
UNIX'" SUPPORT FROM BERKELEY

(;tAl l J\

VOL p. '

,

.1""XIIf,,+
~ . . ~

' T ..
~ ™ 'S • .. - ~ ~ ..

... UNIX™ SUPPORT FROM BERKELEY •

~ •
~ . .,
T,~ .~

-"IXa-'"

UNIX is a trademark of Bell Laboratories

INEWS (1) UNIX Programmer's Manual INEWS(1)

NAME
inews - submit news articles

SYNOPSIS r .

.. ~,,/
j inews [-h] -t title [-n newsgroups] [--e expiration date]

• J

inews -p [filename]
".:':..:.': .

inews -C newsgroup

DESCRIPTION

FILES

Inews submits news articles to the USENET flew~network. It is intended as a raw interrace,
not as a human user interface. Casual users should probably use postnews ~1) inStead .. :::'.·: .
The first form is for submitting user articles. The.1Jody will be read from the stan,~~d,iripu~.
A title must be specified as there is no default. Each article belongs to a list of new:>oups, If
the -n flag is omitted, the list will default to something 1. general. (On ou~it is. gen:
eral.) If you wish to submit an article in multiple newsgroups, the'newsgrou,ps must be
separated by commas and/or spaces~ If not specified, the eJPiration date will be set tQJhe local
default. The -f flag specifies the article's sender. Without this flag, the •. sender defa.ults to
the user's name. If -f is speyified, the re~~endeI:'snamCf' will be included as a Sender line.
The -h flag specifies that heali-efS .. lre·presei{i.at;the begirinirii'Qf~article;alid these headers
should be included with the article header instead of as text. (This mechanism can be used to
edit headers and supply additional nondefault headers, but not to specify certain information,
such as the sender and article ID, that inews itself-;g$J?::~,;~,~~~') .

When posting an article, the environment is checked for information about the sender. If
NAME is found, its value is used for the full name, rather than the system value (often in
letc/passwd). This is useful if the system value cannot be set, or w}1e~wore than one person
uses the same login. If ORGANIZATION. i~ fp!lnd, the value overrides th~ system default
organization. This is useful when a pers6n:::-ti.~e~;·}i'guest login andis pot prititarily associated
with the organization owning the machine.

The second form is used for receivingarticles.from other machines. If filename;!J,s.gtven, the
article will be read from the specified file; otherwise the article will be read;t'r~.ro the stan­
dard input. An expiration date need not'be present and a receival date, if present, will be
ignored. .'

After local installation, inews will transmit the article to all systems that subscribe to the
newsgroups that the article belongs to ..

The third form is for creating newnewsgroups. On some systems, this may be limited to
specific users such as the super-user or news administrator. (This happens on ours.) .

If the file lusr/lib/news/recording is present, it is taken as a list of "recordings" to be shown
to users posting news. (This is by analogy to the recording you hear when' you dial informa­
tion in some parts of the country, asking you if you really wanted to Qotbis.) The file con~
tains lines of the form:

newsgroups <lab> filename
for example:

net.all net.recording fa.all fa.recording .
Any user POSting an article to a newsgroup matching the pa~_ toJte· left will be sho'~.t!·.
the contents of the file on the right •.. Theiile is found .la the ill directory (often
/usr/lib/news). The user is then iola t<tl.'ilt DEL to ab6rt or ~REtuRN to proceed. The intent
of this feature is to help companies keep proprieulrYirlformation!~~.accidently leaking out.

/usr/spool/news/ .sys.nnn temporary articles
/usr/spool/news/newsgroups / articleJJ,o.

7th Edition 1

INEWS (1)

lusrlspool/oldnewsl
lusr/lib/news/active

lusr/lib/news/seq
lusr llibl news/history
lusr/lib/news/sys

SEE ALSO

UNIX Programmer's Manual

Articles
Expired articles

INEWS(1)

List of known newsgroups and highest local article numbers in
each.
Sequence number of last article
List of all articles ever seen
System subscription list

Mail(!)' binmail(l), getdate(3), msgs(l), news(S), newsrc(S), postnews(l), readnewsCl), rec­
news(1), sendnews(8), uucp(t), uurec(8),

AUTHORS
Matt Glickman
Mark Horton
Stephen Daniel
Tom R. Truscott

7th Edition 2

POSTNEWS (1) UNIX Programmer's Manual POSTNEWS (1)

NAME
postnews - submit news articles

SYNOPSIS
postnews [article]

DESCRIPTION

FILES

Postnews is a shell script that calls inews (1) to submit news articles to USENET. It will
prompt the user for the title of the article (which should be a phrase suggesting the subject, so
that persons reading the news can tell if they are interested in the article) for the newsgroup,
and for the distribution.

An omitted newsgroup (from hitting return) will default to general.

general is read by everyone on the local machine. Other possible newsgroups include, but are
not limited to, btl.general, which is read by all users at all Bell Labs sites on USENET,
net.general, which is read by all users at all sites on USENET, and net. news , which is read by
users interested in the network news on all sites. There is often a local set of newsgroups,
such as ucb.aU, that circulate within a local set of machines. (In this case, ucb newsgroups
circulate among machines at the University of California at Berkeley.)

The distribution can be any valid newsgroup name list, and defaults to the same as the news­
group. (If they are the same, the distribution will be omitted from the headers put into the
editor buffer.) A distribution header will, if given, be included in the headers of the article,
affecting where the article is distributed to.

After entering the title, newsgroup, and distribution, the user will be placed in an editor. If
$EDITOR is set in the environment, that editor will be used. Otherwise, postnews defaults to
viet).

An initial set of headers containing the subject and newsgroups will be placed in the editor,
followed by a blank line. The article should be appended to the buffer, after the blank line.
These headers can be changed, or additional headers added, while in the editor, if desired.

Optionally, the article will be read from the specified filename.

For more sophisticated uses, such as posting news from a program, see inews (1).

SEE ALSO
Mail(I), checknews(I), inews(I), mail(I), readnews(t).

3rd Berkeley Distribution 1

READNEWS (1) UNIX Programmer's Manual READNEWS (1)

NAME
readnews - read news articles

SYNOPSIS
readnews [-a date] [-n newsgroups] [-t titles] [-lprxhfuM] [-c [mailer]]

readnews -s

DESCRIPTION
readnews without argument prints unread articles. There are several interfaces available:

Flag Interface

default A msgs(l) like interface.

-M An interface to Mail(l).

-c A /bin/mail(l)-like interface.

-c "mailer"
All selected articles written to a temporary file. Then the mailer is invoked. The
name of the temporary file is referenced with a "%". Thus, "mail -f %" will
invoke mail on a temporary file consisting of all selected messages.

-p All selected articles are sent to the standard output. No questions asked.

-1 Only the titles output. The .newsrc file will not be updated.

The -r flag causes the articles to be printed in reverse order. The -f flag prevents any fol­
lowup articles from being printed. The -h flag causes articles to be printed in a less verbose
format, and is intended for terminals running at 300 baud. the -u flag causes the .newsrc
file to be updated every 5 minutes, in case of an unreliable system. (Note that if the newsrc
file is updated, the x command will not restore it to its original contents.)

The following flags determine the selection of articles.

-n newsgroups
Select all articles that belong to newsgroups.

-t titles Select all articles whose titles contain one of the strings specified by titles.

-a [date]
Select all articles that were posted past the given date (in getdate(3) format).

-x Ignore .newsrc file. That is, select articles that have already been read as well as
new ones.

readnews maintains a .newsrc file in the user's home directory that specifies all news articles
already read. It is updated at the end of each reading session in which the -x or -I options
weren't specified. If the environment variable NEWSRC is present, it should be the path
name of a file to be used in place of .newsrc.

If the user wishes, an options line may be placed in the .newsrc file. This line starts with the
wo.rd options (left justified) followed by the list of standard options just as they would be
typed on the command line. Such a list may include: the -n ftag along with a newsgroup
list; a favorite interface; and/or the -r or -t flag. Continuation lines are specified by follow­
ing lines beginning with a space or tab character. Similarly, options can be specified in the
NEWSOPTS environment parameter. Where conflicts exist, option on the command line take
precedence, followed by the .newsrc options line, and lastly the NEWSOPTS parameter.

readnews -s will print the newsgroup subscription list.

When the user uses the reply command of the msgs(l) or /bin/mall(l) interfaces, the
environment parameter MAILER will be used to determine which mailer to use. The default
is usually Ibinlmail.

7th Edition 1

READNEWS (1) UNIX Programmer's Manual READNEWS (1)

If the user so desires, he may specify a specific paging progam for articles. The environment
parameter PAGER should be set to the paging program. The name of the article is referenced
with a '0/0', as in the -c option. If no '0/0' is present, the article will be piped to the program.
Paging may be disabled by setting PAGER to a null value.

COMMANDS
This section lists the commands you can type to the msgs and fbin/mail interface prompts.
The msgs interface will suggest some common commands in brackets. Just hitting return is
the same as typing the first command. For example, '1ynq]" means that the commands "y"
(yes), "n" (no), and "q" (quit) are common responses, and that "y" is the default.
Command Meaning

y Yes. Prints current article and goes on to next.

n No. Goes on to next article without printing current one. In the fbinfmail interface,
this means "go on to the next article", which will have the same effect as ''y'' or just
hitting return.

q Quit. The .newsrc file will be updated if -lor -x were not on the command line.

c Cancel the article. Only the author or the super user can do this.

r Reply. Reply to article's author via mail. You are placed in your EDITOR with a
header specifying To, Subject, and References lines taken from the message. You may
change or add headers, as appropriate. You add the text of the reply after the blank
line, and then exit the editor. The resulting message is mailed to the author of the
article.

rd Reply directly. You are placed in $MAlLER ("mail" by default) in reply to the
author. Type the text of the reply and then control-D.

f [title] Submit a follow up article. Normally you should leave off the title, since the system
will generate one for you. You will be placed in your EDITOR to compose the text of
the followup.

fd Followup directly, without edited headers. This is like f, but the headers of the arti­
cle are not included in the editor buffer.

N [newsgroup]
Go to the next newsgroup or named newsgroup.

s [file] Save. The article is appended to the named file. The default is "Articles". If the first
character of the file name is 'I', the rest of the file name is taken as the name of a pro­
gram, which is executed with the text of the article as standard input. If the first
character of the file name is 'f', it is taken as a full path name of a file. If $NEWSBOX
(in the environment) is set to a full path name, and the file contains no 'f', the file is
saved in $NEWSBOX. Otherwise, it is saved relative to $HOME.

e

h

H

U

d

D

7th Edition

Report the name and size of the newsgrou p.

Erase. Forget that this article was read.

Print a more verbose header.

Print a very verbose header, containing all known information about the article.

Unsubscribe from this newsgroup. Also goes on to the next newsgroup.

Read a digest. Breaks up a digest into separate articles and permits you to read and
reply to each piece.

Decrypt. Invokes a Caesar decoding program on the body of the message. This is used
to decrypt rotated jokes posted to net.jokes. Such jokes are usually obscene or other­
wise offensive to some groups of people, and so are rotated to avoid accidental

2

READNEWS (1) UNIX Programmer's Manual READNEWS (1)

decryption by people who would be offended. The title of the joke should indicate the
nature of the problem, enabling people to decide whether to decrypt it or not.

Normally the Caesar program does a character frequency count on each line of the article
separately, so that lines which are not rotated will be shown in plain text. This works well
unless the line is short, in which case it sometimes gets the wrong rotation. An explicit
number rotation (usually 13) may be given to force a particular shift.

v Print the current version of the news software.

Shell escape.

number
Go to number.

+[n] Skip n articles. The articles skipped are recorded as "unread" and will be offered to
you again the next time you read news.

Go back to last article. This is a toggle, typing it twice returns you to the original
article.

x Exit. Like quit except that .newsrc is not updated.

X system
Transmit article to the named system.

The commands c, f, fd, r, rd, e, h, H, and s can be followed by -'s to refer to the previous
article. Thus, when replying to an article using the msgs interface, you should normally type
"r-" (or "re-") since by the time you enter a command, you are being offerred the next article.

EXAMPLES
readnews

FILES

Read all unread articles using the msgs(l) interface. The .newsrc file is updated at
the end of the session.

readnews -c "ed %" -I
Invoke the ed (1) text editor on a file containing the titles of all unread articles.
The .newsrc file is not updated at the end of the session.

readnews -n all !fa.all -M -r
Read all unread articles except articles whose newsgroups begin with "fa." via
Mail(t) in reverse order. The .newsrc file is updated at the end of the session.

readnews -p -n all -a last thursday
Print every unread article since last Thursday. The .newsrc file is updated at the
end of the session.

readnews -p > Idev/null &
Discard all unread news. This is useful after returning from a long trip.

lusrlspoollnewslnewsgroup lnumber

lusr/lib/news/active
lusr/lib/news/help
- l.newsrc

News articles
Active newsgroups and numbers of articles
Help file for msgs(O interface
Options and list of previously read articles

checknewsCl), inews(l), sendnews(S), recnewsCS), uurecCS), msgsCl), Mail(t), mail(l), newsCS), ..1-" ~~ ~
newsn:(S) ~ I) . n.cJ

,

7th Edition 3

READNEWS (1)

AUTHORS
Matt Glickman
Mark Horton
Stephen Daniel
Tom R. Truscott

7th Edition

UNIX Programmer's Manual READNEWS (1)

4

NEWS C 5) UNIX Programmer's Manual NEWSC 5)

NAME
news - USENET network news article, utility files

DESCRIPTION
There are two formats of news articles: A and B. A format is the only format that version 1
netnews systems can read or write. Systems running the version 2 netnews can read either
format and there are provisions for the version 2 netnews to write in A format. A format
looks like this:

Aarticle-I D
newsgroups
path
date
title
Body of article

Only version 2 netnews systems can read and write B format. B format contains two extra
pieces of information: receival date and expiration date. The basic structure of a B format file
consists of a series of headers and then the body. A header field is defined as a line with a cap­
ital letter in the 1st column and a colon somewhere on the line. Unrecognized header fields
are ignored. News is stored in the same format transmitted, see "Standard for the Interchange
of USENET Messages" for a full description. The following fields are among those recognized:

Header Information

From:

Newsgroups:

Message-ID:

Subject:

Date:

Date-Received:

Expires:

Reply-To:

References:

Control:

user@host.domain[.domain .. J (Full Name)

Newsgroups

<V nique I denti fier >
descriptive title

Date Posted

Date received on local machine

Expiration Date

Address for mail replies

Article ID of article this is

Text of a control message

Here is an example of an article:

Relay-Version: B 2.10 2/13/83 cbosgd.UUCP
Posting-Version: B 2.10 2/13/83 eagle.UUCP
Path: cbosgd!mhuxj!mhuxt!eagle!jerry
From: jerry@eagle.uucp (Jerry Schwarz)
Newsgroups: net.general
Subject: Usenet Etiquette - Please Read
Message-ID: <642@eagle.UUCP>
Date: Friday, 19-Nov-82 16:14:55 EST
Followup-To: net.news
Expires: Saturday, 1-Jan-83 00:00:00 EST
Date-Received: Friday, 19-Nov-82 16:59:30 EST
Organization: Bell Labs, Murray Hill

The body of the article comes here, after a blank line.

7th Edition

NEWS (5) UNIX Programmer's Manual

A sys file line has four fields, each seperated by colons:

system-name:subsz.,riptions:flags:transmission command

NEWS (5)

Of these fields, 0rrthe system-name and subscriptions need to be present.

The system name is the name of the system being sent to. The subscriptions is the list of
newsgroups to be transmitted to the system. The flags are a set. of letters describing how the
article should be transmitted. The default is B. Valid flags include A (send in A format), B
(send in B format), N (use ihave/sendme protocoI), U (use uux -c and the name of the stored
article in a %s string).

The transmission command is executed by the shell with the article to be transmitted as the
standard input. The default is uux - -z -r sysname!rnews. Some examples:

xyz:net.all
oldsys:net.all,f a.all, to.oldsys:A
ber ksys:net.all, uc b.all::/usr/Iib/newsl sendnews -b ber ksysrnews
arpasys:net.all,arpa.all::/usr Iii bl newsl sendnews -a rnews@arpasys
old2:net.all,f a.all:A:1 usr Iii bl sendnews -0 old2rnews
user:fa.sf-lovers::mail user

Somewhere in a sys file, there must be a line for the host system. This line has no flags or
commands. A # as the first character in a line denotes a comment.

The history, active, and ngfile files have one line per item.

SEE ALSO
inews(l), postnews(l), sendnews(S), uureceS), readnews(l)

7th Edition 2

NEWSRC(5) UNIX Programmer's Manual NEWSRC(5)

NAME
newsrc - information file for readnews(l) and checknews(l)

DESCRIPTION

FILES

The .newsrc file contains the list of previously read articles and an optional options line for
readnews(1) and checknews(1). Each newsgroup that articles have been read from has a line
of the form:

newsgroup: range

The range is a list of the articles read. It is basically a list of no.'s separated by commas with
sequential no.'s collapsed with hyphens. For instance:

general: 1-78,80,85-90
fa.info-cpm: 1-7
net.news: 1
fa.info-vax! 1-5

If the : is replaced with an ! (as in info-vax above) the newsgroup is not subscribed to and
will not be shown to the user.

An options line starts with the word options (left-justified). Then there are the list of
options just as they would be on the command line. For instance:

options -n all !fa.sf-lovers !fa.human-nets -r
options -c -r

A string of lines beginning with a space or tab after the initial options line will be considered
continuation lines.

- I.newsrc options and list of previously read articles

SEE ALSO
readnews(l), checknews(l)

7th Edition 1

RECNEWS (S) UNIX Programmer's Manual

NAME
recnews - receive unprocessed articles via mail

SYNOPSIS
lusr/lib/news/recnews [newsgroup [sender]]

DESCRIPTION

RECNEWS(S)

Recnews reads a letter from the standard input; determines the article title, sender, and news­
group; and gives the body to inews with the right arguments for insertion.

If newsgroup is omitted, the to line of the letter will be used. If sender is omitted, the sender
will be determined from the from line of the letter. The title is determined from the subject
line.

SEE ALSO
inews(l), uurec(S), sendnews(S), readnews(l), checknews(l)

7th Edition 1

SENDNEWS (8) UNIX Programmer's Manual SENDNEWS (8)

NAME
sendnews - send news articles via mail

SYNOPSIS
sendnews [-0] [-a] [-b] [-n newsgroups] destination

DESCRIPTION
sendnews reads an article from it's standard input, performs a set of changes to it, and gives it
to the mail program to mail it to destination.

An 'N' is prepended to each line for decoding by uurec(l).

The -0 flag handles old format articles.

The -a flag is used for sending articles via the ARPANET. It maps the article's path from
uucphost!xxx to xxx@arpahost.

The -b flag is used for sending articles via the Berknet. It maps the article's path from
uucphost!xxx to berkhost:xxx.

The -n flag changes the article's newsgroup to the specified newsgroup.

SEE ALSO
inews(l), uurec(8), recnews(8), readnews(l), checknews(l)

7th Edition 1

User Contributed Software

Note: This "User Contributed Software" is part of the standard Berkeley 4.2BSO release. It is included
as part 01 MORE/bsd for the use of our customers. but it is not supported in any way by MT XINU. NO
WARRANTY. EXPRESS OR IMPLIED. OF ANY KIND. IS MADE REGARDING THIS SOFTWARE.

CI (1) UNIX. Programmer's Manual CI (1)

NAME
ci - check in Res revisions

SYNOPSIS
ci [options] file ...

DESCRIPTION
Ci stores new revisions into Res files. Each file name ending in '.v· is taken to be an RCS
file. all others are assumed to be working files containing new revisions. Ci deposits the
contents of each working file into the corresponding Res file.

Pairs of Res files and working files may be specified in 3 ways (see also the example section
of co (1)).

1) Both the Res file and the working file are given. The Res file name is of the form
pathllworkftle.v and the working file name is of the form path2lworkftle. where path11 and
path21 are (possibly different or empty) paths and workftle is a file name.

2) Only the Res file is given. Then the working file is assumed to be in the current direc­
tory ll;l1~ its name is derived from the name of the Res file by removing path11 and the
suffix .v.

3) Only the working file is given. Then the name of the Res file is derived from the name
of the working file by removing path21 and appending the suffix '.v'.

If the Res file is omitted or specified without a path. then ci looks for the RCS file first in
the directory .lRCS and then in the current directory.

For ci to work. the caller's login must be on the access list. except if the access list is empty
or the caller is the superuser or the owner of the file. To append a new revision to an exist­
ing branch. the tip revision on that branch must be locked by the caller. Otherwise. only a
new branch can be created. This restriction is not enforced for the owner of the file. unless
locking is set to strict (see res (1)). A lock held by someone else may be broken with the
res command.

Normally. ct checks whether the revision to be deposited is different from the preceding
one. If it is not different. ct either aborts the deposit (if -q is given) or asks whether to
abort Cif -q is omitted). A deposit can be forced with the -f option.

For each revision deposited. ct prompts for a log message. The log message should summar­
ize the change and must be terminated with a line containing a single'.' or a control-D. If
several files are checked in. ci asks whether to reuse the previous log message. If the std.
input is not a terminal. ci suppresses the prompt and uses the same log message for all files.
See also -m.

The number of the deposited revision can be given by any of the options -r. -f, -k. -1. -u. or
-q (see -r).

If the Res file does not exist. ci creates it and deposits the contents of the working file as
the initial revision (default number: 1.1). The access list is initialized to empty. Instead of
the log message. ct requests descriptive text (see -t below).

-r[rev] assigns the revision number rev to the checked-in revision. releases the
corresponding lock. and deletes the working file. This is also the default.

If rev is omitted. ct derives the new revision number from the caller's last lock.
If the caller has locked the tip revision of a branch. the new revision is appended
to that branch, The new revision number is obtained by incrementing the tip
revision number, If the caller locked a non-tip revision. a new branch is started
at that revision by incrementing the highest branch number at that revision. The
default initial branch and level numbers are 1. If the caller holds no lock. but he

Purdue University 6/29/83 1

· •. CHl) CICl)

is the OWfier of the file and locking is not set to strict. then the revision is
appended to the trunk.

If rev indicates a revision number. it must be higher than the latest one on the
branch to which rev belongs. or must start a new branch.

If rev indicates a branch instead of a revision. the new revision is appended to
that branch. The level number is obtained by incrementing the tip revision
number of that branch. If rev indicates a non-existingbranch. that branch is
created with the initial revision numbered rev.l.

DIAGNOSncs
For each revision. d prints the Res file. the working file. and the number of both the depo­
sited and the preceding revision. The exit status always refers to the last file checked in.
and is 0 if the operation was successful. 1 otherwise. .

FJl.EMODES
An RCSfile created by d inherits the read and execute permissions from the working file. If
the Res file exists already. d preserves its read and execute permissions. Cl always turns
off all write permissions of Res files.

Pt.lrt:me University 6/29/83 2

CI (1)

FILFS

UNIX Programmer's Manual CI (1)

The caller of the command must have read/write permission for the directories containing
the Res file and the working file, and read permission for the Res file itself. A number of
temporary files are created. A semaphore file is created in the directory containing the Res
file. Ci always creates a new Res file and unlinks the old one. This strategy makes links to
RCS files useless.

IDENTIFICATION
Author: Walter F. Tichy. Purdue University. West Lafayette. IN. 47907.
Revision Number: 3.1 : Release Date: 83/04/04 .
Copyright • 1982 by Walter F. Tichy.

SEE ALSO

BUGS

co (0. ident(l). res (1). resdiff (1). rcsintro (i), rcsmerge (1). dog (1). rcsfile (5). sccstorcs
(8).
Walter F. Tichy. "Design. Implementation. and Evaluation of a Revision Control System." in
Proceedings of ths 6th International Conference on Software Engineering. IEEE. Tokyo.
Sept. 1982.

Purdue University 6/29/83 3

CO(1) UNIX Programmer"s Manual CO(1)

NAME
co - check out Res revisions

SYNOPSIS
co [options] file ...

DESCRIPI'JON
Co retrieves revisions from Res files. Each file name ending in '.v· is taken to be an Res
file. All other files are assumed to be working files. Co retrieves a revision from each Res
file and stores it into the corresponding working file.

Pairs of RCS files and working files may be specified in 3 ways (see also the example sec­
tion).

1) Both the Res file and the working file are given. The Res file name is of the form
pathllworkfile.v and the working file name is of the form path2lworkftle. where path11 and
path21 are (possibly different or empty) paths and workftle is a file name.

2) Only the RCS file is given. Then the working file is created in the current directory and
its name is derived from the name of the Res file by removing pathll and the suffix' .v·.

3) Only the working file is given. Then the name of the Res file is derived from the name
of the working file by removing path21 and appending the suffix ',v'.

If the Res file is omitted or specified without a path. then co looks for the ReS file first in
the directory .IRCS and then in the current directory.

Revisions of an Res file may be checked out locked or unlocked. Locking a revision
prevents overlapping updates. A revision checked out for reading or processing (e.g., com­
piling) need not be locked. A revision checked out for editing and later checkin must nor­
mally be locked. Locking a revision currently locked by another user fails. (A lock may be
broken with the res (1) command.) Co with locking requires the caller to be on the access
list of the RCS file. unless he is the owner of the file or the superuser. or the access list is
empty. Co without locking is not subject to accesslist restrictions.

A revision is selected by number. checkin date/time. author, or state. If none of these
options are specified. the latest revision on the trunk is retrieved. When the options are
applied in combination. the latest revision that satisfies all of them is retrieved. The
options for date/time. author, and state retrieve a revision on the selected branch. The
selected branch is either derived from the revision numher Cif given), or is the highest
branch on the trunk. A revision number may be attached to one of the options -1. -po -q. or
-r.

A co command applied to an Res file with no revisions creates a zero-length file. Co always
performs keyword substitution (see below).

-l(rev] locks the checked out revision for the caller. If omitted. the checked out revi­
sion is not locked. See option -r for handling of the revision number rev.

-p[revl prints the retrieved revision on the std. output rather than storing it in the
working file. This option is useful when co is part of a pipe.

-q[revl quiet mode: diagnostics are not printed.

-ddate retrieves the latest revision on the selected branch whose checkin date/time is

Purdue University

less than or equal to date. The date and time may be given in free format and
are converted to local time. Examples of formats for date:

22-April-1982,17:2O-CDT,
2:25 AM, Dec. 29, 1983,
Tue-PDT, 1981, 4pm Jul 21 (free format),
Fri, April 16 15:52:25 EST 1982 (output of ctime).

6129/83 1

ca(1)

-r[rev]

UNIX Programmer's Manual CO(1)

Most fields in the date and time may be defaulted. Co determines the defaults
in the order year. month. day. hour. minute. and second (most to least
significant). At least one of these fields must be provided. For omitted fields
that are of higher significance than the highest provided field. the current values
are assumed. For all other omitted fields. the lowest possible values are
assumed. For example. the date "20. 10:30" defaults to 10:30:00 of the 20th of
the current month and current year. The date/time must be quoted if it con-
tains sPaces.

retrieves the latest revision whose number is less than or equal to rev. If rev
indicates a branch rather than a revision. the latest revision on that branch is
retrieved. Rev is composed of one or more numeric or symbolic fields separated
by':. The numeric equivalent of a symbolic field is specified with the -n option
of the commands ei and res.

--sstate retrieves the latest revision on the selected branch whose state is set to state.

-w[login] retrieves the latest revision on the selected branch which was checked in by the
user with login name login. If the argument login is omitted. the caller's login is
assumed.

-jjoinlist generates a new revision which is the join of the revisions on joinlist. Joinlist is
a comma-separated list of pairs of the form rev2:rev3. where rev2 and rev3 are
(symbolic or numeric) revision numbers. For the initial such pair. rev] denotes
the revision selected by the options -1. -w. For all other pairs. rev] denotes
the revision generated by the previous pair. (Thus. the output of one join
becomes the input to the next.)

For each pair. eo joins revisions rev] and rev3 with respect to rev2. This means
that all changes that transform rev2 into revl are applied to a copy of rev3.
This is particularly useful if rev] and rev3 are the ends of two branches that
have rev2 as a common ancestor. If revl < rev2 < rev3 on the same branch.
joining generates a new revision which is like rev3. but with all changes that
lead from revl to rev2 undone. If changes from rev2 to revl overlap with
changes from rev2 to rev3. co prints a warning and includes the overlapping sec­
tions. delimited by the lines < < < < < < < rev], and
»»»> rev3.

For the initial pair. rev2 may be omitted. The default is the common ancestor.
If any of the arguments indicate branches. the latest revisions on those branches
are assumed. If the option -1 is present. the initial rev] is locked.

KEYWORD SUBS'lTfUTION
Strings of the form $keyword$ and $keyword: .. .$ embedded in the text are replaced with
strings of the form $keyword: value $. where keyword and value are pairs listed below.
Keywords may be embedded in literal strings or comments to identify a revision.

Initially. the user enters strings of the form $keyword$. On checkout. eo replaces these
strings with strings of the form $keyword: value $. If a revision containing strings of the
latter form is checked back in. the value fields will be replaced during the next checkout.
Thus. the keyword values are automatically updated on checkout.

Keywords and their corresponding values:

$Author$ The login name of the user who checked in the revision. qms. Class$

$DateS The date and time the revision was checked in.

$Header$ A standard header containing the RCS file name. the revision number. the

Purdue University 6/29/83 2

ca(1) UNIX Programmer's Manual CO(1)

$Locker$

SLogS

$Revision$

$SourceS
$StateS

date, the author. and the state.

The login name of the user who locked the revision (empty if not locked).

The log message supplied during checkin. preceded by a header containing the
RCS file name. the revision number. the author. and the date. Existing log
messages are NOT replaced. Instead. the new log message is inserted after
$1.,og: .. .$. This is useful for accumulating a complete change log in a source
file.

The revision number assigned to the revision.

The full pathname of the RCS file.

The state assigned to the revision with res -s or ci -so

DIAGNOSTICS
The RCS file name. the working file name. and the revision number retrieved are written to
the diagnostic output. The exit status always refers to the last file checked out. and is 0 if
the operation was successful. 1 otherwise.

EXAMPLES
Suppose the current directory contains a subdirectory 'RCS' with an RCS file 'io.c.v·. Then
all of the following commands retrieve the latest revision from 'RCS/io.c.v· and store it
into'io.c·.

co io.c; co RCSlio.c.v; co io.c.v;
co io.c RCS/io.c.v; co io.c io.c.v;
co RCSlio.c.v io.c; co io.c.v io.c;

FILE MOD:f3

FILES

The working file inherits the read and execute permissions from the RCS file. In addition.
the owner write permission is turned on. unless the file is checked out unlocked and locking
is set to strict (see res (1».
If a file with the name of the working file exists already and has write permission. co aborts
the checkout if -q is given. or asks whether to abort if -q is not given. If the existing work­
ing file is not writable. it is deleted before the checkout.

The caller of the command must have write permission in the working directory. read per­
mission for the RCS file. and either read permission (for reading) or read/write permission
(for locking) in the directory which contains the RCS file.

A number of temporary files are created. A semaphore file is created in the directory of the
RCS file to prevent simultaneous update.

IDENTIFICATION
Author: Walter F. Tichy. Purdue University. West Lafayette. IN. 47907.
Revision Number: 3.1 ; Release Date: 83/04/04 .
Copyright 01982 by Walter F. Tichy.

SEE ALSO
ci (0. ident(1). res (0. rcsdUf (1). resintro (1). resmerge (0. dog (1). resfile (5). scestores
(8).
Walter F. Tichy. "Design. Implementation. and Evaluation of a Revision Control System." in
Proceedings of the 6th International Conference on Software Engineering. IEEE. Tokyo.
Sept. 1982.

LIMlTA nONS
The option -d. gets confused in some circumstances. and accepts no date before 1970. There
is no way to suppress the expansion of keywords. except by writing them dUferently. In

Purdue University 6/29/83 3

cae 1) UNIX. Programmer's Manual cae 1)

nro:ff and tro:ff. this is done by embedding the null-character '\&' into the keyword.

BUGS
The option -j does not work for files that contain iines with a single ':.

Purdue University 6/29/83 4

COMP(1) UNIX Prograriuner's Manual COMP(1)

NAME
comp - compose a message

SYNOPSIS
CQmp [-editor editor] [-form formfile] [file] [-use] [-nouse] [-help]

DFSClUPTION
Camp is used to create a new message to be mailed. If file is not specified. the file named
"draft" in the user's MH directory will be used. Comp copies a message form to the file
being composed and then invokes an editor on the file. The default editor is Ibinlned,
which may be overridden with the '-editor' switch or with a profile entry "Editor:", The
default message form contains the following elements:

To:
cc:
Subject:

If the file named "components" exists in the user's MH directory, it will be used instead of
this form. If '-form formfile' is specified. the specified formfile (from the MH directory)
will be used as the skeleton. The line of dashes or a blank line must be left between the
header and the body of the message for the message to be identified properly when it is sent
(see send(1)). The switch '-use' directs camp to continue editing an already started mes­
sage. That is. if a comp (or dist. repl. or forw) is terminated without sending the message,
the message can be edited again via "comp -use",

If the specified file (or draft) already exists. camp will ask if you want to delete it before
continuing. A reply of No will abort the compo yes will replace the existing draft with a
blank skeleton. list will display the draft. and use will use it for further composition,

Upon exiting from the editor, camp will ask "What now?", The valid responses are list, to
list the draft on the terminal: quit, to terminate the session and preserve the draft: quit
delete, to terminate. then delete the draft; send, to send the message; send verbose, to
cause the delivery process to be monitored; edit <editor>, to invoke <editor> for
further editing: and edit. to re-edit using the same editor that was used on the preceding
round unless a profile entry" <1asteditor>-next: <editor>" names an alternative editor,

. Camp does not affect either the current folder or the current message.

letc/Diblcomponents
or <mh-dir>/components
$HOMElmh-Pl"ofile
<mh-dir> Idraft
lusr/new/send

The message skeleton
Rather than the standard skeleton
The user profile
The default message file
To send the composed message

PROFILE COMPONENTS
Path: To determine the user's MH directory
Editor:
< lasteditor> -next:

DEFAULTS

To override the use of /binlned as the default editor
editor to be used after exit from <lasteditor>

'file' defaults to draft
'-editor' defaults to /binlned
'-nouse'

4th Berkeley Distribution 3 August 1983 1

DIST(l) UNIX. Programmer's Manual DIST(l)

NAME
dist - redistribute a message to additional addresses

SYNOPSIS
dist [+folder] [msg] [-form form.1ile] [-editor editor] [-annotate] [-noannotate] [
-inplace] [-noinplace] [-help]

DESCRIPTION
Dist is similar to forw. It prepares the specified message for redistribution to· addresses that
(presumably) are not on the original address list. The :file "distcomps" in the user's MH
directory, or a standard form, or the file specified by '-form form.1ile' will be used as the
blank components :file to be prepended to the message being distributed. The standard form
has the components "Distribute-to:" and "Distribute-cc:". When the message is sent,
"Distribution-Date: date", "Distribution-From: name", and "Distribution-Id: id" Cif
'-msgid' is specified to send;) will be prepended to the outgoing message. Only those
addresses in "Distribute-To", "Distribute-cc", and "Distribute-Bec" will be sent. Also, a
"Distribute-Fcc: folder" will be honored (see send;).

Send recognizes a message as a redistribution message by the existence of the field
"Distribute-To:", so don't try to redistribute a message with only a "Distribute-cc:".

If the '-annotate' switch is given, each message being distributed will be annotated with
the lines:

Distributed: date
DiStributed: Distribute-to: names

where each "to" list contains as many lines as required. This annotation will be done only
if the message is sent directly from dist. If the message is not sent immediately from dist
Ci.e .. if it is sent later via send;), "comp -use" may be used to re-edit and send the con­
structed message, but the annotations won't take place. The '-inplace' switch causes anno­
tation to be done in place in order to preserve links to the annotated message.

See camp for a description of the '-editor' switch and for options upon exiting from the
editor.

If a +folder is specified, it will become the current folder, and the current message will be
set to the message being redistributed.

letclmhlcomponents
or <mh-dir>/components
$HOMElmh..pro:file
<mh-dir>/draft
lusr/binlsend

The message skeleton
Rather than the standard skeleton
The user pro:file
The default message file
To send the composed message

PROFILE COMPONENTS
Path: To determine the user's MH directory
Editor:
< lasteditor > -next:

DEFAULTS

To override the use of Ibin/ned as the default editor
editor to be used after exit from <lasteditor>

'+folder' defaults to the' current folder
'msg' defaults to cur
'-editor' defaults to Ibin/ned
'-noannotate'
, -noinplace'

4th Berkeley Distribution 3 August 1983 1

FILE(l) UNIX Programmer's Manual FILE(l)

NAME
file - file message(s) in (an)other folder(s)

SYNOPSIS
file [-src +folder] [msgs] [-link] [-preserve] +folder ... [-nolink] [-nopreserve] [
-file file] [-nofile] [-help]

DESCRIPTION

FILES

File moves (mv(l)) or links (In.(1)) messages from a source folder into one or more destina­
tion folders. If you think of a message as a sheet of paper. this operation is not unlike filing
the sheet of paper (or copies) in file cabinet folders. When a message is filed. it is linked
into the destination folder(s) if possible. and is copied otherwise. As long as the destination

,folders are all on the same file system. mUltiple filing causes little storage overhead. This
facility provides a good way to cross-file or multiply-index messages. For example, if a
message is received from Jones about the ARPA Map Project. the command

file cur +jones +Map

would allow the message to be found in either of the two folders 'jones' or 'Map'.

The option '-file file' directs file to use the specified file as the source message to be filed,
rather than a message from a folder.

If a destination folder doesn't exist. file will ask if you want to create one. A negative
response will abort the file operation.

'-link' preserves the source folder copy of the message (i.e., it does a [n.(1) rather than a
mv(l)), whereas, '-nolink' deletes the "filed" messages from the source folder. Normally.
when a message is filed. it is assigned the next highest number available in each of the desti­
nation folders. Use of the '-preserve' switch will override this message "renaming", but
name conflicts may occur. so use this switch cautiously. (See pick for more details on mes­
sage numbering.)

If '-link' is not specified (or '-nolink' is specified). the filed messages will be removed (
un.linJc(2)) from the source folder.

If '-src +folder' is given, it will become the current folder for future MH commands. If
neither '-link' nor 'all' are specified, the current message in the source folder will be set to
the last message specified: otherwise, the current message won't be changed.

SHOMEI mh_profile The user profile

PROFILE COMPONENTS
Path:
Current-Folder:
Folder-Protect:

DEFAULTS

To determine the user's MH directory
To find the default current folder
To set mode when creating a new folder

'-src +folder' defaults to the current folder
'msgs' defaults to cur
'-nolink'
, -nopreserve'
'-nofile'

CONTEXT
If '-src +folder' is given. it will become the current folder for future MH commands. If
neither '-link' nor 'all' are specified. the current message in the source folder will be set to
the last message specified: otherwise. the current message won't be changed.

4th Berkeley Distribution 3 August 1983 1

FOLDER (1) UNIX Programmer's Manual FOLDER (1)

NAME
folder - set/list current folder/message

SYNOPSIS
folder [+folder] [msg] [-aU] [-fast] [-nofast] [-up] [-down] [-header] [
-noheader 1 [-total] [-nototal] [-pack] [-nopack] [-help]

folders <equivalent to 'folder -aU'>

DESCRIPI'ION

FILES

Since the MH environment is the shell. it is easy to lose track of the current folder from
day to day. Folder will list the current folder, the number of messages in it. the range of
the messages (low-high). and the current message within the folder, and will flag a selection
list or extra files if they exist. An example of the output is:

inbox+ has 16 messages (3- 22); cur= 5.

If a '+folder' and/or 'msg' are specified. they will become the current folder and/or mes­
sage, An '-aU' switch will produce a line for each folder in the user's MH directory,
sorted alphabetically. These folders are preceded by the read-only folders. which occur as
mh-profile "cur-" entries. For example.

Folder # of messages (range); cur msg (other files)
/fsdlrslmltacc has 35 messages (1- 35); cur ... 23.

/rnd/phyllMaillEP has 82 messages (1-108); cur= 82.
ff has 4 messages (1- 4); cur= 1.

inbox+ has 16 messages (3- 22); cur= 5.
mh has 76 messages (1- 76); cur= 70.

notes has 2 messages (1- 2); cur= 1.
ucom has 124 messages (1-124); cur= 6; (select).

TOTAL= 339 messages in 7 Folders.

The "+" after inbox indicates that it is the current folder. The "(select)" indicates that the
folder ucom has a selection list produced by pick. If "others" had appeared in parentheses
at the right of a line. it would indicate that there are files in the folder directory that don't
belong under the MH file naming scheme.

The header is output if either an '-all' or a '-header' switch is specified; it is suppressed by
'-noheader'. Also. if folder is invoked by a name ending with "s" (e.g., folders), '-all' is
assumed. A'-total' switch will produce only the summary line.

If '-fast' is given. only the folder name (or names in the case of '-aU') will be listed.
(This is faster because the folders need not be read.)

The switches '-up' and '-down' change the folder to be the one above or below the current
folder. That is. "folder -down" will set the folder to" <current-folder>/select", and if
the current folder is a selection-list folder. "folder -up" will set the current folder to the
parent of the selection-list, (See pick for details on selection-lists.)

The '-pack' switch will compress the message names in a folder. removing holes in message
numbering.

$HOME/mh_profile
/binlls

The user profile
To fast-list the folders

PROFILE COMPONENTS
Path: To determine the user's MH directory

4th Berkeley Distribution 3 August 1983 1

FOLDER (1) UNIX Programmer's Manual

Current-Folder: To :find the default current folder

DEFAULTS
• +folder' defaults to the current folder
'msg' defaults to none
'-nofast'
• -noheader'
'-nototal'
'-nopack'

CONTEXT

FOLDER (1)

If '+folder' and/or 'msg' are given. they will become the current folder and/or message.

4th Berkeley Distribution 3 August 1983 2

FORW(1) UNIX. Programmer's Manual FORW (1)

NAME
forw - forward messages

SYNOPSIS
forw [+folder] [msgs] [-editor editor] [-form formfile] [-annotate] [-noannotate]
[-inplace] [-noinplace] [-help]

DESCRIPTION

FILES

Forw may be used to prepare a message containing other messages, It constructs the new
message from the components file or '-form formfile' (see comp(1)), with a body composed
of the message(s) to be forwarded. An editor is invoked as in comp, and after editing is
complete. the user is prompted before the message is sent.

If the '-annotate' switch is given. each message being forwarded will be annotated with the
lines

Forwarded: date
Forwarded: To: names
Forwarded: cc: names

where each "To:" and "cc:" list contains as many lines as required. This annotation will be
done only if the message is sent directly from forw. If the message is not sent immediately
from forw. "comp -use" may be used in a later session to re-edit and send the constructed
message, but the annotations won't take place. The '-inplace' switch permits annotating a
message in place in order to preserve its links.

See com.p for a description of the '-editor' switch.

I etc/ mhI components
or <mh-dir>/components
$HOME/mh-profile
<mh-dir>/draft
/usr/bin/send

The message skeleton
Rather than the standard skeleton
The user profile
The default message file
To send the composed message

PROFILE COMPONENTS
Path:
Editor:
Current-Folder:
< lasteditor > -next:

DEFAULTS

To determine the user's MH directory
To override the use of /binlned as the default editor
To find the default current folder
editor to be used after exit from <lasteditor>

'+folder' defaults to the current folder
'msgs' defaults to cur
'-editor' defaults to /binlned
'-noannotate'
, -noinplace'

CONTEXT
If a +folder is specified. it will become the current folder, and the current message will be
set to the first message being forwarded.

4th Berkeley Distribution 3 August 1983 1

ICONC(1) UNIX Programmer's Manual ICONC(1)

NAME
iconc - compile and link Icon programs

SYNOPSIS
iconc [option ...] file ...

DESCRIPTION
leone is a compiler for Version 5 of the Icon programming language. Compilation consists
of four phases: translation. linking. assembling. and loading. During translation. each Icon
source file is translated into an intermediate language; during linking. the intermediate
language files are combined and a single assembly code output file is produced which is then
assembled; during loading. the assembled program is loaded with the Icon runtime system
libraries. producing an executable file. Unless the -0 option is specified. the name of the
resulting executable file is formed by deleting the suffix of the first file named on the com­
mand line.

Files whose names end in '.icn' are assumed to be Icon source programs; they are translated,
and the intermediate code is left in two files of the same name with ',ul' and '.u2· substi­
tuted for '.icn'. The intermediate code files are normally deleted when compilation has
finished. Files whose names end in ',ul' or '.u2' are assumed to be intermediate code files
from a previous translation (only one should be named - the other is assumed); these files
are included in the linking phase after any '.icn' files have been translated. Files whose
names end in '.c' or '.0' are assumed to be external functions. Any ',c' file is compiled using
cc (1) to produce a '.0' file. A' .ul'. '.u2', '.c', or '.0' file that is explicitly named is not
deleted.

The following options are recognized by iconc.

-c Suppress the linking and loading phases, The intermediate code files are not deleted.

-m
Preprocess each '.icn' source file with the m4 (1) macro processor before translation.

-0 output
Name the executable file output .

-s Suppress any informative messages from the translator and linker. Normally, both
informative messages and error messages are sent to standard error output.

-t Arrange for &trace to have an initial value of -1 when the program is executed. Nor­
mally, &trace has an initial value of O.

-u Issue warning messages for undeclared identifiers in the program. The warnings are
issued during the linking phase.

When an Icon program is executed. a number of environment variables are examined to
determine certain execution parameters. The values assigned to these variables should be
numbers. The variables that affect execution and the interpretations of their values are as
follows:

TRACE
Initialize the value of &trace. If this variable has a value, it overrides the
translation-time -t option.

NBUFS
The number of i/o buffers to use for files. When a file is opened, it is assigned an i/o
buffer if one is available and the file is not a tty. If no buffer is available, the file is not
buffered. &input, &output. and &errout are buffered if buffers are available. On
V.AX systems. ten buffers are allocated initially; on PDP-ll systems, five buffers are
allocated initially.

NOERRBUF

The University of Arizona 2 March 1983 1

ICONC(1) UNIX. Programmer's Manual ICONC (1)

FILFS

If set. &errout is not buJfered,

STRSIZE
The initial size of the string space. in bytes. The string space grows if necessary. but it
never shrinks. On VAX. systems. the string space is initially 51.200 bytes; on PDP-ll
systems. 10.240 bytes initially.

HEAPSIZE
The initial size of the heap. in bytes. The heap grows if necessary. but it never shrinks.
On VAX. systems. the heap is initially 51.200 bytes; on PDP-ll systems. 10.240 bytes
initially.

NSTACKS
The number of stacks initially available for co-expressions. On V AX systems. four
stacks are initially allocated; on PDP-ll systems. two stacks are initially allocated.
More are automatically allocated if needed. It is unwise to set NSTACKS to 1.

STKSIZE
The size of each co-expression stack. in words. On VAX systems. stacks are normally
2000 words; on PDP-ll systems. stacks are normally 1000 words.

PROFILE
Turn on execution profiling of the runtime system. The value of this variable specifies
the sampling resolution. in words. If the value is zero. profiling is not done. When a
profiled program finishes. a file named 'mon.out' is created containing the results of the
profile. The program prof(l) can be used to examine the results. This produces a
profile of the runtime system. not the user program.

mon.out
v5g/ cmp/binlutran
v5g/cmp/bin/ulink
v5g/ cmp/bin/libi.a

results of profiling
icon translator
icon linker
icon runtime library

SEE ALSO

BUGS

The Icon Progra.m:ming Language. Ralph E. Griswold and Madge T. Griswold. Prentice-Hall
Inc .• Englewood Cliffs. New Jersey. 1983.

Installation. an.d Mainten.o.n.ce Guide for Release 5g of Icon. Department of Computer Sci­
ence. The University of Arizona. March 1983.

cc(l). icont(t). Id(l). m4(1). prof (1). monitor(3)

Because of the way that co-expressions are implemented. there is a possibility that pro­
grams in which they are used may malfunction mysteriously.

Integer overflow on multiplication is not detected.

If the -m option is used. line numbers reported in error messages or tracing messages are
from the file after. not before. preprocessing.

The University of Arizona 2 March 1983 2

ICONT(1) UNIX Programmer's Manual IeaNT(1)

NAME
icont - translate Icon programs for interpretive execution

SYNOPSIS
. icont [option .••] file ... [-x arg ...]

DFSCRlPTION
lcont is a translator for Version S of the Icon programming language. which produces a file
suitable for interpretation by the Icon interpreter. Translation consists of two phases:
trQlUlatioft and linking. During translation. each Icon source file is translated into an inter­
mediate language: during linking. the intermediate language files are combined and a single
output file is produced. The output file from the linker is referred to as an interpretable
file. Unless the -0 option is specified. the name of the resulting interpretable file is formed
by deleting the suffix of the first input file named on the command line. If the -x argument
is used, the file is automatically executed by the interpreter and any arguments following
the -x are passed as execution arguments to the Icon program itself.

Files whose names end in '.icn' are assumed to be Icon source programs; they are translated,
and the intermediate code is left in two files of the same name with'.u1' and '.u2' substi­
tuted for ',icn'. The intermediate code files normally are deleted when compilation has
finished. Flies whose names end in '.ut' or '.u2' are assumed to be intermediate code files
from a previous translation (only one should be named - the other is assumed); these files
are included in the linking phase after any '.icn' files have been translated. A '.ut' or '.u2'
file that is explicitly named is not deleted. Icon source programs may be read from stan­
dard input. The argument - signifies the use of standard input as a source file. In this case,
the intermediate code is placed in 'stdin.u1' and 'stdin,u2' and the interpretable file is
'stdin'.

The following options are recognized by icont •

-c Suppress the linking phase. The intermediate code files are not deleted.

-m
Preprocess each '.icn' source file with the rnA (1) macro processor before translation.

-0 output
Name the interpretable file output .

-s Suppress any informative messages from the translator and linker. Normally, both
informative messages and error messages are sent to standard error output.

-t Arrange for &trace to have an initial value of -1 when the program is executed. Nor­
mally. &trace has an initial value of O.

-u Issue warning messages for undeclared identifiers in the program. The warnings are
issued during the linking phase.

The interpretable file produced by the Icon linker is directly executable. For example, the
command

ic:ont hello.icn

produces a file named hello that can be run by the command

hello

The method used to make interpretable files appear to be directly executable is system
dependent. See the Icon installation guide for complete details. For most intents and pur­
poses. interpretable rues are executable programs in the same sense that files produced by
ld (1) are executable programs.

The University of Arizona 2 March 1983 1

ICONT (1) UNIX. Programmer's Manual ICONT (1)

FILES

Arguments can be passed to the Icon program by following the program name with the
arguments. Any such arguments are passed to the main procedure as a list of strings.

When an Icon program is executed. a number of environment variables are examined to
determine certain execution parameters. The values assigned to these variables should be
numbers. The variables that affect execution and the interpretations of their values are as
follows:

TRACE
Initialize the value of &trace. If this variable has a value. it overrides the
translation-time -t option.

NBUFS
The number of i/o buffers to use for files. When a file is opened. it is assigned an i/o
buffer if one is available and the file is not a tty. If no buffer is available. the file is not
buffered. &input. &output. and &errout are buffered if buffers are available. On
V AX. systems. ten buffers are allocated initially: on PDP-ll systems. five buffers are
allocated initially.

NOERRBUF
If set. &errout is not buffered.

STRSlZE
The initial size of the string space. in bytes. The string space grows if necessary. but it
never shrinks. On VAX. systems. the string space is initially 51.200 bytes: on PDP-ll
systems. 10.240 bytes initially.

HEAPSIZE
The initial size of the heap. in bytes. The heap grows if necessary. but it never shrinks.
On VAX. systems. the heap is initially 51.200 bytes: on PDP-ll systems. 10.240 bytes
initially.

NSTACKS
The number of stacks initially available for co-expressions. On VAX systems. four
stacks are initially allocated: on PDP-ll systems. two stacks are initially allocated.
More are automatically allocated if needed. It is unwise to set NST ACKS to 1.

STKSlZE
The size of each co-expression stack. in words. On V AX. systems. stacks are normally
2000 words: on PDP-ll systems. stacks are normally 1000 words.

PROFILE
Turn on execution profiling of the runtime system. The value of this variable specifies
the sampling resolution. in words. If the value is zero. profiling is not done. When a
profiled program finishes. a file named 'mon,out' is created containing the results of the
profile. The program prof (1) can be used to examine the results. This produces a
profile of the runtime system. not the user program.

v5g/intlbinlutran
v5g/intlbinlulink
v5 g/intlbinliconx
mon.out

icon translator
icon linker
icon interpreter .
results of profiling

SEE ALSO
The Icon Programming Language. Ralph E, Griswold and Madge T. Griswold. Prentice-Hall
Inc .• Englewood Cliffs. New Jersey. 1983.

Installation and Maintenance Guide far Release 5g of Icon. Department of Computer Sci­
ence. The University of Arizona. March 1983.

The University of Arizona 2 March 1983 2

ICONT(1) UNIX Progranuner's Manual ICONT(1)

BUGS

iconc(l). m4(1). prof(1), monitor(3)

Downward compatibility of interpretable files will not be maintained in subsequent releases
of Icon. No checks are performed to determine if the interpretable file and the interpreter
are compatible. Peculiar program behavior is the only indication of such incompatibility.

Interpretable files do not stand alone: the Icon interpreter must be present on the system.
This implies that an interpretable file produced on one system will not work on another
system unless the Icon interpreter is in the same place on both systems and that the inter­
preter is of the same version of Icon as the translator that produced the interpretable file.

Because of the way that co-expressions are implemented. there is a possibility that pro­
grams in which they are used may malfunction mysteriously.

Integer overftow on multiplication is not detected.

If the -m option is used. line numbers reported in error messages or tracing messages are
from the file after. not before. preprocessing.

The University of Arizona 2 March 1983 3

IDENT(1) UNIX Programmer's Manual IDENT (1)

NAME
ident - identify :files

SYNOPSIS
ident :file ...

DFSCRIPI'ION
Ident searches the named :files for all occurrences of the pattern $keyword: .. .$. where key­
word is one of

Author
Date
Header
Locker
Log
Revision
Source
State

These patterns are normally inserted automatically by the RCS command co (1 J. but can
also be inserted manually.

Ident works on text :files as well as object :files. For example. if the C program in :file f.c
contains

char rcsid[] .. "$Header: Header information $";

and f.c is compiled into f.o. then the command

ident f.c f.o

will print

f.c:
$Header: Header information $

f.o:
$Header: Header information $

IDENTIFICATION
Author: Walter F. Tichy. Purdue University. West Lafayette. IN. 47907.
Revision Number: 3.0 ; Release Date: 82/12/04 .
Copyright· 1982 by Walter F. Tichy.

SEE ALSO

BUGS

ci (1). co (1). res (1). rcsdi1f(l). resintro (0. resmerge (0. rlog (1). res:file (5).
Walter F. Tichy. "Design. Implementation. and Evaluation of a Revision Control System," in
Proceedings of tluJ 6th International. Conference on Software Engineering. IEEE. Tokyo.
Sept. 1982.

Purdue University 6/29/83 1

INC (1) UNIX Programmer's Manual INC (1)

NAME
inc - incorporate new mail

SYNOPSIS
inc [+folder] [-audit audit-file] [-help]

DESCRIPTION

FILES

Inc incorporates mail from the user's incoming mail drop (mail) into an MH folder. If
'+folder' isn't specified. the folder named "inbox" in the user's MH directory will be used.
The new messages being incorporated are assigned numbers starting with the next highest
number in the folder. If the specified (or default) folder doesn't exist. the user will be
queried prior to its creation. As the messages are processed, a scan listing of the new mail
is produced.

If the user's profile contains a "Msg-Protect: nnn" entry, it will be used as the protection
on the newly created messages. otherwise the MH default of 664 will be used. During all
operations on messages. this initially assigned protection will be preserved for each message.
so chmod(I) may be used to set a protection on an individual message. and its protection
will be preserved thereafter.

If the switch '-aUdit audit-file' is specified (usually as a default switch in the profile), then
inc will append a header line and a line per message to the end of the specified audit-file
with the format:

inc date
<scan line for first message>
<scan line for second message>

<etc.>

This is useful for keeping track of volume and source of incoming mail. Eventually. repl,
forw. compo and dist may also produce audits to this (or another) file. perhaps with
"Message-Id:" information to keep an exact correspondence history. "Audit-file" will be in
the user's MH directory unless a full path is specified.

Inc will incorporate even illegally formatted messages into the user's MH folder, inserting a
blank line prior to the offending component and printing a comment identifying the bad
message.

In all cases. the mail file will be zeroed.

SHOME/mh-profile
SHOME/mail
< mh-dir > laud it-file

The user profile
The user's mail drop
Audit trace file (optional)

PROFILE COMPONENTS
Path: To determine the user's MH directory

For protection on new folders Folder-Protect:
Msg-Protect: For protection on new messages

DEFAULTS
'+folder' defaults to "inbox"

CONTEXT
The folder into which the message is being incorporated will become the current folder. and
the first message incorporated will be the current message. This leaves the context ready
for a slww of the first new message.

4th Berkeley Distribution 3 August 1983 1

JOT (1) UNIX Programmer's Manual JOT (1)

NAME
jot - print sequential or random data

SYNOPSIS
jot [options] [reps [begin [end [s]]]]

DESCRIPrION
Jot may be used to print out increasing. decreasing. random. or redundant data. usually
numbers. one per line. The options are understood as follows.

-r Generate random data instead of sequential data. the default.

-bword
Just print word repetitively.

-wword
Print word with the generated data appended to it. Octal. hexadecimal. exponential.
ASCII. zero padded. and right-adjusted representations are possible by using the
appropriate print/(3) conversion specification inside word. in which case the data
are inserted rather than appended.

-c This is an abbreviation for -w %C.

-a string
Print data separated by string. Normally. new lines separate data.

-p precision
Print only as many digits or characters of the data as indicated by the integer preci­
sion. In the absence of -po the precision is the greater of the precisions of begin and
end. The -p option is overridden by whatever appears in a print/(3) conversion
following -w.

The last four arguments indicate. respectively. the number of data. the lower bound. the
upper bound. and the step size or. for random data. the seed. While at least one of them
must appear. any of the other three may be omitted. and will be considered as such if given
as -, Any three of these arguments determines the fourth, If four are specified and the
given and computed values of reps conflict. the lower value is used. If fewer than three are
specified. defaults are assigned left to right. except for s. which assumes its default unless
both begin and end are given.

Defaults for the four arguments are. respectively. 100. 1. 100. and 1. except that when ran­
dom data are requested. s defaults to a seed depending upon the time of day. Reps is
expected to be an unsigned integer. and if given as zero is taken to be infinite. Begin and
end may be given as real numbers or as characters representing the corresponding value in
ASCII. The last argument must be a real number.

Random numbers are obtained through rand(3). The name jot derives in part from iota, a
function in APL.

EXAMPLFS
The command

jot 21 -1 1.00

prints 21 evenly spaced numbers increasing from -1 to 1. The ASCII character set is gen­
erated with

jot -c 128 0

and the strings xaa through xaz with

jot -w xa%c 26 a

4th Berkeley Distribution 15 May 1983 1

JOT (t) UNIX. Programmer's Manual JOT (1)

while 20 random 8-letter strings are produced with

jot -r -c 160 a z I rs -g 0 8

Infinitely many yes's may be obtained through

jot -b yes 0

and thirty ed(t) substitution commands applying to lines 2. 7. 12. etc. is the result of

jot -w 9'odsIoldlnewl 30 2 - S

The stuttering sequence 9.9.8.8.7. etc. can be produced by suitable choice of precision and
step size. as in

jot 0 9 - -.5

and a file containing exactly 1024 bytes is created with

jot -b x S12 > block

Finally. to set tabs four spaces apart starting from column 10 and ending in column 132.
use

expand -'jot -s, - 10 132 4'

and to print all lines longer than 90 characters.

grep 'jot -s .. -b . 90' .. *

SEE ALSO
rs(1). ed(1). yes(l). printf(3). rand(3). expand(1)

AUTHOR
John Kunze

BUGS

4th Berkeley Distribution 15 May 1983 2

LAM(1) UNIX Programmer's Manual LAM (1)

NAME
lam - laminate files

SYNOPSIS
lam. [-{fp] min,max] [-8 sepstring] file ,.,

DESCRIPTION
Lam copies the named files side by side onto the standard output, Input lines from each file
become fragments which are assembled into long output lines. The name '-' means the
standard input. and may be repeated,

Normally. each option affects only the file after it. If the option letter is capitalized it
affects all subsequent files until it appears again uncapitalized. The options are described
below,

-f min,max
Print line fragments according to minmax. where min is the minimum field width
and max the maximum field width. If min begins with a zero. zeros will be added
to make up the field width. and if it begins with a '-'. the fragment will be left­
adjusted within the field.

-pmin.max
Like -f. but pad this file's field when end-of-file is reached and other files are still
active.

-s sepstring
Print sepstring before printing line fragments from the next file. This option may
appear after the last file.

To print files simultaneously for easy viewing use pre!).

EXAMPLFS
The command

lam. Alel Ale2 Ale3 file4

joins 4 files together along each line. To merge the lines from four different files use

lam. Ale I -S "\
• Ale2 Ale3 Ale4

Every 2lines of a file may be joined on one line with

lam. - - < Ale

SEE ALSO
pr(1).join(1).printf(3)

AUTHOR
John Kunze

BUGS

4th Berkeley Distribution 14 June 1983 1

MERGE (1) UNIX Programmer's Manual MERGE (1)

NAME
merge - three-way file merge

SYNOPSIS
merge [-p] filelfile2 file3

DESCRIPTION
Merge incorporates all changes that lead form file2 to file3 into filel. The result goes to std.
output if -p is present. into file] otherwise. Merge is useful for combining separate changes
to an original. Suppose file2 is the original. and both filel and file3 are modifications of file2.
Then merge combines both changes.

An overlap occurs if both filel and file3 have changes in a common segment of lines. Merge
prints how many overlaps occurred. and includes both alternatives in the result. The alter­
natives are delimited as follows:

< < < < < < < filel
lines in filel

lines in file3
»»»> file3

If there are overlaps, the user should edit the result and delete one of the alternatives.

IDENTIFICATION
Author: Walter F. Tichy. Purdue University, West Lafayette. IN. 47907.
Revision Number: 3.0: Release Date: 82/11/25 .
Copyright 0 1982 by Walter F. Tichy.

SEE ALSO
di1f3 (1). diff (1). rcsmerge (1). co (1).

Purdue University 6/29/83 1

NEXT (1) UNIX Programmer's Manual

NAME
next - show the next message

SYNOPSIS
next [+folder] [-switches for 1] [-help]

DESCRIPTION

NEXT (1)

Next performs a slww on the next message in the specified (or current) folder. Like show, it
passes any switches on to the program l, which is called to list the message. This command
is exactly equivalent to "show next".

FILES
$HOMElmh_profile The user profile

PROFILE COMPONENTS
Path: To determine the user's MH directory
Current-Folder: To find the default current folder

CONTEXT
If a folder is specified, it will become the current folder, and the message that is shown (i.e ..
the next message in sequence) will become the current message.

4th Berkeley Distribution 3 August 1983 1

PICK (1) UNIX. Programmer's Manual PICK (1)

NAME
pick - select messages by content

SYNOPSIS
pick -cc

-date
-from
-search
-subject

[-src +folder] [msgs] [-help] [-scan] [-noscan]
[-show] [-noshow] [-nofile] [-nokeep]

pattern

-to [-file [-preserve] [-link] +folder ... [-nopreserve] [-nolink]]
--component [-keep [-stay] [-nostay] [+folder ...]]

typically:

DESCRIPI'ION

pick -from jones -scan
pick -to holloway
pick -subject ned -scan -keep

Pick searches messages within a folder for the specified contents, then performs several
operations on the selected messages.

A modified grep(I) is used to perform the searching, so the full regular expression (see
ed(I) facility is available within 'pattern'. With '-search', pattern is used directly, and
with the others, the grep pattern constructed is:

..... component:pattern"

This means that the pattern specified for a '-search' will be found everywhere in the mes­
sage, including the header and the body, while the other search requests are limited to the
single specified component. The expression '-component pattern' is a shorthand for
specifying '-search "component:pattern" '; it is used to pick a component not in the set [cc
date from subject to]. An example is "pick -reply-to pooh -show".

Searching is performed on a per-line basis. Within the header of the message, each com­
ponent is treated as one long line, but in the body, each line is separate. Lower-case letters
in the search pattern will match either lower or upper case in the message, while upper case
will match only upper case.

Once the search has been performed, the selected messages are scanned (see scan) if the
'-scan' switch is given. and then they are shown (see show) if the '-show' switch is given.
After these two operations. the file operations (if requested) are performed.

The '-:file' switch operates exactly like the file command. with the same meaning for the
'-preserve' and '-link' switches.

The '-keep' switch is similar to '-file', but it produces a folder that is a subfolder of the
folder being searched and defines it as the current folder (unless the '-stay' flag is used).
This subfolder contains the messages which matched the search criteria. All of the MH
commands may be used with the sub-folder as the current folder. This gives the user con­
siderable power in dealing with subsets of messages in a folder.

The messages in a folder produced by '-keep' will always have the same numbers as they
have in the source folder (i.e .. the '-preserve' switch is automatic). This way, the message
numbers are consistent with the folder from which the messages were selected. Messages
are not removed from the source folder (i.e., the '-link' switch is assumed). If a '+folder'
is not specified. the standard name "select'· will be used. (This is the meaning of "(select)"
when it appears in the output of the folder command.) If '+folder' arguments are given to
'-keep'. they will be used rather than "select" for the names of the subfolders. This

4th Berkeley Distribution 3 August 1983 1

PICK (1) UNIX Programmer's Manual PICK (1)

FILFS

allows for several subfolders to be maintained concurrently.

When a '-keep' is performed, the subfolder becomes the current folder. This can be over­
ridden by use of the '-stay' switch.

Here's an example:

1 % folder +inbox
2 inbox+ has 16 messages (3- 22); cur- 3.
3 % pick -from dcrocker
4 6 hits.
5 [+inboxlselect now current]
6 % folder
7 inboxlselect+ has 6 messages (3- 16); cur== 3.
8 % scan
9 3+ 6/20 Dcrocker

10 6 6/23 Dcrocker
11 8 6/27 Dcrocker
12 13 6/28 d crocker
13 15 71 5 Dcrocker
14 16 71 5 d crocker
15 % show all I print

Re: ned file update issue ...
removal of files from Itm .. .
Problems with the new ned .. .
newest nned I would ap ...
nned Last week I asked ...
message id format Ire ...

