NATIONAL BUREAU OF STANDARDS REPORT

2047

SWAC CODING GUIIE
"~ Ruth B. Horgan

U. S. DEPARTMENT OF COMMERCE
 NATIONAL BUREAU OF STANDARDS

1101-30-5103 November L, 1952 20L7

SWAC CODING GUIDEs

Ruth B. Hargan

National Burean of Standards

#The preparation of this paper was sponsored (in part) by the
Office of Scientific Research, USAF

The .pybliraﬁon, reprinting, or reproduction of this report in any fcrm, either in whole or in part, is

prohibited unless wermission is obtained in writing from the Office of the Director, National Bureau of
Stgndards, ¥eeshington 26, D.0. Such permissicn is not needed, however, by a Goverrment agency for
which a reporthas been specifically prepared if that agency wishes to reproduce additional copies of

that particular report tfor its own use.

I
III

Iv

VI

VIiI

The material in this handbook is valid as of the dsate

TABLE (F CONTENTS

DEFINITIONS

GENERAL CODING PROCEDURE
INPUT

OUTPUT

MEMORY CHECK

MODIFIED COMMANDS
TALLIES

SUBROUTINES

of issue.

In all cases of disagreement, the information of most
recent date supersedes all information previously
issued. 'Additional data will be supplied as the need

develops.

Suggestions of modifications and additional material

for inclusion will be welcomed.

i1

DEFINITIONS 111
MEANINGS OF THE ADDRESSES FOR THE COMMANDS USED BY THE SWAC.
COMMAND a B y) Eq.**
ADDRESS ADDRESS ADDRESS ADDRESS OF NEXT
ADD OF OF OF COMMAND IF 4
AUGEND ADDEND SUM OVERFLOW
ADDRESS ADDRESS ADDRESS ADDRESS
SPECIAL OF OF OF OF 5
ADD AUGEND ADDEND SUM NEXT COMMAND
ADDRESS ADDRESS ADDRESS ADDRESS
SUBTRACT | OF OF OF OF 6
MINUEND SUBTRAHEND DIFFERENCE NEXT COMMAND
IF OVERFLOW
ADDRESS ADDRESS ADDRESS ADDRESS
SPECIAL OF OF OF OF 7
SUBTRACT | MINUEND SUBTRAHEND DIFFERENCE NEXT COMMAND
ADDRESS ADDRESS ADDRESS
MULTIPLY | OF OF OF u
MULTIPLIER ‘MULTIPLICAND | PRODUCT
ROUNDED-OFF
ADDRESS ADDRESS ADDRESS ADDRESS
SPECIAL OF OF OF OF v
MULTIPLY | MULTIPLIER MULTIPLICAND | PRODUCT NEXT COMMAND
ROUNDED-OFF
ADDRESS ADDRESS ADDRESS OF ADDRESS OF
PRODUCT OF OF MOST SIG- LEAST SIGNIFICANT
MULTIPLIER MULTIPLICAND | NIFICANT PART OF PRODUCT w
PART OF
PRODUCT
ADDRESS ADDRESS ADDRESS ADDRESS OF NEXT COMMAND
COMPARE OF OF OF IF DIFFERENCE 8
MINUEND SUBTRAHEND DIFFERENCE* IS NON-NEGATIVE
ADDRESS ADDRESS ADDRESS OF ADDRESS OF NEXT COMMAND
SPECIAL OF OF DIFFERENCE OF IF DIFFERENCE OF 9
COMPARE MINUEND SUBTRAHEND ABSOLUTE ABSOLUTE VALUES IS
VALUES NON-NEGATIVE
ADDRESS OF ADDRESS ADDRESS OF IF SECOND DIGIT OF & IS
EXTRACTOR OF EXTRACTED 0-SHIFT LEFT
EXTRACT | (DETERMINES EXTRACTEE AND 1-SHIFT RIGHT y
DIGITS TO SHIFTED OTHER DIGITS TELL
BE.EXTRACTED) RESULT NUMBER OF PLACES TO
SHIFT
INITIAL (INCOMING IN- SELECTS INPUT DEVICE
INPUT FORMATION GOES AND TYPE OF INPUT 0
TO ADDRESS €)
ADDRESS OF CHANNEL SELECTS INPUT DEVICE
INPUT INCOMING ADDRESS AND TYPE OF INPUT 1
INFORMATION ON DRUM
ADDRESS OF ADDRESS OF CHANNEL SELECTS OUTPUT DEVICE
OUTPUT OUTGOING 1/2 BASE, FOR]| ADDRESS AND TYPE OF OUTPUT 2
INF ORMATION CONVERTED ON DRUM
OUTPUT

* Overflow gives same word in Y as in a and s Commands.

=% Equivalent of F symbol in hexadecimal notation.

[The missing symbols are: x = space; z = the letter £, 3 = the letter r]

ARROW (+)

CODING SHEETS

ENTRY

EPSILON COUNTER

HALT

LINK

REGISTERS

iv

DEFINITIONS

Notation used in remarks column of coding sheets to
denote "replaces". "x2 replaces ;} * is equivalent

to “xz -+ y"“e

(cf. page II:L)

Cell |[Card | W.

No. | No.|P. R{ Y| S| F| g | Remarks

W.P. = word pulse, S = sign, C1 £ = clear epsilon
(cf. page IIs2 on clear epsilon)

A constant in storage which resembles a command, but
is never obeyed. The routine adds a number to the
dummy to produce’a command, which is then obeyed.
(cf. page V:1 on modified commands.) The dummy might
also be used as a limit agaimst which to compare a
command being modified.

A code number, determined by each coder, used by a
routine’ to send control to the begimning of a sub-
routine.

Basic governing unit of SWAC. It specifies the
address of the command to be obeyed rext. As each
command is completed, the epsilon counter normally
advances by unity. When epsilon is either cleared
by a switch or changed by a special command it
contimies to count from its new setting. The
addition of 255 + 1 in the epsilon counter results
in 000.

There is no halt built into SWAC. Any halt must be
coded imto a routine. This is most effectively done
by addressing a command which calls for input from
the SWAC typewriter.

The address of the command to be dbeyed upon comple-
tion of a subroutine.

The M and R registers referred to in the text are
transfer or accumulating units of SWAC. They are not
part of the memory, but are used in execution of
commands .

ROUND-CFF 1

WORD

iv

DEF INITIONS

- Addition of "1® to the least significant position of

the result of the m or n product commands, if the .
least significant half of the product is "1" in the
most significant binary digit. Round-off also occurs
in the result of a right shift extract command if the
binary digit to the right of the least significant
digit in the result was a "1" before shifting.

The contents of one memory address of SWAC. The 36
binary digits (9 hexadecimal digits) are allotted in
the following manner.

