
MUMPS DEVELOPMENT COMMITTEE 

SUBCOMMITIEE ON IMPLEMENTATION 

MUMPS GLOBALS 

~ - - -- ----::-----

MDC 2/1 
5/15/75 

AND THEIR IMPLEMENTATION 

A Type B Release of MDC Subcommittee #2, Implementation 

Anthony Ira Wasserman, Chairman 
MDC Subcommittee #2 

The reader is hereby notified that this document neither reflects MUMPS 
specifications nor any implied support by members of Subcommittee U2 of 
the MUMPS Development Committee or their sponsors, but that it is being 
offered for possible consideration by Subcommittee #2. It is being made 
available in order to establish better conununication between MDC Subcommittee 
#2 and that segment of the public interested in MUMPS language development. 

Anyone reproducing this release is requested to include this· introduction. 



MUMPS GLOBALS AND THEIR IMPLEMENTATION 

Table of Contents 

Acknowledgments 

INTRODUCTION 

PART I - THEORY AND USE OF MUMPS GLOBALS 

1. Tree Structures: Terminology and Definitions 

1.1 Graph theory and information structures 

1.2 Binary trees 

2. Tree Structures and MUMPS 

2.1 Hierarchical structures 

2.2 The usage of globals in MUMPS 

2.3 An illustrative example 

PART II - IMPLEMENTATION OF MUMPS GLOBALS 

3. Existing Implementation Techniques 

3.1 General strategy 

3.2 Global data structures 

3.2.1 A data representation technique 

3.2.2 Data storage compression 

3.2.2.1 Pointer and numeric optimization 

3.2.2.2 String storage considerations 

3.2.3 Data base structure for globals 

3.2.4 Global directories and global creation 

3.3 Search structures 

3.3.1 Node references and modifications 

3.3.2 Tracing and existence functions 

3.4 Allocation and de-allocation of globals 

3.5 Progrannning considerations 

- i -

iii 

1 

3 

6 

9 

10 

13 

17 

21 

21 

23 

23 

24 

26 

28 

31 

31 

34 

36 

38 



4. Optimization Considerations 

4.1 Overview 

4.2 Scheduling of disc requests 

4.3 Allocation strategies 

4.3.1 Minimization of seek time and rotational latency 

4.3.2 Pre-allocation vs. dynamic allocation 

4.3.3 Reallocation techniques 

4.4 Direct mapping of traces to disc addresses 

PART III - DISCUSSION AND EVALUATION 

5. Analysis of MUMPS Globals 

5.1 Introduction 

5.2 New global types 

5.2.1 "Sequential" globals 

5.2.2 "Random" globals 

5. 2. 3 "Declared''. globals 

5.3 Global security 

5.4 Other data management systems 

5.5 Summary 

6. Conclusion 

Bibliography 

Glossary of Terms 

- ii -

41 

41 

45 

45 

49 

51 

54 

57 

58 

59 

62 

64 

66 

67 

70 

71 

72 

74 



Acknowledgments 

This paper has benefited from the ideas and work of many people. We 

have had many fruitful discussions with implementors in the MUMPS connnunity, 

and would especially like to thank Jack Bowie, Bob Rees, and Paul Egerman. 

The MUMPS standardization effort has aided us greatly in sharpening our 

understanding of current implementation techniques. We are grateful to the 

many members of the MUMPS Development Connnittee for sharing their thoughts 

on globals with us. 

Finally, and perhaps most importantly, we wish to express our deep 

appreciation to Tina Walters who, with assistance of Marina Mancia, did the 

typing of this manuscript. 

- iii -





MUMPS GLOBALS AND THEIR IMPLEMENTATION 

Anthony I. Wasserman, David D. Sherertz, 
Charles L. Rogerson 

INTRODUCTION 

The multiprogramming system MUMPsl, first developed at the Laboratory of 

Computer Science at Massachusetts General Hospital in the late 1960's, supported 

a high-level interpretive programming language, also known as MUMPS. MUMPS was 

designed to facilitate the creation of conversational programs which can share 

a data base on a small time-shared computer. The data base of MUMPS is 

hierarchically organized and consists of tree-structured files called global 

arrays or, simply, globals. 

Since its initial development, MUMPS has been used principally as a 

data base management system. As with any data base management system, the time 

required to service an interactive user is highly dependent upon the speed with 

which a given piece of information can be retrieved from its storage location. 

As a result, efficient utilization of mass storage devices has always been a 

primary consideration in MUMPS implementations. 

This document is a report of the results of a study done on the MUMPS data 

base mechanism as part of a larger overall study of implementation techniques 

for MUMPS. This report is divided into five sections. Section one describes 

and defines some of the basic notions of the theory of graphs and trees which 

are essential to a complete understanding of a hierarchical data base 

organization. Section two describes and defines the ways in which globals 

are used in MUMPS and gives some illustration of this use. Section three gives 

a detailed description of the method used to implement global arrays in existing 

1 Massachusetts General Hospital Qtility ~ulti-~rogramming ~ystem 
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MUMPS systems. Section four gives consideration to optimization of the 

performance of global implementation methods, focusing upon the relationship 

between storage allocation and effect upon access time. Section five analyzes 

the strengths and weaknesses of MUMPS globals, and also gives some recommendations 

for providing a more powerful and efficient data base management capability 

within the existing framework of MUMPS. 

The material presented in this report assumes some prior knowledge of 

MUMPS and MUMPS globals2• The aim of this report is to give an overview of 

the MUMPS data base structure and to provide sufficiently detailed information 

to implement globals. 

2 The reader who is unfamiliar with MUMPS is referred to [Johnson, 1974]. 
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PART I - THEORY AND USE OF MUMPS GLOBALS 

1. Tree Structures: Terminology and Definitions 

1.1 Graph theory and information structures 

The mathematical area known as the theory of graphs is extremely important 

in developing a thorough understanding of information structures which can be 

used to store and interrelate data. Graph theory has proved to be a very 

effective analytic tool in computer sciences, since a graph may be drawn to 

represent an arbitrarily complex data structure or to represent the execution 

profile of a computer program. Because of their inherent simplicity, graphs 

are often very useful in describing classes of data structures in a formal way. 

Unfortunately, there is as yet no standard terminology in this field, and 

a variety of terms have been used to mean the same thing. In this report, we 

shall conform to the terminology used by Knuth [Knuth, 1974] unless stated 

otherwise3• 

A graph is generally defined to be a set of points (called vertices or nodes) 

determined by a set of lines (called edges) adjoining certain pairs of distinct 

vertices. 

Figure 1 shows four graphs. Figure la is a graph with six nodes and four 

edges. Figure lb is a connected graph made up of 18 vertices and 17 edges. A 

connected graph is one in which it is possible to construct a "path" between any 

two vertices. Figure le is a connected graph with a cycle. If we use Knuth's 

definition that there is at most one edge joining any pair of vertices, then a 

cycle is a path of length three or more from a vertex to itself. The path ABEDA 

and the path BCEB are cycles in Figure le. 

One type of graph which is of particular interest is called a tree. Trees 

have been called "the most important nonlinear structure arising in computer 

3 This use of terminology is occasionally different from terminology used 
elsewhere in the MUMPS literature. 
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algorithms" [Knuth, 1974]. Tree structures have heen studied and used for many 

years, long before the advent of computers, and have been applied in a wide variety 

of areas. 

A tree is formally defined as a connected graph with no cycles. Figure lb 

is a tree, as is Figure ld. 

A forest is defined to be a set of zero or more trees. 

In our discussions, we will generally refer to oriented trees, in which a 

particular node of the tree is designated as the root. By convention, a tree is 

usually drawn with the root at the top and all of its branches beneath it 

(See Figure 2). When a tree is drawn in this manner, it becomes apparent that 

the tree may be separated into levels determined by the number of edges which 

must be traversed to reach the given node from the root. The height of the 

tree will then be defined as the maximum distance from the root to any node. 

There is a considerable amount of terminology that has been developed for 

discussing trees, not all of which is consistent. Most commonly used are the 

terms from genealogical charts (family trees), in which subsequent generations 

of an individual are depicted. 

For any given node in the tree, nodes on the path between that node and 

the root are called ancestors. The most iIImlediate ancestor is generally called 

the parent. 

Similarly, those nodes that can be reached from a given node by heading 

away from the root toward the leaves of the tree are called the descendants 

of the node. The most immediate descendant is usually called a child. A node 

which has no descendants is called a leaf of the tree, or a terminal node. 

A group of nodes which have the same parent are termed siblings and are 

said to be members of a filial set. 
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As is clear from Figure 2, there is a unique path from the root to any given 

node of the tree, and these nodes may be identified and referenced by a logical 

addressing notation, called a trace. A trace is a set of nodes representing 

the sequence of nodes which must be traversed to reach the given node. Thus, 

in Figure 2, the trace for node N is (A,B,G,N). To find the unique path for the 

route to the node at level N, we construct a sequence of length N+l, with the root 

as the first element, an element from level one (one of the children of the root) 

as the second element and so on, until the desired node becomes element N+l. 

1.2 Binary trees 

One tree structure which has been of particular interest to mathematicians 

and computer scientists is a binary tree. A binary tree is defined to be a 

tree in which no node has more than two children. A binary tree bus the 

advantage that each node can be uniquely numbered, with the number for a node 

at level M in the range between 2M and 2M+l -1. The binary tree is also well 
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suited to various kinds of branching logic, in which true and false answers 

determine the path to be taken from a particular node. Figure ld above shows 

a typical binary tree, which has been numbered according to the scheme suggested 

here. 

It has been shown that any tree may be converted to a binary tree by a 

sequence of steps, as follows: 

1) For each node, connect it with all of its siblings; 

2) For each node, delete the path between the node and all of its 

children other than the first; 

3) Tilt the diagram so that it resembles a tree. 

Figures 3a, 3b, and 3c show the three steps of this transformation as 

applied to the tree in Figure 2. (This transformation process can be extended 

to a forest of trees by simply connecting the roots of the various trees as 

if they were siblings, and applying the same three steps.) Note that the 

relationships among the nodes are apparently different. 

There is much more that could be shown in the area of graphs and tree 

structures. However, they are not essential to understanding of the material 

which follows. Readers desiring more information on trees and graph theory 

are referred to [Busacker and Saaty, 1965], [Deo, 1974] , [Knuth, 1974], or 

[Ore, 1963]. 
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2. Tree Structures and MUMPS 

7..1 Hierarchical structures 

The tree structure described above is extremely flexible, in addition to being 

intuitively attractive and powerful. While it can be shown that certain kinds 

of information structures cannot be handled with a tree representation, the vast 

majority of structures which are desirable to represent on a digital computer 

can be organized within the framework of trees. Programming languages such as 

COBOL and PL/l incorporate a hierarchical data definition capability, equivalent 

to trees. Other programming languages such as PASCAL, SIMULA 67, and ALGOL 68, 

incorporate even more powerful data structuring capabilities. 

The popularity of the hierarchical approach to data organization is 

due to the fact that many bodies of information can be described as trees 

and are frequently more clearly conceptualized when this is done. For example, 

the structure of a textbook, as reflected in a table of contents, is a tree 

structure. The title is the root, the chapters are the children, the various 

sections are the children of the chapters, and the text of the sections are the 

terminal nodes or leaves. 

