NCR CENTURY SERIES OBJECTIVES

The NCR Century Series of electronic data processing systems is the result of
several years of intensive research and planning.

With the release of the NCR Century Series of EDP systems, NCR achieved the
following design goals:

e Broad Market Range —- The NCR Century Series consists of several types of
processors and peripheral units. The possible system configurations cover
a very wide performance range.

e Adaptability -- The great variety of peripheral units for the NCR Century
Series makes it possible to adapt NCR Century Systems for efficient use in
practically any type of business.

e High Performance and Low Cost -- Three major factors contribute to the
high performance and low cost of the NCR Century Systems:

® Extensive use of software
e Modern hardware design
® Modern production techniques
e Information Interchange -- The NCR Century Series uses as its basic unit of
information an 8-bit word (byte), which is standard in the EDP industry.

The use of this 8-bit word permits easy information interchange and com-
munication between systems of different types and makes.

e Ease of Programming -- NCR supplies with each NCR Century System a complete
set of software designed to facilitate the user's programming task. Pro-
gram compilers (NEAT/3, COBOL, and FORTRAN) permit the writing of programs
in problem-related languages. Other software performs system-related func-
tions, such as copying files, etc.

NCR also supplies complete and flexible programs for many standard appli-
cations in various fields.

@ Program Compatibility -- As a user's requirements grow, he may acquire a
more powerful member of the NCR Century Series without having to rewrite
his existing programs. The user may simply recompile his existing source
programs to modify them for the most efficient use on the new system con-
figuration.

NEAT/3 -- INTRODUCTION AND DATA Feb. 68
TAB 1 — PUB. NO. 1 Page 1

INTRODUCTION TO NCR CENTURY SERIES HARDWARE

The purpose of this publication is to acquaint the reader with the design
philosophy and the basic features of the NCR Century Series hardware.

The NCR Century Series of information processing systems is a completely new
line of processors, peripherals, and communication equipment designed to meet
the demands of a wide range of customer needs.

NEAT/3 -- INTRODUCTION AND DATA Feb. 68
TAB 1 -- PUB. NO. 2 Page 1

DESIGN FEATURES

Common Trunk

All units in the NCR Century Series are designed with common input/output
characteristics. This permits the use of a common trunk to connect different
types of peripheral units to the processor.

Following are three advantages of the common trunk design:
e Economy -- The NCR Century Systems eliminate excessive input/output hardware.

e Programming convenience -- The processor handles all input/output functions
in a similar manner.

e TFlexibility -- Present or future peripheral units are easily added to an
existing NCR Century System.

Simultaneity

The short cycle time (high speed) of the NCR Century memories permits the
simultaneous occurrence of several processing functions. All memory cycles
not needed by input/output functions, which have priority, are available to
the current program in the processor.

The number of possible simultaneous functions depends on the number of input/
output trunks on the processor. For example, the NCR Century 100 with two
input/output trunks may perform three functions simultaneously: the current
program in the processor may be progressing while data is input from or output
to two different peripheral units.

REPRESENTS THE CONTINUOUSLY AVAILABLE MEMORY TIME.

REPRESENTS THE MEMORY TIME TAKEN BY A PERIPHERAL UNIT
ON TRUNK 0 OPERATING CONTINUOUSLY AT FULL SPEED.

REPRESENTS THE MEMORY TIME TAKEN BY A PERIPHERAL UNIT
ON TRUNK 1 OPERATING CONTINUOUSLY AT FULL SPEED,

REPRESENTS THE TIME AVAILABLE FOR INTERNAL PROCESSING
WHILE TWO PERIPHERAL UNITS ARE OPERATING AT FULL SPEED.

NEAT/3 -- INTRODUCTION AND DATA Feb. 68
TAB 1 -- PUB. NO. 2 Page 2

INTRODUCTION TO NCR CENTURY SERIES HARDWARE

The simultaneous occurrence of several functions in the NCR Century 100
increases the system's performance by reducing program running time.

Upward Program Compatibility

Hardware and software design permits programs written for a lower member of
the NCR Century Series to be used on a higher member of the same series. This
program compatibility is made possible by the use of disc memories on all
systems and by the identical data structure throughout the entire Century

Series,
Program compatibility offers the user the following advantages:

e Economy -- The user need only acquire a system to satisfy his needs for
the near future. If the user outgrows his present system and moves up to
a higher member of the NCR Century Series, the expense of converting his
existing programs in minimal.

e Speed of conversion -- No time loss due to reprogramming and debugging
occurs when a user acquires a more powerful member of the Century Series.

Flexibility

NCR offers a variety of peripheral units for the various processors in the NCR
Century Series. Many similar peripheral units are available with different
levels of performance. This variety of units economically fulfills the re-
quirements of practically any application.

If a user's workload exceeds the capacity of his present system, he may get
additional units for his NCR Century System, or he may exchange one or several
of his present units for like units with a higher performance level.

Integrated Peripheral Units

For greater economy and operator convenience, certain peripheral units in the
NCR Century Systems share portions of the cabinet, internal logic circuits,
and power supplies with the processor. These peripheral units, referred to
as integrated (or system) peripheral units, occupy dedicated positions on
the communications (common) trunks. The integrated peripheral units oper-
ate in the same manner as other freestanding peripheral units.

The NCR Century 100 base system consists of a processor with memory and the
following integrated peripherals:

e Dual spindle disc file.
® Punched card reader or punched tape reader.
e Line printer.

Ease of Operation

The NCR Century Series of computers is designed for convenient and efficient
operation. The controls and indicators on all units are located at a com-

NEAT/3 -~ INTRODUCTION AND DATA Feb. 68
TAB 1 -- PUB. NO. 2 Page 3

fortable height. Any NCR Century System may be arranged so that the operator
need only take a few steps to service any peripheral unit. All peripheral
units, including the disc units, are designed for easy loading and unloading
of file media.

Ease of Installation

In the preparation of a computer site, the user must give consideration to
the system's requirements of electrical power, air conditioning, placement
of cables, and space.

The lower power consumption and wide temperature tolerance of the micro-
electronic circuits in the NCR Century Series reduce the air conditioning -
requirements for the site.

The design of the units' frames and cabinets eliminates the need for a raised

floor at the site. The bases of the adjoining units in the NCR Century Systems
house all the connecting cables.

Reliability and Maintainability

The standardization of circuit boards and the extensive use of integrated
circuits give NCR Century Systems a high degree of operating reliability at
low cost.

The design of the NCR Century System also permits easy and efficient mainten-
ance of the system. All parts are easily accessible, and the repeated use of
standard circuit boards throughout the system reduces the number of service
parts required to service the system. This results in reduced maintenance
cost,

NEAT/3 -- INTRODUCTION AND DATA Feb. 68
TAB 1 -- PUB. NO. 2 Page &4

INTRODUCTION TO NCR CENTURY SERIES HARDWARE

NCR CENTURY 100 BASE SYSTEM

The system shown below represents the minimum system capable of complete

and efficient file processing. The units in the system are a processor with
integrated memory and operator's control panel, a card reader, a high speed
printer, and a dual disc unit. (The user has a choice of either a punched

card reader or a punched paper tape reader.)

NEAT/3 -- INTRODUCTION AND DATA Feb. 68
TAB 1 -- PUB. NO. 2 Page 5

The following diagram indicates the trunk and trunk position to which each
integrated peripheral unit in the base system is assigned. Additional
peripheral units may be connected to positions 3 through 7 on both trunks.

CENTURY 100 PROCESSOR

16 K MEMORY

1/0 CONTROL,

4——TRUNK 0

){— POSITION >——

SYSTEM 4— POSITION)— CONTROL PANEL
DUAL DISC

¢ POSITION SYSTEM PRINTER

4— POSITION

| @~— POSITION

44— POSITION

44— POSITION

4— POSITION

NEAT/3 ~- INTRODUCTION AND DATA Feb. 68
TAB 1 -- PUB. NO. 2 Page 6

INTRODUCTION TO NCR CENTURY SERIES HARDWARE

NCR Century 100 Central Processor

The NCR Century 100 processor is a general purpose processor with a memory of
16,384 characters.

The hardware in the NCR Century 100 recognizes 19 commands. These commands
have a length of either four or eight 8-bit characters. All internal opera-
tions in the NCR Century 100 are carried out on a one-character-at-a-time
basis. Each character in memory is separately addressable. The hardware con-
siders all numerical data as unsigned, unpacked, and either decimal or binary.

e Memory

The standard data storage capacity of the NCR Century 100 internal memory
is 16,384 8-bit characters. A memory capacity of 32,768 characters is
available on an optional basis. Each character in the memory has a parity
bit (ninth bit) to verify the accuracy of all data accessed in the memory.
The NCR Century 100 memory cycle time is 800 nanoseconds (.8 microseconds).

The use of short, magnetic thin-film rods as storage elements gives the
NCR Century 100 memory its high speed and low cost.

NEAT/3 -- INTRODUCTION AND DATA Feb. 68
TAB 1 -- PUB. NO. 2 Page 7

e Input/Output Control

The input/output control in the NCR Century 100 processor permits 3-way
simultaneity; i.e., the processor may be communicating with two periph-

eral units while the internal program in the processor is progressing.

e Operator's Control Panel

ﬁ?ﬂﬂﬂ@ﬂ

0000

QQQ.QQQQQ.OQQQQ

The operator's control panel is the functional control center for the NCR
Century 100 System. This panel and its associated components occupy a dedi-
cated position on one of the input/output trunks. The indicators, rotary
switches, toggle switches, and push-button switches are logically and con-

veniently arranged on the panel.

The operator's control panel contains a running-time meter, a compute-time
meter, and a maintenance counter. The time meters provide the user with
valuable information for time studies, billing, and maintenance scheduling.

Feb. 68

NEAT/3 -- INTRODUCTION AND DATA
Page 8

TAB 1 -- PUB. NO. 2

INTRODUCTION TO NCR CENTURY SERIES HARDWARE

System Dual Disc

The system dual disc is a magnetic file device with random-access capabili-
ties. It contains two discs, each with its own read/write head assembly on
a movable arm. The disc packs may be independently mounted or removed.

Each disc pack has a storage capacity of 4,194,304 characters. The data
transfer rate between the processor and the integrated dual disc unit is
108,000 characters per second. The average access time is 55 milliseconds;
the minimum access time is 30 milliseconds; the maximum access time is 70

milliseconds. The average latency time (one-half of a disc revolution) is

21 milliseconds.

The design of the integrated dual disc unit permits easy changing of disc
packs. Each disc pack is sealed to protect its recording surfaces.

Feb. 68

NEAT/3 -- INTRODUCTION AND DATA
Page 9

TAB 1 -- PUB. NO. 2

System Printer

The NCR Century 100 base system has a line printer with a printing speed of up
to 450 lines per minute. Each line has 132 columns (print positions). The
character-set on the type cylinder of the system printer includes 26 alpha-
betic characters, 10 numeric characters, 28 special characters, and space.

The operator can easily adjust the system printer to accept paper or forms
of different widths, lengths, and weights.

An optional model of the system printer has a double set of numeric char-
acters in each print column to permit the printing of numeric characters

at a speed of up to 900 lines per minute. The type cylinder in this printer
contains 26 alphabetic characters, 10 numeric characters, and 16 special
characters.

System Paper Media Readers

The operator of an NCR Century 100 System uses a punched card reader or punched
paper tape reader to input control information to the processor. These

system paper media readers may also be used to read data files for input

to users' programs.

NEAT/3 -- INTRODUCTION AND DATA Feb. 68
TAB 1 -- PUB. NO. 2 Page 10

INTRODUCTION TO NCR CENTURY SERIES HARDWARE

e System Punched Card Reader

The system card reader reads 300 cards per minute. The feed hopper and out-
put stacker, which have a capacity of 1000 cards each, are easily accessible.
The transport mechanism maintains constant contact and control of the cards
as it guides them through the reader. This positive card control minimizes
card jams and wear.

The card reader reads the cards photoelectrically, one column at a time.

The hardware in the reader reduces the punch configuration from each 12-row
column into an 8-bit character. (The software performs further translations,
if required.)

e System Punched Paper Tape Reader

NEAT/3 -- INTRODUCTION AND DATA Feb. 68
TAB 1 -- PUB. NO. 2 Page 11

The system paper tape reader, which is basically a strip reader, accepts

5-, 7-, or 8-channel punched paper tape. However, rolls of paper tape up

to 300 feet long may also be processed on this paper tape reader. The read-
ing speed is 1000 characters per second.

xyxxx

NEAT/3 -- INTRODUCTION AND DATA Feb. 68
TAB 1 -- PUB. NO. 2 Page 12

INTRODUCTION TO THE NCR CENTURY SOF TWARE

THE NCR CENTURY SOFTWARE PHILOSOPHY

The software for the NCR Century Series is a highly integrated and inter-
dependent set of individual programs, designed to fulfill specific tasks.
These interdependent software programs avoid duplication of routines and are
much more efficient than a set of independently operating software programs.

The key to the high performance and low cost of the NCR Century Series lies in
the use of discs and the disc-oriented software. The software is of modular
design and resides on discs; only a small part of the software resides in

the internal memory at any one time. With a minimum time delay, this soft-
ware calls from disc into internal memory any additional software when it is
needed.

Using NCR's software and discs with even the smallest member of the NCR Century
Series provides a very desirable upward compatibility of programs. If a user
upgrades to a more powerful system within the NCR Century Series, he may re-
compile his existing source programs to use them with improved efficiency.

NCR CENTURY 100 BASE SYSTEM SOFTWARE

This publication briefly explains the functions and features of the major
software items for a basic NCR Century 100 System.

Programming Aids

The machine language (object program) for an electronic data processing
system is completely different from a practical programming language (source
program). In the NCR Century Series, several prograr. compilers bridge the
gap between these two languages.

e NEAT/3 Compiler

The NEAT/3 language is a near-English general programming language deve-
loped for the Century Series. The NEAT/3 Compiler accepts instructions
written in NEAT/3 language and compiles a complete object program for

use by the NCR Century 100 System. Depending on the complexity of the data
to be handled (decimal point, signed values, binary values, etc.), some
simple instructions in the NEAT/3 language may result in many machine
instructions in the object program.

NEAT/3 -- INTRODUCTION AND DATA Feb. 68
TAB 1 -- PUB. NO. 3 Page 1

The programmer assigns unique reference tags to logical points within
his source program. He may then refer to these points at any time in
the program by merely using the names of the appropriate reference tags.
This feature completely eliminates the need for the programmer to con-
cern himself with actual memory addresses.

The NEAT/3 Compiler also facilitates the execution of major (business)
functions such as collating, validating, master file updating, etc. The
programmer fills in clearly defined parameter and data layout sheets for
these functions. The NEAT/3 Compiler accepts the information on these
sheets and generates complete program segments to perform these major
functions.

Many other software routines work in conjunction with the NEAT/3 Compiler
and provide a programming system of extreme simplicity and efficiency.
NEAT/3 also offers convenient debugging facilities. The programmer de-
bugs and corrects all his programs at the NEAT/3 language level, elimina-
ting the need to code-check programs at the machine language level.

e NCR Century COBOL Compiler

The NCR Century COBOL Compiler is a system of programs that translates COBOL
(COmmon Business Oriented Language, U. S. Government 1965 Specifications)
into an object program for use on the Century Series.

Once it has been written in COBOL, a program may be translated into object
programs for different types of computers by different COBOL compilers.
COBOL uses a familiar and conventional vocabulary for its source-program
statements. These source statements, which can be understood by any pro-
grammer, require few documentary remarks.

The NCR Century 100 System with its standard 16,384-character memory permits
the use of a basic subset of the standard COBOL.

e NCR Century FORTRAN II Compiler

The NCR Century FORTRAN II Compiler translates programs written in basic
FORTRAN language into an object program.

The FORTRAN (FORmula TRANslation) language simplifies the programming of
scientific problems by permitting the programmer to use familiar mathe-
matical notations in his source program. Since FORTRAN is a universal
programming language (USASI standard), it allows the many FORTRAN pro-
grams available in the EDP industry to be used on NCR Century Series.

The FORTRAN IV language is more powerful and flexible than the FORTRAN II
language. While it is not designed to operate with the NCR Century 100
System, FORTRAN IV is available for use on other systems within the NCR
Century Series.

NEAT/3 -- INTRODUCTION AND DATA Feb. 68
TAB 1 -- PUB., NO. 3 Page 2

INTRODUCTION TO THE NCR CENTURY SOFTWARE

Operating Software System

The operating software for the NCR Century 100 System consists of the Input/
Output Executive and the Monitor systems. In addition to their individual
functions as explained below, these systems and some other software routines
share in the maintenance of the NCR Century software and the system log.

o Input/Output Executive

The I/0 Executive handles all input and output functions and contains the
necessary routines to permit automatic simultaneity of these functions.
The I/0 Executive complements the hardware to a greater degree than any
other software item.

In the past, NCR's I/0 Executive systems treated each peripheral unit dif-
ferently. In constrast, the I/0O Executive for the NCR Century Series oper-
ates all peripheral units in a uniform manner. This uniform approach
results in three distinct advantages:

e The user's program may initiate I/0 instructions without regard to the
degree of simultaneity of the system or the number of I/0 buffers
assigned by the program.

e The NCR Century Series easily accommodates new hardware designs and differ-
ent peripheral mixes.

e The NCR Century Series offer maximum user convenience and operating speed,
as well as economical utilization of memory.

The I/0 Executive employs two major concepts: captured I/0 instructions
and hierarchical subroutine organization.

e Captured I/0 instructions -- The simple I/0 instructions in the user's
program do not directly affect the hardware. Instead, they call entire
software subroutines to perform the desired I/0 functions.

e Hierarchical subroutine organization -- Any program logic that is
common to two or more subroutines is organized into a lower level
subroutine. This concept saves memory space by avoiding unnecessary
duplication.

The programmer directs the functions of the I/0 Executive through file
specification data. He fills in preprinted file specification sheets for
each file used in a program. The programmer's answers to the specific
questions on the file specification sheets are compiled with the source
program and become part of the object program. The I/0 Executive uses
the programmer's answers, in their compiled form, to perform the neces-
sary input and output functions during processing. All these functions
are fully explained in a separate publication on the I/0 Executive System.
Following are brief descriptions of some of the functions which may be

of special interest to the user.

NEAT/3 -- INTRODUCTION AND DATA Feb. 68
TAB 1 -- PUB. NO. 3 Page 3

e Opening of Files

The I/0 Executive must open input and output files before the program
uses them. The programmer may let the I/0O Executive open a file auto-
matically at the beginning of a program, or he may use an instruction to
open a file at any point in the program.

To open an existing magnetic source file, the I/0 Executive checks the
file identification label and file date to verify the validity of the
source file. To open a destination file on disc, the I/0 Executive finds
an expired or unused area on the disc. 1If magnetic tape is specified

as destination media, the I/0 Executive checks the dates in the file
identification label of the magnetic tape to determine whether or not the
tape contains protected data. A destination file on magnetic media
normally cannot be opened unless the media contains expired data.

e Closing of Files

The programmer may let the I/0 Executive close a file automatically at
the end of a program, or he may use an instruction to close a file at any
point in the program. To close a file, the I/0 Executive completes all
functions connected with this file. A closed file is protected. Unless
the file is reopened, it is no longer available to the program.

e Error Handling

During the running of a program, the I/0 Executive takes any corrective
action that may be required to assure error-free data input and output.

e Monitor

The Monitor software provides the user with the means to run and control
the NCR Century 100 System.

® Program Loading and Linking

The Monitor facilitates the loading of individual programs and permits
the automatic linking of a predetermined series of programs. This
automatic program linking provides efficient operation of the NCR
Century 100 System with a minimum need for operator intervention.

e Dating Scheme

The NCR Century software permits the user to generate a 3-year calendar
for software use, He may then run any program selectively, depending
on calendar information or other information in memory. The user-
defined calendar also permits the use of relative dating. For example,
the programmer may specify the number of workdays a magnetic file is

to be protected for backup purposes.

NEAT/3 ~- INTRODUCTION AND DATA Feb. 68
TAB 1 -~ PUB. NO. 3 Page 4

INTRODUCTION TO THE NCR CENTURY SOFTWARE

e Communication

The user enters all operational information under the control of the
Monitor. The operational information for system control includes such
items as current dates, peripheral unit assignment to trunk positions,
request for certain programs, etc.

e System Log Maintenance

Various portions of the operating software maintain a system log on the
system disc packs. The system log of the NCR Century 100 System serves to:

Maintain chronological entries regarding daily operations.
Point out normal or abnormal operating conditionms.

