COMPILER CONTROL. STATEMENTS

The compiler control statements control the compilation process for a partic-
ular program and provide such information as the name to be given to the pro-
gram, the type of processor, the memory size of the NCR Century System for

which the program is to be compiled, the type of program listing desired, etc.

Two compiler specification worksheets (also called compiler control sheets)

aid the programmer in preparing the compiler control statements. Sheet 1 is
always required for a compilation. Sheet 2 is optional; its use depends on

the type of options desired by the programmer.

NOTE

When present, the SUDOP instruction is input between
sheets 1 and 2. SUDOP is a SPUR instruction and is not
compiled as part of the source program, (see UTILITY
ROUTINES MANUAL, PROGRAM ASSOCIATED, Source Program
Utility Routines - SPUR").

The programmer's entries on the compiler specification worksheets become the
compiler control statements. The compiler control statements must always be
the first statements in a source program, as explained in the NEAT/3 REFERENCE
MANUAL, COMPILATION PROCESS, tab 1, '"Organization of the Source Program."

The following pages show the compiler specifications worksheets and give a
detailed description of each worksheet entry.

NEAT/3 -- INSTRUCTIONS Apr. 70
TAB 3 -- PUB. NO. 1 Page 1

SHEET 1

COMPILER SPECIFICATION WORKSHEET *
GHeET 1 NICIR]

Preeam Propared by

il

aie Pais e | cm——

ALL 37MBOLIC REFERENCES MUST BE LEFTJUSTIFED AND MUST CONTAIN AT LEAST ONE ALPNABE!IC CHARACTEN
ALL NUMERIC ENTRIES MUST BE AIGHT JUSTIFIEO ANO MUST BL ZERO.FILLED TO Tut LECT

(Shaded Boxes Are Optional) paper Tape Format Code /.991=

1 » [

(2,9,9[0.0,0]

Al Page-Line

Program Name
Language Name (See Language Reference Manual)
Recompilation Name (Enter N in column 24 for initial

compilation, or name of program
to be recompiled)

FJUES U DS D P R P

Type of Compilation (See Language Reference Manual)

Should Punched Input be sorted? (Y-Source lines will be
sorted if out of sequence, N-Source lines will be
renumbered but not sorted. N may not be used for
recompilation)

s

Should Source Statements be renumbered? (Enter 1 thru 0
for renumbering increments 10 thru 100. Enter N if
no renumbering. If column 35 contains N, statements
will be renumbered.

w
13

)

A8 Number of COBOL ID columns (See Language Reference Manual)

A9 Diagnostic Listing Only? (See Language Reference Manual)

00

All Should Object Coding be Generated if Source Language Errors
are Found? (Y or N, N if Blank)

PRINTER OUTPUT

Should Object Coding be Listed?

(Y, N, or E)

Should Printer Listing be Double Spaced? (Y-Double Spacing,

N-Single Spacing)

Cross Reference Listing (P-Source Presentation Sequence,
A-Alphabetical Sequence, B-Both, N-None)

Should FLOWRITE Statements be Deleted from Listing? (See

Language Reference Manual)

FILE OUTPUT

Object Processor Code (1 if 100, Z if 200)

Type of Executive (See Language Reference Manual)

Should Symbolic Debug Information be Included? (Y or N)

=~

C4 Object Memory Size (Enter 016 thru 256 Representing Increments of 1024)| — |

C5 Will overlays or modules be compiled independently? (See Language
Reference Manual)

Master Module SUD (See Language Reference Manual)
Run Time Errors Options (See Language Reference Manual)
Master Module Name (See Language Reference Manual)
Delete Digit

Identification

The programmer should fill in the worksheet header as defined in the NEAT/3
MANUAL, INTRODUCTION AND DATA, tab 3, "Programming Worksheets."

REFERENCE

The paper
compiler.

NEAT/3 --

tape code must be punched if paper tape is used for input to the

INSTRUCTIONS

TAB 3 -- PUB. NO. 1

Apr. 70
Page 2

COMPILER CONTROL STATEMENTS

In the following explanations, all applicable items, where practical, are

filled with a typical entry.
1 A [

Al PAGE-LINE Iglotolo.o.ol"

The page-line number for the first compiler control sheet must always be
000000 as preprinted in positions one through six.

5

7 1
A2 PROGRAM NAME LPIPIAlYIRIOILlLJ])l

The P in position seven is preprinted and must be punched.

Enter the name of the program being compiled, beginning in position eight.
The program name must contain at least one alphabetic character; however,
the compiler does not accept the single letter N in position eight as a
program name, since this letter has special significance in the recompil-
ation name (see item A4).

NOTE

During an initial compilation, SPUR automatically assigns
) the version number 00 to the program, except as noted un-
der item A4,

During recompilation, if the program name is the same as
the recompilation name, the compiler automatically in-
crements the version number of the program being recom-
piled by one, and assigns the new version number to the
recompiled program.

If the version number of the program being recompiled is
99, enter a new (different) program name in positions
eight through 15. The recompiled program thus gets a
new program name with a version number of 00. Renaming
the program in this way is necessary because a current
version number of 99 would be incremented to 00 in the
recompiled program, and the highest version number would
no longer indicate the newest version of the program.

Refer to the examples of program name entries and re-
compilation name entries under item A4,
X 18 23

A3 LANGUAGE NAME (SEE LANGUAGE REFERENCE MANUAL) mlE AT/ l3]>l

Enter NEAT/3 in positions 18 through 23 to identify the programming
language of the source program.

24
A4 RECOMPILATION NAME (ENTER N IN COLUMN 24 FOR INITIAL 32
COMPILATION, OR NAME OF PROGRAM [N
TO BE RECOMPILED) b

M
T I R T T |

If an initial compilation is being performed, enter the letter N in
position 24 and leave positions 25 through 33 blank.

NEAT/3 -- INSTRUCTIONS Apr. 70
TAB 3 -- PUB. NO. 1 Page 3

NOTE

During an initial compilation, if the programmer wishes
to assign a version number other than 00 to the program,
he must enter the letter N in position 24 and the de-
sired version number, minus one, in positions 32 and 33.
During compilation, SPUR increments the number in posi-
tions 32 and 33 by one and assigns this version number
to the new program.

I1f a recompilation is being performed, enter the name and version number of
the program to be recompiled. The program name must begin in position 24
and the version number must be entered in positions 32 and 33. The accept-
able range for the version number is 00 through 99.

If the recompilation name is the same as the program name, the software
permits access only to the latest generation of the program (of which there
can be two) that is already on the program disc.

Consider the following examples of possible program name and recompilation
name entries and the resulting compiled program name and version number.

PROGRAM NAME RECOMPILATION NAME NEW PROGRAM
[QUESTION A2] [QUESTION A4] NAME
ACCTRECD N ACCTRECDOO

ACCTRECD \ralralralralralralra PR ACCTRECD50*
ACCTRECD ACCTRECDOZ ACCTRECDO3**
RECDACCT ACCTRECDOS RECDACCTOO

* Initial compilation only (see NOTE above).
** f, prior to the recompilation, the program disc already

contained versions 00, 01, 02, and 03, the recompilation
results in a new generation of version 03. The previous
generation of version 03 is then no longer accessible.

34
A5 TYPE OF COMPILATION (SEE LANGUAGE REFERENCE MANUAL)

The entry in position 34 may specify any one of four types of compilation
that are available with the NEAT/3 Compiler. In certain instances, the

size of the program to be compiled may affect the type (or combination of
types) of compilation that is required. Consider the following illustration:

NEAT/3 -- INSTRUCTIONS Apr. 70
TAB 3 -- PUB. NO. 1 Page 4

COMPILER CONTROL STATEMENTS

Average-Size Programs Larger Programs With

Not Exceeding 12,000 Overlays And/Or Modules
Source Statements Exceeding 12,000 Source

Statements

Initial Full Compilation Full Compilation
Compilation Overlay Compilation

Recompilation Full Compilation Partial Compilation
Entire Program Overlay Compilation

Recompilation Overlay Compilation Overlay Compilation
Overlays Only

Recompilation Module Compilation Module Compilation
Modules Only

Enter F to specify (1) the initial compilation of an entire program, (2)
the recompilation of an entire program, or (3) the initial compilation of
the main program (of a program exceeding 12,000 source statements). The
initial compilation of large programs requires a second compilation run to
compile the program overlays, (see NEAT/3 REFERENCE MANUAL, COMPILATION
PROCESS, tab 2, "Independent Overlay Compilation').

Enter P to specify the recompilation of the main program (of a program
exceeding 12,000 source statements.) The recompilation of a large program
requires a second compilation run to recompile the program overlays,

(see publication referenced above).

Enter 0 to specify the compilation or recompilation of one or more program
overlays. The use of independent overlay compilations is discussed in the
publication referenced above.

Enter M to specify a module compilation. The use of module compilations
is to be discussed in a future publication.

35
A6 SHOULD PUNCHED INPUT BE SORTED? Y—SOURCE LINES WILL BE SORTED IF OUT
OF SEQUENCE, N—SOURCE LINES WILL BE RENUMBERED BUT NOT
SORTED. N NI’AY NOT BE USED FOR RECOMF’ILATION)

Enter Y if out-of-sequence source statements are to be sorted by page and
line number. A recompilation always requires a Y in position 35.

Enter N if (1) this is an initial compilation, (2) a sort is not desired,
and (3) source statements are to be renumbered in their order of presentation
(see item A7 on the following page).

NEAT/3 —-- INSTRUCTIONS Apr. 70
TAB 3 -- PUB. NO. 1 Page 5

A7

A8

A9

36
SHOULD SOURCE STATEMENTS BE RENUMBERED? ENTER 1t THRU 0 FOR RENUMBERING
INCREMENTS 10 THRU 100, ENTER N IF NO RENUMBERING. IF
POSITION 35 CONTAINS N, STATEMENTS WILL BE RENUMBERED)

Enter a l-character decimal number to specify the renumbering increment
desired. An entry of 1, 2, 3, ... 9 and O reflect increments of 10, 20,

30, ... 90 and 100 respectively.
Enter N if renumbering is not desired and item A6 contains Y.
NUMBER OF COBOL 1D COLUMNS (SEE LANGUAGE REFERENCE MANUAL)

This entry does not apply to the NEAT/3 language and should be left blank.

