OPEN INSTRUCTIONS

There are two forms of the OPEN instruction, OPEN and OPENS. Each is dis-
cussed separately.

» x OPEN
Function

This instruction, which may be used with any type file, gives the programmer
control over the time when a file is opened. Any file having an OPEN
instruction associated with it will not be opened when the program is loaded
into memory.

Using the OPEN instruction also provides the programmer with the option of
transferring control to a user routine after the first section of a magnetic
media file or punched tape file is opened. If this option is desired, the
name of the routine must be entered on the file specification sheets for
this file. The routine could be used to output or input labels.

Example

REFERENCE OPERATION OPERANDS

8 9 10 11 12 13 14 15 16 17{18 19 20 21 22 23 (24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 S0

OPEN EXCEPTFILE

In the example above, the instruction causes the software to.perform the
necessary steps involved in opening a file called EXCEPTFILE. Since there
is an OPEN instruction associated with this file, it is not opened when the
program is first loaded into memory.

NEAT/3 --INSTRUCTIONS Jul. 69
TAB 1 --PUB. NO. 1 Page 1

Conventions
xonventions

e General

OPEN instructions should be used with caution. If the source file does
not exist, or if there is no room for the destination file, the run may
have to be aborted at the time the desired file is to be opened.

Entering a user-routine name on the file specification sheet causes a
branch to be taken after each section of the file, except the first, is
opened. Using an OPEN instruction causes the branch to be taken to the
named routine after the first section is opened.

¥ ¥ xX

NEAT/3 -- INSTRUCTIONS Jul. 69
TAB 1 -- PUB. NO. 1 Page 2

OPEN INSTRUCTIONS

OPENS

Function

The OPENS instruction allows the programmer to open a specific section of a
magnetic media file. The file must be a source, destination, or a source-
destination. A file containing a section to be opened with the OPENS instruc-
tion is not opened when the program is loaded into memory. The user must open
the file initially with the OPEN or OPENS instruction at the first section of
the file, or with the OPENS instruction at any subsequent section of the file.

When processing a file sequentially, the programmer may skip the remainder

of a section or entire section by using the OPENS instruction in conjunction
with the CLOSES instruction. After closing a section, the programmer uses the
OPENS instruction to open the next section desired following the skipped sec-
tion(s). He moves the relative address at which the file is to be opened
(section number and relative sector number in the case of disc files, or
section number and relative card and track numbers in the case of CRAM files)
to a user-defined area prior to executing the OPENS. This area, referenced

by an operand of the OPENS instruction, identifies the section to be opened.

Using the OPENS instruction also provides the programmer with the option of
having control transferred to a user routine after the specified section is

opened. If this option is desired, the name of the routine must be entered on
the file specification sheets for this file.

Example

e OPENS for Disc Files

REFERENCE OPERATION OPERANDS

8 9 10 11 12 13 14 15 16 17(18 19 20 21 22 2324 23 26 27 20 20 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 43 46 47 48 49 PO

OPENS |[MASTERFILE,ADRESAREAI

e DU

b}

REFERENCE LOCATION VALUE OR PICTURE

.

[}
8 9 10 11 12 13 14 18 16 17 T2 31 32 33 34 35 36 37 38 39 40 41 AR 43 44 46 40 47 40 4 0,
a4

ADRESAREA]
SECTION
ZERO
RELSECT

e
i ¥
SECTION MUST BE RELATIVE SECTOR
NUMBER ZERO NUMBER

NEAT/3 -- INSTRUCTIONS Feb. 70
TAB 1 -- PUB. NO. 1 ’ Page 3

In the preceding example, the OPENS instruction causes the software to
perform the necessary steps involved in opening a file called MASTERFILE
at the section and relative sector specified in an area called ADRESAREAL.

The programmer defines ADRESAREAl as a 4-character binary area. The
second character position must always be zero.

® OPENS for Magnetic Tape Files

REFERENCE OPERATION OPERANDS

8 9IO!'|2|314151617I8I92011222.3242526272529303!3233343535373939404!42‘34445464745‘950

OPENS MASTERFILAE,ADRESAREAZ

b

8 9 10 1) 12 13 14 15 16 17 19 20 21 22 23/24 25 26 27 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
)

i

]

:'

REFERENCE LOCATION LENGTH VALUE OR PICTURE !
|

[}

i

ADRESAREA? 1

H,__._/

SECTION
NUMBER

In the above example, the OPENS instruction causes the software to per-
form the necessary steps involved in opening a file called MASTERFILE
at the section specified in ADRESAREA2.

The programmer defines ADRESAREA2 as a l-character binary area.

NEAT/3 —-- INSTRUCTIONS Jul. 69
TAB 1 -- PUB. NO. 1 Page 4

OPEN INSTRUCTIONS

® OPENS for CRAM Files

REFERENCE OPERATION OPERANDS

] ’lOHI!'l|4l!|.l7|‘l’20!ln”“!’ﬂt?!'t’n!l323‘“)'“37!‘3’“"480“45“‘1““”

OPENS MASTERFILE,ADRESAREAI

»

REFERENCE LOCATION | LENGTH VALUE OR PICTURE

8 9 10 11 12 13 14 13 16 17 19 20 21 22 23{24 25 28 27

ADRESAREA]T X 4
SECTION 1
RELCARD R 2
RELTRACK 1

31 32 33 34 35 36 37 38 39 40 41 42 43 44 43 48 47 48 49 O

@ | |[o|[g[mecqd ¥

L)\ i J

v Y v
SECTION RELATIVE CARD RELATIVE
NUMBER NUMBER TRACK NUMBER

In the example above, the OPENS instruction causes the software to perform
the necessary steps involved in opening a file called MASTERFILE at the
section, relative card, and relative track specified in an area called
ADRESAREA]L.
The programmer defines ADRESAREAl as a 4-character binary area.
Conventions
e Disc
The first sector in each section of a file is relative sector zero.
e CRAM

The first card in each section of the file is relative card zero.
The first track on each card is relative track zero.

NEAT/3 -- INSTRUCTIONS Jul. 69
TAB 1 ~-- PUB. NO. 1 Page 5

OPENT
Function

The OPENT instruction specifies that certain sections of a multi-section
random file on disc or CRAM will not be opened. By opening a random file
with an OPENT instruction, the programmer may skip selected sections of the
file and open all other sections.

This instruction is used when the programmer knows before opening a random
file that he cannot access all sections of the file. Use of the OPENT
instruction, in conjunction with the CLOSET instruction, to process only
specified sections of a random file 1is particularly applicable when process-
ing online with peripherals out of service.

To identify the file sections to be skipped, the programmer reserves a work
area for a variable-length list (TABLE in the example below) of these section
numbers. Any section of the file not included in the list will be opened.

All entries in the list must be l-character binary numbers and must be listed
in ascending order. A minimum of one entry is required. The last entry in
the list must always be a l-character binary zero. If the only entry is a
l-character binary zero end sentinel, all sections of the file will be opened.

Example

® OPENT for Disc Files

REFERENCE OPERATION OPERANDS

8 9 10 11 IZ1314l5|6I7IOIOZOZI222324232627202.303!3233343536373!3940"lzl34445lsl7la‘950

OPENT TRANS‘FILE,TABLE

bl

REFERENCE LOCATION LENGTH VALUE OR PICTURE

8 9 10 11 12 13 14 15 16 17 19 20 21 22 23(24 25 26 27 31 32 33 34 35 36 37 38 39 40 41 42 43 44 43 46 47 48 49 SO

TABLE

P S S 't

NP SN W S S

SENTINEL

In the above example, the OPENT instruction causes the software to skip
(not to open) sections 1, 2, and 7 of a random disc file called TRANSFILE.
The software will open the sections between the skipped sections (3, 4, 5,

NEAT/3 ~- INSTRUCTIONS Oct. 70
TAB 1 -- PUB. NO. 1 Page 6

OPEN INSTRUCTIONS

and 6 in this example). When the binary zero end sentinel is reached
(after section 7 in this example), all remaining sections of the file
will be opened.

e OPENT for CRAM Files

REFERENCE OPERATION OPERANDS

8 9 10 11 12 33 14 135 16 17118 19 20 21 22 2324 23 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 30

OPENT IDATAFILE,TABLE

b}

REFERENCE LOCATION LENGTH VALUE OR PICTURE

- ——

8 9 10 11 12 13 14 13 16 17 19 20 21 22 23]24 25 28 27 31 32 33 34 33 36 37 38 39 40 41 42 43 44 43 46 47 48 49 30

TABLE

SR WY PR SN

SENTINEL

In the above example, the OPENT instruction causes the software to skip
(not to open) sections 3, 4, and 5 of a CRAM file called DATAFILE. The
software will open the sections (1 and 2 in this example) preceding the
skipped sections. When the binary zero end sentinel is reached (after
section 5 in this example), all remaining sections of the file will be
opened.

Conventions

Before processing the file, the programmer selects the sections to be skipped.
If he subsequently wishes to open these skipped sections, the programmer must
close (with a CLOSET instruction) all currently opened sections of the file.
The programmer may then remove the desired section number entries from the
list, thus permitting the software to open the specified sections when OPENT
is used.

Entries in the work area (the section numbers of the sections to be skipped)
must be l-character binary numbers and must be listed in ascending order.

The list must always contain at least one entry, and a l-character binary zero
end sentinel must follow the last entry. If the end sentinel is the only
entry in the list, all sections of the file will be opened.

NEAT/3 ~- INSTRUCTIONS Oct. 70
TAB 1 -- PUB. NO. 1 Page 7

ROPEN INSTRUCTIONS

INTRODUCTION

During a program run, a file may be used as a source file, destination file,
source-destination file, or piggyback file, depending upon the usage specified
on the file specification worksheets.

After the file is opened and processed, but before it is closed, one of the
variations of the ROPEN instruction may be used to close the file and reopen
it as another type (source, destination, etc.). When a file is to be reopened
this way, its secondary use must also be specified on the file specification
worksheets.

NOTE

Although a file may be reopened by using both a CLOSE and OPEN
instruction, using an ROPEN instruction is a faster method.

There are four ROPEN instructions which correspond to the four types of file
usage:

ROPENS reopens a file as a source file

ROPEND reopens a file as a destination file

ROPENR reopens a file as a source-destination file
ROPENP reopens a file as a piggyback file.

These four instructions are used only with disc and magnetic tape files.

NEAT/3 —- INSTRUCTIONS Oct. 70
TAB 1 —— PUB. NO. 1.1 Page 1

ROPENS

Function

The ROPENS instruction closes a file and reopens it as a source file. If this
instruction is used, an S (for source) must be specified on the file specifica-
tion worksheets for the secondary file usage.

REFERENCE

OPERATION

OPERANDS

8 9 10 11 12 13 14 13 16 17

18 19 20 2% 22 23

24 23 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 43 48 47 48 49 0

ROPENS

EXCEPTFILE

In the example above, the ROPENS instruction causes the software to close the

file (EXCEPTFILE) and reopen it as a source file.

is output before the file is closed.

Conventions

Any partially filled buffer

e An ROPENS instruction must reference a file that is currently open.

e Another variation of the ROPEN instruction may be used after the ROPENS
instruction; however, the instruction must reopen the file as its original
file type (subsequent ROPEN instructions must alternately reopen the file
first as a source file, and then as the original file type).

NEAT/3 —- INSTRUCTIONS
TAB 1 -- PUB. NO. 1.1

Jul. 69
Page 2

ROPEN INSTRUCTIONS

ROPEND
Function

The ROPEND instruction closes a file and reopens it as a destination file.
When this instruction is executed, the old file is destroyed, allowing a new
file to be written in the same area. If this instruction is used, a D (for
destination) must be specified on the file specification worksheets as the

secondary file usage.

REFERENCE OPERATION OPERANDS

8 9 10 11 12 13 14 15 16 17[18 19 20 21 22 2324 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

ROPENDIEXCEPTFILE

In the example above, the ROPEND instruction causes the software to close the
file (EXCEPTFILE) and reopen it as a destination file. Any partially filled
buffer is output before the file is closed.

Conventions
e An ROPEND instruction must reference a file that is currently open.

® Another variation of the ROPEN instruction may be used after the ROPEND
instruction; however, the instruction must reopen the file as its original
file type (subsequent ROPEN instructions must alternately reopen the file
first as a destination file, and then as the original file type).

NEAT/3 -- INSTRUCTIONS Jul. 69
TAB 1 -- PUB. NO. 1.1 Page 3

ROPENR
Function
The ROPENR instruction closes a file and reopens it as a source-destination file.

If this instruction is used, an R (for source-destination) must be specified
on the file specification worksheets as the secondary file usage.

1
8 9 IOIII2l314I$|Gl7l8l9202|2223142526272020303132333435!6373839‘04!4243‘4‘5‘64740“90

1

!

REFERENCE OPERATION OPERANDS !
]

!

'

i

ROPENRIEXCEPTFILE

In the example above, the ROPENR instruction causes the software to close the
file (EXCEPTFILE) and reopen it as a source-destination file. Any partially
filled buffer is output before the file is closed.

Conventions

e An ROPENR instruction must reference a file that is currently open.

e Another variation of the ROPEN instruction may be used after the ROPENR
instruction; however, the instruction must reopen the file as its original
file type (subsequent ROPEN instructions must alternately reopen the file
first as a source-destination file, and then as the original file type).

NEAT/3 -- INSTRUCTIONS Jul. 69
TAB 1 -- PUB. NO. 1.1 Page 4

ROPEN INSTRUCTIONS

ROPENP
Function

The ROPENP instruction closes a file and reopens it as a piggyback file. When
this instruction is executed, the file is reopened at the end of the existing
file. If this instruction is used, a P (for piggyback) must be specified on
the file specification worksheets for the secondary file usage.

REFERENCE OPERATION OPERANDS

8 9 10 13 12 13 14 13 16 1718 19 20 21 22 23|24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 30

ROPENPIEXCEPTFILE

In the example above, the ROPENP instruction causes the software to close the
file (EXCEPTFILE) and reopen it as a piggyback file. Any partially filled
buffer is output before the file is closed.

Conventions

e An ROPENP instruction must reference a file that is currently open.

e Another variation of the ROPEN instruction may be used after the ROPENP
instruction; however, the instruction must reopen the file as its original

file type (subsequent ROPEN instructions must alternately reopen the file
first as a piggyback file, and then as the original file type).

NEAT/3 -- INSTRUCTIONS Jul. 69
TAB 1 -- PUB. NO. 1.1 Page 5

CLOSE INSTRUCTIONS

There are three forms of the CLOSE instruction, CLOSE, CLOSEO, and CLOSES.
Each is discussed separately.

CLOSE
Function

This instruction may be used with any type file. The CLOSE instruction
provides the programmer with control over the time when a file is closed

and with the option of transferring control to a user routine before the
last section of a magnetic media file or punched paper tape file is closed.
If this option is desired, the name of the routine must be entered on the
file specification sheets for this file. The routine could be used to output
or input labels.

ExamEle

REFERENCE OPERATION OPERANDS

8 9 10 11 12 13 14 15 16 17{18 19 20 21 12232425252721203031323334353637!.!!40‘!lzn444550l1404950

CLOSE [EXCEPTFILE

-———me e]

In the above example, the instruction causes the software to perform the
necessary steps involved in closing a file called EXCEPTFILE. If the CLOSE
instruction associated with this file is not executed before the FINISH
instruction is encountered, the file is closed automatically.

Conventions

® General
Entering a user-routine name on the file specification sheets causes a
branch to be taken before each section, except the last, of the file is

closed. Using a CLOSE instruction causes the branch to be taken to the
named routine before the last section is closed.

xxxx

NEAT/3 -- INSTRUCTIONS Jul. 69
TAB 1 -- PUB. NO. 2 Page 1

CLOSEO

Function

This instruction is used with magnetic media scratch files; therefore, the file
specifications worksheet must specify SCR in the type of dating period. The
CLOSEO instruction is used tq obsolete scratch files during or at the end of a
run to allow immediate reuse of the space occupied by the scratch file.

Using the CLOSEO instruction also provides the programmer with control over
the time the file is closed and with the option of transferring control to a
user routine before each section of the file is closed. If this option is
desired, the name of the routine must be entered on the file specification
sheets for this file.

Example

J SO

REFERENCE OPERATION OPERANDS

[I J IOHIZIS'GISICl7|l|.101llzn2415“272.1’”31Jl!!)l.\surl’.!’&"41‘3‘4‘!“47!‘4.”

CLOSEOISCRTCHFILE

In the above example, the instruction causes the software to perform the nec-
essary steps involved in closing and obsoleting a file called SCRTCHFILE. If
the CLOSEO instruction associated with this file is not executed before the
FINISH instruction is encountered, the file is Elosed automatically but is
not obsoleted.

Conventions

® General
Entering a user-routine name on the file specification sheets causes a
branch to be taken before each section, except the last, if the file is

closed. Using a CLOSE instruction causes the branch to be taken to the
named routine before the last section is closed.

e Disc and CRAM

When CLOSEO is used to obsolete a file, the space occupied by the disc or
CRAM file becomes free for use by any other file. Only the current section
of the file is obsoleted if the file contained more than one section.

e Magnetic Tape

CLOSEO may be used with magnetic tape for compatibility reasons. However,
scratch files on magnetic tape are already obsolete at the time they are
created.

NEAT/3 -- INSTRUCTIONS Feb. 70
TAB 1 -- PUB. NO. 2 Page 2

CLOSES INSTRUCTIONS

CLOSES
Function

This instruction is used to close the current section of a magnetic media file.
Since the CLOSES instruction also sets a flag indicating to the software that
further sections exist, this instruction must not be used to close the last
section of a file.

The use of the CLOSES instruction provides the programmer with the option of
transferring control to a user routine before the current section is closed.
If this option is desired, the name of the routine must be entered on the file
specification sheets for this file.

Example

REFERENCE OPERATION OPERANDS

8 9 10 11 12 13 14 15 16 17/18 19 20 21 22 2324 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 SO

CLOSESEXCEPTFILE

The instruction coded above causes the software to perform the necessary steps
involved in closing the current section of the file called EXCEPTFILE.

Conventions
® General
The CLOSES instruction must not be used to close the last section of a file.

Entering a user-routine name on the file specification sheets causes a
branch to be taken before the current section of the file is closed.

NEAT/3 -- INSTRUCTIONS Jul. 69
TAB 1 -- PUB. NO. 2 Page 3

CLOSET
Function

The CLOSET instruction specifies that certain sections of a multi-section
random file on disc or CRAM need not, or cannot, be closed. This instruction
references a list (TABLE in the example below) of the section numbers which

are not to be closed during the current processing run. The programmer uses
the CLOSET instruction to skip the listed sections and close all other sections.

Sections included in the list may have been selected before processing the
file and consequently skipped by using the OPENT instruction. In this case,
CLOSET references the same list referenced by OPENT and causes the software
to close all currently open files.

If peripheral units become inoperable during a processing run, sections of a
file that are mounted on those units cannot be closed. When this situation
occurs, the programmer may use CLOSET to reference a list of the sectiouns
which cannot be closed. The software will skip the listed sections when clos-
ing the other sections of the file.

Example

REFERENCE OPERATION OPERANDS

A

8 9 1011 12,3|4|5|6I7Il|9202|222!242526272029303!3233343!36373!39404!42434445!6‘7‘0‘!”

CLOSETIDATAFILE ,TABLE

b

!
1
REFERENCE LOCATION LENGTH VALUE OR PICTURE E
8 9 10 11 12 13 1415 16 17 (1819 20 21 22 23)24 25 26 27 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50,

TABLE 4

1
]
1
1

SENTINEL

In the above example, the CLOSET instruction causes the software to skip (not
to close) sections 3, 4, and 5 of a random file called DATAFILE. The software
will close the sections (1 and 2 in this example) preceding the skipped sec-
tions. When the binary zero end sentinel is reached (after section 5 in this
example), all remaining sections of the file will be closed.

NEAT/3 —- INSTRUCTIONS Oct. 70
TAB 1 -- PUB. NO. 2 Page 4

CLOSE INSTRUCTIONS

Conventions

Entries in the work area (the section numbers of the sections to be skipped)
must be l-character binary numbers and must be listed in ascending order.
The list must always contain at least one entry, and a l-character binary
zero end sentinel must follow the last entry. If the end sentinel is the
only entry in the list, all sections of the file will be closed.

NEAT/3 -- INSTRUCTIONS Oct. 70
TAB 1 -- PUB. NO. 2 Page 5

GET INSTRUCTIONS

There are many variations of the GET instruction: GET, RGET, SGET, SGETL,
SGETC, and LGET. Each is discussed separately.

GET

This instruction consecutively accesses blocks of records from source or source-
destination files and places these blocks in a buffer area. Only one record
within that particular block is available to the program at a time. Fixed- or
variable-length records are handled automatically.

The first execution of the GET instruction accesses the first block of records

in a named file and makes the first record in that block available to the pro-
gram. When a block is composed of more than one record, the next execution of
the GET instruction makes the second record in the first block available to the
program. This pattern continues until all the records in the block are depleted;
then, the next time the GET instruction is executed the next block in sequence

is accessed.

After all records have been presented to the program and the GET instruction is
again executed, a link is automatically taken to the end-of-file exit routine
named on the file specification sheets for this file.

If the programmer requests translation on the file specification sheets, the

GET instruction translates input data into processor internal code. If an ille-
gal code is encountered during translation, a branch occurs to the user routine
specified on the file specification sheets.

NEAT/3 -- INSTRUCTIONS Oct. 70
TAB 1 -- PUB. NO. 3 Page 1

Example

)

REFERENCE OPERATION OPERANDS

—
s 9 IOH|2|!Ill!|8l7lll9202l22“1425”272’2'”313233!433”37!.3"04'42434‘45“‘7‘.4.30

GET TRANSFILE
GET TRANSFILE,WORKAREA

L_Jd___L

In the first example, the instruction accesses the first block of information
from a file called TRANSFILE and reads it into a buffer area. The first record
in this buffer area is available to the program.

In the second example, the instruction functions the same as in the first except
that the record is also moved into the specified work area. In essence, this
eliminates the need for coding a MOVE instruction. Unlike the MOVE instruction,
however, this technique does not adjust (truncate or expand) the record being
moved into the specified work area to fit the designated size of the work area.
Therefore, the programmer must take care that the record being moved does not
exceed the size of the work area and destroy data in adjacent memory locations.

