley Distribution May 15, 1985

AR(5) UNIX Programmer's Manual AR(5)

NAME
ar - archive (library) file format

SYNOPSIS
#include <ar .h>

DESCRIPTION
The archive command ar combines several files into one. Archives are used mainly as
libraries to be searched by the link-editor Id.

A file produced by ar has a magic string at the start, followed by the constituent files, each
preceded by a file header. The magic number and header layout as described in the include
file are:

I.
• Copyright (c) 1980 Regents of the University of California.
• All rights reserved. The Berkeley software License Agreement
• specifies the terms and conditions for redistribution.
•
• @(#)ar.h 5.1 (Berkeley) 5/30/85
./

#define ARMAG "!<arch>\n"
#define SARMAG 8

#define ARFMAG ·'\n"

struct achdr {
char
char
char
char
char
char
char

};

ar_name[16];
acdate[12];
ar_uid[6];
acgid[6];
ar_mode(8];
ar_size[1 0];
arjmag[2];

The name is a blank-padded string. The ar Jmag field contains ARFMAG to help verify the
presence of a header. The other fields are left-adjusted, blank-padded numbers. They are
decimal except for ar _mode, which is octal. The date is the modification date of the file at
the time of its insertion into the archive.

Each file begins on a even (0 mod 2) boundary; a new-line is inserted between files if neces­
sary. Nevertheless the size given reflects the actual size of the file exclusive of padding.

There is no provision for empty areas in an archive file.

The encoding of the header is portable across machines. If an archive contains printable files,
the archive itself is printable.

SEE ALSO

BUGS

are 1), Id(1), nm(1)

File names lose trailing blanks. Most software dealing with archives takes even an included
blank as a name terminator.

7th Edition May 15, 1985 1

CORE(5) UNIX Programmer's Manual CORE(5)

NAME
core - format of memory image file

SYNOPSIS
#include <sys/param.h>

DESCRIPTION
The UNIX System writes out a memory image of a terminated process when any of various
errors occur. See sigvec(2) for the list of reasons; the most common· are memory violations,
illegal instructions, bus errors, and user-generated quit signals. The memory image is called
'core' and is written in the process's working directory (provided it can be; normal access con­
trols apply).

The maximum size of a core file is limited by setrlimit(2). Files which would be larger than
the limit are not created.

The core file consists of the u. area, whose size (in pages) is defined by the UPAGES manifest
in the <sys/param.h> file. The u. area starts with a user structure as given in <sys/user.h>.
The remainder of the core file consists first of the data pages and then the stack pages of the
process image. The amount of data space image in the core file is given (in pages) by the
variable u_dsize in the u. area. The amount of stack image in the core file is given (in pages)
by the variable u_ssize in the u. area. The size of a "page" is given by the constant NBPG
(also from <sys/param.h».

In general the debugger adb(1) is sufficient to deal with core images.

SEE ALSO
adb(1), dbx(1), sigvec(2), setrlimit(2)

4th Berkeley Distribution March 9, 1986

DBX(S) UNIX Programmer's Manual DBX(S)

NAME
dbx - dbx symbol table information

DESCRIPTION
The compiler symbol information generated for dbx(1) uses the same structure as described in
stab(S), with additional type and scope information appended to a symbol's name. The
assembler directive used to describe symbol information has the following format:

stabs "string" ,kind,O,size, value

String contains the name, source language type, and scope of the symbol, kind specifies the
memory class (e.g., external, static, parameter, local, register), and size specifies the byte size
of the object, if relevant. The third field (0 above) is unused. For a global variable or a type,
value is unused; for a local variable or parameter, it is the offset from the frame pointer, for a
register variable, it is the associated register number.

The different kinds of stab entries are interpreted by dbx as follows:

N_GSYM The symbol is a global variable (e.g., .comm variable). The variable's address can
be found from the corresponding Id(1) symbol entry. thus the value field for
N_GSYM symbols is ignored. For example, a global variable "x" will have both
an N_GSYM entry and an ld(l) entry (e.g., N_BSS + N_EXT). See a.out(S) for
details about these other entries. of .

N_FUN The symbol is a procedure or function. The size field contains the line number of
the entry point. The value field contains the address of the entry point (in the text
segment).

N_STSYM
The symbol is a statically allocated variable for which an initial value has been
specified. The value field contains the address of the variable (in the data seg­
ment).

N_LCSYM
The symbol is statically allocated, but not initialized.

N_RSYM The symbol is a register variable whose value is kept in the register denoted by the
value field.

-
N _PSYM The symbol is a parameter whose value is pushed on the stack before the call. The

value field contains the offset from the argument base pointer (on the VAX, the ap
register).

N_LSYM The symbol is a local variable whose value is stored in the most recently defined
procedure's stack frame. The value is the (often negative) offset from the frame .
pointer (on the VAX, the fp register).

N_PC, N_MOD2
The symbol defines separate compilation information for pre-linking checking for
Berkeley Pascal and DEC Modula-2 programs respectively. For Pascal, the value
field contains the line number that the symbol is defined on. The value field is not
used for Modula-2.

Most of the source level information about a symbol is stored in the string field of the stab
entry. Since strings are kept in a separate string table in the a.out file, they can be arbitrarily
long. Thus there are no restrictions on the kind or length of information in the string field,
and it was not necessary to modify the assembler or loader when extending or modifying the
format of this information.

4.3 Berkeley Distribution January 12, 1986 1

DBX(S) UNIX Programmer's Manual DBX(S)

Below is a grammar describing the syntax of the symbol string. Except in the ca$e of a con­
stant whose value is a string, there are no blanks in a symbol string.

NAME:
INTEGER:

[a-zA-Z_][a-zA-Z_0-9].
[-][0-9][0-9].

REAL: [+-][0-9].(.[0-9][0-9].1)([eE]([+-] 1)[0-9][0-9].1)
STRING:
BSTRING:

String:

" , . ••
••

NAME ':' Oass
':' Class

Class:
'c' 'a' Constant ';'
Variable
Procedure
Parameter
NamedType
'X' ExportInfo

Constant:
'i'INTEGER
'r'REAL
'c' OrdValue
'b' OrdValue
'5' STRING
'e' TypeId ',' OrdValue

- export or import information (for N_MOD2 only)

'S' TypeId ',' NumElements ',' NumBits ',' BSTRING

OrdValue:
INTEGER

NumElements:
INTEGER

NumBits:
INTEGER

Variable:
TypeId
'r'TypeId
'S'TypeId
'V'TypeId
'G'TypeId

Procedure:
Proc

- local variable of type TypeId
- register variable of type TypeId
- module variable of type TypeId (static global in C)
- own variable of type TypeId (static local in C)
- global variable of type TypeId

- top level procedure
Proc ',' NAME ',' NAME -local to first NAME,

- second NAME is corresponding ld symbol

Proc:
'P' - global procedure

4.3 Berkeley Distribution January 12, 1986 2

DBX(S)

'Q'
'I'
'F Typeld
'r Typeld
'J'TypeId

. UNIX Programmer's Manual

- local procedure (static in C)
- internal procedure (different calling sequence)
- function returning type TypeId
- local function
- internal function

Parameter:
'p' TypeId - value parameter of type TypeId
'v' TypeId - reference parameter of type TypeId

NamedType:
't' TypeId - type name for type TypeId
'T' TypeId - C structure tag name for struct TypeId

TypeId:
INTEGER - Unique (per compilation) number of type
INTEGER '=' TypeDef - Definition of type number
INTEGER '=' TypeAttrs TypeDef

- Type attributes are extra information associated with a type,
- such as alignment constraints or pointer checking semantics.
- Dbx interprets some of these, but will ignore rather than complain
- about any it does not recognize. Therefore this is a way to add
- extra information for pre-linking checking.

TypeAttrs:
'@' TypeAttrList ';'

TypeAttrList:
TypeAttrList ',' TypeAttr
TypeAttr

TypeAttr:
'a'INTEGER
's'INTEGER
'p'INTEGER
BSTRING

TypeDef:
INTEGER
Subrange
Array
Record
'e' EnumList ';'
'.' TypeId
'5' TypeId
'd'TypeId
ProcedureType

-
- align boundary
- size in bits
- pointer class (e.g., checking)
- something else

- enumeration
- pointer to TypeId
- set of TypeId
- file of TypeId

'i' NAME ':' NAME ';' - imported type ModuleName:Name
'0' NAME ';' - opaque type
'i' NAME ':' NAME ',' TypeId ';'
'0' NAME ',' TypeId ';'

4.3 Berkeley Distribution January 12, 1986

DBX(S)

3

DBX(5) UNIX Programmer's Manual

Subrange:
or' TypeId ';' INTEGER ';' INTEGER

Array:
'a' TypeId ';' TypeId
'A'TypeId
'0' INTEGER .,' TypeId
'E' INTEGER ',' TypeId

ProcedureType:

- array [TypeId] of TypeId
- open array of TypeId
- N-dim. dynamic array
- N-dim. subarray

'r TypeId ';' - C function type
'r TypeId ',' NumParams ';' TParamList ';'
'p' NumParams ';' TParamList ';'

NumParams:
INTEGER

Record:
is' ByteSize FieldList ';'
'u' ByteSize FieldList ';'

ByteSize:
INTEGER

FieldList:
Field
FieldList Field

Field:

- structure/record
- C union

NAME ':' TypeId ',' BitOffset ',' BitSize ';'

BitSize:
INTEGER

BitOffsei:
INTEGER

EnumList:
Enum
EnumList Enum

. Enum:
NAME ':' OrdValue ','

ParamList:
Param
ParamList Param

Param:
NAME ':' TypeId ',' PassBy ';'

PassBy:
INTEGER

4.3 Berkeley Distribution January 12, 1986

DBX(5)

4

DBX(S)

TParam:
TypeId ',' PassBy ';'

TParamList :
TParam
TParamList TParam

Export:
INTEGER ExportInfo

ExportInfo:
't'TypeId

UNIX Programmer's Manual

'f TypeId ',' NumParams ';' ParamList ';'
'p' NumParams ';' ParamList ';'
'v'TypeId
'c' 'c' Constant

DBX(S)

A '?' indicates that the symbol information is continued in the next stab entry. This directive
can only occur where a ';' would otherwise separate the fields of a record or constants in an
enumeration. It is useful when the number of elements in one of these lists is large.

SEE ALSO .
dbx(1), stab(S), a.out(S)

4.3 Berkeley Distribution January 12, 1986 5

DIR(5) UNIX Programmer's Manual DIR(5)

NAME
dir - format of directories

SYNOPSIS
#include <sys/types.h>
#include <sys/dir.h>

DESCRIPTION
A directory behaves exactly like an ordinary file, save that no user may write into a directory.
The fact that a file is a directory is indicated by a bit in the flag word of its i-node entry; see
/s(5). The structure of a directory entry as given in the include file is:

/.
• A directory consists of some number of blocks of DIRBLKSIZ
• bytes, where DIRBLKSIZ is chosen such that it can be transferred
• to disk in a single atomic operation (e.g. 512 bytes on most machines).
•
• Each DIRBLKSIZ byte block contains some number of directory entry
• structures, which are of variable length. Each directory entry has
• a struct direct at the front of it, containing its inode number,
• the length of the entry, and the length of the name contained in
• the entry. These are followed by the name padded to.a 4 byte boundary
• with null bytes. All names are guaranteed null terminated.
• The maximum length of a name in a directory is MAXNAMLEN.
•
• The macro DIRSIZ(dp) gives the amount of space required to represent
• a directory entry. Free space in a directory is represented by
• entries which have dp->d_reclen > DIRSIZ(dp). All DIRBLKSIZ bytes
• in a directory block are claimed by the directory entries. This
• usually results in the last entry in a directory having a large
• dp->d~reclen. When entries are deleted from a directory, the
• space is returned to the previous entry in the same directory
• block by increasing its dp->d_reclen. If the first entry of
• a directory block is free, then its dp->d_ino is set to O.
• Entries other than the first in a directory do not normally have
• dp->d_ino set to O . . /

#ifdef KERNEL
#define DIRBLKSIZ DEY _BSIZE .
#else
#define DIRBLKSIZ 512
#endif

#define MAXNAMLEN 255

/.
• The DIRSIZ macro gives the minimum record length which will hold
• the directory entry. This requires the amount of space in struct direct
• without the d_name field, plus enough space for the name with a terminating
• null byte (dp->d_namlen+ 1), rounded up to a 4 byte boundary . . /

#undef DIRSIZ
#define DIRSIZ(dp) \

«sizeof (struct direct) - (MAXNAMLEN+ 1) + «(dp)->d_namlen+ 1 + 3) &- 3»

4.2 Berkeley Distribution May 15, 1985 1

DIR(5} UNIX Programmer's Manual

struct direct {
u_Iong d_ino;
short d_reclen;
short d_namlen;
char d_name{MAXNAMLEN + 1];
I .. typically shorter .. I

};

struct _dirdesc {
int
long
long
char

};

dd_fd;
dd_Ioc;
dd_size;
dd_buf[DIRBLKSIZ];

DIR(5)

By convention, the first two entries in each directory are for '.' and ' . .'. The first is an entry
for the directory itself. The second is for the parent directory. The meaning of ' . .' is
modified for the root directory of the master file system (" /"), where' .. ' has the same meaning
as • •

SEE ALSO
fs(5)

4.2 Berkeley Distribution May IS, 1985 2

DISKTAB(S) UNIX Programmer's Manual DISKTAB(5)

NAME
disktab - disk description file

SYNOPSIS
#inc1ude <disktab.h>

DESCRIPI10N
Disktab is a simple date base which describes disk geometries and disk partition characteris­
tics. The format is patterned after the termcap(5) terminal data base. Entries in disktab con­
sist of a number of ':' separated fields. The first entry for each disk gives the names which are
known for the disk, separated by 'I' characters. The last name given should be a long name
fully identifying the disk.

The following list indicates the normal values stored for each disk entry.

Name Type DescriptioD
ns num Number of sectors per track
nt num Number of tracks per cylinder
nc num Total number of cylinders on the disk
ba num Block size for partition 'a' (bytes)
bd num Block size for partition 'd' (bytes)
be num Block size for partition 'e' (bytes)
bf num Block size for partition 'r (bytes)
bg num Block size for partition 'g' (bytes)
bh num Block size for partition 'h' (bytes)
fa num Fragment size for partition 'a' (bytes)
fd num Fragment size for partition 'd' (bytes)
fe num Fragment size for partition 'e' (bytes)
ff num Fragment size for partition 'r (bytes)
fg num Fragment size for partition 'g' (bytes)
th num Fragment size for partition 'h' (bytes)
pa num Size of partition 'a' in sectors
pb num Size of partition 'b' in sectors
pc num Size of partition 'c' in sectors
pd num Size of partition 'd' in sectors
pe num Size of partition 'e' in sectors
pf num Size of partition 'r in sectors
pg num Size of partition 'g' in sectors
ph num Size of partition 'h' in sectors
se num Sector size in bytes
sf bool supports badl44-style bad sector forwarding
so bool partition offsets in sectors
ty str Type of disk (e.g. removable, winchester)

Disktab entries may be automatically generated with the disk part program.

FILES
/ etc/ disktab

SEE ALSO
newfs(8), diskpart(8), getdiskbyname(3)

BUGS
This file shouldn't exist, the information should be stored on each disk pack.

4.2 Berkeley Distribution May 17, 1986

DUMP(S) UNIX Programmer's Manual

NAME
dump, dumpdates - incremental dump format

SYNOPSIS
#include <sys/types.h>

. #include <sys/inocie.h>
#include <protocols/dumprestore.h>

DESCRIPTION
Tapes used by dump and restore(8) contain:

a header record
two groups of bit map records
a group of records describing directories
a group of records describing files

DUMP(S)

The format of the header record and of the first record of each description as given in the
include file <protoco!sldumprestore.h>. is:

#define NTREC 10
#define MLEN 16
#define MSIZ 4096

#define TS TAPE
#define TS_INODE
#define TS_BITS
#define TS_ADDR
#define TS_END
#define TS_CLRI
#define MAGIC
#define CHECKSUM

struct spcl {
int
time_t
time_t
int
daddct
ino_t
int
int

1
2
3
4
5
6
(int) 60011
(int) 84446

c_type;
c_date;
c_ddate;
c_volume;
c_tapea;
c_inumber;
c_magic;
c_checksum;

struct dinode c_dinode;
int
char

} spcl;

struct idates {
char
char
time_t

};

c_count;
c_addr[BSIZE1;

id_name[161;
id_incno;
id_ddate;

#define DUMPOUTFMT "%-16s %c %s·

#define DUMPINFMT "% 16s %c %r\n1\n·

/. for printf./
/. name, ineno, ctime(date) ./
/. inverse for scanf ./

4th Berkeley Distribution June 18, 1985 1

DUMP(5) UNIX Programmer's Manual DUMP(5)

FILES

NTREC is the number of 1024 byte records in a physical tape block. MLEN is the number of
. bits in a bit map word. MSIZ is the number of bit map words.

The TS_ entries are used in the c_type field to indicate what sort of header this is. The types
and their meanings are as follows:

TS_ TAPE Tape volume label
TS_INODE A file or directory follows. The c_dinode field is a copy of the disk inode and

TS_BITS
TS_ADDR
TS_END
TS_CLRI

contains bits telling what sort of file this is.
A bit map follows. This bit map has a one bit for each inode that was dumped.
A subrecord of a file description. See caddr below.
End of tape .record.
A bit map follows. This bit map contains a zero bit for all inodes that were
empty on the file system when dumped.