16 [produce a full listing of this set of messages on the line printer.]
17 % folder -up
18 inbox+ has 16 messages (3- 22); cur- 3; (select).
19 % folder -down
20 inboxlselect+ has 6 messages (3- 16); cur== 3.
21 % rmf
22 [+inbox now current]
23 % folder
24 inbox+ has 16 messages (3- 22); cur== 3.

This is a rather lengthy example, but it shows the power of the MH package. In item 1. the
current folder is set to inbox. In 3, all of the messages from dcrocker are found in inbox
and linked into the folder '"inboxlselect". (Since no action switch is specified, '-keep' is
assumed.) Items 6 and 7 show that this subfolder is now the current folder. Items 8
through 14 are a scan. of the selected messages (note that they are all from dcrocker and are
all in upper and lower case). Item 15 lists all of the messages to the high-speed printer.
Item 17 directs folder to set the current folder to the parent of the selection-list folder,
which is now current. Item 18 shows that this has been done. Item 19 resets the current
folder to the selection list, and 21 removes the selection-list folder and resets the current
folder to the parent folder, as shown in 22 and 23.

$HOMElmh-Fofile The user profile

PROFILE COMPONENTS
Path:
Folder-Protect:
Current-Folder:

DEFAULTS

To determine the user's MH directory
For protection on new folders
To find the default current folder

'-src +folder' defaults to current
'msgs' defaults to all
'-keep +select' is the default if no '-scan', '-show', or '-file' is specified

4th Berkeley Distribution 3 August 1983 2

PICK (1) UNIX Programmer's Manual PICK (1)

CONTEXT
If a '-src +folder' is specified, it will become the current folder, unless a '-keep' with 0 or
1 folder arguments makes the selection-list subfolder the current folder. Each selection-list
folder will have its current message set to the first of the messages linked into it unless the
selection list already existed, in which case the current message won't be changed.

4th Berkeley Distribution 3 August 1983 3

PREV(I) UNIX. Programmer's Manual

NAME
prev - show the previous message

SYNOPSIS
prey [+folder] [-switches for l] [-help]

DESCRIPTION

PREV(I)

Prev performs a show on the previous message in the specified (or current) folder. Like
show, it passes any switches on to the program l, which is called to list the message. This
command is exactly equivalent to "show prev".

FILES
$HOMElmh_profile The user profile

PROFILE COMPONENTS
Path: To determine the user's MH directory
Current-Folder: To find the default current folder

CONTEXT
IT a folder is specified, it will become current, and the message that is shown (i.e., the previ­
ous message in sequence) will become the current message.

4th Berkeley Distribution 3 August 1983 1

PRMDIR(1P) UNIX Programmer's Manual PRMDIR(1P)

NAME
prmdir - remove a project directory

SYNOPSIS
prmdir [-fruJ [{+-}T type[.type ... J] pdirname ...

DESCRIPTION
Prrndir deletes a project directory called pdirname. The directory must be empty.

If the -r option is specified. prmdir recursively deletes the entire contents of a project
directory. and the directory itself. The user is asked to confirm the generated rm -r com­
mand before the directory is deleted. Subdirectories that are project root directories must be
removed using rmproject before attempting to remove pdirname. Write permission is
required in all subdirectories.

Prrndir may also be used to convert an existing project directory to a regular directory
using the -u option.

OPTIONS
-f Stands for force. No questions are asked. This option overrides any mode restric-

tions.

-r Recursively remove project directories.

-u Undefine a project directory and convert it to a regular directory.

-Ttype
Remove a type label from a project directory.

FILES
Project link directory.
Temporary project link directory.

SEE ALSO
pmkdir(1P). rm(!). rmdir(1). rmproject(lP)

DIAG NOSTICS
The error message. "prmdir: project! ... temporarily unavailable". indicates that a _temp·
temporary project link directory exists. This could be because another user is altering the
project link directory. or because a system crash terminated prmdir prematurely. If the
latter case. then removing the temporary file will:fix the problem.

Exit status 0 is normal. Exit status 1 indicates an error.

AUTHOR

BUGS

Peter J. Nicklin

If a project directory has already been removed by the rmdir or rm -r commands. that
directory must be recreated using mkdir before prmdir will remove the directory from the
project.

. 4th Berkeley Distribution 22 June 1983 1

PROMPTER (1) UNIX Programmer's Manual PROMPTER (1)

NAME
prompter - prompting editor front end

SYNOPSIS
prompter [-erase em] [-kill chr] [-help]

DESCRIPl'ION
This program is not called directly but takes the place of an editor and acts as an editor
front end. Prompter is an editor which allows rapid composition of messages. It is particu­
larly useful to network and low-speed (less than 2400 baud) users of MH. It is an MH
program in that it can have its own profile entry with switches, but it can't be invoked
directly as all other MH commands can; it is an editor in that it is invoked by an 00 -editor
prompter" switch or by the profile entry "Editor: prompter", but functionally it is merely
a text-collector and not a true editor.

Prompter expects to be called from compo repl. dist. or forw, with a draft file as an argu­
ment. For example, "comp -editor prompter" will call prompter with the file "draft"
already set up with blank components. For each blank component it finds in the draft, it
prompts the user and accepts a response. A <RETURN> will cause the Whole component
to be left out. A "\" preceding a <RETURN> will continue the response on the next line.
allowing for multiline components.

Any component that is non-blank will be copied and echoed to the terminal.

The start of the message body is prompted by a line of dashes. If the body is non-blank.
the prompt is " Enter additional text". Message-body typing is terminated with a
<CTRL-D> (or <OPEN». Control is returned to the calling program, where the user is
asked "What now?". See comp for the valid options.

The line editing characters for kill and erase may be specified by the user via the arguments
"-kill chr" and "-erase chr", where chr may be a character; or "\nnn", where nnn is the
octal value for the character. (Again. these may come from the default switches specified
in the user's profile.)

A during message-body typing is equivalent to <CfRL-D> for compatibility
with NED. A during component typing will abort the command that invoked
prompter.

PROFILE COMPONENTS
prompter-next: editor to be used on exit from prompter

4th Berkeley Distribution 3 August 1983 1

RCS (1) UNIX Programmer's Manual RCS(1)

NAME
res - change Res file attributes

SYNOPSIS
res [options] file ...

DESCRIPTION
Res creates new Res files or changes attributes of existing ones. An Res file contains mul­
tiple revisions of text. an access list. a change log. descriptive text. and some control attri­
butes. For res to work. the caller's login name must be on the access list. except if the
access list is empty. the caller is the owner of the file or the superuser. or the -i option is
present.

Files ending in .• v· are Res files. all others are working files. If a working file is given. res
tries to find the corresponding Res file first in directory .lRCS and then in the current
directory. as explained in eo (1).

-i creates and initializes a new Res file. but does not deposit any revision. If the
Res file has no path prefix. res tries to place it first into the subdirectory .lRCS.
and then into the current directory. If the Res file already exists. an error mes­
sage is printed.

-alogins appends the login names appearing in the comma-separated list logins to the
access list of the RCS file.

-Addjile appends the access list of oldfile to the access list of the Res file.

-e[logins] erases the login names appearing in the comma-separated list logins from the
access list of the Res file. If logins is omitted. the entire access list is erased.

-cstring sets the comment leader to string. The comment leader is printed before every
log message line generated by the keyword SLogS during checkout (see eo). This
is useful for programming languages without multi-line comments. During res
-i or initial ei. the comment leader is guessed from the suffix of the working file.

-l[rev] locks the revision with number rev. If a branch is given. the latest revision on
that branch is locked. If rev is omitted. the latest revision on the trunk is
locked. Locking prevents overlapping changes. A lock is removed with ci or
res -u (see below).

-u[rev] unlocks the revision with number rev. If a branch is given. the latest revision
on that branch is unlocked. If rev is omitted. the latest lock held by the caller
is removed. Normally. only the locker of a revision may unlock it. Somebody
else unlocking a revision breaks the lock. This causes a mail message to be sent
to the original locker. The message contains a commentary solicited from the
breaker. The commentary is terminated with a line containing a single': or
control-D.

-L sets locking to strict. Strict locking means that the owner of an Res file is not
exempt from locking for checkin. This option should be used for files that are
shared.

-U sets locking to non-strict. Non-strict locking means that the owner of a file need
not lock a revision for checkin. This option should NOT be used for files that
are shared. The default (-L or -U) is determined by your system administrator.

-nname[:rev]
associates the symbolic name name with the branch or revision rev. Res prints
an error message if name is already associated with another number. If rev is
omitted. the symbolic name is deleted.

-Nname[:rev]

Purdue University 6/29/83 1

RCS (1) UNIX. Programmer's Manual RCS(1)

same as -no except that it overrides a previous assignment of name.

-orange deletes ("outdates") the revisions given by range. A range consisting of a single
revision number means that revision. A range consisting of a branch number
means the latest revision on that branch. A range of the form revl-rev2 means
revisions revl to rev2 on the same branch. -rev means from the beginning of
the branch containing rev up to and including rev. and rev- means from revi­
sion rev to the end of the branch containing rev. None of the outdated revisions
may have branches or locks.

--q quiet mode; diagnostics are not printed.

-sstate[:rev]
sets the state attribute of the revision rev to state. If rev is omitted. the latest
revision on the trunk is assumed; If rev is a branch number. the latest revision
on that branch is assumed. Any identifier is acceptable for state. A useful set
of states is up (for experimental). Stab (for stable). and Rel (for released). By
default. ci sets the state of a revision to Exp.

-t[txtjile1 writes descriptive text into the RCS file (deletes the existing text). If txtftle is
omitted. res prompts the user for text supplied from the std. input. terminated
with a line containing a single': or control-D. Otherwise. the descriptive text is
copied from the file txtftle. If the -i option is present. descriptive text is
requested even if -t is not given. The prompt is suppressed if the std. input is
not a terminal.

DIAG NOS TICS

FILFS

The RCS file name and the revisions outdated are written to the diagnostic output. The exit
status always refers to the last RCS file operated upon. and is 0 if the operation was suc­
cessful. 1 otherwise.

The caller of the command must have read/write permission for the directory containing
the RCS file and read permission for the RCS file itself. Res creates a semaphore file in the
same directory as the RCS file to prevent simultaneous update. For changes. res always
creates a new file. On successful completion. res deletes the old one and renames the new
one. This strategy makes links to RCS files useless.

IDENTIFICATION
Author: Walter F. Tichy. Purdue University. West Lafayette. IN. 47907.
Revision Number: 3.1 ; Release Date: 83/04/04 .
Copyright 0 1982 by Walter F. Tichy.

SEE ALSO

BUGS

co (1). ci (1). ident(l). rcsdiJf (1). rcsintro (1). rcsmerge (1). dog (1). rcsfi.le (5). sccstorcs
(8).
Walter F. Tichy. "Design. Implementation. and Evaluation of a Revision Control System." in
Proceedings of the 6th International Conference on Software Engineering. IEEE. Tokyo.
Sept. 1982.

Purdue University 6/29/83 2

RCSDIFF{ 1) UNIX. Programmer's Manual RCSDIFF (1)

NAME
rcsdiJf - compare RCS revisions

SYNOPSIS
rcsdiif [-b] [-cefhn] [-rrevi] [-rrev2] file ...

DESCRIPTION
Rcsdif! runs dif! (1) to compare two revisions of each RCS file given. A file name ending in
'.v· is an RCS file name. otherwise a working file name. Rcsdiff derives the working file
name from the RCS file name and vice versa. as explained in co (t). Pairs consisting of both
an RCS and a working file name may also be specified.

The options -b. -c, -e. -f. and -h have the same effect as described in diff (1); option -n gen­
erates an edit script of the format used by RCS.

If both revi and rev2 are omitted. rcsdif! compares the latest revision on the trunk with the
contents of the corresponding working file. This is useful for determining what you
changed since the last checkin.

If revi is given. but rev2 is omitted. rcsdif! compares revision revl of the RCS file with the
contents of the corresponding working file.

If both revl and rev2 are given. rcsdiff compares revisions revl and rev2 of the RCS file.

Both revi and rev2 may be given numerically or symbolically.

'EXAMPLES
The command

rcsdiJf f.c

runs diff on the latest trunk revision of RCS file f.c.v and the contents of working file f.c.

IDENTIFICATION
Author: Walter F. Tichy. Purdue University. West Lafayette. IN. 47907.
Revision Number: 3.0 ; Release Date: 83/01/15 .
Copyright 0 1982 by Walter F. Tichy.

SEE ALSO

BUGS

ci (1). co (1). diff (1). ident (1). rcs (1). rcsintro (1). rcsmerge (1). rlog (1). rcsfile (5).
Walter F. Tichy. "Design. Implementation. and Evaluation of a Revision Control System." in
Proceedings of the 6th International. Conference on Software Engineering. IEEE. Tokyo.
Sept. 1982.

Purdue University 6/29/83 1

RCSINTRO (1) UNIX. Programmer's Manual RCSINTRO (1)

NAME
rcsintro - introduction to Res commands

DESCRIPTION
The Revision Control System (RCS) manages mUltiple revisions of text files. Res auto­
mates the storing. retrieval. logging. identification. and merging of revisions. RCS is useful
for text that is revised frequently. for example programs. documentation. graphics. papers.
form letters. etc.

The basic user interface is extremely simple. The novice only needs to learn two commands:
ci and co. Ci. short for "checkin". deposits the contents of a text file into an archival file
called an Res file. An Res file contains all revisions of a particular text file. Co. short for
"checkout". retrieves revisions from an Res file.

Functions of RCS

• Storage and retrieval of mUltiple revisions of text. Res saves all old revisions in a
space efficient way. Changes no longer destroy the original. because the previous
revisions remain accessible. Revisions can be retrieved according to ranges of revi­
sion numbers. symbolic names. dates. authors. and states.

• Maintenance of a complete history of changes. Res logs all changes automatically.
Besides the text of each revision. Res stores the author. the date and time of chec­
kin. and a log message summarizing the change. The logging makes it easy to :find
out what happened to a module. without having to compare source listings or hav­
ing to track down colleagues.

• Resolution of access con1licts. When two or more programmers wish to modify the
same revision. Res alerts the programmers and prevents one modification from cor­
rupting the other.

• Maintenance of a tree of Revisions. Res can maintain separate lines of development
for each module. It stores a tree structure that represents the ancestral relationships
among revisions.

• Merging of revisions and resolution of conflicts. Two separate lines of development
of a module can be coalesced by merging. If the revisions to be merged air ect the
same sections of code. Res alerts the user about the overlapping changes.

• Release and configuration control. Revisions can be assigned symbolic names and
marked as released. stable. experimental. etc. With these facilities. configurations of
modules can be described simply and directly.

• Automatic identification of each revision with name. revision number. creation time.
author. etc. The identification is like a stamp that can be embedded at an appropri­
ate place in the text of a revision. The identification makes it simple to determine
which revisions of which modules make up a given configuration.

• Minimization of secondary storage. Res needs little extra space for the revisions
(only the differences). If intermediate revisions are deleted. the corresponding deltas
are compressed accordingly.

Getting Started with RCS.

Suppose you have a file f.c that you wish to put under control of Res. Invoke the checkin
command

ci f.c

This command creates the Res file f.c.v. stores f.c into it as revision 1.1. and deletes f.c. It
also asks you for a description. The description should be a synopsis of the contents of the

Purdue University 6/29/83 1

RCSINTRO (1) UNIX Programmer's Manual RCSINTRO (1)

tile. All later checkin commands will ask you for a log entry. which should summarize the
changes that you made,

Files ending in .v are called RCS files (V stands for 'versions'). the others are called work­
ing tiles. To get back the working file f.c in the previous example. use the checkout com­
mand

co f.c

This command extracts the latest revision from f.c.v and writes it into f.c. You can now
edit f.c and check it back in by invoking

ci f.c

Ci increments the revision number properly. If ci complains with the message

ci error: no lock set by < your login>

then your system administrator has decided to create all RCS files with the locking attri­
bute set to 'strict'. In this case. you should have locked the revision during the previous
checkout. Your last checkout should have been

co -1 f.c

Of course. it is too late now to do the checkout with locking. because you probably modified
f.c already. and a second checkout would overwrite your modifications. Instead. invoke

res -1 f.c

This command will lock the latest revision for you. unless somebody else got ahead of you
already. In this case. you'll have to negotiate with that person.

Locking assures that you. and only you. can check in the next update. and avoids nasty
problems if several people work on the same file. Even if a revision is locked. it can still be
checked out for reading. compiling. etc. All that locking prevents is a CHECKIN byany­
body but the locker.

If your Res file is private. i.e .• if you are the only person who is going to deposit revisions
into it. strict locking is not needed and you can turn it off. If strict locking is turned off.
the owner orue Res file need not have a lock for checkin: all others still do. Turning
strict locking off and on is done with the commands

res -U f.c and res -L f.c

If you don't want to clutter your working directory with Res files. create a subdirectory
called Res in your working directory. and move all your Res files there. RCS commands
will look first into that directory to find needed files. All the commands discussed above
will still work. without any modification. (Actually. pairs of Res and working files can be
specified in 3 ways: (a) both are given. (b) only the working file is given. (c) only the RCS
file is given. Both RCS and working files may have arbitrary path prefixes: Res commands
pair them up intelligently).

To avoid the deletion of the working file during checkin (in case you want to continue edit­
ing). invoke

ci -1 f.c or ci -u f.c

These commands check in f.c as usual. but perform an implicit checkout. The:first form also
locks the checked in revision. the second one doesn't. Thus. these options save you one
checkout operation. The first form is useful if locking is strict. the second one if not strict.
Both update the identification markers in your working file (see below).

You can give ci the number you want assigned to a checked in revision. Assume all your
revisions were numbered 1.1. 1.2. 1.3. etc .• and you would like to start release 2. The com­
mand

Purdue University 6/29/83 2

RCSINTRO (1) UNIX. Programmer's Manual RCSINTRO (1)

ci -r2 f.c or ci -r2.1 f.c

assigns the number 2.1 to the new revision. From then on. ci will number the subsequent
revisions with 2.2.2.3. etc. The corresponding co commands

co -r2 f.c and co -r2.1 f.c

retrieve the latest revision numbered 2.x and the revision 2.1. respectively. Co without a
revision number selects the latest revision on the "trunk". i.e .• the highest revision with a

. number consisting of 2 fields. Numbers with more than 2 fields are needed for branches.
For example. to start a branch at revision 1.3. invoke

ci -r1.3.1 f.c

This command starts a branch numbered 1 at revision 1.3. and assigns the number 1.3.1.1
to the new revision. For more information about branches. see rcsjile(5).

Automatic Identification

RCS can put special strings for identification into your source and object code. To obtain
such identification. place the marker

SHeaderS

into your text. for instance inside a comment. RCS will replace this marker with a string
of the form

SHeader: filename revision_number date time author state S

With such a marker on the first page of each module. you can always see with which revi­
sion you are working. RCS keeps the markers up to date automatically. To propagate the
markers into your object code. simply put them into literal character strings. In C. this is
done as follows:

static char rcsid[] = "SHeaderS":

The command ident extracts such markers from any file. even object code and dumps.
Thus. ident lets you find out which revisions of which modules were used in a given pro­
gram.

You may also find it useful to put the marker SLogS into your text. inside a comment. This
marker accumulates the log messages that are requested during checkin. Thus. you can
maintain the complete history of your file directly inside it. There are several additional
identification markers: see co(t) for details.

IDENTIFICATION
Author: Walter F. Tichy. Purdue University. West Lafayette. IN. 47907.
Revision Number: 3.0 : Release Date: 83/05/11 .
Copyright 01982 by Walter F. Tichy.

SEE ALSO
ci(l). co(t). ident(l). mergeCl). res(l). rcsdi1f(l). resmerge(l). rlog(l). resfile(5).
Walter F. Tichy. "Design. Implementation. and Evaluation of a Revision Control System." in
Proceedings of the 6th Internatioruzl Conference on Software Engineering. IEEE. Tokyo.
Sept. 1982.

Purdue University 6/29/83 3

RCSMERGE (1) UNIX. Programmer's Manual RCSMERGE (1)

NAME
rcsmerge - merge RCS revisions

SYNOPSIS
rcsm.erge -rrev 1 [-rrev2] [-p] file

DESCRIPl'ION
Rcsmerge incorporates the changes between revl and rev2 of an RCS file into the
corresponding working file. If -p is given. the result is printed on the std. output. otherwise
the result overwrites the working file.

A file name ending in ·.v· is an RCS file name. otherwise a working file name. Merge derives
the working file name from the RCS file name and vice versa. as explained in co (1). A pair
consisting of both an RCS and a working file name may also be specified.

Revl may not be omitted. If rev2 is omitted. the latest revision on the trunk is assumed.
Both revl and rev2 may be given numerically or symbolically.

Rcsmerge prints a warning if there are overlaps. and delimits the overlapping regions as
explained in co -j. The command is useful for incorporating changes into a checked-out
revision.

EXAMPLES
Suppose you have released revision 2.8 of f.c. Assume furthermore that you just completed
revision 3.4. when you receive updates to release 2.8 from someone else. To combine the
updates to 2.8 and your changes between 2.8 and 3.4. put the updates to 2.8 into file f.c and
execute

rcsmerge -p -r2.8 -r3.4 f.c >f.merged.c

Then examine f.merged.c. Alternatively. if you want to save the updates to 2.8 in the RCS
file. check them in as revision 2.8.1.1 and execute co -j:

ci -r2.8.1.1 f.c
co -r3.4 -j2.8:2.8.1.1 f.c

As another example. the following command undoes the changes between revision 2.4 and
2.8 in your currently checked out revision in f .c.

rcsmerge -r2.8 -r2.4 f.c

Note the order of the arguments. and that f.c will be overwritten.

IDENTIFICATION
Author: Walter F. Tichy. Purdue University. West Lafayette. IN. 47907.
Revision Number: 3.0 ; Release Date: 83/01/15 .
Copyright • 1982 by Walter F. Tichy.

SEE ALSO

BUGS

ci (0. co (1). merge (1). ident (1). res (1). rcsdiff' (1). rlog (1). rcsfi.le (5).
Walter F. Tichy. "Design. Implementation. and Evaluation of a Revision Control System." in
Proceedings of the 6th International Conference on Software Engineering. IEEE. Tokyo.
Sept. 1982.

Rcsmerge does not work for files that contain lines with a single ':.

Purdue University 6/29/83 1

REPL (1) UNIX Programmer's Manual REPL (1)

NAME
repl - reply to a message

SYNOPSIS
repl [+folder] [msg] [-editor editor] [-inplace] [-annotate] [-help] [-noinplace]
[-noannotate]

DESCRIPTION

FILES

Repl aids a user in producing a reply to an existing message. In its simplest form (with no
arguments), it will set up a message-form skeleton in reply to the current message in the
current folder, invoke the editor, and send the composed message if so directed. The com­
posed message is constructed as follows:

To: <Reply-To> or <From>
cc: <cc>, <To>
Subject: Re: <Subject>
In-reply-to: Your message of <Date>

< Message-Id >

where field names enclosed in angle brackets « » indicate the contents of the named field
from the message to which the reply is being made. Once the skeleton is constructed, an
editor is invoked (as in comp, dist, and forw). While in the editor, the message being replied
to is available through a link named "@". In NED, this means the replied-to message may
be "used" with "use @". or put in a window by "window @",

As in compo dist. and forw. the user will be queried before the message is sent. If '-anno­
tate' is specified. the replied-to message will be annotated with the single line

Replied: Date.

The command "comp -use" may be used to pick up interrupted editing. as in dist and
forw: the '-inplace' switch annotates the message in place. so that all folders with links to
it will see the annotation.

SHOME/mh_profile
<mh-dir>/draft
/usr/binlsend

The user profile
The constructed message file
To send the composed message

PROFILE COMPONENTS
Path: To determine the user's MH directory
Editor:
Current-Folder:

DEFAULTS

To override the use of /bin/ned as the default editor
To find the default current folder

'+folder' defaults to current
'msgs' defaults to cur
'-editor' defaults to /bin/ned
, -noannotate'
, -noinplace'

CONTEXT
If a '.+folder' is specified, it will become the current folder. and the current message will be
set to the replied-to message.

4th Berkeley Distribution 3 August 1983 1

RLOG (1) UNIX Programmer's Manual RLOG (1)

NAME
rlog - print log messages and other information about Res files

SYNOPSIS
rlog [options] file ...

DESCRIPTION
Rlog prints ~formation about Res files. Files ending in '.v· are Res files. all others are
working files. If a working file is given. rlog tries to find the corresponding Res file first in
directory .IRes and then in the current directory. as explained in co (1).

Rlog prints the following information for each Res file: Res file name. working file name.
head (i.e .• the number of the latest revision on the trunk). access list. locks. symbolic
names. suffix. total number of revisions. number of revisions selected for printing. and
descriptive text. This is followed by entries for the selected revisions in reverse chronologi­
cal order for each branch. For each revision. rlog prints revision number. author. date/time.
state. number of lines added/deleted (with respect to the previous revision). locker of the
revision (if any). and log message. Without options. rlog prints complete information. The
options below restrict this output.

-L ignores Res files that have no locks set: convenient in combination with -R. -h.
or -I.

-R only prints the name of the RCS file: convenient for translating a working file
name into an RCS file name.

-h prints only Res file name. working file name. head. access list. locks. symbolic
names. and suffix.

-t prints the same as -h. plus the descriptive text.

-ddates prints information about revisions with a checkin date/time in the ranges given
by the semicolon-separated list of dates. A range of the form dl <d2 or d2>dl
selects the revisions that were deposited between dl and d2. (inclusive). A range
of the form <d or d> selects all revisions dated d or earlier. A range of the
form d < or >d selects all revisions dated d or later. A range of the form d
selects the single. latest revision dated d or earlier. The date/time strings d, dl,
and d2 are in the free format explained in co (1). Quoting is normally necessary.
especially for < and >. Note that the separator is a semicolon.

-I[lockers]
prints information about locked revisions. If the comma-separated list lockers of
login names is given. only the revisions locked by the given login names are
printed. If the list is omitted. all locked revisions are printed.

-rrevisions
prints information about revisions given in the comma-separated list revisions of
revisions and ranges. A range revl-rev2 means revisions revl to rev2 on the
same branch. -rev means revisions from the beginning of the branch up to and
including rev. and rev- means revisions starting with rev to the end of the

. branch containing rev. An argument that is a branch means all revisions on that
branch. A range of branches means all revisions on the branches in that range.

-sstates prints information about revisions whose state attributes match one of the states
given in the comma-separated list states.

-w[logins]
prints information about revisions checked in by users with login names appear­
ing in the comma-separated list logins. If logins is omitted. the user's login is
assumed.

Purdue University 6/29/83 1

RLOG(1) UNIX Programmer's Manual RLOG(1)

Rlog prints the intersection of the revisions selected with the options -d. -1. -so -w. inter­
sected with the union of the revisions selected by -b and -r.

EXAMPLES
dog -L -R RCS/*.v
dog -L -h RCS/*.v
dog -L -1 RCS/*.v
dog RCS/*.v

The first command prints the names of all RCS files in the subdirectory 'RCS' which have
locks. The second command prints the headers of those files. and the third prints the
headers plus the log messages of the locked revisions. The last command prints complete
information.

DIAG NOSTICS
The exit status always refers to the last RCS file operated upon. and is 0 if the operation
was successful. 1 otherwise.

IDENTIFICATION
Author: Walter F. Tichy. Purdue University. West Lafayette. IN. 47907.
Revision Number: 3.2 : Release Date: 83/05/11 .
Copyright 0 1982 by Walter F. Tichy.

SEE ALSO

BUGS

ci (1). co (1). ident(1). res (1). resdiff (1). resintro (0. rcsmerge (1). rcsfile (5). sccstorcs
(8).
Walter F. Tichy. "Design. Implementation. and Evaluation of a Revision Control System." in
Proceedings of the 6th International Conference on Software Engineering. IEEE. Tokyo.
Sept. 1982.

Purdue University 6/29/83 2

RMF(1) UNIX. Programmer's Manual RMF(1)

NAME
rmf - remove folder

SYNOPSIS
rmf [+folder] [-help]

DESCRIPTION

FILES

Rmf removes all of the files (messages) w~thin the specified (or default) folder, and then
removes the directory (folder). If there are any files within the folder which are not a part
of MH, they will not be removed. and an error will be produced. If the folder is given
explicitly or the current folder is a subfolder (i.e,. a selection list from pick). it will be
removed without confirmation. If no argument is specified and the current folder is not a
selection-list folder. the user will be asked for confirmation.

Rmf irreversibly deletes messages that don't have other links. so use it with caution.

If the folder being removed is a subfolder. the parent folder will become the new current
folder. and rmf will produce a message telling the user this has happened. This provides an
easy mechanism for selecting a set of messages. operating on the list. then removing the list
and returning to the current folder from which the list was extracted. (See the example
under pick.)

The files that rmf will delete are cur. any file beginning with a comma. and files with
purely numeric names. All others will produce error messages.

Rmf of a read-only folder will delete the "cur-" entry from the pro:file without affecting
the folder itself.

PROFILE COMPONENTS
$HOMElmh-profile
Path:
Current-Folder:

DEFAULTS

The user profile
To determine the user's MH directory
To find the default current folder

. +folder' defaults to current, usually with confirmation

CONTEXT
Rmf will set the current folder to the parent folder if a subfolder is removed: or if the
current folder is removed. it will make "inbox" current. Otherwise. it doesn't change the
current folder or message.

4th Berkeley Distribution 3 August 1983 1

RMM(l)

NAME
rmm - remove messages

SYNOPSIS

UNIX Programmer's Manual

rmm [+folder] [msgs] [-help]

DESCRIPTION

RMM(l)

Rmm removes the specified messages by renaming the message files with preceding commas.
(This is the Rand-UNIX backup file convention,)

The current message is not changed by rmm, so a next will advance to the next message in
the folder as expected.

FILES
$HOME/mh_profile The user profile

PROFILE COMPONENTS
Path:
Current-Folder:

DEFAULTS

To determine the user's MH directory
To find the default current folder

'+folder' defaults to current
'msgs' defaults to cur

CONTEXT
If it. folder is given. it will become current.

4th Berkeley Distribution 3 August 1983 1

RS (1) UNIX Programmer's Manual RS (1)

NAME
rs - reshape a data array

SYNOPSIS
rs [-[csesIxIkKgGw IN]tTeEnyjhBm] [rows [cols]]

DESCRIPTION
Rs reads the standard input, interpreting each line as a row of blank-separated entries in an
array, transforms the array according to the options, and writes it on the standard output.
With no arguments it transforms stream input into a columnar format convenient for ter­
minal viewing.

Given positive integers for rows and cols, the program produces output with the
corresponding shape. truncating surplus data and supplying missing data as necessary. If
only one of them is a positive integer. then rs computes a value for the other which will
accomodate all of the data.

The options are described below.

-ex Input columns are delimited by the single character x. A missing x is taken to be
"I'.

-sx Like -e. but maximal strings of x are delimiters.

-Cx Output columns are delimited by the single character x. A missing x is taken to be
"I'.

-Sx Like -C. but maximal strings of x are delimiters.

-t Fill in the rows of the output array using the columns of the input array. that is.
transpose the input while honoring any rows and eols specifications.

-T Print the pure transpose of the input. ignoring any rows or eols specification.

-kN Ignore the first N lines of input.

-KN Like -k. but print the ignored lines.

-gN The gutter width Cinter-column space). normally 2, is taken to be N.

-GN The gutter width has N percent of the maximum column width added to it.

-e Consider each line of input as an array entry.

-n On lines having fewer entries than the first line, use null entries to pad out the line.
Normally. missing entries are taken from the next line of input.

-y If there are too few entries to make up the output dimensions. pad the output by
recycling the input from the beginning. Normally. the output is padded with
blanks.

-h Print the shape of the input array and do nothing else. The shape is just the number
of lines and the number of entries on the first line.

-H Like -h. but also print the length of each line.

-j Right adjust entries within columns.

-wN The width o~ the display, normally 80. is taken to be the positive integer N.

-m Do not trim excess delimiters from the ends of the output array.

With no arguments. rs behaves as if given -et. Option letters which take numerical argu­
ments interpret a missing number as zero unless otherwise indicated.

EXAMPLES
Rs can be used as a filter to convert the stream output of several programs (e.g .. spell, du.
file. look. nm. who. and we(l)) into a convenient "window" format. as in

4th Berkeley Distribution 14. June 1983 1

RS (1) UNIX Programmer's Manual RS (1)

who I rs

This function has been incorporated into the ls(l) program. though for most programs with
similar output rs suffices.

To convert stream input into vector output and back again. use

rsl0lrsOl

A 10 by 10 array of random numbers from 1 to 100 and its transpose can be generated
with

jot -r 100 I rs 10 10 I tee array I rs -T > tarray

In the editor ex(l). a file consisting of a 3-column table that has undergone insertions and
deletions can be neatly reshaped into 3 columns with

:1,$!rs 0 3

Finally. to sort a database by the first line of each 4-line field. try

rs -Ie 0 4 I sort I rs -c 0 1

SEE ALSO
jot(l). ex(l). sort(l). pr(l).

AUTHOR
John Kunze

BUGS
Handles only two dimensional arrays.

Fields cannot be defined yet on character positions.

Re-ordering of columns is not yet possible.

There are too many options.

4th Berkeley Distribution 14 June 1983 2

SCAN (1) UNIX Programmer's Manual SCAN (1)

NAME
scan - produce a one-line-per-message scan listing

SYNOPSIS
scan [+folder] [msgs] [-ff] [-header] [-help] [-noff] [-noheader]

DESCRIPTION

FILES

Scan produces a one-line-per-message listing of the specified messages. Each scan line con­
tains the message number (name). the date. the "From" field. the "Subject" field, and. if
room allows. some of the body of the message. For example:

... #'""""Date-- From-Subject [Body]
"'15+--71 s-ncrocker -nned Last week I asked some of
"'16 ---7/ rdcrocker-"'message id format I recommend
"'18--71 oObrien ~e: Exit status from mkdir
... 19-......7/ 70brien -scan" listing format in MH

The '+' on message 15 indicates that it is the current message. The '-' on message 16 indi­
cates that it has been replied to. as indicated by a "Replied:" component produced by an
'-annotate' switch to the repl command.

If there is sufficient room left on the scan line after the subject, the line will be filled with
text from the body. preceded by. Scan actually reads each of the specified messages and
parses them to extract the desired fields. During parsing. appropriate error messages will be
produced if there are format errors in any of the messages.

The '-header' switch produces a header line prior to the scan listing. and the '-ff' switch
will cause a form feed to be output at the end of the scan listing.

"'SHOME/mh-profile -rhe user profile

PROFILE COMPONENTS
Path:
Current-Folder:

To determine the user's MH directory
To find the default current folder

DEFAULTS
'+folder' defaults to current
'msgs' defaults to all
'-noff'
'-noheader'

CONTEXT
If a folder is given, it will become current. The current message is unaffected.

4th Berkeley Distribution 3 August 1983 1

SCCSTORCS (8) UNIX. Programmer's Manual SCCSTORCS (8)

NAME
sccstorcs - build RCS file from SCCS file

SYNOPSIS
sccstorcs [-t] [-y] s .file ...

DESCRIPTION

Fll..ES

Sccstorcs builds an RCS file from each SCCS file argument. The deltas and comments for
each delta are preserved and installed into the new Res file in order. Also preserved are the
user access list and descriptive text. if any. from the sces file.

The following flags are meaningful:

-t Trace only. Prints detailed information about the SCCS file and lists the commands
that would be executed to produce the RCS file. No commands are actually exe­
cuted and no RCS file is made.

-y Verbose. Prints each command that is run while it is building the RCS file.

For each s.somefile. Sccstorcs writes the files somefile and somefile.v which should not
already exist. Sccstorcs will abort. rather than overwrite those files if they do exist.

SEE ALSO
ci (1). co (1). rcs (1).
Walter F. Tichy. "Design. Implementation. and Evaluation of a Revision Control System." in
Proceedings of the 6th International Conference on Software Engineering. IEEE. Tokyo.
Sept. 1982.

DIAG NOS TICS
All diagnostics are written to stderr. Non-zero exit status on error.

BUGS
Sccstorcs does not preserve all sces options specified in the SCCS file. Most notably. it
does not preserve removed deltas. MR numbers. and cutoff points.

AUTHOR
Ken Greer

Copyright 01983 by Kenneth L. Greer

4th Berkeley Distribution 29 June 1983 1

SEND (1) UNIX Programmer's Manual SEND (1)

NAME
send - send a message

SYNOPSIS
send [file] [-draft] [-verbose] [-format] [-msgid] [-help] [-noverbose] [
-noformat] [-nomsgid]

DESCRIPTION
Send will cause the specified file (default <mh-dir>/draft) to be delivered to each of the
addresses in the "To:", "cc:", and "Bec:" fields of the message. If '-verbose' is specified.
send; will monitor the delivery of local and net mail. Send with no argument will query
whether the draft is the intended file. whereas '-draft' will suppress this question. Once
the message has been mailed (or queued) successfully. the file will be renamed with a lead­
ing comma. which allows it to be retreived until the next draft message is sent. If there are
errors in the formatting of the message. send; will abort with a (hopefully) helpful error
message.

If a "Bcc:" field is encountered. its addresses will be used for delivery. but the "Bee:" field
itself will be deleted from all copies of the outgoing message.

Prior to sending the message. the fields "From: user". and "Date: now" will be prepended
to the message. If '-msgid' is specified. then a "Message-Id:" field will also be added to the
message. If the message already contains a "From:" field, then a "Sender: user" field will be
added instead. (An already existing "Sender:" field will be deleted from the message.)

If the user doesn't specify '-noformat', each of the entries in the "To:" and "cc:" fields will
be replaced with "standard" format entries. This standard format is designed to be usable
by all of the message handlers on the various systems around the ARPANET.

If an "Fcc: folder" is encountered. the message will be copied to the specified folder in the
format in which it will appear to any receivers of the message. That is, it will have the
prepended fields and field reformatting.

If a "Distribute-To:" field is encountered, the message is handled as a redistribution message
(see dist for details), with "Distribution-Date: now" and "Distribution-From: user" added.

SHOME/mh_profile The user profile

PROFILE COMPONENTS
Path: To determine the user's MH directory

DEFAULTS
'file' defaults to draft
, -noverbose'
'-format'
'-nomsgid'

CONTEXT
Send has no effect on the current message or folder.

4th Berkeley Distribution 3 August 1983 1

SHOW (1) UNIX Programmer's Manual SHOW (1)

NAME
show - show (list) messages

SYNOPSIS
show [+folder] [msgs] [-pr] [-nopr] [-draft] [-help] [l or pr switches]

DESCRIPTION

FILES

SIww lists each of the specified messages to the standard output (typically, the terminal).
The messages are listed exactly as they are, with no reformatting. A program called l is
invoked to do the listing. and any switches not recognized by slww are passed along to l.

IT no "msgs" are specified. the current message is used. If more than one message is
specified.l will prompt for a <return> prior to listing each message.

l will list each message. a page at a time. When the end of page is reached, l will ring the
bell and wait for a <RETURN> or <CfRL-D>. IT a <return> is entered,l will clear the
screen before listing the next page. whereas <CfRL-D> will not. The switches to l are
'-p#' to indicate the page length in lines. and '-w#' to indicate the width of the page in
characters.

IT the standard output is not a terminal. no queries are made. and each file is listed with a
one-line header and two lines of separation.

IT '-pr' is specified, then prO) will be invoked rather than l, and the switches (other than
'-draft') will be passed along. "Show -draft" will list the file <mh-dir>/draft if it
exists.

$HOMElmh_profile
Ibinll
Ibinlpr

The user profile
Screen-at-a-time list program
pr(1)

PROFILE COMPONENTS
Path: To determine the user's MH directory
Current-Folder: To find the default current folder

DEFAULTS
'+folder' defaults to current
'msgs' defaults to cur
'-nopr'

CONTEXT
If a folder is given. it will become the current message. The last message listed will become
the current message.

4th Berkeley Distribution 3 August 1983 1

MH

A Mail Handling System

. for UNIX

October. 1979

Bruce Borden

The Rand Corporation
1700 Main Street

Santa Monica. CA 90406

(213) 399-0568 x 7463

PREFACE

This report describes a system for dealing with messages transmitted on a
computer. Such messages might originate with other users of the same computer
or might come from an outside source through a network to which the user's
computer is connected. Such computer-based message systems are becoming
increasingly widely used, both within and outside the Department of Defense.

The message handling system MH was developed for two reasons. One was
to investigate some research ideas concerning how a message system might take
advantage of the architecture of the UNIX time-sharing operating system for
Digital Equipment Corporation PDP-ll and VAX computers. and the special
features of UNIX's command-level interface with the user (the "shell"). The
other reason was to provide a better and more adaptable base than that of con­
ventional designs on which to build a command and control message system. The
effort has succeeded in both regards. although this report mainly describes the
message system itself and how it fits in with UNIX. The main research results
are being described and analyzed in a forthcoming Rand report. The system is
currently being used as part of a tactical command and control "laboratory,"
which is also being described in a separate report.

The present report should be of interest to three groups of readers. First. it
is a complete reference manual for the users of MH (although users outside of
Rand must take into account differences from the local Rand operating system).
Second. it should be of interest to those who have a general knowledge of
computer-based message systems. both in civilian and military applications.
Finally. it should be of interest to those who build large subsystems that inter­
face with users. since it illustrates a new approach to such interfaces.

The MH system was developed by the first author. using an approach sug­
gested by the other two authors. Valuable assistance was provided by Phyllis
Kantar in the later stages of the system's implementation. Several colleagues
contributed to the ideas included in this system. particularly Robert Anderson
and David Crocker. In addition. valuable experience in message systems. and a
valuable source of ideas. was available to us in the form of a previous message
system for UNIX called MS. designed at Rand by David Crocker.

This report was prepared as part of the Rand project entitled "Data Auto­
mation Research". sponsored by Project AIR FORCE.

-i-

CONTENTS

PREFACE

SUMMARY v

Section

1. INTRODUCTION .. 2

2. OVERVIEW ... 4

3. TUTORIAL .. 6

4. DETAILED DESCRIPTION ... 8

THE USER PROFILE 8

MESSAGE NAMING 10

OTHER MIl CONVENTIONS ... 11

MIl COMMANDS ... 12
COMP ... 13
DIST ... 15
FILE ... 17
FOLDER ... 19
FORW .. 21
INC ... 22
NEXT ... 24
PICK. ... 25
PREY .. 28
PROMPTER .. 29
REPL .. 30
RMF ... 32

RMM .. 33
SCAN ... :....... 34
SEND .. 35
SHOW .. 36

Appendix
A. Command Summary .. 37
B. Message Format ... 38
C. Message Name BNF .. 39
D. Example of Shell Commands ... 40

REFERENCES .. 41

SUMl\1ARY

Electronic communication of text messages is becoming commonplace.
Computer-based message systems-software packages that provide tools for deal­
ing with messages-are used in many contexts. In particular. message systems
are becoming increasingly important in command and control and intelligence
applications.

This report describes a message handling system called MH. This system
provides the user with tools to compose. send. receive. store. retrieve. forward.
and reply to messages. MH has been built on the UNIX time-sharing system. a
popular operating system developed for the DEC PDP-l1 and VAX classes of
computers.

A complete description of MH is given for users of the system. For those
who do not intend to use the system. this description gives a general idea of what
a message system is like. The system involves some new ideas about how large
subsystems can be constructed. These design concepts and a comparison of MH
with other message systems will be published in a forthcoming Rand report.

The interesting and unusual features of MH include the following: The user
command interface to MH is the UNIX "shell" (the standard UNIX command
interpreter). Each separable component of message handling. such as message
composition or message display. is a separate command. Each program is driven
from and updates a private user environment. which is stored as a file between
program invocations. This private environment also contains information to
"custom tailor'· MH to the individual's tastes. MH stores each message as a
separate file under UNIX. and it utilizes the tree-structured UNIX file system to
organize groups of files within separate directories or "folders:· All of the UNIX
facilities for dealing with files and directories. such as renaming. copying. delet­
ing. cataloging. off-line printing. etc .• are applicable to messages and directories of
messages (folders). Thus. important capabilities needed in a message system are
available in MH without the need (often seen in other message systems) for code
that duplicates the facilities of the supporting operating system.. It also allows
users familiar with the shell to use MH with minimal effort.

-v-

1. INTRODUCTION

Although people can travel cross-country in hours and can reach others by
telephone in seconds. communications still depend heavily upon paper. most of
which is distributed through the mails.

There are several major reasons for this continued dependence on written
documents. First. a written document may be proofread and corrected prior to
its distribution. giving the author complete control over his words. Thus. a writ­
ten document is better than a telephone conversation in this respect. Second. a
carefully written document is far less likely to be misinterpreted or poorly
translated than a phone conversation. Third. a signature offers reasonable
verification of authorship. which cannot be provided with media such as
telegrams.

However. the need for fast. accurate. and reproducible document distribu­
tion is obvious. One solution in widespread use is the telefax. Another that is
rapidly gaining popularity is electronic mail. Electronic mail is similar to telefax
in that the data to be sent are digitized. transmitted via phone lines. and turned
back into a document at the receiver. The advantage of electronic mail is in its
compression factor. Whereas a telefax must scan a page in very fine lines and
send all of the black and white information. electronic mail assigns characters
fixed codes which can be transmitted as a few bits of information. Telefax
presently has the advantage of being able to transmit an arbitrary page. including
pictures. but electronic mail is beginning to deal with this problem. Electronic
mail also integrates well with current directions in office automation. allowing
documents prepared with sophisticated equipment at one site to be quickly
transferred and printed at another site.

Currently. most electronic mail is intraorganizational. with mail transfer
remaining within one computer. As computer networking becomes more com­
mon. however. it is becoming more feasible to communicate with anyone whose
computer can be linked to your own via a network.

The pioneering efforts on general-purpose electronic mail were by organiza­
tions using the DefenSe Department's ARPANET.[l] The capability to send mes­
sages between computers existed before the ARPANET was developed. but it was
used only in limited ways. With the advent of the ARPANET. tools began to be
developed which made it convenient for individuals or organizations to distribute
messages over broad geographic areas. using diverse computer facilities. The
interest and activity in message systems has now reached such proportions that
steps have been taken within the 000 to coordinate and unify the development
of military message systems. The use of electronic mail is expected to increase
dramatically in the next few years. The utility of such systems in the command
and control and intelligence environments is clear. and applications in these areas
will probably lead the way. As the costs for sending and handling electronic
messags continue their rapid decrease. such uses can be expected to spread rapidly
into other areas and. of course. will not be limited to the 000.

A message system provides tools that help users (individuals or organiza­
tions) deal with messages in various ways. Messages must be composed. sent.
received. stored. retrieved. forwarded. and replied to. Today·s best interactive

-2-

-3-

computer systems provide a variety of word-processing and information han­
dling capabilities. The message handling facilities should be well integrated with
the rest of the system. so as to be a graceful extension of overall system capabil­
ity.

The message system described in this report. MH. provides most of the
features that can be found in other message systems and also incorporates some
new ones. It has been built on the UNIX time-sharing system.[2] a popular
operating system for the DEC PDP-ll and VAX. classes of computers. A
"secure" operating system similar to UNIX is currently being developed.[3] and
that system will also run MH.

This report provides a complete description of MH and thus may serve as a
user's manual. although parts of the report will be of interest to non-users as
well Sections 2 and 3. the Overview and Tutorial. present the key ideas of MH
and will give those not familiar with message systems an idea of what such sys­
tems are like.

MH consists of a set of commands which use some special files and conven­
tions. Section 4 covers the information a user needs to know in addition to the
commands. The final section. Sec. 5. describes each of the MH commands in
detail. A summary of the commands is given in Appendix A. and Appendixes B
and C describe the ARPANET conventions for messages (we expect that many
users of MH will be using the ARPANET) and the formal syntax of such mes­
sages. respectively. Finally. Appendix D provides an illustration of how MH
commands may be used in conjunction with other UNIX facilities.

A novel approach has been taken in the design of MH. The design concept
will be reported in detail in a forthcoming Rand report. but it can be described
briefly as follows. Instead of creating a large subsystem that appears as a single
command to the user. (such as MS[4]) MH is a collection of separate commands
which are run as separate programs. The file and directory system of UNIX are
used directly. Messages are stored as individual files (datasets). and collections
of them are grouped into directories. In contrast. most other message systems
store messages in a complicated data structure within a monolithic file. With the
MH approach. UNIX commands can be interleaved with commands invoking the
functions of the message handler. Conversely. existing UNIX commands can be
used in connection with messages. For example. all the usual UNIX editing.
text-formatting. and printing facilities can be applied directly to individual mes­
sages. MH. therefore. consists of a relatively small amount of new code: it makes
extensive use of other UNIX software to provide the capabilities found in other
message systems.

2. OVERVIEW

There are three main aspects of MH: the way messages are stored (the
message database). the user's profile (which directs how certain actions of the
message handler take place). and the commands for dealing with messages.

Under MH. each message is stored as a separate file. A user can take any
action with a message that he could with an ordinary file in UNIX. A UNIX
directory in which messages are stored is called a folder. Each folder contains
some standard entries to support the message-handling functions. The messages
in a folder have numerical names. These folders (directories) are entries in a par­
ticular directory path. described in the user profile. through which MH can find
message folders. Using the UNIX "link" facility. it is possible for one copy of a
message to be "filed" in more than one folder. providing a message index facility.
Also. using the UNIX tree-structured file system. it is possible to have a folder
within a folder. This two-level organization provides a "selection-list" facility.
with the full power of the MH commands available on selected sublists of mes­
sages.

Each user of MH has a user profile. a file in his SHOME (initial login) direc­
tory called "0 mh-Pl'ofile". This profile contains several pieces of information
used by the MH commands: a path name to the directory that contains the mes­
sage folders. information concerning which folder the user last referenced (the
"current" folder). and parameters that tailor MH commands to the individual
user's requirements. It also contains most of the necessary state information con­
cerning how the user is dealing with his messages. enabling MH to be imple­
mented as a set of individual UNIX commands. in contrast to the usual approach
of a monolithic subsystem.

In MH. incoming mail is appended to the end of a file called 0 mail in a
user's SHOME directory. The user adds the new messages to his collection of MH
messages by invoking the command inc. Inc (incorporate) adds the new messages
to a folder called "inbox". assigning them names which are consecutive integers
starting with the next highest integer available in inbox. Inc also produces a scan
summary of the messages thus incorporated.

There are four commands for examining the messages in a folder: show.
prevo next. and scan. Show displays a message in a folder. prev displays the mes­
sage preceding the current message. and next displays the message following the
current message. Scan. summarizes the messages in a folder. producing one line
per message. showing who the message is from. the date. the subject. etc.

The user may move a message from one folder to another with the com­
mand file. Messages may be removed from a folder by means of the command
rmm. In addition. a user may query what the current folder is and may specify
that a new folder become the current folder. through the command folder. . .

A set of messages based on content may be selected by use of the command
pick. This command searches through messages in a folder and selects those that
match a given criterion. A subfolder is created within the original folder. con­
taining links to all the messages that satisfy the selection criteria.

A message folder (or subfolder) may be removed by means of the command
rmf.

-5-

There are five commands enabling the user to create new messages and send
them: comp. dist. forw. repl. and send. Comp provides the facility for the user to
compose a new message: dist redistributes mail to additional addressees: forw
enables the user to forward messages; and repl facilitates the generation of a
reply to an incoming message. If a message is not sent directly by one of these
commands. it may be sent at a later time using the command send.

All of the elements summarized above are described in more detail in the
following sections. Many of the normal facilities of UNIX provide additional
capabilities for dealing with messages in various ways. For example. it is possible
to print messages on the line-printer without requiring any additional code
within MH. Using standard UNIX facilities. any terminal output can be
redirected to a file for repeated or future viewing. In general. the flexibility and
capabilities of the UNIX interface with the user are preserved as a result of the
integration of MH into the UNIX structure.

3. TUTORIAL

This tutorial provides a brief introduction to the MH commands. It should
be sufficient to allow the user to read his mail. do some simple manipulations of
it, and create and send messages.

A message has two major pieces: the header and the body. The body con­
sists of the text of the message (whatever you care to type in). It follows the
header and is separated from it by an empty line. (When you compose a message,
the form that appears on your terminal shows a line of dashes after the header.
This is for convenience and is replaced by an empty line when the message is
sent.) The header is composed of several components, including the subject of the
message and the person to whom it is addressed. Each component starts with a
name and a colon; components must not start with a blank.. The text of the com­
ponent may take more than one line, but each continuation line must start with a
blank.. Messages typically have "to:", "cc:", and "subject:" components. When
composing a message, you should include the "to:" and "subject:" components;
the "cc:" (for people you want to send copies to) is not necessary.

The basic MH commands are inc, scan, show, next, prev, rmm, comp, and
repl. These are described below.

inc

When you get the message "You have mail", type the command inc. You
will get a "scan listing" such as:

7+
8
9

7/13 Cas
10/ 9 Norm
11/26 To:norm

revival of measurement work
NBS people and publications
question «Are there any functions

This shows the messages you received since the last time you executed this
command (inc adds these new messages to your inbox folder). You can see this
list again, plus a list of any other messages you have, by using the scan com­
mand.

scan

The scan listing shows the message number, followed by the date and the
sender. (If you are the sender, the addressee in the "to:" component is displayed.
You may send yourself a message by including your name among the "to:" or
"cc:"" addressees.) It also shows the message's subject; if the subject is short, the
first part of the body of the message is included after the characters «.

show

This command shows the current message, that is, the first one of the new
messages after an inc. If the message is not specified by name (number), it is gen­
erally the last message referred to by an MH command. For example,

show 5 will show message 5.

You can use the show command to copy a message or print a message.

-6-

comp

slww > x
slww I print
next
preY
rmm
rmm 3

-7-

will copy the message to file x.
will print the message. using the print command.
will show the message that follows the current message.
will show the message previous to the current message.
will remove the current message.
will remove message 3.

The com.p command puts you in the editor to write or edit a message. Fill in
or delete the "to:". ··cc:". and "subject:" fields. as appropriate. and type the body
of the message. Then exit normally from the editor. You will be asked "What
now?". Type a carriage return to see the options. Typing send will cause the
message to be sent: typing quit will cause an exit from compo with the message
draft saved.

If you quit without sending the message. it will be saved in a file called
lusr/<name>lMailldraft (where lusr/<name> is your SHOME directory).
You can edit this file and send the message later. using the send command.

comp -editor prompter

This comn;uutd uses a different editor and is useful for preparing "quick and
dirty" messages. It prompts you for each component of the header. Type the
information for that component. or type a carriage return to omit the component.
After that. type the body of the message. Backspacing is the only form of editing
allowed with this editor. When the body is complete. type a carriage return fol­
lowed by <CI'RL-D> «OPEN> on Ann Arbor terminals). This completes the
initial preparation of the message: from then on. use the same procedures as with
camp (above).

repl
repl n

This command makes up an initial message form with a header that is
appropriate for replying to an existing message. The message being answered is
the current message if no message number is mentioned. or n if a number is
specified. After the header is completed. you can finish the message .as in camp
(above).

This is enough information to get you going using MH. There are more
commands. and the commands described here have more features. Subsequent
sections explain MH in complete detail. The system is quite powerful if you
want to use its sophisticated features. but the foregoing commands suffice for
sending and receiving messages.

There are numerous additional capabilities you may wish to explore. For
example. the pick command will select a subset of messages based on specified cri­
teria such as sender or subject. Groups of messages may be designated. as
described in Sec. V. under "Message Naming". The file ". mh_profile" can be used
to tailor your use of the message system to your needs and preferences. as
described in Sec. V. under "The User Profile". In general. you may learn addi­
tional features of the system selectively. according to your requirements: by
studying the relevant sections of this manual. There is no need to learn all the
details of the system at once.

4. DETAILED DESCRIPTION

This section describes the MH system in detail. including the components of
the user profile. the conventions for message naming. and some of the other MH
conventions. Readers who are generally familiar with computer systems will be
able to follow the principal ideas. although some details may be meaningful only
to those familiar with UNIX.

TIIE USER PROFILE

The first time an MH command is issued by a new user. the system prompts
for a "path" and creates an MH "profile".

Each MH user has a profile which contains current state information for the
MH package and. optionally. tailoring information for each individual program.
When a folder becomes the current folder. it is recorded in the user's profile.
Other profile entries control the MH path (where folders and special files are
kept). folder and message protections. editor selection. and default arguments for
each MH program.

The MH profile is stored in the file ". mh_profile" in the user's SHOME
directory. It has the format of a message without any body. That is, each profile
entry is on one line. with a keyword followed by a colon (:) followed by text
particular to the keyword.
.. This file must not have blank lines.
The keywords may have any combination of upper and lower case. (See Appen­
dix B for a description of message formats.)

For the average MH user. the only profile entry of importance is "Path".
Path specifies a directory in which MH folders and certain files such as "draft"
are found. The argument to this keyword must be a legal UNIX path that names
an existing directory. If this path is unrooted (Le .. does not begin with a I). it
will be presumed to start from the user's SHOME directory. All folder and mes­
sage references within MH will relate to this path unless full path names are
used.

Message protection defaults to 664. and folder protection to 751. These
may be changed by profile entries "Msg-Protect" and "Folder-Protect", respec­
tively. The argument to these keywords is an octal number which is used as the
UNIX file mode.1

When an MH program starts running. it looks through the user's profile for
an entry with a keyword matching the program's name. For example. when
comp is run. it looks for a "comp" profile entry. If one is found. the text of the
profile entry is used as the default switch setting until all defaults are overridden
by explicit switches passed to the program as arguments. Thus the profile entry
"comp: -form standard.1ist" would direct comp to use the file '·standard.list"
as the message skeleton. If an explicit form switch is given to the comp com­
mand. it will override the switch obtained from the profile.

lSee chmod(I) in the UNIX Programmer's Manual.[5]

-8-

-9-

In UNIX. a program may exist under several names. either by linking or
aliasing. The actual invocation name is used by an MH program when scanning
for its profile defaults. Thus. each MH program may have several names by
which it can be invoked. and each name may have a different set of default
switches. For example. if comp is invoked by the name icomp. the profile entry
"icomp" will control the default switches for this invocation of the comp pro­
gram. This provides a powerful definitional facility for commonly used switch
settings.

The default editor for editing within compo repl. forw, and dist, is
"/bin/ned".2 A different editor may be used by specifying the profile entry "Edi­
tor:". The argument to "Editor" is the name of an executable program or shell
command file which can be found via the user's $PATH defined search path,
excluding the current directory. The "Editor:" profile specification may in turn
be overridden by a "-editor <editor>" profile switch associated with comp.
repl, forw, or dist. Finally. an explicit editor switch specified with any of these
four commands will have ultimate precedence.

During message composition, more than one editor may be used. For exam­
ple. one editor (such as prompter) may be used initially, and a second editor may
be invoked later to revise the message being composed (see the discussion of comp
in Section 5 for details). A profile entry .. < lasteditor>-next: <editor>"
specifies the name of the editor to be used after a particular editor. Thus
"comp: -e prompter" causes the initial text to be collected by prompter. and the
profile entry "prompter-next: ed" names ed as the editor to be invoked for the
next round of editing.

Some of the MH commands. such as show. can be used on message folders
owned by others. if those folders are readable. However. you cannot write in
someone else's folder. All the MH command actions not requiring write permis­
sion may be used with a "read-only" folder. In a writable folder. a file named
"cur" is used to contain its current message name. For read-only folders. the
current message name is stored in the user's profile.

Table 1 lists examples of the currently defined profile entries. typical argu­
ments, and the programs that reference the entries.

Table 1

PROFILE COMPONENTS

Keyword and Argument

Path: Mail
Current-Folder: inbox
Editor: Ibinl ed
Msg-Protect: 644
Folder-Protect: 711
<program>: default switches

2See Ref. 6 for a description of the NED text editor.

MH Programs that
Use Component

All
Most
comp, dist, forw, repl
inc
file, inc, pick
All

-10-

cur-<read-onlyfolder>: 172
prompter-next: ed

Most
comp, dist, forw, repl

Path should be present. Folder is maintained automatically by many MH
commands (see the "Context"" sections of the individual commands in Sec. V).
All other entries are optional. defaulting to the values described above.

MESSAGE NAMING

Messages may be referred to explicitly or implicitly when using MH com­
mands. A formal syntax of message names is given in Appendix C. but the fol­
lowing description should be sufficient for most MH users. Some details of mes­
sage naming that apply only to certain commands are included in the description
of those commands.

Most of the MH commands accept arguments specifying one or more fold­
ers. and one or more messages to operate on. The use of the word "msg" as an
argument to a command means that exactly one message name may be specified.
A message name may be a number. such as 1. 33. or 234. or it may be one of the
"reserved" message names: first. last. prevo next. and cur. (As a shorthand. a
period (.) is equivalent to cur.) The meanings of these names are straightfor­
ward: "first" is the first message in the folder; "last"" is the last message in the
folder; "prev" is the message numerically previous to the current message;
"next"" is the message numerically following the current message; "cur" (or " •..)
is the current message in the folder.

The default in commands that take a "msg" argument is always "cur".

The word "msgs" indicates that several messages may be specified. Such a
specification consists of several message deSignations separated by spaces. A mes­
sage designation is either a message name or a message range. A message range is
a specification of the form namel-name2 or namel:n. where namel and name2
are message names and n is an integer. The first form designates all the messages
from namel to name2 inclusive; this must be a non-empty range. The second
form specifies up to n messages. starting with namel if namel is a number. or
first, cur. or next. and ending with namel if namel is last or prevo This interpre­
tation of n is overridden if n is preceded by a plus sign or a minus sign; +n
always means up to n messages starting with name1. and -n always means up to
n messages ending with name1. Repeated specifications of the same message have
the same effect as a single specification of the message. Examples of specifications
are:

157-1122
first 6 8 next
first-l 0
last:5

The message name "all" is a shorthand for "first-last", indicating all of the
messages in the folder.

The limit on the number of messages in an expanded message list is gen­
erally 999-the maximum number of messages in a folder. However. the show

:11-

command and the commands 'pick -scan' and 'pick -show' are constrained to
have argument lists that are no more than 512 characters long. (Under Version 7
UNIX this limit is 4096.)

In commands that accept "msgs" arguments. the default is either cur or all.
depending on which makes more sense.

In all of the MH commands. a plus sign preceding an argument indicates a
folder name. Thus. "+inbox" is the name of the user's standard inbox. If an
explicit folder argument is given to an MH command. it will become the current
folder (that is. the "Current-Folder:" entry in "0 mh-profile" will be changed to
this folder). In the case of the jile and pick commands. which can have multiple
output folders. a new source folder (other than the default current folder) is
specified by "-src +folder".

OTHER. MIl CONVENTIONS

One very powerful feature of MH is that the MH commands may be issued
from any current directory. and the proper path to the appropriate folder(s) will
be taken from the user's profile. If the MH path is not appropriate for a specific
folder or file. the automatic prepending of the MH path can be avoided by begin­
ning a folder or file name with I. Thus any specific full path may be specified.

Arguments to the various programs may be given in any order. with the
exception of a few switches whose arguments must follow immediately. such as
"-src +folder" for piclc andjile.

Whenever an MH command prompts the user. the valid options will be
listed in response to a <RETURN>. (The first of the listed options is the default
if end-of-file is encountered. such as from a command file.) A valid response is
any unique abbreviation of one of the listed options.

Standard UNIX documentation conventions are used in this report to
describe MH command syntax. Arguments enclosed in brackets ([]) are optional:
exactly one of the arguments enclosed within braces ({ }) must be specified. and
all other arguments are required. The use of ellipsis dots Coo) indicates zero or
more repetitions of the previous item. For example. "+folder would indicate
that one or more "+folder" arguments is required and "[+folder ...]" indicates
that 0 or more •• +folder" arguments may be given.

MH departs from UNIX. standards by using switches that consist of more
than one character. e.g. "-header". To minimize typing. only a unique abbrevia­
tion of a switch need be typed; thus. for "-header". "-hea" is probably
sufficient. depending on the other switches the command accepts. Each MH pro­
gram accepts the switch •• -help" (which must be spelled out fully) and produces
a syntax description and a list of switches. In the list of switches. parentheses
indicate required characters. For example. all" -help" switches will appear as
"-(help)". indicating that no abbreviation is accepted.

Many MH switches have both on and off forms. such as "-format" and
"-noformat". In many of the descriptions in Sec. V. only one form is defined:
the other form. often used to nullify profile switch settings. is assumed to be the
opposite.

-12-

MHCOMMANDS

The MH package comprises 16 programs:

comp
dist
file
folder
forw
inc
next
pick
prev
prompter
repl
rmf
rmm
scan
send
show

Compose a message
Redistribute a message
Move messages between folders
Select/list status of folders
Forward a message
Incorporate new mail
Show the next message
Select a set of messages by context
Show the previous message
Prompting editor front end for composing messages
Reply to a message
Remove a folder
Remove messages
Produce a scan listing of selected messages
Send a previously composed message
Show messages

These programs are described below. The form of the descriptions conforms
to the standard form for the description of UNIX commands.

COMP(t) -13- COMP(t)

NAME
comp - compose a message

SYNOPSIS

comp [-editor editor] [-form formfile] [file] [-use] [-nouse] [-help]

DESCRIPTION

Files

Comp is used to create a new message to be mailed. If file is not specified. the file named
"draft" in the user's MH directory will be used. Comp copies a message form to the file
being composed and then invokes an editor on the file. The default editor is /binlned.
which may be overridden with the '-editor' switch or with a profile entry "Editor:". (See
Ref. 5 for a description of the NED text editing system.) The default message form contains
the following elements:

To:
cc:
Subject:

If the file named "components" exists in the user's MH directory. it will be used instead of
this form. If '-form form:fi.le· is specified. the specified form:fi.le (from the MH directory)
will be used as the skeleton. The line of dashes or a blank line must be left between the
header and the body of the message for the message to be identified properly when it is sent
(see send;). The switch '-use' directs camp to continue editing an already started message.
That is. if a comp (or dist. repl. or forw) is terminated without sending the message. the
message can be edited again via "comp -use".

If the specified file (or draft) already exists. camp will ask if you want to delete it before
continuing. A reply of No will abort the compo yes will replace the existing draft with a
blank skeleton. list will display the draft. and use will use it for further composition.

Upon exiting from the editor. comp will ask "What now?"". The valid responses are list. to
list the draft on the terminal: quit. to terminate the session and preserve the draft: quit
delete. to terminate. then delete the draft: send. to send the message: send verbose. to
cause the delivery process to be monitored: edit <editor>. to invoke <editor> for
further editing: and edit. to re-edit using the same editor that was used on the preceding
round unless a profile entry .. <lasteditor>-next: <editor>" names an alternative editor.