¥ ¥ Conventions
® General

Variable-length indicators (VLI) are not translated when translation of
records is specified. They are converted from decimal to binary on input
if the presence of decimal indicators was specified on the file specifi-
cation sheets.

® Disc and CRAM

The work area option is not permitted if random accesses are made or the
WRITSP instruction is used with this file.

The GET instruction follows the chaining in a chained file.

The GET instruction does not stop at the end of a section, at a null block,
or at the end of a bucket. Processing continues with the next bucket,
block, or section. If the programmer requested a branch to a user routine
after each section is opened, that routine is completed before any

data from the new section is processed.

¥ xxx

NEAT/3 -- INSTRUCTIONS Jul. 69
TAB 1 -- PUB. NO. 3 Page 2

GET INSTRUCTIONS

LGET
Function

This instruction is used to sequentially input 80-character, user-label blocks
from a magnetic tape file. The LGET instruction may only be used in a user
routine after OPEN or in a user routine before CLOSE. These user routines are
entered only if an OPEN or CLOSE instruction is used with the file, and the
routine name is specified on the file specification sheets.

After the file is opened or just before it is closed, the software transfers
control to the user routine if desired. The LGET instruction is used in this
routine to read the label blocks into the input buffer area. After the program
reads the labels, a RELINK instruction must be executed to return control to

the software. If a tape mark is read, control is automatically returned to the
software., (Tape marks always signal the end of a group of labels.) For com-
plete details concerning label formats, see FILES, tab 2, 'Magnetic Tape Files."

If the programmer requests translation on the file specification sheets, the
LGET instruction translates the entire 80 characters being input.

Example

REFERENCE OPERATION OPERANDS

8 9 10 13 12 13 14 13 16 1718 19 20 21 22 23124 23 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 30

LGET OMASTRFILE

In the above example, the instruction inputs an 80-character label block from a
file called OMASTRFILE. The label block is placed in the input buffer area
normally associated with this file. To access the fields in the label, rede-
fine the record on the data layout sheets for the file by specifying SAME in
the location positions. For a complete explanation of redefining a record see
the discussion of location in the NEAT/3 REFERENCE MANUAL ,INTRODUCTION AND DATA,
tab 3, '"Data Layout Sheets."

Conventions
e General
The work area option is not available with this instruction.

The input buffer area for the file must be at least 80 characters long.

NEAT/3 -- INSTRUCTIONS Jul. 69

RGET

Function

This instruction accesses a block of records from a specific disc sector, or a
specific CRAM card and track, of a randomly-processed file and places the block
in the input buffer. The first record in the block is available to the program.
Fixed- or variable-length records are handled automatically.

Before executing the RGET instruction, the relative address of the desired
block must be moved into an area previously defined by the programmer. This
area contains the section number and the relative sector number of the desired
block in a disc file; or the section number, the relative card number, and the
relative track number of the desired block in a CRAM file. The name of this
area appears as the second operand in the RGET instruction.

The first (or only) section of a file is considered to be section one. The
relative number of the first disc sector or the first CRAM card of any section
is zero. The relative number of the first CRAM track of any CRAM card is zero.
In the case of a disc file, the software adds the relative sector number to the
actual section starting address to obtain the actual sector address of the de~
sired block. In the case of a CRAM file, the software adds the relative card
number to the starting address of the section to access the desired card, and
adds the starting track address of this card to the relative track number to
access the desired block. The programmer, however, need not concern himself

with actual addresses.

If a null block is read into the buffer area, and if the optional third operand
of RGET is used, a branch is automatically taken to the routine referenced in
the third operand. While the null block is in memory, a record may be inserted
into it if desired. This procedure is useful when randomly building a chained
file with buckets.

After using the RGET instruction to access a block and to present the first
record to the program, the programmer generally uses a variation of the SGET
instruction to present the remaining records in the block. The action taken
when the end-of-block is reached depends upon the instruction used. (See
SGET, SGETL, and SGETC.)

The RGET instruction does not translate the information being input.

Example

REFERENCE OPERATION OPERANDS

[I l°|ll!l:MISlBl7lll’z°1|231!242!2.172'1”03!32333‘353‘373'!’&4'4243“4!“!14."505!

RGET MASTERFILE,ADDRESAREA ,
R6ET . MASTERFILE,ADDRESAREA,NULLIN

NEAT/3 ~- INSTRUCTIONS Jul. 69
TAB 1 -- PUB. NO. 3 Page 4

GET INSTRUCTIONS

The 2-operand RGET instruction accesses from the file called MASTERFILE the

block located at the relative address which appears in the area called ADDRESAREA.
The block is placed in the buffer and the first record in the block is presented
to the program. Whether or not the block accessed is a null block, control is
passed to the next instruction in sequence.

The 3-operand RGET instruction functions just as the 2-operand instruction
except when a null block is read. If the block accessed is a null block, a
branch is taken to NULLIN, the routine named by the third operand. If the
block is not a null block, control is passed to the next instruction in
sequence.

The programmer defines ADDRESAREA on a data layout sheet as a 4-character
binary area or an 8-character decimal area. The name used here could also be

that of an item in a table, in which case the current item in the table is used.

Area definitions are shown below for CRAM files and disc files. Note that the
second field of the ADDRESAREA for a disc file must be zero.

® 4—-Character Binary Area

For a Disc File For a CRAM File

bl A

REFERENCE LOCATION LENGTH REFERENCE LOCATION LENGTH

8 9 10 11 12 13 14 15 16 17 19 20 21 22 2324 25 26 27 8 9 10 11 12 13 14 15 16 17 19 20 21 22 2324 25 28 27

ADDRESAREA - ‘)) ADDRESAREA 4
SECTIONNO SECTIONNDO 1
ZEROFIELLD .)) CARDNDO o 2

]

SECTORND L TRACKNDO

i |[o{w |8 |mu<4 ¥

e 8-Character Decimal Area

For a Disc File For a CRAM File

R b

REFERENCE LOCATION LENGTH REFERENCE LOCATION LENGTH

8 9 10 11 12 13 14 13 16 17 19 20 21 22 23|24 25 28 27 8 9 10 11 12 13 14 13 16 37 19 20 21 22 23

ADDRESAREA 8] [u] ADDRESAREA
SECTIONNDO SECTIONNO
ZEROFIELD CARDNDO
SECTORNDO] \ TRACKNDO

NEAT/3 —- INSTRUCTIONS Jul. 69
TAB 1 -- PUB. NO. 3 Page 5

Conventions

e Disc or CRAM

The question on file specification sheet 2, "Are any random accesses made
to this file during this program?" must be answered YES when RGET is used
with a file.

If the relative address specified does not fall within the limits of the
file, a branch is taken to the error exit for random processing instructions
(file specification sheet 1).

e CRAM

If a CRAM card is not to be updated after it is read, the card should be
released from the capstan immediately following the execution of the RGET
instruction. The user indicates that the current CRAM card is to be released
by setting the FileReference.$CARDFLAG in the file table to binary 2.

If all CRAM cards are to be released after they are read, the user must set
the flag to binary 4. If no cards are to be released after reading (the
cards are to be updated), the user need not set the FileReference.S$CARDFLAG.

NEAT/3 -- INSTRUCTIONS Jul. 69
TAB 1 -— PUB. NO. 3 Page 6

GET INSTRUCTIONS

SGET

Function

This instruction consecutively accesses blocks of records from any randomly-
processed file on disc or CRAM and places these blocks in an input buffer area.
Only one record in the block is available to the program at one time. Fixed-
or variable-length records are handled automatically.

Although the SGET instruction functions with any randomly-processed file used

as input from disc or CRAM, it is generally used with chained source-destination
files. The SGET instruction is specifically designed to work with bucket logic.
Through the use of a branch operand and the Null flag (NULLFLAG), this instruc-
tion informs the program when a null block, end-of-bucket, or end-of-section
occurs. SGET gives the programmer the ability to conduct a limited search

for a record and to branch if that record is not found in the expected bucket

or section. The entire file need not be examined.

After a branch is taken, the program must examine the Null flag to determine
the cause of the branch. This is done by a COMPARE instruction which uses the
file reference name as a qualifier to $NULLFLAG for one of the operands

(COMP MASTERFILE.SNULLFLAG, 2ND OPERAND). If desired, the second operand may
be a literal number indicating one of the three possible binary values of the
Null flag (COMP MASTERFILE.S$NULLFLAG, 'l1').

Binary 1 A Null block was read into the input buffer area.

Binary 2 Nothing was read. The end-of-section (E-0-S) was encountered.

Binary 4 Nothing was read. The end-of-bucket (E-0-B) was encountered.

If more than one of these conditions exists, the Null flag is set according to
the following priorities:

e The null block condition, indicated by binary 1, takes precedence over any
other condition.

e The end-of-section condition, indicated by binary 2, takes precedence over
the end-of-bucket condition, indicated by binary 4.

If a branch is taken due to a null block, another SGET presents the next block
to the program. If a branch is taken due to E-0-B, another SGET presents the
first block from the next bucket. If a branch is taken due to E-0-S, another
SGET execution is not permitted and an error results if the instruction is used.
The fact that the record was not found indicates that an exception of some type
exists. After noting this condition (perhaps in an exception file), RGET is
used to find the next desired record.

The following illustrations include a list of functions performed by successive
executions of SGET when a null block, E-0-B, and E-0-S are encountered.

NEAT/3 -- INSTRUCTIONS Jul. 69
TAB 1 —-- PUB. NO. 3 Page 7

E 74 E-0-B RGET | Reads block and presents record 73.
A block con- | SGET | Presents record 74.

taining data | SGET | Presents record 75.

is the last SGET | Detects E-0-B, sets NULLFLAG to 4

block in the and branches.
bucket SGET |Reads next block and presents first
record.

\7ﬂ|NULL BLOCK, E-0-B SGET | Presents record 75.

A null block | SGET |Accesses next block, detects null
is the last block, sets NULLFLAG to 1 and branches.
block in the | SGET |Detects E-0-B, sets NULLFLAG to 4 and
bucket. ’ branches.

SGET |Reads first block from next bucket,
presents first record in block.

\75,INULL BLOCKI E-0-B & E-0-S| SGET |Presents record 75.

A null block SGET |Detects null block, sets NULLFLAG to

is the last 1 and branches.
block in the SGET |Detects E-0-S, sets NULLFLAG to 2
bucket and and branches.

Error - Do not use SGET after E-0-S.

section.

The SGET instruction does not translate the input information.

Example

REFERENCE OPERATION OPERANDS

1
8 9 10 31 12 13 14 15 16 17|18 19 20 21 22 2324 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 4S 46 47 48 49 50

]

SGET MASTERFILE,BRROUTNAME

In the above example, the instruction accesses the next record in a file called
MASTERFILE. 1If no more records exist in the current block and this is the last
block in a bucket (end-of-bucket) or the last block in a section (end-of-section),
a branch is made to the routine called BRROUTNAME. If no more records exist

in the current block and neither E-0-B nor E-0-S occurs, the next block in the
file is read. If the new block read is a null block, a branch is made to
BRROUTNAME. 1If the new block is not a null block, the first record in the new
block is presented to the program.

Conventions

e Disc and CRAM

SGET cannot be used after an end-of-section branch.

NEAT/3 -- INSTRUCTIONS Jul. 69
TAB 1 -- PUB. NO. 3 Page 8

GET INSTRUCTIONS

SGET is generally used after RGET to step through a block. The SGET
instruction is used only when processing randomly; the GET instruction is

used for sequential processing.
The VLI of a variable-length record accessed by the RGET instruction must
be in binary format.

NEAT/3 -- INSTRUCTIONS Jul. 69
TAB 1 -- PUB. NO. 3 Page 9

SGETC

The following discussion assumes the reader is familiar with the RFILE in-
struction, which is also discussed under this tab.

Function

The SGETC instruction is used only with randomly-processed chained files to
access the next record in sequence within a bucket. The SGETC instruction,
which differs slightly from the SGET instruction, contains an additional branch

operand.

The SGETC instruction is normally used to search for a record placed in the file
by the RFILE instruction. 1In each block accessed by the RFILE instruction
which contains insufficient space for the record to be added, RFILE sets the
Record Overflow flag ON to indicate that it has attempted to place the new
record in a subsequent block. The SGETC instruction is used to access records
until end-of-block, when SGETC checks the Record Overflow flag to determine
whether or not RFILE attempted to place the new record in a subsequent block.
Searching for the desired record with successive executions of SGETC continues
until the record is found, or until, at end-of-block, the Record Overflow flag
is found OFF in the current block. If the latter condition occurs, a branch
is taken to the third operand of the SGETC instruction.

A branch is taken to the routine referenced in the second operand when the
SGETC instruction encounters a null block, end-of-bucket, or end-of-section.
The Null flag (NULLFLAG) settings are identical to the Null flag settings for
the SGET instruction.

NEAT/3 -- INSTRUCTIONS Jul. 69
TAB 1 -- PUB. NO. 3 Page 10

GET INSTRUCTIONS

The illustrations below show how the SGETC instruction is used to locate a
specific record added to the file by the RFILE instruction.

5 Assume that RFILE was used to place record 4

RD OVERFLOW FLAG IN in the first block shown; however, there was
insufficient space in the first block and 4

o]s was placed in the next block. The Record

Overflow flag was automatically set ON in the

first block by the RFILE instruction.

Get the desired sector.

Compare the current record to 4.

BRE If equal go to ACTION (coding not shown.)

If unequal go to next instruction.
ACTION

Get the next record. If there are no more
records in block and the Record Overflow flag
is OFF, branch to NORECORD.

Branch to COMPARE instruction.

e m -

-
[}

Represents the coding necessary to handle
unfound records.

NORECORD

-
b

t
-

In the flowchart, the RGET instruction accesses the first block and presents
record 1 to the program. Since record 1 does not equal record 4, the SGETC
instruction presents the next record (record 7). SGETC then presents record
5. The next time SGETC is executed, the Record Overflow flag in the current
block is checked. Since the flag is ON, SGETC does not branch to the routine
named in the third operand, but instead presents the first record in the next
block. Record 4, the desired record, has been located.

If, after presenting records 1, 7, and 5 to the program, the Record Overflow
flag is found OFF, the search for the desired record is terminated by branching
to the routine named by the third operand. The OFF setting of the Record
Overflow flag indicates that RFILE did not add the desired record to any sub-
sequent block.

The branch taken due to the OFF setting of the Record Overflow flag (when all
records in the current block have been accessed) takes precedence over the
branch taken when end-of-section or end-of-bucket occurs. The following illus-
trations show the result of successive executions of SGETC under various con-
ditions.

NEAT/3 -- INSTRUCTIONS Jul. 69
TAB 1 -- PUB. NO. 3 Page 11

The program
is searching
for record 4.

Reads block and presents record 1.

Presents record 7.

Presents record 5.

Since flag is ON in this block,
reads the next block, presents
record 4.

E-0-B & E-0-S
The program
is searching
for record 4
which does
not exist in
the file.
Record 3,
which caused
the flag to
be ON when it
was added by
RFILE, is the
last in the
bucket and
section.

Reads block and presents record 1.

Presents record 7.

Since the flag is ON in this block,
reads next block and presents
record 3.

Since the flag is OFF in this block,
branches to routine named in third
operand.

Detects E-0-S, sets NULLFLAG to 2,
branches to the routine named in
second operand.

Error - Do not use SGETC after end-

of-section.

The program
is searching
for record 4
which was not
placed in the
file.

Reads block and presents record 1.

Presents record 7.

Since flag is OFF in this block,
branches to routine named in third
operand. (RFILE did not place
record 4 in any subsequent block.)

Reads next block and presents first
record.

The program

is searching
‘for record 4,
SGETC inputs
a null block
since records
were deleted.

Reads block and presents record 1.

Presents record 7.

Since flag is ON in this block,
reads next block; because this is
a null block, a branch is taken
to the routine named in the sec-
ond operand (regardless of the
flag setting in this block).

Since the last block was a null block,
next block is read (regardless of
flag setting in null block) and
presents record 4.

The SGETIC instruction does not translate the input information.

NEAT/3 -- INSTRUCTIONS Jul. 69
TAB 1 -- PUB, NO. 3 Page 12

GET INSTRUCTIONS

Example

REFERENCE OPERATION OPERANDS L%

8 9 10mn IZI.‘ll!!ld!7|.l’202|22232425”272.29303!32!!34!5“37)‘!'4@4!42434‘4!“‘7“‘.50:5! 52 53 34 S8

SGETC |MASTERFILE,BRROUTNAMI ,BRROUTNAM?

The above instruction accesses the next record in the current block of records
from MASTERFILE. 1If no more records exist in the current block and the Record
Overflow flag is ON, a new block is input. If the Record Overflow flag is OFF,
a branch is made to BRROUTNAM2. This branch signals the end of the search
since RFILE did not place the desired record in any subsequent block.

If the SGETC instruction inputs a null block, the branch to BRROUTNAM1 is
taken. If the SGETC instruction is executed again, a new block is input. A
branch is also made to BRROUTNAM1 if end-of-bucket or end-of-section is en-
countered as a result of this instruction.

Conventions

e Disc and CRAM

SGETC may not be executed after a branch that is caused by end-of-section.
An error will occur.

SGETC, used only when processing randomly, is designed to work in conjunc-
tion with the RFILE instruction.

NEAT/3 -- INSTRUCTIONS Jul. 69
TAB 1 -- PUB. NO. 3 Page 13

SGETL

Function

The SGETL instruction, used when processing randomly, accesses the next record
in sequence. This instruction, which is coded with two branch operands, also
provides sensitivity to end-of-block.

Since the SGETL instruction is sensitive to end-of-block, this instruction
allows the user to add records to the end of a block with the INSERT instruc-
tion. The SGETL instruction may also be used in creating random file directory
entries of the key for the last record in each block.

A branch is taken to the routine referenced in the third operand when the end-
of-block is reached. That is, if an SGETL instruction is executed and all the
records in the current block have already been presented to the program, the
branch is taken. The location immediately following the last record is avail-
able for the insertion of a new record. If the INSERT instruction is used and
there is sufficient space in the block for the record, the normal rules of
INSERT apply. (See "INSERT Instruction'" discussed later under this tab.)

A branch is taken to the routine referenced in the second operand for the same
reasons as outlined for the SGET instruction (null block, end-of-section, or
end-of-bucket), and the Null flag is set in the same manner.

The illustration below shows the result of successive executions of the SGETL
instruction when the routine referenced by the third operand provides for the
insertion of a record and when the current block is the last in the bucket.

E-0-B Reads block and presents record 73.
The program Presents record 74.
is seeking Makes the blank location available
to place to the program and branches to
record 75 the routine referenced in the
into its third operand. This user routine

proper loca- inserts record 75 into the block
tion in the and returns control to an SGETL
file. SGETL instruction.

is used Detects end-of-bucket, sets

instead of NULLFLAG to 4, and branches to the
SGET to make routine named in the second operand.
the program Reads next block and presents first
sensitive to record.

end-of-block.

The end-of-block branch takes precedence over the end-of-bucket and end-of-
section branches. The null block branch is taken instead of the end-of-block
branch when a null block is read. After reading a null block, if the SGETL
instruction is executed again, a new block is input. The precedence of
branches assigned to the second operand is the same as for SGET.

NEAT/3 -- INSTRUCTIONS Jul. 69
TAB 1 -- PUB. NO. 3 Page 14

GET INSTRUCTIONS

The SGETL instruction does not translate the information being input.

Example

REFERENCE OPERATION OPERANDS %

8 9 10 11 12 13 14 15 16 17/18 19 20 21 22 23124 23 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 SO 51 52 53 54 SS
J

SGETL [MASTERFILE,BRROUTNAM]T ,BRROUITNAM?

In the above example, the instruction accesses the next record in the current
block of records from MASTERFILE. If no more records exist in the current
block, a branch is made to BRROUTNAM2. If a new block is read as a result of
this instruction and it is a null block, a branch is taken to BRROUTNAM1. If
end-of-bucket or end-of-section is encountered as a result of this instruction,
a branch is also made to BRROUTNAMI1.

Convention

o Disc and CRAM

SGETL may not be executed after a branch that is caused by end-of-section.
An error will occur.

SGETL is used only when processing randomly.

NEAT/3 -- INSTRUCTIONS Jul. 69
TAB 1 -- PUB. NO. 3 Page 15

PUT INSTRUCTIONS

There are two forms of the PUT instruction, PUT and LPUT. Each is discussed
separately.

PUT
Function

The PUT instruction is used after a record has been constructed in or moved to
the output buffer area. After the instruction is executed, the record previous-
ly constructed in the output buffer is no longer available to the program; the
next record location is available. The PUT instruction that fills the buffer
causes the software to automatically output the block to the named file. Both
fixed- and variable-length records are handled automatically; however, it is

the programmer's responsibility to ensure that the variable-length indicator
(VLI) reflects the true record length, (The programmer always manipulates the
VLI in binary when the record is in memory).

The PUT instruction translates the data being output if translation is requested
on the file specification sheets.

ExamBle

REFERENCE OPERATION OPERANDS

8 9 10 11 12 13 14 15 16 1718 19 20 21 22 2324 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 30

PUT NMAGZFILE
PUT NMAGZFILE,UPDATEAREA

In the first example, the instruction puts a record in the output buffer area
for NMAGZFILE and makes the next record location available.

In the second example, the instruction moves a record from the work area in mem-
ory called UPDATEAREA to the output buffer area. The record in the work area

is still available to the program, but the record in the output buffer is not
available to the program; the next record location is available.

NOTE
When the length of a variable-length record from a
chained source-destination file is altered in a work
area, do not use PUT with a work area option (use
the DELETE and INSERT instructions).

NEAT/3 -- INSTRUCTIONS Jul. 69
TAB 1 -- PUB, NO. 4 Page 1

Conventions
® General

Variable-length indicators (VLI) are not translated when translation of
records is requested. They are converted from binary to decimal on output
if decimal indicators were requested on the file specification sheets.

The work-area operand must be used if maximum packing of records in a
block is desired. The record must be constructed in the work area.

The PUT instruction is used to create source-destination files; however,
when processing a source-destination file, the WRITSP or WRITBI instructions
must be used to output updated blocks.

If the buffer area (block) is partially full, the software automatically
outputs the partial block before closing the file.

® Printer

The first four characters of the printline must contain the printer control
block.

If multiple buffers are used, records should be constructed in a work area
and then moved to the buffer.