This hierarchical approach to data base organization has been incorporated 

into the programming language MUMPS. Within MUMPS, tree stru~tured files are 

known as global arrays, or simply globals. With the possible exception of 

the root, each node of a global array may contain data. The MUMPS language 

makes a strong attempt to preserve the close relationship between the general 

notion of the tree and its utilization in a programming language. Although 

the globals represent a form of file system, the syntax of the MUMPS language is 

intended to make most of the details of the file system invisible to the 

programmer and user. 
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Because MUMPS was developed for an environment in which most of the 

applications would involve access to and modification of the data base, it is 

necessary to give considerable attention to the problem of implementing globals 

efficiently. The speed with which a user's request can be serviced is highly 

dependent upon the time it takes to locate a given node in a global and 

provide that information to the user. Unlike COBOL or PL/l, in which the 

hierarchical structures are static, MUMPS allows dynamic trees, in which the 

amount of information stored in each node can be changed, and in which the 

number of nodes can also be altered. As we shall see, this degree of flexibility 

can be achieved only at the expense of implementation overhead. Considerable 

effort on the part of previous MUMPS implementors has been devoted to the 

problem of efficient allocation of storage of MUMPS globals, combined with 

techniques to improve the efficiency of access. 

2.2 The usage of globals in MUMPS 

MUMPS supports a data base with an arbitrary number of globals. The MUMPS 

language allows the programmer to reference nodes of the global and to assign 

values, either numerics or strings, to individual nodes; assignment of a value 

to a node automatically creates that node. Nodes or entire globals may also be 

explicitly deleted. All linkages between nodes and levels are automatically 

updated with the creation or deletion of nodes. 

Within MUMPS, global variables are treated much the same as local variables, 

so that global values may be used in expressions in a consistent manner. (Local 

arrays can be created analogously to the global tree structure.) Because MUMPS 

is a multi-user system, there are facilities for reserving all or part of a 

global (or local) array, in order to facilitate multi-user access to the 

shared data base and to prevent deadlock. In addition, two functions are 

provided in MUMPS for working with global (and local) arrays: (1) the $DATA 
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function, which allows tracing the entire node and data structure of a global 

and (2) the $NEXT function, which allows tracing the ordering of nodes at a 

given level of a global. 

The language makes no restrictions about the value of the "subscripts" at 

the various nodes. Because MUMPS is a declaration-free language, the system 

makes no assumptions about the lower bound or the upper bound of such subscripts. 

Instead, a MUMPS global is treated as a sparse tree, and the only nodes which 

are created are those to which a value is explicitly assigned or those which 

must be created in order to provide a path from the root to a node which has 

been assigned a value. This generality allows the programmer to utilize nodes 

via a mechanism which is appropriate for the particular task being programmed. 

However, it should be noted that this degree of generality involves a trade-off 

of space against time when compared with a system in which a linear ordering 

of subscripts is required (see subsection 3.5). 

In general, then, a global name, followed by an arbitrary number of 

subscripts, may refer uniquely to a node in a tree structure, to which a value 

may be assigned or from which a value may be retrieved. There is one major 

exception to this rule, however - a syntactic structure called the naked 

reference, which is introduced for compactness of notation and improved 

efficiency of execution. Many tree processing algorithms involve traversal 

methods or processing sequences in which the program will work with a group 

of siblings or with the descendants of a given node. Accordingly, the language 

includes a scheme whereby the invariant part of a global reference may be 

omitted, and only those subscripts differing from the previous global reference 

are included. 
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AABC (1, 2) 

AABC (1,2, 3)1 

AABC 

AABC (1) . ---.___ /\ABC (2) 

~ 
AABC (1, 3) ·"-. A ABC ( 2 , 5 ) 

~ "ABC ( 2 , 5 , 8) 
// ""'- AABC (2, 5, 4) 

", AABC(2,5,8,23) 

A ABC ( 1, 3 , 5) 

.A.ABC (1, 3, 8) 

A ABC ( 1, 3 , 5 , 7) • 
A ABC ( 2 , 5 , 8 , 11) ' 

i AABC(2,5,8,23,9) 

Figure 4 - A global in MUMPS (Addresses only; data unspecified) 

Thus, in Figure 4, if one has most recently referred to AABC(2,5,8,ll) and 

then wishes to refer to AABC(2,5,8,23), it is possible to abbreviate the latter 

reference to A(23). This notion is extendable to lower levels as well; for 

example, a desire to reference AABC(2,5,8,23,9) next could be abbreviated to 

.A.(23,9). Note, however, that the extension is in one direction only - away 

from the root node; to reference .A.ABC(2,5,8,ll) would now require a full 

reference. The abbreviation is unambiguous, but dependent upon the order of 

execution of statements during interpretation of the program. For example: 

SET X=AABC(l,2,3) IF Y SET X=AXYZ(23,16,6) 

SET Z• "(4) 

If Y=O, then Z obtains the value of AABC(l,2,4); otherwise, it obtains the value 

of AXYZ(23,16,4). It also requires the programmer to know that evaluation of 

global references on the righthand side of an assignment statement occurs before 

the assignment to the variable itself. Thus, if one wished to assign the sum of 

AABC(l,2,3) and AABC(l,3,8) to the variable .A.ABC(l,3,5), a proper notation would be 

SET A( 5) =t. ABC ( 1, 2 , 3) +AABC ( 1, 3 , 8) 
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As shall be shown later, use of this naked reference is reflected in the 

implementation of global accesses, so that it becomes unnecessary to re-trace 

the path from the root of the global to the level at which the reference is being 

made. This syntactic abbreviation improves the efficiency of execution, and is 

thus a valuable tool for the MUMPS programmer if used properly. 

2.3 An illustrative example 

/ 
AG(4,l)e=l0 J\G ( 4 • 2 ) = 15 

AG(4,2,l)='ACNE' 

·. 
J\G(4,l,l,3) 

"'-.. 
• AG(4,l,l,3,2)'.='DEM456 

AG(4,l,1,3,l)='ORN123 2 TAB' 

Figure 5 - A pictorial representation of part of a MUMPS global 

Consider the global AG depicted in Figure 5, which might be considered to 

25 MG' 

be a part of a patient's outpatient medical record summary. The information 

stored in each node is of varying type. AG(4,l) has an integer value; AG(4,l,l,3,l) 

has a string value; AG(4,l,l,3) has no associated value, but simply a pointer to 

its descendants. Given this partial representation of a global, the use of 

some MUMPS commands upon this structure can be examined. Table I illustrates 

the effect of these commands on the global shown in Figure 5. 
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Commands 

SET AG(l,3,1)='666-2951' 
SET VAL= AG(4,2,l) 

WRITE "HOME PHONE IS ", AG(l,3,2) 

KILL /\G(2) 

KILL t,G 

LOCK /\G(4,l) 

LOCK 

Functions 

$DATA 
SET X=$DATA(/\G(4,l,2)) 
SET X=$DATA(/\G(l,l)) 
SET X=$DATA(AG(4,l,l)) 

SET X=$DATA(AG(l,3)) 

$NEXT 
SET X=$NEXT(AG) 
SET X=$NEXT(/\G(l)) 
SET X=$NEXT(/\G(4,l,l,3,-l)) 
SET X=$NEXT(AG(4)) 

T.<tble I 

Effect 

value of node AG(l,3,1) becomes '666-2951' 
value of variable VAL becomes 'ACNE' 

"HOME PHONE IS 333-1132" is output 

node /\G(2) and its descendants are deleted 

entire global is deleted 

the node AG(4,l) and its descendants are 
reserved to user; no ancestor of AG(4,l) 
may be reserved while LOCK is in effect 

all reserved globals/nodes are released 

returns a code indicating the type of node 
node does not exist; X returns 0 
node is terminal; X returns 1 
node contains pointer and value; 

X returns 11 
node contains pointer only; 

X returns 10 

returns value of next subscript 
error 
X returns 2 
X returns 1 
X returns -1; no next node 
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It should again be noted that the assignment of a value to a node is not 

dependent upon the pre-existence of nodes at lower levels (those between the 

referenced node and the root). If a path does not already exist from the root 

to the referenced node, one will be created by the system, consisting of 

nodes containing only pointers, but with no data. Referring back to Figure 5, 

the creation of AG(4,l,l,3,l) caused the creation of ~G(4,l,l,3) in order to 

form a path from the root. / - __ _ 

AG(l,l) e 

I 
I AG(4,l,l,3) 

/ 

/ AG(4,l,l,3,l) 

,, ' ............. •, 

...... 
,'\G ( 4 , 1, 1, 3 , 2 ~ , 

/ 

' 

Figure 6 - Effect of LOCK AG(4,l) on access to ~G 

In Table I, the effect of LOCK AG(4,l) on the global G shown in Figure 5 

was explained briefly. Figure 6 illustrates the effect of this command in more 

detail. It may appear that other users are now restricted from using the 

entire global, but this is not the case. They are simply prevented from 

specifically performing a LOCK on AG(4) or AG, as well as on any of the descendants 

of AG(4,l). (Note that it would be possible for another user to perform LOCK AG(2) 

or LOCK AG(4,2).) This restriction is made in order to prevent two users 
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from interfering with one another. If a user were permitted to lock AG while 

another user locked AG(4,l), then the two users could attempt to write the same 

global information simultaneously or the user who had locked AG could delete 

the entire global while the other user was trying to reference some node in the 

global. The MUMPS language, since it is also a progrannning system, must make 

provisions for mutual exclusion among the various concurrent users of the system. 

The LOCK command is one mechanism which can be used to accomplish this. 

It is not the intent of this document to discuss detailed usage of MUMPS 

globals or to give more than passing attention to some of the programming 

considerations involving the effective utilization of MUMPS globals. Readers 

wishing that information should consult [Johnson, 1974], especially Chapters 9 and 

11, [Peck and Greenes, 1974], particularly Section A, or other introductory MUMPS 

literature. The goal rather is to treat some of the implementation considerations 

so that the reader can implement globals on an arbitrary computer on adequate 

secondary storage capacity. Accordingly, the remainder of this d0cument deals 

with those implementation issues and with some of the problems involved in 

trying to optimize storage access and allocation. 
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PART II - IMPLEMENTATION OF MUMPS GLOBALS 

3. Existing Implementation Techniques 

3.1 General strategy 

The general implementation strategy for the tree structure of hierarchical 

data bases is a combination of disc addresses, and physical disc contiguity 

[Bernstein, 1974]. All of the existing MUMPS systems use random access discs 

for storage of globals, and almost all have been implemented in assembly 

language. As a result, they are highly dependent upon the structure of the 

computer system on which they run, and upon the random-access 1/0 methods of its 

implementation language. The implementation approach for globals is similar 

among various MUMPS systems, with differences arising mostly from varying 

word and disc sector lengths, and the use of alternative disc strategies 

[Bowie, 1973]. 

Globals have always been implemented as a set of chains of one or more 

fixed length disc blocks, the first of which is called the head block or 

header for that level. The disc block containing the root node is referred to 

as the header for the entire global, and is often kept with other root nodes 

in a global directory for the entire data base (see subsection 3.2.4). Nodes are 

stored in these blocks; the value of the subscript is stored with its current 

value. Because the MUMPS language is declaration-free, nodes are created only 

upon explicit assignment and removed only upon explicit deletion. Therefore, 

the storage structure treats MUMPS globals as sparse multi-dimensional arrays 

with unordered subscripts. 

Present implementations of globals also require all information about any 

particular node (that is, its subscript value, the pointer to its children, 

and its value) to fit within a single disc block. Some approaches to extending 

this to allow a single node to occupy multiple disc blocks will be discussed 

below. 
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When it becomes impossible to store all the nodes for a set of siblings in a 

single block, continuation blocks are automatically created and linked to the 

previous block by means of a continuation pointer. There is also a need for 

a mechanism to handle multi-level globals, so that a parent node can point to 

its descendants. The technique used is a pointer called a down pointer, which 

points to the header for a node's children. The conceptual notion of continuation 

pointers is illustrated in Figure 7, and Figure 8 shows the gross structure of a 

multi-level global with down pointers (both these figures show only the general 

node structure, without the representational details for each node). 