Hexadecimal Binary

Digits Digits

X 1 and 2 1-8

A 3 and L 9 -16

' 5 and 6 17 - 24

) 7 and 8 25 - 32
F

9 33 - 36

(If the word being considered is a command, see
pg- 111 for meanings of «, B,)y, S, and F parts
of the word.)

CI:1

I. GENERAL CODING PROCEDURE

Basic Rules
~ To faéilita;l’.@ checking out routines and operating SWAC, store the
following words in cells 00 smd Ol: .
CellMo. o 0 2~ & F Remarks

00 0L 00 00 10 j Typewriter imput to (01)

01 (Temporary; initially zero)

This device pemits the operator to type ay desired command into
(01) and camse SWAC to obey it immediately. If, for example, the command
of 01 01 01 Su t were typed into the machine while epsilon = 00, then
the obeying of (01) would send epsilon to (5u) and clear (01).

The cover page of a main routine lists the cells of the mamory used
by the commands and constants, and the cells assigned to the subrmoutines.
The coder includes instructions for‘ variation of output format if desired.
He describes the expected output, whether typed or punched on taps or
cards, and the intervals at which it should occur. The operator must
know the meaning of various "error® halts and type-oufs, what he may
inspect to determine the trouble, and where he can enter the routine to
re-compute or to continue.

If the coder keeps this last suggestion in mind while coding, he
will plan certain "entry points" at which the operator can check coding
or perf.oni necessary re-computations. This leads to a strong recommenda-
tion for the pre-storing of modifisble commands and varisble quantities.
Use "work® or "temporary" storage for a variable factor, at the same time
leaving the initial value (:) untouched. This enables the operator to
re-compute the final valus (a) of a cycle repeatedly. When all pessibility

of error or une:qaedted overflow is past, code to transfer a new given

I:2

value to (p) and send the good answer (a) to its proper "work" cell for the
next cycle. If ome were certain that a cyele of comgﬁs were to be per-
formed only once, there would be no harm in destroying factors by re-using
their storage cells. However, there may be some trouble in code checking,
or some machine troubls, that will make it advissble to re-emter a cycle.
The coding sheets should indicate points to which the operator can safely
send epd.lqn to re-compute smy portion.

Many add and subtract commands of a routine can mever be expécted to
have overflow. There are ofhers, however; in which overflow may possibly
occur, indicating error. The sizée of a factor may exceed that expected by
the coder, or there may be some function computed by a series which causes
overflow when the tems_ are summed. The first suggestion that comes to
mind 1is to let the delta of those commands be 00; then epsilon goes to (00)
upon any overflow. However, in this case the operator camot determine at
which command overflai occurred.

If there are enough storage cells available after assigning addresses
to the main routine , store several halt comands, 01 00 00'10 Js ome for
each possible overflow. Code the addresses of the halts in the delta
portions of the add and subtract commands which may overflow. In the
remarks column of the halt commands indicate which overflow causes each
halt; the operator of the SWAC can then type on the output sheet which
function had an error, for later imterpretation by the coder.

Attgched to the coding sheets there must be step-by-step instmctions
for running the mutine. They should describe the amount of memory filled
by tape or card initial read-in, the new data to be inserted in the tape

reader or collator, the frequency of memory checks, etc.

Example:

1.

Read in routine. It goes into addresses 00 to w6; then (00) again;
then (zz). It will halt in (00), calling for
typewriter input to (01).

Obey either instruction 2 or 3.
IF COMPUTING FROM THE BEGINNING OF PROBLEM:

Obey (00); type in 01 01 O1 uu t.
Obey (01) and allow machine to continue.

IF CONTINUING THE ’COHPUTING kFROH ANOTHER RUN:
Insert tspe of starting values (2 words).
Obey (00); type in 01 O1 O1 ul t. ‘

Obey (01) and allow machine to continue.

TAPE PUNCH-OUTS of results in binary will occur after less than a
second of computing:

gt epsilon = address typed out = factor typed out =

O0x yu Ry ‘
9l Yz ¢) These 2 are repeated many

95 y5 a timss before a new R, .

A total of 50 R.i values should punch out before routine halts in (w7),
indicating completion.

TYPE-OUTS in groups of six words at epsilon = 51 to 56 indic ate a
discrepancy in computation; routine will continme. Allow it to
contime and save type-out for coder.

HALTS

a. A halt st any epsilon from vx to w6 indic stes overflow in the
routine. (Please note on type-out sheet the epsilon at which
halt or overflow occurred; see coding sheets.) To get back into
routine, clear epsilon and obey (00): type 01 01 01 ww t into
(01). Obey (01) and allow machine to continue. :

b. A halt at epsilon = uz indicates memory check failure.x* Obey
instructions on coding sheets at epsilon = uz. Run out some
blank tspe from puncheout unit. Set machine to command (COM)
mode of operation.sst

Obey (uz), i.e., finish the input to (98) = hash.
Obey (vO0) and (vl), tape punch-out of tw starting values.

:*

Cf. page IV:1 for memory check.
To enable operator to cause execution of one command at a time.

Ik

Obey the commands beginming in (v2), memory type-out. The value
in (01) is the difference between the given memory sum and the
computed memory sum. If this indicates that the memory can
easily be fixed, use (00) and (01l) to do so.

After fixing the memory obey (00); type 01 01 Ol u8 t.
Insert tape of two words of starting values just punched out.
Obey (01) and allow machine to continue.

If memory error is too bad to be fixed, ad routine must be
read in again, obey instruction number 3. '

Some Aids to Coding

' Before beginning the actual coding of a problem, in most. instances,
draw a flow diagram. This gives a pictorial represent ation of the steps
to be followed in the roxrbir;e. A sample flow diagram is showm on the
following page for the computation of a table of £(x) = JxE -1,

x = 1(1)25. Since square root is not an operation of SWAC it must be
computed by a subroutine. However, in the flow diagram the coder treats
square rooct as another operation; details of the process are usually
considered in a separate diagram.

Since SWAC has no built-in checks, include coded checks in the
routine. In the example given, the resuit £(x) is squared and compared
with x° -1. If this agrees within a certain predetemmined tolerance,
the machine contimues. If the check fails, an alternating tally camses

the machine to compute f(x) once more. If it again fails, the machine

halts. .

When doing fhe jnitial coding, use the flow chat as a guide to the
operations and their sequence. Instead of assigning memory locations to
words, use symbols such as’R.i for instmctions, cy for constants, and ti
for temporary storage.

Always use a right shift if coding for a zero shift.

Figure 1. FLOW DIAGRAM FOR COMPUTING f(x) = Jx -1, x= 1(1)25.