* k% % %

NEAT/3 -- INSTRUCTIONS Jul. 69
TAB 1 -- PUB. NO. 4 Page 2

PUT INSTRUCTIONS

LPUT
Function

This instruction is used to output 80-character, user-label blocks to a
magnetic tape file. The LPUT instruction may only be used in a user routine
after OPEN or in a user routine before CLOSE. The routine name is specified
on the file specification sheets.

After a file is opened or just before it is closed, the software transfers
control to the user routine, if desired. The LPUT instruction is used in

the routine to write the label block from the output buffer area into the file.
After the program writes the labels, a RELINK instruction must be executed to
return control to the software. The software then writes a tape mark.

(Tape marks indicate the end of a group of labels.)

The first three characters of the label must contain the proper label identi-
fier, for example, UHL for user header label. For complete details concern-
ing label formats, see FILES, tab 2, "Magnetic Tape Files."

If the programmer requests translation on the file specification sheets, the
LPUT instruction translates the entire 80-characters being output.

Example

REFERENCE OPERATION " OPERANDS

8 9 10 1) 32 13 14 15 16 17[18 19 20 21 22 23|24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 S5O

LPUT NMASTRFILE

In the above example, the instruction outputs an 80-character label block to
a file called NMASTERFILE. To access the proper fields when building a
label, redefine the record on the data layout sheets for the file by
specifying SAME in the location positions. For a complete explanation of
redefining a record see the discussion of location in the NEAT/3 REFERENCE
MANUAL, INTRODUCTION AND DATA, tab 3, '"Data Layout Sheets."

Conventions
e General
The work-area option is not available with this instruction.

The output buffer area for the file must be at least 80 characters long.

NEAT/3 -- INSTRUCTIONS Jul, 69
TAB 1 -- PUB. NO. 4 Page 3

WRITSP INSTRUCTION

WRITSP
Function

This instruction is only used with source-destination files. The WRITSP
instruction sets a flag which informs the software to automatically write an
updated block of information back into a source-destination file. When a
variation of the GET instruction is encountered, the software looks at the
flag; if it is ON, the block is written back before another block is read.
If a variation of GET is not encountered, the software writes the block back
just before closing the file.

Example

REFERENCE OPERATION OPERANDS

6 9 10 11 I2l3|4|5I517|8|9202|1223242526272!29303!32333‘3535373!39404!l243‘4l5461748l980

WRITSPIDATAFILE

In the above example, the WRITSP instruction causes the current updated block
of information to be written back into a file called DATAFILE. The actual
writing takes place just before the next block is read, or if another GET
instruction is not encountered, the block is output just before this file

is closed.

Conventions

e Disc and CRAM

If the WRITSP instruction is used, the work-area option may not be used
with GET instructions that refer to this file.

NEAT/3 --— INSTRUCTIONS Jul. 69
TAB 1 -— PUB. NO. 5 Page 1

WRITBI INSTRUCTION

WRITBI
Function

This instruction is used only with source-destination files. Unlike the WRITSP
instruction, which outputs the current block just before another block from
that file is read or just before that file is closed, the WRITBI instruction
writes the current block back to the file immediately. The WRITBI instruction
must be used when the buffer area is used for more than one file at a time, to
ensure that all updated blocks are written back to their respective files.

Example

REFERENCE OPERATION OPERANDS

S 9 10 11 12 13 14 15 16 17[18 19 20 21 22 2324 25 26 27 26 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 30

WRITBIDATAFILE

In the above example, the WRITBI instruction causes the current block to be
written back immediately to the file called DATAFILE.

Conventions

e Disc and CRAM

If the WRITBI instruction is used, the work area option.may not be used
with GET instructions that refer to these files.

NEAT/3 -- INSTRUCTIONS Jul. 69
TAB 1 -- PUB. NO. 5.1 Page 1

INSERT INSTRUCTION

INSERT
Function

This instruction is used only with chained source-destination files that have
records sorted within the bucket. The INSERT instruction places a record from
a named work area into a specific position within a file. Both fixed- and
variable-length records are handled automatically; however, it is the pro-
grammer's responsibility to ensure that the variable-length indicator (VLI)
reflects the true record length in binary format.

When the record is inserted into the desired location, those records following
the inserted record are pushed down in the block and the inserted record is
made available to the program. The WRITSP flag is automatically set ON to
ensure that the block is written back into the file. (See "WRITSP Instruction"
under this tab for further information on the WRITSP flag.)

If insufficient room exists for the record inserted, the last record(s) in the
block (and in certain cases the inserted record itself) is pushed down to the
beginning of the next block. This pushdown, which includes reading, formatting,
and rewriting subsequent blocks, continues automatically until room is finally
found in a block. That block may be in the main file area or the overflow area.
Once pushdown is completed, the block originally in memory is restored and the
inserted record is made available to the program.

If insufficient room exists in a bucket and no overflow area is present, the

error exit for random macros (named on the file specification sheets) is taken;
for this reason, the use of an overflow area is highly recommended.

NOTE

To allow room for push-down, two buffers must be assigned to
the file that uses the INSERT instruction.

NEAT/3 -- INSTRUCTIONS Jul. 69
TAB 1 -- PUB. NO. 6 Page 1

100 } BLOCK

Assume this record is currently available to the
program and record 98 is to be inserted.

INSERT places record 98 here and pushes down the
| remaining records in the block.

99 {100 } BLOCK

L. This record was inserted and is available to the
program. Executing a GET instruction makes record 99 again
available to the program.

Present a record to the program.

]
Compare to the record to be inserted.
If less, GET another record.
If equal to or greater than, go to next instruction.
If equal, go to duplicate record error routine.
‘If greater than, go to next instruction.
INSERT Insert the record from the work area into the
1 current record position.
]
|

Duplicate
record error

The proper position for inserting the record may be located by using the GET,
RGET, SGET, SGETL, or SGETC instruction and the COMPARE instruction. (Also
see '""MARK and RESET Instructions' under this tab.)

If the user wishes to make a random access immediately following the execution
of the INSERT instruction, he may request that the newly inserted record not
be read back into memory by setting the S$NONRESTORE flag ON before coding the
INSERT instruction (see the NEAT/3 REFERENCE MANUAL, APPENDIX, tab 1, '"File-

Oriented System Tags').

NEAT/3 -- INSTRUCTIONS Jul. 69
TAB 1 -- PUB. NO. 6 Page 2

INSERT INSTRUCTION

REFERENCE OPERATION OPERANDS

8 9 10 11 12 13 14 15 16 1718 19 20 21 ZZZSZ‘ZSZGZ?ZBZS!OSI32333‘3536373839‘04!4243‘4454547‘0‘950

FRPRN E gt R

INSERTIDATAFILE ,WORKAREA

In the above example, the instruction moves the record from the named work area,
inserts it into the current record position for a file named DATAFILE, and turns
on the WRITSP flag. The work area must be used with this instruction.

Conventions

e Disc and CRAM

Two buffers must be specified for the file that has an INSERT instruction
associated with it.

The work-area operand must be used.

The variable-length indicator of a record to be inserted in the file must be
in binary format.

The use of an overflow area is highly recommended.

To change the length of a record in a chained, source-destination file,
delete the record specifying a work area. After altering the record
length, use the INSERT instruction to place the record back into the file.
(See "DELETE Instruction" under this tab.)

To add a record to a chained source-destination file that has unsorted
records within the buckets, use the RFILE instruction.

NEAT/3 -- INSTRUCTIONS Jul. 69
TAB 1 -- PUB. NO. 6 Page 3

RFILE INSTRUCTION

RFILE

Function

This instruction is normally used only with chained source-destination files
that have unsorted records within the buckets. The RFILE instruction places a
record from a named work area into the block currently in memory. The WRITSP
flag is automatically set ON to ensure that the block is written back into the
file. (For further information on the WRITSP flag, see "WRITSP Instruction"
under this tab.) Both fixed- and variable-length records are handled auto-
matically. The VLI of a variable-length record must be in binary format.

The desired block is usually read into memory using the RGET instruction. If
the record does not fit in the desired block, RFILE searches the succeeding
blocks until one is found with sufficient room. When a block with sufficient
room is found, the record is placed in that block and the WRITSP flag is turned
ON to ensure that the block is written back into the file. If room cannot be
found in a block in the bucket, the record is placed in a block in the overflow
area. If no overflow area exists, the random macro error exit (named on file
specification sheets) is taken.

Each time a new block must be accessed in search of sufficient space, the Record
Overflow flag in the chaining characters for the block currently in memory

is set ON. This flag informs the SGETC instruction that the record being sought
may be on one of the following blocks. (See "SGETC Instruction" under this
tab.)

Record to be randomly filed.

19

Select the desired block. This could
65| 10 be the beginning of a bucket. There is
R_Record Overflow Flag in sufficient space in this block for

g the chaining characters record 19.

Execute the RFILE instruction. If there
6511019 is sufficient space, record 19 is placed
] in the block in memory and the WRITSP
Record 19 is flag is automatically set ON to ensure
placed here. that the block is output. Since the
record fit in the current block the
Record Overflow flag for that block
remains OFF.

NEAT -- INSTRUCTIONS Jul. 69
TAB 1 —— PUB. NO. 7 Page 1

19 Record to be randomly filed.

el 65110115 Select the desired block. This could

. . be the beginning of a bucket. There is
Record Overflow Flag in insufficient space in this block for

o chaining characters record 19.

23170119
Execute the RFILE instruction. Since
Reco;;\;;‘;;t] there is insufficient space in the de-
placed here. sired block, RFILE turns ON the Record
Overflow flag for this block and then
accesses the next block. Since there
is sufficient space in the new block,
record 19 is placed there and the

WRITSP flag is automatically set ON.

Example

REFERENCE OPERATION OPERANDS

8 9 10 11 12 13 14 15 16 1718 19 20 21 22 23 |24 25 26 27 28 29 30 37 32 33 34 35 36 37 38 39 40 41 42 43 44 4S 46 47 40 49 50

RFILE IDATAFILE,FILEAREA

In the above example, the RFILE instruction moves the record from a work area
named FILEAREA and places it in the current block of a file called DATAFILE.
If sufficient room does not exist, RFILE turns ON the Record Overflow flag in
the chaining characters for the current block, reads in a new block, and
attempts to place the record in the new block. The Record Overflow Flag is
turned ON so that the SGETC instruction can follow the path taken by RFILE.
The WRITSP flag is also turned ON.

Conventions

e Disc and CRAM

e The work-area operand must be used.

o Variable-length records to be added to the file must contain binary
variable-length indicators.

e The use of an overflow area is highly recommended.
e Use RFILE if the records are unsorted within the bucket.

® Use INSERT if the records are sorted within the bucket.

NEAT/3 -- INSTRUCTIONS Jul. 69
TAB 1 -~ PUB. NO. 7 Page 2

DELETE INSTRUCTION

DELETE
Function

This instruction is only used with chained, source-destination files. The
instruction removes from the named file the record currently available to the
program. Both fixed- and variable-length records are handled automatically.

The records following the deleted one move up in the block. The next record

is available to the program only after another execution of the GET or SGET
instruction. The records in the following blocks do not move up in the bucket.
If the deleted record was the only one in the block, the block becomes a null
block.

I 97] 98 l99 IlOOI Assume this record 98 is currently
? available to the program. DELETE removes
this record and moves up the remaining
records in the block.

available after another execution of the

1974[99 IlOOI | Record 99, which was moved up, becomes
? GET or SGET instruction.

The record to be deleted may be located in the file by using the GET, RGET, or
SGET instruction and the COMPARE instruction.

Present a record to the program.
Compare to the record to be deleted.
If greater, go to error logic - record does

not exist. If less or equal, go to next
instruction.

If less, get another record. If equal, go
to next instruction.

DELETE Delete the current record.

v
To error logic

NEAT/3 -- INSTRUCTIONS Jul. 69
TAB 1 -- PUB. NO. 8 Page 1

Example

REFERENCE OPERATION OPERANDS

1
7:8 9 |0llIZU|l|5|6|7l!l9201l2223242526272529!03132333435363735394041424344‘5464740‘950

c DELETEDATAFILE
DELETEDATAFILE,WORKAREA

In the first example, the instruction removes the current record from a file
called DATAFILE. The remaining records in the block are moved up.

In the second example, the instruction functions the same as in the first
except that the record is also moved into the specified work area. This
option must be used if a record is to be altered in length and then inserted
back into the file.

Conventions

e Disc and CRAM

To change the length of a record in a chained source-destination file,
delete the record specifying a work area. After altering the record
length, use the INSERT instruction to place the record back into the file.

A GET or SGET instruction must be executed to access the record following
the deleted record.

NEAT/3 -- INSTRUCTIONS Jul. 69
TAB 1 -- PUB. NO. 8 Page 2

MARK AND RESET INSTRUCTIONS

The MARK and RESET instructions are interrelated and are therefore explained
together.

MARK and RESET

Function

These two instructions are used to save the location of a record from a disc
or CRAM file and to place that record back into memory at a later time. MARK
and RESET may be used with source and source-destination files, and with des-
tination files if the programmer specifies the secondary usage of the file as
source or source-destination (on file specification sheet 2).

The MARK instruction stores the address of the current block, as well as the
location of the current record within that block. This information is placed

in a 10-character binary area reserved by the programmer.

A

REFERENCE LOCATION LENGTH VALUE OR PICTURE

31 32 33 34 35 36 37 38 39 40 41 42 43 44 A4S 46 47 48 49 S0

8 9 10 11 12 13 14 15 16 17 19 20 21 22 23|24 25 26 27

S AVEAREA

£ 1 ' & t 1 21 1 1 1

|IO 1t .t % % ¢ 3 3 ¢t 't % 3t .t 1 11

The programmer must ensure that the record location saved by the MARK instruction
is still valid at the execution of the RESET instruction. The insertion of a
record in a position preceding the saved record location in this bucket, or the
deletion of a record preceding the saved record location in this block, will

invalidate the saved record location.

The RESET instruction uses the information previously stored with the MARK
instruction to move the block back into memory and to make the same record
within the block available to the program. If the programmer wishes to place
the record back into a work area that is being used with the file, he must
use a MOVE instruction to move it from the buffer to the work area.

Jul. 69
TAB 1 -- PUB. NO. 9 Page 1

NEAT/3 -- INSTRUCTIONS

The MARK instruction may also be used with the table instructions as an aid

in building a file directory table. The programmer can use the table reference
name qualified by the desired field as the 10-character binary area to receive
the current record address (MARK MASTERFILE,TABLENAME.FIELDNAME).

GETREC

Get a record.

Examine record.

Is this record key to be placed in
the table?

Move record key to table.

Place the address of the current
record in the table.

TFINDN Make the next location in the table
available.

BRANCH GETREC Branch back to get another record.

Example

» :

i

i

REFERENCE OPERATION OPERANDS ;

718 9 10 11 12 13 14 15 16 1718 19 20 21 22 23|24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50;
c MARK MASTERFILE,SAVEAREA !
1

¢« RESET MASTERFILE,SAVEAREA :
> » » S B '
: : 5

REFERENCE o[LOCATION LENGTH | DP 3 VALUE OR PICTURE !

718 9 10 11 12 13 14 15 16 17 |18[19 20 21 22 23|24 25 26 27 28 29|30(31 32 33 34 35 36 37 38 39 40 41 42 43 44 43 46 47 48 49 50;
OISAVEAREA JA ., f VO 08 !

In the example above, the MARK instruction stores the address of the block of
MASTERFILE records currently in memory, as well as the location of the record
currently available in the block. This information is placed in a 10-character
binary area called SAVEAREA.

The RESET instruction in the example reads back from MASTERFILE the block at
the address stored in SAVEAREA. RESET makes available the same record that
was current when the MARK instruction was executed.

NEAT/3 -- INSTRUCTIONS Jul. 69
TAB 1 -- PUB. NO. 9 Page 2

MARK AND RESET INSTRUCTIONS

Conventions

e Disc and CRAM

If the RESET instruction is used, the programmer must answer yes to the
question "Are any random accesses made to this file during this program?"
on file specification sheet 2.

MARK and RESET may be used with a destination file only when the programmer
specifies source or source-destination as its secondary usage on file

specification sheet 2.

NEAT/3 -- INSTRUCTIONS Jul. 69
TAB 1 -- PUB. NO. 9 Page 3

BLKCHK INSTRUCTION

BLKCHK

Function

This instruction is generally used in creating chained destination files that
will become chained source-destination files; however, it may be used with any

type file.

When the BLKCHK instruction is used, the current size of a block (less any
block header) to be output is compared to a binary number that is stored in
an area reserved by the programmer. If the current block size is equal to or
greater than the stored binary number, a branch is taken.

After the branch is taken, the BLKOUT instruction may be used to write out
the incomplete block. (See "BLKOUT Instruction" under this tab.) TIn this
way, the programmer may place incomplete blocks in a file to allow for the
future insertion of records.

Example
:
i
REFERENCE OPERATION OPERANDS i
718 9 101N l213|l|5|5|7l0|9202|22232‘2526272029303!3233343536373839‘04142434“546‘740‘950;
(o4 BLKCHKN_ENFILE,BLKSIZE,BRROUTNAMEi

The programmer must reserve a 2-character binary area to contain the desired
constant.

»

REFERENCE LOCATION LENGTH VALUE OR PICTURE

8 9 10 1t 12 13 14 13 16 17 19 20 21 22 23)24 25 26 27 31 32 33 34 35 36 37 38 39 40 41 42 43 44 43 48 47 48 49 SO
I

BLKSIZE _ 2

i
]
i
|
[}
]
1
1
]
1
]
!

In the example above, the instruction compares the current length of a block to
the number stored in BLKSIZE. If the block length is equal to or greater than
400 characters, a branch is made to the routine with the name BRROUTNAME. The
BLKOUT instruction may be used in this routine to write out the block to NEWFILE.

NEAT/3 -- INSTRUCTIONS Jul. 69
TAB 1 -- PUB. NO. 10 Page 1

NOTE

The BLKCHK instruction cannot be used to check for the
maximum block size as specified on the file specification
sheet (the PUT instruction that causes the block to reach
maximum size also causes it to be output and the current
block size to be reset to zero).

NEAT/3 -- INSTRUCTIONS Jul. 69
TAB 1 -- PUB. NO. 10 Page 2

BLKOUT

Function

BLKOUT INSTRUCTION

This instruction is generally used in creating chained destination files that

will become chained source-destination files.
both partially full blocks and null blocks to the named file.

room in the file for the future insertion of records.

Example

The BLKOUT instruction outputs
This allows

REFERENCE

OPERATION

OPERANDS

8 9 10 17 12 13 14 13 16 17

18 19 20 21 22 23

24 23 26 27 20 29 30 31 32 33 34 33 36 37 30 39 40 41 42 43 44 43 46 47 48 0 WO

BLKOUT

NEWFILE

In the example above, the BLKOUT instruction outputs the current block in
the output buffer area to NEWFILE.

NEAT/3 -- INSTRUCTIONS
TAB 1 -- PUB. NO. 11

Jul. 69
Page 1

DEFALT INSTRUCTION

DEFALT
Function

The DEFALT instruction may be used with any sequentially processed disc or
CRAM file to control the closing of one section of a file and the opening
of the next section.

This instruction is generally used to close the current section of a file
before the end of section is reached, and then to open the following section.
For CRAM files, however, this instruction may also be used to close sections

of associated files and to open their next sections if this process (file al-
ternation) is not performed automatically when one file reaches end of section.

When the DEFALT instruction is executed for a destination file, all buffers
not yet output are written out, including any partially full buffer. The
current section of the file is then closed and the next section is opened.

When a section of a source file is closed with the DEFALT instruction, any
data remaining in the section at the time the DEFALT instruction is executed
is not read. (For source files on disc, a message is placed in the log to
indicate that some of the data in the file may not have been processed.)
When a DEFALT instruction is executed for the last section of a source file,
a branch is taken to the end-of-file routine specified on the file specifi-
cation sheets for the file. The last section is not closed until a FINISH
or a CLOSE instruction is encountered.

The programmer may name from one to six files as operands of a single DEFALT
instruction; however, all the files must be on the same type of peripheral.

Closing the Current Section

As an example of the first use of the DEFALT instruction, assume that a pro-
grammer desires to process only a selected range of records from two sections
of a disc source file (SOURCEFILE) and then place these processed records into
two sections of a disc destination file (DESTFILE). The programmer would code
the following DEFALT instruction and incorporate it within the coding of the
main body of the program.

NEAT/3 -- INSTRUCTIONS Oct. 70
TAB 1 -- PUB. NO. 12 Page 1

REFERENCE OPERATION OPERANDS

8 9 10 11 12 13 14 15 16 1718 19 20 21 22 23|24 23 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49

DEFALTISOURCEFILE,DESTFILE

In the example above, the DEFALT instruction terminates input from SOURCEFILE.
The current section is then closed and the next section is opened. Since the
file is a disc file, a message is placed in the log to indicate that some of
the data may not have been processed. This instruction also closes the cur-
rent section of DESTFILE and opens a new section. All buffers not yet output
are written to DESTFILE before the current section is closed.

Alternating Associated Files

For CRAM files, the DEFALT instruction may also be used to process multi-
section, associated files when file alternation is not performed automatically
(the term "associated files'" refers to all files being processed concurrently

on the same CRAM deck).

When a sequentially processed CRAM file reaches end of section, the software
determines the location of the next section of the file. If the next section
is on a different deck, any associated destination file is automatically
alternated (its current section is closed and its next section opened) if
both (or all) specify the same symbolic unit designator. Since file alterna-
tion does not occur automatically for other type of associated files, the
DEFALT instruction must be used to alternate:

® Associated source and source-destination files.

® Associated destination files whose next sections are not on the same
deck (not the same SUD) as the next section of the file that originally
reached end of section.

When the programmer uses the DEFALT instruction to alternate CRAM associated
files, he must specify the file that originally reached end of section as one
of the operands of the instruction and then incorporate the instruction in the
end-of-section routine for that file.

As an example of this use of the DEFALT instruction, assume that a programmer
is processing two source files (SOURCFILEl and SOURCFILE2) whose first sections
are on the same CRAM deck and whose second sections are on another deck.

Assume also that SOURCFILEL reaches end of section. Since the CRAM deck must
be changed in order to open the files' next sections, and since SOURCFILE2 is
not closed automatically, the programmer must code the following DEFALT in-
struction to close SOURCFILE2. This instruction must be incorporated within
the end-of-section routine for SOURCFILEl, the file that originally reached
end of section.