G 

In the diagram 

ik represents the subscript for node nk, O < k < m+l 

valuek represents the value for node nk 

DP is a down pointer 

CP is a continuation pointer 

Figure 7 - Use of continuation pointers 
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l 

In 

/ 
n11 • 

the diagram 

G 

i. represents the subscript 
J 

valuej represents the value 

DP is a down pointer 

CP is a continuation pointer 

for node nj 

for node nj 

Figure 8 - Typical representation of a multiple-level global structure 

In Section 1, a method was outlined for converting any general tree 

structure to a binary tree. This transformation closely resembles the actual 

representation used for MUMPS globals. All the implementations surveyed have 

only one pointer from a parent node to the set of its children. When an arbitrary 

global is transformed to a binary tree, it can be seen that traversing the left 

subtree represents tracing a down pointer, while traversing the right subtree 

represents continuing within a block or following a continuation pointer. 

Figure 9 is a redrawing of Figure 8 to permit comparison between the binary 

tree and the global structure. 
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Figure 9 - Global of Figure 8 redrawn to show storage structure as a binary tree 
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3.2 Global data structures 

3.2.1 A data representation technique 

Each node is stored in a disc block as a subscript (its index), along with 

data consisting of a down pointer and/or a value. A value associated with a 

node may be either numeric or string. The structure of the node is dependent 

upon the existence of a down pointer and upon the type of data (if any) associated 

with the node. For the MUMPS language, the following types of nodes can be 

identified: 

1) Integer value 

2) Real numeric value (noninteger) 

3) String value 

4) Pointer only 

5) Integer value plus pointer 

6) Real numeric value plus pointer 

7) String value plus pointer 

Figure 10 shows ways in which each of these node types can be represented on 

disc storage in an unambiguous way. Various specific implementations may 

choose to modify this scheme to achieve a more compact storage scheme or to 

accommodate specific ranges of subscripts or values. Within the present 

discussion, the following assumptions have been made: 

1) Subscript values require four bytes of storagel 

2) Numeric values require four bytes of storage 

3) A string node will fit in one sector. 

1 By limiting the subscript value range to 29 bits instead of 32, for example, 
a 3-bit code indicating the type of node could be packed into the same byte 
with some subscript information in order to effect compression of storage. 
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Number of bytes 

IT Subscript ! Integer value I 
1 3 4 4 

a) Integer value node 12 

QI Subscript Real value 

1 3 4 4 

b) Real value node 12 

~----------"---su_b __ s_c_r_i_p_t __ _._ ____ L_e_n_g_t_h ____ _,_c_h_a_r_a_c_t_e_r_s __ w_i_t_h __ p_a_d_d_i_·n_g__, 

1 3 4 4 N((Length+N-1)/N) 

c) String value node (N characters per word) 
(String is padded with nulls to an even word boundary) 12+N ((Length+N-1) /N) 

Q] Pointer Subscript 

1 3 4 

d) Pointer value node 8 

G Pointer Subscript Integer value] 

1 3 4 4 

e) Pointer with integer value node 12 

~I Pointer Subscript. Real value 

1 3 4 4 

f) Pointer with real value node 12 

~ Pointer Subscript Length Characters with padding 

1 3 4 4 N((Length+N-1)/N) 

g) Pointer with string value node (N characters per word) 
(String is padded with nulls to an even word boundary) 12+N((Length+N-l)/N) 

Figure 10 - Representation of different types of global nodes 
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3.2.2 Data storage compression 

3.2.2.1 Pointer and numeric optimization 

Some comments should be made about the representations shown in Figure 10. 

In several instances, more space has been used than might seem necessary. In 

particular, four bytes are used for storing the length of a string in characters 

(Figures lOc and lOg), and four bytes are used for storing the type of node when 

there is no pointer (Figures lOa, lOb, and lOc). The reason for illustrating 

things in this manner is the intent of treating these values consistently as 

integers, since many computer systems are best designed for dealing with 

integers. Also, a high-level language implementation of MUMPS would work most 

efficiently with that representation. 

It is clear that assembly language implementations of globals on byte-

oriented machines could use disc storage more effectively, by storing the 

string length in a single byte (for implementations where the maximum string 

length is 255 characters) and by distinguishing between integer values with 

and without pointers as shown in Figures lla and llb. 

Number of bytes 

1 Subscript (Integer val~el 
1 4 4 

a) Integer value node 9 

I 5 I Pointer Subscript I Integer value I 
1 3 4 4 12 

b) Pointer with integer value node 

Figure 11 - Byte-oriented representations of global nodes for integers 

This approach saves three bytes for each node where there is an integer value with 

no down pointer. The same approach can be applied for real number and string 

valued nodes where there is no pointer. For a given global. then, the possible 

savings in bytes is three times the number of terminal nodes (leaves). 
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Three bytes have been assigned for the pointer in these representations. The 

pointer is used to point to a block elsewhere on the disc and thus can take on 

a range of integers equivalent to the number of blocks on the disc. For some 

smaller discs (such as cartridge discs), the number of blocks can be represented 

with as few as fourteen bits, or two bytes, permitting a further reduction in 

space utilization. However, since larger disc systems require more than sixteen 

bits for their addressing scheme, implementors are cautioned against restricting 

pointer values to two bytes, since eventual conversion problems will result 

with the changeover from a small to a large disc system. 

Only four bytes have been allocated for the storage of real values. This 

is based on the assumption that real values will be handled through the use of 

floating point arithmetic, and not through decimal arithmetic or string 

arithmetic, which are possible alternatives. The 32 bits used for floating 

point values on most computers permit the representation of decimal numbers 

with an absolute value in the range lo-63to 1063 with a precision of approximately 

7 decimal places. For implementations in which the given range is inadequate 

or in which greater precision is required for computation, more bytes should 

be allocated for floating point values. The allocation of six or eight bytes 

for floating point values produces the effect of double precision arithmetic 

and can be used to allow a wider range of values or a greater degree of 

arithmetic precision, or both. Readers interested in the problems of floating 

point arithmetic are referred to [Sterbenz, 1974]. 

3.2.2.2 String storage considerations 

The representation for strings contains the length of the string in 

characters as an explicit value. Previous implementations of MUMPS (on the 

PDP-11 for example) stored an off set which pointed to the first word of the 

next node. These methods are functionally equivalent; length as used here 
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more clearly illustrates the space requirement for the character string itself 

(see below). The number of words required is a function of the number of 

characters in the string (L) and the number of characters stored per word on a 

given computer system (N). The formula is given by: 

words = (L+N-1)/N 

where the division is an integer division. Thus, on a computer where four 

characters are stored in a word, a string of length 18 would require five words 

of storage; i.e., (18+4-1)/4 = 21/4 = 5. 

The MUMPS Level 1 Standard provides a maximum string length of 255 

characters, which may be in excess of the physical disc block size for some 

computer systems. It is thus important to have a mechanism for storing a 

string when its length is greater than the size of a disc block. As in previous 

MUMPS implementations, a node is stored in a single block, unless the size of 

the node itself exceeds the block size. For example, if the remaining space 

in a block is 10 two byte words and an existing node within that block acquires 

a string value of 30 characters in length, the node will be removed from the 

old block, and a new block will be attached to the sibling chain. The node 

and its string value will then be stored in the new block, and the last word 

of the old block will hold a continuation pointer to the new one. 

The simplest solution to the problem of storing a string larger than the 

physical block size is to continue to utilize the last word of the block for 

a continuation, as just described. Then, part of the string is placed in the 

first block, and the remainder in the next (and possibly succeeding) blocks. 

By using the length of the string along with a sequence of continuation pointers, 

it is possible to locate nodes following the "long string" node, or to retrieve 

the "long string" in pieces and assemble the entire string. This technique 

requires the string length to be explicitly stored with the node. It should 

be noted, however, that this approach adds complexity to the searching 

algorithm, and to the compaction method described below. 
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3.2.3 Data base structure for globals 

It is now possible to examine the total representation of globals by 

combining the information about pointers with the information about structure 

of individual nodes. Each global uses one or more disc blocks of length m, which 

are laid out as in Figure 12. The first word of the block indicates how many 

words in the block are use~, the last word of the block is a continuation pointer 

(or 0 if there is no continuation), and intermediate words hold information on 

the nodes. 

Using this information, then, the part of the global G in Figure 5 from 

Section 1 can be depicted in Figure 13 as it would be implemented according 

to this scheme. (Figure 13 is slightly stylized for ease of comprehension 

and does not correspond precisely to the actual implementation). 

Disc Block 

word 1 offset (i) 

node 1 

node 2 

. 

. 

. 

node n 

word i 

unused 

word m continuation ptr. 

Assume fixed-length disc blocks of m words 

Figure 12 - Global disc format 
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3.2.4 Global directories and global creation 

Figure 13 introduces the notion of a global directory. The global directory 

is used as the initial entry point table for globals within the data base. It 

contains the root nodes for all global references. In handling global directories, 

existing implementations use one of the two general techniques discussed below, 

or variations of them. 

The first method treats the root nodes of the globals differently from 

lower-level nodes. Typically, a fixed number of words are allocated for each 

root node entry in the global directory; this allows a faster search of the 

directory. In this scheme, the entire global data base is accessible to all 

users of the MUMPS system, so that there is only one global directory, which 

is normally held in primary memory for efficient searches. Each directory entry 

contains the symbolic name of the global, and a pointer to its first-level 

head block. The initial word of the directory may contain a count of the 

number of globals in the data base. 

With this scheme, globals cannot be created dynamically with ease, so 

usually, the global creation process is an off-line task, using special utility 

functions. Also, the root nodes cannot be deleted dynamically. The advantage 

of this method is that it gives stability to the global data base, especially 

if the globals created off-line can pre-allocate disc blocks (see Section 4.3). 

This helps prevent globals from becoming overly fragmented on a large disc. 

The disadvantages are that the fixed data base is rather inflexible, and that the 

root nodes are not handled in a manner consistent with lower-level nodes. Also, 

the root node usually cannot have a value associated with it. Thus, although 

this method has been used, it is primarily of historical interest, as the MUMPS 

Standard allows the root node of globals to take on a value. Once the root node 

must accommodate a variable-length value, the fixed-length directory is inappropriate, 
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so the second method below is more reasonable. Implementors who wish to 

disallow values at the root node may still use this technique, however. 

The second method treats the root nodes of the globals exactly like the 

lower levels. Thus, the global directory can be viewed as the set of first­

level nodes for a higher-level structure. The root node of the hierarchy which 

points to the global directory is usually part of the user information table, 

so that each user has his own set of globals. When a user enters the system, 

the pointer to his global directory is loaded once into his information table. 

This pointer is usually to a head disc block for the directory (since more than 

one block may be necessary to hold the directory). The same disc block layout 

and searching algorithm used for lower-level global nodes is employed for the 

directory. Some systems even transform the name (root node) of a global to an 

integer value which "looks" like a subscript (hashing). This "subscript", and 

possibly a value, are stored in the directory block, along with a pointer to 

the first-level head block. Figure 14 illustrates this hierarchical directory 

technique. 

Under this scheme, globals can be created and deleted dynamically, using 

the MUMPS language. An assignment to a global whose name (root node) is not 

in the global directory creates a new node in the directory as described above. 

This dynamic mechanism facilitates on-line global creation and deletion by user 

programs. Also, some measure of security is provided by giving each user his 

own set of globals. 

Usually, there are also "library globals" on such systems, which are primarily 

read-only globals which any user may reference, but not modify. In this case, 

each user information table also has a pointer to the system library global 

directory. Some convention is usually established to distinguish library global 

names from user globals (for example, all library global names may begin with"%"); 
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Figure 14 - MUMPS global directory structure 
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this prevents the system from always searching both directories, eliminating 

considerable overhead. Library globals are normally created and modified by 

special "privileged" functions, and are used as common data bases among a 

similar class of users. 

