NCR CENTURY FILE CONCEPTS

GENERAL CONCEPTS

The use of comprehensive and powerful system software eases the problem of data
transfer to and from peripheral units. Each peripheral unit, i.e., printer,
disc, magnetic tape, or punched paper equipment, is treated as a file storage
device by the software. The programmer informs the software at compilation
time of the specific file parameters and functions through the use of File
Specification Sheets.

The File Specification Sheets require such information as the file reference
name, the file type, the peripheral type, dates for protection, the record
name, and other necessary file control information.

The records in the file are named and described on Data Layout Sheets which
are input to the compiler immediately following the File Specification Sheets.
Through this sequence of presentation, the compiler associates the file name
and the record name so that instructional references to the file or record
will affect the proper data.

bl

FILE NAME : »«| RECORD NAME
FILE TYPE RECORD SIZE
BLOCK LENGTH FIELD NAME
RECORD LENGTH FIELD SIZE
USER ROUTINE NAMES FIELD TYPE
FILE REFERENCE NAME FIELD POSITION
SYMBOLIC UNIT DESIGNATOR DATA LAYOUT

I

oofBocfrBEE

FILE SPECIFICATION

file is described on the File Specification Sheets.
record is described on the Data Layout Sheets.

information on the Data Layout Sheets follows the information on
the File Specification Sheets as input to the compiler.

The compiler associates the record name on the Data Layout Sheets
with the file name on the File Specification Sheets.

NEAT/3 -- FILES Nov. 68
FILES -- PUB. NO. 1 ‘ Page 1

1/0 INSTRUCTIONS

Simple input/output (I/0) instructions handle the normally complex operation
of inputting or outputting data to a peripheral unit because the software
carries the burden of the job.

Generally, to sequentially input records from a file, the programmer need only
specify GET File Reference. To sequentially output records, the programmer
need only specify PUT File Reference. (File Reference is the actual file refer-
ence name - such as MAGZFILE - as it appears on the File Specification Sheets,
that is, the name used by a particular program to refer to a particular file.)

Records are usually handled in groups called blocks. The block size may be
some multiple of the record size or the same size as one record. The program-
mer indicates both the block length and the record length on the File Specifi-
cation Sheets. Using this information, the software sets up reserved areas in
memory called buffer areas which are normally the same size as a block. For
output, the software uses these output buffer areas to form the various records
into blocks. For input, the software uses these input buffer areas to break
down the blocks and to present one record at a time to the program.

e Input

To input records from a file, the programmer specifies GET File Reference.
Assuming the File Reference name is OMAGZFILE, the programmer specifies GET
OMAGZFILE. The first time this instruction is executed, the first record
in the file is presented to the program. (Assume this record is named
OMAGZREC.)

First block in input buffer area

|
e (!
OMAGZFILE GET OMAGZFILE ”8 %| Eﬁ
< | 8

?\

e The first GET instruction presents the first record in the input buffer
to the program.

Although the instruction specifies GET OMAGZFILE, the record (OMAGZREC) is
presented to the program. The GET instruction may therefore be interpreted

as follows:

GET OMAGZFILE = GET an OMAGZREC from OMAGZFILE.

NEAT/3 -- FILES Nov. 68
FILES -- PUB. NO. 1 Page 2

FILE CONCEPTS

The record has the name and the format specified on the Data Layout Sheets.
Any instructional reference to the record affects the data in the input buffer

area.

Makes the first OMAGZREC in the input

GET OMAGZFILE buffer area available to the program.

Adds to the TOTAL field of OMAGZREC
in the input buffer, the amount in
an area called CONSTANT.

ADD CONSTANT, TOTAL

PUT PRINTFILE Prints the result.

Branches to the beginning of this

BRANCH routine to GET another OMAGZREC.

Each additional encounter with the GET OMAGZFILE instruction presents another
OMAGZREC to the program until the input buffer area is empty. Then, at the
next execution of GET the software automatically reads the next sequential
block of records from the file into the input buffer area.

GET OMAGZFILE

OMAGZFILE

® The second GET instruction presents the second record in the input
buffer to the program.

NEAT/3 -- FILES Nov. 68
FILES -- PUB. NO. 1 Page 3

e Input with a Work Area

The programmer may name a work area as the second operand of the GET instruc-
tion, GET OMAGZFILE, UPDATEAREA. 1In this case, the record is made available
in the input buffer area and is also moved to the named work area.

GET OMAGZFILE,
UPDATEAREA
OMAGZFILE »

|
e : UPDATEAREA
|

e GET presents a record in the input buffer to the program and also moves
that record to the work area named in the second operand.

The record must be defined on the Data Layout Sheets which are input to the
compiler immediately following the File Specification Sheets. The extent
of detail in the record definition is dependent upon the number and type of
accesses made to the record in the input buffer area. If individual fields
within the record are not accessed in the input buffer area, no detail is
necessary on the Data Layout Sheet.

]

REFERENCE LOCATION LENGTH VALUE OR PICTURE

8 9 10 11 12 13 14 13 18 17 19 20 21 22 2324 25 28 27 S1 32 33 34 33 36 37 38 39 40 41 42 43 44 43 46 47 48 & 30O

OMAGZREC . 30

If individual fields are accessed in the input buffer area, those fields
must be described in detail.

o

REFERENCE LOCATION LENGTH VALUE OR PICTURE

8 9 10 11 12 13 14 13 16 17 19 20 21 22 23|24 23 268 27 S1 32 33 34 35 36 37 38 39 40 4) A2 43 44 43 46 47 40 4 DO
OMAGZREC 30
ACCTNO TF — 70
TOTAL F T0

NEAT/3 -~ FILES Nov. 68
FILES -- PUB. NO. 1 Page 4

FILE CONCEPTS

The work area must also be defined on Data Layout Sheets. These sheets are in-
put to the compiler after all file and record descriptions. The amount of de-
tail in the definitions depends upon the number of fields to be accessed.

b

REFERENCE LOCATION LENGTH VALUE OR PICTURE

8 9 10 1) 12 13 14 13 16 17 19 20 21 22 2324 25 26 27 31 32 33 34 33 36 37 38 39 40 41 42 43 44 43 46 47 48 49 30
:

UPDATEARER 30
ACCTNO * 70

TOTAL 10

Both the record and the work area definitions may use the same field reference
names; however, instructions referring to these fields must use a qualifier.

The use of a qualifier insures that the proper field is affected by the instruc-
tion. Below are some examples of instructions using qualifiers:

e MOVE CONSTANT, OMAGZREC.TOTAL This instruction moves the contents
of an area called CONSTANT into the
TOTAL field of OMAGZREC in the
buffer area.

e MOVE CONSTANT, UPDATEAREA.TOTAL This instruction moves the contents
of an area called CONSTANT into the
TOTAL field of the record in the
work area called UPDATEAREA.

NEAT/3 -- FILES Nov. 68
FILES -- PUB. NO. 1 Page 5

e Output

To output records to a file, the programmer constructs the record in the
output buffer area and then specifies PUT File Reference. Assuming the
File Reference name is NMAGZFILE, the programmer specifies PUT NMAGZFILE.
When this instruction is executed, the record constructed in the output
buffer is no longer available to the program. The next record location
is available for the construction of another record. The PUT instruction
that fills the buffer area causes the software to output the entire block
to the file. (Assume for the following example that the record name is
NMAGZREC.)

Output buffer area

PUT NMAGZFILE

The programmer constructs the record in the output buffer area.

The programmer specifies PUT NMAGZFILE.

e The previously constructed record is no longer available to the
program.

The next record location in the output buffer area is available
to the program.

When the output buffer area is full, the software automatically
outputs the entire block to the file.

Although the instruction specifies PUT NMAGZFILE, the record (NMAGZREC) is
put away. The PUT instruction may therefore be interpreted as follows:

PUT NMAGZFILE = PUT an NMAGZREC into NMAGZFILE.

The record has the name and the format specified on the Data Layout Sheets.
Any instructional reference to the record affects the data in the output
buffer area.

NEAT/3 -- FILES Nov. 68
FILES -- PUB. NO. 1 Page 6

FILE CONCEPTS

GET CARDFILE GETs a CARDREC from CARDFILE.

ADD INAMT,TOTAL ADDs the contents of the INAMT field
of CARDREC into the TOTAL field of
NMAGZREC.

PUT NMAGZFILE PUTs the record away and makes the
next record location in the output
buffer area available to the program.

o Output with a Work Area

The programmer may name a work area in the second operand of the PUT instruc-
tion. In this case, the record is moved from the named work area into the
current location of the output buffer area. Since the next record location
always becomes available immediately after a PUT instruction is executed,

the record in the output buffer is no longer available to the program.

Since the move does not change the data in the source field, the record
remains available in the work area.

PUT NMAGZFILE,
UPDATEAREA

UPDATEAREA

e PUT moves the record from the work area into the buffer and makes
the next record location available to the program.

The record and work area must be defined on Data Layout Sheets as previously
explained under Input with a Work Area.

NEAT/3 -- FILES Nov. 68
FILES -- PUB. NO. 1 Page 7

® Further Use of the Work Area Operand

The work area operand may be used to move a record from the current record
location in the input buffer area to the current record location in the out-
put buffer area. This is accomplished by naming the record as the second
operand in the instruction as illustrated in the following examples:

OMAGZFILE input buffer area

NMAGZFILE output buffer area

e GET OMAGZFILE, NMAGZREC f

GET a record from OMAGZFILE and place it in the current record
position of the output buffer area for NMAGZFILE. (NMAGZFILE

and NMAGZREC are associated by the software.) The record is
available to the program in both the input and output buffer areas.

OMAGZFILE input buffer area

NMAGZFILE output buffer’area

O
PUT NMAGZFILE, OMAGZREC —_J

PUT a record into the current record location of the output area
for NMAGZFILE. The record to be placed there is OMAGZREC, the
current record in the OMAGZFILE input buffer area. (OMAGZREC

and OMAGZFILE are associated by the software.) The record is
available to the program in the input buffer area but not in the
output buffer area. The next record location in the output buffer
area always becomes available immediately after a PUT instruction
is executed.

NEAT/3 -- FILES Nov. 68
FILES -- PUB. NO. 1 Page 8

FILE CONCEPTS

RECORD TYPES

Files may contain either fixed-length or variable-length records, but not both.
Records are considered fixed-length if all the records within a file are the
same length and do not change in length during processing.

Records are considered variable-length if the records within a file change in
length during processing, or if all the records in a file are not the same
length, i.e. two or more fixed-length records of different lengths are con-
tained in the same file. This manner of handling multiple-format records with-
in a file allows the I/0 instructions to automatically manipulate such records
without special coding considerations.

Processing Fixed-Length Records

Fixed-length records may be processed in either the input buffer or the output
buffer; however, a work area may be used if desired. If the record is processed
in the input buffer, it may then be moved to the output buffer by using PUT

with the work area option. If the record is processed in the output buffer,

it may first be moved to that buffer by using the GET instruction with the

work area option.

Input buffer area

Record
1

Output buffer area

GET with work area option: GET moves the record to the output buffer for
updating. After the record is updated, PUT must be executed.

PUT with work area option: PUT moves the updated record from the input
to the output buffer.

VEAT/3 -- FILES Nov. 68
FILES -- PUB. NO. 1 Page 9

Processing Variable-Length Records

Variable-length records should be processed in a work area. Changing the
length in the input buffer could destroy the adjacent records; changing the
length in the output buffer could cause inefficient use of magnetic media

storage.

Block of records

Work area

2

L
Q—Record is lengthened

Record 2 is moved to a work area and lengthened. If this were done in
the buffer, part of record 3 would be destroyed.

Records can be moved to the work area by using the GET instruction with the
work area option, updated, and then moved to the output buffer by using the
PUT instruction with the work area option.

Input buffer area

Work area

GET OMAGZFILE,WORKAREA 1

& Record is lengthened

Output buffer area

PUT NMAGZFILE,WORKAREA

NEAT/3 -- FILES Nov. 68
FILES -- PUB. NO. 1 Page 10

FILE CONCEPTS

Certain types of files permit records to be input, updated, and written back
into the same position in the file. When the records in these files are
variable-length, they must be deleted from the file and moved from the buffer
to a work area,using the DELETE instruction. The updated record is moved from
the work area back into the same buffer and reinserted into the file,using

the INSERT instruction.

Block of records

1 2 4

| Record 4 is shifted to make room
for record 3

SGET MASTERFILE

Work area

DELETE MASTERFILE,WORKAREA 3

INSERT MASTERFILE,WORKAREA I\

SGET: presents the records until the desired one is located.

DELETE: removes the desired record from the file and automatically
moves it to the work area.

INSERT: places the altered record from the work area into the buffer.
Other records are automatically shifted as necessary to allow
room for record 3 without destroying record 2 or record 4. A
flag is set which informs the software to automatically write
the block back into the file,

e Defining Variable-Length Records

All variable-length records must have a variable-length indicator (VLI)
associated with them. This VLI, which must occupy the first field in
each record, contains a number that indicates the total number of char-
acters currently in the record (including the VLI itself). The GET, PUT,
INSERT, DELETE, and other I/0 instructions use the VLI to manipulate the
proper number of characters. The programmer is responsible for updating
the VLI when the record length is changed. The length and data type of
the VLI field varies with the type of peripheral used; however, it is
normally a 2-character binary field. (For further information on the
VLI, see the sections of this manual that deal with specific peripherals.)

NEAT/3 -- FILES Nov. 68
FILES -- PUB. NO. 1 Page 11

Block of records

1 2

:
i
1
|
1
\Y
L
I

Record |IRecord |Record

The variable-length indicator must be defined as the first field in
the record.

When defining a variable-length record for the buffer or a work area, the
length column must contain the maximum length possible for that record. When
variable-length records are used, and therefore updated in the work area, the
record definition for the buffer generally defines only the record length. The
work area definition must include the necessary field definition.

I

REFERENCE LOCATION LENGTH VALUE OR PICTURE

8 9 10 11 12 13 14 1S 16 17 19 20 2% 22 23|24 23 26 27 31 32 33 34 35 36 37 38 39 40 A1 42 43 44 45 46 47 48 49 S0

DoMASTREC 152
D

I PP ..o

3

The record definition for the buffer (input immediately following the
File Specification Sheets) need only show the record name, maximum
length, and type.

REFERENCE LOCATION LENGTH VALUE OR PICTURE

7(8 9 10 11 12 13 14 13 16 17 19 20 23 22 23|24 25 28 27 31 32 33 34 33 36 37 38 39 40 43 42 43 44 45 46 47 48 49 50
—

DMASTUPDATE 152
Dlv LI 0 2
DN AME 18
D
D

ACCTNDO 10

The record definition for the work area (input with constants and
reserved area definitions) must show area name, maximum length, type
and field definitions.

NEAT/3 -- FILES Nov. 68
FILES -- PUB. NO. 1 Page 12

FILE CONCEPTS

When defining records that are of different lengths but in the same file, the_
longest record must be defined first, and SAME must be used in the location
column for the second and successive records. Since a work area should be
used, the record definition for the buffer need not be detailed; however, the
work area definition must include the necessary field definitions. (For
further information on using SAME in the location column, see NEAT/3 REFERENCE
MANUAL, INTRODUCTION AND DATA, tab 3, '"Data Layout Sheets.')

REFERENCE LOCATION LENGTH VALUE OR PICTURE

8 9 10 13 12 13 14 13 18 17 19 20 21 22 23{24 25 26 27

D[P ARTSRECS o 182
DIPARTSRECA [RlsamE 152
D

31 32 33 34 33 36 37 38 39 40 41 42 43 44 45 46 47 48 49 S0

> > | 8 [moc4 ¥

The record definition for the buffer need only show the record names,
lengths, and types. The largest record must be defined first, and SAME
must be entered in the location column of the second record.

REFERENCE LOCATION LENGTH VALUE OR PICTURE

8 9 10 11 12 13 14 15 16 17 19 20 21 22 23[24 23 28 27 31 32 33 34 33 36 37 38 39 40 41 42 43 44 43 468 47 48 49 30
UPDATERECSH 182
VLIA F 2

N
/

UPDATERECA
VLIB
PARTBNDO

The record definition for the work area must show area names, lengths,
types, and field definitions. The longest record must be defined first,
and SAME must be entered in the location column of the second.

NEAT/3 -- FILES Nov. 68
FILES -- PUB. NO. 1 Page 13

During processing, the program examines either the contents of the VLI or
a key within the record to determine the proper record format. The pro-
gram can then act upon the record in the appropriate manner.

e Maximum Packing of Records

To reduce the number of I/0 operations and to make better use of magnetic
media storage space, maximum packing of variable-length records should be
requested on the File Specification Sheets. When maximum packing is re-
quested, records must be updated in a work area. The PUT instruction
compares the actual length of each updated record to the space remaining
in the buffer. If the space is sufficient to receive the record, that
record is placed in the buffer. If the space is not sufficient, the
block is written out and the record is placed in the next block.

Work area

Record
3
T A

Record Record Record
1 2 3

Output buffer area

When maximum packing is requested, each record is compared to the re-
maining space in the buffer. If the record will fit, it is placed in
the buffer.

If maximum packing is not requested, the space remaining in the buffer

is compared to the maximum length of the largest variable-length record
after each execution of the PUT instruction. If the space is insufficient
to hold the largest defined record, the buffer is written out with that
space empty,

NEAT/3 -- FILES Nov. 68
FILES -- PUB. NO. 1 Page 14

FILE CONCEPTS

Work area

Record
2 //N

B I

Record Record
1 2

Output Buffer area

When maximum packing is not requested, the space in the buffer is com-
pared to the maximum length record. If the space is smaller, the block
is written out with that space empty.

Maximum packing requires more memory space for the work area and extra
coding., In a large program, maximum packing may not be desired if memory
space is critical. However, maximum packing is normally used.

e Tables in Variable-Length Records

Since all fields are fixed in length, records expand and contract in
fixed-length segments (Items). Tables provide a convenient method of
handling fixed-length data.

Generally when tables are used in a variable-length record, the record
is divided into two parts: a fixed-length part and a variable-length part
(the table).

ITEM

H

NAME | ACCT- CODE 1 AMT
NO. :
1

Fixed-length Variable-length
Portion portion
(Table)

RECORD

NEAT/3 -- FILES Nov. 68
FILES -- PUB. NO. 1 Page 15

Each table has a table-length indicator (TLI) associated with it. This
indicator, which is similar to the VLI, is updated automatically each time
a fixed-length item (CODE AMT) is added to or removed from the table por-
tion of the record. The table instructions also update the VLI auto-
matically at this time, thereby relieving the programmer of the task.

For complete details on using tables in records, see NEAT/3 REFERENCE
MANUAL, INSTRUCTIONS, tab 4, "Table Concepts."

LR R 2 S

NEAT/3 -- FILES Nov. 68
FILES -~ PUB. NO. 1 Page 16

FILE CONCEPTS

FILE TYPES

Source, destination, source-destination, or piggyback files may be used with
the NCR Century Systems. A description of each type of file and a list of the

applicable peripherals follow:

@ Source File

A source file is one from which data may be input only. It is a previous-
ly-created file used to supply information to a program. This information
may be used as reference material in solving a problem or may be updated
and written out to another file. Card readers and paper tape readers are
input devices that deal with source files only. When files on magnetic
peripherals (such as disc or magnetic tape) are being read only, they are
designated source files.

e Destination File

A destination file is one to which data is output only. Most files are
originally created as destination files. GCard punches, paper tape punches,
and printers are output devices that deal with destination files. When
files on magnetic peripherals (such as disc or magnetic tape) are being
written only, they are designated destination files.

® Source-Destination Files

A source-destination file is one from which data may be input and to which
data may be output. On the NCR Century Systems, the disc unit, the CRAM unit,
and the optional card reader/punch unit may use source-destination files.

Records are generally read from the disc source-destination file, updated,
and then written back in the same location. Since the old record is replaced
by the new record, the records in the old file are destroyed.

Records are read from a punched card source-destination file as the card
moves through the read station to the punch station. The card stops at
the punch station where more information may be punched into the same card.

e Piggyback Files

A piggyback file is a type of destination file. Normally, once a destina-
tion file is created, it cannot be extended unless the existing portion is
first copied. Declaring the file a piggyback file instructs the software
to find the end of the existing file and perform the necessary steps to
allow for extension of that file.

NEAT/3 -- FILES Nov. 68
FILES -- PUB. NO. 1 Page 17

The following is a table showing the file types and the peripheral units to
which each file type applies:

SOURCE DESTINATION | SOURCE-DESTINATION PIGGYBACK

Punched reading a | punching a reading and punching | NA*
card card file | card file in same card file

Punched reading a | punching a | NA¥ NA*
tape tape file | tape file

Magnetic reading a | writing a NA* extending an
tape tape file | tape file existing file

Magnetic reading a | writing a reading and writing extending an
disc disc file | disc file on the same file existing file

CRAM reading a | writing a reading and writing | extending an
CRAM file | CRAM file on the same file existing file

Printer NA* printing NA* NA*

*NA = Not Applicable

FILE ORGANIZATION

Two basic file organizations are provided: standard and chained. Standard file
organization, used for Father-Son processing, Selective-Serial processing, and
reading or creating files in sequential order, has limited provision for random
access. Chained file organization handles sequential or random processing and
provides for overflow and insertion or deletion of records.

e Standard File Organization

In standard file organization, blocks of records are presented to the program
in the sequence in which they were recorded. The records within the blocks
may or may not be in numeric or alphabetic order. For example, the input
records to a sort run are unsorted. The output of the run is in either nu-
meric or alphabetic order for input to another run.

Standard file organization does not incorporate a specified overflow area.
To handle file expansion, the programmer must leave sufficient room in a
section and, upon filling this section, open a new one. A limited degree
of random access may be employed when standard files are on the disc.

NEAT/3 -- FILES Nov. 68
FILES -- PUB. NO. 1 Page 18

FILE CONCEPTS

e Standard File Father-Son Processing

In Father-Son processing, a new master file, known as the Son, is created
and the old master file, known as the Father, is retained. Each master
record from the old master file (Father) is read into memory where its key
is compared to the key of a transaction record. If the keys do not compare
equally, the master record is not altered but is written out to the new mas-
ter file (Son). If the keys compare equally, the master record is first up-
dated by the data in the transaction record and is then written to the new
master file. The GET instruction is used to read in the two source files,
the transaction file and the old master file; the PUT instruction is used

to write out the destination file, the new master file.

Initially the Father file is created as a destination file through the use
of a specially written one-time conversion program. Assume for the follow-
ing explanation that this file has been created and is called MAGZFILE.
Also assume that another source file which contains the necessary transac-
tion records exists.

During the update run, all records from the MAGZFILE are read into the pro-
cessor in blocks. Each record in each block is presented to the program
sequentially, updated if necessary, placed into blocks again, and written

out as a new version of MAGZFILE. Since a new version of MAGZFILE is created,
the original version becomes the old master file, and the new version is

the new master file; however, both versions carry the file name MAGZFILE.

To ease the coding of I/O instructions, two names are associated with each
file: File Reference and File Name. The File Name is the actual name of
the file, and the File Reference is the name that appears in the GET and
PUT 1I/0 instructions.

Both of these names are requested on the File Specification Sheets along
with other pertinent file information. The programmer must specify, for
example, that the source file is on a certain unit and has the File Name
MAGZFILE and the File Reference OMAGZFILE (0 for old). Here, the program-
mer is really stating that MAGZFILE on a certain unit should be accessed
when OMAGZFILE is specified.

The programmer also specifies that the destination file being created is on
a different unit, its File Name is also MAGZFILE, but its File Reference is
NMAGZFILE (N for new). Using the PUT instruction, the programmer can now
specify PUT NMAGZFILE. By using information from File Specification Sheets
for this file, the software knows that the desired file is actually MAGZ-
FILE on a different unit with a different data, etc., associated with it.
The name MAGZFILE is actually recorded in a label for each file.

The operator must mount the proper version of MAGZFILE on the proper unit.
If the wrong version is mounted accidentally, date and version protection
prevent the file from being destroyed. File protection is covered later
in this publication.

NEAT/3 -- FILES Nov. 68
FILES -- PUB. NO. 1 Page 19

Each time a new Son file is created, the old Son becomes the Father. All
previous versions are forced back one generation: the previous Father be-
comes the Grandfather; the previous Grandfather becomes the Great Grand-
father, etc. The Father and Grandfather are generally kept in storage for
backup, but as many versions as desired may be kept.

NEXT RUN

TO STORAGE
FOR BACKUP
becomes
grandfather

= 01d Master (Father)
UPDATE Transactions

RUN = New Master (Son)

New Master is moved to other unit the next time program is run.

e Chained File Organization

Chained file organization, as the name implies, is a technique of auto-
matically linking blocks of records together. A block is an organiza-
tional unit within a file that may contain a single record or multiple
records. Chained files, which can be used with either selective serial
processing or random processing, provide for both the insertion and de-
letion of records. When specified, chained files also provide for an
overflow area. The use of an overflow area is discussed later. Chained
file organization is optional when working with magnetic disc files, but
is the only technique available with CRAM files. (It is never used with
magnetic tape files, which use only standard file Father-Son processing.)
For the discussion in this section, magnetic disc files are assumed for
all examples.

Chained file organization is generally confined to source-destination
files, but may be associated with source or destination files; i.e., a
chained source-destination file may be created as a chained destination
file or used as a source file in a different run. Chained source-destina-
tion files may be processed either sequentially or randomly.

NEAT/3 -- FILES Nov. 68
FILES -- PUB. NO. 1 Page 20

FILE CONCEPTS

A chained file consists of blocks of records automatically connected in se-
quence by the software. The first 10 characters in each block are used by
the software to link that block to both the next and the previous blocks in
the file. Therefore, the maximum number of program-usable characters in a
block for a chained file is reduced by 10. For example, the programmer has
502 characters available in a 512-character block. Block size and length
are discussed later.

A chained file is generally divided into two areas: a main file area and
an overflow area.

e Main File Area

The main file area, which is always present in a chained file, may consist
of 1 or more sections, with each section containing a specific number of
sectors as determined by the programmer.

In addition, the main file area is further divided into smaller areas
called buckets. As a logical division of the main file area, the bucket
concept saves program execution time by confining record search and record
pushdown (when inserting new records) to the limits of the bucket area,
rather than searching or pushing down through the entire file or file sec-
tion. The size and number of buckets in a given file is determined from
information entered on the file specifications worksheet by the programmer.
The programmer can decide to include the entire area of the main file in

a single bucket, or to divide it into several buckets.

The file specifications worksheet also includes the definitions of several
other units of organization within the file, which are related (and in
effect restrictive) to bucket organization. Before bucket organization is
discussed further, these additional file structures are outlined briefly
and illustrated on the next several pages:

1. Section

A file section is a logical division of a file and may be a physical
division as well, such as multi-section files contained on more than
one disc pack. In addition, a multi-section file can exist on a 4-zone
pack, one section per zone.

NEAT/3 -- FILES Nov. 68
FILES -- PUB. NO. 1 Page 21

Each section of a file contains a specific number of sectors which
are allocated by the programmer.

SECTION

SECTION

e Sections of a file may be physically separate, as on two disc packs,
or separated by zones on a 4-zone pack, one section per zone.

2. Sectors

On magnetic disc, a track is the area covered by one read/write head

during one revolution of the disc.

Each track is divided into eight

sectors. Each sector can contain up to 512 characters of data.

TRACK

SECTOR | SECTOR | SECTOR

SECTOR | SECTOR

SECTOR

SECTOR

SECTOR

e Each sector of a track may contain up to 512 characters.

3. Blocks

Records are usually handled in groups called blocks for ease of pro-
cessing. For example, to sequentially input a block of records from
a file, the programmer need only specify one GET instruction.

A block may contain a single record or multiple records. The
block size on the integrated disc is 512 characters, or one sector.
The first 10 characters of each block are used by the software for
chaining information and are called the Block Header Indicator (BHI).
These 10 characters must be included when the programmer defines the

maximum block length.

maximum

SECTOR

BLOCK
512 characters

502

NEAT/3 -- FILES
FILES -- PUB. NO. 1

¢—First 10 characters used for chaining information.

Nov. 68
Page 22

FILE CONCEPTS

The maximum number of program-usable characters in a block for a disc
chained file is 502 characters.

Optional common trunk disc units on the NCR Century 100 and all
disc units on the NCR Century 200 have maximum block lengths ex-
ceeding 512 characters.

4. Records

Records may be fixed or variable in length. The maximum size record
on the integrated disc is 512 characters, or one sector. When chained
files are used, however, this number is reduced by 10 characters for
the BHI.

Therefore, a block can contain one record of 502 characters, or any

number of records, if the record length is divisible into 502. Any
characters remaining in the sector are not used.

L‘———— SECTOR SECTOR

¢—— BLOCK BLOCK
l@——— RECORD ag——— RECORD

10 500 l

The first 10 characters contain 1nformation that chains the two
records together.

The record length is 500 characters.

The last two characters (of each sector) are not used.

—— SECTOR SECTOR

- BLOCK BLOCK

ra————— RECORDS la————— RECORDS

10 | 100 | 100 | 100 | 100 | 100 I 10 | 100 | 100 100 | 100 | 100 I

e The first 10 characters contain information that chains the two
blocks together.

e The block length is 500 characters and contains 5 records, each
100 characters in length.

® The last two characters are not used.

NEAT/3 -- FILES Nov. 68
FILES -- PUB. NO. 1 Page 23

5. Buckets

A bucket is a logical division of a section of a file, with each
bucket containing a predetermined number of sectors. The following
illustration shows the relative position of buckets in chained file
organization.

Section
Main File Area Section Overflow Area

Bucket Bucket Bucket —————————n

l@——— sector —#ja—sector - sector ! sector sector sector sector sector

r@—— block re—unused

forec aferec.

T 1
~{f

section length contains 8 sectors, or 4096 characters.
main file area contains 6 sectors, or 3072 characters.
overflow area contains 2 sectors or 1024 characters.

main file area is divided into 3 buckets, each containing
sectors, or 1024 characters.

first sector of the first bucket includes a sample block.
The block length includes the Block Head Indicator (BHI) of
10 characters and two records, each 250 characters long,
for a total of 510 characters.

2 characters at the end of the sector are not used.

This format would be repeated in other sections.

The bucket concept of file organization offers several advantages
in terms of program execution time by giving the program an indi-
cation that an error or exception exists.

e When a record search is made, a branch is taken if the record is
not found by the time the end of the bucket is encountered. The
program does not have to search the entire file.

e When a new record is inserted, record pushdown is limited to the
bucket, rather than requiring pushdown within the entire file or
file section.

e When a bucket becomes full, records overflowing from the bucket
are placed in the overflow area and are chained back to the last
record in the bucket.

The RGET instruction may be used to randomly access a bucket, and
the GET or SGET instruction to sequentially step through the bucket.
SGET causes a branch to the routine referenced in the second operand
when any of the following occur:

End-of-bucket
End-of-section

End-of-file

Empty (null) block is read.

NEAT/3 -- FILES Nov. 68
FILES -- PUB. NO. 1 Page 24

FILE CONCEPTS

e Overflow Area

The overflow area accepts records overflowing from buckets in the main
file area. The need and size of the overflow area is determined by the
programmer after considering file size, expected insertion/deletion rate
and expected record growth. When the size of the overflow area is deter-
mined, it is assigned a specific number of sectors. Consider the follow-
ing examples:

For the purpose of these illustrations, assume the following information:

e FEach bucket contains 3 sectors.

e FEach sector contains blocking, as follows:
e Block Header Indicator (BHI) for chaining information, 10 characters.
e Two records, each containing 251 characters.

e Chaining is indicated by double-headed arrows, since each block of
records is chained to both previous and following blocks of records.

e Example 1

Ist bucket I' 2nd bucket OVERFLOW
|

rec | recj rec | recI. rec | rec|1 rec | rec I. rec | rec i rec | Se_c_lrec [rec irec T
NN NN TN

|

|

| | | | 1 |

Ist block | 2nd block | 3rd block | 1st block | 2nd block | 3rd block 1st sector | 2nd sector |
| |

Chaining in the first bucket is as follows:

e Blocks 1 and 2 are chained together.

e Blocks 2 and 3 are chained together.

e Block 3 is chained to the first sector in the overflow area.
e Sectors 1 and 2 in the overflow area are chained together.

Chaining in the second bucket is as follows:

e Blocks 1 and 2 are chained together.

e Blocks 2 and 3 are chained together.

e Block 3 contains only one record. Since the bucket is not full,
chaining to the overflow area has not occurred.

Overflow occurred as follows:

® Block 3 in the first bucket is filled. Software locates the
first available sector (1) in the overflow area.

e Sector 1 in the overflow area is filled. Software locates the
next available sector (2) in the overflow area.

NEAT/3 -- FILES Nov. 68
FILES -- PUB. NO. 1 Page 25

e Example 2

OVERFLOW

2nd bucket :
| | | |
|
|

1st bucket

| |
] I
R CTS R T R R A v | 2nd 3rd
| i

block , block 4 blockl block 4 lst sector | 2nd sector ' 3rd sector ith sector

block, block , 4
rec h rec |\ rec h rec I\ rec [\ rec l\ rec I\ rec | rec rec | rec l rec | rec |

\/\/\ N A /\/ -/

Chaining in the first bucket is as follows:

e Blocks 1 and 2 are chained together.

e Blocks 2 and 3 are chained together.

® Block 3 is chained to the second sector in the overflow area.
e Sectors 2 and 3 in the overflow area are chained together.

Chaining in the second bucket is as follows:

® Blocks 1 and 2 are chained together.

e Blocks 2 and 3 are chained together.

e Block 3 is chained to the first sector in the overflow area.
e Sectors 1 and 4 in the overflow area are chained together.

Overflow occurred as follows:

@ Block 3 in the second bucket is filled. Software locates the
first available sector (1) in the overflow area.

e Block 3 in the first bucket is filled. Software locates the
next available sector (2) in the overflow area.

e Sector 2 in the overflow area is filled. Software locates the
next available sector (3) in the overflow area.

® Sector 1 in the overflow area is filled. Software locates the
next available sector (4) in the overflow area.

NEAT/3 -- FILES Nov. 68
FILES -- PUB. NO. 1 Page 26

FILE CONCEPTS

e Selective Serial Processing

This type of file processing is only used with units that handle source—
destination files: for example, the disc. A source-destination file is
one that can be read from and written into during the same run. Each time
the file is updated, the old master itself becomes the new master file.
The source-destination master file used in selective serial processing may
be either a chained file or a standard file.

Transaction records are presorted in a separate file and stored in the same
sequence as the master file. The GET instruction is used to sequentially
read in both the master file and the transaction file. The WRITSP instruc-
tion is used to write updated blocks back into the same location in the mas-
ter file from which they were read.

Generally the master file is created as a destination file through the use
of a one-time conversion program. Assume for the following explanation that
a file, called ACCTFILE, has been created. It is the source~destination
file used in the update run. Also assume that another source file contain-
ing the necessary transaction records exists. During the update run, all
records from ACCTFILE are read into the processor in blocks. Each record

in each block is presented to the program sequentially. If updating occurs,
the block is written back into the file from which it was read.

NEAT/3 -- FILES Nov. 68
FILES -~ PUB. NO. 1 Page 27

Since reading from the disc does not destroy the information on the disc, only
the updated blocks need be written back. The WRITSP instruction is used to
write back only those blocks which have been updated. The programmer places
WRITSP at the end of that portion of the program responsible for updating.
WRITSP is then executed only when a record in a block has been updated. Under
these conditions, WRITSP guarantees that the updated blocks are automatically
written back after the completion of all the processing required on all records
in the block.

Selective serial processing is more flexible with a chained source-destination
file than with a standard source-destination file since the chained file soft-
ware has the ability to chain blocks to an overflow area and to find these
blocks on demand. When using a chained file, the size of the record and the
size of the block can be altered during update. Also, new accounts may be
inserted into the file or obsolete accounts may be deleted from the file during
the update run.

Because the structure of the file changes during update the old master file is
destroyed. For backup, the master file must be copied periodically. This copy
can be done as a straight copy of the file or during a Father-Son run used to
perform some maintenance on the file.

Standard file selective serial processing has greater limitations. (1) Since
the block is written back into the exact area from which it was read, the size
of the record and the size of the block cannot be altered. (2) No insertions
of new records or deletions of old records are allowed during the update run.

Selective serial processing with a standard file is best used if the records
are fixed length and insertions and deletions are handled in a separate Father-

Son run.
M = Master (0ld & New)
Transactions

Updated records are written
over the old records. If
backup is desired, the master
file must be copied before
updating begins.

L
|\
0
0
o

UPDATE

NEAT/3 -- FILES Nov. 68
FILES -- PUB. NO. 1 Page 28

FILE CONCEPTS

» OPENING FILES

Before data can be output to or input from a file, that file must be condi-
tioned; that is,opened. For ease in file handling and ease in program coding,
the programmer ususally allows files to be opened by the software when the
program is loaded into memory. Any file that does not have an OPEN instruc-
tion associated with it is opened when the program is loaded.

If the programmer wishes to delay opening a file or wishes to take advantage
of certain options, he may use an OPEN instruction. See NEAT/3 REFERENCE
MANUAL, INSTRUCTIONS, tab 1, "OPEN Instructions."

o Common Opening Procedures for Source Files

Whenever a source file that is to be processed sequentially is opened, all
the input buffer areas for that file are filled except one. When the first
GET instruction is issued, the last buffer is filled while the first record
is presented to the program. If that file was on a magnetic media periph-
eral, the file is first checked for the proper name and version number. If
the proper file name or version cannot be located on the named peripheral,
the software displays a message to the operator. The operator may mount a
new disc pack or reel; or, in certain cases, he may declare that a new file
is to be created. The action taken depends on the type of file and type of
peripheral. 1If the file is on a punched paper peripheral, the open pro-
cedure is confined to a unit check.

e Common Opening Procedures for Destination Files

Whenever a destination file is opened on a magnetic media peripheral, the
software checks to insure that room exists on the disc pack or reel of tape.
For a printer file, an operational check of the peripheral is made. For a
punched paper peripheral file, the open is confined to a unit check.

NOTE: Specific opening procedures for each peripheral are covered in the
section dealing with that peripheral.

+ CLOSING a FILE

Before a program terminates, all files associated with that program must be
closed. The programmer may use an instruction to close a file, or he may let
the software close it for him. When the program reaches the FINISH instruc-
tion, the software automatically closes all files that are still open.

For ease in file handling and ease in program coding, the programmer usually
allows his files to be closed for him. However, he may use the CLOSE instruc-
tion if he desires control over the time of closing or if he desires to take
advantage of one of the CLOSE instruction options. See NEAT/3 REFERENCE
MANUAL, INSTRUCTIONS, tab 1, '"CLOSE Instructions."

NEAT/3 -- FILES Nov. 68
FILES -- PUB. NO. 1 Page 29

e Common Closing Procedures for Source Files

When a source file is closed, little or no action occurs.

e Common Closing Procedures for Destination Files

When a destination file is closed, all output buffers not yet empty are
written out into their respective files. If the file is on disc, the soft-
ware places the end-of-data sector number in the disc directory. If it is
on magnetic tape, the software constructs end-of-file labels. If the desti-
nation file is on a printer, the paper is advanced to a standard position.
If it is on a card punch, a card encoded END$ is punched to signal end-of-
file.

NOTE

Specific closing procedures for each peripheral are covered in the
section dealing with that peripheral.

» x» RESCUE DUMPS

A rescue dump saves information concerning the state of the processor (the con-
dition of internal flags, etc.) and a picture of memory. This feature provides
the user with the ability to recover from unavoidable processing interruption
without having to restart the run from the beginning. The programmer designates
on the File Specification Sheets when a rescue dump is to occur (rescue point)
as well as where the rescue dump data is to be stored. The software does the
rest.

These automatic rescue dumps, provided by the software at programmer direction,
may not be used in conjunction with runs that incorporate source-destination
files.

There is a software routine called RESTART available to handle restarting a
program from a rescue point.

® Rescue Point

The rescue point (time at which a rescue dump is taken) is designated by the
programmer. It must be in accordance with software regulations and good pro-
cessing techniques. The software demands that rescue points occur only at
the end of a file section, for example, at the end of a reel of magnetic
tape. Since long punched card files are generally not divided into sections,
the programmer may schedule special cards (coded RES$) to be placed in de-
sired locations within the file. The software treats these cards in the

same manner as an end-of-section.

The programmer specifies the file which is to initiate rescue dumps for a
run. Only one file should be assignea this option (generally the file that
reaches end-of-section most often). If a punched paper tape file exists in
a program it must initiate the rescue dump at end-of-reel. 1In this way a
new reel may be used to correctly reposition the tape when restarting. If

a source card file exists, the special RES$ cards should be used to simulate
end-of-section and thereby initiate rescue dumps.

NEAT/3 -~ FILES Nov. 68
FILES -- PUB. NO. 1 Page 30

FILE CONCEPTS

The following table illustrates the time at which a rescue may occur for
certain peripherals:

PERIPHERAL RESCUE TAKEN

Disc At the end of each section of the file.

Magnetic Tape At the end of each reel (section).

Punched Tape At the end of each reel (section).

Punched Cards At a RESS card.

» Storage of Rescue Dumps

The software stores the rescue dump either within the file that triggered the
dump or in a standard rescue file, depending upon the type of peripheral that
initiated the dump.

If a destination file on a magnetic media peripheral (disc, magnetic tape,
etc.) reaches end-of-section and if that file was designated by the program-
mer to initiate rescue dumps, the dump is placed at the beginning of the
next section of that file.

If a source file on a magnetic media peripheral or a source or destination
file on punched paper peripherals reaches end-of-section and if that file was
designated to initiate rescue dumps, the dump is placed in a standard rescue
file.

The standard rescue file is a programmer-defined magnetic media destination
file. It is used for the storage of all rescue dumps not initiated by the
end-of-section for some other magnetic media destination file. If this file
is on disc it may contain rescue dumps only; however, if the file is on mag-
netic tape, it may also contain normal file data. That is, a normal data
file on magnetic tape may also serve as the standard rescue file.

Standard rescue file definition is covered in the sections of this manual
that pertain to specific peripherals.

CRATCH FILES

. scratch file is a magnetic media file that is used for the temporary storage
f data. Generally such a file is obsolete at the end of the program that
reated it or at the end of a series of related runs. This type of file is
enerally date-protected in a manner which makes it obsolete the day after it
s created; that is, the area occupied by the file may be reused the next day.
he proper dating used in creating or reading a scratch file is covered in the
ections of this manual that pertain to magnetic media peripherals.

scratch file may also be made obsolete after closing through the use of the
LOSEO instruction. See NEAT/3 REFERENCE MANUAL, FILES, tab 1, '"CLOSE Instruction."

xxxx
EAT/3 -- FILES Feb. 70
ILES -- PUB. NO. 1 Page 31

The following table is a partial list of I/0 instructions that are applicable
to various types of files discussed in this section.