Assist in system failure diagnosis.
Provide printed reports describing the above conditions.

The operating software automatically maintains the system log for one work-
ing day. However, software is available to copy daily logs to another disc
file, enabling the user to accumulate system log data over any length of
time.

e Disc Management

The operating software controls the changing of disc packs.

When the operator replaces one of the disc packs in the NCR Century 100
System, software automatically updates the newly mounted disc pack. The
NCR Century software compares the versions of the software overlays and
system-oriented data on the two system disc packs and selectively copies
the latest versions to the newly mounted disc pack.

Before the operator removes the system disc containing the current system
log, the software copies the log to the remaining system disc.

Utility Routines

Utility routines perform those functions which are frequently performed dur-
ing the operation of most computer systems. The availability of these
utility routines saves the user valuable programming time and facilitates
the operation of his system.

® Sort Program Generator

The Sort Program Generator is actually a special purpose compiler. The
programmer specifies the sorting operation on special preprinted specifi-
cations sheets and inputs his entries to the Sort Program Generator. The
resulting sort program is exceptionally efficient. FEach sort program is
tailor-made at program running time for the system configuration being
used and for the data being sorted as defined on the specifications sheets.
The easy and fast operation of the Sort Program Generator eliminates the
need to retain many individual sort programs on discs.

NEAT/3 -- INTRODUCTION AND DATA Nov. 68
TAB 1 -- PUB. NO. 3 Page 5

Record equipment functions or malfunctions at the time of their occurrence,

e Data Utility Routines

A number of utility routines perform the following data-oriented tasks:
e Copying, with many options, all types of files from any type of media.

e Verifying data files (matching of records in two files) and printing
all unmatched records.

e Preparing dummy files for program testing.

e Media Initializing Routines

The Media Initializing routines record required labels and software on
magnetic file media.

e Source Program Utility Routines

These routines prepare source program input from punched cards, punched
paper tape, or disc for use by one of the compilers (NEAT/3, COBOL, or
FORTRAN). The Source Program Utility routines sort the statements in

the order specified by the programmer and output errors to the printer.

Source Program Utility routines also build control tables (control strings)
that automatically run a number of individual programs in a predetermined
sequence,

e Object Program Utility Routines

The Object Program Utility routines copy object programs from disc to
disc. For example, a newly compiled and debugged program can be copied
to any desired disc pack for later use. These routines also maintain
both an up-to-date compiler subroutine library and an operation code
generator file,

Applied Programs

NCR offers its users efficient and completely debugged programs of general
interest. These programs reflect the most up-to-date methods and successful
practices known in business and industry.

All applied programs consist of documented sections (subroutines) which may
be modified individually for optimum operating efficiency under the varying

requirements of different users.

Applied programs for the NCR Century 100 System are available in the follow-
ing major categories: retail, financial, industrial, commercial, and scientific.

xxx¥

NEAT/3 -- INTRODUCTION AND DATA Nov. 68
TAB 1 -- PUB. NO. 3 Page 6

INTRODUCTION TO NEAT/3

» ELECTRONIC DATA PROCESSING

In summary of the prerequisite courses, data processing is a series of oper-
ations performed on data to arrive at a useful and meaningful result. Facts,
when considered individually, are simply that —-- isolated facts. But once
they are analyzed with other information, the facts become significant. The
1,000th sale of a machine becomes meaningful only after the sale is related
to the projected goal -- 1,000 sales or 10,000 sales.

Electronic data processing quickly and accurately transforms data into useful
and meaningful information. But no matter how fast and how accurate a com-
puter or any other data processing machine is, it cannot do anything without

the programmer telling it what to do. To solve a problem using an EDP system,
the programmer should follow these steps:

1. Define the problem.
2. Define the system of runs needed to solve the problem.

3. Flowchart the data flow (input files, magnetic storage files, printed
reports) through all the runs in the system.

4, Flowchart each run in the system.

5. Write the source program for each run.

6. Compile the source program into an object program.

7. Debug (check) each program.

8. Debug (check) the system.

9. Run the system for production.

The prerequisite éourses were concerned with steps 1 through 4. This course
is concerned with steps 5 through 8 -- how to write the program and to get

it ready to be run.

Before the actual methods needed to write a program can be learned, the WHY
of these programming methods must be understood.

Programming methods are dependent on the manufacturer's hardware/software
combination. The WHY of the compiler is basic to the understanding of pro-
gramming.

NEAT/3 -- INTRODUCTION AND DATA Feb. 68
TAB 2 -- PUB. NO. 1 Page 1

WHY A COMPILER?

The major importance of a compiler in any computer system is to prepare a
source program for the production run. A compiler is a software program that
converts the program, as it is written, into a form that can be machine-
executed. The source program is written in a near-English language that the
compiler can understand, and the compiler translates this program into one
that the processor can understand.

Obviously, the compiler must be told everything it has to know before it can
translate a source program. It must be told what the data looks like, what is
to be done with it, where the results are to be stored, and in what form these
results are to be stored. To do this, a programmer writes a program, putting
his thoughts into the expressions and the format that the compiler understands.

The program that a programmer writes is called a source program. He writes it
in the language understood by the particular compiler he is using. The com-
piler designed to prepare a program to be run on an NCR Century computer is the
NEAT/3 Compiler, and its associated language is the NEAT/3 language.

The NEAT/3 Compiler is a software program that accepts the source program as
the programmer has written it. It looks at the format and the coding of each
source statement within the program, determines-— as far as possible-- if the
statement is correct, translates the correct statements into machine language,
and flags the error statements. The translated program, the output of the com-
piler run, is called an object program. This object program, when free from
errors, will operate on live data.

TYPES OF INSTRUCTIONS IN A SOURCE PROGRAM

A source program contains three types of instructions: compiler control in-
structions, data definitions, and procedural instructions.

Briefly, the control instructions -- compiler control and data definitions --
supply special information to the compiler and direct the compiler in its
operation. Control instructions greatly influence the final structure of the
program; however, they never become part of the object program.

On the other hand, procedural instructions make up the logic flow of the pro-
gram. When translated into machine language, they become the object program.

Data Definitions

Data definitions define the data to the compiler. For instance, a data de-
finition might contain the following information: a data field called BALANCE
is eight characters long, two of which are decimal positions and one of which
is a sign position. In other words, BALANCE looks like +xxxxx, XX (the caret
indicates a decimal point).

Data definitions not only tell the compiler how the data will look when it is
input, but they can also tell the compiler how the data is to look when it is
output. For instance, a data definition may tell the compiler that BALANCE is
to be edited before it is printed; that is, it is to contain a dollar sign, a
decimal point, and the proper plus or minus sign. Hence, BALANCE looks like

NEAT/3 -- INTRODUCTION AND DATA Feb. 68
TAB 2 -- PUB, NO. 1 Page 2

INTRODUCTION TO NEAT/3

+$xxxxx.xx each time it is printed.

Data definitions also tell the compiler when the data is introduced into the
system, that is, either now, during the compilation run or later during the
production run.

° Constant Data

Data entering the system at compilation time is called a constant. This
data usually is an unchanging value which the program may repeatedly need
during program execution. For example, interest rates and dividend per-
centages can enter the system as constants. This type of data is built
into the program and is always available during program execution.

° Variable Data

Data entering the system during the production run is usually variable data.
For example, John P. Depositor has $1,463.79 in his checking account, and
Robert M. Spender has $29.03 in his. This type of data is stored on some
media external to the program, for example, disc, magnetic tape, punched
cards or paper tape, or remote terminals connected to an online system.

This data is available only after the program first calls it into the sys-—
tem during the production run.

Procedural Instructions

Procedural instructions are another type of instruction in the source program.
Procedural instructions make up the logic flow of the program. Where control
instructions direct the compiler operations, procedural instructions direct
processor operations. Procedural instructions tell the processor to add, sub-
tract, move data to another location, print a record, store data on a disc, etc.

Hence, these procedural instructions are those that the compiler translates in-
to machine language. This translation, the compiler output, is called an ob-
ject program and is the program in control of a production run.

Because of the nature of the NEAT/3 Compiler, object programs differ greatly
from their source programs. For example, a programmer may code a procedural
instruction such as ADD A to B. During compilation, the compiler looks at

the data definitions for A and B. A has two decimal positions; B has four.

A has a sign; B does not. Therefore, the compiler generates the extra instruc-
tions needed to align decimal points and to add a plus sign to B. In other
words, the NEAT/3 Compiler generates the instructions that the processor needs
to make A and B look alike before they are added. This generated coding be-
comes an integral part of the object program.

Compiler Control Instructions

Compiler control instructions are another type of instruction in the source
program. Compiler control instructions direct the compiler to perform special
tasks. For instance, if Program A is too long to reside entirely in memory at
run time, the programmer may instruct the compiler to construct the program so
that parts of the program can be stored on disc while the main program is in
control. Then, as each stored part is needed, it is called into memory.

NEAT/3 -- INTRODUCTION AND DATA Feb. 68
TAB 2 -- PUB. NO. 1 Page 3

This part temporarily resides in the same area that the next part will occupy
when it is called into memory at a later time during processing.

The compiler control instructions do not instruct the processor; they instruct
the compiler. Hence, they are not translated into machine instructions. They
do not become part of the object program, but they do affect the structure of
the object program.

STRUCTURE OF THE SOURCE PROGRAM

The NEAT/3 Compiler requires the programmer to ensure that the source state-
ments in his program are presented to the compiler in a prescribed sequence.
This sequence assures the compiler that it will be informed of pertinent de-
tails before it attempts to translate the procedural instructions into machine
instructions.

This sequence of source statements follows:

Compiler Control Statements

These statements are introductory statements that inform the compiler of the
program name and version number and of the hardware configuration upon which

this program is to be run.

File and Data Description Statements

These statements completely describe the files of data to be processed and the
files of data to be output.

Constants and Working-Storage Description Statements

These statements inform the compiler of all the working-storage areas that the
program requires during its execution.

Procedural Instruction Statements

These statements are arranged in the logical order required to manipulate the
data and to produce the desired results.

NEAT/3 —-- INTRODUCTION AND DATA Feb. 68
TAB 2 -- PUB. NO, 1 Page 4

INTRODUCTION TO NEAT/3

STEPS TO COMPILE A PROGRAM

The following is a general and non-detailed diagram of the compilation process.

HANDWRITTEN

PUNCHED
SOURCE

PROGRAM

NEAT/3
COMPILER

COMPILATION

RUN

COMPILER
LISTING

"

To compile a program, the programmer first writes his source program using the
language and format that the compiler recognizes.

OBJECT
PROGRAM

ON DISC ON DiISC

He then has this handwritten source program encoded onto punch cards, paper
tape, or magnetic tape.

The encoded source program is now ready to be compiled. The Source Program
Utility Routines (SPUR) first perform precompilation functions to the source
program, e.g. sort the source lines into the prescribed sequence. The NEAT/3
Compiler then enters the system from disc. As mentioned before, the compiler
looks at the format and the coding of each source statement within the program,
determines, as far as possible, if the statement is correct, translates the
correct statements into machine language, and flags the statements in error.

The compiler then outputs the object program onto a disc and prints a listing
which contains a copy of the source program, a list of the errors it has found,
and a memory map of the object program.

The programmer must now debug the program (or correct any errors in it that
may hamper program execution). However, this subject of debugging is dis-

cussed later. For the present, the actual coding of a source program is the
primary concern.

XXX

NEAT/3 -- INTRODUCTION AND DATA Nov. 68
TAB 2 -- PUB. NO. 1 Page 5

DATA CONCEPTS

INTRODUCTION

A programmer is to write a program that will access prescribed data, process
that data, and output the desired results. To do this, he must describe the
format of both the data to be processed and the desired results. These de-

scriptions tell the compiler exactly which instructions it must generate to

make the procedural instructions complete.

Because of the nature of the NEAT/3 Compiler, the programmer can write his
program in a language that is similar to English. This English-oriented
language is simple to code, for it is divorced from actual hardware instruc-
tions. The NEAT/3 Compiler assumes this burden of building the precise hard-
ware instructions. For the compiler to do this, the programmer must inform
it of all the details of the data to be processed, of the desired output, and
of the system configuration on which the program is to be run.

FILES

The concept of a file is one of the most basic concepts in data processing.

All input data and output data enters and exits the system through files. This
concept of a file may be likened to that of a file cabinet in an office. In
this cabinet are systematically arranged records into which a secretary may
enter information or from which she may obtain information. For instance,
Peter S. James called his boss this morning and reported that he would not

come to work today because his wife just gave birth to a baby. The secretary
in the personnel office locates Peter S. James' record in the file and re-
cords his absence. She also updates the record to show an increase in the
number of Peter S. James' dependents.

The concept of an electronic data processing file is quite similar to the above
example. A file is a group of records that pertain to a common subject and
that are written on the same media. This media may be punched cards, paper
tape, magnetic tape, disc, or any other storage media.

Types of Files

Consider two types of files -- master files and transaction files. Those files
that contain permanent data are termed master files. For instance, each record
in an employee's master file may contain the employee's name, employee number,
social security number, weekly salary, salary-to-date, income-tax-to-date and
other pertinent information. The data in these master records can be changed
(or updated) periodically.

NEAT/3 —- INTRODUCTION AND DATA Feb. 68
TAB 2 -—- PUB. NO. 2 Page 1

The data used to update these master records is contained on transaction rec-
ords. All the transaction records that are needed to update the master file
are collectively termed the transaction file.

Consider a typical update run. Peter J. Swanson goes to his bank and deposits
money into his checking account. The bank punches a record of this transaction
into paper tape. This information and all the other transactions of the day —-
the transaction file —-- are input to an update run. The update program reads

a transaction record and gets the corresponding master record. This pairing

is accomplished by comparing the keys (e.g., account number, employee number,
or stock number) in both the transaction and master files. When the appropri-
ate master record is found, the program updates it by using the information in
the transaction record. The new master record now becomes part of the updated

master file.

Since master files are permanent and since they may be updated frequently, they
are usually stored on magnetic media rather than on paper media. Transaction
files, however, are generally used only once; e.g., after a bank posts a de-
posit to an account, the transaction record is no longer needed. These files
may be kept for a few days as backup and then easily destroyed.

The details of file structure and definition are covered in the file concept
sections of this manual. However, this brief discussion has been necessary

to fully understand the following discussion of data concepts.

File Storage Codes

When data is recorded, it is encoded into the language of the machine that re-
corded it. Thus, a punched card code (usually Hollerith code) differs from a
punched paper tape code (of which many codes are available).

The NCR Century Series always expects the data in memory to be coded in USASI
code. This means that any data not recorded in this code must be translated
before it is presented to the program in memory.

To illustrate this need for a translation, suppose that a transaction file is
input from punched cards and is recorded in the Hollerith code. If this file
were to be input directly into memory, the computer would use the Hollerith-
coded data as if it were USASI-coded data. Hence, if an input record contain-
ed the name JO, the computer would interpret it as being the letters AF.

Obviously, the data must be translated. The NEAT/3 language provides a simple
way to do this. When the file is defined to the compiler, the programmer
specifies on which media and in which code his data is to be input. He also
specifies on which media and in which code his updated data is to be output.
The compiler does the rest. It includes in the object program a translation
table for each code the programmer has specified and a translation routine
that uses these tables. During the production run of the object program,
software uses these translation tables to ensure that the input data is trans-
lated into the USASI code and that the output data is translated into the

storage code the programmer has specified.

This translation routine is one of the many ways that the NEAT/3 language and
the NEAT/3 Compiler aid programmers. The following discussion takes a deeper

NEAT/3 —- INTRODUCTION AND DATA Feb. 68
TAB 2 -- PUB. NO. 2 Page 2

DATA CONCEPTS

look at this language and shows how the compiler incorporates the data de-
scriptions into an object program, thereby easing the coding effort of the

rogrammer.
prog xxxx

DATA DESCRIPTIONS

Introduction

The NEAT/3 Compiler requires that data used by the main program be described
before any of the procedural instructions in the program are presented. Data
used only in an overlay must be described before any of the procedural state-
ments in that overlay are presented. This description is then available to
the compiler so that it can construct the correct machine instructions from
the near-English procedural instructions written by the programmer.

For instance, the compiler relieves the programmer of the burden of keeping
track of the actual memory address of each unit of data in the program.
Through data definitions, the programmer informs the compiler of the names

he has assigned to those units of data that the object program is to manipu-
late. This permits the programmer to write his procedural instructions using
the names of the data instead of memory addresses; i.e., the programmer writes
ADD DEPOSIT to BALANCE instead of ADD contents of memory address 0092 to con-
tents of memory address 3751.

The following discussion is of the effect data description statements have on
the object program and on the actual programming of this object program. This
discussion considers two kinds of data descriptions. One kind is the descrip-
tion of data that is external to the program, i.e., data either input to or
output from the program. This data is termed a record since the data usually
is stored as a permanent record within a file.

The other kind of data description that this discussion considers is the con-
stant or fixed data that may be repeatedly needed during program execution.
This data is defined as being in an area since the data is built into the ob-
ject program and takes up an area in memory during program execution.

Both records and areas can be subdivided into smaller units of data called
fields. Therefore, data can be defined as being either a record, an area, or
a field.

Records

Data can be defined as being a record. A record is an organized group of
significant facts about a particular subject. For instance, a company may
have a record of each employee which contains the employee's name and address.
The company gathers the records of all the employees and places them on a com-
mon media -- punched paper tape, punched cards, disc, or magnetic tape.

This group of records is then called a file. A file is a group of records in
like-format written on the same media.

NEAT/3 -- INTRODUCTION AND DATA Feb. 68
TAB 2 -- PUB. NO. 2 Page 3

e Example of the Use of Records in a Program

A simple but typical program might get records from a name and address
file, reformat these records, and print address labels. Let's consider
this program.

The records in the input file have the following format:

Last Name First Initial Street

From the information recorded in this file, the program is to construct
address labels printed in the following format.

First Initial Last Name

Street
City

Therefore, the programmer must construct a print file into which data to
be output is to be stored. The format of the records in this print file
must reflect the format of the address label. Since three lines of in-
formation are needed to complete one address label, the print file re-
quires three different record formats -- the first for the person's name,
the second for his street address, and the last for his city address.
Thus, each record in this print file will be output as one printed line
of data.

The following steps outline the procedural instructions needed to obtain
the printed address labels.

NEAT/3 -- INTRODUCTION AND DATA Feb. 68
TAB 2 -- PUB. NO. 2 Page 4

DATA CONCEPTS

Procedural Instructions Results

e Input a record from the ||Hoffmeyer P 15376 Sorrento Ave Detroit Mich 48227
file.

® Move First Initial to P First Print Record
first print record.

e Move Last Name to first ||P Hoffmeyer First Print Record
print record.

® Print the first print
record.

® Move Street to second 15376 Sorrento Ave Second Print Record
print record.

e Print the second print
record.

e Move City to third print||Detroit Mich 48227 Third Print Record
record.

o Print the third print
record.

P Hoffmeyer
15376 Sorrento Ave
Detroit Mich 48227 Printed Report

e Loop to the beginning of
this routine to get the
next record in the file.

The programmer can easily see what the above procedural instructions have done,
for he can look at or mentally picture both the arrangement of the data in the
name and address records and also the desired arrangement of the data in the
print records. However, since the compiler cannot see or interpret these pic-
tures, the procedural instructions are worthless without a description of the
data. The programmer must convey to the compiler -- by words, pictures, or
codes —- the characteristics he sees and knows about the data.

The programmer describes this data to the compiler in the predefined language
and format that the compiler expects. However, for now, full English senten-—
ces are used to describe those characteristics of data that the compiler must
know to understand the procedural instructions. The data is described as

follows.

NEAT/3 -- INTRODUCTION AND DATA Feb. 68
TAB 2 -- PUB. NO. 2 - Page 5

e Input File

The input file consists of records referenced by NAMADD. Each of these
records are 51 characters long.

LAST NAME| | STREET CITY |

l—-OlST INITL

The first 10 characters of NAMADD are collectively called LASTNAME.
The eleventh character of NAMADD is called 1STINITL.
The next 20 characters are called STREET.
The last 20 characters are called CITY.
e Output File
The output file consists of three record formats.

The first record format is 12 characters long and is referenced by
PRINTLINE].

[prirsT| PLASTNAME

The first 2 characters of PRINTLINE1l are called PFIRST.
The next 10 characters of PRINTLINEl are called PLASTNAME.