The flexibility of this scheme introduces some added complexity to the disc 

management. More attention must be given to disc allocation techniques, as a 

multi-user system dynamically creating and deleting globals could badly degrade 

efficient accessing. Also, one user should be prevented from expanding his 

global data base until he monopolizes disc usage at other users' expense. In 

general, though, this method has been employed by more recent MUMPS implementations, 

as its flexibility and consistency of node treatment are far more advantageous. 

3.3 Search structures 

3.3.1 Node references and modifications 

Within a MUMPS program, reference can be made to a global value or an 

assignment can be made to a global node. In both cases, it is. 1necessary for 

the system to search for the existence of a node with a given set of subscripts. 

The general rule for searching is as follows: 

1) Go to the disc address pointed to by the global directory for that 

global, 

2) Compare the subscript reference in the program with the subscript 

value in the global node on the disc. If there is a match, proceed 

to step 3; otherwise, go to the next node in that disc block or to the 

first node in the continuation block if that block is exhausted. If 

there are no more nodes, the search fails. 

3) If all of the subscripts in the program reference have been matched, the 

search is successful. Otherwise, follow the down pointer from the last 

successfully matched node on the disc to compare wlth the next subscript 

in the global reference. Return to step 2. 
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As an example of this, consider a program reference to AG(4,l,l,3,2) in Figure 13. 

The global directory points to block 1. Block 1 is searched with unsuccessful 

comparisons for 1,2, and 3, until 4 is matched. The successful match on the 

first subscript means that search should proceed, looking for a match on the 

second subscript. The down pointer from the match points to block 4, where a 

search for a 1 occurs. That search is successful and the search for the third 

subscript (1) occurs in block 5. That is also successful, so the search for 

the fourth subscript occurs in block 6, according to the down pointer from the 

successful match in block 5. The fourth search succeeds with the match of the 

subscript 3, yielding a down pointer to block 9, which is searched for the fifth 

subscript (2). When that search succeeds, there are no more subscripts in the 

program reference, so the global search has been successful. If any of the 

search attempts had failed, then the global search would have been unsuccessful. 

Use of the naked reference can reduce the search time for a node. Whenever 

a global reference is made, a pointer to the head block of the lowest level re­

ferenced is saved in the user information table. Then, when a naked reference 

appears, the search begins immediately with this head block. Search time may be 

further reduced in partially ordered sibling levels by using the cyclic search 

technique described in subsection 3.3.2 for the $NEXT function. 

Because of the time required for disc accessing, it is always the case that 

the disc block being searched is brought into primary memory in a buffer area 

in order to expedite searching. In some implementations, each user has a 

designated disc buffer area (one or two disc blocks in size). In other implemen­

tations, the entire system has a pool of buffers which can be allocated to in­

dividual user partitions as needed. 

The structure of individual nodes and their disc blocks can be changed by 

the execution of the SET and KILL conunands. In the SET command, it is possible 

to alter the value of existing nodes or to create new nodes and blocks. In 
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the KILL command, nodes and their descendants may be deleted, resuiting in the 

return of certain blocks to a central pool for the entire data base (see below). 

If the size requirements of a node contract, through a SET command, the 

new node may be placed in its old location, with subsequent nodes in the block 

relocated to prevent fragmentation (the existence of unused space between 

nodes). Figure 15 shows what happens when node ij's space requirements 

are reduced by K words. 

word 1 N word 1 N-K 
no-cfe i1 node il 
node iz node iz . . . . . . 
node ij-1 node ij-1 

node ij 

node ij+l 

word L 

word M 

node ij 
node ij+l 

. . 

word L ---
-;c:r~ -M-K ~ 

. . . node im . 
node im word N-K 

word N 

0 ··-I 
0 

Figure 15 - Recompaction of global disc block 

If the size requirements of a node expand, the opposite effect takes place. 

Nodes are pushed back within the block to accommodate the extra space requirement. 

However, sometimes this step is not possible, since the expansion may overflow the 

size of the block. In this case, several options are possible: 

1) eliminate the enlarged node from the block and recompact the block without 

that node, placing the changed node in a new block with suitable continuation 

pointers; 

2) leave the enlarged node in its place in the previous ordering, moving the 

nodes at the end of the block to a new block as necessary; and 

3) perform a more global space optimization for the nodes in the block and 

its continuation blocks. 
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The third method is rarely used, however, since the processing time and the 

I/O time required are rather significant. When the space utilization of a global 

becomes particularly bad, however, it is possible to perform this type of 

compaction. 

When a new block is required, either because of expansion of node size, 

creation of a new node with a value, or creation of a new node at a lower level 

which requires a pointer, blocks may be obtained from a r.entral pool of blocks. 

The new block can be connected to the existing global structure by means 

of continuation pointers for new descendant nodes. Thus, if a node holding a 

string value obtains a descendant through a SET assignment, then a new 

block must be obtained to hold the descendant node and the node holding the 

string must be changed from type 3 (string) to type 7 (string with pointer), 

with the address of the down pointer being stored in the node. 

Since MUMPS globals are treated as sparse arrays, all searching is explicit. 

Thus, there is no requirement for ordering the nodes in a block according to 

ascending or descending subscript values. As a result, the system may perform 

arbitrary reordering of nodes and their values in order to use storage most 

effectively. (The reader should not be misled by Figure 13, which may give 

the impression that some type of ordering exists.) 

3.3.2 Tracing and existence functions 

Because of the dynamic nature of MUMPS globals, it is sometimes impossible 

to know beforehand the node structure at a particular level of a global array, 

or whether a particular node is a terminal node or has a value. To aid in 

determining this information, the MUMPS language provides two functions: the 

$NEXT function and the $DATA function. 

The $NEXT function provides a facility for tracing all siblings at a given 

level below the root node in ascending numeric subscript order. In Table I of 

Section 1, several examples are shown using this function on the global in 

Figure 5. The $NEXT function returns the value of the next numerically higher 
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subscript at the lowest level referenced in its global argument. A -1 is allowed 

as the lowest level subscript in $NEXT, so the value of the smallest numerical 

subscript on that level can be determined. If $NEXT returns a -1, no higher 

subscript exists at the level referenced. 

In implementing the $NEXT function, the entire lowest level referenced is 

normally searched for the next higher subscript, beginning with the head block 

for the level. Some optimization can be achieved by beginning the search in 

the present block of the sibling chain, wrapping back to the head block when 

the end of the chain is reached, and then searching up to the present block. 

This requires that the system "remember" the starting block of the cyclic 

search. Also, note that this cyclic method is useful only when the $NEXT 

function argument is a naked reference, as otherwise the search will always 

begin in the head block of the level. Another technique would be to recognize 

that global subscripts are nonnegative integers; the search can stop if 

the next consecutive integer is encountered prior to the end of the chain. 

Thus, in Figure 5 of Section 1, $NEXT(AG(l)) would stop searching as soon 

as it found AG(2), since there cannot be any intervening subscript values. 

This can save time with large sibling sets that are at least partially 

ordered. However, it does entail more overhead in the search algorithm, 

as this next integer test must be made each time a node is encountered. 

The $DATA function provides a way of determining whether a particular global 

node exists, and if it does, whether it has descendants or data associated with 

it. Again, Table I of Section 1 illustrates the $DATA function. The $DATA 

function returns an integer number which can be viewed as a binary truth 

value. The units "bit" is on (one) if the node specified in the argument of 

$DATA has a value associated with it; if it does not the "bit" is off (zero). 

The tens "bit" is on if the specified node has descendants (i.e., contains a 
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pointer to lower levels); otherwise, the "bit" is off. Thus, the values 

returned by $DATA are interpreted as shown in Table I. 

In implementing $DATA, a search of the lowest level is made until the 

specified node is encountered. On an unsuccessful search ($DATA returns 0), 

the entire level must be searched. The cyclic searching strategy discussed for 

$NEXT can also be introduced here to improve efficiency. 

3.4 Allocation and de-allocation of globals 

In subsection 3.3, reference was made to a "central pool" of disc blocks 

from which available blocks could be obtained and to which unneeded blocks could 

be returned. In order to manage the total disc space available for the storage 

of globals, programs, and directories within a MUMPS system, there must be a 

strategy for assigning a disc block to a particular global and making that 

block unavailable to other requests, as well as a strategy for making the block 

available again when it is no longer needed. These strategies are called 

allocation and de-allocation. 

First, however, a description of the physical layout of a disc storage 

device will help clarify the terminology. 
sector 
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I 

1 I~-+--- cylinder 
I I I 

I I 
I .. -· - - -· _I - -' - I I I 
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Figure 16 - Physical layout of a disc 

Figure 16 shows two platters (each platter contains two read/write surf aces) of 

a removable pack-type disc. Each platter is divided into many tracks, which are 

concentric rings on the disc surface. Tracks which share the same concentric 
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ring on different platter surfaces make up a cylinder. A track is subdivided 

into a number of disc blocks, which is the unit of storage used in global 

management. Blocks which are aligned vertically in a cylinder make up a 

sector, which can be viewed as a slice of a multi-layer cake. Typically, discs 

have a movable unit with a read/write head for each platter surface, so that 

any block in a given sector can be accessed effectively simultaneously, although 

only one block can be read or written out at a time. Also, as long as all 

needed disc blocks fall within one cylinder, they can all be referenced or 

modified without moving the disc head mechanism. This improves access time 

substantially. 

There are two techniques that have been widely used for the allocation of 

disc blocks, not only in MUMPS, but also in a variety of other operating systems. 

The simplest of these is called the bit map technique; the other method is 

a linked block technique. 

In the bit map technique, each block on the disc is represented by a 

bit of information which is set to 1 if the block is in use and 0 if it is 

available for allocation. One bit is required for every block on the disc, 

so that for a typical large disc system, having 20 surfaces, each with 400 

tracks and 32 blocks, a total of 256,000 bits of information is required. 

This information can be stored in 16,000 16 bit words. In computer systems 

which have extensive quantities of primary memory, it is not uncommon to store 

part or all of this information in the primary memory. However, it is more 

common to store the information on the disc itself, either in a single "file" 

or separated by track. As shall be shown later, it is often advantageous to 

allocate a block on a particular track. If the bit map for disc allocation 

of a track is kept on the track, even greater efficiency can be achieved. 
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In the linked list technique, the principle of chaining with continuation 

pointers is used. All of the unused blocks are linked together by continuation 

pointers; when a block is requested, the unused block can simply be removed 

from the end of the linked list. When the block is no longer needed, it can 

be linked back into the linked list. The techniques which are used are similar 

to those used for list processing [Knuth, 1974]. It is possible to maintain 

only one linked list for the entire disc, but it is more common to keep a 

linked list for each track of disc so that available blocks can be located on a 

given track. 

For either of these techniques, there must exist operating system processes 

to accomplish the allocation and de-allocation. These processes must be 

treated as "critical regions" [Dijkstra, 1968], since various MUMPS programs 

trying to allocate and de-allocate disc blocks simultaneously could interfere 

with each other. If there are not proper provisions made in the operating system, 

two users could end up having the same block allocated to them. One user must 

be permitted to complete the allocation process before another is permitted 

to begin. This subject is discussed in somewhat greater detail in the companion 

paper on the structure of a MUMPS operating system. Readers wishing more 

familiarity with the issues involved are referred to [Shaw, 1974] or other 

recent operating systems books. 

