
MUMPS
Development

Committee

MUMPS
DOCUMENTATION

MANUAL

MUMPS DEVELOPMENT COMMITTEE

MUMPS
DOCUMENTATION

MANUAL

Baviaed
31 Auguat 1976

Copyright 1976 by the MUMPS Development Committee. Thia document may be
reproduced in any form, so long as acknowledgement of the aource is made.

MUMPS Documentation Manual
ISBN 0-918118-10-7

Distributed by the MUMPS Users' Group, 700 South Euclid Avenue,
St. Louis, MO 63110, USA.

MDC/3S
Revised
11/10/76

MUMPS DOCUMENTATION MAN.UAL

A Type A Release of the MUMPS Development Committee
Produced by MDC Subcommittee #3, Documentation

ack Bowie, Chairman
S Development Colllllittee

The reader is hereby notified that the following specification has been
approved by the MUMPS Development Committee but that it may be a partial
specification which relies on information appearing in many parts of the
MUMPS specifications. The specification is dynamic in nature, and the
changes reflected by this approved release may not correspond with the
latest specification available.

Because of the evolutionary nature of MUMPS specifications, the reader
is further reminded that changes are likely to occur in the specif ica­
ti on released herein prior to a complete republication of MUMPS speci­
fications.

This document may be reproduced in any form so long as acknowledgment of
the source is made. Anyone reproducing it is requested to include this
introduction.

FOREWRD

This document presents MUMPS documentation conventions that were
adopted and approved for publication as a Type A release of the
MUMPS Development Conmittee on September 17, 1975. It supersedes
the earlier documents with the same title, dated May 16, 1975 and
September 17, 1975.

ii

ACKNOWLEDGEMENTS

This document is the result of a cooperative effort on the part
of the MUMPS Development Coounittee, its Subconnnittee on Documentation,
and that Subcommittee's Task Group on MUMPS Documentation Standards. The
document was prepared by Mr. Larry J. Peck under Purchase Order No.
512577 from the National Bureau of Standards and is based on earlier drafts
of material written by Mr. Peck and by Robert A. Greenes, M.D. under
Purchase Orders No. 409777 and 409778, respectively, from the National
Bureau of Standards. The work was authorized under the terms of an inter­
agency agreement between the National Center for Health Services Research,
Health Resources Administration, U.S. Department of Health, Education, and
Welfare and the InstitutP fJr Computer Sciences and Technology, National
Bureau of Standards, U.S. Department of Commerce.

MDC Participants
Institution Participant (s)

Advanced Medical Systems Corporation •.•••••••.•••••••••• Stanley M. Rose
Art ronix, Inc " David A. BridJ?:er
B-D Spear Charles M. Smith
Baylor College of Medicine •..••.••••... David B. Brown, Rudolph F. Trost
Beth Israel Hospital. Robert F. Beckley III
Community EKG Interpretive Service •••.••••••••••••••••.••••• James Cruce
Dartmouth College ••.•••••••••••••••••.•••••••••••••••• ~William Campbell
Department of Health, Education, and Welfare (HRA) ••.• Donald R. Barnes,
.... " .. William V. Glenn, Jr.
Department of Health, Education, and Welfare (NIH) •.••• David B. SWedlow
Department of Health, Education, and Welfare (NLM) •••• David C. Hartmann
Digital Equipment Corporation •••••.•••• Roger S. Gourd, Robert D. Shear,
.. Elisabeth Sopka
Georgetown University •••••• ,., ••••.•.••.••••.•.••••••• David L. Williams
Georgia Institute of Technology •••••.•••••••••••••.•.•••••. Fred R. Sias
Health Care Management Systems, Inc •••••••••••••••••••. Leonard L. Hurst
Institute of Living ••..••.••.••.•••••.•••.••.•••.•••••• R. Peter Ericson
Interpretive Data Systems, Inc •..••..• Paul L. Egerman, Carl B. Lazarus,
t .. .,., •••••••••••••••••••••••• Phillip T . Ragon
Jefferson Medical College •••••••.•••.• , •••.•••••••••••• Robert F. Curley
Massachusetts General Hospital ••••.•••••.•• G. Octo Barnett, Jack Bowie,
.•..•••••••.••••...•• Norma Justice, Robert L. Rees, Craig J. Richardson
Meditech, Inc A. Neil Pappalardo, Richard J, Pietravalle
MITRE Corp or at ion •••..••.•••••••••••••••••••••••••••• Richard E, Zapolin
National Bureau of Standards ••••••• Melvin E. Conway, Edward A. Gardner,
•••••.•.•...••.•...•.•••.•.•••••••• Martin E. Johnson, Joseph T. 0 'Neill
Northeastern University •.••.••.••••.•••••••••••••••••.•••• Wendy D, Mela
Regional Health Resource Center .•••••••• Thomas T, Chen, Henry A. Warner
Stanford University Medical Center Russell Briggs, Robert A. Greenes
University of California, Davis •••. Richard F. Walters, Jerome C. Wilcox
University of California, San Francisco •••••••••••.•• David D. Sherertz,
..................... , Anthooy I. Wasserman
University of Massachusetts ••.••••.••••.•••••••••••••• Jeffrey Rethmeier
University of Missouri .•.•..•••..••..••••••••••••••••••••• James L. Lehr
University of Pennsylvania ••••••••••••••••••••••••••••••••• Martin Prin~
University of Tennessee ••.•••••••••••.•..••••••••••••••••• Larry J. Peck
University of Washington (Seattle) •••••••••••••••••••••• Arden W. Farrey
University of Wisconsin ••.••••.••••••••• Ellis A. Bauman, Gary S. Holmes
washington Univ~rsity (St. Louis) ••••.•.• W. Edward Long, Joan Zimmerman

iii

TABLE OF CONTENTS

Chapter

1.

2.

3.

FOREWORD .. ii

ACKNOWLEDGMENTS • iii

TABLE OF CONTENTS • • . . • • • . • • . • • • • • • • • • • . • v

PREFACE •.••••.....••••••••.••• • •.••••••• vii

THE MUMPS ABSTRACT ..
1.1 Introduction
1.2 Instructions for Using the MUMPS Abstract

APPROACHING CODE DOCUMENTATION ••••.••.•.•••••.••••••••••••••••

2.1 Physical Structure Approach
2.2 Logical Structure Approach
2.3 Discussion
2.4 Variable Concepts
2.5 Automated Documentation Aids

PACKAGE AND PROGRAM DOCUMENTATION .•••••••••••••••••••••••••••••

3.1 MUMPS Package/Program Face Sheet
3.2 Package Documentation
3.3 Ordering Package Documentation
3.4 Program Docwnentation - Physical Structure Approach
3.5 Program Documentation - Logical Structure Approach
3.6 Ordering Program Documentation

1

5

9

4. ROUTINE DOCIJ?.fENTATION • . . . • • • • • . • • • . . . • 25

4.1 Instructions for the MUMPS Routine Documentation Form
4.2 Internal Documentation
4.3 Ordering MUMPS Routine Documentation

5. MUMPS FILE S~RY FORl1 . . • . . • . . • . • . • • . • • • . • • • • • . • • . • • • • • • • • • • • 33

6. FILE DOCUMENTATION PROCEDURES ••••••••••••••••••••••••••••••••• 37

6.1 Logical File Structure Documentation
6.2 Global Structure Documentation

v

Chapter

1. THE DOCUMENTATION SPECTR.UK
7.1 Feasibility Study
7.2 Application Desian Specifications
7.3 Source Code Specifications
7.4 File Specifications
7.5 Application Test Specifications and Results
7.6 User's Manual

51

APPENDIXES

I. Global File Concepts •••••••••••••••••••••••••••••••••••• 55

II. Blank Documentation Forms • 67

MUMPS DEVELOPMENT COMMITTEE MANUALS••••••••••••••••••·••••••••••••••• 73

v1

PREFACE

The MUMPS Documentation Manual is intended to aid the MUMPS
programmer in documenting computer applications written in MUMPS.
This manual identifies information required for complete documentation
and also provides guidelines for its presentation. The forms, definitions,
and recommendations contained herein reflect the work and accomplishments
of the MUMPS Development Committee Documentation Subcommittee.

A major portion of this manual {Chapters 1 through 4) is devoted to
MUMPS source code documentation. MUMPS source code is addressed at
the following three level~:

{l) Package - A collection of programs which function together
in an application.

{2) Program - A closed set of routines used to perform a specific
task.

{3) Routine - A collection of MUMPS code filed as a single unit.

Chapter 1 introduces the MUMPS Abstract form, designed to be a
one page stand-alone document supplying general data on the purpose and
scope of a given MUMPS application along with specific details for data
items affecting the transportability of the application. Instructions
for completing the Abstract along with a sample Abstract are given in
the chapter.

Chapter 2 describes and contrasts the two basic approaches to
source code documentation: logical structure and physical structure.
The concepts of variables at the package level, program level, and routine
level are also explained in the chapter.

Chapter 3 describes Package and Program documentation utilizing
the MUMPS Package/Program Face Sheet. The physical structure versus
logical structure approach is discussed for both packages and programs,
and the chapter is concluded with a sample of program documentation.

Chapter 4 discusses the documentation of routines, primarily
through a discussion of the MUMPS Routine Documentation form. The
physical structure versus logical structure approach is presented,
along with a sample documented routine.

Chapter 5 describes the MUMPS File Summary form and gives
instructions for its use. The form is used to provide summary information
regarding a global file. An example completed form is given in the
chapter.

Chapter 6 describes some of the basic concepts of globals
and provides a file documentation procedure along with a sample of file
documentation.

vii

Chapter 7 discusses the broad spectrwn of papers, documents, manuals,
etc., which might be generated during the development of a given MUMPS
application. The correspondence between the development phase of the
~pplication and the documents produced is also discussed.

It is not necessary to read this manual from cover to cover in
order to understand the documentation procedures presented. The particulars
of MUMPS documentation are contained in the first five chapters of this
manual. The remaining two chapters may be read if the reader is also
interested in global file concepts, documentation approaches, and an
overview of the documentation process. Even when addressing the particulars
of MUMPS documentation, it is not really necessary to read the first five
chapters in great detail. Chapters 1, 3, 4, and 5 offer a detailed explanation
of the use of the documentation forms. Since approximately eighty percent
of the items on the forms are self-explanatory, the programmer need only
refer to these chapters when a question arises concerning an item on
one of the forms. However, since Chapter 2 explains the approaches to
code documentation along with variable concepts assumed throughout the
manual, it should definitely be read before attempting to utilize the
forms for documentation.

viii

Chapter 1

TIIE MUMPS ABSTRACT

1.1 Introduction

The MUMPS Abstract was developed by the MUMPS Development Committee
Documentation Subcommittee with the intent of providing a standard medium for
the exchange of abstracted !~formation on MUMPS routines, programs, and
packages. The Abstract was designed to supply general data on the purpose and
scope of a given MUMPS application along with specific details for data items
affecting the transportability of the application. Although the Abstract was
primarily designed to be a stand-alone document, it may be included in the
documentation of a program or package as a cover sheet providing summary
information. Whenever this is the case, Abstract items (machine, dialect,
partition size, etc.) which also appear on the Package/Program Face Sheet
need to be completed only once. An example completed Abstract is illustrated
on the following page and a blank Abstract is provided in Appendix II.

A llbrary of submitted abstracts has been established and is currently
being maintained by the MUMPS Users' Group (700 South Euclid Avenue, St. Louis,
Mo. 63110). Interested users can determine the capabilities and potential
portability of available applications by simply reviewing these one-page
abstracts. Use of the MUMPS Abstract should significantly enhance the exchange
of routines, programs, and packages among MUMPS users.

1.2 Instructions for Using the MUMPS Abstract

The MUMPS Abstract is divided into the following five parts:

(1) Identification
(2) Source
(3) Requirements
(4) Size
(S) Available Items

'ntt! application being abstracted should fin;t be identified as either a
rc•ut ine, program, or package by checking the appropriate box at the top
of the Abstract. Then, each of the five parts of the Abstract should be
completed as thoroughly as possible. Instructions for each MUMPS Abstract
ltem follow.

!:·li]}cation Area

G.ive the application area in which the routine, program, or
package would fall. For example: Business, Educational,
Medical, etc.

Short Title

Enter the title or name which the author associates with the
routine, program, or package. A one-line description may also
be included here if desired.