38

DIAGNOSTIC LISTING ONLY? (SEE LANGUAGE REFERENCE MANUAL) @

Enter P to specify a precompilation run is to be performed, for which the

programmer requests a diagnostic listing only.
40

Al1 HOULD OBJECT CODING BE GENERATED IF LANGUAGE ERRORS ARE FOUND? -
Y OR N, N IF BLANKS\l n
Enter Y if object coding is to be generated if source language errors are

found.
Enter N or leave blank if object coding is not to be generated for source
language errors.
N 43
B1 SHOULD OBJECT CODING BE LISTED? (Y, N, OR E)
Enter Y if the object coding created for each source line of the program
is to be listed as part of the compiler listing.
Enter E if the extended object coding created for the program is to be
listed as part of the compiler listing.
Enter N if no listing of the object coding is desired. If left blank, N
is assumed.
44
B2 SHOULD PRINTER LISTING BE DOUBLE SPACED?
(Y‘—DOUBL_E SPACING, N—SINGLE SPACING @
Enter Y to indicate that the compiler listing should be double spaced.
Enter N to indicate the compiler listing should be single-spaced. If left
blank, N is assumed.
NEAT/3 -- INSTRUCTIONS Apr. 70

TAB 3 —- PUB. NO. 1 Page 6

COMPILER CONTROL STATEMENTS

a5
B3 CROSS REFERENCE LISTING g—sourzcrz PRESENTATION SEQUENCE, A—ALPHABETICAL
SEQUENCE, B=-BOTH, N—NONE) "

Enter P if the cross reference listing is to be printed in presentation
sequence. Each reference is listed with the page and line numbers of all
source statements that use that reference in their operands column. The
listing is in descending order with the reference in the source statement
with the highest page-line number printed first.

Enter A if the cross reference listing is to be printed in alphabetical
order. Each reference is listed with the page and line numbers of all
source statements that use that reference in their operands column.

Enter B if the cross reference listing is to be printed in both alphabetical
order and presentation sequence.

Enter N if the cross reference listing should not be printed. If left

blank, N is assumed.
46

B4 SHOULD FLOWRITE STATEMENTS BE DELETED FROM LISTING? (Y OR N) mﬂ
Enter Y if Flowrite statements are to be deleted from the compiler listing.

Enter N if Flowrite statements are to be included in the compiler listing.
If left blank, N is assumed.

\._50
C1 OBRJECT PROCESSOR CODE (1 IF 100, 2 IF 200)

This entry indicates the type of processor for which this program is to be
compiled.

Enter 1 to specify an NCR Century 100 processor.

Enter 2 to specify an NCR Century 200 processor.
51

C2 TYPE OF EXECUTIVE (SEE LANGUAGE REFERENCE MANUAL)

Enter the symbolic identifier of the executive system for which this pro-

gram is to be compiled.
53
C3 SHOULD SYMBOLIC DEBUG INFORMATION BE INCLUDED? (Y OR N)

Enter Y to indicate that compiler—generated symbolic debug information is
to be included in the object program being compiled. The Symbolic Debug
System can only function with a program that includes the symbolic debug
information.

Enter N if the symbolic debug information is not to be included in the
object program. The option to exclude the symbolic debug information from
an object program is normally used after a program has been debugged and
is ready to be copied to a production disc pack. If left blank, N is

assumed.

NEAT/3 -- INSTRUCTIONS Apr. 70
TAB 3 -- PUB. NO. 1 Page 7

C4

C5

Cc6

Cc7

cs8

D1

Et

54 56

T MEMORY SIZE (ENTER 016 THRU 256 REPRESENTING O] 6 M
MENTS OF 1024

Enter a 3-digit decimal number to indicate the memory size of the system on
which this program is to run. This number represents increments of 1024,
For instance, the number 016 specifies a memory size of 16,384 characters.

If the programmer does not specify the object memory size, or if positions
54 through 56 contain an invalid entry, the compiler automatically assumes
that the object memory size is the same as the memory size of the system on
which the program is to be compiled.

57

WILL OVERLAYS OR MODULES BE COMPILED INDEPENDENTLY?)l
(SEE LANGUAGE REFERENCE MANUAL

Enter Y to indicate that overlays or modules will be compiled independently
from the main program.

Enter N to indicate that overlays will not be compiled independently. If

left blank, N is assumed.
58 60

MASTER MODULE SUD (SEE LANGUAGE REFERENCE MANUAL) :D)I

If a module compilation has been specified (M) in item A5, enter the

symbolic unit designator of the peripheral on which the object master
module is mounted. For other types of compilation, this entry may be
left blank. (See TECHNIQUES AND PROCEDURES MANUAL, COMPILER RELATED,
"Object Module Assembler Program — OMAP.")

61

RUN TIME ERROR OPTIONS (SEE LANGUAGE REFERENCE MANUAL) D

This entry does not apply to the NEAT/3 language and should be left blank.

62 71
MASTER MODULE NAME (SEE LANGUAGE REFERENCE MANUAL) [—lx
1 i1 1 1 1 1 i

If a module compilation has been specified (M) in item A5, enter the name
of object master module that is contained on the unit designated in item
C6. For other types of compilation, this entry may be left blank. Refer
to the reference for item C6.

\ 74

DELETE DIGIT

This entry controls the elimination of specific source statements in the
program being compiled. The compilation process ignores all source state-
ments that have a delete digit of equal or lower value than the entry made
in position 74 of the compiler control statement. For instance, the numeral
3 in position 74 causes all source statements with a delete digit of 3, 2
or 1 to be dropped from the program. Source statements with no entry in
the delete digit position can never be dropped.

Enter N if the delete digit option is not to be used. 75 80

IDENTIFICATION [PO W]:

Enter the program identification as explained in the NEAT/3 REFERENCE
MANUAL, INTRODUCTION AND DATA, tab 3, "Programming Worksheets."

NEAT/3 —— INSTRUCTIONS Apr. 70

TAB

3 -- PUB. NO. 1 Page 8

COMPILER CONTROL STATEMENTS

SHEET 2

COMPILER SPECIFICATION WORKSHEET
SHEET 2 - OPTIONAL

Program Prepared by

Duate Puge.

ALL SYMBOLIC REFERENCES MUST BE LEFT-JUSTIFIED AND MUST CONTAIN AT LEAST ONE ALPHABETIC CHARACTER.
ALL NUMERIC ENTRIES WMUST BE RIGHT-JUSTIFIED AND MUST BE ZERO-FILLED TO THE LEFT

Page-Line

w 18 24
Enter Author's name [AUTHOR] sttt

Identification

Page-Line

Program Name (If name is entered it must be identical
to name entered on first control card)

HARDWARE/SOFTWARE OPTIONS

A3 Multiply (Y or N)

A4 Logic (Y or N)

A5 Table Compare (Y or N)

A6 Floating Point (Y or N)

A7 315 Simulator (Y or N)

A8 1401 Simulator (Y or N)

A9 Trace (Y or N)

Al0 Multiprogramming (Y or N)
All Copy Overlays (Y or N)

COMPILATION OPTIONS

B4 From Boundary (Enter six digit address)
B3 To Boundary (Enter six digit address)
B2 Stuffing (Y or N)

Bl Library (Enter G for Generator, o for Software Overlay,
or S for Subroutine)

Cl Identification

The programmer should fill in the worksheet header as defined in the NEAT/3
REFERENCE MANUAL, INTRODUCTION AND DATA, tab 3, "Programming Worksheets."

This sheet is used by the programmer in preparing certain optional statements,
which may be applicable in the system for which the program is to be compiled.

NEAT/3 -- INSTRUCTIONS Apr. 70
TAB 3 -- PUB. NO. 1 ‘ Page 9

AUTHOR STATEMENT (OPTIONAL)

The author statement is an optional entry, whereby the programmer may include
the name of the author of the program being compiled. When specified, the
author statement is included in the program listing that is produced by the
compilation process. '

If punched paper tape is used for input to the compiler, the paper tape format
code must be punched before the page and line number for the author's state-

ment.
1 b 6

Al PAGE-LINE [OJO.O]OIOITIN

Enter a six-digit page-line number in positions one through six to indicate
the input sequence fo¥ the author's statement. Normally this number will
be 000001.

NOTE
SUDOP Instruction may precede the author's statement in
actual input sequence, however, SUDOP instructions do
not require page—line numbers since they are not compiled
as part of the source program.

The P in position seven is preprinted and must be punched. [:]x
, N 18 24 a3
A2 ENTER AUTHOR S NAME [A.U.T HIO|R GIE|O|R G W_.ﬁ,N 6 TON j"

The entry AUTHOR in positions 18 through 23 is preprinted and must be
punched.

Enter the author's name beginning in position 24. Normally the author's
name will be the same as the programmer's name. When requested, the
author's name is printed in the header of the program listing.

. 75 80

B1 IDENTIFICATION

Lo ..

Enter the program identification as explained in the NEAT/3 REFERENCE
MANUAL, INTRODUCTION AND DATA, tab 3, "Programming Worksheets.'

The second part of this sheet is used to specify certain options that may be
available in the system for which this program is being compiled. The listed
features, which are not available on NCR Century 100 Systems, are intended
only for higher members of the NCR Century Series.

If punched paper tape is used for input, the paper tape format code must be
punched before the page and line number for the options statement.