NEAT/3 —- INSTRUCTIONS Oct. 70
TAB 1 -- PUB. NO. 12 Page 2

DEFALT INSTRUCTION

REFERENCE OPERATION OPERANDS

[I !OII|2l!'IISI!|7I.IQZOZIZZIS1‘252‘27Zl2’303l32)3!‘!336373!39‘0"424344‘5‘6474.4!50

DEFALTISOURCFILET,SOURCFILE?

.

In the example above, the DEFALT instruction terminates input from SOURCFILE2.
The current section is closed and, after the CRAM deck is changed, the new
sections of both source files are opened. Notice that the file originally
reaching end of section (SOURCFILEl) is specified as one of the operands.

NEAT/3 -- INSTRUCTIONS Oct. 70
TAB 1 -- PUB. NO. 12 Page 3

COMPARE INSTRUCTION

COMPARE (COMP)

Function

Compare is one of the most useful of the general instructions. Its purpose

is to compare two operands that have been previously defined on the data layout
sheets.

The COMP instruction compares the first operand to the second.

e If the first operand is greater than the second, the G flag is turned
ON in the central processor.

e If the first operand is equal to the second, the E flag is turned ON
in the central processor.

e If the first operand is less than the second, the L flag is turned ON
in the central processor.

Examples:
1st Operand 2nd Operand Flag
2 1 G
3 3 E
1 2 L
The COMP instruction also compares signs:
+2 -2 G
-2 -2 E
-2 +2 L
(The one exception is that +0 and -0 compare as equal.)
The COMP instruction also compares decimal positions:
2. .2 G
.2 .2 E
.2 2. L
NEAT/3 -- INSTRUCTIONS Apr. 70

TAB 2 -~ PUB. NO. 1 Page 1

Example

REFERENCE OPERATION OPERANDS

8 9 10 11 12 13 14 15 16 17|18 19 20 21 22 23[24 23 26 27 26 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49

CoOMP TOTALFLDA,TOTALFLDB

Both operands can be reference tags, or either operand (but not both) can be

a

literal. Both operands must be in the same form (alphanumeric, decimal,

binary, etc.); they may, however, be of different lengths with different deci-
mal point alignments.

Conventions

A branch instruction (or successive branch instructions) should immediately
follow the compare instruction. Only the branch instruction preserves the
state of the G, E, and L flags; other instructions may change these flags.

The following table lists the data types that can be compared and the maximum
lengths of operands for the different data types:

*

#

CAN COMPARE MAXIMUM LENGTH
TYPE TO TYPE OF OPERAND
SOURCE DESTINATION

8 8

20 20
19 19 B -- Binary

20 19 D -- Signed Decimal

19 20 U&Z -~ Unsigned Decimal

X&S -- Alphanumeric Character
Set

K -- Unsigned Packed Decimal
P -- Signed Packed Decimal

When comparing unsigned packed decimal data using the NCR Century 100, both
operands must have the same number of decimal positions because the COMP in-
struction treats packed operands as binary integers and ignores decimal points.

Signed packed decimal data cannot be compared on the NCR Century 100.

On the NCR Century 200, both type K data and type P data may be compared
separately. The operands of the COMP instruction are aligned on the decimal
point before they are compared.

NEAT/3 -- INSTRUCTIONS Apr. 70
TAB 2 -- PUB. NO. 1 Page 2

BRANCH INSTRUCTIONS

Branch or one of its variations is generally used following the COMP instruc-
tion to branch to a different portion of the program. If the COMP instruction
renders a greater—than decision, it may be necessary to branch to one portion
of the program; if equal-to, to another portion; if less-than, to still another.

BRANCH GREATER (BRG)

Function

The BRG (Branch-if-Greater) instruction tests the G flag in the central pro-
cessor. If the G flag is ON, the BRG instruction transfers control to the
instruction named in the operands column. If the G flag is OFF, control con-
tinues to the next instruction in sequence.

Example

REFERENCE OPERATION OPERANDS

8 9 10 11 12 13 14 15 16 17(18 19 20 21 22 23 (24 25 26 27 28 29 30 31 32 33 34 33 36 37 38 39 40 41 42 43 44 43 46 47 48 49 W

BRG ADDTOTAL

ADDTOTAL is the reference tag of the instruction to which control is trans-
ferred if the G flag is ON.

NEAT/3 -- INSTRUCTIONS Apr. 70
TAB 2 -- PUB. NO. 2 Page 1

BRANCH EQUAL (BRE)

Function

The BRE (Branch-if-Equal) instruction tests the E flag. If the E flag is ON,
the BRE instruction transfers control to the instruction named in the operands
column. If the E flag is OFF, control continues to the next instruction in

sequence.

Example

REFERENCE OPERATION OPERANDS

s 9 IOIIIZISIl!!Ill7|ll'201l222’14252‘!72‘2'!0)!!2333435”!75.3.“‘!‘ZO“‘!“!1“‘.!¢

B RE ENDOFPAGE

ENDOFPAGE is the reference tag of the instruction to which control is trans-
ferred if the E flag is ON.

%

BRANCH LESS (BRL)

Function

The BRL (Branch-if-Less) instruction tests the L flag. If the L flag is ON,
the BRL instruction transfers control to the instruction named in the operands
column. 1If the L flag is OFF, control continues to the next instruction in
sequence.)

Example

REFERENCE OPERATION OPERANDS

s 9 I°|ll!lllll!l‘!7|ll’lﬂll12232‘252‘172.2'30!l32333435”37303,ﬂllli“‘l‘!“l74l4’”

BRL CLRPRNTLNE

B R e pp—

l

CLRPRNTLNE is the reference tag of the instruction to which control is trans—
ferred if the L flag is ON.

NEAT/3 -- INSTRUCTIONS Apr. 70
TAB 2 -- PUB. NO. 2 Page 2

BRANCH INSTRUCTIONS

BRANCH GREATER OR EQUAL (BRGE)

Function

The BRGE (Branch-if-Greater-or-Equal) instruction tests the L flag. If it is
OFF, the BRGE instruction transfers control to the instruction named in the
operands column. If the L flag is ON, control continues to the next instruction

in sequence.

Example

REFERENCE OPERATION OPERANDS

8 9 10 11 12 13 14 15 16 17|18 19 20 21 22 2324 23 26 27 28 29 30 31 32 33 34 33 36 37 38 39 40 41 42 43 44 45 48 A7 48 49

BRGE ADDTOTAL

g]

ADDTOTAL is the reference tag of the instruction to which control is trans-
ferred if either the G or the E flag is ON.

e]
BRANCH LESS OR EQUAL (BRLE)

Function

The BRLE (Branch-if-Less-or-Equal) instruction tests the G flag. If it is OFF,
the BRLE instruction transfers control to the instruction named in the operands
column. TIf the G flag is ON, control continues to the next instruction in
sequence,

Example

REFERENCE OPERATION OPERANDS

] .|0|lIll!lll$|0l7l.|.mll12131‘2!“271.2'303!!2)3343!“3[3.3’&"4243‘4‘5“‘7‘."50

BRLE |ENDOFPAGE

v
1
]
]
]
¥
]
!
[}

L}
1

g

ENDOFPAGE is the reference tag of the instruction to which control is trans-
ferred if either the L or the E flag is ON.

NEAT/3 -- INSTRUCTIONS Apr. 70
TAB 2 -- PUB. NO. 2 Page 3

BRANCH UNEQUAL (BRU)

Function

The BRU (Branch-if-Unequal) instruction tests the E flag. If the E flag is
OFF, the BRU instruction transfers control to the instruction named in the
operands column. If the E flag is ON, control continues to the next instruc-

tion in sequence.

Example

REFERENCE OPERATION OPERANDS

gl SRR Npp—

e 9 10 11 12 13 14 1S 16 17[18 19 20 21 22 23|24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 43 46 47 48 49 30

BRU ADDTOTAL

-k

ADDTOTAL is the reference tag of the instruction to which control is trans-
ferred if the E flag is OFF.

{5 —
UNCONDITIONAL BRANCH (BR)

Function

The BR instruction transfers control unconditionally to the instruction named
in the operands column.

Example

REFERENCE OPERATION OPERANDS

8 9 |0I||2|3|4|5|6I7Il|.202l22231‘2526272.2!303!!2333‘35!6!73.3"0"424&4‘4!“47‘!‘.!0

B R ADDS UM

ADDSUM is the reference tag of the instruction to which control is transferred.

nx ¥

NEAT/3 -- INSTRUCTIONS Apr. 70
TAB 2 —- PUB. NO. 2 Page 4

LINK AND RELINK INSTRUCTIONS

LINK
Function

The LINK instruction transfers control to the subroutine named in the operands
column, A subroutine is a self-contained set of instructions located outside
the main program flow. The LINK instruction provides a method for transferring
control to the subroutine when it is needed by the main program. (LINK also
enables a subroutine to link to a sub=-subroutine to perform some portion of its
task.)

Before transferring control to the subroutine, the LINK instruction saves the
address of the next instruction in the main program so that control can be
returned to that address at the end of the subroutine. (See RELINK.)

Do not confuse LINK, which saves the address to which it is to return, with

BR, which transfers control unconditionally to the address specified in its
operand. If the programmer wishes to return from a subroutine to the point in
the program from which he departed, he should use LINK and RELINK. If he does
not wish to return to that point, however, he should use BR. For example, a
programmer uses a branch instruction with an error-handling subroutine because,
when returning from the subroutine, control will always be transferred to the
same point in the program (GET another record, for example) instead of to the
point of departure.

It may be important for a programmer who is working with many numeric data
fields to know if certain fields are negative. He may want to link to the
following subroutine many times during his program to determine if certain
fields are negative and to act upon those fields that are.

NEAT/3 -- INSTRUCTIONS Apr. 70
TAB 2 -- PUB. NO. 3 Page 1

iD LINK TO NEGATIVE
FIELD SUBROUTINE

IS SIGN OF FIELD NEGATIVE?
YES

ADD 1 TO NEGATIVE FIELDS COUNTER.

RETURN TO NEXT COMMAND IN MAIN
PROGRAM (RELINK).

Example

REFERENCE OPERATION OPERANDS

8 9 10 11 12 13 14 13 16 17/18 19 20 21 22 2324 23 26 27 28 29 S0 31 32 33 34 35 36 37 38 39 40 41 42 43 44 43 48 47 48 49

LINK NEGFIELD

NEGFIELD is the reference tag of the first instruction in the subroutine to
which control is transferred.

Conventions

There should be a RELINK executed for every LINK executed.

NEAT/3 -- INSTRUCTIONS Apr. 70
TAB 2 -- PUB. NO. 3 Page 2

LINK AND RELINK INSTRUCTIONS

RELINK

Function

This instruction is used at the end of a subroutine or sub-subroutine to remove
the address stored in the link list when the LINK instruction was last executed.
Control is returned to that address if no operand is specified in the RELINK

instruction; if an operand is specified, RELINK transfers control to the routine

referenced by that operand.

LINK

RELINK

RELINK WITHOUT OPERAND
RETURNS CONTROL TO NEXT
ADDRESS IN MAIN PROGRAM.

RELINK WITH OPERAND RELINKS
TO ADDRESS REFERENCED BY
OPERAND.

RELINK

Example

REFERENCE OPERATION OPERANDS

6 9 10 11 32 13 14 13 16 1718 19 20 21 22 23]24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 30

RELINK X
RELINKISUMRYPRINT

d-—do

In the first example, the address saved by the last LINK instruction is removed
from the link list and control is transferred to that address.

In the second example, the address saved by the last LINK instruction is
removed from the link list and control is transferred to the instruction whose
reference tag is SUMRYPRINT.

Conventions

At times the software stores a link in the link list to aid the programmer
(e.g. printer end-of-page routine). In this case the programmer needs only
to RELINK without a corresponding LINK instruction.

If there is no link in the link list when relinking, the software stores a log
message and displays a message to the operator.

NEAT/3 -- INSTRUCTIONS Apr. 70
TAB 2 -- PUB. NO. 3 Page 3

MOVE INSTRUCTION

The MOVE instruction enables the user to move data internally from one area to
another (e.g. move a title line from a constant area to the printer buffer).

MOVE has three basic variations: the standard MOVE, the conversion of data
type with MOVE, and the editing MOVE.

The basic format for all MOVE instructions follows:

REFERENCE OPERATION OPERANDS

@ 9 10 11 12 13 14 15 16 17]10 19 20 21 22 2324 23 26 27 20 29 30 31 32 33 34 35 36 37 30 39 40 41 42 43 44 45 46 47 48 &9 0O

MOVE [0OPERANDA,OPERANDSB

D L s Ly Spp——

The first operand can be either a literal or the reference tag of the operand
to be moved; the second operand must be the reference tag of the destination
operand. (If the first operand is a literal, it is converted to the data type

of the second operand.)

NEAT/3 -- INSTRUCTIONS Apr. 70
TAB 2 -- PUB. NO. 4 Page 1

Since the move is accomplished from right to left, overlapping fields cannot
be moved without destroying the overlapping location. To correct this situa-
tion, move one character at a time (as illustrated below) when moving over-
lapping fields.

REFERENCE LOCATION LENGTH VALUE OR PICTURE

1
8 9 10 11 12 13 14 13 18 17 19 20 21 22 23[24 25 26 27 3‘!233!43536373'3940‘\‘2‘344‘5‘6‘7‘!4950|
i

UMBERS
PERANDAI
PERANDA?
PERANDBI
PERANDB?2

LT

,
SRS M-

REFERENCE OPERATION OPERANDS

e 9 1011 IZI3|‘|$|G!7II|9201I2223242526272029303132333‘353637383940“‘2‘34445‘6‘7464950

1STMOVE MOVE OPERANDBI1 ,0PERAND Al
2NDMOVE MOVE OPERANDB2 ,0PERANDA?2

R DR i B

Before After
Bl B2 Bl B2

Ly [v |
! I I !
1 1 | |
Cx 1 v |

Al A2 Al A2
NEAT/3 -- INSTRUCTIONS Apr. 70

TAB 2 —- PUB. NO. 4 Page 2

MOVE INSTRUCTION

STANDARD MOVE INSTRUCTIONS

Function

The standard MOVE instruction simply transfers the first operand to the second.
If the data does not fit the destination operand, it is adjusted (truncated
or expanded) to fit.

Examples

o Unsigned Decimal Numeric Data

In a decimal numeric MOVE, source data is aligned on the decimal point.
(A decimal point is always assumed in decimal numeric data.) Consider
the following data definitions and the MOVE instruction:

REFERENCE LOCATION VALUE OR PICTURE

8 9 10 11 12 13 14 18 16 17 19 20 21 22 23 31 32 33 34 33 36 37 38 39 40 41 42 43 44 43 46 47 48 49 30

AME .
OPERANDA
OPERANDSB
OPERANDC
DPERANDD

J

REFERENCE OPERATION OPERANDS

[omnuuuuununzozluuutsuz’lzlzosounuussununnnua“as«uuuw
1STMOVE MOVE JOPERANDA,OPERANDSB
2NDMOVE MOVE _[0OPERANDA,OPERANDC
3RDMOVE MOVE _ |OPERANDA,OPERANDD

- b

1st MOVE [1]2[3]4]6] (OPERANDA) T12[3]4]6] (OPERANDB)
[A

2nd MOVE [1]2[3TJ4]6] (OPERANDA) 3 (OPERANDC)
A A

3rd MOVE [1]|2[3[4]6] (oPERANDA) [OJ1JZ2[3J4J6]0] (oPERANDD)
4

NOTE: Carets (,) indicate implied decimal points.

In the first example, the source data aligned on the decimal point fits
perfectly into the destination operand.

In the second example, the data is aligned on the decimal point and the
first and last characters are truncated because they do not fit into the
destination operand.

In the third example, the data is aligned on the decimal point and zeros
are filled into the extra character positions.

NEAT/3 -- INSTRUCTIONS Apr. 70
TAB 2 -- PUB. NO. 4 Page 3

e Signed Decimal Numeric Data

The MOVE instruction will move the sign of the source data. Unsigned

decimal operands can also be moved to signed decimal
versa. Such a move simply adds or deletes a sign.

operands, or vice
(If a sign is added,

however, it is always positive.) Consider the following data definitions

and the MOVE instruction:

b

REFERENCE LOCATION LENGTH

VALUE OR PICTURE

d

I
9 10 11 12 13 14 13 16 17 19 20 21 22 23|24 23 26 27 31 32 33 34 35 36 37 38 39 40 41 42 43 44 43 46 47 48 49 304
ot

AME . 3.0

PERANDA 6

ERANDSB

ERANDC

6
5
8
5

p
p
PERANDD
PERANDE

REFERENCE OPERATION

10 11 12 13 14 15 16 17[18 19 20 21 1223241526272.1030!!31333‘!!”373.3"04!&1‘)“‘5“‘14.4’”

TMOVE MOVE OPERANDA,OPERANDSB

DMOVE MOVE OPERANDA,OPERANDC

DMOVE MOVE _|oPERANDC,O0PERANDD

HMOVE MOVE OPERANDA,OPERANDE

1st MOVE [7]6]5]4][3]+]| (OPERANDA)
[}

ond MOVE [7]6]5]4]3]+] (OPERANDA)
A

3rd MOVE [7[6]5]4] 3] (OPERANDC)
A

4en MOVE [7] 6] 5] 4] 3]+ (OPERANDA)
A

OPERANDS
776543]+] (OPERANDB)
A
[7Te6]s5]4]3] (OPERANDC)
i
[0]7]6[s5]4]3[0]+] (OPERANDD)
A
[FT6]5[4]+] (OPERANDE)
A

i

In the first example the source data aligned on the decimal point fits

perfectly into the destination operand.

In the second example, the data is aligned on the decimal point and the
left character is truncated because there is no place for it. The sign
is dropped because OPERANDC is defined as unsigned.

In the third example, an unsigned field is moved to a signed field and
the extra character positions are filled with zeros.

In the fourth example, the data is aligned on the decimal point and the

right character is truncated.

NEAT/3 —- INSTRUCTIONS
TAB 2 -- PUB. NO. 4

Apr. 70
Page 4

MOVE INSTRUCTION

e Binary Data

The MOVE instruction moves binary data according to the same general rules
applied to moving decimal numeric data. Consider the following data defi-
nitions and the MOVE instruction:

]
T

REFERENCE LOCATION | LENGTH E VALUE OR PICTURE
)

7{8 9 10 11 12 13 14 15 16 17 19 20 2% 22 23]24 23 28 27
DIN AME

Do PERANDA
DjoPERANDSB
DjoPERANDC
D

|31 32 33 34 35 36 37 30739 40 A1 42 43 44 43 46 47 48 M O

loPERANDD

REFERENCE OPERATION OPERANDS

8 9 10 111213 14 18 16 17[18 19 20 29 22 2924 25 26 27 28 29 30 31 32 33 34 33 36 37 38 3P 40 41 42 43 44 43 46 47 48 49 30|

1STMOVE MOVE |0OPERANDA,OPERANDD
2NDMOVE MOVE |OPERANDA,OPERANDC
3ROMOVE OPERANDA,OPERANDSB

(OPERANDA)
1st MOVE [10101111}10001000] [10101111}10001000| (OPERANDD)
2nd MOVE {1010111110001000] 10001000 (OPERANDC)

3rd MOVE [1010111110001000] [00000000[L010111110001000] (OPERANDB)

The first example illustrates a binary move to an operand of equal length.

In the second example, two binary characters are moved to an operand
containing only one character, and the left character is truncated.

In the third example, two binary characters are moved to an operand
containing three binary characters and the extra character is zero-filled.

NEAT/3 -- INSTRUCTIONS Apr. 70
TAB 2 -- PUB. NO. 4 Page 5

o Packed Data

Packed data, like unpacked data, aligns on the decimal point. ‘Consider
the following data definitions and the MOVE instruction:

REFERENCE

LOCATION

]

LENGTH

VALUE OR PICTURE

8 9 10 11 12 13 14 13 16 17

19 20 21 22 23[24 25 26 27 31 32 33 34 35 36 37 38 30 40 41 A2 43 44 43 46 47 48 & DO

NAME. .

1,0

OPERANDA

2

O PERANDB,

0 PERANDC

oPERANDD

3
2
3

REFERENCE

OPERATION

OPERANDS

S & 10 11 12 13 14 15 16 17[18 19 20 21 22 23

24 25 26 27 28 20 30 31 32 33 34 35 36 37 30 39 40 41 42 43 44 43 48 47 48 49 N0

1STMOVE

MOVE

OPERANDA,OPERANDS

2NDMOVE

MOVE

OPERANDC,OPERANDD

lst MOVE [34]56]

2nd MOVE
[

(OPERANDA)

(OPERANDC)

00]34 l_5_?6_| (OPERANDB)

s

[}

(OPERANDD)

In the first example, the packed data is aligned on the decimal point and
the extra character positions are zero-filled to the left.

In the second example, the packed data is aligned on the decimal point
and the extra character positions are zero-filled to the right.

NEAT/3 -- INSTRUCTIONS

TAB 2 -- PUB. NO. 4

Apr. 70
Page 6

MOVE INSTRUCTION

e Alphanumeric Data

Alphanumeric data is left-justified and space-filled to the right.
Consider the following data definitions and the MOVE instruction:

REFERENCE LOCATION LENGTH VALUE OR PICTURE

8 9 10 11 12 13 14 135 16 17 19 20 21 22 23 31 32 33 34 33 36 37 38 39 40 41 42 43 44 43 46 47 48 9 30

NAME
OPERANDA
0P ERANDSB
D PERANDC
OPERANDD.

4

REFERENCE OPERATION OPERANDS

8 9 10 11 12 13 14 1S 16 17|18 19 20 21 22 2324 23 26 27 20 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 43 48 47 48 49 SO

1STMOVE MOVE OPERANDA,OPERANDSB
2NDMOVE MOVE OPERANDA,OPERANDC
3RDMOVE _loPERANDA,OPERANDD

st MOVE (D|E|F|G| (OPERANDA) [D[E[F]G] (OPERANDB)

2nd MOVE (D|E|F|G| (OPERANDA) |D|E]|F] (OPERANDC)

3rd MOVE |[D|E[F|G| (OPERANDA) [(D|E]|F |G|] Z] (OPERANDD)

(i is the symbol used to indicate a space.)
The first example illustrates a simple move to an operand of equal length.