1

17 Sept. 197&

MUMPS ABSTRACT
ROUTINE [I PROGRAM 0 PACKAGE [l1

IDENTIFICATION
APPLICATION AREA: MEDICAL IB"]

SHORT TITLE: ACF - Automated Census

DATE LAST MODIFIED: 18 Dect>Tllber 76

PURPOSE (up to 150 words; underline key words; continue on back if necessary):
The ACF Package allows admission of patients to the hospital data base, bed
availability lists, ward reports, patient transfers, and appointment
scheduling. The package is designed to use up to three CRT terminals for
admitting and two hard copy printers for reports.

~··~-~~~~~~~~~~~~~~~~-~~~~~~~--~~~~~~~~~~~~~-

SOURCE
AUTHOR (S): Mr. James Watkins

CONTACT
NAME: Mr. Bob Anderson

BUSINESS ADDRESS: Automata Incorporated
300 South Main Street
Washington, D.C. 20256

TELEPHONE NO.: (202) 555-1212

REQUIREMENTS
DIALECT

SIZE

STANDARD [] OTHER ---- SUPPLIER ABC Corporation

MACHINE:

PERIPHERALS
A/DO CRT~ DECTAPEO DISCO MAGTAPE[!] PRINTER0 OTHER Tape Cassette

PARTITION SIZE (characters): 3600 characters

GLOBAL SIZE (number of blocks and block size): 10 Blocks/patient (64 word blocks)

RESTRICTIONS (continue on back if necessary): Routines have been coded specifically
for the Quadtronix CRT with tape cassette. A modification of approximately
five routines will be required for users not having these devices.

NUMBER OF CHARACTERS OF CODE: 30 ,000

NUMBER OF ROUTINES: 20

AVAILABLE ITEMS
COMMERCIAL SERVICE 0

DOCUMENTATION ~ $50. 00

SOURCE LISTING [!] $10. 00

USERS" MANUAL [!J No charge

Return to: MUMPS Users• Group. 700 South Euclid Avenue. St. Louis. MO 63110

MDC Form D-1, Copyright 1975 by the MUMPS Development Committee
--~~~------~--~

Last Date Modified

Give the date of last modification of the routine, program,
or package.

Purpose

State exactly what the routine, program, or package functionally
accomplishes. Features and attributes should be identified in
terms of the application's end purpose. Key word descriptions
should be underlined.

Author(s)

Contact

Dialect

State the name(s) of the author(s).

Enter the name, address, and telephone number of the person
responsible for disseminating information about the routine,
program, or package. Any interested party may communicate
directly with the contact in order to obtain additional details
on the MUMPS application.

Check the box if the application is written in the MUMPS
Standard; otherwise, write the name of the dialect beside "OTHER".
In either case, give the supplier of the dialect.

Machine

Enter the machine used and the manufacturer.

feripherals

The peripherals required specifically by the routine, program, or
package ·should be checked. If "OTHER" is checked, write in the
peripherals needed.

Partition Size

Give the partition size (in characters) that the MUMPS routine,
program, or package currently runs in. If dynamic partition
sizing is used, give the size of the largest and smallest
partition required.

Global Size

If globals are used, give the global block size and the number
of blocks. In some applications, global size varies directly with
the number of patients, items, etc., in the data base. If this is the
case, indicate global size as the number of blocks required for
a given number of items, or as the blocks required per single
item.

3

Restrictions

Anything that might restrict the use of the routine, program, or
package should be listed here. Some possible restrictions are:

(1) The routine, program, or package may have a data base
size limitation. For example, response time in the
system slows significantly when the data base exceeds a
certain size.

(2) Parts of the MUMPS code may be terminal-dependent, if the
code is written to take advantage of some of the more
advanced or "intelligent" terminals.

(3) The MUMPS code may require the printing of a clinical
disclaimer prior to execution.

(4) The MUMPS code may be for proprietary use only.

Number of Characters of Code

If the exact number of characters of MUMPS code is unknown, give
an estimate.

Number of Routines

Give the number of MUMPS routines which comprise the program or
package.

Source Listing

Check the box if a source listing is available and indicate
whether or not there is a charge for the listing.

Couunercial Service

Check the box if the MUMPS routine, program, or package is being
offered as a commercial service. If possible, indicate charges
for the service.

Documentation

Check the box if documentation is available and indicate if
there are any charges for the documentation.

User's Manual

Check the box if a User's Manual is available and indicate if
there is any charge for the manual.

4

Chapter 2

APPROACHING CODE DOCUMENTATION

Good documentation is essential if a MUMPS installation wishes to
properly maintain the routines, pfograms, and packages which have been
developed. MUMPS source code documentation should provide enough infor­
mation for a competent programmer, other than the original programmer, to
modify the MUMPS code. The do=umentation should impart a clear description of
the code.

The initial decision a programmer should make when beginning the
documentation task concerns the approach. There are basically two ways
of approaching MUMPS documentation: the physical structure approach and the
logical structure approach. A description of each follows.

2.1 Physical Structure Approach

This approach can be considered a "bottom up" approach in that
the programmer begins at the routine level and relates physical routines
to larger functions within the package. After each routine is documented,
the documentation for closed sets of related routines is combined to form
program documentation. Program documentation is then used to form package
documentation.

2.2 Logical Structure Approach

This approach may be considered a "top down" approach in that the
programmer attempts to relate logical functions within the package to
routines. In either approach, a package is considered to be a collection
of programs which function together in an application. However, for the
logical structure approach the program concept must be altered slightly
as follows:

Program - the collection of MUMPS code needed to perform
a logical task or function.

With this definition, the logical task performed determines the physical
collection of code, which may or may not be a closed set of routines.

2.3 Discussion

The approach chosen will probably depend upon a given programmer's
style and the nature of the application. The important point to remember
is that regardless of the documentation approach, a routine is considered
to be a collection of code filed and invoked as a single unit. Also,
documentation for a routine is considered to exist as a single unit. For
example, if a routine was composed of five logical sections and each section
was used in a different program, the documentation for all five sections
would exist as a single unit (just as the code does), even though the sections

5

may be unrelated as to logical function. However, the documentation of
each section should reference the program in which the section is used.
In swmnary, the three phases of documentation are:

(1) Routine documentation - Specifies the logic of a single filed
unit of code.

(2) Program documentation - Specifies the interrelationships
existing within either a closed set of routines or a
collection of code performing a specific logical task.

(3) Package documentation - Specifies the interrelationships
existing within a collection of programs.

The documentation techniques presented in the chapters which
follow are guidelines and tools for MUMPS documentation. These guide­
lines should not be considered rigid documentation constraints. For
example, error return logic and interface variables might be most clearly
depicted in the Package Flow Chart instead of the Package Interface
Specifications. While the documenter may use his discretion as to the
form his documentation may take, it is essential that all required
documentation items be included. These required items are a description
of the code logic and entry points, local variables, interface specifications,
and files. The MUMPS Abstract is also a required documentation item.

2. 4 Variable Concep.ts

In order to be consistent with the three levels of documentation
(routine, program, and package), this manual also addresses variables at these
same three levels as follows:

(1) Package Variable - Variables which are common throughout an
entire package or retain a single usage throughout the package.

(2) Program Variable - Variables which are not package variables
and are common throughout a program or retain a single usage
throughout a program.

(3) Routine Variable - Variables appearing in a routine which are
not considered package or program variables.

By addressing variables, variable classes, and conventions at
these three levels we eliminate repetitious documentation, since each variable
need be documented only once. As an example of a convention, all variables
with single letter names could be declared as scratch variables at the package
level. As another example, the variable NAM representing the patient's
name may appear in hundreds of routines within a package. Since NAM would
be considered a package variable, it is only documented once at the package
level.

6

2.5 Automated Documentation Aids

Many of the documentation items recommended in Chapters 3, 4,
and 5 can be generated either entirely or in part by automated documentation
aids. A variety of these documentation programs have been developed and
are available from the developing institution. Some of the existing MUMPS
automated documentation programs are available from the MUMPS Users' Group
(700 South Euclid Avenue, St. Louis, Mo. 63110). The use of automated
documentation aids is recommended, whenever possible.

7

Chapter 3

PACKAGE AND PROGRAM DOCUMENTATION

Package and program documentation can be regarded as the task of
documenting relationships and interfaces existing between collections of
MUMPS source code. As mentioned previously, program and package documen­
tation may take either a logical or physical structure approach. Thus,
the collection of source code making up a program may be viewed as either a
closed set of routines or the collection of code necessary for performing a
given logical task. The primary documentation aid for packages and programs
is the Package/Program Face Sheet. The face sheet is oriented toward a
physical structure approach; however, the sections which follow explain
modifications needed for a logical structure approach to documentation.

3.1 MUMPS Package/Program Face Sheet

A completed MUMPS Package/Program Face Sheet is illustrated in
the sample of program documentation given in this chapter. The face sheet
is divided into three parts:

(1) Common Items - Those items of information which are common
to both programs and packages.

(2) Program Items - Program-specific information.

(3) Package I terns - Package-specific information.

When using the face sheet, the Common Items section is always completed,
and then either the Program Items or Package Items section (whichever is
applicable) is completed.

The Common Items section of the Package/Program Face Sheet repeat
many of the items requested by the MUMPS Abstract. Therefore, the reader
should refer to Chapter 1 for instructions on completing the following items:

(1) Contact's name, address, and telephone mnnber
(2) Dialect
(1) Machine
(4) Peripherals
(5) Partition size

Also, since the
they need to be
uor be repeated
o[the package.
are a" follows:

above items are likely to remain fixed throughout a package,
completed only once on the package face sheet and should
on the program face sheets for programs which are components
Instructions for completing the remaining connnon items

y~ckage/Program ~ame

Enter the name associated with the package or program and mark
out £ither the word 'package' or the word 'program' to indicate which
one the face sheet is addressing. Also, on the same line enter
the date of rhe package or program.

9

Entry Routine(s)

Purpose

Give names of routines which initiate execution of
the package or program.

Give a brief statement of the overall package's or program's end
purpose and describe its function.

List of Globals Used

Indicate the globals utilized by the package or program.

Global Documentation Appended

Indicate whether or not global documentation is included.

Variable List Appended

Indicate whether or not this document is appended. For packages,
the variable list would list the variable name and give a
brief description for the set of variables that are common
throughout the package. For programs, the list would address
itself to variables common throughout a program. Package level
variables should not be repeated on the program variable list.
Variables need only be listed and described once throughout the
entire set of documentation. It is desirable to have the
variable list in alphabetical order.

Test Run Data Appended

Indicate if test run data has been included in the documentation.

Instructions for completing the Package Items section are as follows:

Total Number of Programs

Give the total number of programs comprising the package.

Package Flow Chart and Package Interface Specifications

Indicate whether or not these documents are appended.

Instructions for completing the Program Items section are as follows:

Total Number of Routines

Give the total number of routines comprising the program.

Program Flow Chart and Program Interface Specifications

Indicate whether or not these documents are appended.

10

A detailed description of Flow Charts and Interface Specifications
will be given when discussing program documentation and package documen­
tation. It is recommended that they be included when documenting a program
or package.

3.2 Package Documentation

A package is defined as a collection of programs which function
together in an application. Package documentation involves combining the
documentation of each program component, and with the aid of the MUMPS
Package/Program Face Sheet and appended documents, describing the logical
structure and interfaces between the components. Thus, the primary
objective of package documentation is to give a clear description of all
details regarding the interfaces and relationships existing between
the program components of the package. The physical versus logical
structure approach to documentation does not affect package documentation
to any great extent. The task is to document interfaces between programs,
regardless of whether programs are consi.dered to be closed sets of
routines or collections of code which perform a given task. The primary
documents needed for describing these interprogram relationships are
the Package Flow Chart and the Package Interface Specifications. A
description of these two documents follows.

Package Flow Chart

The logical strui.:ture of the package is traced in terms of
the program components. The flow chart should depict the
functional relationship of each program to the overall
purpose of the package and also the relationships existing
between programs.

Package Interface Specifications

The Package Interface Specifications should give a detailed
description of the interprogram relationships which exist
during execution of the package. This could be thought of
as a narrative description of the Package Flow Chart. Items
(listed in order of importance) which might be included in
the descripti.on are:

(1) A statement of each program function as it relates to the
overall function of the package.

(2) A cross-reference of variables for the entire package, giving
for each package level vari.able the routine names in which
the variable is used. Note that the variable cross­
reference ts included in addition to the package level
variab 11:: list which functionally describes each package
level variable. If desirable, the two may be combined
into one document.