The second record format is 20 characters long and is referenced
by PRINTLINE2.

The third record format is 20 characters long and is referenced
by PRINTLINE3.

NEAT/3 -- INTRODUCTION AND DATA Feb. 68
TAB 2 -- PUB. NO. 2 Page 6

DATA CONCEPTS

e Procedural Instructions

After the description of the input file and the output file are given to
the compiler, the procedural instructions are made more meaningful.

e Input NAMADD

e MOVE 1STINITL to PFIRST

e MOVE LASTNAME to PLASTNAME
e Print PRINTLINE1

e MOVE STREET to PRINTLINE2
e Print PRINTLINE2

e MOVE CITY to PRINTLINE3

e Print PRINTLINE3

e Loop to the beginning of this routine and read the next NAMADD

The compiler can now consult the data descriptions and make sense out of
the procedural instructions. Since it is the compiler's job to organize
the object program, it knows where in memory the data will be located
during program execution. It, therefore, takes our simple procedural
instruction (MOVE LASTNAME to PLASTNAME), changes each data reference

to a memory address of where that data can be found, and states these
instructions in a machine format that means the following: starting at
location xxxx, pick up 10 characters and move these characters to
location yyyy.

It is easy to see exactly why data descriptions of records are so nec-
essary to an object program. The very nature of the NEAT/3 Compiler
allows a programmer to write simple procedural instructions —-- instruc-
tions that, through data descriptions, the compiler interprets and
changes into a correct machine language.

NEAT/3 -- INTRODUCTION AND DATA Feb. 68
TAB 2 -~ PUB. NO. 2 Page 7

Areas

The previous discussion was of records, that is, data which is external to the
object program and which is called into memory during program execution. How-
ever, some data is built into the object program. This place in the object
program is termed an area, for it contains data which occupies an area in mem-
ory during program execution. Areas reserved in memory serve two purposes.

e Working Storage Areas

Area definitions can be used to reserve space in memory for working storage
areas. Values may be temporarily stored within these areas during program
execution. For instance, the results of a mathematical calculation may be
stored in an area to be used later in the program.

e Constants Areas

Areas may also be used to contain constants. Data entering the system at
compilation time is called a constant. This data usually is an unchanging
value which the program may repeatedly need during program execution. For

instance, a programmer may define an area to contain page headers (constants).

During program execution, these constants can be moved to a printline area
each time a new page is to be printed. This type of data, an area, is built
into the program and is always available during program execution.

Since a program will probably require more than one constant, the programmer
may instruct the NEAT/3 Compiler to reserve a large area which is to contain
a logical group of constants. He may then break this large area into many
smaller areas (or fields) into which he will tell the compiler to store
these constants.

Each program may contain as many distinct areas as are needed.

® Example of a Program Using Both Types of Areas

For example, suppose a programmer is to write a program that is to read ac-

count records, calculate the interest owed, and accumulate the total interest

owed on all accounts. Before he writes the procedural instructions for this
program, he must first define the data.

NEAT/3 -- INTRODUCTION AND DATA Feb. 68
TAB 2 -- PUB. NO. 2 Page 8

DATA CONCEPTS

e Input File

The input file is made up of records called ACCREC.

BALANCE

XXXXXKXXXXXXKXXKXKXXXKX KXXXRXXXXX A XX

Each ACCREC is 30 characters long.

The last 10 characters of ACCREC contain the account's balance and are
referenced by BALANCE.

BALANCE contains a decimal number that has two decimal positioms.

e Reserved Area

The reserved area is 21 characters long and is referenced by RESERVAREA.

TOTAL WRKSTORAGE

00000000,00 000000,00

The first field within RESERVARFA is referenced by RATE. It is three
characters long and contains .035, a constant value. (Decimal points,
unless they are in an editing mask, do not occupy a character position
in memory and, therefore, are not reflected in this 3-character length.)

The next 10 characters within RESERVAREA are referenced by TOTAL.
TOTAL has two decimal positions. Initially, this field contains zeros.

The last field within RESERVAREA is referenced by WRKSTORAGE. It is
eight characters long and has two decimal positions. Initially, this
field contains =zeros.

NEAT/3 -- INTRODUCTION AND DATA Feb. 68
TAB 2 -- PUB. NO. 2 Page 9

e Procedural Instructions

Using the data definitions of the input file and the reserved area, a
programmer can now write the procedural instructions needed to manipulate

his data.

e Input ACCREC

e MULT BALANCE times RATE, store results in WRKSTORAGE
e ADD WRKSTORAGE to TOTAL

e Loop to beginning of this routine and read the next ACCREC

The compiler can now read the procedural instructions, relate them to
the description of the data, and produce an object program that would
output the desired results.

Fields

As previously defined, the data that is external to the object program is
stored in records; the data that is built into the object program is stored
in areas. Records and areas can be further subdivided into fields. A field
is a unit of data within a record or an area. The previous examples of areas
and records have shown fields. Consider these examples again.

e Example of Fields Within an Area

A 21-character area referenced by RESERVAREA was defined as having three
fields —- RATE, TOTAL, and WRKSTORAGE. The format of this area follows:

TOTAL WRKSTORAGE

00000000, 00 000000,00

Each of these fields - RATE, TOTAL, and WRKSTORAGE -- is a unit of data that
can be individually accessed during processing.

NEAT/3 —- INTRODUCTION AND DATA
TAB 2 -- PUB. NO. 2 ESZé 36

DATA CONCEPTS

e Example of Fields Within a Record

The following record contains many fields.
record from each store in a grocery chain.
Store Code, Manager, Date, Groceries, etc.

follows:

This record is a daily sales
The fields in this record are
The format of this record

Manager

Groceries

Produce Dairy

Misc. [Daily
Total

Peterson

3196.43

572.86 |1205.69(529.73

574.93| 6079.64

e Example of Fields Within Another Field

A field may be part of another field, or it may include other fields

within its own definition.

For instance, the field Date in the Daily

Sales Record is divided into three separate fields -- Day, Month, and

Year.

D

ate

DaNoYr

22

0968

Each field that is to be individually accessed during pro-
cessing must be assigned a name.
as a 6-character unit of information, it need not be
further divided into Day, Month, and Year. Only one name
—— Date -- need be assigned to the field.

If Date is to be treated

If the fields within Date are to be referenced individ-
ually, then these fields must be assigned a name, i.e.,

Day, Month, and Year.

If only Day and Month are to be referenced individually,
Year need not be specifically defined.
since the Day, Month, and Year fields are contained in
each record, the Date field must be defined as con-

taining six characters.

NEAT/3 —-- INTRODUCTION AND
TAB 2 —- PUB. NO. 2

DATA

Nevertheless,

Date

XXXXXX

Feb. 68
Page 11

DATA TYPES

As the previous examples have shown, the type of data used -- alphabetic or
numeric -- varies for different programs, for different records or areas, and
even for different fields within the same record or area. The two basic types
of data that can be processed are alphabetic and numeric. However, the
NEAT/3 Compiler allows the programmer to have numeric data stored in his
option of various numeric codes.

Some types of numeric data require the compiler to generate more software to
complete the procedural instructions than do other types; i.e., signed numeric
data requires more software to arithmetically manipulate it than does unsigned
numeric data.

Some types of numeric data require less storage space than do other types.
For instance, one type of numeric data allows the programmer to conserve
storage space by storing data fields in a condensed (packed) form.

The programmer must inform the compiler of the exact type of data that is to
be processed, whether it be alphanumeric or one of the various numeric types.
Following is a list of the allowed types of data:

USASI Characters For alphanumeric data

Unsigned Decimal

Signed Decimal

Unsigned Packed Decimal For numeric data
Signed Packed Decimal

Binary

Hexadecimal

Editing Mask For data to be printed

X% XX

NEAT/3 —-- INTRODUCTION AND DATA Nov. 68
TAB 2 -—- PUB. NO. 2 Page 12

DATA CONCEPTS

The following illustration shows the bit representation of each character in
the alphanumeric and numeric types of data:

NCR CENTURY CODE CHART

B,~B

4”51 loooo | 0001|0010 Joo11 | 0100 | 0101 Jo110] 0111 | 1000] 1001 | 1010 | 1011 | 1700 | 2101 [1110 |1111
0000 nuLlson]| sTx|eTx |[EoT|ENQ | ACK|BEL| BS | HT | LF | VT | FF |CcRrR | SO | 1
0001 DLE|DC1t |DC2 |DC3 |DC4 |NAK |SYN| ETB{CAN|EM SUB| ESC| FS |GS RS |US

/

0010 llse|? " |# |3 |% |= (YiPx |+, -1
0011 0 1 |2 3 a |s 6 |7 8 9 : | < = > | 2
0100 @i|a B |c D E F |G H 1 J K | |m N |o
oto1} e lalr |s |7 |u v |w |x |v |z [[|\]] A

IR . .
o110 al|b c | d e | flg |h i 1] k [1 |m |n |o

. 1

o1 plalr]| s tju]|lviw |x |y z { | } - |DPEL

DATA TYPE ALLOWABLE CHARACTERS BIT REPRESENTATION
USASI CHARACTERS ALL CHARACTERS SHOWN IN CHART 8 BITS
UNSIGNED DECIMAL 0—-9 8 BITS
SIGNED DECIMAL 0=-9, +, AND — 8 BITS
UNSIGNED PACKED 0-9 4 BITS
SIGNED PACKED 0-9, +, AND — 4 BITS

NEAT/3 -- INTRODUCTION AND DATA Nov. 68

TAB 2 —— PUB. NO. 2 Page 13

Alphanumeric Characters

Data can be represented as alphanumeric characters. This type of data can
contain any combination of the letters A to Z, the numerals 0 to 9, and certain
special characters. Rows 2 through 5 in the NCR Century Code Chart show the
coded representation of each of these letters, numerals, and special characters.

Names, addresses, report headers, account numbers, etc. can all be defined as

being alphanumeric characters. These characters cannot be used in mathematical
operations. However, they can be moved, compared, etc. during program execution.

Unsigned Decimal Data

Data can be represented as an unsigned decimal number. An unsigned decimal
number is a data string that contains only the numeric characters 0-9 and that
has no + or - sign associated with it. Each unsigned decimal character is re-
corded in eight bits whether it be recorded in memory or on a storage media.
The data may be an integer or a decimal value.

All unsigned decimal data is considered by the compiler to be a positive deci-
mal number. When the compiler encounters a procedural instruction that is to
manipulate this type of data, it generates in the object program the coding
needed to handle positive numbers only. Therefore, the programmer should de-
fine as being unsigned decimal characters only those data strings that he knows
will always remain positive during processing and, therefore, will never re-
quire a sign.

Since the compiler does not have to generate the instructions needed to handle
a negative field, the software required to manipulate unsigned decimal data is
less than that required to handle signed decimal data. However, the generated
logic for manipulating signed fields with other signed fields is shorter than
the logic for manipulating signed fields with unsigned fields. In other words,
it is better to manipulate two like fields rather than two unlike fields.

For example, a programmer is to write a program that requires the number .035
to be used many times during processing. He wishes this number to be incor-
porated into the object program as being an unsigned decimal number. There-
fore, when he defines his data to the compiler, he incorporates this number
into the area reserved for constants. To do this, he specifies that the con-
stants area contains a three-character field referenced by RATE. The data
contained in RATE is 035, an unsigned decimal number that has three decimal
positions. The compiler will then build 035 into the object program, allow-
ing eight bits for each numeric character. It also generates the extra coding
to complete the procedural instructions that manipulate this data. (For ex-
ample, it generates the extra coding needed to align the decimal point in RATE
with the decimal point in the data manipulated with RATE.)

NEAT/3 -- INTRODUCTION AND DATA Feb. 68
TAB 2 -- PUB. NO. 2 Page 14

DATA CONCEPTS

In the previous example, the unsigned decimal number was used as a constant.
A programmer may also define an unsigned decimal number as a field within a
record. For instance, a programmer is to write a program that updates the
master records for customer savings accounts. His transaction records must
add the deposit or subtract the withdrawal from the balance left in the cus-
tomer's account record. Since the deposit or withdrawal always reflects a
positive amount, the programmer defines this field as containing an unsigned
decimal number. To do this, he defines to the compiler that a field referenc-
ed by AMOUNT will be contained in each transaction record. The data in AMOUNT
has two decimal positions and is an unsigned decimal number. The compiler
accepts this format; with this information, it generates the extra coding
needed to complete the procedural instructions that manipulate this data.

Then during processing, a transaction record and, its corresponding master
record are accessed, and the master record is updated with the information
contained in AMOUNT.

Signed Decimal Data

Data can be represented as a signed decimal number. A signed decimal number
is a data string that contains the numeric characters 0 to 9 and that has a
+ or - sign associated with it; for instance, +32.9 is a signed decimal num-
ber. Except for the presence of a sign, signed decimal data has the same
characteristics as does unsigned decimal data.

When the compiler encounters a procedural instruction that is to manipulate
this type of data, it generates in the object program the coding needed to
make the procedural instructions complete. This coding will handle not only
positive numbers but also negative numbers. Also, if the signed decimal num-
ber is to be manipulated with an unsigned decimal number, the compiler gener-
ates the extra coding needed to make both data fields alike, that is, to add

a sign to the unsigned decimal number. Because of this special software, a
programmer should define as signed decimal numbers only that data whose nature
demands an associated sign. If the data does not demand an associated sign,
he should define the data as an unsigned decimal number.

Unsigned Packed Decimal Data

Data can be represented as an unsigned packed decimal number. An unsigned
packed decimal number is a data string that contains the numeric characters
0-9 and that has no sign associated with it.

Two unsigned packed decimal characters are recorded in eight bits whether
they be recorded in memory or on an external storage device.

Data in an unsigned packed decimal field must be moved to an unsigned, un-
packed field before mathematical operations can be performed on the data.
Generally, unsigned packed data is used to conserve space on an external
storage device.

NEAT/3 —-- INTRODUCTION AND DATA Feb. 68
TAB 2 -- PUB. NO. 2 Page 15

e Example of a Program Using Unsigned Packed Decimal Data

For example, a programmer is to write a program that will update customer
accounts. Because he has a large master file, he decides to comserve
storage space on the disc. The technique he chooses to conserve this space
is the use of packed data. He defines this data in the following manner:

e Input 1: Master File

NAME BALANCE

XXXXXXXKXXXKXXXXKXXXX XX XX XX)XX

The current master file.is made up of the records referenced by CUSTACC.
Each record contains twenty-six 8-bit characters.

The first 20 characters are referenced by NAME.

The next two characters are referenced by NMBR. This field con-
tains four unsigned packed decimal characters.

The last four characters are referenced by BALANCE. This field
contains eight unsigned packed decimal characters, two of which

occupy decimal positions.

e Input 2: Transaction File

AMOUNT

KXXKXKXXAXX

The transaction file is made up of records referenced by DEPOSIT. Each
record contains twelve 8-bit characters.

The first field of DEPOSIT is four characters long and is referenced
by ACCNO. This field contains unsigned decimal characters.

The second field of DEPOSIT is eight characters long and is refer-
enced by AMOUNT. This field also contains unsigned decimal characters,
two of which occupy decimal positions.

NEAT/3 -- INTRODUCTION AND DATA Feb. 68
TAB 2 -- PUB. NO. 2 PAGE 16

DATA CONCEPTS

e Output: New Master File

NAME BALANCE

XX XXXXXXXXXXXKXXXXKX XX XX XX, XX
_— = = A==

From the information contained in the transaction records, the pro-
grammer is to update the current master file and to create a new
master file. Each record in this new master file is 26 characters
long and is referenced by NEWCUSTACC.

The first field in NEWCUSTACC is 20 characters long and is refer-
enced by NAME.

The second field in NEWCUSTACC is two characters long and is refer-
enced by NMBR. This field is to contain four unsigned packed
decimal characters.

The third field in NEWCUSTACC is four characters long and is refer-

enced by BALANCE. This field is to contain eight unsigned packed
decimal characters, two of which occupy decimal positions.

e Reserved Area

WRKAREAL WRKAREA2

XXXXXXAXX KXXXXX XX

The programmer tells the compiler to reserve a memory area 16 char-
acters long referenced by WORKAREA.

The first field of WORKAREA is eight characters long and is refer—
enced by WRKARFAl. This field is to contain unsigned decimal
characters during program execution.

The second field of WORKAREA is eight characters long and is refer-
enced by WRKAREA2. This field also is to contain unsigned decimal
characters during program execution.

NEAT/3 -- INTRODUCTION AND DATA Feb. 68
TAB 2 -- PUB. NO. 2 Page 17

® Procedural Instructions

Remember that on the NCR Century 100 no arithmetic operations can be per-—
formed on unsigned packed numbers. Therefore, the procedural instructions
must move the data from an unsigned packed field into an unpacked field befo:
the data is arithmetically manipulated. When the compiler encounters this
MOVE, it generates in the object program the extra instructions needed to
convert the packed data to unpacked data. The programmer writes his pro-
cedural instructions as follows:

Procedural Instructions Action
Input CUSTACC. JOHNSTON JAMES R 59 27 |14 09 01 70
CUSTACC
Input DEPOSIT. 5927 | 002816440| DEPOSIT
MOVE BALANCE to WRKAREAL. | |[140901,70 | | wORKAREA
MOVE AMOUNT to WRKAREA2. [140901,70 | 002816540 | WORKAREA
ADD WRKAREA2 to WRKAREA1 [143718510 | 002816440 | WORKAREA
and store result in
WRKAREAL.
MOVE WRKAREAl to KXXXXXXXXXXKXXXXXXXX | XX xx |14 37 l§AlQ
|
NEWCUSTACC's BALANCE. NEWCUSTACC
MOVE CUSTACC's NAME to JOHNSTON JAMES R xx xx |14 37 18,10
]
NEWCUSTACC's NAME. NEWCUSTACC
MOVE CUSTACC's NMBR to JOHNSTON JAMES R 59 27 |14 37 18,10
]
NEWCUSTACC's NMBR. NEWCUSTACC
Output NEWCUSTACC.
Loop to beginning of this
routine to read another
CUSTACC and DEPOSIT.

Briefly then, unsigned packed decimal characters conserve space on external
storage devices. However, when this data is brought into memory, it must be
converted to an 8-bit decimal code by a MOVE instruction before it can be
arithmetically manipulated or printed.

NEAT/3 —-- INTRODUCTION AND DATA Nov. 68
TAB 2 —— PUB. NO. 2 Page 18

DATA CONCEPTS

Signed Packed Decimal Data

Data can be represented as a signed packed decimal number. A signed packed
decimal number is a data string that contains the numeric characters 0-9

and that has a + or a - sign associated with it. Except for the presence of
a sign, signed packed decimal data has the same characteristics as does
unsigned packed decimal data.

Data in a signed packed decimal field must be moved to a signed unpacked
field before mathematical operations can be performed on the data. Generally,
signed packed data is used to conserve space on an external storage device.

The sample program used to illustrate unsigned packed decimal characters

could also be used to illustrate signed packed decimal characters. Of course,
the signed packed decimal data would include a plus or a minus sign, but all
other characteristics and procedures would remain the same.

Binary Data

Data can be represented as a binary number. Binary numbers use all eight
bits of each memory position reserved for the value. Within an 8-bit field,
the binary equivalent of the positive integer 255 can be represented. NEAT/3
language allows programmers to manipulate the binary equivalent of any posi-
tive integer ranging from 0-999,999.

Data in a binary field can be added to or subtracted from data in another
binary field, but it cannot be manipulated with data in a decimal field.

Since the use of binary numbers saves both external storage space (e.g.,
disc) and internal memory space, programmers can advantageously use binary
data. For instance, a programmer may define a binary field into which he
counts the number of iterations in an iteration loop.

e Example of a Program Using Binary Data

Consider a complete program. Suppose a programmer is to write a program
that reads records from a transaction file, assigns each record an item
number, and then outputs these numbered records to a destination file.
He is to assign the number 100 to the first transaction record, 101 to
the second, 102 to the next, etc. His data definitions will tell the
compiler the following information:

® Input: Transaction File

FORMAT OF TRANSREC

The input file is made up of records referenced by TRANSREC. Each record
contains 30 characters, all of which are unsigned decimal characters.

NEAT/3 -- INTRODUCTION AND DATA ; Feb. 68
TAB 2 -- PUB. NO. 2 Page 19

e Output: Destination File

DETAIL

) 0.9.0:9.0.9.9.9.9.9.9.9:9.9.9.9.9,9.0,9.0.0.9.0.9.9.9.0.0 ¢

The output file is made up of records referenced by OUTTRANS. Each
record contains 32 characters.