START
x = O+t x+ 1-+Xx x" >ty > xz-l-rtz r"‘ll’re-store alternator at#
A
’ Enter subroutine for
! ETT -+t
}
17
r+1-+1r |No (t)2 + %
Is r < limit 3 L
Yes| of Try | .
again R 2
Type x .
. Type (1) Type tg ty =ty > g
Yes
Yes,error. yo | > +
Error Is it * Y I It S all
Given X ,-2. -+t) es|is J a sm
16— z2 zl 5 first failure givens olerance, A?
No IsO(t'° for this x?
I s’ (alternator)
Y N
No t —Tea v °
k+1->k (k)+21-*21
Is k < limit of k? [¢
[
rYes, o.f. |
< No o.f. | Tally for memoryl, Clear 3. in t
- check. 1 1
tg + 1 g
overflow?

| I:6

Following is a sample of coding in symbols. This coding covers that

portion of the flow diagram which begins with "pre-store alternator at "

and continues through "Clearzl in t7" . It includes checking the accuracy

of the square root, and the starting of the memory check. The sample cod-

ing assumes that instruction Rll is the last command of the square root

subroutine, or is a transfer command placing sz -1 in storage ty.

Cell No.

Ry
Rg

R0
B3
By,
Bs

B¢

2% & X & E Remarks

t9 t9 t9 36 s Clear alternator int9.

(Entry to square root subroutine)

2 .

b 0% Y Byom ()oY

by Yt By s H -t

6y by by By @4 Is |t5| > A2

t9 o, t9 1129 a Yes, error. Alternator; first failure?

tg tg ©Co Rg t Tes, first failure. Try again.

t

t 318 s No error. Enter memory check. Clear

9 7 in t,.
(Remainder of main routine)

0L 00 00 10 HALT =~ error, or completion of problem.

00 00 00 O00 O Zero storage.

00 00 00 O00 9 A for tolerance on accuracy of sq. rt.

80 o0 00 oo o 27t

(Remainder of constants)
(Temporary; accumulator of machine memary sum)

(Altermator tally; imitially gero. Alternately 2~ and zero-
with-overflow)

(Hash)

I:7

After the initial coding is complete, assign memory addresses to the
symbols. A formalized method of doing this by IBM machines is described
in the memorasndum, "Symbolic Coding", by B. F. Handy, National Burea of
Stadards, dated September 2, 1952.

When making the assignments, store the constants either directly
before or directly after the commands, and assign the temporaries in a
group apart from the rest. This group of wards mgy be omitted from the
input tape or cards since temporaries need not be read into the machine.
(cf. page II:2 for semicoion.) Grouping the temporaries zlso simplifies
the memory check, which is executed at regular intervals (at every fourth
x in the given example) to test the constancy of the memory. (Cf. page
IV:1 for memory check) Note that the flow diagram contains reminders to
the coder to pre-store and pre-clear certain modified commands and
temporary storage cells (for example: to clear 21’ the cell in which
the memory sum is accumulated each time the memory check is executed).

If a temporary storage address, ti’ is used successively for two or
more valuea; the following type of chart keseps track of what is currently
stored in ti. When used during coding, the chart enables the coder to
tell whether the value he expects in t 5 has been replaced by amcther value,

or has been left intact.

3y = by x(23)
35 = t, (), = -1 (e5)
4o = t, 2 21 (26) [(26) = By]

The mumber in parenthesis following each symbol imdicates the value of
epsilon st the time of transfer or computation. Here, cell t, has been

used for two results; the coder is reminded that x2 is not available

I:8

after epsilom = 25. In this example, commands and constants are stored
from 00 to 3x; hence tl - '3y.

For the operator of a routine to be sble to re-enter the routine; or

00: 01 00 00 10 j
0l: 00 00 00 00 0

as mentioned before. To use (00) in this manner, the oper ator must be able

to change any word in it, the coding must begin with

to clear epsilon manually at almost any point in the routine. Keeping this
in mind, code with as few "special® commands (those which specify the next
epsilon) as possible. The example on the left below makes use of "speci als®

unnecessarily; it could just as easily be written as on the right.

Cell Cell

No. & @8 ¥ & F Remarks No. & B X <o F

59 69 6 63 5S5u b Trasfer (69) 59 69 6 63 S5u a
to (63). :

S5a 63 6 62 S n (63)2+ (62) Su 63 63 62 Sv m
sy 62 63 6 Sw ot (62)-(63)+(6h) SV 62 63 64 Sw =

: (Remainder of routine) : (Remainder of routine)
62 (Temporary storage) 62 (Temporary storage)

63 (Temporary storage) 63 (Temporary storage)
6 00 00 00 00 O Zero storage. 64 00 00 00 00 O

In the routine using the special commands the operator camot return the
control to 00 even if he clears epsilon manually; the mresence of a special
command dictates the next command because of the delta to epsilon .trmsfer
on a special command.

If the data to be introduced in computing has a very wide range, store
the mumbers in floating binary form, using the floating operations sub-
routine. This system stores a value as a nuber q, 3 £q <1, acompanied
by an appropriafe power of 2. Otherwise think of data as munbers less than
one, and assign scale factors accordingly. Keep a record of the scale

I:9

factors assigned to the result of each operation in the remarks column of

the coding sheets.

Example:
Compute:

Given:

Stores:

Cell

L 2

57
58
59

X X

80
81
82

83
86

a‘ibi where 8,1 " aibi + 7T, and bi+l = bi + 2,

until bi

reaches a given limit.

8 = 1,69yl ; maximum known to be a; = 7.yzh9
b, = L .y496; maximum known to be by = y L 697

23 a = -2x3wB0000 and 2-33.1 = .2Xy920000

2"th = 4y4960000 and 2‘%i = .y46970000

% A X
56 59

81 57 58 ok
58 80 56 L6
59 82 59 L7
83 59 86 L3

(Command to be obeyed after (59)

has reached its limit)

y0 00 00 00
00 00 00 00
20 00 00 00
yh 69 60 00

(Temporary stor age)

)
57 L

- F

a

a

c

o O O

Remarics

27 ab, + (57)
2345, + ()

273 (aby + T) + (56)
2 (b, + 2) + (59)
Is (83) < (59)?

2-37

Zero stnrége.
272

Linit of 2, .
Hash.

IIzl

IT. INPUT

Initial Loading

When a routine tape is to be read into the machine, the operator clears
the epsilon counter and the memory storage. The tagpe is inserted in the
tape reader, and the operator presses the OOFB (one-operation push-button)
once. One half of a command (or four periods) 'is obeyed; during this first
half the machine inspects the command stored in the memory address desig-
nated by epsilon (namely, 00). Since the machine has been cleared, the
cc;nmand stored in (09) is all zeros. An F = O signifies "initial input®:
input to the memory address equal to epsilon.