11

(3) For each program, a narrative description of its relation­
ship to other programs within the package.

(4) Program execution sequence.

(5) Error conditions, error return logic, and restart
conditions for each program.

(6) Program interface variables and their description. Those
variables linking one or more programs.

(7) A cross-refere1Lce of routines for the entire package, giving
for each routine the routines which it invokes and those
which it is invoked from.

3.3 Ordering Package Documentation

The recommended order for the components of package documentation is:

(1) Package/Program Face Sheet
(2) Package Flow Chart
(3) Package Level Variable List
(4) Package Interface Specifications
(5) Test Run Data
(6) Global Documentation
(7) Program Documentation for each program within the package.

3.4 Program Documentation - Physical Structure Approach

When utilizing the physical structure approach to documentation,
a program is defined as a closed set of routines used to perform a
specific task. In order to document a program, each routine within the
program should be documented utilizing the MUMPS Routine Documentation
form as described in Chapter 4 and illustrated in Appendix II. The routine
documentation is combined to form program documentation with the aid of
the MUMPS Package/Program Face Sheet.

Since the program's components (routines) have been documented
individually, the task of program documentation is to specify in detail
the relationships existing between the routines and to clarify the role
of each routine as it relates to the overall purpose of the program. The
primary documents needed for describing these interprogram relationships
are the Program Flow Chart and the Program Interface Specifications.
A detailed description of each of these documents follows.

12

Program Plow Chart

The Program Flow Chart should trace the logical structure of the
program in terms of the routines comprising the program. The
function of each routine should be depicted as it relates to the
overall purpose of the program. Routine interrelati.onship should
be clearly illustrated.

Program Interface Specifications

The Program Interface Specifications should describe in detail
those routine interactions which take place when executing
the program. Items (listed in order of importance) which might
be included in the description are:

(1) For each routine, give the routine name and a short
statement of the routine function as it relates to overall
purpose of the program. If a naming convention is
being used to relate routines within a program, the
convention should be explained.

(2) A variables cross-reference for the entire program, giving
for each program level variable the routine names in which
the variable is used. As in package documentation, the
program variables cross-reference should be provided along
with the program level variable list, or the two documents
may be combined as one document.

(3) For each routine (when applicable), a narrative description
of its relationship with any of the other routines within
the program.

(4) Calling sequence of the routines.

(5) Error conditions and error return logic between routines.

(6) Interface variables and their meanings. Those variables
which are passed between routines and are necessary for
linking two or more routines.

(7) A cross-reference of routines for the entire program, giving for
each routine the routines which it invokes and those from
which it is invoked. Thi.s cross-reference may be excluded
if a similar package cross-reference is included in the
documentation.

The Interface Sp~cif ications may serve as a detailed description of the
Program Flow Chart.

13

3.5 Program Documentation - Logical Structure Approach

For the logical structure approach, a program is considered to
be the collection of MUMPS code necessary to perfonn a specific logical
task or function. The documentation task is to specify the relation­
ships and interfaces existing within this collection of code. The
physical location of each subunit of code making up the program should
be identified. For example, program XYZ is made up by a subunit of
code from routine A, two subunits from routine B, and a single line
from routine C. Note that an entire routine commonly represents a
subunit of code within a program. Following this identification of
subunits, interfaces within the program are documented with the
Program Interface Specifications and the Program Flow Chart. It should
be noted that the total number of routines may not be applicable for a
logical structure approach and, if so, need not be completed. A detailed
description of the interface specifications and flow chart follows.

Program Flow Chart

The flow chart should provide a picture of the logical structure
of the program. Each smaller task within the program should be
depicted as it relates to the overall purpose of the program.
If possible, the physical location of each subunit of code
should be included on the flow chart.

Program Interface Specifications

All interactions taking place during execution of the program
should be explained. Items (listed in order of importance)
which might be included in the description are:

(1) Any smaller subunit of code existing within the overall
collection of code making up the program should be
identified (physical location) and a short statement
given concerning its relation to the overall task of
the program.

(2) A list and cross-reference of all program level variables.
See Program Interface Specifications for a physical structure
approach for details.

(3) A description of the execution sequence of the source
code making up the program.

(4) Error conditions and error return logic within the
program.

(5) Interface vari.ables and their meaning (those variables
which are passed within the program and are necessary
for linkage of the source code making up the program).

(6) A cross-reference listing for routines.

14

3.6 Ordering Program Documentation

The recommended order for the components of program documentation is:

(1) Program/Package Face Sheet
(2) Program Flow Chart
(3) Program Level Variable List
(4) Program Interface Specifications
(5) Test Run Data
(6) Global Documentation
(7) Routine Documentation for each routine within the program.

A sample of program documentation is provided in the remaining section of this
chapter.

15

Example of Completed Package/Program Face Sheet

17 Sept. 1975

MUMPS PACKAGE/PROGRAM FACE SHEET

COMMON ITEMS
~PROGRAM (delete one) NAME: Medication Order Program DATE: 18 December 76

ENTRY ROUTINE (S):

PURPOSE (continue on separate sheet if necessary): The medication order program is that
part of the Pharmacy PackAge which reads in the data for each prescription,
checks for interactions, files the data in the patient record, and prints the
label. The program checks each prescripti.on number to make sure it :f.s unused.
Also, the abbreviated instructions (SIG) are expanded to patient readable form
for the label (e.g., TID converted to "Take 1 tablet by mouth 3 times a day").
Appropriate messages are displayed whenever a drug interaction is detected.

CONTACT'S NAME. BUSINESS ADDRESS AND TELEPHONE NUMBER:
John H. Doe
3457 State Street
Rockville, Maryland 20122
301 555-1212

DIALECT
STANDARD [X] OTHER~---------------~---------------~

MACHINE: PDP-15

PERIPHERALS
A/D 0 CRT [] DECTAPE 0 DISC 0 MAGTAPE 0 PRINTER KJ OTHER -----

PARTITION SIZE USED: 1200 words/3600 characters

LIST OF GLOBALS USED: 'PHA, APHB

GLOBAL DOCUMENTATION APPENDED 0

VARIABLE LIST APPENDED ~

TEST RUN DAT A APPENDED ~

I PACKAGE ITEMS
TOT AL NUMBER OF PROGRAMS:

I PACKAGE FLOW CHART APPENDED CJ

PACKAGE INTERFACE SPECIFICATIONS APPENDED 0

PROGRAM ITEMS
TOT AL NUMBER OF ROUTINES: 8

PROGRAM FLOW CHART APPENDED [!:)

PROGRAM INTERFACE SPECIFICATIONS APPENDED [!]

Package: A collection of programs which function together in an application,
Program: A closed set of routines used to perform a specific task,

I
i

~

SIG
Expands abbreviated
label instructions
into patient read­
able instructions

PROGRAM FLOW CHART

Start Medication
Order Program

Reads prescription
#, doctor, patient's

name, & birthdate

ADP
Determines if the
patient record is

in the file.

ORE
Reads drug, strength,

quantity, instructions,
ref ills authorized

and days supply

FIL
Files medication

order data in
patient's record

and prints the
label

17

PER
Checks to make sure
prescription # is

not being used

PI.A
Places active medi­
cations in ~PHA for

patients with
actives

MED
Attempts to recog­
nize drug name and

checks interactions
for patients with
active medications

PROGRAM LEVEL VARIABLE LIST

PER - Prescription number (6 characters)
DOC - Doctor name (10 characters)
NNM - Patient name (25 characters)

BD - Patient birthdate (6 characters)
DRG - Drug name (30 characters)
STR - Strength of drug (8 characters)
SIG - Label instructions (30 characters)
QTY - Quantity of drug dispensed (5 characters)
REF - Number of refills authorized (4 characters)
SUP - Number of days supply (4 characters)

18

Program Interface Specifications

Routine ORD

This routine initiates execution of the Medication Order Program.
ORD reads the prescription number (PER), ~octor (DOC), patient's
name (NNM), and birthdate (BD) from the principal device and
checks the syntax of each entry. The numeric variables R and M
are computed from the name and birthdate. Interfaces with other
routines are as follows:

(1) Routine PER - Routine ORD invokes PER to determine if the
prescription number (PER) is wtused. PER returns one of
the following conditions:

(a) Variable ERR=O - Prescri.ption is OK and variables PA
and PB are returned. Variables PA and PB provide a
mechanism for locating the prescription in the active
prescription file APER(PA,PB).

(b) Variable ERR=l - Error condition has resulted; the
prescription number is in use.

(2) Routine ADP - Upon completion of routine ORD, a GOTO is
made to routine ADP. Variables NNM, BD, PER, DOC, R, M,
PA, and PB are passed to ADP via local storage.

Routine ADP

This routine determines if medications are being ordered for a new
patient or for one who is already in the data base. ADP determines
the value of the numeric variable X which gives the exact location
for storing medication orders for this patient (APHA(R,M,X)).
Interfaces with other routineB are as follows:

(1) Routine PLA - Routine ADP invokes PLA if the patient record
resides in the data base. PLA places the patient's active
medications in global APHD. No variables are returned to ADP
by PLA.

(2) Routine ORE - Upon completion of ADP a GOTO is made to
routine ORE. Variables NNM, BD, PER, DOC, R, M, X, PA, and
PB are local variables passed to ORE.

\::m:tine ORE

This routine completes the data entry for the medication order.
ORE reads the drug name or code (DRG), strength (STR),
abbreviated label instructions (SIG), drug quantity (QTY), refills
authorized (REF), and number of days supply (SUP) from the
principal device. The syntax of each entry is checked. Interfaces
with other routfnes are as follows:

19

(1) Routine MED - Routine ORE invokes MED to determine if the
drug name or code (DRG) can be recognized. If the drug name
is recognized, it is checked for interactions whenever the
patient has other active medications. If an interaction occurs,
appropriate messages are displayed on the principle device.
MED returns one of the following conditions:

(a) Variable ERR•O - The drug name has been recognized and
the Medicaid limit (ML), drug group (GRP), and drug
name (DRG) are returned.

(b) Variable KRR=l - An error condition has resulted. The
drug name or code could not be recognized.

(2) Routine SIG - Routine ORE invokes SIG in order to expand the
abbreviated label instructions (SIG) into patient-readable
instructions. SIG returns one of the following conditions:

(a) Variable ERR•O - Variable SIG has been successfully
expanded and the instructions are returned in variable
INS.

(b) Variable ERR•! - Variable SIG could not be interpreted.

(3) Routine FIL - Upon completion of ORE a GOTO is made to
FIL. Local variables NNM, BD, PER, DOC, R, M, X, PA, PB,
DRG, GRP, ML, STR, SIG, INS, QTY, REF, and SUP are passed
to FIL.

Routine FIL

This routine completes the medication order. All data thus far
accumulated in local variables are stored in the patient record
(APHA). FIL then prints the label on a remote printer and kills
all local variables. Interfaces with other routines are as
follows:

(1) Routine ORD - Routine FIL transfers control to routine ORD
in order to restart the medication order program.

Routine PER

This routine is invoked by ORD to verify that the prescription
number (PER) is unused. Input to the routine is variable PER.
See the discussion of ORD for the variables returned by PER.

Routine PLA

Invoked by ADP to place active medications in APHD. Input
variables required are R, M, and X. See the discussion of
routine ADP for additional details.

20

Routine MED

Invoked by ORE to check the drug name or code. Input to this
routine is the variable DRG. MED also checks for interactions
if the patient has active medications. See the discussion of
routine ORE for the variables returned by MED.

21

Test Run For Medication Order Program*

PHARMACY TRANSACTION: .Q.RDER MEDICATIONS

<<< MEDICATION ORDERS 03/24/74 >>>

PER DOC: 102030 LASH
NAM BDT: SMITT,JOHN,H 6/13/47
DRG STR: ASA 5GR ASPIRIN

SIG: Q4H PRN HEADACHE

QTY,REF,SUP: 100,3,30
NEW PATIENT MED OR CCS: C

ORDER OK (Y OR N) • • !.

102030 DR LASH
SMITT,JOHN,H 06/13/47
TAKE 1 TABLET BY MOUTH
EVERY 4 HOURS AS NEEDED
FOR HEADACHE
ASPIRIN 5GR
03/25/74 11100

LABEL OK ? ••• Y

PER DOC: 102031 LASH
NAM BDT: SMITT,JOHN,H 06/13/47
DRG STR: DARVON OK

** WARNING ** DRUGS ARE IN THE SAME GROUP - GROUP 28: 8
DARVON AND ASPIRIN

SIG: 2 CAP HS

QTY,REF,SUP: 50,2,10
1 ACTIVE FOR SMITT,JOHN,H

ORDER OK (Y OR N) •• !.