MAGIC All header records have this number in c_magic.
CHECKSUM

Header records checksum to this value.

The' fields of the header structure are as follows:

c_type The type of the header.
c_date The date the dump was taken.
c_ddate The date the file system was dumped from.
c_ volume The current volume number of the dump.
c_tapea The current number of this (1024-byte) record.
c_inumber The number of the inode being dumped if this is of type TS_INODE.
c_magic This contains the value MAGIC above, truncated as needed.
c_checksum This contains whatever value is needed to make the record sum to CHECK­

SUM.
This is a copy of the inode as it appears on the file system; see fs(5).
The count of characters in c_addr. .
An array of characters describing the blocks of the dumped file. A character is
zero if the block associated with that character was not present on the file sys-
tem, otherwise the character is non-zero. If the block was not present on the
file system, no block was dumped; the block will be restored as a hole in the
file. If there is not sufficient space in this record to describe all of the blocks in
a file, TS_ADDR records will be scattered through the file, each one picking up
where the last left off.

Each volume except the ll;lst ends with a tapemark (read as an end of file). The last volume
ends with a TS_END record and then the tapemark.

The structure idates describes an entry in the file letcldumpdates where dump history is kept.
The fields of the structure are:

id_name
id_incno
id_ddate

The dumped filesystem is '/dev/id_nam',
The level number of the dump tape; see dump(8).
The date of the incremental dump in system fonnat see types(5).

letc/dumpdates

SEE ALSO
dump(8), restore(8), fs(5), types(5)

4th Berkeley Distribution June 18, 1985 2

EXPORTS(S) UNIX. Programmer's Manual EXPORTS(S)

NAME
exports - NFS file systems being exported

SYNOPSIS
/etc/exporta

DFSCRIPTION
The file letc/exports describes the :file systems which are being exported to ",/s(4) clients.
It is created by the system administrator using a text editor and processed by the mount
request daemon mountd(8c) each time a mount request is received.

The :file consists of a list of file systems and the netgroups(5) or machine names allowed to
remote mount each file system. The file system names are left justified and followed by a
list of names separated by white space. The names will be looked up in letclnetgroups and
then in letclhosts. A file system name with no name list following means export to every­
one. A "#" anywhere in the file indicates a comment extending to the end of the line it
appears on. Lines beginning with white space are continuation lines.

EXAMPLE
lusr clients # export to my clients
lusr/loca1 # export to the world
lusr2 phoenix sun sundae # export to only these machines

I etc! exports

SEE ALSO
mountd(8c)

Sun Microsystems ReI 3.0 1 February 1985 1

FS(5) UNIX Programmer's Manual FS(5)

NAME
fs, inode - format of file system volume

SYNOPSIS
#include <sys/types.h>
#include <sys/fs.h>
#include <sys/inode.h>

DESCRIPTION
Every file system storage volume (disk, nine-track tape, for instance) has a common format
for certain vital information. Every such volume is divided into a certain number of blocks.
The block size is a parameter of the file system. Sectors beginning at BBLOCK and continu­
ing for BBSIZE are used to contain primary and secondary bootstrapping programs.

The actual file system begins at sector SBLOCK with the super block that is of size SBSIZE.
The layout of the super block as defined by the include file <syslfs.h> is:

#define FS_MAGIC Ox011954
struct fs {

struct fs .fs_link; /. linked list of file systems ./
struct fs .fs_rlink; /. used for incore super blocks ./
daddctfs_sblkno; /. addr of super-block in filesys ./
daddctfs_cblkno; /. offset of cyl-block in filesys ./
daddctfs_iblkno; /. offset of inode-blocks in filesys ./
daddctfs_dblkno; /. offset of first data after cg ./
long fs_cgoffset; /. cylinder group offset in cylinder ./
long fs_cgmask; /. used to calc mod fs_ntrak ./
time_t fLtime; /. last time written ./
long fs_size; /. number of blocks in fs ./
long fs_dsize; /. number of data blocks in fs ./
long fLncg; /. number of cylinder groups ./
long fs_bsize; /. size of basic blocks in fs ./
long fs_fsize; /. size of frag blocks in fs ./
long fsjrag; /. number of frags in a block in fs ./

/. these are configuration parameters ./
long fs_minfree; /. minimum percentage of free blocks ./
long fLrotdelay; /. num of ms for optimal next block ./
long fs_rps; /. disk revolutions per second ./

/. these fields can be computed from the others ./
long fLbmask; /. "blkofl''' calc of blk offsets ./
long fsjmask; /. "fragoff" calc of frag offsets ./
long fs_bshift; /. "lblkno" calc of logical blkno ./
long fsjshift; /. "numfrags" calc number of frags ./

/. these are configuration parameters ./
long fs_maxcontig; /. max number of contiguous blks ./
long fs_maxbpg; /. max number of blks per cyl group ./

/. these fields can be computed from the others ./
long fsjragshift; /. block to frag shift ./
long fLfsbtodb; /. fsbtodb and dbtofsb shift constant ./
long fs_sbsize; /. actual size of super block ./
long fLcsmask; /. csum block offset ./
long fs_csshift; /. csum block number ./
long fs_nindir, /. value of NINDIR ./
long fs_inopb; /. value of INOPB ./
long fs_nspf; /. value of NSPF ./
long fs_optim; /. optimization preference, see below ./

4.2 Berkeley Distribution May 16, 1986 1

FS(5) UNIX Programmer's Manual FS(5)

long fs_sparecon[51; I. reserved for future constants .1
I. sizes determined" by number of cylinder groups and their sizes .1

daddr_t fs_csaddr; I. blk addr of cyl grp summary area .1
long fs_cssize; I. size of cyt grp summary area .1
long fs_cgsize; I. cylinder group size .1

I. these fields should be derived from the hardware .1
long fs_ntrak; I. tracks per cylinder .1
long fLnsect; I. sectors per track .1
long fs_spc; I. sectors per cylinder.1

I. this comes from the disk driver partitioning .1
long fs_ncyl; I. cylinders in file system .1

I. these fields can be computed from the others .1
long fs_cpg; I. cylinders per group .1
long fs_ipg; I. inodes per group .1
long fs_fpg; I. blocks per group. fs_frag .1

I. this data must be re-computed after crashes .1
struct csum fs_cstota1; I. cylinder summary information .1

I. these fields are cleared at mount time .1
char fs3mod; I. super block modified flag .1
char fs_clean; I. file system is clean flag .1
char fs_ronly; I. mounted read-only flag .1
char fs_flags; I. currently unused flag .1
char fs.Jsmnt[MAXMNTLEN]; I. name mounted on.1

I. these fields retain the current block allocation info .1
long fs_cgrotor; I. last cg searched .1
struct csum .fLCSp[MAXCSBUFS];I. list of fLCS info buffers .1
long fs_cpc; I. cyl per cycle in postbl .1
short fs_postbl[MAXCPG][NRPOS];I. head of blocks for each rotation .1
long fs_magic; I. magic number.1
u_char fs_rotbl[I]; I. list of blocks for each rotation .1

I. actually longer .1
};
Each disk drive contains some number of file systems. A file system consists of a number of
cylinder groups. Each cylinder group has inodes and data.

A file system is described by its super-block, which in tum describes the cylinder groups. The
super-block is cntical data and is replicated in each cylinder group to protect against catas­
trophic loss. This is done at file system creation time and the critical super-block data does
not change, so the copies need not be referenced further unless disaster strikes.

Addresses stored in inodes are capable of addressing fragments of 'blocks'. File system blocks
of at most size MAXBSIZE can be optionally broken into 2, 4, or 8 pieces, each of which is
addressable; these pieces may be DEY _BSIZE, or some mUltiple of a DEY _BSIZE unit.

Large files consist of exclusively large data blocks. To avoid undue wasted disk space, the last
data block of a small file is allocated as only as many fragments of a large block as are neces­
sary. The file system format retains only a single pointer to such a fragment, which is a piece
of a single large block that has been divided. The size of such a· fragment is determinable
from information in the inode, using the "blksize(fs, ip, Ibn)" macro.

The file system records space availability at the fragment level; to determine block availabil­
ity, aligned fragments are examined.

The root inode is the root of the file system. Inode 0 can't be used for normal purposes and
historically" bad blocks were linked to inode 1, thus the root inode is 2 (inode 1 is no longer
used for this purpose, however numerous dump tapes make this assumption, so we are stuck

4.2 Berkeley Distribution May 16, 1986 2

FS·(5) UNIX Programmer's Manual FS(5)

with it). The lost+Jound directory is given the next available inode when it is initially created
by mkfs.

fs_minJree gives the minimum acceptable percentage of tile system blocks that may be free. If
the freelist drops below this level only the super-user may continue to· allocate blocks. This
may be set to 0 if no reserve of free blocks is deemed necessary, however severe performance
degradations will be observed if the tile system is run at greater than 90% full; thus the default
value of fs_minJree is 10%.

Empirically the best trade-off between block fragmentation and overall disk utilization at a
loading of 90% comes with a fragmentation of 4, thus the default fragment size is a fourth of
the block size.

fs_optim specifies whether the tile system should try to minimize the time spent allocating
blocks, or if it should attempt to minimize the space fragmentation on the disk. If the value
of fs_minfree (see above) is less than 10%, then the file system defaults to optimizing for
space to avoid running out of full sized blocks. If the value of minfree is greater than or
equal to 10%, fragmentation is unlikely to be problematical, and the tile system defaults to
optimizing for time.

Cylinder group related limits: Each cylinder keeps track of the availability of blocks at
different rotational positions, so that sequential blocks can be laid out with minimum rota­
tional latency. NRPOS is the number of rotational positions which are distinguished .. With
NRPOS 8 the resolution of the summary information is 2ms for a typical 3600 rpm drive.

fsJotdelay gives the minimum number of milliseconds to initiate· another disk transfer on the
same cylinder. It is used in determining the rotationally optimal layout for disk blocks within
a tile; the default value for fsJotdelay is 2ms.

Each file system has a statically allocated number of inodes. An inode is allocated for each
NBPI bytes of disk space. The inode allocation strategy is extremely conservative.

MAXIPG bounds the number of inodes per cylinder group, and is needed only to keep the
structure simpler by having the only a single variable size element (the free bit map).

N.B.: MAXIPG must be a multiple of INOPB(fs).

MINBSIZE is the smallest allowable block size. With a MINBSIZE of 4096 it is possible to
create tiles of size r32 with only two levels of indirection. MINBSIZE must be big enough to
hold a cylinder group block, thus changes to (struct cg) .must keep its size within MINBSIZE.
MAXCPG is limited only to dimension an array in (struct cg); it can be made larger as long
as that structure's size remains within the bounds dictated by MINBSIZE. Note that super
blocks are never more than size SBSIZE.

The path name on which the file system is mounted is maintained in fsJsmnt.
MAXMNTLEN defines the amount of space allocated in the super block for this name. The
limit on the amount of summary information per file system is defined by MAXCSBUFS. It is
currently parameterized for a maximum of two million cylinders.

Per cylinder group information is summarized in blocks allocated from the first cylinder
group's data blocks. These blocks are read in from fs_csaddr (size fs_cssize) in addition to the
super block.

N.B.: sizeof (struct csum) must be a power of two in order for the "fs3s" macro to work.

Super block Jor a file system: MAXBPC bounds the size of the rotational layout tables and is
limited by the fact that the super block is of size SBSIZE. The size of these tables is inversely
proportional to the block size of the file system. The size of the tables is increased when sec­
tor sizes are not powers of two, as this increases the number of cylinders included before the
rotational pattern repeats (fs_cpc). The size of the rotational layout tables is derived from
the number of bytes remaining in (struct fs).

4.2 Berkeley Distribution May 16, 1986 3

FS(5) UNIX Programmer's Manual FS(5)

MAXBPG bounds the number of blocks of data per cylinder group, and is limited by the fact
. that cylinder groups are at most one block. The size of the free block table is derived from
the size of blocks and the number of remaining bytes in the cylinder group structure (street
cg).

[node: The inode is the focus of all file activity in the UNIX file system. There is a unique
inode allocated for each active file, each current directory, each mounted-on file, text file, and
the root. An inode is 'named' by its device/i-number pair. For further information, see the
include file <syslinode.h>.

4.2 Berkeley Distribution May 16, 1986 4

FSTAB(5) UNIX. Programmer's Manual FSTAB (5)

NAME
fstab - static information about 1ilesystems

SYNOPSIS
#include <mntent.h>

DESCRIPTION
The 1ile /etc/fstab describes the 1ilesystems and swapping partitions used by the local
machine. The system administrator can modify it with a text editor. It is read by com­
mands that mount. unmount. dump. restore. and check the consistency of 1ilesystems: also
by the system when providing swap space. The 1ile consists of a number of lines of the
form:

fS1&D.1Tle dir type opts freq passno

for example:

/dev/xyOa /4.2 rw.noquota 12

The entries from this 1ile are accessed using the routines in getmntent(3). which returns a.
structure of the following form:

struct mntent {

}:

char *mIlt_fsname:
char *mIlt_dir:
char *mIlt_type:
char *mIlt_opts;
int mnt_freq;
int mnt-passno:

/a 1i1esystem name a/
/a 1i1esystem path pre1ix a/
/a 4.2. nfs. swap. or ignore a/
/arw.ro.noquota. quota. hard. soft a/
/a dump frequency. in days a/
/a pass number on parallel fsck a/

Fields are separated by white space: a '#' as the 1irst non-white character indicates a com­
ment.

The mnt_dir 1ie1ds is the full path name of the directory to be mounted on.

The mnt_type 1ield determines how the mntJS1&D.1TIe and mnt_opts 1ields will be inter­
preted. Here is a list of the 1ilesystem types currently supported. and the way each of them
interprets these 1ields:

4.2 mntJS1&D.1TIe· Must be a block special device.

nfs mntJS1&D.1TIe the path on the server of the directory to be served.

swap mntJS1&D.1TIe must be a block special device swap partition.

If the mnt_type is speci1ied as ignore then the entry is ignored. This is useful to show disk
partitions not currently used.

The mnt_opts 1ield contains a list of comma-separated option words. Some mnt_opts are
valid for all1i1esystem types. while others apply to a speci1ic type only:

mnt_opts valid on aI.l1ile systems (the default is rw,suid):

rw

ro

suid

nosuid

read/write.

read-only.

set-uid execution allowed.

set-uid execution not allowed.

mnt_opts speci1ic to 4.21ile systems (the default is noquota).

Sun Microsystems Rei 3.0 23 September 1985 1

FSTAB(5) UNIX. Programmer's Manual

quota. usage limits enforced.

noquota. usage limits not enforced.

mnt_opts specific to nfs (NFS) 1i1e systems (the defaults are:

fg,ret.ry-l,timeo-7,retrans-4,port=NFS_PORT,hard

with defaults for rsize and wsize set by the kernel):

bg if the first attempt fails, retry in the background.

fg
re1:ry=n

rsize=n

wsize=n

timeo=n.

retr8JlS=ln.

port=n

soft

retry in foreground.

set number of failure retries to n.

set read buffer size to n bytes.

set write buffer size to n bytes;

set NFS timeout to n tenths of a second.

set number of NFS retransmissions to n.

set server IP port number to n.

return error if server doesn't respond.

hard retry request until server responds.

FSTAB(5)

The bg option causes mount to run in the background if the server's mountd(8) does
not respond. mount attempts each request retry=n. times before giving up. Once the
filesystem is mounted. each nfs request made in the kernel waits timeo=n tenths of
a second for a response. If no response arrives. the time-out is multiplied by 2 and
the request is retransmitted. When retrans=n. retransmissions have been sent with
no reply a soft mounted :filesystem returns an error on the request and a ~d
mounted filesystem retries the request. The number of bytes in a read or write
request can be set with the rsize and wsize options.

The :field mntJreq indicates how often each partition should be dumped by the dump(8)
command (and triggers that command's w option, which determines what :filesystems
should be dumped). Most systems set the mntJreq :field to 1. indicating that :fi.lesystems
are dumped each day.

The final field. mnt--PQ.Smo, is used by the consistency checking program fsck(8) to allow
overlapped checking of filesystems during a reboot. All fi.lesystems with mnt--PQ.Smo of 1
are checked:first simultaneously. then all :filesystem.s with mnt--PQ.Ssno of 2. and so on. It is
usual to make the mnt-IJO.Ssno of the root :filesystem have the value 1. and then check one
filesystem on each available disk drive in each subsequent pass, until all :filesystem parti­
tions are checked.

The letclfstab :file is read only by programs and never written; the system administrator
must maintain it manually. The order of records in letclfstab is important because fsck,
mount, and umount process the :file sequentially; :filesystems must appear after :filesystems
they are mounted within.

letclfstab

SEE ALSO
getmntent(3), fsck(8), mount(8), quotacheck(8), quotaon(8)

Sun Microsystems ReI 3.0 23 September 1985 2

GETTYTAB (5) UNIX Programmer's Manual GETTYT AB (5)

NAME
gettytab - terminal configuration data base

SYNOPSIS
! etc!gettytab

DESCRIPTION
Gettytab is a simplified version of the termcap(5) data base used to describe terminal lines.
The initial terminal login process getty(8) accesses the gettytab file each time it starts, allowing
simpler reconfiguration of terminal characteristics. Each entry in the data base is used to
describe one class of terminals.

There is a default terminal class, default, that is used to set global defaults for all other
classes. (That is, the default entry is read. then the entry for the class required is used to
override particular settings.)

CAPABILITIES
Refer to termcap(5) for a description of the file layout. The default column below lists
defaults obtained if there is no entry in the table obtained, nor one in the special default table.