/etclmh/components
or <mh-dir > /components
SHOMEI. mh-profile
<mh-dir>/draft
/usr/bin/send

The message skeleton
Rather than the standard skeleton
The user profile
The default message file
To send the composed message

7th Edition UNIXl32V(Rand)

COMP(1)

Profile Components

Path:

Defaults

Context

Editor:
< lasteditor > -next:

'file' defaults to draft
'-editor' defaults to /bin/ned
'-nouse'

-14- COMP(1)

To determine the user's MIl directory
To override the use of /bin/ned as the default editor
To name an editor to be used after exit from <lasteditor>

Camp does not affect either the current folder or the current message.

7th Edition UNIXl32V(Rand)

DIS'T(I) -15- DIST(t)

NAME

dist - redistribute a message to additional addresses

SYNOPSIS

dist [+folder] [msg] [-form form1ile] [-editor editor] [-annotate] [-noannotate]
[-inplace] [-noinplace] [-help]

DESCRIPTION

Files

Dist is similar to forw. It prepares the specified message for redistribution to addresses that
(presumably) are not on the original address list. The file "distcomps" in the user's MH
directory, or a standard form, or the file specified by '-form form1ile' will be used as the
blank components file to be prepended to the message being distributed. The standard form
has the components "Distribute-to:" and "Distribute-cc:". When the message is sent,
"Distribution-Date: date", "Distribution-From: name", and "Distribution-Id: id" Cif
'-msgid' is specified to send;) will be prepended to the outgoing message. Only those
addresses in "Distribute-To", "Distribute-cc", and "Distribute-Bec" will be sent. Also, a
"Distribute-Fcc: folder" will be honored (see send;).

Send recognizes a message as a redistribution message by the existence of the field
"Distribute-To:", so don't try to redistribute a message with only a "Distribute-cc:".

If the '-annotate' switch is given, each message being distributed will be annotated with
the lines:

Distributed: «date»
Distributed: Distribute-to: names

where each "to" list contains as many lines as required. This annotation will be done only
if the message is sent directly from dist. If the message is not sent immediately from dist
Ci.e .. if it is sent later via send;), "comp -use" may be used to re-edit and send the con­
structed message, but the annotations won't take place. The '-inplace' switch causes anno­
tation to be done in place in order to preserve links to the annotated message.

See comp for a description of the '-editor' switch and for options upon exiting from the
editor.

letclmhlcomponents
or < mh-dir > Icomponents
SHaMEl. mh,.profi.le
< mh-dir > Idraft
lusr/bin/send

The message skeleton
Rather than the standard skeleton
The user profile
The default message file
To send the composed message

Profile Components
Path: To determine the user's MH directory
Editor: To override the use of Ibin/ned as the default editor
< lasteditor> -next: To name an editor to be used after exit from <lasteditor>

7th Edition UNIXl32V(Rand)

DISTIl) -16- DISTIl)

Defaults

Context

'+folder' defaults to the current folder
'msg' defaults to cur
'-editor' defaults to Ibinlned
'-noannotate'
'-noinplace'

If a +folder is specified, it will become the current folder, and the current message will be
set to the message being redistributed,

7th Edition UNIXl32V(Rand)

FILE(I) -17- FILE(I)

NAME

file - file message(s) in (an)other folder(s)

SYNOPSIS

file [-src +folderJ [msgs] [-link] [-preserve] +folder ... [-nolink] [-nopreserve]
[-file file] [-nofile] [-help]

DESCRIPTION

Files

File moves (mv(I» or links (lnCI» messages from a source folder into one or more destina­
tion folders. If you think of a message as a sheet of paper. this operation is not unlike filing
the sheet of paper (or copies) in file cabinet folders. When a message is filed. it is linked
into the destination folder(s) if possible. and is copied otherwise. As long as the destination
folders are all on the same file system. multiple filing causes little storage overhead. This
facility provides a good way to cross-file or multiply-index messages. For example. if a
message is received from Jones about the ARPA Map Project, the command

file cur +jones +Map

would allow the message to be found in either of the two folders 'jones' or 'Map'.

The option '-file file' directs file to use the specified file as the source message to be filed.
rather than a message from a folder.

If a destination folder doesn't exist. file will ask if you want to create one. A negative
response will abort the file operation.

'-link' preserves the source folder copy of the message (i.e., it does a LnCI) rather than a
mvCI», whereas, '-nolink" deletes the "filed" messages from the source folder. Normally,
when a message is filed. it is assigned the next highest number available in each of the desti­
nation folders. Use of the '-preserve' switch will override this message "renaming", but
name conflicts may occur, so use this switch cautiously. (See pick for more details on mes­
sage numbering.)

If '-link' is not specified (or '-nolink' is specified), the filed messages will be removed
(unlink(IT) from the source folder.

SHOMEI. mh-profile The user profile

Profile Components
Path: To determine the user's MH directory

To find the default current folder

Defaults

Current-Folder:
Folder-Protect: To set mode when creating a new folder

'-src +folder' defaults to the current folder
'msgs' defaults to cur
'-nolink'
, -nopreserve'
'-nofile'

7th Edition UNIXl32VCRand)

FILE(1) -18- FILE(1)

Context
If "-src +folder' is given, it will become the current folder for future MH commands. If
neither "-link' nor "all' are specified, the current message in the source folder will be set to
the last message specified: otherwise, the current message won't be changed.

7th Edition UNIXl32V(Rand)

FOLDER(I) -19- FOLDER(t)

NAME

folder - set/list current folder/message

SYNOPSIS

folder [+folder] [DlSg] [-all] [-fast] [-nofast] [-up] [-dovvn] [-header] [-noheader]
[-total] [-nototal] [-pack] [-nopack] [-help]

folders <equivalent to 'folder -all'>

DESCRIPTION

Since the l\1H environment is the shell. it is easy to lose track of the current folder from
day to day, Folder vvilllist the current folder. the number of messages in it. the range of
the messages (lovv-high). and the current message vvithin the folder. and vvill flag a selection
list or extra files if they exist. An example of the output is:

inbox+ has 16 messages (3- 22); cur- 5.

IT a '+folder' and/or 'DlSg' are specified. they vvill become the current folder and/or mes­
sage. An '-all' svvitch vvill produce a line for each folder in the user's MH directory.
sorted alphabetically. These folders are preceded by the read-only folders. vvhich occur as.
mh-profile "cur-" entries. For example.

Folder # of messages (range); cur DlSg (other files)
/fsdlrs/m/tacc has 35 messages (1- 35); cur- 23.

/rndiphyllMaillEP has 82 messages (1-108); cur- 82.
ff has 4 messages (1- 4): cur- 1.

inbox+ has 16 messages (3- 22): cur- 5.
mh has 76 messages (1- 76): cur=- 70.

notes has 2 messages (1- 2): cur= 1.
ucom has 124 messages (1-124): cur- 6; (select).

TOTAL= 339 messages in 7 Folders.

The "+" after inbox indicates that it is the current folder. The "(select)" indicates that the
folder ucom has a selection list produced by pick. IT "others" had appeared in parentheses
at the right of a line. it vvould indicate that there are files in the folder directory that don't
belong under the MH file naming scheme.

The header is output if either an '-all' or a '-header' svvitch is specified: it is suppressed by
'-noheader'. Also. if folder is invoked by a name ending vvith "s" (e.g .• folders). '-all' is
assumed. A '-total' svvitch vvill produce only the summary line.

If '-fast' is given. only the folder name (or names in the case of '-all') vvill be listed.
(This is faster because the folders need not be read.)

The svvitches '-up' and '-dovvn' change the folder to be the one above or belovv the current
folder. That is. "folder -dovvn" vvill set the folder to "<current-folder>/selecf'. and if
the current folder is a selection-list folder. "folder -up" vvill set the current folder to the
parent of the selection-list. (See piclc for details on selection-lists.)

The '-pack' svvitch vvill compress the message names in a folder. removing holes in message

7th Edition UNIX/32v<Rand)

FOLDER(l)

Files

numbering.

SHOME/. mh_profile
/bin/ls

Profile Components

Path:
Current-Folder:

Defaults

-20-

The user profile
To fast-list the folders

To determine the user's MH directory
To find the default current folder

'+folder' defaults to the current folder
'msg' defaults to none
'-nofast'
'-noheader'
'-nototal'
'-nopack'

Context

FOLDER(l)

If '+folder' and/or 'msg' are given. they will become the current folder and/or message.

7th Edition UNIXl32V<Rand)

FORW(I) -21- FORW(l)

NAME

forw - forward messages

SYNOPSIS
forw [+folder] [msgs] [-editor editor] [-form form.1ile] [-annotate] [-noannotate]

[-inplace] [-noinplace] [-help]

DESCRIPTION

Files

Forw may be used to prepare a message containing other messages. It constructs the new
message from the components file or '-form form.1ile' (see comp), with a body composed of
the message(s) to be forwarded. An editor is invoked as in comp, and after editing is com­
plete, the user is prompted before the message is sent.

If the '-annotate' switch is given, each message being forwarded will be annotated with the
lines

Forwarded: «date»
Forwarded: To: names
Forwarded:cc:names

where each "To:" and "cc:" list contains as many lines as required. This annotation will be
done only if the message is sent directly from forw. If the message is not sent immediately
from forw, "comp -use" may be used in a later session to re-edit and send the constructed
message, but the annotations won't take place. The '-inplace' switch permits annotating a
message in place in order to preserve its links.

See camp for a description of the '-editor' switch.

I etc/mh/ components
or <mh-dir>/components
SHOME/. mh"profile
<mh-dir> I draft
lusr/binlsend

The message skeleton
Rather than the standard skeleton
The user profile
The default message file
To send the comp9Sed message

ProJile Components
Path: To determine the user's MH directory

Defaults

Context

Editor:
Current-Folder:
<lasteditor>-next:

To override the use of Ibinlned as the default editor
To find the default current folder
To name an editor to be used after exit from <lasteditor>

'+folder' defaults to the current folder
'msgs' defaults to cur
'-editor' defaults to Ibinlned
, -noannotate'
, -noinplace'

If a +folder is specified, it will become the current folder, and the current message will be
set to the first message being forwarded.

7th Edition UNlX/32vCRand)

(

\

INOt) -22- INOt)

NAME

inc - incorporate new mail

SYNOPSIS

inc [+folder] [-audit audit-file] [-help]

DESCRIPTION

Files

Inc incorporates mail from the user's incoming mail drop (. mail) into an MH folder. If
'+folder' isn't specified, the folder named "inbox" in the user's MH directory will be used.
The new messages being incorporated are assigned numbers starting with the next highest
number in the folder. If the specified (or default) folder doesn't exist, the user will be
queried prior to its creation. As the messages are processed, a scan listing of the new mail
is produced.

If the user's profile contains a "Msg-Protect: nnn" entry, it will be used as the protection
on the newly created messages. otherwise the MH default of 664 will be used. During all
operations on messages. this initially assigned protection will be preserved for each message.
so chnwd(I) may be used to set a protection on an individual message. and its protection
will be preserved thereafter.

If the switch '-aUdit audit-file' is specified (usually as a default switch in the profile). then
inc will append a header line and a line per message to the end of the specified audit-file
with the format:

«inc» date
< scan line for first message>
<scan line for second message>

<etc.>

This is useful for keeping track of volume and source of incoming mail. Eventually, repl.
forw. compo and dist may also produce audits to this (or another) file. perhaps with
"Message-Id:" information to keep an exact correspondence history. "Audit-file" will be in
the user's MH directory unless a full path is specified.

Inc will incorporate even illegally formatted messages into the user's MH folder. inserting a
blank line prior to the offending component and printing a comment identifying the bad
message.

In all cases. the. mail file will be zeroed.

SHOME/. mh_profile
SHOME/. mail
< mh-dir > I audit-file

The user profile
The user's mail drop
Audit trace file (optional)

Profile Components
Path: To determine the user's MH directory

For protection on new folders Folder-Protect:
Msg-Protect: For protection on new messages

7th Edition UNIXl32V(Rand)

INat)

Defaults

Context

-23- INat)

'+folder' defaults to "inbox"

The folder into which the message is being incorporated will become the current folder, and
the first message incorporated will be the current message. This leaves the context ready
for a show of the first new message.

7th Edition UNIX/32V<Rand)

NEXT(t) -24- NEXT(t)

NAME

next - show the next message

SYNOPSIS
next [+folder] [-switches for l] [-help]

DESCRIPTION

Next performs a show on the next message in the specified (or current) folder. Like show, it
passes any switches on to the program l, which is called to list the message. This command
is exactly equivalent to "show next".

Files
SHOME/. mh-profile

Profile Components
Path:
Current-Folder:

Defaults

Context

The user profile

To determine the user's MH directory
To find the default current folder

If a folder is specified, it will become the current folder, and the message that is shown (Le.,
the next message in sequence) will become the current message.

7th EditiOD UNIXl32VCRanc:O

PICK(l) -25- PICK(l)

NAME

pick - select messages by content

SYNOPSIS

pick -cc [-src +folderl [msgs] [-help] [-scan] [-noscan]
[-show] [-noshow] [-nofile] [-nokeep] -date

-from
-search pattern
-subject
-to [-file [-preserve] [-link] +folder ... [-nopreserve] [-nolink]]
--component [-keep [-stay] [-nostay] [+folder ...]]

typically:

DESCRIPTION

pick -from jones -scan
pick -to holloway
pick -subject ned -scan -keep

Pick searches messages within a folder for the specified contents. then performs several
operations on the selected messages.

A modified grep(I) is used to perform the searching. so the full regular expression (see
ed(I) facility is available within 'pattern'. With '-search'. pattern is used directly. and
with the others. the grep pattern constructed is:

.. *" component:. pattern

This means that the pattern specified for a '-search' will be found everywhere in the mes­
sage, including the header and the body. while the other search requests are limited to the
single specified component. The expression '--component pattern' is a shorthand for
specifying '-search "component:. *pattern" '; it is used to pick a component not in the set
[cc date from subject to]. An example is "pick --reply-to pooh -show",

Searching is performed on a per-line basis, Within the header of the message, each com­
ponent is treated as one long line, but in the body. each line is separate. Lower-case letters
in the search pattern will match either lower or upper case in the message. while upper case
will match only upper case.

Once the search has been performed, the selected messages are scanned (see scan) if the
'-scan' switch is given. and then they are shown (see show) if the '-show' switch is given.
After these two operations. the file operations Cif requested) are performed.

The '-file' switch operates exactly like the file command, with the same meaning for the
'-preserve' and '-link' switches.

The '-keep' switch is similar to '-file', but it produces a folder that is a subfolder of the
folder being searched and defines it as the current folder (unless the '-stay' flag is used).
This subfolder contains the messages which matched the search criteria, All of the MH
commands may be used with the sub-folder as the current folder. This gives the user con­
siderable power in dealing with subsets of messages in a folder.

7th Edition UNIXl32V(Rand)

PICK(l) -26- PICK(l)

Files

The messages in a folder produced by '-keep' will always have the same numbers as they
have in the source folder (i.e., the '-preserve' switch is automatic). This way, the message
numbers are consistent with the folder from which the messages were selected. Messages
are not removed from the source folder (Le .. the '-link' switch is assumed). If a '+folder'
is not specified, the standard name "select" will be used. (This is the meaning of "(select)"
when it appears in the output of the folder command.) If '+folder' arguments are given to
'-keep'. they will be used rather than "select" for the names of the subfolders. This
allows for several subfolders to be maintained concurrently.

When a '-keep' is performed. the subfolder becomes the current folder. This can be over­
ridden by use of the '-stay' switch.

Here's an example:

1 % folder +inbox
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

inbox+ has 16 messages (3- 22); cur= 3.
% pick -from dcrocker
6 hits.
[+inboxlselect now current]
% folder

inboxlselect+ has 6 messages (3- 16); cur= 3.
% scan

3+ 6/20 Dcrocker
6 6/23 Dcrocker
8 6/27 Dcrocker

13 6/28 dcrocker
15 7/ 5 . Dcrocker
16 7/ 5 d crocker

% show all I print

Re: ned file update issue ...
removal of files from /tm .. .
Problems with the new ned .. .
newest nned «I would ap .. .
nned «Last week I asked ...
message id format «I re ...

[produce a full listing of this set of messages on the line printer.]
% folder -up

inbox+ has 16 messages (3- 22); cur= 3; (select).
% folder -down
inboxlselect+ has 6 messages (3- 16); cur= 3.

%rmf
[+inbox now current]
% folder

inbox+ has 16 messages (3- 22); cur= 3.

This is a rather lengthy example. but it shows the power of the MH package. In item 1. the
current folder is set to inbox. In 3. all of the messages from dcrocker are found in inbox
and linked into the folder "inboxlselect". (Since no action switch is specified. '-keep' is
assumed.) Items 6 and 7 show that this subfolder is now the current folder. Items 8
through 14 are a scan of the selected messages (note that they are all from dcrocker and are
all in upper and lower case). Item 15 lists all of the messages to the high-speed printer.
Item 17 directs folder to set the current folder to the parent of the selection-list folder.
which is now current. Item 18 shows that this has been done. Item 19 resets the current
folder to the selection list. and 21 removes the selection-list folder and resets the current
folder to the parent folder. as shown in 22 and 23.

SHOME/. mh_profile The user profile

7th Edition UN1X132VCRandJ

PICK(t) -2'1- PICK(t)

Profile Components
Path: To determine the user's MH directory

For protection on new folders

Defaults

Context

Folder-Protect:
Current-Folder: To find the default current folder

'-src +folder' defaults to current
'msgs' defaults to all
'-keep +select' is the default if no '-scan', '-show', or '-file' is specified

If a '-src +folder' is specified, it will become the current folder. unless a '-keep' with 0 or
1 folder arguments makes the selection-list subfolder the current folder. Each selection-list
folder will have its current message set to the first of the messages linked into it unless the
selection list already existed. in which case the current message won't be changed.

7th Edition UNIXl32V<RandJ

PREV(t) -28- PREV(t)

NAME

prev - show the previous message

SYNOPSIS
prev [+folder] [-switches for l] [-help]

DESCRIPTION

Prev performs a slww on the previous message in the specified (or current) folder. Like
slww. it passes any switches on to the program l. which is called to list the message. This
command is exactly equivalent to "show prev".

Files
SHOME/. mh_profile

Profile Components
Path:
Current-Folder:

Defaults

Context

The user profile

To determine the user's MH directory
To find the default current folder

If a folder is specified, it will become current. and the message that is shown (i.e., the previ­
ous message in sequence) will become the current message.

7th Edition UNIXl32V(Rand)

PROMPTER.(1) -29- PROMPTER(1)

NAME

prompter - prompting editor front end

SYNOPSIS

This program is not called directly but takes the place of an editor and acts as an editor
front end.

prompter [-erase chr] [-kill chr] [-help]

DESCRIPTION

Files

Prompter is an editor which allows rapid composition of messages. It is particularly useful
to network and low-speed (less than 2400 baud) users of MH. It is an MH program in that
it can have its own profile entry with switches. but it can't be invoked directly as all other
MH commands can: it is an editor in that it is invoked by an "-editor prompter" switch or
by the profile entry "Editor: prompter". but functionally it is merely a text-collector and
not a true editor.

Prompter expects to be called from compo repl. dist. or forw. with a draft file as an argu­
ment. For example. "comp -editor prompter" will call prompter with the file "draft"
already set up with blank components. For each blank component it finds in the draft, it
prompts the user and accepts a response. A <RETURN> will cause the whole component
to be left out. A .. ," preceding a <RETURN> will continue the response on the next line,
allowing for multiline components.

Any component that is non-blank will be copied and echoed to the terminal.

The start of the message body is prom,pted by a line of dashes. If the body is non-blank,
the prompt is •. Enter additional text". Message-body typing is terminated with a
<CfRL-D> (or <OPEN». Control is returned to the calling program, where the user is
asked "What now?". See comp for the valid options.

The line editing characters for kill and erase may be specified by the user via the arguments
"-kill chr" and "-erase chr", where chr may be a character: or "'nnn", where nnn is the
octal value for the character. (Again. these may come from the default switches specified
in the user's profile.)

A during message-body typing is equivalent to <CfRL-D> for compatibility
with NED. A during component typing will abort the command that invoked
prompter.

None

Profile Components
prompter-next: To name the editor to be used on exit from prompter

Defaults

Context
None

7th Edition UNIXl32V(Rand)

REPL(t) -30- REPL(t)

NAME

repl - reply to a message

SYNOPSIS

repl [+folderl [msg] [-editor editorl [-inplace] [-annotate] [-help] [-noinplace]
[-noannotate]

DESCRIPTION

Files

Repl aids a user in producing a reply to an existing message. In its simplest form (with no
arguments). it will set up a message-form skeleton in reply to the current message in the
current folder. invoke the editor. and send the composed message if so directed. The com­
posed message is constructed as follows:

To: <Reply-To> or <From>
cc: <cc>. <To>
Subject: Re: <Subject>
In-reply-to: Your message of <Date>

< Message-Id >

where field names enclosed in angle brackets « » indicate the contents of the named field
from the message to which the reply is being made. Once the skeleton is constructed. an
editor is invoked (as in compo dist. andforw). While in the editor. the message being replied
to is available through a link named "@". In NED, this means the replied-to message may
be "used" with "use @", or put in a window by "window @".

As in comp, dist. and forw, the user will be queried before the message is sent. If '-anno­
tate' is specified, the replied-to message will be annotated with the single line

Replied: «Date».

The command "comp -use" may be used to pick up interrupted editing, as in dist and
forw; the '-inplace' switch annotates the message in place, so that all folders with links to
it will see the annotation.

SHOME/. mh_profile
< mh-dir > I draft
lusr/binl send

The user profile
The constructed message file
To send the composed message

Profile Components

Path: To determine the user's MH directory

Defaults

Editor:
Current-Folder:

'+folder' defaults to current
'msgs' defaults to cur
'-editor' defaults to Ibin/ned
, -noannotate'
, -noinplace'

7th Edition

To override the use of Ibinlned as the default editor
To find the default current folder

UNIXl32VCRand)

REPL(t) -3t- REPL(t)

Context
If a '+folder· is specified. it will become the current folder. and the current message will be
set to the replied-to message.

7th Edition UNIXl32V(Rand)

RMF(t) -32- RMF(t)

NAME

rmf - remove folder

SYNOPSIS
rmf [+folder] [-help]

DESCRIPTION

Files

Rmf removes all of the files (messages) within the specified (or default) folder, and then
removes the directory (folder). IT there are any files within the folder which are not a part
of MH, they will rwt be removed, and an error will be produced. If the folder is given
explicitly or the current folder is a subfolder (i.e., a selection list from pick), it will be
removed without confirmation. IT no argument is specified and the current folder is not a
selection-list folder, the user will be asked for confirmation.

Rmf irreversibly deletes messages that don't have other links, so use it with caution.

If the folder being removed is a subfolder, the parent folder will become the new current
folder, and rmf will produce a message telling the user this has happened. This provides an
easy mechanism for selecting a set of messages, operating on the list, then removing the list
and returning to the current folder from which the list was extracted. (See the example
under pick.)

The files that rmf will delete are cur, any file beginning with a comma, and files with
purely numeric names. All others will produce error messages.

Rmf of a read-only folder will delete the "cur-" entry from the profile without affecting
the folder itself.

$HOME/. mh-profile The user profile

Profile Components

Path: To determine the user's MH directory
To find the default current folder

Defaults

Context

Current-Folder:

'+folder' defaults to current, usually with confirmation

Rmf will set the current folder to the parent folder if a subfolder is removed; or if the
current folder is removed, it will make "inbox" current, Otherwise. it doesn't change the
current folder or message.

7th Edition UNIXl32VCRand)

Rl\1l\1:(1) -33- RMM(1)

NAME

rmm - remove messages

SYNOPSIS
rmm [+folder] [msgs] [-help]

DESCRIPTION

Rmm removes the specified messages by renaming the message files with preceding commas.
(This is the Rand-UNIX backup file convention.)

The current message is not changed by rmm. so a next will advance to the next message in
the folder as expected.

Files

SHOME/. mh-profile

Profile Components

Path:

Defaults

Context

Current-Folder:

'+folder' defaults to current
'msgs' defaults to cur

The user profile

To determine the user's MH directory
To find the default current folder

If a folder is given, it will become current.

7th Edition UNIXl32VCRand)

-34- SCAN(1)

NAME

scan - produce a one-line-per-message scan listing

SYNOPSIS

scan [+folder] [msgs] [-ff] [-header] [-help] [-noff] [-noheader]

DESCRIPTION

Files

Scan produces a one-line-per-message listing of the specified messages. Each scan line con­
tains the message number (name). the date. the "From" field. the "Subject" field. and. if
room allows. some of the body of the message. For example:

*' 15+
16-
18
19

Date
71 5
71 5
71 6
71 7

From
Dcrocker
dcrocker
Obrien
Obrien

Subject [«Body]
nned «Last week 1 asked some of
message id format «I recommend
Re: Exit status from mkdir
·scan" listing format in MH

The '+' on message 15 indicates that it is the current message. The '-' on message 16 indi­
cates that it has been replied to. as indicated by a "Replied:" component produced by an
'-annotate' switch to the repl command.

If there is sufficient room left on the scan. line after the subject. the line will be filled with
text from the body. preceded by «. Scan actually reads each of the specified messages and
parses them to extract the desired fields. During parsing. appropriate error messages will be
produced if there are format errors in any of the messages.

The '-header' switch produces a header line prior to the scan. listing. and the '-ff' switch
will cause a form feed to be output at the end of the scan listing. See Appendix D.

SHaMEl. mh_profile The user profile

Pro1i1e Components
Path: To determine the user's MH directory

To find the default current folder Current-Folder:

Defaults
Defaults:

Context

'+folder' defaults to current
'msgs' defaults to all
'-nof!"
'-noheader'

If a folder is given. it will become current. The current message is unaffected.

7th Edition UNIXl32VCRand)

SEND(l) -35-

NAME

send - send a message

SYNOPSIS

send [file] [-draft] [-verbose] [-format] [-msgid] [-help] [-noverbose] [-noformat]
[-nomsgid]

DESCRIPTION

Files

Send will cause the specified file (default <mh-dir>/draft) to be delivered to each of the
addresses in the "To:", "cc:", and "Bec:" fields of the message. If '-verbose' is specified,
send; will monitor the delivery of local and net mail. Send with no argument will query
whether the draft is the intended file, whereas' -draft' will suppress this question. Once
the message has been mailed (or queued) successfully, the file will be renamed with a lead­
ing comma, which allows it to be retreived until the next draft message is sent. If there are
errors in the formatting of the message, send; will abort with a (hopefully) helpful error
message.

If a "Bec:" field is encountered, its addresses will be used for delivery, but the "Bcc:" field
itself will be deleted from all copies of the outgoing message.

Prior to sending the message, the fields "From: user", and "Date: now" will be prepended
to the message. If '-msgid' is specified, then a "Message-Id:" field will also be added to the
message. If the message already contains a "From:" field, then a "Sender: user" field will be
added instead. (An already existing "Sender:" field will be deleted from the message.)

If the user doesn't specify '-noformat', each of the entries in the "To:" and "cc:" fields will
be replaced with "standard" format entries. This standard format is designed to be usable
by all of the message handlers on the various systems around the ARPANET.

If an "Fcc: folder" is encountered, the message will be copied to the specified folder in the
format in which it will appear to any receivers of the message. That is, it will have the
prepended fields and field reformatting.

If a "Distribute-To:" field is encountered, the message is handled as a redistribution message
(see dist for details), with "Distribution-Date: now" and "Distribution-From: user" added.

SHaMEl. mh-profile The user profile

ProJile Components
Path: To determine the user's MH directory

Defaults

Context

'file' defaults to draft
'-noverbose'
'-format'
'-nomsgid'

Send has no effect on the current message or folder.

7th Edition UNIXl32V(Rand)

SHOWel) -36- SHoWell

NAME
show - show (list) messages

SYNOPSIS

show [+folder] [msgs] [-prj [-nopr] [-draft] [-help] [lor pr switches]

DESCRIPTION

FUes

Show lists each of the specified messages to the standard output (typically. the terminal).
The messages are listed exactly as they are. with no reformatting. A program called l is
invoked to do the listing. and any switches not recognized by show are passed along to l.

If no "msgs" are specified. the current message is used. If more than one message is
specified. l will prompt for a < return> prior to listing each message.

l will list each message. a page at a time. When the end of page is reached. l will ring the
bell and wait for a <RETURN> or <CI'RL-D>. If a <return> is entered.l will clear the
screen before listing the next page. whereas <CI'RL-D> will not. The switches to l are
'-p#' to indicate the page length in lines. and '-w#' to indicate the width of the page in
characters.

If the standard output is not a terminal. no queries are made, and each file is listed with a
one-line header and two lines of separation.

If '-pr' is specified. then prO) will be invoked rather than l. and the switches (other than
'-draft') will be passed along. "Show -draft" will list the file <mh-dir>/draft if it
exists.

SHOMEI. mh-profile
/binll
/bin/pr

The user profile
Screen-at-a-time list program
prO)

Profile Components
Path: To determine the user's MH directory

To find the default current folder

Defaults

Context

Current-Folder:

'+folder' defaults to current
'msgs' defaults to cur
'-nopr'

If a folder is given. it will become the current message. The last message listed will become
the current message.

7th Edition UNIXl32VCRancO

Appendix A

COMMAND SUMM:ARy3

comp [-editor editor] [-form formfile] [file] [-use] [-nouse] [-help]

dist [+folder] [msg] [-form formfile] [-editor editor] [-annotate] [-noannotate] [-inplace]
[-noinplace] [-help]

file [-src +folderl [msgs] [-link] [-preserve] +folder ... [-nolink] [-nopreserve] [-file file]
[-nofile] [-help]

folder [+folder] [msg] [-aU] [-fast] [-nofast] [-up] [-down] [-header] [-no header] [-total]
[-no total] [-pack] [-nopack] [-help]

forw [+folder] [msgs] [-editor editor] [-form formfile] [-annotate] [-noannotate] [-inplace]
[-noinplace] [-help]

inc [+folder] [-audit audit-file] [-help]

next [+folder] [-switches for l] [-help]

pick -cc
-date
-from
-search
-subject
-to
--component

[-src +folder] [msgs] [-help] [-scan] [-noscan]
[-show] [-noshow] [-nofile] [-nokeep]

pattern

[-file [-preserve] [-link] +folder ... [-nopreserve] [-nolink]]
[-keep [-stay] [-nostay] [+folder ...]]

prev [+folder] [-switches for l] [-help]

prompter [-erase chr] [-kill chr] [-help]

repl [+folder] [msg] [-editor editor] [-inplace] [-annotate] [-help] [-noinplace] [-noannotate]

rmf [+folder] [-help]

rmm [+folder] [msgs] [-help]

scan [+folder] [msgs] [-ff] [-header] [-help] [-noff] [-noheader]

send [file] [-draft] [-verbose] [-format] [-msgid] [-help] [-noverbose] [-noformat] [-nomsgid]

show [+folder] [msgs] [-prj [-nopr] [-draft] [-help] [lor pr switches]

3 All commands accept a -help switch.

-37-

Appendix B

MESSAGE FORMAT

This section paraphrases the format of ARPANET text messages given in
Ref. 6.

ASSUMPTIONS

(1) Messages are expected to consist of lines of text. Graphics and binary data
are not handled.

(2) No data compression is accepted. All text is clear ASCII 7-bit data.

LAYOUT

A general "memo" framework is used. A message consists of a block of informa­
tion in a rigid format, followed by general text with no specified format. The
rigidly formatted first part of a message is called the header, and the free­
format portion is called the body. The header must always exist, but the body is
optional.

THE HEADER

Each header item can be viewed as a single logical line of ASCII characters. If the
text of a header item extends across several real lines, the continuation lines are
indicated by leading spaces or tabs.

Each header item is called a component and is composed of a keyword or name,
along with associated text. The keyword begins at the left margin, may contain
spaces or tabs, may not exceed 63 characters, and is terminated by a colon (:).
Certain components (as identified by their keywords) must follow rigidly defined
formats in their text portions.

The text for most formatted components (e.g., "Date:" and "Message-Id:") is pro­
duced automatically. The only ones entered by the user are address fields such as
"To:", "cc:", etc. ARPA addresses are assigned mailbox names and host computer
specifications. The rough format is "mailbox at host", such as "Borden at Rand­
Unix". Multiple addresses are separated by commas. A missing host is assumed
to be the local host,

THE BODY

A blank line signals that all following text up to the end of the file is the body.
(A blank line is defined as a pair of <end-of-line> characters with no characters
in between.) No formatting is expected or enforced within the body.

Within MH, a line consisting of dashes is accepted as the header delimiter. This is
a cosmetic feature applying only to locally composed mail.

-38-

Appendix C
:MESSAGE NAME BNF

msgs :==

msgspec :==

msg :=

msg-name :=

msg-range :=-

msg-sequence :=

signed-number :=

msgspec
msgs msgspec

msg
msg-range
msg-sequence

msg-name
<number>

"first"
"last"
"cur"

"next"
"prev"

msg"-"msg
"all"

msg":"signed-number

"+" <number>
"-"<number>
<number>

Where <number> is a decimal number in the range 1 to 999,

Msg-range specifies all of the messages in the given range and must not be
empty.

Msg-sequence specifies up to <number> of messages. beginning with "msg"
(in the case of first. cur. next. or <number». or ending with "msg" (in the case
of prev or last), +<number> forces "starting with msg", and -<number>
forces "ending with number", In all cases. "msg" must exist,

-39-

Appendix D
EXAMPLEOFSHELLCO~NDS

UNIX commands may be mixed with MH commands to obtain additional
functions. These may be prepared as files (known as shell command files or shell
scripts). The following example is a useful function that illustrate the possibili­
ties. Other functions. such as copying. deleting. renaming. etc .. can be achieved in
a similar fashion.

HARDCOPY

The command:

(scan -ff -header; show all -pr -0 I print

produces a scan listing of the current folder. followed by a form feed. followed
by a formatted listing of all messages in the folder. one per page. Omitting
"-pr -f" will cause the messages to be concatenated. separated by a one-line
header and two blank lines.

You can create variations on this theme. using pick.

-40-

. REFERENCE.~

. ,

-1. CroCkef,Il:H~iJ;J. Vittal. K. 1"'. Pogran. and D. A. Henderson. Jr .• "Standard
,'JOT.. tbeFormat of ARPA Network Test Messages:' Arpanet Request for

,Comments. No.~~a.Network,Irtformation Center 41952. Augmentation
:·Researcrx C"leni'~f.·~:~;~:;-j.{:Ci'dR~arch Institute. November 1977.

,. ''".t

3. McCauley.,E .. J,::~l~\';:,f::tV':,,:;;;:·.Drongowski,"KSOS-The Design of a Secure
Operating' System."',lilllP:;t)~Me;;enc.{: J}'oceedings. National COlllputer
Conferenct"~¥o-L4S, !919;pp>34j':!.t~Jj;:t ; ,'" ,

4, Crocker.David'H.~'Fram.ew!)Tf-ltnd:?1mctions of tJut ~'MS" Personal Message
System. The Rand Corpoiation:;'R-2134-ARPA.DeceniberJ977.

5. Thomp~on;;1iL>and D;. I\<1:."R~tchie;--UNlX~;frogranur.er·s Manual. 6tp, ed .•
,'., Wcstem ElectricComplf';;;~:~!".,il\;~:i~":~~n$:(avi{li~ble ohly to UNIX licensees).

6. Bilofsky .Walte!",· Th,g ,GRTTeii>:Editar>NE~lntroduction and Refirrence
M';1I,f;ti;d. The Rand Corrmration. R-2176,:,ARPA.Decemb:er 1977.

0';,,> ,". , _ .L

-41-

O. Introduction

UNIXt Assembler Reference Manual

Dennis M.· Ritchie

Bell Laboratories
Murray Hill, New Jersey 07974

This document describes the usage and input syntax of the UNIX POP-II assembler as.
The details of the pOP-II are not described.

The input syntax of the UNIX assembler is generally similar to that of the DEC assembler
PAL-IIR, although its internal workings and output format are unrelated. It may be useful to
read the publication DEC-ll-ASDB-D. which describes PAL-llR, although naturally one must use
care in assuming that its rules apply to as.

As is a rather ordinary assembler without macro capabilities. It produces an output file
that contains relocation information and a complete symbol table; thus the output is acceptable
to the UNIX link-editor /d, which may be used to combine the outputs of several assembler runs
and to obtain object programs from libraries. The output format has been designed so that if a
program contains no unresolved references to external symbols, it is executable without further
processing. \'

1. Usage

as is used as follows:

as [-u] [-0 output] .file, ...

If the optional "-u" argument is given, all undefined symbols in the current assembly will be
made undefined-external. See the .globl directive below.

The other arguments name files which are concatenated and assembled. Thus programs
may be written in several pieces and assembled together.

The output of the assembler is by default placed on the file a.out in the current directory;
the "-0" flag causes the output to be placed on the named file. If there were no unresolved
external references, and no errors detected, the output file is marked executable; otherwise, if
it is produced at all, it is made non-executable.

2. Lexical conventions

Assembler tokens include identifiers (alternatively, "symbols" or "names"), temporary
symbols, constants, and operators.

2.1 Identifiers

An identifier consists of a sequence of alphanumeric characters (including period ".",
underscore .. _", and tilde ,,·n as alphanumeric) of which the first may not be numeric. Only
the first eight characters are Significant. When a name begins with a tilde, the tilde is discarded
and that occurrence of the identifier generates a unique entry in the symbol table which can
match no other occurrence of the identifier. This feature is used by the C compiler to place

t UNIX is a Trademark of Bell Laboratories.

- 2 -

names of local variables in the output symbol table without having to worry about making them
unique.

2.2 Temporary symbols

A temporary symbol consists of a digit followed by "f" or "b". Temporary symbols are
discussed fully in §S.l.

2.3 Constants

An octal constant consists of a sequence of digits; "S" and "9" are taken to have octal
value 10 and 11. The constant is truncated to 16 bits and interpreted in two's complement
notation.

A decimal constant consists of a sequence of digits terminated by a decimal point ":'.
The magnitude of the constant should be representable in IS bits; i.e., be less than 32,76S.

A single-character constant consists of a single quote .. ,,, followed by an ASCII character
not a new-line. Certain dual-character escape sequences are acceptable in place of the ASCII
character to represent new-line and other non-graphics (see String sTatements, §5.5). The
constant's value has the code for the given character in the least significant byte of the word
and is null-padded on the left. .

A double-character constant consists of a double quote .. "" followed by a pair of ASCII
characters not including new-line. Certain dual-character escape sequences are acceptable in
place of either of the ASCII characters to represent new-line and other non-graphics (see SIring
statements, §S.S). The constant's value has the code for the first given character in the least
significant byte and that for the second character in the most significant byte.

2A Operators

There are several single- and double-character operators; see §6.

2.5 Blanks

Blank and tab characters may be interspersed freely between tokens, but may not be used
within tokens (except character constants). A blank or tab is required to separate adjacent
identifiers or constants not otherwise separated.

2.6 Comments

The character" /" introduces a comment, which extends through the end of the line on
which it appears. Comments are ignored by the assembler.

3. Segments

Assembled code and data fall into three segments: the text segment, the data segment,
and the bss segment. The text segment is the one in which the assembler begins, and it is the
one into which instructions are typically placed. The UNIX system will, if desired, enforce the
purity of the text segment of programs by trapping write operations into it. Object programs
produced by the assembler must be processed by the link-editor Id (using its" -n" flag) if the
text segment is to be write-protected. A single copy of the text segment is shared among all
processes executing such a program.

The data segment is available for placing data or instructions which will be modified dur­
ing execution. Anything which may go in the text segment may be put into the data segment.
In programs with write-protected, sharable text segments, data segment contains the initialized
but variable parts of a program. If the text segment is not pure, the data segment begins
immediately after the text segment; if the text segment is pure, the data segment begins at the
lowest SK byte boundary after the text segment.

The bss segment may not contain any explicitly initialized code or data. The length of the

- 3 -

bss segment (like that of text or data) is determined by the high-water mark of the location
counter within it. The bss segment is actually an extension of the data segment and begins
immediately after it. At the start of execution of a program, the bss segment is set tl) O. Typi­
cally the bss segment is set up by statements exemplified by

lab: . - .+ 10

The advantage in using the bss segment for storage that starts oft' empty is that the initialization
information need not be stored in the output file. See also Location counter and Assignment
statements below.

4. The location counter

One special symbol, ".", is the location counter. Its value at any time is the offset
within the appropriate segment of the start of the statement in which it appears. The location
counter may be assigned to, with the restriction that the current segment may not change;
furthermore, the value of " ." may not decrease. If the effect of the assignment is to increase
the value of" . ", the required number of null bytes are generated (but see Segments above).

5. Statements

A source program is composed of a sequence of statements. Statements are separated
either by new-lines or by semicolons. There are five kinds of statements: null statements,
expression statements, assignment statements, string statements, and keyword statements.

Any kind of statement may be preceded by one or more labels.

5.1 Labels

There are two kinds of label: name labels and numeric labels. A name label consists of a
name followed by a colon (:). The effect of a name label is to assign the current value and
type of the location counter " . " to the name. An error is indicated in pass 1 if the name is
already defined; an error is indicated in pass 2 if the" . " value assigned changes the definition
of the label.

A numeric label consists of a digit 0 to 9 followed by a colon (:). Such a label serves to
define temporary symbols of the form "n b" and" n f", where n is the digit of the label. As in
the case of name labels, a numeric label assigns the current value and type of " . " to the tem­
porary symbol. However, several numeric labels with the same digit may be used within the
same assembly. References of the form "nf" refer to the first numeric label "n:" forward
from the reference; "n b" symbols refer to the first" n :" label backward from the reference.
This sort of temporary label was introduced by Knuth [The Art of Computer Programming, Vol/:
Fundamental Algorithms 1. Such labels tend to conserve both the symbol table space of the
assembler and the inventive powers of the programmer.

5.2 Null statements

A null statement is an empty statement {which may, however, have labels>. A null state­
ment is ignored by the assembler. Common examples of null statements are empty lines or
lines containing only a label.

5.3 Expression statements

An expression statement consists of an arithmetic expression not beginning with a key­
word. The assembler computes its (l6-bit) value and places it in the output stream, together
with the appropriate relocation bits.

- 4 -

5.4 Assignment statements

An assignment statement consists of an identifier, an equals sign (==), and an expression.
The value and type of the expression are assigned to the identifier. It is not required that the
type or value be the same in pass 2 as in pass 1, nor is it an error to redefine any symbol by
assignment.

Any external attribute of the expression is lost across an assignment. This means that it
is not possible to declare a global symbol by assigning to it, and that it is impossible to define a
symbol to be offset from a non-locally defined global symbol.

As mentioned, it is permissible to assign to the location counter" .". It is required, how­
ever, that the type of the expression assigned be of the same type as " . ", and it is forbidden
to decrease the value of" .". In practice, the most common assignment to " ." has the form
". = . + n" for some number n; this has the effect of generating n null bytes.

5.5 String statements

A string statement generates a sequence of bytes containing ASCII characters. A string
statement consists of a left string quote "<" followed by a sequence of ASCII characters not
including newline, followed by a right string quote" >". Any of the ASCII characters may be
replaced by a two-character escape sequence to represent certain non-graphic characters, as fol­
lows:

\n NL (012)

\s SP (040)
\t HT (011)
\e EDT (004)
\0 NUL (000)
\r CR (015)
\a ACK (006)
\p PFX (033)
\\ \
\> >

The last two are included so that the escape character and the right string quote may be
represented. The same escape sequences may also be used within single- and double-character
constants (see §2.3 above).

5.6 Keyword statements

Keyword statements are numerically the most common type, since most machine instruc­
tions are of this sort. A keyword statement begins with one of the many predefined keywords
of the assembler~ the syntax of the remainder depends on the keyword. All the keywords are
listed below with the syntax they require.

6. Expressions

An expression is a sequence of symbols representing a value. Its constituents are
identifiers, constants, temporary symbols, operators, and brackets. Each expression has a type.

All operators in expressions are fundamentally binary in nature~ if an operand is missing
on the left, a 0 of absolute type is assumed. Arithmetic is two's complement and has 16 bits of
precision. All operators have equal precedence, and expressions are evaluated strictly left to
right except for the effect of brackets.

- 5 -

6.1 Expression operators

The operators are:

(blank) when there is no operand between operands, the effect is exactly the same as if a "+"
had appeared.

+ addition

•
\I
8

I
\>
\<
%

subtraction

multiplication

division (note that plain" I" starts a comment)

bitwise and

bitwise or

logical right shift

logical left shift

modulo

a! b is a or (not b); i.e., the or of the first operand and the one's complement of the
second; most common use is as a unary.

result has the value of first operand and the type of the second; most often used to
define new machine instructions with syntax identical to existing instructions.

Expressions may be grouped by use of square brackets "[1 ". (Round parentheses are
reserved for address modes,)

6.2 Types

The assembler deals with a' number of types of expressions. Most types are attached to
keywords and used to select the routine which treats that keyword. The types likely to be met
explicitly are:

undefined
Upon first encounter, each symbol is undefined. It may become undefined if it is
assigned an undefined expression. It is an error to attempt to assemble an undefined
expression in pass 2; in pass 1, it is not (except that certain keywords require operands
which are not undefined).

undefined external
A symbol which is declared .globl but not defined in the current assembly is an
undefined external. If such a symbol is declared, the link editor Id must be used to
load the assembler's output with another routine that defines the undefined reference.

absolute An absolute symbol is defined ultimately from a constant. Its value is unaffected by
any possible future applications of the link-editor to the output file.

text The value of a text symbol is measured with respect to the beginning of the text seg­
ment of the program. If the assembler output is link-edited, its text symbols may
change in value since the program need not be the first in the link editor's output.
Most text symbols are defined by appearing as labels. At the start of an assembly, the
value of " . " is text O.

data The value of a data symbol is measured with respect to the origin of the data segment
of a program. Like text symbols, the value of a data symbol may change during a sub­
sequent link-editor run since previously loaded programs may have data segments.
After the first .data statement, the value of " . " is data O.

bss The value of a bss symbol is measured from the beginning of the bss segment of a
program. Like text and data symbols, the value of a bss symbol may change during a
subsequent link-editor run, since previously loaded programs may have bss segments.
After the first .bss statement, the value of " . " is bss O.

- 6 -

external absolute, text, data, or bss

register

symbols declared .globl but defined within an assembly as absolute, text, data. or bss
symbols may be used exactly as if they were not declared .glob/; however, their value
and type are available to the link editor so that the program may be loaded with others
that reference these symbols.

The symbols

rO ... r5
frO ... fr5
sp
pc

are predefined as register symbols. Either they or symbols defined from them must be
used to refer to the six general-purpose, six floating-point. and the 2 special-purpose
machine registers. The behavior of the floating register names is identical to that of
the corresponding general register names; the former are provided as a mnemonic aid.

other types
Each keyword known to the assembler has a type which is used to select. the routine
which processes the associated keyword statement. The behavior of such symbols
when not used as keywords is the same as if they were absolute.

6.3 Type propagation in expressions

When operands are combined by expression operators, the result has a type which
depends on the types of the operands and on the operator. The rules involved are complex to
state but were intended to be sensible and predictable. For purposes of expression evaluation
the important types are

undefined
absolute
text
data
bss
undefined external
other

The combination rules are then: If one of the operands is undefined. the result is undefined. If
both operands are absolute, the result is absolute. If an absolute is combined with one of the
"other types" mentioned above, or with a register expression. the result has the register or
other type. As a consequence. one can refer to r3 as "rO+3". If two operands of "other
type" are combined. the result has the numerically larger type An "other type" combined with
an explicitly discussed type other than absolute acts like an absolute.

Further rules applying to particular operators are:

+ If one operand is text-, data-. or bss-segment relocatable. or is an undefined external. the
result has the postulated type and the other operand must be absolute.

If the first operand is a relocatable text-. data-. or bss-segment symbol, the second
operand may be absolute (in which case the result has the type of the first operand); or
the second operand may have the same type as the first (in which case the result is abso­
lute). If the first operand is external undefined, the second must be absolute. All other
combinations are illegal.

This operator follows no other rule than that the result has the value of the first operand
and the type of the second.

- 7 -

others
It is illegal to apply these operators to any but absolute symbols.

7. Pseudo-operations

The keywords listed below introduce statements that generate data in unusual forms or
influence the later operations of the assembler. The metanotation

[stuff] ...

means that 0 or more instances of the given stuff may appear. Also, boldface tokens are
literals, italic words are substitutable.

7.1 .byte expression [• expression]

The expressions in the comma-separated list are truncated to 8 bits and assembled in suc­
cessive bytes. The expressions must be absolute. This statement and the string statement
above are the only ones that assemble data one byte at at time.

7.2 .even

If the location counter ... " is odd, it is advanced by one so the next statement will be
assembled at a word boundary.

7.3 .if expression

The expression must be absolute and defined in pass 1. If its value is nonzero, the .if is
ignored~ if zero, the statements between the .if and the matching .endif (below) are ignored .
. if may be nested. The effect of .if cannot extend beyond the end of the input file in which it
appears. (The statements are not totally ignored, in the following sense: .ifs and .endifs are
scanned for, and moreover all names are entered in the symbol table. Thus names occurring
only inside an .if will show up as undefined if the symbol table is listed.)

7.4 .endif

This statement marks the end of a conditionally-assembled section of code. See .if above.

7.S .globl name [• name] ...

This statement makes the names external. If they are otherwise defined (by assignment or
appearance as a labeD they act within the assembly exactly as if the .globl statement were not
given~ however, the link editor Id may be used to combine this routine with other routines that
refer these symbols.

Conversely, if the given symbols are not defined. within the current assembly, the link
editor can combine the output of this assembly with that of others which define the symbols.
As discussed in §l, it is possible to force the assembler to make all otherwise undefined sym­
bols external.

7.6 .text

7.7 .data

7.8 .bss
These three pseudo-operations cause the assembler to begin assembling into the text.

data, or bss segment respectively. Assembly starts in the text segment. It is forbidden to
assemble any code or data into the bss segment, but symbols may be defined and moved
about by assignment.

- 8 -

7.9 .comm name , expression

Provided the name is not defined elsewhere, this statement is equivalent to

.globl name
name ... expression name

That is, the type of name is "undefined external", and its value is expression. In fact the name
behaves in the current assembly just like an undefined external. However, the link-editor Id
has been special-cased so that all external symbols which are not otherwise defined, and which
have a non-zero value, are defined to lie in the bss segment, and enough space is left after the
symbol to hold expreSSiOn bytes. All symbols which become defined in this way are located
before all the explicitly defined bss-segment locations.

8. Machine instructions

Because of the rather complicated instruction and addressing structure of the POP-II, the
syntax of machine instruction statements is varied. Although the following sections give the
syntax in detail, the machine handbooks should be consulted on the semantics.

8.1 Sources and Destinations

The syntax of general source and destination addresses is the same. Each must have unt
of the following forms, where ref? is a register symbol, and expr is any sort of expression:

syntax words mode
reg 0 00 + reg
(reg) + 0 20+ reg
- (reg) 0 40+ reg
expr (reg) 1 60+ reg
(reg) 0 10+ reg
* reg 0 10+reg
* (reg) + 0 30+reg
* - (reg) 0 50+ reg
* (reg) 1 70 + reg
* expr (reg) 1 70+ reg
expr 1 67
Sexpr 1 27
*expr 1 77
* Sexpr 1 37

The words column gives the number of address words generated: the mode column gives the
octal address-mode number. The syntax of the address forms is identical to that in DEC assem­
blers, except that "." has been substituted for "@" and "$" for "#"; the UNIX typing con­
ventions make"@" and" #" rather inconvenient.

Notice that mode "·reg" is identical to "(reg)"; that "* (reg)" generates an index word
(namely, 0); and that addresses consisting of an unadorned expression are assembled as pc­
relative references independent of the type of the expression. To force a non-relative refer­
ence, the form "*$expr" can be used, but notice that further indirection is impossible.

8.3 Simple machine instructions

The following instructions are defined as absolute symbols:

elc
elv
elz
cln
see
sey
sez
sen

- 9 -

They therefore require no special syntax. The pOP-II hardware allows more than one of the
"clear" class, or alternatively more than one of the "set" class to be or-ed together; this may
be expressed as follows:

c1c I c1v

8.4 Branch

The following instructions take an expression as operand. The expression must lie in the
same segment as the referl"nce cannot be undefined-external, and its value cannot differ from
the current locat!on or by more than 254 bytes:

br bIos
bne bye
beq bys
bge bhis
bit bee (- bee)
bgt bee
hie blo
bpI bcs
bmi bes (- bcs)
bhi

bes ("branch on error set") and bee ("branch on error clear") are intended to test the error bit
returned by system calls (which is the c-bit).

8.5 Extended braneh instructions

The following symbols are followed by an expression representing an address in the same
segment as " . ". If the target address is close enough, a branch-type instruction is generated; if
the address is too far away, a jmp will be used.

jbr jlos
jne jyC
jeq jyS
jge jhis
jlt jec
jgt jee
jle jlo
jpl jes
jmi jes
jhi

jbr turns into a plain jmp if its target is too remote; the others (whose names are contructed by
replacing the "b" in the branch instruction's name by "j") tum into the converse branch over
a jmp to the target address.

- 10 -

8.6 Single operand instructions

The following symbols are names of single-operand machine instructions. The form of
address expected is discussed in §8.1 above. .

clr sbcb
clrb ror
com rorb
comb rol
inc rolb
incb asr
dec asrb
decb asl
neg aslb
negb jmp
adc swab
adcb tst
sbc tstb

8.7 Double operand instructions

The following instructions take a general source and destination (§8. 1), separated by a
comma, as operands.

mov
movb
cmp
cmpb
bit
bitb
bie
bieb
bis
bisb
add
sub

8.8 Miscellaneous instructions

The following instructions have more specialized syntax. Here reg is a register name, src
and ds{ a general source or destination (§8.D, and expr is an expression:

jsr reg,dsl
rts reg
sys expr
ash src. reg (or, als)
ashe src, reg (or, alse)
mul src. reg (or, mpy)
div src. reg (or, dvd)
xor reg. dSI
sxt dSI
mark expr
sob reg. expr

sys is another name for the trap instruction. It is used to code system calls. Its operand is
required to be expressible in 6 bits. The expression in mark must be expressible in six bits,
and the expression in sob must be in the same segment as ".", must not be external­
undefined, must be less than" . ", and must be within 510 bytes of " . ".

- 11 -

8.9 Floating-point unit instructions

The following floating-point operations are defined, with syntax as indicated:

dcc
setf
setd
seti
setl
clrf Idsl
negf .ldSl
absf Idsl
tstf Isrc
movf fsrc.l;ef((= Idf)
movf .ke~.ldsl (- stf)
movif src. kef((= Idcif)
movft keg. dSl (... stcfi)
movof /"src.kef((= Idcdf)
movfo Fe~./dsl (= stcfd)
movie src. kef((== Idexp)
movei {reg. dSl (= stexp)
addf Isrc.ke~
subf Isrc.ke~
mulf Isrc.ke~
divf Isrc •. ke~
cmpf IsrcJre~
modf IsrcJre~
Idfps src
stfps dSl
stst dst

fsrc, fdst, and freg mean floating-point source, destination, and register respectively. Their syn­
tax is identical to that for their non-floating counterparts, but note that only floating registers
0-3 can be a freg.

The names of several of the operations have been changed to bring out an analogy with
certain fixed-point instructions. The only strange case is movf, which turns into either stf or
Idf depending respectively on whether its first operand is or is not a register. Warning: Idf sets
the floating condition codes, stf does not.

9. Other symbols

9.1 ..

The symbol" .. " is the relocation counter. Just before each assembled word is placed in
the output stream, the current value of this symbol is added to the word if the word refers to a
text, data or bss segment location. If the output word is a pc-relative address word that refers
to an absolute location, the value of" .. " is subtracted.

Thus the value of " can be taken to mean the starting memory location of the pro­
gram. The initial value of " .. " is O.

The value of " .. " may be changed by assignment. Such a course of action is sometimes
necessary, but the consequences should be carefully thought out. It is particularly ticklish to
change " .. " midway in an assembly or to do so in a program which will be treated by the
loader, which has its own notions of " .. ".

- 12 -

9.2 System calls

System call names are not predefined. They may be found in the file IlIsrlillc/lidelsvs.s

10. Diagnostics

When an input file cannot be read, its name followed by a question mark is typed and
assembly ceases. When syntactic or semantic errors occur, a single-character diagnostic is typed
out together with the line number and the file name in which it occurred. Errors in pass 1
cause cancellation of pass 2. The possible errors are:

>
•

A

B
E
F

G

I

M
o
p

R
U

x

parentheses error
parentheses error
string not terminated properly
indirection (.) used illegally
illegal assignment to " . "
error in address
branch address is odd or too remote
error in expression
error in local ("f" or "b") type symbol
garbage (unknown) character
end of file inside an .if
multiply defined symbol as label
word quantity assembled at odd address
phase error- " . " different in pass 1 and 2
relocation error
undefined symbol
syntax error

Reprint.ed trom
Proceedings otthe ACM SIGPLAN '62 Symposium on CompUer Construction

SIGPLAN Notices 17.8 (June 1962). pp 120-128

gprof: a Call Graph Execution ProtUer1

by
Stua:n. L. Graham
Pwt • .,. B. Kess"'",

Jla:rs1&lJU K. JlcKu:rit:Jc

Computer Science DiVision
Electrical Eniineerin& and Computer Science Department

Universit.y of Californi. Berkeley
Berkeley, California 94720

a.tnct.
Lar •• complex prOirams are composed of many

small rouUne. U1at implement ablt.racUons for U1e
rouUnn lbat call them. To be u.eful. an execut.ion
proftler must. .t.tribut.e execuUon time 111 • "ay I.hat.
is si&niAcant. for the 10lical It.rUct.ure of a proiram
as ".U as for its textual decomposiUon. This dat.a
must lben be cHsplayed \.0 lbe user in a convenienL
and tn10rmaUve ".y. The oral prot\ler account.s
for lbe I'\.UUUnc Um. of called rouUnn in the run­
nina lim. of the rouLines lhat. call them. The desian
and use 01 UUI proftler is de.criDeci.

1. Prot:rams t.o be Premed
Soft."ar. re.earch enVironment.s normally

include many larae proarams Doth for production
uae and for experiment.al invesUiaLion. These pro·
Irams are t.ypically modular. 1!1. accordance with
aenerally accepted principles of aood prolram
desian. Often they consist. 01 numeroua .mall rou­
Unes lbat. implement. various ablt.racUons. Some­
Umes .uch larae proarams are writ.ten by one pro­
arammer who ha. und.erstood the requirements [or
lbese abst.racUons. and has proarammed t.hem
appropriat..ly. More frequently t.he prolram has
had multiple authors and has evolved over I.ime.
chanail1& the de~ands placed on U1e implemenl.a­
Uon of Ule abstractionl wit.hout. chaniil1& lbe imple­
ment.at.ion ttself. F1I1ally. the prolram may De
.... mb18d from a UDrary of aDltracUon lmplemen­
taUona unexamined by the prolrammer.

Once. larle prolram is .xecut.able, 1\, is on.n
deSirable \.0 incre .. e its speed, e.pecially if Im&ll
port.1ona of the prolram an found. La c!om1l1aLe 1t.s

'nu. wan ".. 8\\pPOtt" b, ,l"Ult IICSat>-OOt44 from the
"aUonal Sci __ rowulaticuL.

Pmniaioa to cop)' without f. aU or pact or tIlis IIUltcrial is plllcd
providad tbu til, copia an noc made or diitrilMcd for direct
c:omnm'l:ial advaalap. , .. ACM copyript noac. and the title of th,
pvblicalion and ia cI&I& .ppear. and nocicc is pftn dial copyin, is by
pamiuioa of the AIIociatioa for Comp,,"n, Machinery. To copy
01ilerwi1&, or to rwptlblilh, requira • fft andlor SpecifIC pcrmiuion.

© 1982 ACM 0-89791·074-S/82/006/0120 SOO.7S

execution time. The purpose of the Jpraf proftlin&
tool is t.o help the uler evaluat.e allernaUve imple'
ment.at.ions of .bltracUons. We developed t.his 1.001
in response t.o our effor.s I.a improve a code genera­
ter"e "ere "rit.in& [CrahamS2].

The Oral desian takes advantage of the fact
lhal the programs t.o be measured are larae, struc­
lured and hierarchical. We provide a prot\le in
which the execuUon lime for a set of routines that
implement. an abstraction is collected and charied
te t.hat. abstraclion. The prodle can be used to com­
pare and uless the COlts of various implementa­
Uons.

The predIer can be linked into a program
wit.hout. special plannin& by the programmer. The
averhead for using &prof is low: bo~h in ier:ns of
added execution lime and in ine voiu.-ne 01 pronllr ..
information recorded..

2. Typa of Pro4Una
There are leveral different uses for program.

protUes. and each may require different information
from the prot\les, or ditferent present.alion of the
informaLion. We dlst.in&uish lwo broad caLegories of
proftles: those that. presenl counts of stal.ement. or
rouUne invocations. and those that. dlsplay timin&
informat.ion aDoul st.at.ement.s or reuUnes. Counls
are t.ypically presented in l.abular form, oft.en in
parallel with a llst.inl of the source code. Timin&
informat.ion could. be similarly present.ed; but. more
than one measure of t.ime mijht. De associaled. wil.h
.ach sl.at.emenl or rouline. For example, in the
framework uaed by Iprof each prodled legment.
would. d.ilplay t.wo Umel: one for the time used by
the leament. itself. and. anot.her for the t.ime inher­
ited from code seaments il invokes.

ExecuUon counts are used in many difrerenl
cont.exts. The exacl number af times a rout.ine or
ltatement. ia acUvat.ed can b. used to determine if
an aliorlt.hm is perfannin& U expected. Cursary
llupecUon of such count.er, may show algorit.hms
who.e -<:eml'lexit.y is unsuit.ed. to the I.asx at. hand.
Careful i:nterpret.aUan of count.ers can ofl.en sUiiest
improvement.a t.o acceptable algorithms. Precise
examinaUon can uncover subUe errors in an

aliorit.hm. At. t.l:Us lnel. pro1Uini counters are simi­
lar tc deb",rtnl ltat.emenu wbese purpose is t.o
sbew the number of times a piece of code is exe­
cut.ed.. Another Yiew of such count.ers is as boolean
... alues. One may be interested thal a portion of
code hu execut.ed at. all. for exbausttre t.e.tina. or
to check that one implementation of an abstraction
completely replaces a previous one.

ExecuUon counts are not. neceaarily propor­
tional t.o the amounl of time required lo .xecut.e
the rouUne or statement.. Further. the execution
ume of a routine will nol be the same for all calls on
the rouUne. The criteria for est.abl1sh1na execution
time mUlt be deCided.. II a routine implements an
abstraction by Ulvokina other abstracUons. the time
spenl 1n the routine will nol accurately reftecl the
ume required by \he abnracUon 11 implements.
Similarly, U an abstraction is implemented by
sneral routines the Ume requ1reci by the abst.rac­
tion will be clislributed acron these routines.

Given the execution time of 1Ddividual routines.
Dro! accounts tc each routine the ume Ipenl fer it.
by lbe rouUnes 1t. 1Dvokes. 'I'h1s accounUna iJ done
by usemblin& a calL gr=pII. With nocies that are the
routines of the pro,ram and ci1rect.ed arcs thal
represent. calls from call sites lo routines. We cliJ­
tinauish amona three cWferenl call araphs for. a pro­
,ram. The com"let. call fT"lIFL incorporales all rou­
tines and all potential arcs. includiD& arcs thal
represent calls to funcUonal parameters or func­
tional variables. This ,raph conla1ns the olber t.wo
,raphs u S\Ib,raphs. The netic calL gn:ph includes
all rtlutines and all possible ares lhat are not calls
tc funcUonal pa.rameten or "f'ariabln. The c:tyn.czmic
call gnrph includes only these rouUnes and arcs
~avened by the pro1\.1eci execuUon of the proaram.
This araph need not. include all routines, nor need il
include all polential arcs bet.ween the rout.ines 11
CO"f'ers. It. may. however. include arcs lo fWlCtional
parameters or yariables thal the It.aUc call araph
may omit.. The staUc call araph can be determined
from the (slaUc) proaram text. The dynamic call
araph is det.ermined only by pro1U1n& an execution
of the prOiram. The complete call araph for a
monolit.hic pro,ram could be determined by data
ftow analysis techniques. The complele call araph
for prcarams that. chance durma execution, by
mocl.ify!n& themseml or dynamically loacl1n& or
overlaYin& code, may never be det.ermmable. Both
the static call araph ancl t.he dynamic call araph are
used by apraI. bu1. it. does not. search for the com­
plete call araph.

3. Get.he11zt.& Pralle Data
Roul1ne calls or statement. execuUonl can be

meuured bY h&T1n& a compiler aqment. the cocle
at. strat.elic points. The aclc1Wcms can be ml1ne
increments to counters [Knuth'?l] {Sat.terlhwaite'721
[Joy?S] or calls tc manitortna routines [UniX]. The
counter incremenl O"erhead is low, and 11 auit.eble
for pro1!l1Da ltat.emenll. A call of the man1tor1n&
rout.1ne hu an OYUhead comparable With a call of a
re,ular routine. and 11 therefore only suited lo
protUin& on • roul1ne by routine bUis. Henreyer.

the mon11.or1n& roul1ne soluUon has certain ad"f'lUI­
t.a,es. What.ever counters are neecied by the moni­
lorina rout.1ne can be manqed by the mOnit.orm,
rouUne itself. rather than beina cbstribu\.ed around
the code. In partie war. a manitorini rouUne can
easily be callea from separat.ely comptiea pro­
arams. In acidit.ion. cWrerent monit.onna routines
can be linked int.o the proaram beini measured t.o
usemble cWrerent. pro1U!.n& dat.a Withoul heYina t.o
chan,e the compiler or recompile t.he pro,ram. 'We
heYe exploit.ed t.his approach; our compilers for C,
For1.ran7'7. and Pascal can insert. calls lo a monit.or­
ma routine 1D the prolocue for each routine. Use of
the monit.or1n& routine requiTes nc plannina on part
of a pro,rammer other t.han t.c request that al.l.&­
ment.ed rouUne proloiues ce proc1uced Qurin& com­
pilation.

We are interest.ed in ,atherina \.hree pieces of
lnformaUOD durm, pro,ram execuUon: call count.s
and execuUon limes for each protUed routine. and
the arcs of the c!ynamic call araph traversed by this
execu~ll of the pro,nm. By post-prcc:cssilli of
t.h1s data we can builii the c!ynamic: c:UJ. .. :.pb !!IT

t.h1s execution 01 the program and propAiat.e times
alone the edies of t.h1s ,raph to at.tribute times for
roUtines lo the rout.ines that invoke them.