102031 DR LASH
SMITT,JOHN,H 06/13/47
TAKE 2 CAPSULES BY
MOUTH AT BEDTIME
DARVON
03/25/74 1150

LABEL OK ? •• Y

*user input is underlined

22

Routine Documentation for Medication Order Program

At this point in the documentation of the Medication Order Program
the complete documentation for routines ORD, PER, ADP, PLA, ORE, MED,
SIG, and FIL should be appended. The documentation is not included
here since routine documentation is illustrated in Chapter 4.

23

Chapter 4

ROUTINE DOCUMENTATION

Routine documentation provides a detailed explanation of the
MUM!>S source code. Error conditions or source code modifications will
necessitate a need for a detailed description of the routine logic, variable
specifications, I/O, etc., all of which are provided by the routine
documentation. It should be noted that routine documentation changes
very little with the documentation approach. For the physical structure
approach, the name of the program to which the routine belongs should
be given. For the logical structure approach, each logical unit of the
routine utilized by a program should be clearly identified and the program's
name given.

To document a routine the MUMPS Routine Documentation form is
utilized. A completed sample form is illustrated in the example of routine
documentation given in this chapter and a blank form is provided in Appendix II.

The form is divided into two parts:

(1) Items which may be entered on the form,
(2) Items which may be checked to indicate that this information

is provided on attached sheets.

Documentation for any given routine may not include all items on
the form; however, a well documented routine would include most of them.

4.1 Instructions for the MUMPS Routine Documentation Form

Instructions follow for each section and the items within each
section of the MUMPS Routine Documentation form.

Routine Name

Indicate the MUMPS name of the routine, that is the name used to
invoke the routine. The name may be supplemented by a one-line description
of the routine.

Date

Give the date of the current version of the routine.

25

Purpose

The Purpose section should state what the routine functionally
accomplishes. If the routine is part of a program or package,
this section should be stated so as to relate it to the overall
purpose of the program or package. The Purpose section normally
requires considerably less than one page; it may be continued on
the back side of the MUMPS Routine Documentation form if necessary.

Give the number of characters of code in the routine.

Multiple Entry Points

The entry point feature of MUMPS allows a routine to be invoked
and to begin execution at any line of code in the routine. This
capability is similar to the entry feature of FORTRAN, and is
frequently used to combine several similar procedures into one
routine.

The first line of code in a routine is an assumed entry point;
therefore, only those entry points other than the first .line
should be documented. The documentation for each entry point
should include the line label, a brief statement as to the purpose
of the entry point, and the requirements of the entry point
(e.g., certain variables must be defined). When several entry
points within a routine have identical requirements, the
requirements should only be documented one time. Entry points
should be documented in order of their appearance in the routine.

Local Variables

The name and purpose of each routine level local variable may be
given for local variable documentation. For arrays, indicate
the name by following the character name of the array with "()".
For example, array A(l) ,A(2) ••• A(lOO) may be represented as "A()".
Routine level variables are those variables appearing in the
routine which are not considered package or program level variables,
and therefore have not been described elsewhere in the documentation.
Whenever variable conventions are used (e.g., if all single character
variable names are routine level scratch variables), then a statement
of the convention should be given instead of repeatedly listing the
set of variables for each routine. It should be noted that all
variables in a routine may be package or program level variables,
and therefore the routine may not contain any routine level
variables. A cross-reference listing giving the source code
position of the use of each variable may be included in local
variable documentation.

26

Globals

The names of all globals referenced by the routine may be given.
For each global, the source code location of each global reference
may also be included.

Detailed Description

A detailed description of routine logic may be included. This
description should be sufficiently detailed to allow another
MUMPS programmer to understand and modify the routine easily.
It should include a listing of the routine along with a brief
narrative description of each logical block or section within
the routine without going to the extreme of describing each line
of code. The programmer should give special mention to potential
problem areas or tricks in the code (e.g., indirection). An
annotated flow chart of the routine logic may also be included.

4.2 Internal Documentation

Internal documentation refers to all explanatory notes and text
which are stored along with the routine as nonexecuting lines of source
code. This type of text is commonly referred to as a comment line and
is indicated by a preceding semicolon. The quantity of comment text
within any given routine varies with the nature of the application, the
abundance of storage space, installation policies, etc. In general,
extensive line-by-line comments within a routine are not recommended.
However, some comment text is justified, especially in the case of routine
header information and for explaining especially obscure pi.eces of code.

Routine Header Information

It is recommended that the routine name, the name of the program or
package, the progrannner's initials, and the date of last modification be
stored in the routine as connnent text (preferably the first line of the
routine). A short statement concerning the purpose of the routine is
also helpful if space is available. The particular format of the header
line may be determined by the programmer or the installation. However, it
is important that the format of the text remai,n co~sistent for all
routines within a program or package.

Highlighting of Tricks and Gimmicks

Any special coding tricks or ginnnicks which might be difficult for
another programmer to understand should be commented upon. No attempt
should be made to provide a complete explanation. All that is needed
is a brief note indicating the presence of a "tricky" section of code
and possibly a reference to the external routine documentation where a

27

complete explanation of the code may be found. It is especially important
for transportability to provide comment text for any special gimmicks which
are implementation-dependent.

4.3 Ordering MUMPS Routine Documentation

The suggested order for the elements comprising MUMPS routine
documentation is as follows:

(1) The MUMPS Routine Documentation form
(2) Detailed description of the routine
(3) Multiple entry points
(4) Local variables
(5) Globals

28

17 Sept. nf/li

MUMPS ROUTINE DOCUMENTATION

ENTER THESE ITEMS ON THIS SHEET

•ROUTINE NAME: GED DATE: 15 July 1976

PURPOSE:
Allows general text editing functions on global data. A replacement type
editor is used to modify data within a global node. A particular
global node may be killed or replaced with entirely new data. Data
may .also be transferred from one global node to another.

SIZE (number of characters in routine): 829 Characters

~-~-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~-i

CHECK "HICH OF THESE ITEMS ARE PROVIDED ON ATIACHED SHEm

MULTIPLE ENTRY POINTS

! ;:--J Line label
I :-1 Purpose I ::] Requirements

LOCAL VARIABLES

~Name
1 KJ Pu.-pose
kj Cross-Reference listing

GLOBALS

· ~J Name
I PD Location of Global References

DETAILED DESCRIPTION

~ Narrative Description
~Listing

:=J Flow Chart

•A routine is defined as a collection of MUMPS statements filed, called, and/or overlayed as a single unit.

MDC Form D-3, Copyright 1975 by the MUMPS Development Committee

LISTING

010 GED - GLOBAL EDIT AND TRANSFER
100

D 700 R ! ! , "GLOBAL NAME '"",NAM I NAM•"" D 700 Q
D '"GCK I ERR•l G 100

120 R ! ! , "EDIT OR TRANSFER (E OR T) ••• ",ANS I ANS•"" G 100
I ANS ?1 "T" • E G 300

130 W !!,"GLOBAL NODE '"",NAM,"(" R NDE I NDE•"" G 120
D SS I ERR•l G 130
D Sl
I AX-0 W " UNDEFINED" G lSO
I AX•lO W " POINTER - NO DATA" G 180
D S2
D 600
I AX•""! (AY"""") G 130
D 155 G 130

155 D S3 S @NDE•AX
Q

160 R ! ! • "KILL OLD LOCATION ? ••• II ,ANS I I (ANS ?l ''Y". E) Q
S NDE=AX D S4 L
Q

180 D SS I AX="" G 130
D 155 G 130

300 W ! ! , "OLD GLOBAL LOCATION: .. ., ,NAM,"(" R NDE I NDE•"" G 120
D SB I ERR=l D S6 G 300
D Sl I AX=O W " UNDEFINED" G 300
D S2 S AY=AX,AZ•NDE

325 W !,"NEW GLOBAL LOCATION: '"",NAM,"(" RNDE I NDE•"" G 300
D SB I ERR•! D S6 G 325

600

D Sl I AX"'"O" W " UNDEFINED" G 325
D 155,160 G 300

R ! , " R ",AY I AY•"***" D SS Q
I AY='"' Q
I $F(AX,AY)•O w II ? II G 600
R II w ",AZ
S AX•$E(AX,l,$F(AX,AY)-$L(AY)-l)_}.Z_$E(AX,$F(AX,AY),25S) Q

700

BOO

K ANS,AX,AY,AZ,ERR,NAM,NDE,A,I
Q

s A=$P (NDE. II. II. I) D s 7
Q

Sl s NDE•" _NAM_" ("_NDE_") II' AX•$D(@NDE)
Q

S2 S AXz@NDE W !,AX
Q

S 3 L @(11 '""_NAM)
Q

S4 D S3 K @NDE
Q

SS R ! • "NEW: II ,AX I AX•"KILL" D S4 s AX•""
Q

86 W II BAD FORMAT - HIT ALT" RANS W *13,*30,*26,*26
Q

87 I A?.N S ERR-0 Q
S ERR•!
Q

SSW 11) 11 S ERR•O F I•l:l Q:$P(NDE,",",I)•"'' D 800
Q :o

Logical Section

100 to 12o+l

130 to 13o+8

300 to 325+3

600 to 60o+5

Variable Name

NAM

ERR

ANS

NDE

I

AX

AY

AZ

A

NARRATIVE DESCRIPTION

Description

Reads in the global to be edited and select either
edit or transfer.

Edit section. Reads global node, makes sure it is
defined, and then edits.

Transfer section. Reads old global location, new
global location, makes the transfer, and kills
old location if desired.

Used by the edit section to replace or edit data
within the string AX.

VARIABLE DESCRIPTION

Purpose

The name of the global being edited.

Used as an error flag when routine GCK is invoked.
If ERR=l the global name is valid. Also used as
an error return when checking syntax of variable NDE.

Scratch variable used as the response to a read.

The global node which is to be edited. NDE has
the form ANAM(NUM,NUM, .••).

Scratch variable used as the increment in a FOR loop.

Set equal to the data node to be edited or trans­
ferred,

In transferring global data, takes the value of the
data to be transferred (old location). Also used in
the edit section as the data string to be replaced.

Takes on the value of the global node (old location)
in the transfer section. Used as the data string
to replace AY in the edit section.

Scratch variable used for checking syntax of variable
NDE.

Example of Routine Documentation

31

VARIABLES CROSS-REFERENCE LISTING

Variable Name Line Label or Line Label + Offset

NAM 100+1 130 300 325 700 Sl SJ

ERR 100+2 130+1 30o+l 325+1 700 S7 S7+1 SS

ANS 120 120+1 160 700 S6

NDE 130 155 160+1 300 300+3 325 700 800+1
Sl S2 S4 SB

I 700 800+1 SB

AX 130+3 130+4 13o+7 155 lBO 300+2 300+3 325+2
600+3 600+5 700 Sl S2 SS

AY 130+7 300+3 60o+l 600+2 600+3 600+5 700

AZ 160+1 300+3 600+4 600+5 700

A 700 BOO+l 87

GLOBALS

Routine GED does not use any specific global, since the purpose of
the routine is to edit and transfer data for any global. Global references
are made at the following labels: Sl, S2, SJ, and S4.

Example Routine Documentation

32

Chapter 5

MUMPS FILE SUMMARY FORM

The MUMPS File Summary form, an example of which is reproduced
on the next page, has been adopted by the MUMPS Development Committee. It
is to be used to provide summary data regarding a global file and will
typically accompany a global file documentation package. The following
is a description of the items to be completed:

FILE NAME. Name of the file.

DATE. Date of documentation.

GLOBAL(S). Name of the global or globals used, indicating subscript
range if not an entire global.

PURPOSE. Brief statement of use of the file.

SIZE. Characterization of the size of the file as maximum number of
blocks and block size. If size is a function of a particular
data item (e.g., patient) indicate the size relationship
(number of blocks/patient).

NUMBER OF LEVELS. Maximum number of levels in the file.

:..EVELS WITH DATA. List the levels which contain data.

~ACKAGES AND PROGRAMS UTILIZING THIS FILE. Use of the file should be
indicated in terms of individual routines, if its use is isolated;
otherwise, by programs or packages, as a cross-reference to program
documentation on the use of the file.