3.5 Programming considerations 

Although it is not the purpose of this report to recommend effective programming 

techniques in MUMPS, it should be apparent that the subscript structure chosen 

for globals can have a significant effect upon t.he performance of user programs, 

when working with global implementations of this nature. Both the number of 

continuation blocks at a given level and the number of down pointers which must 

be traversed to reach a given node are important considerations in the design 
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of global structures and their application programs. The objective of the 

overall design effort should be to minimize the number of disc accesses that 

must be made. 

The structure of the global itself is often of overriding importance in the 

design of MUMPS programs. A physical structure must occasionally be selected 

strictly on the basis of performance and efficiency with little or no consideration 

given to the "natural" representation of the global information. (It should be 

noted that similar problems exist in other progrannning systems and that 

development of effective data base specification languages with efficient storage 

and retrieval mechanisms is a major research problem [Date, 1975].) 

The following example should indicate the nature of this problem. Suppose 

that one wishes to search a large, one-dimensional array (let us assume 4096 

nodes) to locate a given value. Suppose further that the values can be arranged 

into ascending order. In some programming languages, then, it would be possible 

to declare a one-dimensional array, sort the elements, and apply binary searching 

methods [Knuth, 1973] to locate the desired value or to determine its absence, 

in 12 or fewer tries. 

In MUMPS, however, the problem is quite difficult, first because all 

subscript searching is explicit rather than indexed, and second because a one­

dimensional structure is especially inefficient for explicit searching. With 

existing MUMPS implementations, a one-level global of n nodes will require an 

average of n/2 comparisons for a successful search and n comparisons for an 

unsuccessful search. The volume of searching can be reduced only by 

partitioning the n nodes into m levels, in order to achieve the same effect 

as a binary search. In this case, though, MUMPS requires the explicit creation 

of a physical search structure rather than an arbitrary searching algorithm 

for a linear structure. 
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If the 4096 nodes are in a one-level array, then a successful search 

requires, on the average, 2048 comparisons. If the 4096 nodes are rearranged 

into hierarchical fashion (even though the nodes have a logically linear 

relationship with each other), considerable improvement can be achieved. Thus, 

by having 64 first level nodes, each with 64 children, the average search can 

be reduced to 64 (32 at each level) plus one down pointer traversed. At four 

levels, with 8 first level nodes, and 8 at each succeeding level, the average 

search can be reduced to 16 + three down pointers traversed. (Total search time 

is increased by the time required to compute the subscript values to four levels, 

but as disc searching time is the critical resource, then the computational time 

increase is acceptable.) In general at each of them levels m~/2 nodes per 

access will be searched; in order to find a given terminal node, a total search of 

m (m~2) nodes will be required. It should be noted that there is an extra disc 

access for each additional level, so that, for this case, 3 or 4 levels represents 

an optimal balance between address computation and disc access. 

The intent of this rather lengthy example is to show that it is to the 

programmer's advantage to optimally structure a file, even when its nodes have 

no hierarchic relation. Considerable testing is required in order to identify the 

proper tradeoff between address computation and traversal of disc blocks. The 

difficulty of handling this apparently simple case in MUMPS provides motivation 

for the discussion of alternate global types (see subsection 5.2). 
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4. Optimization Considerations 

4.1 Overview 

Because MUMPS is used primarily for data base management applications, the 

performance of the various data base storage and retrieval functions is a major 

determinant in the overall performance of MUMPS systems. The efficiency with 

which these operations are carried out affects the total workload of the system, 

the amount of time spent on user programs as opposed to operating system 

overhead, and the response time which can be provided to the user at the 

terminal. 

Because the MUMPS language and the MUMPS operating system were designed for 

rapid processing, it is usually the case that MUMPS programs and systems are 

bound by the speed at which the input/output operations of the data management 

function can be performed. Accordingly, improvements in system performance 

can be best achieved through improvements in the performance of the MUMPS global 

system. 

The issues which are involved in trying to optimize the MUMPS global system 

include scheduling of disc requests, choosing between pre-allocation or dynamic 

allocation of disc storage to a global, and minimizing the effects of arm movement 

(rotational latency) upon storage and retrieval. This section will treat each of 

these considerations. 

4.2 Scheduling of disc requests 

Scheduling processes are concerned with determining the order in which a 

sequence of requests for use of a given resource will be serviced. In a 

multi-user environment such as MUMPS, it is common for the execution of several 

user programs to be blocked while awaiting the completion of a disc operation, 

possibly a global update or reference. The disc scheduler must determine which 

programs are to be served first and which must wait. 
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Most schedulers operate upon two primary considerations: the priority of 

the program making the request and the optimizing of placement of data on the 

disc. 

In MUMPS, each program can execute at a different priority level. Most 

scheduling schemes which have been implemented for MUMPS penalize the user 

whose program makes heavy use of processor time in carrying out computations 

while giving a higher priority to those jobs which are more interactive. 

This same priority scheme could be used in the disc scheduling algorithm, 

although it was designed for determining which programs are permitted to have 

the central processor. While it would be possible to apply the same technique 

to use of the disc subsystem, there are other considerations which can be taken 

into account in order to achieve improved service. 

An important determinant of overall performance in MUMPS systems is disc 

access time, as opposed to disc transfer rates or central processor time. 

Disc access time has two components: arm movement and rotational latency. 

Arm movement (or seek time) refers to the interval of time required to move the 

disc read/write head to a given track position. Depending upon the distance 

which must be covered by the read/write head, the elapsed time for this 

operation may range up to 100 milliseconds (ms.). Rotational latency refers 

to the interval of time required for a particular disc block on a track to 

come underneath the read/write head. For a typical disc rotating at 1500 r.p.m., 

the average rotational latency is 20 ms. Thus, the time taken to retrieve a 

given disc block may range from close to zero to 120 ms., due to the effects 

of arm movement and rotational latency. 
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From the standpoint of the operating system, attempts must be made to 

minimize delays caused by arm movement and rotational latency. Optimization 

can be carried out at two points within the operating system: 

1) in placement of the blocks of a global on the disc; 

2) in selecting the order in which disc requests will be served. 

This latter problem can be handled by the disc scheduler. (The former 

problem is handled partly by the allocation policies discussed below.) 

Every global request maps onto a request to access a particular block of 

disc storage. In a multiprogrannning environment, various user jobs will issue 

global requests concurrently. In addition, the nature of the hierarchical 

data base is such that any full global reference (not a naked reference), will 

require multiple disc accesses. The actual number of accesses required is 

equal to the level of depth of a node within the global (i.e., one access per 

subscript in the global or naked reference), plus an additional access for 

every continuation block searched in looking for a given subscript at each 

level. 

For example, a MUMPS statement such as.: 

SET X= /\ G (3, 1, 4) 

requires at least four global accesses, one for the global directory to locate 

the header block for G, and then one for each of the three subscripts. The 

existence of continuation blocks at each level may add to the total number of 

accesses. 

As a result, a global reference generates not one, but a series of disc 

requests. Furthermore, the addresses of successive accesses are only obtained 

sequentially, each from the previous node. It is the overall time that is 

required to perform these multiple, chained accesses that determines the response 

time to each single global reference. 
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From the standpoint of scheduling, then, there is often a queue of disc 

requests waiting to be served. There are several types of scheduling algorithms 

which can be utilized in servicing this queue. The first method is first-come, 

first-served (FCFS), in which the disc requests are simply taken in the order 

in which they are generated by the user programs. Since this method may 

involve different users' globals, widely scattered on the disc, there is a 

tendency for this method to use considerable overhead in arm movement. Its 

primary advantage is the simplicity of the scheduling algorithms. 

Another scheduling algorithm used in time-sharing systems is called 

SCAN, in which the disc arm moves from the outermost cylinder of the disc 

to the innermost one and then back to the outer, reading or writing records 

in both directions in the order in which they are encountered. A similar 

algorithm is known as C-SCAN [Teorey, 1972], in which the arm moves from the 

outer to the inner cylinder servicing requests, and is then immediately moved 

back to the outer cylinder without servicing requests. 

With both SCAN and C-SCAN, the queue of disc requests must be maintained 

in sorted form according to cylinder number, with every disc request being 

inserted at the appropriate point in the ordering. These methods are normally 

implemented via a linked list arrangement, with new requests being linked 

into the appropriate place in this list and completed requests being deleted. 

FCFS is implemented more simply with a one-dimensional array used as a queue, 

along with pointers to the beginning and end of the queue [Knuth, 1974]. 

SCAN and C-SCAN have been shown to be more efficient in terms of disc 

retrievals for those systems where I/O requests can be satisfied by a single 

disc access. It is not clear that these results are applicable to MUMPS, 

since each I/O request (a global reference) can initiate several chained disc 

accesses. Conventional methods of simulating, measuring, and comparing 

different scheduling policies do not seem to apply as well to MUMPS. 
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It appears that placement 0£ globals on the;~isc, rather than scheduling 

of accesses, is a more important factor ini imt>roving the performance of disc 

system storage and retrieval. The next subsections will treat these allocation 

issues in more detail. 

4.3 Allocation strategies 

4.3.1 Minimization of seek time and rotational latency 

In the previous subsection, it was observed that both seek time and rotational 

latency are important factors in determining the number of disc requests that 

can be served in a given period of time. By reducing delays caused by these 

factors, the throughput of the system can be increased, making it possible 

to provide users with a better response time. Scheduling disc requests to 

minimize physical movement of the arm can help in this regard, but a larger 

contribution can be made by placing the blocks of a particular global on the 

disc in such a way as to eliminate arm movement and minimize rotational latency 

in making successive accesses to that global. 

On a large disc with a capacity of 50 million characters or more, the 

number of characters which can be stored on a single cylinder is in excess of 

100,000. Thus, it is possible to allocate storage for a global in such a way 

as to eliminate the need for significant head movement, unless the global grows 

quite large. For large globals, it is possible to store the information on 

contiguous cylinders so as to minimize the amount of movement needed. With 

the bit map or linked list approaches to disc allocation discussed above, it 

is possible to select blocks from a particular cylinder or area to hold global 

nodes as the size of a global expands. This technique can be extremely effective 

and easily implemented until the amount of storage on the disc exceeds 80% of 

the available disc space, at which point it becomes increasingly difficult to 

perform optimal allocation. As a result, the allocated sectors for a global on 
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a nearly full disc system may be widely scattered and may result in considerably 

degraded performance. Subsection 4.3.3 discusses some reallocation techniques 

which can be used to help alleviate this problem. 

This nearest-cylinder approach is an effective solution to block allocation 

for expanding globals. The primary remaining problems are now minimizing the 

interference among the various users of a global, and managing the rotational 

latency delays. 

Both multi-user interference and rotational latency are extremely difficult 

problems for which only the barest outline of solutions can be proposed. 

In the multi-user case, there are a number of user requests pending at any given 

instant. Some of these requests are for globals and others may be for programs 

accessed through the MUMPS program directory. Programs are stored on the same 

disc as are globals on many MUMPS implementations. As a result of this 

situation, the interleaving of disc requests among multiple users can 

counteract the optimal allocation of blocks for a global. 

Rather than serving all of one user's global reference as a continuous 

sequence of disc requests, these references are interspersed with others in 

many instances. Thus, the information content of a block must be obtained 

before determining whether a continuation block must be searched. In the 

case of a down pointer, however, it is necessary for the MUMPS interpreter to 

carry out some computation to obtain the value of the next subscript in the 

global reference from the execution stack. It is normally the case that other 

disc requests are served during these times, often causing the read/write 

head to move from the cylinder which holds the global being referenced. This 

movement, designed to maximize the number of disc requests served, may actually 

be counterproductive if there is considerable arm movement. 