Then the second half of the command is obeyed. The tspe reader ad-
vances the tape for one word, and that womd reads successively into the R
and M registers and into the memory address equal to epsilon. The epsilon
counter increases to 0O1. Both halves of the command take place rgpidiy in
operation on contirmousA(com‘) or on one command at a time (COM); operation
on period (PER) enables one tb see each of these transfers separately.

After epsilon advances to (0l) the machine inspects the command stored
in (01); this, too, is all zeros, and another tape input (to memory address °
01) takes place. The SWAC continues to inspect successive commands stored
in the memory and to replaée them with words from the routine tspe as long
as it finds both F=0 in the memory snd iriput tape in the tape reader.

When a routine is to be read into the machine from cards, the IBM
collator is used instead of the tape reader. The same procedure takes
place, however, in the obeying of commands .whose "F* ig zero. SWAC in-
spects successive cells in the memory and replaces them with words from
cards as long as it finds both F=0 in the memory and cards in the collator.

There is a "stop" character following each word on punched tape.

II:2

Corresponding to the "stop" character on tape there is a "word pulse" on
cards, one pulse for each word read in. It signals the SWAC to store the
contents of a word and to increase epsilon, ‘as does the "stop® on the tape.

Use of the "clear epsilon" character obviates halting the read-in and
clearing epsilon manually. Suppose on tape a "semicolon" follows the "stop"
character for the last word to be read in (for.example, (4u)). The machine
will be halfway through the command of initial input into memory address
4v at the time that the "semicolon" character is read from the tape. The
“semicélon" code causes epsilon to clear, and the delta of the command
currently being obeyed is transferred to epsilon. In the present example,
(4v) when inspected by the machine is all zeros; hence, an initial input
command (F=0) has been set up to input to the origin.

However, the initial input command has yet to be obeyed. Epsilon now
reads 00 instead of 4v, and the next word on the tape will read into memory
address (00), clearing whatever may have been there. There may have been a
word present on the beginning of the routine tape to be read into memory
address (00). It is necessary to repeat (after the "semicolon" character)
the contents of (00) followed by a "stop" character in order that (00) may
cantain the correct word. The machine will inspect (01) for its next
order md obey it. The command in (01) may increase & for additional inmput.

The "clear epsilod! signal from card input accomplishes the same thing.
To code for this on cards place a "S5" in the Clear Epsilon column of the
coding sheets on the gppropriate line. As in tape input, the cormand in
(00) should be on the same line.

General
When F of the command being obeyed is 0, coded as i, the SWAC executes

an initigl input to the memory address equal to epsilon. This is discussed

II:3

gbove in Initial Loading. When F is 1, or j, SWAC inputs to the memory

address equal to the alpha portion of the command. The delta portion of
the input command being obeyéd designates the input device called for,
regardless of whether F is i or j. ‘

If delta is either 10, 30, or 50, SWAC calls for a typewriter input.
This constitutes a halt command, for the machine does not continue its
routine until an operator completes the typewriter input. If delta is 70,
SWAC calls for a drum input; the drum is not yet in use.

If the delta of an input command is 00, 20, 4O, or 60, SWAC calls
for either tape or collator (card) input. Only one or the other is to be
used at any one time. If the operator has tape ready in the tape reader
and also cards in the collator, with collator motor idling, the machine
will attempt to input from both devices. This results in the input of
nonsensical values. On the cover sheet sttached to ﬂ:é coding always
make it clear to the operator when to remove tape or cards from input
units, or place cards or tape into position for read-in.

Coding Notation for Various Inputs

In coding for tape input use hexadecimal notation (base 16). There
are two hex digits each in «, B, V% and S, and ons in F. The F colum
may have either the letter or hex representation for operations. (cf. page
141). The correspording hex and decimal notations used on SWAC coding
sheets for digits are:

DEC: 000 001 002 003 O0O4 005 006 007 008 009
: 00 01 ©02 03 Oy 05 06 O7 08 09

010 011 012 013 Ol 015 016 017 018 etc.

B 2|8

Ou Ov Ow Ox Oy Oz 10 11 12 etc.

IIzhy

If coding for card input code in decimal notation; there are three digits
each in of, B, ¥; and $, and two in F. (This applies to non-symbolic
. coding.) In the F column, use the decimal representation for operations.
(C£. page iii and the above table.)

Use hex notation in the Cell Number column of the coding sheets in
coding for tgpe or cards. Card Number column is not used in tape coding.
Tn card coding that column must hold consecutive numbers, for there will
be on§ input card for every ten lines of coding. For instance, corres-
ponding to coding lines 190 through 199 (in decimal), the collator card
will be number 19, The Clear Epsilon and Sign columns of the coding
sheets are used similarly in hex and decimal coding. The "clear epsilon”
code is "S" in decimal notation, and ";" is the corresponding symtol in
_ hex notation. Indicate the sign by "=" or "X®*, The Word Pulse column is
not used at present for either method of coding.

Coding for Data Input

If a routine calls for input of data from tape it calls for one word
st a time; the tape advances one word at a time as input commands are
obeyed. However, if a routine calls for card input the coding must take
jnto account the number of words on each input card; this may vary from
dne to‘ten, The routine must execute the number of input commands corres-
ponding to the number of word pulses on any one card.

There is enough time between the reading of successive lines of each
card to allow SWAC to obey tw or three commands. To avoid storing ten
input commands, the coder may store only one input command. He then must
store another command to modify the input ooxinand, sending the information

" from thé card to successive memory locations. A tally command is used to
control the amount of input, counting to the number of ward pulses on each
card.. (Cf. page V:l for modifying commands.)

IIIs1

III. QUTPUT

Type and Tape
When the F of the command being obeyed is 2, coded as o in hex

notation, the SWAC executes an output. The alpha portion of an output
cormand determines the cell whose contents will be sent to an output
unit. The delta portion of the command determines which output device
will receive the information. The beta portion determines the cell
whose contents are displayed in the M register on the console during
output.
- If delta is 00, the SWAC types the contents of the cell referred to
in alpha. If delta is 10, there is an output to punched tape. Both of
these output devices are governed by an output format. Normally this
format has eleven characters:

positive number: space, 9 integers, tgb chargcter, "stop"

negative number: minus, 9 integers, tab character, "stop"
The nine digits are typed or punched in reverse order, the most signifi-
cant at the extreme right.

buring typewriter output, the tab character activates the tab key
of the SWAC typewriter. The "stop" does not appear on type-out. Both
the "stop" and tab characters are punched on output tape. A tape of
punched answers can be listed in final form on @ aixiliary typewriter,
and can also be read back into the SWAC as data for a subsequent routine.
The punched tape output is more useful for problems with a small amount
of values. Punched card output is mﬁch faster, axd more useful for
voluminous snswers.