DOCUMENTATION PROVIDED. Indicate whether documentation of the logical
structure of the file is provided, in narrative, tabular, and/or
graphic form by checking the appropriate box. Also indicate
whether documentation for the physical structure of the file is
provided in narrative, tabular, and/or pictorial form.

ANNOTATED REPRESENTATIVE LISTING ATTACHED. Indicate whether an example
printout, with annotations, of the global file's contents is
provided.

RETENTION C~ARACTERISTICS. Indicate frequency and nature of purges, d\.Dllps, etc.

COMMENTS. Describe any peculiarities or programming conventions with regard
to the use of the file, e.g., interlock procedures for multi-user
updating.

A sample bletnk MUMPS File Summary form is given in Appendix II.

33

17 lept. 1976

MUMPS FILE SUMMARY

FILE NAME: Patient File DATE: 11 June 1976

I Gi..OBAL (S): APAT

I PURPOSE: Storage of data on hospital patients who have had laboratory procedures.

I i S1ZE: 1250 blocks (256 16-bit words/block) for 500 inpatients and 200 outpatients.

! I NUMBER OF LEVELS: 4

i I LEVELS WITH DATA: Level 3 and level 4
!

f'Al'.KAGES ANO PROGRAMS UTILIZING THIS FILE: Admissions and bed census (ADM),
Clinical laboratory (LAB), and
Patient billing (BIL)

i
j DOCUMENTATION PROVIDED

Logical Structure Physical Structure

I Ncrrative

Tabular

Pictorial

i ANNOTATED REPRESENTATIVE LISTING ATIACHED 0

I RETENTION CHARACTERISTICS: Patient data are deleted by midnight by purging routine
(PUR) of LAB program, after 10 days inactivity for inpatients, of 3 days after
completion for outpatients.

~-·~~--~ I COMMENTS: In-use
i an entry for

I

j

flag IUF at third level used as software interlock by updating
a specific patient.

MDC FORM 0-4, Copyright 1975 by the MUMP$ Qevelopment <;ommittee

The MUMPS File Summary form briefly describes a global file and indicates
what further documentation on the file is available. A collection of
such forms is necessary to fully describe a data base consisting of several
files. A programmer faced with an unexplained error in a program referencing
a specific global node, however, needs one futher documentation aid, the
maintenance of which is rec011DI1ended on an installation-wide basis. This
additional documentation aid is a directory of the globals utilized in the
installation, and the files contained in them. An example follows:

Global

'C

'D

'Z

GLOBAL FILE DIRECTORY

Suoscripts

0-99
100-101
200-226

1
2
4

0-99
100
101
102
103
104
105

35

File

Patients
Location Directory
Alphabetic Patient Directory

Data Acquisition Control Buffer
Data Acquisition Error Messages
Stat/Critical Messages

Chemistry Laboratory Specimens
Request mnemonic codes
Test normal ranges
Test long names
Test worksheet assignments
Test billing codes
Test tally data

Same as 'C for Hematology

Same as 'C for Microbiology

System parameters

Physicians

Scratch file

Chapter 6

FILE DOCUMENTATION PROCEDURES

File structure terms used in this chapter are defined in Appendix I.

6.1 Logical File Structure Documentation

The process of describing a file in terms of its logical structure
independent of implementation details should consist of the following
elements:

(1) Identification of the hierarchical organization of
repeating groups in the file.

(2) Specification of the access key(s) to each repeating
• group.

(3) Identification of the data elements in each repeating
group.

This may be done through a combination of narrative, tabular
description, and pictorial representation. Such documentation serves as a
convenient logical and symbolic cross-reference to the more detailed
global structure documentation. The following example describes the
hierarchical organization of file PAT, which contains data on hospital
patients who have had clinical laboratory test work done on them:

An Example Patient Laboratory File - PAT

The highest level repeating group is the file PAT itself,
entries of which are individual patients. Access to each patient entry
is by the direct access ·key, ID, the patient identification nlDllber.

The entry for patient contains data relating to the patient's
name, date of birth, sex, admission date, hospital location, and other
items, and in addition contains a repeating group called LABSEC,
entries of which contain data specific to a particular clinical
laboratory section, such as chemistry, hematology, or microbiology.

Direct access to a LABSEC entry, an individual laboratory section,
is by LBNO, the laboratory section number. In addition to a count of
number of specimens on file in that laboratory section, the entry
contains three repeating groups, CUMDIR, INTDIR, and SPECLST. CUMDIR
entri.es are result categories for which specimens are on file. Each
result category entry contains a repeating group called SPECIND, which
is an index of specimen entry numbers for specimens on file with tests
ir. that result category. Access to each CUMDIR entry is by result
category number RC and access to each entry in its SPECIND repeating
group is by its entry number. The entries in SPECIND are indexes to be
used as keys to the SPECLST repeating group described below.

37

INTDIR is a repeating group with a structure identical to
CUMDIR, but containing an "interim" directory to only those specimens
in SPECLST which have tests that are either still pending or were ordered
during the current day.

Entries in the SPECLST repeating group contain detailed data on
individual speci~ens in the file, such as accession number, accession
date and time, specimen type, "stat" or emergency status, and tests
requested. The access to a specimen entry is by its sequential entry
number, and since the file is updated chronologically, the entry
number serves to order specimens by accession date and time. Each
specimen entry contains a repeating group, RCDAT, in which results
for tests requested are stored according to result category.

Each entry in RCDAT, accessed by the result category number RC,
is a set of data values sequenced by thi~ result category, giving
the results on the tests in this category that were requested, or thei·'·
status if not yet completed.

This description of the file is given more precisely in the
following table, and schematically illustrated in the accompanying
diagram.

38

Data Element

PAT

.IUF

. ID

.NAM

.DOB

.SEX

.ADM

.LOC

.LABS EC

•. LBNO
•• SPECTOT

•• CUMDIR

••• RC

.•• SPECIND

. • . . EN

•. INTDIR

•. SPECLST

TABULAR DESCRIPTION

Meaning

Patient (Rep. Grp.)
file of patients having had laboratory work,
direct access by ID:

In-use flag
Patient identification number
Patient name
Date of birth
Sex
Admission date
Hospital location

Laboratory Section (Rep. Grp.)
data on laboratory work by lab section;
direct access by LBNO:

Laboratory section number
Total number of specimens on file

Cumulative Directory of Result Categories
~Grp.)
Specimens on file for this laboratory section,
organized by result categories for which
they contain test requests;
direc.t access by RC:

Result category number

Specimen Index (Rep. Grp.)
List of specimen indexes for specimens with
tests in this result category;
direct access by EN:

Sequential entry no. in this repeating group •
Index to be. used as access key to specimen
data in SPECLST below

Interim Directory of Result Category (Rep. Grp.)
Today's or pending ("interim") specimen
directory organized by result categories of
tests requested;
direct access by RC:

•.. same structure as CUMDIR above •••

Specimen Data (Rep. Grp.)
Data on individual specimens on file for this
lab sec ti on;
direct access by EN:

39

Data Element

••• EN
. . . ACCNO
•.. ACCDT
•.• ACCTM
••• TYP
... STAT
... REQ

•.. RCDAT

.... RC
•••• RES 1
•••• RES2

.... RESm

Meaning

Sequential entry no. in this repeating group
Accession no. of the day in this laboratory sec •
Accession date
Accession time
Specimen type
"Stat" or emergency status flag
List of tests requested

Result Category Data (Rep. Grp.)
Data on results of tests in a result category;
direct access by RC:

Result category number
Result for TEST! of this result category
Result for TEST2 of this result category

Result for TESTm of this result category
--where no. of tests, m, is specific
to result category

40

Patient

ID LAB SE

LBNO Laborator Section

RC

E

CUMDIR INTDIR

Cumulative

c

SPECLST

Interim
Result

. .
S ecimen Index S ecimen Index: : RC

.

Logical Structure of File PAT

Result Category Data

The table above identifies the repeating groups in the file PAT,
and the data elements of each are described and given mnemonic identifiers.
All data in the file are considered directly accessible by specification
of a sequence of data element identifiers and access key values. Logical
depth in the hierarchy is indicated by the sequence of dots preceding
each identifier. These dots correspond to the number of access keys required
to reach the goal entry.

41

6.2 Global Structure Documentation

The documentation of a global file's data structure should include
the following:

(1) Definition of the overall structure, in terms of the
mapping of the repeating groups of the logical file into
the structure, and the encoding of access key information.

(2) Detailed descrtption of global structure, describing
in full the nodes used at each level in the structure, the
subscript computation algorithms used, the contents of the
nodes, and how they relate to the logical structure.

(3) An annotated example printout of relevant portions of the
global's actual contents.

(4) Miscellaneous comments on packing efficiency, accessing
procedures, and other issues involved in determination of
structure.

For items (1) and (2) above, a combination of pictorial, narrative
and tabular description can be used. The detailed tabular description is
the most essential, and should therefore be considered mandatory.

Global documentation will be illustrated with the global structure
APAT for the logical file PAT discussed in the preceding section. Overall
structure can be depicted most conveniently pictorially. The diagran1 on
the next page shows the global structure for APAT, indicating the mapping
of the various repeating groups of the logical structure into the global,
and the mechanism of access to individual entries in the various repeating
groups.

Narrative Description

File PAT is mapped into global APAT. The first two levels of
subscripting are both entirely pointers, providing direct access to
individual entries in the patient repeating group, based on hospital
identification number ID. The first level, using subscript IDX, computed
as the terminal two digits of ID, divides the patient population into 100
approximately equal, randomly distributed groups, each containing only about
~% of the population. The leading four digits of ID are used as the
second level subscript, IDY, to permit direct access to the patient
data, stored at the third and fourth levels.

42

PICTORIAL REPRESENTATION

...I: PAT Re G p. rp •

APAT ~ . . .
IDX ~ . . . Patient . . data 0
. IDY .

. 5

~ . . Laboratory
LABS EC . section data.

Rep. Grp. LBNC . r-'
RC*4

L..._.i CtJMD'rR .
Rep. Grpi- . . .

i..........i
. .

~
. . .

RC*4
INTDIR +200
Rep. G~. . . .

i..........i . .
------- . . .

SPECLST

RCDATn
200*EN

Rep. Grp. +800 . .
Rep. Grp. .

200*EN
+800

jt-(RC*4) .
. .

~ . .
...
~ .

.
Global Structure of File PAT

43

l

Cumulative
Result Cat­
egory Data:
SPECIND Rep •
Grp •
(Specimen Index
Data)

Interim Result
Category
~:
SPECIND Rep •
Grp .
(Specimen Index
Data)

s
p

E
c
I

Result M
Category E
~ N

D
A
T
A

Administrative and demographic data for a patient entry are
stored at the third level in subscript 0-5. Data for each laboratory
section, in the LABSEC repeating group, are stored primarily at the fourth
level, and accessed by pointers at the third level, at subscripts indicating
laboratory section number LBNO. Total number of specimens in each
laboratory section, SPECTOT 1 is stored as a value at the third level at
A(LBNO).

The fourth level data for each laboratory section entry consists
of three parts:

(1) CUMDIR, a cumu~ative directory of specimens on file,
organized by result categories for which tests have been
requested and stored at subscripts 0-199. An entry for. a
result category RC is accessed directly at A(RC*4), with
overflow data as necessary stored at '(RC*4+1), etc. Each
RC entry contains the SPECIND repeating group. This
consists of indexes to specimen entries for this result
category (primary data on which is stored in ~he SPECLST
repeating group described below). The SPECIND repeating
group is stored as a string (or strings if length is
more than 72) of numerical values, representing specimen entry
indexes, concatenated by commas.

(2) INTDIR, a directory of "interim" or current specimens
organized by result category as for CUMDIR above. INTDIR is
stored at subscript"s 200-299, where its structure is
analogous to CUMDIR. Each RC is stored at A(RC*4+200) with
overflow data as necessary at '(RC*4+201) 1 etc., and contains
a SPECIND repeating group as above.

(3) SPECLST, the repeating group containing the primary data
on each specimen in the laboratory section is stored at
subscripts 1000 and above. Packed accession data for specimen
entry EN is stored, concatenated by semicolons, at
A(200*EN+800).

A result for specimen EN in SPECLST is stored in the RCDAT
repeating group, accessed by RC, the number of the result category entry
to which it belongs. This repeating group is embedded at the fourth level
as offsets to the specimen entry inself, in the range between A(200*EN+804)
and A(200*EN+996). Each RC entry, stored at A(200*EN+800+(RC*4)), contains
results for requested tests, in preassigned positions, in a string of
result fields concatenated by semicolons.