In the second example, the right character is truncated to make the data
fit the destination operand.

In the third example, the extra characters are space-filled.

NEAT/3 -- INSTRUCTIONS Apr. 70
TAB 2 -- PUB. NO. 4 Page 7

e MOVE to Zero-Fill a Numeric Field

A numeric field can be zero-filled with the MOVE instruction simply by
moving a literal zero to the destination field.

REFERENCE OPERATION OPERANDS

8 9 10 17 12 13 14 13 16 1718 19 20 21 22 23

24 25 26 27 20 20 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 43 46 47 48 9 0

MOVE '0',0PERANDN

The literal character ('0') is right-justified in the numeric destination

field; the rest of the field is automatically zero-filled to the left
(regardless of decimal positions).

e e e e)

e MOVE to Clear an Alphanumeric Field

An alphanumeric field can be space-filled with the MOVE instruction
simply by moving a literal space to the destination field.

REFERENCE OPERATION OPERANDS

8 9 10 11 12 13 14 15 16 17{18 19 20 21 22 23|24 25 26 27 28 29 30 31 32 33 34 35 36 37 30 I 40 41 42 43 44 43 46 47 43 49 0

MOVE ‘&g ,0PERANDA

In accordance with the rules for moving alphanumeric data, the literal

space character ('[4') is left-justified and the rest of the field is
automatically space-filled to the right.

NEAT/3 -- INSTRUCTIONS Apr. 70

TAB 2 —- PUB. NO. 4 Page 8

MOVE INSTRUCTION

Conventions

The following table lists the data types that can be moved with the standard
MOVE instruction and the permitted lengths of operands for the different data

types:

CAN MOVE MAXIMUM LENGTH
TYPE TO TYPE OF OPERAND
SOURCE DESTINATION

8 8

20 20
19 19 B -- Binary
20 19 D -- Signed Decimal

19 20 K -- Unsigned Packed Decimal

X&S -- Alphanumeric Character Set
U&Z -- Unsigned Decimal

P -- Signed Packed Decimal

Binary Data (B): right-justified and zero-filled to the left.

Decimal Numeric Data (D, U, P, K): first aligned on the decimal point, if
there is a decimal point. After alignment, both the integer and decimal portions

are zero-filled or truncated.
Alphanumeric Data (X): left-justified, then space-filled to the right.
The standard MOVE can also accommodate the following data moves:

CAN MOVE MAXIMUM LENGTH
TYPE TO TYPE OF OPERAND
SOURCE DESTINATION

B -- Binary

D -- Signed Decimal

U&Z -- Unsigned Decimal

P ~- Signed Packed Decimal

K -- Unsigned Packed Decimal

E -- Edited

X&S -- Alphanumeric Character
Set

All moves to an alphanumeric field (X) are left-justified and space-filled to
the right.

NEAT/3 -- INSTRUCTIONS Apr. 70
TAB 2 -- PUB. NO. 4 ‘ Page 9

CONVERSION MOVE INSTRUCTION

Function

This variation of the MOVE instruction converts the data type of the first
operand to the data type of the second as the MOVE is being executed.

Examples

® Binary-to-Decimal and Decimal-to-Binary

Consider the following data definitions and the MOVE instruction:

b

REFERENCE LOCATION LENGTH VALUE OR PICTURE

10 11 12 13 14 13 16 17 19 20 21 22 23|24 28 268 27 31 32 33 34 33 36 37 38 39 40 41 42 43 44 43 48 47 40 M 0

8

ERANDA 1
ERANDB e]
ERANDC . 3
ERANDD, | 3

REFERENCE OPERATION OPERANDS

10 11 12 13 14 15 16 1718 19 20 21 22 2324 25 26 27 28 20 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 30

STMOVE MOVE 0OPERANDA,OPERANDC
NDMOVE MOVE OPERANDD ,OPERANDSB

1st MOVE (Binary-to-Decimal) [00010001] (oPERANDA) [0[1[7] (OPERANDC)

l~1 char-l I 3 char-l

2nd MOVE (Decimal-to-Binary) [1[3]6]| (OPERANDD) [10001000/ (OPERANDB)

I~ 3 char+ I+1 char-l

In the first example, the binary data character is converted to its
decimal numeric equivalent, moved to a 3-character destination operand,
right-justified, and zero-filled to the left.

In the second example, the decimal numeric source data is converted to
its binary equivalent and moved to a l-character destination operand.

NEAT/3 -— INSTRUCTIONS Apr.
TAB 2 -- PUB. NO. 4 Page

70
10

MOVE INSTRUCTION

o Unpacked-to-Packed and Packed-to-Unpacked (Fields)

Data can also be packed and unpacked by use of the MOVE instruction.
Consider the following data definitions and the MOVE instruction:

REFERENCE LOCATION LENGTH VALUE OR PICTURE

8 9 10 11 32 13 14 15 16 17 19 20 21 22

31 32 33 34 335 36 37 38 39 40 41 42 A3 44 43 46 47 48 49 30
3

AME _ :
OPERANDA) g
0 PERANDSB i
OPERANDC.
OPERANDD

REFERENCE OPERATION OPERANDS

8 9 10 11 12 13 14 13 16 17|18 19 20 21 22 2324 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 30

1STMOVE MOVE OPERANDA,OPERANDSB
2NOMOVE MOVE
JROMOVE
4 THMOVE

Unpacked- lst MOVE 3 (OPERANDA) [12]34] (OPERANDB)
to-Packed- A

Conversion 2nd MOVE [&4[5]6]7]8[+] (oPERANDC) [00]45]67]8+] (OPERANDD)

A A

Packed-to- 3rd MOVE [12]34] (OPERANDB) 2 (OPERANDA)
Unpacked- |)

Conversion 4th MOVE [00[45]67]8+] (opEraNDD) [4]5]6[7]8]+] (OPERANDC)

A A

In the first example, unpacked source data consisting of four characters
is converted to packed data and moved to a destination operand of two
characters.

In the second example, unpacked source data consisting of six characters
is converted to packed data, moved to a destination operand consisting
of four characters, aligned on the decimal point, and zero-filled.

The third and fourth examples are the reverse of the first two, converting
packed data to unpacked data.

Apr. 70
Page 11

NEAT/3 -- INSTRUCTIONS
TAB 2 —- PUB. NO. 4

Conventions

The following table lists the data types that can be moved with the conversion
variation of the MOVE instruction and the permitted lengths of operands for
the different data types:

CAN CONVERT
TYPE TO TYPE

MAXIMUM LENGTH
OF OPERAND

SOURCE

DESTINATION

8
8

20
19

2

20
19

19
20
19

0

8
8
10
10
10
10

NEAT/3 —-- INSTRUCTIONS
TAB 2 -- PUB. NO. 4

10
10
10
10

20
19
20
19

PSS

B -- Binary

D -- Signed Deccimal

U&Z -- Unsigned Decimal

P -- Signed Packed Decimal
K —-- Unsigned Packed Decimal

Apr. 70
Page 12

MOVE INSTRUCTION

EDITING MOVE INSTRUCTION

Function

The editing variation of the MOVE instruction permits the user to rearrange
the format of data for printing. Editing may involve the deletion of unwanted
data; the selection of pertinent data; the application of different formatting
techniques; the insertion of symbols (such as commas and decimal points); and
the application of such techniques as zero suppression, floating currency sym-
bols, check-protect symbols, and sign control.

The editing MOVE instruction edits the contents of the source operand into the
destination operand, using the editing mask defined on the data layout sheet.
The mask, which is actually a definition of the destination operand, is com-
posed of a string of characters that describe the format of the data to be
output. (The characters that may be used in the editing mask are explained in
detail in the section titled INTRODUCTION AND DATA, tab 3, 'Data Layout Sheets,"
Editing Masks.)

Examples

There are two basic variations of the editing MOVE instruction: the decimal-
numeric editing MOVE (which, in turn, has five variations) and the alphanumeric
editing MOVE.

® Decimal-Numeric Editing MOVE

The source operand in a numeric editing MOVE is aligned on the decimal

point of the mask. (Decimal points are assumed for all decimal-numeric
source data.) If the data does not fit the destination operand, it is

adjusted (truncated or expanded) to fit.

NOTE: The DP column of the data layout sheet must be filled in when
using the decimal-numeric editing MOVE, even when the entry is
zero.

There are five variations of the decimal-numeric editing MOVE:

Sign editing

Insertion editing

Zero-suppression and replacement editing
Check protect editing

Floating currency editing

NEAT/3 -- INSTRUCTIONS Apr. 70
TAB 2 -- PUB. NO. 4 Page 13

e Sign Editing

The source data for this MOVE must be defined as either signed or
unsigned decimal numeric data. (If unsigned, it is assumed to be
positive.) There are four valid sign symbols that may be used in the
destination operand: +, -, CR (credit), and DB (debit). The + and -
symbols may appear at either end of the mask (but not both). CR and DB
may be placed only at the right end of the mask; they are inserted only
if the source data is negative.

A + in the mask is output as a + if the value of the data being output
is positive and as a - if the value of the data is negative. A - in
the mask is output as a — if the value of the data being output is
negative and replaced with a space if the value of the data is positive.

Consider the following data definitions and the MOVE instruction:

»

REFERENCE LOCATION LENGTH VALUE OR PICTURE

10 11 12 13 14 13 16 17 19 20 21 22 23{24 23 28 27 31 32 33 34 335 36 37 30 39 40 4) 42 43 44 43 46 47 A3 @ O
—

ME) .t 34
ERANDA 6
ERANDSB . 61 .
ERANDC L XX+

ERANDD. » 2fE]x X X . XXCR
ERANDE 7l X X X . XX

REFERENCE OPERATION OPERANDS

10 11 12 13 14 13 16 1718 19 20 21 22 28|24 25 26 27 28 29 30 31 32 33 34 335 36 37 38 39 40 41 42 43 44 43 46 47 48 49 30

TMOVE MOVE OPERANDA,OPERANDC
DMOVE MOVE OPERANDB ,O0OPERANDD
DMOVE |0 PERANDB ,O0PERANDEC
HMOVE OPERANDA,OPERANTDE

RO TR SR I

|

—

1st Move [1[3]6]4]2[+] (op.a) [XIx[x[-TxIx[+] [1]3]el.]al2][+] (oP.
2nd MOVE [1[3[6A4|2]—J cop.s) [x[x[x[.[x[x[cIr][1]3]e].4]2]c[r] (op.
3rd MOVE [I]3]6?4|2|-J op.) [X[x[x[.Ix[x[+] [i]3]e].]s]2]-] (OP.
4th MOVE [1{3]6i4|2|+] op.a) [X[X[X[IX[x[-] [1]3]e].]4[2]7] (op:

NOTE: Carets indicate implied decimal points. The decimal points are
inserted into the destination operand by means of the editing
mask.

NEAT/3 -- INSTRUCTIONS Apr. 70
TAB 2 -- PUB. NO. 4 Page 14

MOVE INSTRUCTION

e Insertion Editing

In this variation of the decimal numeric editing MOVE instruction,
an insertion character is moved from the mask to the destination
operand despite the fact that the insertion character is not con-
tained in the source data. Insertion characters are suppressed,
however, if the previous character in the destination operand is
suppressed. (See Zero—Suppression and Replacement Edit.)

Consider the following data definitions and the MOVE instruction:

b

REFERENCE LOCATION LENGTH VALUE OR PICTURE

10 11 12 13 14 13 16 17 19 20 21 22 23]24 28 28 27 31 32 33 34 35 36 37 38 39 40 41 42 43 44 43 48 47 48 & 30

M E o 32
ERANDA

ERANDSB
ERANDC
ERANDD
ERANDE

REFERENCE OPERATION OPERANDS
10 11 12 13 14 15 16 1718 19 20 21 22 2324 23 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 48 47 48 49 0
TMOVE MOVE [0PERANDA,OPERANDD
DMOVE MOVE OPERANDB,OPERANDD
DMOVE OPERANDC,OPERANDE

cde v demebe e A e

.

Source Mask Destination
1st MOVE [1]3]6]7]4[2] (op.a) (xI,IxIxIx]Ix[x] [1],]3]6]7].]4]2] (op.D)
A

2nd MOVE [2]6]4]2] (op.B) (xX[LIx[IX].[x[x] [ol.[o]2]e].]a]2] (op.D)
3rd MOVE 28] 6]2]6] (op.c) [BIX[IXIXIX[B]x[x] [s[o].[2]8]6[]2]6] (oP.E)

In the first example, a comma and a decimal point are inserted into
the destination operand.

In the second example, a comma, a decimal point, and zeros are insert-
ed. (The leading zeros are not suppressed because zero-suppression
characters are not used in the mask.)

In the third example, a comma, a zero, a currency symbol, and a space
are inserted.

NEAT/3 -- INSTRUCTIONS Apr. 70
TAB 2 -- PUB. NO. 4 Page 15

e Zero-Suppression and Replacement Editing

The editing symbol used in this variation of the decimal numeric
editing MOVE instruction is Z. The Z may be replaced by either a
source data character or a space. Leading zeros are suppressed,

as indicated in the examples below. (Inserted characters may be
suppressed along with leading zeros -- also illustrated below --
but the decimal point is never suppressed unless the entire operand
is suppressed.)

Consider the following data definitions and the MOVE instruction:

REFERENCE LOCATION LENGTH VALUE OR PICTURE

8 ® 10 11 12 13 14 18 16 17 19 20 21 22 23|24 23 28 27 31 32 33 34 35 36 37 38 39 40 41 42 43 44 A3 46 47 48 49 30
—d

NAME .) 35
0OPERANDA 5
OPERANDB
0P ERANDC
0P ERANDD
0OPERANDE
0PERANDF

REFERENCE OPERATION OPERANDS

e a2 d

8 9 10 11 12 13 14 193 16 1718 19 20 21 22 23[24 25 26 27 20 20 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 43 48 47 48 &
1STMOVE MOVE |[OPERANDA,OPERANDD
2NDMOVE MOVE |OPERANDB,OPERANDE
JRDOMOVE [MOVE
ATHMOVE MOVE [0PERANDB,OPERANDF

Ll L

1st MoVE [2]3]6[4]2] (op.n) [z[.]z[z]z].]z]z] [Z]Z]2]3]e]. [4]2] (op.D)
na vove [O[O[00) o.») [EEELEE — [ZZAAZD -
3rd MOVE (0P.C) [z]z]z]. Tz] Z] [A[A]A]. To]4] (op.E)
4th MOVE [0]0J0J0J0] (oP.B) [z]z]z] - TX]¥] [Z]Z]7Z]. To[o] (op.F)
In the first exa;ple, the leading zero is suppressed. The comma

(an insertion character) is also suppressed because the preceding
character is suppressed and the comma is no longer necessary.

NEAT/3 -- INSTRUCTIONS Apr. 70
TAB 2 -- PUB. NO. 4 Page 16

MOVE INSTRUCTION

In the second example, the entire operand (including the inserted
decimal point) is suppressed because it consists of nothing but zeros.

In the third example, the leading zeros are suppressed. The decimal
point is not suppressed, however, because the entire operand does not
consist of zeros. The zero following the decimal point is not consid-
ered a leading zero; therefore, it is not suppressed.

In the fourth example, the zero-suppression symbol is not used for
the decimal positions; therefore, zeros in the decimal positions are

printed.

NEAT/3 -- INSTRUCTIONS : Apr. 70
TAB 2 -- PUB. NO. 4 Page 17

e Check Protect Editing

The editing symbol used in this editing MOVE is *. Leading zeros
are replaced by asterisks; all other source data characters are
preserved. As its name implies , the primary purpose of this var-
iation of the MOVE instruction is to protect the user when printing
checks. The check protect symbol * and the zero suppression symbol
Z are not permitted in the same editing mask.

Consider the following data definitions and the MOVE instructions:

»

REFERENCE LOCATION LENGTH VALUE OR PICTURE

® 10 11 12 13 14 15 16 17 19 20 21 22 23|24 25 26 27 unnuuunuuwuuauuununui
AME . . 29 1., |
PERANDA 5 R
PERANDSB ;
PERANDC
PERANDD
PERANDE

5
5
8
6

REFERENCE OPERATION OPERANDS
’|01|I!’!'ll!l‘l‘l!.l’lﬂll122’!lisul’lll.”!l3133!43!“!7!.3’“‘!ﬂul‘ls“l"“m
STMOVE MOVE |OPERANDA,OPERANDD
NDMOVE MOVE |OPERANDB,OPERANDE
RDMOVE MOVE [0PERANDC,OPERANDE

1st MovE [2]3]6]4]2] (op.a) [FLLT*[*[*[.T*[*] [*[*[2]3]6].]4]2] (op.D)
A

2nd Move [0]oJofo]0] (op.B) G+ [FIxlxl.Ix]*] cop.E)
A

3rd MOVE (OP.C) BEEREID [xT*[*].JoJz] (op.E)
4

Note that leading zeros are replaced with asterisks, even when the
entire field is composed of zeros.

NEAT/3 -- INSTRUCTIONS Apr. 70
TAB 2 -- PUB. NO. 4 Page 18

MOVE INSTRUCTION

e Floating Currency Symbol Editing

The editing symbol used in this variation of the decimal numeric
editing MOVE instruction is the currency symbol ($ or£). This vari-
ation effectively suppresses zeros, just as the zero suppression and
replacement edit does, and inserts the currency symbol as well, If
there are leading zeros in the source data, the currency symbol sup-
presses each in turn (left to right) and replaces the last one. To
ensure addition of the currency symbol, the mask should be longer
than the source data.

Consider the following data definitions and the MOVE instruction:

REFERENCE

LOCATION LENGTH VALUE OR PICTURE

® 10 13 12 13 14 13 16 17

19 20 21 22 23 31 32 33 34 335 36 37 38 39 40 41 42 43 44 43 46 47 48 49 30

AME

PERANDA

ERANDS

ERANDD _

P
PERANDC
P
P

ERANDE

REFERENCE

p

OPERATION OPERANDS

$0 11 12 13 14 1S 16 17

18 19 20 21 22 23124 25 26 27 28 29 30 31 32 39 34 335 36 37 38 39 40 41 42 43 44 43 46 47 48 49 0

TMOVE

MOVE [0OPERANDA,OPERANDE

DMOVE

MOVE OPERANDA,OPERANDD

DMOVE

_[OPERANDB,OPERANDD

HMOVE

_———e e L T a2

OPERAN

lst MOVE mg (OP.A) [sIsl.[sls] [slel.T4]2] (op.E)
2nd MOVE (op.n) [STSISI.IsIs][slz2]6].]a]2] (orp.D)

A

3rd MOVE [1]4]2] cop.B) [SSISI.IsIs][Zs[al.T4]2] (op.p)
4th MOVE (0P.C) [S[ST-T81s] [AAAZIA (op.E)

A

In the first example, the currency symbol replaces the leading zero.

NEAT/3 -- INSTRUCTIONS
TAB 2 -- PUB. NO. 4

Apr. 70
Page 19

In the second example, an extra character and currency symbol are
added to the mask, so the first currency symbol is inserted and the
remaining symbols are replaced by source data on a character-for-
character basis.

In the third example, one leading zero is assumed and replaced by a
space, and the currency symbol is floated one place as illustrated in
the destination operand.

In the fourth example, the entire operand (including the inserted
decimal point) is suppressed.

NEAT/3 -- INSTRUCTIONS Apr. 70
TAB 2 -~ PUB. NO. 4 Page 20

MOVE INSTRUCTION

e General Floating Editing Symbol

This variation of decimal numeric editing was designed primarily to be
used as an international floating currency symbol technique in which the
user specifies the symbol.

The editing symbol in this variation of the decimal numeric editing MOVE
instruction is the multiple colon (::). This variation effectively sup-
presses zeros, just as the zero suppression and floating currency symbols
do, and inserts the requested character as well. If there are leading
zeros in the source data, the general floating symbol suppresses each in
turn (left to right) and replaces the last one with the requested charac-
ter. To insure the insertion of the requested character, the mask should
be one character longer than the source data.

If the colon is expressed singularly (:) it is treated as an insertion
character; however, if multiple colons are used consecutively (:::) or
are separated by a single insertion character (:,:) they are considered
to be general floating symbols. The character which is to be inserted
immediately follows the numeric editing mask and is separated from the
mask by a comma. The character to be inserted can be any of the NCR-
Century character set. If the character is a + or a minus (-), the stan-
dard rules of sign editing are applied. If the character is not entered,
the general floating symbol is treated as individual insertion characters.

Consider the following data definitions and the MOVE instruction:

bl

REFERENCE LOCATION LENGTH VALUE OR PICTURE

8 9 10 %1 12 13 14 1% 16 17 19 20 21 22 2324 23 28 27 31 32 33 34 33 36 37 38 39 40 41 42 43 44 43

NAME

0P ERANDA
ERANDSB
ERAND.C

4.

ERANDE
ERANDF

REFERENCE OPERATION OPERANDS

10 11 12 13 14 13 16 1718 19 20 21 22 23|24 23 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 4S
TMOVE MOVE [0OPERANDA,OPERANDE
DMOVE MOVE [0PERANDB,OPERANDD
DMOVE

NEAT/3 -- INSTRUCTIONS Apr. 70
TAB 2 -- PUB. NO. 4 Page 21

1st MOVE [4]5]1]2](A) [:T:T: . [x]x] [RTa]5].]1] 2] ®
ond vove [05[8[6]o]® CLLI: L IX[X] [@@-]s]8l6].]9[1] ()
3rd Move [9]71316 2] L LELIXX] [FI9L.I7]1]3].[6]2] (®

In the first example, the R is inserted to the left of the significant
value in the field.

In the second example, the three leading zeros are suppressed; two by
spaces and the third by the right arrow (»). Note also that the comma

is overridden.

In the third example, the placement and handling of the minus sign are
shown. Had the source field been positive, the sign would have been

suppressed.

NOTE

The general floating symbol must not be used in the same
editing mask with floating currency symbols, Z's or *'s.
As in other floating symbols, the general floating symbol
must never be specified to the right of an X in an editing
mask.

NEAT/3 -- INSTRUCTIONS Apr. 70
TAB 2 -- PUB. NO. 4 Page 22

MOVE INSTRUCTION

o Alphanumeric Editing MOVE

In an alphanumeric editing MOVE, the letter B in the mask is replaced by
a space in the destination operand. An alphanumeric MOVE, of course, is
left-justified and space-filled to the right. If the data is too long to
fit the mask,the software truncates the excessive right-hand characters.