The tab has no significance if read back into the SWAC from tgpe;
its purpose is to operate the tab key of the auxiliary typewriter,

IIIs2

enabling the operator to list answers in columns. The "stop" character
merely lists on that typewriter as "/". During read-in to the SWAC it
signals the end of one complete word.and camses the increase of epsilon.

Either tape or typewriter output can be set by the operator for
%onverted" output by a switch; it is possible thus to have values expressed
to base 10 or].76° With this kind of output the digits are punched or typed
in the correct order, the most significant at the extreme left. The
.operator can also obtain a word of eleven digits in "converted" output.
Besides notifying the operator that he desires "converted" output, though,
the coder must also code an appropriate cell in the beta of every "OO* §-"20"
type-out. For decimal output;, he must have beta of the command refer to a
cell containing "5" in the F position; for hex, he refers to a cell con-
taining "8" in the F position. It should be noted that 11 decimal digits
are roughly equivalent to 9 hex digits. ‘

If the coder is interested in only part of a word (for example, three
hex digits) the operator can cause the tab and "stop" characters to follow
directly after the first three integers, thus skipping the other integers.
Since a word leaves storage in reverse order during "normal" output, the
three integers obtained in this example would be those stored in delta and
F. Note that these are the three least significant integers. On "converted®
output the digits would be the three most significant integers, tw in
alpha, and one in beta. The punch or type output of a nine in‘beger word
requires two seconds.) |

It i® salso possible to change the format of each word. In addition
to the integers, tab, and "stop", there are availsble three space charac-
ters and a period. Following the coder's instructions, the operator can
intersperse the other characters among the digits of an output word.

III:3

7 Normally the output typewriter is set to type six words per line; if
the outputs come in groups of two, thres, or six words no chage need be
made. According to the coder's instructions, the operator can cause the
typing of fewer words per line to accommodate groups of four or five words.

In all the above variations of output the coder must bear in mind that any

change in the output fo:;‘ 'pre or tape will effect all wrds, whether type
or punch tape output; e.g., "converted" output also affects "10" punch-out.
20 Qutput ,

If the delta of an output eommand is 20, SWAC types nine letters
representing the nine digits in the cell referregi to by alpha. There 1is
a limited alphabet of 15 letters and a space. (Cf. page iii for corres-
ponding digits and letters.) As an example of its use, suppose the coder
were interested in knowing only the fact that f£(x) had exceeded a limit.
He might not have the routine halt in the event of that overflow. However,
he might code the routine to type a reminder to re-check the function at
x, and then to continue comput ing with x+1.

The following commands would type such a reminder:

Cell
No. =8 P X é F Remarks

32 Tx 00 00 20 o Type ®"re do".

33 hz 00 00 00 o Type x at time of overflow.

34 (Continue with rest of computing routine)
Lz Temporary storage assigned to x.
7

x xx 29 xy 3x x "Re do" in reverse order, with
space characters inserted.

~

NOTE: The cell 7x could contain xx od xe rx x on the coding sheets and
the same letters would be typed from SWAC. (The "x" code is a space.)

IIT:}y

If the SWAC has been set for "converted" oubput:, it would be possible to
use n2o" letter output, providing the beta of the output command refers
to a cell with "8" in the F position.
30 Output

If the delta of an output command is 30, nathing.takes place. This
command is not used, for it causes only a moment ary halt in the routine.
4O Qutput

A delta of 40 in an output command causes SWAC to type one letter or
one number representing the last five binary digits in the cell referred
to by alpha. The tab and carriage return keys of the output typewriter
are not automatically activated as in other type-outs. They must be coded
in "alpha" cells just as are the letters. If a routine includes any nLon
outputs there must be instructions to the operator to set the n,00 output
switch either to "numbers" or "letters". (Cf. following page, I11:5, for
corresponding letters and numbers.) Though only one character is typed
for each output command, there is available a complete alphabet.

If SWAC has been set for "converted" output (instead‘ of "normal"),
the output typewriter is not activated during n),0" output. There is only

a momentary halt in the routine.

III:5

nlho* Output (single character)

If () contains:~ - SWAC Switch Setting
o I" | will type Numbers Letters
(?00%558;0'6 Nothing Space
0l Backspace 1
02 Nothing .
03 : Nothing Carriage Return
ol % Shift Up.
05 ' Shift Down
06 Nothing g
07 Nothing h
08 - tab
09 / k
Ou ' s u
ov 3 v
Oow Nothing w
Ox Nothing x
Oy Nothing y
Oz Nothing z
10 0 i
11 1l 3.
12 2)
13 3 r
)1 N a
15 5 b
16 6 s
17 7 t
18 8 c
19 9 d
1u u n
1v v n
1w w P
1x x Space
1y y e
1z z £

III:G
50 Output (See footnote, page III:7)

‘When the delta of an output command is 50, SWAC causes the number in
the cell referred to by alpha to be punched on @ IBM card. There mst
be a group of ten values punched out in succession. The values appear on
the card in binary representation, ten to a card. Any of these words
punched out may be zero. If a coder has only four values to be punched
at each punch-out, six of the words punched will be zero.

The time required for punching of one card allows SWAC to obey two or
three commands between the punching of two éuccessive lines (or words).
This enables the coder to store only one output cormand, and employ a cycle
of modified commands to transfer the successive output mﬁs to the cell in
alpha of the output command. (Cf. page V:1 on modified commands.) It
saves the storage of ten separate output commands, if extra storage space
is needed.

The cards punched from output may be read back into SWAC as data, by
the collator. During the punching, a word pulse accompanies each line or
word of punching; during subsequent input the wprd pulse is the signal to
SWAC of the completion of one word, causing epsilon to increase. If ay
of the lines punched out should not be read back into SWAC, the coder must
anticipate this at the time of punch-out by requesting the operator to
jnhibit the word pulse where necessary. Any or all of the word pulse
punches mgy be eliminated. . ‘

Routines have been coded which will call for collator input of cards
carrying binary values, and punch out cards of the decimal equivalents.
This enables a coder to have the punched results of a computation trans-
‘1ated to decimal and then listed on IBM equipment. There is also a

routine to translate data punched in decimal form to cards in binary

IIT:7

notation; the binary data is then ready to be calléd for as input during
a computation routine. Refer to memorandum, "Programs for Comversion of
Decimal Punched Cards to Binary Punched Cards", by B. F. Handy, National
Bureaa of Standards, dated October 1, 1952.