NEAT/3 -- INSTRUCTIONS Apr. 70
TAB 3 -- PUB. NO. 1 Page 10

' COMPILER CONTROL STATEMENTS

1 b} 6
Al PAGE-LINE IO.O.OlO.O.?‘”
Enter a six-digit page-line number in positions one through six to indicate
the input sequence for the options statement. Normally this number will be
000002.
7 15
A2 PROGRAM NAME (IF NAME IS ENTERED IT MUST BE IDENTICAL TO E—,,
NAME ENTERED ON FIRST CONTROL CARD)
N\, 18 23
The P in position seven is preprinted and must be punched. |o PTIO le
The program name is an optional entry. If the programmer makes an entry in
positions eight through 15, it must be identical to the program name
specified on Sheet 1.
The entry OPTION in positions 18 through 23 is preprinted and must be
punched.
HARDWARE/SOFTWARE OPTIONS 24
A3 MULTIPLY (Y OR N) z-)|
5
A4 LOGIC (Y OR N) !x
AS TABLE COMPARE (Y OR N) >
27
A6 FLOATING POINT (Y OR N) s
28
b}
A7 315 SIMULATOR (Y OR N)
29
A8 1401 SIMULATOR (Y OR N) -M
30
A9 TRACE (Y OR N) .’I
31
A10 MULTIPROGRAMMING (Y OR N) ."
Items A3 through AlQ0 are optional entries. If the programmer enters Y for
any of the above listed optional hardware features, the compiler will
generate an object program capable of using the specified feature(s).
Enter N or leave blank, if any feature listed above is either not available,
or is not to be used.
32
A11 COPY OVERLAYS (Y OR N) .>‘
This entry is only for the use of software programmers. Generally position
32 should be left blank.
COMPILATION OPTIONS
54 59
B4 FROM BOUNDARY (ENTER S1X DIGIT ADDRESS) _
Enter six-digit address in memory, at which this program is to begin.
NEAT/3 -- INSTRUCTIONS Apr. 70

TAB 3 -- PUB, NO. 1 Page 11

B3

B2

81

TO BOUNDARY (ENTER SIX DIGIT ADDRESS)
Enter six-digit address in memory, at which this program is to end.

STUFFING (Y OR N) [:]”
Enter Y if stuffing is desired.

Enter N or leave blank if stuffing is not desired.
67

LIBRARY (ENTER G FOR GENERATQR, O FOR SOFTWARE An
OVERLAY, OR S FOR SUBROUTINE s

If the program being compiled is to be a library entry, enter the
appropriate letter to indicate the category.

IDENTIFICATION

NEAT/3 —— INSTRUCTIONS Apr. 70
TAB 3 -- PUB. NO. 1 Page 12

COPY CONTROL INSTRUCTIONS

The NEAT/3 language includes three versions of the COPY control instruction:
COPYA, COPYP, and COPYR.

COPYA

Function

The COPYA instruction specifies an existing source program and inserts it
into the source program of which the COPYA instruction is a part. The COPYA
instruction copies the entire specified program except the compiler control
statement.,

The COPYA instruction automatically assigns new page and line numbers to
the copied source statements. The first source statement to be copied
receives a page and line number that is ten greater than the page and line
number of the COPYA instruction itself. The page and line numbers of
subsequent source lines to be copied are again incremented by ten each.

Example

REFERENCE OPERATION OPERANDS

s 9 wn-zusuxsnsnuuzoz:zzzsztzszsnuzososuszssuuasnunwnAzasunsunuuso

COPYA PIRIOIGIRIAIM|OIOI]1 § ¢ ¢ 3 3 ¢ ¢t % ¢ ¢ % % 3 2 % %

2 % 3 3 3.1 1 %t & U S I T]

e A el

L4

The above COPYA instruction inserts source program PROGRAMOO1l (minus
compiler control statements) in the source program of which the above
instruction is a part. The first source statement of PROGRAMOO1 will be
assigned page and line number 005040.

Conventions

The program specified in the COPYA instruction must be available on the
currently mounted program disc.

The programmer must provide a sufficiently large page and line number gap
between the COPYA instruction and the following coded instruction to allow
for the insertion of the copied source program.

COPYA instructions may be coded on either coding sheets or data layout sheets,
depending upon the format of the first statement to be copied. If a data
layout sheet is used, the operands must begin in position 31.

NEAT/3 -- INSTRUCTIONS Apr. 70
TAB 3 —- PUB. NO. 2 Page 1

COPYP
Function

The COPYP instruction specifies an existing source program from which a range
of contiguous source statements is to be copied and inserted into the program
of which the COPYP instruction is a part.

The COPYP instruction automatically assigns new page and line numbers to the
copied source statements. The first source statement to be copied receives

a page and line number that is ten greater than the page and line number of
the COPYP instruction itself. The page and line numbers of subsequent source
lines to be copied are again incremented by ten each.

Example

REFERENCE OPERATION OPERANDS

8 9 10 11 12 13 14 1S 16 17|18 19 20 21 22 2324 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 43 46 47 48 49 30

0P, Y P, |PROGRAMOO3,H0370320,01330090

4 % 3 2 &t : & 2 2 ClllLl S Sl Bhe B SR N SIS SR B } 1ttt 1 1'%

i
1
|
1
'
1
1
'
T
1
]
"
]
1
v

The first entry in the OPERANDS column (PROGRAM003) is the name of the
program from which source statements are to be copied.

The second entry in the OPERANDS column (031030) is the page and line number
of the first source statement to be copied. If this second entry specifies
a page and line number that cannot be found in PROGRAMOO3, the copy process
starts with the source statement that has the next higher page and line
number.

The third entry in the OPERANDS column (033090) is the page and line number
of the first source statement following the source statements to be copied;
i.e., the copy process stops after copying the source statement immediately
preceding the one indicated in the third entry.

Conventions

The program specified in the COPYP instruction must be available on the
currently mounted program disc.

The programmer must provide a sufficiently large page-and-line number gap
between the COPYP instruction and the following coded instruction to allow
for the insertion of the copied source statements.

To copy to the end of a program, the programmer must use ENDS$ as the third
entry in the OPERANDS column of the COPYP instruction.

COPYP instructions may be coded on either coding sheets or data layout sheets,
depending upon the format of the first statement to be copied. If a data
layout sheet is used, the operands must begin in position 31.

NEAT/3 -- INSTRUCTIONS Apr. 70
TAB 3 -- PUB. NO. 2 Page 2

COPY CONTROL INSTRUCTIONS

COPYR
Function
The COPYR instruction has the same function as the COPYP instruction ex-

plained on the preceding page. However, COPYR uses reference names to
specify a program range where COPYP uses page-and-line numbers.

Example

REFERENCE OPERATION OPERANDS

8 9 10 11 12 13 14 15 16 1718 19 20 21 22 23|24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 43 46 47 48 49 30

COPYR [PROGRAMOS59 ,ABLE,BAKER

The first entry in the OPERANDS column (PROGRAM059) is the name of the
program from which source statements are to be copied.

The second entry in the OPERANDS column (ABLE) is the reference of the first
source statement to be copied.

The third entry in the OPERANDS c6lumn (BAKER) is the reference of the first
source statement following the source statements to be copied; i.e., the copy
process stops after copying the source statement immediately preceding the

one indicated in the third entry.
Conventions

The program specified in the COPYR instruction must be available on the
currently mounted program disc.

To copy to the end of a program, the programmer must use END$ as the third
entry in the OPERANDS column of the COPYP instruction.

COPYR instructions may be coded on either coding sheets or data layout sheets,
depending upon the format of the first statement to be copied. If a data
layout sheet is used, the operands must begin in position 31.

The reference of a COPYR instruction may be qualified; however, only one
qualifier may be used.

NEAT/3 -- INSTRUCTIONS Apr. 70
TAB 3 -- PUB, NO. 2 Page 3

OMIT CONTROL INSTRUCTION

OMIT
Function

To debug or alter a program, the programmer must usually delete, replace,
and/or insert some source statements during a recompilation. During the
recompilation, the OMIT instruction prevents a source line or group of
source lines from being copied from the old recompilation master to the
new recompilation master being generated.

The OMIT instruction is also useful during initial compilation, especially
if paper tape is used as input media. To cancel erroneous source statements
or groups of source statements from the input media, OMIT instructions may
be input on the same input media.

Example of Omitting a Single Source Statement

-

REFERENCE OPERATION OPERANDS

8 9 10 11 12 13 14 13 16 17|18 19 20 21 22 23 {24 23 26 27 28 29 30 31 32 33 34 35 36 37 30 39 40 41 42 43 44 45 A5 47 48 49 30

OMIT

The programmer omits an individual source statement by assigning to an OMIT
instruction the page and line number of the source statement to be omitted.

The above OMIT instruction omits the source statement with page and line
number 038090 from a recompilation master or from the source program of
which it is a part.

NEAT/3 -- INSTRUCTIONS Apr. 70
TAB 3 -- PUB. NO. 3 Page 1

Example of Omitting a Group of Source Statements

REFERENCE OPERATION OPERANDS

8 9 10 11 12 13 14 15 16 1718 19 20 21 22 23|24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

omIT . [049030

1t & 2 3 3 & & 1 i B T N] $ "t ¢ -t ¢ 3y ¢ § ¢ ¢t ¢ ¢ v ¢ 3 ¢ ¢ 1 .9 ¢ ¢ $ 2 g2 %

To omit a group of source statements, the programmer specifies a range

of page-and-line numbers in his OMIT instruction. The page and line
number of the OMIT instruction itself is the page and line number of the
first source statement to be omitted; the page and line number entered in
the OPERANDS column of the OMIT instruction indicates the page-and-line
number of the last source line to be omitted.

The above OMIT instruction omits the source statements whose page-and-line
numbers range from 048150 to 049030.

Conventions

The OMIT instruction may be coded on either coding sheets or data layout
sheets, depending upon the format of the first statement to be omitted.

During the recompilation process, the recompilation master must be available
on one of the system disc packs, and the programmer must enter the OMIT
statements through the system card reader or the system paper tape reader.
The programmer specifies the name of the recompilation master on the
compiler control statement preceding the OMIT instruction.

Whenever the OMIT instruction is used as part of an initial source program,
the compiler control statement should specify sorting of the source state-
ments by page-and-line numbers.

NEAT/3 -- INSTRUCTIONS Apr. 70
TAB 3 -- PUB. NO. 3 Page 2

OVERLAY CONTROL INSTRUCTIONS

The NEAT/3 language provides two overlay control instructions, OVRLAY and
OVRLAYG.

PROGRAM OVERLAY CONCEPTS

The concept of program overlays provides the programmer with the ability to
divide a program into two or more logical segments, permitting greater flexi-
bility during both the compilation process and the actual program run.

e The primary application for the use of program overlays is designed for
those programs that are too large to fit into the memory area available
for the user's programs. By designating these logical segments as pro-
gram overlays, the program may then be processed in smaller units that
are compatible with the available memory area. Normally, the entire
program, including overlays, is compiled in a single run, which makes
the overlays readily accessible on disc. During the program run,
overlays are automatically called into the overlay area as needed by
the program. As each new overlay is called into the overlay area, it
replaces the previous overlay.