A detailed description of global 'PAT follows. In the logical
structure, preceding dots before a data element identifier are used to
indicate logical depth. In the global structure description, similarly,
dots preceding a naked reference are used to indicate number of preceding
subscripts implicit in the reference. Though other conventions for
representing the level of a naked reference could be used, or a full
reference could be stated instead, it appears that this gives readability
to the documentation without cluttering it.

44

Global

"PAT(IDX)

• - (!DY)

.. - (0)

•• - (1)

•• - (2)
.• '(3)

. • - (4)

.• - (5)

TABULAR DESCRIPTION

Logical

PAT

.IUF

.ID

. NAM

.SEX

.DOB

.ADM
• LOC

.LABSEC

45

Access/Mapping/Meaning

Patient (Rep. Grp.)
Mapped as 3 level global, first 2
levels of which encode patient
identification no. ID, as access
key in the form of IDX, IDY,
where:
ID=(str) patient identification

no. as 6N
IDX=(num) terminal 2 digits

of ID
IDY•(num) leading 4 digits of ID

(ptr) to subgroup containing
patients with terminal 2 digits of
ID equal to IDX. Divides patient
population into 100 subgroups based
on possible values of !DX (0:1:99).

(ptr) to individual patient having
laboratory work on file

Distributing patients randomly into
100 groups by IDX minimizes search
time for individual patient. IDX
subscripts fit entirely in one 256
word block. Each instance of IDY
level will fit in one block for up
to 126 entries, making no. of blocks
at IDX, IDY levels to be searched
relatively insensitive to patient
population size changes.

(num) in-use flag, where IUF=O means
patient entry free, :!:UF•!! means in­
use by process n.
(str) patient identification no. in
form 6N.
(str) patient name as last, first •
(str) SEX.";".DOB, where:
(str) Sex as "M", "F", or null if
unknown.
(str) Date of birth as YYMMDD or
null if unknown.

(dat) admission date .
(str) hospital location code as 1A2N •

Laboratory Section (Rep. Grp.)
data on laboratory work by lab
section. Mapped at nodes with
subscripts 120, 130, 140 at current
(3rd) level, accessed by LBNO:

Global

.. A(LBNO)

••• A (RC*4)

. . . A (RC*4+1)

... A (RC*4+2)

(etc.)

Logical

•• LBNO

•• SPECTOT

.• CUMDIR

••• RC

.•• SPECIND

••• EN

••• IND

46

Access/Mapping/Meaning

(nwn) laboratory section number,
where 120: chemistry,
130: hematology, 140: microbiology

Used in subscript calculation:

(nwn) total number of specimens
received for this laboratory
section, and
{ptr) to remainder of LABSEC,
stored at 4th level.

Cumulative Directory of Result
Categories (Rep. Grp.)
Specimens on file for this
laboratory section organized by
result category of tests reques:ed.
Mapped at 4th level, in subscript
range 0-199 accessed by subscript
calculation involving RC:

(num) result category no. in range
1: 1: 49.
Used in subscript calculation:

(str) Specimen Index (Rep. Grp.)
List of index values to be used as
access keys to data on specimens
having tests in this result c~tegory.
Entries are subfields of this string
concatenated by commas, accessed by
entry no. EN. Fonn of the string is
INDl, IND2, ... ,INDn.

(num) entry no. corresponding to
subfield no. in above string value.

(str) index value in form lNN,
corresponding to entry no. EN. IND
is stored in ENth subfield of string
EN above. Value of IND is entry no.
to SPECLST Rep. Grp. (see below), to
be used as an access key to data on
specimen having tests in this result
category .

(str) same as A(RC*4), defined as
necessary for continuation of
SPECIND, Specimen Index Rep. Grp.,
due to string overflow.

Global

,.,A(RC*4+200)

,.,A(RC*4+201)
••• A (RC*4+202)

(etc.)

... "(200*EN+800)

Logical

•• IHTDIR.

••• RC

••• SPECIND

•• SPECLST

••• EN

••• ACCNO

• • • ACCDT
••• ACCTM

••• TYP

••• STAT

... REQ

47

Access/Mapping/Meaning

Interim Directory of Result
Categories (Rep. Grp.)
Directory of today's or pending
("interim") specimens, by result
category. Mapped at 4th level in
subscript range 200-399, accessed
by subscript calculation involving
RC:

(num) result category no. in range
1:1:49. Used in subscript
calculation:

Same as SPECIND in CUMDIR above.

(str) same as A(RC*4+200), defined
as necessary for continuation of
SPECIND, due to string overflow.

Specimen Data (Rep. Grp.)
Data on individual specimens on
file for this laboratory section.
Mapped to nodes at 4th level in
subscript range 1000-32700.
Individual specimen data accessed
based on entry no. EN of specimen:

(num) sequential entry no. for
specimen. Used in subscript
calculation.

(str) ACCNO. ";" .ACCDT .ACCTM.";". TYP
.";".STAT.";".REQ, where
(str) accession no. of day for lab
section as 3N.
(str) accession date as YYMMDD .
(str) accession time to nearest
half hour, encoded as single ASCII
character, e.g., 12:30 AM= 0018 ,
12:00 Midnight = 0308 .
(str) specimen type code, e.g.,
"BLD".
(str) emergency ("stat") flag
indicated as "*"; otherwise null.
(str) list of test request
mnemonics, concatenated by commas.

Global L03ical

••• R.CDAT

••• RC

.•• A(200*EN+800+(RC*4))

••• RESl

••• RES2

••• RESm

48

Access/Mapping/Meaning

Result Category Data (R.ep. Grp.)
Results on tests in a result
category. Mapped at nodes whose
subscripts are offsets from above
subscript for specimen, where offset
is in the range 4:4:196, based on
value of RC:

(nlDll) result category number
in range 1:1:49.
Used in subscript offset
calculation:

(str) RESl. ""; ". res2.";" •••
";".RESm, where:

(str) result for test 1 of
this result category.
(str) result for test 2 of
this result category.

(str) result for test m of
this result category.

Note: A given test i is
specific to a result category.
E.g, test 2 in result category
4 (electrolytes) is "K"
(potassium), whereas test 2 in
result category 7 (liver function)
is "Bil" (total bilirubin) •
If test i was not ordered or
done, RESi is null. Total no.
of tests m is specific to the
result category.
A result value of" ••• " means
test is not complete. A non­
null result is padded to a
field length specific to the
test as follows:

One trailing blank or "fl"
if result is abnormal.
Leading blanks as necessary
for field length.

An example printout, with annotations, of a portion of the actual global
contents of file PAT follows:

, ... -----Patient with ID-143204

"(4,1432,0) : 0 IUF
"(1) "143207" ID
A (2) "CAJAL,DOLORES" NAM
"(3) "F;421207" SEX;DOB
"(4) 12364 ADM
"(5) ''W21" LOC
"(120) 6 SPECTO'f LABSEC Rep. Grp. LBN0-120(Chemistry)

• "(8) : "2,3,4" RC#2 " II

• "(4) : "1,4,6" RCll! SPECIND Rep. Grp1

"(28) "2" RCl/7 " " CUMDIR Rep. Grp.
A (32) : "l,6 11 RC#8 II II

"(48): 115" RC#l2 II II

"(204) : 116 11 RCIJl II II I INTDIR Rep. Grp.
"(232) : 11 611 RC#8 II II ~
"(1000) "124; 740316 ;BLD: :FBS ,BUN,CRE" Spec. !.,.._... ___
"(1004) "127;;;;;; ;" RC#l Results RCDAT Rep. Grp.
"(1032) ";;21;1.4;;;;" RC#8 Results
"(1200) "127, 740316 ;BLD; ;CA,P04 ,BIL,LDH,SGOT" Spec. 2
" (1208) ";; ; ; ••• ; .•• " RCll2 Results RCDAT
"(1228) "1.7;;;;;;120;23;;" RC#7 Results -
"(1400) "128;740316 ;BLD;*;E4" Spec. 3

• ,".(1~0~1. 11 147;4.1;101;27.4;;" RCll2 Results - .!£!?!!.
"(1600) "243; 740318 ;BLD: :BS ,K" Spec. 4
"(1604) 11 ;108;;;;;" RC#l Results .!£!?!!.
" (1608) 115. 2;;;; 11 RC#2 Results
"(1800) 110247;740318 ;URN::VMA"Spec. 5
"(1848) 11 ;;; ••• ; ; ; ; 11 RC/112 Results -~
"(2000) 11136;740319 ;BLD;;BS,CRE 11 Spec. 6
"(2004) ";107;;;;;" RCfll Results RCDAT
"(2032) 11 ;;; ••• ;;;; 11 RCl/8 Results

SPECLST
Rep. Grp.

"(130) : 2 SPECTOT LABSEC Rep. Grp. LBN0-130 (Hematology)
A (4) : "1 ,2"......., CUMDIR
"(16) : 11 1 11 ...-1

• A (204) : .11 211 4--INTDIR
A (1000) 11076; 740316 ;BLD; ;WBC ,RBC ,HCT ,PTT" -
A (100 4) II 4 o 4; ; ; 3 7 ; 6 0 8; ; ; ;,
A (1016) II;;; 23;;; II ..J RCDAT SPECLST
"(1200) 11049;740319 ;BLD:*:HCT 11

"(1204) ";;;39;;;;;" ~RCDAT
t Patient wlth"ID-150907

"(7,1509,0) : 0
A (1) "150907 11

A (2) "TOWNSLEY' RICHARD"
"(3) ''M;360212 11

49

Miscellaneous comments on the global should be noted if they
reflect on the rationale for the structure utilized. Example comments
regarding PAT follow:

Miscellaneous Comments

(1) Subdivision of patient ID into 2 level subscripts IDX,
IDY was done to improve access time, by reducing search for
any given patient to about 1% of the population, involving
retrieval of only 2 blocks.

(2) Compression of all lower level data into third and
fourth levels of the global was done to improve packing
density and reduce total number of accesses for related
items via (a) naked references within the same level, and
(b) retrieval of string values combining multiple fields.

(3) Packing efficiency (PE) by level is approximately as
follows, for a clinical laboratory information system
operational in a 450 bed teaching hospital, with 150
outpatient visits per day:

~ PE # of blocks (avg)

1 78% 1
2 32% 1
3 64% 1
4 87% 3

50

Chapter 7

DIE DOCUMENTATION SPECTRUM

The term "documentation" includes a broad spectrum of papers,
documents, manuals, etc., which might be generated during the overall
development of a given MUMPS application. The particular type of documen­
tation produced usually corresponds to the current development phase of
the application (system design phase, coding phase, etc.). A list of the
various types of documents which might evolve is as follows:

(1) Feasibility Study
(2) Application Design Specifications
(3) Source Code Specifications
(4) File Specifications
(5) Application Test Specifications and Results
(6) User's Manual

A description of each of the above documents is given in the sections
which follow. No attempt is made to specify the format of the documents,
but only to describe the recommended content. It is not implied that all
of these documents will be required to successfully document a MUMPS
application. We often find that the feasibility document is not
produced. Also, some MUMPS applications are designed to provide detailed
illStructions upon the user's request, and thus a user's manual may not be
needed.

7.1 Feasibility Study

The feasibility study is a management level document that should
provide the necessary information for evaluating a proposed application.
The document should outline the application's objectives and capabilities,
give time and cost estimates for development and implementation, and give
a statement of the advantages offered if the application is implemented.

7.2 ~pplication Design Specifications

TI1e application design specifications should provide a general
statement of the MJMPS application's functional purpose and operational
capability in nontechnical terminology. It should also give a clear
description of each job task, along with methodology and logic for doing
the task. Data flow and 1/0 requirements should be specified. The
application design specifications may be considered as both administra­
tive level and programmer level documentation. The document can be used
by management and other nonprogramming personnel to determine in general
terms how an application is designed and what functions it will do.
At the program.mer level, the document serves as an interface between
user and programmer by specifying the user's requirements of the MUMPS
application.

A list and description of items recommended for inclusion in the
application design specifications follow.

51

Application Overview

This is a narrative description of the MUMPS application's purpose
and objectives in general terms. It should provide suDDDary
information on the organization and sequence of the application
functions, along with information on whom the application is for and
why it is being done.

Application Functions

A narrative detailed description of each function or task which
the MUMPS application will perform. Input and output requirements
for each function should be specified along with data file update
and access procedures.