Although the letter B is the most commonly used insertion character in

an alphanumeric editing MOVE, other insertion characters (described under
INTRODUCTION AND DATA, tab 3, '"Data Layout Sheets,'" Editing Masks) are
permitted.

Consider the following data definitions and the MOVE instruction:

n

REFERENCE LOCATION LENGTH VALUE OR PICTURE

® 10 1) 12 13 14 18 16 17 19 20 21 22 23{24 25 26 27 S1 32 33 34 35 36 37 38 39 40 41 42 43 44 43 46 47 48 9 0

ME . 4.0] , — e
ERANDA 9
ERANDB . 1,210, XB.X XX X X X X X, X X
ERANDC 1.0 XB XXX XXX XX, . o o ...
ERANDD 9 X B XX XXX XX

PNy

REFERENCE OPERATION OPERANDS

10 11 12 13 14 15 16 17[18 19 20 21 22 23{24 25 26 27 26 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
TMOVE MOVE OPERANDA,OPERANDSB
DMOVE MOVE OPERANDA,OPERANDC
DMOVE OPERANDA,OPERANDD

1st MOVE [STPJE[T]E[R]s]o[N] [X[BIX[X[X[X[X[X]X[X]X]X] [s]Z[P[E]T]E]R]S]o|N][Z][Z]

2nd MOVE [STP[E[T]E[R]S]o|N] [X]B]xXIx[x]x]x]x]x]x] [s|A]plE[T]|E[R]S]O]N]
3rd MOVE [STPJEJTIE[R[STO]N] X[BIX[X[X[X]X[X][X] [sIZ]p]E]T[E]R]S]O]
NEAT/3 -- INSTRUCTIONS Apr. 70

TAB 2 -- PUB. NO. 4 Page 23

Conventions

The following table lists the data types that can be moved by the editing
variation of the MOVE instruction and the maximum lengths of operands for

the different data types:

MOVE DATA TYPES ARE TREATED AS FOLLOWS MAXIMUM
TYPE TO TYPE IN THE MOVE INSTRUCTION LENGTH

B- Binary Characters 8
P- Signed Packed Decimal Characters 10
K- Unsigned Packed Decimal Characters
U- Unsigned Decimal Characters 19
Z- Unsigned Decimal Characters
D- Signed Decimal Characters 20
X- Alphanumeric Character Set
S- Alphanumeric Character Set 43
E- Edited

B
P
K
U
Z
D
X
S

Refer to INTRODUCTION AND DATA, tab 3, "Data Layout Sheets" for a complete‘
description of all mask characters.

* Kk XK

NEAT/3 -- INSTRUCTIONS Apr. 70
TAB 2 -- PUB. NO. 4 Page 24

ADD AND SUBTRACT INSTRUCTIONS

ADD

Function

The ADD instruction performs the addition of two numbers that have been pre-
viously defined on data layout sheets. These data definitions provide the ADD
instruction with the size (number of characters) of each number, the decimal
point location, and the type of data (binary, unsigned decimal, signed decimal,
etc.).

The ADD instruction has two basic forms: the 2-address form and the 3-address
form. This feature offers the programmer a degree of flexibility, since he
may elect either to store his result in the same field as the second operand
or to store it in a separate field specified by the third operand.

Examples

o Two-Address ADD Instruction

ADD the contents of the first operand to the contents of the second
operand and store the result in the second operand.

REFERENCE LOCATION LENGTH VALUE OR PICTURE

e

8 9 10 11 12 13 14 39 16 17 19 20 21 22 23|24 23 28 27 31 32 33 34 33 36 37 38 39 40 41 42 43 44 43 46 47 48 9 0

NAME 12

OPERANDA G 6
OPERANDSB 6 6

SR SR RN W

REFERENCE OPERATION OPERANDS

8 # 10 11 12 13 14 13 16 17/18 19 20 21 22 2324 23 26 27 28 29 30 31 32 33 34 33 36 37 38 39 40 41 42 43 44 45 48 47 48 49 SO

ADD OPERANDA,OPERANDSB

The first operand can be either a literal or a reference tag. The second
operand must be a reference tag.

NEAT/3 -- INSTRUCTIONS Apr. 70
TAB 2 -- PUB. NO. 5 Page 1

Contents before execution of the ADD instruction:

OPERANDA 111111
OPERANDB 222 2‘22

Contents after execution of the ADD instruction:

OPERANDB 333 3‘3 3
OPERANDA llll‘ll

(Carets indicate implied decimal points.)

NEAT/3 -- INSTRUCTIONS Apr. 70
TAB 2 —— PUB. NO. 5 Page 2

ADD AND SUBTRACT INSTRUCTIONS

e Three-Address ADD Instruction

Add the contents of the first operand to the contents of the second
operand and store the result in a third and separate operand.

REFERENCE

LOCATION

"

LENGTH

VALUE OR PICTURE

8 9 10 11 12 13 14 15 16 17

19 20 21 22 23}24 23 28 27

NAME

18

OPERANDA

6

OPERANDB

6

RESULT

6

REFERENCE

OPERATION

OPERANDS

8 9 10 11 12 13 14 15 16 17

18 19 20 21 22 23

24 25 26 27 20 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 43 465 47 48 49 30

ADD

OPERANDA,OPERANDB,RESULT

Either the first operand or the second operand (but not both) can be a

literal; the other must be a reference tag.

must be a reference

tag.

The third (result) operand

Contents before execution of the ADD instruction:

OPERANDA 111111
OPERANDB 222%22

Contents after execution of the ADD instruction:

RESULT 333333
OPERANDA 111111
OPERANDB 222222

(Carets indicate implied decimal points.)

NEAT/3 -- INSTRUCTIONS
TAB 2 -- PUB. NO. 5

Apr. 70
Page 3

SUBTRACT (SUB)

Function

The SUB instruction performs the subtraction of two numbers that have been
previously defined on data layout sheets. The data definitions provide the
SUB instruction with the size (number of characters) of each number, the
decimal point location, and the type of data (binary, unsigned decimal, signed

decimal, etc.).

The SUB instruction has two basic forms: the 2-address form and the 3-address
form. This feature offers the programmer a degree of flexibility since he may
elect either to store his result in the same field as the second operand or to

store it in a third and separate field.

Examples

e Two-Address SUB Instruction

Subtract the contents of the first operand from the contents of the
second operand and store the result in the second operand.

o

REFERENCE LOCATION LENGTH VALUE OR PICTURE

8 9 10 11 12 13 14 18 16 17 19 20 21 22 23124 28 26 27

NAME 12
OPERANDA 0 6
OPERANDB 6 6

REFERENCE OPERATION OPERANDS

s 9 101 12 13 14 13 16 17[18 19 20 21 22 23 (24 28 26 27 20 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 4S5 46 47 48 49 30

SUB OPERANDA,OPERANDSB

The first operand can be either a literal or a reference tag; the second
operand must be a reference tag.

Contents before execution of the SUB instruction:

OPERANDB 333333
OPERANDA llll}l

Contents after execution of the SUB instruction:

OPERANDB 222222 .
OPERANDA 111111

(Carets indicate implied decimal points.)

NEAT/3 -- INSTRUCTIONS Apr. 70
TAB 2 -- PUB. NO. 5 Page 4

ADD AND SUBTRACT INSTRUCTIONS

e Three—Address SUB Instruction

Subtract the contents of the first operand from the contents of the
second operand and store the result in the third operand.

N

REFERENCE LOCATION | LENGTH VALUE OR PICTURE

8 9 10 31 12 13 14 13 16 17 19 20 2t 22 23|24 23 28 27 (31 32 33 34 35 36 37 38 39 40 41 42 43 44 43 46 47 48 & 0

NAME 18
OPERANDA 0 6
0OPERANDSB 6 6
RESULT 6

8 9 10 11 12 13 14 15 16 1710 19 20 21 22 2324 25 26 27 28 29 30 31 32 33 34 35 36 37 30 39 40 41 42 43 44 45 48 47 48 49 N

SuUB

[}
1
|
]
REFERENCE OPERATION OPERANDS ;
1
1
]
[
|
!

Either the first operand or the second operand (but not both) can be a
literal; the other must be a reference tag. The third (result) operand
must be a reference tag.

Contents before execution of the SUB instruction:

OPERANDB 333333
OPERANDA 111111

Contents after execution of the SUB instruction:
RESULT 222222
OPERANDA 111111
OPERANDB 333%@3

(Carets indicate implied decimal points.)

NEAT/3 -- INSTRUCTIONS Apr. 70
TAB 2 -- PUB. NO. 5 Page 5

CONVENTIONS CONCERNING THE ADD AND SUB INSTRUCTIONS

1. The following table lists the data types and the maximum lengths of the
operands upon which addition and subtraction operations may be performed.
Either type may be taken as the minuend in a subtract operation with the
remaining type being taken as the subtrahend.

ADD OR SUBTRACT DATA TYPES ARE TREATED AS FOLLOWS MAXTMUM
TYPE AND TYPE IN THE ADD AND SUB INSTRUCTIONS LENGTH

Binary 8
Signed Decimal Characters 20
Unsigned Decimal Characters 19
Unsigned Decimal Characters
Signed Packed Decimal Characters 10

* Type P (signed packed decimal data) may be added or subtracted on the
NCR Century 200 only. All operands must be of the same type. Both
rounding and overflow checking operations (R, C, and L) are available.

2. The data being added or subtracted must be numeric (either decimal or
binary). All operands must be the same type; i.e., all must be either
decimal or binary numbers.

3. The composite length of operands cannot be greater than the permitted
length of the largest operand. The composite length is determined by
aligning the decimal points of the operands and counting the number of
character positions used on both sides of the decimal point. For
example, consider the following operands:

XXXXXXXX. XX
X« XXX

Since the first operand is 10 characters long and the second operand has
one more character to the right of the decimal point, the composite length
of the two operands is 11 characters.

4. A result of zero in a signed ADD or SUB operation carries the sign of the
second operand (the normal arithmetic result sign of the operation). For

example:
SUB SUB ADD ADD
OPERANDA -1 +1 -1 +1
OPERANDB -1 +1 +1 -1
RESULT -0 +0 +0 -0
NEAT/3 —-- INSTRUCTIONS Apr. 70

TAB 2 -- PUB. NO. 5 Page 6

ADD AND SUBTRACT INSTRUCTIONS

5. When subtracting and using all unsigned fields, take care to assure that
the result is not negative. If the result is negative and the result
field is unsigned, the value in that field is unpredictable. Whenever
the result could be negative, the result field should be signed.

6. The execution time of the ADD and SUB instructions depends upon the type

of data being used. For example, arithmetic manipulation of signed data
requires more processing time than the arithmetic manipulation of unsigned

data.

The following list describes all the conditions necessary to execute an
ADD or SUB instruction in a minimum amount of time.

a. Either 2- or 3-address instructions may be used.

b. All fields must be unsigned decimal.

c. All fields must contain the same number of decimal positions.

d. The result field must be at least as long as the longest operand
field. The lengths of the operand and the result fields need not

be the same.

e. The difference between the number of integer places in the longest
and the shortest fields must be less than 11.

f. Neither rounding nor overflow checking may be requested. (See
"Variations of Arithmetic Instructions' under this tab.)

NEAT/3 -- INSTRUCTIONS Apr. 70
TAB 2 -- PUB. NO. 5 Page 7

MULTIPLY AND DIVIDE INSTRUCTIONS

MULTIPLY (MULT)

The MULT instruction is used to perform the multiplication of two numbers
stored in locations that have been previously defined on data layout sheets.
These data definitions provide the MULT instruction with the size (number of
characters) of each number, the decimal point location, and the type of data
(signed or unsigned decimal).

When either operand of a multiplication operation is zero, the sign of the
result field is positive. Otherwise, the normal algebraic laws of signs
are observed with the MULT instruction. A signed operand and an unsigned
operand are permitted in the same operation; however, if either of the two
operands is defined as signed, the result should also be defined as signed.

For fastest program execution, multiply the longer operand by the shorter
operand. The result is stored in a third operand.

Example

n

REFERENCE LOCATION LENGTH VALUE OR PICTURE

8 9 10 11 12 13 14 15 18 17 19 20 21 22 23]24 28 28 27 ST 32 33 34 33 36 37 30 39 40 41 42 43 44 43 46 47 48 49 B0

INAME .0
OPERANDA 0 3
0PERANDSB . 2

RESULT 5

-

REFERENCE OPERATION OPERANDS

8 9 10 17 12 13 14 15 16 17[18 19 20 21 22 23|24 23 26 27 26 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 43 46 47 48 49 30

MULT OPERANDA,OPERANDB ,RESUL,T

[}
1
1
)
]
]
]
]
1
i
i)
[
}
]

Either the first operand or the second operand (but not both) can be a literal;
the other must be a reference tag. The third (result) operand must be a ref-
erence tag.

NEAT/3 -- INSTRUCTIONS Apr. 70
TAB 2 -- PUB. NO. 6 Page 1

Contents before execution of the MULT instruction:

OPERANDA 627
OPERANDB 9}

Contents after execution of the MULT instruction:

RESULT 57057
OPERANDA 627
OPERANDB 9L

(Carets indicate implied decimal points.)

Note that the number of decimal places in the result is carried out to the
number of places specified on the data layout sheets. For example, if the
field length for RESULT were 6 and the DP entry were 1, the result would be
005705; if the field length were 6 and the DP entry were 3, the result would
be 570570.

R
DIVIDE (DIV)

Function

The DIV instruction performs the division of one number by another. The data
definitions provide the DIV instruction with the size (number of characters)
of each number, the decimal point location, and the type of data (signed or
unsigned decimal).

When the result (quotient) of a division operation is zero, the sign of the
result field is positive. Otherwise, the normal algebraic laws of signs are
observed with the DIV instruction.

Divide the contents of the first operand into the contents of the second oper-
and and store the result in the third operand.

Example

REFERENCE LOCATION LENGTH VALUE OR PICTURE

8 9 10 11 12 13 14 1S 16 7 19 20 21 22 23 31 32 33 34 33 36 37 38 39 40 41 42 43 44 45 46 47 48 49

NAME

OPERANDA
OPERANDSB
RESULT
SAVEREMAIN

NEAT/3 -- INSTRUCTIONS Apr.70
TAB 2 —- PUB. NO. 6 Page 2

MULTIPLY AND DIVIDE INSTRUCTIONS

8 9 10 11 12 13 14 15 16 1718 19 20 21 22 23|24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

1
)
1
i
REFERENCE OPERATION OPERANDS ;
t
]
[}
|
]

DIV OPERANDA,OPERANDB,OPERANDC

Either the first operand or the second operand (but not both) can be a literal;
the other must be a reference tag. The third (result) operand must be a refer-
ence tag. ‘

When whole integers are divided and the rounding feature is not used, any
remainder can be accessed and moved to a user-defined area; however, this

must be done immediately following the DIV instruction. The remainder, which
will never be greater than 19 characters, will be treated as positive integers.
To access the remainder, the programmer must use a MOVE instruction with
>EXEC.REMAINDER as the first operand and the name of an area as the second
operand.

REFERENCE OPERATION OPERANDS

8 9 10 11 12 13 14 15 16 17[18 19 20 21 22 23 {24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 A1 42 43 44 45 46 47 48 49 50

DIV OPERANDA,OPERANDB,RESULT
MO VE ~EXEC-REMAINDER,SAVEREMAIN

v
]
|
1
i
1
1
i
]
1
1
t
1
1
]

1
|
]

>EXEC-REMAINDER is a standard software system tag and, as such, does not need
to be defined by the programmer. The programmer only needs to define the area
into which he wants the remainder placed (SAVEREMAIN in the example).

REMAINDER is defined by the software as 19 unsigned decimal numeric integers.
If the area to receive the remainder is less than 19 characters, only the
number of characters specified will be made available.

Contents before execution of the DIV and MOVE instructions:

OPERANDA 300
OPERANDB 1000

Contents after execution of the DIV and MOVE instructions:

RESULT 3.33
OPERANDA 300
OPERANDB 1000

SAVEREMAIN 0100

Note that the number of decimal places in the result is carried out to the
number of places specified on the data layout sheet. For example, if the field
length for RESULT were 5 and the DP entry were 1, the result would be 000%@; if
the field length were 5 and the DP entry were 3, the result would be 03333.

NEAT/3 -- INSTRUCTIONS Apr. 70
TAB 2 -~ PUB. NO. 6 Page 3

NOTE

Division by zero causes the divide operation to be bypassed.
1f an overflow check is requested, the overflow branch will
be taken. (See "Variations of Arithmetic Instructions' under

this tab.)

CONVENTIONS CONCERNING MULT AND DIV INSTRUCTIONS

The following table lists the types and the maximum lengths of data upon which
MULT and DIV operations may be performed. In multiplication, either type may
be taken as the multiplicand with the remaining type being taken as the multi-
plier. In division, either type may be taken as the dividend with the remain-
ing type being taken as the divisor.

MULTIPLY OR DIVIDE DATA TYPES ARE TREATED AS FOLLOWS MAXIMUM
TYPE AND TYPE IN THE MULT AND DIV INSTRUCTIONS LENGTH
D D D- Signed Decimal Characters 20
D UorZ U- Unsigned Decimal Characters 19
Uor Z UorZ Z- Unsigned Decimal Characters
p* p* P- Signed Packed Decimal Characters 10

* Type P (signed packed data) may be multiplied on the NCR Century 200 only.
All operands must contain data of this same type. Both rounding and overflow
checking variations (R, C, and 1) are available.

To access a remainder, the MOVE >EXEC.REMAINDER instruction must immediately
follow the division. The remainder of a DIV instruction operating upon signed
packed decimal data will be unsigned decimal.

LB 5 5

NEAT/3 -- INSTRUCTIONS Apr. 70
TAB 2 -- PUB. NO. 6 Page 4

VARIATIONS OF ARITHMETIC INSTRUCTIONS

» ¥» PERFORMING ARITHMETIC OPERATIONS WITH OVERFLOW CHECK

Function

There are two variations of the arithmetic instructions that will check an
arithmetic result to determine if the result overflows the field assigned to
store the result. (This check is only to the left of the decimal number.)

The letter C added to an arithmetic instruction directs the instruction to
check for overflow and, if overflow occurs, to branch to the user's routine
that handles overflows.

The letter L added to an arithmetic instruction also directs the instruction
to check for overflow but, if overflow occurs, to link to the routine that

handles overflows.

Examples of these two

overflow

variations are shown below.

REFERENCE

OPERATION

OPERANDS

~

8 9 10 11 12 13 t4 15 16 17

18 19 20 2t 22 23

24 23 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 A1 42 43 44 45 46 47 48 49 SO

A DD

>
(e~}
N

AD

3

A DD,

AD

Y

o

S, U

S U

he

MU

L

MU

b

D
D
D
B
S UB
B8
B
L
L
1)

DI

b
| |0 |@ |oo (00 (0 |oo (o [0 (O
OO 1O O N[O N O IN O

b
F

c
C
(o4
C
C
C
C
C
C
Cc
Cc
C

DLV

RSP S S O b o o P P PO P

b
(oo}
(]

Operands A, B, and C are the reference tags of data fields; operand Z is
the reference tag of the user's routine that handles overflows.

NEAT/3 -- INSTRUCTIONS
TAB 2 -- PUB. NO. 7

Apr. 70
Page 1

Example

The ADDC (Add and Check) instruction follows:

»

REFERENCE LOCATION LENGTH VALUE OR PICTURE

8 9 10 11 12 13 14 15 16 17 19 20 21 22 23]24 25 26 27 31 32 33 34 35 36 37 38 39 40 41 A2 43 44 45 48 47 48 49 30
n

N AME _ 12
OPERANDA 0 6
o P ERANDSB 6

REFERENCE OPERATION OPERANDS

24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 0

8 9 10 11 12 13 14 15 16 17(18 19 20 21 22 23

AppDC |0PERANDA,OPERANDB,ROUTINE?Z

1t ¢t 8 3 31 't & 1 1 1 1 1 1 11 @t &t 1

The last operand is the reference tag of the routine for handling an overflow

situation.

Contents before execution of the ADDC instruction:

OPERANDA 5 111‘2 2

OPERANDB 522%%1
333, Overflow occurs. Control is transferred to

the routine represented by ROUTINEZ.

Contents after overflow occurs:
OPERANDB 522%}1

(Carets indicate implied decimal points.)

NOTE

When an overflow check is not requested but overflow occurs,
the result operand will contain the arithmetic result minus

the overflow.

Apr. 70

NEAT/3 -- INSTRUCTIONS
Page 2

TAB 2 -- PUB. NO. 7

VARIATIONS OF ARITHMETIC INSTRUCTIONS

PERFORMING ARITHMETIC OPERATIONS AND ROUNDING THE RESULT

Function

This 2-address or 3-address variation of the arithmetic instructions rounds

off the result of an arithmetic instruction as specified in the data definition.
For example, if 1.55 is to be added to 2.5 and stored in an operand that has
only one decimal place, the round variation of the arithmetic instruction
rounds the result to the nearest tenth before storing the result in the result
operand. So, 1.55 + 2.50 = 4.05, which is then rounded to 4.1.

To indicate the rounding variation, the letter R is added to the arithmetic
instruction. Examples follow:

REFERENCE OPERATION OPERANDS

v
|
1
1
i
|
|
i
]
1

8 9 10 11 12 13 14 15 16 1718 19 20 21 22 23|24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
!

ADDR)

+
L % 8 ¢ 2 1 3 3 1 1% 2 13

%
ADDR

2 1 1 1 1 1 t 't 3

SUBR

11 3 1 3

A
A
A
SUBR A
A
A

1 3 ¢ 3 1 1 3 ® ¢ 3 b 3 @

1 & 3 3 2

MULTR,

Ao L do_ .