The first field is referenced by ITEM. This field is two char-
acters in length and is to contain a binary number.

The second field is referenced by DETAIL. This field is to con-—
tain 30 unsigned decimal characters.

® Reserved Area

ITEMNMBR | AUGMENT

XX X

The programmer tells the compiler to reserve a memory area three
characters long.

The first field of this area is two characters long and is referenced
by ITEMNMBR. This field is initially to contain the binary equiva-
lent of 100.

The second field of this area is one character long and is refer-
enced by AUGMENT. This field is to contain the binary equivalent
of 1.

NEAT/3 -- INTRODUCTION AND DATA Feb. 68
TAB 2 -- PUB. NO. 2 . Page 20

DATA CONCEPTS

® Procedural Instructions

After defining the data, the programmer may now write the procedural
instructions for his program.

Procedural Instructions Action
e Input TRANSREC. [;xxxxxxxxxxxxxxxxxxxxxxxxxxxx§J
TRANSREC
e MOVE TRANSREC to DETAIL. [77 I xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx|
OUTTRANS
e MOVE ITEMNMBR to ITEM. [iOOI xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxJ
OUTTRANS
e ADD AUGMENT to ITEMNMBR
and store result in
ITEMNMBR.
e Output OUTTRANS. IlOOl xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxJ
OUTTRANS
e Loop to beginning of this

routine and input
another TRANSREC.

Thus, by using binary numbers, the programmer can efficiently assign
each transaction record a sequential item number. Binary numbers
may also prove useful in many other user applications.

NEAT/3 -- INTRODUCTION AND DATA Feb. 68
TAB 2 —- PUB. NO. 2 Page 21

Hexadecimal Data

Data can be represented as a hexadecimal number. The hexadecimal equivalent
of any positive integer ranging from 0 to 15 can be stored in four bits of
memory.

Hexadecimal numbers are primarily used to define console messages which are
to be displayed during program execution.

The hexadecimal numbers have a base of 16. The following chart shows the
16 hexadecimal characters, their corresponding decimal equivalents, and
their bit configurations.

Hexadecimal Decimal

Ooo~NoOTUVLP~WNEFEO

0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F

Note that the hexadecimal characters A to F are symbolic references and do
not refer to the USASI representation of A to F. For instance, a USAST
letter A is represented in eight bits as 01000001, and a hexadecimal letter
A is represented in four bits as 1010.

NEAT/3 —-- INTRODUCTION AND DATA Feb. 68
TAB 2 —- PUB. NO. 2 Page 22

DATA CONCEPTS

Editing Mask

The data types just discussed concern data that is stored in memory and data
that is input from and output to a storage media. However, the programmer may
also define a field which is to be edited. He places over this field an
editing mask which specifies the format of the data to be printed. Through an
editing mask, a programmer can print currency symbols, decimal points, check-
protect symbols, etc.; he can suppress from the printed page the leading zeros;
he can insert + and - signs or CR and DB notations. This editing process makes
the printed data more readable.

Through data definitions, the programmer defines the format of the data to be
printed by using editing symbols. He defines this editing mask over a destina-
tion field in a print record or area. Then in his procedural instructions, he
can MOVE into the destination field the data to be output. The software
generated by the compiler then edits the data--inserting currency symbols,
decimal points, and commas; inserting check protect symbols, + or - signs, CR
or DB notations, etc. The edited data remains in the field until it is moved.

e Example of a Program Using an Editing Mask

Consider this simple program which illustrates one way that the use of an
editing mask can help programmers. A programmer is to write a program

that prints the balance in each customer's account. Each printed balance
is to contain a dollar sign, decimal point, and any applicable commas. The
dollar sign is to be printed adjacent to the leftmost digit in the balance.
The data definitions to the compiler tell the following information about
the data:

e Input: Master File

NAMADD BALANCE

);9.9:9.9.9.9.9:9.9.9.9.9.9.9.9.:9.9.9.9.9.9.9.9.9.9.:9.9.0.0.9.9.9.9.9.6.9.0.0.0.¢ KXXXXKXXX p XX

The input file is made up of records referenced by CUSTREC. Each rec-
ord contains 50 characters.

The first 40 characters contain the customer's name and address.
This field is referenced by NAMADD and contains alphanumeric
characters.

The next field contains 10 characters and is referenced by BALANCE.
This field contains unsigned decimal data that has two decimal
positions.

NEAT/3 -- INTRODUCTION AND DATA Feb. 68
TAB 2 -- PUB. NO. 2 Page 23

e Output: Printed Report

i i

[$55,$$%,$%%.xx |

The output file contains records referenced by REPORTLINE. Each
record contains 14 characters. The format of the output is shown by
the editing mask defined over this 1-field record. This mask is
interpreted as follows: significant digits of BALANCE will be printed;
leading zeros will be suppressed; a dollar sign will be printed ad-
jacent to the leftmost significant digit; commas and decimal point
will be inserted. (The editing mask is more fully discussed later.)

e Procedural Instructions

The programmer can now write his procedural instructions:

Instructions Result

e Input CUSTREC. IxxxxxxxxxxxXxxxxxxxxxxxxxxxxxxxxxxxxxxxx 00000082A39]

CUSTREC
 MOVE BALANCE tof| $82. 39| REPORTLINE
REPORTLINE.
e Print REPORT-
LINE. Printed Report

e Loop to begin-
ning of this
routine and
input another
record.

1f the next CUSTREC had a balance of 196382, this data would be
edited and printed as follows:

$82.39

$1,963.82

xx¥X

Feb. 68

NEAT/3 —-- INTRODUCTION AND DATA
Page 24

TAB 2 -- PUB. NO. 2

PROGRAMMING WORKSHEETS

TYPES OF PROGRAMMING WORKSHEETS

The compiler needs a set of instructions to tell it what to do, what options
to include, and where to put the final output. These instructions are written
on programming worksheets which are divided into six general categories of
program information. When the information entered on these worksheets is put
on punched media, position 7 of each source line contains a l-character code
that indicates from which worksheet the source statement originated. These
six worksheets and their respective codes are:

C Coding M Major Functions
D Data Layout P Compiler Control
F File Specification T Table Specification

Coding and Data Layout Worksheets

The programmer writes his source-program instructions on coding and data
layout worksheets. An illustration of this type of worksheet follows:

DATA LAYOUT WORKSHEET mGE]

— Pege of _

<
REFERENCE : LOCATION LENGTH 4 VALUE OR PICTURE COMMENTS IDENTIFICATION

*

4% 7O 1 1213 1413 16 17 [ra|u8 20 20 12 23[24 25 24 37|28 29/30[31 31 33 3433 30 37 38 38 40 41 42 43 44 43 46 A7 48 @8 3030 ST 33 34 3% 3 37 48 98 60 61 62 63 64 49 00 47 68 49 70 71 72 72 17a|78 76 77 78 7H

olo]olo|o|o(o]o[olo[ololo|olo]~

The programmer uses the coding worksheets to code his procedural instruc-
tions. These procedural instructions may be augmented by major function
parameter worksheets which are discussed later.

The programmer uses the data layout worksheets to define the data used in his
program as being records, areas, and fields.

NEAT/3 -- INTRODUCTION AND DATA Nov. 68
TAB 3 -- PUB. NO. 1 Page 1

Control, File, and Table Specification Worksheets

The control, file, and table specification worksheets ask the programmer
questions about his program. The programmer's answers guide the compiler
through many of its operations. A control worksheet is illustrated:

COMPILER SPECIFICATION WORKSHEET
SHEET 1

Program _ R R L Prpad by

Date

ALL SYMBOLIC REFERENCES MUST B LEFT-JUSTIFIED AND MUST CONTAIN AT LEAST ONE ALPMABETIC CHARACTER
ALL NUMERIC ENTRIES MUST BE RIGHTJUSTIFIED AND MUST BE ZERO FILLED TO THE LEFT

Paper Tape Format Code ,fg,i] =
x o

Al Page-Line 000{000|*

A2 Program Name

A3} Language Name (NEAT/3, COBOL, FORTRN)

A+ Recompilation Name Enter N in column 24 for initial
compilation. or name of program
1o be recompiled)

A5 Type of Compilation (F -Full Compilation. O-Oxerlay Compilation

A6 Shouid Punched Input be sorted? (Y-Source lines will be sorted if out of
sequence, N-Source lines will be renumbered bat not -
sorted. N may not he used for recompilation)

A7 Should Source Statements be renumbered? Enter 1 thru 0 for renumbering
incrments 10 thru 100 Enter N if no renumbering. I
column 35 contains N. statements will be renumbered)

A8 Number of Characters in COBOL ID ficld (6, 7, 8 = number of characters in
Identification Field. N or blank indicates no 1D field)

PRINTER OUTPUT
Bl Should Object Coding be listed? (Y or N)

B2 Should Printer listing he double spaced? (Y-Double spacing. N- Single
spacing)

B3 Cross Reference listing P-Source presentation sequence. A-Alphabetical
seyuence, B-Both, N-None:

FILE OUTPUT
C1 Object Processor Code 1if 100, 2,if 200. 3 if 621 =201

C2 Type of Executive (Sce Language Reference Manual,

C3 Should Symbolic Debug Inf ion be included? (Y or N)

C4 Object Memory Size Enter ‘three digits 08 thru 236 which represent
increments of 1024

D1 Delete Digit

El Identification

AUTHOR STATEMENT (OPTIONAL)
Paper Tape Format Code

Al Page-Line

| »

8 2
A2 Enter Author's naine AuTthHoOR ;

B
Bl Identification

STRADEMARK NEG. U5 PAT. OFF.

The compiler control worksheet requests basic information about the particular
program to be compiled. This information concerns the input of the source
program, the compiler treatment of the program, and the output of the object
program.

The file specification worksheets request information that the compiler and

the I/0 Executive need to properly handle the files. This information includes
the name of the file, the type of file, the length of each record in the file,
etc.

NEAT/3 -- INTRODUCTION AND DATA Nov. 68
TAB 3 -- PUB. NO. 1 Page 2

PROGRAMMING WORKSHEETS

The table specification worksheet requests information which describes the
characteristics of a table to be used during program execution. This infor-
mation includes the name of the table, the maximum number of items in the
table, the structure of the table, etc.

Major Functions Parameter Worksheets

The major functions parameter worksheets ask the programmer questions about
the function he wishes to perform. From the programmer's answers to the
questions asked, the NEAT/3 Compiler develops the necessary object coding to
perform the desired function. These major functions reduce the time required
to define and implement a program on the NCR Century Series and should be used
wherever applicable.

COMMON WORKSHEET RULES

Before the programmer starts to code his program, he should be familiar with
some basic coding rules.

e Use a soft-lead pencil to make entries. This produces dark, heavy char-
acters which are easily distinguished by the keypunch operator.

® Be neat, write legibly, and keep each character within its proper loca-
tion on the worksheet.

® Write questionable characters in a unique manner. For example:

e Enter the letter O as © or ¢ to distinguish it from the written
numeral 0.

o Enter the letter Z as Z to distinguish it from the written numeral 2.
® Enter any lower case letter with a bar over it, such as §, T, V, etc.
e Enter a space character as @.

® Leave every other line blank on the data layout and the coding sheets.
This allows the programmer to easily add or change a line, and it also
makes the entries easier for the keypunch operator to see.

e After the program is written, scan all source lines for obvious omissions

or errors, and make the necessary corrections before the source program
is punched. ‘

NEAT/3 -- INTRODUCTION AND DATA Nov. 68
TAB 3 -- PUB. NO. 1 Page 3

Maximum Record Size

Punched-card records have a maximum size of 80 characters. (The continuation
line is the only exception to this rule. This line is explained later.)

Punched-paper-tape records have a maximum size of 103 characters —-- 3 char-

acters for the paper tape format code and a maximum of 100 characters for
the source line entries.

COMMON ENTRIES ON PROGRAMMING WORKSHEETS

Many entries on the programming worksheets are common to all worksheets and
are discussed here. These common entries are the header, the paper tape for-
mat code, the page-and-line number, the worksheet code, the delete digit, and
the identification code. The comments are common to the data layout and the
coding sheets and are also discussed here.

Header

All worksheets have a common header, as illustrated below:

COMPILER SPECIFICATION WORKSHEET
)

SHEET 2 - OPTIONAL

Program ___ Prepared by

Date_ Page_____ of .

Enter in this header the program name, the programmer's name, the date, the
page number of the worksheet, and the number of worksheets used to code the
entire program. This header, which is not punched and does not become part
of the source lines input to the compiler, aids the programmer both in organ-
izing all worksheets into their proper order (for instance, page 4 of 20) and
in documenting the program.

Paper Tape Format Code

All worksheets contain a preprinted paper tape format code which must be
punched into certain paper-tape source lines. Every time the source type of
the current source line changes from the type of the previous source line,
the paper tape format code of the current source line must be punched. The
compiler assumes that a source line without a punched paper tape format code
is of the same type as the previous source line.

ALL SYMBOLIC REFERENCES MUSY SE LEFT-JUSTIFIED AND MUST CONTAIN AT LEAST ONE ALPHABETIC CHARACTER.
ALL NUMERIC ENTRIES MUST BE RIGHT-JUSTIFIED AND MUST BE ZERO-FILLED TO THE LEFT.

Paper Tape Format Code

NEAT/3 —- INTRODUCTION AND DATA Nowv. 68
TAB 3 -- PUB. NO. 1 Page 4

PROGRAMMING WORKSHEETS

Page~and-Line Numbers

The page-and-line numbers in a source program can be used for three optional
precompilation functions. Before the program is compiled, the Source Program
Utility Routines can do the following:

e Sort the source lines in a program into their proper page-and-line number
sequence.

e Omit a source line or range of lines from the program.

e Copy a line or range of lines from a compiled program into a specific
location of the source program.

Enter in each source line the page-and-line number of the source statement.
This number may contain any combination of numeric (0-9) characters. Assign
to each source statement a line number in ascending sequence within the page
number. Zero-fill these numbers to the left.

It is advisable to leave a gap of 30 consecutive line numbers between each
source statement. This permits the programmer to insert additional source
statements (for instance, when he debugs the program) without renumbering
the ordered statements.

Line numbers in increments of 30 are preprinted on one side of the data lay-
out and the coding sheets. If the programmer wishes to code on this side, he
need only enter the page number. The line numbers on the reverse side of
these worksheets, however, are left blank. The programmer may wish to use
this side to insert additional lines of coding where the consecutive line
numbers are not 30 numbers apart. However, the programmer should not code

on both sides of the same sheet.

The following examples illustrate correctly sequenced page-and-line numbers:

NEAT/3 -- INTRODUCTION AND DATA Nov. 68
TAB 3 —- PUB. NO. 1 Page 5

Worksheet Code

Position 7 of every line on all worksheets contains a preprinted, l-character
code which identifies the worksheet upon which the source statement is coded.
This code must be punched as part of each source line.

These worksheet codes and their respective worksheets are:

C Coding M Major Functions
D Data Layout P Compiler Control
F TFile Specification T Table Specification

Delete Digit

Position 74 on all worksheets is reserved for the Delete Digit. See INSTRUCTIONS
tab 3, "Compiler Control Worksheet" for an explanation of the Delete Digit.

Identification

The identification code, which may be entered if the source program is on
punched cards, occupies positions 75-80.

IDENTIFICATION

5T TETY N

If the programmer elects to use this option, he should enter the same 6-char-
acter tag on every card of the program. This entry permits visual identifi-
cation of the program to which a card belongs if the card should happen to be
misplaced. Any character in the NCR Century Code Chart may be used. The
compiler prints this jdentification field on the program listing.

Comments

The coding and the data layout sheets may contain information entered as com-
ments. Comments are remarks that the programmer makes to document his pro-
gram. In long programs, comments help the programmer locate a specific area
of his program for checking. Comments may contain any character in the NCR
Century Code Chart, including the space.

The comments are punched as part of the source program and are included in
the source program printout from the compiler. However, these comments do
not become part of the object program.

NEAT/3 -- INTRODUCTION AND DATA Nov. 68
TAB 3 -- PUB. NO. 1 Page 6 -

PROGRAMMING WORKSHEETS

e Partial-Line Comment

Enter an asterisk (*) in position 31 or beyond of any source statement on
the data layout and the coding sheets to signify the beginning of a comment.
Then enter the comment.

The length of the source statement, including the comment, must not extend
beyond the maximum length specified for the input media (i.e., 73 characters
for punched cards, and 100 source characters for punched paper tape).

The extra length permitted on punched-paper-tape source lines is to accom-
modate long comments, because only a comment may extend beyond position 73.

Most programmers elect to begin all or most of their comments along a pre-
determined margin. A broken line is printed between positions 50 and 51
for this purpose. Hence, the programmer may enter his comments beginning
with an asterisk in column 51. Then, when he receives the program listing,
all the comments are neatly aligned on the printed page. This allows him
to quickly scan the comments.

Consider the following example:

M

b 4

COMMENTS IDENTIFICATION

‘523’5455!‘57!.5"00!62630‘85“610'09707!7273747570777079.0

J EO—
*

5|

g*ROUTINE TO UPDATE
*MASTER RECORDS USING
* VALID TRANSACTION RECS

o Complete-Line Comment

Enter an asterisk in position 8 of any source line on the coding and the
data layout sheets to signify that the entire line, up to and including
position 73, is a comment and is not to become part of the object pro-

gram.

Consider the following example:

»

REFERENCE OPERATION COMMENTS

T
LI lo“)Zl!Il'!l‘lTlll'Zoll222!2‘252‘271.1’!03!32[{ISI 52 53 34 55 56 37 38 39 60 61 62 &3 64 63 66 67 68 69 70 71 72 73174
]

*ROUTINE T[0o UPDAITE MASTER D TRANSACTION RECORDS

T
]
]
)
]
]
]
]
L]
[}
1
1
]
1

NEAT/3 -- INTRODUCTION AND DATA Nov. 68
TAB 3 -- PUB. NO. 1 Page 7

o Header-Line Comment

Enter an asterisk in positions 8 and 9 of any source line on the coding or
data layout sheet to signify to the compiler that this line is to printed
at the top of a new page in the program listing.

In the following example, the compiler prints the line at the top of the
next page in the program listing.

REFERENCE OPERATION COMMENTS

8 ® 10 11 12 13 14 15 16 1716 19 20 21 22 23{24 28 26 3 31 s!ﬂu!!“S’ll!’lﬁ‘l'2‘3“05“01““707l711!:1l

**ROUTINE |TO UPD[ATE LID TRANSACTION RECORDSH

NXE XX

NEAT/3 -- INTRODUCTION AND DATA Nov. 68

TAB 3 -- PUB. NO. 1 Page 8

DATA LAYOUT SHEETS

ENTRIES ON DATA LAYOUT SHEETS

Data layout sheets for the NEAT/3 Compiler are the worksheets upon which the
programmer defines the data to be processed as being records, fields, and areas.
The compiler accepts the information entered on these sheets, allocates memory
space, assigns addresses, and builds constants.

A data layout sheet is illustrated. Note that a maximum of 30 data definitions

can be coded on each sheet, one definition for each line. Note, also, that each
line is divided into nine major fields which aid the programmer in defining the

data.

I DATA LAYOUT WORKSHEET
[]
™ aren vare romuar coon

REFERENCE LOCATION VALUE OR PICTURE . COMMENTS IDENTIFICATION

a3 8[7(5 0 1091 1210 1418 16 17[sn[1e 20 21 22 23 [31 32 53 34 35 36 37 36 30 40 41 4T 42 44 45 46 47 40 40 50,51 B2 3 54 35 96 $7 50 99 00 €1 €2 63 64 65 06 67 68 00 78 71 72 73174 |75 18 77 78 79

’
D
D
D
D
D
0
D
D
D|
D|
D
D
D|
D
D

L
D
O
D,
D
D|
2]
D
D|
D
D
D
D
D|
D,
?

LR RINTRERPRTRTRE]) TR RO {91 22 39 34 39 35 37 30 50 40 41 42 45 44 45 46 47 40 40 TH(51 T2 U0 34 55 50 47 08 90 68 §1 63 &3 64 06 06 €7 60 %8 78 71 T2 7N,
H H

NEAT/3 -- INTRODUCTION AND DATA Nov. 68
TAB 3 -- PUB. NO. 2 Page 1

To illustrate the entries required for each of these major fields, the follow-
ing record named SALESREC will be defined. This record is the daily sales
report that each store in a grocery chain sends to the chain headquarters.