- 46 -



A better method for minimizing multi-user interference may be to give an 

individual user a high priority throughout a complete global reference unless 

that user tries to access a global node which has been locked out by another 

user. This approach assumes that blocks have been allocated within a global 

so as to minimize arm movement and thus applies an overall optimization 

technique rather than a local optimization technique. Additional experiments 

are necessary to determine the utility of this approach. (Virtually, all 

techniques work for lightly loaded systems; they must be applied to those 

systems where the load is heavy.) 

The problem of rotational. latency deals with the placement of successive 

blocks in a global. If there are 32 blocks on each track of each cylinder on 

the disc, then it takes approximately 1 ms to go from one block to the next on 

the average moving-head disc system. If one block generates a continuation 

pointer, the optimal placement of the continuation block would be such that the 

read/write head is almost ready to pass over the desired block. If continuation 

blocks are not placed well, there may be a delay of up to 40 ms. before that 

block can be read or written simply as an effect of the rotational speed of the 

disc. The same argument can be applied to down pointers; they should ideally 

produce a disc address which will be reached within a few milliseconds. 

In MUMPS, however, this is an especially difficult problem. When one block 

is accessed and read into a buff er area, it is difficult to determine the 

processing time that will be required to locate the continuation pointer or the 

down pointer. First, the number of nodes that must be searched is variable; 

it can range from one in the case of a single subscript producing a down 

pointer to forty or more in the case of a 256~word disc block having integer­

valued global nodes. Second, the time-shared nature of the MUMPS system makes 

it uncertain as to when that search will be carried out relative to the time 

at which the disc request was completed. With the elimination of the second 
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possibility through the technique of serving a user's entire global request, 

the time variation of searching is large, but may still permit some optimization 

of rotational latency. If we assume that searching for a particular node and 

making a comparison can be done in less than 20 microseconds, then an entire 

block can be searched in less than 1 ms. Accordingly, if continuation blocks 

and down pointer blocks are placed two away from the block which points to them, 

it becomes possible to process an entire block and request the next block 

(whether across or down) before that block passes under the read/write head. 

If the transfer rate for the disc is particularly slow or the processing time 

is higher than the number suggested here, the same principles can be applied, 

but the separation between a block and its successors might have to be larger. 

It is obviously impossible to place all of the continuation blocks and 

down pointer blocks in an ideal position from the standpoint of rotational 

latency. However, by using all of the blocks which are separated from a given 

block by a given number of blocks, a rather high efficiency can be achieved. 

It should be remembered that the disc block may be on any of the platters of 

the disc, as long as it is in the same cylinder. Thus, for a typical disc, 

twenty blocks may be placed at a given distance from a block. 

The savings which can be achieved through use of this technique should 

not be underestimated. When compared to the rotational latency times of a 

random distribution of blocks on a cylinder, a fivefold improvement can be 

achieved by placing a successor block within four places of the optimal 

placement. 

MUMPS systems which are ''tuned" for efficient disc management apply this 

optimal allocation of blocks to minimize seek time and to minimize rotational 

latency. Furthermore, the simplicity of the solution to minimization of seek 

time makes rotational latency the prime determinant of service times for disc 
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block requests in most MUMPS systems. Readers who wish to develop a mathematical 

model for dealing with rotational latency and scheduling disc requests to 

accommodate rotational latency are directed to [Coffman and Denning, 1974]; it 

should be noted, however, that disc requests in MUMPS do not fit the Poisson 

distribution model of interarrival times which Coffman and Denning assume. 

4.3.2 Pre-allocation vs. dynamic allocation 

It was observed in the previous subsection that allocation, rather than 

scheduling, is the most important factor in achieving a layout of global data 

on the disc which leads to efficient handling of disc requests. An efficient 

allocation method, combined with a simple scheduling policy will result in 

better performance than an inefficient allocation scheme with a sophisticated 

scheduling policy, since the loss of efficiency caused by poor allocation will 

be directly proportional to the average number of disc accesses that are 

required for the average global reference. 

One of the problems which can occur in performing space allocation is that 

the disc can become full, or nearly full. In this case, it becomes very 

difficult to achieve good placement of blocks relative to their predecessors. 

When the amount of global storage approaches the maximum capacity, it is likely 

that a serious degradation of performance will result. 

One technique that has been suggested and used to handle this problem is 

called pre-allocation. Rather than assigning new blocks dynamically as they 

are required by individual globals and returning unused blocks to a central 

pool, it is possible to assign a number of blocks on one cylinder or on contiguous 

cylinders prior to the global actually being used. All blocks allocated for a 

global are kept in a pool for that global only. If a global expands beyond its 

preassigned limits, an error condition may be raised by the program, requiring 

rearrangement of the disc or a change in allocation boundaries. 
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Both pre-allocation and dynamic allocation affect the distribution of the 

disc blocks comprising a global. With pre-allocation, the scattering of blocks 

across many cylinders can be significantly reduced, thereby reducing the time 

required to access many nodes from one global. With dynamic allocation, the 

expansion of global sizes in a growing data base can have a deleterious effect 

upon system performance and upon response time. 

The use of pre-allocation creates several new problems, however. First, 

it is somewhat dependent upon the ability of the user to accurately estimate 

the storage requirements for the global. Since the user need not and probably 

will not understand the details of the global implementation, this estimate 

can only be made in gross terms, such as the largest number of nodes the 

global will possess, with the system estimating actual disc space based upon 

average node size (a system parameter which can be measured and modified 

over time). Because of the wide distribution of node sizes which is possible 

in MUMPS (from a pointer to a long string with a pointer), the value for the 

average node size will have a large variance, which will tend to make estimates 

inaccurate. In one case, too much space will be allocated for a global's 

needs and be effectively lost to other globals; in the opposite case, too little 

space will be allocated and it will be necessary to perform secondary allocations. 

The second problem with pre~~llocationis that it is dependent upon the growth 

and decay of the individual globals. If most globals are relatively stable, with 

few deletions and with few value changes which result in a major change in the 

size of a node, then space within each block can be used quite effectively 

and the allocation parameters can provide for this stability or for the more 

normal case of slow growth. If globals are highly dynamic in space utilization, 

however, then sufficient space to store the maximum requirements for each 

global must be provided. If the size of two globals is complementary, for 

example one is small and the other is large, or vice-versa, the pre-
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allocation scheme must allocate enough space for the maximum size of both, 

even though this situation never occurs. This example illustrates that 

pre-allocation can result in considerable amounts of lost space. 

It appears that an intermediate scheme works best. Different globals can 

be "assigned" to a given cylinder or set of cylinders by simply locating 

their header on that cylinder. The normal dynamic allocation algorithm will 

then assign new blocks on the same or nearby cylinders. At the same time, 

however, no block is permanently bound to a particular global. Pre-allocation 

of headers achieves a separation of globals and allows more efficient dynamic 

allocation. 

When new globals are created on an existing system, the bit map or linked 

list can be examined to locate the cylinder which has the largest number of free 

blocks. The new global can then be placed on that cylinder with the knowledge 

that the largest possible number of additional blocks for that global can be 

placed on the same cylinder. 

4.3.3 Reallocation techniques 

As has been noted, many of these allocation strategies are ineffective 

when there is little excess storage available. Available storage becomes badly 

fragmented, with the few remaining disc blocks scattered across a number of 

cylinders. It becomes increasingly difficult to allocate disc blocks for a global 

in locations which are optimal for future access. System parameters can be 

built into the MUMPS global system to provide this information. By keeping 

track of the number of free blocks, the frequency of head movement, and similar 

measures, the onset of this problem, with its effects upon users, can be rather 

easily detected. When this condition arises, the best solution is the complete 

reorganization of the entire disc or at least several of the most frequently 

used globals. 
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If the computer system has more than one disc drive, then the fragmented 

disc system should be loaded on one drive and a scratch disc should be loaded 

on a second drive. Then, globals should be copied, one at a time, in such a 

way that the number of cylinders which they occupy is minimized. The global 

directory can be rebuilt to show the new locations of headers. The free blocks 

on the disc should be distributed so that there are at least some adjacent to 

each global. This allocation of free blocks can help to lessen the effects of 

further disc block allocations. 

In the absence of another disc drive, it is possible to perform the 

reallocation with the use of magnetic tape. Globals can be copied to an 

on-line tape, one global at a time, mounting enough tapes so that the entire 

status of the disc can be stored off-line. A scratch disc can then be mounted 

and the tapes can be reloaded using the contiguous allocation technique described 

in the disc-to-disc reallocation method. 

Reallocation in this manner requires the absence of other disc accesses, 

since the state of the disc must be preserved until a copy is made. Thus, it 

must be performed when all other users are blocked from using the system. 

A disc-to-disc copy can be performed in approximately fifteen minutes with 

currently used disc systems; widespread use of 100 million character, high speed 

discs will reduce this time to approximately five minutes. Thus, for all but the 

most critical on-line activities, reallocation can be performed as part of a 

normally scheduled procedure, similar to the programs used to save the status of the 

disc as a protection against disc system failures. 

Reallocation could be invoked in conjunction with pre-allocation methods when 

the system detects an overflow of the original allocation. It could be run for 

the entire disc or simply for a certain specified subset of globals. The 

overflowing global would then be locked out and copied to a larger area, with all 

of the continuation and down pointers suitably modified. 
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Of course, if the total allocation space desired or required by the existing 

globals is greater than that available, no amount of reallocation or optimization 

of allocation will help; more secondary storage (disc) space would have to be 

made available to the system. Most data base management systems seem to have 

a constantly growing data base and most MUMPS systems have behaved similarly; 

it is necessary to recognize the performance characteristics associated with 

nearly full systems and act accordingly. Otherwise, the reallocation program 

can perform reallocation repeatedly with diminishing success, much as the 

garbage collection routines which attempt to locate free space in a list 

processing system when almost all of the space is in use. The amount of productive 

work accomplished quickly approaches zero in both cases. 

Thus, allocation to minimize seek time and rotational latency time are 

essential for good MUMPS global handling. Furthermore, it is necessary to 

try to reallocate disc blocks to improve seek time and latency characteristics 

when the performance begins to degrade. Finally, it is important to be able to 

recognize a heavily loaded disc so that unneeded information can be expunged 

or so that additional disc storage may be acquired. 

It is also possible to reallocate space within a sequence of continuation 

blocks. First, in a dynamic allocation scheme, the continual appearance and 

disappearance of nodes, coupled with rapid growth and shrinkage of existing 

nodes, can result in considerable fragmentation of space. There may be a 

considerable amount of unused space within each disc block. It is possible 

to form a new chain of sibling node blocks. If there is a large amount of excess 

space in the disc blocks at the time of reallocation, then the sibling nodes 

can be compacted into a smaller number of blocks and the excess blocks can be 

returned to a pool of free blocks available for allocation. 
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Another more elaborate reallocation could be made by keeping track of the 

frequency of disc accesses for individual nodes, counting both direct accesses 

and access to descendants of a node. This information could be used to rearrange 

theordering of nodes within blocks so that nodes which are accessed most 

frequently are those which are searched first during the execution of a global 

reference. In particular, nodes which are accessed often should be located 

in the first block, rather than in any continuation blocks, for a set of 

siblings. Optimal arrangement of nodes could then result in fewer blocks being 

accessed. The price for achieving this form of optimization is that each node 

must keep an access count to be used in performing the reorganization. Although 

there appear to be some rather attractive optimizing possibilities associated 

with the use of this method, there is a significant overhead in keeping the 

counts and in performing the rearrangement. For this reason, existing MUMPS 

systems have not used this approach on-line. 