DI VR

Example

The ADDR (Add and Round) instruction follows:

]

REFERENCE LOCATION LENGTH VALUE OR PICTURE

® 10 11 12 33 14 135 16 17 19 20 21 22 23]24 28 28 27 31 32 33 34 33 36 37 38 39 40 41 42 43 44 45 46 47 48 40 30
AME 17 .
PERANDA .
PERANDSB
ESULT

9 10 11 12 13 14 15 16 1718 19 20 21 22 23 (24 235 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 A2 43 44 45 46 47 48 49 30

(]
|
1
]
1
REFERENCE OPERATION OPERANDS ;)
T
I
]
1
I
1

ADDR OPERANDA,OPERANDB ,RESULT

Contents after execution of the ADDR instruction:

OPERANDA 111345
OPERANDB 222411

RESULT 33376

NEAT/3 -- INSTRUCTIONS Apr. 70
TAB 2 ——- PUB. NO. 7 Page 3

BOTH ROUNDING AND OVERFLOW CHECK

Function

The arithmetic instructions have two variations that will round off an
arithmetic result and then check for overflow.

When the letters RC are added to an instruction, the instruction rounds off
the result and determines if it overflows the assigned field. If an overflow
occurs, a branch is taken to the user's routine that handles overflows.

The letters RL added to an arithmetic instruction will also round off the
arithmetic result and check for overflow; however, if overflow occurs, a

link is made to the user's routine that handles overflows.

Examples of these two variations are shown below.

REFERENCE OPERATION OPERANDS

~

8 !|0l||l|3l‘l$'5|7l0l9202l222.3142525272.29!03!32)33‘353631!839404!12434445464740‘9!0

o
=
>
[o~]
~N

=4

c
c
L‘L
L
c
c

wl v (>

— = jcjc|lcljc |lCc |jc O

~ |
(> (> =|=|=|=[=|>]

olojojojojojojajaojojofo
w ol o|ov|o|w|w|jo|{w|o|w®
O0.000’N.(')NO_N ol

DR
DR
D_R
B_R
B_R
B.R
B R
LT
LT
VR
VR

EACEIEIES
rlololo|lr |

LR R 2R

NEAT/3 -- INSTRUCTIONS - Apr. 70
TAB 2 —— PUB. NO. 7 Page 4

LOG INSTRUCTION

LOG

Function

The LOG instruction allows the programmer to store a limited amount of informa-
tion in the system log. During one run, the programmer may log up to 20 mes-
sages, each no longer than 110 characters in addition to the prefix LOG. The
message, stored in an area defined by the programmer, must be in the exact
format desired when the log is printed; however, a printer control block should
not be included. The log print routine automatically attaches the necessary

control block to the message.

Whenever the program attempts to log more than 20 messages, the system log is
closed to the program and a message noting this condition is placed in the log.
All additional log messages generated by the program in that run are disregard-
ed; all additional messages generated by the software are logged as normal.

The programmer must define an area to contain a log message. The first three
characters in this area must always be LOG. The programmer may define the
message as constants on the data layout sheet, or he may define part of the
message and move additional data generated elsewhere by the program into the
reserved log message area. This technique is illustrated below.

b}

REFERENCE LOCATION LENGTH VALUE OR PICTURE

8 9 10 11 12 13 14 15 16 17 19 20 21 22 23{24 23 26 27 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 30
L|0|G|MIE|S|51A|G|E I T T T)
PansnFnl-xl 3 XLlolGlllllllljllllllll

212 4t 1

MESSAGE, X[TOTAL, ITTEMS, . v vy,

|l]|9 4 1% ¢ .t 0 ¢ 3 t 2 't 8 ¢ % & ¢ % 2 1

11 11 % % 23 2 -3 33

TnolTALS] 1 3 3¢ & 3 2 ¢ 3 2 ¢ 2 .2 2 2 & % 2.1

Lt 3 & 3 & 3 11 3 1

REFERENCE OPERATION OPERANDS

8 9 10 11 12 13 14 15 16 1718 19 20 21 22 23 (24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 43 46 47 48 49 30

L 0 G LlolGQMlElSlSlAlGIEl $._ 0 % ¢ ¢ 3 ¢ ¢t % 8. 3 2. %2 3% %t %

12t ¢ 8 2 3 .2 2 131 &t 2

The 3-character prefix, LOG, must appear at the beginning of every user log
message. In this example, the partial message TOTAL ITEMS is defined as con-
stants by the programmer; the remaining portion of the message, the actual
total, is to be moved into the reserved log message area by the programmer.

NEAT/3 -~ INSTRUCTIONS Apr. 70
TAB 2 —- PUB. NO. 8 Page 1

Conventions
No more than 20 messages may be logged by the program.

Messages must be 110 characters or less (in addition to the prefix, 1.0G); the
messages should be in the exact format desired when the log is printed.

No printer control block should appear in the message.

NEAT/3 -- INSTRUCTIONS Apr. 70
TAB 2 -- PUB. NO. 8 ‘ Page 2

CNSOUT, CNSIN, AND CNSINA INSTRUCTIONS

The CNSOUT, CNSIN, and CNSINA instructions provide the programmer with the means
of communicating with the operator during program execution. At any desired
points in his program, the programmer may address an informative message (the
operand of a CNSOUT instruction) or a request (the operand of a CNSIN or

CNSINA instruction) to the operator. CNSOUT does not require a reply from the
operator. CNSIN and CNSINA instructions do require replies and both instruc-
tions stop the program until the operator's response is completed.

CNSIN requires input in hexadecimal; CNSINA accepts input in either alpha or
hexadecimal. CNSIN is intended for use with systems that do not have an I/0
Writer, CNSINA for systems equipped with an I/0 Writer.

CNSOUT
Function

The CNSOUT instruction is the means by which the programmer relays specific
information or directions to the operator during program processing. Since
CNSOUT messages are advisory or explanatory in content, no operator reply is
required. CNSOUT messages may assume either of two formats: (1) a hard copy
printout on the I/0 Writer or printer, or (2) a console message in the
INFORMATION DISPLAY lights. Output to these three peripherals is based on
preferential availability as listed below:

1. the I/0 Writer
2. the printer
3. the INFORMATION DISPLAY lights on the console.

If the system includes an I/0 Writer, the I/O Writer is always used to print
the CNSOUT message. No console display occurs and processing is not inter-

rupted.

If the I/0 Writer is not present, the CNSOUT message is output to the printer
if it is available (no files open). No console display occurs and processing
is not interrupted.

If the printer is busy, the processor enters a wait state and the first two
characters of the programmer's message (wait code) are displayed in the
INFORMATION DISPLAY lights on the console. The operator must then access the
remainder of the CNSOUT message in the console INFORMATION DISPLAY lights.

NEAT/3 -- INSTRUCTIONS Apr. 70
TAB 2 -- PUB. NO. 9 Page 1

e Hard Copy Message

The hard copy message is composed of alphanumeric characters. It must be
brief enough to be output on one line of the I/0 Writer or printer. The
maximum number of characters output in one line by the I/0 Writer is 60
characters. Since the limitations of the I/0 Writer are more strict than
the printer, the programmer should adhere to the I/0 Writer limitationms.
If an I/0 Writer message is longer than the maximum 60 characters, the
extra characters are dropped. The two characters following the hard copy
message must be the hexadecimal characters FF, signifying end-of-message;
however, these two characters are not printed, and are not included as a
part of the 60-character maximum. The end-of-message characters (FF) are
specified separately in a hexadecimal field. Format of a typical hard
copy CNSOUT message is shown below:

REMOVE TAPE FROM HANDLER 01

e Console Messages

If the system has no I/0 Writer and the printer is not available, the CNSOUT
message is output through the console (in hexadecimal form, two hexadecimal
characters at a time), on the eight INFORMATION DISPLAY lights. The bit
configuration for hexadecimal characters is listed below:

Bit Bit
Decimal Hexadecimal Configuration Decimal Hexadecimal Configuration

0 0 0000 8 8 1000
1 1 0001 9 9 1001
2 2 0010 10 A 1010
3 3 0011 11 B 1011
4 4 0100 12 C 1100
5 5 0101 13 D 1101
6 6 0110 14 E 1110
7 7 0111 15 F 1111

For a detailed explanation of hexadecimal data, see NEAT/3 REFERENCE MANUAL,
INTRODUCTION AND DATA, tab 2, '"Data Concepts."

The first two characters displayed in the INFORMATION DISPLAY lights are
the wait code. The operator then accesses any additional console output,
two characters at a time. The final two characters displayed must be the
hexadecimal characters FF, signifying end-of-message. To enable the opera-
tor to correctly interpret the display, the programmer should explain the
display in the run book. For example, assume that the light display for
the message REMOVE TAPE FROM HANDLER 01 is 9101FF.

NEAT/3 -- INSTRUCTIONS Apr. 70
TAB 2 -- PUB. NO. 9 Page 2

CNSOUT, CNSIN, AND CNSINA INSTRUCTIONS

e Wait Code

The first two characters of this message (91) tell the operator that this
is a programmer message rather than a system message. The 8-light (high-
order bit) of the wait code must be on for all user messages. This
restriction limits the first character to the hexadecimal range 8 to F
(any smaller hexadecimal character would turn the 8-light off). If the
first character is a hexadecimal F, the second character is restricted

to the hexadecimal range O to D (the hexadecimal combination FE is
reserved, and FF indicates end-of-message). The wait code followed by

FF could be the complete message, since the wait code may simply be a

key to the programmer's message in the run book.

The first two characters of the light display 9101FF are shown below:

WAIT CODE DISPLAY

| _JoJe] Jelele]

B 7 6 5 4 3 21
Y Y
9 1

)

e Additional Console Output

Although the programmer usually limits his message to two hexadecimal
characters (wait code) for display, he may use as many 2-character hexa-
decimal combinations as necessary to output his information. These
additional characters are accessed and displayed two at a time in the
INFORMATION DISPLAY lights when the ACT switch is pressed. The wait
code restrictions on the high-order bit (8-light) do not apply to the
remainder of the console output. Therefore the hexadecimal range O to

F may be used for all the remaining characters of the displayed message,
with the exception of the hexadecimal combinations FE and FF. For
example, the second two characters of the light display 9101FF is shown
below: '

ADDITIONAL CONSOLE OUTPUT DISPLAY

olojelololele]

8 7 6 5 4 3 2

e\,

0 1

NEAT/3 -- INSTRUCTIONS Apr. 70
TAB 2 -- PUB. NO. 9 Page 3

e FF

The last two hexadecimal characters of the console display must be FF
(all lights on) to signify end-of-message to the operator. This example
is shown below:

END OF MESS.

8 7 65 4 3 21
F F

EXAMPLE

The programmer must define his message to include the format for both the
console (wait code display) and hard copy messages. When defining the mes-
sage area, the entire message (including both message formats) cannot be
longer than 77 characters. Both the console and hard copy messages must
end with a hexadecimal FF, signifying end-of-message. The message area
definition for the previously illustrated hard copy and console messages

is shown below:

bl b]

|
1
REFERENCE LOCATION LENGTH VALUE OR PICTURE E «
1

1
8 9 10 11 12 13 14 15 16 17 19 20 21 22 23{24 25 26 27 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 S0;51 52 53 S4 55 56 57 58
n

MlELSlSIAIGIEl]ll 11|LL3|;I B T NN TN T TN N U T NN NN N T T U N S N 1.1 3 ¢ % ¢t t 1

12 9 3 2 33 & 1 |||101||3 gl]lolllFlFlllIIlIllleIl:lLJLlll]l

P Sl B T S S T N T S T Tl N | (il MM Rl T Ll S B LA LI}

30 FF

1
RS S SO TR S N N N | [T N I | 12 3 3 3 ¢ 3 ¢ 3% ¢ % 2 % v ¢ % & 2 4 1 2 ¢ 2 1 3 2 3

PRINT 3], .27 REMOVE, TAPE, FROM, HANDLER, 0,,,

NOTE

A hexadecimal field cannot be accessed by the program;
therefore, reference entries are not made for hexadecimal
fields. If it is necessary for the programmer to access

a hexadecimal field, he must also define it as an accessible
data type (such as X or B type) and assign a reference
entry. See NEAT/3 REFERENCE MANUAL, INTRODUCTION AND DATA,
tab 2, "Data Concepts."

NEAT/3 -- INSTRUCTIONS . Apr. 70
TAB 2 -- PUB. NO. 9 Page 4

CNSOUT, CNSIN, AND CNSINA INSTRUCTIONS

The CNSOUT instruction to access this message is shown in the following
coding:

REFERENCE OPERATION OPERANDS

8 9 10 11 12 13 14 15 16 1718 19 20 21 22 23|24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 S0

CNSOUTIMESSAGE.]

:_ 1 1 @ ¢ 1 ® % 1 Lt "1 "1 "2 B ol gl Bhul 2 B Btk NN SN AUUUS SN NN SN JNNN NNNN NN NN SN NS NI DN SN NN B S

Conventions

Every message referenced by a CNSOUT instruction must be defined in two for-
mats: the console message in hexadecimal characters to be displayed in the
INFORMATION DISPLAY lights, and the hard copy message to be output to the I/0
writer or printer.

The last two characters of both the console and hard copy messages must be the
hexadecimal characters FF, signfying end-of-message.

A hexadecimal field cannot be accessed by the program and must therefore be
included as a field of a previous definition which is accessible to the program.

The maximum number of characters output in one line by the I/0 Writer is 60
characters. Since the limitations of the I/0 Writer are more strict than the
printer, the programmer should adhere to the I/0 Writer's limitations to avoid
losing the final part of the message when output is to the I/O Writer.

CNSIN

Function

The CNSIN instruction is another means by which the programmer relays informa=-
tion to the operator during program processing. Since CNSIN requires an oper-
ator response, these messages are often in the form of a question. These
messages may assume either of two formats: (1) a hard copy printout which is
output on the I1/0 Writer or printer, or (2) a console message in the INFORMA-
TION DISPLAY lights. Output to these three peripherals is based on preferential
availability as listed below:

1. the I/0 Writer
2. the printer
3. the INFORMATION DISPLAY lights on the console.

If the system includes an I/0 Writer, the I/0 Writer is always used to print
the CNSIN message. At the end-of-message (FF), the I/O Writer is selected for
input and the operator's reply is entered through the I/0O Writer. No console
display is made, and processing is not interrupted.

If the I/0 Writer is not present, the CNSIN message is output to the printer
if it is available (no files open). The processor enters a wait state and

NEAT/3 -- INSTRUCTIONS Apr. 70

TAB 2 -- PUB. NO. 9 Page 5

hexadecimal FF is displayed in the console INFORMATION DISPLAY lights. The
operator's response is entered through the console switches before processing
is resumed.

If the printer is busy, the processor enters a wait state and the first two
characters of the programmer's message (wait code) are displayed in the INFOR-
MATION DISPLAY lights on the console. The operator must then access the re-
mainder of the CNSIN message in the console INFORMATION DISPLAY lights. The
operator's response must be entered through the console switches before process-
ing is resumed.

e Hard Copy Messages

The hard copy message is composed of alphanumeric characters. It must be
brief enough, including the operator's response, to be output on one line
of the I/0 Writer or printer. The maximum number of characters output in
one line by the I/0 Writer is 60 characters. Since the limitations of the
I/0 Writer are more strict than the printer, the programmer should adhere
to the I/0 Writer limitations. If an I/0 Writer message is longer than the
maximum 60 characters, the extra characters are dropped. The two characters
following the hard copy message must be the hexadecimal characters FF, sig-
nifying end-of-message; however, these two characters are not printed, and
are not included as a part of the 60-character maximum. The end-of-message
characters (FF) are specified separately in a hexadecimal field. Format of
a typical hard copy CNSIN message is shown below:

ENTER 01 IF PUNCHED CARD FILE; 02 IF NOT)

NOTE

The arrow in the above illustration is not printed; it in-
dicates the location of the I/0 Writer after printing the
CNSIN messages. In the PRINT field of the message area
definition, a space was provided following the word NOT to
separate the hard copy message from the operator's response.
See the next illustration and the sample data definition on
the next page.

e Console Messages

If neither the I/O Writer nor the printer is available, the CNSIN message
is output in the INFORMATION DISPLAY lights in hexadecimal form, two
characters at a time, as described in the CNSOUT instruction. The oper-
ator enters his response through the console DATA ENTER switches.

Operator's Response

If the CNSIN message is output on the I/0 Writer, the operator uses this peri-
pheral for his response. For example, if a card file is being used, the cor-
rect response to the message in the previous illustration would be 01. The

NEAT/3 -- INSTRUCTIONS Apr. 70
TAB 2 -- PUB. NO. 9 Page 6

CNSOUT, CNSIN, AND CNSINA INSTRUCTIONS

operator enters the characters 0 and 1, followed by the nonprinting BELL
character which signals the end of message (line) input. Consider the follow-
ing illustration:

ENTER 01 IF PUNCHED CARD FILE; 02 IF NOT 018

NOTE

For purposes of illustration, the nonprinting BELL character
is represented by the symbol B in the above illustration.

CNSIN assumes all input through the I/O Writer to be hexadecimal. Therefore,
the characters 0 and 1 entered by the operator are interpreted as the hexa-
decimal characters O0l.

Since a hexadecimal field cannot be accessed by the program, the input area
must be defined as an accessible field type, such as binary. Binary provides

a particularly convenient conversion from hexadecimal, since hexadecimal input
00 through 09 carries the same numeric value and bit configuration as binary

0 through 9. Beyond the digit nine, however, binary and hexadecimal characters
assume different values.

If the CNSIN message is output to the printer, the processor enters a wait
state and the hexadecimal characters FF (all lights on) are displayed in the
INFORMATION DISPLAY console lights. The operator enters his response through
the console DATA ENTER switches, two characters at a time. See OPERATORS IN-
FORMATION MANUAL, HARDWARE, Consoles tab.

EXAMPLE

The programmer must define his message to include the format for both the
console (wait code display) and hard copy messages. When defining the
message area, the entire message (including both message formats) cannot
be longer than 77 characters. Both the console and hard copy messages
must end with a hexadecimal FF, signifying end-of-message. In addition,
an input area for the operator's response must be defined. A typical
message area definition for the previously illustrated CNSIN message 1is
shown below:

» »

REFERENCE LOCATION LENGTH VALUE OR PICTURE . COMMENTS

1
1
i
|
1
'
i
T

8 % 1011 12 13 1413 16 17[1e1s 20 21 22 23{24 25 28 27 313233 34 35 36 37 30 39 40 41 42 43 44 43 46 47 48 49 30,51 32 33 34 35 36 57 38 59 40 61 62 €3 64 63 64 €7 68 69 70 71 V2 73!
MESSAGE?2 44
" PRI PR

0 2
NI el BT 2

2| 41

NEAT/3 -- INSTRUCTIONS Apr. 70
TAB 2 -- PUB. NO. 9 Page 7

e Following the text of the hard copy message, the programmer should include
a space (f1) to separate his message from the operator's response.

e The programmer should further restrict the length of his message to provide
space on the same printline for the operator's response.

e The length of the input area (INAREA1l) must be defined to accept the opera-
tor's response, plus one additional character to accommodate a hexadecimal
FF which is moved into the input area by the software.

NOTE

A hexadecimal field cannot be accessed by the program; there-
fore, reference entries are not made for hexadecimal fields.
If it is necessary for the programmer to access a hexadecimal
field, he must also define it as an accessible data type (such
as X or B type) and assign a reference entry. See NEAT/3 REF-
ERENCE MANUAL, INTRODUCTION AND DATA, tab 2, "Data Concepts."

The CNSIN instruction to access this message is shown in the following coding:

'

REFERENCE OPERATION OPERANDS

8 9 1011 l2|3|115:I$I719I920212223ZAZSZG2720293031323334!53637303940‘IAZ“JI‘SAG“I‘!"SO

cllelIlNl MlElSlSlAlGlElzl’IIINIAIRIElAlll 1t 1 1 @ 1 1t 1

Conventions

Every message referenced by a CNSIN instruction must be defined in two formats:
the console message in hexadecimal characters to be displayed in the INFORMA-
TION DISPLAY lights, and the hard copy message to be output to the I/0 Writer
or printer.

The last two characters of both the console and hard copy messages must be the
hexadecimal characters FF, signifying the end of the message.

A hexadecimal field cannot be accessed by the program and must therefore be
included as a field of a previous definition which is accessible to the program.

The maximum number of characters output in one line by the 1/0 Writer is 60
characters. Since the limitations of the I/0 Writer are more strict than the
printer, the programmer should adhere to the I/0 Writer's limitations to avoid
losing the final part of the message when output is to the I/0 Writer.

The CNSIN instruction requires the operator to respond to the message by in-
putting information through the console or on the I/0 Writer.

NEAT/3 -- INSTRUCTIONS Apr. 70
TAB 2 -- PUB. NO. 9 Page 8

CNSOUT, CNSIN, AND CNSINA INSTRUCTIONS

The CNSIN instruction permits the programmer to include options in his program.
The operator's response can be compared to a predetermined value and the pro-
gram can branch to special routines or continue through the general program.

CNSINA
Function

The CNSINA instruction communicates a request to the operator and accepts his
reply during program processing. Operator input is entered in alpha-numeric
characters either directly through the I/0 Writer or as hexadecimal representa-
tion of alphanumeric characters through the console. The CNSINA message may be
output in either of two forms: (1) a hard copy that is output on the I/0 Writer
or printer, or (2) a console message in the INFORMATION DISPLAY lights. The
selection of output medium is determined by preferential availability as listed

below:

1. the I/0 Writer
2. the printer
3. the INFORMATION DISPLAY lights on the console.

If the system includes an I/0 Writer, the I/0 Writer is always used to print
the CNSINA message. At the end of the message, the I/0 Writer is selected for
input and the operator's reply should be entered through the I/0 Writer. No
console display is made, and processing is not interrupted.

If the I/0 Writer is not present in the system, the CNSINA message is output to
the printer if it is available (no files open). The processor enters a wait
state and hexadecimal FF is displayed in the console INFORMATION DISPLAY lights.
The operator's response must be entered through the console switches before

processing is resumed.