The carets (.) indicate an implied decimal-point position. Each x indicates

a character position.

Store | Manager Date | Grocery | Produce | Meat Dairy | Misc. Daily Total
Code Da|Mo |Yr
XXX KEXXXXXX | XX [XX |XX | XXXX.XX | XXX XX XXXX XX | XXX, XX | XXX XX | XXXX. XX

Common Entries

The header, the paper tape format code, the page-and-line number (positions
1-6), the worksheet code (position 7), the comments, the delete digit (position
74), and the identification tag (positions 75-80) are defined under INTRODUCTION
AND DATA, tab 3, "Programming Worksheets."

[] DATA LAYOUT WORKSHEET
[]

=
;
SSp—

Program

REFERENCE LOCATION VALUE OR PICTURE . COMMENTS

a8 9 10 10 12 13 14 18 16 17 [10]r0 20 31 32 m! P Y L L U L L L L L L o hehadidhadhadiidddiidiid

NEAT/3 -- INTRODUCTION AND DATA Nov. 68
TAB 3 -- PUB. NO. 2 Page 2

DATA LAYOUT SHEETS

Reference

A programmer may enter in positions 8-17 of the data layout sheet a symbolic
reference tag to identify the record, area, or field being defined. (A ref-
erence tag is not needed if the record, area, or field is not accessed during

processing.)

Usually, the programmer enters a near-English word which allows him to immedi-
ately identify the data or the area to which it refers. For instance, a pro-
grammer may reference the data definition of a transaction record by SALESREC
and the definition of a work area by WORKAREA.

The reference tag may contain from 1 to 10 characters which are made up of the
alphabet (A-Z) and/or the numerals (0-9). Each tag must begin in position 8
and must contain at least one alphabetical character. Spaces are not permitted

within the tag.

Unless it is used as a qualifier (see INTRODUCTION AND DATA, tab 3, "Coding
Sheets'), each tag must be unique to the program; i.e., it may appear as a
reference tag in only one source statement in the program. However, the name
may appear as an operand as often as necessary.

The compiler, as it processes each source statement, checks positions 8-17 for
an entry. If it finds a reference tag, the compiler associates with this ref-

erence tag all the information pertinent to where the data or area is stored.

The following example illustrates correctly entered reference tags:

REFERENCE REFERENCE

718 9 10 11 12 13 14 15 18 17 78 9 10 11 12 13 14 18 16 17

P ORKAREA . Dis ALESREC

NEAT/3 -- INTRODUCTION AND DATA Nov. 68
TAB 3 -- PUB. NO. 2 Page 3

Code

Enter in position 18 of each line a l-character code to indicate that the data
being defined is either a record (R), an area (A), or a field (F).

e Record Code

Enter R if the data being defined is a record. The compiler treats the
record definition as a blueprint of the format of records within a par-
ticular file.

Records may be fixed or variable in length. If all the records in a file
contain the same number of characters, the records are fixed in length.
1f, however, the number of characters differs among the records in the
same file, these records are variable in length.

The record definition does not reserve memory space. When input to the
compiler, the record definition must immediately follow its associated
file specification statements. These file specification statements
reserve a memory space called a buffer area. During the production run,
the input command accesses a predetermined number of records -- a block
of records -- and stores this block in the buffer area. Likewise, the
output command accesses a block of updated records and stores this block
on an external storage media.

The following example illustrates the R code entry.

REFERENCE LOCATION

8 9 10 17 92 13 14 18 16 17 19 20 21 22 23

SEALESREC

NEAT/3 -- INTRODUCTION AND DATA Nov. 68
TAB 3 -- PUB. NO. 2 Page 4

DATA LAYOUT SHEETS

e Area Code

Enter A if the data being defined is in an area. Since an area is not
associated with a file, the compiler allocates for each area the amount
of memory space specified in that area definition. Each area definition
may serve one of two purposes:

1. It may simply reserve memory space (working-storage area).
Valuesmay be temporarily stored within this area during program
execution.

2. It may both reserve memory space and fill it with constants (or
unchanging values which the program may repeatedly need during
program execution).

The following example illustrates the use of the A code.

REFERENCE LOCATION VALUE OR PICTURE
RN R R U FUE-3 RPN NNOVITBUSNTES

DjwoRKAREA |A

2

[
]
4

.

e Field Code

Enter F if the data being defined is in a field. A field is a sub-
division of either a record or an area. Defining the field permits the
programmer to access portions of records or areas.

The data definition of a field must immediately follow its associated
record or area definition. (Intervening record or area definitions may
not separate field definitions from their own record or area definition.)

The following example defines two fields in the grocery-chain record
SALESREC.

REFERENCE LOCATION VALUE OR PICTURE

8 9 10 11 12 13 14 15 16 17 1920 21 2 29 |31 52 33 34 35 36 37 38 30 40 41 43 48 44 48 48 47 48 0 B

SALESREC _
D[]STORECODE
DIMANAGER

NEAT/3 -- INTRODUCTION AND DATA Nov. 68
TAB 3 -- PUB. NO. 2 Page 5

Location

e Location Entry for Record and Area Definitions

Normally, leave positions 19-23 (LOCATION) blank for record and area
definitions. (See below for the exceptions.) When these positions for
a record definition are left blank, the compiler associates the format
and the name of this record with the buffer area of its associated file.
Consider the following definition:

n b}

REFERENCE

ROOO ¥
Ay<4 ¥

LOCATION LENGTH | DP VALUE OR PICTURE

-~

31 32 33 34 35 36 37 30 39 40 41 A2 43 44 43 48 47 40 & 0

® 9 10 11 12 13 14 19 16 17 |18]19 20 21 22 23[24 23 26 27|20 29

SALESREC R

When the location positions for an area definition are left blank, the
compiler allocates space for the area and, if specified, places a con-
stant within it. Consider the following definition:

REFERENCE LOCATION | LENGTH | DP VALUE OR PICTURE

MmOOO0 X

g mu<4 ¥

~

S 9 10 11 12 13 14 15 16 17 |18]19 20 21 22 23|24 28 26 27)28 29

DlWw ORKAREA

31 32 33 34 35 36 S7 36 39 40 41 42 43 44 43 46 47 40 4 W

e Exception 1

Positions 19-23 (LOCATION) for record and area definitions may con-
tain SAME{Z.

If the formats and field names of two or more records of fixed or
variable length are to be associated with the same file, define each
record and its fields as usual; but enter SAME[Z in the location col-
umns of the second and succeeding record definitions. The compiler
then assigns each succeeding record definition to the same buffer area
associated with the first record definition.

If the records are variable in length, the first record definition
encountered by the compiler must be that of the longest record.

NEAT/3 -- INTRODUCTION AND DATA Nov. 68
TAB 3 -- PUB. NO. 2 Page 6

DATA LAYOUT SHEETS

For instance, a file containing information about the parts manufac-
tured by a certain company has fixed-length records. Each record is
in either of two formats. The programmer defines these record formats

as:

REFERENCE LOCATION VALUE OR PICTURE

8 9 30 19 32 13 14 18 16 17 1920 21 22 2» ($1 32 33 34 35 36 37 30 39 40 41 42 43 44 43 46 47 48 40 30

P,ARTSRECA, — L8) a0 . s
KEY

1]

ANl
format A

)

[
PARTSRECS
KEY

Ojojlojo|ojo|ojoju|o|o]oJo]~

During processing, the program only has to look at the contents of KEY
to determine if the record is in Format A or in Format B. It can then
reference the fields within the appropriate record format.

Likewise, if the formats and field names of two or more areas are to be
associated with the same area in memory, define each area and its fields
as usual, but with the following exceptions:

1. Do not enter any values in the value positions;
2. Enter SAME in the location columns of the second and succeeding area

definitions.

The compiler then assigns each succeeding area definition to the same
address associated with the first area definition.

REFERENCE LOCATION VALUE OR PICTURE

8 9 10 17 12 13 14 15 16 17 WD 32 33 34 35 36 37 38 30 40 41 42 43 44 45 48 47 48 & DO

ORKSTRGI
DRATE
DBALANCE
D|

WORKSTRG?2

DISCOUNT

NEAT/3 -- INTRODUCTION AND DATA Nov. 68
TAB 3 -- PUB. NO. 2 Page 7

% o ExcegtionZ

SAME[/ entered in positions 19-23 may also allow two files to share
the same buffer area. However, the files must be stored on the same
external media; and, although in the same program, they must never
be processed at the same time during program execution.

For example, PROGRAM1 contains eight files -- four of which are
never being processed at the same time. These four files are all
stored on disc. The size of the buffer area required for FILEl is
500 characters, for FILE2 is 450 characters, for FILE3 is 512 char-
acters, and for FILE4 is 500 characters.

If each of these four files has its own buffer area, 1962 char-
acters of memory would be reserved at all times during program exe-
cution; however, only a maximum of 512 characters would be utilized
at any one time.

Therefore, as one way to conserve memory space, the programmer may
define these files to share the same buffer area. Follow these rules:

1.

Define on file specification sheets the file requiring the largest
buffer area (FILE3 in the above example). The first file defined
must require not only the largest buffer, but the largest number of
buffers as well.

Define on data layout sheets the format of the records in this
file. Leave blank the location positions of the R (record)
statement.

Define on file specification sheets any other file that is to
share the same buffer area as the preceding file's.

Define on data layout sheets the format of the records in this
file. Enter SAME[/ in the location positions of the R (record)
statement. The compiler, when presented with this sequence of
statements, associates the buffer area of this file with the
buffer area of the preceding file.

Follow steps 3 and 4 as often as necessary. The buffer area of
each subsequent file whose R (record) statement contains SAMEM
in its location positions is associated with the buffer area of
the first file in this string.

Be sure that these steps are consecutively followed and that the
compiler is not presented with an intervening definition of a
file that is not to share the same buffer area as the others.

NEAT/3 -- INTRODUCTION AND DATA Nov. 68
TAB 3 -- PUB. NO. 2 Page 8

DATA _LAYOUT SHEETS

When the files in PROGRAM]1 are defined, the source lines for the four
files that share the same buffer area are presented to the compiler

in the following order:

R

REFERENCE LOCATION LENGTH VALUE OR PICTURE

8 9 10 11 12 13 1413 16 17 19 20 21 22 2324 25 26 27 31 32 33 34 33 36 37 38 39 40 41 42 43 44 43 46 47 48 49 S0

*FI1LE SPEC|] JFOR FllLESZ|.
RECORDS3 32] . BUFFER
512-

~

c

O/0io(o]oO

*FILE SPEC
RECORD]

——bado b od o

]

O(0j0j0|joj0|ujojojo|o]Jo|ojo]/o|[o|[o[o]Jofo]o

LI [

When the compiler encounters SAME in the location positions of the
definitions for RECORD1, RECORD2, and RECORD4, it assigns to the
respective files the same buffer area that was assigned to the file
containing RECORD3.

This buffer area is 512 characters long. (This length is specified
on the file specification sheet for FILE3.)

NEAT/3 -- INTRODUCTION AND DATA Nov. 68
TAB 3 -- PUB. NO. 2 Page 9

e Location Entry for Field Definitions

Enter in positions 19-23 the relative location of the field within the rec-
ord or the area. This location entry must be right-justified. (The right-
most digit of this entry must occupy position 23.) The position of first
character in the record or area is relative location zero; the position of
second character is relative location one; etc.

The following example illustrates the relative location of fields within
the grocery chain record, SALESREC.

bl

REFERENCE LOCATION LENGTH VALUE OR PICTURE

81 ______

8 9 10 11 12 13 14 1S 16 17 19 20 21 22 23|24 25 26 27 31 32 33 34 33 36 37 38 39 40 41 42 43 44 45 48 47 48 49

SALESREC 11 11 LISLO PIN R TOOE M SN N TN TNUN SN N N T N N S A A N N

LR Tosk il Rt Tl Rl Bl S |

SleRECdDE 231 3 11 1.3t % ¢ % 3 3. .8 ¢t 3 't %t 2

[l B Sl Bl Bl S onil §

MANAGER (1 L1 L1 2 ¢t .t 3 3 p t 8+ 8.2

A 1 1 3¢ "3 2t 1

~

b

_L_L__L

DiAlTlEllllll 11 13 .1 & ¢t 3 3 3 % 2.t 2 2 %t %

DAY

MONTH

Y EAR

G ROCERY

Sl lt TR 2 |

0i0|0l0|0|O0|O} 0O

A location entry is not required when the fields being defined are adjacent.
In the example below, the same record (SALESREC) has been described omitting

unnecessary location entries.

k]

REFERENCE LOCATION LENGTH VALUE OR PICTURE

8 © 10 11 12 13 14 15 16 17 19 20 21 22 23[24 25 26 27 S1 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
[SALESREC A R
STERECODE R e et i i
MANAGER

DATE 1 8§ 2 ¢ p 2 3 3 ¢ 2 2 % 3

i .9 2 ¢ 8 .3 3 %t 8%

DlAlYl 11 2%
MtlethHl 1.1

YEAR

GROCERY

~

5

4 ¢ ¢ 9§ 3 ¢ 2 o3 ¢ g % 3 2+ 3 't .t 2 £t

D
D
D
D
D
D
D
D

The compiler always associates relative location 0 with the first field.
Using the specified length of the first field, the compiler generates the
relative location of the second field; using the specified length of the
second field, the compiler generates the relative location of the third

field.

NEAT/3 —- INTRODUCTION AND DATA Nov. 68
TAB 3 -- PUB. NO. 2 Page 10

DATA LAYQUT SHEETS

Because the fourth field (DAY) is not adjacent to the DATE field, the pro-
grammer must specify a location. The remaining fields are all adjacent
(MONTH is adjacent to DAY, YEAR is adjacent to MONTH, GROCERY is adjacent
to YEAR); therefore, the compiler generates the location entries for the
last three fields.

Length

Use positions 24-27 to specify the length of the record, area, or field being
defined. This entry is right-justified; i.e. the rightmost digit occupies
position 27.

The compiler associates the specified length with the data name in the refer-
ence positions. In the following example, the compiler associates two memory
positions beginning in relative location 13 with the reference MONTH. (This

2-character field is included in the 6-character field DATE.) i

A

REFERENCE LOCATION LENGTH VALUE OR PICTURE

8 9 10 17 12 13 14 15 16 17 19 20 21 22 23|24 25 28 27 31 32 33 34 33 36 37 38 39 40 41 42 43 44 45 46 47 48 49

DATE

2 % % 3§ % .t & .t 8 4 t f ¢ % p ¢ ¢ p » 3 8+ ¥ % £ 8 2 & 3

DAY

23 8 3 ¢ 3 & ¢ 38 g 9.t 3 ¢ p 2 % ® ¢ ¢ 2 3. % 2 2. B 2. %

MONTH

23t 3 % 3. 1 % 8

YEAR

4 3t 2t 1 2 2 2

When variable-length records are being processed, remember to enter as the
length the length of the largest record.

The maximum number that could be entered in this 4-character position is 9999.
If the length entry is greater than 9999, the word VALU is entered in positions
24-27; the actual length is specified in position 31. Consider the example
below.

b

REFERENCE LOCATION LENGTH VALUE OR PICTURE

O S,

8 9 10 11 12 13 14 135 16 17 19 20 2% 22 23|24 25 268 27 3!”3!!4!536378839‘0"4243‘4‘5“47“492:

AREA V|A|LIU]IOI0|0|OI § 3ttt 3 ¢ ¢ % 0 8t . & £ |

1 ¢ 1 3 % 3 3 2.1 1t t 1 - -

Note: A VALU entry is restricted to an area definition that does not have an
entry in the value or picture positions. The maximum length that can
be used with VALU is 65,536.

For further explanation on the length entry, refer to the specific data-type
descriptions in this publicaiton.

NEAT/3 -- INTRODUCTION AND DATA Nov. 68
TAB 3 -- PUB. NO. 2 Page 11

DP (Decimal Point)

Positions 28 and 29 are reserved for a DP entry. This entry, which may range
from 0-99, indicates the number of decimal positions in a data item.

The type of data being defined determines whether or not a DP entry is required.
For example, alphanumeric (X-type) data may not have a DP entry; an editing
mask (E-type data) requires a DP entry when it defines a numeric mask, but not
when it defines an alphanumeric mask; U-, D-, P-, and K-type data require a DP
entry if the field does not consist entirely of whole integers. (For further
explanation on when to enter a DP value, see the individual data-type descrip-
tions in this publication.)

Note from the following examples that the DP entry affects the way the value
is stored.

543.21 543,21
543.21 543,210

Type

Enter in position 30 (TYPE) of every field definition a l-character code. This
code specifies the type of the data being defined, whether this data is input
from file records, whether it is specified on a data layout sheet as a constant,
or whether it is moved into this field during processing.

The valid codes and their corresponding data types follow:

=2
e}
=
i

Alphanumeric Characters
Generated Spaces
Generated Zeros
Unsigned Decimal

Signed Decimal

Binary

Hexadecimal

Signed Packed Decimal
Unsigned Packed Decimal
Editing Mask

S
Z
U
D
B
H
P
K
E

An entry in the TYPE position is optional for the definition of a record or an
area. If all the data in the record or area is of the same type, enter the
appropriate code. For instance, if all the fields within a record or an area
contain packed data, define the type code as K. If the data is of many types,
either leave this position blank or define the type code as X. (See the Data
Description section of this publication for more information about these codes.)

NEAT/3 -- INTRODUCTION AND DATA Nov. 68
TAB 3 -- PUB. NO. 2 Page 12

DATA LAYOUT SHEETS

Up to this point, only excerpts of the data definitions for SALESREC have been
illustrated. It is now possible to understand the complete definitions for
SALESREC and its associated fields.

The format of SALESREC follows:

Manager Grocery | Produce Dairy

XXXXXXXX XXXX XX XXXX XX | XXX . XX

REFERENCE LOCATION VALUE OR PICTURE

g [mu<4 x

8 9 10 17 12 13 14 18 16 17 19 20 21 22 23 31 32 33 34 335 36 37 38 39 40 41 42 43 44 43 48 47 48 40 O

SALESREC
STORECODE
MANAGER
DATE

oAy

ONTH

Y E AR
GROCERY
PrRODUCE
MEAT

DAIRY

M 1S C ‘
DAILYTOTAL

Qi
w
o

S

3
b

r [ro o oo fw

9
3

sfolalofwlvlonlwl=[=Twlof

3
3
L
3

0]0]0j0j0]O0|o|/OojOo|0O]O]O
R RE R R R R R R)
oo [o[fo [

T lC C SIS S [< > =< I>=< > [><

F-3

NEAT/3 -- INTRODUCTION AND DATA Nov. 68
TAB 3 -- PUB. NO. 2 Page 13
y

Value or Picture

The entry starting in position 31 varies with the record, area, or field being
defined. The programmer may leave these positions blank, or he may enter either
a value or a picture.

e When to Leave These Positions Blank

Leave these value or picture positions blank in all record definitions and
in those area definitions that allocate memory space but that do not require
an initial setting at compilation time. Consider the following definitions:

REFERENCE LOCATION VALUE OR PICTURE

8 9 10 11 12 13 14 135 16 17 192021 2223 |31 32 33 34 35 36 37 38 39 40 4! 42 43 44 43 48 47 48 M O

SALESREC

" PEY PRI R W S T SHE NH S S SH S S S W |

REFERENCE LOCATION VALUE OR PICTURE

7{0 9 10 11 12 13 14 18 16 17 19 20 21 22 23 S1 32 33 34 35 36 37 38 39 40 41 42 43 44 43 46 47 48 0 O

DlWw O RKAREA

e When to Enter a Value

Enter a value if the source line is an area or field definition of a
constant. This value must not extend beyond position 73. (Position 74
is reserved on all worksheets for the delete digit. See compiler control
sheet, position 74.) Consider the following definitions:

REFERENCE LOCATION VALUE OR PICTURE

718 9 10 11 12 13 14 13 16 17 19 20 21 22 23 132 33 34 33 36 37 38 39 40 41 A2 43 44 43 48 47 48 & 0

D[MULTIPLIER . 3.1416

PR ST P PR W W - |

N]

REFERENCE LOCATION | LENGTH VALUE OR PICTURE

78 ® 10 11 12 13 14 18 16 17 19 20 21 22 2324 28 28 27 32 33 34 35 36 37 38 39 40 41 42 43 44 43 48 47 40 & WO

IKEYS

D

DIk E Y 1 0) 1.0
DlKE Y 2 . Jul2 0
DIk E Y 3 4 3.0

NEAT/3 -- INTRODUCTION AND DATA Nov. 68
TAB 3 -- PUB. NO. 2 Page 14

DATA LAYOUT SHEETS

e When to Enter a Picture

Enter a picture if the source line specifies a picture of how data is to
be edited before it is printed. The mask must not extend beyond column
73. The editing mask is explained in greater detail under E TYPE in the

following section.
XX

DATA DESCRIPTION

Each section of the data layout sheet and all the rules and entry variations
that pertain to it have been presented; that is, all the rules that apply to
length entries, to DP entries, etc. have been discussed. Now, the data layout
sheet will be approached from a different viewpoint. One line of data will be
defined at a time, and only those rules that apply to the data will be consid-
ered. To do this, assume that the data is of a particular type. The following
discussion briefly describes each type of data and reviews all the associated
data layout sheet entries that are needed to define this data properly.