/0 INSTRUCTIONS AND APPLICABLE PERIPHERAL FILES

I1/0 INSTRUCTIONS CARDS PAPER TAPE PRINTER MAGTAPE

OPEN X X X X
OPENC
OPENS X
OPENT

ROPENS
ROPEND
ROPENR
ROPENP

oK
R Re

CLOSE

CLOSEO
CLOSES
CLOSET

<o R
e

>
b

GET
LGET
RGET
SGET
SGETC
SGETL

X
oo X

e
<

PUT
LPUT

WRITSP
WRITBI
INSERT
RFILE

DELETE

MARK
RESET

BLKCHK
BLKOUT

DEFALT

READ
WRITE

NEAT/3 -- FILES Feb. 70
FILES -- PUB. NO. 1 Page 32

MAGNETIC DISC FILES

INTRODUCTION

Each NCR Century 100 System incorporates one integrated dual disc unit; however,
two integrated units are permitted. Each spindle of this two-spindle unit is
treated as a separate device by both the selection logic of the I/O software

and by the machine hardware. Since each spindle may contain one removable

disc pack with a storage capacity of approximately 4.2 million characters, the
total storage capacity of the unit is over 8 million characters.

The disc unit is supported by highly sophisticated software which makes it
flexible, yet easy to use. The disc software automatically handles such things
as the location of source files, the allocation of room for destination files,
and the end-of-section alternation.

Additional common trunk disc units and disc controllers are also available on
an optional basis. These units permit larger block sizes than the integrated

dual disc.

NEAT/3 -- FILES Nov. 68
TAB 1 -- PUB. NO. 1 Page 1

DISC PACK

A single disc pack is composed of three discs that are coated on both sides to
provide six recording surfaces. Since each of the six surfaces is serviced by
12 read/write heads, each pack is serviced by a total of 72 read/write heads.
Of these 72 heads, 64 are available to the user and 8 are used by the hardware
for selection of the desired read/write location. All 72 heads which are con-
nected to a single arm, are moved as a unit to any one of 16 positions by an
actuator.

16 - Position Actuator

Arm Yovement

12 Heads per Surface

3 Discs, 6 Surfaces

[va Z
I'_"l / rvyvvrvvvvrvvorrvy

lLLkLLLLkL}Lk

YvFrrrrvvrrvvy

AMAA A A M M AL ALND
£ Z

tLL

rr¥ Y rrrrrvy

LA A M A AL M A A L)
272 2272272 272777

Spind]e/

Head Cabling =]

Each pack is composed of 3 discs which provide 6 recording surfaces.

Each surface is serviced by 12 read/write heads; therefore, each
pack is serviced by 72 read/write heads.

Each pack has 64 heads available to the user and 8 heads reserved for
the hardware.

All heads are shifted simultaneously into one of 16 positions by the
16-position actuator.

16-Position Actuator

The 1l6-position actuator moves the heads across the disc pack to access

data from each of 16 positions. The distance between the read/write heads

is such that throughout the movement of the arm one head never enters an area
previously occupied by another head; that is, there are 16 positions between
each head.

NEAT/3 -- FILES Nov. 68
TAB 1 -- PUB. NO. 1 Page 2

MAGNETIC DISC FILES

|4\
4 ‘!/IV VvV VvV ivrviiryV

]

E N AN NNDNNRNNDNNNA

Read/Write Head

/
RRNARRNRRRNRRR AN

—~

16 Positions

Tracks

The area covered by one read/write head during one revolution of the disc is
called a track. Since there are 64 heads available, there are 64 tracks avail-
able for reading or recording data in each of the 16 positions. Therefore,
over the entire 16 positions, a total of 1024 tracks are available for data.

TRACKS

Spindle

Track
1 Head

The area of the disc covered by one read/write head during a revolution
is called a track.

A total of 64 tracks is available in any one of the l6-actuator
positions.

e A total of 1024 tracks is available over the entire 16 positions.

NEAT/3 -- FILES Nov. 68
TAB 1 -- PUB. NO. 1 Page 3

Sectors

Each track of the disc is divided into eight addressable units called sectors.
Since there are 64 tracks in each of the 16 positions, 512 sectors are avail-
able in each position of the actuator. Therefore, over the entire 16 positions,

8192 sectors are available for data storage. Each sector may contain up to 512
characters of data, and the entire pack may contain 4,194,304 data characters.

Spindle

Track - 8 Sectors

1 Head
Sector - 1/8 Track

track is divided into 8 sectors.
of 16 positions has 512 sectors.
pack has 8192 sectors.

sector may contain 512 characters.

pack may contain 4,194,304 characters.

Timing

Data is transferred between the processor and most dual disc units at a rate
of 108,000 characters - per second; however, one optional common trunk unit has
a transfer rate of 180,000 characters per second. The average latency time,
which is dependent upon the revolution time of the disc,is 21 milliseconds for
disc units that have a transfer rate of 108,000 characters per second; the
latency time is 12.5 milliseconds for disc units that have a transfer rate of

180,000 characters per second.

The average access time, which is dependent upon the actuator movement, is 55
milliseconds for all disc units. The minimum access time is 30 milliseconds
and the maximum access time is 70 milliseconds.

NEAT/3 -- FILES Nov. 68
TAB 1 ~- PUB. NO. 1 Page 4

MAGNETIC DISC FILES

FILE DESCRIPTION

Disc Pack Formats

Prior to first use, the disc initializer utility routine (DINIT) must be used
to set up (initialize) disc packs in one of two formats: Format 1 or Format 9.
Any pack initialized as Format 1 contains the operating system software; any
pack initialized as Format 9 does not contain the system software, thereby
allowing additional room for files. Since Format 9 packs do not contain system
software, they may not be placed on either of the system discs. For this rea-
son, NCR Century 100 Systems containing only one integrated dual disc unit may
not use Format 9 packs.

Zones

Disc packs may be treated as an entity (one-zone packs) or may be divided into
four parts (four-zone packs). On one-zone packs all 16 positions are treated

as a single zone (zone 0), while on a four-zone pack a group of four consecu-

tive positions is treated as a zone (zone 0, 1, 2, and 3).

The programmer uses the file specification sheets to map his files and thereby
indicate that the pack is to contain one zone or four zones. One zone packs
are most commonly used; however, four-zone packs may be used if the programmer
wishes to divide his file into sections on a single disc pack.

' One-Zone Pack

On a one-zone pack all 16

I II II l' II ll II Il l positions are considered
(.) to be in zone O.

N
Zone 0 = 16 Positions

y Four Zone Pack

On a four-zone pack a group
II Il Il ll I II I' I of four consecutive positions

- - is treated as one zone.

Zone 2 Zone 3 Zone 0 Zone 1
—_
N
Each Zone = 4 Positions

® One-Zone Packs

Format 1 packs with one zone are used most often; however, Format 9 packs
with one zone may be used if the system configuration permits. The pro-
grammer has approximately 7350 sectors available for file storage on a
Format 1 pack with one zone and has approximately 8100 sectors available
on a Format 9 pack with one zone.

NEAT/3 -- FILES Nov. 68
TAB 1 -- PUB. NO. 1 Page 5

e TFour-Zone Packs

This type of pack is divided into four separate zones (0, 1, 2, and 3) with
each zone containing four positions. The programmer has approximately

1200 sectors available in zone 0 of a Format 1 pack and approximately 1950
sectors available in zone 0 of a Format 9 pack. Zones 1, 2, and 3 of
either format pack contain 2048 sectors each.

Each zone may contain a section from more than one file, as in the example
below, allowing related sections of different files to be placed in a
single zone. Large files may be extended over several packs if necessary.

~ 1-ZONE AND 4—ZONE PACKS

1-7 Pack
one Packs Zone 0

MASTERFILE TRANSFILE
Section 1 Section 1
Accounts A-Z Accounts
A-Z

4-Zone Packs

Zone O
J\

MASTERFILE|TRANS- |MASTERFILE
Section 1 |FILE Section 2
Accounts Section] Accounts
A-M 1 A-M N-Z

4-zone packs allow related portions of two or more files to
be placed in the same zone.

NEAT/3 -- FILES Nov. 68
TAB 1 -- PUB. NO. 1 Page 6

MAGNETIC DISC FILES

Disc/File Relationship

One or more files may be placed on a disc pack, or one file may be placed on
several disc packs. When small files are involved, several files may occupy
one pack or one zone. Programs associated with the files on a given pack
should appear on that pack.

' FILE/PACKRELATIONSHIP

Single-Pack File: One file is contained on
one pack. The file may be either a single
section or multiple sections. The disc pack
may be a l-zone or a 4-zone pack.

Multi-Pack File: One file is contained on
two or more packs. This is a multi-section
file with either a l-zone or 4-zone pack.

Multi-File Pack: More than one file is con-
tained on a pack. Each file may be either a
single section or multiple sections. The
disc pack may be either a l-zone or a 4-zone
pack.

Labels/Disc Directory

All labels for all files on a disc pack are confined to an area of the pack
called the Disc Directory. These labels contain information the software
needs for the protection, identification, and location of files. Some of the
directory entries include:

e TFile name - Contains the file name as indicated on the file speci-
fication sheets.

Contains the virtual date on which the file was created.
(Virtual dates are covered in the description of file
specification sheets under this tab.)

e Creation date

e Expiration date - Contains the date the file expires.

® Generation number - Contains a number which is updated each time a new
version is created. (Generation numbers are some-
times used in place of expiration dates.)

e File start sector - Contains the sector number at which the file begins.

Contains number of the sector following the last
sector in the file.

e File end sector

e File type - Contains a character to indicate if this is a chained
file or a standard file.

NEAT/3 -- FILES Nov. 68
TAB 1 -- PUB. NO. 1 Page 7

When a destination file is opened, the disc directory is scanned to locate
free sectors on a pack. The number of sectors requested on the file specifi-
cation sheets is allocated if available. Sectors are available if they are
not occupied by a file or if they are occupied by a file which has expired.
When space is allocated to a file, a new entry is built and inserted into its
proper place in the directory -- according to the placement of the file.

When a source file is opened, the Disc Directory is scanned to locate the
requested file as named on the file specification sheets. Once the proper
entry has been located, the starting sector address of the file is extracted,
and processing can begin. This starting sector is used by the software to
compute the actual sector address from the relative address specified by the
programmer.

The programmer need not concern himself with the actual location of the file
on the disc. When the programmer must specify a particular sector, as with
the RGET instruction, he has only to specify its relative position in a file
section. The first relative sector address in any section of the file is zero.

e Creating the Disc Directory/Initializing the Disc Pack

Since the Disc Directory is initially created by the disc initializer
utility routine, all packs must be initialized before use in the system.
Once the directory is created, the software automatically maintains it.

When a disc pack copy is done, all areas between active files may be elimin-
ated in each zone for a four-zone pack. All areas between files in an entire
pack may be eliminated for a one-zone pack. Files, as well as entries in

the Disc Directory, may be consolidated on the new pack.

Data Blocks

Data blocks consist of one or more records. Records within these blocks or the
blocks themselves may be fixed or variable in length.

Minimum and maximum block lengths are dependent upon several factors. One of
these factors is the type of disc unit used; another factor is the type of file

organization used.

e Disc Unit Limitations on the NCR Century 100

The integrated disc unit on the NCR Century 100 allows a minimum block
length of 1 character and a maximum block length of 512 characters.
Optional common trunk disc units on the NCR Century 100 allow a minimum
block length of 1 character; however, blocks may be either 1, 2, or 4 sec-
tors long, that is 512, 1024, or 2048 characters long.

e Disc Unit Limitations on the NCR Century 200

All disc units on the NCR Century 200 allow a minimum block length of 1
character; however, blocks may be a maximum of either 1, 2, 4, or 8 sec-
tors long, that is 512, 1024, 2048, or 4096 characters long.

NEAT/3 -- FILES Nov. 68
TAB 1 -- PUB. NO. 1 Page 8

MAGNETIC DISC FILES

NOTE

The programmer should use caution is assigning his block
length when multiple sectors are involved. The software
examines the specified block length and assigns the next
highest number of sectors permitted. For example, spec-
ifying a block length of 1050 characters results in the
software assigning four sectors to each block. Almost
two whole sectors would be blank for each block output.

e File Organization Limitations

If standard file organization is used with a disc unit, the minimum block
lengths and maximum block lengths remain the same. If chained file
organization is used, the minimum block length is 10 characters; the maxi-
mum block length remains the same. The software uses these 10 characters
for chaining and flags. Chained files are discussed in detail in this
publication under File Organization.

Records in Blocks

Records within magnetic disc blocks may be fixed or variable in length. Record

sizes for the disc units on the NCR Century 100 range from a minimum of 1 char-

acter to a maximum of 512 characters on the integrated disc unit and either 512,
1024, or 2048 characters on the optional common trunk disc units. Record sizes

for the disc units on the NCR Century 200 range from a minimum of 1 character to
a maximum of either 512, 1024, 2048, or 4096 characters.

NOTE

For clarity, all examples pertain only to the integrated
disc unit on the NCR Century 100.

e TFixed-~Length Records

If the records are fixed-length, all blocks are normally full blocks.

The programmer assigns a block length that is a multiple of his record
length., For example, if each record is 100 characters long, the block
length could be 100, 200, or any other multiple of 100 up to 500 characters.
To best use disc space, the programmer should specify a block length that
is as close to 512 characters as possible,

250- 250~
Character Character
Record Record

12 Unused

Maximum block length = 512 characters.
Each record = 250 characters.
Each block may contain 2 records.
Each block leaves 12 character positions unused.

NEAT/3 -- FILES ’ Nov. 68

e Variable-Length Records

When variable-length records are used, a variable length indicator (VLI)
must be defined on the data layout sheet as the first field in the record.
This indicator contains a number that specifies the number of characters
in a record and is used by the software to present complete records to the
program,

The VLI field must be two characters long and must contain a binary
number which indicates the number of characters in the record (including
the VLI itself). The programmer must place the correct number in the VLI.
If translation is requested with the GET and PUT instructions, the VLI is
not translated.

/ARIABLE LENGTH RECORDS IN BLOCKS

H

REFERENCE LOCATION LENGTH VALUE OR PICTURE

8 9 10 31 12 13 14 13 16 17 19 20 2t 22 23|24 25 28 27 31 32 33 34 33 36 37 38 39 40 41 42 43 44 45 46 47 48 49 SO
i

MAGZREC 252
VLI 2
ACCTNO 1.0

Record Length: The programmer specifies the maximum length of the
variable record as indicated on the file specification sheet. This
length must include the 2-character field containing the VLI.

VLI Field Length: The programmer must reserve a 2-character binary
field beginning at relative position O.

«@—————— 512-Character Sector 4;)—__8 characters not used
«€——Maximum Block = 504 Characters—————’ﬂ on sector

252-character vari- 252-character vari-
able-length record able-length record

2-character VLI

NEAT/3 -- FILES Nov. 68
TAB 1 -- PUB. NO. 1 Page 10

¥

MAGNETIC DISC FILES

FILE ORGANIZATION

Standard file organization or chained file organization may be used with the
disc. Standard file organization is used for father-son processing, selective
serial processing, and with limitations for random processing. Chained file
organization, which provides both for overflow and for insertion and deletion
of records, is used for random processing and selective serial processing.

Standard File Organization

When standard file organization is used, blocks of records are generally pre-
sented to the program in the sequence they were recorded; however, the records
within the block may or may not be in numeric or alphabetic order. For example
the input records to a sort run are unsorted, but the output is sorted in
either numeric or alphabetic order and becomes input to another run.

Standard file organization does not provide for a specified overflow area. To
handle file expansion, the programmer must leave sufficient room in a section;

after filling that section, he must allocate a new one.

Random accesses are permitted to a limited degree; however, records should not
be deleted or inserted unless the entire file is copied.

e Father-Son Processing and Selective Serial Processing

For a detailed explanation of father-son processing or selective serial pro-
cessing, see the NEAT/3 REFERENCE MANUAL, FILES, '"NCR Century File Concepts."

e Random Processing

Limited random access is available when standard files are used. The pro-
grammer uses the RGET instruction to randomly access a specific sector and
to make the first record in the block on that sector available to the pro-
gram. To step sequentially through the remaining records in that block, he
may use the GET or SGET instruction. After all records in the block have
been presented, another execution of the GET or SGET instruction reads

in the next block of records in sequence. This limited random access pro-
vides no simultaneity in reading from a standard file.

Generally the random processing of standard files is confined to randomly
updating a source-destination file. In this instance, the records in the
master file are generally in numeric or alphabetic order, but the trans-
action records may be posted to the master in sorted or unsorted order.
The program examines the transaction record and, from the information con-
tained in it, determines the sector on which the corresponding master
record is located. This location may be determined by a table lookup, by
computation on the account number, etc. Once determined, the relative
sector address is placed in a special area in memory to be accessed by the
RGET instruction. The address may point to the exact block in which that
record is stored or to some block closely preceding the desired block.

NOTE
All instructions names are discussed in detail in the NEAT/3
REFERENCE MANUAL, INSTRUCTIONS, tab 1.
NEAT/3 -- FILES Nov. 68

TAB 1 -- PUB. NO. 1 Page 11

Transaction Record

Acct No, | Name /r' Data A transaction record is read.
0030

Acct No. 0030 The account number is extracted.

ACCTABLE The table is constructed so that a
reference to any account number between
Rel. 21 and 30 indicates relative sector 10.
Sec., The program must search through each
sector beginning at 10 until the de-

0000 . .

sired master record is encountered.
0005 (For further information on tables, see,
0010 INSTRUCTIONS, tab 4, 'Table Concepts."

0015
0020

0025

0030
_/

If the block addressed is the actual desired block, the RGET instruction
presents the first record in that block to the program. If, by compari-
son, it is found that this is not the desired record, the GET or SGET
instruction presents the next record in the block for comparison. Suc~
ceeding executions of the GET instruction will sequentially present the
other records in that block until the desired record is encountered.

If the RGET instruction presents a block closely preceding the one desired,
successive executions of the GET or SGET instruction step through that
block and sequentially access new blocks until the desired record is found.

Since reading from the disc does not destroy the information on the disc,
only the updated blocks need be written back. The WRITSP instruction is
used to write back only those blocks which have been updated. The pro-
grammer places WRITSP at the end of that portion of the program responsible
for updating. The WRITSP instruction is then encountered only when a block
has been updated. Under these circumstances, WRITSP guarantees that the
software will automatically write updated blocks back into the file.

The updated record is placed exactly over the old record in the block. Be-
cause of this, the record length and block length must remain the same. No
new records should be inserted or deleted during the update run; instead,
records should be inserted and deleted while the entire file is copied as
in a father-son run. The old master file is destroyed since it is written

over.

NEAT/3 —-- FILES ’ Nov, 68
TAB 1 -- PUB. NO. 1 Page 12

MAGNETIC DISC FILES

Standard file organization is used with random processing if the file in-
corporates fixed-length records or variable-length records that do not
change in size during update. If the variable-length records are to
change in size or records are to be inserted or deleted during the update
run, chained file organization should be used.

Since RGET uses relative addressing to randomly access records within a
section, all sectors within one section of a randomly-accessed file must
be physically adjacent to each other. To keep the relative addressing
consistent, the file must be in one piece within each section. Therefore,
the question on the file specification sheets, "Are disjoint pieces ac-

ceptable if the number of sectors cannot be found in one piece," must be
answered ''NO."
NEAT/3 -- FILES Nov. 68

TAB 1 -- PUB. NO. 1] Page 13

Read in a transaction record.

Calculate the location of the master
record and place the address in an
area for accessing by RGET.

Read in the block containing the master
record or a block closely preceding the
desired one. Present the first record
in the block.

Compare the presented master record to
the transaction record.

If they compare equal, branch to that
leg of the program responsible for
updating. If not, go to next instruc-
tion.

G
<<::>»——‘ If the master is greater than the trans-

action, go to error coding. Otherwise
go to the next instruction.

Present the next record in the block
to the program; or if no records are
I left in this block, read the next block.
]

TO ERROR
LOGIC

- =1
r [P Update the master record.

AR |

WRITSP Set up to write the block containing the
updated master record back into the file.
(Writing takes place automatically.)

Set up for next transaction.

NEAT/3 -- FILES Nov, 68
TAB 1 —-- PUB. NO. 1 Page 14

MAGNETIC DISC FILES

x Chained File Organization

Chained file organization, used for selective serial processing or random
processing, provides both for overflow and for insertion and deletion of

records.

A chained file consists of blocks of records automatically connected in se-
quence by the software. The first 10 characters in each block are used by the
software to link a block to the next sequential block in the file. Therefore,
the maximum number of program-usable characters in a block for a chained file
is reduced by 10. For example, the programmer has 502 characters available in

a 512 character block.

Chained file organization is generally confined to source-destination files but
may be associated with source or destination files, e.g. a chained source-
destination file may be created as a chained destination file or used as a
source file in a different run. These source-destination files may be processed
sequentially or randomly.

The chained file is generally divided into two areas: a main file and an over-
flow area. The main file area is further divided into buckets. The size of
the bucket is determined by the programmer. The entire file may be one bucket,
or the file may contain many buckets.

A bucket is a group of sectors from which overflow can occur. It is a subdivi-
sion of a file section and a logical break point in the file that aids the pro-
grammer in searching for a record. The bucket concept also saves program
execution time when the INSERT instruction is used, because records overflowing
from a bucket are placed in the overflow area and are chained back to the pre-
vious record in the bucket. The GET and SGET instructions are capable of
following this chaining.

MAIN FILE SECTION The programmer specifies the
following on the file specifi-
cation sheets:

Bucket 1 Bucket 2 Bucket 3

The number of sectors in a
section.

The number of sectors in a
bucket.

ottt ™mEH<CO

The number of sectors in the
overflow area.

xxxx

NEAT/3 -- FILES Nov. 68
TAB 1 —— PUB. NO. 1 Page 15

When chained files are used on the disc, the programmer is concerned with how
many sectors to allocate to a bucket. In arriving at a conclusion, the pro-
grammer should consider the following questions:

Is the file sorted or unsorted?

How large is the file?

How many insertions can be expected?
How many deletions can be expected?
What is the expected record growth?

e Unsorted Files

If the file is unsorted, a new record need not be placed in a specific
location in the bucket. 1In this case the programmer uses the RFILE instruc-
tion to place the new record in the first available location in the bucket.
This location may be in a partially full block, in a block left empty for
expansion in the bucket, or in a block made empty by the previous deletion
of a record. If the record will not fit in the bucket, it is placed in

the overflow area. Large buckets may be used with unsorted files since
pushdown does not occur. However, the programmer must use judgment

because too large a bucket may result in excessive search time.

Records in the bucket are unsorted.

Buckets are generally in numeric order,
For example, the first bucket contains
records 000 - 100, the second bucket
contains records 101 - 200, etc.

e Sorted Files

If the file is sorted (in numeric or alphabetic order), all insertions
must be placed in their proper positions, e.g. account number 99 must be
placed between 98 and 100. The INSERT instruction is used to place the
record in its proper location. Assume that 99 was not assigned when the
file was initially constructed and that no room exists for it. To acco-
modate 99, INSERT automatically pushes down all other accounts in the
bucket following 98 and changes all the chaining labels of each block
affected. (To avoid lengthy pushdown, small buckets should be used with
sorted files that have relatively high insert activity.)

NEAT/3 -- FILES Nov. 68
TAB 1 -- PUB. NO. 1 Page 16

MAGNETIC DISC FILES

When 99 is inserted, all records
starting with 100 are moved down by
the INSERT instruction.

m If room is left for expansion in the
5 bucket, all the following records

simply move down in the bucket.

If no room remains in the bucket, the
Room left following records are moved down, and
for the last record is moved to the over-

expansion flow area.

\— To Overflow Area

In either of the above two cases (sorted or unsorted), the programmer may
keep track of what is stored in each bucket by means of a table. During
processing, the program looks in the table for the bucket location of the
desired record. The RGET instruction is used to get the first record in
that bucket, and the GET or SGET instruction to step further through the
bucket. If necessary, GET or SGET follows the chaining into the overflow
area. However, if the record is not found in the bucket or its associated
overflow area, the SGET instruction transfers control to the user's rou-
tine referenced by the second operand of SGET. This routine could contain
coding either to write the record into an exception file or to print it.
The GET instruction does not transfer control but continues at the
beginning of the next bucket.

A major advantage in using buckets is that it gives the program an indica-
tion that an error or exception exists without having to search through
the entire file. A branch is taken if a record is not found by the time
the end of a bucket is encountered since records are pushed down only in
the bucket, not in an entire file or file section.

e Creating a Chained File with Buckets

A file with buckets may be created as a destination file or as a source-
destination file.

e Creating a Chained File as a Destination File

When creating a chained file as a destination file, the programmer
uses a l-time conversion program that incorporates the PUT instruc-
tion. In filling out the file specification sheets for this 1-time
program, he indicates the type of file (chained destination) and
the desired bucket size.

NEAT/3 -- FILES Nov. 68
TAB 1 -- PUB. NO. 1 Page 17

Each time the PUT instruction fills a block, the software inserts
the proper chaining characters, and the block is written into the
file. If the programmer wishes to leave room for expansion in
the bucket, he may do so by using the BLKOUT instruction to out-
put null (empty) blocks.

It is the programmer's responsibility to count the number of blocks
output to a bucket and thereby insure that only the desired records
appear in each bucket. The BIKCHK instruction is used as an aid
in this task. If desired, a file directory (table) can be built
at this time to aid in the location of data in the file or bucket

during another run.

When the file is closed, the software completes the chaining char-
acters for all unused sectors in the file,

® Creating a Chained File as a Source-Destination File

When creating a chained file as a source-destination file, either

a l-time program or the normal update program may be used. In
either case the programmer indicates on the file specification
sheets the type of file (chained source-destination) and the desired

bucket size.

When the program is run, the operator is informed through the
console lights that the file does not exist. He indicates in turn
that a new file is to be created. The new file is opened and the
chaining characters are placed on each sector of the file, indi-
cating null (empty) blocks. To place data in the file, the pro-
grammer uses the RGET, various SGET, and INSERT or REFILE instruc-
tions, depending on the file format.

If desired, a file directory (table) can be built using the MARK
and RESET instructions at the same time the file is constructed
to aid in the location of data in the file or bucket during another

run.

e Selective Serial Processing

For a detailed explanation of selective serial processing, see the
NEAT/3 REFERENCE MANUAL, FILES, "NCR Century File Concepts."

The programmer should use a chained file with an overflow area if records
are inserted or deleted, or if the length of variable-length records
changes during the update run. If records are not inserted or deleted,
and the length of the record remains the same, a standard file could be
used.

NEAT/3 -- FILES Nov. 68
TAB 1 -- PUB. NO. 1 Page 18

MAGNETIC DISC FILES

e Random Processing

Chained file organization is suited for the random processing of source-
destination files. The bucket concept allows a logical break in the file
for overflow. The SGET instruction transfers control to that portion of
the program referenced by the second operand when the end of the bucket
is reached. If overflow occurred in a previous run, SGET follows the
chaining through those blocks in the overflow area associated with that
bucket; then the branch occurs. Chained files may, however, be specified
with or without an overflow area.

e Chained Files without an Overflow Area for Random Processing

Chained files without an overflow area can be specified., This is generally
done when the bucket concept is desired and when the records and blocks

are fixed length. The SGET instruction causes a branch when the end of a
bucket is reached, as described previously under Unsorted Files. Records
may be inserted or changed in length during the update run, if room is

left in the bucket; however, this is not recommended when an overflow

area is not present.

The master file is generally in sorted order (mumeric or alphabetic), but
the transaction records may be in sorted or unsorted order. The program
examines the transaction record and, from the information contained in
it, finds the address of the sector on which that master record is lo-
cated. This address, which may point to the beginning of a bucket or
some location within a bucket, can be determined by a table lookup, by
computation on the account number, etc. The relative sector address is
determined and placed in memory to be accessed by the RGET instruction.

COMPUTING SECTOR NUMBER FOR SELECTIVE SERIAL
PROCESSING—CHAINED FILE ORGANIZATION

Transaction Record

A transaction record is read.
Acct No.|Name Data
0030

Acct No. 0030 The account number is extracted.

ACCTABLE
The table is constructed so that a reference to

Rel. any account number between 21 and 30 indicates
relative sector 10. Relative sector 10 is the
beginning of a bucket. RGET presents the first
0000 record in sector 10. SGET presents the remain-
0005 ing records in the sector and then accesses the
next sector until the desired record is found.
0010 If the desired record is not found in the bucket,
0015 the end of bucket is reached. Control is then
transferred to the routine referenced in the

0020 second operand of SGET.
\/

Key Sec.

NEAT/3 -- FILES Nov. 68
TAB 1 -- PUB.NO. 1 Page 19

The RGET instruction presents the first record in the first block of the
bucket. If, by comparison, it is found that this is not the desired
record, the GET or SGET instruction is used to present the next record to
the program. Succeeding executions of the SGET instruction step through
that block and sequentially access new blocks until the desired record is
found. If the end of the bucket is reached before the desired record is
found, a branch is made to the user's routine referenced by the second
operand of SGET.

Since reading from the disc does not destroy the information on the disc,
only the updated blocks need be written back, The WRITSP instruction is
used to write back only those blocks which have been updated. The pro-
grammer places WRITSP at the end of that portion of the program responsi-
ble for updating. Since the WRITSP instruction is then encountered only
when a block has been updated, it guarantees that the updated block is
automatically written back.

The updated record is placed over the old record in the block. Because of
this, the record length and block length must remain the same. Since there
is no overflow area, records should not be inserted or deleted during the
update run. The entire file should be copied to insert or delete records
as in father-son processing. The old master file is written over by up-
dated records and becomes the new master file.

Since RGET uses relative addressing to randomly access records within a
section, all sectors within one section of a randomly accessed file must
be physically adjacent to each other. To keep the relative addressing
consistent, the file must be in one piece within each section., Therefore,
the question on the file specification sheets, "Are disjoint pieces
acceptable if the number of sectors cannot be found in one piece,' must
be answered ''NO."

NEAT/3 -- FILES Nov. 68
TAB 1 —-- PUB. NO. 1 Page 20

MAGNETIC DISC FILES

Read in a transaction record.

Calculate the location of the master
record and place the address in an
area for accessing by RGET.

Read in the block containing the master
record or a block closely preceding the
desired one. Present the first record
in the block.

Compare the presented master record to
the transaction record.

If they compare equal, branch to that
leg of the program responsible for up-
updating. If not, go to next instruc-
tion.

If the master is greater than the trans-
action, go to error coding. Otherwise
go to the next instruction.

Present the next record in the block

to the program. If no records are left
in this block, read next block. If the
end of a bucket is encountered, branch

v to the routine referenced in the second

TO ERROR operand of the SGET instruction.

==
: ‘ Update the master record.

G |

Set up to write the block containing
the updated master record back into the
file. (Writing takes place automati-
cally.)

Set up for next transaction.

NEAT/3 -- FILES Nov. 68
TAB 1 —- PUB. NO. 1 Page 21

e Chained Files with an Overflow Area for Random Processing

The programmer may designate an overflow area to allow the size of a chained
file to expand or contract. The size of this overflow area depends on the
number of insertions expected, the size of the buckets, expected record
growth, and the amount of padding left in each bucket. Each section of

the file has its own overflow area.

This type of file is handled similarly to a chained file without an over-
flow area. The principal difference is that the presence of an overflow
area permits the user to efficiently insert and delete records and to
change the length of variable-length records.

If the length of a variable-length record is to be changed, it should be
deleted from the file, specifying a move to a work area. The length of
the record is then changed in the work area, and the record is placed
back in the file by using the INSERT or RFILE instruction. (INSERT is
used when the file is in sorted order within the bucket; RFILE when the
file is in unsorted order within the bucket.)

ALTERING RECORD LENGTH — CHAINED FILE ORGANIZATION

Assume records are sorted within
Record Unused| pckets.

97

RGET the proper bucket, and SGET the
proper record.

~ 0 o0 o

DELETE the record to be changed in
length, specifying a move to a work
area.

0 0 ~=OC

Lengthen or shorten the record.

L—New length
01ld length

w
o
r
k
a
T
e
a

INSERT the record back in the file.

If records are unsorted within

buckets, RFILE may be used to place

Record the record in the first available
97 location in the bucket.

NEAT/3 -- FILES Nov. 68
TAB 1 -- PUB. NO. 1 Page 22

MAGNETIC DISC FILES

SITUATING FILES ON THE DISC PACK

One-Zone Packs

When a one-zone pack is used, files are automatically placed on the pack where
room permits, The following are examples of situating files on packs for
processing efficiency.

e Files for Father-Son Processing

The old master file and the transaction file should be placed on the same
pack on one unit, and the new master file should be placed on the pack on
another unit. Multiple packs may be used for large files.

In assigning room for the transaction file remember that the transaction

record is generally much smaller than the master record. Consequently,
many transaction records fit in a smaller area than the same number of

master records.

FILES FOR FATHE SSING — SINGLE ZONE

Zone O Unit O

01d Master Trans-— Place the old master file and
File action transaction file on the same unit.

File

Zone 0 Unit 1

Place the new master file on the
other unit.

New Master Excep-
File tion
File

NEAT/3 -- FILES Nov. 68
TAB 1 -- PUB. NO. 1 Page 23

L X J

e Files for Selective Serial Processing - Chained Files for Random Processing

The transaction file should be placed on the pack on one spindle and the

master file should be placed on the pack on another spindle.

Zone 0 Unit O

Zone 0 Unit 1

Master File

All old master records should be placed on one unit.

Trans-
action
File

Excep-
tion
File

e The file may not contract or expand during the update run.

All transaction records should be placed on the other unit.

Zone O Unit O

|
Master) File
Bucket :Bucket

Bucket :Bucket

Zone 0 Unit 1

Trans-
action
File

Excep-
tion
File

[
Bucket :Bucket
1

All old master records should be placed on one unit.

® The file is divided into buckets.

e The file should not contract or expand during the update run.
All transaction records should be placed on the other unit.

NEAT/3 -- FILES Nov, 68
TAB 1 -- PUB. NO. 1 Page 24

MAGNETIC DISC FILES

Zone 0 Unit O Zone 0 Unit 1
1 T
'Master File
Bucket (Bucket 'Bucket Trans- |Excep-

| . .
g o . action|tion
Paddlng|Padd1ng'Padd1ng|r File |File

$m—— —p— — —f

Bucket |Bucket lBucket I1

|
PaddingzPadding:Padding:g

He)
v
le
|

All old master records should be placed on one unit.

e The file is divided into buckets.

e Each bucket has padding.

e Each section has an overflow area.

e Records may be inserted or deleted or changed in length since
an overflow area is specified.

All transaction records should be placed on the other unit.

Four-Zone Packs

When a four-zone pack is used, files may be divided into sections and placed
in a desired zone. The following are examples of situating files on packs for
processing efficiency.

NEAT/3 -- FILES Nov. 68
TAB 1 —- PUB. NO. 1 Page 25

e Files for Father-Son Processing

The 0ld master file and the transaction file should be placed in the same
zone on the same pack. If the old master file and transaction file will
not fit in one zone, more zones may be used.

FILES FOR FATHER—SON PROCESSING — MULTIPLE ZONES

Zone 1 Zone 2

N

([: 0
01d Master Trans- | 01d MasterERoom Trans-
File action | File 1for action
Records File Records :Expan— File
0-10,000 0- 10,001- 1sion 10,001-

10,000 | 15,000 ' 15,000
1

Zone 1
A

New Master New Master
File File

Place related transaction records and old master records in the

same zone.
Place the new master file on the other unit.
Leave room for expansion if new records are added.

e TFiles for Selective Serial Processing - Chained Files for Random Processing

Transaction records may be on the same pack in the same zone as the old
master records; or the transaction records may be on one unit and the old
master records on the other unit. If both types of records are on the
same pack, place related transaction and old master records in the same

zone.

The run is more easily handled if the master file and transaction file
are placed on separate disc units. With the o0ld master records on one
unit and transaction records on the other unit, no distribution run is
necessary to place related transaction and master records in the same
zone.

NEAT/3 -- FILES Nov. 68
TAB 1 -- PUB. NO. 1 Page 26

MAGNETIC DISC FILES

FILES FOR SELECTIVE SERIAL. PROCESSIN(
_STANDARD FILE ORGANIZATION

se—————

Zone 1 Zone 2

Master File Master File Trans-
action
File

Unit O

e All old master records may be placed on one unit in one or more
zones.
e The file may not contract or expand during the update run.

e All transaction records may be placed on the other unit in one or
more zones.
e No distribution run is necessary.

FILES FOR SELECTIVE SERIAL OR RANDOM PROCESSING, NO
OVERFLOW AREA — CHAINED FILE ORGANIZATION

Zone 1 Zone 2
N T
' '
Master File Master File
Bucket | Bucket | Bucket | Bucket Trans-
R ks TR I action

Bucket :Bucket Bucket ;Bucket File

] I
Bucket | Bucket § Bucket | Bucket
|]

Unit O

e All old master records may be placed on one unit in one or more
zones.
o The file is divided into buckets.
e The file may not contract or expand during the update run.

e All transaction records may be placed on the other unit in one or
more zones.
e No distribution run is necessary.

NEAT/3 -- FILES Nov. 68
TAB 1 -- PUB. NO. 1 Page 27

Zone 1 Zone 2
N \r e N

Master File Master File
Bucket jBucket | Bucket :Bucket :

|
Padding:Padding | Padding:Padding|

|
o - — =]
Bucket |Bucket |

i |
Padding|Padding |
i 1

Trans-
action
File

Bucket :Bucket
Padding |Padding
1

£ OHHFH®ODLO

€ O+ H O 4O

|
|
!
|
1

Unit Unit 1

All old master records may be placed on one unit in one or more
zones.
The file is divided into buckets.
Each bucket has padding.
Each section has an overflow area, thereby saving push down
time.
Records may be inserted or deleted or changed in length since
an overflow area is specified.
All transaction records may be placed on the other unit in one or
more zones.
® No distribution run is necessary.

¥ » OPENING FILES ON DISC

Normally, the programmer allows his disc files to be opened automatically;
however, he may use an OPEN instruction. The OPEN instructions applicable to
disc files, OPEN and OPENS, are covered in the NEAT/3 REFERENCE MANUAL,
INSTRUCTIONS, tab 1, "Open Instructions."

® Opening Source Files

When a source file on disc is opened, the software checks the Disc
Directory to insure that the named file exists. Once the file is found,
the data in the directory entry is checked to insure that the desired
version is mounted.

e Opening Destination Files

When a destination file on disc is opened, the disc pack is checked to
insure that the desired space is available for the file. Once this is
confirmed, the software makes entries in the Disc Directory. These
entries contain information for future identification of the file, such
as file name, file type, dates for protection, etc.

NEAT/3 -- FILES Nov. 68
TAB 1 —-- PUB. NO. 1 Page 28

MAGNETIC DISC FILES

If the destination file is a chained file with buckets, certain software
is included to allow the PUT instruction to build the chaining characters
as the file is constructed.

e Opening Source-Destination Files

When a source-destination file on disc is opened, the procedure is similar
to opening a source file. However, if the file cannot be located, the
operator can indicate that a new file is to be created. This allows the
same program that updates a file to create a new file. If the new file
that is created is a chained file, all the chaining characters for all
the sectors are constructed. When this procedure is complete, proces-
sing can begin.

e Opening a Piggyback File

When a piggyback file on disc is opened, the procedure is the same as for
a source file. However, if the file cannot be located, the operator can
indicate that a new file is to be created. This allows the same program
that updates a file to create a new file.

AUTOMATIC FILE ALTERNATION

When a sequentially processed file reaches end-of-section, the software deter-
mines the location of the next section of the file. If the next section is on
the same pack, no alternation of associated files is required. If the next
section is on a different pack, any associated destination file is automatically
alternated (the current section is closed and the new section on the new pack

is opened) if both (or all) specify the same symbolic unit designator. It is
not necessary to use the DEFALT instruction to achieve this alternation.

Randomly processed associated files and associated source or source-destination
files are not automatically alternated; however, a source or source-destination
file reaching end-of-section does initiate the automatic alternation of any
associated destination file.)

CLOSING FILES ON DISC

Normally, the programmer allows his disc file to be closed automatically when
the FINISH instruction is encountered; however, he may use a CLOSE instruction.
The CLOSE instructions applicable to the disc, CLOSE and CLOSEO, are covered
in the NEAT/3 REFERENCE MANUAL, INSTRUCTIONS, tab 1, '"Close Instructions."

e Closing Source Files

When a source file is closed, pertinent entries are made in the Disc
Directory.

e Closing Destination Files

When a destination file is closed, all the buffers for this file that are
not yet empty are output, and the end-of-data sector number is placed in
the Disc Directory. If this is a chained file with buckets, the software
completes the chaining characters for the remaining unused sectors.

NEAT/3 -- FILES Nov. 68
TAB 1 -- PUB. NO. 1 Page 29

e Closing Source-Destination Files

When a source-destination file is closed, any buffers for that file that
are not yet empty are output, and certain entries are made in the Disc
Directory.

e Closing Piggyback Files

When a piggyback file is closed, the procedure is similar to closing a
destination file. All buffers not yet empty are output, and the end-
of-data sector is placed in the Disc Directory.

xxxx

NEAT/3 -- FILES Nov. 68
TAB 1 -- PUB, NO. 1 Page 30

FILE SPECIFICATIONS WORKSHEET FOR DISC

A group of three file specifications sheets for disc files is shown in this
section. Those entries applicable to magnetic tape are not completed; all
other entries, where practical, are filled with a typical remark.

SHEET 1

FILE SPECIFICATIONS WORKSHEET
DISC - MAGNETIC TAPE NICIR]"
1

Program. Prepered by,

— — —— — Date_ _ _ _ __ Page. _ of.

ALL SYMBOLIC NEPERENCES MUST BE LEFT-JUSTIFIED AND MUST COMTAIN AT LEAST OME ALFMABETIC CHARACTEN.
ALL NUNERIC ENTRIES MUST BE 180 ANC MUST BE 70 e LeeT

(Shaded Boxes are Optional)
Paper Tape Format Code

MAGNETIC TAPE OR DISC

. Page-Line

. File Reference — Enter the name to be used in the first
operand of all 1/0 instructions referring to
this file.