Catherina of the pro1Uina informaUon .showd
nol ,"aUy interfere With lbe runnin& of t.he pro­
aram. Thus. the monit.or1n& routine must not. pro­
duce trace oU1.put each Urne it is invoked. The
volume of data thus produced would be UDmUlaee­
ably lar,e. and the time requiTed t.o record it would
Clgerwhelm the runn.ini Urne of most programs.
Sim.Uarly. the monilcrin& rouUne can not do the
analysis of the pr01ll1n& data (e.I. ..semblina the
call ITaph. propa,aUna tmJes around it.. dlscoverini
cycles. etc.) durini prolram exec.ut.ion. Our solu­
tien 11 lo ,ather proftl1n& dat.a in memory du.rin&
pro,ram execuUon and to condense it. tc a 1\.1e as
the pro1\.1ed proare,m exits. This 1\.1e is t.hen pro­
cessed by a separate proaram lo produce the list.1n&
of the pro1\.1e data. An adYantale of this approach is
thal the pro1\.1e dat,a for several executions 01 a pro­
&ram can be combined by the post-proces.inc t.o
pi"ovic!e a pro1\.le of many execuUons.

-2-

The execution lime monilorina consists of three
parts. The Ant. part. allocates anc! inlt.1alizes lbe
runt.1JDe mcm1t.orina c1.ta st.ruct.ures before the pro­
aram be&1ns esecuUon. The second part. is the man-
1t.orin& rouline inYOkecl from the prolo,ue of each
prc1\.led rout.1ne. The t.hil1! part. cODcienses the data
I1.ructuns and writes them t.o a 1\.1e u the pro,ram
terminates. The monitcrina rouUne 11 cliJcused in
det.ail in the follo1f"inl sections.

3.1. J:uc:ut.SaD Couata
The IJII"CIf manit.orinl routine count.. the

mamber of Umn •• ch proAled rout..ine 11 called. The
momt.or1n& rouUne alao recordl the arc in the call
p'aph that. act.tyated the proftled roul1ne. The count
11 .. sociated with 1.he arc in the call araph rather
than with the rouUne. C&ll count.. for routines can
then be delerminea by summina the count.. on arcs
directed 1Dt.o t.hat routine. In a machine-clependenl

(

(

fasJ:Ucm. the mcm11Or1D& routm. Dotas ttl OW'A nt.1U':
adben. ThiI addnn is 1D th. proiDiU. of 10m.
pro&ed Z'DUUIIe t.bat. is the clest.maUOD of m an: US
the dJDamic call ,raph. Th. mcm1t.orma routJDe
also &Ulcoyen the ret.u:n adlina for \hat. rout.1De.
Usus ldeDtJf)'iDa the call sit... 01' loun:e of \.he arc.
ne source 01 \he arc 11 In \he c.u.,.. usd \he clesU­
ut10n is US \h. callee. '01' example. 1f & rouune A
calls a rout.m. B. A 11 the caDer. md B is the callee.
n. proiOIU. of B W1l1 lDcld. a call to Ute mcmito ...
JIll rouun. tllat. wtlI DO"" \h. arc from A to B md
.ther izUtl&Uze 01' 1DcremeDt. a coum,er for \hat. arc.

OD. CaD DOt. dar&! to haft \he momLoriDl rou­
tm. out.put. U'ac:ma lDformat.1oD as each arc is
utentJfled. 'therefore. tlle momtoriDI routme maiD­
t.ama a 1.&1:11. of all \he an:s cUsc~ered. Wi\h cowsu
of Use numbers of Umes each is U-•• ersed 4lU'iq
GecUUOD. Th1a 1.&1:Ile is aceened ODee p.r rouiJAe
call. Access t.o It. must. be as fast. as poss11:lle .0 as
DOt. to oyerwhelm the ume r~wrecl to aecut.e the
prolram.

Our sDlut10n Is t.c access the table lhrouah a
hash t.ab1e. We use the call sit.e u \he primary key
"Wi1.A \he callee adaress bein& 1.he seccDdary key.
Since each call lite t.ypically calls cmly one callee.
we CaD reduce (usually to ODe) \he num1:ler of miDor
lookups 1:Iaed on the callee. ADot.her alt.emaUYe
wOwd use tlle calle. a. the primary leey and the call
siLe a the secondary key. Such aD oraanizat.l= Au
\he adyant.aa. Of asloci&Una callers wi\h caDees. at.
tlle expeme of loaaer lookups US the momt.orm,
rout.iDe. We are for1.lm&te t.o 1:1. MmD1D& In a ~ual
memory eft'fironment.. and (for the lalce of speed)
were able t.c allocat.e encl\~ih space for the primary
hash 1.&ble to 'allew a one-lo-one mappina frem call
sit.e achiresses t.o the primary hash lable. ThUi our
hash fUncUon 11 trmal to calculat.e and co1l1s10m
occur only for call sihs t.hal call multiple destma­
t.1oDS (e.l. hmcUonal paramet.ers md fwsc:tional
..nables). A one In.l hash facUon usma bo\h call
site md caDee would result. In an unreasonably
larle hash lable. Further. the number of dynamiC
call sites md callees 11 not. known ciur1D& execution
of the proaled proaram.

Not. all callen md calle .. cm be idtmti1led b,.
the mcmito~ rout.1De. Routme. that. were cam­
piled "Without \he pro1W:li aurment.aUona Will DOt.
call the momt.DrinI routJu a part. of their prDlo­
cue, and t.hus DO arcs Will 'be recorded whose clesU­
naUom are 1D these routm... Olle need _ pro1Ue
all the routJus In a prolram. RouUftes that. are not.
p~ed run at. full speed.. Cert.a1n routmes. not.ably
acepUon handlen. are !nYoked l:Iy non-staDdard
cal.lf.n& lequences. Thus \he moDit.or1n& routme may
know the clesUnaUon of an arc (the callee). but l!nd
it. cWncult. or imp~aillle t.o determine t.be lource of
\he an: (tlle caller). Often 'm Ulne c t.be
appannt. source of the arc Is not a call ate at Ill.
Such anamalous m.acatiou are declared "span­
t.aneous".

~ !!:Dcution 'nm_
The necuUon UzZles fOl' routine. can be lat.h­

erecl m at leut. t.wo .. ays. One met.hod meuure.

-3-

t.be execuUoa time of a routine lIy meUW"iD& Ute
elapsed t.ime from routine ent.ry to rout.1De exit..
Unfortunatel,.. tJme measurement. 11 complicat.ed
on ume-sharinl Iyst.ems 1:Iy t.be ume-sliciDC of the
prolram. A .econd method .ampla \he .alue of
the procram cowst.er at lome mte"al. me! infers
aecuUOD time from t.he dist.:1buUon of the samples
wit.Am the Prolram. This 1.eChD1que 11 parUcularly
l1I1t.ed to umrsharlDl Iystems. where the um ..
sliciDI CaD .'"' a the 1:Iu1l for lampliaa the pro­
&ram COUDLeI'. NoUee \.hat.. where.. the ftrst.
met.hocl coulcl prmde exact t1miD&I. tlle second is
Inherently a It.aUat.ical approximaUon.

The lamp11D& methoci need not. require support.
from the operat.inc system: all \hat. 11 needed il 1.he
abWt.y to set. md responei to "alarm clock" Int.er­
rupt.s that. run relaU..,e to prolram time. IL is
imperat.rle t.baL Ule mte"als 1:Ie uniform SiDe. the
lamp1in& of the Pt'Olr&m cowster ra\her than the
duraUon of the inLe"al 11 the lIu1l of t.he dist.:1bu­
Uon. If lampUna 11 cione \.00 oft.en. \he Int.errup­
tions t.o lample the proaram count.er wW oyerwhelm
the rw:min& of the protUecl prOlram. On the ot.her
hanei. \.he prolram must. run for enc\Jih sampled
InLe"als that the distribuUcn of t.he samples accu­
rately reprelent.s \he dist.ribuUcn of time for the
execut.ion of the prolram. AI with routine call t.rac­
iDa. the monit.cr1n& rouUfte cm not. a1ford to out.puL
infcnnaUon for each prolram count.er sample. In
our compuUna environment.. the operat.inl sYSLam
can prmde a hist.olrarn of the location of the pro­
,ram cowst.er at t.he end of each clock tick (l/60t.h
of a seconci) In which a procram runs. The histo­
,ram 1s assembled 1ft memory as the prolT&m runs.
'I"hU facility ~ ene-bled by oW' mcnit.or'Uli routine.
We have adjusted lbe lTaDularit.y cf lbe h1.sto,ram
10 that. pro,ram cowst.er Y&1ues map one-t.o-one
ODt.O \he hist.oaram. We make the Iimpl1fyina
usumpt.ion that.. all c:alls to... speci1lc routine
nqu1rethe lame &mOat. of time to execute. This
usumpUOD may c!is,uise that. lome calls (or worse.
lome call lites) always USYoke a rout.1De luch that.
itl execution is !at.er (or slower) thaD \he a..,era,.
um. for tllat. routJu.

When the pro1l1ed procram t.ermmates. the arc
t.a1:l1e md \.he histo,nm of prolnm counter sam­
pJes are writ.t.en t.o a :Ue. The arc 1.&ble is condensed
t.o consist. of \he source aDd clest.iDaUon adaresses
of \he arc &Dc! \he cOUDt of the number of Umes the
arc was tnyersed b,. this execution of the pro,ram.
The recorded hist.ocram consists of counters of the
number of Ume. Ute proaram counter wu founei t.e
be in each of the ranaes coyered by the histciram,
The ranees \hems elves are swmnari%ed as a lower
and upper bound and a step Ii%e.

.... POllC. Proc..m.c
Hrnnc lat.bered the arcs of the call ,raph and

Um.ID& intormat.ion for m execuUcm of the, pro,ram.
we are interested in at.tn1:lutin& \he tJme for each
rout.1De to the routines \.hat. call it.. 'We buile! a
dynamic call ,;raph ~\h arcs from caller t.c callee.
md propaaat.e ume from ciesceDdanu La mcesUirs
by t.opoio&1cally sort.mc \he call lTaph. T1me

proP&labon is performe': from the leaYel of the call
l1"aph \OWarC the roots, accorcUni to \.he oreier
"'aline~ by a topololicalnumberin& alior11hm. The
topolollCal numberin& elUwes UsaL all eqel in the
Iraph 10 from hiaher numbere': noeies to lower
numbere~ nodel. An example is liven in F1Iwe 1.
If we proP&late urne from nociel in the oreier
asalinea by the alaor1t.hm. execubon time can be
propa,a1e~ from descendants to ancestors after a
sin&le tz .. enal of each arc in the call Ira ph. Each
parent receiYes lome frac110tl of a child's time.
Thus time 11 char,ed to the caller in adcUbon to
bema char,ec:l Lo the callee.

Let C. be the number of calls to lome routine.
" and c:;" be the n1t.mber of calls from a caller,. Lo a
can.. •. Since w. are usWDiD& .ach call to • rou­
tine 1aJce. the a.,.r&le &mOunt of Ume for all calls
t.o that. routine, the caller is accountable for C;/ C.
of the ume .pent by the callee. Let the S. be the
•• l/tVrt.c of a routine, •. The leUume of a routine
can be deLerm1n.~ from \.he 1Jm!.n& informalion
,ather.d durin& proAled prop'am execution. The
toLal Lime. T ... we wish to account Le a rout.ine r, ia
then pen by th. recurrence equation:

C; r .. • s .. + I: r. x-c.
,,~. .

where r CAl.LS. 11 a relabon show1n& all rouUnel •
caned by a rouUne ,.. This relaL1cm 11 easily avail­
able from the call,raph.

How ... r. Sf the execuUon contains recursi'Ve
calls, the calliraph has cyc:les t.hat. c:annot be topo-
10&ically lorted. In thele cales. we d.iscover
stzoni1y-connec1ed components in the call Iraph,
treat each luch component. as a sine1e node, and
then .ort the resulLini Iraph. We use a TUiaUon of
Tarjan'. stronalrccnnec1ed component.s alaor1t.hm
thaI. cli.~erl s1ronal)""CCIl1DIc1ed com~onen1.l u it
is aSI~ t.opolo,1c:al order numbers [Tarjan72].

Time propqaUon wit.hin st.ronaly connected
components is a· problem. For example. a .eU­
recursi"le routine (a trinal cycle in the call p'aph) is
accountable for all the Ume it. usel in all 11.1 recur­
me inS1&nbat.1ons. In our scheme. this ume shollld
be shared &mODI 1U call p'aph pa:ren1.l. The arcl
from a routine to 1t.seU are of mtere.\., but do noL
plJ't.ic1pat.e in Urn. propqaUon. Thus the simple

Topoloc1cal orderma
r""," 1.

equaUon for tmle propaaabon does nol work Within
lU'onily connected components. Tlme is nol pro­
p&laLed from one member of a cycle to anot.her.
since. by deftDition. this involves propqaLin& time

·from a rout.ine to iueU. In addiLion. children cl one
member of • cycle mUlt be considered children of
all memben of the cycle. Similarly, parents of eme
member of the cycle must. inherit all memben of
the cycle as descendants. It. is for the.e realems
t.hat. we collap .. connected componenu. Ow solu­
t.ion co11ec1.l all memben of a cycle Loaet.her. sum­
miDI the time and call cOWlts for all members. All
calls into the cycle are made Le share the t.otal Lime
of the cycle. and all descencilmt.s of the evele '1:1'0-
p&late Lime inLe Lbe cycle as a whol:e. c,j\li~ :e.m:::n,;;
Lbe memben of Lbe cycle doc net prtlPil./iiloLl! any
Urn.. t.ho\llh t.hey are l1s1ed in the call Iraph
proale.

Tlaure Z Ihows • mocWled 'Version of t.he call
Vaph of Flawe 1. 1n 'Which the nodes labelled :3 and
7 in Fl.&ure 1 are mutually 1'ecursiY~. Th~ to~cle;i­
cally lorted Iraph after the eyel: i:; ccD.<li';,d is
li'ftn in Fi&we 3.

Since t.he Lec:bnic;ue describec o.bovt! only eo1-
18C1.l the dynamic: call ar&ph. and Lbe proiram typi­
cally does not call "'rr routine on each exec:ution.
cWrerent. executions can intzoduce dUferent cycles
1n lhe dynamic call ,raph. Since cycle. otLen h ...
a 11&N1lc:anl e1!ec:t. on ume proP&labon. it 11 desir­
able to mc:orporat.e the Italic: ca.ll Iraph 10 \.hat
cycle. wUl ha.. t.he .ame members re,ArcHess of
ho'W the program runs.

Cycle to be collapled.
F1Iure 2.

-".

The staUc call ,raph can be cCDSU'Uc:t.ed from
\.he .ource text of \.he proaram. However. c!iscOYer­
iDa \.he stauc call ,raph from tha lource \.ext would
require t"o moderately c!1mcult Iteps: And.1Di t.he
loW'Ce \.ext for the prcaram (which may not be
... ilable), mci .canmna mci paninl Utat. ten,
'Which may be in anyone of Ineral lanauAles.

In our prolrarnminl system. t.he static calliDC
ilI!ormaUon 11 also c:on1.a.ir1ed in the executable Yer­
.iOn of Use procram. which we alraaely have .vail­
able, mci which is m lanaWlie-indepenelent form.
One can' examine Ute instructions ill Use object pro­
aram, lookini for calls t.o rout.1nas. mci Dote which
rout.ines can be called. This t.echnique allows us to
aeld arcs t.o these alreacly ill \.he dynamic call araph.
U a statically c!.1.co.,erec1 arc already existS in the
dynamic call araph. no acUeD 11 required. Stat-ically
cliscovered arc. t.hat. do not. exist. In the elynamic
call araph are added t.o Ute Irape With a traversal
count. of zero. Thu. th.y are never responsible for
any Urne prop&&&tion. Howner, they may &trect
t..r,e struct.'W'e of the ,rape. Since they may com­
plet.: stronily connected components, the static
call lraph construction is done before t.opololical
orderini·

.S.])ata PreseJlt.aUcm

The data is presented t.o the user in t.wo
cWrerent. forrnaU. The ant. presentation simply
list.. Use routines Without reaard t.o Use amount of
time t.heir descenelanu use. The second presenta­
tion incorporates the call iraph of the prearam.

5..1. The nat ~e
The ftat. protUe consists of a list. of all the rou­

tines that are called clurm, execuUon of the pro­
,ram. With t.he count. of the Dumber of t1mes they
are called and Use number of seconds of execution
time for which they are themselves accountable.
The routines are list.ed in decreasf.n& order of execu­
tion t.l:ne. A list of the rout.ines that. are never
called durina execution of the proaram 11 also a.ail­
able t.o Yerify that nothina important 11 omitted 'by
\.his execuUen. The dat. proAle li.e. a quick over­
View of Use routines that are used. and Ihows the

• routines t.hat are themsel"'e. re.ponsible for larle
IracUon. of the execution time. in practice. this
pro~e usually shows that. no smale fW1cUen is
~eTWeelminily respcn;sible for the total time of the
proaram. Not.ice that for this proAle. Use inc11Yidual
t.l:nes sum t.o the t.otal execution Ume.

~2. The Call Graph Proale
Ideally. we would. Uke to print the call araph ot

Use proiram. but we are limited by the two­
dimenSional nature of our output dn1ces. We can­
not as.ume that. a call irallh is planar, and even if it
is. that. we can print a planar .ersion of it. Instead,
we choose t.o list. each routine. tOiether with infor­
mation about Use rout.1nes that are its cUrect
parents and. children. This l1stin& presents a Win­
dew into the call araph. Based on our experience.
both parent information and chilcl information is
nnport&nt., and should. be a.,ailable Without

-5-

•• archinl Ulrouah the output..
The major entries of Use call arapb prodle are

the entries from the dat prodle. aUimented by Ute
Um, proP&lated t.o each routine from its ciescen­
clants. This prodle is sorted by Use sum of the t.ime
fer the routine itself plus the time inherit.ed from
its descendants. The proAle shows which of the
hicher 1 ... 1 routines spend larie portions of the
total execution time in the routines that. they call.
For each routine, we show the amount of time
pu.ed by each child t.o the routine, which includes
t.l:ne for the child. itself and. for the descend.ant.s of
Ute child (and. thus the descendants of the routine).
We also sbow Use percent&le these times represent.
of Use t.otal time accounted t.o the child. Similarly.
the parents of each routine are list.ed. &lana Wit.h
tUne. and percental'! of t.otal routine Urne, pro­
PAiatad t.o each one.

Cycles are handled as smale entities. The cycle
g a whole is shown as t.houeh it were a sinile rou­
tine. excejlt t.hat members of the cycle are listed in
place of the chilciren. Althoueh the number of calls
of each member from within the cycle are shown.
!.hey cio not. ~ect time propalation. When a child is
a member of a cycle, the t.l:ne shown is the
appropriate fraction of Use Urne for the whole cycle.
Sel!-recursiye routines have their calls broken down
Int.o calls from the outside and self-recursive calls.
Only Use outsicle calls a1fect. the prcpa(lation of
time.

The {olloWini example is a t.ypical fragment of a
call1l'aph.

The entry in the call iraph prodle llstini for \.his
example is shown in F1&ure 4.

The entry is for rout.ine EXAllPLE, wmch has the
Caller rcutines as it.s parents. and. the Sub routines
as Its children. The reader should keep in mind
that. all information is l1ven 1I/'i.th, rupact to EXAM­
PLE. The inciex in the dnt. column shows that EXAM­
PLE is Use second entry in the proiUe listini. The
J:XA!(PLE routine is called ten t.l:nes. four t.imes by
c:.u.LElU, anci six times 'by c.uJ.tR2. Consequently
4(r,; of E:C.UlPU:'s Urne is propaaated t.o CAlJ.tRl. and.
scm of E:X.UD'IX·I time 11 propaiated. to c:..uJ..tR2.
The self Illd clescendant tlelds of Use parents show
Use amount of self and descendant time tx.UfPU:
proP&late. to them ('but not. the time used by the
parents cUrecUy). Note that EX.ULP1J: calls iUeU
recursively four tUnes. The routine EX.UlPU: calls
rcutine St1l!1 twenty times. SUB2 once, and never
calls SUB3. Since St,11!2 is called a t.otal of tive times,
20:; of its sell and descendant Urne is propagated to
EX.UlPU:'s descendant time field. Because SUBl is a

laetes llUme •• u deneDdanu

0.20 1.20
0.30 1.80

[2] 41.5 Q.5O 3.00
1.50 1.00
0.00 0.50
0.00 0.00

member of r:yt:le 1, the .el! and descenciant tJmes
and call count fraction are thole for the cycle u a
whole. S.inc:e cycle 1 is called a total of forty tJme.
(not counUni calls amolli members of the cycle), it
propqates 50:; of t.he cycle's sel! and descendant.
time to txA.N:Pl.J:'s descendant. tJme fteld. Tinally
each name is followed by an index that. Ihows where
em the UsUna to find the entry for that routme.

a. UaiD& the Praalea
The protUer 1s a useful tool for imprC"4"ini a .et

of routines thAt. .implement an abstraction. It can
be helpful in idenWyin£ pOQrly coded routines, md
in evaluaUni the new &l&oriUlms and code that
replace them. Taldn, full adYaZlt.qe of the proftler
requ1res a careful examination of the call ,raph
protUe, and a thorouih)mowled,e of the ab~trac­
Uons underl1ini the pro,ram.

. The easiest optimization that. can be performed
11 a small chanae toa control construct or data
structure that imprcyes the runnina Ume of the
prolram. An obvious start.ini point is a routine that
is called many times. For example, suppose an out­
put routine is the only parent of a routine that for­
mats the data. If this format routine is expandeei
inUne in the out.put routine, the cyerhead of a func­
tion call and return can be sa'geei for each datum
that needs to be farmatteei.

The drawback to inlme expansion 11 that. the
data abstractions m the proiram may become less
parameterized, hence less clearly defined. The
proftlln& Yill &lao become less useful since the los.
of routines will make its output more Iranular. For
example, if the symbol table flmcUona "lookup",
"msert", and "delete" are all mer,ed into a sin&le
parameterized rouUDe, It will be Unpou1ble to
determine the COlts of anyone of the.e 1:u!1Tidual
funcUCDS tram the protUe.

Further potential for opt.imization lies in rou­
tines that implement data abstractions who.e total
aecution tJme is lOZli. For example, a lookup rou­
tine milht be called only a few times, but use an
ine:tncient linear .earch alior1thm, that milht be
replaced With a binary learch. Alternately. Ute
disccyery that a rehashin& funct1cn is beina called
eleceSIi"ely, can lead to a «illterent huh funcUon or
a laraer huh table. If the data abstraction func1.ian
cannot. easily b. .,eeded up. It. may be ad.anta­
,eous to cache its results, and elimmate the need to
rerun it. for identical inputs. These and other ideas
for prolram 1:nprcyement are dJacussed in [Bent­
ley81).

caUed./tatal pareDu
ca11ed+.eU Dame lade%
caUed/t.otal children

4/10' c.A.I.JJ:R 1
.,

1/10 CAI.JZKZ 1
10+4 !XAJIPLt 2
20/40 SUB! <cycle1> 4
1/5 SU82 g
0/5 SUB3 til

This tool is best used in an it.erat1'ge approach:
proftllna the prcar&m. el1minaUna one botUeneck,
then ftnciing some other part of the pralrAm that
beglll$ I.e dc~l.e lexeC1.ltion time. For instance.
1Fe have Wlea !Qn"Of on lUeU; elim1nat1n&. rewritini.
and inline eXPand1ni routines. unUl ream, data
mes (hard.ly a tar,et for opt.imizatian!) represents
the dominaUni factor in its execuUon time.

Certain lYJ)es of proll'ams are nat. easily
analyzed by -1J'I'CIf. They are typified by prOirams
that exhibit !I. lutz!! degree of roecurslon, such as
recursive descent compilers. The problem is that
:nost. of the majer rouU:iles are irouped into a sinile
monolit.hic cycle. M. in the symbol table absl.roac­
Uan that is placed in one rouUne. it is impossible I.e
dilUniU1Sh whic:h members of the cycle are respon­
sible for the execution time. Unfortunately there
are no easy mocill'lcations to t.hese pro,rams that.
make them amenable to analYSis .

A completely ditrerent use of the protuer 11 to
analyze the control ftow of an unfamiliar proiram.
U you receive a proiram from another user thai you
need I.e mod.ify in some small way, it is often
unclear "here the chaDies need I.e be mad.e. By
runn1ni the pro,ram on an example and then usini
1PJ"Of. you can ,et. a \!'iew of the .~ucture of the
prolram.

Consider an example in which' you need to
chan,e the output format of the prOlram. For pur­
poses of this example suppose that the call iraph of
the output portion of the pro,ram has the follaW'i:li
structure:

-8-

I%I1ually you lock thrCNih the IPl"Ot output. for the
system call '"flUTE". The format. rouUDe you will
need to ch&%1ie 11 probably amonl the parents of
the '"f1UTE" procedure. The next. step is to look at
the prome entry for each of parents of ''1fRlTt''. in
this example either "rotuu..Tl" or "rORlU.l'2". to
determine which ane to chanie. Each format rou­
tine will he.e ane or mare parents. in this example
'°c.u..cl", "CALC2", and .. CAl.C3". By mspectini the
lOurce code for each of these routines you can

d.etermine which format. routine aenerat.es the out.­
Jlut. that. you Wish t.o mocWy. Since t.he r;prof entry
shoW'S all the potential calls to the format. routine
you lDt.end to chanae. you can det.ermme if your
modidcations Will a1fect. out.put. that. should be left.
.J.one. U you desire to chanae the out.put. of
"C.u.cz'·. but. not. "CA.1.C3". then format.t.in& routine
"rORlaT2" needs to be split. into t. ... o separat.e rou­
Unes. one of which implements the new format..
You can then reWaet. just. the call by "CALC2" that.
Deeds the new format.. It. should be noted that. the
static call· information 11 particularly useful here
since the test. case you run probably Will not exe~
cis. the entire procram.

.,. Conclusions

We ha~e creat.ed a protiler that. aids in the
.... aluation of modular proarams. For each rout.ine
in the prolram. the pro1Ue shoW'S the extent. to .
which that. rout.ine helps support. various abst.rac·
tions. and how that. routine uses ot.her abst.ractions.
The protUe acc1JJ'"at.ely assesses the cost. of routines
at. all levels of the program decomposit.ion. The
protUer is easily 1.Ueci. and can be compileci int.o the
proiram Without. any prlor plannini by t.he pro­
,rammer. It. adds only tin to thirt.y percent. execu­
tion overheaci t.c the proaram bema prottieci. pro­
duces no additional output. unt.1l aft.er the proiram
1htishes. and allows the proaram t.o be measured in
its act.ual environment. Finally. the protiler runs on
a time-shar.na system 1.Uina only t.he normal se~
'Vices proVided by the operaUni system and com­
pilers.

- 7 •

8. Re1era.ca
[BenUeySl]

BenUey. J. L .• "Wrtt.in& Etficient. Code". Depart.­
ment. of Comput.er Science. Carneaie-Mellon
Universit.y, Pit.tsburih. Pennsylvania. CMU-CS-
81-116. 1981.

[Graham82]
Graham. S. 1... Henry, R. It. Schulman, R. A.,
"An Experiment. in Table Driven Code Genera­
tion". SlGPLAN '82 Symposium on Compiler
Construction. June. 1982.

[J01'79)
Joy. W. N •• Graham. S. 1.. Haley. C. B. "Berkeley
Pucal User's Manual", Version 1.1. Comput.er
SCience Division Uruversit.y of Cali!ornia. Berke­
ley. CA. April 1979 .

[Knut.h7iJ..~ ;:::Ju
Knuth. D. E. "An empirical st.udy of FORTRA:{' ... n('l
proirams", Software - Practice and. Experience,
1. 105-133. 1971

(5 att.ert..~"'e.it.e72l
Satterthwaite. E. "Debuiii."li Teols for High
Level l.a.niuages", Soft.ware - Practice and.
Experience. 2; 197-217. 1972

[Tarjan72]
Tarjan. R. E.. "Dept.h tim search e.nd. linear
iraph alaorit.hm." SIAlJ J. Com~g 1:2, 146-
160. 1972.

(Unix)
Unix Proarammer's Manual. "prof command",
section 1. Bell r.aboratories. Murray Hill. NJ.
January 1979.

")

\

Hints on Configuring V AX'" Systems for UNIXt

Revised for 4.2BSD: March 15, 1983

Bob Kridle

Computer Systems Support Group
U. C. Berkeley

kridle@berkeley, ucbvax !kridle

Sam Leffler

Computer Systems Research Group
U. C. Berkeley

sam@berkeley, ucbvax!sam

ABSTRACT

This document reflects our experiences and opinions in configuring over thirty
V AXes to run UNIX t over the last five years.

Our prime considerations in choosing equipment are:

• Cost
• Performance

• Reliability
• Maintainability and maintenance cost

• Delivery time

• Redundancy of the system

• Conservation of space, power, and cooling resources

We consider components individually and then describe several system pack­
ages built from these components, emphasizing independently single-source
systems, minimization of cost, and maximal expansion capability.

Copyright c 1983, Bob Kridle and Sam Leffler. Copying in whole for personal
use by sites configuring UNIX systems i.; permitted. Reproduction in whole or
in part for other purposes is permitted only with the express written consent of
the authors. This paper is based on an earlier paper of the same name authored
by Bob Kridle and Bill Joy.

t UNIX is a trademark of Bell Laboratories.
• V AX, VMS, MASSBUS, and UNIBUS are trademarks of Digital Equipment Corporation.

Introduction - 2 - CI rjk/sjl March, 1983

DISCLAIMER

This documents reflects our personal opinions. We are responsible for software and hardware
support of VAX systems, and the recommendations we give reflect what we would do. We are
careflJI to note the equipment that we recommend but are not using~ we recommend no
second-vendor equipment that is not known to be in use successfully at several UNIX sites. In
any case you may get a lemon, no matter what you buy. All we promise is that this is what we
believ~. Let us know what you find out.

We have little familiarity with VMS. Recommendations made here should not be construed to be
applicable to any operating system other than UNIX. We have often adapted UNIX to these
devices in a way that may not be possible with other operating systems.

Finally, note that we have not written this document solely to share the knowledge we have
acquired with you; we have written it because we do not have the time to talk to everyone who
needs this information. Please do not call us to confirm the information here or to ask ques­
tions about our opinions. We would like to hear of your experiences, or learn of mistakes in
this document or products that we know nothing about, but do not have time to chat about the
information that is given here. We do welcome electronic mail sent to our addresses as shown
on the first page.

PREFACE TO 1983 REVISION

The V AX/UNIX Community has grown considerably since the last revision of this paper in
mid-1981. It is safe to say that 4BSD systems represent a substantial portion of all the V AXes
sold. Both the hardware available for building good V AX/UNIX systems and the support ser­
vices available to those doing the building have increased. A significant portion of the systems
now being built are being used in business and private research environments in addition to
those in the traditional academic UNIX strongholds. Many of these systems are based on
binary licenses rather than the educational source license so familiar at universities.

We hope this document will be of use to a variety of potential V AX/UNIX users. Even the
purchaser who chooses to buy a complete system from DEC or a mixed vendor system integra­
tor should be assisted in making a better choice by an increased knowledge of the integration
decisions. In the area of hardware, you will find that the sections on disks, network interfaces,
and printers have been heavily reworked. In addition to the traditional emphasis on hardware
selection, in this revision we try to at least provide pointers to some of the other relevant ser­
vices available. A list of hardware integrators we are aware of who have developed expertise in
the UNIX area is included. In addition, some suppliers of 4BSD software are included.

This revision takes a different policy regarding the inclusion of specific prices for hardware: No
explict prices are included. We do ocassionally include derived costs such as the cost per Mega­
byte for a particular size disk system. The are only meant to be approximate and are calculated
from current quantity one list prices.

It has been our experience that the inclusion of prices made the release of this paper much
more difficult without significantly increasing its value. We were obligated to pass the paper by
every hardware vendor for price checking and even so the contents remained accurate for only
a brief period. In addition, regional pricing and discounting policys vary widely. We have
decided that rather than depend on us for prices, the reader should narrow their range of
choices as much as possible and then do some hard bargaining with their suppliers. "Every-

Introduction - 3 - C rjk/sjl March, 1983

body gets a discount."

OVERVIEW

We first discuss components, listing the alternatives we have tried and sometimes a few we
have not, and then discuss system packages. We buy a substantial portion of our equipment
from vendors other than DEC. The reasons for choosing second vendor equipment are usually
some combination of more current technology, lower cost for equivalent equipment or shorter
delivery time.

We do not consider devices that have proven unreliable or whose performance we consider
inadequate.· In addition, there are many devices that we have no experience with. As a gen­
eral rule, every new peripheral has required a non-trivial amount of leg work to get up to speed.
We suggest using only peripherals that have been previously used successfully on the type of
VAX you are configuring (780, 750 or 730) or demanding a substantial (50-100%) discount for
being a guinea pig. Be especially careful of UNIBUSt interfaces. Almost every manufacturer
of a UNIBUS widget now includes the V AX as a machine on which his device will work. Some
of these devices have still not been well tested in this situation. These often will not work
without substantial modification.

System buyers without ready access to an in - house hardware staff should consider careju/(v the
option of buying as much DEC equipment as possible. If you have the money and time required to
do this, there are some strong advantages. Our DEC equipment has, in general, proven some­
what more reliable than the equivalent alternate vendor equipment. Time from equipment
delivery to running system is also usually shorter. DEC field service in our area is excellent.
Outside service available for non-DEC peripherals is spotty at best.

For smaller installations this option should be carefully considered. It is easier if you can call
one party for all your problems, if you can afford it. At Berkeley, we are well past the inven­
tory level where self maintenance begins to payoff even on all DEC systems, so this is not a
consideration. One of us (Kridle) manages our local hardware support group.

Unfortunately, the limited selection of configurations currently available sometimes make the
all-DEC choice difficult. This is especially true of the smaller configurations as DEC's bottom
end peripherals are less satisfactory for UNIX. We say this not just for monetary reasons; func­
tionally and aesthetically we would prefer to have neither the RK07 disk nor the TSII tape unit
in any system we have to deal with.

We recommend getting field service at least on your CPU for the first year. It has paid oiffor
us in the cost of parts alone. You can drop the contract after the engineering changes have
tapered off and most of the infant failures have occurred. DEC requires a certain amount of its
peripheral equipment on the machine to qualify for field service. We understand that it is com­
pany policy not to provide a maintenance contract for a system without a DEC mass storage
peripheral. If you intend to purchase a maintenance contract, be certain that your local field

• An exception to this rule is made where we have yet to find any satisfactory devices in a particular category
In these instances we have indicated our reservations about the existing choices in the hopes that new pro·
ducts will address the problems we believe are important. The reader should realize that if a vendor's equip­
ment has been mentioned in a negative light it indicates we at least thought highly enough of it to evaluate it
seriously. We are not trying to damage any company's reputation, merely insure that important information
is shared equally.

Introduction ·4· C rjk/sjl March, 1983

service is willing to support at least the DEC equipment you buy.

BANDWIDTH CONSIDERATIONS

Evaluation of the data transfer capacities between the various parts of VAX systems is a com­
plex task that plays a critical part in system configuration. Unfortunately, there is a tremendous
amount of misinformation available on this subject and little useful hard data. We have made
many measurements and are always in the process of making more. What we currently know
follows.

The 111780 UNIBUS adapter is the device most frequently shrouded in confusion. DEC docu­
ments variously give the bandwidth at between 1.2 MB/sec and 1.5 MB/sec when transferring
throulh a buffered data path. We are not aware of any specifications for the unbuffered data
path but have not been able to use it with some devices as slow as 50 KB/sec. One experiment
we conducted involved examining the UNIBUS protocol lines with a scope while constantly
transferrinl from a disk drive. We observed that while the drive was transferring at an average
rate of about 1.2 MB/sec the UNIBUS was close to one hundred precent busy. This test was
conducted on an otherwise idle system. No other devices were active on the UNIBUS and large
disk transfers (cylinders) reduced any register set up time to a minimum. We conclude from
this that 1.2 MB/sec is the absolute maximum transfer rate possible through a 111780 UNIBUS
adapter. Our observations showed that the largest delays while transferring data occurred while
the buffered data path was being loaded or unloaded from the SBI. Since the UBA is controlled
by a micro sequencer that is also involved in other UBA activities such as processing interrupts,
we suspect that on an active UBA this bandwidth may be somewhat reduced.

Measurements of the available throughput to and from the 4.2BSD file system indicate a
silnificant difference between disks running on the native processor bus (CMI or SBn and
those running on the UNIBUS. Average data rates are consistently lower on disks residing on
the UNIBUS, even when the controller provides a few sectors of buffering. This leads us to
believe that when average reads are 4·8 Kilobytes (the average block size of a 4.2B5D file sys­
tem), most UNIBUS controllers will fall behind and eventually lose a revolution. This does
not, however, seem to occur with the UDA50 UNIBUS controller as it has a much larger
amount 06 Kbytes) of bufferingt.

There are troublesome devices that cannot buffer enough data to guarantee that the maximum
size record can always be transferred (6250bpi tape drives), or do not buffer an adequate
amount of data (RK07 disk controller). To handle these devices UNIX provides a software
interlock mechanism that prevents excess UBA contention.

The MASSBUS adapters are specified to have a higher potential bandwidth of 2.5 MB/sec.
Since they are selector channels that allow only one device to transfer data at a time. the real­
ized bandwidth is limited to the rate of the fastest device. The fastest devices currently avail­
able from DEC for 111750 systems or 111780 systems with a single memory controller transfer
at 1.3 MB/sec. Large 111780 systems with two memory controllers and interleaved memory
may run RP07 disk drives that then transfer data at 2.2 MB/sec.* An interesting bandwidth
limit may be established by the memory controller particularly on 111780s. We suspect that the
CPU may be slowed considerably by memory contention when two disk channels are being used
simultaneously. This should be alleviated by using interleaved memory controllers.

The appendix to the VAX Hardware Handbook titled "System Throughput Considerations"
seems to bear out these impressions and should be read carefully by anyone hoping to under­
stand the consequences for V AX applications involving· high bandwidth input or output. If we
had data intensive applications we would seriously consider the use of RP07 disks (and

t A few of the initial UDASO controllers were delivered with only 4 Kbytes of buffering. Avoid these.
• On machines with only one memory controller the RP07 hardware is arranged LO transfer at 1.3 MB/sec.

Introduction - 5 - c rjk/sjl March, 1983

interleaved memory controllers) because of the resultant higher burst transfer rate; this will be
discussed further below.

MEMORY

All V AXes are sold with at least the minimum amount of DEC memory adequate to run diag­
nostics. Additional memory is the lowest risk alternate vendor choice. We buy the remainder
of our 780 memory from Mostek, National Semiconductor or Trendata.· This area is extremely
price competitive and there are at least six possible vendors. By all means, ask for competitive
quotes. Assure yourself, however, that you are not the first customer for a new vendor.

Add in memory for the V AX 750 is a newer item and prices are not as low. However, this
memory is almost identical to the 11170 MK11 memory and several vendors have managed to
build this product by modifying their previous 11170 add-in product. Trendata also has I
Mbyte 64K RAM modules for both 750s and 730s.

Small quantities (one to two megabytes) are usually available off the shelf. Large quantities (4
megabytes and up) have taken less than 30 days.

For the 111780 memory, the RAM chips are socketed, and two replacement chips per board are
supplied by all vendors we mention; You can pull out the board and replace the chip at your
leisure. Since single bit errors are corrected this has never involved any unexpected down time
for us. There is at least a one year return to factory agreement on the boards, included in the
purchase price. Out of warranty repairs are said to typically cost less than $300. We have
returned only one board to the plant in about 30 board years.

When purchased from DEC, memory is much more expensive for any of the machines.
Maintenance on a I Megabyte DEC memory module is $179 per month with board replacement
through field service. The boards are not socketed. Delivery times on memory from DEC
have typically been substantially longer than times from second vendors.

If you are going to have more than 4 megabytes of memory on your 780 you will need a CPU
expansion cabinet and a second memory controller that includes a second half-megabyte of
DEC memory.

There are two models of 111750 memory controllers and backplanes around. The one currently
being manufactured by DEC can be filled with either quarter Megabyte or full Megabyte
modules for a maximum capacity of 8 Megabytes;. The older memory controller and backplane
can be populated with only quarter Megabyte modules for a total capacity of 2 Megabytes. To
make matters even more complicated, 750s exist which have the newer style backplane and the
older controller. These too will only hold 2 Megabytes of memory. The smaller capacity sys­
tem can be upgraded to the larger one, but this is quite expensive; check with DEC before
buying one, or be sure that you will be satisfied with a maximum of 2 Megabytes.

DISKSt

The area of disks and disk controllers is one which has seen a great deal of change since the last
revision of this paper in mid 1981. At that time we had no experience with Winchester tech­
nology disk drives. Now, after some painful experimentation, we have settled on a few Win­
chester products which fill our needs reliably. We no longer buy, or recommend, any

• A list of second vendors and their phone numbers is given at the end of the document.
i It is important when mixing memory module sizes in V AX 1117505 to install the memory in consecutive
slots beginning with the first and starting with the I Mbyte modules.
t Disk sizes shown throughout this document are in bytes of formatted space available.

Components - 6 - C rjk/sjl March, 1983

removable media disk products.

The choice of available controllers is also wider and much improved. High quality controllers
are available which interface to the native busses of 750s and 780s as well as the UNIBUS. In
addition, DEC has introduced an entire new storage system architecture which places a great
deal more function in the controller, incorporates a new controller-drive interconnect, and uses
improved error correction algorithms.

First, we will discuss some of the major areas of change in disk/controller technology. We will
then explore how these improve, or otherwise affect, our methods of doing business. Finally,
we will consider some specific DEC and non-DEC products.

The availability of large capacity, low cost, high reliability Winchester technology disk drives
has had an enormous impact on us. The rack mountable, 300 Megabyte or bigger disk which
was always "just around the corner" is really here. It is hard to see how we got along without
it. We can now put about 2 Gigabytes of storage in the same footprint that previously held 256
Megabytes. In addition, we consume and dissipate about 25% of the energy we did with older,
removable media, drives. The prospective buyer should be warned, however, that not all "win­
nies" live up to expectations with respect to reliability. We are happy with the reliability of the
equipment we describe here. If you want to try something else, be sure and have some long
heart to heart talks with other users of the product.

Cost per Megabyte of disk storage is down significantly. Cost ranges from $30 to $110 per
Megabyte for disks, not counting the price of the controller(s). This value depends on the size
of the units purchased and the choice of vendor. Cost per unit storage in terms of both pur­
chase price and cost to operate are a stronger inverse function of the total drive capacity than
ever before. For example, the cost per Megabyte of the 456 Mbyte DEC RA81 is about 35% of
that of the 121 Mbyte RASO. The reason for this becomes clear when the drives are examined:
many of the components are identical.

The higher recording densities of new disk drives has also been a strong motivator in controller
evolution. One technique for increasing the recording density of the drives has been to rely
more heavily on sophisticated error correction and block remapping schemes. No large Win­
chester drive can be depended on to be "error free." In fact, most the drives we use have
uncorrectable media defects. These locations must be remapped using some combination of
controller firmware and handler software. In addition, the higher bit rates of new disk drives
demand faster serial logic in the controller interface. Many older disk controllers .are limited to
the burst transfer rate of 3330 style disks of about 1.25 Mbyte/sec.

Two types of controller have evolved for the newer, high bit density disks. The first is simply a
version of the traditional SMD or Storage Module Drive interface reengineered for higher data
rates. This type of interface characterizes all of the non-DEC controllers which have been pro­
duced for V AXes of the last few years. These controllers interface to the native busses of the
V AX (SBI or CM!) where possible to allow the higher data rates available to be passed all the
way through to memory. Where the controller must operate on a bus incapable of a continuous
transfer rate as high as the disk, some amount of internal buffering is provided to maximize the
amount of date transferred before the disk "blows a rev".*

Non-DEC controllers most often emulate the DEC RHll, RH750, or RH780 interface. Some
support for error correction is provided by the controller although a substantial assist is usually
required from the system driver. Remapping of uncorrectable media defects is entirely handled
by the driver. All 4.2BSD device drivers support bad block remapping. In addition. error
correction and remapping support is, optionally, available in the standalone utilitiest. The only

•• By "blowing a rev", we mean a data transfer can not be completed without extraneous disk revolu­
tions. This is mainly a function of the time required by a processor to service an interrupt, the bandwidth of
the bus, and the buffering in the controller. With the 4.28SD file system. disk controllers are now being ex­
tended to their limitations, and beyond. This has Significantly influenced our concern for the their limitations
as bandwidth suffers greatly when such an event takes place.
t Due to limitations in the size of a binary image which may be placed on a boot cassette or floppy, the error

Components - 7 - C rjk/sjl March, 1983

part of the system which does not gracefully handle errors or media defects is the first level
bootstrap code used on 750s.

DEC has produced a very different type of controller, partially to deal with the challenges of
higher density disk drives. This controller, the UDA50, is an example of DEC's long range
plan for mass storage (this "plan" is called the Digital Storage Architecture, or DSA). One of
the fundamental goals of DSA is to provide a standard set of disk "operations" across a variety
of storage products. With DSA it should be possible to construct standard drivers which know
very little about the characteristics or geometry of the actual storage devices they are dealing
with. In order to meet this goal, error correction, bad block forwarding, and even the mapping
of logical blocks onto the physical disk are handled in the controller. Requests to the controller
typically consist of logical block addresses and counts, along with a memory transfer address.
Responses then contain either data or a failure message. The controller independently takes all
possible measures to recover data before returning failure.

In addition to increasing the functionality of the controller, DSA specifies a new controller to
drive interface. The Standard Disk Interface, or SDI, is capable of handling the transfer rates of
any drive which DEC may produce in the foreseeable future. This interface is implemented
using four electrically isolated radial mini-coax cables to each disk drive embedded in a tough
rubber-like umbilical.

On 750 and 780 systems we are, or will be, buying either large (404 Mbyte) Fujitsu disk drives
and Emulex SBI or CMI interfaced controllers, or DEC UDA50 controllers with (456 Mega­
byte) RA81 disk drives. The choice here is not clear as the two packages are both attractive
and each has a different set of advantages. Although we do not currently have any
UDA50/RA81s at Berkeley, several users of 4BSD do have them, and are very satisfied. In
addition, we have visited Colorado Springs, where the drives are manufactured, and run bench­
marks on them using an early version of 4.2BSD. The preliminary measurements support our
optimism about the UDA50/RA81 combination, though we are not yet ready to publish these
results (they will be available at a later time).

It is important not to place too much emphasis on raw performance issues when comparing pro­
ducts as similar in capabilities as the large disk choices presented here. Reliability, freedom
from bugs, and ease of maintenance are equally if not more important to us. The value of the
product in future configurations is also important. For example, the UDA50/RA81 disk system
represents an early implementation of a new architecture. It incorporates many new features
heretofore unavailable to us. In addition, it is expandable in the sense that the disk/controller
interface is designed to handle future density increases which are not likely to be useable with
the traditional SMD interface. On the otherhand, any implementation as new as the
UDA50/RA81 is not as likely to be as bug free or as well understood as the traditional RH
style interface architecture.

Table 1 indicates some of the tradeoffs as we now understand them.

When searching for less storage for smaller smaller systems, or where two arms are needed for
performance and 800+ Megabytes of storage is overkill, another choice is required. Even at
SSO/Mbyte, a 404 Megabyte drive is not cheap. One of the authors has had good experience on
a small 750 system with a 160 Mbyte Winchester disk drive from Tecstore and a National Sem­
iconductor HEX-3000 combination tape and disk controller. We also know of successful use of
the Spectra Logic combination controller on a 730 system. Using slightly less expensive disk
drives and a combination controller one can obtain cost effective « $75.00/Mbyte) storage in

correction and bad sector forwarding code is not included in the standalone utilities by default.

Components

Criterion
Initial Purchase
Cost - 750

Initial Purchase
Cost - 780

Cost for Incre­
mental Addition

Performance

Maintenance
Costs

Mean Time
Between Failure

Mean Time to
Repair

Sources of
Maintenance

Robustness of
Drive Intercon­
nect

Future Value

Cost to Integrate

- 8 -

UDASO/RA81
UDASO and 1st RA81
SS7.00/Mbyte wlo additional
UNIBUS adaptcr~
S70.00/Mbyte with UNIBUS
adaptor

UDASO and 1st RA81 -
S83.00/Mbyte with UNIBUS
adaptor

Additional RA8ls -
S41.00/Mbyte

May be somewhat better in
mixed request, multi drive en­
vironment due to ordering op­
timizations possible in con troll­
er~ software handler at present
is suboptimal

Very low - SIll/Mo. for 1st
drive and controller (compare
to S326 for RM05)

Too little experience available
yet; RM80 is precursor of
RA8l mechanically and has
been quite good

Designed for quick field remo­
val of HDA; easy to repair

DEC~ maint. contract cheap,
real, and available

Incredible - electrical isolation
and you could run over cables
with a fork lift! Radial connec­
tion allows easy removal of a
single drive

Early implementation of new
architecture~ if it pans out, like­
ly to be compatible with future.
high performance, products;
DEC resale high anyway

Handler is new; some initial
bugs likely; probably a bug or
two left in controller firmware
too

e rjk/sjl March. 1983

Emulex SC7?O/Fujitsu Eagle
SC7S0 and first Eagle -
S5S.00/Mbyte

SC780 and 1st Eagle -
S65.00/Mbyte

Additional Eagles -
S32.00/Mbyte

Initial tests indicate 5-10% j'

better single file throughput
due to better sustained burst
rate

Unknown but believed very low I

Not a lot of experience on
these yet either~ initial experi·
ence looks excellent (smaller
Fujis are phenomenal; 30,000
MTBF!)

Not as easy~ more complex
disassembly

Not so clear~ ask for exchange I
contract from vendor

Same old SMD nat cables; daisy
chain

High performance (stretched to
limits) implementation of old
interface standard; not likely to
work again for next increase

Well known interface: much
more likely to be bug free

Table 1. Large Disk System Comparison

Components - 9 - CI rjk/sjl March, 1983

smaller amounts and provide a tape interface to boot (so to speak.)

TAPES

We use Emulex TC-ll/P UNIBUS tape controllers and Kennedy model 9300-3 800/1600 BPI
125 IPS transports. Cipher tape drives and Wesperco controllers are also widely used. When
purchasing second vendor equipment, one will also need cables and a rack in which to mount
the tape drive. The Kennedy transport comes with a 15 month factory warranty. Our distribu­
tor exchanges/repairs the cards in the controllers based on a local diagnostic mode in the tran­
sport. After the warranty period, card swaps cost about $75. For transport mechanical failures
the transport is returned to the factory in Monrovia, California, or we fix it ourselves.

George Goble at Purdue is using a 6250 tape system with UNIX. It includes a Telex 6253
drive (800/1600/6250 BPI) 125 IPS with a TELEX Formatter and an Aviv 1 board UNIBUS
interface. The UNIBUS interface has 4KB of buffering, to help with bus latency problems, and
it really appears to be necessary. The whole system cost him about three times what our 1600
bpi systems cost. The Aviv controller emulates a TUI0 which is similar to the Emulex
NRZ/PE controller. When heavy data transfer is done to the drive at 6250 bpi it uses the
entire bandwidth of the UBA. This forces UNIBUS access through the UBA to be arbitrated by
the operating system in order that the tape drive and a disk controller may coexist on the same
UBA. N .B.: The driver for this controller/transport combination is not currently included in
the standard 4BSD system but is trivially cloned from the TMII handler which is a ·standard
part of the distribution. Aviv also has a TM-ll compatible controller, the TFC 822, which sup­
ports both Kennedy and Cipher transports. This controller has more internal buffering than the
Emulex TM-l1 emulator and may be preferable for this reason.

Name
Kennedy
Telex

Speed
125ips
125ips

Densities
800/1600
80011600/6250

Our original VAX system came in a package with a DEC TE16 on its own MBA. The TE16 is
reliable but slow. The DEC TU45 is faster, but fraught with problems as the high maintenance
cost reflects. The DEC TU77 is a good transport, but the auto-loading features do not seem to
work well, and it is expensive. Finally, there is a relatively new product from DEC, a
1600/6250bpi 125ips tape drive, the TU78. This is the same transport as the TU77. We have
two TU78s in use on campus with mixed results.

The UNIBUS tape drive, the TSll, is included in packages for the 111750 except for the RK07
package system. It does not have a vacuum column, and is thus hard on tapes. It is a problem
to load and has been found to be unreliable.

Name Speed Densities
TSll 45ips 1600 (Not recommended)
TE16 45ips 80011600
TU45 75ips 800/1600 (Not recommended)
TU77 125ips 80011600
TU78 125ips 1600/6250

Components - 10 - C rjk/sjl March, 1983

TERMINAL INTERFACES

With a VAX you get 8 lines of DZ;ll that provide some modem·control but are not DMA.
We use the Able DH-ll emulator, the SuperMAX DH/DM, or one of the two Emulex DH-ll
emulators- the CS-ll or CS-21. We also have tried the Intersil DH-ll emulator and know it
to function satisfactorily. All of these provide DMA on output and modem control. The CS-
11 is unusual in that it provides expansion of up to four 16 line DHs ona single UNIBUS hex
module by placing the RS-232 support and UARTS out on the distribution panels and bussing
these panels to the UNIBUS module with one ribbon cable. The CS-ll is an attractive solution
where a very large number of lines will be connected to one machine since it reduces the
number of cables, and UNIBUS backplane space and power required.

4BSD also provide support for the asynchronous serial portion of the the DEC DMF-32. This
is the standard communications interface for the V AX 111730 and has an additional feature of
supporting both DMA and programmed interrupt operation for both input and output. The
4BSD driver currently does not use all this flexibility, treating it pretty much like a DH-ll.
The DMF-32 driver also works with the Able DMZ-H, a product which emulates the asynchro­
nous serial portions of two DMF-32s.

In the area of non-DMA controllers from DEC, there are the DZ-ll and DZ-32 (a DZ-ll with
full modem control).

Both the DZ's and the DH's have input silo's that UNIX can use to reduce interrupt load on
input. The DMA output of the DH emulators is especially important for graphics applications
where high-volume and continuous output occurs.

PRINTERS

One of the most exciting developments in the area of printers is the availability of desk top
laser printers. This paper was printed on an Imagen laser printer we have been using, quite
successfully, for several months now. The Imagen offers high resolution (240 dots/inch), uses
plain paper, and seems to require minimal hardware maintenance. It is interfaced to one of our
V AXes via a 19.2 Kbaud RS-232 line although a parallel interface is also available.

Among the problems with the Imagen are the small number of available fonts and the incom·
pleteness of some of those which are available. In addition, the Cannon LBP-10 printing
engine used has only a 200 sheet paper tray. Since the unit employs a wet process Xerography
and smells a bit, it is not located in the same room as a person who might be responsible for
refilling the tray. This inevitably results in print jobs backing up in a long queue until someone
notices paper is needed. The Imagen folks were initially TEX oriented and their troff support
contains glitches which are purported to go away with future releases of the software. We also
hope to eventually interface our printer directly to the Ethernet; as soon as Imagen provides the
necessary software to do so.

Another laser printer based on the Canon LBP-IO engine is produced by Symbolics. Symbolics
offers both RS-232 and parallel interfaces to the printer. The Symbolics software is known to
provide excellent software support for t,off. We are are now evaluating a Symbolics printer.

QMS in Georgia has apparently solved the mysteries of the Xerox 2700 printer and is distribut­
ing an OEM version which might be a good choice. The major potential advantages here have
to do with Xerox's size and extensive field support. The unit is dry process (unlike the Imagen
and Symbolics) and has 300 dots/inch resolution. With any luck, we will also be evaluating thIS
unit soon.

Components - 11 - e rjk/sjl March, 1983

We have been using some Printronix 300 and 600 line per minute dot-matrix printers. The
Printronix printers do point-plotting at 60 points per inch. They are not outstandingly cheap,
but are ruggedly built.

The new Data Products B-600-1 is a 600 LPM band printer. We have one and are buying
another. Although we had some initial problems getting the first unit into service, it now runs
reliably and is our heaviest usage production printer.

PLOTTERS

Electrostatic printer/plotters that are capable of 200 dots/inch are usable both as plotters and as
output devices for rroff. We have an old model Varian that requires considerable care and feed­
ing; newer models are said to be less of a headache. A new Versatec 11" model sells for about
58,000. The objections to all these guys are that the paper tends to be wet sometimes, stinky.
and more expensive than line printer (520 per 1000 sheets). These are high maintenance items
as are all heavily used hardcopy output devices we are familiar with. For rroj[, we now vastly
prefer the Imagen laser printer mentioned above.

NETWORK INTERFACES

Networks can be categorized as local area networks (UNs) or long haul networks according to
their geographical limitations. The most widely publicized local area network is the Ethernet.
An example of a long haul network is the DARPA Internet which spans many continents and
includes devices such as communication satellites for connecting disjoint sub-networks.

Among local area networks there are several competing modulation schemes. The Ethernet
and several other networks uses baseband modulation techniques, while newer technologies,
such as broadband, are available from other vendors. Some of the major differences between
baseband and broadband technologies are maximum station separation, cable bandwidth, and,
currently, per station connection cost. At this time, the least expensive, and most readily avail­
able local area networking hardware use baseband modulation. However, given the limitations
inherent in baseband modulation schemes, companies are placing more work into developing
low cost parts for use in broadband networks.

Aside from the question of baseband versus broadband, selection of medium is an issue. Coax
cable is commonly used but types of coax vary. Broadband networks normally use the same
standard 75 ohm coaxial cable used for CATV, while baseband uses 50 ohm cable. This implies
that upgrading a network from baseband to broadband requires expensive installation of a new
cable unless one thinks ahead, or your site already has installed cabling for in-house CATV use.
Further, the best medium in terms of signal loss and noise immunity is fiber optic cable. How­
ever, due to problems such as tapping the cable, few vendors have selected this technology. If
you plan to consider broadband at some time in the future, while at the outset using baseband,
it is well worth the cost of the extra cable to run parallel 50 and 75 ohm coax.

In looking at network controllers, we will consider only the available local area networking
hardware; our experience with long haul networks is limited to the Internet and so is of
minimal interest.

There are at least four vendors with existing or announced Ethernet controllers, and with the
soon to be available "Ethernet chips" more vendors may announce products. It is unlikely,
however, that the Ethernet chips will significantly influence the current prices as the price of an
Ethernet controller has already been driven down by the market competition. While the influx
of new technology may not lower controller prices, it is sure to improve their performance and
reliability.

Components - 12 - o rjk/sjl March, 1983

We currently use 10Mb/s UNIBUS Ethernet controllers from both Interlan and JCom. The
two controllers have almost identical throughput characteristics with 4.2BSD, but neither have
proven entirely satisfactory. The JCom controller is the less expensive of the two. Its design is
optimal for small PDP-lIs and LSI-lls where the processor is resident on the same bus with
the controller. The design employs 16 or 32 Kbytes of dual-ported RAM which is directly
addressable as UNIBUS (or Q-bus) memory: While this is effective for machines such as the
PDP-ll or LSI-ll where no penalty is required when accessing the on-board memory, with a
VAX any memory access must be arbitrated by the intervening UNIBUS adaptor. The result of
this is that accesses to the on-board memory are heavily constrained by the characteristics of
the UNIBUS adaptor.

In accessing memory through a UNIBUS adaptor. all accesses must be performed on even byte
boundaries and be no more than two bytes at a time. Consequently, one must either be very
careful about the coding of a network interface driver,or the contents of anyon-board memory
must be copied into main memory before manipulating it. Due to the architecture of the net­
working subsystem included in 4.2BSD and the lack of control over the code generated by the
V AX C compiler, constraining memory fetches was infeasible and the second alternative was
taken. This implies that data must be block copied in to and out of the on-board memory a
word at a time. The VAX movc3 instruction is not usable in the UNIBUS address space, mak­
ing this an expensive operation.

A second problem with the JCom controller is that it lacks an on-board timer for implementing
a backoff algorithm when accessing the Ethernet. This implies the host must perform a timing
loop when backing off from a congested Ethernet. When an Ethernet is heavily congested this
may prove to be very costly as no other processing may take place while the host timing loop is
executing.

A third problem with the JCom controller is that it does not allow a host to receive its own
broadcast packets. This implies that broadcast packets must be captured in software. We con­
sider this a serious deficiency as it prevents hardware testing without an auxiliary echo server.

The second Ethernet controller we have used is made by Interlan. This controller provides
DMA access, as well as several desirable features such as on-board retransmissions. Unfor­
tunately, while the DMA interface should be expected to provide higher throughput than the
shared memory approach. using the Interlan interface we have been able to attain only compar­
able transfer rates to those measured with the JCom interface. In addition, the controller con­
sumes a significant amount of of +S volt power. While broadcast packets are retrieved by the
interface, the Ethernet CRC calculation is not performed.

We know of two other Ethernet controllers. one from ACC and one from DEC. We have two
ACC controllers for evaluation, but have yet to gain any experience with them. The ACC con­
troller is based on the UMC-Z80 and provides a DMA host interface. The DEC Ethernet con­
troller was announced at the last DECUS meeting, but as of yet we know of none in customer
hands.
To summarize the Ethernet controller situation. it appears the best strategy to follow is to wait
for Ethernet chips to become widely available so the vendors can reengineer their existing con­
trollers with minimal cost. If you require Ethernet access from your V AX now, you may wish
to follow our approach: select the lowest priced product and treat it as "disposable" in the
expectation that something better will eventually be available.

Other than Ethernet, the Proteon proNET 10 Mb/s ring network is also popular. This device is
also known as the Version II Ini ring network and is in heavy use at LBL and MIT with good
results. The Proteon proNET outperforms both the JCom and Interlan controllers mentioned
above in throughput benchmarks run with the 4.2B5D networking support. Further, the ring
design eliminates the standard complaints about ring architectures by use of a star-shaped ring
configuration. The star-shaped ring allows easy addition and deletion of nodes without splicing
drilling or taping. Also, any node can fail without bringing down the ring because it is bypassed
at the star-shaped ring's passive wire center. The major concern with a ring network is that it is

Components - 13 - CI rjk/sjl March, 1983

incompatible with the de facto standard Ethernet. Cost per station is slightly higher than the
Ethernet, but startup costs are lower (unless you use a fiber optic wire center). Proteon has
announced they are working on an 80 Mb/s controller which should make the network even
more attractive.

SOFTWARE SUPPORT

There has been increasing demand for 4BSD at commercial installations in a form less expen­
sive and more digestible than a source license from Western Electric and an unsupported distri­
bution from Berkeley. A number of companies, licensed by Western Electric to sell and sup­
port UNIX in binary form, are now distributing 4BSD. Some of these companies support 4BSD
as an enhancement for their hardware offerings others deal only in software. Licenses from
these vendors normally cost much less than a UNIX source code license. These companies
usually try to make 4BSD more palatable to the non-academic community by providing more
first-time user documentation and specialized consulting addressing specific customer applica­
tions. More formal software support arrangements than those offered by U. C. Berkeley are
also available. 4BSD software sales and support vendors are included in the list at the end of
this paper.

Packages • 14· C rjk/sjl March, 1983

SYSTEM PACKAGES

We now present some sample system packages. Each represents a balanced system for
timesharing use under UNIX. People often ask us how many users can be supported UNIX in
these configurations. In the absence of specific information about applications to be run, this is
an unanswerable question. The amount of load presented to the system by different applica­
tions varies widely. We mention with each system the count of interactive users typically sup­
ported in our university research environment.

We first present systems bised on 111750s and then systems based on 111780s. With each
example we suggest functionally similar systems configured in at least two different ways: first
with as much equipment as possible from DEC and second with the best equipment known to
us. We will not consider the VAX 111730 as we believe it is not a viable option for most
timesharing environments. Our experience with the 730 indicates it has approximately the raw
processing power of a PDP·11/34 size CPU. Thus, even though it is a reasonable choice for
people looking for an entry level VAX, we consider it mostly a single user machine.

Various measurements of the speed of the 111750 and 111780 indicate that the 111750 executes
at roughly 60 percent of the speed of an 111780. By comparison, an 11170 runs at roughly 75
percent of the speed of an 111780 using the same benchmarks, which involve no floating point.
no 32 bit arithmetic on the 11170, and no system calls. For UNIX time sharing usage we
believe that the 111750 has better performance than an 11170. This is due mainly to additional
tuning and performance enhancements to the V AX kernel, and to the larger address space of
the VAX architecture.

The first system we consider is a small 111750. This is followed by an expansion of the 111750
into a larger system. We are fond of the VAX 111750 as it provides the most computational
power per unit cost of the three V AX implementations.

The second base system is a small 111780. We show how it can be built from a DEC
RUA81/TU78 package system, and how to build it from mixed vendor equipment. We then
expand it in two increments.

The small systems we suggest start with a single disk and tape controller and some memory.
For time·sharing applications we configure our V AX systems allowing 256K bytes of memory
for the kernel and roughly an additional lOOk bytes of memory per active user.- Memory is
cheap, especially for the 111780, so we don't skimp on it.

With more than a few users, it is critical that more than one disk arm be present in the system.
Thus all but the smallest systems include more than one disk. As the active user count rises,
having more than one disk controller is also a good idea. The large system packages include
two disk controllers. For really large and i/o intensive systems we recommend high bit density
disk drives like the Fujitsu Eagle or the RP07 drive from DEC as they provide a higher transfer
rate than the 1.25 Mbytes typical of the remaining drives. Using this transfer rate effectively
requires running with interleaved memory.

It is desirable on all UNIX systems to have at least 100MB of disk space so that all the source
for the system and all the standard programs may be kept on line with some room for locally
developed programs. The amount of space required by user programs varies per installation:
we manage to run many of our instructional/research machines using about 300·600 megabytes
of space actively, although slightly more than this would be desirable.

Our large research machine runs with 1 Gigabyte of disk storage, with 2 disks on a UNIBeS
and 2 disks on MASSBUS adapters. The weakest point in this system is that it has only a 45ips
TE16 tape drive for backups. For even the smallest systems, 45ips will soon seem slow. We
therefore recommend starting with a I25ips 1600bpi tape drive. As full 2400 foot tape reels

• These numbers work reasonably well in an environment typical of University work (course work. paper
preparation. debugging programs. developing applications for microcomputers. etc.) More demanding applica·
tions could require substantially more memory per user.

Packages - 15 - C rjk/sjl March, 19S3

hold only 30MB at 1600bpi, large systems should consider including at least one tape drive
capable of writing 6250bpi tapes.