Name Type Default Description
ap bool false terminal uses any parity
bd num 0 backspace delay
bk str 0377 alternate end of line character (input break)
cb bool false use crt backspace mode
cd num 0 carriage-return delay
ce bool false use crt erase algorithm
ck bool false use crt kill algorithm
cl str NULL screen clear sequence
co bool false console - add \n after login prompt
ds str Ay delayed suspend character
dx bool false set DECCTLQ
ec bool false leave echo OFF
ep bool false terminal uses even parity
er str "'? erase character
et str AD end of text (EOF) 'c1!aracter
ev str NULL initial enviroment
fO num unused tty mode flags to write messages
f1 num unused tty mode flags to read login name
f2 num unused tty mode flags to leave terminal as
fd num 0 form-feed (vertical motion) delay
fl str ·0 output flush character
hc bool false do NOT hangup line on last close
he str NULL hostname editing string
hn str hostname hostname
ht bool false terminal has real tabs
ig bool false ignore garbage characters in login name
im str NULL initial (banner) message
in str AC interrupt character
is num unused input speed
kl str AU kill character
Ic bool false terminal has lower case
1m str login: login prompt
In str AV "literal next" character
10 str !bin/login. program to exec when name· obtained
nd num 0 newline (line-feed) delay

. 4.2 Berkeley Distribution May 19, 1986

GETTYTAB(5) UNIX Programmer's Manual GETTYTAB (5)

nl bool false terminal has (or might have) a newline character
nx str default next table (for auto speed selection)
op bool false terminal uses odd parity
os num unused output speed
pc str \0 pad character
pe bool false use printer (hard copy) erase algorithm
pf num 0 delay between first prompt and following flush (seconds)
ps bool false line connected to a MICOM port selector
qu str A\ quit character
rp str "R line retype character
rw bool false do NOT use raw for input, use cbreak
sp num unused line speed (input and output)
su str "z suspend character
tc str none table continuation
to num 0 timeout (seconds)
tt str NULL terminal type (for enviroment)
ub bool false do unbuffered output (of prompts etc)
uc bool false terminal is known upper case only
we str "W word erase character
xc bool·· false do NOT echo control chars as "X
xf str '"S XOFF (stop output) character
xn str AQ XON (start output) character

If no line speed is specified, speed will not be altered from that which prevails when getty is
entered. Specifying an input or o~tput speed will override line speed for stated direction
only.

Terminal modes to be used for the output of the message, for input of the login name, and to
leave the terminal set as upon completion, are derived from the boolean flags specified. If the
derivation should prove inadequate, any (or all) of these three may be overriden with one of
the ro, n, or f2 numeric specifications, which can be used to specify (usually in octal, with a
leading '0') the exact values of the flags. Local (new tty) flags are set in the top 16 bits of this
(32 bit) value.

Should getty receive a null character (presumed to indicate a line break) it will restart using
the table indicated by the ox entry. If there is none, it will re-use its original table.

Delays are specified in milliseconds, the nearest possible delay available in the tty driver will
be used. Should greater certainty be desired, delays with values 0, 1, 2, and 3 are interpreted
as choosing that particular delay algorithm from the driver.

The cl screen clear string may be preceded by a (decimal) number of milliseconds of delay
required (a la termcap). This delay is simulated by repeated use of the pad character pc.

The initial message, and login message, im and 1m may include the character sequence %h or
%t to obtain the hostname or tty name respectively. (%% obtains a single '%' character.) The
hostname is normally obtained from the system, but may be set by the hn table entry. In
either case it may be edited with he. The he string is a sequence of characters, each character
that is neither '@' nor '#' is copied into the final hostname. A '@' in the he string, causes one
character from the real hostname to be copied to the final hostname. A '#' in the he string,
causes the next character of the real hostname to be skipped. Surplus '@' and '#' characters
are ignored.

When getty execs the login process, given in the 10 string (usually "lbinllogin"), it will have set
the enviroment to include the terminal type, as indicated by the tt string (if it exists). The ev
string, can be used to enter additional data into the environment. It is a list of comma
. separated strings, each of which will presumably be of the form name= value.

4.2 Berkeley Distribution May 19, 1986 2

GETTYTAB(5) UNIX Programmer's Manual GETTYTAB(5)

If a non-zero timeout is specified, with to, then getty will exit within the indicated number of
seconds, either having received a login name and passed control to login, or having received
an alarm signal, and exited. This may be useful to hangup dial in lines.

Output from getty is even parity unless op is specified; Op may be specified with ap to allow
any parity on input, but generate odd parity output. Note: this only applies while getty is
being run, terminal driver limitations prevent a more complete implementation. Getty does
not check parity of input characters in RA W mode.

SEE ALSO

BUGS

login(l), termcap(5), getty(8).

The special characters (erase, kill, etc.) are reset to system defaults by login(l). In all cases,
'#' or '''H' typed in a login name will be treated as an erase character, and '@' will be treated
as a kill character. .

The delay stuff is a real crock. Apart form its general lack of flexibility, some of the delay
algorithms are not implemented. The terminal driver should support sane delay settings.

The he capability is stupid.

Termcap format is horrid, something more rational should have been chosen.

4.2 Berkeley Distribution May 19, 1986 3

GROUP (5) UNIX Programmer's Manual GROUP(5)

NAME
group - group file

SYNOPSIS
leU;/group

DESCRIPTION
Group contains for each group the following information:

• group name

• encrypted password
• numerical group ID

• a comma separated fist of all users allowed in the group
This is an ASCII file. The fields are separated by colons: each group .is separated from the
next by a new-line. If the password field is null. no password is demanded,

This file resides in the lete directory. Because of the encrypted passwords. it can and does
have general read permission and can be used, for example. to map numerical group ID's to
names.

A group file can have a line beginning with a plus (+). which means to incorporate entries
from the yellow pages. There are two styles of + entries: All by itself. + means to insert
the entire contents of the yellow pages group file at that point: +name means to insert the
entry (if any) for name from the yellow pages at that point. If a + entry has a non-null
password or group member field. the contents of that field will overide what is contained in
the yellow pages, The numerical group ID field cannot be overridden.

EXAMPLE

FILFS

+myproject:::bill. steve
+:

If these entries appear at the end of a group file, then the group myproject will have
members billandstew. and the password and group ID of the yellow pages entry for the
group myproject. All the groups listed in the yellow pages will be pulled in and placed
after the entry for myproject.

lete/group lete/yp/group

SEE AlSO
setgroups(2).initgroups(3),crypt(3),passwd(1).passwd(5)

BUGS
The passwd(1) command won't change group passwords.

Sun Microsystems ReI 3.0 1 February 1985 1

HOSTS(5) UNIX Programmer's Manual HOSTS(5)

NAME
hosts -' host name data base

DESCRIPTION

FILES

The hosts file contains information regarding the known hosts on the network. For each host
a single line should be present with the following information:

official host name
Internet address
aliases

Items are separated by any number of blanks andlor tab characters. A U#" indicates the
beginning of a comment; characters up to the end of the line are not interpreted by routines
which search the file.

When using the name server named(8), this file provides a backup when the name server is
not running. For the name server, it is suggested that only a few ad4resses be included in this
file. These include address for the local interfaces that ifoonfig(8C) needs at boot time and a
few machines on the local network.

This file may be created from the official host data base maintained at the Network Informa­
tion Control Center (NIC), though local changes may be required to bring it up to date
regarding unofficial aliases andlor unknown hosts. As the database maintained at NIC is
incomplete, use of the name server is recommend for sites on the DARPA Internet.

Network addresses are specified in the conventional notation using the inecaddr() routine
from the Internet address manipulation library, inet(3N). Host names may contain any print­
able character other than a field delimiter, newline, or comment character.

tetc/hosts

SEE AlSO
gethostbyname(3N), ifconfig(8C), named(8)
Name Server Operations Guide for BIND

4.2 Berkeley Distribution . May 14, 1986

HOSTS.EQUIV (5) UNIX Programmer's Manual HOSTS.EQUIV (5) .

NAME
hosts.equiv - list of trusted hosts

DESCRIPTION

FILES

HostsMJUiv resides in directory letc and contains a list of trusted hosts. When an rlogin(l)
or rsh(t) request from such a host is made. and the initiator of the request is in
letclpasswd. then no further validity checking is done. That is. rlogin does not prompt for
a password. and rsh completes successfully. So a remote user is "equivalenced" to a local
user with the same user ID when the remote user is in hosts .equiv.

The format of hostsMJUiv is a list of names. as in this example:

host 1
hostl
+@group1
-@group2

A line consisting of a simple host name means that anyone logging in from that host is
trusted. A line consisting of +@group means that all hosts in that network group are
trusted. A line consisting of -@group means that hosts in that group are not trusted. Pro­
grams scan hosts.equiv linearly. and stop at the first hit (either positive for hostname and
+@ entries. or negative for -@ entries). A line consisting of a single + means that everyone
is trusted.

The rhosts file has the same format as hosts.equiv. When user XXX executes rlogin or rsh.
the rhosts file from XXX's home directory is conceptually concatenated onto the end of
hosts.equiv for permission checking. However. -@ entries are not sticky. If a user is
excluded by a minus entry from hosts.equiv but included in rhosts. then that user is con­
sidered trusted. In the special case when the user is root. then only the I rhosts :file is
checked ..

It is also possible to have two entries (separated by a single space) on a line of these :files. In
this case. if the remote host is equivalenced by the first entry. then the user named by the
second entry is allowed to log in as anyone. that is. specify any name to the -1 :O.ag (pro­
vided that name is in the letc/pa.sswd file. of course). Thus

sundown john

allows john to log in from sundown as anyone. The usual usage would be to put this entry
in the rhosts file in the home directory for bill . Then john may log in as bill when coming
from sundown. The second entry may be a netgroup. thus

+@group1 +@group2

allows any user in group2 coming from a host in groupJ to log in as anyone.

/ etclhosts.equiv
/ etclypl domaJ,n!netgroup
I etclypl domaJ,n!netgroup.byuser
/ etc/ypl domaJ,n!netgroup. byhost

SEE ALSO
rlogin(1). rsh(t). netgroup(5)

Sun Microsystems ReI 3.0 1 February 1985 1

MAP3270(5) UNIX Programmer's Manual MAP3270(5)

NAME
map3270 - database for mapping ascii keystrokes into IBM 3270 keys

SYNOPSIS
letclmap3270

DEsauPnON ,
When emulating IBM-syle 3270 terminals under UNIX (see tn3270(1», a mapping must be
performed between sequences of keys hit on a user's (ascii) keyboard, and the keys that are
available on a 3270. For example, a 3270 has a key labeled EEOF which erases the contents
of the current field from the location of the cursor to the end. In order to accomplish this
function, the terminal user and a program emulating a 3270 must agree on what keys will be
typed to invoke the EEOF function.

The requirements for these sequences are:

FORMAT

1.) that the first character of the'sequence be outside of the
standard ascii printable characters;

2.) that no one sequence be an initial part of another (although
sequences may share initial parts).

The file consists of entries for various terminals. The first' part of an entry lists the names of
the terminals which use that entry. These names should be the same as in letcltermcap (see
termcap(5»; note that often the terminals from various termcap entries will all use the same
map3270 entry; for example, both 925 and 925vb (for 925 with visual bells) would probably
use the same map3270 entry. After the names, separated by vertical bars ('I'), comes a left
brace ('{'); the definitions; and, finally, a right brace ('}').

The definitions consist of a reserved keyword (see list below) which identifies the 3270 func­
tion (extended as defined below), followed by an equal sign ('='), followed by the various ways
to generate this particular function, followed by a semi-colon (';'). Each way is a sequence of
strings of printable ascii characters enclosed inside single quotes ("'); various ways (options)
are separated by vertical bars ('I').

Inside the single quotes, a few characters are special. A caret (....) specifies that the next char- '
acter is the "control" character of whatever the character is. So, "'a' represents control-a, ie:
hexadecimal 1 (note that ""A' would generate the same code). To generate.rubout, one enters
""1'. To represent a control character inside a file requires using the caret to represent a con­
trol sequence; simply typing control-A will not work. Note: the ctrl-caret sequence (to gen­
erate a hexadecimal 1 E) is represented as , (not ''''\ "").

In addition to the caret. a letter may be preceeded by a backslash ('\'). Since this has little
effect for most characters, its use is usually not recommended. For the case of a single quote
('0'), the backslash prevents that single quote from terminating the string. To have the
backslash be part of the string, it is necessary to place two backslashes ('\ \') in the file.

In addition, the following characters are special:

'\E' means an escape character;
'\n' means newline;
'\t' means tab;
'\r' means carriage return.

It is not necessary for each character in a string to be enclosed within single quotes. '\E\E\E'
means three escape characters.

4.3 Berkeley Distribution January 11, 1986 1

MAP3270(5) UNIX Programmer's Manual MAP3270(5)

Comments, which may appear anywhere on a line, begin with a hash mark ('#'), and tera

minate at the end of that line. However, comments cannot begin inside a quoted string; a
hash mark inside a quoted string has no special meaning.

3270 KEYS SUPPORTED
The following is the list of 3270 key names that are supported in ~his file. Note that some of
the keys don't really exist on a 3270. In particular. the developers of this file have relied
extensively on the work at the Yale University Computer Center with their 3270 emulator
which runs in anIBM Seriesll front end. The following list corresponds closely to the funco

tions that the developers of the Yale code offer in their product.

In the following list, the starred r .. ') functions are not supported by tn3270(1). An unsup­
ported function will cause tn3270(l) to send a bell sequence to the user's terminal.

3270 Key Name Functional description

(.)LPRT
DP
FM

(*)CURSEL
RESHOW
EINP
EEOF
DELETE
INSRT
TAB
BTAB
COLTAB
COLBAK
INDENT
UNDENT
NL
HOME
UP
DOWN
RIGHT
LEFT
SETTAB
DELTAB
SETMRG
SETHOM
CLRTAB

(.)APLON
(.)APLOFF
(*)APLEND
(.)PCON
(.)PCOFF

DISC
(.)INIT
(.)ALTK

FLINP
ERASE
WERASE
FERASE

4.3 Berkeley Distribution

local print
dup character
field mark character

cursor select
redisplay the screen

erase input
erase end of field

delete character
toggle insert mode

field tab
field back tab

column tab
column back tab
indent one tab stop
undent one tab stop

new line
home the cursor

up cursor
down cursor
right cursor

left cursor
set a column tab
delete a columntab
set left margin
set home position

clear all column tabs
aplon
aploff
treat input as ascii

xonlxoff on
xonlxotf off

disconnect (suspend)
new terminal type

alternate keyboard dvorak
flush input
erase last character

erase last word
erase field

January 11, 1986 2

MAP3270(5) UNIX Programmer's Manual

SYNCH we are in synch with the user
RESET reset key-unlock keyboard
MASTER_RESET reset, unlock and redisplay

(*)XOFF please hold output
(*)XON please give me output

ESCAPE enter telnet command mode
WORDTAB tab to beginning of next word
WORDBACKTAB tab to beginning of currentllast word
WORDEND tab to end or-current/next word
FIELD END tab to last non-blank of current/next

PAl
PA2
PA3

CLEAR
TREQ
ENTER

PFKl
PFK2
etc.
PFK36

A SAMPLE ENTRY

unprotected (writable) field

program attention I
program attention 2
program attention 3

local clear of the 3270 screen
test request
enter key

program function key I
program function key 2

etc.
program function key 36

MAP3270(5)

The following entry is used by tn3270(l) when unable to locate a reasonable version in the
user's environment and in letc/map3270:

name { # actual name comes from TERM variable
clear = 'AZ';

flinp = 'AX';
enter = 'Am';
delete = 'Ad' I 'f'; # note that 'f' is delete (rubout)
synch = ,Ar,;
reshow = 'AV';

eeof = 'Ae';
tab = 'Ai';
btab = ,Ab';
nl = 'An';
left = ,Ah';
right = 'AI';
up = 'Ak';
down = 'T;
einp = ,AW';

reset = 'At';
xoff = 'AS';
xon = ,Aq,;
escape = ,AC';

ferase = 'AU';
insrt = ' ';
program attention keys
pa I = ,Ap I'; pa2 = ,Ap2'; pa3 = ,Ap3';
program function keys

4.3 Berkeley Distribution January 11, 1986 3

MAP3270(5) UNIX Programmer's Manual

pfkl = '1'; pfk2 ='2'; pfk3 = '3'; pfk4 = '4';
pfk5 = '5'; pfk6 = '6'; pfk7 = '7'; pfk8 = '8';
pfk9 =: '9'; pfklO = ' '; pfkll =< '-'; pfk12 = '=';
pfk13 = "; pfk14 = '@'; pfklS == '0;
pfk17 = "; pfk18 = "; pfk19 = "; pfk20 = ';
pfk21 = • pfk22 = ~)'; pfk23 = ' '; pfk24 = ' ';
}

IBM 3270 KEY DEFINITONS FOR AN ABOVE DEFINITION

MAP3270(S)

The charts below show the proper keys to emulate each 3270 function when using the default
key mapping supplied with tn3270(l) and mset(1).