Since program overlays represent logical segments of a complete program,
the overlays need not be of equal length. During the compilation process,
the NEAT/3 Compiler automatically reserves an overlay area in memory that
is of sufficient size to accommodate the largest overlay in the program
being compiled. Consider the following illustration.

PROBLEM PROGRAM

MAIN

AVAILABLE PROGRAM AVAILABLE
MEMORY MEMORY

COMPLETE OVERLAY MAIN
PROGRAM PROGRAM
AREA

OVERLAY

OVERLAY
AREA

OVERLAY

NEAT/3 -- INSTRUCTIONS Apr. 70
TAB 3 -- PUB. NO. 4 Page 1

e In addition, the use of program overlays provides the programmer with
the ability to compile overlays independently from the main program.
This ability permits several specific applications: (1) minor changes
to one or more overlays may be made without recompiling the entire
program; (2) a program may be compiled in which the programmer has used
the OVRLAY control instructions to define overlays that are to be added
at a later date; and (3) programs exceeding 12,000 source statements may
be compiled. Independent overlay compilation is discussed in a separate
publication, (see NEAT/3 REFERENCE MANUAL, COMPILATION PROCESS, tab 2,
"Independent Overlay Compilation').

The basic function of the OVRLAY and OVRLAYG instructions is the same for all
of the previously stated applications; that is, to identify the start of an
overlay or to identify the start of an overlay group and the first overlay
within the group. The functions of each of these instructions are discussed
under separate headings in this publication. Additional functionms, which are
applicable only to independent overlay compilation, are either noted as such,
or direct the reader to the above referenced publication.

NEAT/3 -- INSTRUCTIONS Apr. 70
TAB 3 -- PUB. NO. 4 Page 2

OVERLAY CONTROL INSTRUCTIONS

OVRLAY

Function

The OVRLAY instruction is used as the overlay header, which (1) identifies the
start of a program overlay, and (2) informs the NEAT/3 Compiler to accept all
subsequent data and coding as part of that overlay. A new OVRLAY instruction
is required for each overlay in a program.

The first OVRLAY instruction in a program also identifies the start of an
overlay group. All subsequent overlay groups must be started with an OVRLAYG
instruction. The grouping of overlays is discussed in more detail under the
OVRLAYG instruction in this publication.

In addition, the OVRLAY instruction automatically starts a new program section,
by performing the same functions as the SECT control instruction, (see NEAT/3
REFERENCE MANUAL, INSTRUCTIONS, tab 3, '"Section Control Instruction").

NOTE

The SECT control instruction may be used within an overlay
to divide the overlay into sections.

Example

The OVRLAY instruction may be input to the Compiler as either a data statement
or a coding statement. The use of each is as follows:

e Data Statement

If an overlay contains data statements in addition to the program coding,
the OVRLAY instruction must be coded on a data layout sheet, since the input
sequence to the NEAT/3 Compiler requires that data statements precede coding
statements.

If overlays are to be compiled independently and it is anticipated that data
statements may be added to an overlay at a later date, the OVRLAY instruc-
tion must also be coded on a data layout sheet to accommodate for the input
sequence to the Compiler.

b1

REFERENCE LOCATION LENGTH VALUE OR PICTURE

8 9 10 1) 12 13 14 13 16 17 19 20 21 22 23)24 25 26 27 31 32 33 34 33 36 37 38 39 40 41 42 43 44 43 46 47 43 49 30

DEDUCTIONS|OIVRLAY

The OVRLAY instruction may contain a reference tag in positions 8-17 to
serve as a qualifier for entry points into the overlay, (see NEAT/3 REFER-
ENCE MANUAL, INSTRUCTIONS, tab 3, "ENTRY Control Instruction').

NEAT/3 —- INSTRUCTIONS Apr. 70
TAB 3 -- PUB. NO. 4 Page 3

e Coding Statement

If an overlay contains only coding statements, and the addition of data
statements is not anticipated, the OVRLAY instruction may be coded on a

coding sheet.

REFERENCE OPERATION OPERANDS

Pl PUPDE

8 9 10 11 12 13 14 13 16 17]18 19 20 21 22 23|24 2% 26 27 26 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

DEDUCTIONSIOVRLAY

-

In both of the preceding illustrations, the OVRLAY instruction is used to begin
a new overlay, which specifies the qualifier DEDUCTIONS for all references

within the overlay.

The relationship between the internal structure of an overlay and the use of
data and coding statements for coding the OVRLAY instruction is shown in the
following illustration. The type of statement (D for data, C for coding) is
indicated in parentheses.

OVERLAY STRUCTURES

A B C
OVRLAY OVRLAY (D) OVRLAY
ENTRY ENTRY (D) ENTRY
ENTRY ENTRY (D) ENTRY
Data Data to be Coding
Data added at a Coding
Data later date Coding
Coding Coding (C) Coding
Coding Coding (C) Coding
—_— —_—

e In example A, the overlay contains its own data definitions, which
require the OVRLAY instruction to be coded on a data layout sheet.

e In example B, the overlay is expected to contain its own data defini-
tions. The OVRLAY instruction is coded on a data layout sheet to
permit the addition of data statements at a later date.

NEAT/3 -—- INSTRUCTIONS Apr. 70
TAB 3 -- PUB. NO. 4 Page 4

OVERLAY CONTROL INSTRUCTIONS

Another example might be, if the overlay is contained within a previously
defined overlay group, the OVRLAY instruction may be used to define a
proposed overlay, which remains to be written or completed. The OVRLAY
instruction is coded on a data layout sheet to permit the addition of
both data and coding statements.

¢ In example C, the overlay contains only coding statements. The OVRLAY
instruction may be coded on a coding sheet.

NOTE

The ENTRY instruction, if present, must always be the
same type of statement as that used for the OVRLAY
instruction.

Conventions

If a program specifies branching to an overlay that is not currently in the
overlay area, the software inputs the needed overlay. The new overlay replaces
the previous overlay contained in the overlay area.

Overlays are always called into memory from disc in their original form, but
are never written back onto disc. Therefore, the programmer should not locate
any working storage areas in an overlay, unless the contents of these areas
are no longer needed once the overlay is replaced by a new overlay.

Th programmer must place all file specifications at the beginning of the main
program. Normally, the programmer also places all area definitions in the
main program because of the following programming restrictions; (1) instruc-
tions in the main program can only access those areas that are defined in the
main program, and (2) instructions in an overlay can only access those areas
that are defined either in the main program or in the same overlay as the
instruction.

The use of a data reference tag as the operand of an instruction cannot call
an overlay into memory. Overlays can only be called into memory by branching
to an entry point within the overlay.

The following NEAT/3 instructions are capable of calling overlays. "Z' in the
OPERANDS column represents the reference of an instruction in the program.

If this reference is also specified as an entry point to an overlay (see,
NEAT/3 REFERENCE MANUAL, INSTRUCTION, tab 3, "ENTRY Control Instruction'), the
instruction containing this reference is capable of calling an overlay. Con-
sider the following illustration.

NEAT/3 -- INSTRUCTIONS Apr. 70
TAB 3 -- PUB. NO. 4 Page 5

ADDC BRL TBILDN
ADDRC BRGE TBILDD
SuUBC BRLE TFINDN
SUBRC BRU TFINDD
MULTC LINK TFINDR

MULTRC RELINK JA TFINDS
DIVC RGET A,B,Z TFINDB
DIVRC SGET A,Z TSERT
BR SGETL A,Z1,72 TDEL
BRE SGETC A,71,72 TPACK
BRG BLKCHK A,B,Z TSET

e

If the RELINK instruction transfers control back to an overlay that is no
longer in memory, that overlay is automatically called.

A reference on a file specification sheet (end-of-file or end-of-page) may not
specify an entry point to an overlay; any entry point to an overlay can only be
specified by an operand of an instruction in the main program.

Any one program is limited to a maximum of 255 overlays.

It is recommended that the OVRLAY instruction normally be coded on a data
layout sheet.

NEAT/3 —-- INSTRUCTIONS Apr. 70
TAB 3 -- PUB. NO. 4 Page 6

OVERLAY CONTROL INSTRUCTIONS

OVRLAYG
Function

The function of the OVRLAYG instruction is the same as the OVRLAY instruction,
which (1) identifies the start of a program overlay, and (2) informs the NEAT/3
Compiler to accept all subsequent data and coding as part of that overlay.

In addition, the OVRLAYG instruction identifies the start of a new overlay
group.

When all program overlays are contained in a single group, only one overlay can
be called into memory at a time. Each new overlay input to the overlay area
replaces the previous overlay.

The use of the OVRLAYG instruction permits the programmer to further organize
his program overlays into logical groups. The NEAT/3 Compiler assigns a sepa-
rate memory area to each overlay group. The largest overlay in a group
determines the size of the overlay area reserved for that group.

By arranging program overlays into groups, it is possible to have more than
one overlay in memory at the same time, i.e., one overlay from each overlay
group. For example, when branching from an overlay in one group to an overlay
in another group, the overlay in the first group remains accessible in memory.
Overlays are only replaced by other overlays from the same group.

The first OVRLAY instruction in a program always starts the first overlay
group. Only subsequent overlay groups must be started with an OVRLAYG
instruction.

NOTE
If a program contains two or more overlay groups and over-
lays are to be compiled independently, then each group must
begin with an OVRLAYG instruction and the group size must
be defined.

NEAT/3 -- INSTRUCTIONS Apr. 70
TAB 3 -- PUB. NO. 4 Page 7

AVAILABLE
MEMORY

PROGRAM OVERLAYS

AN

FIRST
OVERLAY
AREA

SECOND
OVERLAY
AREA

Example

The OVRLAYG instruction may be input to the Compiler as either a data statement
or a coding statement. The use of each is as follows:

e Data Statement

1f the first overlay in the group (which the OVRLAYG instruction identifies)
contains data statements, the OVRLAYG instruction must be coded on a data
layout sheet.