V AX 11/750 PACKAGES

We want to put together a small 111750 system capable of supporting about S time-sharing
UNIX users, and a larger 11/750 system for roughly 16-24 users. We need a minimum of 100
megabytes of space for the small system and a reasonable tape drive, preferably a 125ips unit so
that tape operations can be done in a reasonable amount of time; if the system is to include
only non-removable di!ks, we consider the faster tape system to be important. For the larger
system, we wish to add disk space to give the system a minimum of 250 megabytes of space,
and have more than one disk arm.

Small system

Small 750 System
DEC System Mixed Vendor System

111750 from Broker or Integrator
CPU 111750 with .50 Mbyte DEC Memory but S

Mbyte capacity.

Memory 1 Mbyte DEC 1 Mbyte NationallTrendata/Mostek

Disk System
UDA50 Unibus Controller Emulex SC750 RH750 Emulator
RASO 121 Mbyte Drive Fujitsu 134 Mbyte Drive

Tape System TGE16 45 ips Tape Sys.
Emulex or Wesperco Controller
Cipher or Kennedy 125 ips tape

The small DEC system is based on the SV-BXGMB-CA package, and includes an RL02 in addi­
tion to the RASO. We basically ignore the RL02 which is of little use to us and use the package
because it is the cheapest way to get started. We add a TG E 16 tape system as the best choice
among a myriad of evils. It is really too slow, but it is reliable and not too expensive. DEC
has been promising some better low cost tape units soon.

The mixed vendor system is as inexpensive as possible while retaining upward expandability. If
the builder were sure that this system was not going to be expanded much then a substantial
amount more could be shaved from the cost by making several substitutions. A National Sem­
iconductor or Spectra Logics UNIBUS combination disk and tape controller could be substituted
for the separate CMI disk controller and UNIBUS tape controller shown. A slower, perhaps 45
ips, tape unit with built in formatter could be substituted for the 125 ips tape drive. An older
CPU with 2 Megabyte maximum memory capacity could be used. These are available for sub­
stantially less than the CPUs equipped with the newer memory controller and backplane. Even
with these modifications, another disk and another Megabyte of memory could easily be added
to produce substantial performance improvement. One advantage of the mixed vendor system
as shown is that the Emulex SC750 controller keeps the disk drives off the UNIBUS. If an Eth­
emet controllers is added to the system, they will not be contending for the bus.

Medium system.

To expand this basic system to support more users, we would add additional lines, disk storage
and memory. To the small all-DEC system we would add another RASO, another Megabyte of
memory and a DZ-IIE. To the mixed vendor system we would add another Fujitsu 134 Mbyte

Packages - 16 - o rjk/sjl March, 1983

disk, an Able or Emulex DH-11 emulator and another Mbyte of memory:

Augmenting the Small 750 to a "Medium" System
DEC System Mixed Vendor System

Additional Disk RASO 121 Mbyte Drive Fujitsu 134 Mbyte Drive

More Memory 1 Mbyte DEC 1 Mbyte National/Trendata/Mostek

More Serial Lines DZ-11E Able/Emulex "DH"

There.are, of course. further expansion possibilities for the 111750. These vary depending on
the application but could include a floating point accelerator. more memory up to S Mbytes, and
an additional UNIBUS adaptor on the DEC system if other high speed devices like network
interfaces are to be on the UNIBUS along with the UDASO.

Packages - 17 - o rjk/sjl March, 1983

V AX 11/780 PACKAGES

For a system with more growth possibilities than an 111750, faster processing, and higher i/o
bandwidth. we recommend starting with a small 111780. Our goal here is to start with a system
capable of supporting 8-16 timesharing users and expanding the system to be capable of sup­
porting roughly 24 users. We also consider a large expansion of this system, to a system that
might support 32 to 40 terminal users to the exhaustion of available CPU cycles.·

Small system

For our small system we use 400 Megabytes of disk storage and a 125ips 6250bpi tape drive
that will be capable of handling file backups if the system is eventually expanded. In our first
expansion of this small system, we wish to add to the available space to a minimum of 800
Megabytes of disk storage, acquire at least two disk arms, and add additional terminal lines. In
a large expansion of this system we include more terminals. an additional disk controller to get
at least two separate disk channels, and an additional 800 Megabytes of storage for a total of
1600 Megabytes. .

To build a small system from all DEC equipment, we would start with the RUA811TU78 based
system, the SV-AXECA-CA. This system includes 8 terminal lines, 4 Megabytes of memory, a
456 Megabyte disk drive and a 125ips 6250bpi tape. The system is equipped with two UNIBUS
adaptors so that the UDA50 does not contend with other UNIBUS devices. To this we would
add a floating point accelerator.

On the mixed vendor system we would substitute a Fujitsu Eagle 404 Mbyte disk drive on an
Emulex SC780 SBI interfaced controller and an Aviv/Telex 6250 tape subsystem.

Small 780 System
DEC System Mixed Vendor System

111780 from Broker or Integrator
CPU 111780 with .25 Mbyte DEC Memory and

UNIBUS Adaptor Included

Memory 4 Mbyte DEC 4 Mbyte NationallTrendata/Mostek

UDA50 Unibus Controller Emulex SC780 RH780 Emulator
Disk System RA81 456 Mbyte Drive Fujitsu 404 Mbyte Drive

on own UBA

Tape System
TEU78 125ips 6250 ips A viv Controller
Tape Subsystem Telex Drive/Formatter

Serial Lines DZ-llA Able/Emulex "DH"

Other DEC Floating Pt. Acc. DEC Floating Pt. Acc.

Medium system

To expand this basic system to support more users and get additional disk space, we would add
additional lines and disk storage.

• Using systems similar to the largest shown here, in an environment consisting of small student program­
ming some sites have reported running up to 70 interactive users; CPU cycles are the critical resource with
this many users.

Packages - 18 - C rjk/sjl March, 1983

Augmenting the Small 780 to a "Medium" System
DEC System Mixed Vendor System

Additional Disk RA81 456 Mbyte Drive Fujitsu 404 Mbyte Drive

More Serial Lines DZ-UE Able/Emulex "DH"

Larae system

To form a system with the emphasis on handling of data-intensive applications, and to
emphasize total growth of the system, we would add a second disk channel and interleave
memory to increase i/o throughput and reduce average CPU memory access as much as possi­
ble. In both the DEC and mixed vendor systems a CPU extension cabinet would be required
in addition to another DEC memory controller. We would fill out the second memory system
to 4 Megabytes.

For more disk throughput, we would add an REP07-AA 504MB disk drive on a MASSBCS
controller to the basic DEC system. This disk provides a very high burst data throughput and
could share the MASSBUS Adaptor of the Tape Unit with only minor performance loss while
the tape unit was being used.

To accomplish the same ends with the mixed vendor system, we would simply add a second
Emulex SC780 disk controller channel and at least one more Fujitsu Eagle 404 Mbyte disk
drive.

Augmenting "Medium" 780 to "Really Big" System
DEC System Mixed Vendor System

Additional Disk RP07 (516 Mbyte) on Fujitsu Eagle (404 Mbyte)
and Channel MASSBUS with tape sys. on another SC780 controller

Second Memory
Controller DEC DEC
and Cabinet

Additional Memory DEC Trendata/National Mostek

More Serial Lines DZ-llE Able/Emulex "DH"

SUGGESTIONS ON BUYING HARDWARE

The are a variety of ways in which you can acquire the systems we have suggested here.
whether they be all DEC or mixed vendor. Your choice of acquisition methods depends on a
number of factors including:

• How much can you afford to pay?

• How long can you wait?
• How much risk and responsibility are you willing to assume for integrating your own

hardware components?

• What kind of maintenance is available to you?

• How much help you need in integrating 4BSD?

Packages - 19 - C rjk/sjl March, 1983

Here is a simplified breakdown of the possibilities:

1. Buy as much as possible from your DEC marketing organization.

Although this solution, in our experience, takes the longest and costs the most, it has its
advantages. DEC is likely to ship you a well tested, integrated system, close to the time
initially promised. In most cases they will support you well through any initial start-up
problems with the hardware. The system bought this way will automatically be accepted
for a DEC maintenance contract. Of course, the can't help you much with 4BSD (yet).
Also, they are not likely to be very flexible about adjusting their configuration to your
needs.

2. Buy an all-DEC system from a an OEM specializing in 4BSD

These OEMs are a relatively new phenomenon. They usually get a much better discount
from DEC on hardware and can pass part of this through to you in terms of UNIX exper­
tise as well as reduced cost. Sometimes they will be able to deliver hardware quickly
when DEC is telling you months. Since they sell largely DEC systems, you can still take
advantage of DEC Field Service and most systems sold this way are guaranteed acceptable
for a DEC maintenance contract.

3. Buy a mixed vendor system from a systems integrator

DEC has had a long love/hate relationship with people who specialize in building systems
which use DEC's CPUs and other manufacturers peripherals. We think these integrators
serve many useful functions. First, and foremost, they often build a cheaper and better
system, frequently on short notice. Second, they keep DEC honest. Sometimes we feel
they should charge for their quotations, since these are often used advantageously to
encourage DEC to come down to a more reasonable price on a system.

Don't assume mixed vendor systems are not maintainable. There is a whole spectrum of
maintenance possibilities for these systems, particularly in major metropolitan areas. If
you are considering this route, be sure and spend some time on the phone with the cus­
tomers of your prospective vendor. Insist on the names of long term customers, and talk a
lot about maintenance experience. The folks we mention on the last page of this paper
are known to have experience with 4BSD.

4. Integrate the mixed vendor system yourself

If you are qualified for this adventure, then you probably know who you are. We can't
begin to tell you all the pitfalls. Start small. Buy a mostly integrated system and add
something you can afford to have not work for a while, such as more memory (almost too
easy), or a better tape drive, or more terminal interfaces. If you really want to do the
whole thing, finding the CPU is one of the harder parts. Get yourself a copy of Computer
Hot Line. You can probably get a complimentary copy by calling them at (800) 247-2244.
This is the social register of computer brokers and a substantial portion is dedicated to
folks selling new and used DEC. (Hot Line, Inc. also distributes the Farm Machinery Hot
Line and several other classified flea market variety publications. They can not be
expected to control the content of adds. Use at your own risk!)

We would like to make two more observations about buying equipment. It has been our
experience that the service you will receive from your source is directly proportional to the risk
in using that source. Further, the service often is inversely proportional to the sources size.
Loosely translated, little guys work harder.

Many who have dealt with DEC sales report disappointing experiences. Lack of product
knowledge and inability to bend to customer needs are typical complaints. This is not to say
that there are not excellent DEC sales people. There are. And you must remember, when you
finally close that deal with your DEC salesperson, it will be delivered, eventually.

On the other hand, the systems integrator who builds one or two systems a month typically
succeeds or fails based of the experiences of his small customer base. We have known many of
these folks to make superhuman efforts to pull together a customer system, often succeeding

Packages ·20 - C rjk/sjl March, 1983

without half the resources available to DEC salespeople. They are also much quicker to pick
up trends like an interest in 4BSD and start to mold their services to fit. Once again, there is
always the exception, the "Unix Systems Integrator" who couldn't tell an inode from a tree
toad. If you go this route, you have a good selection to choose from. Spend time talking to
previous customers.

CONCLUSIONS

We have presented sample VAX systems over a wide performance range using both all-DEC
and the best available second vendor equipment, emphasizing, independently, minimal cost and
maximal expandability. Use this information wisely; price shouldn't always be the bottom line.

Consider the all-DEC system if you can afford it. If not, the second-vendor equipment in the
packages here is all thought to work well on V AX hardware. You can reliably build and operate
such a system. When you have struggled through your particular set of difficulties and are up
and on the uucp network, be sure and write us about your experiences. Good luck!

ACKNOWLEDGEMENTS

This document represents a lot of work. It would have been easier, except for everyone who
sent us helpful hints and suggestions and, in general, kept us honest. In particular, we would
like to acknowledge all those vendors who were patient with us, especially those whose products
were ultimately not included. George Goble at Purdue made several helpful comments which
greatly improved the content of the document, and his experiences with Fujitsu Eagles has
made a significant impression on us. The DEC DSA engineering team in Colorado Springs,
including Paul Massiglia, Bill Grace and Chuck Hess were particularly generous with their time
and energie,s. Peter Weinberger of Bell Laboratories shared his experiences with the
UDASO/RA81 with us. Kirk McKusick spent time traveling to Colorado Springs to aid in
evaluating the DEC RA81 disk drive. David Mosher has worked diligently as the purchasing
agent for CSRG and also contributed to our understanding of the subtler points of disk
manufacturing and operation. Jim Reeds gave the paper a careful proof reading and found
many oversights.

Vendor references • 21 • ~ rjk/sjl March, 1983

VENDOR REFERENCES

Manufacturer Product Phone Vendor contact
3Com Ethernet Cont. (415) 961·9602 3Com (Mike Hallaburka)
Able Async. Mux (714) 979·7030 Able Computer (Norm Kiefer)
Aviv Tape controllers (619) 247·6844 Aviv (Ed Hagenbuch)
Data Products Printers (415) 948·8961 MQI Associates (Avery Blake)
Emulex Controllers (415) 820·2933 Eakins Associates (Bob Sigal)
Fujitsu Disks (415) 969·5109 Eakins Associates (Bob Sigal)
Imagen Laser Printers (415) 960-0714 Imagen (Bob Wallace)
Interlan Ethernet Cont. (714) 752-4002 Interlan (Gary Steadman)
Intersil Async. Mux (408) 743·4300 Intersil (Alan Truscott)
Kennedy Tape Transports (408) 245-9291 Electronic Marketing Specialists
Mt Xinu 4BSD Binary Sales (415) 644·0146 MtXinu (Bob Kridle)
National Memory (800) 538·8514 National (Don Johnson)
National Disk/Tape Cant. (800) 538-8514 National (Don Rudolph)
NMS Disk/Tape Sys (415) 443-1669 NMS(Bob Crippen)
Printronix Printers (408) 245-4392 Group III Elect. (Scott Drzewiecki)
Proteon Network Cont. (617) 894·1980 Proteon (AI Marshall)
Spectralogics Disk/Tape Sys. (415) 443·1669 Nat. Mem. Sys. (Bob Crippen)
Symbolics Laser Prin ter (415) 494-8081 Symbolics (David Shlager)
Tecstore Disks (408) 732-2143 Tecstore (Mel Feintuch)
Trendata Memory (714) 540-3605 Trendata (Miles Efron)
Varian Plotters (408) 733·2900 Varian (Ted Downs)
Versatec Plotters (415) 828-6610 Versatec (Bruce Fihe)

SYSTEM INTEGRATION/SUPPORT

Name Phone Contact Notes
VLSI (415) 490-3555 Joe Voelker Mixed Vendor Systems and Support
IDS (408) 738-3368 Dick Cavanaugh Specialize in All DEC Systems
Eakins Assoc. (415) 969-4533 Bob Sigal Mixed Vendor Systems and Support
IPS (713) 776-0071 Mixed Vendor Systems
Iverson Inc. (415) 459-5665 Jon Iverson Mixed Vendor Integration
UNIQ (415) 362-0470 All DEC Systems

MORElbsd Volume VI

System Management
Mail

Networking and Communications

Installing and Operating 4.2BSD on the VAX
Building 4.2BSD UNIX. Systems with Config
4.2BSD System Manual .
Hints on Configuring VAX Systems for UNIX.
Disc Quotas in a UNIX. Environment
4.2BSD Line Printer Spooler Manual
Fsck. - The UNIX. File System Check Program
On the Security of UNIX.
P~ord Security: A Case History
The UNIX. Time-Sharing System
UNIX. Implementation
The UNIX. 110 System
Bug fixes and changes in 4.2BSD
A Fast File System for UNIX.
Mail Reference Manual
A Dial-Up Network of UNIX. Systems
Uucp Implementation Description
SENDMAIL - An Internetwork Mail Router
SENDMAIL Installation and Operation Guide
4.2BSD Networking Implementation Notes
A 4.2BSD Interprocess Communication Primer

MoRElbsd Volume m

UNIX Shells
Tools and Utilities

Ingres

(,,-·An Introduction to the C Shell
~ Introduction to the UNIX Shell
t.AJNIX Programming - Second Edition
vMake - A Program for Maintaining Computer Programs
t....--A Tutorial Introduction to ADB
/..-. Yacc - Yet Another Compiler-Compiler
t.,...Lex - A Lexical Analyzer Generator
IScreen Updating and Cursor Movement Optimization: A Library Package
~The M4 Macro Processor
l/SED - A Non-interactive Text Editor
VAwk - A Pattern Scanning and Processing Language (Second Edition)
l DC - An Interactive Desk Calculator
f;J.3C - An Arbitrary Precision Desk-Calculator Language
VAn Introduction to the Source Code Control System

'-','J c.]Ource Code Control System User's Guide
(vLEARN - Computer-Aided Instruction on UNIX (Second Edition)
VA Guide to the Dungeons of Doom
L.--IN'GRES Version 7 Reference Manual

MORE/bsd Volume V

Editing
Document Preparation

:/An Introduction to Display Editing with Vi

E Ref erence Manual !tit: A Tutorial

E Changes - Version 3.1 to 3.5
JJ" Tutorial Introduction to the UNIX. Text Editor

~vanCed Editing on UNIX.
OFF /TROFF User's Manual

A TROFF Tutorial
W~ting Papers with NROFF Using -me
-ljne Reference Manual
TyWing Documents on the UNIX. System:
~ing the -ms Macros with Troff and Nroff

". A Revised Version of -ms
,; Tbl - A Program to Format Tables
1 Typesetting Mathematics - User's Guide (Second Edition)

{-f-A System for Typesetting Mathematics
7" -YWriting Tools - The STYLE and DICTION Programs
• -Updating Publication Lists

Some Applications of Inverted Indexes on the UNIX. System
Ref er - A Bibliography System
Berkeley Font Catalog

(J I ."

13erkeley Font eZlttllog

October 1980

Introduction
This catalog gives samples of the various fonts available at Berkeley using

mot! on our Versatec and Varian. We have them working 4 pages across in a 36
inch Versatec. and rotated 90 degrees on a Benson-Varian 11 lnch piotter. The
same software should be adaptable to an 11 inch Versatec. and In fact ls running
at several other sites. however. not haVing one here. it lsn·t part of this distribu­
tion. Such a driver is available trom Tom Ferrin at UCSF.

To use these ronts:
(1) Henhey. This is the default font. The Hershey font is currently the oTtly

complete font. With all 16 point sizes and all the speci.al characters trot!
mows about. To get it. use vtroff directly. To illustrate this with the -ms
macro package:

-.trot! -ms paper.Dr

(2) Fonts with roman. italic. and bold. such as nonie. You can Load all three
fonts With. for exampie:

-.tro~ -F naDie -ms paper.Dr

To get just one of these tonts. use (3) below. appending .r . .i. or .b to the
font name to specify which font you want mounted. e.g .. to get italics in
delegate.

vtrot! -2 delegate.i -DIS paper.Dr

(3) To get a tont Without a complete set. choose which font (1. 2. or 3) you want
replaced by the chosen tonto For example. to use bocklin as though It were
bold. since tont 3 is bold. use:

-.tro~ -3 bocklin -ms paper.Dr

To sWitch between tonts in troff. use

.ftS

to SWitch to tont 3. tor example. or use

\f3wo~t1

to switch Within a line. For more information see the Nroff/Trot! Users Manual.
Speci.al note: trot! thinks it is talking to a CAT phototypesetter. Thus. it

does all sorts ·of strange things. such as enforcing restrictions like 7.54 inches
maximum Width, 4 tonts. a certain 16 point sizes. proportional spacing by point
size. etc.

In particular. the following glyphs Will a.L'Wa:ys be taken trom the speci.al
tonto no matter what tont you are using at the time:

O. ,. ",'.', <, >, \, L j , and_

This may explain what are otherwise surprising results in some of the subse­
q,uent pages.

In addition. the following Greek letters have been decreed by troff as look­
ing so Cluch like their Roman counterparts that the Roman version (font :) is
always printed. no oatter what font is mounted on font: at the ti=ne:

A. B. E. Z. H. 1. K. ~. N. O. P. T. X.

(See table II in the back of the NrotVTrot! t:sers's ~anual for details about what
glyphs are in each font and how to generate the special glyphs.)

Cocie
000
001
002
003
004
ooe
006
007
010
011
012
013
014
010
018
017
CXiI2
0121
oa
0C23
0tIA
oes -r:rn
OCSO
001
002
003
CXS4
ocsa
006
0CS7
040
0'1
042
043
044
040
046
047
0C50
001
0C52
oe3

I 0«14
0C5I5
0CI8
om
060
<leI
062
063
064
oecl
oea

~I
51

i 1
:I~!

11.
11.
ff

•
•

•
t · • • •
31
3i
J

space
1

(
)
•
+

I
o
1
2
3
4
15
8
7
8
9

.,

Font. Layout Positions

\(:1'1
\(:1'1
\(11
\-

\(ru
\(em.
\(W
\(811
\(ft
\(:tL
\(de
\(cic
\(tm
\(co
\(ra
\(ct
\(14
\(12
\(34

Code
100

• \(if 101
::l \(ip 102
• \(pt 103
- \(rh 104
v \(cu 1015

\(rn 108
o \Cbs 107
== \(+- 110
~ \«= I" 111
a \(>=,' 112
..; \(Ir 113
r \(t.I 114
J \(is ill5
/ \(sl 118
I \(bY 117
l \(If I 120
Jr \Crt 121

\(Ie 122
1 \(re 123

lr \(It 124
\(lD 1215

1 \(rt 128
J \(rb 127
t \(Ik 130
l \(rk I 131

C \(10 '1132 ," ::I \(sp 133
n \(cal 134
.. \(DO" 1315 I
- \(ll1 138
C \(1110 137 I

,

v \(g

\(:ali

140 I 141

142 I 143
144
1415 I
148
147
leO
1151
lea '
1153 I
1M !
11515
lee

... \(di 1157
• \(== 180
• \(-.1 181
... \(ap 182
.. \(!= 183
- \«- 184
- \(-> ISS
,. \(ua 188 I

• \(d. I 187 1
§ \(sc I 170
• \(.. 171 I

<
I :

1
172 I

I,: i~ ,
I 175 I I

I :> II ;~~

A
a
c
D
E
F
G
H
!
• · K
L
u:
N
o
P
Q
R
5
or
U
v

" X
y
Z
[

]

a
b
c
d

•
f
g
h
i
j
k
1
:n
n
o
l'
q
r
I
t
u .,

.11'

%

Y
z

5ceciai I

APL FONI', 10 POINT ONLY

A~B.LCnDlBE F _CVBtl]tJ·1C' LOMWTOOP. Q?R,STT-UJ. VuIF'Z:)Y'I'Zc 01234 56189

(.. II $ •• ~ V 1\ ~ J1 ... {} l J _\ J 0 .. <./ \. > , <

! .. (% .. • 41 .. • (.. v) .. 1\ : ... ~ " .. JI - ... = [.. {] .. } I .. J

; .. <.;. ... ? .. \

Bukervi11e ront, roman. lbold, itllic, 12 point only (Called 'basket- on line.)

ABCDI FCHIJ Kl.MNO PQ.RST UVWXYZ abcd.e fghij k.lmno pqrst uvwxyz Ol~1: 56789

!" IISf.Ic'():*--C] f J - _'1 0';./1. >, <

If' time be of all things the most precious, wuting time must be, as Poor Richard says, the greatest

prodigality; since, as he eJsewhere tells us, lose time is never found again; and what we a.ll time

enough, always proves UttJe enOU(h: Let: us then up and be doing, and doing to the purpose; so by

diligence shall we do more with less perplexity.

ABCDE FGHIJ KLMNO PQ.RST UVWXYZ aiJcri.4fgld.j Jr.lm:M pqrst u:t1'tZI:J:1% 01234 56789

/" 11$%61'():.--/ J f f ---'I@';·".>. <

If tim4 b, of aU. things tM 7tlDst f!redaus, ruasting ttme must bt, 4S Poor Richard sa,s, tAt grtatest

f!rOtiigrziU,; st.n&., 4S AI ,lsIDIMr' tliZs w. lost time is TlIVfT found Ilpn; ll7la rult.at we call time

nwugli, IlifJIa.,s f!rrnJU Utti, mou.g/r.: La w tltm up 1l7ld 0' doing, a7ld doing to tA, purpose; so fry

dillgm:' sMlI ru, d.tJ mer. ruttlt l,ss fJlTple:dt'J.

ABCDE FCHI] KLMNO PQ.RST UVWXYZ abcde fghij Idmno pqrst uvwxyz 01234 56789

!" #$1.8c:'():.··Clll- --\I@';·/?>.<

If time be of all things the most precious, wasting time must be, a..s Poor Richard says, the

~:ltest prodigality; sinc~ as he el~where tells us, lost time is never found again; and what we

call time enough, always proves little enough: Let liS then up and be dOing, and doing to the

purpose: so by diligence shall we do more with less perplexity.

130cldin font. 14 zsncl 25 point only.

14 point

1t13elll161l1l IUZI!R0 P~1\31' aVWXYX zsbccle fghij klmno pqrst uv'Wxyz
01!34 56159

U():--[1.:/7 ••

lY Hme be 01 ZIll things the most precious. 'Wzssting time must be. zss Poor
Ric:hzlrd. SAYS. the .,greZltest prod1gzllity: since .. zss ne elsewhere tells us.
lost time is never found. zsgzsin: zsnd. whzst we czsll time enough. ZSlWZlYS
proves little eno~~: L.et us then up zsncl be doing .. zsnd. dOing ~o the
purpose: so by .. ence sluzll we c10 more with less perplexity.

28 po int (Bo punctuZltion except period.)

1i.13~})f 161111 K1LfIRel P~l\~T
UVWXYX ztbcde ighij :RImno pqrst
u"Vwxyz 01234 56~89 .

II time be 01 Zl11 things the most
precious wZlsting time must be tlS

Poor R.ichard says the greatest
prodigality since ZlS he elsewhere
tells us lost time is ne'Ver Iound
ZlgZlin and whZlt we CZlIl time enough
always pro'Ves little enough Let us
then up tlnd be doing tlnd doing to
~he purpose so by diligence ShZlll we
do more with less perplexity.

Bodoni font, roman. bol~ itelic. 10 point only.

ABCDE Fem KL.'lNO PQRST UVWXYZ abede £,hii !tImao pqrst U'YWXYS 0123+ 56789

!"I'~8r'():*--[] ~ J" "'_\1 O';+/? >. <

If time be of all thin,. the most precious, wutiD, time must be, u Poor Richard uy .. the matest

prodiplity; liae h. elAwher. tau. u .. lo.t tim. ia n •• er fouad alain; and what we call time enough,

always pro ... little eDOlIIh: Let u thea up and be doinl. and doing to th. purpo.e; 10 hy diligence chall we

liD more with leu perple:niy.

II Ame b. of all rltia,. rite /IICNa "redm., rime InIUI ~ ell Poor Richcrtl _,. .. rAe ~.n

proG,alur. .u.c.. GI It. fll ... 1wn tell. r.u. 10. rime ia ,....../owuI. G,ain; and .iwu file call rime

fln_,1a, 01_,.. ~. linl. flnD.gM Wt IU r/ten I&p and bfl loing. and loin, ro rite p&r.I'po"; to b,.

«ilf,ence Juzll ,.. lo IlION _itA I ... "."pl_it,..

ARCDE rem Xl.MNO PQBST OVW112 ahcd. fpij fdaao p!IrR 1l~ OUM S678IJ

!" IS%8r'():*--[] f! "'-\1 O'i·/?· >, <

Jl time be of an dUDes til. IIIOR preciou, wa.&ia, time III'U& be, .. Poor llicUnl says, th. greateat

prodiplitr, IIiace, .. It. elsewh_ tella u, 10.& time i. lIft'er fOUDd apia; aad what we call ti_ eDougD,

always proqs littl. eDOlIp: Let 11. tit. 11' _ be doiDc. and. doiq to th. purpose; 10 hy dili,eDCe mall we

liD IIIOre with I ... perpleJ:ity.

Chess, 18 point only

Note: Our attempt at com.patibUity with Stanford. was only 99X successful. If you use
a blaDk space to iIldlcate au. em.pty white square it wtJl came aut narrow due to the
stupidity of troff. Either include the Una

.cs cb. 38
to put yaunelf ill caastaDt spaCiDI m.ade or else use zero instead of space. You
shaulcl also set the vertical spacing to 18 points.

.nf P .1 P .& . ft ch

.cs ch 38 0 ~~ 0 :;r/~ ~J?; ~~ .ps 18 I .•. , , ... "

.TS 18 b .t B .it & 1111111X
VOZOZOAOZl' ~.~

A ~"~ a iti ~ VZOZOZOOOF
VOoOZOZOZl' n ~ N %J 'YZOZOZOZOF
vmmzozOZF m ~ M ~ V1PZOZOZOF !.. .- ! . "

VOZXZOZOZl' r • R a 'YZOZOZOZOF
1IVlJllWlltJlXa

"/"~'

S
iI'~,#,

S ~a~ ~a~ , ;

.sp ,. ." ... ,

.ft P q \IU Q ~ .pe 8
1

",,,,,,
.cs P "\WI" L ~'//~ , .

" , 'lA!!' , , . , .. ,
k = K ~ . ~.:'~ J ~ J .m;

~.:: ~ ."

~ ~ W~~
U T

~~~~~~~(~~ F V ~~!1: ~~.BiI~ G • W • ~~~~~~~~ 
~~,~~~~~~ x • H 
~"'f~~~~~~ • 

0 z ~ ,m~:~~~~ 
~~~~~~~ ~ ~ ~ ~ 

1Ihite lmotes ill three lm_S.

Clarendon, 14 and 18 point roman only. From SAIL (Paul Martin & Andy
Moorer)

ABODE FGBIJ KLMNO PQRST lJ'VWXY abcde fghij klmno pqrst
uvwxyz 0123458789

"#$ %x'(>: -=[] ~ ~ ---\J@.;+/?>, <

If time be of all things the most precioas, wasting time must be,
as Poor Richard sa~s, the greatest prodigality; since, as he
elsewhere tells us, lost time is never found again; and what we
call time enough, alwaY's proves little enough: Let us then up
and be doing, and doing to the purpose; so by diligence shall we
do more with less perplexity.

ABCDE FGHIJ KLMNO PQRST UVWXY abcde .
fghij klmno pqrst uvwxyz 01234 56789

"#$ %x' (): _=[] ~ ~ _f'W_\I@';+/? >, <

If time be of all things the most precious, wasting
time must be, as Poor Richard says, the greatest
prodigality; since, as he elsewhere tells us, lost
time is never found again; and what we call time
enough, alwa.ys proves little enough: Let us then
up a.nd be doing, and doing to the purpose; so by
diligeI..1.ce __ ~hall we do more with less perplexity.

C , MoMf. ,....,,-.italic, .. 1t~ 1)0. ICaaaIa) .. T lII.ll,D pal __ (A'IIIilaille • ~

NGIII ala inti _ I t. '1'lIX ... 4_" tin .. wi witla va& T •• pedll. I. IlC'* propaw-
~ It)' ,._ _ ... ,. _ ,.._.in c_ be __ el ... __ I,. .,. •• w. 1Ia.,. ,_4 _. 10 poi_
1Ii_.It __ •• ,._1 _wll. a

S- fill _ .. ' WIIIi_ II mi_q III ._ fit ,_ r Xln.1a •• 1111 •• 1I eI.4 11_'_ '" .A.SClr.
.. eI _ ... _ .n- 10lil. 0lIl, witll .ped •• ~ .acll • \(l2o 0..0 C_ be _ d ali aU.

X..II'. fa ... _wu. I ,u. lI.mal.1i1lft • IlIMlleII _ , .. ,. be reducld betorl prillt' ..
S __ r. 1& •• Umit ••• at TM lac •• wi~1a ,11&, 'iii. II lIa1i ,, __ 'eal. He •• , ~b. on.lla1 tollt. be.,.
_. rel n.d witb. poi" .iI. _.y_ dal." •• wi'lao'" rod ... ' s_ to_ (I p.1It balci,T paillt ,emu,
• poiInl,.c _eI Wtl,t poiIn WtI,aad 11 ,. .. Italic) widell -wd 11 • .,. onlaorwia. ba.1I miluq wore "11,~"d
It)' •• illldq ,. 111_ I •• r pili ... in at _ ._ '*71 .. ('rbi. pi ,be ide. at m."'o", but WI _ 'OM
.... _11~

10 Pain ~ Roman

ABCDE FGHIJ KLMNO PQRST UVW'XYZ abed. fghij klmno pqrst 11.",:1:1'1 01234
5818~ ! " if rei '() ... H _, 0 ., e> 1< • ,.I:,rrS, T, ~,II,m~' SA" IO,l,JII"

It time be of &1l things the m.ost predolll,wuiillg fune must be,u Poor Richard '&fl,th.
greatest procl1pllty sinca,as he elsewhere talll u,lolt time is never found again and
what w. eal1 time enoup,alwa1l proves litile enough Lat 111 then up and b. doing,ud
doing to the purpose so by diligence shall we do m.ore with lea perple:1:ity.

10 Pa,,,,t It4lic

.ABCDE FGHIJ KLMNO PQ.RST UVWXl'% a.bcd4 !gMi ~lm"o pqrri UWl=!I~ 01.~
56789 I " if p 8 ~ • () : - - = {J ~ ~ - -- _ \ w @ • ; + /1, > , < " " J:, -; -; E, T, tI, II,
ft, 9, '" ~, €I, A, ", a, (I, #, "I, '10

1/ Cim. be 0/ <Ill thv.g. tlw ""''' p1'et:Sou" w4di"" tinw mUlt b., " Pao1' Rich4,.rl 'C!I',
the p'Gtat p1'otlig4IitT/; ""et, " M d,Nh •• telu ut, toli nnw il ",4tlet' /014",4 <lg4''',­
Gn4 WMt w. c4l1 finw mough, tilW4?/' provCI little mough: l"t u, thm up 4",4 be
cUI,,,,, 4"4 cUli"" to th, pu",o,,; '0 by liiligmclI 'Mll we lio mot"e with leu pe1'1'l~'ty.

10 Point Bold

ABCD! J'GBIJ KLMNO PQRST t1VWXYZ abede fdllJ ldmno pqnt 1lT'W'X7t 01234
58188 ! .. if rt ~ ~ , () I • • = [] ! J ... - _ \ ~ @ • ; + I ! • > , < " " 1:, " " 5, T, ., II,
", -, -; 4, 8, A, 9, 0,1, J, .; ;-; .•

If tml. be of an th1D.p the mOlt precioUl, wui1:n1 tmle mun be, u Poor Richard laTl,
the ,"atelt prodlpUtr; Ilnca, AI he elsewhere ten. ut, lOR time is never found apin;
and what we esJl time enoudl, always proves l1ttle enougha Let ut then up and be doinl.
and doing to the purpose, 10 by d.ll1,enea shall we do more with Ie .. perplexity.

1!'IIIaI1IDa-, lIaId,
T P ... a-,:BaId,ad l'laU4.
• Pai .. R_,Boid,uui Ita".
g Point RCIII:Wl,Bold,md. It4lic.
10 Pain t ROIIWl,Bold,and Itillic.
11 Point Roman,Bold,and !tillie.
12 Point Roman,Bold,and Italic.

CoUUt.cioWll (22 point. upper case letters onl,..) From SAIL (Paul Martin)

[J(]lJllmlJlUfll1f1S fllJ IrlTEl)E,.S II] [JlJlJrlT
[](]llJrJ UJITIi EIJI IT [J[]rr1JJEflSlTES E\1
EElflll lJlll ~ flrll1 IllEll!Ell

C}'rilllc. 12 point 0Dl,.

• '!'1IIIe C5e acta a.u TDID'C ftIt IIOC': apaoyc ICTDI' T'IIIftI SlYC'S' C5e ac oop lIDt'.I c:.aAc TSe rpe&ftC1'

apaunmrrI cue ac Ie eJCeSepe Te.UC ,.C JIIX': '!'1IIIe 111: IIeIeP 4IoYq IlI.I U'f e a.u T1DIe esoyn:

&III1c: npoaec JlR'J'TJIe eKOy1'Z ftt ,.C 1'SU ya IlI.I C5e J(,01IIII' IlI.I =11111' 1'0 TSe nypnoc:e co 6A .IUl11"eHe c:x&IUI e

~ lIope IlTZ lIecc aepa.aem

Y"'j1(X~~ y Z~3 a b~ d~.l ~e f g ... r h~x i"'l1 k~K l~ .. m~1I n-+K O-+Q

. P:"a. ~~I!. ~~c .~~:. u"'" v y z ... ,

Delegate, rOIll&l1, itaUc, and bald, 12 point only

ABeD! PGHIJ 1C1.'t1NO PQRST tlWXYZ aba1e fghij klmno pqrst uvwxy: 01234 56789

1 "#$'&' (): .-. [J f J --_\ I @tj +/1. >, <

If time be of &11 things the lIlost precious, wasting time lIlUSt be, as Poor Richard
says, the greatest prodigal 1 ty; since, as he elsewhere tells us, lost time 1s
never found again; and what we ea.ll time enough, always proves 11 ttle enough: let
us then up and be doing, and doing to the purpose; so by diligence shall. we do lIlore
with less perplexity.

ABCD! FGBU KL.'f/JO PQJlSf UTlWXYZ abecie Jghij .two pt(rst Uuva.lIZ 01234 56789

!"#S~&·():·-I{Jf!"'--\/@ 1+17.>.<

It time be of aZ Z things the most precious. lIIasting time mu.st be •. a.s Poor RiclJard. ~au.s.
the greate.st prodigaLitt/: since. a.s lie el.sewhere tells u.s. Lo.st t1.me -L.s nel1er found
agai.n: andlilhat 1M cdZ t1.me enough. aLUlalis prolles Little enough: Lilt u.s then UP and be
doinl1. and doing to the purpo.se: .so bU d1.Ligence shall IDe do more zritJt Le..s.s perplexity.

ABtDE PGHI.1 IIltNO PQltST tJVWXY'Z abcde fghij klJlllo pqrst uwxyz 01234 56789

! " II $" ' () : • - - [] t I _'\ I @ t; + /1. >. <

If tbe be of all thiDgs tlJe .ast precious, wasting ti_ JlUSt be, as Poor BieDaI'd
says, tbe greatest prodigality; since, as he elsewhere tells us, lost t1Jle 1s
Dever fOUlld again; uu1 what we call tbe enougb, always proves little enough: Let
us tbeJ1 up and be doing, aDd doing to tile purpose; so by diligence shall we do .ore
vi th le.ss perple~ty.

Fix fixed width font. S, 9. 19. 12. 14 point

! ••• , \I C J I ••• C J _, ' I • I , .. ". c

" tI ___ e# .u "'1 __ ... _1 __ I". ,, __ ~_ 11_ .. _. U. ... ___ I .. li' •• 11_ •• toe e1 __

tall lot .. \1_ ;. ft_ I _ _ .. all \. __ • "' __ .. _ lIttl. _ ... ~ .. _ ... ___ _ ... ".

\8 ,,. _ ••••• l1i __ 11 ... _ •• 1'" 1_ ..-la., •.

S point

ABCDE ~;HIJ KLftNO paRST UVUXY a.cd. fg"IJ tl.no pq~.t ~vwx~z .1234 S67aS

! ",.: &. ') I. -. tIl I --_\ 10' , .. I? • >. <

If ti ••••• f .11 thln.- tft t p~.clo~a, wa.tln9 tl •• su.t •• t a. Poo~ Rlafta~d •• ~., tho
9~.ot •• t p~.dlgallt~1 Ilno., •• h •• 11.Mft.~. t.ll. Y., lo.t tl •• I. n.v.~ fo~nd IgI'n, and
Mftat w. alii tl •• IftOU9ft, alwl~. p~ov •• Ilttl. Inoughl ~It Y. th.n ~p Ind •• doln,. Ind doin,
to tho pu~po •• J 10 ,~ dlllg.nc. Iholl w. do s.~. wit" 1.1. p.~pl.xlt~.

19 point

ASaE FGHJ 1ClJ'NJ PCRST lM.IXY abC.de fghi j kllllno pqr~t UVt.l~Z al.234 $785

! ",1%1' () I.--[] l j-"'_\IO'I+11.>.<

If ti •• be of III thing. the .aet precious, wasting time must be, as PQO~ Richard
aaijs. the great •• t prodigalitijl .ince. as he .Ieewher. tal I. U., lo.t time i. never
foU'1d aga i", and wh.t we ca I I t i IIIfI enough, II ways pro..... lit t I. enough: L. t u. then
up and be dO i ng, Ind do i n9 to the purpose, 10 by d I I i gene. Ihal I we do mo~1I with I ea.
pe~p lex i t~.

12 paint

ABCtE FGHIJ KLMNC PORST UVUXY abede fghl j klmna pqrst uvwxyz 91234

5i789

I" II ~&' () : * -. [] f J ---, I @'; + I? >. <

If tIme be af all things the mast precious. wasting time must be. as
Poor Richard sa~s, the greatest prodigal it~; since. as he elsewhere
tel la us, loat time is never found again; and what we cal I time
enough. always proves littls enaugh: Let ua than up and be daing. and
doing to the purpose; sa b~ di ligence ehal I we da mare with less

p~p I -.I ~~. . ..

14 J:loint

ABlE FGUJ Kl..I"NJ AJRST lNWXY abcde fghi j klmno pqrst
LM:><yz 81234 5S78S

"IS~&' () =*-==[]l J-N_\I@';+I?>
, <

If time be of all things the most precious, ~asting time
must be, as Poor Richard says, the greatest prodigal ity;
since, as he else~re tells us, lost time is never found
again; and what ~e cal I time enough, al~ys proves tittle
enough: Let us then up and be do i ng, and do i ng to the
purpose; so by di ligence shal I ~ do more ~ith less
perp I ex i ty.

Gacham. roman. bold. 1u71e. lapoint only
The gacham font is al.ost indistinguishable fro. the fi~ font.
po i ntad cut that our gacham I'"OMn and bo I d fonts rea I I Y are f i ~.
e I udIId anyway for conven i enee.

In fact. it has been
Sigh. The\! are in-

ASaE FGHIJ ICU'NJ PQRST lMJXYZ abede fghl j klma pqrst uVWX\jz 9l.Z34 5S785

! ",IS&' () : ••• [111 _\10·;+11.>.<

If tl.e b. of all things the mast precicus. wasting ti •• must be. as Poor Richard

88\jS, the greate.t prodigality; since. ae he elsewhere tells us. lost time is never

found aga i nl and what we ca II t 1_ enough. a I W8\jS proves I itt I e enough: Let us then

up and be cia i ng, and cia i ng to the purpose; sa by d iIi gence sha I I we cia more with less

pe",I8)(lty.

ABCDE FGHI.1 I(IJftO POR.ST UIIWXYZ _de rgtr1j /c7aro pqrst uwncyz 01234 W89

1"ISJa~():·-I[ll 1-"'_\/0';+11.>,<

If t1_ be of a77 th1n~ the lID" preciOUS, WU't1ng 1:1l1li aut be, as Poo,. R1ehard

$ays, the grea'test prod1ga71tYi s1nea, as he e7sewhere 1:877s us, 70st 1:1me 1s neve,.

round aga1ni ad wnat WII ca77 1:1". enough, a7ways proves 71tt78 enough: Let: us then

up Md ,. do1ng, and d01ng 1:0 the pu,.tlo.; so by d171genca sha17 1118 do me,.e w1th 7ess

partllex1ty.

ASaE FGHIJ lC1J'NJ PCRST UYWXVZ abed. fghi j kiln) pqrst u'AQCYZ 9l.Z34 5S785

!",IS&' (): ••• [] (1 _\10·;+11.>.<

If ti_ b. of all thinge the .,et precious. wasting ti ... IIUlt be. a8 Pocr Richard

says. the greatest prodigal ity; since. as he elsewhere tells us, loet ti_ is never

faU1d again; cn::t what we call ti_ enough, alW8!,je pr1lwe I ittl. enough: Let us then

up and be do I ng. and eta i ng to the pu-pose; sa by d iii genc:e sha 1 I we eta lIICre wi ttl I ass

perp 18)(i tv.
Greek. 10 point only

'1'bis font pro.-icles aD. alternative to the Greek characters on the standard. special
font.

ABCDE FCHLT KIJ(NO PQRSl' UV1rXYZ abcde fzhij klmDo pqrst

X. ft,.. ~ .. aU f'1IrT'- f"?I ;&IN" I""X'OW ~ "SJII "" ... ~ _ IIoopp'x~a ,IZI/I.- ,..". .,pt_
.. ,.,.,_"' ~. - .. fM..,. __ ~ ..)ow .. ~ .. "n,,. x.u ftIM • ...",

..... " " kffM •,.1f A _ ~ •, .. I..., ,. ". n"..en ... H "M"'~' ...u
_ I. ,.,. ~ ... ,..J. • .-y

The hiS font includes a subset of the hiS's graphic character set, plus a
few logical extensions te al low ferms and diagrams te be drawn. The characters
are the same as the hiS's graphic interpratation set.

• bed e fit u v m n h k

The characters are designed to overlap.

Examp Ie a f usage fer diagrams:

Z89
microcomputer

syst_

MCSaaea OESIGI MOOULE:
* is-bit C?U
* 32K bytes RAM ~l Terminall
* SK bytes monitor ROM· .
* Parallel Ports
* is-bi t timers

1--......,.......,: 641< bytes RAM I
----------1-0 - _____ ._ ••• __________ 0_ •• ___ •• _-_ •• __ ._.

Hebrew, 16. 24. and 38 point only

lapoint

!"# ~:ta(): - []fj--_\I@a;? 1.>.<

t."731 r:;:~.,,, ~ ~IZ HJ l1TiQl1~:l:: =~~11 ~ !l"~~J" !l"y-r~=e~~. ~e ~r: =~
M"':'lM:eN~l1 ~~ ::V~n H,=n ~~H"M:'v. ~\9A '1i ;tz t51 '"1 ; ~ !!"11 !!~. ~ ~ta ~~~i\9
~ :;, ~,= 1t'\9:'.

24 point

rQn ~"N' n ;rQ ~ N: MO " ;~ en c , :I- .-_I ~ ,
~, -O~ .~ to nNra to" ~"N;t:N: ~

u ~'Q ~.~ I " . - ~.. • Ii.;

;, NiN:' .

38 point (rather ragged)

10 paint Hershey

ABCDE FGHY lQJ4NO PQRST tJV'WXYZ abede fgbij klmna pqrst uvwxyz 01234 56789 !. S.
;; • .se, " (.). :, .,., [,]. '. :. 1.1 ..

\(em .. ~ - .. -. \- .. -. \(bu "., \(sq \(ru ~ _ \(14 ~ Je. \(12 ~ *. \(34 ~ I, \(li ~
11. \(ft .. 11. \(ft ~ tt. \(n ~ til. \en .. m, \(de ~ ., \(dg ~ t, \(tm ~ " \(et ~ ~\(rg ~ ,.
\(eo ~ •
When. you ft.ex your dngers in a eotlln. it can. bame a giraffe.

ABCDE FGHIJ KLIINO PQRST UVWXl'Z abccls !ghi.j A:Lmno pqrst u'II'UJ:t:1Iz 0123456789!.
$, :r. Ie, " (,), :, ~ -, [, 1, " :, /, ?, •

\(em ~ ~ - .. -. \- .. -, \(bu \(sq"., \(ru ~ _ \(14 ~ Je\(12 .. *\(34 ~ I\(ft ~ ft.
\(ft .. ft. \(ft .. JJ, \(Fl .. Ift, \(Fl .. Ift, \(de .. I, \(dg .. t. \(fm .. '. \(et .. !I\(rg .. "\(eo ...
Whtm you fte: your fi7UJe'n in. II cafft1'L, it cern. ba.fJfe II ¢:ra.1!e .

. ABCDB FGHU :ta.JINO PQRS'1" uvwxrz abcde fghij klmn.o pqrst \DwXj'z 01234 56789 !. S.
~ at. ' I (I). :1 e, -, [I]. '. :. I. ? •

\(em .. -, - ~ -, \- .:. -I \(bu ... , \(sq ... , \(ru" _. \(14" X\(12 .. }S\(34 .. 1\(t1 .. 11.
\(n .. 4. \(ff .. ~ \(Ft .. m. \(n .. m. "de" -I \(dg .. tl \(lm .. ", \(et ~ '\(rg .. "\(co
.. e
1rheD. you 4ez your angers iJ1 • coma.. it CaD. baJ!le • gir2U!e.
From special font: .. I = ~ I - ... _ \ I 0 • , + > <

Special characters: \(pi .. +, \(mi .. -, \(eq .. =, \(ee .. -, \(sc .. I. \(aa .. " \(ga .. "
\(ul .. -. \(sl" I. \(ea .. CI. \(eb .. fJ. \(eg .. 7. \(ed .. cS, \(ee .. e. \(e'Z .. (". \(ey .. '7,
\(-h .. "" \("1." '. \(elt .. c. \(el .. A. \(em .. jJ.. \(en .. v, \(eo .. ~, \(eo .. o. \(ep .. tT,

\(er .. p. \(es ~ a. \(bs .. ~, \(~ .. .,.. \C~ .. v. \(ef .. 'I, \(ex .. X, \Ceq .. '/I, \(ew .. ~,
\(-A" A. \(eB .. B. \(~ .. r, \(eD .. 6. \(eE .. E. \(ez .. Z. \(ey .. H. \(eH .. 9, \(el .. 1.
\(eK .. K. \ceL" h. \(eM .. M. \(eN .. N. \(-c .. =:. \(eo .. 0, \(ep .. II. \(eR .. p, \(-S .. t.
\(-1' .. r. \(eu .. T, \(ep' ... , \(ex .. X. \(-Q ~ y, \(e" .. O. \(sr/, \(rn .. - , \(>= .. 11:.

\(<= .. ~. \(== ~ II. \(-= .. :II. \(ap \(!= .. _, \(-> , \(<- , \(ua .. '1', \(cia ..
• , \(mu .. x, \(dt "-+. \(+- .. :l:. \(cu" U, \(ea .. n. \(sb .. c:.\(sp ~ j, \(ib ~ ~. \(ip ~
:J. \(it ... , \(pd ~ a. \(gr .. V. \(no ~ -. \(is ~ I, \(pt ~ c, \(eq .. =, \(no ~ ., \(br .. I,
\(dd .. *, \(rh ~ ~(lh .. ~ \(bs "0 \(or ~ I, \(el" O. \(It .. " \(lb .. ~ \(rt .. r, \(rb .. J.
\(lk .. i. \(rk .. ~, \(bv ~ I, \(If .. L \(rt "I, \(Ie .. r, \(re ~ 1

. It time be ot all things the most precious, wasting time must be, as Poor Richard says.
the greatest prodigality: since. as he elsewh.ere tells us. lost time is e.ever found again:
ae.d what we call time enough. always proves little ee.ough: Let us thee. up ae.d be doing.
and doing to the purpose: so by dlligee.ce shall we do more With less perplexity_

This is an e:c:mpLe of a sample in various foe.ts.

Hershey font. Thills the default font for matt. Raman. nal/it: and Bold. in e. 7, a, 9, 10,
11. 12. 14. 18. lB. 20. 22. 24. 28. and. 38 paint.. The tolloW'ia.& examples are 10 point..

If time be of all things the mast precious. wasting time must be, as Poor Richard. say!.
the lreat.est pradiialit.y: since, as he eisewllere tells us, lost time is never round. again:
and what. we call time enouah. always proves little enouah: Let us then up and be· dOing.
and doq t.o the purpose: so by dililence shall we do more wit.h less perplexity.

lIS Poor Rl.ch4rrl s=ys, th.tI greatest prod:l.gal:I.t.y,· sinea, lIS h.a el.srwhen teUs us, lost time
,. M1/rr/01I.ftd. aga:i:n: a.:n4 'Wh.a.t 'We caU tima m.augiL, czl'W=!Is pratJes littLe e'1t.OugiL: Let
us tiLm. up a.:n4 b. d.tri:n.g, a.:n4 tloin.g to th.e F"""P0se; so by rliJ:l.grmce sh.alL Ule dJJ m.ara
uAth. 1.ass P8'I1'Le:ity.

If time be of all t.hiD.p the most precious. 'WBSt1ng time must be. as Poor Richard. says.
the areat.est pradigality: lli.D.ce. as he elsewhere t.eUs WI. lost. time is never found.
.. aiD: and. what we call time 8Ilouch. ab,aJ1l proves little enough: Let WI then up and.
be dome. and. cIaiDc to the purpoae; so by dW&ence shall we do more with less
perplexity .

• ,..--.lfIIML
., poUa lIoaIua. _1
e poiDt. Rom.aD. Bold. IDd. It.al.il:.
9 point. Roman. Bald, and Italic.
10 point. Roman. Bold. and Ifa.Lit:.
11 point Roman. Bold. and ItaJ:i.t:.
12 point Roman. Bold. and Italic.
14 point Roman. Bold. and Italic.
16 point Roman. Bold, and Italic.
18 p oint Roman, Bold, and Italic.
20 point Roman, Bold, and Italic.
22 point Roman, Bold, and Italic.
24 point Roman, Bold, and Italic.
28 point Roman, Bold, and
Italic.
36 point Roman, Bold,
an.d .Italic .

Meteor, roman, bold. italic, 8. 10, 12 po1D.t, no 12 point italic.

ABCDE FGBIJ' KLMNO PQRST UVWXYZ abede f&hij klmno pqrst uvwxyz 01234 56789

! '" $ %.' () :. - • [] II ~ _\ 10 I ; + I? • > • <

It time be of all things the mast p~ wastmg time must be, as Poor Richard says, the

areatast pracUcal1ty; .s1lu:e, as he elsewhere ten" u.s. lost time is never found again; and

what we call t1me enough, always proves Uttle enough: Let us then up and be doing, and

cla1Dg to the purpose; .so by dW.genca shall we do mare with less perplexity.

ABCDB FGHIJ rt.MNO PQJlSZ' lTV'WXYZ abede tgb,iJ 1c1mno pqrstlZ'l1'W%YZ 0123456789

I" 'S % &:' () : - - • { III ~ _\ I 0' ; + I ? • > • <

1~ CiJJUJ be ot all WlZSS tl1e mast. preci.oru, wut:iJJ8 time mu.st be. as Poor Ricbard says,

tl1e geatest.lIrcdi&aUty; &1JJ.ce, as 11e elsewhere Cell.s u.s, lost. U.me i.s J1e1Ter toWld

~ aDd wl2aC we call t1me eJ201ZSh, lIlway& prove.s little enough: Let u.s then up and

be doing. &ad doing to the ptU'po.se; .so by diligence .s1la.ll we do more withles.s

perplfl%!.ty •

ABCDE FGBIJ' IU.MNO PQBST UVWXYZ abcde tghiJ klmno pqrst uvw:xyz 01234

58789

1"'$~.·():·-·[lll""'--\IO';+I?>.<

It Ume be ot all tl11n.gs the m.ost precious, was1il1g time mu.st be, as Poor Richard

says. the greatest prodigality; sil1ce, as he elsewhere tel1.s us, lost time is never

t01U1d aga1D.; and what we call time enough, always proves Uttle enough: Let u.s

then up and be doing. and doing to the purpose; sa by diligence shall we do more

with less perplex:l.q.

Kicrocramma font. 10 point only

ASCCE PGI-IU KLMND PGRSi UVWX'(at:x:da fghij klmna ~nst IJ'I'MtyZ 01234 56799

l"IS".&I(]:C·_[]t I _\IOI;+/?>.<

If tirN tie of .1 things the I"I'ICIIt ~cua, westing tims must tie, as PQCII' Richei'd aye, the

graeteet ~gajjty; .nee, as he alsewt1era tails us, teet time is naY .. faund again; and what

wa call time.-aJgh, always prey_ Iittle.,augh: Let UII then up and be dc:Iing. and dcing to

the ~ IIC by diligenca sMall we de mere with , ... perplDCity.

mona font, 2i potnt only

A33C~!: feIj3J 1\1.1t1NC P(QB;S{: iIISW?tllZ
abcae f ghtJ almno pqrst oomxyz 0123i 56189

I"#$¢&7(): _

>,<

PhiIaae{phia is the most pecasntffian of American
cities, ana tho$ probably leaas the morIa.

- lj. 1.. 1fIencaen

Nonie, roman, bold, Italic, 8, 10, 12 point

a point
AlCCI FGHlJ IC1.MNO PQflST u~vz aocd. ,."11 klmno pqrst UV¥Qy& 01234 5878a

I" ,S" •. 0 sa. • C J ! I _'\, •• I + I ? • > • <

If tim. b. 01 all t"lnos tIt. moat precious, waatlno tim. muat b., .a Poor FIIch.rd saya, th. ;r •• t •• t IIrodl;allty;
sine., a. " •• I •• wner. t.lIs u.,loat tim ... n.".r found aoaln; .nd wnat _ call tim •• nou;h. always IIro" •• little
enouoh. L.t u. tll.n up and b. doinO. and doing to til. PUrpOl.; .0 by dnlg.nc. shaU w. do more with I ...
perplexity.

ABCDE FGHIJ IWWNO PQIfST UVWXYZ 611cd. f;hI J IlImno pqrft UIIWJlYZ 01234 5e7 a~

I ", .. " 4 • (), • •• (] ! I _'\ ,.' I • I ~ . >, <

If time be of all thillfls the moat precious, WI_tlff9 time must be, .. POOl' If/ch.d '.)lS, tIHI gr ... st prodigality, :rlm:e,
_ lie els.wller. tells us, ,_ tim. Is ~ found ."aln, IItfI whitt WI. cal, tIm. enough, alw.,s pro" .. IIttl. enough,
Let us thM up IItfI be dolff9, IItfI dol"" tel the purpoM, so by diligence sllall Wle do more Wlltll Ie .. perplellity.

ASCDE FClHIJ KI.IIIIIa PaRST INWXYZ .lIcd. filii) kllllno pqra1 u_xyz 01234 587a;

I"IS"6' Ole •• C]! 1 _'\'.· ;+/ 1. >, <

If tim. b. of all things til. moet pr_jou., waatlng tim. mua't b., a. Poor Richard says, the gr.ate.t IIrodigality;
sinea, a. " wh.r. tella lIS, loat tim. 'a n.ver found .gain; and what w. call tlm. enough. alw.ys prove.
11'tUe eftQUlJIU Let lIS tII.n UIJ and b. doing, and doing to til. p..-poa.; so by dllig.nc. shall w. do mere with I •• a
perplexity.

10 point
ABCOe FGHIJ I<LMNO PQRST WWXVZ abcde fghlj klmno pqrst uvwxyz 0123458789

•
!",S'1.&,():a·_[ll J-"'_\I@';+/7.>.<

If time be of all things the m~t precious, wasting tlme must be, as Poor Richard says, the
greatest prodigality; since, as he elsewhere tells us, lost time is never found again; and
what we call time enough, always proves little enough: Let us then up and be doing, and
doing to the purpose; so by diligence shall we do more with less perplexity.

ABC DE FGHIJ KLMNO PQRST UVWXYZ abcde fghlJ I<Jmno pqrst uvwxyz 01234 SS7SS

! '" $ % & I (): • -. { 11 ! _\ I @I; + /? > , <

If time be of all things the most precious, wasting time must be, as Poor Richard says, the
greatest prodigality; since, as he elsewhere tells us, lost. time is neller found again; and what
we call time enough, always proves little enough: Let us then up and be dOing, and doing to
the purpose; so by diligence shall we do more with less perplexity.

ABcoe FGHIJ I<LMNO PQRST UVW'XYZ abcde fghij klmno pqrst uvwxyz 012:3456789

!" # $ % & 1 (): •• = r]! 1- -_\ I @I; + /? >. <

If time be of all things the most precious, wasting time must be, as Poor Richard says,
the greatest prodigality; since, as he elsewhere tells us, lost time is never found again;
and what we call time enough, always proves little enough: 1.et us then up and be dOing,
an_d .d~i~~ ~~ t~~_~urpose; so by diligence shall we do more with less perplexity.

12 point
ABeDe FGHIJ KLMNO PQRST UVWXYZ abcde fghlj klmno pqrst uvwxyz 01234
66789

I " II $ % & • (): • - = [] f J - - _\ I @ I; + I ., • > , <

If time be of all things the most precious, wasting time must be, as Poor
Richard says, the greatest prodigality; since, as he elsewhere tells us, lost
time Is never found again; and what we call time enough, always proves little
enough: Let us then up and be doing, and doing to the purpose; so by
diligence shall we do more with less perplexity.

ABCDE FGHIJ K.J.MNO PQRST UVW)(YZ abcde fghl) klmno pqrst ulIWxyz 01234
56789

I " II $ % & ' (): :If - • [] t f - - _\ I @ , ; + /? > , <

If time be of all things the most precious, wasting time must be, as Poor
Richard says, the greatest prodigality; since, as he elsewhere tells us, lost
time Is neuer found again; and what we call time enough, always prolles little
enough: Let us then up and be doing, and doing to the purpose; 50 by
diligence shall we do more with less perplexity.

ABeDE FGHIJ KLMIlO PQRST UVWXYZ abcde fghij klmno pqrst uvwxyz
0123456789

I" II S % & • (): • - II [] ~ ~ - - _\ I @' ; + I ? >, <

If time be of all things the most precious, wasting time must ba, as Poor
Richard says, tha greatest prodigality; sinea, as ha elsawhare tans us,
lost time is navar found again; and what wa call tima anough, always
proves little enough: Let us than up and ba doing. and doing to the
purpose; so by diligence shall we do more with less perplexity.

CQla $nglish. 8. 14. ana 18 paint anJ!-t_ (~his font is caUea
"oJaen!lJish " on line.}

''''' ~~ ~c5~~~$'~ ~I ~~ ... Csflt! IJm. "'1I~mzH 5m!

,.,':·11---_'0'; .>.<

UcQJ$.. otJ.iU J.t~~lY. lr4DlllS'!l' ~.,.. abca. fghii kItteno
pqrst IIV'aOZUZ 01234 56"189

H# • . .>.<

U tim. he of .D thins- tit. most p.-..:iou ••• "3JIting tim. tnu.t be ... ~oo ..
llUc" ... a sap .. tfle F-tesrt p...,aia-Jitu:mnftt ... he .Lse-whll:t"1l: ten. 11_ .. tact
tim. _ rueve.- fa .. na ag"':xna • .Juri • __ caD tim •• nough ... J.-avs prov ..

I gIt:~et II. tlten 1111 ~a he aoing .. ~ aoing to the pu.."o .. :.o by

am9*-=- _"ad! ... ao mo ~ t._ p...,,~.