Peripheral Type Code (Sce Peripheral Type List in Appendix of Language
Reference Manual)

. Number of Buffers to be reserved for this file (if blank, 1 is assigned)
. File Usage (Enter S for source file: D for destination: P
for a piggyback file: R for a disc source-destination file)

. Type of Blocking — Enter 2 for muiti-record blocks. (1 for single
record blocks, or 3 for non-synchronized records within blocks)

Record Leagth (or maximum size if variable length records)

. Type of Records (Enter F for fixed length: V for variable length
with binary indicators: D for variabic length with decimal
indicators)

. If Variable, is maximum packing to be provided on output? (Y or N)

. Maximum Block Length (Disc — on chained files, the block length
must include ten characters for the Block Header Indicator)

(Magnetic Tape — the block length must include the Block
Length Indicator if present)

. Is a Rescue Point desired at each end of section? (Y or N) (if blank, N is assumed)

. Is this the Standard Rescue File? (Y or N)
(disc — if ves, the file may be used for rescues only) (if blank, N is assumed)

. Type of Dating period

Acceptable period {carliest) for source, piggyback, and
source-destination files. Not used on destination files.

Retention Period for destination, piggyback, or
destinati il Optionally, the laiest

1 P
acceptable period for source files,
. File Name

. End of File Exit (not used on destination files) or
error_exit for random macros

WAGNETIC TAPE ONLY
. Primary Symbolic Unit Designator

. Type of rewind desired on closing? (Enter N for no rewind: R for
rewind only: or U for rewind and unload)

. Are Block Length Indicators to be checked/created? (Y or N) (if blank, N is assumed)

. Delete Digit

. Identification

The programmer should fill in the header, page-line number (Question 1), and

the identification tag (positions 75-80) as defined in the NEAT/3 REFERENCE
MANUAL, INTRODUCTION AND DATA, tab 3, "Programming Worksheets.' The paper tape
code must be punched if paper tape is used for input to the Compiler.

NEAT/3 -- FILES Nov. 68
TAB 1 -- PUB. NO. 2 Page 1

2, FILE REFERENCE - ENTER THE NAME TO BE USED IN IFlolM,A.G.Z.F.I.L.E. Qﬂ
THE FIRST OPERAND OF ALL I/O INSTRUCTIONS

REFERRING TO THIS FILE,

Enter the name used in the GET, PUT, and other I/0 instructions
that access this file in the program.

If this file is to be used in a Father-Son update run, the file
reference name and the file name (Question 16, Sheet 1) must be
different. (For further information, see the NEAT/3 REFERENCE MANUAL,

FILES, "NCR Century File Concepts.')

The file reference name must begin in position 8, may be 10
characters long, and may consist of letters and numerals; how-
ever, at least 1 letter must be included.

The "F" in position 7 is preprinted and must be punched.

3. PERIPHERAL TYPE CODE (SEE PERIPHERAL TYPE LIST
IN APPENDIX OF LANGUAGE REFERENCE MANUAL)

Enter the code that designates the type of disc being used. For
a complete list of the code types, see the NEAT/3 REFERENCE MANUAL,
APPENDIX, tab 1, "Peripheral Type Codes."

The "1" in position 18 is preprinted and must be punched.

4., NUMBER OF BUFFERS TO BE RESERVED FOR THIS FILE D
(IF BLANK, 1 IS ASSIGNED)

Enter the number of buffers desired. Specifying two buffers
provides read/compute or write/compute simultaneity in pro-
cessing this file. However, since the disc is a high-speed
peripheral, two buffers should be assigned to slower peripher-
als first, that is, the printer, punched card reader, punched
tape reader, etc. Then, if memory space permits, multiple
buffers should be assigned to the disc.

A maximum of two buffers is permitted when processing a source-
destination file. However, more than two buffers may be as-
signed for files that are processed sequentially.

If this buffer is shared between two or more files, only 1

buffer may be requested. When this is done, there is no simul-
taneity in inputting or outputting to the files involved. (For
further information on using one buffer for multiple files, see

the discussion on using SAME in the location column in the NEAT/3
REFERENCE MANUAL, INTRODUCTION AND DATA, tab 3, 'Data Layout Sheets."

"1" is assumed if no entry is made.

NEAT/3 -- FILES Nov. 68
TAB 1 -- PUB. NO. 2 Page 2

DISC FILE SPECS.

5. FILE USAGE (ENTER S FOR A SOURCE FILEy D FOR A D
DESTINATION FILE; P FOR A PIGGYBACK FILEy R FOR
A DISC SOURCE-DESTINATION FILE)

Enter "S" if this file is to be a source file in this run. 1In
Father-Son processing the old master file and the transaction
file are source files. In Selective Serial processing the
transaction file is the source file.

Enter "D" if this file is to be a destination file. Most files
are initially created as destination files. An exception is a
chained file with buckets. In Father-Son processing the new
master file is a destination file.

Enter "P" if this file is to be a piggyback file. If a file is
created in segments (such as A through M one day, N through Z
the next day), declare the file a piggyback file each time a
segment is added. In this manner, a file may be extended with-
out rewriting the entire file.

Enter "R" if this file is to be a source-destination file. In
Selective Serial processing or random processing the master file
is a source-destination file.

6., TYPE OF BLOCKING - ENTER 2 FOR MULTI-RECORD
BLOCKS. (1 FOR SINGLE-RECORD BLOCKS.)

Enter "1" if each block is to contain only one record.

Enter "2" if each block is to contain more than one record.
This is the usual type of blocking.

The type of blocking desired is determined by the size of the rec-
ord and by the number of characters that a block can accept. In
the case of the integrated disc on the Century 100, each block can
contain up to 512 characters. If the record length is 100
characters, a maximum of five records can be placed in a block.

7. RECORD LENGTH (OR MAXIMUM SIZE IF VARIABLE 0,1,0,0

LENGTH RECORDS)

Enter the number of characters in each fixed-length record if

all records are the same length. Enter the number of characters
in the maximum-sized record, including the variable length indi-
cator, if the record length is variable. The maximum-size record,
when using the integrated disc, is 512 characters, one sector.
When using chained files, 502 is the maximum.

If the record is 100 characters long, enter 0100.

NEAT/3 =- FILES Nov. 68
TAB 1 -- PUB. NO. 2 Page 3

8, TYPE OF RECORDS (ENTER F FOR FIXED LENGTH, V FOR D
VARIABLE LENGTH WITH BINARY INDICATORS, D FOR
VARIABLE LENGTH WITH DECIMAL INDICATORS)

Enter "F'" if the records are fixed-length.
Enter "V" if variable-length records are used in this file.
The VLI must be the first field in the record.

The VLI field must be two characters long.
e The VLI field must be a binary field.

"D" is not applicable to the disc.

9. IF VARIABLE, IS MAXIMUM PACKING TO BE PROVIDED
ON OUTPUT? (Y OR N)

Enter "Y" if maximum packing of variable-length records is
desired. If maximum packing is specified, the space remaining
in a block is compared to the actual length of the record to be
output. The record is placed in this space if the space is
capable of accepting it.

To best use disc space with variable-length records, maximum
packing should be specified. However, such a selection requires
more memory space for both additional coding and a work area.

The work—area option must be used with the PUT instruction when
maximum packing is specified. See the NEAT/3 REFERENCE MANUAL, IN-
STRUCTIONS, tab 1, "PUT Instructions."

Enter '"N" if maximum packing of records is not desired. If maxi-
mum packing is not specified, the space remaining in a block is
compared to the maximum indicated length of a variable-length
record. If this space is found to be incapable of accepting a
maximum-size record, the block is written out with that space

unused.

Maximum packing may not be desired if disc space is not critical,
but due to program length, memory space is critical. The work-
area option may be excluded from the PUT instruction when "N" is
entered here.

Enter "N" if single record blocking was specified in answer to
Question 6 of this sheet.

10. MAXIMUM BLOCK LENGTH (DISC — ON CHAINED FILES,
THE BLOCK LENGTH MUST INCLUDE TEN CHARACTERS
FOR THE BLOCK HEADER INDICATOR) (MAGNETIC
TAPE — THE BLOCK LENGTH MUST INCLUDE THE
BLOCK LENGTH INDICATOR IF PRESENT)

Enter the total number of characters in a block. On the inte-

NEAT/3 -- FILES Nov. 68
TAB 1 -- PUB. NO. 2 Page 4

DISC FILE SPECS.

grated disc unit for the NCR Century 100, for example, a block may
contain up to 512 characters. If each record were 100 characters
long, the block could contain a maximum of 5 records or 500
characters; therefore, 0500 should be entered.

NOTE

When working with fixed-length records, the maximum block
length must be an even multiple of the record size.

If this is a chained file, add ten to the total block length for the
chaining characters. These characters are inserted automatically by
the software; however, the programmer must define the block length to
include them. Applying the above example to a chained file results in
an entry of 510 characters (0510).

Optional common trunk disc units on the NCR Century 100 have a maximum
block length of 512, 1024, or 2048 characters. All disc units on the
NCR Century 200 have a maximum block length of 512, 1024, 2048, or 4096
characters. Caution must be used, since a specified block length of
520 characters would cause two entire sections to be assigned.

11, IS A RESCUE POINT DESIRED AT EACH END OF SECTION? D
(Y OR N) (IF BLANK, N IS ASSUMED)

Enter "Y" if a rescue point is desired each time this file
reaches the end of a section. If this is a destination file,
the rescue point is placed at the beginning of the next section.
If this is a one-section destination file, no rescue point is
possible or necessary. If this is a source file, the rescue
point is placed on the Standard Rescue File. (See next question
for additional information on the Standard Rescue File.)

"N" is assumed if no entry is made.

Generally, if a program uses source and destination files, the
programmer specifies that the rescue point be taken for the file
that reaches end-of-section most often. Rescue points can be
specified for a source file even if it is the only data file in
a run, as in a trial-balance run. This assumes that a standard
rescue file exists.

12, IS THIS THE STANDARD RESCUE FILE? (Y OR N) (DISC - D
IF YES, THE FILE MAY BE USED FOR RESCUES ONLY)
(1IF BLANK, N IS ASSUMED)

Enter "Y" if this file is to be the Standard Rescue File. Since
it will be written into, it must be a destination file. Only
rescue dumps may be placed in a Standard Rescue File on disc.

If this is a Standard Rescue File, a set of file specification
sheets must be filled out according to the following table, and
a record description must be included on a data layout sheet.

NEAT/3 -- FILES Nov. 68
TAB 1 -- PUB. NO. 2 Page 5

Sheet 1

Standard entries.

1 buffer.

Destination file.

Single-record blocks.

Fixed-length records.

Block length. The Rescue routine writes
blocks of 512 characters. Since the
rescue routine does not use a buffer area
to accomplish this, an entry of 0001 saves
memory space.

11 No rescue is possible on a rescue file.
12 Standard rescue file.

13,14,15,16 Standard entries.

Sheet 2

This sheets, which contains optional entries, is not needed for
a Standard Rescue File on disc.
Sheet 3

Standard entry.

Symbolic designator for the unit contain-

ing the file.

The rescue file is composed of 1 section.

The number of sectors must be large enough
to contain at least one rescue dump. The

minimum number of sectors is 80 + (2 x K).
For a 16K NCR Century 100, 112 sectors are
needed for each rescue dump saved

[80 + (2 x 16) = 112].

The indicated number of sectors requested

is exactly the number required.

For further information concerning rescue, restart, and Standard
Rescue files see the Operating System Manual.

"N'" is assumed if no entry is made.

All sets of file specification sheets must be followed by a record description,
For a Standard Rescue File, fill out a record description with a length of 1
on a data layout worksheet.

b

REFERENCE LOCATION LENGTH VALUE OR PICTURE

8 9 10 11 12 13 14 1S 16 17 19 20 21 22 23|24 25 26 27 31 32 33 34 35 36 37 38 39 40 A1 42 43 44 45 46 47 48 49 SO

L L 1 ¢ % 1 & &t 1 J 1 1 1 Ololol-l 1 1 1 1 1 11 %t @ @ 't 1 't § ¢ % t 1

NEAT/3 -- FILES Nov. 68
TAB 1 -- PUB. NO. 2 Page 6

DISC FILE SPECS.

13. TYPE OF DATING PERIOD

14, ACCEPTABLE PERIOD (EARLIEST) FOR SOURCE,
PIGGYBACK, AND SOURCE-DESTINATION FILES,
NOT USED ON DESTINATION FILES,

15, RETENTION PERIODIFOR DESTINATION, PIGGYBACK,
OR SOURCE-DESTINATION FILES, OPTIONALLY, THE
LATEST ACCEPTABLE PERIOD FOR SOURCE FILES.

Questions 13, 14, and 15, which deal with dates for file pro-
tection, are interrelated and are therefore explained together.

The dates entered here instruct the software to accept only
those files created within a certain period, thereby guarantee-
ing that the current version of a file is processed. The dates
further define how long a file must be saved for backup. Files
may not be written over until this backup date (retention per-

il

iod) has expired; however, files with an expired retention period

are acceptable as source files.

Dates are specified as either work days (WD), work weeks (WW),
or work months (WM), relative to the current date. These work

periods are based on a five-day week (with holidays considered).

Generation numbers (GEN) may also be used. The programmer may
specify that the latest generation or the oldest generation on
a particular disc pack is to be used. He may also specify how
many generations of a file are to be saved.

All generations do not have to be available for the software to
write over an old generation of the file. The software need
only know the number of generations to be kept and the genera-
tion being created. For example, if generation 7 is being
created and three generations are to be saved, the software
would write over generation 2 if this generation were present
on the mounted disc pack.

The software must have the previous generation available in the
form of a source, destination, or source-destination file to
compute the generation number for the file to be created.

When working with generation numbers for source files, the pro-
grammer may use any of the following three entries to answer
question 14,

1. NEW - The newest generation on the disc pack mounted is to

be used. It is the operator's responsibility to mount

the proper pack.

2. OLD - The oldest generation on the disc pack mounted is to

be used. It is the operator's responsibility to mount

the proper pack.

NEAT/3 -- FILES Nov. 68
TAB 1 -~ PUB. NO. 2 Page 7

3. # - The actual generation number if known. This is gen-
erally used only when debugging a program or for in-
put to a utility program.

e Example of Dates

To illustrate how dates might be used, assume the following:

e A destination file (file A) is being created today as a product
of a Father-Son update run.

e File A is to be saved for two weeks as a backup file.

e TFile A is to be used as a source file in exactly one week when
the program is run again.

e Today is Tuesday, January 3. (Use the following calendar in the
example.)

JANUARY 19--

S M T W TF S

1 23 4 5 6 7

8 910 11 12 13 14
15 16 17 18 19 20 21
22 23 24 25 26 27 28
29 30 31

To comply with these assumptions, the dates on the file specification
sheets for destination file A might be filled in as follows:
13. TYPE OF DATING PERIOD

14, ACCEPTABLE PERIOD (EARLIEST) FOR SOURCE, @

PIGGYBACK, AND SOURCE-DESTINATION FILES.
NOT USED ON DESTINATION FILES.,

15. RETENTION PERIOD FOR DESTINATION, PIGGYBACK 0 O 2
OR SOURCE-DESTINATION FILES, OPTIONALLY, TH
LATEST ACCEPTABLE PERIOD FOR SOURCE FlLéS.

These entries indicate that the file is to be kept for two
workweek periods beginning next Monday. (Work weeks begin on
Monday and end on Friday.) Therefore, it may be written over
after January 20.

When File A is used next week (January 10) as a source file, it
must meet the programmer's qualifications for source files as
specified on the file specification sheets.

NEAT/3 -- FILES Nov. 68
TAB 1 -~ PUB. NO. 2 Page 8

DISC FILE SPECS.

The dates on the file specification sheets for source File A might
be filled in as follows:

13. TYPE OF DATING PERIOD

14. ACCEPTABLE PERIOD (EARLIEST) FOR SOURCE, 0,0,1
PIGGYBACK, AND SOURCE-DESTINATION FILES)
NOT USED ON DESTINATION FILES,

15, RETENTION PERIOD FOR DESTINATION PIGGYBACK [z lz m
OR SOURCE-DESTINATION FILES, OPTIONALLY, THE A
LATEST ACCEPTABLE PERIOD FOR SOURCE FlLéS.

These entries indicate that a file is to be accepted as a source
file if it was created during the previous work week. Therefore,
a source file is acceptable on January 10 if it was created in
the period between January 2 and January 6. File A was created
on January 3 and is acceptable.

JANUARY 19--
S M TWTF S
12 3 4 56 7
8 9 10 11 12 13 14
15 16 17 18 19 20 21

22 23 (2925 26 27 28

29 30 31

Question 15 is optional for source files and is used to further
define an acceptable file. For example, 002 might be entered
for Question 14 and 001 for Question 15, with Question 13 re-
maining WW(4. According to these entries, a file is to be ac-
cepted if it was created in a period that started at the begin-—
ning of two work weeks back, and ended at the end of 1 work week
back. If the program was run on January 24, a source file
created between January 9 and January 20 would be acceptable.

If Question 15 was left blank, and 14 remained 002, a source file
created between January 9 and January 13 only would be accepted.
If more than one file, all with the correct name, was created

in the specified period, the first one found is used.

The Disc Directory contains an entry that indicates when each
file was created and when it expires. The dates in the directory
are used to determine if a previously created file meets the
requirements outlined on the file specification sheets.

NEAT/3 —- FILES Nov. 68
TAB 1 -- PUB. NO. 2 Page 9

e Further Examples of Using Dates for File Protection

TYPE OF DATING PERIOD

ACCEPTABLE PERIOD LEARLIEST FOR SOURCE,

PIGGYBACK ND SOURCE—-DESTINATION FILES.

NOT USED 6N DESTINATION FILES.,

RETENTION PERIOD FOR DESTINATIONF PIGGYBACK,

OR SOURCE—-DESTINATION TLES. OPTIONALLY, THE

LATEST ACCEPTABLE PERIOD FOR SOURCE FILéS.

The created file is protected for two additional work days;
that is, it may not be written over (destroyed) until the third
work day after its creation.

DESTINATION FILE EXAMPLE

TYPE OF DATING PERIOD

ACCEPTABLE PERIOD LEARLIEST FOR SOURCE,
YBACK CE—-DESTINATION FILES,

NOT USED ON DESTINATION FILES.

RETENTION PERIOD FOR DESTINATION, PIGGYBACK
S = s IONALLY, THE

LATEST ACCEPTABLE PERIOD FOR SOURCE FILES.

The created file is protected for three generations. It expires
when another file is created whose generation number is greater
than this file's generation number plus three. This example
can be interpreted as follows: keep this generation and three
generations back.

DESTINATION—SCRATCH—FILE EXAMPLE

TYPE OF DATING PERIOD

ACC?PTABLE PERIOD LEARLIEST FOR SOURCE,
1GGYB K AND SOURCE—DESTINATION FILES,

NOT USED ON DESTINATION FILES,

RETENTION PERIOD FOR DESTINATION, PIGGYBACK,
R S

U E—DESTIN . IONALLY, THE
LATEST ACCEPTABLE PERIOD FOR SOURCE FILES,

This indicates the file is a scratch file which will ex-

pire at the end of the day on which it was created; that is,
it may be written over the next day. If the programmer does
not desire to keep the file for the complete day (i.e., the
disc space used by this file is needed during another run), he
may use the CLOSEO instruction to obsolete the file.

NEAT/3 -- FILES Nov. 68
TAB 1 —- PUB. NO. 2 Page 10

DISC FILE SPECS.

TYPE OF DATING PERIOD
pSSEETABLE Periop [earticsT] For sounce,
NOT USED ON' DESTINATION FILES,

FOR DESTINATION GGYBACK,

RETENTION PERIQD Pl
OR SOURCE-DESTINATION FILES, OPTIONALLY, THE
LATEST ACCEPTABLE PERIOD FOR FILES,

This indicates that the program accepts a scratch file created
the day the program is run.

- SOURCE FILE EXAMPLE

13. TYPE OF DATING PERIOD

14. ACCEPTABLE EER[%D IEARLIEST‘ FOR SOURCE?
PIGGYBACK, AND .

NOT USED ON DESTINATION FILES,

15, TENTION PERIOD FOR DESTINATION, PIGGYBACK,
BRSO URCE-DE = TINATION FILES. OPTIONALLY, THE_
S

This indicates that the program accepts a source file if it was
created five work days back. Only a file created on that day
is accepted.

TYPE OF DATING PERIOD
ACCEPTABLE PERIOD |JEARLIEST]| FOR SOURC

NOT USED ON DESTINATION FILES, ’
BEIENIunLEEBLﬁQ FOR DESTINATION GYBACK,
OR SOURCE—DESTINATION FILES, OPT NALLY, THE 4N N"i]

This indicates that the latest generation on the disc pack pre-

sently mounted is to be used. It is the operator's responsibil-
ity to mount the proper pack.

NEAT/3 -- FILES Nov. 68
TAB 1 -- PUB. NO. 2 Page 11

TYPE OF DATING PERIOD

ACCEPTABLE PERIOD [EARLIEST] FOR SOuRCE,

PIGGYBACK, AND SOURCE—DESTINATION FILES,
NOT USED ON DESTINATION FILES,

BETE?TIOE PERIOD FOR DESTINATION, PIGGYBACK
OR SOUR - ATION FILES., OP+15NKLLY THE

LATEST ACCEPTABLE PERIOD FOR SOURCE FILéS.

This indicates that a file created the same week is to be ex-
tended. All additional segments to the file will have the same
creation and expiration date as the original segment.

If the file cannot be located, the operator is given the option
of creating a new one. If a new file is created, the answer to
Question 15 is used to establish the expiration date for it. 1In
this way, the same program may be used to create a piggyback
file and extend it.

OURCE-DESTINATION FILE EXAMPLE

TYPE OF DATING PERIOD

ACCEPTABLE PERIOD LEARLlEST FOR SOURCE,
PIGGYBACK D SOURCE—DESTINATION FILES.
NOT USED ON DESTINATION FILES,

RETENTION PERIOD FOR DESTINATION, PIGGYBACK,
OR SOURCE—-DESTINATION FILES. OP'F']ONALL.Y THE
LATEST ACCEPTABLE PERIOD FOR SOURCE FILéS.

This indicates that a file created one week ago is to be used.

If the file cannot be located, the operator is given the option
of creating a new one. If a new file is created, the answer to
Question 15 is used to establish the expiration date for it. 1In
this way, the same program may be used to create a source-des-—
tination file and update it.

e Virtual Date and Actual Date

The date the file was created is obtained from an entry made to the
system at the start of each workday. This entry contains two dates:
the actual date and the virtual date.

e Actual date is today's date.
e Virtual date is the date the program is scheduled to be run.

Generally, the actual date and the virtual date are the same. However,
an unavoidable interruption could interfere with a program being run on
a scheduled date. In this case, the program could be run the next day,
using the previous day's date as the virtual date.

NEAT/3 —- FILES Nov. 68
TAB 1 —— PUB. NO. 2 Page 12

DISC FILE SPECS.

e Example of Virtual and Actual Date

Phase 1: The program is to write File A and save it for one additional
day. This program is normally run on January 4; but since the
processing could not be done on that day, the program is run
on January 5.

The actual and virtual dates are entered into the system at
the beginning of the day as follows:

Actual date - January 5 Virtual date - January 4

When File A is created, the Disc Directory will contain the
following creation and expiration dates:

Date created - January 4 Date expires - January 6
The files written on January 5 may now be used in Phase 2.

Phase 2: The program is to use File A one day after it is created.
This program is usually run on January 5.

New actual and virtual dates are entered after completion
of the programs usually run on January 4.

Actual date - January 5 Virtual date - January 5

File A is acceptable since it was written using the virtual
date January 4, and this is actually January 5. Any files
written in Phase 2 contain January 5 as the date created.

Programs may be run over a period of days using virtual dates until the
work is back on schedule. When the system is back on schedule, all
files contain valid dates that are acceptable to their associated

programs.

M,AG2z FILE®ZH

16, FILE NAME

Enter the file name as it is to appear in the Disc Directory.

For Father-Son processing this name should be different than the
file reference name. If the file is a source-destination file,

this entry mav be the same as the file reference name. (For

further detail, see the NEAT/3 REFERENCE MANUAL, FILES, "NCR Century
File Concepts.')

NEAT/3 -- FILES Nov. 68
TAB 1 -- PUB. NO. 2 Page 13

17. END OF FILE EXIT (NOT USED ON DESTINATION FILES) E.N,D.F.I.L.E.M.M.lj
OR ERROR EXIT FOR RANDOM PROCESSING INSTRUCTIONS,

END-OF-FILE EXIT

Enter the name of the routine to be given control when end-of-
file is reached. The software links to this routine when the
end of a sequentially processed source or source-destination file
is reached.

If the programmer wishes to return control to the instruction
following the one that caused the link to the end-of-file routine,
he may do so by using a RELINK instruction without an operand.

GET MASTERFILE

-\
\

M~ — - ENDFILE

r 1 Desired end-of-file coding.
L-_J

[

RELINK (No operand).

If the programmer wishes to return control to a different in-
struction or routine, he may do so by using a RELINK instruction
that names the desired routine as an operand. The LINK or
BRANCH instruction may not be used for this purpose.

GET MASTERFILE

ENDFILE

r’ '1 Desired end-of-file coding.
L

I

RELINK OTHERUTINE

For further details concerning RELINK and RELINK with an operand, see
the NEAT/3 REFERENCE MANUAL, INSTRUCTIONS, tab 2, '"Link and Relink
Instructions."

NOTE

Once an end-of-file exit is taken, the last record in the
input buffer is no longer accessible to the program.

ERROR EXIT FOR RANDOM PROCESSING INSTRUCTIONS

Enter the name of the routine to be given control if a random access is
used specifying an illegal section or illegal relative sector number.
The routine that is given control must end with a RELINK instruction.
This entry is used when randomly processing a source-destination file.

NEAT/3 -- FILES *uwx Nov. 68
TAB 1 -- PUB. NO. 2 Page 14

DISC FILE SPECS.

SHEET 2

The information on this sheet is optional. If none of the options are

desired, the entire sheet may be eliminated.

FILE SPECIFICATIONS WORKSHEET
DISC - MAGNETIC TAPE
SHEET 2 - OPTIONAL

Program. __ Prepared by

[NCR]*

. Date_ . _

Page.

ALL SYMBOLIC REFENENCES MUST BE LEFT-JUSTIFIED AND MUST CONTAIN AT LEAST ONE ALPHABETIC CHARACTER.
ALL NUMERIC ENTRIES MUST BE RIGHT.JUSTIFIED AND MUST BE ZERO-FILLED YO THE LEPT.

(Shaded Boxes Are Optional)

Paper Tape Format Code

1.0.7/=

MAGNETIC TAPE OR DISC

. Page-Line

. User Routine after Scction Open — (Sce File Spec. Sheet

section of Language Reference Manual)

. Enter 3 for Disc; 4 for Magnetic Tape

. User Routine before Section close — (Sce File Spec. Sheet

section of Language Reference Manual)

. Header Offset — The number of characters to be ignored at the start
of each block. (Blank for chained files.)

. Data Format Code — See Data Format Code Chart in Appendix of Language
Reference Manual. (if blank, processor internal code is used)

M

. Data Format Error Exit

. If this filc is to be re-opened during this run, indicatce sccondary file usage — S for source;

-“
D for destination; R for source-destination; P for piggyback; (if blank, no re-open is assumed) D’

DISC_ONLY

. Entry Type (Enter 00 for data file; 01 source program: 02
ohjcct program: 05 association; 06 control string;
O4 for cither control string or object program) (if blank, 00 is assumed)

E)
. Arc any Random Accesses made 1o this file during this program? (Y or N) (if ‘blank, N is assumed)) D,

0

. Is this filc a chained file? (Y or N) (if blank, N is assumed)

. If chaincd file enter the number of sectors per file bucket
(Enter ALL m if entire file is one bucket)

. Is an overflow file area included? (Y or N) (if blank, N is assumed)

MAGNETIC TAPE ONLY
. Al Sy i ig (if biank, primary is assumed)

. Set Identification
. Accessibility Code
. Is this a Multi-File Volume Set? (Y or N) (if blank, N is assuined)

. If multi-file voluine, is a Rewind before Open desired? (Y or N) (if blank, N is assumed)

. Delete Digit

. Identification

I R R S T) lE

CTRADERARE AEG. U.S. PAT. OFY.

The programmer should fill in the header, page-and-line number (Question 1),
and the identification tag (position 75-80) as defined in the NEAT/3 REFERENCE

MANUAL, INTRODUCTION AND DATA, tab 3, "Programming Worksheets."

The paper tape

format code must be punched if paper tape is used for input to the Compiler.

NEAT/3 -- FILES
TAB 1 —— PUB. NO. 2

Nov. 68
Page 15

2. USER ROUTINE AFTER SECTION OPEN — [SEE FILE SPEC. LFI
SHEET SECTION OF LANGUAGE REFERENCE MANUAL] i

This optional entry contains the reference name of the routine
to be given control immediately after the second and each sub-
sequent section of the file is opened. Control is also trans-
ferred here after the first section is opened if an OPEN in-
struction is used for this file.

GET, PUT, OPEN, CLOSE, DEFALT, and other I/0 instructions may
not be executed in the user routine. RELINK must be the final
instruction in the routine to return control to the software.

"F" is preprinted in position 7 and must be punched.

3. ENTER 3 FOR DISC, 4 FOR MAGNETIC TAPE

Enter "3" for disc.

""2" is preprinted in position 18 and must be punched.

4. USER ROUTINE BEFORE SECTION CLOSE - [SEE FILE SPEC.

SHEET SECTION OF LANGUAGE REFERENCE MANUAL]

This optional entry contains the reference name of the routine
to be given control before each section is closed - with the ex-
ception of the last section. Control is also transferred here
before the last section is closed if a CLOSE instruction is used

for this file.

GET, PUT, OPEN, CLOSE, DEFALT, and other I/0 instructions may
not be executed in the user routine. RELINK must be the final
instruction in the routine, to return control to the software.

5. HEADER OFFSET — THE NUMBER OF CHARACTERS TO BE l::]
IGNORED AT THE START OF EACH BLOCK. |[BLANK FOR
CHAINED FILES,]

This optional entry contains the number of characters that are to be
ignored by the GET or RGET instruction when the first record in the
block is requested. If 50 was entered, the GET or RGET instruction
that affected the first record in a block would present a record be-
ginning with the 51st character. This option is for standard files
only; it does not refer to the 10 characters used for chaining in
chained files.

Record Record Record

1 2 3 Block

Header

50 characters ignored if 50 is entered.

Zero is -assumed if no entry is made.

NEAT/3 -- FILES "Nov. 68
TAB 1 -- PUB. NO. 2 Page 16

DISC FILE SPECS.

6. DATA FORMAT CODE - SEE DATA FORMAT CODE CHART IN
APPENDIX OF LANGUAGE REFERENCE MANUAL, (1IF BLANK,
PROCESSOR INTERNAL CODE 1S USED)

This optional entry contains a number that designates the format
code for this file on the disc. This entry should be left
blank since Century internal code is the only disc format code
acceptable at this time.

7. DATA FORMAT ERROR EXIT

This optional entry is used only if a translation was asked for
in Question 6. If an illegal character is detected during de-
code, control is given to the routine referenced here. (Since
at present the disc uses only NCR Century interal code, no
decode occurs.)

8., IF THIS FILE IS TO BE RE-OPENED DURING THIS RUN,
INDICATE SECONDARY FILE USAGE — S FOR SOURCE,
D FOR DESTINATION, R FOR SOURCE-DESTINATION, P
FOR PIGGYBACK (IF BLANK, NO RE-OPEN IS ASSUMED)

If this file is re-opened during the run, enter the letter that
indicates the type of file desired upon re-opening. Multiple
re-opens are permitted but must be restricted to the two types
stated; however, the second re-open must declare the file type
as being the same as at initial open (Question 5, Sheet 1).

Enter "S" if the file is first re-opened as a source file.
Enter "D" if the file is first re-opened as a destination file.

Enter "R" if the file is first re-opened as a source-destination
file.

Enter "P" if the file is first re-opened as a piggyback file.
9. ENTRY TYPE (ENTER 00 FOR DATA FILE, 01 SOURCE D
PROGRAM, 02 OBJECT PROGRAM, 05 ASSOCIATION, 06

CONTROL STRING, 04 FOR EITHER CONTROL STRING OR
OBJECT PROGRAM (IF BLANK, 00 IS ASSUMED)

This optional entry is primarily for utility routines, and the
proper entry is indicated in the utility routine writeup.

"00" is assumed if no entry is made.

NEAT/3 -- FILES Nov. 68
TAB 1 -- PUB. NO. 2 Page 17

10. ARE ANY RANDOM ACCESSES MADE TO THIS FILE DURING D
THIS PROGRAM? (Y OR N) (1IF BLANK, N IS ASSUMED)

This optional entry is used if random processing occurs with
this file.

Enter "Y" if random accesses are made to the file in this
program.

If this entry is left blank no random accesses to this file are
permitted in this program and the file must be processed se-
quentially.

11. 1S THIS FILE A CHAINED FILE? (Y OR N) (IF BLANK, N IS ASSUMED) D

This optional entry is used with chained files only.
Enter "Y' if this is a chained file.

If this is a new source-destination file and "Y" is entered,
the software constructs chaining characters for each sector and
places them in the 10 characters reserved for chaining in that
block (sector). End-of-bucket marks are also constructed and
placed in the 10 chaining characters of the last block (sector)
in each bucket.

Leave blank if this is a standard file. ('N" is assumed.)

12, IF CHAINED FILE, ENTER THE NUMBER OF SECTORS E

PER FILE BUCKET (ENTER ALL[J IF ENTIRE FILE IS
ONE BUCKET)

This optional entry must be used if this is a chained file.
Enter the number of sectors to be placed in each bucket. Spec-
ial software needed when buckets are used is included in the
object program. Enter ALL[A if the file is to be contained in

one bucket.

Leave blank if the file is a standard file. ('N" is assumed.)

NEAT/3 -- FILES Nov. 68
TAB 1 -- PUB. NO. 2 Page 18

DISC FILE SPECS.

13. IS AN OVERFLOW FILE AREA INCLUDED? (Y OR N) (IF D
BLANK, N IS ASSUMED)

This optional entry pertains to chailned files only.

Enter "Y" if an overflow area is desired on a new file, or if

an overflow area exists on a previously constructed file.

Special software is included when an overflow area is constructed
or is present. Use of an overflow area is strongly recommended
when the INSERT instruction is used.

Leave blank if an overflow area is not desired or if an over-
flow area does not exist. ("N" is assumed.)

NEAT/3 -- FILES Nov. 68
TAB 1 -~ PUB. NO. 2 Page 19

SHEET 3

FILE SPECIFICATIONS WORKSHEET
DISC SECTION CONTROL
SHEET 3

Progr. Prepared by

Date

ALL SYMBOLIC REFERENCES MUST BE LEFT-JUSTIFIED AND MUSY CONTAIN AT LEAST ONE ALPHABETIC CHARACTER
ALL NUMERIC ENTRIES MUSY BE RIGHT-JUSTIFIED AND MUST BE ZERO-FILLED TO THE LEFT

(Shaded Boxes are Optional)
Paper Tape Format Code

PACK MAPPING

. Symbolic Unit Designator

. Disc Pack Format (0 format; 1 format; 9 format.)

NOTE: If zone mapping is not desired, make entries only under zone 0 for
questions 4, 5, & 6; if zone mapping is desired, make entries under all
zones (zeroes are acceptable).
Zone 0 Zone 2
. Section Number V “
. Number of sectors to allocate
for this section of the
file (includes the over-
flow area)

. Number of sectors to allocate
for overflow within the
above area for this file
section

ALTERNATION

. Alternate Symbeolic Unit Designator. (See the Disc
File Spec. Sheet Section of the Language Reference Manual.)

. Maximum number of sections mounted at one time (random
processing only)

FILE ALLOCATION

May be omitted for source files or existing source-destination files.

. Is the requested number of sectors:
E exactly the size area required
A an approximation of the size area required
(if blank, E is assumed)

. Are Disjoint Pieces acceptable if the number of sectors cannot be
found in one piece? (Y or N).(Sequential processing only)
(if blank, N is assumed)

. If there is an unused area at the end of this file, within the
number of sectors allocated, should it be:
R reserved for this file?
F freed up for use by other files?
(if blank, R is assumed)

. Delete Digit

. Identification

$These questions should be answered only on the last Section Control Sheet for each file.

*TRACEMARK REQ. U8,

The programmer should fill in the header, page-and-line number (Question 1),
and the identification tag (position 75-80) as defined in the NEAT/3 REFERENCE
MANUAL, INTRODUCTION AND DATA, tab 3, 'Programming Worksheets.'" The paper
tape format code must be punched if paper tape is used for input to the
Compiler.

"F'" is preprinted in position 7 and must be punched.

NEAT/3 -- FILES Nov. 68
TAB 1 -- PUB. NO. 2 Page 20

DISC FILE SPECS.

SYMBOLIC UNIT DESIGNATOR
DISC PACK FORMAT (0 FORMAT]
IF ZONE MAPPING IS NOT DESIRED,

9 FORMAT)
MAKE

1 FORMAT;

NOTE:
ENTRIES ONLY UNDER ZONE 0 FOR QUESTIONS
a, s, IF ZONE MAPPING IS DESIRED, MAKE

ENTRIES UNDER ALL ZONES (ZEROES ARE

& 69

ACCEPTABLE) .
ZONE 0

]

SECTION NUMBER

ZONE 1 ZONE 2

NUMBER OF SECTORS TO ALLO-
CATE FOR THIS SECTION OF THE

L. .|

L]

FILE (INCLUDES THE OVERFLOW
AREA)

NUMBER OF SECTORS TO ALLO-

Lo, .|

] By Biaasd

CATE FOR OVERFLOW WITHIN
THE ABOVE AREA FOR THIS FILE
SECTION

Questions 2, 3, 4, 5, and 6, which deal with pack mapping, are

interrelated and are therefore explained

together.

Questions 3, 4, 5, and 6 initially pertain to the disc pack re-

siding on the unit named in Question 2.

On an NCR Century System

with one dual disc unit, the two possible Symbolic Unit Desig-

nators for Question 2 are DOl and DOZ2.

Question 3 is used to indicate in which format the disc pack

was initialized.

Enter "1" if the pack was initialized in

Format 1 or enter "9" if the pack was initialized in Format 9.
(Format 0 is reserved for future implementation.)

Questions 4, 5, and 6 are used to map the files on the pack.
If the file currently exists, only question 4 need be answered.
If a new file is to be created, all three questions are

pertinent.
whether the pack is a one-zone pack or a

The manner in which the files are mapped indicates

four-zone pack.

If a one-zone pack is desired, Questions 4, 5, and 6 must be

answered under zone 0 only.
must be left blank.

Entries under zones 1, 2, and 3

If a four-zone pack is desired, Questions 4, 5, and 6 must be answered

under all zones being used.

Zeros must be entered for Question 4

under those zones that are not used for this file.

The following conventions must be observed when assigning section

numbers (question 4):

e All sections of a file must be numbered consecutively, beginning

with 01.

NEAT/3 -- FILES
TAB 1 —— PUB. NO. 2

The maximum number that can be used is 99.

For example,

Nov. 68
Page 21

the first four sections of a file would be assigned section numbers
01, 02, 03 and 04.

e Although section numbers must be consecutive, their zone assignment
need not be in ascending order. For example, file section numbers
02, 04, 03 and 01 could be presented for zones 0, 1, 2 and 3 re-
spectively. Consider the following illustration:

ZONE ©0 ZONE 1 ZONE 2 ZONE 3

23 25 27 29
4.SECTION NUMBER IOIZI,I IO, IM 0,5!% [0,1]x

e If more than one disc pack mapping worksheet (sheet 3) is used, the
lowest section number on any following sheet must be higher than
the highest section number presented on the preceding sheet.

o Examples of Pack Mapping - One Zone

Following are three examples of pack mapping on a one-zone pack.

PACK MAPPING — NEW FILE WITH OVERFLOW AREA

SYMBOLIC UNIT DESIGNATOR

DISC PACK FORMAT (0 FORMAT; 1| FORMAT,

9 FORMAT)

NOTE: [IF ZONE MAPPING 1S NOT DESIRED, MAKE
ENTRIES ONLY UNDER ZONE 0 FOR QUESTIONS
4, 5, & 6] IF ZONE MAPPING IS DESIRED, MAKE
ENTRIES UNDER ALL ZONES (ZEROS ARE
ACCEPTABLE) .,

’

ZONE 0o ZONE 1 ZONE 2
SECTION NUMBER 1011] [.1 L ._] l N]
NUMBER OF SECTORS TO ALLO-
CATE FOR THIS SECTION OF THE &3‘0'0] [e] L‘—l—-‘] El——l—l—-l

FILE (INCLUDES THE OVERFLOW

EA)
:ZMBER OF SECTORS TO ALLO- [0.2.5.‘)] l L .1 | L1 l L_;_.__._]

CATE FOR OVERFLOW WITHIN THE
ABOVE AREA FOR THIS FILE

SECTION

This example illustrates that a one-section file with an over-
flow area is to be constructed on disc unit DOl. Since the one
section is mapped under zone O and no entries appear under the
other zones, this is a one-zone pack.

The answer to Question 5 indicates the number of sectors in the
entire section. In the example, 2300 sectors are allocated to
the file. This includes those sectors to be allocated to the
overflow area.

The answer to Question 6 indicates the number of sectors from
Question 5 that are to be allocated to the overflow area. In
the example, the last 250 sectors of the 2300 requested are for
overflow.

NEAT/3 -- FILES Nov. 68
TAB 1 -- PUB. NO. 2 Page 22

DISC FILE SPECS.

'PACK MAPPING — NEW FILE WITHOUT OVERFLOW AREA
SYMBOLIC UNIT DESIGNATOR

DISC PACK FORMAT (0 FORMAT; 1| FORMAT;
9 FORMAT.)
NOTE: IF ZONE MAPPING IS NOT DESIRED, MAKE

ENTRIES ONLY UNDER ZONE 0 FOR QUESTIONS

4, 5, & 6; IF ZONE MAPPING IS DESIRED, MAKE

ENTRIES UNDER ALL ZONES (ZEROS ARE

ACCEPTABLE) .

SECTION NUMBER m E
]
1 1

NUMBER OF SECTORS TO ALLO-—
Dlojojgl l [| LJ [i

CATE FOR THIS SECTION OF THE

FILE (INCLUDES THE OVERFLOW

AREA)

NUMBER OF SECTORS TO ALLO- l J I I r J [|
§ 1 1 [T | I - i1 1

CATE FOR OVERFLOW WITHIN THE

ZONE 1 ZONE 2 ZONE 3
l

L.

ABOVE AREA FOR THIS FILE
SECTION

This example illustrates that a one-section file without an
overflow area is to be constructed on disc unit DO2. Since the
one section is mapped under zone 0 and no entries appear under
the other zones, this is a one-zone pack.