6_0 Output (See footnote below)

A breskpoint output command is designated by 60 in delta. No output
device is activated; breakpoint is merely a halt, accompanied by the
display of two {ralues on the console of SWAC. The contents of the cells
referred to in the alpha and beta portions of the output command show on
the console for comparison with hand-computed values. This is most useful
for checking out coding on SWAC; after a routine is considered correct the
setting of a switch inhibits the breakpoint halt during actual comput ation
runs. Note that although the breakpoint is not operative with the switch
noff", an gppreciable delsy is introduced as each breakpoint is passed.
If there are many breakpoints, an alternate mutine, omitting them, should
be used during the comput ation.
70 Output

The output command with 70 in delta calls for an output to the magnetic

drum; this is not yet in use.

Tape-to-Card Converter

There is auxiliary equipment which translates punched tape, either in
decimal or hex notation, to punched cards; its oper ation is independent of-
SWAC. The translation, however, does not change the notation either from
decimal to hex or vice versa. This is useful for the comparison of dupli-
cate tzpe results on two separate computation runs, by using IBM equipment

to compare the cards.

Note: Whether SWAC is set for “normal“ or "converted" output is
immaterial in "50" and "60" outputs. '

10-22-52

Summary of Input and Output

Input command: F is 0 or-1 (i or jJ)
Output command: F is 2 (o)

Delta

Hex. Dec. Input Unit
00 000 Tape or Collator
10 016 Typewriter

20 032 Tape or Collator
30 ou8 Typevwriter

40 06l Tape or Collator
50 080 Typewriter

60 096 Tape or Collator

70 112 Drum (not in use)

III:8

Output Unit

Typewriter (nine digits)
Tape Punch’

Typewriter (nine letters)
(not used)
Typewriter (one character)
IBM Card Punch

Breakpoint

Drum (not in use)

IV. MEMORY CHECK

Memory Check is a device to notify oper ator of loss or pickup of
numbers ~in i the memory. Summing the memory after routine read-in (or
after computation of 1st value) checks immedi ately for failure to read

in a word, or to store it, properly. Intermittent summing in the same

manner during computation checks for loss or pickup during operation.
One more memory check after the last computation will verify accuracy of
the routine during final computations.
Preferably, assign addresses to storage in the following order:

1) Commands.

2) Constants and ' durmy commands.

3) Temporary storage and (if possible) modified commands.
Assign the last memory location in 2) to the given memory sum. The first
time the routine is checkéd out on the SWAC this sum is entered in the
memory as zero. Assign ore cell in 3) to the memory sum as computed at
regular intervals by the machine.
' Whenever a memory check is to be made, the routine enters a short
sequence of commands which add 1) and 2) as stored in the memory. The
summing routine stops just before the cell containing the given memory
sum. It then compares the sum of 1) and 2) as given with the sum computed
by the machine and stored in a cell of 3). If they do not agree, indica-
tion of memory failure should be given by the machime. |

The coder mgy choose to have the routine type the difference between

the two sums and then halt. 4Possibly an analysis of the difference ﬂll
indicate the failure. If the difference is large, the only recourse may
be to read the routine in sgain. Hence, it is important to code so that

computation mgy be continued from any point.

Ivs2

Therfirst- time the routine is checked out, the memory check canses a
failure since the given sum has been entered as zero. The difference
between the two sums is in this case the correct sum. On another day the
routine is again read into the machine, this time using as the memory sum
the type-out obtained on the first trial; If there is no failure, that
sum computed by the machine is entered permanently in the routine as the
given memory sum, and so used in subsequent computing runs of the routine.

If the given memory sum is stored negatively it can be included in
the summing. Then the machine sum should be compared with zero to deter-
min/e accuracy of the memory. In the event it is not zero, the machine sum
should be typed out for analysis of the error.

When a problem requires the use of submutines the assignment of
storage would be the same as described above, with the addition of L4}:
subroutine commands and constants. In this case, the suming cycle wuld
edd the contents of 1) and 2), skip over the contents of 3), and add k).
Then the routine would compare that sum with the given memory sum, as
above. ,

The routine must tske imto account the few modifiable commands ad
temporary storage cells which must necessarily be stored in 1), 2), and
L). Since they are not always of the same value, they would adlways cause
the memory sums to disagree. If permissible, those cells should be
restored to zero before being included in the machine sum, or they may
be omitted. A memory sum should have a constant value; barring that,

it should vary in a predictable fashion.

V:1

V. MODIFIED COMMANDS

One of the more powerful features of the coding for a machine like SWAC
is the possibility of changing commands which are already in the memory.
This is called "modifying* and it treats the commands like numbers, oper at-
ing on them to produce new commands, which can be obeyed in turn. It is
often possible to save considerable memory space by ingenious u;ser of modifi-

cation. The following paragraphs offer some suggestions on modifying commands.

The most straightforward way to code a cycle of, say, six oper ations
that are to be performed eight times is to code in 48 successive cells the
eight groups of six commands. However, it may take fewer cells to use the
same group of six commands, stored in six cells, eight times over. This
requires modifying one or more of the references of the six commands depend-
ing oﬂ the computation, each time the cycle is performed. It also necessi-
tates a tally count up to eight, and a command to leave the cycle when
completed.

In some :?.nstances, the amount of shift called for in an extract command
| varies with the numbers being used. The routine stores a dumy extract
command with delta equal to zero or an sppropriate constant. This dummy is
combined with a computed delta value and used each time the extract is to
be obeyed.

Instead of storing thirteen output commands to type out the contents of
memory addresses from 49 to 5v, modify one output command and use it repeat-
edly. Begin with (73) = 4% 00 00 00 o. Modify it in aipha, compare it with

a limiting dummy, and use it until (5v) has been typed out.

"V:2
Cell
No. 9 Y, r < F Remarks
73 [h9]%x 00 00 00 o (k) out
Th 92 7 T3 75 a k+1-+k

75 93 73 L 73 c Through?

76 (Command to be obeyed after (5v)
has been typed out)

92 01 00 00 00 0 2
23 Sv 00 00 00 o Limit for (73)
o (Temporary storage; "waste basket")
This same method can also be used for a summing routine, such as a memory
check.

-8

Another example of a modified command is one used in table look-up.
Suppose the logarithms of the integers from 1 to 1x (base 16) were stored
in addresses 60 to 7x. A dummy (5z 89 v9 36 a) would be stored in (88).
To obtain (log y), y would be added in ‘alpha to-the dummy; the resulting
command would then be obeyed as in the following example:
To £ind the logarithm of the integer part of x,
nmumber in temporary storage address v5.

Cell

XNo. X L X & E Remarks

33 87 v6 v6 ol e Extract ad shift integeé part of
: x to y = alpha of (v6).

3k v6 88 35 35 a Combine (v6) with dummy and place
it in (35).