If the printer is busy, the processor enters a wait state and the first two
characters of the programmer's message (wait code) are displayed in the INFORMA-
TION DISPLAY lights on the console. The operator must then access the remain-
der of the CNSINA message in the console INFORMATION DISPLAY lights. The
operator's response must be entered through the console switches before

processing is resumed.

e Hard Copy Messages

The hard copy message is composed of alphanumeric characters. It must be
brief enough, including the operator's response, to be output on one line
of the 1/0 Writer or printer. The maximum number of characters output in
one line by the I/0 Writer is 60 characters. Since this limitation is
more strict for the I/0O Writer than for the printer, the programmer should
adhere to the I/0 Writer limitation. If an I/O Writer message is longer
than the maximum 60 characters, the extra characters are dropped. The

two characters following the hard copy message must be the hexadecimal
characters FF, signifying end-of-message; however, these two characters
are neither printed nor included as a part of the 60-character maximum.
The end-of-message characters (FF) are specified separately in a hexadecimal
field. Format of a typical hard copy CNSINA message is shown below:

NEAT/3 -- INSTRUCTIONS Apr. 70
TAB 2 -- PUB. NO. 9 Page 9

ENTER YES IF APPROPRIATE 4

NOTE

The arrow in this illustration is not printed; it indi-
cates the location of the I/0 Writer after printing the
CNSINA message. In the PRINT field of the message area
definition, a space is provided following the word
APPROPRIATE to separate the hard copy message from the
operator's response. See the next illustration and
sample data definition.

s Console Messages

1f neither the I/0O Writer nor the printer is available, the CNSINA message
is output in the INFORMATION DISPLAY lights in hexadecimal, two characters
at a time, as described in the CNSOUT instruction.

The first two characters displayed in the INFORMATION DISPLAY lights are
the wait code. The operator then accesses any additional console output,
two characters at a time. The final two characters displayed must be the
hexadecimal characters FF, signifying end-of-message. To enable the
operator to correctly interpret the display, the programmer should explain
the display in the run book. For example assume the light display for the
message ENTER YES IF APPROPRIATE is 84 FF.

e Wait Code
The first two characters of this message (84) tell the operator that this
is a programmer message rather than a system message. The 8-light (high

order bit) of the wait code must be on for all user messages.

The wait code followed by FF represents the complete message since it is
actually the key to the programmer's message in the run book.

Operator's Response

If the CNSINA message is output on the 1/0 Writer, the operator uses this
peripheral for his response. For example, if the indicated response to the
above request is YES, the operator enters the characters Y, E, and S, followed
by the nonprinting BELL character which signals the end of message input.
Consider the following illustration:

ENTER YES IF APPROPRIATE YES B8

NOTE

For purposes of illustration, the nonprinting BELL charac-
ter is represented by the symbol B8 in the above illustration,

NEAT/3 -- INSTRUCTIONS Apr. 70
TAB 2 -- PUB. NO. 9 Page 10

CNSOUT, CNSIN, AND CNSINA INSTRUCTIONS

Since CNSINA accepts input in alphanumeric, the operator's reply is inter-
preted exactly as entered on the I/0 Writer.

If the CNSINA message is output to the printer, the processor enters a wait
state and the hexadecimal characters FF (all lights on) are displayed in the
INFORMATION DISPLAY console lights. The operator enters his response through
the console DATA ENTER switches, two characters at a time. See OPERATOR'S
INFORMATION MANUAL, HARDWARE, consoles tab. -

EXAMPLE

The programmer must define his message to include the format for both
the console (wait code display) and hard copy messages. The area for
alphanumeric input should not exceed 60 characters. Both the console
and hard copy messages must end with a hexadecimal FF, signifying end-
of-message. In addition, an input area for the operator's response must
be defined. A typical message area definition for the previously
illustrated CNSINA message is shown below:

N o

REFERENCE LOCATION LENGTH VALUE OR PICTURE «

[}
1
1
1
1
1
[}
1
]
1

8 9 10 11 12 13 14 18 16 17 un.zlzzz.s'uuun 3|)13334’!u37!‘3.“4|“Bl“s“l7‘l“”!l!l!!5‘55
MESSAGES o 28 i
2

PRINT . 2.5
1

|
1

INAREAS3
INPUT

Following the text of the hard copy message, the programmer should include a
space (@) to separate his message from the operator's response.

The programmer should allow space on the printline following his message for
the operator's response.

The length of the input area (INAREA 3) must be defined to accept the opera-
tor's response, plus one additional character to accommodate a hexadecimal FF
which is moved into the input area by the software.

NEAT/3 -- INSTRUCTIONS Apr. 70
TAB 2 -- PUB. NO. 9 Page 11

NOTE

A hexadecimal field cannot be accessed by the program;
therefore, reference entries are not made for hexadecimal
fields. 1If it is necessary for the programmer to access a
hexadecimal field, he must also define it as an accessible
data type (such as X or B type) and assign a reference entry.
See NEAT/3 REFERENCE MANUAL, INTRODUCTION AND DATA, tab 2,
"Data Concepts."

The CNSINA instruction to access this message is shown in the following coding:

REFERENCE OPERATION OPERANDS

8 9 101 |2|3IIIS|Gl7l8IQZOZl22132‘2525272329303|32333‘3536373839‘0‘!‘2434‘45‘6‘7‘8‘950

CNSINAMESSAGES, ILNAREAS

(S . | FEAS T MR B T T S T TN S NS TS S S WU T S S|

SN W N S NS N S B |

MESSAGE 4 is the reference name of the area in which both console (wait code
display) and hard copy message are stored.

INAREA 3 is the reference name of the input area allocated for the operator's
reply.

Conventions

Every message referenced by a CNSINA instruction must be defined in two formats:
the console message in hexadecimal characters to be displayed in the INFORMA-
TION DISPLAY lights, and the hard copy message to be output to the I/0 Writer
or printer.

The last two characters of both the console and hard copy messages must be
the hexadecimal characters FF, signifying the end of the message.

A hexadecimal field cannot be accessed by the program and must therefore be
included as a field of a previous definition which is accessible to the pro-

gram.

The maximum number of characters output in one line by the I/0 Writer is 60
characters. Since the limitation of the I/0 Writer is more strict than the
printer, the programmer should adhere to the I/0 Writer's limitation to avoid
losing the final part of the message when output is to the I/0 Writer.

The CNSINA instruction requires the operator to respond to the message by in-
putting information through the console or on the I/0 Writer.

NEAT/3 —-- INSTRUCTIONS Apr. 70
TAB 2 -- PUB. NO. 9 Page 12

COND AND XPAND INSTRUCTIONS

COND AND XPAND

Function

The COND (condense) and XPAND (expand) instructions, which pack and unpack deci-
mal data in areas and large fields or groups of fields, are used to conserve

space on an external storage device.

Any even number of characters between 2 and 1024 may be condensed into an area
that is between 1 and 512 characters in length. The field receiving the con-
densed data must be exactly one-half as long as the source field.

Any number of condensed characters between 1 and 512 may be expanded into an
area that is between 2 and 1024 characters in length., The field receiving the
expanded data must be exactly twice the length of the source field.

Individual fields consisting of 20 characters or less may be packed by the
MOVE instruction. However, using COND and XPAND (for a series of fields
treated as a large area) instead of using several MOVE instructions saves
coding in memory. For further information concerning the conversion of data
with the MOVE instruction see INSTRUCTIONS, tab 2, "MOVE Instructions."

The only types of data that should be condensed and expanded with the COND and
XPAND instructions are decimal data (U and D type) and certain symbols shown
in the following chart. However, since the COND instruction will condense any
area without regard to data definitions, the programmer is responsible for
assuring the data type of the fields condensed or expanded.

00110000 00110100 00111000 00101100

00110001 00110101 00111001 00101101
00110010 00110110 ; 00101010 00101110
00110011 00110111 00101011 00101111

If an area containing a data type other than U or D is condensed and then ex-
panded, the result will not be the same as the original area. The result is,
however, predictable. Any condensed character whose least significant four
bits equal binary O through 9 is expanded as the 8-bit characters 0 through 9;
any condensed character whose least significant four bits equal binary 10
through 15 is expanded to the 8-bit characters * through /. For example, the
character A (01000001), condensed as binary 1 (0001), is expanded to the 8-bit
character 1 (00110001). (Consult the NCR Century Code Chart under INTRODUCTION

AND DATA, tab 2, "Data Concepts.')

NEAT/3 -~ INSTRUCTIONS Apr. 70
TAB 2 -- PUB. NO. 10 Page 1

COND and XPAND help conserve space on external storage media when working with
records that contain large amounts of fixed-length decimal data. In defining
the record, the programmer should group in one portion of the record as much
of the decimal data as is practical. All alpha data and ordinary binary data
should be placed in another portion of the record.

The decimal portion of the record may be condensed as it is placed from a work-
area into the output buffer by the COND instruction; it may be expanded again
on input as it is placed into a workarea from the input buffer by the XPAND

instruction.

CONDENSING THE RECORD

REFERENCE LOCATION LENGTH VALUE OR PICTURE

8 9 10 11 12 13 14 13 16 17 19 20 21 22 23|24 25 26 27
BUFFERDEF o 150
ALPHABUFER 0 50
NUMRICBUFR 100

b

> | >

>

/

my<-4 ¥ \

REFERENCE LOCATION LENGTH

w
o

8 9 10 11 12 13 14 13 18 17 19 20 2% 22 23|24 25 26 27
RECORDAREAAl | 250
ALPHADATA ol so0
ALPHAFLD] o] 10
NUMRICAREA|F| 200
NUMRICFLD] _ 10
NUMRICFLD? 05

?
D
D
|ID
D
D
D
D
]

BEIEE UT<T>=]>=

CONSTRUCT THE RECORD IN AN AREA,

MOVE ALPHADATA, ALPHABUFER PLLACE THE AL PHA PORTION IN THE BUFFER,

COND NUMRICAREA, NUMRICBUFR COND THE NUMERIC PORTION IN THE BUFFER.

PUT FILENAME OUTPUT THE RECORD

NEAT/3 —- INSTRUCTIONS Apr. 70
TAB 2 -- PUB. NO. 10 Page 2

COND AND XPAND INSTRUCTIONS

COND and XPAND may not be used with variable-length data such as variable-length
tables; however, they may be used with the fixed-length decimal portion of a
variable-length record. Under these conditions, the programmer must be certain
not to condense such binary fields as the VLI or TLI.

RECORD

Fixed-Length Fixed-Length
Decimal Table Decimal Data

The fixed-length table and fixed-length decimal data portions of the
record may be condensed and expanded.

The binary VLI and TLI, the fixed-length non-decimal data, and the
variable-length table portions of the record may not be condensed
and expanded.

Example

REFERENCE OPERATION OPERANDS

6 $ 10 13 12 13 14 15 16 17|18 19 20 21 22 23|24 23 26 27 28 29 30 31 32 33 34 33 36 37 38 39 40 41 42 43 44 43 48 47 48 49 0

COND [NUMRICAREA,NUMRICBUFR
XPAND [NUMRICBUFR,NUMRICAREAR

In the first example, the COND instruction condenses the data in NUMRICAREA
into an area half the size called NUMRICBUFR.

In the second example, the XPAND instruction expands the data in NUMRICBUFR
into an area twice the size called NUMRICAREA.

Conventions

Only U and D type data should be condensed; the destination buffer or work
area should be defined as X type, to accommodate both U and D type fields.
Only previously condensed X type data should be expanded; the destination

buffer or work area should be defined as X type, to accommodate both U and

D type fields.
The destination field for COND must be half the size of the source field.

The destination field for XPAND must be twice the size of the source field.

NEAT/3 -- INSTRUCTIONS July 70
TAB 2 -- PUB. NO. 10 Page 3

Any even number of characters between 2 and 1024 may be condensed into an
area that is between 1 and 512 characters.

Any number of condensed characters that is between 1 and 512 may be expanded
into an area that is between 2 and 1024 characters in length.

NEAT/3 -- INSTRUCTIONS Apr. 70
TAB 2 -- PUB. NO. 10 Page 4

FINISH INSTRUCTION

FINISH
Function

The programmer places the FINISH instruction at the logical end of the program.
FINISH closes the files that have not been closed and calls Monitor back into

memory.

Example

REFERENCE OPERATION OPERANDS

8 9 10 11 12 13 14 13 16 17|18 19 20 21 22 23

FINISH

Conventions
Every program must have a FINISH instruction.

The FINISH instruction must be placed at the logical end of the program.

NEAT/3 -- INSTRUCTIONS Apr. 70
TAB 2 -- PUB. NO. 11 Page 1

SPREAD INSTRUCTION

FUNCTION

The SPREAD instruction enables the programmer to spread a constant throughout
an area or a field.

There are two formats for this instruction: the first is used when the constant
is represented ‘as a literal; the second is used when the constant is assigned

a reference. Using a reference to spread a constant is more flexible than

using a literal because it allows the programmer to specify new constants dur-
ing the program.

FORMAT FOR LITERAL

When a constant is represented as a literal, it can be spread by using the
format shown below.

REFERENCE OPERATION OPERANDS

8 9 10 31 12 13 14 15 16 1718 19 20 21 22 23 (24 2% 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

'SPREAD|'L',0PERANDSB

The first operand is the literal, which must be a single alphanumeric (X-type)
character. The second operand, the destination operand, is the reference of
the area or field to be filled. This area or field must always be defined as
X-type; it can have a maximum length of 65,535.

NEAT/3 -- INSTRUCTIONS Apr. 70
TAB 2 -- PUB.. NO. 12 Page 1

Examgle

In the example below, the SPREAD instruction directs the software to fill
Notice that the data definition for WORKAREAL defines
the area as X-type data, as required.

WORKAREAL with zeroes.

REFERENCE

LOCATION

b

LENGTH VALUE OR P.CTURE

8 9 10 11 12 13 14 15 16 17

19 20 21 22 23|24 25 26 27 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 S50
1

W,0,R, K, AR ELA T,

1 1.1 1

1 |3L0 1 11 | S T | | B SO B B | 1 1 v 1 1 1

REFERENCE

OPERATION

OPERANDS

8 9 10 11 12 13 14 15 16 17

|0|9202122232‘2525272029303!31333‘353637383940“424344454647‘0‘950

SPREAD'O0' ,HORKAREAT

NOTE

———

Although the MOVE instruction can be used to zero-fill
an area, it can only move a maximum of 20 characters.

Conventions

The literal must be a single alphanumeric (X-type) character.

The destination operand is the reference of the area or field to be filled.
This area or field must be defined as alphanumeric with a length no greater

than 65,535.

FORMAT FOR REFERENCE

To use a reference to spread an alphanumeric constant, the constant must be
properly defined and assigned a reference to be used as the first operand in

the instruction.

NEAT/3 -- INSTRUCTIONS
TAB 2 -- PUB. NO. 12

Apr. 70
Page 2

In the data definitions, this reference must define a 4—character, X-type area:
or field that contains a constant. The constant must always be written as
four identical characters. Consider the coding and data definitions below.

REFERENCE LOCATION LENGTH VALUE OR PICTURE

8 9 10 11 12 13 14 15 16 17 19 20 21 22 23|24 25 26 27 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

OIPIEIRIAINIDIAI 1 1 1 1t OIOIOIOI 1 1% ¢ 1t t 1 11 1 1 1.1

11 ¢t ® % 3 % ¢ ¥ % % 3 % 9 3 3 1 3

L.t 2.3t 1 ¢ 1 3 I

NORKAREA] g 3t 2 KU T S R DU DU N T NS MU BUNE U N NN SN S N R |

REFERENCE OPERATION OPERANDS

8 9 10 11 12 13 14 15 16 17(18 19 20 21 22 23|24 25 26 27 28 29 30 31 32 33 34 33 36 37 38 39 40 41 42 43 44 43 46 47 48 49 30

SPREAD/OPERANDA,WORKAREAI

In the example, the instruction directs the software to spread the constant
(0000) referenced by OPERANDA throughout WORKAREAl1. WORKAREA1l, the destina-
tion operand, must always be defined as alphanumeric with a length no greater
than 65,535.

A reference can also be used to spread constants that are not alphanumeric.
When this function is desired, the first operand in the instruction must be

the reference of a 4-character, alphanumeric (X-type) area. 1In the data
definitions, this data must be defined twice: first as a 4-character, alpha-
numeric area and second as a 4-character field of the desired data type. The
field definition contains the constant, which must be written as four identical
characters (or eight identical characters, if the data type is hexadecimal or
packed).

NEAT/3 -~ INSTRUCTIONS Apr. 70
TAB 2 -- PUB. NO. 12 Page 3

SPREAD INSTRUCTION

Consider the following data definitions and coding.

REFERENCE

LOCATION

LENGTH

VALUE OR PICTURE

|
l
L
|

8 9 10 11 12 13 14 15 16 17

19 20 21 22 23

24 25 26 27

31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 S0y

1

Ol P| E! Rl Al Nl Dl Al 1

1 1 1 1

|
[SN0 NS SAUS NNUN NENE SN N AN NAU NS NN SUN SN NS NS N W S S—

FIFIFIFIFIFIFIFI U NS S RO S W SO S T T I

B B T NN N NS N .

§ S NS WS S T S SN NS N SN SIS SN S NN SN NN S S

0,P,E. R AND,B

[S S SUNS S S N NS SN SN SUNE NN N SN S SN WU N S S—"

[Tt B0 B B ot Ml TN |

REFERENCE

OPERATION

OPERANDS

B 9 10 11 12 13 14 15 16 17

18 19 20 21 22 23

24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

SPREADIOPERANDA,OPERANDSB

In the example, the SPREAD instruction directs the software to spread hexa-
decimal FF's throughout OPERANDB. OPERANDB, the destination operand, must
always be defined as alphanumeric with a length no greater than 65,535,

Conventions

When a reference is used to spread a constant, the first operand must be the
reference associated with the constant; the second operand must be the ref-
erence of the area or field to be filled.

If an alphanumeric constant is spread, the reference must be associated with
a 4-character, X-type constant. The constant must be written as four identical

characters.

If a constant other than X-type is spread, the reference in the instruction
must be associated with a 4-character, alphanumeric (X-type) area. This data
must then be redefined as a 4-character field of the desired data type, and
the constant must be written as four identical characters (or eight identical
characters, if the data type is hexadecimal or packed).

The destination operand must always be defined as an alphanumeric (X-type)
area or field. It can have a maximum length of 65,535.

Apr. 70

NEAT/3 -- INSTRUCTIONS
Page 4

TAB 2 -- PUB. NO. 12

DISC OFF INSTRUCTION

DISC OFF (DSCOFF)

Function

The disc off instruction is used to inform the operator to remove a disc pack.
This instruction causes a message to be displayed on the I/0 writer or the
printer, depending on which is available. The displayed message informs the
operator to remove the disc pack named in the operand of the instruction.

The disc off instruction can be coded in either of two ways: (1) by using a
literal operand to specify the symbolic unit designator (SUD) of the disc pack
to be removed, or (2) by associating a reference with the SUD and using the
reference as the operand. The second method of coding is more flexible because
it allows the programmer to change the SUD during the program.

Example of a Literal

REFERENCE OPERATION OPERANDS

1
1
i
[l
1
|
|
]
]
[
I

8 9 10 11 12 13 14 15 16 1718 19 20 21 22 23|24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

DSC@FF|'DOT"

4-—}-

Example of a Reference

When a refererence is used as the operand of a disc off instruction, it must
first be defined as a 3-character, alphanumeric (X-type) area. The symbolic
unit designator must be specified in columns 31-33 of the data layout sheet.

REFERENCE LOCATION LENGTH VALUE OR PICTURE

8 9 10 11 12 13 14 15 16 17 19 20 21 22 2324 25- 26 27 31 32 33 34 35 36 37 38 39 40 41 42 43 44 A5 46 47 48 49 50
!

ULNIIIT!]lJI 1 1 1t l3 Dlol]l 1t 1 ¢ ¢t 3 @ 1 g % 3 1 1 1 ¢t :_

b

REFERENCE OPERATION OPERANDS

8 9 10 11 12 13 14 15 16 17(18 19 20 21 22 2324 25 26 27 26 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

D.SCHOFFIUNTITI

NEAT/3 -- INSTRUCTIONS Apr. 70
TAB 2 -- PUB. NO. 13 Page 1

Conventions

The programmer must ensure that all opened files are closed before he executes
the disc off instruction.

NEAT/3 -- INSTRUCTIONS Apr. 70
TAB 2 —— PUB. NO. 13 Page 2

	4_01-01_OPEN
	4_01-02
	4_01-03
	4_01-04
	4_01-05
	4_01-06
	4_01-07
	4_02-01_ROPEN
	4_02-02
	4_02-03
	4_02-04
	4_02-05
	4_03-01_CLOSE
	4_03-02
	4_03-03
	4_03-04
	4_03-05
	4_04-01_GET
	4_04-02
	4_04-03
	4_04-04
	4_04-05
	4_04-06
	4_04-07
	4_04-08
	4_04-09
	4_04-10
	4_04-11
	4_04-12
	4_04-13
	4_04-14
	4_04-15
	4_05-01_PUT
	4_05-02
	4_05-03
	4_06-01_WRITSP
	4_07-01_WRITBI
	4_08-01_INSERT
	4_08-02
	4_08-03
	4_09-01_RFILE
	4_09-02
	4_10-01_DELETE
	4_10-02
	4_11-01_MARK_RESET
	4_11-02
	4_11-03
	4_12-01_BLKCHK
	4_12-02
	4_13-01_BLKOUT
	4_14-01_DEFAULT
	4_14-02
	4_14-03
	4_15-01_COMPARE
	4_15-02
	4_16-01_BRANCH
	4_16-02
	4_16-03
	4_16-04
	4_17-01_LINK
	4_17-02
	4_17-03
	4_18-01_MOVE
	4_18-02
	4_18-03
	4_18-04
	4_18-05
	4_18-06
	4_18-07
	4_18-08
	4_18-09
	4_18-10
	4_18-11
	4_18-12
	4_18-13
	4_18-14
	4_18-15
	4_18-16
	4_18-17
	4_18-18
	4_18-19
	4_18-20
	4_18-21
	4_18-22
	4_18-23
	4_18-24
	4_19-01_ADD_SUB
	4_19-02
	4_19-03
	4_19-04
	4_19-05
	4_19-06
	4_19-07
	4_20-01_MUL_DIV
	4_20-02
	4_20-03
	4_20-04
	4_21-01_ADDC_SUBC
	4_21-02
	4_21-03
	4_21-04
	4_22-01_LOG
	4_22-02
	4_23-01_CNSOUT_CNSIN
	4_23-02
	4_23-03
	4_23-04
	4_23-05
	4_23-06
	4_23-07
	4_23-08
	4_23-09
	4_23-10
	4_23-11
	4_23-12
	4_24-01_COND_XPAND
	4_24-02
	4_24-03
	4_24-04
	4_25-01_FINISH
	4_26-01_SPREAD
	4_26-02
	4_26-03
	4_26-04
	4_27-01_DISC_OFF
	4_27-02