1f overlays are to be compiled independently and it is anticipated that
data statements may be added to the overlay at a later date, the OVRLAYG
instruction must be coded on a data layout sheet to accommodate for the
input sequence to the Compiler.

b

REFERENCE LOCATION LENGTH VALUE OR PICTURE

8 9 10 11 12 13 14 15 16 17 19 20 21 22 23]24 23 26 27 S1 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 49 49 30

OVERTIME VRLAY

NEAT/3 -- INSTRUCTIONS Apr. 70
TAB 3 -- PUB. NO. 4 Page 8

OVERLAY CONTROL INSTRUCTIONS

The OVRLAYG instruction may contain a reference tag in positions 8-17 to
serve as a qualifier for entry points into the overlay. The reference tag
does not apply to the overlay group.

The letter G is entered as the first operand in position 31 to identify the
beginning of a new group.

A group size may be specified as the second operand beginning in position
33. A group size is required for all partial and independent overlay
compilations.

o Coding Statements

If the overlay contains only coding statements, into which data statements
are not to be added, the OVRLAYG instruction may be coded on a coding sheet.

REFERENCE OPERATION OPERANDS

8 9 10 11 12 13 14 15 16 17{10 19 20 21 22 2324 25 26 27 28 29 30 31 32 33 34 335 36 37 38 39 40 41 42 43 44 43 46 47 48 49 30

OVERTIME OVRLAYIG,512

A reference tag for the overlay may be entered in positions 8-17.

The letter G is entered as the first operand in position 24 to identify the
beginning of a new group.

A group size if required, is entered as the second operand beginning in
position 26.

In both of the preceding illustrations, the OVRLAYG instruction is used to

begin a new overlay group, and specifies a qualifier OVERTIME for all references
within the first overlay. During compilation, an area 512 bytes long is reserved
on disc for the overlay group.

NEAT/3 -- INSTRUCTIONS Apr. 70
TAB 3 -- PUB, NO. 4 Page 9

Conventions

All of the conventions listed for the OVRLAY instruction are applicable to the
OVRLAYG instruction.

As illustrated below, the first OVRLAY instruction in a source program always
starts a group of overlays, and only subsequent overlay groups need to be
started with an OVRLAYG instruction.

REFERENCE LOCATION LENGTH

8 9 10 311 12 13 14 13 16 17 19 20 21 22 23|24 25 26 27

OVERLAYA VRLAY

~\;\;§;_;’;/;,>*' . Attt . . FIRST OVERLAY GROUP
OVERLAYS A AND B

OVERLAYB

\/ o

T~ 44/1’74—_7\7

OVERLAYC

—f

OVERLAYD

——

~_ __— 1 SECOND OVERLAY GROUP
OVERLAVYE OVERLAYS C, D, E, AND F

_/'\
_/__\

IVI E- R- LIAI Yl Fl

If partial or independent overlay compilations are to be performed, the OVRLAYG
instruction is used to start each overlay, and the overlay group size must be
specified. Partial and independent overlay compilations are discussed in a
separate publication, (see NEAT/3 REFERENCE MANUAL, COMPILATION PROCESS,

tab 2, "Independent Overlay Compilatiomn').

NEAT/3 —- INSTRUCTIONS Apr. 70
TAB 3 -- PUB. NO. 4 Page 10

OVERLAY CONTROL INSTRUCTIONS

PROGRAMMING CONSIDERATIONS FOR OVERLAYS

The use of dual disc units in the NCR Century Series enable the programmer to
make efficient use of program overlays. The overlays are available almost
instantly throughout the running of a program. However, to achieve the
shortest program execution time, the program should call for new overlays as
infrequently as possible.

The programmer can usually minimize the calling of new overlays by organizing
his program so that branching is confined for as long as possible to the main
program and those overlays already in memory.

The following simplified example illustrates how the various functions of a
payroll program could be organized into overlays.

AVAILABLE
MEMORY

PROGRAM OVERLAYS

FIRST
OVERLAY
AREA

SECOND
OVERLAY
AREA

FUNCTIONS OF MAIN PROGRAM AND OVERLAYS

MAIN PROGRAM - CALCULATE PAY

GROUP 1 OVERLAY CALCULATE PAY
OVERLAY CALCULATE TAX
OVERLAY CALCULATE DEDUCTIONS
OVERLAY PRINT CHECK

GROUP 2 OVERLAY CALCULATE HOURLY RATE
OVERLAY CALCULATE HOURLY RATE + COMMISSION
OVERLAY CALCULATE SALARY
OVERLAY CALCULATE SALARY + COMMISSION

The records in the master and transaction files for this payroll run are
organized in the following sequence:

NEAT/3 -- INSTRUCTIONS Apr. 70
TAB 3 -- PUB. NO. 4 Page 11

hourly-rated employees
hourly-rated-plus-commission employees
salaried employees
salaried-plus-commission employees

The processing of every pay check requires overlays A, B, C, and D (group 1)
in sequence. Overlay A always uses one of the four overlays in group 2.
Because of the above record organization, overlay E is called into memory
first and remains there until the pay checks for all the hourly-rated em-
ployees have been processed. Then, overlays F, G, and H are called to pro-
cess the payroll checks of the other three categories of employees. During
the entire payroll run, the four overlays in group 2 need only be called
once each.

NEAT/3 -- INSTRUCTIONS Apr. 70
TAB 3 -- PUB. NO. &4 Page 12

ENTRY CONTROL INSTRUCTION

ENTRY
Function

The ENTRY control instruction has two functions, depending on whether the
instruction is part of a main program or part of a program overlay.

® An ENTRY instruction in the main program specifies a starting point
for the program.

e An ENTRY instruction in a program overlay establishes an entry point
to which the main program or other overlays may branch.

A main program may contain several sequential ENTRY instructions to specify
several possible starting points; a program overlay may contain several
sequential ENTRY instructions to specify several possible entry points into
the overlay.

Each ENTRY instruction names in its REFERENCE column a reference tag which
must be duplicated in the REFERENCE column of one of the subsequent instruc-
tions within the same logical division of the program (main program or
overlay).

Example
The ENTRY instruction may be coded on either a data layout sheet or a coding

sheet, depending on where it is used. The use of each type of statement is
discussed under Conventions in this publication.

REFERENCE LOCATION LENGTH VALUE OR PICTURE

8 9 10 11 12 13 14 13 18 17 19 20 21 22 23)24 25 28 27 31 32 33 34 33 36 37 38 39 40 4) 42 43 44 45 46 47 48 49 SO

CALCULATEX[EINTRY

REFERENCE OPERATION OPERANDS

8 9 10 11 12 13 14 13 16 17[18 19 20 21 22 2324 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 4S5 46 47 48 49 SO

CALCULATEX(ENTRY

NEAT/3 —- INSTRUCTIONS Apr. 70
TAB 3 -- PUB. NO. 5 Page 1

The ENTRY instruction must specify a reference as an entry point which
corresponds to a subsequent instruction with the same reference.

previous examples, the reference is CALCULATEX.

Conventions

In the

In a main program, the ENTRY instruction(s) must appear immediately following

the compiler control statement an

NOTE

Since the main program always contains data definitions
and ENTRY instructions precede data, the ENTRY instruction

must be a data statement.

The NEAT/3 Compiler does not

accept coding statements before data statements.

In a program overlay, the ENTRY instructio
ing the OVRLAY (or OVRLAYG) instruction.
data definitions, the OVRLAY and ENTRY instructions must

d must be coded on a data layout sheet.

n must appear immediately follow-
If the overlay contains its own
be coded on data

layout sheets. If the overlay does not contain its own data definitions, the

ENTRY instructions may be coded on coding sheets.
always the same type of statement as th

The following sample coding establishes three entry

overlay.

REFERENCE

OPERATION

OPERANDS

8 9 10 11 12 13 14 15 18 17

18 19 20 23 22 23

l‘l!!‘l72.l!”!l!2!!!‘)53637!.3'0‘!42‘3“65“‘7“‘.”

T
'
1
]
«
|
1
'
T
+
1

ARITHMETIC

OVRLAY

CALCULATERA

ENTRY

CALCULATEN

ENTRY

CALCULATEZ

ENTRY

|
]
'
1
|
1
1
]
1
!
T

CALCULATEA

MULT

PAYMENT ,PERCENTB,TOTALA !

CALCULATEN

NEWTOTAL ,EXTENSTON

CALCULATE?Z

OPERANDAA.OPERANDB,TOTPAY

PN

T

Pt

NEAT/3 -— INSTRUCTIONS
TAB 3 -- PUB. NO. 5

The ENTRY instruction is
e OVRLAY instruction that it follows.

points into a program

Apr. 70
Page 2

ENTRY CONTROL INSTRUCTION

In the preceding example, if CALCULATEN is a unique entry point in the entire
program, the programmer simply branches to CALCULATEN. However, if the pro-
grammer has no assurance that CALCULATEN is not listed as another entry point
somewhere in the program, he should specify the name of the overlay and the
entry point reference (ARITHMETIC, CALCULATEN) in his branch instruction.

Only one instruction within each overlay may have the same reference as an
ENTRY control instruction.

An ENTRY instruction may not be preceded by a renaming instruction (designated
by an asterisk in position 18).

Apr. 70

NEAT/3 -- INSTRUCTIONS
Page 3

TAB 3 -- PUB. NO. 5

SECTION CONTROL INSTRUCTION

SECT

Function

The SECT control instruction divides a program into sections. Because the
NEAT/3 Compiler considers each section individually, several programmers may
work on individual program sections without concern for duplication of
reference tags between sections. All reference tags must be unique within

each section.

The SECT control instruction in a source program indicates to the NEAT/3
Compiler that a new program section is to be started.

NOTE

The overlay instructions perform the same functions as the
SECT instruction, in addition to their specific functions.
The SECT instruction may be used in an overlay to divide
the overlay into sections.

Example

The SECT instruction may be coded on either a data layout sheet or a coding
sheet.