The answer to Question 5 indicates the number of sectors in the
entire section. In the example, 3000 sectors are allocated to
the file, in zone O.

NEAT/3 -- FILES Nov. 68
TAB 1 —-- PUB. NO. 2 Page 23

ISTENT FILE WITH OR WITHOUT OVERFLOW

~ PACK MAPPING — EX

2. SYMBOLIC UNIT DESIGNATOR 3;D,0,1

3. DISC PACK FORMAT (0 FORMAT; 1 FORMAT;
9 FORMAT)
NOTE: IF ZONE MAPPING IS NOT DESIRED, MAKE
ENTRIES ONLY UNDER ZONE 0 FOR QUESTIONS

4, 5, & 63 IF ZONE MAPPING IS DESIRED,

MAKE ENTRIES UNDER ALL ZONES (ZEROS

ARE ACCEPTABLE) .

ZONE 0 ZONE 1 ZONE 2 ZONE 3

4, SECTION NUMBER [: :] E
A N PR I P I

5, NUMBER OF SECTORS TO ALLO- r
1
CATE FOR THIS SECTION OF THE
FILE (INCLUDES THE OVERFLOW

AREA)
6. NUMBER OF SECTORS TO ALLO- I
CATE FOR OVERFLOW WITHIN THE L
ABOVE AREA FOR THIS FILE

I I b

e
L

SECTION

This example illustrates that a one-section file exists on disc
unit DO1l. The programmer need only indicate under zone O that
this is a one-section-per-pack file.

NEAT/3 -- FILES Nov. 68
TAB 1 -- PUB. NO. 2 Page 24

DISC FILE SPECS.

e Examples of Pack Mapping - Four Zones

Following are three examples of pack mapping on a four-zone pack.

PACK MAPPING — NEW FILE WITH OVERFLOW AREA

SYMBOLIC UNIT DESIGNATOR

DISC PACK FORMAT (0 FORMAT; 1 FORMAT;

9 FORMAT)

NOTE: |IF ZONE MAPPING IS NOT DESIRED, MAKE
ENTRIES ONLY UNDER ZONE 0 FOR QUESTIONS
4, 5, & 6; IF ZONE MAPPING IS DESIRED,
MAKE ENTRIES UNDER ALL ZONES (ZEROS
ARE ACCEPTABLE) ,

ZONE 0 ZONE 1 ZONE 3

NUMBER OF SECTORS TO ALLO-
CATE FOR THIS SECTION OF THE 10,51040[LIIS.OLQJ I] r':1 ['u L1 l

FILE (INCLUDES THE OVERFLOW

AREA)
NUMBER OF SECTORS TO ALLO- lololslol loazlolol I I ¢ [‘l (I |

CATE FOR OVERFLOW WITHIN
THE ABOVE AREA FOR THIS FILE
SECTION

This example illustrates that a 2-section file with an overflow area
is to be constructed on disc unit DOl. The answer to Question 4
shows that the first section is in zone 0, and the second section is
in zone 1. Since this is a 4-zone pack, zeros must be entered under
zones 2 and 3.

The answer to Question 5 indicates the number of sectors desired in
each section of the file. In the example, 500 sectors (0500) are
allocated to the file in zone 0; 1800 sectors are allocated to the
file in zone 1. The answer to Question 5 includes those sectors to
be allocated to the overflow area.

The answer to Question 6 indicates the number of sectors from
Question 5 that are to be allocated to the overflow area. In
the example, the last 50 sectors of the 500 sectors requested

in zone 0 are for overflow, and the last 200 sectors of the 1800
sectors requested for zone 1 are for overflow.

NEAT/3 -- FILES Nov. 68
TAB 1 -- PUB. NO. 2 Page 25

PACK MAPPING — NEW FILE NO OVERFLOW AREA

SYMBOLIC UNIT DESIGNATOR

DISC PACK FORMAT (0 FORMAT; 1 FORMAT;

9 FORMAT)

NOTE: IF ZONE MAPPING IS NOT DESIRED, MAKE
ENTRIES ONLY UNDER ZONE 0 FOR QUESTIONS
4, 5, & 6; IF ZONE MAPPING IS DESIRED,
MAKE ENTRIES UNDER ALL ZONES (ZEROS
ARE ACCEPTABLE) ,

ZONE 0 ZONE 1 ZONE 2 ZONE 3

SECTION NUMBER

NUMBER OF SECTORS TO ALLO-
CATE FOR THIS SECTION OF THE | Ly l |1,’5|'0l0| 111510,0] L L I
FILE (INCLUDES THE OVERFLOW

AREA)
NUMBER OF SECTORS TO ALLO- l 1y l I L i 1] I L 1] [Lo x]
CATE FOR OVERFLOW WITHIN THE

ABOVE AREA FOR THIS FILE

SECTION

This example illustrates that a 2-section file without an overflow
area is to be constructed on disc unit DO2. The answer to Question
4 shows that the first section is in zone 1, and the second section
is in zone 2. Since this is a 4-zone pack, zeros must be entered

under zone 0 and zone 3.

The answer to Question 5 indicates the number of sectors desired in
each section of the file. 1In the example, 1500 sectors in zone 1 and
1500 sectors in zone 2 are allocated to the file.

NEAT/3 -- FILES Nov. 68
TAB 1 -- PUB. NO. 2 Page 26

DISC FILE SPECS.

PACK MAPPING

SYMBOLIC UNIT DESIGNATOR

DISC PACK FORMAT (0 FORMAT; 1| FORMAT;

9 FORMAT.)

NOTE: IF ZONE MAPPING IS NOT DESIRED, MAKE
ENTRIES ONLY UNDER ZONE 0 FOR QUESTIONS
4, 5, & 6; IF ZONE MAPPING IS DESIRED, MAKE
ENTRIES UNDER ALL ZONES (ZEROS ARE
ACCEPTABLE) .,

SECTION NUMBER

NUMBER OF SECTORS TO ALLO- e
CATE FOR THIS SECTION OF THE I L1 1 I r
FILE (INCLUDES THE OVERFLOW

AREA)

NUMBER OF SECTORS TO ALLO-

CATE FOR OVERFLOW WITHIN

THE ABOVE AREA FOR THIS FILE

SECTION

This example illustrates that a three-section file exists on
disc unit DO2. The programmer need only indicate in which
zones the sections exist.

IR R 2

NEAT/3 -- FILES Nov. 68
Page 27

TAB 1 -- PUB. NO. 2

ALTERNATION

7. ALTERNATE SYMBOLIC UNIT DESIGNATORS.

(SEE THE DISC FILE SPEC, SHEET SECTION OF THE
LANGUAGE REFERENCE MANUAL,)

This entry, which is for sequentially-processed files only, is
always left blank for random processing. For random processing,
a separate Section Control Sheet must be included which names
each disc spindle (Question 2) and indicates the pack mapping
for the pack on the named spindle.

If this entry is left blank and the file is sequentially pro-
cessed in this run, the primary spindle (Question 2) and the
alternate spindle are assumed to be the same.

If an alternate spindle is specified here, the pack mapping indi-
cated in Questions 3, 4, 5 and 6 is applicable to the pack on

the specified alternate unit. The interaction between the
primary and alternate units during processing is covered in the
table that follows.

NOTE

When a file reaches end-of-section and the next
section is on a different pack, that file and any
associated destination files are automatically
alternated (current sections closed and new sections
on the new pack opened) if all specify the same
alternate symbolic unit designator. It is not
necessary to use the DEFALT instruction to

achieve this alternation.

More than one Section Control Sheet must be used any time differ-
ent mapping than that specified on the first sheet is desired, or
any time the file occupies three or more packs, and more than two
spindles are involved. The interaction between the primary and
alternate spindles during processing is covered in the table that
follows.

If multiple Section Control Sheets are used, Question 7 is
answered on any one sheet. If this entry is left blank on all
sheets, all further packs of the file are processed on the
spindle named in Question 2 of that last sheet. If a spindle
is named in Question 7 on any control sheet, further packs are
processed alternately between the primary spindle (Question 2)
and the alternate spindle.

Following is a table showing the relationship of Question 2 and
7 on the pack mapping of sequentially-processed files. In using
this table assume the system uses three discs, the integrated
discs (DOl and DO2) and one spindle of a freestanding disc unit
(D03).

NEAT/3 -- FILES Nov. 68
TAB 1 -- PUB. NO. 2 Page 28

DISC FILE SPECS

Any time the mapping specified for a disc pack has been completed, the
operator receives a message informing him of this fact. In response, he
may enter 21, which indicates that the processed pack is to be changed
before processing continues to the alternate pack or to the primary pack
specified on the next control sheet; or he may enter EE, which indicates
that the processed pack is not to be changed before processing continues
to the alternate pack or to the primary pack specified on the next control
sheet. The programmer must provide the operator with the appropriate
instructions on his run sheet.

CONTROL
SHEET

QUESTION
2

QUESTION
7

RESULT

Only One

DO1

DO1
(or blank)

All processing is done on the disc
unit spindle designated as D0Ol. The
operator is informed when the map-
ping specified on the control sheet
has been completed. If he enters
EE, the same mapping is continued on
the same pack. If he enters 21, he
may change packs on DOl and then
continue with the same mapping on
the new pack. D01—»D01—=D01

First
Second

DO1
(or blank)

All processing is done on spindle
DO1. The operator is informed when
the mapping specified on both sheets
has been completed. If he enters
EE, the mapping specified on the
second sheet is continued on the
same pack. If he enters 21, he may
change packs on DOl and then contin-
ue on the new pack with the mapping
specified on the second sheet.
DO1—=D01—»DO1

Processing begins on spindle DO1l.
The operator is informed when the
mapping specified on both sheets
has been completed. If he enters
EE, the mapping specified on the
second sheet is immediately contin-
ued on D02 (no pack change on DOl.)
If he enters 21, processing contin-
ues on D02 (after the appropriate
pack change on DOl) with the mapping
specified on the second sheet. The
operator is informed when this map-
ping has been completed; he may
enter EE or 21 (as explained previ-
ously) and continue processing on
D01, with the mapping specified on
the second control sheet.
DO1—»D02—D01l—=Etc.

NEAT/3 -- FILES
TAB 1 -- PUB. NO. 2

Nov.
Page

68
29

CONTROL
SHEET

QUESTION
2

QUESTION
7

RESULT

Only One

DO1

D02

Processing begins on spindle DOI.

The operator is informed when the
specified mapping has been completed.
If he enters EE, the same mapping is
immediately continued on D02 (no pack
change on D0l.) If he enters 21,
processing continues on D02 (after
the appropriate pack change on DO1)
with the same mapping. The operator
is informed when this mapping has
been completed; he may enter EE or
21 and continue processing on DO1,
with the mapping specified on the
second control sheet.
DO1—D02—=D01—>Etc.

First
Second

Processing begins on spindle DOl.
The operator is informed when the
mapping specified on the first sheet
has been completed. If he enters
EE, no pack change is made and map-
ping continues. If he enters 21,
processing continues on D02, after
the appropriate pack change on DO1,
with the mapping specified on the
second sheet. The operator is in-
formed when this mapping has been
completed on DO2. He may then
elect either to continue on the same
pack or to change packs on DO2.
DO1—D02—»D02—=Etc.

First
Second

NEAT/3 -- FILES
TAB 1 —— PUB. NO. 2

Processing begins on spindle DO1.
The operator is informed when the
mapping specified on the first sheet
has been completed. If he enters
EE, no pack change is made and map-
ping continues on D02. If he enters
21, processing continues on D02,
after the appropriate pack change on
DO1l, with the mapping specified on
the second sheet. The operator is
informed when this mapping has been
completed. He may then remove the
pack on D02 or continue on to the
alternate spindle (D0Ol) without re-
moving the pack on DO2. If more
packs are associated with this file,
the software looks back to DO2.
DO01—»D02—»D01—»Etc.

Nov.
Page

68
30

DISC FILE SPECS.

CONTROL QUESTION QUESTION RESULT
SHEET 2 7

First DO1 Processing begins on spindle DO1.
Second D02 The operator is informed when the
Third DO3 D03 mapping specified on the first sheet
(or blank) has been completed. If he enters
EE, no pack change is made and map-
ping continues on D0O2. If he enters
21, processing continues on D02,
after the appropriate pack change on
D01, with the mapping specified on
the second sheet. The operator is
informed when this mapping has been
completed. If he enters EE, no pack
change is made and mapping continues
on DO3. If he enters 21, processing
continues on D03 after the appropri-
ate pack change on D02. The operator
is informed when this mapping has
been completed. He may then elect
to continue on the same pack with
the same mapping, or to change packs
on D03 and continue with the same
mapping.

DO1—»D02—»D03 —D03 —»Etc.

First This is the same as the preceding
Second example until the operator is in-
Third D01 or DO2 formed that the mapping specified on
the third sheet has been completed
on DO03. If the operator enters 21
at this point, processing is con-
tinued on the specified alternate
spindle, after the appropriate pack
change on D03, with the mapping
specified on the third sheet.
DO01—D02—»D03—»D02—»D03 —»Etc.

NEAT/3 -- FILES Nov. 68
TAB 1 —- PUB. NO. 2 Page 31

8, MAXIMUM NUMBER OF SECTIONS MOUNTED AT ONE TIME E
(RANDOM PROCESSING ONLY)

This entry need be completed only if all sections of a randomly
processed file are not mounted at the same time. For example,
if a six section file is randomly processed on a system with
two dual-disc units (four spindles) three sections may be
mounted at one time. (Assume the fourth spindle is used for
transactions.) In this case '"3" must be entered in answer to
this question. When the RGET instruction attempts to access
section four (all transactions for the first three sections
processed) the software informs the operator to mount the next
three packs.

FILE ALLOCATION

g/IEASYT|BNEA$IIV<IDIl;I'1I;EIEEFSO.R SOURCE FILES OR EXISTING SOURCE-
9, IS THE REQUESTED NUMBER OF SECTORS: D
E EXACTLY THE SIZE AREA REQUIRED?
A AN APPROXIMATION OF THE SIZE AREA REQUIRED?
(IF BLANK, E IS ASSUMED)

Enter "E" if the number of sectors requested in answer to Ques-—
tion 4 is exactly the number required. Some types of process-
ing, such as random processing, may require exact section sizes.

Enter "A" if the number of sectors requested in answer to Ques-
tion 4 is approximately the number required. When "A" is entered,
the software allocates the number of sectors requested * 25%.

For sequential files (as in Father-Son processing), indicating
the approximate number of sectors is sufficient since further
sections may be allocated as needed.

"E" is assumed if no entry is made.

10. ARE DISJOINT PIECES ACCEPTABLE IF THE NUMBER OF D
SECTORS CANNOT BE FOUND IN ONE PIECE? (Y OR N)
(SEQUENTIAL ONLY) (IF BLANK, N IS ASSUMED)

Enter "Y" if smaller disjointed pieces may be used should the
number of sectors requested in answer to Question 4 not be
available in one piece. In many instances, especially during
sequential processing (Father-Son processing), the file area
does not have to be one large group of sectors.

Enter "N" if the number of sectors requested in Question 4 must
be in one group as in random processing.

"N" is assumed if no entry is made.

NEAT/3 -- FILES Nov. 68
TAB 1 -- PUB. NO. 2 Page 32

DISC FILE SPECS.

11, IF THERE IS AN UNUSED AREA AT THE END OF THIS FILE, D
WITHIN THE NUMBER OF SECTORS ALLOCATED, SHOULD
IT BE:

R RESERVED FOR THIS FILE?
F FREED UP FOR USE BY OTHER FILES?
(IF BLANK, R IS ASSUMED)

Enter "F" if unused sectors at the end of the file should be
made available for other use.

Enter "R" if unused sectors at the end of the file should be
reserved for this file. "R" should be entered for random

processing.

"R" is assumed if no entry is made.

EAT/3 -- FILES Nov. 68
AB 1 -- PUB. NO. 2 Page 33

PRINTER FILES

INTRODUCTION

Several models of printers are available with NCR Century Systems. The printers
vary in the number of print columns, and character sets in the type/line, as
well as in speed of printing. The user may choose the printer or printers

best suited to his needs. (Multiple printers may be used with a single

system if desired.)

The I/0 software treats the printer as a file device, thereby easing the pro-
grammer's coding task. After naming and defining the file on a printer file
specification sheet and the record on data layout sheets, the programmer
formats the printline in the output buffer or work area, moves a 4-character
printer control block into the printline, and uses the PUT instruction to
output the printline to the printer.

FILE DESCRIPTION

Data Blocks

Each data block consists of one complete record, which is composed of a printer
control block (4 characters) and the actual data (132 or 160 characters,
depending upon the printer model); therefore, all blocks are either 136 or

164 characters long.

H_4—character
Control Block

136 or 164 Character Printline

e Printer Control Block

The portion of the data block used to control the operation of the printer
is called the printer control block. It consists of four characters: three
X-type characters and one binary type character.

NEAT/3 -- FILES Nov. 68
TAB 1 -- PUB. NO. 3 Page 1

——— X-Type ———|Binary| e The F, G, and P Codes are X-Type
Characters.
F G P S e The S Code is a binary character.

Code | Code | Code | Code

L_ L—Space Code
Selective Print Character Code

Graphics Code
—Function Code

The control block is defined on data layout sheets as an area and the
control block characters are input to the compiler as constants. The
programmer decides which control blocks are needed, codes them, and then
uses MOVE instructions to place the proper block in each printline as
that line is built in the output buffer or work area. Therefore each
control block must be given a unique reference name.

e F Code - Function Code

The F Code position of the printer control block informs the printer
whether printing, or spacing, or both is desired. One of the follow-
ing characters must be entered in the F Code position:

N

e P - Print the data portion of the record after spacing the paper
the number of lines specified in the S Code.

e L - Print the data portion of the record after spacing the paper
to the line number specified in the S Code.

e N - Do not print, but space the paper the number of lines speci-
fied in the S Code. When F is N, S may not be O.

e E - Eject the paper to the top of the next page. The S Code must
be zero.

e G Code - Graphics Code

The G Code defines the set of characters needed to print the desired
report. In choosing a character set, the programmer should consider
that a smaller set allows greater printing speed. He should not use
special or extra characters unless absolutely needed. Different G
Codes may be used in different control blocks that concern specific
portions of a report. For example, a set of numeric characters

might be selected in those control blocks that are used in the body of

NEAT/3 -- FILES Nov. 68
TAB 1 -- PUB. NO. 3 Page 2

PRINTER FILES

a report, and an alphanumeric set might be selected for the header
lines in the same report. One of the following X-type characters
must be entered in the G code position.

B A E
BASIC ALPHANUMERIC ALPHANUMERIC EXTENDED ALPHANUMERIC

$
X
*

4+~ N

Co~NTTUP~WNhNDREO
VoL PLWND RO

0
1
2
3
4
5
6
7
8
9

OCo~NOOTUBLPWNhRFEO

-V A N N =] e

R RGHIDOHMEHOO® >
NN <R ®n™OoOHWOo=
RfrRUGHIZOHEHYOO®E >
R RHTZTOHREHY O W >
N XsSsacocHOWXOYWO =2

- Numeric set of 13 characters.

- Basic alphanumeric set of 42 characters.
Alphanumeric set of 51 characters.

- Extended alphanumeric set of 64 characters.
- Upper/lower character set of 90 characters.

® o 000
== e i v~ I~
|

NOTE

Normally, the # symbol (available only in the E set) is
printed by outputting a binary zero (00000000), and the&
symbol (available in the B, A and E sets) is printed byA
outputting a binary 35 (01000011). By use of a special
hardware code disc, however, these can be reversed so
that the # symbol is printed by outputting a binary 35
(01000011), and the # symbol is printed by outputting a
- binary zero (00000000).

The space character is not included in the character set
count because the printer automatically leaves spaces in
the printline where they are indicated by the program.

The 640-102 printer is available with a double numeric character set
for greater speed. This printer does not have the E set available
when equipped with double numerics.

The G code is operative only on the NCR Century 100 integrated printer.
All other printers print all characters contained in a printline.
Therefore, the G code must not be used to block unwanted characters

out of a printline in an NCR Century 100 program which may at a later
date be run on a larger system.

NEAT/3 -- FILES Nov. 68
TAB 1 -- PUB. NO. 3 Page 3

e P Code - Selective Print Character Code

The selective print character distinguishes this report from any
other if this report is output to an interim file on magnetic disc
or magnetic tape. Interim files are used as temporary storage for
one or more reports when multiple reports are generated in the same
run and the system has only one printer. Interim files are dis-
cussed in detail later in this section. Any X-type character may
be used as the P code.

REPORT A TO
PRINTER

REPORT B TO
INTERIM FILE
ON DISC

e S Code - Space Code

The S Code is a binary character that specifies either the number
of lines to space or the actual line number upon which printing
is to occur.

e S Code - number of lines to space if F Code is P or N.

e S Code - actual line number if F Code is L.

e S Code - must be zero if F Code is E.

e Printer Control Block Definition

The programmer defines, on data layout sheets, the necessary printer con-
trol blocks as constants. He assigns a unique reference name to each
printer control block so that it may be referenced in a MOVE instruction.
Below are some examples:

NEAT/3 -~ FILES Nov. 68
TAB 1 -- PUB. NO. 3 Page 4

PRINTER FILES

F CODE Space three lines and print, using
G CODE the alphanumeric set. This control

P CODE block has the reference SPACEPRINT

| S CODE for use with the MOVE instruction.

I
(2| a[@B]3]

»

my<4 ¥

REFERENCE LOCATION LENGTH VALUE OR PICTURE

8 9 10 11 12 13 14 13 16 171819 20 21 22 23[24 25 26 27
SPACEPRINT 4
FGPCODES 3
SCODE 1

31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 %0

Space no lines and print, using the numeric set.
This control block has the reference OVERPRINT
for use with the MOVE instruction.

»

REFERENCE LOCATION LENGTH | DP YALUE OR PICTURE

® 9 10 11 12 13 14 13 16 17 19 20 21 22 23|24 25 268 27
OVERPRINT _
FGPCODES PN
SCODE 0

(31 32 33 34 35 36 37 30 39 40 41 A2 43 44 45 46 47 48 40 0

Eject a page. This exact format must be used to
move the paper to the top of the next page.

This control block has the reference EJECTPAGE
for use with the MOVE instruction.

REFERENCE LOCATION VALUE OR PICTURE

S 9 10 11 12 13 14 13 16 17 19 20 21 22 23

EJECTPAGE

31 32 33 34 35 38 37 38 39 40 41 42 43 44 43 48 47 48 & 0

EQA
0

NEAT/3 -- FILES Nov. 68

TAB 1 -- PUB. NO. 3 Page 5

Space to line 10 and print, using the extended
alphanumeric set. The line number specified in
the S Code must be greater than the current line
number or printing will not occur on the desired
line. Thus, the programmer may not specify a
line on the next page. This block has the ref-
erence TOPPAGE for use with the MOVE instruction.

» bl

H
3

REFERENCE LOCATION LENGTH { DP [P VALUE OR PICTURE
30

]
8 9 10 11 12 13 14 1S 16 17 19 20 2t 22 23|24 25 26 2728 29 31 32 33 34 35 36 37 38 39 40 41 42 43 44 43 A8 47 48 & W0
—

0P PAGE

LEd
1,0

® Header Line Definition

The programmer generally desires to print header lines on the top of each
page to identify the report and columns in the report. These header lines
are normally stored as constants in memory; they must, therefore, be de-
fined on data layout sheets.

DATE XXXXXX PROGRESS REPORT

T

T

Col. 6 Col. 17 Col. 55 Col. 70

REFERENCE LOCATION LENGTH VALUE OR PICTURE

S mo<4 ¥

8 9 10 11 92 13 14 18 16 17 19 20 2% 22 23(24 25 26 27
HEADER] | 136
CNTBLKFGP 3
SCODE

~

DATEWX

WORDDATE
INSRTDATE

TITLE PROGRESSAREPORT

RDPAGE
SERTPAGE

b

O|0]0|0[0o|ojoiojo(Oo]lOjO
w_‘w-.

o [vinolo|w]lolo|o|=

ViN]x<|un|[x]u]x]<x]u]o][x

~n

PRI

NEAT/3 -- FILES Nov. 68
TAB 1 -~ PUB., NO. 3 Page 6

PRINTER FILES

® Printline Definition

Normally, multiple buffers are assigned to a print file and printlines
are constructed in a workarea. However, the programmer may assign single
or multiple buffers and construct the printline directly in the buffer.

When multiple buffers are used and printlines are constructed directly in
the buffer, the buffer must be cleared immediately before printline con-
struction begins. If this is not done, unwanted characters from a
previously constructed printline could be printed. The programmer may
use a literal MOVE instruction to clear a buffer (MOVE ' [Z',PRNTRECORD).

Normally printlines are constructed in a workarea and then moved to the
buffer. In this case, upon moving the contents of a workarea, the buffer
is filled completely thereby eliminating all unwanted characters. Building
printlines in a workarea affords the programmer more flexibility because,
unlike the buffer (when multiple buffers are used), the workarea need

not be cleared before each printline is constructed. Fields from a
previous printline, common to the new printline, are not destroyed and,
therefore, need not be reconstructed for the new printline. The pro-
grammer only clears the workarea before changes in printline format, for
example, before constructing total lines after detail lines and again be-
fore building additional detail lines. The workarea may be cleared with
a MOVE instruction, in the same manner a buffer (MOVE '[7',PRNTAREA).

When printlines with more than one format are needed for a single report,
the programmer normally uses one workarea and redefines that area (by
using SAME in the location column) for each format. However, he may use

a different workarea for each separate format. For a complete description
of using SAME in the location column of a data layout sheet to redefine

an area, see the NEAT/3 REFERENCE MANUAL, INTRODUCTION AND DATA, tab 3,

"Data Layout Sheets."

The programmer may desire to use a single buffer and no workarea if rela-
tively few printlines are output or if the program is large and memory
space is critical., The rules for using a single buffer and for using a
work area are the same.

b}

REFERENCE LOCATION LENGTH VALUE OR PICTURE

8 9 10 11 12 13 14 13 16 17 19 20 21 22 23|24 25 268 27 3!82!!3435!637Sl3940‘|‘24!‘445“‘1“”2‘

PRNTLINET. 136

PRCONTROL 4

PRNTFIELD]I 1.4
N)

e The printer control block must be defined as the first field and
must be X-type.

R
F
F .
(

e The first actual print position is relative position 4.

NEAT/3 -- FILES Nov. 68
TAB 1 -- PUB., NO. 3 Page 7

PRINT WHEEL POSITION

In any case, the portion of the record reserved for the printer control
block must be the first field in the record and must be X-type. Therefore,
the first data field must not start before relative position four, which
corresponds to the first print position on the typeline.

A form design worksheet aids the programmer in formatting the layout of
his report. Each print-wheel position on this sheet corresponds to a
print column on the printer. Since column 1 on both the printer and sheet
is equal to relative position 4 (positions 0-3 are for the control block),
the programmer can easily convert from print-wheel positions to relative
positions by adding 3 to the print-wheel positions (relative position in
record definition = print-wheel position + 3).

FORM DESIGN WORKSHEET

;NOU&“N-

b

REFERENCE LOCATION LENGTH VALUE OR PICTURE

8 9 10 11 12 13 14 13 16 17 19 20 21 22 23|24 25 26 27 S1 32 33 34 35 36 37 38 39 40 A1 42 43 44 43 46 47 48 & 30

1.3.6
4

~

IPRNTLINE.]
CNTBLEKNAME

FIELDI

FIELD?

FIELDS

O|0|0|0JO|O0|O|O|0]0O
o [w [w [& [~ [o fo [& o
0 [0 e [o o [~ oo fon

m ol [0 c o & o =<

$.9.,.8.8.8.. XX,

FIELDA

Each field is defined on the data layout sheet as it was positioned
on the form design worksheet.

NEAT/3 -- FILES Nov. 68
TAB 1 -- PUB, NO. 3 Page 8

PRINTER FILES

Printline Construction

Once the workarea and buffer have been defined, the programmer constructs print-
lines by using MOVE instructions to place the desired control block and data in
the desired fields within the printline, If the printline is constructed
directly in the buffer, it may then be output with a simple PUT instruction

(PUT PRNTFILE).

If the printline is constructed in a workarea, the contents of the area may be
placed in the buffer either by using the MOVE instruction (MOVE PRNTAREA,
PRNTRECORD) followed by a PUT instruction (PUT PRNTFILE) or by using the PUT
instruction with the work area option (PUT PRNTFILE,PRNTAREA).

MOVE ' ([Z',PRNTAREA Space out the workarea.

MOVE CNTBLK1,PRCONTROL Place the desired control block into
the workarea.

MOVE (data fields), Place the desired data into the work-
(prntarea fields) area.

MOVE PRNTAREA,PRNTRECORD Place the contents of the workarea
into the printer buffer.

PUT PRNTFILE Print the record currently in the
buffer.

e Using the MOVE Instruction

If the MOVE instruction is used to place the contents of a workarea into
the buffer, it will left-justify the data in the buffer and space fill to
the right any unused portion of the buffer. This is extremely useful when
the workarea is shorter than the buffer, as it would be if a narrow form
were used.

The MOVE instruction may also be used to place previously defined header
lines into the buffer (MOVE HEADER1,PRNTRECORD). MOVE should always be
used when the area or header to be printed is shorter in length than the
buffer.

NEAT/3 -- FILES Nov. 68
TAB 1 -- PUB, NO, 3 Page 9

PRNTAREA

50 characters

PRNTRECORD

50 characters SPACE FILLED

-+—— 136 CHARACTER BUFFER ——»

MOVE PRNTAREA, PRNTRECORD

The MOVE instruction left-justifies the contents of a 50-character area
called PRNTAREA in the 136-character buffer (PRNTRECORD) and space fills
86 characters to the right.

e Using the PUT Instruction with Workarea Option

If the PUT instruction with a workarea option is used, it will place the
contents of the workarea in the buffer, but it will not space fill to the
right any unused portion of the buffer. Therefore, the workarea must be
the same size as the buffer.

PRNTAREA

136 characters

PRNTRECORD

136 characters

PUT PRNTFILE, PRNTAREA

The PUT instruction with workarea option inserts, left-justified, the
contents of 136-character area called PRNTAREA in the 136-character
buffer (PRNTRECORD).

The PUT instruction with the workarea option may also be used to place
previously defined header lines into the buffer when the header line
areas are equal in length to the buffer (PUT PRINTFILE,HEADERL).

NEAT/3 -- FILES Nov. 68
TAB 1 -- PUB. NO. 3 Page 10

PRINTER FILES

Vertical Format Control

Normally, the programmer specifies on the printer file specification sheet that
vertical format control is desired. Vertical format control is a software rou-
tine that converts the printer control block into a format that is acceptable

to the printer. It also keeps track of the line number on which printing occurs
and causes a branch to the programmer's end-of-page routine if desired.

Vertical format control is not specified when a utility routine is used to
print an interim file.

End-of-Page Routine

At his option, the programmer may enter the reference name of an end-of-page
routine on the printer file specification sheet. He must enter a last-data
line number, that is, a line number to signal termination of printing on a page.

When a printline is output that causes the paper to space either to the actual
last data line or to cross the last data line, the software checks

the F code of the control block.

e If the printline contains a control block with an F code of P or N, the
software prints the line, stores a link and transfers control to the
programmer's end-of-page routine.

e If the printline contains a control block with an F code of L or E, the
software does not branch to the end-of-page routine.

This arrangement permits the programmer to pass the last data line for special
printing on certain pages if desired.

CONTROL BLOCK RESULT OF ENCOUNTERING LAST DATA LINE

A link is stored and control is given
to the programmer's end-of-page routine.

A link is not stored and control is not
given to the programmer's end-of-page
routine.

The programmer normally uses the end-of-page routine to accomplish the following:
e Print totals at the bottom of the page.

e Eject the paper to the top of the next page and then position it to a
desired line.

e Print headers at the top of the new page.

NEAT/3 -- FILES Nov. 68
TAB 1 -- PUB, NO. 3 Page 11

Since headers must be printed on the top of the first page, and totals may be
desired at bottom of a partially full last page, and both of these are normally
desired in the end-of-page routine, the following procedure is suggested for
handling the end-of-page routine.

ENDOFPAGE Enter here if end-of-page and proper
control block.

LINK BOTTOMPAGE - Go to a routine called
BOTTOMPAGE to print totals and eject the
page; then, RELINK here.

LINK TOPPAGE - Go to a routine called
TOPPAGE to properly space paper and print
headers; then, RELINK here.

RELINK - Go back to main program.
Software stored a link before linking
to end-of-page.

The above technique allows the programmer complete flexibility. For example,
he may link to TOPPAGE at the beginning of his program (initiate time) to space
the paper properly and to print headers on the first page. Since TOPPAGE ends
with a RELINK instruction, control will be returned to the initiate portion of
the program when the TOPPAGE routine is complete.

The use of a control block with an F code of L and the use of a LINK instruction
to BOTTOMPAGE allows the programmer to space the paper past the last data line
(in his end-of-program routine) and print totals at the bottom of the last page.
Since the BOTTOMPAGE routine ends in a RELINK, control will return to the
portion of the program responsible for end-of-program procedures,

If an end-of-page routine is not specified, the paper is automatically ejected
to the top of the next page (by a software end-of-page routine) when the
last data line is encountered and the rules governing F Codes are followed.

¥y ux
SAMPLE PRINT PROGRAM

The following illustrates a sample program to print a report. Only that portion
of the program needed to convey the overall picture is illustrated. Examples

of the report format, flowchart, printer file specification sheet, and data
definitions are included.

NEAT/3 -- FILES Nov. 68
TAB 1 -- PUB. NO. 3 Page 12

PRINTER FILES

Report Format

Title Line One (Alpha)

Title Line Two (Alpha)

Detail Line (first)

Detail Line

Detail Line (last)

Totals (Numeric)

Flowchart

INITIATE MOVE VIRTUAL DATE TO HEADERI.
ROUTINE I

LINK TO TOPPAGE.

.

I |
L:[_J
NOTE: The actual or virtual date may be moved from its software-reserved
location in memory into header lines by using the MOVE instruction
and the proper reserved reference name (MOVE >EXEC.ACDATE, fieldname
for the actual date or, MOVE >EXEC.VRDATE, fieldname for the
virtual date).

OTHER INITIATE LOGIC.

GENERAL -T
PRINT MOVE THE FIELDS TO BE PRINTED INTO PRNTAREA.
ROUTINE [
MOVE THE CONTENTS OF PRNTAREA INTO PRNTRECORD.
PUT PRNTFILE
NEAT/3 -- FILES Nov. 68

TAB 1 -- PUB. NO. 3 Page 13

BOTTOMPAGE (P

SPACE OUT PRNTAREA,

| MOVE THE PRINTER CONTROL BLOCK FOR PRINTING TOTALS
ON LINE 60 | L | N [ZI | 60 | INTO TOTALINE,
(TOTALINE IS PRNTAREA REDEFINED,)

MOVE TOTALS TO TOTALINE,

MOVE THE CONTENTS OF TOTALINE INTO PRNTRECORD,

PUT PRNTFILE.

CLEAR TOTALS.

MOVE CONTROL BLOCK TO EJECT THE PAGE
|E|Z]z] 0o] TO PRNTRECORD.

PUT PRNTFILE,

0000

RELINK

TOPPAGE (P
SET UP PAGE NUMBER IN HEADERI,
PUT PRNTFILE, HEADER1, PRINT THE FIRST HEADER,
WHICH CONTAINS CONTROL BLOCK | L[B[A] 3 |
ON LINE 3,
PUT PRNTFILE, HEADER2, PRINT THE SECOND HEADER,
Z::::] WHICH CONTAINS CONTROL BLOCK [P [B[71] 2]
ON LINE 5,
MOVE CONTROL BLOCK FOR SPACING THE PAPER 1 LINE
[N || @]1 | TO PRNTRECORD.
PUT PRNTFILE, (SPACE THE PAPER BUT DO NOT PRINT,)
SPACE OUT PRNTAREA,
|
MOVE CONTROL BLOCK FOR DOUBLE SPACING DETAIL
l LINES TO PRNTAREA| P [N [[2],
RELINK,
NEAT/3 -~ FILES Nov. 68

TAB 1 -- PUB, NO. 3 Page 14

PRINTER FILES

Printer File Specification Sheet

FILE SPECIFICATIONS WORKSHEET msm *
PRINTER

Prepared by _

Program____
Date___ Page____of

ALL SYMBOLIC REFERENCES MUST BE LEFT-JUSTIFIED AND MUST CONTAIN AT LEAST ONE ALPHABETIC CHARACTER
ALL NUMERIC ENTRIES MUST BE RIGHT-JUSTIFIED AND MUST BE ZERO-FILLED TO THE LEFT.

(Shaded Boxes are Optional)
Paper Tape Format Code

2. File Reference - Enter the name to be used in the first
operand of all 17O instructions referring to
this file.

4. Number of Buffers to be reserved for this file (if blank. 2 are assigned)
39

0
[ENDOTFPAGE//]

40
056

18. End of Page Routine

19. Last Data line number

Record Definitions

DATA LAYOUT WORKSHEET

Program Prepared b)

Date

» » » »

COMMENTS

T
|
1
V
'
V
1
I

REFERENCE LOCATION LENGTH | DP VALUE OR PICTURE .

T
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 30(31 32 33 34 35 36 37 38 39 60 61 62 €3 64 65 6 6T 68 #9 70 71 T2 7Y

8 9 10 11 92 13 14 15 16 17 [18{19 20 2t 22 23(24 25 26 27|28 29

PRNTRECORD 136 I
RECCNTBLK 4 *THIS FIELD DEF.. lNCiLUDED TO PERMIT INSER-

* T10N OF EJECT PG. CONTROL BLOCK INTO, BUFFER

NEAT/3 -- FILES Nov. 68
Page 15

TAB 1 -- PUB. NO. 3

Area Definitions

I DATA LAYOUT WORKSHEET
NCR CEfTuRY pogrem

701
PAPER TAPE FORMAT CODE

»

REFERENCE LOCATION LENGTH VALUE OR PICTURE . COMMENTS

e B
s

® 10 11 12 13 14 13 16 17 I"flﬂ”u““!T uu”uuunnnnnnnuuunu.uuns:uuununwuuuuuuuunnnnn

136 *DEFINITION OF PRINTILINE

4 :
!

~
0

RNTAREA
NTCONTROL
NAME
ACC
0T A
T
T
T

SAME IS USED TO0 REDEFINE THE PRINTLINE

0N
T0
10

i
i
]
t

vl o|lo|{H4]lP|©D |9 |0
N[l [0]>

o e o o

0N CAUSES PRINTING A ER PAPER SPACES 2 LINES
87

USED TO PRINT
8.7
0
Uysenp TO0 EJECT
7.7

UsED . TO SPACE
77

SN RO [N R DR SIS SO U O i GH S T o

0.T 2.0 AREA RESERVED ACICUMULATE JOTALS
0T F (0] 10
0T 1.0 1.0

NQTE:, ENTIRE, PRINTAREA DEFIN{TION | INCLUDED.

~|oJojolojojojolojo[ojo|o|o|ojojo|/o|o[olo[/o|o|g|/o[o/0jO[O/OlO

T
R RIRIRI RN RTRTA (TR RS (31 32 33 34 33 36 37 30 39 40 41 42 43 44 45 46 47 45 40 $O(B1 52 53 54 I3 34 57 38 39 00 61 €2 63 €4 65 66 67 64 09 70 71 T2 7374
A

CODING WORKSHEET

Program Prepared by

PAPER TAPE FORMAT CODE Date

REFERENCE OPERATION OPERANDS * COMMENTS

e 9 1011 ununuuunwnnuuuununnunuuuununauunuuunu.n:nuuunununullnuunuuuunnnnin
MOVE NAME ,PNAME +SET_UP PRINTLINE !
MOVE ACCTNO,PACCTNGO *SET UP PRINTLINE

PUT PRNTFILE,PRNTAREA

N
T

NOTE: MOVE INSTRYCTIONS TO BYILD PRINTLINE ARE LIMITED TO THE
FIELDS SHO*N IN PRNTAREA DATA DEFINITIONS.

l

NEAT/3 -- FILES Nov. 68
TAB 1 -- PUB. NO. 3 Page 16

PRINTER FILES

End-0f-Page Routine

Sample Coding

CODING WORKSHEET

Program Prepared by
Date ..

REFERENCE

T
» i
'
i
1
'

OPERATION OPERANDS * COMMENTS

& 9 101112 13 1415 18 17

T
1019 20 21 22 23{24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 4Z 43 44 43 46 47 48 49 30131 32 53 34 55 36 37 38 39 60 61 62 63 64 63 66 67 68 69 70 71 V2 73
)

ENDOFPAGE

INK [BOTTOMPAGE i

I NK TOPPAGE

ELI

’
c
C
C
C

csoTToOMPAGE

TAREA

ci

2 ,PRNTAREA

PTOTALI]

E,TOTALINE

ALAREA

3, PRNTRECORD

£

mlc oo jc oo |o
< (<[4]< [< [<

ENO

E,HEADER]

E,HEADER?

4 ,PRNITRECORD

3

TAREA

1. ,PRNTAREA

< [< [4[< [2 [[o

NQTE: . PAGENO, HEADER1, AND|HEADER2 ARE NQT SHOWN IN THE

ojlojojojofojojoioiojolo0jojo[aojo]o

DATA DEFINITIONS INCYUDED IN THIS EXAMPLE.

SUMMARY

In summary, the programmer should consider the following when producing a

report:

e A printer file specification sheet must be filled out for each printer
file. Compiler rules require that file specification sheets appear im-—

mediately before

their associated record definitions and prior to any

coding or any area definitions. The printer file specification sheet
contains all those parameters that remain constant throughout a run.

e The first four character positions of the printer record are referred to
as the printer control block. Each printline to be output needs its own

control block.

e The PUT instruction must be used to output a printline. PUT has two
formats: PUT File Reference and PUT File Reference,Workarea.

e The final item that is always required is an end-of-page routine. The
software provides a standard end-of-page, but the programmer normally
specifies his own.

NEAT/3 -- FILES
TAB 1 -- PUB. NO. 3

Nov. 68
Page 17

e When the programmer specifies his own end-of-page routine, he should
consider these five steps:

1. Print end-of-page totals (optional).

2. Eject page (required).

3., Print heading (optional).

4., Space the paper vertically (optional).

5. Execute a RELINK (required).

NOTE: A page must be ejected and a RELINK instruction must be used

in the user's end-of-page routine.

PRINTER FILE OPENING

Printer files may be opened either automatically when the program is loaded
into memory or by an OPEN instruction within the program. Any file having an
OPEN instruction associated with it will not be automatically opened when the
program is first loaded.