Command Keys IBM 3210 Key . Default Key(s)
Enter
Clear

Cursor Movement Keys
NewLine

Tab
Back Tab
Cursor Left
Cursor Right
Cursor Up
Cursor Down

Edit Control Keys
Delete Char

Erase EOF
Erase Input
Insert Mode
End Insert

Program Function Keys
PFI
PF2

PFIO
PFll
PF12
PF13
PF14

PF24
Program Attention Keys

PAl
PA2
PA3

Local Control Keys

Other Keys

Reset After Error
Purge Input Buffer
Keyboard Unlock
Redisplay Screen

RETURN
control-z

control-n or
Home

control-i
control-b
control-h
control-l
control-k

control-j or
LINE FEED

. control-d or
RUB

control-e
control-w
ESC Space

ESC Space

ESC 1
ESC 2

ESC 0
ESC­
ESC =
ESC!
ESC@

ESC +

control-p 1
control-p 2
control-p 3

control-r
control-x

control-t
control-v

Erase current field control-u

4.3 Berkeley Distribution January 11, 1986 4

MAP3270(5) UNIX Programmer's Manual MAP3270(5)

FILES
/etc/map3270

SEE ALSO
tn3270(1), mset(l), Yale ASCII Terminal Communication System II Program
Description/Operator's Manual (IBM SB30-1911)

AUTHOR

BUGS

Greg Minshall

Tn3270 doesn't yet understand how to process all the functions available in map3270; when
such a function is requested tn3270 will beep at you.

The definition of "word· (for "word delete", "word tab") should be a run-time option.
Currently it is defined as the kernel tty driver defines it (strings of non-blanks); more than one
person would rather use the ·vi" definition (strings of specials, strings of alphanumeric).

4.3 Berkeley Distribution January II, 1986 5

UNIX Programmer"s Manual

This page intentionally left almost blank.

MTAB(S) UNIX. Programmer's Manual MTAB(S)

NAME
letc/mtab - mounted :file system table

SYNOPSIS
#include <m.ntent.h>

D~ION

Mtab resides in the lete directory. and contains a table of :fi.lesystems currently mounted by
the mount command. Umount removes entries from this :file.

The :file contains a line of information for each mounted :fi.lesystem. structurally identical to
the contents of letelfstab. described in fstab(S). There are a number of lines of the form:

fsname dir type opts freq pasmo

for example:

Idev/xyOa I 4.2 rw.noquota 1 2

The:file is accessed by programs using getm.7r.tent(3). and by the system administrator using
a text editor ..

letc/mtab

SEE ALSO
getmntent(3).fstab(S).mount(8)

Sun Microsystems ReI 3.0 28 August 1985 1

NETGROUP (5) UNIX Programmer's Manual NETGROUP (5)

NAME
netgroup - list of network groups

DESCRIPTION

FILFS

Netgraup defines network wide groups. used for permission checking when doing remote
mounts. remote logins. and remote shells. For remote mounts. the information in netgraup
is used to classify machines; for remote logins and remote shells. it is used to classify users.
Each line of the netgraup file defines a group and has the format

groupname memberl member2

where memberi is either another group name. or a triple:

(hostname.user.name.domainname)

Any of three :fields can be empty. in which case it signifies a wild card. Thus

universal C.)
defines a group to which everyone belongs. Field names that begin with something other
than a letter. digit or underscore (such as "_DO) work in precisely the opposite fashion. For
example. consider the following entries:

justmachines (analytica.-.sun)
justpeople (-.babbage.sun)

The machine anolytica belongs to the group justmachines in the domain sun. but no users
belong to it. Similarly. the user babbage belongs to the group just people in the domain sun.
but no machines belong to it.

Network groups are contained in the yellow pages. and are accessed through these :files:

I etc/ypl domainname/netgroup.dir
I etc/ypl domainname/netgroup. pag
letc/ypldomainname/netgroup.byuser.dir
letc/ypldomainname/netgroup.byuser.pag
letc/ypldomainname/netgroup,byhost.dir
I etc/ypl domainname/netgroup.byhost.pag

These :files can be created from letclnetgraup using makedbm(8).

I etc/netgroup
I etc/ypl domainname/netgroup.dir
letc/ypldomainname/netgroup.pag
I etc/ypl domainname/netgroup.byuser .dir
letc/ypldomainname/netgroup.byuser.pag
I etc/ypl domainname/netgroup.byhost.dir
I etc/ypl domainname/netgroup.byhost. pag

SEE ALSO
getnetgrent(3). exportfs(8). makedbm(8). ypserv(8)

Sun Microsystems Rei 3.0 1 February 1985 1

NETWORKS (5) UNIX Programmer's Manual NETWORKS(S)

NAME
networks - network name data base

DESCRIPTION

FILES

The networks file contains information regarding the known networks which comprise the
DARPA Internet. For each network a single line should be present with the following infor­
mation:

official network name
network number
aliases

Items are separated by any number of blanks and/or tab characters. A "#" indicates the .
beginning of a comment; characters up to the end of the line are not interpreted by routines
which search the file. This file is normally created from the official network data base main­
tained at the Network Information Control Center (NIC), though local changes may be
required to bring it up to date regarding unofficial "aliases and/or unknown networks.

Network number may be specified in the conventional notation using the ineLnetwork()
routine from the Internet address manipulation library, inet(3N). Network names may con­
tain any printable character other than a field delimiter, newline, or comment character.

tetc/networks

SEE ALSO
getnetent(3N)

BUGS .
A name server should be used instead of a static file.

4.2 Berkeley Distribution May 6,1986

PASSWD(5) UNIX Programmer's Manual PASSWD(5)

NAME
passwd - password file

SYNOPSIS
Ietclpasswd

DmcRIPl'lON
The passwd file contains for each user the following information:

name User's login name - contains no upper case characters and must not be greater
than eight characters long.

password encrypted password

numerical user ID
This is the user's ID in the system and it must be unique.

numerical group ID _
This is the number of the group that the user belongs to.

user's real name
In some versions of UNIX. this field also contains the user's office. extension.
home phone. and so on. For historical reasons this field is called the GCOS field.

initial working directory
The directory that the user is positioned in when they log in - this is known as
the 'home' directory.

shell program to use as Shell when the user logs in.

The user's real name field may contain '&', meaning insert the login name.

The password file is an ASCll file. Each field-within each user's entry is separated fropl the
next by a colon. Each user is separated from the next by a new-line. If the password field
is null. no password is demanded: if the Shell field is null. Ibinl sh is used.

The passwd :file can also have line beginning with a plus (+). which means to incorporate
entries from the yellow pages. There are three styles of + entries: all by itself. + means to
insert the entire contents of the yellow pages password :file at that point: +name means to
insert the entry (if any) for name from the yellow pages at that point: +@name means to
insert the entries for all members of the network group name at that point. If a + entry has
a non-null passwor4. directory. gecos. or shell1ield. they will overide what is contained in
the yellow pages. The numerical user ID and group ID fields cannot be overridden.

EXAMPLE
Here is a sample letclpasswd :file:

root:q.mJzTnu8icF.:0:10:God:l:/binlcsh
tut:6k17KCFRPNVXg:508:10:Bill Tuthill:/usr2/tut:/binlcsh
+john:
+@documentation:no-login:
+:::Guest

In this example. there are specific entries for users root tut. in case the yellow pages are out
of order. The user will have his password entry in the yellow pages incorporated without
change: anyone in the netgroup documentation will have their password field disabled. and
anyone else will be able to log in with their usual password. shell. and home directory. but
with a gecas field of Guest.

The password file resides in the letc directory. Because of the encrypted passwords. it has
general read permission and can be used. for example. to map numerical user ID's to names,

Sun Microsystems Rel 3.0 1 February 1985 1

PASSWD(5) UNIX. Programmer'S Manual PASSWD(5)

Appropriate precautions must be taken to lock the letclpasswd file against simultaneous
changes if it is to be edited with a text editor: vipw(8) does the necessary locking.

FILES
I etclpasswd

SEBALSO
getpwent(3). login(t). crypt(3). passwd(t). group(5). vipw(8). adduser(8)

Sun Microsystems ReI 3.0 1 February 1985 2

PHONES(5) ~NIX Programmer's Manual PHONES(5)

NAME
phones - remote host phone number data base

DESCRIPTION

FILES

The file letc/phones contains the system-wide private phone numbers for the tip(1 C) program.
This file is normally unreadable, and so may contain privileged information. The format of
the file is a series of lines of the form: <system-name>[\t]*<phone-number>. The system
name is one of those defined in the remote(5) file and the phone number is constructed from
any sequence of characters terminated only by "," or the end of the line. The" - to and
characters are indicators to the auto call units to pause and wait for a second dial tone (when
going through an exchange). The "~ .. is required by the DF02-AC and the "." is required by
the BIZCOMP 1030.

Only one phone number per line is permitted. However, if more than one line in the file con­
tains the same system name tip(I C) will attempt to dial each one in tum, until it establishes a
connection.

letc/phones

SEE ALSO
tip(IC), remote(5)

4.2 Berkeley Distribution . May 16, 1986 1

PLOT(5) UNIX Programmer's Manual . PLOT(5)

NAME
plot - graphics interface

DESCRIPTION
Files of this format are produced by routines described in plot(3X) and plot(3F), and are
interpreted for various devices by commands described in plot(1 G). A graphics file is a
stream of plotting instructions. Each instruction consists of an ASCII letter usually followed
by bytes of binary information. The instructions are executed in order .. A point is designated
by four bytes representing the x and y values; each -value is a signed integer. The last desig­
nated point in an 1, ~ n, a, or p instruction becomes the 'current point' for the next instruc­
tion. The a and c instructions change the current point in a manner dependent upon the
specific device.

Each of the following descriptions begins with the name of the corresponding routine in
plot(3X). .

m move: The next four bytes give a new current point.

D cont: Draw a line from the current point to the point given by the next four bytes.

p point: Plot the point given by the next four bytes.

1 line: Draw a line from the point given by the next four bytes to the point given by the fol­
lo~ing four bytes.

t label: Place the following ASCII string so that its first character falls on the current point.
The string is terminated by a newline.

a arc: The first four bytes give the center, the next four give the starting point, and the last
four give the end point of a circular arc. The least significant coordinate of the end point
is used only to determine the quadrant. The arc is drawn counter-clockwise.

c circle: The firSt four bytes give the center of the circle, the next two the radius.

e erase: Start another frame of output.

r linemod: Take the following string, up to a newline, as the style for drawing further lines.
The styles are 'dotted,' 'solid,' 'longdashed,' 'shortdashed,' and 'dotdashed.' Effective only
in plot 4014 and plot ver.

s space: The next four bytes give the lower left comer of the plotting area; th~ following four
give the upper right comer. The plot will be magnified or reduced to fit the device as
closely as possible.

SEE ALSO

Space settings that exactly fill the plotting area with unity scaling appear below for devices
supported by the filters of plot(1 G). The upper limit is just outside the plotting area. In
every case the plotting area is taken to be square; points outside may be displayable on
devices whose face isn't square.

4013 space(O, 0, 780, 780);
4014 space(O, 0, 3120, 3120);
ver space(O, 0, 2048, 2048);
300, 300s space(O, 0, 4096, 4096);
450 space(O, 0, 4096, 4096);

plot(lG), plot(3X), plot(3F), graph(lG)

7th Edition May 15, 1985

PRINTCAP (5) UNIX Programmer's Manual PRINTCAP (5)

NAME
printcap - printer capability data base

SYNOPSIS
/etc/printcap

DESCRIPTION
Printcap is a simplified version of the termcap(5) data base used to describe line printers.
The spooling system accesses the printcap file every time it is used, allowing dynamic addition
and deletion of printers~ Each entry in the data base is used to describe one printer. This
data base may not be substituted for, as is possible for termcap, because it may allow account­
ing to be bypassed.

The defawt printer is normally Ip, though the environment variable PRINTER may be used
to override this. Each spooling utility supports an option, -Pprinter, to allow explicit naming
of a destination printer.

Refer to the 4.3BSD Line Printer Spooler Manual for a complete discussion on how setup the
database for a given printer.

CAPABILITIES
Refer to termcap(5) for a description of the file layout.

Name Type Default Descripdon
af str NULL name 9f accounting file .
br num none if lp is a tty, set the baud rate (ioctl call)
cf str NULL cifplot data tilter
df str NULL tex data filter (DVI format)
fc num 0 if Ip is a tty, clear flag bits (sgtty;h)
if . str "\f' string to send for a form feed
fo bool false print a form feed when device is opened
fs num 0 like 'fc' but set bits
gf str NULL graph data filter (plot (3X) format)
hi bool false print the burst header page last
ic bool false driver supports (non standard) ioctl to indent printout
if str NULL name of text filter which does accounting
If str "/dev/console" error logging file name
10 str "lock" name of lock file
Ip str "/devllp" device name to open for output
mx num 1000 maximum file size (in BUFSIZ blocks)~ zero = unlimited
nd str NULL next directory for list of queues (unimplemented)
nf str NULL ditroif data filter (device independent troit)
of str NULL name of output filtering program
pc num 200 price per foot or page in hundredths of cents
pI num 66 page length (in lines)
pw num 132 page Width (in characters)
px num 0 page width in pixels (horizontal)
py num 0 page length in pixels (vertical)
rf str NULL filter for printing FORTRAN style text files
rg str NULL restricted group. Only members of group allowed access
rm str NULL machine name for remote printer
rp str "lp" remote printer name argument
rs bool false restrict remote users to those with local accounts
rw bool false open the printer device for reading and writing
sb bool false short banner (one line only)
sc bool false suppress multiple copies

4.2 Berkeley Distribution May 14, 1986 1

PRINTCAP (5) UNIX Programmer's Manual PRINTCAP (5)

sd str "/usr/spoolllpd" spool directory
sf bool false suppress form feeds
sh bool false suppress printing of burst page header
st str "status" status file name
tf str NULL troff data filter (cat phototypesetter)
tr str NULL trailer string to print when queue empties
vf str NULL . raster image filter
xc num 0 if Ip is a tty, clear local mode bits (tty (4»
xs num 0 like 'xc' but set bits

If the local line printer driver supports indentation, the daemon must understand how to
invoke it.

FILTERS
The Ipd(8) daemon creates a pipeline of filters to process files for various printer types. The
filters se.lected depend on the flags passed to lpr(1). The pipeline set up is:

-p pr I if regular text + pI'(1)
none if regular text
-c cf cifplot
-d df DVI (tex)
-g gf plot(3)
-n nf ditroff
-f rf Fortran
-t tf troff
-v vf raster image

The if filter is invoked with arguments:

if [-c] -wwidth -llength -iindent -0 login -b host acct-file

The -c flag is passed only if the -I flag (pass control characters literally) is specified to lpr.
Width and length specify the page width and length (from pwand pi respectively) in charac­
ters. The -0 and -b parameters specify the login name and host name of the owner of the job
respectively. Acct-fi/e is passed from the af printcap entry.

If no if is specified, of is used instead, with the distinction that of is opened only once, while if
is opened for every individual job. -Thus, if is better suited to performing accounting. The of
is only given the width and length flags.

All other filters are called as:

filter -xwidth -ylength -0 login -b host acct-file

where width and length are represented in pixels, specified by the px and py entries respec­
tively.

All filters take stdin as the file, stdout as the printer, may log either to stderr or using syslog(3),
and must not ignore SIGINT.

LOGGING
Error messages generated by the line printer programs themselves (that is, the /p* programs)
are logged by syslo[J(3) using the LPR facility. Messages printed on stderr of one of the filters
are sent to the corresponding If file. The filters may, of course, use syslog themselves.

Error messages sent to the console have a carriage return and a line feed appended to them,
rather than just a line feed.

SEE ALSO
termcap(5), Ipc(8), Ipd(8), pac(8), lpr(1), Ipq(1), lprm(1)
4.3BSD Line Printer Spooler Manual

4.2 Berkeley Distribution May 14, 1986 2

PROTOCOLS (5) UNIX Programmer's Manual PROTOCOLS (5)

NAME
protocols - protocol name data base

DESCRIPTION

FILES

The protocols file contains information regarding the known protocols used in the DARPA
Internet. For each protocol a single line should be present with the following information:

official protocol name
protocol number
aliases

Items are separated by any number of blanks and/or tab characters. A "#" indicates the
beginning of a comment; characters uP. to the end of the line are not interpreted by routines
which search the file.

Protocol names may contain any printable character other than a field delimiter, newline, or
comment character.

/etc/protocols

SEE ALSO
getprotoent(3N)

BUGS
A name server should be used instead of a static file.

4.2 Berkeley Distribution May 6,1986 1

REMOTE(S) UNIX Programmer's Manual REMOTE(S)

NAME ,
remote - remote host description file

DESCRlmON
The syste_ms known by tip(1 C) and their attributes are stored in an ASCII file which is struc­
tured somewhat like the termeap(5) file. Each line in the file provides a description for a sin­
gle system. Fields are separated by a colon (":"). Lines ending in a \ character with an
immediately following newline are continued on the next line.

The first entry is the name(s) of the host system. If there is more than one name for a system,
the names are separated by vertical bars. After the name of the system comes the fields of the
description. A field name followed by an ' .. ' sign indicates a string value follows. A field
name followed by a ''I' sign indicates a following numeric value.

Entries named "tip." and "cu." are used as default entries by tip, and ihe cu interface to tip,
as follows. When tip is invoked with only a phone number, it looks for an entry of the form
"tip300", where 300 is the baud rate with which the connection is to be made. When the cu
interface is used, entries of the form "cu300" are used.

CAPABILITIES ,
Capabilities are either strings (str), numbers (num), or boolean Oags (bool). A string capabil­
ity is specified by eapability=value; e.g. "dv-/devlharris". A numeric capability is specified
by eapability*value; 'e.g. "xa*99" .. A boolean capability is specified by simply listing the capa­
bility.

at (str) Auto call unit type.

br (num) The baud rate used in' establishing a connection to the remote host. This is a
decimal number. The default baud rate is 300 baud.

em (str) An initial connection message to be sent to the remote host. For example, if a
host is reached through port selector, this might be set to the appropriate sequence
required to switch to the host.