4.4 Direct mapping of traces to disc addresses 

Rather than dealing with the placement of nodes within blocks and the 

placement of blocks on the disc, it is possible to consider a radically 

different approach to global accesses, one which reduces the total number 

of disc accesses. The traditional handling of globals, as discussed above, 

accesses a node by translating the sequence of subscripts in the global reference 

into a path by following the pointers associated with each node through its 

descendants until reaching the desired node. The access time will be further 

delayed by the time taken to search and match each subscript in order to locate 

the down pointer to the children of a node on the path from the header to the 

desired node. (The naked reference circumvents this delay by storing an 

intermediate pointer so as to bypass some number of levels of accessing.) 
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If it were possible to map a sequence of 1 or more subscripts into a 

unique disc address, it would be possible to compute this address directly from 

the global references and retrieve a global value with a single disc access, 

producing a considerable savings in I/O time and therefore user response 

time. 

Bernstein and Tsichritzis [Bernstein, 1974] have investigated this technique, 
,'~ 

which they have termed multiple domain address calculation. They have developed 

an addressing scheme for a subset of the general problem. Their technique 

works when the nodes of a tree-structured file have been decomposed into nodes 

of specific types, with the traces of each node type containing a certain 

known number of indices. They require the specification of a definition tree 

to hold this information, which is then consulted by the sytem prior to each 

address calculation. These constraints make their approach unworkable in MUMPS, 

due primarily to the lack of a priori knowledge about the structure of globals. 

However, a similar scheme is being studied by the authors which would 

compute unique integers and thus disc addresses from subscript sequences of 

varying lengths, without the requirement of any ~ priori knowledge of the tree 

structure. This scheme would be applicable to MUMPS. The fundamental notion 

involved in this approach is the computation of a function which assigns a 

unique positive integer to any trace of length n. (For the mathematically-

minded, this idea is similar to the Godel numbering concept). If small bounds 

can be placed on the value of a subscript and if the number of subscripts is 

restricted to three or four, this technique can be applied. However, in the 

general case, the computational requirements seem to outweigh the potential 

benefits of the use of the addressing scheme. 

There are two other problems which must be overcome if this method is to 

prove useful. First, the computational algorithm must operate upon the subscript 

sequence plus the name of the global to produce a unique mapping. Second, 
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with very large subscripts, the integer produced by the function becomes so huge 

as to exceed the arithmetic capabilities of the computer system. A secondary 

solution would generate an,int~ger within some large range (possibly by modular 

division), but there would then be a searching requirement to locate the proper 

subscript. However, the ability to jump directly to the address on the disc 

of a specific global node remains so attractive within the confines of a 

hierarchical data base system that continuing attempts are being made to modify 

the address calculation procedures and utilize this mechanism whenever possible. 
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PART III - DISCUSSION AND EVALUATION 

5. Analysis of MUMPS Globals 

5.1 Introduction 

The original designers of MUMPS had several goals in mind when the concept 

of globals was introduced: 

1) to provide a file structure that would handle the "several levels of 

structure of a medical record data base, and to support the rather 

complex updating and retrieval needs of such a system" [Gre~es et. al., 1969] 

2) to facilitate sharing of the data base among the various users of the 

system, with appropriate safeguards to avoid time-sharing conflicts 

3) to make the syntax of global usage closely resemble the syntax of local 

array usage in the programming language. 

It can be safely said that MUMPS has successfully achieved all of these goals. 

As with any set of design decisions in a programming language, though, the 

achievement of these goals is reflected in a series of tradeoff s which may 

limit the range of applications for which the language is the best possible 

programming tool. This tradeof f between specialization and generality is a 

natural phenomenon, which is not restricted to computers and programming 

languages, but which can be found throughout the world. When something is 

created or designed to satisfy a specialized purpose, its general utility is 

reduced proportionately to the degree of specialization involved. The 

counterpart of this phenomenon, which the designers of MUMPS have tried to 

avoid, is that things which are designed to be extremely general are not usually 

the best for the performance of a specific task. 

In some sense, then, criticism which is directed at the notion of globals 

as it exists in MUMPS is based upon the desire to have a greater degree of 

flexibility in their usage or to have means for implementing globals more 

- 57 -



efficiently. In the succeeding subsections, certain extensions to the present 

concept of globals are proposed, but the scope of proposals is largely to 

those ideas which can be easily integrated within the present structure of the 

language and within the original designers' goals for the language. In 

subsection 5.4, globals are considered in a broader sense in order to contrast 

them with other techniques for data base management. 

5.2 New global types 
.. 

Tree structures have been used in MUMPS because the flexibility of trees 

allows users to structure their data in a manner that conforms closely to a 

logical hierarchy. With environments which are organized hierarchically, 

such as a traditional medical record, this structure can be extremely attractive. 

Indeed, the correspondence 'between the external appearance of the data and its 

implementation in a programming system permits the programmer to develop an 

information system using MUMPS with minimal difficulties in transforming the 

external representation to an internal representation. 

When information must be stored which is not hierarchically organized, 

however, the system overhead which must be paid for the flexibility of trees 

is not always desirable. For the case of the one-dimensional array illustrated 

in subsection 3.5, a simpler form of structure would permit more efficient 

referencing and access. Furthermore, if the user conceives of the data set in 

a one-dimensional way, it would be desirable to provide a mechanism which 

supports that concept in an efficient way, without the overhead of the general 

purpose tree. 

Two different kinds of globals can be introduced to support these 

one-dimensional structures. The first of these is termed a "sequential" global 

and supports the accessing of nodes in a pre-determined order. The second of 
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these is termed a "random" global and permits nodes to be accessed in an arbitrary 

(random) order. These globals can be cleanly introduced into the syntax of the 

MUMPS language and easily implemented . 

.5.2.1 "Sequential" globals 

A sequential file is one in which the elements may be accessed in only 

one order, beginning with the first element in the file. In order to access 

the nth element in a file, it is necessary to access the preceeding n-1 elements. 

If information is written into a sequential file, elements are placed in the 

file in the order in which they are written, so that an attempt to read from 

that file will produce the same ordering. 

Sequential files are extremely common in a number of data processing 

applications, dating from a variety of tape handling and card handling 

applications. In any application where each element must be served once and 

only once, a sequential file is the optimal processing structure. Examples 

of such applications are credit card billing systems and order processing 

systems. The string-processing functions of MUMPS would be extremely helpful 

in dealing with sequential records since the $PIECE and $EXTRACT functions can 

separate the fields of a record into their component parts quite simply. 

A sequential global could be created which would read or write the next 

node in sequence. Such a global would have an associated pointer which would 

point to the next element in the sequence (see Figure 17). The current value 

of the pointer could be kept in the first word of the global's storage and 

consulted upon each access. For language and implementation simplicity, 

a sequential global could be opened for reading or for writing, but not 

both. In general, the updating of a sequential global should be done by copying 

from one global into a new one rather than by updating individual elements 

in the global. However, if unlimited updating is permitted, it is 
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Figure 17 - Implementation of sequential globals 
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possible to avoid serious recompaction problems by chaining the individual nodes 

together, making the actual storage ordering irrelevant. 

The required language syntax to deal with sequential globals is quite simple. 

First, there is the need to set a sequential global to its initial position. 

This may be done with the LOCK command in the MUMPS language. Thus, if AABC 

is a sequential global, and the command 

LOCK AABC 

would reserve ~ABC for the user and would set the pointer to the first 

element of AABC. If there is the desire to "rewind" !\ABC and process it again, 

one could use a LOCK with no arguments, then a LOCK as above to accomplish the 

reinitialization. 

Successive elements of the sequential global can simply be referenced 

by AABC, which unambiguously applies to the next element in the sequential 

global. Use of the sequential global on the left-hand side of a SET command 

implies output of an element to the sequential global, while each use of the 

sequential global on the right-hand side implies input of the next element. 

It should be noted that the MUMPS command 

SET X=AABC,Y=AABC,Z=AABC 

is different from the command 

SET (X,Y,Z)=AABC 

for sequential globals, since the first command involves the input of three 

elements, while the latter command has only one input. 

Finally, processing sequential globals would be simplified by the 

introduction of a function to test for the end-of-file condition so that 

elements could be accessed until the last element was accessed. It is possible 

that the $DATA function could be applied to sequential globals for this purpose. 
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5.2.2 "Random" globals 

The notion of a random global provides a mechanism which allows the case 

of a one-level global to be treated specially, since a linear structure is, 

as noted above, a fairly common occurrence. Rather than restricting the access 

to the global to be purely sequential, the random global allows nodes to be 

accessed in any order, and permits a given global to be read from or written 

into any ordering. In short, the capabilities are identical to those of the 

general purpose global, but a specialized storage structure is utilized to take 

advantage of the linear nature of the file. 

By expanding the contents of the global directory to include an entry 

for the type of global (e.g. 0 for normal, 1 for sequential, 2 for random), it 

is possible to use exactly the same syntax for random globals as for normal 

tree-structured globals. When a global is first created, the protocol for 

creating globals must determine the type of global being created. (If one 

desires to permit creation of globals of various types during an executing 

MUMPS program, it would be necessary to include some special function or 

command to make a global directory entry indicating the type of global which 

is being created.) 

The random global resembles an indexed sequential file in that the pointer 

from the ·global directory points to a disc block whose elements are a set of 

pointers. The value of the subscript calculates the offset from the beginning 

of the block, possibly carrying on to continuation blocks. When that element 

is found, it contains the address at which the node is stored. Since only the 

pointers must be ordered, the contents of the node may be stored in arbitrary 

order, permitting reallocation of space with corresponding readjustment of 

pointers if necessary. The node contains space for storing the subscript 

value so that it is possible to use a two-way pointer mechanism to simplify the 
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problems of rearranging the ordering of the nodes. Figure 18 shows the storage 

structure that can be used to accomplish the implementation of random globals. 

5.2.3 "Declared" globals 

The complete flexibility given by the general purpose tree-structure, 

combined with the automatic mode conversion features implicit in MUMPS, allows 

global nodes to change from integers to strings (for example) and allows new 

nodes to be arbitrarily introduced at any level with any subscript value. This 

generality has been shown to be extremely valuable for variable size hierarchical 

structures, but rather expensive in terms of implementation overhead. In 

discussing the algorithms to permit direct address calculation of node location 

from the sequence of subscripts, and in discussing the approaches to allocation 

and reallocation, it has been observed that the complete generality inherent 

in the concept of globals made it impossible to achieve these optimization 

ideals. 

For some classes of hierarchical structures, though, one can clearly specify 

the precise structure of the hierarchy, including subscript ranges, the type 

of information to be stored in each node, and the maximum amount of information 

which will be stored in each node. In other words, one could specify to the 

system at global creation time the characteristics of the global. With this 

information, it is then possible to allocate storage with great efficiency and 

accuracy. Furthermore, if the global is to be largely static (with updates at 

daily, weekly, or monthly intervals), it would be feasible to build a table 

to perform address calculations. It would then be possible to write programs 

which could access this table for every reference to the global and jump 

directly to the desired node, without the intermediate disc accesses required 

for normal hierarchical access. 
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Although the notion of declaration of variables and storage structures is 

foreign to MUMPS, it is in extremely widespread use in other programming languages 

used for file handling application. For example, both PL/I and COBOL require 

the specific declaration of fixed size storage structures. Also, most commercially 

available, hierarchically organized data management systems place similar 

limitations upon their users and data base designers [Date, 1975]. 

In the MUMPS environment, the specification of a global structure would 

be done only to assist in optimization of global access and allocation for 

those cases where an a priori knowledge of the global contents exists. There 

would be no requirement to make such declarations; declaration-free usages of 

globals would proceed as always. Once again, incorporation of this facility 

would require no changes to the syntax of the command language, since the 

program would still be dealing with hierarchical shared files. If the description 

of the global existed, the entry for that global could be flagged in the global 

directory with the addition of a pointer to the description table. 