REFERENCE OPERATION OPERANDS

® 9 10 11 12 13 14 13 16 1718 19 20 21 22 23(24 23 26 27 28 29 30 31 32 33 34 33 36 37 38 39 40 4) 42 43 44 43 48 47 48 49 %0

UPDATE SECT

SR Eugi PO ——

b

REFERENCE LOCATION LENGTH VALUE OR PICTURE

8 9 10 1) 12 13 14 15 16 17 19 20 21 22 23|24 25 28 27 !ll!!)"!’!.l7!.)ﬂl¢‘l“0“49“41“‘.!0:
A

UPDATE . ECT

The above SECT control instruction starts a new program section. The entry
UPDATE in the REFERENCE column assigns the qualifier UPDATE to all references

in this new program section.

NEAT/3 -- INSTRUCTIONS Apr. 70
TAB 3 -- PUB. NO. 6 Page 1

Conventions

If the programmer references another program section in the operands column,

he must qualify the reference with the name of the other section unless the

reference is unique to the entire program.

N

!

REFERENCE OPERATION OPERANDS '

7|8 9 10 11 12 13 14 13 16 17}18 19 20 21 22 23]24 23 26 27 28 29 30 31 Jlnu!sununnuaauasununsﬂ

cla SECT :
(o4 /_\

\
/

>

c D) o
c L B RE A.TOM L N R N __‘i
ClTOM R LY C, KW N H

5
|

b

In the above example, the same reference (TOM) is used in two different
sections (A and B) of the program. TOM qualified by A is not the same

reference as TOM qualified by B

NEAT/3 -- INSTRUCTIONS
TAB 3 —- PUB. NO. 6

Apr.

70

Page 2

RENAME CONTROL INSTRUCTION

* (RENAME)

An asterisk (*) in column 18 of a coding sheet or a data layout sheet
indicates a rename control instruction.

Function

The programmer may use rename control instructions to assign a reference tag
(or reference tags) to any desired point in a source program.

If a rename instruction precedes a source statement that does not have its

own reference, the reference of the rename instruction becomes the reference

of the source instruction. If a rename instruction precedes a source statement
that has its own reference, the source statement in effect has two references
either of which may be used as the operand of other instructions in the

program.

The programmer may also precede a source statement with several rename
instructions. In this case, all the references of the preceding rename
instructions become associated with the source statement and may be used
as the operand of other instructions. (See the following example).

In contrast to regular reference tags assigned to source statements, the
reference tags assigned by the rename instruction do not start new program

regions and do not establish barriers between local tags.

Example

REFERENCE OPERATION OPERANDS

8 9 10 11 12 13 14 13 16 17|18 19 20 21 22 23 {24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

REDUCENRQ e

The above rename control instruction assigns the reference REDUCEQ to the
source statement immediately following the control instruction.

NEAT/3 -- INSTRUCTIONS Apr. 70
TAB 3 -- PUB. NO. 7 Page 1

Conventions

The rename control instruction must immediately precede the source statement

that is to assume the reference name of the rename instruction.

If several

different references are to be assigned to a source statement, several rename
instructions may appear in succession immediately preceding that source
statement.

The following sample coding assigns three additional references to the ADD
instruction that already has its own reference.

REFERENCE

OPERATION

OPERANDS

8 9 10 11 12 13 14 15 16 17

18 19 20 21 22 23|24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 30

ABLE

BAKER

e A e

CHARLTIE

.1

ADDTOTALX

TOTALY ,TOTALZ,TOTALX

b

b
—d ook

To branch to the ADD instruction in the preceding example, the programmer may
name any one of the following references in the OPERANDS column of a branch

instruction:

ABLE, BAKER, CHARLIE, or ADDTOTALX.

The rename instruction is also frequently used in altering a recompilation
The following sample coding illustrates how the use of the rename
instruction permits the addition of a reference to a source statement without
disrupting the affected program region and the local tags within that region.

master.

NEAT/3

—— INSTRUCTIONS

TAB 3 -~ PUB. NO. 7

REFERENCE

OPERATION

~

8 9 10 11 12 13 14 15 16 17

18 19 20 21 22 23

HARRY

B RU

$.01

MOVE

M‘ 0. vn En e

$0°2

RGET

TESTTOTAL

*

cComMPpP

BRE

BRG

PUT

o000 joj0ojojojojo

Apr. 70
Page 2

RENAME CONTROL INSTRUCTION

After recompilation, the rename (*) instruction and a COMP instruction
appear in the source program listing. The COMP instruction has the
effective reference TESTTOTAL. Branching to local tags $01, $02, and $03
within the formerly established program region is not affected.

A rename instruction may not precede an ENTRY instruction.

A local tag may not be used as the reference of a rename instruction.

Apr. 70

NEAT/3 -- INSTRUCTIONS
Page 3

TAB 3 -- PUB, NO. 7

END CONTROL. INSTRUCTION

END$

Function

The END$ control instruction indicates the end of a source program and
notifies SPUR that no more source statements are to be read.

Example

REFERENCE OPERATION OPERANDS

S 9 10 11 12 13 14 15 16 1718 19 20 25 22 23|24 25 26 27 28 29 30 31 32 33 34 335 36 37 38 39 40 41 42 43 44 45 46 47 48 49

Conventions

The END$ control instruction must be entered in columns 1 through 4 of a
coding sheet in place of the page and line number.

The END$ instruction must be the last source statement of each source
program input to SPUR.

NEAT/3 -- INSTRUCTIONS Apr. 70
TAB 3 -- PUB., NO, 8 Page 1

SETPL CONTROL INSTRUCTION

SETPL

Function

The SETPL control instruction specifies a new page and line number for the
next source statement to be output to the disc file. This instruction is
permitted at any time during a SPUR renumbering function.

By using the SETPL instruction, the programmer can separate sections of the
program for convenient referencing of the compiler listing. To obtain this
separation, the programmer must anticipate the increase effected by the SPUR
renumbering function and assign the new page/line number accordingly.

The operands field of the SETPL instruction contains the page and line number

to be assigned. SPUR executes only those SETPL instructions which specify a

new page/line number greater than the new page/line number of the last state-
ment output. If the instruction is executed, the SETPL statement and the
comment NEW PAGE/LINE NUMBER appear on the compiler listing. If the instruction
is not executed, the SETPL statement and the comment NO NEW PAGE/LINE NUMBER
appear on the compiler listing.

Example

REFERENCE OPERATION OPERANDS

8 9 10 11 12 13 14 15 16 1718 19 20 21 22 23[24 2% 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 SO

SETPL 1040000

L1 % 3 2 §$._ .t 1 1 ST S TR T | $ t ¢ ¢ % 3 $ ¢ @ 2 ¢ % ¢ ¢+ % ¢ & '+ p ¢ ¢ 3 & :; 11

The above SETPL instruction specifies that 040000 is to replace the new page/
line number of the next source statement output to the disc file.

Conventions

e The SETPL instruction may be used only if renumbering of source state-
ments was requested on the compiler specification worksheet. Use of the
SETPL instruction is permitted at any time during the SPUR renumbering
function.

e A SETPL instruction will not be executed if the page/line number speci-
fied is less than or equal to the assigned page/line number of the last
source statement output to the new recompilation master file.

NEAT/3 -- INSTRUCTIONS Apr. 70
TAB 3 -- PUB. NO. 9 Page 1

e The SETPL instruction itself is not output to the disc file.
e Only one alphabetic character, in the leftmost position, is permitted
in the page/line number specified by the SETPL instruction's operand.
A SETPL instruction with an alphabetic character in the leftmost position
of its operand results in an assigned page/line number consisting of
that alphabetic character followed by five zeros.

NEAT/3 -- INSTRUCTIONS Apr. 70
TAB 3 -- PUB. NO. 9 Page 2

TABLE CONCEPTS

INTRODUCTION

Generally, any information organized into a systematic arrangement (usually in
rows or columns) that permits the quick lookup and reference of data can be
described as a table. Because tables are perhaps the most convenient and ef-
ficient means of data organization, their use can frequently simplify the pro-
gramming task.

The NEAT/3 language offers a variety of table structures, applicatiomns, and
processing techniques. The purpose of this publication is to present a com-
parative overview of these structures and applications through the basic terms
and concepts of table organization from which the user may determine the opti-
mal table structure and processing technique for his individual requirements.

The second publication in this section considers the compiler worksheets nec-
essary to describe and define a table and the organization of source-line in-
formation.

The following publications in this section are organized into two series. The
first series contains one publication for each defined table structure avail-
able in the NEAT/3 language. Each describes the table structure, its proces-
sing technique and applications, and the conventions concerning its use. Since
table structure and processing techniques determine how a table is constructed
and how items are deleted from or inserted into the table, examples are in-
cluded as appropriate for the TSERT and/or TBILDD and TDEL instructions.

The second series of publications in this section of the manual document in
full detail the execution of each table instruction. Examples of how these
instructions work are included in their respective publications.

DEFINITIONS

Table

A table is a series of identical, fixed-length items organized into a system-
atic arrangement to provide the efficient storage and reference of data. The

organization of items within a table is similar to that of records within a
file.

The following excerpt of a table organizes all the merchandise of a department
store by department code and stock number.

NEAT/3 -- INSTRUCTIONS Apr. 70
TAB 4 -- PUB. NO. 1 Page 1

036924

050043

009110

Item

In the table above, each line of data is considered an item. Information con-
tained in a table must be organized as identical, fixed-length items. Table
items, like file records, consist of one or more fields of related data or in-
formation. For example, in department 21, the inventory for stock number
009110 shows 14 units sold and 111 units in stock. To help identify and access
the items of a table, an item field may be designated as a key.

Key

NEAT/3 tables permit the use of two key designations. The first or major key
identifies and locates all the items of a particular group of related items.
The second or minor key identifies and locates a specific item from the group
of items identified by the major key. In the table above, department code as
the major key identifies and locates all items for a particular department,
e.g. department 19. Stock number as the minor key further identifies and lo-
cates the stock desired, e.g. stock number 036924. The designation of a minor
key is optional.

Length

The overall length of a table is described as either fixed-length or variable-
length and refers to the number of items stored in the table.

e TFixed-length Tables

The overall length of a fixed-length table and the number of items in the
table does not vary during processing. For example, assume at the time a
fixed-length table is built, it contains no stored information. 1In effect,
the table exists and is filled with identical, fixed-length items which are
all designated as nonactive items.