CD (str) Call unit if making a phone call. Default is the same as the 'dv' field.

di (str) Disconnect message sent to the host when a disconnect is requested by the user.

du (bool) This host is on a dial-up line.

dv (str) UNIX device(s) to open to establish a connection. If this file refers to a terminal
line, tip(1 C) attempts to perform an exclusive open on the device to insure only one
user at a time has access to the port.

el (str) Characters marking an end-of-line. The default is NULL. , ... escapes are only
recognized by tip after one of the characters in 'er, or after a carriage-return.

fs (str) Frame size for transfers. The default frame size is equal to BUFSIZ.

hd (bool) The host uses half-duplex communication, local echo should be performed.

ie (str) Input end-of-file marks. The default is NULL.

oe (str) Output end-of-file string. The default is NULL. When tip is transferring a file,
this string is sent at end-of-file.

pa (str) The type of parity to use when sending data to the host. This may be one of
"even", "odd", "none", "zero" (always set bit 8 to zero), "one" (always set bit 8 to
1). The default is even parity.

pD (str) Telephone number(s) for this host. If the telephone number field contains an @
sign, tip searches the file letelphones file for a list of telephone numbers; c.f.
phones(5).

4.2 Berkeley Distribution May 15, 1985 1

REMOTE(S) UNIX Programmer's Manual REMOTE(S)

tc (str) Indicates that the list of capabilities is continued in the named description. This
is used primarily to share common capability information.

FILES

Here is a short example showing the use of the capability continuation feature:

UNIX-l 200:\
:dv=/dev/cauO:el=ADAUAeSAQAO@:du:at=ventel:ie=#$%:oe=AD:br#1200:

arpavaxI ax:\
:pn=76S4321%:tc=UNIX~1200

/etc/remote

SEE ALSO
tip(1 C), phones(5)

4.2 Berkeley Distribution May 15, 1985 2

RESOLVER (5) UNIX Programmer's Manual RESOLVER(5)

NAME
resolver configuration file

SYNOPSIS
letclresolv.conf

DESCRIPfION

FILES

The resolver configuration file contains information that is read by the resolver routines the
first time they are invoked by a process. The file is designed to be human readable and con­
tains a list of name-value pairs that provide various types of resolver information.

On a normally configured system this file should not be necessary. The only name server to
be queried will be on the local machine and the domain name is retrieved from the system.

The different configuration options are:

nameserver
followed by the Internet address (in dot notation) of a name server that the resolver
should query. At least one name server should be listed. Up to MAXNS (currently 3)
name servers may be listed, in that case the resolver library queries tries them in the
order listed. If no nameserver entries are present, the default is to use the name
server on the local machine. (The algorithm used is to try a name server, and if the
query times out, try the next, until out of name servers, then repeat trying all the
name servers until a maximum number of retries are made) .

. domain followed by a domain name, that is the default domain to append to names that do
not have a dot in them. If no domain entries are present, the domain returned by
gethostname(2) is used (everything after the first '.'). Finally, if the host name does
not contain a domain part, the root domain is assumed.

The name value pair must appear on a single line, and the keyword (e.g. nameserver) must
start the line. The value follows the keyword, separated by white space.

letclreso!v.con!
SEE AlSO

gethostbyname(3N), resolver(3), named(8)
Name Server Operations Guide for BIND

4th Berkeley Distribution May IS, 1986 1

RMTAB(5) UNIX Programmer's Manual RMTAB(5)

NAME
rmtab - remotely mounted file system table

DESCRIPI'ION

FILES,

Rmtab resides in directory lete and contains a record of all clients that have done remote
mounts of file systems from this machine. Whenever a remote mount is done. an entry is
made in the rmtab file of the machine serving up that :file system. Umount removes entries.
if of a remotely mounted file system. Umount -a broadcasts to all servers. and informs
them that they should remove all entries from rmtab created by the sender of the broadcast
message. By placing a umount -a command in /ete/reboot. rmtab tables can be purged of
entries made by a crashed host. which upon rebooting did not remount the same :file sys­
tems it had before. The table is a series of lines of the form

hostname:directory

This table is used only to preserve information between crashes. and is read only by
mountd(8) when it starts up. Mountd keeps, an in-core table. which it uses to handle
requests from programs like showmount(1) and shutdown(8).

/etclrmtab

SEE ALSO
showmount(t). mountd(8). mount(8). umount(8). shutdown(8)

BUGS
Although the rmtab table is close to the truth. it is not always 100% accurate.

Sun Microsystems ReI 3.0 1 February 1985 1

SERVICES (S) UNIX Programmer's Manual SERVICES(S)

NAME
services - service name data base

DESCRIPTION

FILES

The services file contains information regarding the known services available in the DARPA
Internet .. For each service a single line should be present with the following information:

official service name
port number
protocol name
aliases

Items are separated by any number of blanks and/or tab characters. The port number and
protocol name are considered a single item; a "I" is used to separate the port and protocol
(e.g. "S12/tcp"). A "#" indicates the beginning of a comment; characters up to the end of the
line are not interpreted by routines which search the file.

Service names may contain any printable character other than a field delimiter, newline, or
comment character. .

letclservices

SEE ALSO
getservent(3N)

BUGS
A name server should be used instead of a static file.

4.2 Berkeley Distribution May 6, 1986 1

UNIX Programmer's Manual

This page intentionally left almost blank.

STAB(5) UNIX Programmer's Manual STAB(5)

NAME
stab - symbol table types

SYNOPSIS
#include <stab.h>

DESCRIPTION
Stab.h defines some values of the n_type field of the symbol table of a.out files. These are the
types for permanent symbols (i.e. not local labels, etc.) used by the old debugger sdb and the
Berkeley Pascal compiler pc(1). Symbol table entries can be produced by the .stabs assembler
directive. This allows one to specify a double-quote delimited name, a symbol type, one char
and one short of information about the symbol, and an unsigned long (usually an address).
To avoid having to produce an explicit label for the address field, the .stabd directive can be
used to implicitly address the current location. If no name is needed, symbol table entries
can be generated using the .stabn directive. The loader promises to preserve the order of
symbol table entries produced by .stab directives. As described in a.out(5), an element of the
symbol table consists of the following structure:

/.
• Format of a symbol table entry . . /

struct nlist (
union {

char .n_name;/. for use when in-core ./
long n_strx; /. index into file string table ./

} n_un;
unsigned char n_type;
char n_other,
short n_desc;
unsigned n_ value;

};

/. type flag ./
/. unused ./
/. see struct desc, below ./
/. address or offset or line ./

The low bits of the n_type field are used to place a symbol into at most one segment, accord­
ing to the following masks, defined in <a.out.h>. A symbol can be in none of these segments
by having none of these segment bits set.

/.
• Simple values for n_type . . /

#define N_UNDF OxO /. undefined ./
#define N_ABS Ox2 /. absolute ./
#define N_ TEXT Ox4 /. text ./
#define N_DATA Ox6 /. data./
#define N_BSS Ox8 /. bss ./

#define N_EXT 01 /. external bit, or'ed in ./

The n_ value field of a symbol is relocated by the linker, ld(1) as an address within the
appropriate segment. N_ value fields of symbols not in any segment are unchanged by the
linker. In addition, the linker will discard certain symbols, according to rules of its own,
unless the n_type field has one of the following bits set:

/.
• Other permanent symbol table entries have some of the N_STAB bits set.
• These are given in <stab.h>
./

#define N_STAB OxeO/. if any of these bits set, don't discard ./

4th Berkeley Distribution May 19, 1986

STAB(S) UNIX Programmer's Manual STAB(S)

This allows up to 112 (7 • 16) symbol types. split between the various segments. Some of
these have already been claimed. The old symbolic debugger, sdb, uses the following n_type
values:

#define N_GSYM Ox20 /. global symbol: name"O,type,O ./
#define N_FNAME Ox22 /. procedure name (f77 kludge): name"O ./
#define N_FUN Ox24 /. procedure: name"O,linenumber,address./
#define N_STSYM Ox26 /. static symbol: name .. O,type,address ./
#define N_LCSYM 0x28 / • .lcomm symbol: name"O,type,address ./
#define N_RSYM Ox40 /. register sym: name"O,type,register./
#define N_SLINE Ox44 /. src line: O"O,linenumber,address ./
#define N_SSYM Ox60 /. structure elt: name"O,type,struct_offset ./
#define N_SO Ox64 /. source tile name: name"O,O,address ./
#define N_LSYM Ox80 /.local sym: name"O.type.offset./
#define N_SOL Ox84 /. #included tile name: name"O.O.address ./
#define N_PSYM OxaO /. parameter: name"O.type.offset ./
#define N_ENTRY Oxa4 /. alternate entry: name,linenumber.address ./
#define N_LBRAC OxcO /.left bracket: O .. O,nesting level.address ./
#define N_RBRAC OxeO /. right bracket: O .. O,nesting level,address ./
#define N_BCOMM Oxe2l. begin common: name" ./
#define N_ECOMMOxe4 /. end common: name" ./
#define N_ECOML Oxe8 /. end common (local name): .. address ./
#define N_LENG Oxfe /. second stab entry with length information ./

where the comments give sdb conventional use for .stabs and the n_name, n_other, n_desc,
and n_ value fields of the given n_type. Sdb uses' the n_desc field to hold a type specifier in the
form used by the Portable C Compiler. cc(l); see the header tile pcc.h for details on the for­
mat of these type values.

The Berkeley Pascal compiler, pc(I), uses the following n_type value:

#define N_PC Ox30 /. global pascal symbol: name"O,subtype,line ./

and uses the following subtypes to do type checking across separately compiled tiles:
1 source tile name
2 included file name
3 global label
4 global constant
5 ' global type
6 global variable
7 global function
8 global procedure
9 external function
10 external procedure
11 library variable
12 library routine

SEE ALSO
as(I). Id(l). dbx(l), a.out(S)

BUGS
More basic types are needed.

4th Berkeley Distribution May 19. 1986 2

,!AR(5) UNIX Programmer's Manual TAR(5)

NAME
tar - tape archive file format

DESCRIPTION
Tar, (the tape archive command) dumps several files into one, in a medium suitable for tran­
sportation.

A "tar tape" or file is a series of blocks. Each block is of size TBLOCK. A file on the tape is
represented by a header block which describes the file, followed by zero or more blocks which
give the contents of the file. At the end of the tape are two blocks filled with binary zeros, as
an end-of-file indicator.

The blocks are grouped for physical 110 operations. Each group of n blocks (where n is set by
the b keyletter on the tar(1) command line - default is 20 blocks) is written with a single sys­
tem call; on nine-track tapes, the result of this write is a single tape record. The last group is
always written at the full size, so blocks after the two zero blocks contain random data. On
reading, the specified or default group size is used for the first read, but if that read returns
less than a full tape block, the reduced block size is used for further reads.

The header block looks like:

#define TBLOCK 512
#define NAMSIZ 100

union hblock {

};

char dummy(TBLOCK];
struct header {

char name(NAMSIZ];
char mode(8];
char uid(8);
char gid(8);
char size(12);
char mtime[12];
char chksum[8];
char linkflag;
char linkname[NAMSIZ];

} dbuf;

Name is a null-terminated string. The other fields are zero-filled octal numbers in ASCII.
Each field (of width w) contains w-2 digits, a space, and a null, except size and mtime, which
do not contain the trailing null and chksum which has a null followed by a space. Name is
the name of the file, as specified on the tar command line. Files dumped because they were
in a directory which was named in the command line have the directory name as prefix and
lfilename as suffix. Mode is the file mode, with the top bit masked off. Uid and gid are the
user and group numbers which own the file. Size is the size of the file in bytes. Links and
symbolic links are dumped with this field specified as zero. Mtime is the modification time of
the file at the time it was dumped. Chksum is an octal ASCII value which represents the sum
of all the bytes in the header block. When calculating the checksum, the chksum field is
treated as if it were all blanks. Linkflag is NULL if the file is "normal" or a special file,
ASCII 'I' if it is an hard link, and ASCII '2' if it is a symbolic link. The name linked-to, if
any, is in linkname. with a trailing null. Unused fields of the header are binary zeros (and are
included in the checksum).

The first time a given i-node number is dumped, it is dumped as a regular file. The second
and subsequent times, it is dumped as a link instead. Upon retrieval, if a link entry is
retrieved, but not the file it was linked to, an error message is printed and the tape must be
manually re-scanned to retrieve the linked-to file.

4.2 Berkeley Distribution November 7, 1985

TAR(5) uNIX Programmer's Manual

The encoding of the header is designed to be portable across machines.

SEE ALSO
tar(l)

BUGS

TAR(5)

Names or linknames longer than NAMSIZ produce error reports and cannot be dumped.

4.2 Berkeley Distribution November 7, 1985 2

TERMCAP(5) UNIX Programmer's Manual TERMCAP(5)

NAME
termcap - terminal capability data base

SYNOPSIS
letc/termcap

DESCRIPTION
Termcap is a data base describing terminals, used, e.g., by vi(1) and 'curses(3X). Terminals
are described in termcap by giving a set of capabilities that they have and by describing how
operations are performed. Padding requirements and initialization sequences are included in
termcap.

Entries in termcap consist of a number of ':'-separated fields. The first entry for each terminal
gives the names that are known for the terminal, separated by 'I' characters. The first name
is always two characters long and is used by older systems, which store the terminal type in a
16-bit word in a system-wide data base. The second name given is the most common abbre­
viation for the terminal, the last name given should be a long name fully identifying the ter­
minal, and all others are understood as synonyms for the terminal name. All names but the
first and last should be in lower case and contain no blanks; the last name may well contain
upper case and blanks for readability.

Terminal names (except for the last, verbose entry) should be chosen using the following con­
ventions. The particular piece of hardware making up the terminal should have a root name
chosen, thus "hp26Z1". This name should not contain hyphens. Modes that the hardware
can be in or user preferences should be indicated by appending a hyphen and an indicator of
the mode. Therefore, a "vt100" in 132-column mode would be "vt1 OO-w". The following
suffixes should be used where possible:

CAPABILITIES

Suffix
-w
-am
-nam
-n
-na
-np
-rv

Meaning
Wide mode (more than 80 columns).
With automatic margins (usually default)
Without automatic margins
Number of lines on the screen
No arrow keys (leave them in local)
Number of pages of memory
Reverse video

Example
vt100-w
vt100-am
vt100-nam
aaa-60
concept 1 OO-na
concept 1 00-4p
conceptl00-rv

The characters in the Notes field in the table have the following meanings (more than one may
apply to a capability):

N indicates numeric parameter(s)
P indicates that padding may be specified
• indicates that padding may be based on the number of lines affected
o indicates capability is obsolete

"Obsolete" capabilities have no termin/o equivalents, since they were considered useless, or
are subsumed by other capabilities. New software should not rely on them at all.

Name Type Notes Description
ae str (P) End alternate character set
AL str (NP.) Add n new blank lines
al str (P.) Add new blank line
am bool Terminal has automatic margins
as str (P) Start alternate character set
bc str (0) Backspace if not AH
bl str (P) Audible signal (bell)
bs bool (0) Terminal can backspace with AH

3rd Berkeley Distribution 1 November 1985

TERMCAP(5) UNIX Programmer's Manual TERMCAP(5)

bt str (P) Back tab
bw bool Ie (backspace) wraps from column 0 to last column
CC str Terminal settable command character in prototype
cd str (P.) Clear to end of display
ce str (P) Clear to end of line
ch str (NP) Set cursor column (horizontal position) .
c1 str (P.) Oear screen and home cursor
CM str (NP) Memory-relative cursor addressing
em str (NP) Screen-relative cursor motion
co num Number of columns in a line (See BUGS section below)
cr str (P) Carriage return
cs str (NP) Change scrolling region (VT100)
ct str (P) Oear all tab stops
cv str (NP) Set cursor row (vertical position)
da bool Display may be retained above the screen
dB num (0) Milliseconds of bs delay needed (default 0)
db bool Display may be retained below the screen
DC str (NP.) Delete n characters
dC num (0) Milliseconds of cr delay needed (default 0)
dc str (P.) Delete character
dF num (0) Milliseconds offf delay needed (default 0)
DL str (NP.) Delete n lines
dl str (P.) Delete line
dm str . Enter delete mode
dN num (0) Milliseconds of nl delay needed (default 0)
DO str (NP.) Move cursor down n lines
do str Down one line
ds str Disable status line
dT num (0) Milliseconds of horizontal tab delay needed (default 0)
dV num (0) Milliseconds of vertical tab delay needed (default 0)
ec str (NP) Erase n characters
ed str End delete mode
ei str End insert mode
eo bool Can erase overstrikes with a blank
EP bool (0) Even parity
es bool Escape can be used on the status line
if str (P.) Hardcopy terminal page eject
fs str Return from status line
go bool Generic line type (e.g. dialup, switch)
hc bool Hardcopy terminal
HD bool (0) Half-duplex
hd str Half-line down (forward 112 linefeed)
ho str (P) Home cursor
hs bool Has extra "status line"
hu str Half-line up (reverse 112 linefeed)
hz bool Cannot print·s (Hazeltine)
il-i3 str Terminal initialization strings (terminfo only)
IC str (NP.) Insert n blank characters
ic str (P.) Insert character
if str Name of file containing initialization string
im str Enter insert mode
in boot Insert mode distinguishes nulls
iP str Pathname of program for initialization (terminfo only)