The best technique for "declaring" globals is through the use of a 

conversational program which the user invokes to specify the structure of the 

global. This program would create the desired table. In that way, the notion 

of declarations would not be introduced into the MUMPS language. 

This proposal is somewhat more complex than either the random global or 

the sequential global proposal, both in terms of its requirement on the user 

and its implementation within the existing framework of globals. Yet it 

remains consistent with the philosophy of MUMPS by keeping the file system 

invisible to most users and by improving the overall computational power of 

a MUMPS system. 
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These new global types offer a rather significant increase in the range 

of applicability of MUMPS. They also permit certain types of optimization to 

be performed which are impossible with the traditional MUMPS global 

structure. Furthermore, inclusion of these new types does not complicate the 

language in any way. All of these concepts should be investigated further 

for possible incorporation into MUMPS. 

5.3 Global security 

Because MUMPS was designed for sharing a data base among many users, no 

restrictions were built into MUMPS concerning access control of globals or 

global nodes. The right to access a MUMPS system automatically gave users 

the right to access the global data base. As MUMPS systems have developed, 

some small steps toward access control have been taken. The most significant 

of these is the development of separate global directories for different 

users (or classes of users), thereby preventing users from accessing globals 

which belong to other users. 

As MUMPS systems have developed in complexity, however, there appears 

to be an increasing need for access control to globals and to global nodes. 

For example, one may wish to specify certain users who may change the values 

of global nodes or create new nodes (write access). One may wish to identify 

the "owner" of a global to decide who may delete all or part of the global. 

Finally, one may wish to permit certain users to reference nodes but not change 

them (read access). It is possible to incorporate all of this security 

information into tables within primary memory, directly within the global 

directories, or in the globals themselves. 
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Global security, however, is only part of a larger security problem 

involving access to the MUMPS system, access to specific programs, the ability 

to write new programs in addition to executing existing ones, and several other 

issues. Accordingly, this topic is being treated separately by the authors 

in a companion report, "Design of a Multiprogramming System for the MUMPS 

Language". Readers interested in security issues are referred to that report. 

5.4 Other data management systems 

Since the development of MUMPS, a number of rather significant innovations 

have been made concerning the management of large volumes of data. The urgent 

information management problems which led to the development of MUMPS have 

since spurred the development of a wide variety of tools for information 

management. Indeed, the problem of managing large quantities of data is one 

of the most challenging problems in computing today. 

The past few years have seen a proliferation of data base management 

systems, with an extremely large number of commercially available products. 

The science of data structures and organization has made considerable advances 

as well. There are three major approaches to data management which have 

been taken other than the hierarchical approach of MUMPS, but it is still too 

early to determine which of these, if any, will prevail in future data base 

design and management. 

The first approach is known as the "network" model. The approach was 

formulated by the Data Base Task Group of the CODASYL (Conference on Data 

Systems Languages) Programming Language Committee [CODASYL, 1971]. In a 

data base network, the nodes of data form a graph rather than a tree. In other 

words, any node may be connected to any number of other nodes without any 
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hierarchical relationship. The 1971 CODASYL report included a Data Management 

Language which provides for data specification, storage, and retrieval, with 

appropriate features for access control, concurrency (multi-user interlocks), 

and other necessary details. 

The second approach is known as the "set-theoretic" approach [Childs, 1968]. 

Nodes in a data base are grouped together into sets and any number of sets may 

be related to one another. For data management purposes, one may think of 

sets being created around different properties possessed by items in a data 

base. A retrieval may then be specified, for example, as the intersection of 

a set of sets in order to identify those data objects which possess a 

specified number of properties. 

The third approach is known as the "relational" model of data [Codd, 1970], 

which uses the algebra of relations to specify the correspondences between 

objects in a data base. Whereas hierarchical and network models of data 

assume an explicit relationship among the objects in a data base, the 

relational model makes no such assumption and creates the relationship only 

upon a specific retrieval request. The storage mechanism is hidden from the data 

management language and as many as five different storage techniques are 

commonly used within each relational system for information storage. 

The attractiveness of the set-theoretic and relational approaches can be 

seen when one considers the variety of uses to which a data base is put. 

Suppose, for example, that the data base consists of abbreviated information 

about a set of patients visiting a clinic. For each patient, there exists 

a "mini medical record", which includes information on diagnoses, medications, 

hospitalizations, laboratory tests, etc. One application of the data base 

is for patient care; a provider wishes to retrieve part or all of the 

abbreviated record. Another application of the data is for research; a researcher 

wishes to identify all those patients having a given set of characteristics. 
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Within a hierarchical data base organization, the hierarchy will be designed 

to facilitate one application or the other, but not both, since one will involve 

utilizing the entire hierarchy while the other will involve accessing small 

pieces of information in an orthogonal way. With a relational or set-theoretic 

model, this built-in structure does not exist and the two types of access may be 

equally fast. Furthermore, the relational model does not presuppose any relation­

ship among data objects and therefore would be most flexible for a broad range of 

research queries. A means for incorporating a relational model of data in a pro­

grannt1ing language has been proposed [Earley, 1973]. 

One of the fundamental underlying issues is that of data independence. One 

objective of the relational and set-theoretic approaches is to decouple the use of 

the data within a program from its physical representation on a secondary storage 

device. Most present computer applications (not just those in MUMPS) are data­

dependent, in that the knowledge of the data organization and access technique is 

built into the application logic [Date, 1975]. If the storage structure were to 

be changed, it would necessitate changes in the application programs; achievement 

of data independence would eliminate that need. The price of data independence is 

a moderate decrease in ttie efficiency of execution of data management operations. 

Each of these approaches to data base management has been implemented several 

times, using various sizes of computers. For each data management model, there 

exists a query language designed for nonprogramming users which carries out the 

storage and retrieval functions. These languages, of which SEQUEL is an example 

for relational systems [Chamberlin, 1974], provide extremely powerful, intuitive 

mechanisms for management, but have rather limited capabilities for computation. 

Furthermore, all of these languages are command-oriented, i.e., they require the 

user to formulate a query in the language rather than carrying out a dialogue. 

Some experimentation is underway [Codd, 1974] to develop programs which converse 

with the user and then automatically create the command in the data management 

language. 
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As yet, however, there does not exist a system which provides the high degree 

of data management capability and the computational power of MUMPS, and which can 

be implemented on a small-to-medium sized computer. However, the increasing use 

of networks of small computers, combined with a growing number of online applica­

tion programs involving both computation and data management, has resulted in a 

number of research and development projects with similar goals [Wasserman, 1975]. 

5.5 Summary 

MUMPS provides a data base management mechanism which is well integrated within 

the structure of a programming language and operating system. Use of that mechanism 

is performed in a symbolic manner so as to make most of the details of the file 

management system invisible to programmers. At the same time, however, the pro­

grammer must be intimately aware of the file structure for an application and must 

carefully build that data dependence into the programs. 

The present MUMPS data management facilities are well-suited only for those 

data sets where a single explicit hierarchy exists and all implementations have 

been oriented to achieving maximum performance from that organization. When con­

sidered within the framework of general purpose data management systems, the view 

of data taken by MUMPS is quite narrow, in that only one type of data structure 

exists. If MUMPS is to be utilized effectively for a broader range of applications, 

it would seem that some thought should be given to methods for incorporating a 

broader view of data into MUMPS and to supporting more than one type of file organi­

zation. Although application programs would remain data-dependent, the programmer 

would have more options available for selecting data structures which would improve 

the exectuion efficiency of MUMPS programs. 
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6. Conclusion 

This report has discussed the techniques used for implementing MUMPS globals 

on secondary storage devices. All existing versions implement globals as a set 

of linked, fixed length disc blocks. The number of pointers from each block is 

reduced to one by making use of the fact that all trees can be represented as 

binary trees (having two or fewer descendants per node). The down pointer, i.e., 

the left subtree, is stored explicitly, while the pointer to the right subtree is 

replaced by physical contiguity of the nodes in a disc block. 

Considerable attention has been given to the problems of storage allocation 

and access time in a dynamic, hierarchical data base environment. Techniques for 

optimal allocation of secondary storage have been treated in general terms, 

since theoretical results for the hierarchical model of data base organization 

are based on a large number of assumptions which may not be true in MUMPS. 

Finally, the strengths and weaknesses of MUMPS globals have been examined 

in the context of a wider range of data management systems. MUMPS is seen to 

be the only prograrruning system which currently offers the combination of multi­

prograrruned computation, string-processing, and data base management. However, 

there appear to be several types of modifications that can be made to the present 

MUMPS data management facilities, including addition of new global types, which 

can broaden their utility, thereby serving a greater range of data manipulation 

and management needs. Beyond that, additional research is required to develop 

mechanisms whichhelp to achieve more flexible data structures and a larger measure 

of data independence within the MUMPS framework. 
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Glossary of Terms 

Cylinder--Conceptually, the set of all disc blocks which are equidistant from 
the edge of a disc storage device, when the device has more than two 
read/write surfaces. Alternatively, a cylinder consists of the 
collection of disc blocks that can be read or written on a disc without 
moving the read/write head. 

Data Base--In a computing system, the set of data available to the users and 
processes of the system. All or part of the data base may be "shared" 
(available to more than one user or process) or "private11 (restricted 
to one user or class of users) 

Deadlock--(also "deadly embrace") A condition in a multiprogrammed system where 
two or more processes are blocked from doing productive work because 
none of the processes can obtain all of the resources needed to 
continue work. Example: if two processes A and B both require globals 
X and Y to complete their work and A has X and B has Y, then neither 
A nor B can finish. This condition is termed deadlock and must be 
prevented in multiprogrammed systems. 

Descend--In a tree-structure, to move away from the root. 

Disc block--A segment of data stored on a rotating secondary storage device 
which is transferred by the input/output control system. Disc blocks 
are typically from 200 to 512 characters in length. 

Edge--In graph theory, the connection between any two nodes. 

Graph--A set of objects V, called vertices, and a set of objects E, called 
edges, such that each element ek of E is identified with an unordered 
pair (vj, vk) of elements of V. In other words, a collection of zer.o 
or more points with zero or more edges connecting some or all of 
those points. If it is possible to reach all of the vertices by 
traversing the ee.ges from any given vertex, the graph is said to be 
connected. 

Header--(also "head block") The disc block to which a global directory entry 
points; contains information about the nodes closest to the root. 

Leaf--A node in a tree structure with no descendant nodes. 

Node--A vertex; in MUMPS globals, an entity with a symbolic address with 
which in~ormation can be associated; a root node corresponds to the 
root of a tree, in that it has no ancestors;--a-t"erminal node is a 
leaf with no descendant nodes. 

Pointer--A data element which contains the address of some location where 
additional data (possibly another pointer) is stored; a continuation 
pointer is used in MUMPS global allocation to point to blocks which 
contain nodes which are siblings of nodes in a given block; a down 
pointer is used in MUMPS global allocation to point to blocks which 
contain nodes which are the descendants of a given node. 



Rotational latency--On a rotating secondary storage device, the period of time 
which elapses before a desired disc block passes under the read/write 
head. 

Seek time--On a moving head rotating secondary storage device, the period of 
time which elapses before the read/write head can be positioned over 
a particular cylinder (or track) of the device. 

Sibling set--In the theory of trees, the set of all vertices (nodes) which 
have the same p~rent. 

Trace--ln the theory of trees, the sequence of vertices which must be traversed 
in going from the root to a designated node. 

Track--The set of disc blocks which can be read or written on a single platter 
disc without moving the read/write head (cylinder applies to multiple 
platter discs). 

Tree--A graph which has no cycles and which has a designated node called the 
~~ root; a binary tree is a tree in which no node has more than two 

innnediate descendants. 
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