When the file is opened, two full pages of test pattern containing all the
print characters in the 5l-character alphanumeric set may be output on an
optional basis. The programmer requests this option on the file specifica-
tion sheet if output is not to magnetic media. The operator uses the test
pattern to properly align the paper in the printer. After the test pattern
is completed, the paper is ejected to the top of the next page.

As a further option, the programmer may specify the number of the form to be

placed in the printer for the run. The form number is output before the test
pattern is printed on an I/0 writer, if available, or on the system printer.

PRINTER FILE CLOSING

Printer files may be closed at the end of a run when the FINISH instruction is
encountered or during the run when a CLOSE instruction is encountered. Any
file which has a CLOSE instruction associated with it and which is not closed
before the FINISH instruction is encountered will be closed automatically.

When the file is closed, all buffers not yet empty are output and one full page

is ejected. If a special form number was output when the file was opened, it
will again be output when the file is closed.

INTERIM FILES

Introduction

An interim file is used to temporarily store one or more printer reports when
multiple reports are generated in the same run but the system has only one

NEAT/3 -- FILES Nov. 68
TAB 1 -- PUB. NO. 3 Page 18

PRINTER FILES

printer. The interim file is composed of printlines fully formatted with a
control block. Each control block for a single report must contain the same
selective print character. When multiple reports are output to the same inter-
im file, unique selective print characters must be used for each report. (Any
numeric or alphabetic character is acceptable.)

The programmer specifies the selective print character on a printer file speci-
fication sheet and omits the printer file reference name. The selective print
character becomes the identifier for each report output to the interim file.

An interim file may also be created with the major function, Line Reporter. In
this case, all the necessary data, including the selective print character, is

acquired from the major function parameter sheets; therefore, the printer file

specification sheet is eliminated.

The programmer uses the PUT instruction to output the formatted printlines to
the interim file. He names the interim file as the file reference operand in
the PUT instruction, e.g. PUT INTRMFLNAM. The resultant file may be printed
in a later run by using a utility routine and specifying the selective print
character of the desired report.

Block Size and Record Size

The size of the block output to the magnetic media depends on the actual peri-
pheral used and on the system; however, each block can contain more than one
record. All the records output to an interim file must be the same size. If
multiple reports are output and the records for each report are constructed con-
currently in memory, a workarea must be assigned to each report. If multiple
reports are output and the records for each report are constructed consecutively,
both records may be constructed in the output buffer by using SAME to redefine

the record. For a complete description of using SAME to redefine a record, see the

NEAT/3 REFERENCE MANUAL, INTRODUCTION AND DATA, tab 3, '"Data Layout Sheets."

Interim File Definition

The programmer must complete file specification sheets for the printer and mag-
netic media files. The record must be defined on data layout sheets. This data
is input to the compiler in the following order:

1. One set of magnetic media file specification sheets - the software uses
these sheets for definition of the interim file. The set must be completed
in the same manner as any other magnetic media destination file.

2. One printer file specification sheet for each report output - the software
uses this sheet to obtain such information as the last data line number,
the end-of-page routine reference name, and the selective print character
for each report. (This sheet not needed with Line Reporter.)

3. Data layout sheets - the software uses these sheets to define the record
in the magnetic media output buffer.

¥ ¥ XX

NEAT/3 -- FILES Nov. 68
TAB 1 -- PUB. NO. 3 Page 19

FILE SPECIFICATION SHEET FOR PRINTER

The printer file specification sheet describes file characteristics and file
options for a printer file. One printer file specification sheet must be
filled out for each printer file or each report output to an interim file.

Sheet 1

FILE SPECIFICATIONS WORKSHEET
PRINTER

Prepared by

Date.

UL STMBOLIC REFERENCES MUST OE LEFT JUSTIFIEG AND MUST CONTAIN AT LEART ONE ALPHABETIC CHARACTER
ALL NUMERIC ENTRIES MUST OL T IUSTIFIED AND MUST BE LERO.FILLED TO THE LEFT

(Shaded Boxes are Optional)
Paper Tape Format Code

. Page-Line
. File Reference Enter the name to be used in the first
operand of all 1 O instructions referring to

this file.

3. Peripheral Type Code Sce Peripheral Type Lists in Appendix of Language Reference

Manual

. Number of Buffers to be reserved for this file i blank. 2 are assigned

5. Symbolic Unit Designator

. Record Length 136 or 164 characters)

. Data Format Code 30 \ertical format control desired:
31 when using Line Reporter: 00 when prinung intenim file or
no vertical format control desired((if blank. 30 is assumed

. End of Page Routine

Last Data line number

I+ a Test Pattern desired? (Y or N - if hlank, N is assumed)

. Specify Form Number to he displayed at
Open and Close. if desired.

. If output to Magnetic Media, specify sclective print character
3. Delete Digit

. Identification

116 output 1o Magnetic Media, only these questions apply. This sheet must immediately
follow the magnetic interim lile specification sheet

The programmer should fill in the header, the page-and-line number (question 1),
and the identification tag (positions 75-80) as defined in the NEAT/3 REFERENCE
MANUAL, INTRODUCTION AND DATA, tab 3, "Programming Worksheets'. The paper tape
format code is preprinted on this sheet and must be punched if paper tape is
used for input to the compiler. Wherever practical on the following pages, the
entries are filled with a typical remark.

NEAT/3 -- FILES Nov. 68
TAB 1 -- PUB. NO. 4 Page 1

FERENCE -~ ENTER THE NAME TO BE USED IN |F‘_E_|_R_|l|_li_|l(_F_|l;£|£|@|

2., FILE RE =
THE FIRST OPERAND OF ALL INSTRUCTIONS REFERRING
TO THIS FILE,
Enter the name used in the PUT instructions that access this
file in the program.
If output is to an interim file on magnetic media, this entry
is left blank. Printlines are output to an interim file using
the PUT instructions and the file reference name of that interim
file.
The "F'" in position 7 is preprinted and must be punched.
3. PERIPHERAL TYPE CODE - (SEE PERIPHERAL TYPE LISTS g'_'_l

IN APPENDIX OF LANGUAGE REFERENCE MANUAL)

Enter the code for the type of printer being used. For the
proper code, see the peripheral type list in the appendix of
this manual.

The 6 in position 18 is preprinted and must be punched.

4, NUMBER OF BUFFERS TO BE RESERVED FOR THIS FILE =
(IF BLANK, 2 ARE ASSIGNED) SN

Enter the number of buffers desired. Specifying two or more
buffers provides write/compute simultaneity in processing this
file. Since the printer is a low-speed peripheral, two buffers
should be assigned to it before assigning multiple buffers to
higher speed peripherals, such as the disc. Then, if memory
space permits, multiple buffers can be assigned to the higher
speed peripherals.

Two buffers are assigned if this entry is left blank,

5. SYMBOLIC UNIT DESIGNATOR Pl 0 ll

Enter the symbolic unit designator for the system printer. The
printers use codes P01-P09. The letter P and the numeral O are
preprinted and must be punched.

6. RECORD LENGTH (136 OR 164 CHARACTERS) ili'6
The record length specified in this entry must include the
4-character control block. This length must be either 136 or
164 characters, depending upon the type of printer used.

NEAT/3 -- FILES Nov. 68

TAB 1 -- PUB. NO. 4 Page 2

-4

PRINTER FILE SPECS.

DATA FORMAT CODE (30 WHEN VERTICAL FORMAT CONTROL
1S DESIRED3 31 WHEN USING LINE REPORTERY3 00 WHEN
PRINTING INTERIM FILE OR NO VERTICAL FORMAT CONTROL
DESIRED) (IF BLANK, 30 IS ASSUMED)

Enter 30 for vertical format control. This is the normal

entry when a major function is not used to create the file. It
indicates that the software is to keep track of the line count,
convert the printer control block to a hardware acceptable
format, and provide an end-of-page exit if desired, whether

the report generated is output to a printer or an interim file.

Enter 31 if this sheet is used with a report generated by the
major function Line Reporter and is output to the printer.

Do not use a printer file specification sheet with a report
generated by the major function Line Reporter and output to an
interim file.

Enter 00 if this sheet is used in conjunction with a utility
routine printout of an interim file.

8. END OF PAGE ROUTINE
Enter the name of an end-of-page routine if desired. Control
is transferred to the routine referenced here when the last
data line (Question 9) is encountered and the control block
contains an F Code of P or N.
The programmer may use the routine referenced for any of the
following reasons:
e Print and/or clear end-of-page totals.
o Eject a page.
e Print headers.
If an end-of-page routine is specified, the programmer must
provide coding to eject a page and must use RELINK as a last
instruction.
If this entry is left blank and vertical format control was
requested in answer to the previous question, the page is
ejected when the last data line (Question 9) is encountered.
This entry must be left blank if 31 or 00 was specified in
answer to Question 7.

'1' IF OUTPUT TO MAGNETIC MEDIA ONLY THESE QUESTIONS APPLY; HOWEVER THE
PREPRINTED “F” IN POSITION 7,/&ND “6” IN POSITION 18 MUST BE Ig‘UNCHED. "f'HIS SHEET
MUST IMMEDIATELY FOLLOW THE MAGNETIC INTERIM FILE SPECIFICATION SHEET.

NEAT/3 -- FILES Nov. 68

TAB 1 -- PUB. NO. 4 Page 3

+ 9. LAST DATA LINE NUMBER 0,5,6

Enter the number of the last line on which printing is to

occur. If a printline which causes the paper to space either

to the actual last data line or to cross the last data line is
output, the software checks the F code of the control block. If
the control block contains an F code of P or N, the software
prints the line, stores a link, and transfers control to the
programmer's end-of-page routine.

Enter the last data line if vertical format control is not speci-
fied in answer to Question 7 but a test pattern (Question 10) is
desired, such as when a utility routine is used to print an interim
file and a test pattern is desired before the report is printed.

TEST PATTERN DESIRED? (Y OR N) (IF BLANK, N
SSUMED)

Enter Y for Question 10 if a test pattern is desired. If y is
specified for Question 10 and if a last line number is specified,
the software prints two pages of all characters in the 51-char-
acter alphanumeric character set, and ejects a page. The test
pattern is printed until the last data line is encountered. If
the STOP button is depressed while the test pattern is being
printed, printing halts. During this halt, the paper may be
adjusted. When the START button is pressed, one more page is
ejected and two pages of test pattern are printed. The test
pattern is printed immediately after OPEN and out-of-paper.

Leave blank if test pattern is not desired; N is assumed.

11, SPECIFY FORM NUMBER TO BE DISPLAYED AT OPEN
AND CLOSE, IF DESIRED,

The programmer may enter a number that specifies a preprinted or
standard form in answer to this question. The form number is dis-
played at OPEN (prior to the printing of a test pattern) and again
after closing the file on an I/0 writer, if available, or on the
system printer.

Tt 12. IF OUTPUT TO MAGNETIC MEDIA, SPECIFY SELECTIVE '
PRINT CHARACTER .

Enter a selective print character only if the file is to be
output to a magnetic file device, Any X-type character is
acceptable.

The selective print character entered must be the same as the
third character in the printer control blocks for lines that
pertain to this report.

E R IR 3P 3

IF OUTPUT TO MAGNETIC MEDIA, ONLY THESE QUESTIONS APPLY; HOWEVER, THE
PREPRINTED *“F”“ IN POSITION 7,AND “6” IN POSITION 18 MUST BE I;UNCHED. THIS SHEET
MUST IMMEDIATELY FOLLOW THE MAGNETIC INTERIM FILE SPECIFICATION SHEET.

NEAT/3 -- FILES Nov. 68
TAB 1 -- PUB. NO. 4 Page 4

PUNCH CARD FILES

INTRODUCTION

The NCR Century Series offers the option to process punch card files contained
on 80-column punch cards.

The reading rate of the integrated Class 682-100 Punch Card Reader is 300
cards per minute, The Class 686 Card Reader/Punch of the Century Series offers
three optional peripheral units,

e The Class 686-101 is a combination card reader/punch that permits the use
of cards as source or destination file media, The Class 686-101 also
permits the use of cards for the processing of source-destination files,
In this case the card reader/punch reads source file data at the read
station and, after moving the card to the punch station, punches destination
file data into reserved fields in the same card.

The Class 686-101 reads at a rate of 750 cards per minute. The punching
speed is 100 cards per minute,

e The Class 686-201 is a card reader that reads punch cards at a rate of
750 cards per minute.

e The Class 686-301 is a card punch that punches cards at a rate of 100
cards per minute,

All of the above Class 686 units have three output stackers, including a
special reject stacker, The programmer may specify the output stacker into
which each card is to be stacked after reading or punching,

INPUT
STACKER 2 STACKER 1 HOPPER

O O

|
(:::> K:::>
______ > -
] / \L
PUNCH READ

REJECT STATION STATION
STACKER

NEAT/3 -- FILES Nov. 68
TAB 1 -- PUB., NO. 5 Page 1

PUNCH CARD CODES

The NCR Century Series software offers the option of reading or punching cards
in the Hollerith Extended "A" Set, the Hollerith Extended "H" Set, the 315
Hollerith code, and in the binary mode.

e Hollerith Extended "A" Set

The NCR Century Series standard Hollerith Extended "A" Set consists of 64
characters. These characters and the corresponding punch configurations

are shown in the punched card below. .
0123456789 ABCDEFGHIJKLMNOPQRSTUVWXYZ L. <(+1-18*);n/\,%=52:2@" ="
#
mmann i
i mnmn

ooooooo0o000000000000000000000fBNNNNENccoocooooo0ocoooccBEEBEANococco000oe
TEIONRZNMUISIETWN2N 22232‘2&2(21232!10JlJ?JJJ‘351‘37JlJ!lOlNzu«uuﬂ‘l«Sﬁ&l S25334 555657585060 G1B2E3B4ESKE7EEIN NI RN UTSETI NN
R R R IR RNl IR R R R R R R R R R R RN R R R RERREl IEER R R R R LR
222222|22222222222zlzzzzz2z2|zzzz222l2z22zz22222zlzzzzzzlzzzzzzlzzzzzlzzzzzzzzzz
3333333]333333333333|33333333|3333333.333333333333|333333|333333l33333|333333333
44444444.444444444444|44444444'4444444|444444444444|444444|444444|44444|44444444
55555555slssss555555sslsssss5sslssssss5|55555ssssssslssss5s|555555|55555|5555555
ssssssssss|ssssssssssss|sssssssslssssssslsssssssssssslssssss|sssssslsssss|ssssss
71777777771|777777171771|71771777|7177777|177777771177.717177|777177|77771|17717
asaaaasssssslsssasaaaaaaalaaasaaualssaansalassaaalllllls||||||s||||||||||||ctasa

999989999999989999999999990099999993[09999999019999999999999999999999998999999999439
123456709 2N R

TOMI2ZI3AI516 17181920 222324252627 282930 11 3233 34 3536 37 zuoauzuuisunuuws'szs:sassscnsusswﬂsnuussunusmnnnunnnnnn

e Hollerith Extended "H'" Set

This code has the same character set as the Hollerith Extended "A" Set, but
the punch configurations for the special symbols (+,?,%,:,%,etc.) are
different,

NEAT/3 -~ FILES Nov. 68
TAB 1 -- PUB. NO. 5 Page 2

PUNCH CARD FILES

0123456789 ABCDEFGHIJKLMNOPQRSTUVWXYZ #2.) [<X-18%1 4/« (g\08=":>"
inimn llllll!
7
ilanmn L]]

12345670 910111210MK1516 17981920 21222324 7526 27 2829 30 31 32 33 34 3536 37 38 3940 4142 4344 45 46 47 46 4950 51 5253 54 5556 57 50 5960 51 62 KI G4 6566 6TGS 69 0 1 72 T3 4 TS 76 77 78 79 80

llllllllllllllIllllllllllllllIIllIllIllllll1lllllllllllllllllllll R R ERRRREERR]
222222'222222222222'22222222'2222222.22222222222222222222222222.22222.2222222222
3333333.333333333333.33333333.3333333.333333333333.333333.333333.33333'333333333

ououluuuuuuuooaoouononuunoooounooooollllllllnouoolonnouoluoooo|||||| 00000000000
66768
11

i aaalaaaaaaataataBeaaaaaaaBetesssaBadtasaaaassssBasasaaRestaaaecasafessssans
ssssssssslssss5555sssslssssssssls555555l555555sssssslsssssslssss55|sssss|sssssss
66666666660666666666666066666666H6666666W666666666666666666666666J66666J666666
IRERRRRERRR] LRRRRRRERERR] FRRRRRRA! SRRRRRR] IRRRRRRERRRET YARRRRT IARRAR] 1RRRAI FARER]
sesssssanssallosssassnssssMassaasssMessssacBessesssMEUNNscBANDN:RNRRUNNNRAN: s

3333228829999.999999999999'99995999.9993999I999999999999993999999399999999999999
1

10111293 4 1516 17 18 19 20 21 2223 24 25 26 27 2829 30 11 32 33 34 35 36 37 38 39 40 41 42 43 44 45 45 47 4849 50 51 5253545556 57 S8 596061626364 65666768630 NN 1273 ISIETT 187980

e NCR 315 Hollerith Set

The characters and the corresponding punch configurations of the NCR 315
Hollerith Set are shown below.

<
0123456789ABCDEFGHI JKLMNOPQRSTUVWXYZ & -§*/ %#@3+n ! =()<>2:¢4"]\

i (1] 1 (]]
B00000000000000000000000000 0 ENNEBEEC00C00FEGoOO OO FoFEPo 00000 Jo

] IRERERER] ARERERREI R RERRRRRERERRERRREREY IRRREERAREREEE IRRRRRE

220222222220222J21212122

33303333333333333333033333333333333 33333333333 3P3333333133

4444044040448 4a48aaaaaaasadsaadasPaaacQoBostaaeasaaadsas
5555505555555500555555550555555555555555555555555@5Q@555505550518
666666066666666M66666666M666666606666666666666666666666666666666
IRRRERE] RERRRRER]I RRRRERARI RERARER] RERRARRREERRRRERR] RARRRE 1 M | A K
EEEEEEE] REXREERE] EEREEREE] EERRERE] KX I ER R ER DD RERR I D ER EXRERR 1 1 01)
999999999099999999099993999099999990999999999999999999099999999%

NEAT/3 -- FILES Nov. 68
TAB 1 -- PUB. NO. 5 Page 3

e Binary Mode

For reading and punching punched cards in the binary mode, see the
PRODUCT INFORMATION MANUAL, PUNCHED MEDIA PERIPHERALS, Pub. No. 3.

FILE ORGANIZATION

The programmer normally uses the major function Card Regiment to read and the
PUT instruction to punch one 80-column card at a time. The major function per-
mits the use of up to 99 different card formats in one file. See NEAT/3 REF-
ERENCE MANUAL, MAJOR FUNCTIONS, tab 1, "Card Regiment."

NOTE

For processing punched cards without using Card Regiment,
see the OPERATING SYSTEMS MANUAL, I/0 EXECUTIVE, Peripheral
Dependent tab, "Punched Cards."

The programmer defines the number and length of buffers for card input or out-
put. The maximum length of input and output buffers is 82 characters: 2 char-
acters for a stacking code and 80 characters for punched card data.

To selectively stack cards in a Class 686 Card Reader/Punch, the programmer
must place the stacking code in the first character position of the input or
output buffer. The second character position of this buffer is reserved for
future use. "S" represents the stacking code in the following illustration.

01 2345

S \\ data

The programmer must define the field for the stacking code on the data layout
sheets for the input or output buffers.

When reading punched cards, the program must access the input records in the
output work area specified on the parameter sheets for the Card Regiment
function.

NEAT/3 -- FILES Nov. 68
TAB 1 -- PUB. NO. 5 Page 4

PUNCH CARD FILES

INPUT FILE

l’__.____ —

CARD

INPUT REGIMENT

BUFFER FUNCTION

l'._.__ - —

OUTPUT
WORK AREA

To output punched cards using the PUT instruction, see OPERATING SYSTEM MANUAL,
I/0 EXECUTIVE, Peripheral Dependent tab, "Punched Cards."

Source Files

The programmer uses the Card Regiment function to pass one complete punch
card through the card reader and to store the data from the card in the out-
put work area specified on the Card Regiment parameter sheets. (The pro-
grammer does not use a GET instruction for inputting punch card records.)

The programmer must specify on the file specifications sheet the code set
for the data in the source file cards (Hollerith Extended "AM or "H" Code
Set).

e Rescue Cards

The I/0 software offers the option to use rescue cards for dividing
large source files into segments. The use of this option saves rerun
time in case of an interruption of the card reading run.

If the programmer specifies the use of rescue points on the file speci-
fications sheet and a rescue card is encountered in a source deck, the
software initiates a memory dump and writes the entire memory into a
magnetic rescue file. Tf an interruption of the card reading run oc-
curs, the operator can restart the run from the rescue point. He then
needs to reread only the cards in the file segment which was being
processed at the time the interruption occurred.

If the programmer does not use the rescue option and an interruption

of the card reading run occurs, the operator has to reread the entire
file.

The format of the rescue card is RES$ in columns 1 through 6 of the card.

NEAT/3 —- FILES Nov. 68
TAB 1 —— PUB. NO. 5 Page 5

NOTE

Rescue cards initiate a rescue dump only if the programmer
specifies on the file specifications sheet the rescue option
and no selective stacking. If no rescue option or selective
stacking is specified, the software accepts rescue cards as

data.

Selective Stacking (Source Files)

If the user's program calls for selective stacking of cards, the input
buffer must include two additional character positions for the stacking
code. These two character positions are relative positions 0 and 1 of the
input buffer. The programmer must include these two character positions in
the data definition for the input buffer.

The Class 686 Card Reader/Punch can stack cards selectively; the inte-
grated card reader does not have this capability.

The Class 686 Card Reader/Punch stacks cards selectively in the following
manner. After reading a card in the read station and processing the

input record, the user's program must place the stacking code in the input
buffer for the record just processed. The next execution of the Card
Regiment function for the same file then selects an output stacker accord-
ing to the stacking code which was placed in the input buffer. As the next
card passes through the read station, the previous card moves into the
selected stacker.

Example:

INPUT
STACKER 2 STACKER 1 HOPPER

Om) Ofif

PUNCH READY READ READY
STATION STATION
REJECT
STACKER

C) FIRST CARD C) SECOND CARD

The first execution of the Card Regiment function moves the first
card through the read station and makes the data from the first card
available to the program. The first card stops in the punch ready
station.

The user's program must insert in the input buffer the stacking code
for the first card. In this example, S=1 to select stacker 1.

NEAT/3 -- FILES Nov.
TAB 1 —- PUB. NO. 5

68

Page 6

PUNCH CARD FILES

Example (continued):

INPUT
STACKER 2 STACKER 1 HOPPER

O

AOWION
[

READ READY

REJEGT ETATION STATION
STACKER
(® FIRST. carD (® SECOND cARD
(® THIRD cCARD (@ FOURTH caRrRD

The second execution of the Card Regiment function reads the
second card and makes the data from this card available to the program.

The first card moves into the previously designated stacker (1).
The second card moves into the punch ready station.
The third card moves into the read ready station.

The programmer must insert in the input buffer the stacking code for
the second card. In this example, S=2 to select stacker 2.

Example (continued):

INPUT
STACKER 2 STACKER 1 HOPPER

PUNCH READY READ READY

REJECT STATION STATION
STACKER

@ FIRST CARD (® sSECOND CARD

(® THIRD CARD (® FOURTH CARD

() FIFTH cARD
The third execution of the Card Regiment function reads the third
card and makes the data from this card available to the program,

NEAT/3 -- FILES Nov.
TAB 1 -- PUB, NO. 5 Page

The second card moves into the previously designated stacker (2).
The third card moves into the punch ready station.
The fourth card moves into the read ready station.

The programmer must insert in the input buffer the stacking code for
the third card.

The stacking code "S" corresponds to the number of the output stacker.

Function

Send previous card to stacker 1
Send previous card to stacker 2

Send previous card to stacker 3%

* Reject Stacker - has limited capacity.

Primarily for use by software

NOTE

If the user's program does not place a stacking code in the
input buffer, the I/0 software automatically places the card
in stacker 1.

The software logs any '"S" code other than 1, 2, or 3 as a
programming error and permits continuation of the program.

e Multiple Buffers

Multiple input buffers provide more efficient input/compute simultaneity.
However, if the program calls for selective stacking or if the source
file is part of a source-destination file, the compiler automatically
assigns one buffer only.

Destination Files

Each execution of the PUT instruction punches the contents of a specified
work area into a single card. The programmer assembles each output record
in the specified work area.

The programmer must specify on the file specifications worksheet the code
set in which the cards are to be punched.

NEAT/3 —- FILES Nov. 68
TAB 1 -- PUB. NO. 5 Page 8

PUNCH CARD FILES

Selective Stacking (Destination Files)

If a program calls for selective stacking of cards, the output
buffer must include two extra character positions in

relative positions 0 and 1. Relative character position 0 is
for the stacking code, and relative character position 1 is
reserved for future use. The programmer must include these
two character positions in the data definition for the output

buffer,

Before executing a PUT instruction the user's program must
place the stacking code in the output buffer for the card to be punched,
The stacking code in the output buffer then selects an output stacker

to receive the card after punching.

Example:

INPUT
STACKER 2 STACKER 1 HOPPER

OO —

O_ ______ RO
v

PUNCH READY i
REJECT STATION TATION
STACKER

() CARD BEFORE EXECUTION
The program processes a record to be output and inserts a
stacking code in the output buffer for this record. 1In this
example, S=2 to select stacker 2,

An execution of the PUT instruction for this file then punches
a card and stacks the card according to the stacking code in the output

buffer,
INPUT
STACKER 2 STACKER 1 HOPPER
O |
| |
i
/"'_—”’
7
|=—-= PUNCH READY READ READY
STATION STATION
REJECT
STACKER
(@) CARD AFTER EXECUTION
NEAT/3 -- FILES Nov, 68

TAB 1 -- PUB. NO., 5 : Page 9

The stacking code "S" corresponds to the number of the output stacker.

"'S" Code

Function

Send present card to stacker 1
Send present card to stacker 2

Send present card to stacker 3%

* Reject Stacker - has limited capacity.

Primarily for use by software.

If the user's program does not place a stacking code in the

NOTE

output buffer, the I/0 software automatically places the card
being punched in stacker 1,

The software logs any "S'" code other than 1, 2, or 3 as a
programming error and permits continuation of the program.

e Punch Error Rejection

The programmer may specify on the file specification sheet the option

to repunch all cards in which
rejects all punch error cards
the same record into the next

® Multiple Buffers

a punch error occurs, The software then

into the reject stacker and repunches

card.

Multiple output buffers provide more efficient output/compute simultaneity,
However, if the program calls for selective stacking or if the destination

file is part of a source-destination file, the compiler automatically

assigns one buffer only.

Source-Destination Combination Files

The user may design punch cards so that each card contains a source file re-

cord and a destination file record.

The Class 686-101 Card Reader/Punch

processes a source-—destination file as independent source and destination
files, each with its own file specification sheet.

For a source-destination file, the compiler automatically assigns
one input buffer for the source portion of the file and one out-
put buffer for the destination portion of the file.

The automatic punch error rejection option is not available when

NOTE

processing source-destination files,

NEAT/3 -- FILES
TAB 1 -- PUB., NO. 5

Nov. 68
Page 10

PUNCH CARD FILES

NOTE
A program should not successively execute the PUT instruction
for a source-destination file. Two successive executions
of a PUT instruction move the next card through the read sta-
tion, and the opportunity to read the first card is lost.

Similarly, two successive executions of a Card Regiment function
for a source-destination file move the first card

through the punch station, and the opportunity to punch this card
is lost,

Buffer Assignment

The software automatically assigns a single buffer to a source or
destination file that is described on the file specifications sheet
as being part of a source-destination file.

Selective Stacking (Source-Destination Files)

The programmer may use stacking codes in processing either the source
portion or the destination portion of the file, The same rules as for
stacking cards in individual source files or destination files apply.

®

{ ;CARD REGIMENT

THIS CARD

is
<::\\\IS BE PUNCHED

N

FILL OUTPUT BUFFER
B SR TR INSERT STATIING cons
STACKING CODE

! ’ PUT INSTRUCTION
®

NEAT/3 -- FILES Nov. 68
TAB 1 -- PUB. NO. 5 Page 11

OPENING OF CARD FILES

Before the user's program can read or punch cards, the respective source or
destination files must be opened. This is accomplished either automatically
at the beginning of the program or, at the programmer's option, at any point
in the program through the use of an OPEN instruction. The OPEN instruction
is explained in the NEAT/3 REFERENCE MANUAL, INSTRUCTIONS, tab 1, '"Open
Instruction."

® Opening Card Source Files

The automatic open or the OPEN instruction for a source file performs the
following functions:

e Checks card reader for being ready.

e Checks card reader for being a Class 686 if the file specifications
sheet requests selective stacking.

® Reads cards and fills N-1 buffers, (N is the number of input buffers

specified on the file specifications sheet,)

e Inserts a "1" in the stacking code position of the input buffer if the

file specifications sheet specifies selective stacking.

e Opening Card Destination Files

The automatic open or the OPEN instruction for a destination file performs

the following functions:

e Checks card punch for being ready.

e Checks card punch for being Class 686 if the file specifications
sheet requests selective stacking.

e Inserts a "1" in the stacking code position of the output buffer if
the file specifications sheet specifies selective stacking.

CLOSING OF CARD FILES

Before a program terminates, all the files used by the program must be closed,
This is accomplished either automatically at the end of the program or, at the

programmer's option, at any point in the program through the use of a CLOSE
instruction. The CLOSE instruction is explained under Instructions, Tab 1,
"Close Instruction."

e Closing of Card Source Files

The automatic close or the CLOSE instruction for a source file performs only
internal functions except under the following condition. If a FINISH or a
CLOSE instruction closes a source file before the end card (ENDS) has been
read, the software continues reading cards until the end card is found,

On a Class 686 Card Reader, the software sends all cards read during the
closing of a file to stacker 1.

NEAT/3 -~ FILES Nov. 68
TAB 1 -- PUB. NO. 5 Page 12

PUNCH CARD FILES

® Closing of Card Destination Files

The automatic close or the CLOSE instruction for a destination file performs
the following functions:

® Completes already initiated card output operations,

® Punches an end card with END$ in columns 1-4 and stacks this card in
stacker 1,

NEAT/3 —- FILE Nov. 68
TAB 1 -- PUB. NO. 5 Page 13

FILE SPECIFICATIONS WORKSHEET FOR PUNCHED CARDS

The programmer must prepare a file specifications worksheet for each file used
in a program. The file specifications worksheets define the file character-
istics, the file options, and the type of processing desired. The entries on
file specifications worksheets become part of a source program and are input
to the NEAT/3 Compiler.

_ FILE SPECIFICATIONS WORKSHEET
— PUNCHED CARDS

m ’

ALL $YMBOLIC AEFERENCES MUST BE LEFT.JUSTIZIED AND MUST COMTAIN AT LEAST ONE ALPHABETIC CHARACTER
ALL NUMERIC ENTRIES MUST 8K RIGHT JUSTIFIED AND MUST 8€ ZERO-F(LLED TO THE LEPY

(Shaded Boxes are Optional)

Paper Tape Format Code |/, 1, 2=

. Page-Line
. File Reference — Enter the name to be used by
1,0 instructions and Major Functions referring to
this file
3. Peripheral Type Code (See Peripheral Tyvpe List in Appendix of Language Reference Manual)

. Number of buffers to be reserved for this file (if blank. 2 are assigned unless source files
using wlective stacking or source-destination combinations in which case, 1 is assigned)

. Symbolic Unit Designators
. Record Length

. Data Format Code - Sev Data Format Code Chart in Appendix of
Language Reference Manual)

. Data Format Error Exit

. End of File Exit - Not used on Destination files

. Is a Rescue Point desired at cach RESS card? (Y or N)
not used for destination files or when selective
stacking is used) (if blank. N is assumed)

. File Usage 1S Source File: D Destination File: X Source
File of Source-Destination combination: ¥ Destination
File of Source-Destination combination)

. Is Selective Card Stacking used? Y or N) (if blank. N is assumed

Error Reject — Should cards erroncously punched be rejected to
stacker number 32 (Y or N) (if blank, N is assumed)

. Delete Digit

. Identification

‘raascmans nEe. U.e. PAT. @0V

The programmer should fill in the header, the page-and-line number (question 1),
and the identification tag (positions 75-80) as defined in the NEAT/3 REFERENCE
MANUAL, INTRODUCTION AND DATA, tab 3, "Programming Worksheets.' The paper tape
format code is preprinted on this sheet and must be punched if paper tape is
used for input to the compiler.

NEAT/3 -- FILES Nov. 68
TAB 1 -- PUB. NO. 6 Page 1

2. FILE REFERENCE - ENTER THE NAME TO BE USED BY IFI 1 1 — 1 1 Il 1 1 :l

1/0 INSTRUCTIONS AND MAJOR FUNCTIONS REFERRING
TO THIS FILE

The letter F in position 7 is preprinted and must be punched.

Enter in positions 8 through 17 the name of the card file being
described for this program. Throughout the program, Card Regi-
ment may refer to this punch card file by using the file ref-
erence name.

The file reference name must start in position 8, may be up to
ten characters long, and may consist of letters and numerals.
Include at least one letter in the file reference name.

Each file, including those which are part of a source-destination
file, must have its unique name within the program.
18
3. PERIPHERAL TYPE CODE (SEE PERIPHERAL TYPE LIST E
IN APPENDIX OF LANGUAGE REFERENCE MANUAL)

The O in position 18 is preprinted and must be punched.

Enter in positions 19 and 20 a 2-numeral code to identify the
type of card reader or card punch used. The compiler uses this
code to generate the proper object program for handling the cards
on a particular type of card reader or card punch.

See the NEAT/3 REFERENCE MANUAL, APPENDIX, tab 1, "Peripheral
Type Codes."

4, NUMBER OF BUFFERS TO BE RESERVED FOR THIS FILE
(IF BLANK, 2 ARE ASSIGNED UNLESS SOURCE FILES
USING SELECTIVE STACKING OR SOURCE-DESTINATION
COMBINATIONS IN WHICH CASE, 1 IS ASSIGNED)

Enter in position 21 the number of input or output buffers to be
used by this file. If column 21 is a space, two buffers are as-
signed automatically. Two buffers normally provide the greatest
efficiency.

If selective stacking is specified, or if this file is part of a
source-destination file, position 21 is ignored. The software
assigns one input or output buffer.

22

5. SYMBOLIC UNIT DESIGNATORS E

The letter P in position 22 indicates a peripheral unit for paper
media. This letter is preprinted on the file specifications
worksheet and must be punched.

NEAT/3 -- FILES Nov. 68
TAB 1 -~ PUB. NO. 6 Page 2

PUNCHED CARD FILE SPECS.

Enter in positions 23 and 24 a number to complete the symbolic
unit designator.

The symbolic unit designator for any freestanding card reader may be
an entry from P11 to P19. (If a system has an integrated card reader,
P11 is reserved for that unit.) If a card source file is to be pro-
cessed on the integrated card reader, the symbolic unit designator
must be P11.

The symbolic unit designator for a card punch may be any entry from
P21 to P29.

25

The number 0 in position 25 is preprinted and must be punched.

Enter in positions 26 and 27 the fixed length of the punched card
records (from the first column in the card to the last column
actually used). If selective stacking is specified, the maximum
record length is 82 characters: 80 data characters (80 card col-
umns) plus two stacking code characters. The record length entry
must agree with the record length indicated on the data layout
sheet following this file specification worksheet, except in the
case of either binary data format code. With binary cards, the
entry in answer to this question is a maximum of 80 or 82; how-
ever, the entry on the data layout sheet must be a maximum of

160 or 162 because two passes must be made to read a binary card.

28

7. DATA FORMAT CODE E

Enter in positions 28 and 29 the data format code of the character
set used.

With Stacking Without Stacking

No Translation 00
Standard Century H Set 01
Standard Century A Set 02
315 Hollerith 03
Binary 04

NEAT/3 -- FILES Nov. 68
TAB 1 —- PUB. NO. 6 Page 3

30 39

o DATA FORMAT ERROR EXIT N

Leave this entry blank if Card Regiment is used for this file.
Otherwise, the name of a routine to handle records containing
illegal characters may be entered here. By accessing File-
Reference.BADCHAR, the programmer can determine the number of
illegal characters in the current record. This exit is taken
after the entire record has been translated.

When a source file is processed, punch configurations outside
of the specified code set are considered invalid. The software
translates these configurations as replacement characters and
substitutes a hexadecimal 3C, which is interpreted as the >
character.

When a destination file is processed, the software encodes the
characters in the output buffer before punching. Characters
outside of the specified code set are considered invalid and are
translated by the software as spaces (no punch).

9. END OF FILE EXIT (NOT USED ON DESTINATION FILES) I A L 1 4 - Il 1 1 i I

Leave this entry blank if Card Regiment is used for this file.
Otherwise, enter the reference of the routine to which control
is to be transferred when the end of the file is detected.

NOTE

Once an end-of-file exit is taken, the last record in the
input buffer is no longer accessible to the program.

10. IS A RESCUE POINT DESIRED AT EacH RES$ carp? (v or N)
(NOT USED FOR DESTINATION FILES OR WHEN SELECTIVE
STACKING IS USED) (IF BLANK, N IS ASSUMED)

Position 50 is an optional entry and applies only to source files.

Enter "Y" in position 50 if rescue points are desired. When
requested, the software initiates a rescue dump each time it reads
a rescue card (RES$ in columns 1-4) in a card source file. The
rescue dump is made to the magnetic destination file designated
as the standard rescue file.

Enter "N" in position 50, or leave this position blank, if no
rescue points are wanted. Any rescue cards read are then con-
sidered data.

If the.file being described is a destination file (see entry 11)
or if selective stacking is specified (see entry 12) the software
ignores the entry‘in position 50 and treats rescue cards as data.

NEAT/3 -- FILES Nov. 68
TAB 1 —- PUB. NO. 6 Page 4

PUNCHED CARD FILE SPECS.

51

11, FILE USAGE (S SOURCE FILE, D DESTINATION FILE, X D
SOURCE FILE OF SOURCE-DESTINATION COMBINATION, Y
DESTINATION FILE OF SOURCE-DESTINATION COMBINATION)

This one-character entry in position 51 identifies the type of
file.

Enter "S" to specify a source file.
Enter "D" to specify a destination file.

Enter "X" to specify the source file of a source-destination com-
bination file.

Enter "Y" to specify the destination file of a source-destination
combination file.

12, IS SELECTIVE CARD STACKING USED? (Y OR N)
(1IF BLANK, N IS ASSUMED)

This entry is ignored if the entry in positions 19 and 20
specifies the integrated card reader.

Enter a "Y" in position 52 to specify selective stacking of cards
on a Class 686 Card Reader/Punch. The software looks for the
stacking code in the first character position of the input or
output buffers for this file and ignores the second character
position.

Enter an"N'" in position 52 if no selective stacking is wanted.
The input or output buffers are considered to contain data only.

13. ERROR REJECT — SHOULD CARDS ERRONEOUSLY
PUNCHED BE REJECTED TO STACKER NUMBER 37
(Y OR N) (1IF BLANK, N IS ASSUMED)

This entry is optional and is used only for destination files
which are not part of a source-destination file.

Enter "Y" in position 53 to reject any card on which a punch
error occurs. The rejected card is stacked in the reject
stacker (3).

Enter '"N" in position 53 if the reject feature is not to be used.
If position 53 is left blank, 'N" is assumed.

The error reject feature and the automatic retry routine in the
software permit the automatic handling of random punch errors and
allow the continuous processing with a minimum need for operator
intervention.

NEAT/3 -- FILES Nov. 68
TAB 1 -- PUB. NO. 6 Page 5

14. DELETE DIGIT

This entry is explained in the NEAT/3 REFERENCE MANUAL,
INSTRUCTIONS, tab 3, '"Compiler Control Worksheet."

NEAT/3 -- FILES Nov, 68
TAB 1 -- PUB. NO. 6 Page 6

PUNCH PAPER TAPE FILES

INTRODUCTION

The NCR Century Series offers the optional use of paper tape media for data
input and output. The following standard paper tape widths are acceptable.

Width Channels
i 8
7/8" 7

11/16" 5

Paper Tape Readers

The integrated paper tape reader permits the use of source files on punched
paper tape media. The reading rate is 1000 characters per second, The paper
tape may be in rolls or in strips.

An optional peripheral unit in the NCR Century Series is the Class 660-101
Paper Tape Reader. The reading rate of this unit is 1500 characters per second.
The use of supply and take-up reels permits tape to be rewound at the end of

a reel either manually, by pressing a rewind switch, or automatically, under
software control. Rolls and strips of punched paper tape may be processed on
the Class 660-101 Paper Tape Reader.

Paper Tape Punch

An optional peripheral unit in the NCR Century Series is the Class 665-101
Paper Tape Punch. This unit punches paper tape at a rate of 200 characters
per second.

NEAT/3 -~ FILES Nov. 68
TAB 1 -- PUB, NO. 7 Page 1

PAPER TAPE FORMAT

The NCR Century Series software offers the option of reading or punching paper
tape in any code. The programmer specifies on the file specifications work-
sheet for paper tape files one of the following two codes: the NCR Century
Series paper tape code (USASI) or the user-defined paper tape code.

NCR Century Series Standard Code Set

The USAST paper-tape code is the standard code for the NCR Century Series.
The use of this code permits information interchange between different systems
and the operation of remote communications equipment.

The NCR Century software contains a translation table for translation between
NCR Century Series internal code and the NCR Century Series standard paper-tape
code.

The NCR Century Series standard paper-tape code and corresponding identification
are shown on the following page. This code requires 8-channel paper tape, and
the hole configuration for each character has even parity (even number of holes).

The NCR Century software recognizes certain control characters which are foot-
noted on the following page. (The characters not footnoted are considered as
data characters by the software.)