X Type
e Data Type

Alphanumeric Characters.

The data is made up of any of the 8-bit alphanumeric characters in rows
2 to 5 of the Century Code Chart.

e Use When

The data in the record, area, or field being defined is in 8-bit alpha-
numeric characters.

e Example

Since the records within a name and address file contain alphabetical
and numerical characters, a programmer may define these name and
address fields as being X type.

A programmer may define a header for a report as being X type because
the header is an alphanumeric constant.

® Associated Data Layout Sheet Entries

Any violation of the following conventions will cause an error comment
to be generated.

e Length

Enter the number of 8-bit characters (L) that are to be reserved
for this data string. If this definition contains an entry in the
value positions, the maximum length that can be entered is 43.

NEAT/3 -- INTRODUCTION AND DATA Nov. 68
TAB 3 —- PUB. NO. 2 Page 15

e Location
For a record or an area definition, leave these positions blank.

For a field definition, enter the relative location of this field
within its associated area or record.

e DP

Leave these positions blank. Alphanumeric characters, by their nature,
do not contain a decimal point.

e Value

If this definition is of a record or of a field within a record, a
value entry is invalid.

If this definition is of either an area or a field within an area that
is to contain a specific value (i.e., a constant), enter this value.
The compiler converts this value into 8-bit alphanumeric characters
and stores the value in the constants section of the object program.

The compiler checks the first L characters. If they are all blank,
the compiler reserves memory space into which a value can later be
stored.
Leading or embedded space characters are valid.

e Comments
A comment must not begin in any position that the length entry has

reserved for this data string; i.e., any comment preceded by an
asterisk must not begin before position (31 + L).

e Examples

REFERENCE LOCATION | LENGTH VALUE OR PICTURE COMMENTS

*

8 0 10 11 32 13 14 18 16 17 19 20 21 22 2324 28 28 27 31 32 33 34 39 36 37 30 30 40 41 42 43 44 43 45 47 40 49 30,3 S2 EI SA IE M BT M M 0 14263646500 678000 N1 B D

HEADER 17 1966 SALES REPORT ;

»

REFERENCE LOCATION VALUE OR PICTURE . COMMENTS

8 ® 10 §) 12 13 14 13 16 17 (IR RIN:§:) :luuuuunununuauuunnnuuuuuuununnuuuuuuovuunnnn'
PAGENUMBER *PAGE NUMBER - T0 BE
PAGE PAGE *INCREMENTED & PRINTED
INUMBER 001 i*AT TOP OF NEW PAGES

NEAT/3 -- INTRODUCTION AND DATA Nov. 68
TAB 3 —- PUB. NO. 2 Page 16

DATA LAYOUT SHEETS

U Type
e Data Type

Unsigned Decimal.

The data is made up of any combination of the 8-bit numeric characters
(0-9) as shown in the NCR Century Code Chart.

e Use When

The data in the record, area, or field being defined is in 8-bit numeric
unsigned decimal characters.

e Example

A programmer knows that during processing, the field called AMTSOLD
will always contain a positive number., He may, therefore, define
this field as being U type.

A programmer wishes to enter as constants a string of interest rates
-- .04, .045, .05, .06, etc. Since these constants are always posi-
tive and are numeric, the programmer may define them as being U type.

® Associated Data Layout Sheet Entries

Any violation of the following conventions will cause an error comment
to be generated.

e Length

Enter the number of 8-bit characters (L) that are to be reserved for
this data string. Do not count the decimal point as a character in this
length. If this definition contains an entry in the value positions,
the maximum length that can be entered is 43.

e Location
For a record or area definition, leave these positions blank.

For a field definition, enter the relative location of this field
within its associated area or record.

e DP

Enter the number of 8-bit characters occupying decimal positions in
the value being defined.

e Value

If this definition is of a record or of a field within a record, a
value entry is invalid.

NEAT/3 -- INTRODUCTION AND DATA Nov. 68
TAB 3 -- PUB. NO. 2 Page 17

If this definition is of either an area or a field within an area that
is to contain a specific value (i.e., a constant), enter this value.
The compiler converts this value into 8-bit numeric unsigned decimal
characters and stores the value in the constants section of the object

program.

The value, if any, must start in position 31. If position 31 is

left blank or contains an asterisk (%), the compiler does not look

at the remaining positions for a value but reserves memory space into
which a value can later be stored.

If the value is an integer, a decimal point need not be entered.
Otherwise, the value must contain a decimal point. However, the
decimal point is not stored. Leading or trailing zeros are added

to store the value properly.

For example, L =5
DP 2

The value 12 is stored as 01200
The value 1.2 is stored as 00120
The value .12 is stored as 00012

A space character may not be embedded within the value. 1If it is,
the compiler considers only the characters to the left of the space
as the value.

e Comments

Comments, if any, may begin with an asterisk in position 31 or beyond
(if no value is entered) or in the first available position (if a

value is entered).

e Examples

———
[] M
(=
o
o
[4

e ——— e ——————

REFERENCE LOCATION LENGTH VALUE OR PICTURE

8 9 10 11 12 13 14 19 16 17 |18)19 20 21 22 23|24 23 28 27 31 32 33 34 33 36 37 38 39 40 A1 42 43 44 43 48 47 48 4 30

INTEREST . o
6 PERCENT 2 .06
4PERCENT 2 2qu.04

clc]| 8]mu4 x

b

REFERENCE LOCATION LENGTH VALUE OR PICTURE

31 32 33 34 35 36 37 38 39 40 41 42 43 44 43 48 47 48 & 0

1. *TALLY COUNT.

8 9 10 1) 12 13 14 13 16 17 19 20 21 22 2324 25 268 27

C |8 |mu<4 x

TALLY 6

NEAT/3 -- INTRODUCTION AND DATA Nov. 68
TAB 3 —- PUB. NO. 2 Page 18

DATA LAYOUT SHEETS

D Type
® Data Type
Signed Decimal.

The data is made up of any combination of the 8~bit numeric characters
(0-9) whose positive or negative value is expressed with an 8-bit sign
(+ or -). The bit configuration of these characters is shown in the NCR
Century Code Chart.

® Use When

The data in the record, area, or field being defined is in 8-bit signed
decimal characters.

e Example

During the processing of PROGRAMA, the field BALANCE may sometimes
have a positive and sometimes a negative value. The programmer may
define this field as being D type.

® Associated Data Layout Sheet Entries

Any violation of the following conventions will cause an error comment
to be generated.

e Length

Enter the number of 8-bit characters that are to be reserved for this
data string. Count the sign as part of the length, but not the decimal
point. If this definition contains an entry in the value positions, the
maximum length that can be entered is 43. In all cases, the minimum
length is 2.

® Location
For a record or an area definition, leave these positions blank.

For a field definition, enter the relative location of this field
within its associated area or record.

e DP

Enter the number of 8-bit characters occupying decimal positions in
the data string being defined.

® Value

If this definition is of a record or of a field within a record, a
value entry is invalid

If this definition is of either an area or a field within an area
that is to contain a specific value (i.e., a constant), enter this
value. The compiler converts this value into 8-bit numeric signed
decimal characters and stores the value in the constants section
of the object program.

NEAT/3 -- INTRODUCTION AND DATA Nov. 68
TAB 3 -- PUB. NO. 2 Page 19

The value, if any, must start in position 31. If position 31 is left
blank or contains an asterisk (%), the compiler does not look at the
remaining positions but reserves memory space into which a value can
later be stored.

If the value is negative, the minus sign must be entered. If the
value is positive, the plus sign need not be entered. The compiler
generates a plus sign if none is present.

If the value is an integer, a decimal point need not be entered.
Otherwise, the source value must contain a decimal point. However,
the decimal point is not stored. ZLeading or trailing zeros are added
to store the value properly.

For example, L =5
DP 2

The value +12 is stored as 1200+
The value -1.2 is stored as 0120-
The value +.12 is stored as 0012+
The value -123.45 is stored as 2345- (error comment)
The value =-1234 is stored as 3400- (error comment)

NOTE: In memory the sign is stored in the rightmost character
position of the value.

A space character may not be embedded within the value. If it is,
the compiler considers only the characters to the left of the space
as the value.

e Comments
Comments, if any, may begin with an asterisk in position 31 (if no
value is entered) or in the first available position (if a value

is entered).

e Examples

b

REFERENCE LOCATION LENGTH VALUE OR PICTURE

8 9 10 11 32 13 14 15 16 17 19 20 21 22 23|24 25 26 27 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 4B 49 SO

CONSTANT 2

b}

REFERENCE LOCATION LENGTH VALUE OR PICTURE

8 9 10 31 12 13 14 15 16 17 19 20 21 22 23{24 25 26 27 31 32 33 34 33 36 37 38 39 40 41 42 43 44 43 46 47 48 49 SO

MULTIPLIER 7 +491.664

NEAT/3 —-- INTRODUCTION AND DATA Nov. 68
TAB 3 -- PUB. NO. 2 Page 20

DATA LAYOUT SHEETS

K Type
e Data e

Unsigned Packed Decimal.

The data is made up of any combination of the 4-bit numeric characters
(0-9) as shown in the NCR Century Code Chart.

e Use When

The data in the record, area, or field being defined is in 4-bit numeric
unsigned packed decimal characters.

e Example

Since unsigned packed decimal characters are recorded in less space
on a storage device than are unsigned decimal characters, a program-
mer may choose to store as unsigned packed decimal characters the
numeric fields in his file's records.

® Associated Data Layout Sheet Entries

Any violation of the following conventions will cause an error comment
to be generated.

e Length

Enter the number of 8-bit characters that are to be reserved for this
data string. Do not count the decimal point as part of this length.
Remember that two unsigned packed decimal characters are stored in one
memory position; therefore, if this definition contains an entry in the
value positions, the maximum length that can be entered is 21.

e Location
For a record or an area definition, leave these positions blank.

For a field definition, enter the relative location of this field
within its associated area or record.

o DP

Enter the number of 4-bit characters occupying decimal positions
in the data string being defined.

e Value

If this definition is of a record or of a field within a record,
a value entry is invalid.

NEAT/3 -- INTRODUCTION AND DATA Nov. 68
TAB 3 -~ PUB. NO. 2 Page 21

If this definition is of either an area or a field within an area
that is to contain a specific value (i.e., a constant), enter this
value. The compiler converts this value into 4-bit unsigned packed
decimal characters and stores this value into the constants section
of the object program.

The value, if any, must start in position 31. If position 31 is left
blank or contains an asterisk (*), the compiler does not look at the
remaining positions for a value but reserves memory space into which
a value can later be stored.

If the entered value is an integer, a decimal point need not be
entered. Otherwise, the entered value must contain a decimal point.
However, the decimal point is not stored. Leading or trailing zeros
are added to store the value properly.

For example, L=4
3

DP =
The value 54321 is stored as 54 32 10 00
The value 5432.1 is stored as 05 43 21 00

A space character may not be embedded within the value. If it is,
the compiler considers only the characters to the left of the space

as the value.

o Comments

Comments, if any, may begin with an asterisk in position 31 (if no
value is entered) or in the first available position (if a value is

entered).

e Examples

b

|
|
t
1
1
|
1

REFERENCE LOCATION LENGTH VALUE OR PICTURE

—_

8 9 10 11 12 13 14 13 16 17 19 20 21 22 23|24 28 28 27 ll“’,!“’“!‘l!l!’“ll420“‘!“‘7““”;
MULTIPLIER 10
MULTA F 5 9876543210
MULTB F 5 9876543.210

NEAT/3 -- INTRODUCTION AND DATA Nov. 68
TAB 3 -- PUB. NO. 2 Page 22

DATA LAYOUT SHEETS

P Type
e Data Type

Signed Packed Decimal.

The data is made up of any combination of the 4-bit numeric characters
(0-9) whose positive or negative value is expressed with a 4-bit sign

(+ or -). The bit configuration of these characters is shown in the NCR
Century Code Chart.

o Use When
The data in the record, field, or area being defined is in 4-bit signed
packed decimal characters.
e Example
Since signed packed decimal characters are recorded in less space on
a storage device than are signed decimal characters, a programmer
may choose to store as signed packed decimal characters the signed
numerical fields in his file's records.
e Associated Data Layout Sheet Entries
Any violation of the following conventions will cause an error comment
to be generated.
e Length
Enter the number of 8-bit characters that are to be reserved for this
data string. Count the sign as part of the length, but not the decimal
point. Remember that two signed packed decimal characters are stored in
one memory position; therefore, if this definition contains an entry in
the value positions, the maximum length that can be entered is 21.
e Location
For a record or an area definition, leave these positions blank.
For a field definition, enter the relative location of this field
within its associated area or record.
e DP
Enter the number of 4-bit characters occupying decimal positions in
the data string being defined.
e Value
If this definition is of a record or of a field within a record, a
value entry is invalid.
NEAT/3 -- INTRODUCTION AND DATA Nov. 68

TAB 3 -- PUB. NO. 2 Page 23

If this definition is of either an area or a field within an area
that is to contain a specific value (i.e., a constant), enter this
value, The compiler converts this value into 4-bit signed packed
decimal characters and stores this value into the constants section
of the object program.

The value, if any, must start in position 31 with a plus or a minus
sign. If position 31 is left blank or contains an asterisk (*), the
compiler does not look at the remaining positions for a value but
reserves memory space into which a value can later be stored.

If the entered value is an integer, a decimal point need not be
entered. Otherwise, the entered value must contain a decimal point.
However, the decimal point is not stored. Leading or trailing zeros
are added to store the value properly.

For example, L = 4
DP = 3

The value -5432.1 is stored as 54 32 10 0-
The value +54.321 is stored as 00 54 32 1+

NOTE: In memory the sign is stored in the rightmost character
position of the value.

A space character may not be embedded within the value. If it is,
the compiler considers only the characters to the left of the space
as the value.

e Comments
Comments, if any, may begin with an asterisk in position 31 (if no
value is entered) or in the first available position (if a value

is entered).

e Examples

b]

REFERENCE LOCATION LENGTH VALUE OR PICTURE

8 9 10 11 12 93 14 13 18 17 19 20 21 22 23|24 25 268 27 31 32 33 34 33 36 37 38 39 40 41 42 43 44 45 46 47 48 49 30
DIVIDER 10
DIVIDEA 0 5
DIVIDESB 5] 7fPlr98.7654321

NEAT/3 -- INTRODUCTION AND DATA Nov.
TAB 3 —-- PUB. NO. 2 Page

DATA LAYOUT SHEETS

Z TZEe
e Data Type

Generated Zeros.

The compiler generates 8-bit zeros to fill the specified length. The
bit configuration of these generated zeros is shown in the NCR Century
Code Chart.

When the reference of a Z field is used as an operand, the data in this
field is treated as unsigned decimal characters (U type).

e Use When
The area or field being defined is originally to be zero-filled.

e Example

The header on each printed page is to contain the name of the report,
the date, and the page number. To get a different number on each
page, the programmer may initially zero-fill the page field. In the
print routine, he may increment the number in this field by one each
time a page is printed.

® Associated Data Layout Sheet Entries

Any violation of the following conventions will cause an error comment
to be generated.

e Length

Enter the number of 8-bit zeros that the compiler is to generate.
A maximum of 9999 zeros can be generated.

e Location
For an area definition, leave these positions blank.

For a field definition, enter the relative location of this field
within its associated area.

e DP

Enter the number of 8-bit characters occupying decimal positions in
the string of generated zeros.

A value entry is invalid.
e Comments
Comments, if any, may begin with an asterisk in position 31 or beyond.

NEAT/3 -- INTRODUCTION AND DATA Nov. 68
TAB 3 -- PUB. NO. 2 Page 25

o Examgle

REFERENCE LOCATION

‘M

LENGTH

VALUE OR PICTURE

8 9 10 11 12 13 14 13 16 17 19 20 21 22 23

24 23 28 27

31 32 33 34 33 36 37 38 39 40 4) 42 43 44 43 46 47 A2

ZEROFILL

1 0

NEAT/3 -- INTRODUCTION AND DATA
TAB 3 -- PUB. NO. 2

Nov. 68
Page 26

DATA LAYOUT SHEETS

S Type

Data Type

When S-type is used, the compiler fills the area or field being defined
with a specified character.

When the reference of an S field is used as an operand, the data in this
field is treated as alphanumeric characters (X type).

e Use When
The area or field being defined is originally to be filled with a character
or spaces.
e Example
A programmer may define the header line to be printed at the top of each
page in his report as being an area. He may enter the data and the name
of the report as constants and space-fill the intervening positions by
defining the positions to be in a field of S type.
e Associated Data Layout Sheet Entries
Any violation of the following conventions will cause an error comment to
be generated.
e Length
The maximum number that can be entered is 9999.
e Location
For an area definition, leave these positions blank.
For a field definition, enter the relative location of this field within
its associated area.
o DP
Leave these positions blank.
e Value
Positions 31-32 of the value positions are used to indicate the character
to be filled. If no character is specified (no entry in positions 31-32),
the compiler fills the area or field with spaces.
When a character is to be filled, enter in positions 31-32 the 2-character
hexadecimal representation of the character. The hexadecimal representa-
tions of characters can be found on the chart on page 9 of FILES, tab 1,
"Paper Tape File Specifications" (Pub. No. 8).
NEAT/3 -- INTRODUCTION AND DATA Nov. 68

TAB 3 -- PUB. NO. 2 Page 27

e Comments

Comments, if any, may begin with an asterisk in position 31 or

beyond.

° Examgles

REFERENCE

LOCATION

LENGTH

VALUE OR PICTURE

8 9 10 11 12 13 14 15 16 17

19 20 21 22 23

24 25 26 27

|
|
)
|
!
!
i
!
[
(

31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

SPACES

1 .1t % 13311

[T |

120
1 1

1

—
|
'

1_.¢ r vy 1 ¢t 1 v ¢t ® 1y 1 2

REFERENCE

LOCATION

LENGTH

VALUE OR PICTURE

8 9 10 11 12 13 14 15 16 17

19 20 21 22 23

24 25 26 27

Cl()lletTlAlNlTl]l

1 1 11

12
1

1

Z'Al

[S T N 2 |

B Type
e Data Type

Binary.

The date being defined is a binary number.

e Use When

The data in the record, area, or field being defined is a binary number.

e Example

A programmer wishes to keep a running total of all transactions processed

during each run.

He chooses to keep this total in a binary field because

a large integer value is stored more compactly and thus more efficiently
as a binary number than as a decimal number.

NEAT/3 —- INTRODUCTION AND DATA

TAB 3 -- PUB. NO. 2

Nov. 68
Page 28

DATA LAYOUT SHEETS

e Associated Data Layout Sheet Entries

Any violation of the following conventions will cause an error comment to
be generated.

Length

Enter the number of 8-bit characters that are to be reserved for the
binary number. The binary equivalent of any positive integer ranging
from 0 to 999,999 is a valid binary number.

The following table shows the number of characters needed to store
binary equivalents of positive integers:

1-255 One 8-bit character

256-65, 535 Two 8-bit characters
65,536-999,999 Three 8-bit characters

A binary field may be defined as up to 9,999 characters in length; how-
ever, only the rightmost three characters may contain significant data,
as indicated in the above table. The remaining character locations are

zero-filled by the compiler.
Location
For a record or an area definition, leave these positions blank.

For a field definition, enter the relative location of this field within
its associated area or record.

DP

Leave these positions blank. Binary numbers are considered to be
unsigned integers.

NEAT/3 —- INTRODUCTION AND DATA Nov. 68
TAB 3 -- PUB. NO. 2 Page 29

e Value

If this definition is of a record or of a field within a record, a
value entry is invalid.