NEAT/3 -~ INSTRUCTIONS Apr. 70
TAB 4 -- PUB. NO. 1 Page 2

TABLE CONCEPTS

fixed-length table

During processing, data may be entered into any nonactive item location,
allowing nonactive items to exist between stored data, or active items. A
fixed-length table may be built in an area, a record, or an item.

fixed-length table

e Variable-length Tables

The overall length of a variable-length table and the number of items in
the table may be increased or decreased during processing. The first field
(two 8-bit characters) of a variable-length table must be defined as the
table length indicator (TLI). The TLI contains a binary number that speci-
fies the total number of characters (including the 2 characters of the TLI)
currently in the table. For example, assume at the time a variable-length
table is built, it contains no stored information. In effect, only the
first field containing the TLI (indicating a length of 2) exists.

variable-length table

During processing, as data items are placed into a variable-length table,
they always occupy the beginning of the table and remain contiguous from
the first item location.

NEAT/3 -- INSTRUCTIONS Apr. 70
TAB 4 -- PUB. NO. 1 Page 3

variable-length table

This suggests that all items in a variable-length table are active items.

However, an exception exists that allows for nonactive items to occur in a
variable-length table in an area. For example, when an item is to be in-

serted at an item location where no active item precedes it, the table ex-
pands to accommodate for the nonactive item location before inserting the

new active item.

TLI 1 2

L————————————variab]e—1ength

table area

A variable-length table may be built in either an area or a record.

Table Handling

There are two table-handling techniques: slot processing and pushdown pro-
cessing.

e Slot Processing

Slot processing is a table-handling technique in which software allows
items to be added to or deleted from the table by considering each item to
be either active or nonactive. All fixed-length tables use slot processing.
In addition, slot processing may be applied to the handling of a variable-
length table in an area as described above where the table expands to ac-—
commodate a nonactive location before inserting a new data item. Examples
of slot insertion and deletion are included in the separate publications
for each of the defined table structures.

e Pushdown Processing

Pushdown processing is a table handling technique in which the overall
length of the table and the number of items in the table increases or de-
creases as items are added to or deleted from the table. Pushdown processing

NEAT/3 -- INSTRUCTIONS Apr. 70
TAB 4 —- PUB. NO. 1 Page 4

TABLE CONCEPTS

can only be used with variable-length tables. Examples of pushdown inser-
tion and deletion are included in the separate publications for each of the
defined table structures.

FUNCTIONS

Table functions are handled by specific table instructions which may be sepa-
rated into the five general categories that follow:

e To Initialize a Table

Before any table processing can begin, the programmer must initialize the
table. The variations of the TBEG instruction initialize the table loca-
tions and counters so that either the entire table may be built (TBEGB -
begin to build) or the items in the existing table may be accessed (TBEGF
- begin to find).

e To Build a Table

If the table is to be built, the programmer codes the applicable variation
of the TBILD instruction which constructs the table in either a direct
(TBILDD - build direct) or sequential (TBILDN - build next) manner.

e To Access Items Within the Table

If a particular item in the table is to be accessed, the programmer codes
the applicable variation of the TFIND instruction which finds the specific
item by a random search (TFINDR - find random), a sequential search by key
comparison (TFINDS - find sequential, TFINDP - find previous sequential),

a binary search (TFINDB - find binary), a sequential search by location
(TFINDN - find next, TFINDO - find next in order after last table instruc-
tion), or by the direct location of a specific item (TFINDD - find direct).

o To Delete Items From and To Add Items To a Table

When an item is to be deleted from or inserted into a table, the programmer
codes either a TDEL (delete), a TSERT (insert), or a TBILDD (build direct)
instruction.

e To Perform Special Functions Upon a Table

At the programmer's option, various other table instructions may be coded
which perform unique but essential tasks in table maintenance. These in-
structions are TSHIFT, TPACK, TSORT, TMARK, TRESET, and TJUMP.

The programmer decides which functions his program requires and codes the
applicable table instructions. Examples using these table instructions are
found in their separate publications.

In some instances, table instructions are restricted by table structure. The
following illustration shows which instructions are applicable to each of the
6 table structures.

NEAT/3 -- INSTRUCTIONS Apr. 70
TAB 4 -- PUB. NO. 1 Page 5

TBEGB

TBEGB

TBEGF

TBEGF

TBILDN

TBILDN

TBILDD

TBILDD

TFINDN

TFINDN

TFINDN

TBEGB

TBEGB

TBEGB

TBEGF

TBEGF

TBEGF

TBILDN

TBILDD

TFINDN

TFINDD

TFINDD

TFINDD

TFINDD

TFINDR

TFINDR

TFINDR

TFINDR

TBILDN

TFINDN

TFINDR

TBILDN

TFINDN

TFINDR

TFINDS

TFINDS

TFINDS

TFINDS

TFINDS

TFINDS

TFINDB

TFINDB

TFINDB

TFINDB

TFINDB

TFINDB

TFINDP

TFINDP

TFINDP

TFINDP

TFINDP

TFINDP

TFINDO

TFINDO

TFINDO

TFINDO

TFINDO

TFINDO

TDEL

TPACK

TDEL

TPACK

TDEL

TPACK

TDEL

TDEL

TDEL

TSERT

TPACK

TSORTA

TSORTA

TSORTA

TSORTA

TSERT

oy

TSORTA

TSERT

TSORTA

TSORTD

TSORTD

TSORTD

TSORTD

TSORTD

TSORTD

TSHIFT

TSHIFT

TSHIFT

TSHIFT

TSHIFT

TSHIFT

TMARK

TMARK

TMARK

TMARK

TMARK

TMARK

TRESET

TRESET

TRESET

TRESET

TRESET

TRESET

TABLE STRUCTURES

TJUMP

Table location,
structures that

Structure
Structure
Structure

Structure
Structure
Structure

TJUMP

TJUMP

TJUMP

TJuMP

TJUMP

length, and handling techniques make available the six defined

follow:

1 - A fixed-length table in an area, using slot processing.
2 - A fixed-length table in a record, using slot processing.
3 - A fixed-length table in an item of another table, using

slot processing.

4 - A variable-length table in an area, using slot processing.

5 - A variable-length table in an area, using pushdown processing.

6 - A variable-length table in a record, using pushdown
processing.

NEAT/3 -- INSTRUCTIONS
TAB 4 -- PUB. NO. 1

Apr. 70
Page 6

TABLE CONCEPTS

Freestanding Tables

Freestanding tables contain information common to many records or even to
many files in a program. Three structures are possible for freestanding
tables in an area of memory.

e Fixed-Length Table Within an Area Using Slot Processing (Structure 1)

1. This structure works well for a table that has a high insertion/deletion
rate of items.

2. This structure can be built in either a direct or sequential manner.

3. Items in this table structure are normally processed by their location
within the table rather than by the contents of their keys.

4, Since the TSERT instruction cannot be used in this structure, items are
added or inserted using the TBILDD instruction.

e Variable-Length Table Within an Area Using Slot Processing (Structure 4)

1. This structure works well for a table that has a high insertion/deletion
rate of items.

2. This structure can be built in either a direct or sequential manner.

3. This table structure is suggested for applications in which items are
processed by the contents of their keys.

4., All table instructions are usable in this structure.

e Variable-Length Table Within an Area Using Pushdown Processing (Structure 5)

1. This structure can only be built in a sequential manner, because the
TBILDD instruction is not used with this structure.

2. Items in this table structure are processed by the contents of their keys.

3. Items in this structure cannot be accessed in a direct search.

4. The TPACK instruction (which decreases access time of items) cannot be
used in this structure.

Record Tables

When each record in a file contains related information that can be organized
into identical, fixed-length items within a field of each record, this infor-
mation can be defined as a record table. One table definition (like one record
definition) is all that is needed to access the many tables (in each record)
contained in the file. Two structures are possible for record tables in a
file. Conventions associated with each of these structures are outlined below.

e Fixed-Length Table Within a Record Using Slot Processing (Structure 2)

1. This structure permits the simple step-through processing of a number of

items in that field of a record defined as a table.

This structure can be built in either a direct or sequential manner.

3. Since the TSERT instruction cannot be used in this structure, items are
added or inserted using either the TBILDD, TFINDN, COMP, or MOVE in-
structions.

N

NEAT/3 -- INSTRUCTIONS Apr. 70
TAB 4 -- PUB. NO. 1 Page 7

e Variable-Length Table Within a Record Using Pushdown Processing (Structure 6)

1. This structure permits the simple step-through processing of a number of
items in a variable-length portion (field) of a record defined as a table
and automatically updates the variable length indicator (VLI) of the
record.

2. The overall length of the record may increase or decrease as items are
added to or deleted from the table portion of the record.

3. This structure can only be built in a sequential manner, because the
TBILDD instruction is not used with this structure.

4. Ttems in this structure cannot be accessed in a direct search.

5. The TPACK instruction (which decreases access time of items) cannot be
used in this structure.

Minor Tables

If each item in one of the other five table structures contains many units of
identically formatted data, these like units may be defined as items in a
minor table. One minor table definition is all that is needed to subdivide
the data in each item of the major table. A common structure is used for all
minor tables regardless of the major table in which they exist. Conventions
of this structure are outlined below.

e TFixed-Length Table Within a Table Using Slot Processing (Structure 3)

1. Since the TBILD instructions cannot be used with this structure it must
be constructed using data definitions.

2. Since the TSERT instruction cannot be used in this structure, items are
added or inserted using the TFINDN, COMP and MOVE instructions.

NEAT/3 -- INSTRUCTIONS Apr. 70
TAB 4 -- PUB. NO. 1 Page 8

TABLE WORKSHEETS

Two types of compiler worksheets are needed to describe and define a table:
1. A table specification worksheet is used to describe the characteristics
of the table.
2. A data layout worksheet is used to define the length and format of the
items and fields within the table.

Table instructions are organized on a coding worksheet.

TABLE SPECIFICATION WORKSHEET

A table specification worksheet is illustrated below. The programmer uses one
of these sheets to describe the characteristics of each table in his program.