NEAT/3 -- FILES Nov. 68
TAB 1 -~ PUB, NO, 7 Page 2

PUNCH PAPER TAPE FILES

NCR Century Series (USASI) Standard Paper Tape Code

~—
~
*
~lt o] [of [o] {o] Jof Te] JTo] Jo o Tof [o] [e] [of [o] Je of Jof Tof Jof Te o] |o] [o] Jo] [e] [eo] [e] [o] Je
o~ o o o o ol o) o @ o o o] o o ® a0 o e oo ole ° ole ole ®
= ole[o] e ole[e] e o/ olo] e olefee ololefe ofe olofe]e ° 0
= o/ e[e[e[o]e]e]e o[e[o[o[e[e]0]e ofe ole olelele]e °
n o[e[o] o] o] o] o] e[o]e|e] o[0]e]e]e olejejele|oe[e]e[e]e]e]e [}
) o/ o[o] ofe[e]e|0]0]e ole[e[e]e[e]e[e]e[e[e[e[ee]e)
~|[[o]/ o] o] 0] o] 0] 0] @] 0] @] 8] 0] 0] 0] 6] @[0] 0| 0] 0] 6] 6] o] o] @] 6] o] 0] 0] 6] 0| @ o o[o[ele]e]e]e]e]e o|ele[o[e[a]eiojele[e[alefe]e .
][o o] [eo]e oo Teo . o [of o o] [eofe oo [o ole o |eo o] Je]e ole] [eo °
o
=
=
2a 3
mU@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]A_ - | 0|.of ufo| ©|w] sl eloladofn]a|u]s|> 2] x| n|d— =
=
3]
=)
— N ™M ~ W O ~ o =
x x % X xk X% xXx
[T[] [o] [o] [ol Tol Tof Jo] Te o To] Jof Jof o] [o] To o] [o] Te] [of o o To[Jol [o] [e] [o] [o] o] je
~ oo of o oo o e ol e o o o o o e ol ole ole 0 ole o|o °
) ol ool e o[eo/e] e o o of o o[o/ o] e olo[e]e ole o[efele ° °
. . . ol o] o] e o] o] o] ¢] ¢} - o] o] of of o] | o] o} o} o] o] o] o] » ol of o] o] ol oo.oo~vc-- -
3 o[o] o e[e[e][e] 0 ol o[o| o[o[o[0@ ole ole o[o|ele|e 0
“ o[e[o] o/ o] o[o | o[0[] o] 0| o] o] ® olelojoje[o]e]e[e]ele]efe °
o . o/o|o[e[e]e[e]e]ele ole|e[ele][o[e[ole[ofo]e]e]e]e °
~
© oo e o o) o] [o]e] To of [o]d oo |9 ° . o] Jo]e ° o] |o ° ole °
o
7]
=] [~ ~
Za B = P =]] ol M 3 A %
s WOTHMWWESTFTFROIU CMCMWTmmSSSSSS |-k [Clalre|ap A INelHinfn it o [~ o jor || Ay o
R | e) (2 3 T) O g 2 R o -
S 7]

AMEANING TO 615 SOFTWA

1 - NULL

7 - ESCAPE CHARACTER

8 - END OF FILE

9 - END OF RECORD
10 - END OF FIELD
11 - IGNORE (DELETE)

2 - DOWN SHIFT

3 - UP SHIFT

4 - SYNC CODE

5 - VOID DATA

6 - END OF MEDIA

68

Nov.
Page 3

NEAT/3 -- FILES

7

TAB 1 —- PUB,NO,

NUL
SOH
STX
ETX
EOT
ENQ
ACK
BEL
BS
HT
LF
vT
FF
CR
so
S

NULL

START OF HEADING

START OF TEXT

END OF TEXT

END OF TRANSMISSION

ENQUIRY

ACKNOWLEDGE

BELL [AUDIBLE OR ATTENTION SIGNAL]
BACKSPACE

HORIZONTAL TABULATION [PUNCHED CARD skiP]

LINE FEED

VERTICAL TABULATION
FORM FEED

CARRIAGE RETURN
SHIFT OUT

SHIFT IN

DLE
DC1
DC2
DC3
DC4
NAK
SYN
ETB
CAN
EM
sue
ESC
Fs
GS
RS
us
DEL.

DATA LINK ESCAPE
DEVICE CONTROL 1

DEVICE GONTROL 2

DEVICE CONTROL 3

DEVICE CONTROL 4 [sToF]

NEGATIVE ACKNOWLEDGE
SYNCHRONOUS IDLE [syNc cobe]

END OF TRANSMISSION BLOCK
caNnceL [voip paTa]

END OF MEDIA

SUBSTITUTE

ESCAPE

FILE SEPARATOR [END OF FILE]
GROUP SEPARATOR

RECORD SEPARATOR [END OF RECORD]
UNIT SEPARATOR [END OF FIELD]
DELETE

In the NCR Century standard (USASI) paper tape
trailer punch configuration are always the NUL

NEAT/3 -~ FILES
TAB 1 —— PUB. NO. 7

code, the leader (run-in) and
character (sprocket hole only).

Nov. 68
Page 4

PUNCH PAPER TAPE FILES

User-Defined Paper Tape Code

To input or output paper tape in any code other than the NCR Century Series
standard code set, the programmer must completely define the nonstandard
code set on supplememtary file specifications worksheets, The programmer
must assign a value to every punch configuration he expects to use. The
software considers any undefined character as invalid.

If the programmer defines NUL in his code set, the software assigns NUL

as the leader (run-in) and trailer punch configuration, If the programmer
does not define NUL and defines DELETE, the software assigns DELETE as the
leader and trailer punch configuration, If the programmer defines neither
NUL nor DELETE, the software assigns a blank punch configuration (sprocket
hole only) for the leader and the trailer,

The worksheets for nonstandard code set definition are explained following
the mandatory file specifications worksheets,

FILE ORGANIZATION

The philosophy and organization of punched paper tape files are fully explained
in the NEAT/3 REFERENCE MANUAL, MAJOR FUNCTIONS, tab 1, '"Paper Tape Regiment."

PROGRAM CODING FOR PAPER TAPE INPUT AND OUTPUT

To read data input from paper tape, the programmer normally uses the Paper Tape
Regiment major function. The Paper Tape Regiment function facilitates the in-
put of paper tape files. When the programmer needs to access an item from
punched paper tape, he transfers control to the Paper Tape Regiment function
without using a GET instruction.

However, the programmer may code his own GET instruction to input data from
paper tape. See OPERATING SYSTEM MANUAL, I/0 EXECUTIVE, peripheral dependent
tab, '"Punched Paper Tape,' The Decode Routine.

To output data to the paper tape punch, the programmer must use the PUT instruc-
tion. See OPERATING SYSTEM MANUAL, I/0 EXECUTIVE, peripheral dependent tab,
"Punched Paper Tape," The Encode Routine.

NEAT/3 -- FILES Nov. 68
TAB 1 -- PUB, NO, 7 Page 5

OPENING OF PAPER TAPE FILES

Before the user's program (Major Function) can read or punch paper tape, the
respective source or destination files must be opened, Paper tape files

can be opened automatically either at the beginning of a program or, at the
programmer's option, at any point in the program by the use of the OPEN
instruction. The OPEN instruction is explained in the NEAT/3 REFERENCE MANUAL,

INSTRUCTIONS, tab 1, '"File Instructions."

Opening Paper Tape Source Files

The software reads paper tape to fill N-1 input buffers. (N is the number
of input buffers specified on the file specifications worksheet.)

Opening Paper Tape Destination Files

The software initializes output buffers and punches a leader (300 run-in
control characters) in the paper tape,

CLOSING OF PAPER TAPE FILES

Before a program terminates, all the files used in the program must be closed.
This is accomplished either automatically at the end of the program or, at the
programmer's option, at any point in the program by the use of the CLOSE instruc-
tion. The CLOSE instruction is explained in the NEAT/3 REFERENCE MANUAL,
INSTRUCTIONS, tab 1, "File Instructions."

Closing Paper Tape Source Files

The software performs only internal functions,

Closing Paper Tape Destination Files

The software completes punching of data in the output buffers, punches
an End-of-File character (if defined), and punches a trailer (300 run-in
control characters) in the paper tape,

NEAT/3 -~ FILES Nov. 68
TAB 1 —- PUB NO, 7 Page 6

ILE SPECIFICATIONS WORKSHEETS FOR PAPER TAPE FILES

The programmer must prepare one or more file specifications worksheets
(depending upon the options used) for each file used in a program. The file
specifications worksheets define the file characteristics, the file options,
and the type of processing desired. The entries on the file specifications
worksheets become part of a source program and are input to the NEAT/3
Compiler.

FILE SPECIFICATIONS WORKSHEET *
PAPER TAPE mGD
SHEET 1
Program. Prepared by
Dare Page, —

ALL STMBOLIC REFERENCES MUST BE LEFT.JUSTIFIED AND MUSY CONTAIN AT LEAST ONE ALPNARKTIC CHANACTER
L NUMERIC ENTRIES MUST BT RIGHT-JUBTIFIED AND MUST BE 2ERO.FILLED TO THE LEFT

(Shaded Boxes are Optionat)

Paper Tape Format Code /.9, 9 =

1. Page-Line

lad

File Reference - - Enter the name to be used
1 O instructions and Major Functions referring to
this file

w

Peripheral Type Code — Sec Peripheral Type List in Appendix of Language Reference Manual) [4]_ |

bl

Number of Buffers to be reserved for this file (if blank, 2 are assigned)

L4

o
n

Symbolic Unit Designator L.
:3

Record Length (Maximum 235;]

7. Data Format Codc Sce Data Format Code Chart in Appendix of Lunguage Reference Manual,
0

L4

8. Data Format Error Exit

9. End of File Exit (Source files only)

10. Is a Rescue Point desired at cach end of section? (Y or Nj 1if blank, N is assumed) .l

3
11 Is Rewind desired at end of section? (¥ or N) 1if blank. N is assumed; [
(660 Common Trunk Reader only)
52
12. Mode of Processing (Enter F if Control Character is first in field: L it last) I
53 5
13. Buffer size N
NI
14. Delete Digit []
k3 0
15. Identification m .
PAPER TAPE (OPTIONAL)
- Paper Tape Format Code L.1.9=
| PR
Al Page-Line
"
A2 User Routine after Section Open - - Sec File Spec. Sheet Section of Language 3 VA

Reference Manual)

A3 User Routine before Section Close — (See File Spec. Sheet Section of Language
Reference Manual)

A4, If Tape-Fecd characters indicate End of Media. how many
are required? - Maximum 255,

A5 Can Section Alternation occur after any record? (Y or Ni - Destination B
files onty) (Y is axsumed if blank) (To use N. see Language Reference Manual) .
N
A6. Delete Digit |
75 0
A7 Identification L

The programmer should fill in the header, the page-and-line number (question 1),
and the identification tag (positions 75-80) as defined in the NEAT/3 REFERENCE
MANUAL, INTRODUCTION AND DATA, tab 3, "Programming Worksheets." The paper tape
format code is preprinted on this sheet and must be punched if paper tape is
used for input to the compiler.

NEAT/3 -- FILES Nov. 68
TAB 1 -- PUB. NO. 8 Page 1

7 17

2, FILE REFERENCE — ENTER THE NAME TO BE USED BY ALL lFI U S S N TR U T T 1 I)'
170 INSTRUCTIONS AND MAJOR FUNCTIONS REFERRING
TO THIS FILE

The letter F in position 7 is preprinted on the file specifica-
tions worksheet and must be punched.

Enter in positions 8 through 17 the name of the paper tape file
being described for this program. Throughout the program, Paper
Tape Regiment may refer to this paper tape file by using the
file reference name.

The file reference must start in position 8, may be up to ten
characters long, and may consist of letters or numerals. Include
at least one letter in the file reference name.

Each file in a program must have its unique reference.

18
3. PERIPHERAL TYPE CODE - (SEE PERIPHERAL TYPE LIST m
IN APPENDIX OF LANGUAGE REFERENCE MANUAL.)

The number 4 in position 18 is preprinted and must be punched.

In positions 19 and 20, enter a 2-numeral code to identify the
type of paper tape reader or paper tape punch used. The compiler
uses this code to generate the proper object program for handling
the paper tape on a particular type of paper tape reader or paper
tape punch.

See the NEAT/3 REFERENCE MANUAL, APPENDIX, tab 1, "Peripheral
Type Codes."

4, NUMBER OF BUFFERS TO BE RESERVED FOR THIS FILE
(IF BLANK, 2 ARE ASSIGNED)

Enter in position 21 the number of input buffers or output buffers
to be used by this file. This number may be any digit from 1
through 9. Two buffers normally provide the greatest efficiency.

If column 21 is left blank (space), the compiler automatically
assigns two input or output buffers.

22

S. SYMBOLIC UNIT DESIGNATOR IE__D

The letter P in position 22 indicates a peripheral for paper
media. This letter is preprinted on the file specifications
worksheet and must be punched.

Enter in positions 23 and 24 a number to complete the symbolic
unit designator. A 3 in position 23 specifies a paper tape-

NEAT/3 -- FILES Nov. 68
TAB 1 -- PUB. NO. 8 Page 2

PAPER TAPE FILE SPECS.

reader; a 4 in position 23 specifies a paper tape punch. The
entry in position 24 identifies individual paper tape readers
or paper tape punches. If there is only one reader (or punch)
in the system, this number must be 1. For example, if a system
contains three paper tape readers and one paper tape punch, the
symbolic unit designators for these four units are P31, P32, P33,
and P41.

25

6., RECORD LENGTH (MAXIMUM 255) E

Enter in positions 25 through 27 the number of characters ex-

pected in the longest record in the file. The maximum record

length is 255 characters, except when Paper Tape Regiment is

used to input paper tape, in which case the record length is

limited to 50 characters.

28
7. DATA FORMAT CODE (SEE DATA FORMAT CODE CHART ED
IN APPENDIX OF LANGUAGE REFERENCE MANUAL)

Enter in positions 28 and 29 the paper tape format of the file.
Enter 20 to specify translation to or from the Century standard
paper tape code, or enter 2D to specify translation to or from a
user-defined code set.
30 39

Leave this optional entry blank (spaces) when using Paper Tape
Regiment. Otherwise, a user routine to which control is trans-
ferred when data format errors are detected during translation

may be entered here.

9. END OF FILE EXIT (SOURCE FILES ONLY) I 1B

Leave this entry blank (spaces) if this file specifications work-
sheet describes a destination file, or if Paper Tape Regiment (major
function) is used to read a source file. Otherwise, enter the ref-
erence name of the user routine to which control is transferred
when end-of-data is reached.

NOTE

Once an end-of-file exit is taken, the last record in the
input buffer is no longer accessible to the program.

10. IS A RESCUE POINT DESIRED AT EACH END OF SEC-— .
TION? (Y OR N) (IF BLANK, N IS ASSUMED)

Enter Y in position 50 to specify a rescue dump when this file
reaches an end-of-section. Enter N, or leave position 50 blank
(space) if no rescue dump is to be initiated by this file.

NEAT/3 —-- FILES Nov. 68
TAB 1 —- PUB. NO. 8 Page 3

11, IS REWIND DESIRED AT END OF SECTION? (Y OR N))i
(IF BLANK, N IS ASSUMED) (660 COMMON TRUNK
READER ONLY)

The entry in position 51 is only meaningful if a source file is
being processed on a 660 Paper Tape Reader. Enter a Y in posi-
tion 51 if an automatic rewind is desired at the end of a file
section (end of reel). Enter N or leave this entry blank if no
automatic rewind is required.

12, MODE OF PROCESSING (ENTER F IF CONTROL CHARAC- D
TER IS FIRST IN FIELD, L IF LAST)

Enter F in position 52 if the control characters for a data field
precede the data characters in that field; enter L in position
52 if the control characters follow the data characters.

53 56

1. BuFFER size o)

Enter in positions 53 through 56 the desired length for input or
output buffers. This length must be at least 0020 characters.
Two 255-character buffers usually provide maximum operating
efficiency when processing paper tape through the use of Paper
Tape Regiment or Paper Tape Out.

PAPER TAPE [OPTIONAL]

1 bul 6

Al PAGE-LINE Lo v []
7

Complete the optional portion of the file specifications work- x

sheet only if one or more of the options listed in this portion
are required.

If the optional portion is used, the programmer must fill in the
page-line number (positions 1-6), the delete digit (position 74),
and the identification (positions 75 through: 80) as defined in
the NEAT/3 REFERENCE MANUAL, INTRODUCTION AND DATA, tab 3,
"Programming Worksheets."

The page-line number for this optional portion must sequentially
follow the page-line number for the mandatory portion of this
file specifications worksheet.

If punched paper tape is used for input to the compiler, the
paper tape format code preprinted on the optional portion of this
file specifications worksheet must be punched before the page-
line number.

NEAT/3 -- FILES Nov. 68
TAB 1 -- PUB. NO. 8 Page 4

PAPER TAPE FILE SPECS.

The letter F in position 7 is preprinted on the file specifica-
tions worksheet and must be punched.

\ 18 28
A2 USER ROUTINE AFTER SECTION OPEN -~ (SEE FILE SPEC, ' g
SHEET SECTION OF LANGUAGE REFERENCE MANUAL)

The number 5 in position 18 is preprinted on the worksheet and
must be punched.

Enter in positions 19 through 28 the reference name of the user's
routine to be given control immediately after the second and each
subsequent section of the file is opened. Control is also trans-
ferred to this user's routine after the first section is opened
only if an OPEN instruction is used for this file.

Code a RELINK instruction as the last instruction in the user's
routine to return control to the software.

Leave this entry blank if no user's intervention is required

after opening file sections.

A3 USER ROUTINE BEFORE SECTION CLOSE - (SEE FILE
SPEC. SHEET SECTION OF LANGUAGE REFERENCE MANUAL)

Enter in positions 29 through 38 the reference name of the user's
routine to be given control before each section is closed - with
the exception of the last section. Control is also transferred
to this user's routine before the last section is closed if a
CLOSE instruction is used for this file.

Code a RELINK instruction as the last instruction in the user's
routine to return control to the software.

Leave this entry blank if no user's intervention is required be-
fore closing file sections.

A4 IF TAPE-FEED CHARACTERS INDICATE END OF MEDIA,

HOW MANY ARE REQUIRED? (MAXIMUM 255)

The user may wish to indicate end-of-media by a number of adjacent
tape feed (trailer) characters. To exercise this option, enter
in positions 39 through 41 the number of adjacent tape feed
characters which are to indicate end-of-media. This number may
range from 001 through 255, inclusive.

The punch configuration for the tape feed character (leader and
trailer) is explained in the NEAT/3 REFERENCE MANUAL, FILES, tab 1,
"Punch Paper Tape File," under Paper Tape Format.

NEAT/3 -— FILES Nov. 68
TAB 1 -- PUB. NO. 8 Page 5

A5 CAN SECTION ALTERNATION OCCUR AFTER ANY RECORD?
(Y OR N) (DESTINATION FILES ONLY) (Y IS ASSUMED
1IF BLANK) (TO USE N, SEE LANGUAGE REFERENCE
MANUAL)

The optional entry in position 42 is used for destinatio. files only.

A "Y" entry causes section alternation to occur after detection
of the approaching end-of-media signal from the punch. Alternation
can occur after any record.

An "N" should be entered if the programmer prefers to delay section
alternation until the end of a logical group of records. This causes
the SFILSTATUS flag to be set to a binary 1. The programmer must
then test this flag (accessing it as FileReference.$FILSTATUS) before
outputting the last record of the logical group. If the flag is set,
he must change its value to a binary 2 to permit section alternation
following the last record of the group.

NEAT/3 -- FILES Nov. 68
TAB 1 -- PUB. NO. 8 Page 6

PAPER TAPE FILE SPECS.

File Specifications Worksheet —-- Nonstandard Code Set

This form consists of two pages and must be filled in to specify code sets
other than the NCR Century standard paper tape code set. Only the characters
used in the code set need to be specified. The two pages cover every possible
hole configuration in an 8-channel paper tape and allow for upshift and down-
shift characters. Each worksheet contains four columns, each with its own
page-line number.

FILE SPECIFICATIONS WORKSHEET
PAPER TAPE — SHEET 2 mam

NON-STANDARD CODE SET

Pragram. Prepared by
Date Page of
ALL NUMERIC ENTRIES MUST BE RIGHT - JUSTIFIED AND MUST BE ZERO . FILLED TO THE LEFT
(Shaded boxes are optional) Paper Tape Format Code [/ 1 4]=
Page-Line Page-Line Page-Line Page-Line
1 X 6 4 1 X 6 7 1 » 6 7 1 X 6 7
Esaweein T3] I —— aTF]
- _ —_— — — —
8 o T 8 o 8 ool [[8
+ — s B e e— —_— —_—
J 3 of K] o . oo | [| 0
+ — —— —_— —— - R —_— —_—
od L Ll - Ll |- -
—_—] —_ N S —_
ole ol o * o0 oo | [+ oo
—_— 4 —_— b _— { _
o M o e 3 [| ['01 x| |olef di M
_— 1 _ —_ _
819 1 89 2 18|19 3 89 4
J— —_ P R — P
‘e l- 20| o Tel e 20| Ci 4 ® 20, oo | *o (o 20
U S — T H o] —_ T
cloje; o |olet lof t Ll © ole
—_— | RO S —_— ey —_—
mele o oo o -do]o oo | |- oeo
- — —_— + _— —_— s
U 3 CR | lof | |ef* ¥ | oo e »
N B { [S R S _
L []] . of LN \] e @ L]
- —_— l —_— _
. 30| o |® . 30 L o+ ‘& 39 C L]- kb)
] _ —_ b — f———
e CRUNECTY o | jof* Iolo CURC l-o
H — - _— . _ _— ——
CH o |ole o | oo oo oo
TEN B - } R - N [S —_—]
‘e X CRUDC Y 3 | jof | @0 s ¥ | |ofe oo [b
—_ it I } R N L _
‘il ;|| ofjole o | o oo oo CL]
_ —_ + _ - — b _—
LM 1] 40| | o lof*lo/eie 40 o CNC L 40 CLIRCRLT [40
—_— | —_— + _ = —
o 1 |oe o |of '+ soe
e p—t— —_— [— —_— —— —_— |
C] | |ojol ¢ | @ o ol . oo ®
R _A_‘ e oo — e — —_—
C | 3 [olo| . X | lef |ef o 3| |elee L ¥
— —— + —— —_— _—]
o | o ! oo oo o |of ol LLL oo
].] } | JR— _l_‘ _ —_—
L] E 504 ! ool 1. 50 o |®f ® 50 L L] 50
+ _ + 1 _ - —_— —_—
o ‘o @ I |eje] 0] ® o o 0 ooe o (o
J } SR [y N ol ol e | —_
e [ele o o U CULRELT
—— | — —_— —— D — —— — O
o (‘oo * ol®) oo[. X o |® o/ol® bl o oe oo X
—_— —t _— . —_— b _— ——
CLR [oloje ¢ ol |ojoj* ooee
_—] _ —_ I ST
>i®* 60} oo i 60 (o| (oo (] 60 LLLL o 60
—_— —— _ b — —t
CUREY ole(o)*| & lo| [o/e|*] (o] ooloe o
—_— —_— e —_— b
oo o loloje|* (oo o (oo o0 CCLCRNC Y
N S —H — —_—] ———]
@' bl e e X o 000 b] LT M]
[. | —_— — — bt | —_—
oo*l o [ojore(*e| o lo| @je|*i0| (o s oo (e o
—_— — | —_— _— e
o*m® 70| 70 ol 70 CLL LML 70
—_— —_— — — e
. . A | (o |efe|*|elele, b o X
olo* i b loele/* o/0le ooe *|onte)
74 74 74 74
Shift (U,LorN) [_|» Shift (U,LorN) []> Shift (U, LorN)[_] Shift (U,LorN) []*
(1f blank, N is assumed) (1f blonk, N is assumed) (if blank, N s assumed) (1f blonk, N is assumed)
75 80 75 80 75 80 75 80
w) (w L (w) (e

TRADCMARS BEG U 'S PAT OFF

NEAT/3 -- FILES Nov. 68
TAB 1 -- PUB. NO. 8 Page 7

FILE SPECIFICATIONS WORKSHEET *
PAPER TAPE — SHEET 3 msm
NON-STANDARD CODE SET

Program Prepared by

Dute Page____of

ALL NUMERIC ENTRIES MUST BE RIGHT.JUSTIFIED AND MUST BE ZERO.FILLED TO THE LEFT.

(Shaded boxes are optional) Paper Tape Format Code [/ 1 4]=
Page-Line Page-Line Page-Line Page-Line ’
' b 6 7 ! * 6 b4 1 b s b4 1 b 6 7
LT hE R | e LT e
o 7T 8 » Tl 8 i) o - 8
—_— —_— —_— p— + —_— —t— —
of [o @]| e ® L opp| | |
—_— p— _ —— +—+ —_— —— —_—
of 3 o lof [[+]]o ol Jof oole
— —t + _— s [RESN S — —_—
o (13 o o | we a3 jow 033 oo
—_ } I s —_— _—
» PRI IR X (o] ‘e X |olole o“ . ¥
—_— 1 " —_— —_— — —_—
18]9 § 189 6 8|9 7 89 8
— 2 — = _ = e
o X 20, o[B[[B 20) o o e 20 oo 20
[— T — L. —_—
o | o lof [[-lojor ® . olom] o
HE S . _] [B —_]
o '-.[n o o | "pee 13 °-bP oo | ool
—_— . —_— + —_ —_—]
o ol* X (o o o % (ol | i 3 (oo o x
—_ 1+ —_] TS R S _
o o] ® o ® I--{ . o) [)] T slow loic ' ®
— —_— _ 4 —_ e _—_
of o+ » 30 o/ | o o 30 op| (@ e k4] ope| o 3
o — —t—f —_— _ —_
@] ol » o lof @/ oo o® 4 Pp om® @ oo
H — =] _ b i —_—
C ol*| o o @ op| | BIp oo fo/° 0
—_— —_—] — _—]
o o>l o A o o oc@f @ X jopl |l e X jojoje o0l o b
—_— _— e RN S—— —_—
i o[* e o 0| ®|°mp oo [o] jole! sloje o[*0le
_—] 4 _— —_—] _
o oo 0] o (0| 0| ojeie: 40 o) | i 0o 40 ojoje - 40|
— p—t— L — - S— — T — f —_— —
CRRURG o jojo| [+l 1. opl o I ololole|
— +—+ — _ _ —_
o (o [f| @ o oo+ @ ol o L O Y
—_— + —_—— —_— —_— e
o | of [*| b oI o |+ ljop [l X |ojojoie [« b
_ - _— e —_— _ —_a
o | fo] (3 o oo |* oo , o o o sjore/e |+ loe
—_— —_— —_— —_—
o | (o [} 50 ol o0 |*jo| S0 oo o |0l 50 oojole| I*lo 50
—] - —] [—
L o (e ® @ e ‘o o oD) ‘® @ ool "o o
— e + — - — —— Y S| — —
o | |of [o lolo| [*jole el o *lojo) oiolel |00
—_—] o e —_—] _— —_
| @ w4 dd X o @ '..’. A (op @ [*wee N |eeew *leee bl
_ —_— _— —
o | |ofef* o opo i op we|*
_ _ —_—] _
o | o0 | 0] 0| weie|* 60 o ool | ® 60 . 40
e S N— —_— [T — [—— —_— [|
L 0S| @ owe o op ow*| (]
— —_— S S _—
L loje(*| B o oep o0 op| Be*| B dnd
—_— _— —_— il —
L [®(®* N o om@ e A fom| e e A x
——] —_—] —_—] —_—]
Al oo o eoR‘e o o o@|*e » e
— S S _—] —_—
» ‘pp 77 o [0 0@ 70 o oo*wie 70] 70
| & ‘oo X o] lejewn|: oo X o oo‘oee X * o A
74 74 74 74
Shift (U,LorN) []x Shift (U,LorN) [Shift (U,Lor N)[_]» Shift (U,LorN) [_]*
(1f blank, N is ossumed) (it bloak, N is assumed} {1f blank, N 15 ossumed) (1f blank, N is assumed)
75 80 75 80 75 80 75 80
w T e (w e | w

TeantEaRs BEG us Par OFF

The programmer specifies a nonstandard code set by relating individual paper

tape hole configurations to specific internal NCR Century data characters or

control characters. To permit the preparation (punching) of the nonstandard

code set specifications for input to the compiler, each data or control char-
acter must be represented on the worksheets as two hexadecimal characters.

Following is an explanation of the representation and the meaning of data
characters and control characters.

NEAT/3 -- FILES Nov. 68
TAB 1 -- PUB. NO. 8 Page 8

PAPER TAPE FILE SPECS.

e Hexadecimal Representation of NCR Century Data Characters

e g |h

ul| viw |x |y

R.H. CHARACTER

To find the two proper hexadecimal characters for representing an NCR Century
data character, locate the desired character in its non-shaded square on

the above chart. The shaded box to the left of the data character (on

same line) contains the left-hand hexadecimal character, and the shaded

box above the data character (same column) contains the right-hand hexa-
decimal character.

Following are some examples of NCR Century data characters and their corres-
ponding hexadecimal representation.

NUL = 00 + = 2B R = 52
SYN = 16 2 = 32 Z = b5A
& = 26 7 = 37 m = 6D
NEAT/3 -- FILES Nov. 68

TAB 1 -- PUB. NO. 8 Page 9

e Hexadecimal Representation of Control Characters

CONTROL CHARACTERS

CONTROL FUNCTION

HEXADECIMAL.
REPRESENTATION

INVALID CHARACTER
UPPER SHIFT
LOWER SHIFT

SYNC CODE

VOID DATA

END OF MEDIA
ESCAPE CHARACTER
END OF FILE

END OF RECORD
END OF FIELD
IGNORE CHARACTER

The hexadecimal representations of control characters (which perform the
control functions above) are recognized by the software. The control
characters have the same name as some of the data characters. (Whether a
character is considered as a control character or a data character depends
on its hexadecimal representation in the nonstandard code set specifica-
tions.) The fixed 2-character hexadecimal representation for the control
characters is shown in the above chart. (The hexadecimal representation
of data characters is shown in the chart on page 9 of this publication.)

The software considers a control character (except NUL) preceded by an ESC
(Escape) control character as a data character and not as a control char-
acter. The control character (except NUL) preceded by the ESC character
becomes part of the data being read. (A NUL character may be punched in
paper tape, but can never be input as a data character.)

Worksheet Entries - Nonstandard Code Set

The following is a brief description of the entries on the file specifications
worksheets - sheet 2 and sheet 3. Each of these worksheets has four columns
that represent individual source lines with unique page-line numbers. If the
nonstandard code set uses less than eight paper tape channels, only one work-
sheet (sheet 2) is required.

If the programmer includes upper and lower shift characters in a nonstandard
code set, he must fill in two sets of worksheets. Two different data charac-
ters may be represented by the same hole configuration, with the shift mode
being the only differentiating factor. Control characters must be defined in
both shift modes, and each control character must have the same hole configura-
tion in the upper shift mode as in the lower shift mode.

NEAT/3 -- FILES Nov. 68
TAB 1 -- PUB. NO. 8 Page 10

PAPER TAPE FILE SPECS.

The programmer must fill in the header, the page-line numbers (positions 1
through 6) and the identification tags (positions 75 through 80) of the columns
being used, as defined in INTRODUCTION AND DATA, tab 3.

The page-line numbers on the nonstandard code set worksheets must immediately
follow the page-line number of the associated file specifications worksheet
(or of the optional portion of the file specifications worksheet, if used).

If punched paper tape is used for input to the compiler, the paper tape format
code preprinted on the file specifications worksheet must be punched before
the first page-line number of the columns that are used for defining the code
set,

Page-Line Page-Line Page-Line
) 1

Every column on the worksheets contains the preprinted character F in position
7 and a unique identification number (91 through 98) in positions 18 and 19.
These preprinted entries must be punched in the source lines for the columns
that are used for the nonstandard code set definition.

Bae Sy N o S oo S . g S ~

74

74 74 74
Shift (U,LorN)DX Shift (U,LorN)D" Shift (U,LorN)D’ Shift (U,LorN) D"

{if blank, N is assumed) (if blank, N is assumed) (if blank, N is assumed) (if blank, N is assumed)

To define a one-shift nonstandard code set, enter the character N in position
74 of the columns being used, or leave position 74 blank.

To define a code set containing lower shift and upper shift characters, enter

L or U in position 74, An L indicates that the paper tape configurations de-
fined in the column are to be interpreted as lower shift characters; a U indi-
cates that the paper tape configurations defined in the column are to be inter-
preted as upper shift characters.

NEAT/3 -- FILES Nov. 68
TAB 1 -- PUB. NO. 8 Page 11

Example of Nonstandard Code Set

A set of paper tape characters and their intended meaning are charted on the
following page. The file specifications worksheets defining this nonstandard
code set are shown on the subsequent pages. (When considering this example,
refer to Hexadecimal Representation of Control Characters and Hexadecimal Re-
presentation of NCR Century Data Characters in this publication.

NEAT/3 -- FILES Nov. 68
TAB 1 —— PUB. NO. 8 Page 12

PAPER TAPE FILE SPECS.

LOWER SHIFT CHARACTERS UPPER SHIFT CHARACTERS
CHANNEL CHANNEL
876544321 MEANING 876544321 MEANING
. NUL . NUL
. ®| LOWER SHIFT . ®| LOWER SHIFT
| |® UPPER SHIFT *l|® UPPER SHIFT
e END OF FIELD L END OF FIELD
«leo| |®] END OF RECORD *(®] |®| END OF RECORD
elole END OF MEDIA cleole END OF MEDIA
*|leje|o| END OF FILE *le|leole| END OF FILE
e(+|ojeje! SYNC CODE o(e|ojej®| SYNC CODE
olojelo|*|o]|e|e®| DELETE elejeje|+|ojo|®| DELETE
] . @ (SPACE) o (o 0
° . ° A ol | ° 1
o |o ° B ™ of l® 2
° . eole C ° o/ |o]® 3
° olo D ol (o]0 4
° clo]| |eo E o |o|o] |@® 5
° clole F ° cleje 6
° clo|o|e® G ° clojole 7
o0 H elo]|. 8
10K ° I ole]e ° 9
° . ° J
() . ® K
® . ole® L
° ole M
° clo| (@ N
) clo|e® 0
° 10100 p
° ol Q
° ofe ° R
° . ° S
° . ole T
® o|@® U
° cle| |eo Vv
° olole W
° clojolo X
ol |lo]e Y
o| [of ° YA
NEAT/3 -- FILES Nov. 68

TAB 1 -- PUB., NO. 8 Page 13

FILE SPECIFICATIONS WORKSHEET
PAPER TAPE — SHEET 2

NON-STANDARD CODE SET
Prepared by

Program.

Date

NICIR]

Page of

ALL NUMERIC ENTRIES MUST BE

RIGHT-JUSTIFIED AND MUST BE IERO-FILLED TO THE LEFT.

(Shaded boxes are optional)

Paper Tape Format Code [/ 1 4]=

Page-Line Page-Line Page-Line Page-Line
1 A é 7 1 X 6 7 1 A é 7 1 A é 7
[0.18[0,00]"[¢]] [018]010]x[F]| [01.8[020]x[F] [01.8[030]F]
ot 88| (TR) [FTIE L] [T
. . & B‘F O ° o . o . ® i 4‘A ol @ ° o
1P| SO I8E U] S [S3) | K 48 |
| oo L j o | i*| e l 5‘4 o ° _L 4‘c ool i
o U_S gAF M o | |*|ol l 55 3| e .o _M_- 4‘0 3 | |ofef . L
w91 _ 189 2 %9 3 89 4
. R—SQQ 9‘E o | [°lof @ lgc 5.6 o o | lyo AI,E L clo |@f _w
m 9‘9 C o0l l 5‘7 o *| ool z 4F oo o B
o F_s g‘c o o i 5‘8 o |olole _P_ 50 oo i R Y
o+ L) X o (o _Y_ slg N | |of | [of g 5‘ N | (oo |of¢ . %
ol | o o o 0| | |o i SLA o | (o | l® _R_ 5]2 ool
o° _30 i o |of° _30 . o | |o° _30 o (o o _39 R
CRIED : A o lo[/of |0 : IL A | |of | (oo |® : 3 | (oo [of<af |0 : :L bl
ojojole mw g:s CRCROCH :40 o | |of O :40 oo (o °|eee :40
CER I 2‘0 o0 . . o |of [* - ooe |- - N
|] _A_ 4.1 o|o| o . o o ° . oo . .)
o] _b— 4L2 3 00| wil 3| (e |of o 3 | |oee o« L
o ol £- 4‘3 ol uind R . o |o o o o0 .’ .
o |°l0 Lso4‘4 CORRs %0 o o |0 50 olole o s
o [*o| o L 4.5 o ol)]) 1 o o oole ot o] .
CER) F 46 ool "o | . o (o [*|olo ofolef |*|oa
o |*liole 1— 27)! ole| [o0le| 3| [of [of |*[eo]o) : MEERELCLENLLL : L
olof* i 4*8 loloie|* L N SEOCE L . . .)
olol*| | ® _I_ao 419 oleel| (o] 0 ol ool lo] ¢ of e |
OOy T L ololo(*l0 : ‘: X | jof [oe||o) T] “|of : T bl
LM I :70 lojoo|* o]0 :70 N o |o(e|* (o]0 :70 ML L :70 .
oo ppe A ojefel leele] L el sl e 3 “lolofo DE_L FF bl
74 74 74 74
Shift (U, L or N) [L]> Shift (U,LorN) [L] Shift (U, Lor N) [L]* Shift (U,LorN) [L]»
(if blank, N is assumed) (if blank, N is assumed) {if blank, N is assumed) (if blank, N is ossumed)
75 80 75 80 75 80 75 80
{1 w1 |] [m[

TRADEMARK REG U S PAT OFF

NEAT/3 ---FILES

TAB 1 -- PUB. NO. 8

Nov.

Page 14

PAPER TAPE FILE SPECS.

FILE SPECIFICATIONS WORKSHEET

PAPER TAPE — SHEET 2

NON-STANDARD CODE SET
Prepared by

N[CIR]

Program

Duate Page of

ALL NUMERIC ENTRIES MUST BE RIGHT-JUSTIFIED AND MUST BE ZERO.FILLED TO TME LEFT.

(Shaded boxes are optional) Paper Tape Format Code =

Page-Line Page-Line Page-Line Page-Line
1 R 6 7 1 X é 7 1 X 6 7 1 A é 7
[01.8]040) [* LT i »[(]] [0T8]050)*[F]
. m 8 80 o . - 8 ®f - 8 X ol® - 8
QRS ﬁ 8F o o) : o] ® : | oo ol :)
‘| SO 8.E o L . C ¢ e N oo o . .
¢ o o L o 0 L oo
‘e U_s SAF Ml o *|® _ Cl - * M L ML - * A
_1391 _—1092 _—1593 _1894
. R—s;o 9‘E o o |® _—20 . o o |o —_20 oo o o _20
‘oo E_" 9‘9 o o0l :) o L - Ll oo : N
‘e Fs 9_0 o | [*|ome o o o oo oo L
L % & |®f° L L b] LU BLN A
o] * o o[- [o] — ’ o] [lol-] [To] — ool o | [of
CHE _30 : o lo° —30 41 o CHEC _30 * oo o |o —_39 *
CHE] * o o o] ~ o | [of-| Tolo] — oo o [de]
@ °® -) o |®|°|® - N ® & *| @ - - o0 o°ie -
o[0| — b o fof-lo] lo] — o | ool o] — X | |oe (oo |o - : b
o-lolel | — ’ o lol-lolel |) of [lof-lolel | — oo |o-jole |
o ople 3?"40 9?6 CRUNUUT _40 . of | | of w0 - CLRCRCLD __'40
o |° (@] 3‘0 oo ° - . o (o |° . . ooe | . N
o v | 1 3‘, ole| |* * — , o (@ o . ooy | L _ X
CLEME.] 2 32_x o0 * - R o |o . Il oo o . N A
o c[oe| 3 3.3 olol [*| lol® _ , o |® o .) ooe ° ee L X
CRM.] 4 503.4 CUBNY _50 . o (o |*|of _50 oloie o _so
(o [*e] @ 5 3‘5 lole| (*of (@ - . o o [*o |® . ool o @ . X
of [*jol0 6 _z& e) o (o] [*|olo] . N oole [*[oe . R
o (‘oo 7 3_7)(oje| |*lo0le X | (o] oo LRl AL EELAL . L
oo 8 |38 oloje|* lof |ojo] ,
oleis] | @ Tw;g iolo@*| | o e X 0| |ojo[*| | o _60 ° —60 .
ool P | ejole|* —— ; o oo - o |
olo*| blo| . olofo|-| loje] X o folo]<[lole] — oe|
oloi* o - b} ojojel* @ _ o| of0|*/o) — b] °|of - L
oo o[| — . lelofo-Te] o] . o folol-lo] o] — Jo o] R
Lo i d] _70 olole|° o0 _70 N 0| |ole*lele) _70 *loe _70 .
ool loll| L olote]* jolele __ X o Jolo|-Jofele| ~ b ‘| oo DTL FF bl
74 74 74 74
Shift (U, L or N) [U] Shift (U,LorN) [_]» Shift (U,LorN)[_]* Shift (U, L or N) [U]»
{if blank, N is assumed) (if blank, N is assumed) {if blank, N is assumed) (if blank, N is assuMed)
75 80 75 80 75 80 75 80
wl_ U [(w) (m[=
NEAT/3 -- FILES Nov.
TAB 1 -- PUB, NO. 8 Page 15

MAGNETIC TAPE FILES

A wide range of magnetic tape handlers featuring various recording densities and
transfer rates are available for use with NCR Century Systems. Within this range
are handlers capable of reading and recording on 7-chanmnel or 9-channel tape,
using either the non-return-to-zero (NRZ) or the phase-modulated technique of
recording.

NCR provides such a wide range of tape handlers to permit the user to base his
peripheral choice not only on system performance-to-cost ratios, but also on
the desire to interchange tapes with other equipment manufacturers. The NCR
Century software is designed to create and read tapes that conform with the
adopted standard of the United States of America Standards Institute (USASI).
Further, the GET and PUT instructions are capable of translating data input
from, or output to, tapes in any of the following external code sets:

e NCR 315
e IBM Binary-Coded-Decimal (BCD)
e IBM Extended-Binary-Coded-Decimal Interchange Code (EBCDIC)

The software is also designed to automatically handle tapes recorded in NCR 315
format, that is, tapes with 315 labels. The format of tapes in external code
sets other than NCR 315 must comply with USASI standards.

NEAT/3 -- FILES Nov. 68
TAB 2 -- PUB. NO. 1 Page 1

FILE DESCRIPTION

Reel-File Relationship

One or more files may be placed on a reel of tape, or one file may occupy many
reels of tape. When one file occupies one reel of tape, the file is considered
to be a single-section file. In this instance, a file section equates to a
reel (section 1 is on reel 1). When one file extends over two or more reels of
tape, the file is considered a multi-section file; here again, a file section
equates to a reel (section 1 is on reel 1, section 2 is on reel 2, etc.).

When more than one file appears on the same reel, each file is considered a
single-section file and the reel is considered a multi-file reel. A file sec-
tion no longer equates to a reel, since more than one file appears on the
same reel (file 1 and file 2 on reel 1).