3rd Berkeley Distribution 1 November 1985 2

TERMCAP(5) UNIX Programmer's Manual TERMCAP(5)

ip str (P*) Insert pad after character inserted
is str Terminal initialization string (termcap only)
it num Tabs initially every n positions
Kl str Sent by keypad upper left
K2 str Sent by keypad upper right
K3 str Sent by keypad center
K4 str Sent by keypad lower left
K5 str Sent by keypad lower right
kO-k9 str Sent by function keys 0-9
kA str Sent by insert-line key
ka str Sent by clear-all-tabs key
kb str Sent by backspace key
kC str Sent by clear-screen or erase key
kD str Sent by delete-character key
kd str Sent by down-arrow key
leE str Sent by clear-to-end-of-line key
ke str Out of "keypad transmit" mode
kF str Sent by scroll-forward/down key
kH str Sent by home-down key
kh str Sent by home key
kI str Sent by insert-character or enter-insert-mode key
kL str Sent by delete-line key
kl str Sent by left-arrow key
kM str Sent by insert key while in insert mode
km bool Has a "meta" key (shift, sets parity bit)
kN str Sent by next-page key
kn num (0) Number of function (kO-k9) keys (default 0)
ko str (0) Termcap entries for other non-function keys
kP str Sent by previous-page key
kR str Sent by scroll-backward/up key
kr str Sent by right-arrow key
kS str Sent by clear-to-end-of-screen key
ks str Put terminal in "keypad transmit" mode
kT str Sent by set-tab key
kt str Sent by clear-tab key
ku str Sent by up-arrow key
10-19 str Labels on function keys if not "fn"
LC bool (0) Lower-case only
LE str (NP) Move cursor left n positions
Ie str (P) Move cursor left one position
li num Number of lines on screen or page (See BUGS section below)
11 str Last line, first column
1m num Lines of memory if> Ii (0 means varies)
ma str (0) Arrow key map (used by vi version 2 only)
mb str Tum on blinking attribute
md str Tum on bold (extra bright) attribute
me str Tum off all attributes
mh str Tum on half-bright attribute
mi bool Safe to move while in insert mode
mk str Tum on blank attribute (characters invisible)
ml str (0) Memory lock on above cursor
mm str Tum on "meta mode" (8th bit)
mo str Tum off "meta mode"

3rd Berkeley Distribution 1 November 1985 3

TERMCAP(5) UNIX Programmer's Manual TERMCAP(5)

mp str Tum on protected attribute
mr str Tum on reverse-video attibute
ms bool Safe to move in standout modes
mu str (0) Memory unlock (tum off memory lock)
nc bool (0) No correctly-working cr (Datamedia 2500, Hazeltine 2000)
nd str Non-destructive space (cursor right)
NL bool (0) \n is newline, not line feed
nl str (0) Newline character if not \n
ns bool (0) Terminal is a CRT but doesn't scroll
nw str (P) Newline (behaves like cr followed by do)
OP bool (0) Odd parity
os bool Terminal overstrikes
pb num Lowest baud where delays are required
pc str Pad character (default NUL)
pf str Tum off the printer
pk str Program function key 11 to type string s (termi1lfo only)
pi 'str Program function key 11 to execute string s (termi1lfo only)
pO str (N) Tum on the printer for 11 bytes
po str Tum on the printer
ps str Print contents of the screen
pt bool (0) Has hardware tabs (may need to be set with is)
px str Program function key 11 to transmit string s (termi1lfo only)
rl-r3 str Reset terminal completely to sane modes (termi1lfo only)
rc str (P) Restore cursor to position of last se
rf str Name of file containing reset codes
RI str (NP) Move cursor right 11 positions
rp str (NP.) Repeat character c 11 times
rs str Reset terminal completely to sane modes (termcap only)
sa str (NP) Define the video attributes
sc str (P) Save cursor position
se str End standout mode
SF str (NP.) Scroll forward 11 lines
sf str (P) Scroll text up
sg num Number of garbage chars left by so or se (default 0)
so str Begin standout mode
SR str (NP.) Scroll backward 11 lines
sr str (P) Scroll text down
st str Set a tab in all rows, current column
ta str (P) Tab to next 8-position hardware tab stop
tc str Entry of similar terminal - must be last
te str String to end programs that use termcap
ti str String to begin programs that use termcap
ts str (N) Go to status line, column 11

UC bool (0) Upper-case only
uc str Underscore one character and move past it
ue str End underscore mode
ug num Number of garbage chars left by us or ue (default 0)
ul bool Underline character overstrikes
UP str (NP.) Move cursor up 11 lines
up str Upline (cursor up)
us str Start underscore mode
vb str Visible bell (must not move cursor)
ve str Make cursor appear normal (undo vslvi)

3rd Berkeley Distribution 1 November 1985 4

TERMCAP(5) UNIX Programmer's Manual TERMCAP(5)

vi str
vs str
vt num
wi str (N)
ws num
xb bool
xn bool
xo bool
Xl bool (0)
xs bool
xt bool
xx bool (0)

A Sample EDtry

Make cursor invisible
Make cursor very visible
Virtual terminal number (not supported on all systems)
Set current window
Number of columns in status line
Beehive (£1 = ESC, 1'2 =AC)
Newline ignored after 80 cols (Concept)
Terminal uses xoff/xon (De3/ocI) handshaking
Return acts like ce cr Dl (Delta Data)
Standout not erased by overwriting (Hewlett-Packard)
Tabs ruin, magic so char (Teleray 1061)
Tektronix 4025 insert-line

The following entry, which describes the Concept-l00, is among the more complex entries in
-the termcap file as of this writing.

ca I concepti 00 I c 1 00 I concept I c 104 r concepti 00-4p I HDS Concept-IOO:\
:al=3.\EAR:am:bl,..AO:cd_16.\EAC:ce_16\EAU:cl_2.AL:cm_\Ea%+ %+ :\
:co#80:.cr=9AM:db:dc= 16\EAA:dI-3.\EAB:do=AJ:ei-\E\200:eo:im-\EAP:in:\
:ip-16~:is- \EU\Et\E7\E5\E8\EI\ENH\EK\E\200\Eo&\200\Eo\47\E:kl = \E5:\
:k2=\E6:k3=\E7:kb=Ah:kd=\E<:ke=\Ex:kh=\E?:kl=\E>:kr=\E=:ks=\EX:\
:ku= \E;:le=AH:li#24:mb= \EC:me= \EN\200:mh= \EE:mi:mk= \EH:mp= \EI:\
:mr=\ED:nd-\E-:pb#9600:rp=0.2.\Er%.%+ :se=\Ed\Ee:sf.AJ:so=\EE\ED:\
:. ta= 8\t:te-\Ev \200\200\200\200\200\200\Ep\r\n:\
:ti= \EU\Ev- 8p\Ep\r:ue= \Eg:ul:up= \Ei:US= \EO:\
:vb=\Ek\200\200\200\200\200\200\200\200\200\200\200\200\200\200\EK:\
:ve,.. \Ew:vs= \EW:vt#8:xn:\
:bs:cr=AM:dC#9:dT#8:nl=AJ:ta_AI:pt:

Entries may continue onto multiple lines by giving a \ as the last character of a line, and
empty fields may be included for readability (here between the last field on a line and the first
field on the next). Comments may be included on lines beginning with "#".

Types of Capabilities

Capabilities in termcap are of three types: Boolean capabilities, which indicate particular
features that the terminal has; numeric capabilities, giving the size of the display or the size of
other attributes; and string capabilities, which give character sequences that can be used to
perform particular terminal operations. All capabilities have two-letter codes. For instance,
the fact that the Concept has automatic margins (i.e., an automatic return and linefeed when
the end of a line is reached) is indicated by the Boolean capability am. Hence the description
of the Concept includes am.

Numeric capabilities are followed by the character '#' then the value. In the example above
co, which indicates the number of columns the display has, gives the value '80' for the Con­
cept.

Finally, string-valued capabilities, such as ce (clear-to-end-of-line sequence) are given by the
two-letter code, an '=', then. a string ending at the next following ':'. A delay in milliseconds
may appear after the '=' in such a capability, which causes padding characters to be supplied
by tputs after the remainder of the string is sent to provide this delay. The delay can be
either a number, e.g. '20', or a number followed by an '.', i.e., '3.'. An '.' indicates that the
padding required is proportional to the number of lines affected by the operation, and the
amount given is the per-affected-line padding required. (In the case of insert-character, the
factor is still the number of lines affected; this is always 1 unless the terminal has iD and the
software uses it.) When an '.' is specified, it is sometimes useful to give a delay of the form

3rd Berkeley Distribution 1 November 1985 5

TERMCAP(S) UNIX Programmer's Manual TERMCAP(S)

'3.5' to specify a delay per line to tenths of milliseconds. (Only one decimal place is allowed.)

A number of escape sequences are provided in the string-valued capabilities for easy encoding
of control characters there. \E maps to an ESC character. AX maps to a control-X for any
appropriate X, and the sequences \0 \r \t \b \f map to linefeed, return, tab, backspace, and
formfeed, respectively. Finally, characters may be given as three octal digits after a \, and the
characters A and \ may be given as \ A and \ \. If it is necessary to place a : in a capability it
must be escaped in octal as \072. If it is necessary to place a NUL character in a string capa­
bility it must be encoded as \200. (The routines that deal with termcap use C strings and
strip the high bits of the output very late, so that a \200 comes 01.1t as a \000 WOUld.)

Sometimes individual capabilities must be commented out. To do this, put a period before
the capability name. For example, see the first cr and ta in the example above.

Prepariag DescripdoDS

We now outline how to prepare descriptions of terminals. The most effective way to prepare
a terminal description is by imitating the description of a similar terminal in termcap and to
build up a description gradually, using partial descriptions with vi to check that they are
correct. Be aware that a very unusual terminal may expose deficiencies in the ability of the
termcap file to describe it or bugs in vi. To easily test a new terminal description you can set
the environment variable TERMCAP to the absolute pathname of a file containing the descrip­
tion you are working on and programs will look there rather than in letcltermcap. TERMCAP
can also be set to the termcap entry itself to avoid reading the file when starting up a pro­
gram.

To get the padding for insert-line right (if the terminal manufacturer did not document it), a
severe test is to use vi to edit letclpasswd at 9600 baud, delete roughly 16 lines from the mid­
dle of the screen, then hit the 'u' key several times quickly. If the display messes up, more
padding is usually needed. A similar test can be used for insert-character.

Basic Capabilides

The number of columns on each line of the display is given by the co numeric capability. If
the display is a CRT, then the number of lines on the screen is given by the n capability. If
the display wraps around to the beginning of the next line when the cursor reaches the right
margin, then it should have the am capability. If the terminal can clear its screen, the code to
do this is given by the cl string capability. If the terminal overstrikes (rather than clearing the
position when a character is overwritten); it should have the os capability. If the terminal is a
printing terminal, with no soft copy unit, give it both be and os. (os applies to storage scope
terminals, such as the Tektronix 4010 series, as well as to hard copy and APL terminals.) If
there is a code to move the cursor to the left edge of the current row, give this as cr. (Nor­
mally this will be carriage-return, AM.) If there is a code to produce an audible signal (bell,
beep, etc.), give this as bl.

If there is a code (such as backspace) to move the cursor one position to the left, that capabil­
ity should be given as Ie. Similarly, codes to move to the right, up, and down should be given
as ad, up, and do, respectively. These local cursor motions should not alter the text they pass
over; for example, you would not normally use "nd- .. unless the terminal has the os capabil­
ity, because the space would erase the character moved over.

A very important point here is that the local cursor motions encoded in termcap have
undefined behavior at the left and top edges of a CRT display. Programs should never
attempt to backspace around the left edge, unless bw is given, and never attempt to go up off
the top using local cursor motions.

In order to scroll text up, a program goes to the bottom left comer of the screen and sends the
sf (index) string. To scroll text down, a program goes to the top left comer of the screen and
sends the sr (reverse index) string. The strings sf and sr have undefined behavior when not

3rd Berkeley Distribution 1 November 1985 6

TERMCAP(5) UNIX Programmer's Manual TERMCAP(5)

on their respective comers of the screen. Parameterized versions of the scrolling sequences
are SF and SR, which have the same semantics as sf and sr except that they take one parame­
ter and 'scroll that many lines. They also have undefined behavior except at the appropriate
comer of the screen.

The am capability tells whether the cursor sticks at the right edge of the screen when text is
output there, but this does not necessarily apply to od from the last column. Leftward local
motion is defined from the left edge only when bw is given; then an Ie from the left edge will
move to the right edge of the previous row. This is useful for drawing a box around the edge
of the screen, for example. If the terminal has switch-selectable automatic margins, the
termcap description usually assumes that this feature is on, i.e., am. If the terminal has a
command that moves to the first column of the next line, that command can be given as ow
(newline). It is permissible for this to clear the remainder of the current line, so if the termi­
nal has no correctly-working CR and LF it may still be possible to craft a working ow out of
one or both of them.

These capabilities suffice to describe hardcopy and "glass-tty" terminals. Thus the Teletype
model 33 is described as

T3 I tty33 I 33 I tty I Teletype model 33:\
:bl=AG:co#72:cr=AM:do=AJ:hc:os:

and the Lear Siegler ADM-3 is described as

13 I adm3 I 3 I LSI ADM-3:\
:am:bl= AG:cl = AZ:co#80:cr= AM:do= AJ :le= AH:li#24:sf = A J:

Parameterized Striogs

Cursor addressing and. other strings requiring parameters are described by a parameterized
string capability, withprinif(3S)-like escapes %x in it, while other characters are passed
through ~nchanged. For example, to address the cursor the em capability is given, using two
parameters: the row and column to move to. (Rows and columns are numbered from zero
and refer to the physical screen visible to the user, not to any unseen memory. If the terminal
has memory-relative cursor addressing, that can be indicated by an analogous CM capability.)

The % encodings have the following meanings:

%% output '%'
%d output value as in print! %d
%2 output value as in print! %2d
%3 output value as in print! %3d
%. output value as in print! %c

. %+ x add x to value, then do %.
%> xy if value> x then add y, no output
%r reverse order of two parameters, no output
%i increment by one, no output
%n exclusive-or all para~eters with 0140 (Datamedia 2500)
%B BCD (l6*(value/l0» + (value%lO), no output
%0 Reverse coding (value - 2*(value%16», no output (Delta Data)

Consider the Hewlett-Packard 2645, which, to get to row 3 and column 12, needs to be sent
"\E&a12c03Y" padded for 6 milliseconds. Note that the order of the row and column coor­
dinates is reversed here and that the row and column are sent as two-digit integers. Thus its
em capability is "cm=6\E&%r%2c%2Y".

The Microterm ACT-IV needs the current row and column sent simply encoded in binary pre­
ceded by a "'T, "cm=l%.%.". Terminals that use "%." need to be able to backspace the cur­
sor (Ie) and to move the cursor up one line on the screen (up). This is necessary because it is
not always safe to transmit \0, AD, and \r, as the system may change or discard them.

3rd Berkeley Distribution 1 November 1985 7

TERMCAP(5) UNIX Programmer's Manual TERMCAP(5)

(Programs using termcap must set terminal modes so that tabs are not expanded, so \t is safe
to send. This turns out to be essential for the Ann Arbor 4080.)

A final example is the Lear Siegler ADM-3a, which offsets row and column by a blank charac­
ter, thus "cm-\E;"%+ %+ ".

Row or column absolute cursor addressing can be given as single parameter capabilities cb
(horizontal position absolute) and C\' (vertical position absolute). Sometimes these are shorter
than tbe more general two-parameter sequence (as with tbe Hewlett-Packard 2645) and can be
used in preference to CID. If there are parameterized local motions (e.g., move n positions to
the right) these can be given as 00, LE, RI, and UP with a single parameter indicating how
many positions to move. These are primarily useful if the terminal does not have CID, such as
the Tektronix 4025.

CursorMotioas

If the terminal has a fast way to home the cursor (to the very upper left comer of the screen),
this can be given as boo Similarly, a fast way of getting to the lower left-hand comer can be
given as II; this may involve going up with up from the home position, but a program should
never do this itself (unless II does), because it can make no assumption about the effect of
moving up from the home position. Note that the home position is the same as cursor
address (0,0): to the top left comer of the screen, not of memory. (Therefore, the "\EH"
sequence on Hewlett-Packard terminals cannot be used for bo.)

Area Clears

If the terminal can clear from the current position to the end of the line, leaving the cursor
where it is, this should be given as ceo If the terminal can clear from the current position to
the end of ~he display, this should be given as ~d. cd ~uSt only be invoked from the first
column of a line. (Therefore, it can be simulated by a request to delete a large number of
lines, if a true cd is not available.)

Insert/Delete Line

If the terminal can open a new blank line before the line containing the cursor. this should be
given as al; this must be invoked only from the first position of a line. The cursor must then
appear at the left of the newly blank line. If the terminal can delete the line that the cursor is
on, this should be given as ell; this must only be used from the first position on the line to be
deleted. Versions of al and ell which take a single parameter and insert or delete that many
lines can be given as AL and DL. If the terminal has a settable scrolling region (like the
VT100), the command to set this can be described with the cs capability, which takes two
parameters: the top and bottom lines of the scrolling region. The cursor position is, alas,
undefined after using this command. It is possible to get the effect of insert or delete line
using this command - the Ie and re (save and restore cursor) commands are also useful.
Inserting lines at the top or bottom of the screen can also be done using sr or sf on many ter­
minals without a true insert/delete line, and is often faster even on terminals with those
features.

If the terminal has the ability to define a window as part of memory which all commands
affect, it should be given as the parameterized string wi. The four parameters are the starting
and ending lines in memory and the starting and ending columns in memory, in that order.
(This terminfo capability is described for completeness. It is unlikely that any termcap-using
program will support it.)