18 paint

~~~l;l$ lf~~l.l ~~~1l'i~ ~CD"!tt~ 1tf.VW,,:y~ 
.&rae f!lhii kJntno pqrst u,..,,\,"x~z 01234 56789 

"# . { } ?>.< 

1£ tirne be of all thin!ls the most pT'ecious. ","astinA tirne 

must be" as '3.?oor ~ichaTa sa~s" the nr~ateS't proai~aIi~ 
since" as he else,\,"here t~l1s us" lost tirn~ is n,"er fauna 

a~ain ana 1.\,"hat 'v~ cAD titne enou~h. ahvaJ.ls prov~s little 
enough ana ! think l' m ,\,"astin~ time fJ,tping aD this stuff 



PIP rmrr, 1& PDIHT anY, tiD UlIJEH caSE 

.CD£ FmlltJ KLMHD PUllST 1WIJ3YZ 

!"# '():- ~j--_\ @'; 1.>,< 

IT CDUI.D PRDBIIBL Y BE SHIDJ1I BY YfICTS IIHD rmuRES nurr TH£H£ IS HD 

DIST1HCTLY KImI1E t1MEmClDI C21MIHBL CLSSS Em:EPT ClHG2ES5. 

- HfIRK nJfI1H 

r IS .. 1. If a.Il lliltS Itl lilt ",lias. n$tllf U .. aut h. &I 1=r !11~ un. Ib ,mtlSt lnil(tilir. fius. IS 11 
,Jaw .. lIas ISo lisa u .. Is as., fad If,&a: ad .at II WI U .. lUI." a.lwa" ,:.I !ltU. IUllt II: I.&t U lb, " Id h 
I .... au '.'f I' ttl Jlt;m: u ., '~'''' :b4 n •• un .!lll1a ,lrPiutr. 

Sc:ript., 18 point only. This font appear.s to be almost. identic:a1. to the 
··Coronet" font from SAIL. except that the period and one other glyph 
of Coronet are mis:sing a raw, and Coronet is supposed to be 16 point. 

(They are beth really the same size.) 

.ABe2t ~gJJ JJ J( .em110 PQI'<.s ~ UVW xyz .It:J, 
I,"i; IJ .. ,.. 1""'; _"Z'l~ 01:134 50'789 

" # . . .>.< 

J I ti •• l. ./ .I! fl;",,~ fl .... 41 I'"t:i~. ...Ji"" li., .. lUi /,.. •• p .. , 
r< ;,:/a.,J ua'f •• fl, '1' •• "4~ I',..J,,,.lu,,; M"l:r • •• ~. '!uwla,,.. t,!!J II., 1041 ti •• i4 

-"". /._J .".'11; II"J .. ".i •. ~1I1! tiM' ,,, •• ,,J... ./WG,. ,,._.~ lild, ,ft • ."./": .t,1 
IU d ... " a" III1J /,. J •• "" • • ,.) J.e"" t. tl, ,_" ... ; ~. ~'1 Ji/i",IIt:r JJ..a!! .. " J. 
"'.,,, "il~ /!4 •. I.,:,,!uil'l. 



V"# '. ~:I~J---\@',~ .>,< 

vCG 5m~~ IlmGlV Os alm ~lmE1blh(3lJv ~aI~m~~ 1l1!J1ll 
I?1mJlltmllm a:m~WJl$v[!tmls. CV mE vm~ ~CilWGlnvllJ@~ (fiT 

~fll[g tabtmJsv rnmmc:mu;[1b!S. 

SIGN. 22 POINT ONLY 

ABCDE FGHIJ KLMNO PORST 
UVWXY2 >< 0123456789 

t "# ' : * - =. f ~. - ,.... _ @ ; / • > • < 

THIS FONT W AS INVENTED BY A 
DRAFTSMAN WHO HAD LOST HIS 
FRENCH CURVE. ): SO IT GOES < 

LOWER CASE L IS ~, LOWER CASE 
R IS <:. 



star. her.lhey font. This font is identical to the hershey font except. that. the point sizes are one point 
smailer. aa.cl the width tables are thC38 WI8d for the real typesetter. Hence. this font is useful when 
prariewing documents that ant to be sent to a typesetter to make sure the specin&'. paging. and 30 on Us 
riIht. ThaN are Roman. IfIaJ:ic and Bald in B, 9, 10, 11. 12. 14. and 16 paint. The following examples 
... 10 point. 

ABCDI!: FGHIJ' KLMNO PQRST UV'W'XYZ abc:rie fghij klmno pqrS uvwxyz 01234 56789 

!"'S~.·():··= []I J ..... -\I@·;+ !?>. < 

If time be of all things the most precioU3. westina time must. be. as Poor Richard says. the greatest 
prodigality; sI.nce. as he elsewhere tells WI. lost time is never found again; and what. we call time 
couch. always proves liW. enough: Let WI then up end be doing, end doing to the p~; 3D by 
dillaence shall we do mont with less perplexity. 

ABCDE FGHIJ KLll NO pqesr rJV" XYZ crba:tIt IJh:ii A:bnnD ]rIf'Si ~ 01234 56789 

!",SX4t·{):e.= (]!J .. ----\IO':+ 11.>.< 

1Itim1 M o/a4 f1I:izfJp fJta ma.U~. umting .. must be, cw Fbor RYita:rd.S1I¥. """ grea:I:ast~; 
met, a:r ItA ~ trIIl.t w. lost =- 'is "."..,. J:rt.n:i. a.ga:i:n; mid 'IJ.h.a.t 'WI call ti:rrw (l'T'IJ'I.II]!t, aI:uJzys prm.a 
IiiiJa ~ L.t w ttum. 'Up a:nct M dD'irV. a:nct dairig iI:! tha fJUl'IXJsa:.so by di1:it;rml:::tl siwJl 'WI dD moTe tLiJ:h le:s:r 

~ 

ABeD!! .P'GHIJ ICLJI NO PQ RS! UVYXYZ abcde fghij ldma.a pqr.rt UYY%y.& 01234 567B9 

If time be d. all thiDp the lDaIt pra:iaa. yatiq time ID1lSt be. .. Poor Ric:hani _:ps. the greatest 
prodigality: since. _ he ebetrhere tI!U:I as. last time i:s ne'er faand again; and what we aill time 
maugh. abraT-' prares little enough: La us tha:I. up and be dcing. and daiq to the purpase; 30 by 
ci.1ipI1ca shall we do mare with less perp1aity. 

8pamdtoIMB. Bcicl CIl1flllliia. 
9 point Roman. Bcid. cui llalil:. 
lO,point Roman. Bald. and lfaJit:. 

11 point R oman. Bold. and /taJ:ic. 
12 point Roman. Bald. and IfDlir::. 
14 point Roman, B old. and Iir1lic. 
16 point Roman, B old, and Ital:it:. 



Times fones, romaa. italic, aad hold. 10 paiDt only. 
Th .. fony mowed up ill a directory ·labelled "timecrollUUl" alon, with dane other fony which turned out 
CO be aoUt. meteor, uui ..... ,othic:. Tiley an probably Dot really tim .. fones, hut IHID CO be pretty clDse. 
Nocice the top of t.Iae "r for a clear differeace &om a real Times 101II8II font. 

It is ov ... to h .... real, dicitised ..... of di. times fony from th. phototyJNlHU81'. w ...... tuaUy 
plaa co do dais. At th., paiD" dI. times font will probably replace the hershey font .. the default. Such a 
Times font is already ."ailahl. from JoJ .... :S:opkiDs UDi'flll'Sity for • f ... hut we couldn't rediatrihute it, 10 

we plaa do dirit.iM them ov.nel .... 

10 PoiU 
ABCDE rollII IL.'dNO PQBST U V wXtZ aJIcd. f,hi; klmao pqrst U'fWsys 01234 56189 
! " .,. ~'" (): * -- [] l J ....... _\ 10'; +/? >, < 
" c, _, ., _, _, e, a, , ~ ~ '" So fI. ff, m. til, ., t. t, ,~ 

ABCDB TCBU KLJlNO PQRST uvrXTZ obc •• /lltij illJUlO pqr8l1t1111Sy&' 01234 56789 
1".,'1.1:'( ):*--u ~ , .... "'_\10':+/1. >, < 
t, " _, -, -, _, e, Q, , ~ Ito J4. '" /I. II.IA !11. ., t, " , fM' 

ABCDE roBIJ XL.'&NO PQBST UVW1tZ aWe fchij klDmo pqrst U'fWXy.l 01234 S6"189 
!"",1.&'():*--Clf 1 ....... -\1 O'i+/?·>,< 
" ',-, ., -'.-'!'J'" ~ ~ '" &, fI, Jr, m. fD, ., t. t,,~ 





A Tour through the UNIXt C Compiler 

The Intermediate Language 

D. M. Ritchie 

Bell Laboratories 
Murray Hill, New Jersey 07974 

Communication between the two phases of the compiler proper is carried out by means of 
a pair of intermediate files. These files are treated as having identical structure, although the 
second file contains only the code generated for strings. It is convenient to write strings out 
separately to reduce the need for multiple location counters in a later assembly phase. 

The intermediate language is not machine-independent; its structure in a number of ways 
reflects the fact that C was originally a one-pass compiler chopped in two to reduce the max­
imum memory requirement. In fact, only the latest version of the compiler has a complete 
intermediate language at all. Until recently, the first phase of the compiler generated assembly 
code for those constructions it could deal with. and passed expression parse trees, in absolute 
binary form, to the second phase for code generation. Now, at least, all inter-phase informa­
tion is passed in a describable form, and there are no absolute pointers involved, so the cou­
pling between the phases is not so strong. 

The areas in which the machine (and system) dependencies are most noticeable are 

1. Storage allocation for automatic variables and arguments has already been performed, and 
nodes for such variables refer to them by offset from a display pointer. Type conversion 
(for example. from integer to pointer) has already occurred using the assumption of byte 
addressing and 2-byte words. 

2. Data representations suitable to the PDP-ll are assumed; in particular, floating point con­
stants are passed as four words in the machine representation. 

As it happens, each intermediate file is represented as a sequence of binary numbers 
without any explicit demarcations. It consists of a sequence of conceptual lines, each headed by 
an operator. and possibly containing various operands. The operators are small numbers; to 
assist in recognizing failure in synchronization. the high-order byte of each operator word is 
always the oc,tal number 376. Operands are either 16-bit binary numbers or strings of charac­
ters representing names. Each name is terminated by a null character. There is no alignment 
requirement for numerical operands and so there is no padding after a name string. 

The binary representation was chosen to avoid the necessity of converting to and from 
character form and to minimize the size of the files. It would be very easy to make each 
operator-operand 'line' in the file be a genuine. printable line. with the numbers in octal or 
decimal; this in fact was the representation originally used. 

The operators fall naturally into two classes: those which represent part of an expression • 
. and all others. Expressions are transmitted in a reverse-Polish notation; as they are being read. 
a tree is built which is isomorphic to the tree constructed in the first phase. Expressions are 
passed as a whole. with no non-expression operators intervening. The reader maintains a stack; 
each leaf of the expression tree (name. constant) is pushed on the stack; each unary operator 
replaces the top of the stack by a node whose operand is the old top-of-stack; each binary 

tUNIX is a Trademark of Bell Laboratories. 



- 2 -

operator replaces the top pair on the stack with a single entry. When the expression is com­
plete there is exactly one item on the stack. Following each expression is a special operator 
which passes the unique previous expression to the 'optimizer' described below and then to the 
code generator. 

Here is the list of operators not themselves part of expressions. 

Eor 
marks the end of an input file. 

BDATAJIag data ... 

specifies a sequence of bytes to be assembled as static data. It is followed by pairs of 
words; the first member of the pair is non-zero to indicate that the data continue; a zero 
flag is not followed by data and terminates the operator. The data bytes occupy the low­
order pan of a word. 

WDAT A jlag data ... 

specifies a sequence of w()rds to be assembled as static data; it is identical to the BOA TA 
operator except that entire words. not just bytes. are passed. 

PROG 

means that subsequent information is to be compiled as program text. 

DATA 

means that subsequent information is to be cbmpiled as static: data. 

BSS 

means that subsequent information is to be compiled as unitialized static data. 

SYMDEF name 
means that the symbol name is an external name defined in the current program. It is 
produced for each external data or function definition. 

CSPACE name size 
indicates that the name refers to a data area whose size is the specified number of bytes. 
It is produced for external data definitions without explicit initialization. 

SSPACE size 
indicates that size bytes should be set aside for data storage. It is used to pad out short 
initializations of external data and to reserve space for static (internal) data. It will be 
preceded by an appropriate label. 

EVEN 
is produced after each external data definition whose size is not an integral number of 
words. It is not produced after strings except when they initialize a character array. 

NLABEL name 
is produced just before a BDATA orWDATA initializing external data. and serves as a 
label for the data. 



- 3 -

RLABEL name 

is produced just before each function definition. and labels its entry point. 

SNAME name number 

is produced at the start of each function for each static variable or label declared therein. 
Subsequent uses of the variable will be in terms of the given number. The code genera­
tor uses this only to produce a debugging symbol table. 

ANAME name number 

Likewise, each automatic variable's name and stack offset is specified by this operator. 
Arguments count as automatics. 

RN AME name number 

Each register variable is similarly named. with its register number. 

SAVE number 

produces a register-save sequence at the start of each function. just after its label (RLA­
BEL). 

SETREG number 

is used to indicate the number of registers used for register variables. It actually gives the 
register number of the lowest free register~ it is redundant because the RNAME operators 
could be counted instead. 

PROFIL 
is produced before the save sequence for functions when the profile option is turned on. 
lt produces code to count the number of times the function is called. 

SWIT deflab line label value ... 

is produced for switches. When control flows into it, the value being switched on is in the 
register forced by RFORCE (below). The switch statement occurred on the indicated line 
of the source. and the label number of the default location is deflab. Then the operator is 
followed by a sequence of label-number and value pairs; the list is terminated by a 0 label. 

LABEL number 

generates an internal label. It is referred to elsewhere using the given number. 

BRANCH number 

indicates an unconditional transfer to the internal label number given. 

RETRN 
produces the return sequence for a function. It occurs only once. at the end of each func­
tion. 

EXPR line 

causes the expression just preceding to be compiled. The argument is the line number in 
the source where the expression occurred. 



- 4 -

NAME class type name 

N AMI class type number 

indicates a name occurring in an expression. The first form is used when the name is 
external; the second when the name is automatic, static. or a register. Then the number 
indicates the stack offset. the label number, or the register number as appropriate. Class 
and type encoding is described elsewhere. 

CON type value 

transmits an integer constant. This and the next two operators occur as part of expres­
sions. 

FCON type 4-word-value 

transmits a floating constant as four words in PDP,.ll notation. 

SFCON type value 

transmits a floating-point constant whose value is correctly represented by its high-order 
word in PDP-II notation. 

NULL 
indicates a null argument list of a function call in an expression; cail is a binary operator 
whose second operand is the argument list. 

CBRANCH label cond 

produces a conditional branch. It is an expression operator, and will be followed by an 
EXPR. The branch to the label number takes place if the expression's truth value is the 
same as that of condo That is, if cond -1 and the expression evaluates to true, the branch 
is taken. 

binary-operator type 

There are binary operators corresponding to each such source-language operator, the type 
of the result of each is pasSed as well. Some perhaps-unexpected ones are: COMMA. 
which is a right-assOciative operator designed to simplify right-to-Ieft evaluation of func­
tion arguments; prefix and postfix + + and - -, whose second operand is the increment 
amount, as a CON; QUEST and COLON, to express the conditional expression as 
'a?(b:c)'; and a sequence of special operators for expressing relations between pointers. in 
case pointer comparison is different from integer comparison (e.g. unsigned). 

unary-operator type 

There are also numerous unary operators. These include !TOF, FrOI. FrOL, LTOF, 
!TOL, L TOI which convert among floating. long, and integer; JUMP which branches 
indirectly· through a label expression; INIT, which compiles the value of a constant 
expression used as an initializer, RFORCE. which is used before a return sequence or a 
switch to place a value in an agreed-upon register. 

Expression Optimization 
Each expression tree, as it is read in. is subjected to a fairly comprehensive analysis. This 

is performed by the optim routine and a number of subroutines; the major things done are 



- 5 -

1. Modifications and simplifications of the tree so its value may be computed more efficiently 
and conveniently by the code generator. 

2. Marking each interior node with an estimate of the number of registers required to evalu­
ate it. This register count is needed to guide the code generation algorithm. 

One thing that is definitely not done is discovery or exploitation of common subexpres­
sions, nor is this done anywhere in the compiler. 

The basic organization is simple: a depth-first scan of the tree. Oprim does nothing for 
leaf nodes (except for automatics~ see below), and calls unoprim to handle unary operators. For 
binary operators, it calls itself to process the operands, then treats each operator separately. 
One important case is commutative and associative operators, which are handled by acommure. 

Here is a brief catalog of the transformations carried out by by optim itself. It is not 
intended to be complete. Some of the transformations are machine-dependent, although they 
may well be useful on machines other than the PDP-ll. 
1. As indicated in the discussion of unoprim below, the optimizer can create a node type 

corresponding to the location addressed by a register plus a constant offset. Since this is 
precisely the implementation of automatic variables and arguments, where the register is 
fixed by convention, such variables are changed to the new form to simplify later process­
ing. 

2. Associative and commutative operators are processed by the special routine acommure. 

3. After processing by acommure, the bitwise & operator is turned into a new andn operator~ 
'a & b' becomes 'a andn 0'. This is done because the PDP-ll provides no and operator, 
but only andn. A similar transformation takes place for '-&'. 

4. Relationals are turned around so the more complicated expression is on the left. (So that 
'2 > f(x)' becomes 'f(x) < 2'). This improves code generation since the algorithm 
prefers to have the right operand require fewer registers than the left. 

S. An expression minus a constant is turned into the expression plus the negative constant, 
and the acommure routine is called to take advantage of the properties of addition. 

6. Operators with constant operands are evaluated. 
7. Right shifts (unless by 1) are turned into left shifts with a negated right operand, since 

the PDP-I! lacks a general right-shift operator. 

8. A number of special cases are simplified, such as division or multiplication by 1, and 
shifts by O. • 

The unoptim routine performs the same sort of processing for unary operators. 

1. '·&x' and '&·x' are simplified to 'x'. 
2. If r is a register and c is a constant or the address of a static or external variable, the 

expressions '·(r+c)' and '·r' are turned into a special kind of name'ode which expresses 
the name itself and the offset. This simplifies subsequent processing because such con­
structions can appear as the the address of a PDP-II instruction. 

3. When the unary '&' operator is applied to a name node of the special kind just discussed, 
it is reworked to make the addition explicit again~ this is done because the PDP-II has no 
'load address' instruction. 

4. Constructions like '·r + +' and '. - - r' where r is a register are discovered and marked as 
being implementable using the PDP-II auto-increment and -decrement modes. 

S. If '!' is applied to a relational, the '!' is discarded and the sense of the relational is 
reversed. 

6. Special cases involving reflexive use of negation and complementation are discovered. 



- 6 -

7. Operations applying to constants are evaluated. 
The acommute routine, called for associative and commutative operators, discovers clus­

ters of the same operator at the top levels of the current tree, and arranges them in a list: for 
'a+«b+c)+(d+O)' the list would be'a,b.c,d,e.r. After each subtree is optimized. the list is 
sorted in decreasing difficulty of computation; as mentioned above, the code generation algo­
rithm works best when left operands are the difficult ones. The 'degree of difficulty' computed 
is actually finer than the mere number of registers required; a constant is considered simpler 
than the address of a static or external, which is simpler than reference to a variable. This 
makes it easy to fold all the constants together. and also to merge together the sum of a con­
stant and the address of a static or external (since in such nodes there is space for an 'offset' 
value). There are also special cases. like multiplication by 1 and addition of O. 

A special routine is invoked to handle sums of products. Distrib is based on the fact that it is 
better to compute 'cl·c2·x + cl·y' as 'cl·(c2·x + y)' and makes the divisibility tests required 
to assure'the correctness of the transformation. This transformation is rarely possible with code 
directly written by the user, but it invariably occurs as a result of the implementation of multi­
dimensional arrays. 

Finally, acommute reconstructs a tree from the list of expressions which result. 

Code Generation 
The grand plan for code-generation is independent of any particular machine; it depends 

largely on a set of tables. But this fact does not necessarily make it very easy to modify the 
compiler to produce code for other machines, both because there is a good deal of machine­
dependent structure in the tables, and because in any event such tables are non-trivial to 
prepare. 

The arguments to the basic code generation routine rcexpr are.a pointer to a tree 
representing an expression, 'the name of a code-generation table, and the number of a register 
in which the value of the expression should be placed. Rcexpr returns the number of the regis­
ter in which the value actually ended up~ its caller may need to produce a mov instruction if the 
value really needs to be in the given register. There are four code generation tables. 

Regrab is the basic one. which actually does the job described above: namely, compile 
code which places the value represented by the expression tree in a register. 

Ccrab is used when the value of the expression is not actually needed, but instead the 
value of the condition codes resulting from evaluation of the expression. This table is used, for 
example, to evaluate the expression after if. It is clearly silly to calculate the value (0 or 1) of 
the expression 'a--b' in the context 'if (a--b) ... ' 

The sptab table is used when the value of an expression is to be pushed on the stack. for 
example when it is an actual argument. For example in the function call 'f(a)' it is a bad idea 
to load a into a register which is then pushed on the stack, when there is a single instruction 
which does the job. 

The effiab table is used when an expression is to be evaluated for its side effects, not its 
value. This occurs mostly for expressions which are statements. which have no value. Thus 
the code for the statement 'a - b' need produce only the approoriate mov instruction, and need 
not leave the value of b in a register, while in the expression 'a + (b - c) 'the value of 'b -
c' will appear in a register. 

All of the tables besides regrab are rather small, and handle only a relatively few 'special 
cases. If one of these subsidiary tables does not contain an entry applicable to the given expres­
sion tree. rcexpr uses regrab to put the value of the expression into a register and then fixes 
things up; nothing need be done when the table was e.ffjab. but a (s( instruction is produced 
when the table called for was ccrab. and a mov instruction, pushing the register on the stack. 
when the table was sptab. 



- 7 -

The rcexpr routine itself picks off some special cases, then calls cexpr to do the real work. 
Cexpr tries to find an entry applicable to the given tree in the given table, and returns -1 if no 
such entry is found, letting rcexpr try again with a different table. A successful match yields a 
string containing both literal characters which are written out and pseudo-operations, or macros, 
which are expanded. Before studying the contents of these strings we will consider how table 
entries are matched against trees. 

Recall that most non-leaf nodes in an expression tree contain the name of the operator, 
the type of the value represented, and pointers to the subtrees (operands). They also contain 
an estimate of the number of registers required to evaluate the expression, placed there by the 
expression-optimizer routines. The register counts are used to guide the code generation pro­
cess, which is based on the Sethi-Ullman algorithm. 

The main code generation tables consist of entries each containing an operator number 
and a pointer to a subtable for the corresponding operator. A subtable consists of a sequence of 
entries, each with a key describing certain properties of the operands of the operator involved; 
associated with the key is a code string. Once the subtable corresponding to the operator is 
found, the subtable is searched linearly until a key is found such that the properties demanded 
by the key are compatible with the operands of the tree node. A successful match returns the 
code string; an unsuccessful search, either for the operator in the main table or a compatble key 
in the subtable, returns a failure indication. 

The tables are all contained in a file which must be processed to obtain an assembly 
language program. Thus they are written in a special-purpose language. To provided 
definiteness to the following discussion, here is an example of a subtable entry. 

%n,aw 
F 
add A2,R 

The '%' indicates the key; the information following (up to a blank line) specifies the code 
string. Very briefly, this entry is in the subtable for '+' of regtab; the key specifies that the left 
operand is any integer, character, or pointer expression, and the right operand is any word 
quantity which is directly addressible (e.g. a variable or constant). The code string calls for the 
generation of the code to compile the left (first) operand into the current register ('F') and 
then to produce an 'add' instruction which adds the second operand (' A2') to the register 
('R'). All of the notation will be explained below. 

Only three features of the operands are used in deciding whether a match has occurred. 
They are: 

1. Is the type of the operand compatible with that demanded? 

2. Is the 'degree of difficulty' (in a sense described below) compatible? 

3. The table may demand that the operan&have a '.' (indirection operator) as its highest 
operator. 

As suggested above, the key for a subtable entry is indicated by a '%,' and a comma­
separated pair of specifications for the operands. (The second specification is ignored for unary 
operators). A specification indicates a type requirement by including one of the following 
letters. If no type letter is present, any integer, character, or pointer operand will satisfy the 
requirement (not float, double, or long). 

b A byte (character) operand is required. 

w A word (integer or pointer) operand is required. 

f A float or double operand is required. 

d A double operand is required. 



- 8 -

A long (32-bit integer) operand is required. 

Before discussing the 'degree of difficulty' specification, the algorithm has to be explained 
more completely. Rce:cpr (and ce:cpr) are called with a register number in which to place their 
result. Registers 0, 1, ... are used during evaluation of expressions~ the maximum register 
which can be used in this way depends on the number of register variables, but in any event 
only registers 0 through 4 are available since rS is used as a stack frame header and r6 (sp) and 
r7 (pc) have special hardware propenies. The code generation routines assume that when 
called with register n as argument, they may use n + J. .•• (up to the first register variable) as 
temporaries. Consider the expression 'X + Y', where both X and Yare expressions. As a first 
approximation, there are three ways of compiling code to put this expression in register n. 

1. If Y is an addressible cell, (recursively) put X into register n and add Y to it. 

2. If Y is an expression that can be calculated in k registers, where k smaller than the 
number of registers available, compile X into register n. Y into register n+J. and add 
register n + J to n. 

3. Otherwise, compile Y into register n. save the result in a temporary (actually. on the 
stack) compile X into register n. then add in the temporary. 

The distinction between cases 2 and 3 therefore depends on whether the right operand can 
be compiled in fewer than k registers, where k is the number of free registers left after registers 
o through n are taken: 0 through n -/ are presumed to contain already computed temporary 
results~ n will, in case 2, contain the value of the left operand while the right is being evaluated. 

These considerations should make clear the specification codes for the degree of difficulty, 
bearing in mind that a number of special cases are also present: 

z 

1 

c 

a 

is satisfied. when the operand is zero, so that special code can be produced for expressions 
like 'x - 0'. \' 
is satisfied when the operand is the constant I, to optimize cases like left and right shift 
by I, which can be done efficiently on the PDP-ll. 

is satisfied when the operand is a positive (I 6-bit> constant~ this takes care of some special 
cases in long arithmetic. 

is satisfied when the operand is addressible; this occurs not only for variables and con­
stants, but also for some more complicated constructions, such as indirection through a 
simple variable. '.p+ +. where p is a r~gister variable (because of the PDP-lI's auto­
increment address mode). and '·(p+c)' where p is a register and c is a constant. Pre­
cisely. the requirement is that the operand refers to a cell whose address can be written as 
a source or destination of a PDP-II instruction. 

e is satisfied by an operand whose value can be generated in a register using no more than k 
registers. where k is the number of registers left (not counting the current register). The 
'e' stands for 'easy.' 

n is satisfied by any operand. The 'n' stands for 'anything.' 

These degrees of difficulty are considered to lie in a linear ordering and any operand 
which satisfies an earlier-mentioned requirement will satisfy a later one. Since the subtables are 
searched linearly, if a '1' specification is included. almost cenainly a 'z' must be written first to 
prevent expressions containing the constant 0 to be compiled as if the 0 were 1. 

Finally, a key specification may contain a •• ' which requires the operand to have an 
indirection as its leading operator. Examples below sho~lld clarify the utility of this 
specification. 

Now let us consider the contents of the code string associated with each subtable entry. 
Conventionally. lower-case letters in this string represent literal information which is copied 
directly to the output. Upper-case letters generally introduce specific macro-operations. some 
of which may be followed by modifying information. The code strings in the tables are written 
with tabs and new-lines used freely to suggest instructions which will be generaled~ the table-



- 9 -

compiling program compresses tabs (using the 0200 bit of the next character) and throws away 
some of the new-lines. For example the macro 'F' is ordinarily written on a line by itself; but 
since its expansion will end with a new-line, the new-line after 'F' itself is dispensable. This is 
all to reduce the size of the stored tables. 

The first set of macro-operations is concerned with compiling subtrees. Recall that this is 
done by the cexpr routine. In the following discussion the 'current register' is generally the 
argument register to cexpr; that is, the place where the result is desired. The 'next register' is 
numbered one higher than the current register. (This explanation isn't fully true because of 
complications, described below, involving operations which require even-odd register pairs') 

F causes a recursive call to the rcexpr routine to compile code which places the value of the 
first (left) operand of the operator in the current register. 

Fl generates code which places the value of the first operand in the next register. It is 
incorrectly used if there might be no next register; that is, if the degree of difficulty of the 
first operand is not 'easy;' if not, another register might not be available. 

F5 generates code which pushes the value of the first operand on the stack, by calling rcexpr 
specifying sptab as the table. 

Analogously, 

5, 51, 5Scompiie the second (right) operand into the current register, the next register, or onto 
the stack. 

To deal with registers, there are 

R which expands into the name of the current register. 

Rl which expands into the name of the next register. 

R + which expands into the the name of the current register plus 1. It was suggested above 
that this is the same as the next register, except for complications; here is one of them. 
Long integer variables have 32 bits and require 2 registers; in such cases the next register 
is the current register plus 2. The code would like to talk about both halves of the long 
quantity, so R refers to the register with the high-order part and R + to the low-order 
part. 

R - This is another complication, involving division and mod. These operations involve a pair 
of registers of which the odd-numbered contains the left operand. Cexpr arranges that the 
current register is odd; the R - notation allows the code to refer to the next lower, even­
numbered register. 

To refer to addressible quantities, there are the notations: 

A 1 causes generation of the address specified by the first operand. For this to be legal, the 
operand must be addressible; its key must contain an 'a' or a more restrictive 
specification., 

A2 correspondingly generates the address of the second operand providing it has one. 

We now have enough mechanism to show a complete, if suboptimal, table for the + 
operator on word or byte operands. 



- 10 -

%n,z 
F 

%n,1 
F 
inc R 

%n,aw 
F 
add A2,R 

%n,e 
F 
SI 
add Rl,R 

%n,n 
55 
F 
add (sp) +.R 

The first two sequences handle some special cases. Actually it turns out that handling a right 
operand of 0 is unnecessary since the expression-optimizer throws out adds of O. Adding 1 by 
using the 'increment' instruction is done next, and then the case where the right operand is 
addressible. It must be a word quantity, since the PDP-II lacks an 'add byte' instruction. 
Finally the cases where the right operand either can, or cannot, be done in the available regis­
ters are treated. 

The next macro-instructions are conveniently introduced by noticing that the above table 
is suitable for subtraction as well as. addition. since no use is made of the commutativity of 
addition. All that is needed is substitution of 'sub' for 'add' and 'dec' for 'inc.' Considerable 
saving of space is achieved by factoring out several similar operations. 

is replaced by a string from another table indexed by the operator in the node being 
expanded. This secondary table actually contains two strings per operator. 

I' is replaced by the second string in the side table entry for the current operator. 

Thus, given that the entries for • +' and' -' in the side table (which is called iI/stab) are 
'add' and 'inc,' 'sub' and 'dec' respectively, the middle of of the above addition table can be 
written 

%n.l 
F 
r R 

%n,aw 
F 
I A2.R 

and it will be suitable for subtraction, and several other operators, as well. 

Next, there is the question of character and floating-point operations. 

Bl generates the letter 'b' if the first operand is a character. 'r if it is float or double, and 
nothing otherwise. It is used in a context like 'movBl' which generates a 'mov', 'movb', 
or 'movf instruction according to the type of the operand. 



- 11 -

B2 is just like B I but applies to the second operand. 

BE generates 'b' if either operand is a character and null otherwise. 

BF generates 'r if the type of the operator node itself is float or double, otherwise null. 

For example, there is an entry in e.fftab for the '-' operator 

%a,aw 
%ab,a 

IBE A2,AI 

Note first that two key specifications can be applied to the same code string. Next, observe that 
when a word is assigned to a byte or to a word, or a word is assigned to a byte, a single instruc­
tion, a mov or movb as appropriate, does the job. However, when a byte is assigned to a word, 
it must pass through a register to implement the sign-extension rules: 

%a,n 
S 
IBI R,AI 

Next, there is the question of handling indirection properly. Consider the expression 'X 
+ ·Y', where X and Yare expressions, Assuming that Y is more complicated than just a vari­
able, but on the other hand qualifies as 'easy' in the context, the expression would be compiled 
by placing the value of X in a register, that of ·Y in the next register, and adding the registers. 
It is easy to see that a better job can be done by compiling X, then Y (into the next register), 
and producing the instruction symbolized by 'add (R l),R'. This scheme avoids generating the 
instruction 'mov (RI),RI' required actually to place the value of ·Y in a register. A related 
situation occurs with the expression 'X + ·(p+6)', which exemplifies a construction frequent 
in structure and array references. The addition table shown above would produce 

[put X in register R] 
mov p,RI 
add S6,RI 
mov (RO,RI 
add Rl,R 

when the best code is 

[put X in R] 
mov p,RI 
add 6(Rl),R 

As we said above, a key specification for a code table entry may require an operand to have an 
indirection as its highest operator. To make use of the requirement, the following macros are 

, provided. 

F· the first operand must have the form ·X. If in particular it has the form • (Y + c), for 
some constant c. then code is produced which places the value of Y in the current regis­
ter. Otherwise, code is produced which loads X into the current register. 

Fl· resembles F· except that the next register is loaded. 

S· resembles F· except that the second operand is loaded. 

S I· resembles S· except that the next register is loaded. 

FS· The first operand must have the form '·X'. Push the value of X on the stack. 

SS· resembles FS· except that it applies to the second operand. 

To capture the constant that may have been skipped over in the above macros, there are 



• 12 • 

#1 The first operand must have the form ·X; if in panicular it has the form ·(Y + c) for c a 
constant, then the constant is written out, otherwise a null string. 

#2 is the same as #1 except that the second operand is used. 

Now we can improve the addition table above. Just before the '%n,e' entry, put 

%n.ew· 
F 
SI· 
add #2(Rt>.R 

and just before the '%n.n· put 

%n.nw· 
sse 
F 
add ·(sp)+.R 

When using the stacking macros there is no place to use the constant as an index word. so that 
particular special case doesn't occur. 

The constant mentioned above can actually be more general than a number. Any quantity 
acceptable to the assembler as an expression will do, in panicular the address of a static cell. 
perhaps with a numeric offset. If:c is an external character array, the expression 'x{i+5) - O· 
will generate the code 

mov i.rO 
clrb x + S(ro) 

via the table entry (in the' -' pan of e.tfiab) 

%e"z 
\' 

F 
I'BI #1 (Rf 

Some machine operations place restrictions on the registers used. The divide instruction. used 
to implement the divide and mod operations. requires the dividend to be placed in the odd 
member of an even-odd pair. other peculiarities of multiplication make it simplest to put the 
multiplicand in an odd-numbered register. There is no theory which optimally accounts for this 
kind of requirement. Ce:cpr handles it by checking for a multiply. divide, or mod operation; in 
these cases, its argument register number is incremented by one or two so that it is odd. and if 
the operation was divide or mod. so that it is a member of a free even-odd pair. The routine 
which determines the number of registers required estimates. conservatively. that at least two 
registers ar~ required for a multiplication and three for the other peculiar operators. After the 
expression is compiled. t~ register where the result actually ended up is returned. (Divide and 
mod are actually the same operation except for the location of the result). 

These operations are the ones which cause results to end up in unexpected places. and 
this possibility adds a funher level of complexity. The simplest way of handling the problem is 
always to move the result 'to the place where the caller expected it. but this will produce 
unnecessary register moves in many simple cases; 'a - b·c' would generate 

mov b.rl 
mul c.rI 

. mov rl.rO 
mov rO.a 

The next thought is used the passed-back information as to where the result landed to change 
the nolion of the current register. While compiling the • -' operation above. which comes 
from a table entry like 



- 13 -

%a,e 
S 
mov R,Al 

it is sufficient to redefine the meaning of 'R' after processing the'S' which does the mUltiply. 
This technique is in fact used; the tables are written in such a way that correct code is pro­
duced. The trouble is that the technique cannot be used in general, because it invalidates the 
count of the number of registers required for an expression. Consider just 'a-b + X' where X 
is some expression. The algorithm assumes that the value of a-b, once computed, requires just 
one register. If there are three registers available, and X requires two registers to compute, 
then this expression will match a key specifying '%n,e'. If a-b is computed and left in register 
1, then there are, contrary to expectations, no longer two registers available to compute X, but 
only one, and bad code will be produced. To guard against this possibility. cexpr checks the 
result returned by recursive caUs which implement F, S and their relatives. If the result is not 
in the expected register, then the number of registers required by the other operand is checked; 
if it can be done using those registers which remain even after making unavailable the 
unexpectedly-occupied register, then the notions of the 'next register' and possibly the 'current 
register' are redefined. Otherwise a register-copy instruction is produced. A register-copy is 
also always produced when the current operator is one of those which have odd-even require­
ments. 

Finally, there are a few loose-end macro operations and facts about the tables. The opera-
tors: 

V is used for long operations. It is written with an address like a machine instruction; it 
expands into 'adc' (add carry) if the operation is an additive operator, 'sbc' (subtract 
carry) if the operation is a subtractive operator, and disappears, along with the rest of the 
line, otherwise. Its purpose is to allow common treatment of logical operations, which 
have no carries, and additive and subtractive operations, which generate carries. 

T generates a 'tst' instruction if the first operand of the tree does not set the condition codes 
correctly. It is used with divide and mod operations, which require a sign-extended 32-bit 
operand. The code table for the operations contains an 'sxt' (sign-extend) instruction to 
generate the high-order part of the dividend. 

H is analogous to the 'F' and'S' macros, except that it calls for the generation of code for 
the current tree (not one of its operands) using regrab. It is used in ccrab for all the 
operators which, when executed normally, set the condition codes properly according to 
the result. It prevents a 'tst' instruction from being generated for constructions like 'if 
(a+b) .. .' since after calculation of the value of 'a+b' a conditional branch can be written 
immediately. 

All of the discussion above is in terms of operators with operands. Leaves of the expres­
sion tree (variables and constants), however, are peculiar in that they have no operands. In 
order to regularize the matching process, cexpr examines its operand to determine if it is a leaf: 
if so, it creates a special 'load' operator whose operand is the leaf, and substitutes it for the 
argument tree; this allows the table entry for the created operator to use the 'A l' notation to 
load the leaf into a register. 

Purely to save space in the tables, pieces of subtables can be labelled and referred to later. 
It turns out, for example, that rather large portions of the the effiab table for the' -' and ' .. +. 
operators are identical. Thus' ==' has an entry 

%[move3:] 
%a,aw 
%ab,a 

IBE A2,Al 

while part of the ' .. +' table is 



- 14 -

%aw,aw 
% [move3] 

Labels are written as '% [ ... : I', before the key specifications~ references are written with '% [ 
... It after the key. Peculiarities in the implementation make it necessary that labels appear 
before references to them. 

The example illustrates the utility of allowing separate keys to point to the same code 
string. The assignment code works properly if either the right operand is a word, or the left 
operand is a byte~ but since there is no 'add byte' instruction the addition code has to be res­
tricted to word operands. 

Delaying and reordering 

Intertwined with the code generation routines are two other, interrelated processes. The 
first, implemented by a routine called delay. is based on the observation that naive code genera­
tion for the expression 'a - b+ +' would produce 

mov b,rO 
inc b 
mov rO,a 

The point is that the table for postfix + + has to preserve the value of b before incrementing 
it~ the general way to do this is to preserve its value in a register. A cleverer scheme would 
generate 

mov b,a 
inc b 

Delay is called for each expression input to rcexpr. and it searches for postfix + + and -­
operators. \' If one is found applied to a variable. the tree is patched to bypass the operator and 
compiled as it stands~ then the i·ncrement or decrement itself is done. The effect is as if 'a = 
b; b + +' had been written. In this example, of course, the user himself could have done the 
same job, but more complicated examples are easily constructed. for example 'switch (x + +)'. 
An essential restriction is that the condition codes not be required. It would be incorrect to 
compile 'if (a + +) ... ' as 

tst a 
inc a 
beq 

because the 'inc' destroys the required setting of the condition codes. 

Reordering is a similar sort of optimization. Many cases which it detects are useful 
mainly with register variables. If r is a register variable, the expression 'r - x +y' is best com­
piled as 

mov x.r 
add y,r 

but the codes tables would produce 

mov x.rO 
add y,rO 
mov rO,r 

which is in fact preferred if r is not a register. (If r is not a register. the two sequences are the 
same size, but the second IS slightly faster.l The scheme is to compile the expression as if it 
had been written 'r - x: r - + y'. The reorder routine is called with a pointer to each tree that 
rcexpr is about to compile: if it has the right characteristics. the 'r - x' tree is constructed and 
passed recursively to rcexpr; then the original tree is modified to read 'r .. + y' and the calling 
instance of rcexpr compiles that instead. Of course the whole business is itself recursive so that 



- IS -

more extended forms of the same phenomenon are handled, like 'r - x + y I z', 

Care does have to be taken to avoid 'optimizing' an expression like 'r - x + r' into 'r -
x; r - + r', It is required that the right operand of the expression on the right of the' -' be a 
" distinct from the register variable. 

The second case that reorder handles is expressions of the form 'r - X' used as a subex-
pression. Again, the code out of the tables for 'x - r - y' would be 

mov y,rO 
mov rO,r 
mov rO,x 

whereas if r were a register it would be better to produce 

mov y,r 
mov r,x 

When reorder discovers that a register variable is being assigned to in a subexpression, it calls 
rcexpr recursively to compile the subexpression, then fiddles the tree passed to it so that the 
register variable itself appears as the operand instead of the whole subexpression, Here care 
has to be taken to avoid an infinite regress, with rcexpr and reorder calling each other forever to 
handle assignments to registers. 

A third set of cases treated by reorder comes up when any name, not necessarily a regis­
ter, occurs as a left operand of an assignment operator other than '-' or as an operand of 
prefix' + +' or '- -'. Unless condition-code tests are involved, when a subexpression like' (a 
- + b)' is seen, the assignment is performed and the argument tree modified so that a is its 
operand; effectively 'x + (y - + z)' is compiled as 'y - + z; x + y', Similarly, prefix incre­
ment and decrement are pulled out and performed first, then the remainder of the expression. 

Throughout code generation, the expression optimizer is called whenever delay or reorder 
change the expression tree. This allows some special cases to be found that otherwise would 
not be seen, 



MAKE(l) UNIX Programmer's Manual MAKE(l) 

NAME 
make - maintain. update. and regenerate groups of programs 

SYNOPSIS 
make [-f makefile] [-p] [-i] [-k] [-s] [-r] [-n] [-b] [-e] [-m] [-t] [-d] [-q] 
[names ] 

DESCRIPrION 
The following is a brief description of all options and some special names: 

-f make file Description file name. Makefile is assumed to be the name of a description 
file. A file name of - denotes the standard input. The contents of make file 
override the built-in rules if they are present. 

-p 

-i 

-k 

-s 

-r 

-n 

-b 

Print out the complete set of macro definitions and target descriptions. 

Ignore error codes returned by invoked commands. This mode is entered if 
t4,.e fake target name .IGNORE appears in the description file. 

i(~'lfitX'andon work on the current entry. but continue on other branches that do 
:; not depend on that entry. 

Silent mode. Do not print command lines before executing. This mode is also 
entered if the fake target name .sILENT appears in the description file. 

Do not use the built-in rules. 

No execute mode. Print commands. but do not execute them. Even lines 
beginning with an @ are printed. 

Compatibility mode for old makefiles. 

-e Environment variables override assignments within makefiles. 

-m Print a memory map showing text. data. and stack. This option is a no-
operation on systems without the getu system call. 

-t Touch the target :files (causing them to be up-to-date) rather than issue the 
usual commands. 

-d Debug mode. Print out detailed information on files and times examined. 

-q Question. The make command returns a zero or non-zero status code depend-
ing on whether the target file is or is not up-to-date . 

.DEFAULT If a file must be made but there are no explicit commands or relevant built-in 
rules. the commands associated with the name .DEFAULT are used if it exists . 

.PRECIOUS Dependents of this target will not be removed when quit or interrupt are hit . 

.sILENT Same effect as the -s option . 

.IGNORE Same effect as the -i option. 

Make executes commands in make file to update one or more target names. Name is typi­
cally a program. If no -f option is present. makeftle. Makeftle. s.makeftle. and 
s.Makeftle are tried in order. If makefile is -. the standard input is taken. More than one 
- make file argument pair may appear. 

Make updates a target only if it depends on files that are newer than the target. All prere­
quisite files of a target are added recursively to the list of targets. Missing files are deemed 
to be out of date. 

Makefile contains a sequence of entries that specify dependencies. The first line of an entry 
is a blank-separated. non-null list of targets. then a :. then a (possibly null) list of prere­
quisite files or dependencies. Text following a; and all following lines that begin with a tab 

7th Edition 1 



MAKE(l) UNIX Programmer's Manual MAKE(l) 

are shell commands to be executed to update the target. The first line that does not begin 
with a tab or # begins a new dependency or macro definition. Shell commands may be con­
tinued across lines with the <backslash> <new-line> sequence. Everything printed by 
make (except the initial tab) is passed directly to the shell as is. Thus. 

echo a\ 
b 

will produce 

ab 

exactly the same as the shell would. 

Sharp (#) and new-line surround comments. 

The following makejile says that pgm depends on two files a.o and boO. and that they in 
turn depend on their corresponding source files (a.c and boe) and a common file incl.h: 

pgm: a.o b.o 
cc a.o b.o -0 pgm 

a.o: incl.h a.c 
cc -c a.c 

b.o: incl.h b.c 
cc -c b.c 

Command lines are executed one at a time. each by its own shell. The first one or two char­
acters in a command can be the following: -. @. -@. or @-. If @ is present. printing of 
the command is suppressed. If - is present. make ignores an error. A line is printed when 
it is executed unless the -s option is present. or the entry .sILENT: is in makefile. or unless 
the initial character sequence contains a @. The -n option specifies printing without exe­
cution; however. if the command line has the string $(MAKID in it. the line is always exe­
cuted (see discussion of the MAKEFLAGS macro under Environment). The -t (touch) 
option updates the modified date of a file without executing any commands. 

Commands returning non-zero status normally terminate make. If the -i option is 
present. or the entry .IGNORE: appears in makefile. or the initial character sequence of the 
command contains -. the error is ignored. If the -k option is present. work is abandoned 
on the current entry. but continues on other branches that do not depend on that entry. 

The -b option allows old makefiles (those written for the old version of make) to run 
without errors. The difference between the old version of make and this version is that this 
version requires all dependency lines to have a (possibly null or implicit) command associ­
ated with them. The previous version of make assumed if no command was specified expli­
citly that the command was null. 

Interrupt and quit cause the target to be deleted unless the target is a dependency of the 
special name .PRECIOUS. 

Environment 
The environment is read by make. All variables are assumed to be macro definitions and 
processed as such. The environment variables are processed before any makefile and after 
the internal rules; thus. macro assignments in a makefile override environment variables. 
The -e option causes the environment to override the macro assignments in a makefile. 

The MAKEFLAGS environment variable is processed by make as containing any legal input 
option (except -f. -po and -d) defined for the command line. Further. upon invocation. 
make "invents" the variable if it is not in the environment. puts the current options into it. 
and passes it on to invocations of commands. Thus. MAKEFLAGS always contains the 
current input options. This proves very useful for "super-makes". In fact. as noted above. 

7th Edition 2 



MAKE(l) UNIX Programmer's Manual MAKE(l) 

when the -n option is used. the command $(MAKE) is executed anyway: hence. one can 
perform a make -n recursively on a whole software system to see what would have been 
executed. This is because the -n is put in MAKEFLAGS and passed to further invocations 
of $(MAKE). This is one way of debugging all of the makefiles for a software project 
without actually doing anything. 

Macros 
Entries of the form stringl = string2 are macro definitions. String2 is defined as all charac­
ters up to a comment character or an unescaped newline. Subsequent appearances of 
$(stringl [:substl =[subst2]]) are replaced by string2. The parentheses are optional if a sin­
gle character macro name is used and there is no substitute sequence. The optional 
:substl==subst2 is a substitute sequence. If it is specified. all non-overlapping occurrences of 
substl in the named macro are replaced by subst2. Strings (for the purposes of this type of 
substitution) are delimited by blanks. tabs. new-line characters. and beginnings of lines. 
An example of the use of the substitute sequence is shown under Libraries. 

Internal Macros 
There are five internally maintained macros which are useful for writing rules for building 
targets. 

$* The macro $* stands for the file name part of the current dependent with the suffix 
deleted. It is evaluated only for inference rules. 

$@ The $@ macro stands for the full target name of the current target. It is evaluated 
only for explicitly named dependencies. 

$< The $< macro is only evaluated for inference rules or the .DEFAULT rule. It is the 
module which is out of date with respect to the target (Le .• the "manufactured" 
dependent file name). Thus. in the .coO rule. the $< macro would evaluate to the .c 
file. An example for making optimized .0 files from .c files is: 

.c.o: 
cc -c -0 $*.c 

or: 

.c.o: 
cc -c -0 $< 

$1 The $? macro is evaluated when explicit rules from the makefile are evaluated. It is 
the list of prerequisites that are out of date with respect to the target: essentially. 
those modules which must be rebuilt. 

$% The $% macro is only evaluated when the target is an archive library member of the 
form llbUlle.o). In this case. $@ evaluates to lib and $% evaluates to the library 
member. file.o. 

Four of the five macros can have alternative forms. When an upper case D or F is appended 
to any of the four macros the meaning is changed to "directory part" for D and "file part" 
for F. Thus. $(@D) refers to the directory part of the string $@. If there is no directory 
part . .I is generated. The only macro excluded from this alternative form is $1. The rea­
sons for this are debatable. 

Suffixes 
Certain names (for instance. those ending with .0) have inferable prerequisites such as .c • .s. 
etc. If no update commands for such a file appear in makejile. and if an inferable prere­
quisite exists. that prerequisite is compiled to make the target. In this case. make has infer­
ence rules which allow building files from other files by examining the suffixes and deter­
mining an appropriate inference rule to use. The current default inference rules are: 

7th Edition 3 



MAKE(l) UNIX Programmer's Manual 

.c .c- .sh .sh- .c.o .c-.o .c-.c .s.o .s-.o .y.o .y .0 .1.0 .C.o 

.y.c .y-.c .l.c .c.a .c-.a .s-.a .h-.h 

MAKE ( 1) 

The internal rules for make are contained in the source file rules.c for the make program. 
These rules can be locally modified. To print out the rules compiled into the make on any 
machine in a form suitable for recompilation, the following command is used: 

make -fp - 2>/dev/null </dev/null 

The only peculiarity in this output is the (null) string which printj(3S) prints when 
handed a null string. 

A tilde in the above rules refers to an sees file (see sccsjile(4». Thus. the rule .c-.o would 
transform an sees C source file into an object file (.0). Because the s. of the sees files is a 
prefix it is incompatible with make's suffix point-of-view. Hence. the tilde is a way of 
changing any file reference into an sees file reference. 

A rule with only one suffix (i.e . .c:) is the definition of how to build x from x.c. In effect. 
the other suffix is null. This is useful for building targets from only one source file (e.g., 
shell procedures. simple C programs). 

Additional suffixes are given as the dependency list for .sUFFIXFS. Order is significant: the 
first possible name for which both a file and a rule exist is inferred as a prerequisite. The 
default list is: 

.sUFFIXFS: .0 .c .y .1 .s 

Here again. the above command for printing the internal rules will display the list of 
suffixes implemented on the current machine. Multiple suffix lists accumulate: .sUFFIXFS: 
with no dependencies clears the list of suffixes. 

Inference Rules 
The first example can be done more briefly: 

pgm: a.o b.o 
cc a.o b.o -0 pgm 

a.o b.o: incl.h 

This is because make has a set of internal rules for building files. The user may add rules 
to this list by simply putting them in the makejile. 

Certain macros are used by the default inference rules to permit the inclusion of optional 
matter in any resulting commands. For example. CFLAGS. LFLAGS. and YFLAGS are used 
for compiler options to cc(l).lex(l). and yacc(l) respectively. Again. the previous method 
for examining the current rules is recommended. 

The inference of prerequisites can be controlled. The rule to create a file with suffix.o from 
a file with suffix .c is specified as an entry with .coO: as the target and no dependents. Shell 
commands associated with the target define the rule for making a .0 file from a.c file. Any 
target that has no slashes in it and starts with a dot is identified as a rule and not a true 
target. 

Libraries 
If a target or dependency name contains parenthesis. it is assumed to be an archive library, 
the string within parenthesis referring to a member within the library. Thus libCfile.o) and 
S(LIBXfile.o) both refer to an archive library which contains file.o. (This assumes the Lm 
macro has been previously defined.) The expression SCLmXfilel.o file2.0) is not legal. Rules 
pertaining to archive libraries have the form .xX.a where the XX is the suffix from which 
the archive member is to be made. An unfortunate byproduct of the current implementa­
tion requires the XX to be different from the suffix of the archive member. Thus. one can­
not have libCfile.o) depend upon file.o explicitly. The most common use of the archive 

7th Edition 4 



MAKE ( I) UNIX Programmer's Manual MAKE(I) 

FlLFS 

interface follows. Here. we assume the source files are all C type source: 

lib: lib(file1.o) lib(file2.0) lib(file3.0) 
@echo lib is now up to date 

.c.a: 
$(CC) -c $(CFLAGS) $< 
ar rv $@ ~.o 
rm -f $*.0 

In fact. the .c.a rule listed above is built into make and is unnecessary in this example. A 
more interesting. but more limited example of an archive library maintenance construction 
follows: 

lib: lib(file1.o) lib(file2.0) lib(file3.o) 
$(CC) -c $(CFLAGS) $(?:.o=.c) 
ar rv lib $1 
rm $1 @echo lib is now up to date 

.c.a:; 

Here the substitution mode of the macro expansions is used. The $1 list is defined to be the 
set of object file names (inside lib) whose C source files are out of date. The substitution 
mode translates the .0 to.c. (Unfortunately, one cannot as yet transform to .c-; however, 
this may become possible in the future') Note also. the disabling of the .c.a: rule. which 
would have created each object file. one by one. This particular construct speeds up archive 
library maintenance considerably. This type of construct becomes very cumbersome if the 
archive library contains a mix of assembly programs and C programs. 

[Mm]akefile and s.[Mm]akefile 

SEE ALSO 
shell. 

BUGS 

Make-A Program for Maintaining Computer Programs by S. I. Feldman. 
An Augmented Version of Make by E. G. Bradford. 

Some commands return non-zero status inappropriately; use -i to overcome the difficulty. 
Commands that are directly executed by the shell. notably cd(l). are ineffectual across 
new-lines in make. The syntax (lib(ftlel.o ftle2.o ftle3.o) is illegal. You cannot build 
libCftle.o) from ftle.o. The macro $(a:.o=.C) doesn't work. 

7th Edition 5 



Chapter 2 

A PROGRAM FOR MAINTAINING COMPUTER 
PROGRAMS (make) 

PAGE 

GENERAL ..•.............................•..•................ 

BASIC FEATURES ............................................• 

2-1 

2-5 

DESCRIPTION FILES AND SUBSTITUTIONS. . . . . . • • . . . . . . . . . . . . 2-8 

COMMAND USAGE .........•••......••........................ 2-11 

SUFFIXES AND TRANSFORMATION RULES .................... 2-12 

IMPLICIT RULES ............................................ . 2-14 

SUGGESTIONS AND WARNINGS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 2-15 

( 

V 

'\\ ; 
,":::./ 

Chapter 2 

A PROGRAM FOR MAINTAINING 
COMPUTER PROGRAMS (make) 

GENERAL 

In a programming project, a common practice is to divide large 
programs into smaller pieces that are more manageable. The pieces 
may require several different treatments such as being processed by 
a macro processor or sophisticated program generators (e.g., Y ace or 
Lex). The project continues to become more complex as the output of 
these generators are compiled with special options and with certain 
definitions and declarations. A sequence of code transformations 
develops which is difficult to remember. The resulting code may need 
further transformation by loading the code with certain libraries 
under control of special options. Related maintenance activities also 
complicate the process further by running test scripts and installing 
validated modules. Another activity that complicates program 
development is a long editing session. A programmer may lose track 
of the files changed and the object modules still valid especially when 
a change to a declaration can make a dozen other files obsolete. The 
programmer must also remember to compile a routine that has been 
changed or that uses changed declarations. 

The "make" is a software tool that maintains, updates, and 
regenerates groups of computer programs. 

A programmer can easily forget 

• Files that are dependent upon other files. 

• Files that were modified recently. 

• Files that need to be reprocessed or recompiled after a change in 
the source. 

• The exact sequence of operations needed to make an exercise a 
c'U new version of the program. 

2-1 



The many activities of program development and maintenance are 
made simpler by the make program. 

The make program provides a method for maintaining up-to-date 
versions of programs that result from many operations on a number 
of files. The make program can keep track of the sequence of 
commands that create certain files and the list of files that require 
other files to be current before the operations can be done. 
Whenever a change is made in any part of a program, the make 
command creates the proper files simply, correctly, and with a 
minimum amount of effort. The make program also provides a 
simple macro substitution facility and the ability to encapsulate 
commands in a single file for convenient administration. 

The basic operation of make is to 

• Find the name of the needed target file in the description. 

• Ensure that all of the files on which it depends exit and are up 
~d~& , 

" 
• Create the target file if it has not been modified since its 

generators were modified. 

The descriptor file really defines the graph of dependencies. The 
make program determines the necessary work by performing a 
depth-first search of the graph of dependencies. 

If Uie information on interfile dependencies and command sequences 
is stored in a file, the simple command 

make 

is frequently sufficient to update the interesting files regardless of 
the number edited since the last make. In most cases, the 
description file is easy to write and changes infrequently. It is 
usually easier to type the make command than to issue even one of 
the needed operations, so the typical cycle of program development 
operations becomes 

think - edit - make - test 

2.2 

'-.;; 

\.....I. 

v 

The make program is most useful for medium-sized programming 
projects. The make program does not solve the problems of 
maintaining multiple source versions or of describing huge programs. 

As an' example of the use of make, the description file used to 
maintain the make command is given. The code for make is spread 
over a number of C language source files and a Yacc grammar. The 
description file contains: 

# Description file for the Make command 

p = lp 
FILES = Makefile version.c defs main.c doname.c misc.c 

files.c dosys.c gram.y lex.c gcos.c 
OBJECTS = version.o main.o doname.o misc.o files.o 

dosys.o gram.o 
LIBES= -IS 
LINT = lint -p 
CFLAGS =-0 

make: $(OBJECTS) 
cc $(CFLAGS) $(OBJECTS) $(LIBES) -0 make 
size make 

$(OBJECTS): defs 
gram.o: lex.c 

cleanup: 
-rm *.0 gram.c 
-du 

install: 
@size make lusr/bin/make 
cp make lusr/bin/make ; rm make 

print: $(FILES) 
pr $1 I $P 
touch print 

# print recently changed files 

n n 



test: 
make -dp I grep -v TIME >1zap 
lusr/bin/make -dp I grep -v TIME >2zap 
diff 1zap 2zap 
rm 1zap 2zap 

lint: dosys.c doname.c files.c main.c misc.c version.c 
gram.c 

arch: 

$(LINT) dosys.c doname.c files.c main.c misc.c 
version.c gram.c 

ar uv Isys/source/s2/make.a $(FILES) 

The make program usually prints out each command before issuing 
it. 

The following output results from typing the simple command make 
in a directory containing only the source and description files: 

cc -0 -c version.c 
cc -0 -c main.c 
cc -0 -c doname.c 
cc -0 -c misc.c 
cc -0 -c files.c 
cc -0 -c dosys.c 
yacc gram.y . 
mv y.tab.c gram.c 
cc -0 -c gram.c 
cc version.o main.o doname.o misc.o files.o dosys.o 

gram.o -IS -0 make 
13188+3348+3044 = 19580b = 046174b 

Although none of the source files or grammars were mentioned by 
name in the description file, make found them using its suffix rules 
and issued the needed commands. The string of digits results from 
the size make command. The printing of the command line itself 
was suppressed by an @ sign. The @ sign on the size command in 
the description file suppressed the printing of the command, so only 
the sizes are written. 

2-4 

v 

\y 

\..Y 

The last few entries in the description file are useful maintenance 
sequences. The "print" entry prints only the files changed since the 
last make print command. A zero-length file print is maintained to 
keep track of the time of the printing. The $? macro in the command 
line then picks up only the names of.the files changed since print was 
touched. The printed output can be sent to a different printer or to a 
file by changing the definition of the P macro as follows: 

make print" P= cat >zap" 

BASIC FEATURES 
The basic operation of make is to update a target file by ensuring 
that all of the files on which the target file depends exist and are up 
to date. The target file is created if it has not been modified since 
the dependents were modified. The make program does a depth­
first search of the graph of dependencies. The operation of the 
command depends on the ability to find the date and time that a file 
was last modified. 

To illustrate, consider a simple example in which a program named 
prog is made by compiling and loading three C language files x.c, y.c, 
and z.c with the IS library. By convention, the output of the C 
language compilations will be found in files named x.o, y.o, and z.o. 
Assume that the files x.c and y.c share some declarations in a file 
named dels, but that z.c does not. That is, x.c and y.c have the line 

#include " defs" 

The following text describes the relationships and operations: 

prog: x.o y.o z.o 
cc x.o y.o z.o -IS -0 prog 

x.o y.o: defs 

If this information were stored in a file named makelile, the 
command 

make 

2-5 



would perform the operations needed to recreate prog after any 
. changes had been made to any of the four source files x.c, y.c, z.c, or 

defs. 

The make program operates using the following three sources of 
information: 

• A user-supplied description file 

• File names and "last-modified" times from the file system 

• Built-in rules to bridge some of the gaps. 

In the example, the first line states that prog depends on three ".0" 
files. Once these object files are current, the second line describes 
how to load them to create prog. The third line states that x.o and 
y.o depend on the file defs. From the file system, make discovers 
that there are three ".c" files corresponding to the needed ".0" files 
and uses built-in information on how to generate an object from a 
source file (Le., issue a "cc -c" command). 

By not taking advantage of make's.innate knowledge, the following 
longer descriptive file results. 

prog: x.o y.o z.o 
cc x.o y.o z.o -IS -0 prog 

x.o: x.c defs 
cc -c x.c 

y.o: y.c defs 
cc -c y.c 

z.o: z.c 
cc -c z.c 

If none of the source or object files have changed since the last time 
prog was made, all of the files are current, and the command 

make 

2-6 

u 

v 

v 

announces this fact and stops. If, however, the defs file has been 
edited, x.c and y.c (but not z.c ) is recompiled; and then prog is 
created from the new ".0" files. If only the file y.c had changed, only 
it is recompiled; but it is still necessary to reload prog. If no target 