When more than one file appears on the same reel, and one file extends over
two or more reels, the group of reels containing those files is considered a

multi-file, multi-reel set.

One file is contained on
one reel of tape. This is
a single-section file.

SINGLE-REEL FILE:

iy
=

tis MULTI-REEL FILE: One file is contained on two
or more reels of tape. This
is a multi-section file.

More than one file is contained
on a reel of tape. Each file
is a single-section file.

MULTI-FILE REEL:

MULTI-FILE,

B MULTI-REEL SET: More than one file is contained

on a reel, and one file is con-
tained on more than one reel.
Files within the set may be
single- or multi-section files,

NEAT/3 -- FILES Nov. 68
TAB 2 —- PUB. NO. 1 Page 2

MAGNETIC TAPE FILES

When a multi-file, multi-reel set is used, the programmer can indicate on the
file specification sheets a six-character identification code to identify the
set. On a destination set, the software insures that no files with a different
set identification are placed on a reel within this set. The software uses the
set identification code on a source set to insure that all reels mounted during
processing are part of the desired set.

Labels

The 1/0 software is designed to create and process labels that conform to the
USASI standard. These labels are special 80-character blocks that provide the
software with a means of identifying reels, sets, files, and sections of files
stored on magnetic tape. Labels also provide the software with a means of em-
bedding special information (such as rescue dumps) within a data file. This
capability allows a normal data file to also be used as the standard rescue file
in a run, and allows the software to bypass rescue information when presenting
data from that file to a program.

All labels are identified by their first four characters. The first three
characters indicate the label type and the fourth character indicates the num-
ber of the label within that type; e.g., HDR2 = Second File Header Label. The
following is a list of the label identifiers, their meanings, and the number
that may be used per reel or file according to the USASI standard:

LABEL TYPES

MAXTMUM
NUMBER

IDENTIFIER MEANING

Volumn Header Label reel
User Volume Header Label reel
File Header Label section
User Header Label section
End-of-Volume Trailer Label reel
End-of-File Trailer Label file
User Trailer Label section

Bypass Header Label rescue
Bypass Trailer Label rescue

* - No set maximum; as many as desired may be used.

The BYH and BYT labels are not part of the USASI standard. Therefore, res-
cue dumps may not be embedded within a file when preparing a USASI standard
interchange tape.

NEAT/3 -- FILES Nov. 68
TAB 2 -- PUB. NO. 1 Page 3

e VOL - Volume Header Label

Each reel of magnetic tape is considered a volume and must contain a Vol-
ume Header Label to identify it. VOL labels, placed as the first data on
tape by the magnetic tape initializer utility routine, contain the fol-
lowing information in the indicated format:

VOL LABEL FORMAT

FIELD NAME LENGTH DESCRIPTION

Label identifier Contains "VOL" to identify this as
a Volume Header Label.

Label number Contains decimal '"1" to identify
this as the first and only Volume
Header Label.

Contains information supplied by the
programmer to uniquely identify this
reel, Any "a'" character from the
following code chart below may be
used.

Contains the accessibility code sup-
plied by the programmer. Any "a"
character may be used. At present,
software makes no use of this field.

Volume serial
number

Contains space characters. This
field, designated as optional by
USASI, is unused by the NCR Century
software.

Owner's Contains data supplied by the pro-

identification grammer to identify the owner of
the volume. Any "a'" characters
may be used.

Contains space characters. This
field is reserved for future stan-
dardization.

Label standard Contains either decimal "1" if

level this tape follows the the USASI
standard, or a space character if
this tape does not follow the USASI
standard. This field is set to "1"
by the initializer.

NEAT/3 -~ FILES Nov. 68
TAB 2 —- PUB. NO. 1 Page &4

MAGNETIC TAPE FILES

B,—B
4”1 loooo | 0001|0010 |0011 | 0100 | 0101 |0110 | 0111 | 1000] 1001 | 5010 | 10171 | 1300 | 1101 [1110 1111

0000| O NUL|SOH |STXIETX |EOT |ENQ | ACK|BEL | BS | HT LF VT | FF CR SO | Si!

0001} 1 “{|DLE DC1 |DC2 |DC3 |DC4 |NAK |[SYN| ETB|CAN|EM | SUB|ESC| FS |GS RS |US

oml 2 o lqglr]s|t]lulviw |x |y |2z { : } i

"a'" characters are any of the 58 characters occupying the unscreened cen-

ter four rows of the above chart.

e UVL - User Volume Header Label

User Volume Header Labels are optional. The NCR Century software will not
present them to the program, but will index past them during processing.
Up to nine UVL labels may be placed on the tape at the time it is ini-
tialized, if desired for interchange purposes. The following format must
be followed in creating these labels:

FIELD NAME DESCRIPTION

Label identifier Contains "UVL" to identify this as
a User Volume Header Label.

Label number Contains decimal "1" for the first
UVL label, decimal '"2" for the se
cond, etc.

Contains any information desired.

NEAT/3 -- FILES Nov. 68
TAB 2 -- PUB. NO. 1 Page 5

e HDR - File Header Label

The required number of File Header Labels, as defined by the USASI standard,
is one; however, up to nine may be used. The NCR Century software uses two
which are automatically created by the software when a new file or file
section is opened, and are automatically read each time an existing file or
If an interchange tape with more than two HDR labels
is input, the software indexes past all but the first two. The information
contained in the first two labels is used by the software to locate a
desired file, protect a current file, and identify file sections. The two
HDR labels (HDR1 and HDR2), which have the following formats, are available
for examination by the program as described later in this publication under
the heading 'Creating and Reading Labels".

file section is opened.

FIELD NAME

LENGTH

DESCRIPTION

Label identifier

Contains "HDR" to identify this as a
File Header Label.

Label number

Contains '"1" for the first File Header
Label.

File name

Contains the name of the file as indi-
cated on the file specification sheets.
The first 10 characters contain the file
name and the last 7 characters contain
spaces.

Set
identification

Contains the set identification code
as specified on the file specification
sheets. Any "a" characters may be
used.

File section
number

Contains the volume (section) number of
the volume within a file. '"0001" for
the first section, "0002" for the se-
cond, etc.

File sequence
number

Contains the sequence number of a file
within a volume set. "0001" for the
first file, ''0002" for the second, etc.

Generation number

Contains "0001". This field is not
used by the NCR Century software.

Generation
version

NEAT/3 -- FILES

TAB 2 -- PUB. NO. 1

Contains spaces. This field is not
used by the NCR Century software.

Nov. 68
Page 6

MAGNETIC TAPE FILES

FIELD NAME

LENGTH

DESCRIPTION

Creation date

6

Contains the virtual date specified when
the file was created. The date is in
the following format - a space charac-
ter followed by two numeric characters
that represent the year, followed by
three numeric characters that repre-
sent the sequence day within the year.
(168001 = Jan. 1, 1968)

Expiration date

Contains the date the file expires.
This date is in the same format as the
creation date.

Accessibility
code

Contains the accessibility code spe-
cified on the file specification sheets.
At present, software makes no use of
this field.

Block count

Contains zeros. (Note: The block count
does not appear in this label; how-
ever, the software does keep track of
the block count and stores that count
in the E-0-V or E-O-F label when a file

_is created.

System Code

Contains spaces. This field is not
used by the NCR Century software.

Reserved

Contains spaces.

NEAT/3 -- FILES
TAB 2 -- PUB. NO. 1

Nov. 68
Page 7

FIELD NAME

DESCRIPTION

Label identifier

Contains '""HDR".

Label number

Contains decimal "2" for the se-
cond File Header Label.

Record format

Contains a character to indicate
the type of records in the file:
F = Fixed-length; V = Variable-

length with record in binary;

D = Variable-length with record

size in decimaly U = Undefined.

Contains a decimal number that
indicates the maximum number of
characters in a block.

Contains a decimal number that
indicates the number of charac-
ters in a fixed-length record or
the maximum number of characters
in a variable-length record.

Contains spaces.

Contains a decimal number that
indicates the number of charac-
ters to be ignored at the begin-
ning of a block. The software
presents records beginning with
the character following the off-
set.

Contains spaces

NEAT/3 -- FILES

TAB 2 ---PUB. NO. 1

Nov. 68
Page 8

MAGNETIC TAPE FILES

UHL - User Header Label

Optional labels (called User Header Labels) may be placed on the tape
immediately following the File Header Labels, as described later in this
publication under the heading '"Creating and Reading Labels'. The USASI
standard permits the user to create as many UHL labels as desired; however,
they must conform to the following format:

‘UHL. LABEL. FORMAT

i FIELD NAME ?gg' LENGTH DESCRIPTION

Label identifier 0 Contains "UHL" to identify this
as a User Header Label.

Label number Contains a character to indicate

the label sequence. Any "a"

character is acceptable.

Conttains any information desired.

Tape Marks

The USASI Character "DC3" (BINARY 00010011) is used as a tape mark. The
software writes one tape mark to separate labels from data, one or two
tape marks to separate groups of labels, and two tape marks to indicate
the end of a file or the end of a reel. Since tape marks are not placed
in the input buffer when they are read, the programmer need never concern
himself with them.

TYPICAL LABEL. CONFIGURATION

VOLUME HEADER LABEL (WRITTEN BY INITIALIZER)

FILE HEADER LABEL 1 (WRITTEN BY I/O SOFTWARE)

FILE HEADER LABEL 2 (WRITTEN BY I/O SOFTIWARE)
USER HEADER LABEL (OPTIONAL)

TAPE MARK-SEPARATES LABELS FROM DATA

FILE INFORMATION

DATA k\\

NEAT/3 -- FILES Nov. 68
TAB 2 -- PUB, NO. 1 Page 9

BYH - Bypass Header Label and BYT ~ Bypass Trailer Label

The Bypass Header Label precedes, and the Bypass Trailer Label follows, res-
cue dumps on tape. These labels, which contain the information needed to
properly identify a rescue dump, are never placed in the input buffer by

the software; the programmer need not concern himself about BYH or BYT La-
bels. However, since these labels are not part of the USASI standard, they
may not appear on a USASI interchange tape. For further information on rescue
dumps, see the NEAT/3 REFERENCE MANUAL, FILES, "NCR Century File Concepts".

~ TYPICAL LABEL CONFIGURATION SHOWING A RESCUE DUMP

TAPE MARKS -~ SEPARATE GROUPS OF LABELS
BYPASS HEADER

TAPE MARK - SEPARATES LABEL FROM RESCUE DATA

INFORMATION NECESSARY TO RESTART A PROGRAM

TAPE MARK-SEPARATES
LABEL FROM DATA

BYPASS TRAILER
TAPE MARK-LABEL
FROM DATA

RESCUE DATA FILE DATA

EOF - End-of-File Trailer Label

The software places an End-of-File Trailer Label on the tape each time a des-
tination file or a piggyback file is closed. When encountered on a source
file, it indicates that all data in the file has been processed (end-of-file).

The software then compares the data block count contained in this label with
the number of data blocks input during processing. For a multi-section file,
the count in this label reflects the number of data blocks in the last sec—~
tion only. Since the block count is for data blocks only, it does mot in-
clude tape marks, label blocks (software or user), or bypass blocks. EOF
labels have the same format as HDR2 labels, with the following exceptions:

NEAT/3 -- FILES Nov. 68
TAB 2 —— PUB. NO. 1 Page 10

MAGNETIC TAPE FILES

I B R B

FIELD NAME LENGTH DESCRIPTION

Label identifier Contains "EOF".

Label number Contains "1".

Block count Contains the decimal number that in-
dicates the number of blocks in the
last section of a file (or the entire
file if the file is only one section
long).

e EOV - End-of-Volume Trailer Label

The software places an End-of-Volume Trailer Label at the end of a reel of
tape when the last file on the tape extends to another reel. When en-
countered on a source file, it indicates that all the data in a file sec-
tion has been processed (end-of-section). The software then compares the
data block count contained in the label with the number of data blocks in-
put while processing this section of the file. The count is for data blocks
only and does not include tape marks, label blocks (software or user), or
bypass blocks. EOV labels have the same format as HDR2 labels, with the
following exceptions:

FIELD NAME LENGTH DESCRIPTION

Label identifier Contains "EOV".

Label number Contains "1".

Block count Contains the number of data blocks
in this section of the file.

e UTL - User Trailer Label

Optional labels (called User Trailer Labels) may be placed on tape imme-
diately following EOV or EOF labels, as described later in this publica-
tion under the heading'Creating and Reading Labels! The USASI standard
permits the user to create as many UTL labels as desired; however, if they
are written after an EOV label, limited room exists for them since the phy-
sical end of tape is near. User Trailer Labels must conform to the fol-
lowing format:

NEAT/3 -- FILES Nov. 68
TAB 2 -- PUB. NO. 1 Page 11

UTL LABEL FORMAT 5

FIELD NAME) LENGTH DESCRIPTION

Label identifier Contains "UTL" to identify this as
a User Trailer Label.

Label number Contains a character to indicate the

label sequence. Any "a" character ma

be used.

Contains any information desired.

TYPICAL LABEL CONFIGURATIONS SHOWING EOV, EOF, AND UTL

MULTI-VOLUME FILE

TAPE MARK
END-OF-VOLUME TRAILER LABEL

USER TRAILER LABEL (OPTIONAL)
TWO TAPE MARKS -~ END-OF-VOLUME

D
c
3

LAST VOLUME OF A FILE

TAPE MARK
END-OF-FILE TRAILER LABEL
USER TRAILER LABEL (OPTIONAL)
TWO TAPE MARKS - END-OF-FILE

D
C
3

® Beginning-of-Tape and End-of-Media Markers

Two reflective tabs are pasted on the non-recording side of the tape. One
tab, the Beginning-of-Tape marker (BOT), is approximately 10 feet from the
start of the reel. The other tab, the End-of-Media marker (EOM) is approx-
imately 18 feet from the end of the tape. These marks are sensed by a photo-
electric system.

NEAT/3 -~ FILES Nov. 68
TAB 2 -- PUB. NO. 1 Page 12

MAGNETIC TAPE FILES

The BOT, which indicates the physical position at which the recording or
reading is to begin, allows approximately a ten-foot leader for loading the
tape on the handler.

EOM indicates that the physical end of tape is near. When the EOM marker

is encountered on a destination file, the software places an End-of-Volume
(EOV) Label on the tape. If a rescue point was requested at the end-of-sec-
tion, the rescue point data is placed at the beginning of the next volume
(reel).

Exercise caution in writing User Trailer Labels (UTL) on a destination file
when End-of-Volume (EOV) occurs, as limited space remains for these labels.

Creating and Reading Labels

All labels other than optional user labels are created automatically by the
software. If the programmer wishes to create or read optional UHL or UTL la-
bels, or examine HDR, EOV, or EOF labels, he must do so in a user routine after
open or in a user routine before close. The software links to these routines
after each section of the file (except the first) is opened and before each
section of the file (except the last) is closed. If the programmer also de-
sires this option for the first section of the file, he must use an OPEN in-
struction; if he desires this option for the last section, he must use a CLOSE
instruction with the file. (For further information on OPEN and CLOSE instruc-
tions, see the NEAT/3 REFERENCE MANUAL, INSTRUCTIONS, tab 1, "OPEN Instructions"
and "CLOSE Instructions'.

After the software links to the user routine the program must execute the LPUT
instructions to output labels to a destination or piggyback file, or the LGET
instruction to input labels from a source file. For further information con-
cerning these instructions, see the NEAT/3 REFERENCE MANUAL, INSTRUCTIONS,

tab 1, "GET Instructions' and "PUT Instructions".

Assume for the following discussion on UHL and UTL labels that (1) the file in-
volved is opened by an OPEN instruction; (2) that the names of both a user rou-
tine after open and a user routine before close are named on the file specifi-

cation sheets; and (3) that the file involved is closed by a CLOSE instruction.

e Creating UHL Labels

When a new file is opened using an OPEN instruction, the software writes the
HDR1 and HDR2 labels on tape and then links to the user routine after open.
The programmer uses the LPUT instruction within this routine to create as
many UHL labels as desired. After the labels are output, a RELINK instruc-
tion (without an operand) must be executed to return control to the soft-
ware. The software then writes the proper number of tape marks and returns
control to the main program.

Each time a new section is opened, the software again.writes HDR1 and HDR2
labels and links to the user routine to permit construction of user labels
for that section.

NEAT/3 -- FILES Nov. 68
TAB 2 -- PUB. NO. 1 Page 13

OPEN FILE The software links when
the first section of a
file is opened by an OPEN
instruction and each time

NN a new section of the file

is opened.

UHLLBLROUT

CREATE LABEL.

OUTPUT LABEL.

MORE LABELS?

RETURN TO SOFTWARE.

e Inputting UHL Labels

When an existing file is opened using an OPEN instruction, the software
reads the HDR1 label into the input buffer and then links to the user
routine after open. The program may examine the contents of the HDR1
label, or it may ignore it by executing an LGET instruction to input the
HDR2 label. Again, the program may examine the contents of the label or
ignore it by executing another LGET instruction to input the first UHL
label.

The programmer may code his routine to input all UHL labels or a portion
of them. If all the labels are not input, a RELINK instruction (with no
operand) must be used to return control to the software.

NEAT/3 -- FILES Nov. 68
TAB 2 —— PUB. NO. 1 Page 14

MAGNETIC TAPE FILES

UHLLABROUT

EXAMINE HDR1 LABEL

INPUT HDR2 LABEL

EXAMINE HDR2 LABEL

INPUT UHL LABEL OVER
PREVIOUS LABEL

EXAMINE UHL LABEL

MORE LABELS?

RELINK TO SOFTWARE

UHLLABROUT

1
|
J

r
i

L
YES

NO

INPUT HDR2 OVER HDR1

INPUT UHL LABEL OVER
PREVIOUS LABEL
EXAMINE UHL LABEL
MORE LABELS?

RELINK TO SOFTWARE

NEAT/3 -- FILES
TAB 2 -- PUB. NO. 1

Nov. 68
Page 15

If all the labels (plus one) are input, a RELINK instruction is not needed.
When an LGET instruction reads a tape mark (end of a group of labels), it
causes an automatic relink to the software.

® Creating UTL Labels

Before each section of a source file is closed (including the last section,
since a CLOSE instruction is used), the software writes an EOV or EOF label
and links to the user routine before close. The programmer uses the LPUT
instruction within this routine to create as many UTL Labels as desired.
After the labels are output, a RELINK instruction (without an operand) must
be executed to return control to the software. The software then writes
the proper number of tape marks and returns control to the main program.

Caution should be used when UTL labels are written following the EOV label;
since EOV is triggered by the end-of-media marker, limited space remains for

UTL labels.

e Inputting UTL Labels

When an EOV is read from a source file, the software places that label in-
to the input buffer and links to the user routine before close. The pro-
grammer may examine the contents of the label, or he may ignore it by
executing an LGET instruction to input the first UTL label.

The programmer may code his routine to input all UTL labels or a portion
of them. If all labels are not input, a RELINK instruction (with no
operand) must be used to return control to the software. If all labels
(plus one) are input, a RELINK instruction is not needed. When an LGET
instruction reads a tape mark (end of a group of labels), it causes an
automatic relink to the software.

When the software receives control again, it requests the operator to change
the reel. Once the reel is changed, the software opens the new file sec-
tion and transfers control to the user routine after open if desired (see
inputting UHL labels). Upon receiving control back from that routine (or

if that routine was not specified), the software reads the first block of
records from the new section and returns control to the instruction fol-
lowing the GET instruction that initially caused the link to the user rou-

tine before close.

NEAT/3 -- FILES Nov. 68
TAB 2 —— PUB. NO. 1 Page 16

MAGNETIC TAPE FILES

INPUTTING UTL LABELS AT END-OF-VO

GET MASTRFILE

~

- ——

L 4 \

e

=1
L_J

\
N

_____‘_..__

USRUTOPEN

/

1 I\ USRUICLOSE
|

|

|

|

|

|

|

|

|

| YES
|

! NO
|

i

|

1

|

|

1

]

|

]
]
1
l
1
[}
|
1
|
i
1
1
[}
)
|
|
i
|

-

—— -

o

LGET MASTRFILE

RELINK

SOFTWARE

RELINK

SOFTWARE

INPUT UTL LABEL

EXAMINE LABEL

MORE LABELS?

RELINK TO SOFIWARE

SOFIWARE REQUESTS A REEL
CHANGE AND RETURNS CONTROL
TO THE INSTRUCTION FOLLOWING
THE ONE THAT CAUSED TRANSFER
TO THIS ROUTINE, OR

LINKS TO USER ROUTINE AFTER
OPEN OF THE NEW SECTION, IF
DESIRED

RELINK TO SOFTWARE MUST
BE LAST INSTRUCTION

RETURNS CONTROL TO INSTRUCTIO
FOLLOWING THE ONE THAT CAUSED
ORIGINAL E-0-V TRANSFER

When an EOF label is read from a source file, the software places that label

in the input buffer and links to the programmer's end-of-file routine.

(The

programmer may not use the LGET instruction within this routine to input
UTL labels since execution of LGET and LPUT is restricted to the user

routine before close or after open.)

A CLOSE instruction must be used

to enter the user routine before close for the last section; the programmer
may code that CLOSE instruction within his end-of-file routine.

When the CLOSE instruction is executed, the software links to the user
routine before close in the same manner previously described for an EOV

label situation.

At the end of the user routine before close, the RELINK

instruction returns control to the software, which in turn closes the file
and returns control to the instruction following the CLOSE instruction in

the end~of-file routine.

NEAT/3 -- FILES
TAB 2 -- PUB. NO. 1

Nov. 68
Page 17

GET MASTRFILE
= N\
\

ENDFILE

CLOSE MASTRFILE

LGET MASTRFILE

EXAMINE LABEL

MORE LABELS?

RELINK

SOFIWARE CLOSES FILE
AND RETURNS CONTROL
TO INSTRUCTION FOL~-
LOWING CLOSE

Once control is returned to the end-of-file routine, the programmer may
wish to return control to the instruction following the GET which caused
the branch to the end-of-file routine; he may do so by using a RELINK in-
struction without an operand. (A LINK or BRANCH instruction may not be
used for this purpose.)

GET MASTERFILE

——— e —— — ———

Desired end-of-file coding.

RELINK (No operand).

NEAT/3 -~ FILES Nov. 68
TAB 2 -- PUB. NO. 1 Page 18

MAGNETIC TAPE FILES

If the programmer wishes to return control to a different instruction or
routine, he may do so by using a RELINK instruction that names the de-
sired routine as an operand. The LINK or BRANCH instruction may not be

used for this purpose.

GET MASTERFILE

ENDFILE ﬁ?

"
L. J Desired end-of-file coding.

RELINK OTHERUTINE

For further details concerning RELINK and RELINK with an operand, see the
NEAT/3 REFERENCE MANUAL, INSTRUCTIONS, tab 2, '"Link and Relink Instructions."

The programmer need not relink from his end-of-file routine but may con-
tinue his coding within the routine and complete the program with a FINISH

instruction.

GET MASTRFILE

Desired end-of-file coding.

FINISH

NEAT/3 -- FILES Nov. 68
TAB 2 -~ PUB. NO. 1 Page 19

Single File - Single Volume

10 feet
o e

‘dild -- ¢ 9Vl

SITId -- €/IVIN

VOL DATA FILE A

‘ON

T

18 feet

DATA FILE B DATA FILE B~

EOM

D

D
e c BYH C Rescue Data FILE DATA B
R | 3 3

BOT-—T ;Rescue Point

Multi File -~ Single Volume

D\:--w VoL HDR1 HDR2 FILE C DATA FILE D DATA
[S—

BOT—*

Placed on the tape by Initializer Utility Routine.

Placed on tape by I/0 software when file is created.

Placed on tape by 1/0 software when file is created.

Optional label placed on tape by using the LPUT instruction; read by using the LGET instruction.
Tape mark placed on tape by software.

Placed in front of a rescue dump by the software.

Placed at the end of a rescue dump by the software.

Placed at end of a volume (section) by software when file is created.

Placed at end of a file by software when file is closed.

Optional label placed on tape by using the LPUT instruction; read by using the LGET instruction.

0z °8eq
*AON

89

MAGNETIC TAPE FILES

Defining the Buffer for Inputting or Outputting Labels

Since labels are input to and output from the buffer, a magnetic tape buffer

may not be less than 80 characters in length. A definition of each type la-

bel affected (written, read, or examined) by the program must be included with
the record definitions for each file. The programmer accomplishes this by in-
serting the word "LABEL" in the location column of the label definition. La-
bels must be defined last regardless of the size of the data record for the file.

b}

REFERENCE LOCATION LENGTH VALUE OR PICTURE

8 9 10 11 12 13 14 18 16 17 19 20 21 22 23{24 25 28 27 31 32 33 34 33 36 37 38 39 40 A1 42 43 44 43 46 47 48 4 30

DATARECORD 70

~

FIELDI] 10

60

IDENTIF I ER

LABELNDO

DATAFIELDI
/\

DATAFLDLS.

olojolojo/ojofo

LABELNO—_

The programmer may eliminate all label definitions if his program does not af-
fect labels. The software will index past all labels before the first GET in-

struction is encountered.
Data Blocks

Data blocks may consist of one or more records, depending upon the record size.
Records within these blocks may be fixed or variable in length.

NEAT/3 -- FILES Nov. 68
TAB 2 -- PUB. NO. 1 Page 21

Minimum and maximum block-lengths are dependent upon several factors. Two of
these factors are the software and the machine hardware; another factor is the
possible use of the tape for information interchange with other systems.

e Software and Hardware Limitations

The hardware allows a one-character block; however, in the normal NCR Century
mode of processing, buffers must be a minimum of 80 characters to allow

the software room to read labels. Whether or not the program reads, writes,
or examines system labels, the minimum buffer must be at least 80 charac-
ters for the software.

The NCR Century 100 hardware and software allow a maximum block length of
2048 characters. The NCR Century 200 hardware and software allow a maximum
block length of 9,999 characters.

e USASI Standards for Interchange

USASI standards allow a minimum block length of 18 characters and a maximum
block length of 2048 characters for interchange tapes. Since all NCR Cen-
tury Systems can create blocks between 80 and 2048 characters and can read
blocks between 3 and 2048 characters, system limitations fall well within
the standard.

e Block Length Indicators (BLI)

Optionally, the software is capable of creating or reading Block Length In-
dicators (BLI) which specify the number of characters in each block. These
indicators are not a part of the USASI standard and must not appear in a
tape that must conform to the standard. They may be used on tapes inter-
changed between users who agree to deviate from the standard or by users
not interested in interchange.

By answering a question on the file specification sheets, the programmer re-
quests that the software create or check BLI's. On output, the software com-
putes the number of characters in a block and places this information at the
beginning of a block; the programmer must add two or four characters to his
block length to accomodate the type of BLI desired.

On input, the software compares the number in the BLI with the actual num-—
ber of characters read. If the two are not equal, the software re-reads
the block in an attempt to correct the condition.

The BLI may be two or four characters long; however, the first two charac-
ters always contain the block length in binary.

® 2-character BLI

If the 2-character BLI is used, the programmer must add two characters

to his total block length; a header offset of two is assumed by the com-
piler. This offset is in addition to that specified on the file specifi-
cation sheets; for example, if the header offset specified on the file
specification sheet is zero and a two character BLI is requested, re-

NEAT/3 -- FILES Nov. 68
TAB 2 —- PUB. NO. 1 Page 22

MAGNETIC TAPE FILES

cords are presented to the program beginning at relative position two
(the third character).

Block
e N

7012 252

250 250

character character

record record
~
BLI

The BLI is a two-character binary field
containing 502,
00000001 {11110110|

A Header offset of 2 is assumed by
the compiler.

GET presents records beginning at
relative position 2.

® 4-character BLI

The BLI may be a 4-character field in which the first two characters

are the character count in binary and the second two characters are
blank. The programmer must indicate a header-offset of 2 on the file
specification sheets; this indicated header-offset, plus the header-off-
set of 2 assumed by the compiler, allows a header-offset of 4.

The first record presented to the program from each block begins at rela-
tive position four (the fifth character).

e N
-
01234
250 250
character character
record record
VJ

BLI

The BLI is a four-character field con-
taining 504 in the first two characters.

[00000001]11111000]00000000] 00000000

A Header offset of 2 is assumed by the
compiler. An additional header off-

set of 2 must be specified by the pro-
grammer for a total header offset of 4.

GET presents records beginning at
relative position 4.

NEAT/3 -- FILES
TAB 2 -- PUB. NO. 1

Nov. 68
Page 23

Records in Block

Records within magnetic tape blocks may be fixed- or variable-length. On the
NCR Century 100, record sizes may range from a minimum of 1 character to a
maximum of 2048 characters.

On the NCR Century 200, record sizes may range from a minimum of 1 character to
a maximum of 9,999 characters. If interchange is desired, the maximum record
size must be limited to the maximum block size allowed by the USASI standard
(2048 characters).

The GET and PUT instructions are capable of handling fixed- or variable-length
records.

o Fixed-Length Records

If the records are fixed-length, the programmer assigns a block length that
is a multiple of his record length. For example, if each record is 100
characters long, the block length may be 100, 200, 300, or any other multi-
ple of 100 up to the maximum block length for the system used.

e Variable-Length Records

When variable-length records are used, a Variable-Length Indicator (VLI)
must be defined as the first field in each record. This indicator, which
contains a number that specifies the number of characters in a record (in-
cluding the VLI itself), is used by the software to present complete records
to the program. The programmer must include in his program the coding nec-
essary to alter the contents of the VLI when the record length changes, un-
less tables are used as the variable-length portion of the records. For a
complete description of tables in records, see the NEAT/3 REFERENCE MANUAL,
INSTRUCTIONS, tab 4, "Table Concepts."

The VLI is never translated. If an interchange tape is read or written in
a code other than NCR Century internal code, the VLI must be either in
binary or in NCR Century internal code on the tape.

e VLI - No Interchange

If interchange is not desired, the VLI on tape may be either two characters

long with the VLI in binary, or four characters long with the VLI in decimal.
Binary indicators are used most often. Decimal indicators are generally re-
served for instances when data is to be transmitted via communication equip-

ment.

If decimal VLI's are used, certain restrictions are necessary:

® Since the GET routine does not translate the VLI, the VLI must be on
tape in NCR Century internal code.

e On input, the VLI is changed from decimal to binary by the GET routine
and is then placed in the first two characters of the field. Once the
VLI is in memory, the programmer must manipulate it in binary.

NEAT/3 -- FILES Nov. 68
TAB 2 —- PUB. NO. 1 Page 24

MAGENTIC TAPE FILES

BINARY VLI - NO INTERCHANGE

DATA LAYOUT SHEET

REFERENCE LOCATION LENGTH VALUE OR PICTURE

7{8 9 10 11 12 13 14 15 16 171819 20 21 22 23{24 25 26 27126 293031 32 33 34 33 36 37 38 39 40 41 42 43 44 43 46 47 48 49 30|
4

DmAGzZREC . IRl .~ | so02f | (. .~~~ i
DIVLIFLDNAME|F 0 2| B] o
placcTNo [/l 2l ol XL oo |

The programmer specifies the maximum length of the
variable-length records as indicated on the file
specification sheets.

Record Length

e VLI Field The programmer specifies a 2-character binary field.

e On output, the PUT routine converts the binary VLI in memory to decimal
before the record is output. The decimal VLI is always output in NCR
Century internal code (USASCII standard) and is not translated if the
tape is written using an external code.

e VLI - Interchange

When interchange is desired, the VLI field must be four characters in
length. On tape, the data within this field may be contained either in
binary in the first two characters or in decimal in all four characters.
If the VLI is in decimal on the tape, it is converted on input to binary
in memory as described previously under VLI - No Interchange.

NEAT/3 -- FILES Nov. 68
TAB 2 -- PUB. NO. 1 Page 25

AL VLI FOR INTERCHANGE OR FOR NO INTERCHANGE
~ BINARY VLI FOR INTERCHANGE '

REFERENCE LOCATION LENGTH | DP VALUE OR PICTURE

moo0 x
my<4 ¥

7|8 9 10 11 12 13 14 15 16 17 lll’lﬂ!l22232‘2!“272.2!!03132!3!48!“37!.39‘0‘14343“4846‘7“40!0'

MAGZREC IRl . .| s5o04 (| !

D
DIVLIFIELD F of . 4] |x o
OB INARY VLY fF| o 2 {8

The programmer specifies the maximum length of the
variable-length record as indicated on the file
specifications sheets.

® Record Length

e VLI Field The programmer specifies a four-character field.

e Binary VLI The programmer redefines the first two characters of
VLIFIELD to permit internal manipulation of the VLI
when the record length changes during processing.

e If decimal VLI's are used, the GET routine
changes the decimal VLI on tape to a binary
VLI in memory and places it in the first

two characters of the field. The PUT rou-

tine changes the binary VLI in memory to a

decimal VLI on tape.

When writing variable-length magnetic tape records with the NCR Century 100,
three padding characters are automatically placed after the last record in the
buffer area and a trailer offset of 3 is assumed. These three characters must
be considered when calculating the maximum length of a block for variable-

length records.

When the combination of records placed in the buffer area of an NCR Century 100
does not completely fill that area, the entire buffer is still written out. The
block written contains the records, padding characters, and unused portion of
the buffer. On input, the GET instruction recognizes the padding characters

and does not present the padding characters or the unused portion of the block
to the program.

On the NCR Century 200, only that portion of the buffer that contains usable
data is output; the padding characters are not used.

NEAT/3 -- FILES Nov. 68
TAB 2 -- PUB. NO. 1 Page 26

MAGNETIC TAPE FILES

DETERMING MAXIMUM BLOCK LENGTH ON NCR CENTURY 100

507-Character Buffer Area

e NGl

r

250 200 47
Character char. un-
record record used

"~

I L—————B padding characters

2- or 4-character Variable Length Indicator (VLI)

Optional 2- or 4-character Block Length Indicator (BLI)

Assume that a 4-character BLI is used with each block.

Assume that the maximum-length record, including a 2-character
VLI, is 250 characters.

Assume that the maximum~size block may contain two full records.
e Maximum Block Length: BLI (4 characters) + records in block
(500 characters) + padding characters (3 characters) = total
(507 characters).
Buffer Area = Maximum block-size (507 characters)
Entire buffer, including padding characters and any unused

portion of buffer, is always written. Therefore, each block
written = total buffer length (507 characters).

SUMMARY OF USASI STANDARDS FOR AN INTERCHANGE TAPE

e The tape must be recorded in the USASI standard code set for information
interchange (USASCII). The NCR Century Series uses this code.

e The tape must have the following 80-character labels:

LABEL TYPE NUMBER DESCRIPTION

VOL 1 per reel. Volume Header Label
HDR 1 per section File Header Label 1

*EOV 1 per reel End-of-Volume Trailer Label
EOF 1 per file End-of-File Trailer Label

* Multi-section files only.

NEAT/3 -- FILES Nov. 68
TAB 2 — PUB. NO. 1 Page 27

e The tape may additionally have the following 80-character labels:

. NUMBER | ~ DESCRIPTION

UVL 9 per reel User Volume Header Label
HDR 8 additional File Header Label 2-9
UHL * per section User Header Label

UTL * per section User Trailer Label

* No set maximum; as many as desired.

e The tape may not have the following labels:

Bypass Header Label
Bypass Trailer Label

¢ One tape mark must be used to separate labels from data and data from
labels.

e Two tape marks must be used following:

e The last EOF label on a tape and
e Each EOV label.

e The tape mark is a series of characters with the binary configuration
00010011; this is equivalent to the USASCII character, "DC3",

® Records may be a maximum of 2048 characters long (including the VLI if
variable length records are used).

e The VLI must be four characters in length with:

e The data within the field in binary in the first two character posi-
tions, or
o The data in decimal (USASCII) in all four character positions.

® Blocks of records may be a maximum of 2048 characters long and may not
contain block length indicators (BLI).

e Three padding characters may be used within a short block to signal end-
of-data. These padding characters, which have the binary configuration
01011110, are the USASCII character, "A".

e The tape must be recorded in odd parity.

NEAT/3 -- FILES Nov. 68
TAB 2 —- PUB. NO. 1 Page 28

MAGNETIC TAPE FILES

FILE ORGANIZATION

Standard File Organization is used for magnetic tape files. The records in the
file, sorted or unsorted, are always presented to the program sequentially. No
random accesses are possible. When a record is to be inserted or deleted, the
entire volume (reel) must be copied. A record may not be read in, updated, and
then written back in the same location. Father-Son is the normal type of pro-
cessing for magnetic tape. For a complete description of Father-Son processing,
see the NEAT/3 REFERENCE MANUAL, FILES, '"NCR Century File Concepts'.

Block

Block

Record
Acct No
88

Record
Acct No
90

Record
Acct No
91

Record
Acct No
94

Record
Acct No
95

Record
Acct No
96

Record
Acct No
89

o To place the record for Acct. No. 89 between record for Acct.
and Acct. No, 90, the entire volume or file must be copied.

Tape files may be used to input the transaction records in a disc file update
run,

Disc
Master
File

Transactions are read from the tape.

Master records are read from the disc.

Updated master records are written
back on disc.

Nov. 68
Page 29

NEAT/3 -- FILES
TAB 2 -- PUB. NO. 1

FILE OPTIONS

To provide further ease for the programmer using interchange tapes in a non-
standard code set, translation may be requested by entering a code on the

file specification sheets. This code instructs the compiler to include a
translation table in the program for use by the GET and PUT instructions in
reading interchange tapes. GET then translates data from the specified code
set on the tape into NCR Century internal code in memory. The PUT instruction
translates from NCR Century internal code in memory into the specified external
code set desired on the tape.

In this way, a tape that conforms to the USASI interchange standards for la-
bels and block lengths (but is not recorded in the USASI standard code set) may
be easily decoded from (or encoded to) any of the following three code sets:

e NCR 315
e IBM Binary-Coded-Decimal (BCD)
e IBM Extended-Binary-Coded-Decimal-Interchange-Code (EBCDIC)

NCR 315 Format Tapes

The software is also capable of processing and creating tapes in the NCR 315
labeling format and code set. Information concerning this capability will
be supplied at a later date.

OPENING FILES ON MAGNETIC TAPE

Normally, the programmer allows his magnetic tape files to be opened automati-
cally at the time his program is loaded into memory; however, he may use an
OPEN instruction. One use of the OPEN instruction is to place multiple files
on a reel during one run. The OPEN instructions, OPEN and OPENS, are covered
in the NEAT/3 REFERENCE MANUAL, INSTRUCTIONS, tab 1, "OPEN Instructions."

A magnetic tape file may be reopened during a program by using one of the ROPEN
instructions and indicating on the file specification sheets that ROPEN is
desired. This allows the programmer to create a file as a destination file,
for example, and then reopen it as a source file in the same run. For fur-
ther information on ROPEN instruction, see the NEAT/3 REFERENCE MANUAL, IN-
STRUCTIONS, tab 1, "ROPEN Instructions.'

Each time a file is opened, a message is recorded in the log.

Opening Source Files

Before a source file is opened on a single-file reel or a multi-reel file, the
tape is in a rewound state with the VOL label in a position to be read. When
the OPEN is executed, the software reads the VOL label and the HDR1 label and
compares the information in HDRI with the information specified on the file
specification sheets. If this is the desired file, the software opens the
file, leaves the HDR1 label in the input buffer, and transfers control to the
user routine after open (if such a routine is specified and an OPEN instruction
is used).

NEAT/3 -- FILES Nov. 68
TAB 2 -- PUB. NO. 1 Page 30

MAGNETIC TAPE FILES

Before a source file is opened on a multi-file reel (or on a multi-file, multi-
reel set) the tape may or may not be in a rewound state., The tape will be in

a rewound state if (1) this reel was newly mounted and this is the first file
opened on that reel or (2) "rewind before open'" was requested on the file
specification sheets. The tape will not be in a rewound state if a file was
previously opened and "'rewind before open" was not requested on the file spec-
ification sheets. When the open is executed, the software scans the tape (be-
ginning at its current location) for the HDR1 label of the desired file. When
the file is found, the open procedure is the same as for a single-file reel.

If the software encounters an EOV label while searching for the file, it re-
quests the operator to change the reel. If an EOF label is encountered for
the last file on the reel or in the set, it signifies that the file cannot be
found, and the condition - is displayed to the operator.

Opening a Destination File

The procedure involved in opening a destination file depends on the type of
reel/file relationship involved.

e Single-Reel and Multi-Reel File

Before a single-reel or multi-reel file is opened, the tape is in a rewound
state with the VOL label in a position to be read. When the open is exe-
cuted, the software reads the VOL and HDR1 label of the file currently on
the tape to assure that the file has expired. If it has expired, the soft-
ware backs up the tape and writes HDR1 and HDR2 labels for the new file.

If an OPEN instruction was used for the file, control is transferred to
the user routine after open (if such a routine was specified).

If the file currently on tape is not out of date, the condition is dis-
played to the operator.

e Multi-File Reel

When a multi-file reel is used, the procedure depends on whether (1) a file
is to be added to the existing files or (2) all old files are to be des-
troyed and a new file created at the beginning of the reel.

e Adding a File to Existing Files

If a file is added to a reel of existing files, the reel may or may not
be in a rewound state before the new file is opened. It will be in a
rewound state if the reel was newly mounted, if "rewind before open" was
requested on the file specification sheets for the new file, or if re-
wind after close was requested on the file specification sheets for a
previously accessed file.

With the tape positioned at the beginning of the reel, as in any of the
above cases, the software checks the date in the first file which deter-
mines the expiration date of all files on the reel or in the set. If
the first file has not expired, the software indexes down the tape un-
til it encounters the EOF label for the last file on the reel (multi-

NEAT/3 -- FILES Nov. 68
TAB 2 -- PUB. NO. 1 Page 31

file reel) or in the set. If the software encounters an EOV label
during the search , it requests the operator to mount the next reel.
When the EOF label is found, the software repositions the tape to re-
move the second tape mark after that label, and writes the HDR1 and
HDR2 labels for the new file.

LAST FILE
DATA

D
PREVIOUS LAST c NEW FILE
FILE DATA 3 DATA

The software finds the EOF label for the last file, removes the
second tape mark and writes the HDR1 and HDR2 labels for the new

file.

The tape will not be in a rewound state if a previous file was accessed and
then closed without rewind, or a new file open is executed without specify-
ing "rewind before open'. 1In this case, the software places the new file

in a position immediately following the previously closed file. Using this
option saves the programmer the tape rewind time as well as the search time
necessary to relocate the position for the new file. However, the program-
mer must use this option with care, since the software does not rewind the
tape to date-check the new file against the first file on the reel or in the

set.

LAST FILE
CLOSED

D
LAST FILE p NEW FILE

CLOSED 3 DATA

The software removes the second tape mark following the EOF
for the last file and writes the HDR1 and HDR2 label for the

new file at the current tape location.