If the terminal can retain display memory above the screen, then the da capability should be
given; if display memory can be retained below, then db should be given. These indicate that
deleting a line or scrolling may bring non-blank lines up from below or that scrolling back
with sr may bring down non-blank lines.

3rd Berkeley Distribution 1 November 1985 8

TERMCAP(5) UNIX Programmer's Manual TERMCAP(5)

Insert/Delete Character

There are two basic kinds of intelligent terminals with respect to insert/delete character that
can be described using termcap. The most common insert/delete character operations affect
only the characters on the current line and shift characters off the end of the line rigidly.
Other terminals, such as the Concept-IOO and the Perkin Elmer Owl, make a distinction
between typed and untyped blanks on the screen, shifting upon an insert or delete only to an
untyped blank on the screen which is either eliminated or expanded to two untyped blanks.
You can determine the kind of terminal you have by clearing the screen then typing text
separated by cursor motions. Type "abc def' using local cursor motions (not spaces)
between the "abc" and the "def'. Then position the cursor before the "abc" and put the ter­
minal in insert mode. If typing characters causes the rest of the line to shift rigidly and char­
acters to fall off the end, then your terminal does not distinguish between blanks and untyped
positions. If the "abc" shifts over to the "def' which then move together around the end of
the current line and onto the next as you insert, then you have the second type of terminal
and should give the capability in, which stands for "insert null". While these are two logically
separate attributes (one line vs. multi-line insert mode, and special treatment of untyped
spaces), we have seen no terminals whose insert mode cannot be described with the single
attribute.

Termcap can describe both terminals that have an insert mode and terminals that send a sim­
ple sequence to open a blank position on the current line. Give as im the sequence to get into
insert mode. Give as ei the sequence to leave insert mode. Now give as ic any sequence that
needs to be sent just before each character to be inserted. Most terminals with a true insert
mode will not give ic; terminals that use a sequence to open a screen position should give it
here. (If your terminal has both, insert mode is usually preferable to ic. Do not give both
unless the terminal actually requires both to be used in combination.) If post-insert padding is
needed, give this as a number of milliseconds in ip (a string option). Any other sequence that
may need to be sent after insertion of a single character can also be given in ip. If your termi­
nal needs to be placed into an 'insert mode' and needs a special code preceding each inserted
character, then both im/ei and ic can be given, and both will be used. The IC capability, with
one parameter n, will repeat the effects of ic n times.

It is occasionally necessary to move around while in insert mode to delete characters on the
same line (e.g., if there is a tab after the insertion position). If your terminal allows motion
while in insert mode, you can give the capability mi to speed up inserting in this case. Omit­
ting mi will affect only speed. Some terminals (notably Datamedia's) must not have mi
because of the way their insert mode works.

Finally, you can specify dc to delete a single character, DC with one parameter n to delete n
characters, and delete mode by giving dm and ed to enter and exit delete mode (which is any
mode the terminal needs to be placed in for dc to work). -

Highlighting, Underlining, and Visible Bells

If your terminal has one or more kinds of display attributes, these can be represented in a
number of different ways. You should choose one display form as standout mode, represent­
ing a good high-contrast, easy-on-the-eyes format for highlighting error messages and other
attention getters. (If you have a choice, reverse video plus half-bright is good, or reverse
video alone.) The sequences to enter and exit standout mode are given as so and se, respec­
tively. If the code to change into or out of standout mode leaves one or even two blank
spaces or garbage characters on the screen, as the TVI 912 and Teleray 1061 do, then sg
should be given to tell how many characters are left.

Codes to begin underlining and end underlining can be given as us and ue, respectively.
Underline mode change garbage is specified by ug, similar to sg. If the terminal has a code to
underline the current character and move the cursor one position to the right, such as the
Microterm Mime, this can be given as uc.

3rd Berkeley Distribution 1 November 1985 9

TERMCAP(S) UNIX Programmer's Manual TERMCAP(S)

Other capabilities to enter various highlighting modes include mb (blinking), md (bold or
extra bright), mh (dim or half-bright), mk (blanking or invisible text), mp (protected), mr
(reverse video), me (tum off all attribute modes), as (enter alternate character set mode), and
ae (exit alternate character set mode). Turning on any ofthese modes singly mayor may not
tum off other modes.

If there is a sequence to set arbitfary combinations of mode, this should be given as sa (set
attributes), taking 9 parameters. Each parameter is either 0 or 1, as the corresponding attri­
butes is on or off. The 9 parameters are, in order: standout, underline, reverse, blink, dim,
bold, blank, protect, and alternate character set. Not all modes need be supported by sa, only
those for which corresponding attribute commands exist. (It is unlikely that a termcap-using
program will support this capability, which is defined for compatibility with terminfo.)
Terminals with the "magic cookie" glitches (Sl and III), rather than maintaining extra attri­
bute bits for each character cell, instead deposit special "cookies", or "garbage characters",
when they receive mode-setting sequences, which affect the display algorithm.

Some terminals, such as the Hewlett-Packard 2621, automatically leave standout mode when
they move to a new line or when the cursor is addressed. Programs using standout mode
should exit standout mode on such terminals before moving the cursor or sending a newline.
On terminals where this is not a problem, the ms capability should be present to say that this
overhead is unnecessary. .

If the terminal has a way of flashing the screen to indicate an error quietly (a bell replace­
ment), this can be given as vb; it must not move the cursor.

If the cursor needs to be made more visible than normal when it is not on the bottom line (to
change, for example, a non-blinking underline into. an easier-ta-find block or blinking under­
line), give this sequence as vs. If there is a way to make the cursor completely invisible, give
that as vi. The capability ve, which undoes the effects of both of these modes, should also be
given.

If your terminal correctly displays underlined characters (with no special codes needed) even
though it does not overstrike, then you should give the capability aI. If overstrikes are eras­
able with a blank, this should be indicated by giving eo.

Keypad

If the terminal has a keypad that transmits codes when the keys are pressed, this information
can be given. Note that it is not possible to handle terminals where the keypad only works in
local mode (this applies, for e1lample, to the unshifted Hewlett-Packard 2621 keys). If the
keypad can be set to transmit or not transmit, give these codes as ks and ke. Otherwise the
keypad is assumed to always transmit. The codes sent by the left-arrow, right-arrow, up­
arrow, down-arrow, and home keys can be given as ld, la, ka, kd, and kh, respectively. If
there are function keys such as ro, fl, ... , f9, the codes they send can be given as kO,kl, k9.
If these keys have labels other than the default ro through f9, the labels can be given as 10, 11,
19. The codes transmitted by certain other special keys can be given: kH (home down), kb
(backspace), ka (clear all tabs), kt (clear the tab stop in this column), kC (clear screen or
erase), kD (delete character), kL (delete line), kM (exit insert mode), kE (clear to end of line),
kS (clear to end of screen), kI (insert character or enter insert mode), kA (insert line), kN
(next page), kP (previous page), kF (scroll forward/down), kR (scroll backward/up), and kT
(set a tab stop in this column). In addition, if the keypad has a 3 by 3 array of keys including
the four arrow keys, then the other five keys can be given as KI, 10, 10, K4, and 1\5. These
keys are useful when the effects of a 3 by 3 directional pad are needed. The obsolete ko capa­
bility formerly used to describe "other" function keys has been completely supplanted by the
above capabilities.

3rd Berkeley Distribution 1 November 1985 10

TERMCAP(5) UNIX Programmer's Manual TERMCAP(5)

The ma entry is also used to indicate arrow keys on terminals that have singie-character arrow
keys. It is obsolete but still in use in version 2 of vi which must be run on some minicomput­
ers due to memory limitations. This field is redundant with kl, Ju, ku, kd, and kh. It consists
of groups of two characters. In each group, the first character is what an arrow key sends, and
the second character is the corresponding vi command. These commands are h for kI, j for
kd, k for ku, I for Ju, and H for kh. For example, the Mime would have "ma=AHhAKfZk"XI"
indicating arrow keys left rH), down rK), up rZ), and right rX). (There is no home key on
the Mime.)

Tabs and Initialization

If the terminal needs to be in a special mode when running a program that uses these capabil­
ities, the codes to enter and exit this mode can be given as ti and teo This arises, for example,
from terminals like the Concept with more than one page of memory. If the terminal has
only memory-relative cursor addressing and not screen-relative cursor addressing, a screen­
sized window must be fixed into the display for cursor addressing to work properly. This is
also used for the Tektronix 4025, where ti sets the command character to be the one used by
termcap.

Other capabilities include is, an initialization string for the terminal, and if, the name of a file
containing long initialization strings. These strings are expected to set the terminal into
modes consistent with the rest of the termcap description. They are normally sent to the ter­
minal by the tset program each time the user logs in. They will be printed in the following
order: is; setting tabs using ct and st; and finally if. (Terminfo uses il-il instead of is and
runs the program iP and prints i3 after the other initializations.) A pair of sequences that does
a harder reset from a totally unknown state can be analogously given as rs and if. These
strings are output by the reset program. which is used when the terminal gets into a wedged
state. (Terminfo uses rl-r3 instead of rs.) Commands are normally placed in rs and rf only if
they· produce annoying effects on the screen and are not necessary when logging in. For
example, the command to set the VT 1 00 into 8O-column mode would normally be part of is,
but it causes an annoying glitch of the screen and is not normally needed since the terminal is
usually already in 8O-column mode.

If the terminal has hardware tabs, the command to advance to the next tab stop can be given
as ta (usually "I). A "backtab" command which moves leftward to the previous tab stop can
be given as bt. By convention, if the terminal driver modes indicate that tab stops are being
expanded by the computer rather than being sent to the terminal, programs should not use ta
or bt even if they are present, since the user may not have the tab stops properly set. If the
termirulI has hardware tabs that are initially set every n positions when the terminal is
·powered up, then the numeric parameter it is given, showing the number of positions between
tab stops. This is normally used by the tset command to determine whether to set the driver
mode for hardware tab expansion, and whether to set the tab stops. If the terminal has tab
stops that can be saved in nonvolatile memory, the termcap description can assume that they
are properly set.

If there are commands to· set and clear tab stops, they can be given as ct (clear all tab stops)
and st (set a tab stop in the current column of every row). If a more complex sequence is
needed to set the tabs than can be described by this, the sequence can be placed in is or if.

Delays

Certain capabilities control padding in the terminal driver. These are primarily needed by
hardcopy terminals and are used by the tset program to set terminal driver modes appropri­
ately. Delays embedded in the capabilities cr. sf, Ie, if, and ta will cause the appropriate delay
bits to be set in the terminal driver. If pb (padding baud rate) is given, these values can be
ignored at baud rates below the value of pb. For 4.2BSD tset, the delays are given as numeric
capabilities dC, dN, dB, elF, and dT instead.

3rd Berkeley Distribution 1 November 1985 11

TERMCAP(5) UNIX Programmer's Manual TERMCAP(5)

Miscellaneous
If the terminal requires other than a NUL (zero) character as a pad, this can be given as pc.
Only the first character of the pc string is used.

If the terminal has commands to save and restore the position of the cursor, give them as sc
and re.
If the terminal has an extra "status line" that is not normally used by software, this fact can
be indicated. If the status line is viewed as an extra line below the bottom line, then the
capability hs should be given. Special strings to go to a position in the status line and to
return from the status line can be given as ts and fs. (fs must leave the cursor position in the
same place that it was before ts. If necessary, the sc and rc strings can be included in ts and
fs to get this effect.) The capability ts takes one parameter, which is the column number of the
status line to which the cursor is to be moved. If escape sequences and other special com­
mands such as tab work while in the status line, the flag es can be given. A string that turns
off the status line (or otherwise erases its contents) should be given as cis. The status line is
normally assumed to be the same width as the rest of the screen, i.e .• co. If the status line is a
different width (possibly because the terminal does not allow an entire line to be loaded), then
its width in columns can be indicated with the numeric parameter ws.

If the terminal can move up or down half a line, this can be indicated with hu (half-line up)
and hd (half-line down). This is primarily useful for superscripts and subscripts on hardcopy
terminals. If a hardcopy terminal can eject to the next page (form feed), give this as ff (usu­
ally AL).

If there is a command to repeat a given character a given number of times (to save time
transmitting a large number of identical characters), this can be indicated with the parameter­
ized string rp. The first parameter is the character to be repeated and the second is the
number of times to repeat it. (This is a terminfo feature that is unlikely to be supported by a
program that uses termcap.)

If the terminal has a settable command character, such as the Tektronix 4025, this can be
indicated with ce. A prototype command character is chosen which is used in all capabili­
ties. This character is given in the ec capability to identify it. The following convention is
supported on some UNIX systems: The environment is to be searched for a CC variable, and
if found, all occurrences of the prototype character are replaced by the character in the
environment variable. This use of the CCenvironment variable is a very bad idea, as it
conflicts with make(l).

Terminal descriptions that do not represent a specific kind of known -terminal, such as switch,
dialup, patch, and network, should include the go (generic) capability so that programs can
complain that they do not know how to talk to the terminal. (This capability does not apply
to virtual terminal descriptions for which the escape sequences are known.)

If the terminal uses xoff/xon (DC3/ocl) handshaking for flow control. give xo. Padding infor­
mation should still be included so that routines can make better decisions about costs, but
actual pad characters will not be transmitted.

If the terminal has a "meta key" which acts as a shift key, setting the 8th bit of any character
transmitted, then this fact can be indicated with km. Otherwise, software will assume that the
8th bit is parity and it will usually be cleared. If strings exist to tum this "meta mode" on
and off, they can be given as mm and mo.

If the terminal has more lines of memory than will fit on the screen at once, the number of
lines of memory can be indicated with 1m. An explicit value of 0 indicates that the number of
lines is not fixed, but that there is still more memory than fits on the screen.

3rd Berkeley Distribution 1 November 1985 12

TERMCAP(5) UNIX Programmer's Manual TERMCAP(5)

If the terminal is one of those supported by the UNIX system virtual terminal protocol, the
terminal number can be given as vt.

Media copy strings which control an auxiliary printer connected to the terminal can be given
as ps: print the contents of the screen; pC: tum off the printer; and po: tum on the printer.
When the printer is on, all text sent to the terminal will be sent to the printer. It is undefined
whether the text is also displayed on the terminal screen when the printer is on. A variation
pO takes one parameter and leaves the printer on for as many characters as the value of the
parameter, then turns the printer off. The parameter should not exceed 255. All text, includ­
ing pC, is transparently passed to the printer while pO is in effect.

Strings to program function keys can be given as pk, pi, and px. Each of these strings takes
two parameters: the function key number to program (from 0 to 9) and the string to program
it with. Function key numbers out of this range may program undefined keys in a terminal­
dependent manner. The differences among the capabilities are that pk causes pressing the
given key to be the same as the user typing the given string; pi causes the string to be exe­
cuted by the terminal in local mode; and px causes the string to be transmitted to the com­
puter. Unfortunately, due to lack of a definition for string parameters in termcap, only ter­
minfo supports these capabilities.

Glitches and Braindamage

Hazeltine terminals, which do not allow'''' characters to be displayed, should indicate hz.

The nc capability, now obsolete, formerly indicated Datamedia terminals, which echo \r \n
for carriage return then ignore a following linefeed.

Terminals that ignore a linefeed immediately after an am wrap, such as the Concept, should
indicate xn.

If ce is required to get rid of standout (instead of merely writing normal text on top of it), xs
should be given.

Teleray terminals, where tabs tum all characters moved over to blanks, should indicate xt
(destructive tabs). This glitch is also taken to mean that it is not possible to position the cur­
sor on top of a "magic cookie", and that to erase standout mode it is necessary to use delete
and insert line.

The Beehive Superbee, which is unable to correctly transmit the ESC or AC characters, has xb,
indicating that the "fl" key is used for ESC and "f2" for AC. (Only certain Superbees have
this problem, depending on the ROM.) .
Other specific terminal problems may be corrected by adding more capabilities of the form
xx.
Similar Terminals

If there are two very similar terminals, one can be defined as being just like the other with
certain exceptions. The string capability tc can be given with the name of the similar termi­
nal. This capability must be last, and the combined length of the entries must not exceed
1024. The capabilities given before tc override those in the terminal type invoked by tc. A
capability can be canceled by placing xx@> to the left of the tc invocation, where xx is the
capability. For example, the entry

hn 12621-nl:ks@:ke@:tc=2621:

defines a "2621-n1" that does not have the ks or ke capabilities, hence does not tum on the
function key labels when in visual mode. This is useful for different modes for a terminal, or
for different user preferences.

AUTHOR
William Joy

3rd Berkeley Distribution 1 November 1985 13

TERMCAP(5) UNIX Programmer's Manual TERMCAP(5)

Mark Horton added underlining and keypad support

FILES
letc/termcap file containin'g terminal descriptions

SEE ALSO
ex(1), more(l), tset(l), ul(l), vi(1'), curses(3X). printf(3S), term(7).

CAVEATS AND BUGS
Note: termcap was replaced by terminfo in UNIX System V Release 2.0. The transition will
be relatively painless if capabilities flagged as "obsolete" are avoided.

Lines and columns are now stored by the kernel as well as in the termcap entry. Most pro­
grams now use the kernel information primarily; the information in this file is used only if the
kernel does not have any information.

Vi allows only 256 characters for string capabilities, and the routines in termlib(3) do not
check for overflow of this buffer. The total length of a single entry (excluding only escaped
newlines) may not exceed 1024.

Not all programs support all entries.