name is given on the make command line, the first target mentioned 
in the description is created; otherwise, the specified targets are 
made. The command 

make x.o 

would recompile x.o if x.c or defs had changed. 

If the file exists after the commands are executed, the file's time of 
last modification is used in further decisions. If the file does not 
exist after the commands are executed, the current time is used in 
making further decisions. A method, often useful to programmers, is 
to include rules with mnemonic names and commands that do not 
actually produce a file with that name. These entries can take 
advantage of make's ability to generate files and substitute macros. 
Thus, an entry "save" might be included to copy a certain set of files, 
or an entry "cleanup" might be used to throwaway unneeded 
intermediate files. In other cases, one may maintain a zero-length 
file purely to keep track of the time at which certain actions were 
performed. This technique is useful for maintaining remote archives 
and listings. 

The make program has a simple macro mechanism for substituting 
in dependenc~ lines and command strings. Macros are defined by 
command arguments or description file lines with embedded equal 
signs. A macro is invoked by preceding the name by a dollar sign. 
Macro names longer than one character must be parenthesized. The 
name of the macro is either the single character after the dollar sign 
or a name inside parentheses. The following are valid macro 
invocations: 

$(CFLAGS) 
$2 
$(xy) 
$Z 
$(Z) 

The last two invocations are identical. A $$ is a dollar sign. 

2-7 



The $*, $@, $?, and $< are four special macros which change values V 
during the execution of the command. (These four macros are 
described in the part "DESCRIPTION FILES AND 
SUBSTITUTIONS".) The following fragment shows assignment and· 
use of some macros: 

OBJECTS =x.o y.o z.o 
LIBES = -IS 
prog: $(OBJECTS) 

cc $(OBJECTS) $(LIBES) -0 prog 

The make command loads the three object files with the IS library. 
The command 

make "LIBES= -II -IS" 

loads them with both the Lex (-II) and the standard (-IS) libraries 
since macro definitions on the command line override definitions in 
the description. Remember to quote arguments with embedded 
blanks in UNIX software commands. 

DESCRIPTION FILES AND SUBSTITUTIONS 
A description file contains the following information: 

• macro definitions 

• dependency information 

• executable commands. 

2-8 

v 

v 

The comment convention is that a sharp (#) and all characters on the 
same line after a sharp are ignored. Blank lines and lines beginning 
with a sharp (#) are totally ignored. If a noncomment line is too 
long, the line can be continued by using a backslash. If the last 
character of a line is a backslash, then the backslash, the new line, 
and all following blanks and tabs are replaced by a single blank. 

A macro definition is a line containing an equal sign not preceded by 
a colon or a tab. The name (string of letters and digits) to the left of 
the equal sign (trailing blanks and tabs are stripped) is assigned the 
string of characters following the equal sign (leading blanks and tabs 
are stripped). The following are valid macro definitions: 

2 = xyz 
abc = -II -Iy -IS 
LIBES = 

The last definition assigns LIBES the null string. A macro that is 
never explicitly defined has the null string as the macro's value. 

Macro definitions may also appear on the make command line while 
other lines give information about target files. The general form of 
an entry is 

target! [target2 .. ] :[:] [dependent! .. ] [; commands] [# .. ] 
[(tab) commands] [# ... ] 

Items inside brackets may be omitted. Targets and dependents are 
strings of letters, digits, periods, and slashes. Shell metacharacters 
such as "*,, and "?" are expanded. Commands may appear either 
after a semicolon on a dependency line or on lines beginning with a 
tab immediately following a dependency line. A command is any 
string of characters not including a sharp (#) except when the sharp 
is in quotes or not including a new line. 

2-9 



A dependency line may have either a single or a double colon. A 
target name may appear on more than one dependency line, but all of 
those lines must be of the same (single or double colon) type. For the 
usual single-colon case, a command sequence may be associated with 
at most one dependency line. If the target is out of date with any of 
the dependents on any of the lines and a command sequence, is 
specified (even a null one following a semicolon or tab), it is executed; 
otherwise, a default creation rule may be invoked. In the double­
colon case, a command sequence may be associated with each 
dependency line; if the target is out of date with any of the files on a 
particular line, the associated commands are executed. A built-in rule 
may also be executed. This detailed form is of particular value in 
updating archive-type files. 

If a target must be created, the sequence of commands is executed. 
Normally, each command line is printed and then passed to a 
sepa~ate invocation of the shell after substituting for macros. The 
printing is suppressed in the silent mode or if the command line 
begins with an @ sign. Make normally stops if any command 
signals an error by returning a nonzero error code. Errors are 
ignored if the -i flags have been specified on the make command 
line, if the fake target name ".IGNORE" appears in the description 
file, or if the command string in the description file begins with a 
hyphen. Some UNIX software commands return meaningless status. 
Because each command line is passed to a separate invocation of the 
shell, care must be taken with certain commands (e.g., cd and shell 
control commands) that have meaning only within a single shell 
process. These results are forgotten before the next line is executed. 

Before issuing any command, certain internally maintained macros 
are set. The $@ macro is set to the full target name of the current 
target. The $@ macro is evaluated only for explicitly named 
dependencies. The $1 macro is set to the string of names that were 
found to be younger than the target. The $1 macro is evaluated when 
explicit rules from the makefile are evaluated. If the command was 
generated by an implicit rule, the $< macro is the name of the 
related file that caused the action; and the $* macro is the prefix 
shared by the current and the dependent file names. If a file must be 
made but there are no explicit commands or relevant built-in rules, 
the commands associated with the name ".DEFAULT" are used. If 
there is no such name, make prints a message and stops. 

2-10 

v 

v 

v 

COMMAND USAGE 

The make command takes macro definitions, flags, description file 
names, and target file names as arguments in the form: 

make [ flags] [macro definitions] [targets] 

The following summary of command operations explains how these 
arguments are interpreted. 

First, all macro definition arguments (arguments with embedded 
equal signs) are analyzed and the assignments made. Command-line 
macros override corresponding definitions found in the description 
files. Next, the flag arguments are examined. The permissible flags 
are as follows: 

-i 

-s 

-r 

-n 

-t 

-q 

-p 

Ignore' error codes returned by 
commands. This mode is entered if 
target name ".IGNORE" appears 
description file. 

invoked 
the fake 
in the 

Silent mode. Do not print command lines before 
executing. This mode is also entered if the fake 
target name ".SILENT" appears in the 
description file. 

Do not use the built-in rules. 

No execute mode. Print commands, but do not 
execute them. Even lines beginning with an 
"@" sign are printed. 

Touch the target files (causing them to be up to 
date) rather than issue the usual commands. 

Question. The make command returns a zero or 
nonzero status code depending on whether the 
target file is or is not up to date. 

Print out the complete set of macro definitions 
and target descriptions. 

2_11 



-d 

-f 

Debug mode. Print out detailed information on 
files and times examined. 

Description file name. The next argument is. 
assumed to be the name of a description file. A 
file name of "-" denotes the standard input. If 
there are no "-f" arguments, the file named 
makefile or Makefile in the current directory is 
read. The contents of the description files 
override the built-in rules if they are present. 

Finally, the remaining arguments are assumed to be the names of 
targets to be made, and the arguments are done in left-to-right order. 
If there are no such arguments, the first name in the description files 
that does not begin with a period is "made". 

SUFFIXES AND TRANSFORMATION RULES 
The make program does not know what file name suffixes are 
interesting or how to transform a file with one suffix into a file with 
another suffix. This information is stored in an internal table that 
has the form of a description file. If the -r flag is used, the internal 
table is not used. 

The list of suffixes is actually the dependency list for the name 
".SUFFIXES". The make program searches for a file with any of 
the suffixes on the list. If such a file exists and if there is a 
transformation rule for that combination, make transforms a file 
with one suffix into a file with another suffix. The transformation 
rule names are the concatenation of the two suffixes. The name of 
the rule to transform a .r file to a .0 file is thus .r.o. If the rule is 
present and no explicit command sequence has been given in the 
user's description files, the command sequence for the rule .r.o is 
used. If a command is generated by using one of these suffixing 
rules, the macro $* is given the value of the stem (everything but the 
suffix) of the name of the file to be made; and the macro $< is the 
name of the dependent that caused the action. 

2-12 

u 

v 

'-V 

The order of the suffix list is significant since the list is scanned 
from left to right. The first name formed that has both a file and a 
rule associated with it is used. If new names are to be appended, the 
user can add an entry for ".SUFFIXES" in his own description file. 
The dependents are added to the usual list. A ".SUFFIXES" line 
without any dependents deletes the current list. It is necessary to 
clear the current list if the order of names is to be changed. The 
following is an excerpt from the default rules file: 

.SUFFIXES : .0 .c .e .r .f .y .yr .ye .I .s 
YACC = yacc 
Y ACCR = yacc -r 
YACCE = yacc-e 
YFLAGS = 
LEX = lex 
LFLAGS = 
CC = cc 
AS = as­
CFLAGS = 
RC = ec 
RFLAGS = 
EC = ec 
EFLAGS = 
FFlags = 
.c.o: 

$(CC) $(CFLAGS) -c $< 
.e.o .r.o .f.o : 

.s.o: 

.y.o: 

.y.c: 

$(EC) $(RFLAGS) $(EFLAGS) $(FFLAGS) -c $< 

$(AS) -0 $@ $< 

$(YACC) $(YFLAGS) $< 
$(CC) $(CFLAGS) -c y.tab.c 
rm y.tab.c 
mv y.tab.o $@ 

$(YACC) $(YFLAGS) $< 
mv y.tab.c $@ 

2-13 



IMPLICIT RULES 

The make program uses a table of interesting suffixes and a set of 
transformation rules to supply default dependency information and 
implied commands. The default suffix list is as follows: 

.0 Object file 

.C C source file 

.e Efl source file 

.r Ratfor source file 

.f Fortran source file 

.S Assembler source file 

.y Yacc-C source grammar 

.yr Yacc-Ratfor source grammar 

.ye Yacc-Efl source grammar 

.1 Lex 'source grammar. 

Figure 2-1 summarizes the default transformation paths. If there are 
two paths connecting a pair of suffixes, the longer one is used only if 
the intermediate file exists or is named in the description. 

If the file x.o were needed and there were an x.C in the description or 
directory, the x.o file would be compiled. If there were also an x.l, 
that grammar would be run through Lex before compiling the result. 
However, if there were no x.c but there were an x.I, make would 
discard the intermediate C language file and use the direct link as 
shown in Figure 2-1. 

It is possible to change the names of some of the compilers used in 
the default or the flag arguments with which they are invoked by 
knowing the macro names used. The compiler names are the macros 
AS, CC, RC, EC, YACC, YACCR, YACCE, and LEX. The 
command 

make CC=newcc 

2-14 

v 

U 

0J 

.0 

.C .r .e .f .S .y .yr .ye .1 .d 

A 
.y .1 .yr .ye 

Figure 2-1. Summary of Default Transformation Path 

will cause the newcc command to be used instead of the usual C 
language compiler. The macros CFLAGS, RFLAGS, EFLAGS, 
YFLAGS, and LFLAGS may be set to cause these commands to be 
issued with optional flags. Thus 

make" CFLAGS=-O" 

causes the optimizing C language compiler to be used. 

SUGGESTIONS AND WARNINGS 

The most common difficulties arise from make's specific meaning of 
dependency. If file x.c has a "#include " defs"" line, then the object 
filex.o depends on defs; the source file x.c does not. If defs is 
changed, nothing is done to the file x.c while file x.o must be 
recreated. 

2-15 



To discover what make would do, the -n option is very useful. The ''---'"', 
command 

make -n 

orders make to print out the commands which make would issue 
without actually taking the time to execute them. If a change to a 
file is absolutely certain to be mild in character (e.g., adding a new 
definition to an include file), the -t (touch) option can save a lot of 
time. Instead of issuing a large number of superfluous 
recompilations, make updates the modification times on the affected 
file. Thus, the command 

make -ts 

("touch silently") causes the relevant files to appear up to date. 
Obvious care is necessary since this mode of operation subverts the 
intention of make and destroys all memory of the previous 
relationships. 

The debugging flag (-d) causes make to print out a very detailed 
description of what it is doing including the file times. The output is 
verbose and recommended only as a last resort. 

2-16 

o 

\...J 



Chapter 3 

AUGMENTED VERSION OF make 

PAGE 

GENERAL ..•.....•................•.......................... 

THE ENVIRONMENT VARIABLES ......•....................... 

RECURSIVE MAKEFILES .....•••.......•...................... 

FORMAT OF SHELL COMMANDS WITHIN make .......•......... 

ARCHIVE LIBRARIES ..............•.......................... 

SOURCE CODE CONTROL SYSTEM FILE NAMES: THE 

TILDE •••.......•..•.......••......•..................... 

THE NULL SUFFIX ........................................... . 

INCLUDE FILES •................•............................ 

INVISIBLE SCCS MAKEFILES •.•................•.............. 

DYNAMIC DEPENDENCY PARAMETERS .................•..... 

EXTENSIONS OF $*, $@, AND $< ....•••••......•....•..•.•.....• 

OUTPUT TRANSLATIONS ..........•.•.........•.............. 

3-1 

3-2 

3-8 

3-9 

3-9 

3-14 

3-16 

3-16 

3-17 

3-17 

3-18 

3-19 

u 

0 

v 

Chapter 3 

AUGMENTED VERSION OF make 

GENERAL 

This section describes an augmented version of the make command 
of the UNIX operating system. The augmented version is upward 
compatible with the old version. This section describes and gives 
examples of only the additional features. Further possible 
developments for make are also discussed. Some justification will 
be given for the chosen implementation, and examples will 
demonstrate the additional features. 

The make command is an excellent program administrative tool 
used extensively in at least one project for over 2 years. However, 
make had the following shortcomings: 

• Handling of libraries was tedious. 

• Handling of the Source Code Control System (SCCS) file name 
format was difficult or impossible. 

• Environment variables were completely ignored by make. 

• The general lack of ability to maintain files in a remote 
directory. 

These shortcomings hindered large scale use of make as a program 
support tool. 

The AUGMENTED VERSION OF make is modified to handle the 
above problems. The additional features are within the original 
syntactic framework of make and few if any new syntactical entities 
are introduced. A notable exception is the include file capability. 
Further, most of the additions result in a "Don't know how to make 
... " message from the old version of make. 

3-1 



The following paragraphs describe with examples the additional 
features of the make program. In general, the examples are taken 
from existing makefiles. Also, the illustrations are examples of. 
working makefiles. 

THE ENVIRONMENT VARIABLES 
Environment variables are read and added to the macro definitions 
each time make executes. Precedence is a prime consideration in 
doing this properly. The following describes make's interaction with 
the environment. A new macro, MAKEFLAGS, is maintained by 
make. The new macro is defined as the collection of all input flag 
arguments into a string (without minus signs). The new macro is 
exported and thus accessible to further invocations of make. 
Command line flags and assignments in the makefile update 
MAKEFLAGS. Thus, to describe how the environment interacts 
with make, the MAKEFLAGS macro (environment variable) must 
be considered. 

When executed, make assigns macro definitions in the following 
order: 

1. Read the MAKEFLAGS environment variable. If it is not 
present or null, the internal make variable MAKEFLAGS is 
set to the null string. Otherwise, each letter. in 
MAKEFLAGS is assumed to be an input flag argument and 
is processed as such. (The only exceptions are the -f, -p, and 
-r flags.) 

2. Read and set the input flags from the command line. The 
command line adds to the previous settings from the 
MAKEFLAGS environment variable. 

3. Read macro definitions from the command line. These are 
made not resettable. Thus, any further assignments to these 
names are ignored. 

4. Read the internal list of macro definitions. These are found in 
the file rules.c of the source for make. Figure 3-1 contains the 
complete makefile that represents the internally defined 

3-2 

v 

,\_/ 

w 

5. 

6. 

macros and rules of the. current version of make. Thus, if 
make -r ..• is typed and a makefile includes the makefile in 
Figure 3-1, the results would be identical to excluding the -r 
option and the include line in the makefile. The Figure 3-1 
output can be reproduced by the following: 

make -fp - < Idev/null 2>/dev/null 

The output appears on the standard output. 
They give default definitions for the C language compiler 
(CC=cc), the assembler (AS=as), etc. 

Read the environment. The environment variables are treated 
as macro definitions and marked as exported (in the shell 
sense). However, since MAKEFLAGS* is not an internally 
defined variable (in rules. c), this has the effect of doing the 
same assignment twice. The exception to this is when 
MAKEFLAGS is assigned on the command line. (The reason 
it was read previously was to turn the de~ug flag on before 
anything else was done.) 

Read the makefile(s). The assignments in the makefile(s) 
overrides the environment. This order is chosen so that when a 
makefile is read and executed, you know what to expect. That 
is, you get what is seen unless the -e flag is used. The -e is 
an additional command line flag which tells make to have the 
environment override the makefile assignments. Thus, if 
make -e .•. is typed, the variables in the environment 
override the definitions in the makefilef. Also MAKEFLAGS 
override the environment if assigned. This is useful for 
further invocations of make from the current makefile. 

* :MAKEFLAGS are read and set again. 
t There is no way to override the command line assignments. 

, 
3-3 



v 
# LIST OF SUFFIXES 

# SINGLE SUFFIX RULES 

.SUFFIXES: .0 .c £ .:L~- .1 .1- .s .s-
.sh .sh- .h .h-

.c: 
$(CC) -n -0 $< -0 $@ 

.c-: 

# PRESET VARIABLES 

$(GET) $(GFLAGS) -p $< > $*.c 
$(CC) -n -0 $* .c -0 $* 
-rm -f $*.c 

MAKE=make .sh: 

YACC=yacc cp$< @ 

YFLAGS= 
LEX=lex 
LFLAGS= 

.sh-: 
$(GET) &(GFLAGS) -p $< > .sh 
cp $* .sh $* 
-rm -f $* .sh 

LD=ld 
LDFLAGS= # DOUBLE SUFFIX RULES 

CC=cc 
CFLAGS=-o 
AS=as u .c.o: 

$(CC) $(CFLAGs) -c $< 

ASFLAGS= .c-.o: 
GET=get 
GFLAGS= 

Figure 3-1. Example of Internal Definitions (Sheet 2 of 4) 

Figure 3-1. Example of Internal Definitions (Sheet 1 of 4) 

v 
~ 

3-4 3-5 



v 
$(GET) $(CFLAGS) -p $< > $*.c 
$(CC) $(CFLAGS) -c $*.c 
-rm -f $*.c 

.c- .c: 
$(GET) $(GFLAGS) -p $< >$*.c 

.1- .0: 
$(GET) $(GFLAGS) -p $< > $*.1 
$(LEX) $(GFLAG) $*.1 
$(CC) $(CFLAGS) -c lex.yy.c 
rm -f lex.yy.c $*.1 
mv lex.yy.o $*.0 

.S.O: 
$(AS) $(ASFLAGS) -0 $@ $< 

.y.c: 
$(YACC) $(YFLAGS) $< 

.s- .0: mv y.tab.c $@ 

$(GET) $(GFLAGS) -p $< > $*.s 
$(AS) $(ASFLAGS) -0 $* .0 $* .s 
-rm -f $*.s 

.y-.c: 
$(GET) $( GFLAGS) -p $< > $*.y 
$(YACC) $(YFLAGS) $*.y 

.y.O: 
$(YACC) $(YFLAGS) $< 

mv -f $*.c 
-rm -f $*.y 

$(CC) $(CFLAGS) -c y.tab.c .l.c: 
rm y.tab.o$@ $(LEX) $< 

.y-.o: mv lex.yy.c$@ 

$(GET) $(GFLAG) -p $< > $*.y 
$(YACC) $(YFLAGS) $*.y 

.c.a: 
$(CC) -c $(FLAGS) $< 

$(CC) $(CFLAG) -c y.tab.c v ar rv $@ $*.0 
rm -f y.tab $*.y rm -f $*.0 
mv y.tab.o $*.0 

.1.0: 
$(LEX) $(LFLAGS) $< 

.c-.a: 
$(GET) $(GFLAGS) -p $< > $*.c 
$(CC) -c $(CFLAGS) $*.c 

$(CC) $(CFLAGS) -c lex.yy.c ar rv $@ $*.0 
rm lex.yy.c 
mv lex.yy.o $@ 

.s-.a: 
$(GET) $(GFLAGS) -p $< > $*.s 
$(AS) $(ASFLAGS) -0 $*.0 $*.s 
ar rv $@ $*.0 

Figure 3-1. Example of Internal Definitions (Sheet 3 of 4) -rm -f $*.[s01 

.h-.h 
$(GET) $(GFLAGS) -p $< > $*.h 

Figure 3-1. Example of Internal Definitions (Sheet 4 of 4) 

.~ 

~ 3-7 
3-6 



It may be clearer to list the precedence of assignments. Thus, in 
order from least binding to most binding, the precedence of 
assignments is as follows: 

1. 

2. 

internal definitions (from rules. c) 

environment 

8. makefiJe(sY. 

4. command line. 

The -e flag has the effect of changing the order to: 

1. 

2. 

internal definitions (from rules. c) 

makefile(s) 

3. environment 

4. command line. 

This order is general enough to allow a programmer to define a 
makefile or set of makefiles whose parameters are dynamically 
definable. 

RECURSIVE MAKEFILES 
Another feature was added to make concerning the environment and 
recursive invocations. If the sequence "$(MAKE)" appears anywhere 
in a shell command line, the line is executed even if the -n flag is 
set. Since the -n flag is exported across invocations of make 
(through the MAKEFLAGS variable), the only thing that actually 
gets executed is the make command itself. This feature is useful 
when a hierarchy of makefile(s) describes a set of software 
SUbsystems. For testing purposes, make -n ... can be executed and 
everything that would have been done will get printed out including 
output from lower level invocations of make. 

3-8 

/ 

V 

v 

J 

FORMAT OF SHELL COMMANDS WITHIN make 
The make program remembers embedded newlines and tabs in shell 
command sequences. Thus, if the programmer puts a for loop in the 
makefile with indentation, when make prints it out, it retains the 
indentation and backslashes. The output can stilI ·be piped to the 
shell and is readable. This is obviously a cosmetic change; no new 
function is gained. 

ARCHIVE LIBRARIES 
The make program has an improved interface to archive libraries. 
Due to a lack of documentation, most people are probably not aware 
of the current syntax of addressing members of archive libraries. 
The previous version of make allows a user to name a member ofa 
library in the following manner: 

lib(object.o) 
or 

lib( <-local time» 

where the second method actually refers to an entry point of an 
object file within the library. (Make looks through the library, 
locates the entry point, and translates it to the correct object file 
name.) 

To use this procedure to maintain an archive library, the following 
type of makefile is required: 

lib:: lib(ctime.o) 
$(CC) -c -0 ctime.c 
ar rv lib ctime.o 
rm ctime.o 

lib:: lib(fopen.o) 
$(CC) -c -0 fopen.c 
ar rv lib fopen.o 
rm fopen.o 

... and so on for each object ... 

~ 

3-9 



This is tedious and error prone. Obviously, the command sequences 
for adding a C language file to a library are the same for each 
invocation; the file name being the only difference each time. (This is 
true in most cases.) 

The current version gives the user access to a rule for building 
libraries. The handle for the rule is the ".a" suffix. Thus, a ".c.a" 
rule is the rule for compiling a C language source file, adding it to 
the library, and removing the ".0" cadaver. Similarly, the ".y.a", the 
".s.a", and the ".l.a" rules rebuild YACC, assembler, and LEX files, 
respectively. The current archive rules defined internally are ".c.a", 
".c{.a", and ".s{.a". [The tilde n syntax will be described shortly.] 
The user may define in makefile other rules needed. 

The above 2-member library is then maintained with the following 
shorter makefile: 

lib: lib(ctime.o) lib(fopen.o) 
echo lib up-to-date. 

The internal rules are already defined to complete the preceding 
library maintenance. The actual ".c.a" rules are as follows: 

. c.a: 
$(CC) -c $(CFLAGS) $< 
ar rv $@ $*.0 
rm -f $*.0 

Thus, the $@ macro is the ".a" target (lib); the $< and $* macros are 
set to the out-of-date C language file; and the file name scans the 
suffix, respectively (ctime.c and ctime). The $< macro (in the 
preceding rule) could have beert changed to $*.c. 

It might be useful to go into some detail about exactly what make 
does when it sees the construction 

lib: lib( ctime.o ) 
@echo lib up-to-date 

3-10 

v 

v 

~ 

Assume the object in the library is out-of date with respect to 

ctime.c. Also, there is no ctime.o file. 

1. Do lib. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

To do lib, do each dependent of lib. 

Do lib(ctime.o). 

To do lib(ctime.o), do each dependent of lib(ctime.o). (There 

are none.) 

Use internal rules to try to build lib(ctime.o). (There is no 
explicit rule.) Note that lib(ctime.o) has a parenthesis in the 
name to identify the target suffix as ".a". This is the key. 
There is no explicit ".a" at the end of the lib library name. 
The parenthesis forces the ".a" suffix. In this sense, the ".a" is 

hard wired into make. 

Break the name lib(ctime.o) up into lib and ctime.o. Define 
two macros, $@ (=lib) and $* (=ctime). 

Look for a rule ".X.a" and a file $*.X. The first ".X" (in the 
.SUFFIXES list) which fulfills these conditions is ".c" so the 
rule is ".c.a", and the file is ctime.c. Set $< to be ctime.c and 
execute the rule. In fact, make must then do ctime.c . 
However, the search of the current directory yields no other 
candidates, and the search ends. 

The library has been updated. Do the rule associated with the 

"lib:" dependency; namely: 

echo lib up-to-date 

It should be noted that to let ctime.o have dependencies, the following 

syntax is required: 

lib(ctime.o): $(INCDIR)/stdio.h 

Thus, explicit references to .0 files are unnecessary. There is also a 
new macro for referencing the archive member name when this form 

3-11 



is used. The $% macro is evaluated each time $@ is evaluated. If 
there is no current archive member, $% is null. If an archive 
member exists, then $% evaluates to the expression between the 
parenthesis. 

An example makefile for a larger library is given in Figure 3-2. 

# @(#)/usrlsrc/cmd/make/make.tm 3.2 
LIB ==lsxlib 
PR==lp 
INSDIR == IrllflopOI 
INS == eval 
Isx: $(LIB) low.o mch.o 

Id -x low.o mch.o $(LIB) 
mv a.out Isx 
@size Isx 

# Here, $(INS) as either"." or" eval" . 
lsx: 

$(lNS),cp Isx $(INSDIR)lsx .. 
strip $(INSDIR)lsx .. 
Is -1 $(INSDIR)lsx' 

print: 
$(PR) header.slow.smch.s*.h *.c Makefile 

Figure 3-2. Example of Library Makefile (Sheet 1 of 3) 

3-12 

i\. U U J.Ui\.A.£o 

u 
$(LIB): 

$(LIB)(CLOCK.o) 
$(LIB)(main.o) 
$(LIB)(tty.o) 
$(LIB)(trap.o) 
$(LIB)(sysent.o) 
$(LIB)(sys2.o 1 
$(LIB)(syn3.o) 
$(LIB)(syn4.o) 
$(LIB)(sys1.o) 
$(LIB)(sig.o) 
$(LIB)(fio.o) 
$(LIB)(kl.o) 
$(LIB)( alloc.o) 
$(LIB)(namLo) 
$(LIB)(iget.o) 

u $(LIB)(rdwri.o) 
$(LIB)(subr.o) 

Figure 3-2. Example of Library Makefile (Sheet 2 of 3) 

v 
.. 



$(LIB)(bio.o) 
$(LIB)( decfd.o) 
$(LIB)(sip.o) 
$(LIB)( space.o) 
$(LIB)(puts.o) 
@echo $(LIB) now up to date. 

.s.o: 
as -0 $*.0 header.s $*.s 

.o.a: 
ar rv $@ $< 
rm -f $< 

.s.a: 
as -0 $*.0 header.s $*.s 
ar rv $@ $*.0 
rm -f $*.0 

.PRECIOUS:$(LIB) 

Figure 3-2. Example of Library Makefile (Sheet 3 of 3) 

The reader will note also that there are no lingering "*.0" files left 
around. The result is a library maintained directly from the source 
files (or more generally from the SCCS files). 

SOURCE CODE CONTROL SYSTEM FILE 
NAMES: THE TILDE 
The syntax of make does not. directly permit referencing of prefixes. 
For most types of files on UNIX operating system machines, this is 
acceptable since nearly everyone uses a suffix to distinguish different 
types of files. The SCCS files are the exception. Here, "s." precedes 
the file name part of the complete pathname. 

3-14 

v 

J 

.. ~ 

To allow make easy access to the prefix "s." requires either a 
redefinition of the rule naming syntax of make or a trick. The trick 
is to use the tilde n as an identifier of SCCS files. Hence, "£.0" 
refers to the rule which transforms an SCCS C language source file 
into an object. Specifically, the internal rule is 

.c-.o: 
$(GET) $(GFLAGS) -p $< > $*.c 
$(CC) $(CFLAGS) -c $*.c 
-rm -f $*.c 

Thus, the tilde appended to any suffix transforms the file search into 
an SCCS file name search with the actual suffix named by the dot 
and all characters up to (but not including) the tilde. 

The following SCCS suffixes are internally defined: 

.c-

f 
.s-
.sh­
.h-

The following rules involving SCCS transformations are internally 
defined: 

.c-: 

.sh-: 

.C-.O: 

.S-.O: 

.y-.o: 

.1-.0: 

.y-.c: 

.c-.a: 

.s-.a: 

.h-.h: 

Obviously, the user can define other rules and suffixes which may 
prove useful. The tilde gives him a handle on the SCCS file name 
format so that thts is possible. 

~-H) 



THE NULL SUFFIX 
In the UNIX system source code, there are many commands which 
consist of a single source file. It was wasteful to maintain an object 
of such files for make. The current implementation supports single· 
suffix rules (a null suffix). Thus, to maintain the program cat, a rule 
in the makefile of the following form is needed: 

.c: 
$(CC) -n -0 $< -0 $@ 

In fact, this ".c:" rule is internally defined so no makefile is necessary 
at all. The user only needs to type 

make cat dd echo date 

(these are notable single file programs) and all four C language 
source files are passed through the above shell command line 
associated with the ".c:" rule. The internally defined single suffix 
rules are 

.c: 

.c-: 

.sh: 

.sh-: 

Others may be added in the makefile by the user. 

INCLUDE FILES 

The make program has an. include file capability. If the string 
include appears as the first seven letters of a line in a makefile and is 
followed by a blank ox: a tab, the string is assumed to be a file name 
which the current invocation of make will read. The file descriptors 
are stacked for reading include files so that no more than about 16 
levels of nested includes are supported. 

3-16 

u 

" . 
\...../ 

u 

INVISIBLE SCCS MAKEFILES 
The SCCS makefiles are invisible to make. That is, if make is 
typed and only a file named s.makefile exists, make will do a get on 
the file, then read and remove the file. Using the -f, make will get, 
read, and remove arguments and include files. 

DYNAMIC DEPENDENCY PARAMETERS 

A new dependency parameter has been defined. The parameter has 
meaning only on the dependency line in a makefile. The $$@ refers 
to the current "thing" to the left of the colon (which is $@). Also the 
form $$(@F) exists which allows access to the file part of $@. Thus, 
in the following: 

cat: $$@.c 

the dependency is translated at execution time to the string "cat.c". 
This is useful for building a large number of executable files, each of 
which has only one source file. For instance, the UNIX software 
command directory could have a makefile like: 

CMDS = cat dd echo date cc cmp comm ar ld chown 

$(CMDS): $$@.c 
$(CC) -0 $? -0 $@ 

Obviously, this is a subset of all the single file programs. For 
multiple file programs, a directory is usually allocated and a separate 
makefile is made. For any particular file that has a peculiar 
compilation procedure, a specific entry must be made in the makefile. 

The second useful form of the dependency parameter is $$(@F). It 
represents the file name part of $$@. Again, it is evaluated at 
execution time. Its usefulness becomes evident when trying to 
maintain the /usr/include directory from a makefile in the 
/usr/src/head directory. Thus, the /usr/src/head/makefile would 
look like 

, 
3-17 



AUGMAKE 

INCDIR = lusr/include 

INCLUDES = \ 
$(INCDIR)/stdio.h \ 
$(INCDIR)/pwd.h \ 
$(INCIDR)/dir.h \ 
$(INCDIR)I a.out.h 

$(INCLUDES): $$(@F) 
cp $? $@ 
chmod 0444 $@ 

This would completely maintain the lusrlinc1ude directory whenever 
one of the above files in lusrlsrclhead was updated. 

EXTENSIONS OF $*, $@, AND $< 

The internally generated macros $*, $@, and $< are useful generic 
terms for current targets and out-of-date relatives. To this list has 
been added the following related macros: $(@D), $(@F), $(*D), 
$( *F), $( <D), and $( <F). The "D" refers to the directory part of the 
single letter macro. The "F" refers to the file name part of the single 
letter macro. These additions are useful when building hierarchical 
makefiles. They allow access to directory names for purposes of 
using the cd command of the shell. Thus, a shell command can be 

cd $«D); $(MAKE) $«F) 

An interesting example of the use of these features can be found in 
the set of makefiles in Figure 3-3. Each makefile is named "70.mk". 
The following command forces a complete rebuild of the operating 
system: 

FRC=FRC make -f 70.mk 

L' 

\ j .. ~ 

where the current directory is ucb. The FRC is a convention for 
FoRCing make to completely rebuild a target starting from scratch. ~ 

OUTPUT TRANSLATIONS 

Macros in shell commands can now be translated when evaluated. 
The form is as follows: 

$( macro: string! = string2) 

The meaning of $(macro) is evaluated. For each appearance of 
stringl in the evaluated macro, string2 is substituted. The meaning 
of finding stringl in $(macro) is that the evaluated $(macro) is 
considered as a bunch of strings each delimited by white space 
(blanks or tabs). Thus, the occurrence of stringl in $(macro) means 
that a regular expression of the following form has been found: 

.*<stringl> [TABIBLANK] 

This particular form was chosen because make usually concerns 
itself with suffixes. A more general regular expression match could 
be implemented if the need arises. The usefulness of this type of 
translation occurs when maintaining archive libraries. Now, all that 
is necessary is to accumulate the out-of-date members and write a 
shell script which can handle all the C language programs (Le., those 
files ending in ".c"). Thus, the following fragment optimizes the 
executions of make for maintaining an archive library: 

$(LIB): $(LIB)(a.o) $(LIB)(b.o) $(LIB)c.o) 
$(CC) -c $(CFLAGS) $(?:.o=.c) 
ar rv $(LIB) $? 
rm $? 

A dependency of the preceding form is necessary for each of the 
different types of source files (suffices) which define the archive 
library. These translations are added in an effort to make more 
general use of the wealth of information which make generates. 



:ct: An Augmented Version of Make 
Charge Case 49579-210 
File Case 40320-1 

ABSTRAcr 

@ 
Bell Laboratories 

date: July 1, 1979 

from: E. G. Bradford 
CB5255 
lC-249 x2804 

TM 79-5255-1 
5255-79070 1.0 IMF 

This paper describes an augmented version of the make command supplied with UNIXlTS. 
With one debatable exception, this version is completely upward compatible with the UNIXlTS 
version. In this paper, I describe and give examples only of additional features. The reader is 
assumed to have read or have available the original make paper by S. L Feldman.1 Further 
developments for make are also discussed. 

MEMORANDUM FOR FILE 

1. INTRODUCTION 

This paper will describe in some detail an augmented version of the make program now 
running on the Columbus operating systems group UNIX machine. I will give some 
justification for the chosen implementation and describe with examples the additional features. 

2. MOTIVATION FOR THE CURRENT IMPLEMENTATION 

The make program was originally written for personal use by S. I. Feldman. However, it 
became popular on the research UNIX machine and a more formal version was built and 
installed for general use. For the purpose of maintaining executable programs in the Center 
127 environment, it has served this purpose well Further developments of make have not 
been necessary and thus have not been done. 

In Columbus make was perceived as an excellent program administrative tool and has been 
used extensively in at least one project (Noes) for over two years. However, make had many 
shortcomings: handling of libraries was tedious; handling of the sees :filename format was 
difficult or impossible; environment variables are completely ignored by make; and the general 
lack of ability to maintain :files in a remote directory. These shortcomings hindered large scale 
use of make as a program support tool 

1. Feldman, S. L, MAKE, A Program for Maintaining Computer Programs, Computing Science Technical Report 
Number 57 



-2-

There were at least two avenues for solving the above problems. The first was a complete 
redesign. This would probably mean a new syntax and of necessity force new make:files to be 
incompatible with old ones. The advantages however would be a more general implementation 
that would be growable. This point of view was not chosen because of the compatibility 
problem. The second and more tame point of view was to modify the current implementation 
to handle the problems above. This point of view had the advantage that if done carefully it 
could be completely upward compatible. It was this second avenue which was chosen. 

The additional features are within the original syntactic framework of make and few if any 
new syntactical entities have been introduced. A notable exception is the include :file 
capability. Further, most of the additions result in a "Don't know how to make _" message 
from the old version of make. 

3. THE ADDmONAL FEATURFS 

The following paragraphs describe with examples the additional features of the make program. 
In general, the examples are taken from existing makefiles. Also, the appendices are working 
makefiles. 

3.1 The Environment Variables 

Environment variables are read and added to the macro definitions each time make executes. 
Precedence is a prime consideration in doing this properly. Thus, if the environment variable 
CC is set to occ, does it override the command line? Does it override the definition in the 
makefi.le? To answer these questions I need to describe the order in which make does the macro 
assignments. 

First, a new macro, MAKEFLAGS, must be described. MAKEFLAGS is maintained by make. 
It It is defined as the collection of all input flag arguments into a string (without the minus 
sign). It is exported, and thus accessible to further invocations of make. Command line flags 
and assignments in the "make:file" update MAKEFLAGS. Thus, to describe how the 
environment interacts with make, we also need to consider the MAKEFLAGS macro 
(environment variable). 

When executed make assigns macro definitions in the following order: 

1. read the MAKEFLAGS environment variable. If it is not present or null, the 
internal make variable MAKEFLAGS is set to the null string. Otherwise, each 
letter in MAKEFLAGS is assumed to be an input flag argument and is processed 
as such. (The only exceptions are the "-f", "_pM, and "_rn flags.) 

2. read and set the input flags from the command line. The command line adds to 
the previous settings from the MAKEFLAGS environment variable. 

3. read macro definitions from the command line. These are made not resettable. 
Thus any further assignments to these names are ignored. 

4. read the internal list of macro definitions. These are found in the :file files.c of the 
source for make. (See Appendix A for the complete make:file which represents 
the internally defined macros and rules.) They give default definitions for the C 
compiler (CC=cc), the assembler (AS=as), etc. 

5. read the environment. The environment variables are treated as macro definitions 
and marked as exported (in the shell sense). Note, MAKEFLAGS will get read 
again and set again. However, since it is not an internally defined variable (in 
files.c), this has the effect of doing the same assignment twice. The exception to 
this is when MAKEFLAGS is assigned on the command line. (The reason it was 
read previously, was to be able to turn the debug flag on before anything else was 
done.) 



-3-

6. read the makefile{s). The assignments in the makejile(s} will override the 
environment. This order was chosen so when one reads a makefile and executes 
make one knows what to expect. That is, one gets what one sees unless the "-e" 
fiag is used. The" -eM is an additional command line flag which tells make to 
have the environment override the makefile assignments. Thus if make -e _ is 
typed, the variables in the environment override the definitions in the make file. 
(Note, there is no way to override the command line assignments.) Also note that 
if MAKEFLAGS is assigned it will override the environment. (This would be 
useful for further invocations of make from the current "makefile".) 

This description may be hard to follow. No doubt it is. It might be more useful to list the 
precedence of assignments. Thus. in order from least binding to most binding, we have: 

1. internal definitions (from jiles.c) 
2. environment 
3. "makefileCs)" 
4. command line 

The "-eM fiag has the effect of changing the order to: 

1. internal definitions (from files.c) 
2. "makefileCs)" 
3. environment 
4. command line 

This ordering is general enough to allow a programmer to define a "makefile" or set of 
"makefiles" whose parameters are dynamically definable. 

3.2 Recursive Makefiles 

One other useful feature was added to make concerning the environment and recursive 
invocations. If the sequence "$(MAKE)" appears anywhere in a shell command line, the line 
will be executed even if the "-n" flag is set. Since the "-n" fiag is exported aC1'O&9 invocations of 
make, (through the MAKEFLAGS variable) the only thing which will actually get executed 
is the make command itself. This feature is useful when a hierarchy of makefile{s} describes a 
set of software subsystems. For testing purposes, make -n _ . can be executed and everything 
that would have been done will get printed out; including output from lower level invocations 
of make. 

3.3 Format of Shell commands within make 

Make remembers embedded newlines and tabs in shell command sequences. Thus. if the 
programmer puts a for loop in the makefile with indentation, when make prints it out, it still 
has the indentation and the backslashes in it. The output is still pipe-able to the shell and is 
readable. This is obviously a cosmetic change; no new functionality is gained. 

3A Archive Libraries 

Make has an intelligent interface to archive libraries. Due to a lack of documentation, most 
people are probably not aware of the current syntax of addressing members of archive libraries. 
The UNIXITS version allows a user to name a member of a library in the following manner: 

libCob ject.o) 

or 

libCLlocaltime)) 

where the second method actually refers to an entry point of an object file within the library. 



-4-

(Make looks through the library, locates the entry point and translates it to the correct object 
file name.) 

To use the UNIXIfS make to maintain an archive library, the following type of makefile is 
required: 

lib: lib(ctime.o) 
$(CC) -c -0 ctime.c 
ar rv lib ctime.o 
rmctime.o 

lib: libCfopen.o) 
$(CC) -c -0 fopen.c 
ar rv lib fopen.o 
rmfopen.o 

...and so on for each object_ 

This is tedious and error prone. Obviously, the command sequences for adding a C :file to a 
library are the same for each invocation. the :filename being the only difference each time. (This 
is true in most cases.) Similarly for assembler and YACC and LEX. :files. 

The current version gives the user a~ to a rule for building libraries. The "handle" for the 
rule is the ".JJ." suffix. Thus a ".c.a" rule is the rule for compiling a C source :file and adding it to 
the library and removing the ".0" cadaver. Similarly, the ".Y.JJ.", the ".&a" and the ".La" rules 
rebuild YAcc, assembler, and LEX. :files respectively. The current archive rules defined 
internally are ".c.a", ".c-.a", and £.JJ.". (The wiggle 0 syntax will be described shortly.) The user 
may define in his make:fi.le any other rules he may need. 

The above two-member library is then maintained with the following shorter make:file: 

lib: lib(ctime.o) libCfopen.o) 
@echo lib up-to-date. 

The internal rules are already defined to complete the preceding library maintenance. The 
actual ".c.a" rules is 88 follows: 

.c.a: 
$(CC) -c $(CFLAGS) $ < 
ar rv $@ $*.0 
rm -f $*.0 

Thus, the "$@" macro is the ".JJ." target (lib) and the "$<" and "$*" macros are set to the out-of­
date C :file and the :filename sans suffix respectively (ctime.c and ctime). The "$<" macro On 
the preceding rule) could have been changed to "$*.c". 

It might be useful to go into some detail about exactly what make thinks about when it sees 
the construction 

lib: lib(ctime.o) 
@echo lib up-to-date 

Assume the object in the library is out of date with respect to ctime.c. Also, there is no ctime.f) 
:file. To itself, make thinks 

1. I must do lib. 

2. To do lib, I must do each dependent of lib. 



-5-

3. I must do lib(ctime.o). 

4. To do lib(ctime.o) I must do each dependent of lib(ctime.o). (There are none). 

5. Use my internal rules to try to build lib(ctime.o). (There is no explicit rule.) Note 
that lib( ctime.o) has a parenthesis, 'C', in the name so I identify the target suffix as 
".a". (This is the key. There is no explicit ".a" at the end of the lib library name. 
The parenthesis forces the ".a" suffix.) In this sense, the ".a" is hardwired into 
make. 

6. Since I am working on a ".a" suffix I must break the name Ub(ctime.o) up into lib 
and ctime.o. I now define the two macros "$@" (=lib) and "$*" (~). 

7. Look for a rule ".x.a" and a :file "$*.x.". The:first "x" (in the.sUFFIXES list) which 
ful:fil1s these conditions is "c" so the rule is ".c.a" and the :file is ctime.c. I set "$<" 
to be ctime.c and execute the rule. (In fact, make must then do "ctime.c". 
However, the search of the current directory yields no other candidates, whence, 
the search ends.) 

8. The library has been updated. I must now do the rule associated with the "lib:" 
dependency; namely 

echo lib up-to-date 

It should be noted that to let ctime.o have dependencies the following syntax is required: 

libCctime.o): $CINCDIR)/stdio.h 

Thus, explicit references to ".0" :files are unnecessary. There is also a new macro for referencing 
the archive member name when this form is used. "$%" is evaluated each time "$@" is 
evaluated. If there is no current archive member, "$%" is null If an archive member exists, then 
"$%" evaluates to the expression between the parenthesis. 

An example make:file for a larger library is given in Appendix B. The reader will note also, 
that there are no lingering "*.0" :files left around. The result is a library maintained directly 
from the source :files (or more generally from the sees :filesl). 

3.5 sees File Names - The Wiggle 

The syntax of make does not directly permit referencing of prefixes. For most types of files on 
UNIX. machines this is acceptable since nearly everyone uses a suffix to distinguish different 
types of :files. sees :files are the exception. Here, "s." precedes the :filename part of the complete 
pathname. 

To allow make easy a~ to the prefix "s." requires either a redefinition of the rule naming 
syntax of make or a trick. I used a trick. The trick is to use the wiggle 0 as an identifier of 
sees :files. Hence, ".£-.0" refers to the rule which transforms an sees C source :file into an 
object. Specifically, the internal rule is: 

-.£.0: 
$CGET) $CGFLAGS) -p $< > $*.£ 
$(CC) $(CFLAGS) -c $*.£ 
-rm-f $*.£ 

(The motivation for the "-p" flag associated with the $CGET) command above is obscure and 
debatable. For the purpose of this discussion we can assume the following apparently 
equivalent rule: 



-.c .0: 
$(GET) $(GFLAGS) $< 
$(CC) $(CFLAGS) -c $*.c 
-rm. -f $*.c 

-6-

Suffice it to say, that when doing a generic build, the "make" should not fail because a file 
happens to be left out in the sees directory.) 
Thus the wiggle appended to any suffix transforms the file search into an sees filename search 
with the actual suffix named by the dot and all characters up to (but not including) the wiggle. 

The following sees suffixes are internally defined: 

-.c 

The following rules involving sees transformations are internally defined: 

.8.0: 

-.y_.c: 
.c.a: 

Obviously, the user can define other rules and suffixes which may prove useful The wiggle 
gives him a handle on the sees filename format so that this is possible. 

3.6 The Null Suffix 

In the UNIX./I'S source code, there are many commands which consist of a single source file. 
'cat.c, dd.c, echo.c, and date.c are a few well known ones. It seemed a pity to maintain an object 
of such files for make's pleasure. The current implementation supports single suffix rules, or if 
one prefers, a null suffix. Thus, to maintain the above files one needs a makeftle of the 
following form: 

.c: 
$(CC) -n -0 $ < -0 $@ 

On fact, this ".c:" rule is internally defined so no makefile is necessary at alll) One then need 
only type 

make cat dd echo date 

and all four C source files are pasged through the above shell command line associated with the 
".c:" rule. The internally defined single suffix rules are: 



-7-

.c: .. 

.c: 

.sh: 

.sn: 

Others may be added in the mo1ce ftle by the user. 

3.7 Include Files 

Make has an include :fi.le capability. If the string "include" appears as the :first seven letters of a 
line in a mo1ceftle and is followed by a blank. or a tab the following string is assumed to be a 
file name which the current invocation of make will read. The file descriptors are stacked for 
reading include files so no more that about sixteen levels of nested includes is supported. Does 
that bother anyone? 

3.8 Invisible sees Makefiles 

sees makeftles are invisible to make. That is, if make is typed and only a file named 
smakeftle exists, make will get(I) it, read it and remove it. Likewise for "-f" arguments and 
include files. 

3.9 Dynamic Dependency Parameters 

A new dependency parameter has been defined. It has meaning only on the dependency line in 
a makefile. It is "$$@". "$$@" refers to the current "thing" at the left of the colon (which is 
"$@"). Also the form "$$C@F)" exists which allows acceml to the file part of "$@". Thus, in the 
following: 

cat: $$@.c 

the dependency is translated at execution time to the string "cat.c". This is useful for building a 
whole raft of executable files, each of which has only one source file. For instance the 
UNIXITS command directory would have a makeftle like: 

CMDS = cat dd echo date cc cmp comm ar ld chown 

$CCMDS): $$@.c 
$CCC) -0 $1-0 $@ 

Obviously, this is a subset of all the single file programs. For multiple file programs, usually a 
directory is allocated and a separate makeftle is made. For any particular file which has a 
peculiar compilation procedure, a specific entry must be made in the makeftle. 

The second useful form of the dependency parameter is "$$C@F)". It represents the filename 
part of "$$@". Again, it is evaluated at execution time. Its usefuln~ shows up when trying to 
maintain the "/usr/include" directory from a makefile in the "/usr/src/head" directory. Thus 
the "/usr/src/head/makefile" would look like: 

INCDIR = lusr/include 

INCLUDES=\ 
$CINCDIR)/stdio.h \ 
$CINCDIR)/pwd.h \ 
$(INCIDR)/dir.h \ 
$CINCDIR)/a.out.h 



$(INCLUDES): $$(@F) 
cp$? $@ 
chmod 0444 $@ 

-8-

would completely maintain the "/usr/include" directory whenever one of the above files in 
"/usr/src/head" was updated. 

3.10 Extensions of $*. $@. and $< 

The internally generated macros "$*". "$@", and "$<" are useful generic terms for current 
targets and out-of-date relatives. To this list has been added the following related macros: 
"$(@D)". "$(@F)". "$(*D)". "$(*F)n. "$( <D)". and "$( <F)". The "nil refers to the directory part of 
the single letter macro. The "F" refers to the filename part of the single letter macro. These 
additions are useful when building hierarchical makefiles. They allow access to directory 
names for purposes of using the 'cd' command of the shell. Thus, a shell command can be: 

cd $( <D); $(MAKE) $( <F) 

An interesting example of the use of these features can be found in the set of makeftles which 
maintain the Columbus UNIX operating system. They may be seen in Appendix C. 

3.11 Output Translations 

Macros in shell commands can now be translated when evaluated. The form is as follows: 
S(m.acro:stringl=String2) 

The meaning is as follows: $(macro) is evaluated. For each appearance of stringl in the 
evaluated macro string2 is substituted. The meaning of finding stringl in S(macro) is that the 
evaluated $(macro) is considered as a bunch of strings each delimited by whitespace (blanks or 
tabs). Thus the occurrence of stringl in $(macro) means that a regular expr~on of the 
following form has been found: 

.* <stringl > [TABIBLANK] 
This particular form was chosen because make usually concerns itself with suffixes. A more 
general regular expression match could be implemented if the need arises. The usefulness of 
this type of translation occurs when maintaining archive libraries. Now, all that is n~ is 
to accumulate the out-of-date members and write a shell script which can handle all the C 
programs (i.e. those :file ending in ".£"). Thus the following fragment will optimize the 
executions of make for maintaining and archive library: 

$CUB): $(LIBXa.o) $CUBXb.o) $CLIB)c.o) 
$(CC) -c $(CFLAGS) $(?:.O=.C) 
ar rv $CUB) $? 
rm$? 

Here, :finally, is a legitimate use for the double colon. A dependency of the preceding form 
would be n~ for each of the different types of source files Csuffices) which define the 
archive library. These translations are added in an effort to make more general use of the 
wealth of information which make generates. 

3.12 The Test makefile 

A test makeftle was written to explicitly test each of the new features. When shipped to a new 
machine and compiled, make is assumed to work if the test makeftle executes without error. 

4. INCOMPATIBILITIFS WITH OLD VERSION 

The only known incompatibility with UNIX/TS make is seen in the following example 
makefile: 

all: cat dd 



-9-

dd: ddo 
$(CC) -0 $@ $? 

cat: cat.o 
$(CC) -0 $@ $? 

UNIXJTS make will not complain that all does not have a rule associated with it. The current 
version will The current version is a strict interpretation of the original paper by S. L 
Feldman and as such is described by his paper. The UNIX.ITS make is wrong (according to 
Feldman's paper) but people have learned (through trial and error) to use it in this fashion and 
would resist the change. The differences amount to one line of code in the file doname.c which 
is noted in my source code. Furthermore, the "-b" option tells make to revert to the old 
method, whereby old makefiles can be run with this new version of make. Any other 
differences are unintentional 

~ FUTUREDEVELOPNrnNTS 

Further developments of the make program that have been considered include redefinition of 
the colon, some other type of comparison that "newer versus older", searching out include files, 
and looking for source files in "other" directories. I will try to address each of these features. 

Redefinition of the colon would effectively give the user the ability to provide make with 
information from a file, other than the time. Within the current syntax of make this does not 
seem too difficult: 

make :=program _ 

However, I can not see (nor has anyone pointed out to me) a use for such a feature. This would 
apparently be related to the second item above; namely, a different comparison other than the 
difference between two long integers, (the comparison by time). The basic problem, as I see it, is 
that when it comes time to do the ":" thing, make does not know what information to pass to 
the program. Make looks at each dependency individually and not in subsets. This prevents 
passing information like: 

program cat cat.c 

to a user defined colon routine because make does not know both cat and cat.c at the same time. 
(There is an interesting "hidden" variable in this version of make: "$1". It represents the current 
predecessor tree. In the following makefile: 

all: cat 
@echo cat up-to-date 

cat: cat.c 
echo $! 

when the "echo Sf' is executed, "$1" evaluates to 

cat.c cat all 

which is not all that useful! Further, it occasionally prints a message 

$! nulled, predecessor circle 

This message means that the predecessors of a file are circular. The actual evaluation of the "$!" 



-10 -

macro was aborted, and its value set to null Otherwise there is no e:ffect.) 

The searching out of include :files has been mentioned many times as an improvement. This 
would require make to look through every line of every source :file mentioned in the make:file 
every time it is executed. This would slow make down to a slow crawl and slowly defeat its 
usefulnes9. 

Having make look in other directories for :file entries sounds useful However, interesting 
problems arise when this is considered. What if the :file in a remote directory is out of date 
with respect to a :file in the current directory? Does make rebuild the remote :file? (The user 
may not have write permission in that directory.) Also, how are the shell commands 
parameterized to be able to "see" the remote :files. Further, how does make (or the programmer) 
guarantee the resulting target :file is in the remote directory? (CC leaves the object in the 
current directory, which would mean that part of a command line might have to refer to a 
remote :file while the rest of it would refer to a relative in the current directory.) I do not deny 
the usefulness of using remote directories, but cannot see a consistent solution to locating results. 
(I would be glad to here from anyone who can clear up the mes9.) 

6. CONCLUSION 

The development described herein, produced a version of make which now serves the 
Columbus operating system group for maintenance of all of the UNIX. source :files. The 
makefiles supplied from the UNIXJTS support group are edited slightly (for the annoying 
incompatibility described above) and used intact. When a large improvement can be made, they 
are rewritten. When no make:file exists, (C library and most of the "cmd" directory) a makefile 
is written. There are no "*.re" :files left in the source. This gives a single iuterface to rebuilding 
parts or all of the UNIX. software. 

I feel that although the size of make has grown from 

16320+3772+6352 = 26444b = 063514b 

on the Center 127 machine to 

21632+4850+8748 = 35230b == 0104636b 

on the Columbus machine, the trade of size for functionality is worthwhile. The unfortunate 
by product of such a development is that there are two versions of the make program. I leave 
it to the reader to decide on the merits or lack of same on this issue. 

CB-5255-EGB-egb E. G. Bradford 

Atts. 
Appendix A-Internal Definitions 
Appendix B-Example Library Make:file 
Appendix C-Example Recursive Use of Make:files 



-11-

APPENDIX A 

The following makefile will exactly reproduce the internal rules of the current version of 
make. Thus if make -r __ is typed and a makefile includes this makeftle the results would be 
identical to excluding the "-r" option and the include line in the makefi.le. 

:# usr OF SUFFIXES 
.sUFFIXES: .0 .c .c- .y .y - .1 .1- .s.s - .sh.sh - .h.h-

:# PRESlIT V ARIABLFS 
MAKE=make 
YACC=yacx; 
YFLAGS= 
LEX.=lex 
LFLAGS= 
l.D=ld 
LDFLAGS= 
CC=cx; 

CFLAGS=-O 
AS=as 
ASFLAGS= 
GlIT=get 
GFLAGS= 

:# SINGLE SUFFIX. RULES 
.c: 

-.c: 

.sh: 

$CCC) -n -0 $ < -0 $@ 

$CGlIT) $CGFLAGS) -p $ < > $*.c 
$CCC) -n -0 $*.c -0 $* 
-rm -f $*.c 

cp$< $@ 

$CGlIT) $(GFLAGS) -p $< > $*.sh 
cp $*.sh $* 
-rm-f $*.sh 

:# DOUBLE SUFFIX. RULES 
.c.o: 

-.c.o: 

.c.c: 

.800: 

-.s.o: 

.y.o: 

$(CC) $CCFLAGS) -c $ < 

$(GlIT) $(GFLAGS) -p $< > $*.c 
$CCC) $CCFLAGS) -c $*.c 
-rm -f $*.c 

$CGlIT) $(GFLAGS) -p $< > $*.c 

$CAS) $CASFLAGS) -0 $@ $ < 

$CGlIT) $(GFLAGS) -p $< > $*.s 
$CAS) $CASFLAGS) -0 $*.0 $*.s 
-rm -f $*.s 



-12-

$(YACC) $(YFLAGS) $ < 
$(CC) $(CFLAGS) -c y~tab.c 
rm. y.tab.c 
mv y.tab.o $@ -.y.o: 
$(GET) $(GFLAGS) -p $< > $*.y 
$(YACC) $(YFLAGS) $*.y 
$(CC) $(CFLAGS) -c y.tab.c 
rm. -f y.tab.c $*.y 
mv y.tab.o $*.0 

.Lo: 
$(LEX) $CLFLAGS) $< 
$(CC) $(CFLAGS) -c leLYY.c 
rm. leLYY.c 
mv leLYY.o $@ 

.1-.0: 
$(GET) $(GFLAGS) -p $< > $*.1 
$(LEX) $(LFLAGS) $*.1 
$(CC) $(CFLAGS) -c leLYY.c 
rm. -f leLYY.c $*.1 
mv leLYY.o $*.0 

.y.c : 
$(YACC) $(YFLAGS) $ < 
mv y.tab.c $@ 

.y-.c : 
$(GET) $CGFLAGS) -p $< > $*.y 
$(YACC) $(YFLAGS) $*.y 
mv y.tab.c $*.c 
-rm -f $*.y 

.tc : 
$(LEX) $< 
mv leLYY.c $@ 

.c.a: 
$(CC) -c $(CFLAGS) $ < 
ar rv $@ $*.0 
rm. -f $*.0 -.c.a: 
$(GET) $(GFLAGS) -p $< > $*.c 
$(CC) -c $(CFLAGS) $*.c 
ar rv $@ $*.0 
rm. -f $* !co] 

.s-.a: 
$(GET) $(GFLAGS) -p $< > $*.s 
$(AS) $(ASFLAGS) -0 $*.0 $*.s 
ar rv $@ $*.0 
-rm. -f $* !so] 

.h.-.h: 
$(GET) $(GFLAGS) -p $< > $*.h. 



-13 -

APPENDIXB 

The following library maintaining makefi1e is from my current work on LSX. It completely 
maintains the LSX operating system library. 

# @(#)/usr/src/cmdlmake/make.tm 3.2 
LIB = Isxlib 

# I have a banner printing pro 
PR = vpr -b LSX 

INSDIR ... /rl/fiopO/ 
INS = eva1 

lsx: $CLm) low.o mch.o 
1d -x low.o mch.o S(Lm) 
mva.out 1sx 
@size 1sx 

# Here, I have used $(INS) as either"! or 'evaI'. 
lsx: 

print 

S(INS) 'cp 1sx S(INSDIR)lsx && \ 
strip $CINSDIR)lsx && \ 
Is -1 $(INSDIR)lsx' 

$CPR) header.s low.s mch.s *.h *.c Make:fi1e 

S(Lm): \ 
$(LIBXc1ock.o) \ 
$(LmXmain.o) \ 
$CLmXtty.o) \ 
$CLmXtrap.o) \ 
$(LmXsysent.o) \ 
$CLmXsys2.o) \ 
$(LIBXsys3.o) \ 
$(LmXsys4.o) \ 
S(LIBXsys1.o) \ 
S(LIBXsig.o) \ 
$CLmXfio.o) \ 
S(LmXkLo)\ 
S(LIBXalloc.o) \ 
S(LmXnami.o) \ 
S(LIBXiget.o) \ 
S(LmXrdwri.o) \ 
$(LmXsubr.o) \ 
$(LmXbio.o) \ 
S(LIBXdecfd.o) \ 
S(LmXs1p.o) \ 
S(LIBXspace.o) \ 
S(LmXputs.o) 
@echo $(Lm) now up-to-date. 



08.0: 

.o.a: 

.s.a: 

as -0 $*.0 header.s $*.s 

arrv$@$< 
rm-f $< 

as -0 $*.0 header.s $*.s 
ar rv $@ $*.0 
rm -f $*.0 

.PRECIOUS: $(LIB) 

-14 -



-15 -

APPENDIX.C 

The following set of makefiles maintain the UNIX. operating system for Columbus UNIX. 
They reside in the following relative directories on the Columbus operating systems group 
machine: "ucb", "ucb/os", "ucb/io", "ucb/head/sys". Each one is named "70.mk". The following 
command forces a complete rebuild of the operating system: 

FRC=FRC make -f 70.mk. 

where the current directory is "ucb". Here, I have used some of the conventions described in A. 
Chellis' paper, Proposed Structure for UNIXITS and UNIX/RT Makefiles (MF78-8234-73). 
FRC is a convention for FoRCing make to completely rebuild a target starting from scratch. 



-16 -

# 
# 

@(#)/usr/src/cmdlmake/make.tm. 
ucb/70.mk. make:file 

VERSION = 70 

DEPS ... \ 
osIlow.$(VERSION).o \ 
osImch.$(VERSION).o \ 
osIconf.$(VERSION).o \ 
osIlib1.$(VERSION).a \ 
iollib2.$CVERSION).a 

# This make:file will re-load unix.$(VERSION) if any 
# of the $CDEPS) is out;>f-date wrt unix.$CVERSION). 
# Note, it will not go out and check each member 
# of the libraries. To do this, the PRe macro must 
# be defined. 

unix.$CVERSION): $(DEPS) $(PRC) 
load -s $CVERSION) 

$(DEPS): $(PRC) 
cd $(@D); $(MAKE) -f $(VERSION).mk. $(@F) 

all: unix.$CVERSION) 
@echo unix.$(VERSION) up-to-date. 

includes: 
cd headlsys; $(MAKE) -f $(VERSION).mk. 

PRe includes; 



-17 -

# 
# 

@(#)/usr/src/cmd/make/make.tm 
ucb/osi70.mk. makefile 

VERSION = 70 

LIB = lib1..$(VERSION).a 
COMPOOL= 

LIBOBJS=\ 
$(LIBXmain.o) \ 
$(LIBXalloc.o) \ 
$(LIBXiget.o) \ 
$(LIBXprf.o) \ 
$(LIBXrdwri.o) \ 
$CLIBXslp.o) \ 
$(LIBXsubr.o) \ 
$(LIBXtext.o) \ 
$(LIBXtrap.o) \ 
$(LIBXsig.o) \ 
$(LIBXsysent.o) \ 
$(LIBXsys1.o) \ 
$(LIBXsys2.o) \ 
$(LIBXsys3.o) \ 
$CLIBXsys4.o) \ 
$CLIBXsysS.o) \ 
$(LIBXsyscb.o) \ 
$(LIBXmaus.o) \ 
$(LIBXmessag.o) \ 
$(LIBXnami.o) \ 
$(LIBXfio.o) \ 
$(LIBXclock.o) \ 
$(LIBXacct.o) \ 
$(LIBXerrlog.o) 

ALL = \ 
conf.$(VERSION).o \ 
low.$(VERSION).o \ 
mch.$(VERSION).o \ 
$(LIB) 

all: $(ALL) 
@echo '$(ALL)' now up-to-date. 

$(LIB): $(LIBOBJS) 

$(LIBOBJS): $(PRC) 

PRC: 
rm -f $(LIB) 

clobber: cleanup 

3.2 



-rm-f $(Lm) 

clean cleanup: 

install: all 

.PRECIOUS: $(LID) 

-18 -



-19 -

# 
# 

@(#)/usr/src/cmd/make/make.tm 
ucb/io/70.mk. make:fi.le 

VERSION = 70 

Lm = lib2.$(VERSION).a 
COMPOOL= 

Lm20BJS=\ 
S(LmXmx1.o) \ 
$(LmXmx2.o) \ 
S(LmXbio.o) \ 
S(LmXtty.o) \ 
$(LmXmalloc.o) \ 
$(LmXpipe.o) \ 
S(LmXdhdm.o) \ 
$CLmXdh.o) \ 
$(LmXdhfdm.o) \ 
S(LmXdj.o) \ 
$(LmXdn.o) \ 
S(LmXds40.o) \ 
S(LmXdz.o) \ 
$(LmXalarm.o) \ 
$(LmXhf.o) \ 
S(LmXhps.o) \ 
S(LmXhpmap.o) \ 
S(LmXhp45.o) \ 
S(LmXhs.o) \ 
$(LmXht.o) \ 
$(LmXjy.o) \ 
$(LmXkLo) \ 
$(LmXlfh.o) \ 
S(LmXlp.o) \ 
S(LmXmem.o) \ 
S(LmXnmpipe.o) \ 
$(Lm)(n.o) \ 
$(LmXrk.o) \ 
$(LmXrp.o) \ 
$(LmXrx.o) \ 
S(LmXsys.o) \ 
S(LmXtrans.o) \ 
$(LmXttdma.o) \ 
$(LmXtec.o) \ 
$(LmXtex.o) \ 
$(LmXtm.o) \ 
$(LmX vp.o) \ 
S(LmX Vs.o) \ 
$(LmX vtlp.o) \ 
$(LmXvt11.o) \ 
$(LmXfakevtlp.o) \ 
$(LmX vt61.o) \ 
$(LmXvt100.o) \ 

3.2 



$(LmX vtmon.o) \ 
$(LmX vtdbg.o) \ 
$(LmX vtutilo) \ 
$(LmX vtast.o) \ 
$(LmXpartab.o) \ 
$CLmXrh.o) \ 
S(LmXdevstart.o) \ 
$(LmXdmcll.o) \ 
$(LmXrop.o) \ 
$(LmXioctlo) \ 
$(LmXfa}(e~o) 

all: S(Lm) 

- 20-

@echo $CLm) is now up-to-date. 

$(Lm):: $(Lm20BJS) 

$(Lm20BJS): S(FRC) 

FRC: 
rm-f $(Lm) 

clobber: cleanup 
-rm -f S(Lm) *.0 

clean cleanup: 

install: all 

.PRECIOUS: $(Lm) 

.s.a: 
S(AS) $(ASFLAGS) -0 $*.0 $< 
ar rcv S@ S*.o 
rm $*.0 



# 
# 

-21-

@(#)/usr/src/cmd/make/make.tm. 
ucb/head/sys/70.mk. make:fi.le 

COMPOOL ... /usr/include/sys 

HEADERS=\ 
$CCOMPOOL)lbuf.h \ 
$CCOMPOOL)lbufx.h \ 
$CCOMPOOL)/conf.h \ 
$(COMPOOL)/confx.h \ 
$(COMPOOL)/crtctl.h \ 
$(COMPOOL)/dir.h \ 
$CCOMPOOL)/dmll.h \ 
$CCOMPOOL)/elog.h \ 
$CCOMPOOL)/:fi.le.h \ 
$CCOMPOOL)/:fi.lex.h \ 
$CCOMPOOL)/:fi.lsys.h \ 
$(COMPOOL)/ino.h \ 
$(COMPOOL)/inode.h \ 
$(COMPOOL)/inodex.h \ 
$CCOMPOOL)/ioctl.h \ 
$(COMPOOL)/ipcomm.h \ 
$(COMPOOL)/ipcommx h \ 
$CCOMPOOL)/lfsh.h \ 
$(COMPOOL)/lock.h \ 
$(COMPOOL)/maus.h \ 
$(COMPOOL)/mx.h \ 
$(COMPOOL)/param.h \ 
$CCOMPOOL)/proc.h \ 
$(COMPOOL)/procx.h \ 
$(COMPOOL)/reg.h \ 
$CCOMPOOL)/seg.h \ 
$CCOMPOOL)/sgtty.h \ 
$CCOMPOOL)/sigdef.h \ 
$CCOMPOOL)/sprof.h \ 
$CCOMPOOL)/sprofx.h \ 
$CCOMPOOL)/stat.h \ 
$CCOMPOOL)/syserr.h \ 
$(COMPOOL)/sysmes.h \ 
$CCOMPOOL)/sysmesx.h \ 
$(COMPOOL)/systm.h \ 
$(COMPOOL)/text.h \ 
$(COMPOOL)/textx.h \ 
$CCOMPOOL)/timeb.h \ 
$(COMPOOL)/trans.h \ 
$(COMPOOL)/tty.h \ 
$(COMPOOL)/ttyx.h \ 
$CCOMPOOL)/types.h \ 
$CCOMPOOL)/user.h \ 
$CCOMPOOL)/userx.h \ 
$CCOMPOOL)/version.h \ 
$(COMPOOL)/votrax.h \ 

3.2 



$(COMPOOL)/vtll.h \ 
$(COMPOOL)/vtmn.h 

all: $(PRe) $(HEADERS) 

-22-

@echo Headers are now up to date. 

$(HEADERS): s.$$I 

PRe: 

$(GET) -s -p $(GFLAGS) $? > xtemp 
move xtemp 444 src BYS $@ 

rm -f $(HEADERS) 

.PRECIOUS: $(HEADERS) 

get -s$< 

.DEFAULT: 
cpmv $? 444 src BYS $@ 



ADMIN ( 1) UNIX Programmer's Manual ADMIN (1) 

NAME 
admin - create and administer sees files 

SYNOPSIS 
admin [-n] [-i[name]] [-rrel] [-t[name]] [-ffiag[fiag-val]] [-dfiag[fiag-val]] [-alogin] 
[-elogin] [-m[mrlist]] [-y[comment]] [-h] [-z] files 

DESCRIPTION 
Admin is used to create new sees files and change parameters of existing ones. Arguments 
to admin, which may appear in any order. consist of keyletter arguments, which begin with 
-. and named files (note that sees file names must begin with the characters s.). If a 
named file doesn't exist, it is created. and its parameters are initialized according to the 
specified keyletter arguments. Parameters not initialized by a keyletter argument are 
assigned a default value. If a named file does exist. parameters corresponding to specified 
keyletter arguments are changed. and other parameters are left as is. 

If a directory is named, admin behaves as though each file in the directory were specified as 
a named file. except that non-SeeS files Clast component of the path name does not begin 
with s.) and unreadable files are silently ignored. If a name of - is given, the standard 
input is read: each line of the standard input is taken to be the name of an sees file to be 
processed. Again. non-sees files and unreadable files are silently ignored. 

The keyletter arguments are as follows. Each is explained as though only one named file is 
to be processed since the effects of the arguments apply independently to each named file. 

-n 

-i[name] 

-rrel 

-t[name] 

-fflag 

b 

7th Edition 

This keyletter indicates that a new sees file is to be created. 

The name of a file from which the text for a new sees file is to be 
taken. The text constitutes the first delta of the file (see -r key letter 
for delta numbering scheme). If the i keyletter is used. but the file 
name is omitted. the text is obtained by reading the standard input 
until an end-of-file is encountered. If this keyletter is omitted. then 
the sees file is created empty. Only one sees file may be created by 
an admin command on which the i key letter is supplied. Using a sin­
gle admin to create two or more sees files require that they be created 
empty (no -i keyletter). Note that the -i key letter implies the -n 
keyletter. 

The release into which the initial delta is inserted. This keyletter may 
be used only if the -i keyletter is also used. If the -r keyletter is 
not used. the initial delta is inserted into release 1. The level of the 
initial delta is always 1 (by default initial deltas are named 1.1). 

The name of a file from which descriptive text for the sees file is to 
be taken. If the -t keyletter is used and admin is creating a new 
sees file (the -n and/or -i keyletters also used). the descriptive text 
file name must also be supplied. In the case of existing sees files: (1) 
a -t keyletter without a file name causes removal of descriptive text 
Of any) currently in the sees file. and (2) a -t keyletter with a file 
name causes text Of any) in the named file to replace the descriptive 
text Of any) currently in the sees file. 

This keyletter specifies a flag. and. possibly. a value for the flag. to be 
placed in the sees file. Several f keyletters may be supplied on a sin­
gle admin command line. The allowable flags and their values are: 

Allows use of the -b keyletter on a get(l) command to create branch 
deltas. 

1 



ADMIN (1) UNIX Programmer's Manual ADMIN ( 1) 

cceil The highest release (Le., "ceiling"), a number less than or equal to 
9999, which may be retrieved by a get(l) command for editing. The 
default value for an unspecified c flag is 9999. 

ffloor The lowest release (i.e., "floor"), a number greater than 0 but less 
than 9999, which may be retrieved by a get(l) command for editing. 
The default value for an unspecified f flag is 1. 

dSID The default delta number (SID) to be used by a get(l) command. 

i Causes the "No id keywords (ge6)" message issued by get(l) or 
delta(l) to be treated as a fatal error. In the absence of this flag, the 