Backup and Recovery

A description of backup procedures along with procedures required
to recover data, should there be a computer failure.

7.3 Source Code Specifications

Source code specifications are necessary for defining and updating
MUMPS routines, programs, and packages. Thus, source code specifications
can be considered as programmer level documentation. Chapters 3 and 4
give a complete description of the requirements and format for documenting
MUMPS source code.

7.4 File Specifications

A description of each data file required by the application. This
should include the format and description of specific data items contained
in each file along with specifications on file accessibility and update
requirements. A flowchart illustrating data flow and file procedures
for each application function may be helpful. Chapters 5 and 6 describe
the requirements and format for MUMPS file documentation.

7.5 Application Test Specifications and Results

The application's test specifications should provide an account
of all tests and results on the application. For each test. the following
information should be given:

(1) Purpose of the test.
(2) Identification - state what is being tested: routine, program.

package, or logic function.
(3) Test Methodology - procedure and logic of the test; inputs and

cutputs required; driver or special test routines utilized;
limitations, constraints, and conditions imposed by the test.

(4) Test Results - the test results should be given along with a
sample listing illustrating the test procedures. The listing

52

can serve as documentation of how the test was performed as
well as verification that it was actually done.·

Probably the most difficult task in testing a MUMPS application is
deciding what to test. Some programmers attempt to test every logical path
through the source code. However, with many applications this is very difficult
if not impossible to accomplish within a reasonable time frame. A more
plausible approach is to test each logical component or function of the
application. MUMPS lends itself to this approach because of its modularity;
each job, section, task, etc. of the application is usually structured
as a closed set of one or more MUMPS routines.

Application test specifications are considered as programmer level
documentation.

7.6 User's Manual

This document should provide a complete description of an application's
capabilities along with detailed instructions for running the application.
The following are items recommended for inclusion in the User's Manual.

Application Overview

This is a narrative description of the application's objectives
and capabilities in user-oriented terms. It should provide
summary information on the organization and sequence of application
functions, along with information on whom the application is for
and why it is being done.

Interactions

This is the core of the User's Manual. It summarizes the
application dialogue with the user, what action(s) the user can
take, and what each action directs the computer to do.
Certain actions taken by the user may result in an error condition.
Therefore, a description of the error message, where the error
condition might occur, the cause of the error, and the procedures
necessary ·for recovery should be included.

Examples

This would include listings illustrating the actual operation
of the application. Whenever applicable, user input should be
underlined to set it apart from the output.

91ossary

A list of all data processing or otherwise unfamiliar terms used
in the manual, along with their definitions.

53

APPENDIX I

GLOBAL FILE CONCEPTS

GLOBAL nLE CONCEPTS

The Nature of Globals

The global data management facility (someti•s called "globals")
in MUMPS is noteworthy because of the high degree of flexibility it
affords the programmer in designing file structures suitable to his
particular application.l Features of symbolic data reference, multi-level
data structuring, dynamic allocation and garbage collection, efficient
handling of sparse arrays, and heterogeneity of element type permit
globals to be used for a wide variety of data base needs.

Applications may differ greatly in the size of the data base to
be accommodated, accessing methods to be supported, and multi-user
coordination and communication requirements. In addition, because of
the common data base handling capabilities for multi-user access and
retrieval, globals can be used to communicate data among independent,
concurrent, asynchronous processes, and to permit file processing and
spooling tasks to run as ''background" to more interactive "foreground"
programs.

This versatility of globals gives rise to complexity of file
design. As a consequence, there is a definite need for precise, complete
documentation of a global data structure. Since a complex, multi-user
data management application of ten requires implementation by several
programmers of a large number of programs which must share files and
intercommunicate in various ways, file design documentation is a first
step in specifying and designing an application system. The clarity with
which a global file is conceived and specified in advance of programming
is an important factor in program structure and design. This emphasis on
prior specification of file structure is much more significant than prior
specification of program design, an ideal which is rarely followed in
practice, though generally endorsed. For data management applications,
in particular, file specification is an imperative antecedent to program
implementation.

Because of the versatility of glcbals and the diversity
of requirements to which they may be put, an understanding of the
characteristics of a particular implementation of the global data manage­
ment facility itself is necessary in order to obtain maximum efficiency
and effectiveness of an application. Like any general purpose capability
which can accommodate a great variety of potential usages, it is
impossible to utilize globals to meet all possible needs with a high
degree of efficiency. Many general purpose capabilities, however, solve
this basic incompatibility between versatility and efficiency by meeting
all needs with less than optimal efficiency. Globals are somewhat

1 A.I. Wasserman, D.D. Sherertz, and C.L. Rogerson, MUMPS Globals
and Their Implementation, MDC Doc. No. 2/1, 5/15/75.

57

unique in the extent to which they are implemented in such a manner that
a file design may be highly tuned to implementation constraints, resulting
in very high efficiency.

Achieving maximum effectiveness and efficiency with globals,
in fact, requires a high degree of programmer cleverness. Yet such
cleverness is often in direct contrast to clarity, which militates against
a typical global file possessing a structure which is self-documenting with
respect to the logical relationships of the data which led to its design.
This is in contrast to certain other higher-level data definition facilities
in which the logical structure inherent in the data is represented in the
data structure declarations and references themselves. This is the result
of the tradeoff in MUMPS between use of a high level general purpose
language capability and the provision of capability for fine tuning at a
systems level.

Characteristics of a global data rianagement facility may
differ widely among different implementations. An understanding of the
role that particular constraints and characteristics played in a particular
design is essential if program portability is to be facilitated. This is
true not only for transfer of an application to other implementations,
but also for maintenance on an existing implementation as peripheral
device characteristics and operating system features tend to evolve over
time. Globals are particularly sensitive to random access device
characteristics, such as physical block size, number of blocks available
per physical seek movement, total nmnber of blocks available, and user
storage costs, and to operating system characteristics, such as buffer
handling, multi-user process scheduling, maximum block search times, and
disc block allocation and "preallocation" facilities. These factors
influence the programmer's planning and decision-making regarding the
number of levels that a global data structure will have, size of any
particular level, and the packing efficiency of data. It is therefore
essential to document these considerations whenever they have significantly
influenced the global file design.

A Global Documentation Approach

A data base system, when considered without regard to imple­
mentation details, .tends naturally to be hierarchically organized.
Since globals themselves have a hierarchical structure, it is tempting
tu think of the logical relationships among data in te?'111s of their
realization in globals. However, many other considerations having more to
do with physical implementation of a global facility influence a programmer
in mapping a particular file into a global, and it is desirable to distinguish
these considerations in documentation. This is especially true when one
has the desire to make programs implementation-independent, and to enhance
program transportability.

58

Much of the distinction between the "logical" or "normative" data
structure of a file and the actual global structure in which it is
realized or mapped could be ignored if the concern were purely local.
Implementation and design in practice will rarely, after initial conceptua­
lization, be concerned with anything but the actual global data structure.
The logical structure represents an abstraction to enhance transportability.

Logical File Structure Concepts

This section will discuss the logical relationships among data
in a file. This discussion will form a basis for describing the structure
of a file in implementation-independent terms, since the nomenclature and
concepts involved are general to most, if not all, data management
systems. It is useful, for both communication with non-MUMPS users,
and for considerations of program portability among different MUMPS
implementations or onto future versions of a system, to have this kind of a
conceptual level in a system's documentation. This would be less of a
concern if globals constituted a higher level data definition facility
themselves; dynamic allocation without prior declaration, the ability
to tailor structure to system efficiency constraints, and the necessity
to explicitly program access methods, while powerful features of globals,
lend obscurity to the use of a particular global structure, and increase
the reliance on external documentation.

Hierarchical Structures

A file may be generally defined as a collection of data that are
logically related in some way. A hierarchical structure provides a
natural representation for the kinds of files typically utilized in
MUMPS systems. Hierarchical structures, when considered independently
of physical realization, permit a representation of purely sequential
files, i.e., with only one level of depth in the hierarchy, as well as
complex files with multiple variable length fields and repeating subgroups,
which can occupy multiple levels of depth in a hierarchy.

Consider the following hierarchical structure for a file of
employees in a company, consisting of divisions, projects within
divisions, and employees within projects.

59

- ENAM SEX SALARY YRS snr.sE_C_ ~

Hierarchy Name: COMP 1 SIMMS M 12,000 3 28536481
- NAME PLEADER EMPLOYEES 2 CRAIG M 14,500 4 3214739.

Divisions: 1 PTEST GRAHAM 3 ROBER F 13,750 2 3471895
2 STRESS RIDDLE 4 LING M 11,200 2 5023471

DNAME DBUDG DHF.AD PROJECTS '~ R&D 127,240 RAND
TEST 64,320 BARKER - ENAM SEX SALARY YRS SOCSEC -PROD 248,430 CAHILL 1 BLACK M 11,500 4 1243851 w 2 HIRT F 10,800 2 4273650

3 COSTA F 11,300 1 5473281
NAME PLEADER EMPLOYEES

1 SIM ROCHE
2 DGBT GRAHAM -~ ENAM SEX -.S_ALARY YRS SOCSEC

:;J\
1 RAWL M 12,750 4 213493f 0

2 MASON M 13,800 5 422526(

'--· .. ~· ..

A Hierarchical Data Structure

At any logical depth in the hierarchy is a set of items organized
as an array, in which columns are called data elements and rows are
called entries or records. A data element represents an attribute
associated with data, such as "employee name", "sex", "division budget".
It may be labeled by a symbolic identifier such as "ENAM", "SEX", or
"DBUDG", respectively. An entry is a set of values for each of the
data elements for one member, and is labeled by an entry number. For
example, the values of employee name, sex, salary, year of employment,
and social security number in one row are those associated with an
entry for an individual employee. Each cell holds the value for a given
data element and entry.

The array of data elements and entries is referred to as a
repeating~· The top level, the file itself, is a member of a
repeating group, by convention, since it is an entry in a directory
of files. Also, a repeating group may be contained in an entry of
another repeati.ng group, e.g., EMPLOYEES is a repeating group in an
entry of the PROJECTS repeating group in the example, and PROJECTS is
a repeating group in entries of the DIVISIONS repeating group. Thus,
a data element may be associated with either an elemental datum, called
a field, or with a repeating group. Note that in the concept of
field, a datum is elemental only because it is used in this way. ENAM is
a field for employee name, since name i.s treated in the application as
a unit. If first, middle, and last names were individually of interest,
three field data elements would be required.

For a data element associated with a repeating group contained
within it, values for its entries are called pointers to instances of
the repeating group. The data element with the identifier "PROJECTS" in
the DIVISIONS repeating group, in the example, contains values which
are pointers to instances of the PROJECTS repeating group.

Note that the concept of record or ~ is ambiguous for
multi-level hierarchical files, unless the logical depth of interest in
the hierarchy is clearly specified, e.g., a DIVISION entry or a PROJECT
entry within a specific DIVISION in the example. We shall use the term
entry i.ns tead of record here, because there is less prior meaning of
it to most individuals not accustomed to thinking of nrulti-level file
stn..1.ctures.

Accessing Hierarchically Structured Data

To retrieve a specific datum, it is necessary to identify both
the data element desired and the entry of interest. For files
structured to permit direct access, identification of the entry must be
either by entry number, which is an integer identifying sequential
p0sition in the repeating groups of which it is a part, or by the
values associated with one or more of its data fields. This specification
of known items constitutes the access key to the entry. In MUMPS,
access keys need not be sequential, as arrays can be sparse. For example,
an employee's social security number may be the access key for retrieval
of data about the employee, in a company's payroll file. The desired
unknown items are values associated with other data elements in the
goal entry. For a multi-level file, it is necessary to specify a sequence
of keys to descend the hierarchy to a desired depth in order to retrieve
values of data elements in an arbitrary goal entry.

61

The method by which keys are processed by a data management
system to access the goal entry is not obvious in many systems, and
depends on the access methods supported by the system. The values of
entries for a particular data element may sometimes themselves be entry
numbers or other access key data to permit retrieval of other entries
in the same or a different repeating group. A data element which contains
such access information is called a directory or ~ to the entries
of interest. Since the entries of which the index items are a part may
be accessed in some manner other than the method by which the goal
entries are accessed, such directories or indexes permit secondary kinds
or access to be supported. For example, a payroll file may be organized
to permit direct retrievcl of an employee's data by a key which is
based on his social security number. This is the key for the primary
access to employee information. To permit efficient retrieval in another
manner, such as alphabetically by last name, or by job classification,
or by salary, it is necessary only to establish a directory file, the
entries of which are accessed on the basis of the secondary key, a retrieved
inde~ value of which can then be used as a key, e.g., social security nwnber,
in the primary access of the goal entry.