If this definition is of either an area or a field within an area
that is to contain a specific value (i.e., a constant), enter this
value. The compiler converts this value into a binary number and
stores the value into the constants section of the object program.

The value, if any, must start in position 31. If position 31 is
left blank or contains as asterisk (*), the compiler does not look
at the remaining positions for a value but reserves memory space
into which a value can later be stored.

e Comments

Comments, if any, may begin with an asterisk in position 31 (if no
value is entered) or in the first available position (if a value
is entered).

° Examgles

The compiler translates the decimal value in the following example into
a binary five (00000101) and stores this in an area called CONSTANT.

n

REFERENCE LOCATION LENGTH VALUE OR PICTURE

@ 9 10 11 12 13 14 135 16 37 19 20 29 22 23[24 23 28 27 S1 32 33 34 35 36 37 38 39 40 41 A2 43 44 43 4G 4T 48 & 30
—

CONSTANT 1 5

NEAT/3 -- INTRODUCTION AND DATA Nov. 68
TAB 3 —- PUB. NO. 2 Page 30

DATA LAYOUT SHEETS

H Type

Data Type
Hexadecimal.

The data is the binary representation of the 4-bit hexadecimal charac-
ters 0-9 and A-F. This bit configuration is shown in INTRODUCTION AND
DATA, tab 2, "Data Concepts."

o Use When
The data in the area or field being defined is in 4-bit hexadecimal
characters.
e Associated Data Layout Sheet Entries
Any violation of the following conventions will cause an error comment
to be generated.
e Reference
Since hexadecimal data cannot be used as an operand, it should not be
given a reference.
e Location
For an area definition, leave these positions blank.
For a field definition, enter the relative location of this field
within its associated area.
e Length
Enter the number of 8-bit characters that are to be reserved for this data
string. Remember that two hexadecimal characters are stored in one mem-
ory position; therefore, if this definition contains an entry in the
value positions, the maximum length that can be entered is 21.
e DP
Leave these positions blank.
e Value
If this definition is of either an area or a field within an area
that is to contain a specific value (i.e., a constant), enter this
value. The compiler converts this value into 4-bit hexadecimal
characters and stores this value into the constants section of
the object program.
The value, if any, must start in position 31. If position 31 is
left blank or contains an asterisk (*), the compiler does not look
at the remaining positions for a value but reserves memory space
into which a value can later be stored.
A space character may not be embedded within the value. If it is,
the compiler considers only the characters to the left of the space
as the value.
NEAT/3 -- INTRODUCTION AND DATA Nov. 68

TAB 3 -- PUB. NO. 2 Page 31

e Comments

Comments, if any, may begin with an asterisk in position 31 (if no
value is entered) or in the first available position (if a value
is entered).

e Examples

Since the reference of a field containing hexadecimal data may never be
used as an operand, hexadecimal data must be redefined if it is to be
accessed during processing.

For instance, an area referenced by MESSAGES is defined as having four
alphanumeric 8-bit characters. This area contains two hexadecimal

messages -- A1FF and A2FF. These fields are redefined as alphanumeric
fields MESSAGEl and MESSAGE2. Consider the following data definitions:

REFERENCE LOCATION LENGTH VALUE OR PICTURE

8 9 10 11 12 13 14 13 16 17 19 20 21 22 2324 25 26 27 S1 32 33 34 33 36 37 38 39 40 A1 42 4 44 43 46 47 48 ® N,
N 4

MESSAGES 4

A1 FF

A2 FF

2
MESSAGEN 2
2
2

ESSAGEZ2,

When either MESSAGEl or MESSAGE2 is used as an operand, the data con-
tained in the field is treated as alphanumeric characters and may,
therefore, be accessed by procedural instructions.

NEAT/3 -- INTRODUCTION AND DATA Nov. 68
TAB 3 -- PUB. NO. 2 Page 32

DATA LAYOUT SHEETS

E Type
e Data Type

Edited field.

The E entry in the type position specifies this definition to be of an
edited field. The mask itself is entered in the picture positions.

An editing picture or mask is a string of characters defined over a
destination field. This character string describes the format of the
data to be output. Generally, only data which is to be printed needs
to be edited. After data is moved into a field of E type, the field
contains the edited data.

e Use When

The field being defined is a destination field for data that is to be
printed but that first needs special editing to make it more readable.

e Example

An insurance company wants a printed report of the total amount of
insurance that each salesman has sold during the past month. Since
decimal points and currency symbols are not recorded with the data
in memory, the programmer may choose to edit all numeric data
before it is printed, thereby inserting the currency symbols and
the decimal points.

® Associated Data Layout Sheet Entries

Any violation of the following conventions will cause an error comment
to be generated.

e Length

Enter the number of 8-bit characters that are in the mask. This
length also indicates the length of the field. When edited data is
accessed from the field, its length is as specified in this entry.

The maximum length of a mask is 43 characters. The maximum num-
ber of editing characters in the mask for a numeric field -- not
including the sign symbols —-- is 19 characters. The maximum num-
ber of editing characters in the mask for an alphanumeric field is
43 characters. All other characters in the masks are insertion
characters. The number of editing characters plus the number of
insertion characters in the mask must not exceed 43 characters.

e Location
For a record or an area definition, leave these positions blank.

For a field definition, enter the relative location of this field
within its associated area or record.

NEAT/3 -- INTRODUCTION AND DATA Nov. 68
TAB 3 -- PUB. NO. 2 Page 33

o DP

Leave blank the DP positions for the definitions of an alphanumeric

field.

Place an entry in the DP positions for the definition of a numeric

field.

e If decimal positions exist, enter the number of characters to the
right of the decimal point which are to be replaced with a data

This entry does not reflect the character positions

needed for insertion characters or for sign characters (+, -,

char

CR,

acter.

or DB).

e If no decimal positions exist, enter a zero in position 29 of
the data layout sheet.

NOTE:

If the DP positions are left blank, the field is assumed to
be alphanumeric.

e Picture

Enter the editing mask starting in position 31.

An editing mask (picture) may contain any valid combination of the
characters in the Century Code Chart except the space (). For a
description of each of these characters and the rules governing its
use, see the following discussion in this publication entitled

EDITING

e Example

MASKS.

In the following example, TOTALINE defines the format of the records in
le. The fields TOTALSALES and TOTRETURNS are destination

a print fi

fields over which an editing mask is defined.

Also within this record

is a TOTCOMMENT field into which the programmer may have the program
store the comment DEPARTMENT TOTALS during program execution. (Ignore
for the present time the 4-character TOTCONTROL field because it does
not appear in the printed line. This field is a
concept is later explained in conjunction with the printer.)

control block; its

REFERENCE

LOCATION

»

LENGTH

VALUE OR PICTURE

. COMMENTS

8 9 10 11 12 13 14 15 18 17

192021 2229

24129 28 27

(31 32 33 34 335 36 37 38 39 40 4t 42 43 44 43 46 47 48 @ 0

o
3152535455 36575039 006162636483080 6780002

TOTALINE

136

TOTCONTROL

4

TOTCOMMENT

2.0

TOTALSALES

14

222,221,121, . XX

*EDOITING MASK

TOTRETURNS

1.4

221,211,227 .X%XX

*EDITING MASK

xxxx

NEAT/3 -- INTRODUCTION AND DATA

TAB 3 -- PUB.

NO. 2

Nov. 68
Page 34

DATA LAYOQUT SHEETS

EDITING MASKS

An editing picture or mask is a string of characters defined over a destination
field. This character string describes the format of the data to be output.
Generally, only data which is to be printed needs to be edited.

To specify an editing mask for an edited field, the programmer enters on a
data layout sheet an E in the type position and the actual mask in the picture
positions.

An editing mask (picture) may contain any valid combination of the characters
in the NCR Century Code Chart except the space ([f). The rules governing each
of these characters differ for masks for alphanumeric fields and for masks for
numeric fields.

Masks For Edited Alphanumeric Fields

To edit alphanumeric data, move the data into the destination field over which

a mask is defined. A mask for an alphanumeric field is made up of editing char-
acters and insertion characters. The DP positions for the definition of a

mask for an alphanumeric field must be left blank.

e Editing Characters for Edited Alphanumeric Fields

e X Characters

Each X in the editing mask represents a character position which is
replaced on a one-for-one basis with a data character from the source
data.

Alphanumeric data is left-justified within the mask, and the remain-
ing positions are space-filled to the right.

If alphanumeric data is too long to fit the mask, the software trun-
cates the excess right-hand characters.

Moving data into a destination field owver which is defined only X
editing characters results in a straight MOVE, for no special editing
is required. Therefore, a mask for an alphanumeric field must contain
at least one insertion character.

NEAT/3 -- INTRODUCTION AND DATA Nov. 68
TAB 3 -- PUB. NO. 2 Page 35

® Insertion Characters for Edited Alphanumeric Fields

All the characters in the NCR Century Code Chart except the space (
and X are valid insertion characters.

e B Characters

)

Each B in the editing mask separates the data edited before it from

the data edited after it with a blank.
data character but merely separates two adjacent data characters.

The blank does not replace a

For instance, memory contains a field of 15 characters for a store
manager's first initial and his last name.
printout of this name, a programmer may edit the field.

Mask

Data

To ‘obtain a readable

Output

XBXXXXXXXXXXXXXX
XBXXXXXXXXXXXXXX
XBXXXXXXXXXXKXXXX

e Other Characters

JBABCOCK
PHOFFMEYER
SPETERSON

J BABCOCK
P HOFFMEYER
S PETERSON

Each insertion character in a mask for an alphanumeric field except
the B is not replaced by a data character but, instead, is directly
inserted into the destination field.

Data

Output

NEAT/3 -- INTRODUCTION AND DATA

TAB 3 -- PUB. NO. 2

021768

02/17/68

Nov. 68
Page 36

DATA LAYOUT SHEETS

Masks for Edited Numeric Fields

To edit numeric data, move the data into the destination field over which is
defined a mask. A mask for a numeric field is made up of editing characters
and insertion characters. The DP positions for the definition of a mask for
numeric fields must contain an entry.

e Editing Characters for Edited Numeric Fields

e X Characters

Each X in the editing mask represents a character position which
will be replaced on a one-for-one basis with a data character from
the source data.

Numeric data is aligned on the decimal point in the mask. The edited
output is zero-filled to the left and/or the right of the decimal
point if the mask is longer than the source. (See the description of
the decimal point insertion character for an example of zero-fill.)

If numeric data is too long to fit the mask, the software first aligns
the decimal points and then ignores the overflow to the left and/or
the right of the decimal point.

Moving data into a destination field over which is defined only X
editing characters results in a straight MOVE, for no special editing
is required. Therefore, a mask for a numeric field must contain at
least one editing character other than X or at least one insertion
character.

e Z Characters

Each Z in the editing mask is replaced on a one-for-one basis with a
data character from the source. However, if the data character is a
leading zero, the Z suppresses it.

If a Z character is used, it must not have any editing character to
the left of it except another Z or a sign (+ or -). However, the Z
may have insertion characters to the left of it.

If the mask is comprised of only Z characters and if the source value
is zero, the edited output is space-filled. Therefore, to be certain
of a visual output, make at least the rightmost character within the

mask an X.

00042

00000
00760+

NEAT/3 -- INTRODUCTION AND DATA Nov. 68
TAB 3 -- PUB. NO. 2 Page 37

e * Characters

Each * in the editing mask is replaced on a one-for-one basis with a
data character from the source. However, if the data character is a
leading zero, it is replaced with an *,

If an * character is used, it must not have any editing character to
the left of it except another * or a sign (+ or -). However, it may
have insertion characters to the left of it.

If the mask is comprised only of * characters and if the source value
is zero, the edited output will be asterisk-filled.

*k*KRXXX 0004672 *%*x4672

* %% XXXX 0000063 **%%%063
kkkk kk 000000 Kkhkk K%

e + or - Characters

A plus (+) or a minus (-) sign can appear in either the first or the
last character position of the editing mask. It may not be embedded
within the mask.

A plus (+) or a minus (-) sign cannot be used in the same mask as a
CR or a DB sign (explained on the next page).

When a plus sign appears in the mask, a plus sign is output if the
value of the data is positive, and a minus sign is output if the
value of the data is negative.

When a minus sign appears in the mask, a minus sign is output if the

value of the data is negative. Howevever, if the value is positive,
the sign is replaced with a space.

74926+ +74926

74926— -74926
74926+ 474926
74926- 74926-

NEAT/3 -- INTRODUCTION AND DATA Nov. 68
TAB 3 —- PUB. NO. 2 Page 38

DATA LAYOUT SHEETS

e CR or DB Character Configurations

A credit (CR) or a debit (DB) sign can appear only in the two last
character positions of the editing mask.

A CR or a DB sign cannot be used in the same mask as a plus (+) or a
minus (-) sign.

When a CR or a DB appears in the mask, the CR or DB is output if the

value of the data is negative.

CR or DB positions are space-filled.

$XX.XXCR (DP 02) (DP 02)

$XX.XXCR (DP 02) (DP 02)
$XX.XXDB (DP 02) (DP 02)
$XX.XXDB (DP 02) (DP 02)

However, if the value is positive, the

$25.92CR
$25.92
$25.92DB
$25.92

A mask containing the CR or DB editing characters generally also
contains the decimal point and the currency symbol. (See the fol-
lowing discussion of Insertion Characters.)

NEAT/3 -- INTRODUCTION AND DATA

TAB 3 -- PUB. NO. 2

Nov. 68
Page 39

e Insertion Characters for Edited Numeric Fields

All the characters in the Century Code Chart except the space),
X, Z, *, +, -, CR, and DB are valid insertion characters.

e B Characters

Each B in the editing mask separates the data edited before it from
the data edited after it with a blank. The blank does not replace
a data character but merely separates two adjacent data characters.

If a programmer is to print amounts on a pre-printed form, he may

elect to insert a blank character in the position taken by the pre-
printed line which separates the dollar from the cent column.

Amount
—_

|
$XXXBXX (DP 02) | 03498 (DP 02) $034198
$XXXBXX (DP 02) | 86390 (DP 02) $863190

e Other Characters

Each insertion character in a mask for a numeric field except the B

is not replaced by a data character but, instead, is directly inserted
into the destination field. However, if the character preceding the
insertion character is suppressed, the insertion character (except

the decimal point) is also suppressed.

$22Z2,27ZX.XX (DP 02) (bp 02) | $ 0.99

$222.22 (DP 02) (op 02)|$.09
$227.22 (DP 02) (DP 02) | poRzEpy
$227 .XX (DP 02) (op 02)|$.00

Certain insertion characters are commonly found in masks for numeric

fields. These characters —- the currency symbol and the decimal
point -- have special rules governing their use.
NEAT/3 —— INTRODUCTION AND DATA Nov. 68

TAB 3 -- PUB. NO. 2 Page 40

DATA LAYOUT SHEETS

e . or , Characters

Usually, either the period or the comma is used to designate the decimal
point; however, any character except the editing symbols (+, -, B, *, Z,
X and floating $) may be used to designate the decimal point. Software

first aligns the decimal point in the mask with the decimal point in the
source data and then edits the source data.

$XXX. XX (DP 02) 19476 (DP 02) $194.76
LX.XXX,XX (DP 02) 519476 (DP 02) |<£5.194,76

To determine which character is the decimal point, the NEAT/3
language uses the DP entry of the source statement defining the mask.

$XXXDXX (DP 02) 19476 (DP 02) $194D76

However, if desired, the decimal-point position may not be designated
but merely implied by the DP entry of the mask.

$XXXXXX (DP 02) 194760 (DP 02) $194760
XXXXXX (DP 03) 69219 (DP 02) 692190

If the number of integer positions or of decimal positions in the
source data is too long to fit the mask, the software truncates the
integer or the decimal overflow. Therefore, the programmer must
exercise care when defining the length of the mask.

XXX.XXXX (DP 04) 3765913 (DP 05) | 037.6591
XXX.XXXX (DP 04) 3765913 (DP 03)| 765.9130

A decimal point symbol (however it may be designated) is not suppressed
unless the complete field is suppressed.

227.72Z (DP 02) 00000 (DP 02) spaces
222,727 (DP 02) 00001 (DP 02) 77,01

NEAT/3 —-- INTRODUCTION AND DATA Nov. 68
TAB 3 -- PUB. NO. 2 Page 41

e $ or & Characters

A single currency symbol in the mask is treated as an insertion
character. Any insertion character or editing character may appear
to the left of the currency symbol.

£XX,XX (DP 02)

S$XXXXXXX (DP 02)
-$XX.XX (DP 02)

4900
19498
9658+

e 3% ors £ Character Configurations

(DP 02)
(pP 02)
(DP 02)

£49,00

$0019498

4596.58

The floating currency symbol, a variation of the regular currency
symbol, is a series of at least two successive currency symbols.
Only insertion characters or a sign (+ or -) may appear to the left
of the floating-currency-symbol configuration.

The processor first aligns the decimal point in the mask with the
decimal point in the source data and then edits the source.

Each character in the floating-currency-symbol configuration is

individually analyzed.

e If the corresponding data character is a significant data char-

acter, the data is output.

e If the corresponding data character is a leading zero, the
currency symbol corresponding to the rightmost leading zero
is output, and the currency symbols to the left of this
currency symbol are suppressed.

SSXXX.XX (DP 02)
LLEK XX (DP 02)

-$$.XX (DP 02)
8.XX (DP 02)
$$5.8$ (DP 02)

NEAT/3 -- INTRODUCTION AND DATA
TAB 3 -- PUB. NO. 2

402700
9645
143~
00001
00000

PR

(DP 02)
(DP 02)
(DP 02)
(DP 02)
(DP 02)

4$4027.00
AAA#£96 ,45
-$1.43

Az s.01

Vi VY.V

Nov. 68
Page 42

CODING SHEETS

ENTRIES ON CODING SHEETS

The coding sheets for the NEAT/3 Compiler are those forms upon which the
programmer codes his procedural instructions. A coding sheet is illustrated.
Note that a maximum of 30 instructions can be coded on each sheet, one
instruction for each line.

CODING WORKSHEET

; Progrem Prepered by
PAPER TARE FORMAT CODE Date. Page—— of,
» TASS] [» » M En
PAGE | LINE REFERENCE OPERATION OPERANDS - COMMENTS IDENTIFICATION
s 2 8|4 5 o 7[8 ® 60 40 v2 13 14 15 16 17[40 19 20 21 22 23|24 £5 26 27 25 29 30 31 3233 34 35 36 37 35 19 40 41 42 43 4 4F 46 47 48 49 031 32 FD 34 35 38 57 38 99 00 61 62 €3 44 63 06 €7 60 09 79 V1 Y TIIVA[7S 76 7 78 7S &0

~jo]lo[alo]o[o]ala]a|a]o[ololo[a]olajofalo[oololo]alalo]alala

17[18 19 20 21 22 3[04 29 0 27 20 29 30 31 32 33 34 35 36 37 26 30 48 41 42 43 44 49 46 47 40 45 {31 F 53 54 29 B8 TV SO 0 41 KL EI 4B M ST GO MO T I T2 T,

NEAT/3--INTRODUCTION AND DATA Nov. 68
TAB 3--PUB. NO. 3 Page 1

Common Entries

The header, the paper tape format code, the page-and-line number (positions
1-6), the worksheet code (position 7), the comments, the delete digit
(position 74), and the identification tag (positions 75-80) are defined in
INTRODUCTION AND DATA, tab 3, "Programming Worksheets'.

— .
» B
1
)
1
;) * COMMENTS E IDENTIFICATION
E
[
)
1

l/[nsoh S2 S3 54 53 56 S7 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73174|75 76 77 78 79 80

Il

Reference

e Symbolic Reference Tag

A programmer may enter a symbolic reference tag on coding sheets in
positions 8-17 to identify the string of instructions being coded.

Usually, the programmer enters a near-English word which allows him immed-

iately to identify the instruction string to which it refers, e.g.

ENDOFPAGE . These reference tags become entrances to sections of coding

that may be executed many times during processing. For instance, after a

program reads a transaction record, finds its master record, and updates

the master record, it branches to reexecute the same coding.

The reference tag may contain from 1 to 10 characters which are made up of

the alphabet (A-Z) and/or the numerals (0-9). Each tag must begin in

position 8 and must contain at least one alphabetical character. Spaces

are not permitted within the tag.