message is only a warning. The message is issued if no sees 
identification keywords (see get(l)) are found in the text retrieved or 
stored in the sees file. 

j Allows concurrent get (1) commands for editing on the same SID of an 
sees file. This allows mUltiple concurrent updates to the same ver­
sion of the sees file. 

llist A list of releases to which deltas can no longer be made (get -e 
against one of these "locked" releases fails). The list has the follow­
ing syntax: 

<list> ::= <range> I <list> , <range> 
< range> ::= REIEASE NUMBER I a 

The character a in the list is equivalent to specifying all releases for 
the named sees file. 

n Causes delta(l) to create a "null" delta in each of those releases (if 
any) being skipped when a delta is made in a new release (e.g., in 
making delta 5.1 after delta 2.7, releases 3 and 4 are skipped). These 
null deltas serve as "anchor points" so that branch deltas may later be 
created from them. The absence of this flag causes skipped releases to 
be non-existent in the sees file preventing branch deltas from being 
created from them in the future. 

qtext User definable text substituted for all occurrences of the %Q% key­
word in sees file text retrieved by get(l). 

mmod Mod ule name of the sees file substituted for all occurrences of the 
%M% keyword in sees file text retrieved by get(l). If the m flag is 
not specified, the value assigned is the name of the sees file with the 
leading s. removed. 

ttype Type of module in the sees file substituted for all occurrences of %Y% 
keyword in sees file text retrieved by get(l). 

v[pgm] 
Causes delta(l) to prompt for Modification Request (MR) numbers as 
the reason for creating a delta. The optional value specifies the name 
of an MR number validity checking program (see delta(l)). (If this 
flag is set when creating an sees file, the m key letter must also be 
used even if its value is null). 

-dflag Causes removal (deletion) of the specified flag from an sees file. The 
-d keyletter may be specified only when processing existing sees 
files. Several -d keyletters may be supplied on a single admin com­
mand. See the -f keyletter for allowable flag names. 

7th Edition 2 



ADMIN ( 1) UNIX Programmer's Manual ADMIN ( 1) 

FILES 

!list A list of releases to be "unlocked". See the -f keyletter for a 
description of the 1 flag and the syntax of a list. 

-alogin A login name. or numerical UNIX System group ID. to be added to the 
list of users which may make deltas (changes) to the sees file. A 
group ID is equivalent to specifying all login names common to that 
group ID. Several a keyletters may be used on a single admin com­
mand line. As many logins. or numerical group IDs, as desired may be 
on the list simultaneously. If the list of users is empty. then anyone 
may add deltas. 

-elogin A login name. or numerical group ID. to be erased from the list of 
users allowed to make deltas (changes) to the sees file. Specifying a 
group ID is equivalent to specifying all login names common to that 
group ID. Several e key letters may be used on a single admin com­
mand line. 

-y[comment] The comment text is inserted into the sees file as a comment for the 
initial delta in a manner identical to that of delta (1). Omission of the 
-y keyletter results in a default comment line being inserted in the 
form: 
date and time created IT /MM/DD HH:MM:SS by login 
The -y keyletter is valid only if the -i and/or -n keyletters are 
specified (i.e .• a new sees file is being created). 

-m[mrlist] The list of Modification Requests (MR) numbers is inserted into the 
sees file as the reason for creating the initial delta in a manner identi­
cal to delta(l). The v flag must be set and the MR numbers are vali­
dated if the v flag has a value (the name of an MR number validation 
program). Diagnostics will occur if the v flag is not set or MR valida­
tion fails. 

-h Causes admin to check the structure of the sees file (see sccsfile(5)), 
and to compare a newly computed check-sum (the sum of all the 
characters in the sees file except those in the first line) with the 
check-sum that is stored in the first line of the sees file. Appropriate 
error diagnostics are produced. 

This keyletter inhibits writing on the file. so that it nullifies the effect 
of any other keyletters supplied. and is. therefore. only meaningful 
when processing existing files. 

-z The sees file check-sum is recomputed and stored in the first line of 
the sees file (see -h, above). 

Note that use of this keyletter on a truly c'brrupted file may prevent 
future detection of the corruption. 

The last component of all sees file names must be of the form s.file-name. New sees files 
are given mode 444 (see chmod(l)). Write permission in the pertinent directory is. of 
course. required to create a file. All writing done byadmin is to a temporary x-file. called 
x.file-name. (see get(l)). created with mode 444 if the admin command is creating a new 
sees file. or with the same mode as the sees file if it exists. After successful execution of 
admin. the sees file is removed (if it exists). and the x-file is renamed with the name of the 
sees file. This ensures that changes are made to the sees file only if no errors occurred. 

7th Edition 3 



ADMIN (1) UNIX Programmer's Manual ADMIN ( 1) 

It is recommended that directories containing sees files be mode 755 and that sees files 
themselves be mode 444. The mode of the directories allows only the owner to modify 
sees files contained in the directories. The mode of the sees files prevents any modification 
at all except by sees commands. 

If it should be necessary to patch an sees file for any reason, the mode may be changed to 
644 by the owner allowing use of ed(l). Care must be taken! The edited file should always 
be processed by an admin -h to check for corruption followed by an admin -z to gen­
erate a proper check-sum. Another admin -h is recommended to ensure the sees file is 
valid. 

Admin also makes use of a transient lock file (called z.jile-name), which is used to prevent 
simultaneous updates to the sees file by different users. See get(l) for further informa­
tion. 

SEE ALSO 
delta(l). ed(l). get(l). help(1). prs(l). what(l). sccsfile(4). 
Source Code Control System User's Guide in the UNIX System User's Guide. 

DIAGNOSTICS 
Use help (1) for explanations. 

7th Edition 4 



DELTA (1) UNIX Programmer's Manual DELTA (1) 

NAME 
delta - make a delta (change) to an sees file 

SYNOPSIS 
delta [-rSID] [-s] [-n] [-glist] [-m[mrlist]] [-y[comment]] [-p] files 

DESCRIPTION 
Delta is used to permanently introduce into the named sees file changes that were made to 
the file retrieved by get(l) (called the g-file. or generated file). 

Delta makes a delta to each named sees file. If a directory is named. delta behaves as 
though each file in the directory were specified as a named file. except that non-sees files 
Clast component of the path name does not begin with s.) and unreadable files are silently 
ignored. If a name of - is given. the standard input is read (see WARNINGS); each line of 
the standard input is taken to be the name of an sees file to be processed. 

Delta may issue prompts on the standard output depending upon certain key letters 
specified and flags (see admin(l)) that may be present in the sees file (see -m and -y 
key letters below). 

Keyletter arguments apply independently to each named file. 

7th Edition 

-rSID Uniquely identifies which delta is to be made to the sees file. The use 
of this keyletter is necessary only if two or more outstanding gets for 
editing (get -e) on the same sees file were done by the same person 
Clogin name). The SID value specified with the -r keyletter can be 
either the SID specified on the get command line or the SID to be made 
as reported by the get command (see get(1)). A diagnostic results if 
the specified SID is ambiguous. or. if necessary and omitted on the 
command line. 

-s 

-n 

-glist 

-m[mrlist] 

Suppresses the issue. on the standard output. of the created delta's 
SID. as well as the number of lines inserted. deleted and unchanged in 
the sees file. 

Specifies retention of the edited g-file (normally removed at comple­
tion of delta processing). 

Specifies a list (see get(l) for the definition of list) of deltas which are 
to be ignored when the file is accessed at the change level (SID) created 
by this delta. 

If the sees file has the v flag set (see admin(l)) then a Modification 
Request (MR) number must be supplied as the reason for creating the 
new delta. 

If -m is not used and the standard input is a terminal. the prompt 
MRs? is issued on the standard output before the standard input is 
read; if the standard input is not a terminal. no prompt is issued. The 
MRs? prompt always precedes the comments? prompt (see -y 
keyletter). 

MRs in a list are separated by blanks and/or tab characters. An unes­
caped new-line character terminates the MR list. 

Note that if the v flag has a value (see admin(l)). it is taken to be the 
name of a program (or shell procedure) which will validate the 
correctness of the MR numbers. If a non-zero exit status is returned 
from MR number validation program. delta terminates Cit is assumed 
that the MR numbers were not all valid). 

1 



DELTA ( 1) UNIX Programmer's Manual DELTA ( 1) 

FILES 

-y[comment] Arbitrary text used to describe the reason for making the delta. A 
null string is considered a valid comment. 

If -y is not specified and the standard input is a terminal. the prompt 
comments? is issued on the standard output before the standard input 
is read; if the standard input is not a terminal. no prompt is issued. 
An unescaped new-line character terminates the comment text. 

-p Causes delta to print (on the standard output) the sees file differences 
before and after the delta is applied in a dijf(l) format. 

All files of the form ?-file are explained in the Source Code Control System User's Guide. 
The naming convention for these files is also described there. 

g-file Existed before the execution of delta; removed after completion of delta. 
p-file Existed before the execution of delta; may exist after completion of delta. 
q-file Created during the execution of delta; removed after completion of delta. 
x-file Created during the execution of delta; renamed to sees file after comple­

tion of delta. 
z-file Created during the execution of delta; removed during the execution of 

delta. 
d-file Created during the execution of delta; removed after completion of delta. 
/usr/bin/bdiff Program to compute differences between the "gotten" file and the g-jile. 

WARNINGS 
Lines beginning with an SOH ASCII character (binary 001) cannot be placed in the sees file 
unless the SOH is escaped. This character has special meaning to sees (see sccsjile(5)) and 
will cause an error. 

A get of many sees files. followed by a delta of those files. should be avoided when the get 
generates a large amount of data. Instead. multiple get/delta sequences should be used. 

If the standard input (-) is specified on the delta command line. the -m (if necessary) and 
-y keyletters must also be present. Omission of these keyletters causes an error to occur. 

Comments are limited to text strings of at most 512 characters. 

SEE ALSO 
admin(l). bdiff(l). cdc(l). get(l). help(l). prs(1). rmdel(l). sccsfile(4). 
Source Code Control System User's Guide in the UNIX System User's Guide. 

DIAG NOSTICS 
Use help (1) for explanations. 

7th Edition 2 



GET(l) UNIX Programmer's Manual GET (1) 

NAME 
get - get a version of an sees file 

SYNOPSIS 
get [-rSID] [-ccutoff] [-ilist] [-xlist] [-aseq-no.] [-k] [-e] [-l[p]] [-p] [-m] [-n] 
[-s] [-b] [-g] [-t] file 000 

DESCRIPTION 
Get generates an ASCII text file from each named sees file according to the specifications 
given by its key letter arguments, which begin with -. The arguments may be specified in 
any order, but all keyletter arguments apply to all named sees files. If a directory is 
named. get behaves as though each file in the directory were specified as a named file. except 
that non-sees files (last component of the path name does not begin with so) and unread­
able files are silently ignored. If a name of - is given. the standard input is read: each line 
of the standard input is taken to be the name of an sees file to be processed. Again. non­
-sees files and unreadable files are silently ignored. 

The generated text is normally written into a file called the g-file whose name is derived 
from the sees file name by simply removing the leading So: (see also FILES. below). 

Each of the keyletter arguments is explained below as though only one sees file is to be 
processed. but the effects of any keyletter argument applies independently to each named 
file. 

-rSID The Sees IDentification string (SID) of the version (delta) of an sees file to be 
retrieved. Table 1 below shows. for the most useful cases. what version of an 
sees file is retrieved (as well as the SID of the version to be eventually created 
by delta (1) if the -e keyletter is also used). as a function of the SID specified. 

-ccutoff Cutoff date-time. in the form:_ 

YY[MM[DD[HH[MM[sslllll 

No changes (deltas) to the sees file which were created after the specified cutoff 
date-time are included in the generated ASCII text file. Units omitted from the 
date-time default to their maximum possible values: that is. -c7502 is 
equivalent to -c750228235959. Any number of non-numeric characters may 
separate the various 2 digit pieces of the cutoff date-time. This feature allows 
one to specify a cutoff date in the form: "-c77/2/2 9:22:25". Note that this 
implies that one may use the %E% and %U% identification keywords (see below) 
for nested gets within. say the input to a send (lC) command: 

-'get "-c%E% %U%" s.file 

-e Indicates that the get is for the purpose of editing or making a change (delta) to 

-b 

7th Edition 

the sees file via a subsequent use of delta(l). The -e keyletter used in a get 
-. for a particular version (SID) of the sees file prevents further gets for editing 

on the same SID until delta is executed or the j (joint edit) flag is set in the sees 
file (see admin(l)). Concurrent use of get -e for different SIDs is always 
allowed. 

If the g-file generated by get with an -e keyletter is accidentally ruined in the 
process of editing it. it may be regenerated by re-executing the get command 
with the -k keyletter in place of the -e keyletter. 

sees file protection specified via the ceiling. floor. and authorized user list stored 
in the sees file (see admin(l)) are enforced when the -e key letter is used. 

Used with the -e keyletter to indicate that the new delta should have an SID in 
a new branch as shown in Table 1. This key letter is ignored if the b flag is not 

1 



GET(l) 

-iUst 

UNIX Programmer's Manual GET (1) 

present in the file (see admin(l)) or if the retrieved delta is not a leaf delta. (A 
leaf delta is one that has no successors on the sees file tree.) 
Note: A branch delta may always be created from a non-leaf delta. 

A list of deltas to be included (forced to be applied) in the creation of the gen­
erated file. The list has the following syntax: 

<list> ::= <range> I <list> • <range> 
<range> ::= SID I SID - SID 

SID. the sees Identification of a delta. may be in any form shown in the "SID 
Specified" column of Table 1. Partial SIDs are interpreted as shown in the "SID 
Retrieved" column of Table 1. 

-xlist A list of deltas to be excluded (forced not to be applied) in the creation of the 
generated file. See the -i keyletter for the list format. 

'-k Suppresses replacement of identification keywords (see below) in the retri~ved 
text by their value. The -k keyletter is implied by the -e keyletter. 

-I[p] Causes a delta summary to be written into an I-file. If -Ip is used then an l-file 
is not created; the delta summary is written on the standard output instead. See 
FlIES for the format of the l-file. 

-p Causes the text retrieved from the sees file to be written on the standard out­
put. No g-file is created. All output which normally goes to the standard out­
put goes to file descriptor 2 instead. unless the -s key letter is used. in which 
case it disappears. 

-s Suppresses all output normally written on the standard output. However. fatal 
error messages (which always go to file descriptor 2) remain unaffected. 

-m Causes each text line retrieved from the sees file to be preceded by the SID of 
the delta that inserted the text line in the sees file. The format is: SID. followed 
by a horizontal tab. followed by the text line. 

-n Causes each generated text line to be preceded with the %M% identification key­
word value (see below). The format is: %M% value. followed by a horizontal 
tab. followed by the text line. When both the -m and -n key letters are used. 
the format is: %M% value. followed by a horizontal tab. followed by the -m 
keyletter generated format. 

-g Suppresses the actual retrieval of text from the sees file. It is primarily used to 
generate an l-file. or to verify the existence of a particular SID. 

-t Used to access the most recently created ("top") delta in a given release (e.g .. 
-rl). or release and level (e.g .• -rl.2). 

-aseq-no. The delta sequence number of the sees file delta (version) to be retrieved (see 
sccsfile(5)). This keyletter is used by the comb(l) command; it is not a gen­
erally useful keyletter. and users should not use it. If both the -r and -a 
keyletters are specified. the -a keyletter is used. Care should be taken when 
using the -a keyletter in conjunction with the -e keyletter. as the SID of the 
delta to be created may not be what one expects. The -r keyletter can be used 
with the -a and -e keyletters to control the naming of the SID of the delta to 
be created. 

For each file processed. get responds (on the standard output) with the SID being accessed 
and with the number of lines retrieved from the sees file. 

7th Edition 2 



GET (1) UNIX Programmer's Manual GET (1) 

SID* 

If the -e keyletter is used, the SID of the delta to be made appears after the SID accessed 
and before the number of lines generated. If there is more than one named file or if a direc­
tory or standard input is named, each file name is printed (preceded by a new-line) before it 
is processed. If the -i keyletter is used included deltas are listed following the notation 
"Included"; if the -x keyletter is used, excluded deltas are listed following the notation 
"Excluded". 

TABLE 1. Determination of SCCS Identification String 

-b Keyletter Other SID 
Specified Usedt Conditions Retrieved 

SID of Delta 
to be Created 

none:!: 
none:!: 

R 
R 
R 
R 

R 

R 

R.L 
R.L 

R.L 

R.L.B 
R.L.B 

R.L.B.S 
R.L.B.S 
R.L.B.S 

* 

no R defaults to mR mR.mL mR.(mL+1) 

yes R defaults to mR mR.mL mR.mL.(mB + 1).1 

no R > mR mR.mL R.1*** 
no R=mR mR.mL mR.(mL+1) 

yes R > mR mR.mL mR.mL.(mB+1).1 

yes R=mR mR.mL mR.mL.(mB+1).1 

R < mRand 
hR.mL** R does not exist 

hR.mL.(mB + 1).1 

Trunk succ.# 
in release > R R.mL R.mL.(mB+1).1 
and R exists 

no No trunk succ. R.L R.(L+1) 

yes No trunk succ. R.L R.L.(mB+1).1 

Trunk succ. R.L 
in release ~ R 

R.L.(mB+1).1 

no No branch succ. R.L.B.mS R.L.B.(mS+1) 

yes No branch succ. R.L.B.mS R.L.(mB+1).1 

no No branch succ. R.L.B.S R.L.B.(S+l) 
yes No branch succ. R.L.B.S R.L.(mB+1).l 

Branch succ. R.L.B.S R.L.(mB+1).1 

"R", "L", "B", and "S" are the "release", "level", "branch", and "sequence" com­
ponents of the SID, respectively; "m" means "maximum". Thus, for example, "R.mL" 
means "the maximum level number within release R"; "R.L.(mB+1).1" means "the 
first sequence number on the new branch (i.e., maximum branch number plus one) of 
level L within release R". Note that if the SID specified is of the form "R.L", "R.L.B", 
or "R.L.B.S", each of the specified components must exist. 

** "hR" is the highest existing release that is lower than the specified, nonexistent, 
release R. 

*** This is used to force creation of the first delta in a new release. 
# Successor. 
t The -b keyletter is effective only if the b flag (see admin (1)) is present in the file. An 

entry of - means "irrelevant". 
:!: This case applies if the d (default SID) flag is not present in the file. If the d flag is 

present in the file, then the SID obtained from the d flag is interpreted as if it had been 
specified on the command line. Thus, one of the other cases in this table applies. 

IDENTIFICATION KEYWORDS 
Identifying information is inserted into the text retrieved from the sces file by replacing 
identification keywords with their value wherever they occur. The following keywords 

7th Edition 3 

, 



GET (1) UNIX Programmer's Manual GET (1) 

FILES 

may be used in the text stored.in an sees file: 

Keyword Value 
%M% Module name: either the value of the m flag in the file (see admin(l)). or if 

%1% 
%R% 
%L% 
%B% 
%S% 
%n% 
%H% 
%T% 
%E% 
%G% 
%U% 
%Y% 
%F% 
%P% 
%Q% 
%C% 

%Z% 
%W% 

%A% 

absent. the name of the sees file with the leading s. removed. 
sees identification (SID) (%R%.%L%.%B%.%S%) of the retrieved text. 
Release. 
Level. 
Branch. 
Sequence. 
Current date (YY/MM/DD). 
Current date (MM/DD/YY). 
Current time (HH:MM:SS). 
Date newest applied delta was created (YY/MM/DD). 
Date newest applied delta was created (MM/DD/YY). 
Time newest applied delta was created (HH:MM:SS). 
Module type: value of the t flag in the sees file (see admin(l)), 
sees file name. 
Fully qualified sees file name. 
The value of the q flag in the file (see admin(l)). 
Current line number. This keyword is intended for identifying messages output 
by the program such as "this shouldn't have happened" type errors. It is not 
intended to be used on every line to provide sequence numbers. 
The 4-character string @(#) recognizable by what(l). 
A shorthand notation for constructing what (1) strings for the UNIX System pro­
gram files. %W% = %Z%%M%< horizontal-tab > %1% 
Another shorthand notation for constructing what(l) strings for non-UNIX Sys­
tem program files. %A % = %Z%% Y% %M% %I%%Z% 

Several auxiliary files may be created by get. These files are known generically as the g-file. 
I-file. p-file. and z-file. The letter before the hyphen is called the tag. An auxiliary file 
name is formed from the sees file name: the last component of all sees file names must be 
of the form s.module-name. the auxiliary files are named by replacing the leading s with the 
tag. The g-file is an exception to this scheme: the g-file is named by removing the s. prefix. 
For example. s,xyz.c. the auxiliary file names would be xyz.c.l.xyz.c. p.xyz.c. and z.xyz.c. 
respectively. 

The g-file. which contains the generated text. is created in the current directory (unless the 
-p key letter is used). A g-file is created in all cases. whether or not any lines of text were 
generated by the get. It is owned by the real user. If the -k keyletter is used or implied 
its mode is 644: otherwise its mode is 444. Only the real user need have write permission 
in the current directory. 

The I-file contains a table showing which deltas were applied in generating the retrieved 
text. The l-file is created in the current directory if the -I keyletter is used: its mode is 
444 and it is owned by the real user. Only the real user need have write permission in the 
current directory. 

Lines in the I-file have the following format: 

a. 

b. 

c. 

A blank character if the delta was applied: 
* otherwise. 
A blank character if the delta was applied or wasn't applied and ignored: 
* if the delta wasn't applied and wasn't ignored. 
A code indicating a "special" reason why the delta was or was not applied: 

7th Edition 4 



GET (1) UNIX Programmer's Manual GET ( 1) 

'T': Included. 
"X": Excluded. 
"C": Cut off (by a --c keyletter). 

d. Blank. 
e. sees identification (SID). 
f. Tab character. 
g. Date and time (in the form YY/MM/DD HH:MM:SS) of creation. 
h. Blank. 
i. Login name of person who created delta. 

The comments and MR data follow on subsequent lines, indented one horizontal tab 
character. A blank line terminates each entry. 

The p-file is used to pass information resulting from a get with an -e keyletter along to 
delta. Its contents are also used to prevent a subsequent execution of get with an -e 

. keyletter for the same SID until delta is executed or the joint edit flag. j. (see admin(l)) is 
set in the sees file. The p-file is created in the directory containing the sees file and the 
effective user must have write permission in that directory. Its mode is 644 and it is owned 
by the effective user. The format of the p-file is: the gotten SID, followed by a blank, fol­
lowed by the SID that the new delta will have when it is made, followed by a blank. fol­
lowed by the login name of the real user. followed by a blank. followed by the date-time 
the get was executed. followed by a blank and the -i keyletter argument if it was present. 
followed by a blank and the -x keyletter argument if it was present. followed by a new­
line. There can be an arbitrary number of lines in the p-file at any time; no two lines can 
have the same new delta SID. 

The z-file serves as a lock-out mechanism against simultaneous updates. Its contents are the 
binary (2 bytes) process ID of the command (i.e., get) that created it. The z-file is created in 
the directory containing the sees file for the duration of get. The same protection restric­
tions as those for the p-file apply for the z-file. The z-file is created mode 444. 

SEE ALSO 
admin(l). delta(l), help(l). prs(l). what(l). sccsfile(4). 
Source Code Control System in the UNIX System Support Tools Guide. 

DIAG NOSTICS 

BUGS 

Use help (1) for explanations. 

If the effective user has write permission (either explicitly or implicitly) in the directory 
containing the sees files. but the real user doesn't, then only one file may be named when 
the -e keyletter is used. 

7th Edition 5 



SCCSDIFF ( 1 ) UNIX Programmer's Manual 

NAME 
~;"csdiir -- '<)mpare two versions of an sees file 

SYNOPS 
.ID1 -rsm2 [-p] [-sn] files 

DESCRl. 

SCCSDIFF ( 1 ) 

~, ,'ares two versions of an sees file and generates the differences between the 
two \ ',,, Any number of sees files may be specified. but arguments apply to all files. 

-r;·LD? SID! and SID2 specify the deltas of an sees file that are to be compared. 
Versions are passed to bdiff(l) in the order given. 

pipe output for each file through pr(l). 

-sn n is the file segment size that bdiff will pass to diff(l). This is useful 
when diff fails due to a high system load. 

FILES 
Itmp/get????? Temporary files 

SEE ALSO 
bdiff(l). "tel), help(l), pr(l). 
Source c",/e Control System UNIX System User's Guide. 

DIAGNOSTICS 
"file: r<o .. i'erences If the two versions are the same. 
Use help(l) for explanations. 

7th Edition 1 



SCCSFIL r: C .' 

NAME 

DESCRII 
lUi: 
eel''; : 
C;l: 

(cc::: .. 

will l 
beginn 
ter. 

'Entries 
99999), 

Each k 

Checks! 

UNIX Programmer's Manual SCCSFILE ( 4 ) 

;' ma t of sees file 

is an AseII file. It consists of six logical parts: the checksum. the delta table 
ormation about each delta). user names (contains login names and/or numeri­

· is of users who may add deltas). flags (contains definitions of internal key­
nents (contains arbitrary descriptive information about the file). and the body 
actual text lines intermixed with control lines). 

! n sees file there are lines which begin with the ASCll SOH (start of heading) 
'. :tal 001). This character is hereafter referred to as the control character and 

'ented graphically as @. Any line described below which is not depicted as 
.. j Lh the control character is prevented from beginning with the control charac-

the form DDDDD represent a five digit string (a number between 00000 and 

i part of an sees file is described in detail below. 

", "c checksum is the first line of an sees file. The form of the line is: 

@hDDDDD 

, value of the checksum is the sum of all characters. except those of the first line. 
· @h provides a magic number of (octal) 064001. 

Delta if; 

7th Edition 

: delta table consists of a variable number of entries of the form: 
@s DDDDD/DDDDD/DDDDD 
@d <type> <sees ID> yr/mo/da hr:mi:se <pgmr> DDDDD DDDDD 
@iDDDDD _. 
@xDDDDD ••• 
@gDDDDD_. 
@m <MR number> 

@c <comments> ••• 

@e 

· first line (@s) contains the number of lines inserted/deleted/unchanged respec-
y. The second line (@d) contains the type of the delta (currently. normal: D. 

i ; removed: R). the sees ID of the delta. the date and time of creation of the delta. 
t login name corresponding to the real user ID at the time the delta was created. 
<l'Jd the serial numbers of the delta and its predecessor. respectively. 

'1'> " @i. @x. and @g lines contain the serial numbers of deltas included. excluded. 
and ignored. respectively. These lines are optional. 

The @m lines (optional) each contain one MR number associated with the delta: the 

1 



SCCSFlLE ( . 

F,. 

7th Edit; 

UNIX Programmer's Manual SCCSFILE ( 4 ) 

. les contain comments associated with the delta, 

;c line ends the delta table entry. 

·.,t of login names and/or numerical group IDs of users who may add deltas to 
'e. separated by new-lines. The lines containing these login names and/or 
ical group IDs are surrounded by the bracketing lines @u and @U. An empty 

lows anyone to make a delta. 

'rds used internally (see admin(l) for more information on their use). Each 
-Ie takes the form: 

@f <flag> < optional text> 

,'ollowing flags are defined: 
@f t <type of program> 
@f v < program name> 
@fi 
@fb 
@f m <module name> 
@ff <floor> 
@f c < ceiling> 
@f d <default-sid> 
@fn 
@fj 
@f I <lock-releases> 
@f q < user defined> 
@f z <reserved for use in interfaces> 

iJag defines the replacement for the %Y% identification keyword. The v flag 
IS prompting for MR numbers in addition to comments: if the optional text is 
t it defines an MR number validity checking program. The i flag controls the 
i1g/error aspect of the "No id keywords" message. When the i flag is not 
. t. this message is only a warning: when the i flag is present, this message will 
'1 "fatal" error (the file will not be gotten. or the delta will not be made). 
the b flag is present the -b key letter may be used on the get command to 

a branch in the delta tree. The m flag defines the first choice for the replace­
text of the %M% identification keyword. The f flag defines the "floor" release; 
lease below which no deltas may be added. The c flag defines the "ceiling" 

';,; the release above which no deltas may be added. The d flag defines the 
1 t SID to be used when none is specified on a get command. The n flag causes 
to insert a "null" delta (a delta that applies no changes) in those releases that 
: pped when a delta is made in a new release (e.g .• when delta 5.1 is made after 
2.7, releases 3 and 4 are skipped). The absence of the n flag causes skipped 

.·es to be completely empty. The j flag causes get to allow concurrent edits of 
ime base SID. The 1 flag defines a list of releases that are locked against editing 

(1) with the -e keyletter). The q flag defines the replacement for the %Q% 
lification keyword. z flag is used in certain specialized interface programs . 

• i. rary text surrounded by the bracketing lines @t and @T. The comments sec­
'1 typically will contain a description of the file's purpose. 

2 



SCCSFj, 

Body 

SEE AU;" 

UNIX Programmer's Manual SCCSFILE ( 4 ) 

body consists of text lines and control lines. Text lines don't begin with the 
r'ol character, control lines do. There are three kinds of control lines: 

. . .'crt , delete, and end, represented by: 

@IDDDDD 
@DDDDDD 
@EDDDDD 

(:tively. The digit string is the serial number corresponding to the delta for the 
'Tolline. 

a(::",' J taCl), getCl), prsCl). 
S()uro; ,"/e Control System User's Guide in the UNIX System User's Guide. 

7th Edition 3 



I' 

Bell Laboratories 
Murray Hill. New Jersey 07974 

Computing Scien~¢Te~hnical Report No, 85 
- ''-. :: ~ 11 ~.".~.".; .~. \1 i,.~.1~·: 

PIC - A Graphics Language for Typesetting 
User Manu.al ~.' 

Brian W. Kernighan 

Revised Edition. March. 1982 



PIC - A Graphics Language for Typesetting 
User Manual 

Brian W. Kernighan 

Bell Laboratories 
Murray Hill, New Jersey 07974 

ABSTRACT 

PIC is a language for drawing simple figures on a typesetter. The basic 
objects in PIC are boxes. circles. ellipses. lines. arrows. arcs. spline curves. 
and text. These may be placed anywhere. at positions specified absolutely 
or in terms of previous objects. The example below illustrates the general 
capabilities of the language. 

This picture was created with the input 

ellipse "document" 
arrow 
box "PIC" 
arrow 
box "TBLlEQN" "Coptional)" dashed 
arrow 
box "TROFF" 
arrow 
ellipse "typesetter" 

t--.... ·~e 

PIC is another TROFF processor; it passes most of its input through 
untouched. but translates commands between .PS and .PE into TROFF com­
mands that draw the pictures. 

Revised Edition. March. 1982 



PIC - A Graphics Language for Typesetting 
User Manual 

1. Introduction 

Brian W. Kernighan 

Bell Laboratories 
Murray Hill. New Jersey 07974 

PIC is a language for drawing simple pictures. It operates as yet another TROFF[1] 
preprocessor. On the same style as EQN[2]. TBL[3] and REFER[4]). with pictures marked by 
.PSand .PE. 

PIC was inspired partly by Chris Van Wyk's early work on IDEAL[5]; it has some­
what the same capabilities. but quite a different flavor. In particular. PIC is much more 
procedural-a picture is drawn by specifying (sometimes in painful detail) the motions that 
one goes through to draw it. Other direct in1luences include the PICTURE language [6] and 
the V viewgraph language [7]. 

This paper is primarily a user's manual for PIC; a discussion of design issues and user 
experience may be found in [8]. The next section shows how to use PIC in the most simple 
way. Subsequent sections describe how to change the sizes of objects when the defaults are 
wrong. and how to change their positions when the standard positioning rules are wrong. 
An appendix describes the language succinctly and more or less precisely. 

2. Basics 

PIC provides boxes. lines. arrows. circles. ellipses. arcs. and splines (arbitrary smooth 
curves). plus facilities for positioning and labeling them. The picture below shows all of 
the fundamental objects (except for splines) in their default sizes: 

line arrow .. 8 ~~) 
Each picture begins with .PS and ends with .PE; between them are commands to describe 
the picture. Each command is typed on a line by itself. For example 

.PS 
box "this is" "e. box" 
.PE 

creates a standard box (% inch wide.lh inch high) and centers the two pieces of text in it: 

~ 
~ 

Each line of text is a separate quoted string. Quotes are mandatory. even if the text 
contains no blanks. (Of course there needn't be any text at all.) Each line will be printed in 
the current size and font. centered horizontally. and separated vertically by the current 
TROFF line spacing. 

PIC does not center the drawing itself. but the default definitions of .PS and .PE in the 



-2-

-ms macro package do. 

You can use circle or ellipse in place of box: 

~ 
~ 
~ 
~ 

Text is centered on lines and arrows; if there is more than one line of text. the lines 
are centered above and below: 

.PS 
arrow "this is" "an arrow" 
.PE 

produces 

and 

line "this is" "a line" 

gives 

this is 
an arr!'w 

this is 
a line 

Boxes and lines may be dashed or dotted; just add the word dashed or dotted after box 
or line. 

Arcs by default turn 90 degrees counterclockwise from the current direction; you can 
make them turn clockwise by saying arc cw. So 

line; arc; arc cw; arrow 

produces 

-) 
A spline might well do this job better; we will return to that shortly. 

As you might guess. 

arc; arc; arc; arc 

draws a circle. though not very efficiently. 

Objects are normally drawn one after another. left to right. and connected at the obvi­
ous places. Thus the input 

arrow; box "input"; arrow; box "process"; arrow; box "output"; arrow 

produces the figure 

If you want to leave a space at some place. use move: 

box; Dlove; box; Dlove; box 

produces 



-3-

DDD 
Notice that several commands can be put on a single line if they are separated by semi­
colons. 

Although objects are normally connected left to right. this can be changed. If you 
specify a direction (as a separate object). subsequent objects will be joined in that direction. 
Thus 

down; box; arrow; ellipse; arrow; circle 

produces 

and 

left; box; arrow; ellipse; arrow; circle 

produces 

Each new picture begins going to the right. 

Normally. :figures are drawn at a :fixed scale. with objects of a standard size. It is pos­
sible. however. to arrange that a :figure be expanded to :fit a particular width. If the .PS line 
contains a number. the drawing is forced to be that many inches wide. with the height 
scaled proportionately. Thus 

.PS 3.5i 

causes the picture to be 3.5 inches wide. 

PIC is pretty dumb about the size of text in relation to the size of boxes. circles. and so 
on. There is as yet no way to say "make a box that just :fits around this text" or "make 
this text:fit inside this circle" or "draw a line as long as this text:' All of these facilities are 
useful. so the limitations may go away in the fullness of time. but don't hold your breath. 
In the meantime. tight :fitting of text can generally only be done by trial and error. 

Speaking of errors. if you make a grammatical error in the way you describe a picture. 
PIC will complain and try to indicate where. For example. the invalid input 



box arrow box 

will draw the message 

pic: syntax error near line 5, file­
context is 

box arrow" box 

-4-

The caret" marks the place where the error was first noted; it typically follows the word in 
error. 

3. Controlling Sizes 

This section deals with how to control the sizes of objects when the udefault" sizes are 
not what is wanted. The next section deals with positioning them when the default posi­
tions are not right. 

Each object that PIC knows about (boxes. circles. etc.) has associated dimensions. like 
height. width. radius. and so on. By default. PIC tries to choose sensible default values for 
these dimensions. so that simple pictures can be drawn with a minimum of fuss and bother. 
All of the figures and motions shown so far have been in their default sizes: 

box 3,4" wide X lk" high 
circle lk" diameter 
ellipse 3,4" wide X lh" high 
arc lh" radius 
line or arrow lk" long 
move lk" in the current direction 

When necessary. you can make any object any size you want. For example. the input 

box width 3i height O.li 

draws a long. :fiat box 

3 inches wide and 1/10 inch high. There must be no space between the number and the ur' 
that indicates a measurement in inches. In fact. the 'T' is optional; all positions and dimen­
sions are taken to be in inches. 

Giving an attribute like width changes only the one instance of the object. You can 
also change the default size for all objects of a particular type. as discussed later. 

The attributes of height (which you can abbreviate to ht) and width (or wid) apply to 
boxes. circles. ellipses. and to the head on an arrow. The attributes of radius (or rad) and 
diameter (or diam) can be used for circles and arcs if they seem more natural. 

Lines and arrows are most easily drawn by specifying the amount of motion from 
where one is right now. in terms of directions. Accordingly the words up. down. left and 
right and an optional distance can be attached to line. arrow. and nwve. For example • 

draws 

. PS 
line up li right 2i 
arrow left 2i 
move left O.li 
line <-> down li "height" 
.PE 



-5-

The notation <-> indicates a two-headed arrow; use -> for a head on the end and <- for 
one on the start. Lines and arrows are really the same thing; in fact. arrow is a synonym 
for line ->. 

If you don't put any distance after up, down. etc .• PIC uses the standard distance. So 

line up right; line down; line down left; line up 

draws the parallelogram 

Warning: a very common error (which hints at a language defect) is to say 

line 3i 

A direction is needed: 

line right 3i 

Boxes and lines may be dotted or dashed: 

comes from 

................ · . · . · . · . .......... . 

box dotted; line dotted; move; line dashed 

If there is a number after dot. the dots will be that far apart. You can also control the size 
of the dashes (at least somewhat): if there is a length after the word dashed. the dashes will 
be that long. and the intervening spaces will be as close as possible to that size. So. for 
instance. 

comes from the inputs (as separate pictures) 



line right Si dashed 
line right Si dashed O.2Si 
line right Si dashed O.Si 
line right Si dashed 1i 

-6-

Sorry. but circles and arcs can't be dotted or dashed yet. and probably never will be. 

You can make any object invisible by adding the word invis(ible) after it. This is par­
ticularly useful for positioning things correctly near text. as we will see later. 

Text may be positioned on lines and arrows: 

.PS 
arrow "on top of"; move 
arrow "above" "below"; move 
arrow "above" above; move 
arrow "below" below; move 
arrow "above" "on top of" "below" 
.PE 

produces 

OR ~QP.r 
above 
be10"," 

above • 6e10~ 

above 
OR ~QP.f 

below 
The "width" of an arrowhead is the distance across its tail; the "height" is the dis­

tance along the shaft. The arrowheads in this picture are default size. 

As we said earlier. arcs go 90 degrees counterclockwise from where you are right now. 
and arc cw changes this to clockwise. The default radius is the same as for circles. but you 
can change it with the rod attribute. It is also easy to draw arcs between specific places; 
this will be described in the next section. 

To put an arrowhead on an arc. use one of <-. -> or <->. 
In all cases. unless an explicit dimension for some object is specified. you will get the 

default size. If you want an object to have the same size as the previous one of that kind. 
add the word same. Thus in the set of boxes given by 

down; box ht O.2i wid 1.Si; move down O.ISi; box same; move same; box same 

the dimensions set by the :first box are used several times; similarly. the amount of motion 
for the second nwve is the same as for the:first one. 

It is possible to change the default sizes of objects by assigning values to certain vari­
ables: 

boxwid, boxht 
linewid, lineht 
dashwid 
circlerad 
arcrad 
ellipsewid, ellipseht 
movewid, moveht 
arrowwid, arrowht (These refer to the arrowhead.) 



-7-

So if you want all your boxes to be long and skinny. and relatively close together. 

boxwid = 0.1i; boxht = 1i 
movewid = 0.2i 
box; move; box; move; box 

gives 

PIC works internally in what it thinks are inches. Setting the variable scale to some 
value causes all dimensions to be scaled down by that value. Thus. for example. scale=2.54 
causes dimensions to be interpreted as centimeters. 

The number given as a width in the .PS line overrides the dimensions given in the pic­
ture: this can be used to force a picture to a particular size even when coordinates have been 
given in inches. Experience indicates that the easiest way to get a picture of the right size is 
to enter its dimensions in inches. then if necessary add a width to the PS line. 

4. Controlling Positions 

You can place things anywhere you want: PIC provides a variety of ways to talk 
about places. PIC uses a standard Cartesian coordinate system. so any point or object has an 
x and y position. The first object is placed with its start at position 0.0 by default. The 
x,y position of a box. circle or ellipse is its geometrical center: the position of a line or 
motion is its beginning: the position of an arc is the center of the corresponding circle. 

Position modifiers like from. to. by and at are followed by an x,y pair. and can be 
attached to boxes. circles. lines. motions. and so on. to specify or modify a position. 

You can also use up. down. right. and left with line and nwve. Thus 

.PS2 
box ht 0.2 wid 0.2 at 0,0 "1" 
move to 0.5,0 # or "move right 0.5" 
box "2" same # use same dimensions as last box 
move same 
box "3" same 
.PE 

draws three boxes. like this: 

# use same motion as before 

Note the use of same to repeat the previous dimensions instead of reverting to the default 
values. 

Comments can be used in pictures: they begin with a # and end at the end of the line. 

Attributes like ht and wid and positions like at can be written out in any order. So 

box ht 0.2 wid 0.2 at 0,0 
box at 0,0 wid 0.2 ht 0.2 
box ht 0.2 at 0,0 wid 0.2 

are all equivalent. though the last is harder to read and thus less desirable. 



-8-

The from and to attributes are particularly useful with arcs. to specify the endpoints. 
By default. arcs are drawn counterclockwise. 

arc from O.Si,O to O,O.Si 

is the short arc and 

arc from O,O.Si to O.Si,O 

is the long one: 

If the from attribute is omitted. the arc starts where you are now and goes to the point 
given by to. The radius can be made large to provide fiat arcs: 

arc -> cw from 0,0 to 2i,O rad lSi 

produces 

.... 
We said earlier that objects are normally connected left to right. This is an over­

simplification. The truth is that objects are connected together in the direction specified by 
the most recent up. dawn. left or right (either alone or as part of some object). Thus. in 

arrow left; box; arrow; circle; arrow 

the left implies connection towards the left: 

This could also be written as 

left; arrow; box; arrow; circle; arrow 

Objects are joined in the order determined by the last up. dawn. etc .• with the entry 
point of the second object attached to the exit point of the first. Entry and exit points for 
boxes. circles and ellipses are on opposite sides. and the start and end of lines. motions and 
arcs. It's not entirely clear that this automatic connection and direction selection is the 
right design. but it seems to simplify many examples. 

If a set of commands is enclosed in braces { ... }. the current position and direction of 
motion when the group is finished will be exactly where it was when entered. Nothing else 
is restored. There is also a more general way to group objects. using I and I. which is dis­
cussed in a later section. 

s. Labels and Corners 
Objects can be labelled or named so that you can talk about them later. For example. 



.PS 
Box1: 

.PE 

box ... 
# ... other stuff ... 
move to Box1 

-9-

Place names have to begin with an upper case letter (to distinguish them from variables. 
which begin with lower case letters). The name refers to the "center" of the object. which 
is the geometric center for most things. It's the beginning for lines and motions. 

Other combinations also work: 

line from Box1 to Boxl 
move to Box1 up 0.1 right 0.2 
move to Box1 + 0.2,0.1 # same as previous 
line to Box1 - 0.5,0 

The reserved name Here may be used to record the current position of some object. for 
example as 

Box1: Here 

Labels are variables - they can be reset several times in a single picture. so a line of 
the form 

Box1: Box1 + Ii,Ii 

is perfectly legal. 

You can also refer to previously drawn objects of each type. using the word last. For 
example. given the input 

box "A"; circle "B"; box "e" 
then 'last box' refers to box C. 'last circle' refers to circle B. and '2nd last box' refers to box 
A. Numbering of objects can also be done from the beginning. so boxes A and C are '1st 
box' and '2nd box' respectively. 

To cut down the need for explicit coordinates. most objects have "corners" named by 
compass points: 

B B.n B .nw.-----------, .ne 

B.w B.c B.e 

B.sw I.----..,~-----'B.se 
H.S 

The primary compass points may also be written as r. h. 1. and .t. for right. bottom. left. 
and top. The box above was produced with 



.PS 
B: box "B.c· 
• B.e" at B.e ljust 
" B.ne" at B.ne ljust 
" B.se" at B.se ljust 
"B.s" at B.s below 
"B.n" at B.n above 
"B.sw • at B.sw rjust 
"B.w· at B.w rjust 
"B.nw " at B.nw rjust 
.PE 

-10 -

Note the use of ljust. rjust. above. and below to alter the default positioning of text. and of a 
blank with some strings to help space them away from a vertical line. 

Lines and arrows have a start. an end and a center in addition to corners. (Arcs have 
only a center. a start. and an end.) There are a host of (i.e .• too many) ways to talk about 
the corners of an object. Besides the compass points. almost any sensible combination of 
left. right. top. bottom. upper and lower will work. Furthermore. if you don't like the': 
notation. as in 

last box.ne 

you can instead say 

upper right of last box 

Prolixity like 

line from upper left of 2nd last box to bottom of 3rd last ellipse 

begins to wear after a while. but it is descriptive. This part of the language is probably fat 
that will get trimmed. 

It is sometimes easiest to position objects by positioning some part of one at some part 
of another. for example the northwest corner of one at the southeast corner of another. The 
with attribute in PIC permits this kind of positioning. For example. 

box ht O.75i wid O.75i 
box ht O.5i wid O.5i with .sw at last box.se 

produces 

Notice that the corner after with is written .sw. 

As another example. consider 

ellipse; ellipse with .nw at last ellipse.se 

which makes 



-11-

Sometimes it is desirable to have a line intersect a circle at a point which is not one of 
the eight compass points that PIC knows about. In such cases. the proper visual effect can 
be obtained by using the attribute chop to chop off part of the line: 

circle "a" 
circle "b" at 1st circle - (0.75i, Ii) 
circle "c· at 1st circle + (0.75i, -Ii) 
line from 1st circle to 2nd circle chop 
line from 1st circle to 3rd circle chop 

produces 

By default the line is chopped by circlerad at each end. This may be changed: 

line ... chop r 

chops both ends by r. and 

line ... chop rl chop r2 

chops the beginning by r 1 and the end by r2. 

There is one other form of positioning that is sometimes useful. to refer to a point 
some fraction of the way between two other points. This can be expressed in PIC as 

fraction of the way between position 1 and position2 

fraction is any expression. and position1 and position2 are any positions. You can abbrevi­
ate this rather windy phrase; "of the way" is optional. and the whole thing can be written 
instead as 

fraction < position 1 ,position2 > 

As an example. 

box 
arrow right from 1/3 of the way between last box.ne and last box.se 
arrow right from 2/3 <last box.ne, last box.se> 

produces 

: 
Naturally. the distance given by fraction can be greater than 1 or less than O. 

6. Variables and Expressions 

It's generally a bad idea to write everything in absolute coordinates if you are likely 
to change things. PIC variables let you parameterize your picture: 



a-O.S; b= 1 

box wid a ht b 
ellipse wid a/2 ht l.S*b 
move to Boxl - (a/2, b/2) 

-12 -

Expressions may use the standard operators +. -. *. I. and %. and parentheses for 
grouping. 

Probably the most important variables are the predefined ones for controlling the 
default sizes of objects. listed in Section 3. These may be set at any time in any picture. 
and retain their values until reset. 

You can use the height. width. radius. and x and y coordinates of any object or corner 
in an expression: 

Box1.x # the x coordinate of Boxl 
Box1.ne.y # the y coordinate of the northeast corner of Boxl 
Boxl.wid # the width of Boxl 
Box1.ht # and its height 
2nd last circ1e.rad # the radius of the 2nd last circle 

Any pair of expressions enclosed in parentheses defines a position; furthermore such 
positions can be added or subtracted to yield new positions: 

(x,y) 
(Xl,Yl)+(X2,Y2) 

IT PI and P 2 are positions. then 

(Pl,P2) 

refers to the point 

(Pl'X ,P2'Y) 

7. More on Text 
Normally. text is centered at the geometric center of the object it is associated with. 

The attribute ljust causes the left end to be at the specified point (which means that the text 
lies to the right of the specified place!). and rjust puts the right end at the place. above and 
below cent~ the text one half line space in the given direction. 

At the moment you can not compound text attributes: however natural it might seem. 
it is illegal to say" ... " above ljust. This will be fixed eventually. 

Text is most often an attribute of some other object. but you can also have self­
standing text: 

-this is some text- at 1,2ljust 

8. Lines and Splines 
A "line" may actually be a path. that is. it may consist of connected segments like 

this: 

This line was produced by 



-13 -

line right 1i then down .5i left 1i then right 1i 

A spline is a smooth curve guided by a set of straight lines just like the line above. It 
begins at the same place. ends at the same place. and in between is tangent to the mid-point 
of each guiding line. The syntax for a spline is identical to a (path) line except for using 
spline instead of line. Thus: 

line dashed right 1i then down .5i left 1i then right 1i 
spline from start of last line \ 

right 1i then down .5i left 1i then right 1i 

produces 

(Long input lines can be split by ending each piece with a backslash.) 

The elements of a path. whether for line or spline. are specified as a series of points. 
either in absolute terms or by up. down. etc. If necessary to disambiguate. the word then 
can be used to separate components. as in 

spline right then up then left then up 

which is not the same as 

spline right up left up 

At the moment. arrowheads may only be put on the ends of a line or spline; splines 
may not be dotted or dashed. 

9. Blocks 

Any sequence of PIC statements may be enclosed in brackets 1 ... 1 to form a block. 
which can then be treated as a single object. and manipulated rather like an ordinary box. 
For example. if we say 

we get 

box "1" 
[ box "2"; arrow "3" above; box "4" ] with .n at last box.s - (0,0.1) 
"thing" at last [].s 

CJ 
2 1.::1 4 

Notice that "last"-type constructs treat blocks as a unit and don't look inside for objects: 
"last box.s" refers to box 1. not box 2 or 4. You can use last I I. etc .• just like last box. 

Blocks have the same compass comers as boxes (determined by the bounding box). It 
is also possible to position a block by placing either an absolute coordinate (like 0,0) or an 
internal label (like A) at some external point. as in 

[ ... ; A: ... ; .. , ] with ,A at ... 

Blocks join with other things like boxes do (i.e .• at the center of the appropriate side). 



-14 -

It's not clear that this is the right thing to do. so it may change. 

Names of variables and places within a block are local to that block. and thus do not 
affect variables and places of the same name outside. You can get at the internal place 
names with constructs like 

last [].A 

or 

B.A 

where B is a name attached to a block like so: 

B: [ ... ; A: ... ; ] 

When combined with define statements (next section). blocks provide a reasonable simula­
tion of a procedure mechanism. 

Although blocks nest. it is currently possible to look only one level deep with con­
structs like BA. although A may be further qualified (i.e .• BA.sw or top of BA are legal). 

The following example illustrates most of the points made above about how blocks 
work: 

h .... 5i 
dh = .02i 
dw= .1i 
[ 

] 

Ptr: [ 

] 

boxht = h; boxwid = dw 
A: box 
B:box 
C:box 
box wid 2*boxwid " ... " 
D:box 

Block: [ 
boxht = 2*dw; boxwid = 2*dw 
movewid = 2*dh 
A: box; move 
B: box; move 
C: box; move 
box invis " ... " wid 2*boxwid; move 
D: box 

] with .t at Ptr.s - (O,hJ2) 
arrow from Ptr.A to Block.A.nw 
arrow from Ptr.B to Block.B.nw 
arrow from Ptr.C to Block.C.nw 
arrow from Ptr.D to Block.D.nw 

box dashed ht last [].ht+dw wid last [].wid+dw at last [] 

This produces 

.--------------, 
I I 
I I 
I I 
I I 
I I 
I I 
I I 
I I 
I I 1..: _____________ :.1 



-15 -

10. Macros 

PIC provides a rudimentary macro facility. the simple form of which is identical to 
that in EQN: 

define name X replacement text X 

defines name to be the replacement text: X is any character that does not appear in the 
replacement. Any subsequent occurrence of name will be replaced by replacement text. 

Macros with arguments are also available. The replacement text of a macro definition 
may contain occurrences of $1 through $9: these will be replaced by the corresponding 
actual arguments when the macro is invoked. The invocation for a macro with arguments 
is 

name(argl, arg2, .•. ) 

Non-existent arguments are replaced by null strings. 

Then 

As an example. one might define a square by 

define square X box ht $1 wid $1 $2 X 

square(li, "one" "inch") 

calls for a one inch square with the obvious label, and 

square(O.5i) 

calls for a square with no label: 

one 
inch 

Coordinates like x,y may be enclosed in parentheses. as in (x,y). so they can be included in 
a macro argument. 

11. TROFF Interface 

PIC is usually run as a TROFF preprocessor: 

pic file I troff -ms 

Run it before EQN and TBL if they are also present. 

IT the .PS line looks like 

.PS <file 

then the contents of file are inserted in place of the .PS line (whether or not the file contains 
.PS or .PE). 

Other than this file inclusion facility. PIC copies the .PS and .PE lines from input to 
output intact. except that it adds two things right on the same line as the .PS: 

.PShw 

hand ware the picture height and width in units. The -ms macro package has simple 
definitions for .PS and .PE that cause pictures to be centered and offset a bit from surround­
ing text. 

IT •• . PF· is used instead of .PE. the position after printing is restored to where it was 



-16 -

before the picture started. instead of being at the bottom. (UF' is for ""fiyback.") 

Any input line that begins with a period is assumed to be a TROFF command that 
makes sense at that point; it is copied to the output at that point in the document. It is ask­
ing for trouble to add spaces or in any way fiddle with the line spacing here. but point size 
and font changes are generally harmless. So. for example • 

gives 

. ps24 
circle radius .4i at 0,0 
.ps 12 
circle radius .2i at 0,0 
.ps 8 
circle radius .li at 0,0 
.ps6 
circle radius .05i at 0,0 
.ps 10\" don't forget to restore size 

It is also safe to muck about with sizes and fonts and local motions within quoted 
strings C' ... ") in PIC. so long as whatever changes are made are unmade before exiting the 
string. For example. to print text in Old English in size 8. use 

ellipse "\s8\f(OESmilel\rP\s0" 

This produces 

This is essentially the same rule as applies in EQN. 

There is a subtle problem with complicated equations inside PIC pictures - they come 
out wrong if EQN has to leave extra vertical space for the equation. If your equation 
involves more than subscripts and superscripts. you must add to the beginning of each 
equation the extra information space 0: 

arrow 
box "$space 0 {H( omega )} over {I - H( omega )}$" 
arrow 

This produces 

I H(w) 
----I., .. 1-Hew) .. 

PIC normally generates commands for a new version of TROFF that has operators for 
drawing graphical objects like lines. circles. and so on. As distributed. PIC assumes that its 
output is going to the Mergenthaler Linotron 202 unless told otherwise with the -T option. 
At present. the other alternatives are -Teat (the Graphic Systems CAT. which does slanted 
lines and curves badly) and -Taps (the Autologic APS-5). It is likely that the option will 
already have been set to the proper default for your system. unless you have a choice of 



-17 -

typesetters. 

12. Some Examples 

Herewith a handful of larger examples: 

ndtable: 

hashtab: 

The input for the picture above was: 
define ndblock X 

box wid boxwid/2 ht boxhtl2 
down; box same with .t at bottom of last box; box same 

X 
boxht = .2i; boxwid = .3i; circ1erad = .3i 
down; box; box; box; box ht 3*boxht ft.ffi..ffi..ft 
L: box; box; box invis wid 2*boxwid fthashtab:1iwith .e at 1st box .w 
right 
Start: box wid .5i with .sw at 1st box.ne + (.4i,.21) ft ••• ft 
Nl: box wid.2i 1in11i;D1: box wid .3i 1id11i 
N3: box wid .4i .tin31i; 03: box wid .3i ftd3ft 
box wid .4i ft ••• ft 
N2: box wid .5i 1in2ft; 02: box wid .2i ftd2ft 
arrow right from 2nd box 
ndblock 
spline -ft right .2i from 3rd last box then to Nl.sw + (0.05i,O) 
spline -ft right .3i from 2nd last box then to Ol.sw + (0.05i,O) 
arrow right from last box 
ndblock 
spline -ft right .21 from 3rd last box to N2.sw-(0.05i,.21) to N2.sw+C0.05i,O) 
spline -ft right .31 from 2nd last box to 02.sw-C0.05i,.2i) to 02.sw+C0.05i,O) 
arrow right 2·1inewid from L 
ndblock 
spline -fi right .2i from 3rd last box to N3.sw + (0.05i,O) 
spline -ft right .3i from 2nd last box to 03.sw + (0.05i,O) 
circle invis ftndblock1iat last box.e + (.7i,.21) 
arrow dotted from last circle to last box chop 
box invis wid 2·boxwid findtable:1iwith .e at Start.w 

This is the second example: 



lexical 
corrector 

source lexical 
code analyzer 

This is the input for the picture: 

.PS5 

.ps 8 

tokens 

arrow "source" "code" 
LA: box "lexical" "analyzer" 

arrow "tokens" above 
P: box "parser" 

arrow "intermediate" "code" 
Sem: box "semantic" "checker" 

arrow 

arrow <-> up from top of LA 
LC: box "lexical" "corrector" 

arrow <-> up from top of P 
Syn: box "syntactic" "corrector" 

arrow up 

- 18-

diagnostic 
message 
printer 

syntactic 
corrector 

parser 

DMP: box "diagnostic" "message" "printer" 
arrow <-> right from right of DMP 

ST: box "symbol" "table" 

.PE 

arrow from LC.ne to DMP.sw 
arrow from Sem.nw to DMP.se 
arrow <-> from Sem.top to ST.bot 

symbol 
table 

Intermediat semantic 
code checker 

There are eighteen objects (boxes and arrows) in the picture. and one line of PIC input 
for each; this seems like an acceptable level of verbosity. 

The next example is the following: 



-19 -

input 

CPU 
(16-bit mini) 

This is the input for example 3: 

.KS 

.PS5i 
circle "DISK" 
arroW' "character" "defns" 
box "cpU" "(16-bit mini)" 

Basic Digital Typesetter 

{ arroW' <- from top of last box up "input" rjust } 
arroW' 
CRT:" CRT" ljust 
line from CRT - 0.0.075 up 0.15 \ 
then right 0.5 \ 
then right 0.5 up 0.25 \ 
then down 0.5+0.15 \ 
then left 0.5 up 0.25 \ 
then left 0.5 

Paper: CRT + 1.0+0.05.0 
arroW' from Paper + 0.0.75 to Paper - 0.0.5 
{ move to start of last arrow down 0.25 

{ move left 0.015; circle rad 0.05 } 
{ move right 0.015; circle rad 0.05;" rollers" ljust } 

} 
" paper" ljust at end of last arrow right 0.25 up 0.25 
line left 0.2 dotted 
.PE 
.ce 
Basic Digital Typesetter 
.sp 
.KE 

13. Final Observations 

CRT 

..... paper 

PIC is not a sophisticated tool. The fundamental approach - Cartesian coordinates 
and real measurements - is not the easiest thing in the world to work with. although it 
does have the merit of being in some sense sufficient. Much of the syntactic sugar (or corn 
syrup) - comers. joining things implicitly. etc. - is aimed at making positioning and sizing 
automatic. or at least relative to previous things. rather than explicit. 

Nonetheless. PIC does seem to offer some positive values. Most notably. it is 
integrated with the rest of the standard Unix document preparation software. In particu­
lar. it positions text correctly in relation to graphical objects; this is not true of any of the 
interactive graphical editors that I am aware of. It can even deal with equations in a 



- 20-

natural manner, modulo the space 0 nonsense alluded to above. 

A standard question is, "Wouldn't it be better if it were interactive?" The answer 
seems to be both yes and no. If one has a decent input device (which I do not), interaction 
is certainly better for sketching out a figure. But if one has only standard terminals (at 
home, for instance), then a linear representation of a figure is better. Furthermore, it is 
possible to generate PIC input from a program: I have used A WK[9] to extract numbers 
from a report and generate the PIC commands to make histograms. This is hard to imagine 
with most of the interactive systems I know of. 

In any case, the issue is far from settled: comments and suggestions are welcome. 

Acknowledgements 

I am indebted to Chris Van Wyk for ideas from several versions of IDEAL. He and 
Doug Mcilroy have also contributed algorithms for line and circle drawing, and made use­
ful suggestions on the design of PIC. Theo Pavlidis contributed the basic spline algorithm. 
Charles Wetherell pointed out reference [2] to me, and made several valuable criticisms on 
an early draft of the language and manual. The exposition in this version has been greatly 
improved by suggestions from Jim Blinn. I am grateful to my early users - Brenda Baker, 
Dottie Luciani. and Paul Tukey - for their suggestions and cheerful use of an often shaky 
and clumsy system. 

References 

1. J. F. Ossanna, "NROFF/TRoFF User's Manual:' UNIX Programmer's Manual 2, Section 
22 (January 1979). 

2. Brian W. Kernighan and Lorinda L. Cherry, "A System for Typesetting Mathemat­
ics," Communications of the ACM 18(3), pp. 151-157 (1975). 

3. M. E. Lesk, "Tbl - A Program to Format Tables," UNIX Programmer's Manual 2, 
Section 10 (January 1979). 

4. M. E. Lesk, "Some Applications of Inverted Indexes on the UNIX System," UNIX 
Programmer's Manual 2, Section 11 (January 1979). 

5. Christopher J. Van Wyk and C. J. Van Wyk, "A Graphics Typesetting Language:' 
SIGPLAN Symposium on Text Manipulation, Portland, Oregon (June, 1981). 

6. John C. Beatty, "PICTURE - A picture-drawing language for the Trix/Red Report 
Editor," Lawrence Livermore Laboratory Report UCID-30156 (April 1977). 

7. Anon., "V - A viewgraph generating language," Bell Laboratories internal memoran­
dum (May 1979). 

8. B. W. Kernighan, "PIC - A Language for Typesetting Graphics," Software Practice & 
Experience 12(1), pp. 1-21 (January, 1982). 

9. A. V. Aho, P. J. Weinberger, and B. W. Kernighan, "A WK - A Pattern Scanning and 
Processing Language:' Software Practice and Experience 9, pp. 267-280 (April 1979). 



- 21-

Appendix A: PIC Reference Manual 

Pictures 

The top-level object in PIC is the '~picture": 

picture: 
.PS optional-width 
element-list 
.PE 

If optional-width is present. the picture is made that many inches wide. regardless of any 
dimensions used internally. The height is scaled in the same proportion. 

If instead the line is 

.PS <f 

the :file f is inserted in place of the .PS line. 

If .PF is used instead of .PE. the position after printing is restored to what it was 
upon entry. 

Elements 

An element-list is a list of elements (what else?): the elements are 

element: 
primitive attribute-list 
pZacename : element 
pZacename : position 
variable = expression 
direction 
troff-command 
{ element-list } 
[ element-list ] 

Elements in a list must be separated by newlines or semicolons: a long element may be 
continued by ending the line with a backslash. Comments are introduced by a # and ter­
minated by a newline. 

Variable names begin with a lower case letter: place names begin with upper case. 
Place and variable names retain their values from one picture to the next. 

The current position and direction of motion are saved upon entry to a { ... } block and 
restored upon exit. 

Elements within a block enclosed in / .. ./ are treated as a unit: the dimensions are 
determined by the extreme points of the contained objects. Names. variables. and direction 
of motion within a block are local to that block. 

troff-command is any line that begins with a period. Such lines are assumed to make 
sense in the context where they appear: accordingly. if it doesn't work. don't call. 

Primitives 

The primitive objects are 



primitive: 
box 
circle 
ellipse 
arc 
line 
arrow 
move 
spline 
"any text at all" 

arrow is a synonym for line ->. 

Attributes 

-22 -

An attribute-list is a sequence of zero or more attributes; each attribute consists of a 
keyword. perhaps followed by a value. In the following. e is an expression and opt-e an 
optional expression. 

artrlbute: 
h(eigh)t e 
rad(ius) e 
up opt-e 
right opt-e 
from position 
at position 
bye,e 
dotted opt-e 
chop opt-e 
same 
text-list 

wid(th) e 
diam(eter) e 
down opt-e 
left opt-e 
to position 
with COT7'Ulr 

then 
dashed opt-e 
-> <- <-> 
invis 

Missing attributes and values are fi.11ed in from defaults. Not all attributes make 
sense for all primitives; irrelevant ones are silently ignored. These are the currently mean­
ingful attributes: 

box: 
height, width, at, dotted, dashed, invis, same, text 

circle and ellipse: 

arc: 
radius, diameter, height, width, at, invis, same, text 

up, down, left, right, height, width, from, to, at, radius, 
invis, same, cw, <-, ->, <->, text 

line, arrow 
up, down, left, right, height, width, from, to, by, then, 
dotted, dashed, invis, same, <-, ->, <->, text 

spline: 

move: 

up, down, left, right, height, width, from, to, by, then, 
invis, <-, ->, <->, text 

up, down, left, right, to, by, same, text 
"text ... ": 

at,text 

The attribute at implies placing the geometrical center at the specified place. For lines. 
splines and arcs. height and width refer to arrowhead size. 



- 23-

Text 

Text is normally an attribute of some primitive: by default it is placed at the 
geometrical center of the object. Stand-alone text is also permitted. A text-list is a list of 
text items: a text item is a quoted string optionally followed by a positioning request: 

text-item: 
" " 
" ... " center 
" ... " ljust 
" ... " rjust 
" ... " above 
" ... " below 

If there are mUltiple text items for some primitive. they are centered vertically except as 
qualified. Positioning requests apply to each item independently. 

Text items can contain TROFF commands for size and font changes. local motions. etc .• 
but make sure that these are balanced so that the entering state is restored before exiting. 

Positions and places 

A position is ultimately an x,y coordinate pair. but it may be specified in other ways. 

position: 
e,e 
place ± e, e 
( position, position ) 
e [of the way J between position and position 
e < position , position > 

The pair e, e may be enclosed in parentheses. 

place: 
placename optional-corner 
corner placename 
Here 
corner of nth primitive 
nth primit ive optional-corner 

A corner is one of the eight compass points or the center or the start or end of a primitive. 
(Not text!) 

corner: 
.n .e .w .s .ne .se .nw .sw 
.t .b .r .1 
.c .start .end 

Each object in a picture has an ordinal number: nth refers to this. 

nth: 
nth 
nth last 

Since barbarisms like Ith are barbaric. synonyms like 1st and 3st are accepted as well. 

Variables 

The built-in variables and their default values are: 



boxwid O.7Si 
circlerad O.2Si 
ellipsewid O.7Si 
arcrad O.2Si 
linewid O.Si 
movewid O.Si 
arrowht O.li 
dashwid O.li 
scale 1 

-24 -

boxht O.Si 

ellipseht O.Si 

lineht O.Si 
movewid O.Si 
arrowwid O.OSi 

These may be changed at any time. and the new values remain in force until changed again. 
Dimensions are divided by scale during output. 

Expressions 

Expressions in PIC are evaluated in floating point. All numbers representing dimen­
sions are taken to be in inches. 

expression: 
e+e 
e-e 
e*e 
e/e 

Definitions 

e % e (modulus) 
-e 
(e) 
variable 
number 
place.x 
place .y 
place .ht 
place .wid 
place .rad 

The define statement is not part of the grammar. 

define: 
define name X replacement text X 

Occurrences of $1 through $9 in the replacement text will be replaced by the corresponding 
arguments if name is invoked as 

name(argl, arg2, ... ) 

Non-existent arguments are replaced by null strings. Replacement text may contain new­
lines. 