NEAT/3 -- FILES Nov. 68
TAB 2 -- PUB. NO. 1 Page 32

MAGNETIC TAPE FILES

e Creating a New File at the Beginning of the Reel or Set

If a file is created at the beginning of a multi-file reel or set, the
old files within the entire reel or set are destroyed. This procedure
is used each time a reel or set is to contain a new generation of files.

Before the file is opened, the reels must be in a rewound state. They
will be in a rewound state if the reels are newly mounted, rewind was re-
quested on the file specifications sheets for the file last closed, or
"rewind before open" was requested on the file specification sheets for
the new file. The software checks the expiration date in the label and,
finding the file has expired or the tape is a scratch tape, writes the
HDR1 and HDR2 labels for the new file over the old labels. Once this is
done, the only file that can be accessed by a program is the first one

on tape.

If another new file is added, it is placed as the second file on the
reel or in the set.

Opening Piggyback Files

When a piggyback file is opened, the operator normally mounts the reel that
contains the current last section of the file; the software indexes down the
tape to locate the EOF label. If the last section was not mounted, the soft-
ware encounters an EOV label and informs the operator to change the reel.

When the EOF label is located, the software checks to insure that this is the
last file on the reel or in the set. If it is not, new data cannot be added
to the file without destroying the next file; therefore, an error message is
displayed to the operator. If this is the last file, control is given to the
programmer's end-of-file routine if one is specified on the file specification
sheets. The programmer may use this routine to read any existing user trailer
labels. He must code a RELINK instruction as the last instruction in the rou-
tine to return control to the software.

When the relink from end-of-file occurs or if no end-of-file routine was
specified, the tape is repositioned immediately beyond the last data block
and a rescue dump is taken. This rescue dump destroys the previous trailer
labels and the tape marks before control is returned to main program.

NEAT/3 -- FILES Nov. 68
TAB 2 -- PUB. NO. 1 Page 33

PREVIOUS LAST NO OTHER
DATA FOR FILE FILES

PREVIOUS LAST NEW DATA
DATA FOR FILE FOR FILE

The software checks to insure this is the last file on the reel,
gives‘control to the programmer% end-of-data routine to read op-
tional UTL labels if desired, repositions the tape over the EOF
label, and initiates a rescue dump. New file data is placed fol-
lowing the rescue dump on the tape.

When a section of a piggyback file cannot be located on the mounted reel, this
condition is displayed to the operator. In turn, the operator may change the
reel or indicate that the first section of a new piggyback file is to be created;
a normal destination file open is then performed.

CLOSING FILES ON MAGNETIC TAPE

Normally, the programmer allows his magnetic tape files to be closed automati-
cally at the time the FINISH instruction is encountered; however, a CLOSE in-
struction may be used. One use of the CLOSE instruction is to place multiple
files on a reel during a run. The CLOSE instructions, CLOSE and CLOSEO, are
covered in the NEAT/3 REFERENCE MANUAL, INSTRUCTIONS, tab 1, 'CLOSE Instructions.'

When a file is closed, a message is placed in the log only if an error occurred
while processing that file.

Closing a Source File

When a close is executed for a source file, the software transfers control to
the user routine before close (if such a routine was specified and a CLOSE in-
struction was used). The programmer may use this routine to input user
trailer labels (UTL) from the tape. He must use a RELINK instruction as the
last instruction in the routine to return control to the software.

Once the software completes the close procedure, it rewinds the tape to an un-
load condition, or rewinds the tape to the beginning of the reel, or leaves
the tape at its current position, depending upon the programmer's request on
the file specification sheets.

NEAT/3 -- FILES Nov. 68
TAB 2 —— PUB. NO. 1 Page 34

MAGNETIC TAPE FILES

Closing Destination or Piggyback Files

When a close is executed for a destination file or piggyback file, all buffers
not yet empty are output. The software then writes the EOF label and transfers
control to the user routine before close (if such a routine was specified and a
CLOSE instruction was used). The programmer may use this routine to output

UTL labels. He must use a RELINK instruction as the last instruction in the-
routine to return control to the software.

Once the software receives control from the user routine or if no routine was
specified, the software writes two tape marks to indicate the end of the last
file on the tape.

When the close procedure is complete, the software rewinds the tape to an un-
load condition, or rewinds the tape to the beginning of the reel, or leaves
the tape at its current position, depending upon the programmer's request on
the file specification sheets.

NEAT/3 -- FILES Nov. 68
TAB 2 -- PUB. NO. 1 Page 35

FILE SPECIFICATION SHEETS FOR MAGNETIC TAPE

Two File Specification Sheets for a typical magnetic tape file are shown. Many
of the entries pertain to disc as well as tape; however, disc will not be con-

sidered in the examples given here.
with a typical remark.

SHEET 1

All entries, where practical, are filled

FILE SPECIFICATIONS WORKSHEET
DISC - MAGNETIC TAPE

NICIR]*

SHEET 1

Program. Prepared by

Date.

Page. of

Azs SYMBOLIC RevEAE
ALL NUMERIC ENTRIES MUST BE RIGHT-JUSTIFIED AND MUST BE 1HRO-FILLED YO THE LEFT

s MUSTY BE LEFT.JUSTIFIED AND NUST CONTAIN AT LEAST ONE ALPNABKTIC CHARACTER

(Shaded Boxes Are Optional)

Paper Tape Format Code

/.0 8=

. Page-Line

~

bad

>

o

o

=~

-

MAGNETIC TAPE OR DISC

File Reference —- Enter the name to be used in the first
operand of all }/O instructions referring to
this file.

Peripheral Type Code (See Peripheral Type List in Appendix of Language
Reference Manual

Number of Buffers to be reserved for this file (if blank, 1 is assigned)
File Usage (Enter S for a source file; D for a destination file;
P for a piggyback file; R for a disc source-destination filc)

Type of Blocking — Enter 2 for multi-record blocks, 1 for single-
record blocks.

Record Length (or maximum size if variable length records)

Type of Records (Enter F for fixed length; V for variable length
with binary indicators; D for variable length with decimal

indicators)
9. If Variable, is packing to be provided on output? (Y or N)
10. Maximum Block Length (Disc — on chained files, the block length

must include ten characters for the Block Header Indicator)
(Magnetic Tape — the block length must include the Block
Length Indicator if present)

. Is a Rescue Point desired at each end of section? (Y or N) (if blank, N is assumed)

12. Is this the Standard Rescue File? (Y or N)
(disc — if yes, the file may be used for rescues only) (if blank, N is assumed)

13. Type of Dating period
14, Acceptable period (earliest) for source, piggyback, and

source-destination files. Not used on destination files.
15. Retention Period for destination, piggyback, or

source-destination files. Optionally, the latest

acceptabie period for source files.
16. File Name
17. End of File Exit (not used on destination files) or

ervor exit for random processing instructions.

20.

MAGNETIC TAPE ONLY
Primary Symbolic Unit Designator

. Type of rewind desired on closing? (Enter N for no rewind; R for

rewind only: or Ul for rewind and unload)

Are Block Length Indicators to be checked/created? (Y or N) (if blank, N is assumed)

21.
22.

Delete Digit
Identification

The programmer should fill in the header, page-and-line number (Question 1),

and the identification tag (positions 75-80) as defined in the NEAT/3 REFERENCE
MANUAL, INTRODUCTION AND DATA, tab 3, "Programming Worksheets.'" The paper tape
format code is preprinted on this sheet and must be-punched if paper tape is

used for input to the compiler.

NEAT/3 -- FILES
TAB 2 -- PUB. NO. 2

Nov. 68
Page 1

2, FILE REFERENCE = ENTER THE NAME TO BE USED IN
THE FIRST OPERAND OF ALL /0 INSTRUCTIONS RE= IFIO,M,A.G.Z, FI L E, [Z[I
FERRING TO THIS FILE,

Enter the name used in the PUT, GET, and other I/0 instructions
that access this file in the program.

If this file is to be used in a Father-Son update run, the file
reference name and the file name (Question 16 on Sheet 1) must

be different. (For further information, see the NEAT/3 REFERENCE
MANUAL, FILES, "NCR Century File Concepts.')

The "F" in position 7 is preprinted and must be punched.
3. PERIPHERAL TYPE CODE [SEE PERIPHERAL TYPE LIST IN -
APPENDIX OF LLANGUAGE REFERENCE MANUAL.] _1

Enter the code that designates the type of magnetic tape hand-
ler being used. For a complete list of the code types, see the NEAT/3
REFERENCE MANUAL, APPENDIX, tab 1, "Peripheral Type Codes."

The "1" in position 18 is preprinted and must be punched.

4. NUMBER OF BUFFERS TO BE RESERVED FOR THIS FILE D
[1F BLANK, 1 IS ASsSIGNED]

Enter the number of buffers desired. Specifying 2 buffers pro-
vides read/compute or write/compute simultaneity in processing
this file. However, 2 buffers should be assigned to slower
peripherals first; that is, the printer, punched card reader,
punched tape reader, etc. Then if memory space permits, assign
multiple buffers to the magnetic tape file.

More than 2 buffers may be assigned to provide greater read/
compute or write/compute simultaneity.

If this buffer is shared between two or more files, only 1 buf-

fer may be requested. When this is done, there is no simul-

taneity in inputting or outputting to the files involved. (For
further information on using one buffer for multiple files,

see the discussion on using SAME in the location column in the NEAT/3
REFERENCE MANUAL, INTRODUCTION AND DATA, tab 3, "Data Layout Sheets."

"1" is assumed if no entry is made.

5. FILE USAGE [ENTER S FOR SOURCE FILE; D FOR DESTINA- D
TION; P FOR PIGGYBACK FILE; R FOR A DISC SOURCE—-DESTI—
NATION FILE].

Enter "S" if the file is to be a source file in the run. In Fa-
ther-Son processing the old master file and the transaction file
are source files.

NEAT/3 -- FILES Nov. 68
TAB 2 -- PUB. NO. 2 Page 2

MAGNETIC TAPE SPECS.

Enter "D" if this file is to be a destination file. Most files
are initially created as destination files. In Father-Son pro-
cessing, the new master file is a destination file.

Enter "P" if this file is to be a piggyback file. If a file is
created in segments (such as A through M one day, N through Z
the next day), declare this file a piggyback file each time a
segment is added. In this manner a file may be extended with-
out rewriting the entire file.

"R" is not used since source-destination files are not applica-
ble to magnetic tape.

6. TYPE OF BLOCKING = ENTER 2 FOR MULTI~-RECORD BLOCKS,
1 FOR SINGLE RECORD BLOCKS.

Enter "1" if each block is to contain only one record.

Enter "2" if each block may contain more than one record.
This is the usual type of blocking.

The type of blocking desired is determined by size of the re-

cord and by the number of characters that a block can accept.

For example, if the record length is 100 characters, up to

of 20 records can be placed in a block on the NCR Century 100.

7. RECORD LENGTH [OR MAXIMUM SI1ZE IF VARIABLE LENGTH 0,2,5,0

RECORDS].

Enter the number of characters in each fixed-length record if
all records are the same length. If the record length is
variable, enter the number of characters in the maximum-size
record, including the variable length indicator and the 3 char-
acters for padding (on NCR Century 100 only). The maximum-size
record, when using tape on the NCR Century 100 system, is 2048
characters. The maximum on the NCR Century 200 is 9,999 char-
acters if interchange is not desired or 2048 characters if
interchange is desired.

If the record length was 250 characters long, 0250 would be
entered.

8, TYPE OF RECORDS [ENTER F FOR FIXED LENGTH{ V FOR

VARIABLE LENGTH WITH BINARY INDICATORSS D FOR
VARIABLE LENGTH WITH DECIMAL lNDlCATORS].

Enter "F" if the records are fixed-length.

Enter "V" if the records are variable-length and if the variable
length indicator is in binary on the tape.

NEAT/3 -- FILES Nov. 68
TAB 2 —- PUB. NO. 2 Page 3

Enter "D" if the records are variable-length and the variable
length indicator is in decimal on the tape.

If variable-length records are used, a variable length indicator
(VLI) must be defined on the data layout sheets as the first
field in the record. The VLI field may be two or four charac-
ters long. This indicator contains a number that specifies the
number of characters in a record (including the VLI itself).

It is used by the software to present complete records to the
program.

If interchange is desired, the following rules apply:
e The VLI field must be the first field in the record.
e The VLI field must be four characters long.

e On tape, or in memory, the first two characters contain
the VLI in binary, with the next two characters reserved
or,

® On tape, all four characters contain the VLI in decimal.
In memory the first two characters of the field contain
the VLI in binary.

If interchange is not desired, the VLI field may be two or four
characters long. (The two character VLI is normally used.) The
following rules apply for a 2-character VLI:

e The VLI field must be the first field in the record.

e The VLI field must be two characters long with the VLI in
binary on tape and in memory.

The rules that apply for a 4-character VLI are the same as for
interchange tapes.

9. IF VARIABLE, IS MAXIMUM PACKING TO BE PROVIDED ON OUT-
PuT? [Y OR N]

Enter "Y" if maximum packing of records is desired. If maximum
packing is specified, the space remaining in a block is com-
pared to the actual length of the record to be inserted. The
record is inserted if this space is capable of accepting it.

To reduce the number of input or output operations, and to

best use tape space with variable-length records, maximum
packing should be specified. However, such a selection re-
quires more memory space for both additional coding and a work
area. The work area option must be used with the PUT instruc-
tion when maximum packing is indicated. See the NEAT/3 REFERENCE
MANUAL, INSTRUCTIONS, tab 1, "PUT Instruction."

NEAT/3 -- FILES Nov. 68
TAB 2 -- PUB. NO. 2 Page 4

MAGNETIC TAPE SPECS.

Enter "N" if maximum packing of records is not desired. If
maximum packing is not specified, the space remaining in a block
is compared to the maximum indicated length of a variable-length
record. If this space is incapable of accepting a maximum-size
record, the block is written out with that space unused.

Maximum packing may not be desired if memory space is critical
because of program length. The work area option may be excluded
from the PUT instruction when "N" is entered here.

Enter "N" if single-record blocking was specified in answer to
Question 6 of this sheet.

10. MAXIMUM BLOCK LENGTH [DISC = ON CHAINED FILES, THE
BLOCK LENGTH MUST INCLUDE TEN CHARACTERS FOR THE
BLOCK HEADER INDICATOR] [MAGNETIC TAPE — THE BLOCK
LENGTH MUST INCLUDE THE BLOCK LENGTH INDICATOR IF
PRESENT].

Enter the total number of characters in a block. On the NCR
Century 100 and on the NCR Century 200, the minimum block
length allowed is 80 characters, the length of a label.

The maximum block length permitted on the NCR Century 100 is
2048 characters; the maximum block length permitted on the
NCR Century 200 is 9,999 characters (2048 for interchange).
These 1limits include all header and trailer offsets. When
computing the block length, be sure to include the padding
characters (if variable-length records are used on NCR Cen-
tury 100) and BLI characters (if used).

11. IS A RESCUE POINT DESIRED AT EACH END OF SECTION?]
[vy or n] [IF BLANK, N 1S ASSUMED]

Enter "Y" if a rescue point is desired each time this file
reaches the end of a section. If this is a destination file,
the rescue point is placed at the beginning of the next sec-
tion. If this is a one-section destination file, no rescue
point is possible or necessary. If this is a source file, the
rescue point is placed on the Standard Rescue File. (See next
entry for additional information on the Standard Rescue File.)

"N" is assumed if no entry is made.

Generally, if a program uses source and destination files, the
programmer specifies that the rescue point be taken for the file
that reaches end-of-section most often. Rescue points can be
specified for a source file even if it is the only data file

in a run, as in a trial-balance run. This assumes that a stan-
dard rescue file exists.

NEAT/3 -- FILES Nov. 68
TAB 2 -- PUB. NO. 2 Page 5

12, IS THIS THE STANDARD RESCUE FILE? [Y OR N] D
[p1sc - 1F vES, THE FILE MAY BE USED FOR RESCUES
oNLY] [IF BLANK, N 1S ASsumED]

Enter "Y" if this file is to be the Standard Rescue File. On
tape, a normal data file may simultaneously be used as the stan-
dard rescue file. When a data file is used as the standard
rescue file, both data and rescue dumps are placed in the same
file. The file specification sheets are filled in the normal
manner and "Y" is entered here.

If this file is to be a Standard Rescue File only, a set of
file specification sheets must be filled out according to the
following table:

Sheet 1

QUES.

1 Standard entries.

4 1 1 buffer.

5 D Destination file.

6 1 Single-record blocks.

8 F Fixed-length records.

10 0080 A block length of 80 characters is
needed to read and write labels on
opening the file. The rescue routine
writes portions of memory in 512 char-
acter segments.

11 N No rescue is possible on a rescue file.

12 Y Standard rescue file.

13, 14, 15 Standard entries.

18, 19 Standard entries.

20 N No block length indicators are desired.

Sheet 2

This sheet may be omitted when a magnetic tape file is used as
a standard rescue file only.

Sheet 3

Sheet 3 is not used for magnetic tape files.

For further information concerning rescue, restart, and Standard
Rescue files, see the Operating System Manual.

"N" is assumed if no entry is made.

NEAT/3 -- FILES Nov. 68
TAB 2 -~ PUB. NO. 2 Page 6

MAGNETIC TAPE

SPECS.

13, TYPE OF DATING PERIOD.

14, ACCEPTABLE PERIOD [EARLIEST] FOR SOURCE, PIGGY=-
BACK, AND SOURCE-DESTINATION FILES., NOT USED ON
DESTINATION FILES.

15, RETENTION PERIOD FOR DESTINATION, PIGGYBACK, OR
SOURCE-DESTINATION FILES, OPTIONALLY, THE LA~—
TEST ACCEPTABLE PERIOD FOR SOURCE FILES,

Questions 13, 14, and 15, which deal with dates for file pro-
tection, are interrelated and are therefore explained together.

The dates entered here instruct the software :to accept only
those files created within a certain period, thereby guaran-
teeing that the current version of a file is processed. The
dates further define how long a file must be saved for backup.
Files may not be written over until this backup date (reten-
tion period) has expired; however, files with an expired re-
tention period are acceptable as source files.

Dates are specified as either work days (WD), work weeks (WW),
or work months (WM), relative to the current date. These work
periods are based on a five-day week (with holidays considered)

Generation numbers (GEN) may not be used with magnetic tape
files.

e Example of Dates

To illustrate how dates might be used, assume the following:

e A destination file (File A) is being created today as a product
of a Father-Son update run.

e File A is to be saved for two weeks as a backup file.

e TFile A is to be used as a source file in exactly one week when
the program is run again.

e Today is Tuesday, January 3. (Use the following calendar in the
example.)

JANUARY 196—

S M T W T F §

1 2 (3 4 5 6 7

8 9 10 11 12 13 14
15 16 17 18 19 20 21
22 23 24 25 26 27 28
29 30 31

NEAT/3 -- FILES
TAB 2 -- PUB. NO. 2

il

Nov. 68
Page 7

To comply with these assumptions, the dates on the file specification
sheets for destination file A might be filled in as follows:

13. TYPE OF DATING PERIOD

14, ACCEPTABLE PERIOD [EARLIEST] FOR SOURCE, PIGGY-
BACK, AND SOURCE~DESTINATION FILES. NOT USED
ON DESTINATION FILES,

| HE

15. RETENTION PERIOD FOR DESTINATION, PIGGYBACK, OR 0 0,2
SOURCE=~DESTINATION FILES, OPTIONALLY, THE LLATEST
ACCEPTABLE PERIOD FOR SOURCE FILES.

These entries indicate that the file is to be kept for two work-
week periods beginning next Monday. (Work weeks begin on Mon-
day and end on Friday.) Therefore, it may be written over after
January 20.

When File A is used next week (January 10) as a source file, it
must meet the programmer's qualifications for source files as

specified on the file specification sheets.

The dates on the file specification sheets for source File A might
be filled in as follows:

13. TYPE OF DATING PERIOD,

ol =
ol |2
=

14, ACCEPTABLE PERIOD [EARLIEST] FOR SOURCE, PIGGY-
' BACK, AND SOURCE-DESTINATION FILES., NOT USED ON
DESTINATION FILES,

15, RETENTION PERIOD FOR DESTINATION, PIGGYBACK, OR
SOURCE~DESTINATION FILES. OPTIONALLY, THE LATEST E
ACCEPTABLE PERIOD FOR SOURCE FILES,

These entries indicate that a file is to be accepted as a source
file if it was created during the previous work week. There-
fore, a source file is acceptable on January 10 if it was created
in the period, between January 2 and January 6. File A was
created on January 3 and is acceptable.

JANUARY 196—

S MT W T F s

1 2 3 4 5 6 7
8 9 10 11 12 13 14
15 16 17 18 19 20 21

22 zszs 26 27 28

29 30 31

Question 15 is optional for source files and is used to further
define an acceptable file. For example, 002 might be entered
for Question 14 and 001 for Question 15, with Question 13 re-
maining WWZL. According to these entries, a file is to be ac-

NEAT/3 -- FILES Nov. 68
TAB 2 -- PUB. NO. 2 Page 8

MAGNETIC TAPE SPECS.

cepted if it was created in a period that started at the begin-
ning of two work weeks back, and ended at the end of 1 work week
back. If the program was run on January 24, a source file created
between January 9 and January 20 would be acceptable.

If Question 15 was left blank, and 14 remained 002, a source file
created between January 9 and January 13 only would be accepted.

o Further Examples of Using Dates for File Protection

TYPE OF DATING PERIOD.

ACCE PTABLE PERIOD [EARLIEST] FOR SOURCE, PIGGY-—
BACK, AND SOURCE—-DESTINATION FILES, NOT USED ON
DESTINATION FILES,

RETENTION PERIOD FOR DESTINATION, PIGGYBACK, OR
SOURCE~DESTINATION FILES. OPTIONALLY, THE LA-
TEST ACCEPTABLE PERIOD FOR SOURCE FILES.

The created file is protected for two additional work days; that

is, it may not be written over (destroyed) until the third work
day after its creation.

TYPE OF DATING PERIOD,

ACCEPTABLE PERIOD [EARLIEST] FOR SOURCE,PIGGY-
BACK,AND SOURCE—DESTINATION FILES, NOT USED ON
DESTINATION FILES,

RETENTION PERIOD FOR DESTINATION, PIGGYBACK, OR
SOURCE~DESTINATION FILES. OPTIONALLY, THE LA~-
TEST ACCEPTABLE PERIOD FOR SOURCE FILES.

This indicates that the file created is a scratch file. 1In effect,
it is obsolete when created and may be written over immediately.
Although obsolete, the file could be used as a source file in
another rum.

NEAT/3 -- FILES Nov. 68
TAB 2 — PUB. NO. 2 Page 9

13. TYPE OF DATING PERIOD,

14. ACCEPTABLE PERIOD [EARLIEST] FOR SOURCE, PiGGY-
BACK, AND SOURCE-DESTINATION FILES. NOT USED ON
DESTINATION FILES.

RETENTION PERIOD FOR DESTINATION, PIGGYBACK, OR
SOURCE~DESTINATION FILES, OPTIONALLY, THE LATEST
ACCEPTABLE PERIOD FOR SOURCE FILES.

This indicates that the program should accept a scratch file.

13. TYPE OF DATING PERIOD,

14, ACCEPTABLE PERIOD [EARL!EST] FOR SOURCE, PIGGY-
BACK, AND SOURCE~=-DESTINATION FILES, NOT USED ON
DESTINATION FILES,

RETENTION PERIOD FOR DESTINATION, PIGGYBACK, OR
SOURCE-=DESTINATION FILES. OPTIONALLY, THE LA-
TEST ACCEPTABLE PERIOD FOR SOURCE FILES,

This indicates that the program accepts a source file if it was
created five work days back. Only a file created on that day is
accepted.

NEAT/3 -- FILES Nov. 68
TAB 2 -- PUB. NO. 2 Page 10

MAGNETIC TAPE SPECS.

TYPE OF DATING PERIOD.

ACCEPTABLE PERIOD [EARLIEST] FOR SOURCE, PIGGY-
BACK, AND SOURCE=DESTINATION FILES., NOT USED ON
DESTINATION FILES,

RETENTION PERIOD FOR DESTINATION, PIGGYBACK, OR
SOURCE-DESTINATION FILES., OPTIONALLY, THE LATEST
ACCEPTABLE PERIOD FOR SOURCE FILES.

This indicates that a file created the same week is to be ex-
tended. All additional segments to the file will have the same
creation and expiration date as the original segment.

If the file cannot be located, the operator is given the option
of creating a new one. If a new file is created, the answer to
Question 15 is used to establish the expiration date for it.

In this way, the same program may be used to create a piggy-
back file and extend it.

e Virtual Date and Actual Date

The date the file was created is obtained from an entry made to the
system at the start of each workday. This entry contains two dates:
the actual date and the virtual date.

e Actual date is today's date.

e Virtual date is the date the program is scheduled to be run.
Generally, the actual date and the virtual date are the same. How-
ever, an unavoidable interruption could interfere with a program
being run on a scheduled date. In this case, the program could be

run the next day using the previous day's date as the virtual date.

e Example of Virtual and Actual Date

Phase 1: The program is to write File A and save it for one additional
day. This program is normally run on January 4; but since
the processing could not be done on that day, the program is
run on January 5.

The actual and virtual dates are entered into the system at
the beginning of the day as follows:

Actual date - January 5 Virtual date - January 4

NEAT/3 -- FILES Nov. 68
TAB 2 -- PUB. NO. 2 Page 11

When File A is created, the HDR1 label will contain the follow-
ing creation and expiration dates:

Date created - January 4 Date expires - January 6
The files written on January 5 may now be used in Phase 2.

Phase 2: The program is to use File A one day after it is created.
This program is usually run on January 5.

New actual and virtual dates are entered after completion
of the programs usually run on January 4.

Actual date - January 5 Virtual date - January 5

File A is acceptable since it was written using the virtual
date January 4, and this is actually January 5. Any files
written in Phase 2 contain January 5 as the date created.

Programs may be run over a period of days using virtual dates until the
work is back on schedule. When the system is back on schedule, all files
contain valid dates that are acceptable to their associated programs.

16. FILE NAME [MlA.G.Z.F.I.L.EL .]

Enter the file name as it is to appear in the HDR1 label. For
Father-Son processing this name should be different than the

file reference name. (For further details, see the NEAT/3 REFERENCE
MANUAL, FILES, '"NCR Century File Concepts.')

[El NLD- F| I'l Ll EJ I s]

17. END OF FILE EXIT [NOT USED ON DESTINATION FIL.ES] OR
ERROR EXIT FOR RANDOM MACROS.

END-OF-FILE EXIT

Enter the name of the routine to be given control when end of a
source file is reached.

If the programmer wishes to return control to the instruction
following the one that caused the link to the end-of-file rou—
tine, he may do so by using a RELINK instruction without an
operand. (A LINK or BRANCH instruction may not be used for this
purpose.)

NEAT/3 -- FILES Nov. 68
TAB 2 -- PUB. NO. 2 Page 12

MAGNETIC TAPE SPECS.

GET MASTERFILE

- T T T TN

ENDFILE ?

-
! Desired end-of-file coding.

RELINK (No operand).

If the programmer wishes to return control to a different in-
struction or routine, he may do so by using a RELINK instruction
that names the desired routine as an operand. The LINK or
BRANCH instruction may not be used for this purpose.

GET MASTERFILE

ENDFILE ?

r !
1 I Desired end-of-file coding.
L J

r

RELINK OTHERUTINE

For further details concerning LINK and RELINK with an operand,
see the NEAT/3 REFERENCE MANUAL, INSTRUCTIONS, tab 2, "Link and

Relink Instructions."

The programmer need not relink from his end-of-file routine but
may continue his coding within the routine and complete the
program with a FINISH instruction.

NEAT/3 -- FILES Nov. 68
TAB 2 -- PUB. NO. 2 Page 13

GET MASTERFILE

-~
~

\\\
S
~

ENDFILE 1i)
==

i ' Desired end-of-file coding.

-

.I_J

FINISH

If this is a piggyback file, the routine referenced here allows
the program to read existing user trailer labels. The file is
opened, tape is advanced to the end of the existing portion of
the file, and control is transferred to the routine referenced
here.,

Once the labels have been read, the programmer must RELINK to the
software. If a tape mark is encountered while reading these
labels, an automatic RELINK to the software takes place. (Tape
marks indicate the end of a group of labels.)

The software automatically repositions the tape for proper ex-
tension of the file. The existing EOF labels, UTL labels, and
their associated tape marks are written over when the file is
extended.

If this is an NCR 315 source file, control is transferred to the
routine referenced here each time a tape mark is encountered.
NOTE

Once an end-of-file exit is taken, the last record in the
input buffer is no longer accessible to the program.

18. PRIMARY SYMBOLIC UNIT DESIGNATOR. E

Enter the Symbolic Unit Designator of the unit containing the
first section of the file.

NEAT/3 -- FILES Nov. 68
TAB 2 -- PUB. NO. 2 Page 14

MAGNETIC TAPE SPECS.

19. TYPE OF REWIND DESIRED ON CLOSING? [ENTER N FOR NO D
REWIND, R FOR REWIND ONLY; OR U FOR REWIND AND UN-
LOAD]

Enter "N" if the tape is not to be rewound when the end of this
file is reached. The programmer may enter '"N" if a multiple-file
reel is being processed and if the next desired file is located
beyond the end of the current file.

Enter "R" if the tape is to be rewound when the end of this file
is reached. The tape is rewound to the beginning of the tape
(reel).

Enter "U" if the tape is to be rewound and unloaded when the end
of this file is reached. The tape will be rewound and the unit
will be placed in a non-ready state.

20, ARE BLOCK LENGTH INDICATORS TO BE CHECKED/CREATED? D
[vyor n] [1F BLANK, N 1S ASSUMED)]

Enter "Y" if Block Length Indicators (BLI) are to be written or
checked automatically. The compiler will automatically set up
a header offset of two characters. If the BLI's are in a four-
character field, enter "Y'" here and specify a header offset
(Sheet 2, Question 5) of two.

Enter "N" if BLI's are not to be written or checked automatically.
If this is a source file and if BLI's exist but are not to be
checked, enter "N" here and specify a header offset equal to the
length of the BLI field (2 or 4 characters).

"N" is assumed if no entry is made.

NEAT/3 -- FILES Nov. 68
TAB 2 -- PUB. NO. 2 Page 15

SHEET 2

The information on this sheet is optional. If none of the options are desired,

the entire sheet may be eliminated.

FILE SPECIFICATIONS WORKSHEET *
DISC - MAGNETIC TAPE mam
SHEET 2 - OPTIONAL

“Program, Prepared by

D. Page e 0f

ALL SYMBOLIC MEFERENCES MUST BE LEFT-JUSTIZIED AND MUST CONTAIN AT LEABT ONE ALPHABETIC CHARACTEN
ALL NUMERIC ENTRIES MUST BE RIGHT-JUSTIFIED AND MUST BE 2ERG.F1LLED TO THE LEFT

(Shaded Boxes Are Optional)
Paper Tape Format Code 1.0.7|=

MAGNETIC TAPE OR DISC
Page-Line

User Routine after Section Open — (See File Spec. Sheet
section of lLanguage Reference Manual)

Enter 3 for Disc; 4 for Magnetic Tape

User Routine before Section close - (See File Spee. Sheet
section of Language Reference Manual)

o

Header Offset -— The number of characters to be ignored at the start
of each block. (Blank for chained files.)

o

Data Format Code — Sec Data Format Code Chart in Appendix of Language
Reference Manual. {if blank. processor internal code is used)

. Data Format Error Exit

. If this file is 10 be re-opened during this run. indicate sccondary file usage — S for sourec: -,
D for destination: R for source-destination: P for piggyback: (if blank. no re-open is assumed) [}

DISC ONLY

9. Entry Type (Enter 00 for data file: 01 sourcc program: 02
objcct program: 05 association: 06 control string:
04 for cither contral string or object program) (if blank. 00 is assumed |

E)
10. Are any Random Accesses made 1o this file during this program? (Y or N) (if blank, N is assumed)) ,
=l
V1. Is this file a chained file” (Y or N) (if blank. N is assumed) D
8

12. If chained file enter the number of sectors per file bucket
(Enter ALL [7] if entire file is one bucket)

13. 1s an overflow file area included? - Y or N) (if blank. N is assumed)
MAGNETIC TAPE ONLY

. Al e Symbolic Unit Desiy (if blank, primary is assumed)

. Set Identification

Accessibility Code

- Is this a Multi-File Volume Set? |Y or N\ (if blank, N is assumed !

18. If multi-file volume. is a Rewind before Open desired? (Y or N1 . if blank. N is assumed) E,' X

. Delete Digit

Identification

The programmer should fill in the header, page-and-line number (Question 1),
and the identification tag (positions 75-80) as defined in the NEAT/3 REFERENCE

MANUAL, INTRODUCTION AND DATA, tab 3, "Programming Worksheets."

The paper tape

format code is preprinted on this sheet and must be punched if paper tape is

used for input to the compiler.

NEAT/3 -~ FILES
TAB 2 -- PUB. NO. 2

Nov. 68
Page 16

MAGNETIC TAPE SPECS.

2, USER ROUTINE AFTER SECTION OPEN - [SEE FILE SPEC.
SHEET SECTION OF LANGUAGE REFERENCE MANUAL]

This optional entry contains the reference name of the routine

to be given control immediately after the second and subsequent
sections of the file are opened. Control is also transferred

here after the first section is opened if an OPEN instruction

is used for this file. This routine may contain coding to write

or read User Header Labels (UHL). The last instruction in the
routine must be RELINK without an operand. For further details

on labels, see the NEAT/3 REFERENCE MANUAL, FILES, tab 2, '"Magnetic
Tape Files."

LPUT and LGET are the only I/0 instructions that may be executed
in this routine.

3. ENTER 3 FOR DISC} 4 FOR MAGNETIC TAPE

Enter "4" for magnetic tape.
The number "2'" is preprinted in position 18 and must be punched.

4, USER ROUTINE BEFORE CLOSE = [SEE FILE SPEC, SHEET
SECTION OF LANGUAGE REFERENCE MANUAL.]

This optional entry contains the reference name of the routine

to be given control before each section of the file is closed --
with the exception of the last section. Control is also trans-
ferred here before the last section is closed if a CLOSE instruc-
tion is used for this file. This routine may contain coding to
write or read User Trailer Labels (UTL). The last instruction

in the routine must be RELINK without an operand. For further
information on labels, see the NEAT/3 REFERENCE MANUAL, FILES, tab 2,
""Magnetic Tape Files."

LPUT and LGET are the only I/0 instructions that may be executed
in this routine.

5. HEADER OFFSET — THE NUMBER OF CHARACTERS TO BE 1G—
NORED AT THE START OF EACH BLOCK. [BLANK FOR
CHAINED FILES.]

This optional entry contains the number of characters to be ig-
nored at the beginning of each block. These characters will not
be presented to the program by the GET instruction.

When Block Length Indicators (BLI) are used, a header offset of
2 is automatically assumed. If a 4-character BLI is used, 2
must be indicated here. The indicated header offset (2) plus

the assumed header offset of 2 equals a total header offset of 4.

NEAT/3 -- FILES Nov. 68
TAB 2 -- PUB. NO. 2 Page 17

6. DATA FORMAT CODE — SEE DATA FORMAT CODE CHART IN
APPENDIX OF LANGUAGE REFERENCE MANUAL. [IF BLANK,
PROCESSOR INTERNAL CODE IS USED]

This optional entry contains a code that signifies the code set
of the data on tape. If left blank, NCR Century internal code is
assumed. This is the usual code for magnetic tape files.

If NCR Century internal code is not desired, enter a code as indi-
cated on the data format code chart. See the NEAT/3 REFERENCE
MANUAL, APPENDIX, tab 1, '"Data Format Codes."

7. DATA FORMAT ERROR EXIT

This optional entry is used only if translation was asked for in
answer to Question 6. If an illegal character is detected
during translation, control is given to the routine referenced
here.

8. IF THIS FILE IS TO BE RE-OPENED DURING THIS D
RUN, INDICATE SECONDARY FILE USAGE — S FOR
SOURCE; D FOR DESTINATION; R FOR SOURCE—
DESTINATION; P FOR PIGGYBACK; [IF BLANK,
NO RE-OPEN IS ASSUMED|

If this file is reopened during the run, enter the letter that
indicates the type of file desired on reopening. Multiple re-
opens are permitted; however, the second reopen must declare the
file type as being the same as at initial open (Question 5,
Sheet 1).

Enter "S" if the file is first reopened as a source file.
Enter "D" if the file is first reopened as a destination file.

Enter "P" if the file is first reopened as a piggyback file.

"R" may not be entered since source-destination files are not
applicable to magnetic tape.

Entries 9-13 are for disc only.

14, ALTERNATE SYMBOLIC UNIT DESIGNATOR [IF BLANK, PRI-
MARY IS ASSUMED]

This optional entry contains the Symbolic Unit Designator of an
alternate unit. The software will look to the unit named here
for a continuation of the file when the section on the unit spec-
ified in Question 18 of Sheet 1 is exhausted. When the section
of the file on the alternate unit (specified here) is exhausted,
the software will look back to the first unit for a continuation
of the file.

NEAT/3 -- FILES Nov. 68
TAB 2 -- PUB. NO. 2 Page 18

MAGNETIC TAPE SPECS.

If this entry is left blank, the section of the file initially
mounted on the unit specified in answer to Question 18 of

Sheet 1 is processed. Then, the operator is signaled to change
the reel on that unit.

15, SET IDENTIFICATION

Enter the 6-character name to be given to the volume set if this
is a destination file on a multi-file reel (or in a multi-file,
multi-reel set). '

If this is a source file on a multi-file reel (or in a multi-file,
multi-reel set), enter the name of the set.

If left blank, the volume serial number in the Volume Header La-
bel is used.

16, ACCESSIBILITY CODE

This optional entry contains a one-character code that is placed
in the File Header Label when the file is created.

Presently, the software makes no use of the accessibility code.

17. 1S THIS A MULTI-FILE VOLUME SET? [Yy orR N] [iIF BLANK,

N 1S ASSUMED]

18, IF MULTI-FILE VOLUME, IS A REWIND BEFORE OPEN DE—
sirep? [vy or N] [IF BLANK, N 1S AssumMED]

These two optional entries are interrelated and will be explained
together.

Enter a "Y" in answer to Question 17 if the reel mounted contains
(or is to contain) more than one file, or if the reel is part of
a multi-file, multi-reel set.

Leave blank if the reel mounted contains (or is to contain) only
one file.

If Question 17 was answered "Y', Question 18 is applicable.

e Enter '"N" in answer to Question 18 if the desired file is
beyond (or is to be created beyond) the current position of
the tape.

e Enter "Y" answer to Question 18 if the position of the de-
sired file is not known; then, the software will rewind the
tape before searching for the desired file (or file location).

NEAT/3 -- FILES Nov. 68
TAB 2 -~ PUB. NO. 2 Page 19

	3_01-01_Files
	3_01-02
	3_01-03
	3_01-04
	3_01-05
	3_01-06
	3_01-07
	3_01-08
	3_01-09
	3_01-10
	3_01-11
	3_01-12
	3_01-13
	3_01-14
	3_01-15
	3_01-16
	3_01-17
	3_01-18
	3_01-19
	3_01-20
	3_01-21
	3_01-22
	3_01-23
	3_01-24
	3_01-25
	3_01-26
	3_01-27
	3_01-28
	3_01-29
	3_01-30
	3_01-31
	3_01-32
	3_02-01_Disc_Files
	3_02-02
	3_02-03
	3_02-04
	3_02-05
	3_02-06
	3_02-07
	3_02-08
	3_02-09
	3_02-10
	3_02-11
	3_02-12
	3_02-13
	3_02-14
	3_02-15
	3_02-16
	3_02-17
	3_02-18
	3_02-19
	3_02-20
	3_02-21
	3_02-22
	3_02-23
	3_02-24
	3_02-25
	3_02-26
	3_02-27
	3_02-28
	3_02-29
	3_02-30
	3_03-01_Disc_File_Specs
	3_03-02
	3_03-03
	3_03-04
	3_03-05
	3_03-06
	3_03-07
	3_03-08
	3_03-09
	3_03-10
	3_03-11
	3_03-12
	3_03-13
	3_03-14
	3_03-15
	3_03-16
	3_03-17
	3_03-18
	3_03-19
	3_03-20
	3_03-21
	3_03-22
	3_03-23
	3_03-24
	3_03-25
	3_03-26
	3_03-27
	3_03-28
	3_03-29
	3_03-30
	3_03-31
	3_03-32
	3_03-33
	3_04-01_Printer_Files
	3_04-02
	3_04-03
	3_04-04
	3_04-05
	3_04-06
	3_04-07
	3_04-08
	3_04-09
	3_04-10
	3_04-11
	3_04-12
	3_04-13
	3_04-14
	3_04-15
	3_04-16
	3_04-17
	3_04-18
	3_04-19
	3_05-01
	3_05-02
	3_05-03
	3_05-04
	3_06-01_Punched_Card_Files
	3_06-02
	3_06-03
	3_06-04
	3_06-05
	3_06-06
	3_06-07
	3_06-08
	3_06-09
	3_06-10
	3_06-11
	3_06-12
	3_06-13
	3_07-01
	3_07-02
	3_07-03
	3_07-04
	3_07-05
	3_07-06
	3_08-01_Paper_Tape_Files
	3_08-02
	3_08-03
	3_08-04
	3_08-05
	3_08-06
	3_09-01
	3_09-02
	3_09-03
	3_09-04
	3_09-05
	3_09-06
	3_09-07
	3_09-08
	3_09-09
	3_09-10
	3_09-11
	3_09-12
	3_09-13
	3_09-14
	3_09-15
	3_10-01
	3_10-02
	3_10-03
	3_10-04
	3_10-05
	3_10-06
	3_10-07
	3_10-08
	3_10-09
	3_10-10
	3_10-11
	3_10-12
	3_10-13
	3_10-14
	3_10-15
	3_10-16
	3_10-17
	3_10-18
	3_10-19
	3_10-20
	3_10-21
	3_10-22
	3_10-23
	3_10-24
	3_10-25
	3_10-26
	3_10-27
	3_10-28
	3_10-29
	3_10-30
	3_10-31
	3_10-32
	3_10-33
	3_10-34
	3_10-35
	3_11-01
	3_11-02
	3_11-03
	3_11-04
	3_11-05
	3_11-06
	3_11-07
	3_11-08
	3_11-09
	3_11-10
	3_11-11
	3_11-12
	3_11-13
	3_11-14
	3_11-15
	3_11-16
	3_11-17
	3_11-18
	3_11-19