Unless it is used with a qualifier (see the discussion of operands in
this publication), each tag must be unique to the program; i.e., it may
appear as a reference tag in only one source statement in the program.
However, the name may appear as an operand as often as necessary.

The compiler, as it processes each source statement, checks positions

8-17 for an entry. If it finds a reference tag, the compiler associates

with this reference tag all information pertinent to where the instruction

is stored.

The following are examples of correctly entered reference tags:

REFERENCE REFERENCE

8 9 10 11 12 13 14 13 16 17 8 9 10 11 12 13 14 13 16 17

READTRANS ENDOFPAGE

NEAT/3--INTRODUCTION AND DATA Nov.
TAB 3--PUB. NO. 3 Page

68
2

CODING SHEETS

e Local Tag

A programmer may enter a local tag on coding sheets in positions 8-10 to
identify a statement within a program region. (A program region begins
at a source line with a symbolic reference tag and continues up to but not
including the next source line with a symbolic reference tag.)

A local tag may be used as an operand only within the program region in
which the tag appears. However, a local tag may not be used in a qualified
operand. (See Operands in this publication).

Since local tags are not included in the compiler cross-reference listing,
they are used to rid the listing of symbolic reference tags of minor
significance. Also, if local tags are used instead of symbolic reference
tags, compilation time is reduced.

A local tag contains three characters; the first must be a dollar sign,

and the remaining two must be within the range from 00 to 24. Local tags
need be unique only within the particular program region in which they
appear. For example, two or more program regions in the same program may
each contain a local tag $09; however, $09 can appear only once within each
region.

In the following example, the first program region contains one local tag,
$09. The second program region contains two local tags: $08 and $09.

REFERENCE OPERATION \
® 9 10 1112 13 14 15 16 17[18 19 20 21 22 23 |24 25 26 27 28 29 30
LESS
$09

First
Program)
Region

5009
$09

NOTLESS

Second
Program <
Region

ajojojojojojoiojof -~
ZU’(‘).U’WWOZDQ

- N

NNV |-~ = lOo oo
S 3 9 3

N[+l |inv]o o] w
3 b

OO0 joojojojo oo

Note that the procedural instructions at both lines 120 and 150 transfer
control to the local tag $09. However, since the instructions are in
different program regions, the instruction at line 120 (branch if less)
transfers control to line 060, and the instruction at line 150 (branch if
equal) transfers control to line 270.

NEAT/3--INTRODUCTION AND DATA Nov. 68
TAB 3--PUB. NO. 3 Page 3

Operation

Beginning in position 18, enter the name of the instruction to be performed.
Two types of coding instructions may be entered: procedural instructions and
. compiler control instructions.

Procedural instructions make up the logic flow of the program. They tell the
processor to add, subtract, move data to another location, print a record,
store data on disc, etc. The compiler translates these instructions into

machine language.

The following examples show correctly entered procedural instructions:

OPERATION OPERATION

18 19 20 21 22 23 18 19 20 21 22 23

ADD MOVE

Compiler control instructions may also be entered on a coding sheet. These
instructions direct the compiler to perform special tasks. These instructions
do not become part of the object program, but they do affect the structure of
the object program.

The following examples show correctly entered compiler control instructions:

OPERATION

OPERATION

18 19 20 21 22 23

COPYP

18 19 20 21 22 23

OMIT

Operands

Most procedural instructions require the programmer to enter at least one
operand in the source statement. The procedural instruction tells what is to
be done; the operand tells upon which data or quantity the operation is to be
performed or to which instruction control is to be transferred.

For example, in the instruction: ADD the contents of DEPOSIT to the contents
of SAVINGS, ADD is the procedural instruction, and both DEPOSIT and SAVINGS
are the operands. Likewise, in the instruction: branch to the source line
referenced by READMASTER, branch is the procedural instruction, and READMASTER
is the operand.

NEAT/3-~INTRODUCTION AND DATA Nov. 68
TAB 3--PUB. NO. 3 Page 4

CODING SHEETS

When two or more operands are used, separate them with a comma. Spaces may
appear on either side of the comma to make the statement more readable.
Consider the following example:

OPERATION OPERANDS

18 19 20 21 22 23]24 23 26 27 26 29 30 31 32 33 34 35 36 37 38 39 40 41

A DD peposSItT, ,,, SAVINGS

There are three types of operands: 1literal, reference, and qualified. Let's
consider each of these in detail.

e Literal Operand

A literal operand is a constant that represents actual data. For example,
in the instruction illustrated below, the actual value of 300 is compared
to the contents of COUNTER.

OPERATION OPERANDS /

unzouzznztasuvuz’»un:suasunu:’wunz\

comMp ['300',COUNTER -\

A literal can be either numeric or alphanumeric. A numeric literal may be
composed of the characters 0-9, and the plus, minus, and period (decimal
point) symbols. (If a numeric literal contains either a plus or minus sign,
it must be in the leftmost position.) An alphanumeric literal may be com-
posed of any of the USASI characters except the single quote. Every literal
operand must be enclosed in single quotation marks, e.g. '24', 'TOTAL'.

NOTE

Write single quotation marks legibly so that they can be
easily distinguished by the keypunch operator.

When a literal operand is used with another operand in a compare, move, OTr
arithmetic operation, the compiler assigns to the literal the same data type
and length as the associated operand's. For example, if COUNTER (illustrated
above) is an alphanumeric (X-type) field with a length of 5, the '300' is
assigned an X-type format of 300 @. 1If COUNTER is an unsigned decimal (U-
type) field with a length of 5, the '300' is assigned a U-type format of
00300. (For further information concerning data field formats, refer to
INSTRUCTIONS, tab 2, "MOVE Instruction'" (Pub. No. 4) in this manual.)

NEAT/3 -- INTRODUCTION AND DATA Nov. 68
TAB 3 -- PUB. NO. 3 Page 5

e Reference Operand

A reference operand may be a symbolic reference tag of a data definition,
or it may be either a symbolic reference tag or a local tag of a procedural
instruction.

If the operand is a symbolic reference tag of a data definition, the
operation is performed upon the data whether the data be a file, record,
field, area, or table. In the following example, the key of the current
transaction record is compared to the key of the current master record.

OPERATION OPERANDS

18 19 20 23 22 2324 25 26 27 28 28 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 43 45 47

COMP T.RANSKEY ., MASTERKEY

When the operand is a reference tag (either a symbolic or local) of an
instruction, control is transferred to this instruction if the condition
set forth by the operation holds true. In the following example, control
is transferred to READMASTER if the contents of TRANSKEY is greater than
the contents of MASTERKEY.

OPERATION OPERANDS

18 19 20 21 22 23{24 23 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 47 42 43 44 435 46 47

comep TRANSKEY ., MASTERKE)Y
B R.G READMASTER

e Qualified Operand

A qualified operand specifies which of two or more identical reference
tags is desired.

The qualified operand consists of a composite name of two or more symbolic
reference tags that are separated by a period. Each reference tag within
the operand must be a legal symbolic reference tag or a data name of
either a procedural instruction or a data unit (whether the data be a
file, record, field, area, or table).

The first tag, the qualifier, must specify a unique data name or symbolic
reference tag in the program. The second tag, separated from the qualifier
by a period, need not be unique to the program. The only restriction to
the second tag is that it must be contained in the same section or over-
lay as is the qualifier.

NEAT/3--INTRODUCTION AND DATA Nov. 68
TAB 3--PUB. NO. 3 Page 6

CODING SHEETS

In searching for the location of the data or instruction to be operated upon,
the compiler first finds the location of the first tag (which is unique to
the program). It then searches the source statements immediately following
the location of this qualifier until it finds the first occurrence of the
second tag. The data or instruction at this second location is that which
will be acted upon by the procedural instruction during the production run of
the program.

For example, a transaction record (TRANSREC) may contain a field referenced
by AMOUNT, and an old master record (OMASREC) may also contain a field re-
ferenced by AMOUNT. Consider the following excerpts of record and field
definitions:

REFERENCE REFERENCE

8 9 10 11 12 13 14 13 18 17 7|8 9 10 13 12 13 14 13 18 17

TRANSREC DhMASRELC
AMOUNT DAMOUNT

The programmer, wishing to manipulate the data, must specify which AMOUNT he
wants, i.e. either TRANSREC.AMOUNT or OMASREC.AMOUNT. He specifies this in
the operands positions of the instruction that manipulates this field. For
instance, the following instruction adds the contents of AMOUNT in the trans-
action record to the contents of the field with a unique reference tag TOTAL:

OPERATION OPERANDS

18 19 20 21 22 23|24 23 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 43 46 47 48

ADD TRANSREC.AMOUNT ., TOTAL

The AMOUNT field in the old master record is not affected by the above
instruction.

e Conventions for Using Qualified Operands

NEAT/3 qudlification is based on source program presentation sequence; that
is, each successive symbol in a qualified series must physically follow the
previous symbol in the series in the source program. For example, in the

qualified series A.B.C., the symbol C must follow the symbol B and the symbol

B must follow the symbol A in the source program; however, the symbols need
not be contiguous in the source program.

For qualification purposes, the NEAT/3 language is divided into four levels:
the section level, the file level, the area level, and the coding level.

The first element (qualifier) of a qualified series determines which level is
applicable. Once a level is determined, qualification must stay within that

NEAT/3--INTRODUCTION AND DATA Nov. 68
TAB 3--PUB. NO. 3 Page 7

level (although a program may contain several files, qualification may
function only within one file level).

Special qualification rules apply to the OVRLAY and ENTRY statements. The

reference of an ENTRY statement may only be qualified by the reference of
an OVRLAY statement or by the reference of another ENTRY statement.

e Section Level

This level, which corresponds directly with the program section, includes
everything within the program section. This level is entered if the
qualifier of a qualified series is the reference of a SECT instruction.
Subsequent elements in the series may refer to any reference within the
section.

This level extends from a SECT instruction to the next SECT or OVRLAY
instruction, or ENDS.

e File Level

This level which corresponds directly with a program file definition,
includes all record, field, table, and item definitions within the file.
This level is entered if the qualifier of a qualified series is a ref-
erence within a file.

This level extends from a file specification worksheet to the next file
specification worksheet, the next area statement, the next coding state-
ment, or to the next SECT or OVRLAY instruction, or ENDS.

® Area Level

This level, which corresponds directly with a program area definition,

includes all fields, table, and item definitions within the area. This
level is entered if the qualifier of a qualified series is a reference

within the area.

This level extends from an area statement to either the next non-SAME
area statement, or to the next SECT or OVRLAY instruction or ENDS.

e Coding Level

This level, which corresponds directly with the program coding statements
is entered if the qualifier of a qualified series is the reference of a
coding statement.

This level extends from the first coding statement to the next SECT or
OVRLAY instruction, or ENDS.

Consider the following illustration and explanation.

NEAT/3 -- INTRODUCTION AND DATA Nov. 68
TAB 3 -- PUB. NO. 3 Page 8

CODING SHEETS

>

my<4 ¥

VALUE OR PICTURE COMMENTS

LOCATION LENGTH | DP .

REFERENCE

51 52 33 34 35 36 37 38 39 60 61 62 63 €4 65 &6 67
=

31 32 33 34 35 36 37 385 39 40 41 42 43 44 45 45 47 48 49 %0

g

8 9 10 81 12 13 14 15 16 17 [10|19 20 21 22 23|24 25 26 27{28 29

BEGIN NTRY

L1 1 & 1 1 1 1 11 1 3 11 1 1 11 1 2t 2 ¢t 1 % : ¢ 0 ¥ t % ¢ 3 3 2 11 1 ¢ tl¢ ¢ 1 2 &2 % 2 % 3 3 2 8
1STSECTION
FILEONE

~

o

I L0 1 ¢ » 3 ¢ » % v 9t o3 2 3 3 U T S 'S RN WO TN S T ST S S W S T 1

ILE sPPECI[FI[CATION WORKSHEETS

11 2 U T T NS ¥ BT T ST T S S S S S S

o/jCo[™M]O
)
m
o

FL‘LIJ]IIII 11 1 P T S PSS S T S S SO0 WA K ST W ST SN W WY ST 1 NN N N1 PN S SY'Y TR S0 S S S SV T SO S S S 1
DIREC 2 SAME i

PR PRI PR P 2 S ST SOY SUNN TOUN S S S S ST SN O S ST ST 3 TSN ST SO S S ST A ST A S S S S T S SN S S P
DF.--;;;-.. P PRI, N lllllllllll!l]ll'll:IIII'IIIIAIIILLI;I
D|F 3 FILE LEVEL A

PR S S T S M TR 1 PN T U S A ST T R S R S SR R Y 4 pak } PEY I S S A S T U ST S T T U
A |TABLE ISP EC AT ION WO RKSHEET o e e e w ey
I.T.E.M.]- PR a3y PR . P S T S T S S A ST T ST SR ST'Y PR : PR ST STY I S S U S A N S S T A
LA i P I B B R A T
ITEM2 SAME '

PR S R R Ly PRI I 11 1 et S S LI B R WS S S S S A S S N S T O T T S B T S S S
s N SECTION LEVEL A

P R S S S S A L1 13 PR 2 PRI T S S ST S T ST ST S SO ST N TR PEEE SR Y At Sl Wl i sl AT S R ST
FILETWO 1L SPECIIFIICATION WORKSHEETS) i

P ! P Pin S A 2l e) 2 T S R S S ST D T S Rl S Rl Sl S R ¥ (5 SN SN WY N ST ST ST S [S TN S S N NN ST S WY S N
RnE-c.]..-nnn PR M 2 I S T T S S S YT A Y ST T A A All:lltilLllllllllljl
F1 FILE UEVEL B

PR S S S S S N M P I Y * N T TOOF TN S N T T ST S SO ST S € Sl i S S T S SN Y S SO S T SN T SN A S B T
F2 i PR
Pl S T S SRR Lo P : s o S ST EST Y NP S} PRI S S SO S B S :

PR R T S T T P PRI . P T N S W S S T S SOV ST ST S A e e o T WY I I B B

3 1t v ¢ e ¢ 0 3 2 3 3 ¢ 33 e 4 2

ABLE [sPECTFIICATION WORKSHEET]

E
S
F
R
F
R
F
F
T
I
F
1
3
F
R
F
F
F 6 F
A
T
1
F
A
3
F
S
A
F
F
F
A
F
F

UUDUUUDDOUUUU“UUUUU""UUOU“‘
—
m
=
~nN

!
1

AN i e N N T T

A.R.E.A.Z.ll_. S_A.M.EIL.....4.....:...............--

2ND S EC T I ONSEECT, ol b e e e

LA I I B B R L L
!

e Pl b b b e e e VSECTION LEVEL B, .

AREA2 '].

AN L N T N TR Y Y T

» H b} »n

REFERENCE OPERATION OPERANDS ;, COMMENTS

T
8 ’wnuuuuunl‘uuuuuuzsunnz’aonu)su;sununuanuuasununnm 52 53 54 35 36 57 30 $9 €0 &1 62 63 44 63 66 €7

SRDSECTION|SECT
BEGIN COMP
BRE $1
MOVE
ADD Coding Level A Section Level C
BR $.2
$1 SUB

$2 MOVE

RELINK

~

i SOUOE SR

ojolojofojofo]o]a

NEAT/3 -- INTRODUCTION AND DATA Nov. 68
TAB 3 -- PUB. NO. 3 Page 9

Following are examples of legal qualified series from the illustration.

FILEONE,.REC1
FILEONE.REC1.F.
FILEONE.REC2.F1

FILEONE.REC1.F3 (The compiler will not comment on this qualified series
even though it spans two record description.)

REC2.F1
TABLE1l.ITEM1
TABLEL1.ITEM1.F4

TABLE2.ITEM1.F5 (The compiler will not comment on this qualified series
even though it spans two item descriptions.)

2NDSECTION.AREAL
3RDSECTION.BEGIN

Following are examples of illegal qualified series from the illustration.

FILEONE.F6

REC1.F1

AREA2 .F3

AREAL.F3

FILETWO.TABLE2

2NDSECTION.BEGIN
3RDSECTION. $1

2NDSECTION.F1.AREA1

F6 is not contained within File Level A.

REC1 is not unique within Section Level A. This
series should be written FILEONE.REC1.FI1.

F3 is not contained within Area Level A of Section
Level A.

Since this series is an operand of the coding in
Section Level C, AREAl is ambiguous. This series
should be written 2NDSECTION.AREAl.F3.

TABLE2 is not contained within File Level B.
BEGIN is not contained within Section Level B.

Local references may not be used in a qualified series.

AREAl is incorrect since it does not physically follow
Fl in the section level.

NEAT/3 -- INTRODUCTION AND DATA Nov. 68

TAB 3 —- PUB. NO. 3

Page 10

"

CODING SHEETS

Continuation Line

As stated before, a procedural instruction may have more than one operand.
The length of the operands may extend to character position 73 on the coding
sheet. However, if the operands overflow this limit, they may be continued
on a second source line. This second line is called a continuation line.

If a continuation line is used, the programmer must strictly adhere to these
rules:

o First Line
Fill out the source line as usual. Entries in the following positions are
valid: page-and-line number, reference, operation, operands, delete digit,
and identification.

End the operand entry with a complete operand followed by a comma.

e Continuation Line

Normal rules apply to the entries in the following positions: page-and-
line number, delete digit, and identification.

Enter a hyphen (-) in position 18. Leave the reference and remaining
operation positions blank; if these positions are not blank, the compiler
flags this source line as an error statement and ignores it.

Continue entering the operands in position 24. Normal rules apply to
these operands.

A comment may begin with an asterisk in the first available position
following the operands. If this comment overflows the limit (character
position 73 if input is from punched cards, or character position 100 if
input is from punched paper tape), it may be continued on the next line
by placing an asterisk in position 8 of that next line. (See the Complete-
Line Comment under INTRODUCTION AND DATA, tab 3, "Programming Worksheets".)

In the following example, the amount in the transaction record is added to
the amount in the old master record, and the result is stored in the field or
area referenced by TOTALAMT. If, however, the result is too large,to fit the
space reserved for TOTALAMT, control is transferred to a routine referenced by

TOOBIG.

OPERATION OPERANDS COMMENTS)

T
18 19 20 21 22 23(24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42“444!“‘1"‘!”:5!513354!55051!.5’“6!62636465“67..

ADDC [TRANSREC.AMOUNT , OMASREC.AMOUNT . TOTALAMT.
- TOOBIG E

x¥xxx

NEAT/3--INTRODUCTION AND DATA Nov. 68
TAB 3--PUB. NO. 3 Page 11

	2_01-01_Introduction
	2_02-01
	2_02-02
	2_02-03
	2_02-04
	2_02-05
	2_02-06
	2_02-07
	2_02-08
	2_02-09
	2_02-10
	2_02-11
	2_02-12
	2_03-01_Software_Intro
	2_03-02
	2_03-03
	2_03-04
	2_03-05
	2_03-06
	2_04-01_NEAT3_Intro
	2_04-02
	2_04-03
	2_04-04
	2_04-05
	2_05-01_Data_Concepts
	2_05-02
	2_05-03
	2_05-04
	2_05-05
	2_05-06
	2_05-07
	2_05-08
	2_05-09
	2_05-10
	2_05-11
	2_05-12
	2_05-13
	2_05-14
	2_05-15
	2_05-16
	2_05-17
	2_05-18
	2_05-19
	2_05-20
	2_05-21
	2_05-22
	2_05-23
	2_05-24
	2_06-01_Programming_Worksheets
	2_06-02
	2_06-03
	2_06-04
	2_06-05
	2_06-06
	2_06-07
	2_06-08
	2_07-01_Data_Layout_Sheets
	2_07-02
	2_07-03
	2_07-04
	2_07-05
	2_07-06
	2_07-07
	2_07-08
	2_07-09
	2_07-10
	2_07-11
	2_07-12
	2_07-13
	2_07-14
	2_07-15
	2_07-16
	2_07-17
	2_07-18
	2_07-19
	2_07-20
	2_07-21
	2_07-22
	2_07-23
	2_07-24
	2_07-25
	2_07-26
	2_07-27
	2_07-28
	2_07-29
	2_07-30
	2_07-31
	2_07-32
	2_07-33
	2_07-34
	2_07-35
	2_07-36
	2_07-37
	2_07-38
	2_07-39
	2_07-40
	2_07-41
	2_07-42
	2_08-01_Coding_Sheets
	2_08-02
	2_08-03
	2_08-04
	2_08-05
	2_08-06
	2_08-07
	2_08-08
	2_08-09
	2_08-10
	2_08-11