3rd Berkeley Distribution 1 November 1985 14

TP(5) UNIX Programmer's Manual TP(5)

NAME
tp - DEClmag tape formats

DESCRIPTION
Tp dumps files to and extracts files from DECtape and magtape. The formats of these tapes
are the same except that magtapes have larger directories.

Block zero contains a copy of a stand-alone bootstrap program. See reboot(8).

Blocks 1 through 24 for DECtape (1 through 62 for magtape) contain a directory of the tape.
There are 192 (resp. 496) entries in the directory; 8 entries per block; 64 bytes per entry.
Each entry has the following format:

struct {

};

char
unsigned short
char
char
char
char
long
unsigned short
char
unsigned short

pathname[32];
mode;
uid;
gid;
unusedl;
size[3];
modtime;
tapeaddr;
unused2[16];
checksum;

The path name entry is the path name of the file when put on the tape. If the pathname
starts with a zero word, the entry is empty. It is at most 32 bytes long and ends in a null
byte. Mode, uid, gid, size and time modified are the same as described under i-nodes (see file
system ft(5». The tape address is the tape block number of the start of the contents of the
file. Every file starts on a block boundary. The file occupies (size+ 511)/512 blocks of con­
tinuous tape. The checksum entry has a value such that the sum of the 32 words of the direc­
tory entry is zero.

Blocks above 25 (resp. 63) are available for file storage.

A fake entry has a size of zero.

SEE ALSO
fs(5), tp(l)

BUGS
The pathname, uid, gid, and size fields are too small.

7th Edition May 15, 1985

TIYS(5) UNIX Programmer's Manual TTYS(5)

NAt'\1E
ttys - terminal initialization data

DESCRIPTION

FILES

The ttys file contains information that is used by various routines to initialize and control the
use of terminal special files. This information is read with the getttyent(3) library routines.
There is one line in the ttys file per special file. Fields are separated by tabs andior spaces.
Some fields may contain more than one word and should be enclosed in double quotes.
Blank lines and comments can appear anywhere in the file; comments are delimited by '#' and
new line. Unspecified fields default t() null. The first field is the terminal's entry in the device
directory, /dev. The second field of the file is the command to execute for the line, typically
getty(8), which performs such tasks as baud-rate recognition, reading the login name, and cal­
ling login(O. It can be, however, any desired command, for example the start up for a win­
dow system terminal emulator or some other daemon process, and can contain multiple
words if quoted. The third field is the type of terminal normally connected to that tty line, as
found in the termcap(5) data base file. The remaining fields set flags in the ty_status entry
(see getttyent(3» or specify a window system process that init(8) will maintain for the termi­
nalline. As flag values, the strings 'on' and 'off' specify whether init should execute the com­
mand given in the second field, while 'secure' in addition to 'on' allows root to login on this
line. These flag fields should not be quoted. The string 'window:::' is followed by a quoted
command string which init will execute before starting getty. If the line ends in a.comment,
the comment is included in the ty _comment field of the ttyent structure.

Some examples:

console "'etc/getty std. 1200· vtl 00
ttydO "/etc/getW d1200" dialup
ttyhO "fetc/getty std.9600· hp2621-nl
ttyhl "tetc/getty std.9600" plugboard
ttypO none network
ttyp 1 none network
ttyvO "/usr/new/xterm -L :0·

on secure
on "# 555-1234
on "# 254MC
on "# John's office

off
vslOO on window="/usr/new/XvslOO O·

The first example permits root login on the console at 1200 baud, the second allows dialup at
1200 baud without root login, the third and fourth allow login at 9600 baud with terminal
types of "hp2621-nl" and "plugboard" respectively, the fifth and sixth line are examples of net­
work pseudo ttys, which should not have getty enabled on them, and the last example shows a
terminal emulator and window system startup entry.

letc/ttys

SEE AlSO
login(l), getttyent(3), gettytab(5), init(8), getty(8)

7th Edition May 20, 1986

TYPES(5) UNIX Programmer's Manual TYPES(5)

NAME
types - primitive system data types

SYNOPSIS
#include <sys/types.h>

DESCRIPTION
The data types defined in the include file are used in UNIX system code; some data of these
types are accessible to user code:

I.
• Copyright (c) 1982 Regents of the University of California.
• All rights reserved. The Berkeley software License Agreement
• specifies the terms and conditions for redistribution.

@(#)types.h 6.8 (Berkeley) 3/28/86

#ifndef _ TYPES_
#define _ TYPES_
I.
• Basic system types and major/minor device construetinglbusting macros .
• 1

I. major part of a device .1
#define major(x) «int)«(unsigned)(x»>8)&0377»

I. minor part of a "device .1
#define minor(x) «int)«x)&0377»

I. make a device number.(
#define makedev(x,y) «dev_t)«(x)«8) I (y)))

typedef unsigned char
typedef unsigned short
typedef unsigned int
typedef unsigned long
typedef unsigned short

u_char;
u_short;
u_int;
u_long;
ushon;l. sys III compat .1

#ifdefvax
typedef struct
typedef struet

int
} labeCt;
#endif
typedef struct
typedef long
typedef char.
typedef u_long
typedef long
typedef long
typedef long
typedef short
typedef long
typedef u_short

4th Berkeley Distribution

_physadr { int r[1]; } .physadr;
labeCt {
val[14];

_quad { long val[2]; } quad;
daddr_t;
caddct;
ino_t;
swblk_t;
size_t;
time_t;
dev_t;
olLt;
uid_t;

May 15, 1985

TYPES(5) UNIX Programmer's Manual TYPES(5)

#define NBBY 8 I. number of bits in a byte .1
I.
• Select uses bit masks of file descriptors in longs.
• These macros manipulate such bit fields (the filesystem macros use chars).
• FD_SETSIZE may be defined by the user, but the default here
• should be >= NOFILE (param.h) .
• 1

#ifndef FD_SETSIZE
#define FD_SETSIZE 256
#endif

typedef long fd_mask;
#define NFDBITS (sizeof(fd_mask) • NBBy)/- bits per mask -I
#ifndef howmany
#define howmany(x, y) «(x)+«y)-l»/(y»
#endif

typedef struct fd_set (
fd_mask fds_bits[howmany(FD_SETSIZE, NFDBITS)];

} fd_set;

#define FD_SET(n, p) «p)->fds_bits[(n)INFDBITSll = (1 « «n) % NFDBITS)))
#define .FD_CLR(n, p) «p)->fds_bits[(n)INFDBITSl &= .~(1 « «n) % NFDBITS)))
#define FD_ISSET(n, p) «p)->fds_bits[(n)/NFDBITS1& (1 « «n) % NFDBITS))).
#define FD_ZERO(p) bzero«char -)(p), sizeof(.(p»)

#endif

The form daddr _t is used for disk addresses except in an' i-node on disk, see fs(5). Times are
encoded in seconds since 00:00:00 GMT, January 1, 1970. The major and minor parts of a
device code specify kind and unit number of a device and are installation-dependent. Offsets
are measured in bytes from the beginning of a file. The labeLt variables are used to save the
processor state while another process is running.

SEE ALSO
f5(5), time(3), Iseek(2), adb(l)

4th Berkeley Distribution May 15, 1985 2

UTMP(5) UNIX Programmer's Manual UTMP(5)

NAME
utmp, wtmp - login records

SYNOPSIS
#include <utmp.h>

DESCRIPTION

FILES

The utmp file records information about who is currently using the system. The file is a
sequence of entries with the following structure declared in the include file:

I.
• Copyright (c) 1980 Regents of the University of California.
• All rights reserved. The Berkeley software License Agreement
• specifies the terms and conditions for redistribution.
•
• @(#)utmp.h 501 (Berkeley) 5/30/85
.1

I.
• Structure of utmp and wtmp files.
•
• Assuming the number 8 is unwise .
• 1

struct utmp {
char
char
char

uLline[8];
uLname[8];
uLhost[16];

long uLtime;
};

/. tty name ./
/. user id ./
/. host name, if remote ./
/. time on .1

This structure gives the name of the special file associated with the user's terminal, the user's
login name, and the time of the login in the form of time(3C).

The wtmp file records all logins and 10gouts. A null user name indicates a logout on the asso­
ciated terminal. Furthermore, the terminal name ,.., indicates that the system was rebooted at
the indicated time; the adjacent pair of entries with terminal names '" and '(' indicate the
system-maintained time just before and just after a date command has changed the system's
idea of the time.

Wtmp is maintained by /ogin(l) and init(8). Neither of these programs creates the file, so if it
is removed record-keeping is turned off. It is summarized by ac(8).

letc/utmp
/usr/admlwtmp

SEEAISO
login(l), init(8), who(l), ac(8)

4th Berkeley Distribution June 23, 1985

UUENCODE (5) UNIX Programmer's Manual UUENCODE (5)

NAME
uuencode - format of an encoded uuencode file

DESCRIPTION
Files output by uuencode(1 C) consist of a header line, followed by a number of body lines,
and a trailer line. Uudecode(1 C) will ignore any lines preceding the heade.r or following the
trailer. Lines preceding a header must not. of course, look like a header.

The header line is distinguished by having the first 6 characters "begin ". The word begin is
followed by a mode (in octal), and a string which names the remote file. A space separates
the three items in the header line.

The body consists of a number of lines, each at most 62 characters long (including the trailing
newline). These consist of a character count, followed by encoded characters, followed by a
newline. The character count is a single printing character, and represents an integer, the
number of bytes the rest of the line represents. Such integers are always in the range from 0
to 63 and can be determined by subtracting the character space (octal 40) from the character.

Groups of 3 bytes are stored in 4 characters, 6 bits per character. All are offset by a space to
make the characters printing. The last line may be shorter than the normal 45 bytes. If the
size is not a multiple of 3, this fact can be determined by the value of the count on the last
line. Extra garbage will be included to make the character count a multiple of 4. The body is
terminated by a line with a count of zero. This line consists of one ASCII space.

The trailer line consists of "end" on a line by itself.

SEE AlSO
uuencode(1 C), uudecode(1 C), uusend(1 C), uucp(1 C), mail(1)

7th Edition May IS, 1985

VFONT(5) UNIX Programmer's Manual VFONT(5)

NAME
vfont - font formats for the Benson-Varian or Versatec

SYNOPSIS
/usr/lib/vfootl.

DESCRIPTION

FILES

The fonts for the printer/plotters have the following format. Each file contains a header, an
array of 256 character description structures, and then the bit maps for the characters them­
selves. The header has the following format:

struct header {
short
unsigned short
short
short
short

) header,

magic;
size;
man;
maxy;
xtnd;

The magic number is 0436 (octal). The maxx, maxy, and xtnd fields are not used at the
current time. Maxx and maxy are intended to be the maximum horizontal and vertical size
of any glyph in the font, in raster lines. The size is the size of the bit maps for the characters
in bytes. Before the maps for the characters is an array of 256 structures for each of the pos­
sible characters in the font. Each element of the array has the form:

struct dispatch {
unsigned short
short
char
char
char
char
short

};

addr,
nbytes;
up;
down;
left;
right;
width;

The nbytes field is nonzero for characters which actually exist. For such characters, the addr
field is an offset into the rest of the file where the data for that character begins .. There are
up+down rows of data for each character, each of which has iefi+right bits, rounded up to a
number of bytes. The width field is not used by vcat, although it is to make width tables for
troff. It represents the logical width of the glyph, in raster lines, and shows where the base
point of the next glyph would be.

/usr/lib/vfontl.

SEE ALSO
troff(1), pti(1), vfontinfo(1)

7th Edition May 13, 1986

VGRINDEFS (5) UNIX Programmer's Manual VGRINDEFS (5)

NAME
vgrindefs - vgrind's language definition data base

SYNOPSIS
lusr/lib/vgrindefs

DESCRIPTION

FIELDS

Vgrindefs contains all language definitions for vgrind. The data base is very similar to
termcap(5).

The following table names and describes each field.

Name Type Description
pb str regular expression for start of a procedure
bb str regular expression for start of a lexical block

. be str regular expression for the end of a lexical block
cb str regular expression for the start of a comment
ce
sb
se
lb
Ie
tl

oc
kw

str
str
str
str
str
bool

bool
str

regular expression for the end of a comment
regular expression for the start of a string
regular expression for the end of a string
regular expression for the start of a character constant
regular expression for the end of a character constant
present means procedures are only defined at the top
lexical level
present means upper and lower case are equivalent
a list of keywords separated by spaces

Example

The following entry, which describes the C language, is typical of a language entry.

C I c: :pb=A\d?*?\d?\p\d??):bb= {:be= }:cb=I*:ce=*/:sb= ":se= \e":\
:lb= ':le= \e':tl:\
:kw=asm auto break case char continue default do double else enum\
extern float for fortran goto if int long register return short\
sizeof static struct switch typedef union unsigned while #define\
#else #endif #if #ifdef #ifndef #include #undef # define else endif\
if ifdef ifndef include undef:

Note that the first field is just the language name (and any variants of it). Thus the C
language could be specified to vgrind(l) as "c· or ·C".

Entries may continue onto multiple lines by giving a \ as the last character of a line. Capabil­
ities in vgrindefs are of two types: Boolean capabilities which indicate that the language has
some particular feature and string capabilities which give a regular expression or keyword list.

REGULAR EXPRESSIONS

Vgrindefs uses regular expression which are very similar to those of ex(1) and lex(1). The
characters 'A" '$', ':' and '\' are reserved characters and must be "quoted" with a preceding \ if
they are to be included as normal characters. The metasymbols and their meanings are:

$ the end of a line

the beginning of a line

\d a delimiter (space, tab, newline, start of line)

\a matches any string of symbols (like .* in lex)

\p matches any alphanumeric name. In a procedure definition (pb) the string that
matches this symbol is used as the procedure name.

4.2 Berkeley Distribution May 15, 1985

VGRINDEFS (5) UNIX Programmer's Manual VGRINDEFS (5)

FILES

() grouping

! altema~on .

? last item is optional

\e preceding any string means that the string will not match an input string if the input
string is preceded by an escape character (\). This is typically used for languages (like
C) which can include the string delimiter in a string b escaping it.

Unlike other regular expressions in the system, these match words and not characters. Hence
something like "(tramp ! steamer)t1ies?" would match "tramp·, ·steamer", "trampflies", or
"steamerflies" .

KEYWORD LIST

The keyword list is just a list of keywords in the language separated by spaces. If the ·oc·
boolean is specified, indicating that upper and lower case are equivalent, then all the keye
words should be specified in lower case.

lusr/lib/vgrindefs

SEE AlSO

file containing terminal descriptions

vgrind(1), troff(1)

AUTHOR
Dave Presotto

BUGS

4.2 Berkeley Distribution May IS, 1985 2

YPFILES(') UNIX. Programmer's Manual YPFILES(')

NAME
ypfiles - the yellowpages database and directory structure

DFSCRIPl'ION
The yellow pages (yp) network lookup service uses a database of dbm files in the directory
hierarchy at lete/yp . A dbm. database consists of two files. created by calls to the dbm(3X)
library package. One has the filename extension .pag and the other has the filename exten­
sion .dir. For instance. the database named hosts byn.tJJ'fLB. is implemented by the pair of
files hostsbyntune.pag and hostsbyntune.dir. A dbm database served by the yP is called a
yP map. A yP domain. is a named set of yP maps. Each yP domain is implemented as a
subdirectory of lete/yp containing the map. Any number of yP domains' can exist. Each
may contain any number of maps.

No maps are required by the yP lookup service itself. although they may be required for
the normal operation of other parts of the system. There is no list of maps which yP serves
- if the map exists in a given domain. and a client asks about it. the yP will serve it. For a
map to be accessible consistently. it must exist on all yP servers that serve the domain. To
provide data consistency between the replicated maps. an entry to run ypx/r periodically
should be made in lusrlZiblcrontob on each server. More information on this topic is in
ypxfr(8).

yP maps should contain two distinguished key-value pairs. The :6.rst is the key
YP_LAST_MODIFIED. having as a value a ten-character ASCII order number. The order
number should be the UNIX time in seconds when the map was built. The second key is'
yP _MASTER_NAME. with the name of the yP master server as a value. makedbm gen­
erates both key-value pairs automatically. A map that does not contain both key-value
pairs can be served by the YP. but the ypserv process will not be able to return values for
-Get order number- or -Get master name- requests. In addition. values of these two keys ar.e
used by ypx/r when it transfers a map from a master yP server to a slave. If ypx/r cannot
figure out where to get the map. or if it is unable to determine whether the local copy is
more recent than the copy at the master. you must set extra command line switches when
you run it.

yP maps must be generated and modi:6.ed only at the master server. They are copied to the
slaves using ypx/r(8) to avoid potential byte-ordering problems among yP servers running
on machines with different architectures. and to minimize the amount of disk space
required for the dbm files. The yP database can be initially set up for both masters and
slaves by using ypinit(8). .

After the server databases are set up. it is probable that the contents of some maps will
change. In general. some ASCII source version of the database exists on the master. and it is
changed with a standard text editor. The update is incorporated into the yP map and is
propagated from the master to the slaves by running letc/yplMakefiZe . All Sun-supplied
maps have entries in lete/yplMakejile ; if you add a yP map. edit the this file to support·
the new map. The make:6.le uses makedbm. to generate the yP map on the master. and
yppush to propagate the changed map to the slaves. yppush is a client of the map ypservers ,
which lists all the yP servers. For more information on this topic. see yppush(8).

SEE ALSO
makedbm(8). ypinit(8). ypmake(8). ypxfr(8). yppush(8). yppoll(8). ypserv(8). rpcinfo(8).

Sun Microsystems ReI 3.0 1 Aug 198' 1