35 [5z]% 89 v9 36 a Command to transfer log y to (v9).
This command may be put into the memory
initially as zero; it is alwgys pre-
stored by (3).

36 (Command to be obeyed after
obtaining the log y in (v9))

87 00 0z 1] z% z Extractor.

88 5z 89 v9 36 a Dummy for (35).
89 00 00 00 00 ¢

v5 (2’12::} known to be 1 & x € 1x)

v6 (Tempor storage; contains
y = 20 times the integer part of x)

v9 (Temporary storage; contains log y)
[] = portion to be modified.

V:3

Before re-entering a cycle containing a modified command it is neces-
sary to restore that command to its original state. If it could be
guaranteed that the command had been modified a given number (n) times, |
then the amount of modification times n could be subtracted from the
cormand to restore it. However s it is very possible that the modification
was done less than n times (for instance, in checking out the routine);
therefore, the policy of pre-storing a cormand before entering a computing
cycle will insure its sccuracy. (Note that the example of table look-up
on the preceding page does not require such pre-sto:"ing, but that the type-
out example first given requires pre-storing of (73) = 49 00 00 00 o.)i

Whenever it is possible in the coding, store a modified command in
that portion of the memory designated .for temporary storage. This
eliminates skipping that address when adding eémmmds and constants for
memory vcheck, or subtracting that command from the sum after completion
of summing. In the table look-up example, the command obeyed in (35)
could be stored and obeyed in (v8) among the temporary storsge cells as
in the fo]loﬁing:

Cell No. o £ r S F Remarks

33 87 v5 vé ol e Int. part of x -+ alpha of (v6).

3k vé 88 v8 v8 b Combine (v6) with dummy and - (v8).
36 (Command to be obeyed after obtaining the log y in (v9))

87 00 Oz zz z3 z Extractor.

88 S, 89 v9 36 b Dummy for (v8). [(89) is zero]

v5 (2-32x; xnown to be 1 € x € 1x) V

vé (Temporary storage; contains y = 2’8 times the integer part of x)
v8 [5z] 89 v9 36 b Log y + (v9); epsilon returns to 36.
v9 (Temporary storage; contains log y)

In the type-out example given (top of page V:2), since (73) cannot be
a special command (specifying the next epsilon) such storing in the temporary

portion of the memory is not possible.

VI:1

- VI. TALLIES
u There are three ways of tallying to govern the number of times a
particular cycle is followed. |

a) A constant may be added to a temporary storage cell until the
accumulation causes an overflow. [Example 1]

b) A limiting constant may be compared with unity (the result of the
cqmparison -- or subtraction ~- being returned to the constant
gtorage) . In this compare tally the constant is reduced by unity;
gt the same time the direction of routine is governed by the sign
of the difference. [Examples 2 and 3]

c) Avlimiting dummy command (A) may be compared with a modified
command (B) until (B) has been modified up to the value of (A).
[Bxample 4]

Tallies to cause one operation (C) to occur alternately with another
- operation (D) are termed alternating tallies. Either the compare commands
[Examples 6 and 7] or the overflow signal of an add command [Example 5]

may be used to accomplish this alternation.

Example 1: Cell

No. o B ¥ 2 E
38 97 47 L7 Lz a

Adding until overflow occurs

(As long as (38) does not sig-

nal sn overflow, the roubtine 39 (Cormand to be obeyed n times)
will go on to (39). When

there is overflow, then xou- L7 (ITnitially zero; successively

tine goes to (Lsz). n is (in alpha) m, 2m, 3m,..., O
properly chosen (m ®z&y), (L7) with overflow signal)

is left clear and need not be

restored before using this Lz (Cormand to be obeyed once, only
tally again. For example, after (39) has besn obeyed n times)
if n = 22, let (97) -

01 00 00 00 0, If n= 2z, let 97 (m) 00 00 00 O

m = 10, instead of 01.)

Example 2:
Using compare command

(The results of the compares
$n (23) will be positive n
times; hence, (26) will be
obeyed n times before the
result of the compare in (23)
will become negative. (3u)
would have to be reset before
using the tally again; it is
left with -1 in its storage.)

Example 3:

Using special compare command

(The result of the first com-
pare will be negative and (57)
will be obeyed. The next time
(56) is obeyed, the absolute
value of (67) is used, and the
result is again negative.
Hence, (57) is obeyed until
the compare of (56) results in
(67) being O -- positive; then
(60) is obeyed. Before being
used again, the tally in (67)

must be restored from 0 to n+l.)

Example k:

Comparing a modified command

(Before (u5) is obeyed it is
modified by (uk) to read 49 in
alpha. As long as the alpha
of (u5) is € 75, the result of
the compare in (uf) is positive,
and epsilon returns to (ul).
After (76) has been typed out,
(ué) has a negative result, and
epsilon continues to (u7).
Before entering this cycle
again, the routine must restore
(u5) with alpha = 48.)

Cell
No.

23
2

26
3u

79

56
57

67

v9

us
ub
u7

f

5

¥z

VIs2

x & X =2 K
3u 79 3u 26‘ c

(Conmand to be obeyed once, only
after (26) has been obeyed n times)

(Command to be obeyed n times)

(Initially n; saccessively n-1,
n°2?oo¢, 03 "1

("one" in position corresponding
to the units position of n in (3u))

vo 61 61 60 4
(Command to be obeyed n times)

(Cormand to be obeyed once, only

~ after (57) has been obeyed n times)

(Initially n+l; successively n,
n-1, n-2,..., all negative;
finally, O)

("One" in position corresponding
to the units position of n+l in
(67))

us wx ubS us a
(48] o0 00 00)
ux uS yz ul c
(Command to be obeyed after the
mamory addresses from L9 through
76 have been typed out)

75 00 00 00 o

01 00 00 00 0

(Temporary storage; "waste
basket")

Example 5:
Alternating by add command

(Accumlating & in alpha of (67)
csuses alternately no overflow
and then overflow. Upon over-
flow, (67) is left zero; if (2L)
is obeyed an even number of
times, therefore, the cycle can
be entered again without re-
setting (67) to zero.)

Example 6:
Alternating by compare cormand

(The result of the first compare
in (92) is =k in (wx). Since
the absolute value of (wx) is
used for the second obeying of
(92), that result is O in (wx).
Therefore, the results of the
compare slternate from negative
to zero (positive). If (92) is
obeyed an even number of times,
(wx) need not be restored to 0
before re-entering the cycle.)