Global Implementation Considerations

The MUMPS programmer has control over file design in a number of
ways not available in many high level data management systems. This control
is reflected in the range of choices for representation of hierarchical
file structures such as discussed in the previous section. Note that a
logical file need not have a one-to-one correspondence with a global name,
but rather may occupy several globals, or a range of subscripts within a
global. The following are some examples of the various choices available
to the MUMPS programmer when designing a global file.

(1) Representation of Data Values
An individual data value may be stored as the value at a
global node, it may be a subfield in a nwneric or string
datum, stored as the value at a node, or in either of the
above cases, it may be encoded as a subscript itself or a
sequence of subscripts.

(2) Attributes

An attribute of a data element may be determined explicitly
or implicitly. An explicit attribute is one in which the
identifier of the attribute is explicitly stored, along with
the value. An implicit attribute is one j_n which the position
of the value determines the attribute by programming convention.
A fixed global subscript may be considered as an explicit
identifier for an attribute, since it is precisely retrie­
vable, and indeed mnemonic local symbols may be assigned to
such fixed subscripts and used in the global reference.
Consider for example, that we are at a given global level of
a file in which patient data is stored, and that the patient's
sex is stored as the value at a node with subscript 7. lben
clearly a reference to A(7) will retrieve the value for
"sex", but assigning local symbol SEX•7 and then referencing
A(SEX) will also retrieve it. Since a global subscript

62

is numeric, it may alternatively be considered that a
subscript is an implicit identification of attribute by
(numeric) position, e.g., the 7th subscript in a range of
subscripts is associated with the value for "sex." In a
packed string consisting of data values concatenated
together, or a numeric datum calculated as an algorithmic
combination of individual values, attribute is again
implicitly identified.

(3) Entries

An entry may be represented as a global level, the subscripts
within which indicate specific data elements of the entry.
An entry may contain either single packed string or calculated
numeric values, or a collection of them, subfields of which
are values of the specific data elements in the entry.
(As indicated above, such values may actually themselves be
encoded as subscripts.) An entry may consist of the values
stored at nodes with a range of subscripts within a global
level, to improve packing efficiency, or it may, for reasons
of optimization of access time, occupy several levels.

(4) Repeating Groups

A repeating grcup consists of a set of entries stored in one
of the variety of ways described above, or combinations thereof.
The additional issue for a repeating group is that it must
contain a means for access to individual entries within it
based on the access key to the entries. The additional range
of options available are those concerned with ways of encoding
access key infonnation into the global. Here MUMPS globals again
offer a wide variety of alternatives; the programmer must
design his own representation of access key information, and
~tructure the global accordingly. An access key may be based on
eit~er a sequential entry number of the value of some other data
field(s). This key value may be encoded as one or more
subscripts, penaitting direct access to any entry via a multi­
level global design. The key may alternatively be encoded
as a calculated offset to a base subscript, permitting a
repeating group to be stored in a range of subscripts in some
relation to the subscript identifying the start of the
repeating group. A repeating group may be string or numeric
datum, or collection of such data, subfields of which are
individual entries.

lmplications for Global Documentation

Infinite variety exists in the above areas, and the task of
documentation involvi=s explicitly etating the methods that were used.
Globals are different from most data definition facilities that permit
hierarchical data structures to be used. In many such systems, the access
nethod to be used and the access keys can be simply declared, and are not
reflected in the definition of the data structure itself. Whether the

63

system uses the key to perform a linear search, binary search, or a hash
table lookup, for example, is of little concern to the programmer
concerned only with defining this data structure. In globals, by contrast,
all such access procedures must be explicitly reflected in the structure
of the global itself, and in the application programs written to store
and retrieve data in a global. A binary search, for example, might be
represented as a multi-level hi.erarchical organization of keys. 'The
programmer can determine the optimal representation for the task he
wishes to perform.

For reasons implied above, there is in general little correspondence
between "levels" in a global structure and "depth" in the logical hierarchy
of data. In the logical representation, depth corresponds to repeating
groups. In a global, levels may be used to store repeating groups, parts
of repeating groups, multiple repeating groups, or access keys.

In this sense, a global is not a high level facility for data
structure definition, because the mapping of data items in the structure
and the implementation of access methods are explicit responsibilities of
the programmer. By contrast, it is a high-level facility for data
structure implementation, since it provides the programmer with a large
amount of versatility in design, while providing automatic capabilities
for handling dynamic allocation and garbage collection.

File Pynamics

Along with documenting static structure, both logically and as
actually realized in a global, it is also desirable to describe the
aspects of the file concerned with its dynamic properties. Since globals
are used in multi-user data management environments, dynamic character­
istics not only affect single users of a global but multiple users who may
be interacting in some way through use of the structure. Issues that
should be discussed, when appropriate, include the following:

(1) Range in Global File Size
Since the size of a global file may change dramatically in
a relatively short period of time, it is sometimes necessary to
be concerned with the extremes of file size, to ensure the
availability of adequate free blocks to accommodate the
global ~t its maximum. Size of a global should be related
not only in terms of number of physical blocks required, but
number of entries or size of entry, at the various logical
levels of interest. Maximum, minimum, and average values
for these parameters should be given where possible, since it
may be necessary to optimize not only available storage for
the particular global, but also storage requirements for
other globals with different dynamic size characteristics.

(2) Purging Requirements and Frequency
Fer a dynamically changing global file, it may be necessary
for the file to be purged periodically. This may be done
automatically on a continuous basis, or it may require
running periodic maintenance programs to accomplish the task.
Alternatively, purging may be entirely a manual procedure

64

done at operator discretion. The mode of purging should
be described, as well as the frequency and the conditions
under which it is to occur. If purging is associated
with a file dumping procedure, this should also be described.

(3) Communication through a Global
Another use of a global is as a means for communicating
data among users, e.g., to synchronize processes, or to
store a resource interlock. An example of this might be
the use of a global to send messages between foreground
and background processes. Use of ring buffers and similar
structures, in which input/output "pointers" are maintained
to the most recent message into the buffer, and the next
message to be removed from the buffer, are frequent methods.
Such uses and the progrannning conventions that are involved
need to be made explicit.

65

APPENDIX II

BLANK DOCUMENTATION FORMS

I

I

MUMPS ABSTRACT
ROUTINE Cl

IDENTIFICATION
APPLICATION AREA:

SHORT TITLE:

DATE LAST MODIFIED:

MEDICAL 0

PACKAGE 0

PURPOSE (up to 150 words; undertir.1:1 kev words; continue on back if necessary):

r·-SO-U_RC_~_U_T_HO __ R-(S_)_: __ --1

I CONTACT

I
I
I
i
I
I

I
i
I
I
I
I

NAME:
BUSINESS ADDRESS:

TELEPHONE NO.:

REQUIREMENTS
DIALECT

STANDARD 0 OTHER ---

MACHINE:

PERIPHERALS

SUPPLIER-------------·----

AID 0 CRT 0 DECTAPE 0 DISC 0 MAGTAPE 0 PRINTER 0 OTHER------

PARTITION SIZE (characters):

GLOBAL SIZE (numb8r of blocks and block size):

RESTRICTIONS (continue on back if necessary):

!Size
I NUMBER OF CHARACTERS OF CODE:

NUMBER OF ROUTINES:
r---~---------------------------------------4 AVAILABLE ITEMS

COMMERCIAL SERVICE 0

DOCUMENTATION D

SOURCE LISTING 0

USERS' MANUAL 0

Return to: MUMPS Users' Group, 700 South Euclid Avenue, St. Louis, MO 63110

MOC Form D-1, Copvright 1976 by the MUMPS Development Committee

MUMPS PACKAGE/PROGRAM FACE SHEET

COMMON ITEMS
PACKAGE/PROGRAM (delete one) NAME:

ENTRY ROUTINE (S):

PURPOSE (continue on separate sheet if necessary\:

CONTACT'S NAME. BUSINESS ADDRESS AND TELEPHONE NUMBER:

DIALECT
STANDARD ~

MACHINE:

PERI PhERALS

DATE:

17 Sept. 1975

AID 0 CRT 0 DECTAPE 0 DISC 0 MAGTAPE 0 PRINTER 0 OTHER ____ _

PARTITION SIZE USED:

LI ST OF GLOBALS USED:

GLOBAL DOCUMENTATION APPENDED 0

VARIABLE LIST APPENDED 0

TEST RUN DATA APPENDED 0

PACKAGE ITEMS
TOT AL NUMBER OF PROGRAMS:

PACKAGE FLOW CHART APPENDED 0

PACKAGE INTERFACE SPECIFICATIONS APPENDED 0

r PROGRAM ITEMS
I TOTAL NUMBER OF ROUTINES:

PROGRAM FLOW CHART APPENDED 0

PROGRAM INTERFACE SPECIFICATIONS APPENDED 0

Package: A collection of programs which function together in an application.
Program: A closed set of routines used to perform a specific task.

MDC Form D-2, Copyright 1975 by the MUMPS Development Committee

MUMPS IDUTINE DOCUMENTATION
ENTER THESE ITEMS ON THIS SHEET

•ROUTINE NAME:

PURPOSE:

SIZE (number of characters in routine):

CHECK MilCH OF THESE ITEMS ARE PROVIDED ON AnACHED SHEm

MULTIPLE ENTRY POINTS

LJ Lint! Label
:J Purpose
=] Requirements

LOCAL VARIABLES

·---1 Name
- __ J

[]Purpose I CJ Cross-Reference Listing

GLOBALS

=~j Name
=:: Location of Global References

DETAILED DESCRIPTION

~ Narrative Description
~_=:J Listing
:="] Flow Chart

DATE-· ---------

•A routine is defined as a collection of MUMPS statements filed, called, and/or overlayed as a single unit.

MOC Form D-3, Copyright 1976 by the MUMPS Development Committee

MUMPS FILE SUMMARY

HLE NAME:

GLOBAL(S):

PURPOSE:

SIZE:
I
! NliMBER OF LEVELS:
i
' LEVELS WITH DATA:
I

I PACKAGES AND PROGRAMS UTILIZING THIS FILE:

i
I

I
I DOCUMENTATION PROVIDED
I Logical Structure

I Narrative O

Tabular 0

Pictorial 0

ANNOTATED REPRESENTATIVE LISTING ATIACHED 0

RETENTION CHARACTERISTICS:

CCJMMENTS:

DATE:

Physical Structure

0

D

0

17 Sept. 1976

MDC FORM D-4, Copyright 1975 by the MUMPS Development Committee
~··~--'

MDC Doc. No.

NBS Handbook 118

29

30

35

1/11

2/1

2/2

2/3

3/5

MUMPS Development Committee Manuals

Identification

January 1976 (with errata sheets thru March 9, 1976),
MUMPS Language Standard

Part I: MDC/28, 3/12/75, MmlPS Language Specification
M. E. Conway

Part II: ~IDC/33, 9/17/75, ~!UNPS Transition Diagra~3
D. D. Sherertz and Anthony I. Wasserman

Part III: MDC/34, 9/17/75, }f:tD!PS Portability Requirements
E. A. Gardner and C. B. Lazarus

5/28/75, MUMPS Interpreter Validation Program User Guide
J. Rothmeier and P. L. Egerman

6/25/75, MUMPS Translation ~1ethodology
P. L. Egerman, C. B. Lazarus and P. T. Ragon

10/14/75, MUMPS Documentation Xanual
L. J. Peck and R. A. Greenes

6/13/75, }IUMPS Primer
!-~. E. Johnson and R. E. Dayhoff

5/15/75, MUMPS Globals and Their Implementation
A. I. Wasserman, D. D •. Sherertz and C. L. aogerson

5/30/75, Design of a Multiprogramming System for the MUNFS
Language
A. I. Wasserman, D. D. Sherertz and R. W .. Zears

6/15/75, Implementation of the HUMPS Language Standard
A. I. Wasserman and D. D. Sherertz

8/31/76, MUMPS Programmers' Refet:ence }tanual
H. E. Conway and P. L. Egerman

Distributed by the MUMPS Development Committee. For information, contact
the MUMPS Users' Group, 700 South Euclid Avenue, St. Louis, MO 63110.

73