Example 7:

Alternating of compare command

(Result of the first time obey-
ing (2u) is that (2u) is stored
negatively; routine ges to (2v).
Since the machine ignores sign
in obeying commands, the next time
(2u) is obeyed as if it were
positive; that result is a +(2u),
and epsilon goes to (L49). Hence,
the results alternate from nega-
tive to positive, and (2u) is
alternately stored negatively

ad positively. If obeyed an
even number of times, (2u) is
left stored positively; it need
not be restored before re-enter-

ing cycle.)

VI:3

Cell
No. & B r £ E
2y 61 k2 61 k9 a
25 (Comnand to be obeyed the first
and 31l odd times)
L2 80 00 00 . 00 0
L9 (Command to be obeyed the second
and all even 1'.5.mes§ﬂe
67 (Initially zero; alternately
80 00 00 00 O and zero (with
overflow signal))
92 wX W wXx uv d
93 (Command to be obeyed the first
and all odd times)
uv (Cormand to be obeyed the second
and all even time s{e (
wh (Any constant, k, used otherwise
in routine)
wXx (Initidlly zero; alternately -k
and zero)
2u 60 2u 2u L9 c
(Initially positive; alternately
negative and positive)
ov (Command to be obeyed the first
and all odd times)
49 (Command to be obeyed the second
and all even times) -
60 00 . 00 00 00 0
NOTB: Of the three alternator methods

of tallying, examples 5 and 6 require

five cells of storage each.

Example 7,

by having (2u) modify itself instead of
another cell, requires only four cells.

VII:1

VII. SUBROUTINES

Not all mathematical operations necessary to complete a problem are
available in the thirteen basic commands of SWAC. The most frequently used
of these complex operations (logarithm, exponential, trigdr_xometri_g functions,
division, etc.) have been coded as subroutines far inclusion in main
routines. There is a short cycle of commands, called the Interpretation

Routine, designed for inclusion in any main routine, which provides a
standard and uniform method of entering amd leaving subroutines.

Regardless of the number of commands (k) required for each subroutine,
they have all been coded to be stored in memory addresses from (zz - k + 1)
to z8. They are all less than 128 cells in length. If a main routine
Ifefers to two or more subroutines, the coder assigns storage to them ,depend-'
ing only on the number of cells used by each. (Theoretical exanple: store
the logaritrnn subroutine from Su to x3, and the square root subroutine from
;:)_; to y6 However, the coding sheets for these subroutines wuld be for
cells w6 to zz and yx to zz, respectively.)

When the routines are read into SWAC, the subroutines are read in

from tape or cards as originally coded; they are read into the memory

addresses assigned és in the example above. There is another small routine,
the Preparatory Routine, which inspects each wrd of the subrmoutines. It
modifies the "cross-reference" addresses according to the parameters deter-
mined by the coder. (.In the logarithm example, the paramter = 2w = zz -
x3, the difference between the addresses for which the sﬁbmutine was
coded and the sddresses in which it is to be used. In the square mot,
that difference = 19 = zz - y6.)

After the main routine and subroutines have been reai into the memory,
the coding should first cause the Preparatory Routine to modify the sub-

VII:2

routines. Some problems require so much storage thd the space allotted
to the Preparatory Routine must be used for other commands; since the
P;'eparatory Routine is used only at the start, to modify =ubroutines, no
harm is done by storing another subrogtine in the addresses formerly
occupied by the Preparatory Routine (22 to zz). | |

In the example above, using the logarithm and square oot suwroutines,
a third routine could be stored from y7 to zz (for example, the sine sub-
mutine) . This routine would also be read into SWAC as coded, but need
not be modified as are the two others. After the tw subroutines have been
modified by therPreparatory Routine, th.e main mutine should enter acycle
,ofAcomm_ands which read the third subroutine into addresses y7 to zz from

input tape or cards.
) Cell

Example: No. o« B Y S F
00

((38) modifies (37) and epsilon 37 [y7] o0 0O 3
goes to 37. When the modifica-

tion of (37) camses an overflow, 38 37 718 37 3u a
epsilon goes to 3u. Overflow

occurs only after (37) has 39 79 79 79 37 t
caused read-in to (y7) through
(22}) 3u (Cormand to be obeyed after the

last word of the sineé subroutine
has been read into (zz))
8 oL o00 00 o0 o0 28

79 00 00 00 00 0 Zero-
storage.

The main routine has a code word stored for each subroutine that is
to be entered. The code wrd is not a command nor a numerical constant,
but contains the addresses and parameters needed by the submutine for |
conq)_rbing. For example, the square root code word might contain the follow-
ing addresses. |
Sign o 3 r S F

-

- Address Address Number of whole Address of Number of this
of n of J T integers of y Y~ next command code word

VII:3

Every code word is stored negatively. The Interpretation Routine,
mentimgd before,. distinguishes code words from commands by sign, and
always places the current code word in memory address 16i. The Interpre-
tation Routine also extracts the various addresses given in the code word.
It uses these addresses to store the pertinent values in certain temporary
storage cells. Each subroutine is coded to find the necessary values in
those same cells. |

In the use of subroutines, the constants needed by the subrutines
are stored in specific memory cells, and all subroutines refer to these
same memory cells. This group of constants in the assigned pos.’;.tions is
called the "pool" of constants.

Memory allocation is as follows:

The cells from 1w through 2l contain specific "pool" constants. Cells
from 03 through 09 are set aside for temporary storage used by subroutines.
Cells Ou through lv are occupied by the Interpretation Routine mentioned
above. The Preparatory Routine is stored in cells z2 through zz. This
leaves cells 25 through zl for allotment by the coder to his main rout ine
and subroutine storage; By carefully scanning the submubine coding, the

| coder may possibly find that not all the'pooX constants and the temporaries
in addresses 03 to 09 and 1w to 2l sre used by his particular submutines.
In that case, he may assign any unused storage from 03 to 09 mnd 1w to 24
for constants or storage in the main routine.

The cover page of each subroutine has a description of the operation
it‘perforns, a 1list of the pool and temporary stor ag'e cells it uses, the
number of cells its commands and constants require for storage, the number
of cells to be modified by the Preparatory Routine, ad its code word.

VII:h

This should be all the coder needs to plam his use of subroutines. He
need not copy the subroutines to the pages of his coding sheets; an
1ndication of where he plans to store them in the memory is su.fficien’c.
In fact, he should avoid copying subroutines as a precantion against
copying errors.

‘There is a library of IBM cards on file, containing the subroutines
for card input to the SWAC. By use of the IBM mp@cer a coder can
obtgin a duplicate copy of any subroutine on cards. These he incorporates
into the cards containing his main routin;.

	000
	001
	002
	003
	004
	005
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	1-09
	2-01
	2-02
	2-03
	2-04
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	4-01
	4-02
	5-01
	5-02
	5-03
	6-01
	6-02
	6-03
	7-01
	7-02
	7-03
	7-04