INCR]
v [
0]
Paper Tape Format Code [/ 2 8] =
-
i Page-Line ﬁ I
\ .
2 Table Reference L
T W
i Offset of Base of Table Kelatnr Loxation of Fist L [k
I .
3 Maximum Length of Table Mavunun Allowed biK f mE
LA — —
% Reference of Key I Major Ret [1
. o
b Reference of Key 11 M hey [P
- s
T Reference of Ttem Counter e b
L)
B Order of Kevs 1 Avcending 2 Desconding 3 Randon M
.
@ I« Binary Searching U vl Y o0 N7 M
L .
10 Table Structure M.
1 Fovd Pength Table Free Standing Foxed Lonzrh Dables
2 Foved Deneth Labile Warkin A Recoad Are Slotted In
3 Foud Dot bl Munee Lable St tare
+ Varabie Fengrh abie Sioteed Froe Standdinge
Narable Foneth Labic Freo Standine
6 Narabl Looeth Fabic Wathan A Revond
11 Delete Digis -
)
12 Wdemification r e
;'.'" Feisse 2 el uCH T = = “TRACEMAAN REC U § PAT OFF

NEAT/3 —-- INSTRUCTIONS Apr. 70
TAB 4 -- PUB. NO. 2 Page 1

The programmer should fill in the header, page-line number (question 1), the
delete digit (question 11), and the identification tag (question 12) as defined
in NEAT/3 REFERENCE MANUAL, INTRODUCTION AND DATA, tab 3, "Programming Work-
sheets'". The paper tape code must be punched if paper tape is used for input
to the compiler.

1. Page-Line ’

2. Table Reference

The letter T in position 7 is preprinted on the table specification worksheet
and must be punched.

Enter in positions 8 through 17 the name of the table. This name may contain
from 1 to 10 characters which are made up of the letters A through Z and/or
the numerals O through 9. The table name must begin in position 8 and must
contain at least one alphabetical character. Spaces are not permitted within
the table name.

3. Offset of Base of Table (Relative Location of First Item) I ']

Enter in positions 18 through 20 the relative location of the first item in
the table. This entry is optional for fixed-length tables (structures 1, 2,
and 3). For variable length tables (structures 4, 5, and 6), remember to in-
clude in this count the two characters needed for the TLI.

4. Maximum Length of Table (Maximum Allowed 64K) l]

If this table is fixed-length, enter in positions 21 through 25 the number of
characters this table contains.

If this table is variable-length, enter in positions 21 through 25 the maximum
number of characters that this table is to contain. Remember to include the
two characters for the TLI.

5. Reference of Key I (Major Key) l o]

If this table has two keys, enter the reference name of the major key (the
field whose contents identify a particular group of items in the table).

If this table has only one key, enter the reference name of the key (the field
whose contents identify the desired item in the table).

If no key is to be used, tag the associated item and enter that reference name
in this space.

NEAT/3 -- INSTRUCTIONS Apr. 70
TAB 4 -- PUB. NO. 2 Page 2

TABLE WORKSHEET

. Reference of Key II (Minor Key) T

If this table has two keys, enter the reference name of the minor key (the
field whose contents identify one item within the group narrowed by the major

key).

If this table has one key, omit this entry.

. Reference of Item Counter | e]x

If the optional item counter is desired, enter the reference of this counter.
If the optional item counter is not desired, leave these positions blank.

An item counter, an optional feature of the NEAT/3 tables, is a field that
contains the number of items currently in the table. During program execution,
the software increments and decrements this number as it adds and deletes

items from the table.

If a running total of the number of items currently in the table is desired,
define this counter on the data layout sheets. This counter must be an un-

signed decimal field (type U) and must originally contain the initial number
of items in the table.

e If the table is within a record, this field must also be in the record
and must precede the table. ‘

e If the table is within an area, this field may be anywhere in memory
other than in the table.

e If the table is within another table, the location of the major table
(either in a record or in an area) determines whether the counter field
for the minor table is in a record or in an area.

56
Order of Keys (1-Ascending, 2- Descending, 3-Random) [——I

Enter 1 if the contents of both the major and minor keys are in ascending
sequence (low to high). The contents may be either numeric or alphanumeric.

Enter 2 if the contents of both the major and minor keys are in descending
sequence (high to low). The contents may be either numeric or alphanumeric.

Enter 3 if the contents of both or one of the keys are in a random alpha-
numeric or random numeric sequence.

NEAT/3 -- INSTRUCTIONS Apr. 70
TAB 4 -- PUB. NO. 2 Page 3

57
9. Is Binary Searching Used (Y or N)? D
Enter Y if a binary search (TFINDB) is to be performed on this table at any

time during the execution of this program.

Enter N if a binary search (TFINDB) is not to be performed on this table
during the execution of this program.

10. Table Structure: D ,
1 — Fixed Length Table-Free Standing Fixed Length Tables
2 — Fixed Length Table-Within A Record Are Slotted In
3 — Fixed Length Table-Minor Table Structure

4 — Variable Length Table Slotted-Free Standing
5 — Variable Length Table Free Standing

6 — Variable Length Table Within A Record

Enter the number from 1 to 6 which indicates the structure of the table.

N 74

11. Delete Digit [:l A

12. Identification | —

NEAT/3 —- INSTRUCTIONS Apr. 70
TAB 4 -- PUB. NO. 2 Page 4

TABLE WORKSHEET

DATA LAYOUT WORKSHEET

The data layout worksheet is used to define to the compiler the format of the
items and fields within each table. Since the format of every item within
each table must be identical, only one item and its fields need be defined for
each table.

Item Definition

When input to the compiler, the item definition must immediately follow its
associated table-specification source line. Two entries are required for each

item definition; in column 18, place an I and in columns 24-27, place the
number of 8-bit characters in the item.

REFERENCE LOCATION LENGTH VALUE OR PICTURE

8 9 10 13 12 13 14 15 16 17 19 20 21 22 23|24 25 26 27 31 32 33 34 35 36 37 38 39 40 41 42 43

1 lzl.|

Field Definitions

The field definitions are subdivisions of the item definition. They specify
the units of data that make up the item. One (or two) of the fields is gen-
erally the key(s) referenced on the table specification worksheet, question 5
(and 6). The following entries are required for every field definition:

@ In column 18, place an F.

¢ In columns 19-23, indicate the relative location of the field within
the item.

e In columns 24-27, place the number of 8-bit characters in the field.

e In column 30, place the data type of the field.

REFERENCE LOCATION LENGTH VALUE OR PICTURE

8 9 10 11 12 13 14 15 16 17 19 20 21 22 23|24 25 26 27 31 32 33 34 35 36 37 38 39 40 41 42 43

NEAT/3 -- INSTRUCTIONS Apr. 70
TAB 4 -- PUB. NO. 2 Page 5

Using the rules governing item and field definitions, a bank that tables each
transaction to the depositor's master record defines the items and fields as
follows:

REFERENCE LOCATION LENGTH VALUE OR PICTURE

8 9 10 tt 12 13 14 15 16 17 19 20 21 22 23}24 25 26 27 31 32 33 34 35 36 37 38 39 40 41 42 43

1 1 1 1 1 1 1 1 1

DLATE, v v 4
C,0,0,E, v 4
A /MO, UNT, ,
B,ALLANCE,

The format of the above defined item would be as follows:

Date Transaction| Amount | Balance
Da | Mo Yr Code
XX | XX XX X XXXX XX | XXXX XX
NEAT/3 -- INSTRUCTIONS Apr. 70

TAB 4 -- PUB. NO. 2 Page 6

TABLE WORKSHEET

SOURCE LINE ORGANIZATION

The following illustration shows the source-line sequence needed to properly
define tables.

optional

required for
f minor tables
only

optiona] Field
Definitions I

Item
Definition

optional Field

Definitions
Record or
Area

Definition

o A definition of the table environment (area or record) must be presented
first.

e The table environment (area or record) may contain constants for working-
storage fields. These field definitions are optional.

e The table specification sheet must be presented next.

® The item definition for the table must follow the table specification sheet.

e The field definitions within the item are presented following the item
definition. These field definitions are optional.

e If a minor table (table within a table) exists, a table specification
sheet for the minor table must be presented next.

e The item definition for the minor table must follow the minor table
specification sheet.

e The field definitions within the item for the minor table follow the
item definition. These field definitions are optional.

NEAT/3 -- INSTRUCTIONS Apr. 70
TAB 4 -- PUB. NO. 2 Page 7

FIXED—LENGTH TABLE WITHIN AN AREA

USING THE SLOT PROCESSING TECHNIQUE

(STRUCTURE 1)

DESCRIPTION

A fixed-length table is one whose overall length does not vary. During pro-
cessing, a programmer may frequently wish to access a fixed-length table which
contains information common to many records or even to many files. To do this,
he may define this table to be freestanding in a memory area.

The following illustration shows the general format of a table within a memory
area.

The programmer's definition of this area must reserve enough memory to contain
the entire table. The compiler assigns an area in memory to this table from
the programmer's entries on the data layout sheets.

SLOT PROCESSING TECHNIQUE

Slot processing is the only technique that can be used on fixed-length tables.
Slot processing is a technique of table handling that allows items to be added
to or deleted from the table not by altering the overall length of the table,
but by simply considering each item to be either active or nonactive.

To Delete an Item Using TDEL

To delete an item from the table, the TDEL instruction places a code in the
item. It now considers this item to be nonactive or deleted.

NEAT/3 -- INSTRUCTIONS Apr. 70
TAB 4 -- PUB. NO. 3 Page 1

In the following example, TDEL deletes item B from the table using the slot
processing technique. Note that the table size does not change.

[Alslcip | [AlnafcfoD]

To Insert an Item Using TBILDD

To insert an item into a table, TBILDD directly inserts the item by placing a
new item into the location specified by the user. However, if the location is
currently active, TBILDD does not insert the new item but sets the E flag and
transfers control to the routine specified by the branch operand.

In the following example, TBILDD is to insert a new item into the second item
position. This new item has a key of 7.

SAMPLE PROBLEM

A payroll program must access the master record for each employee, subtract
the taxes and other deductions pertinent to the employee, and print a paycheck.
The procedural instructions which perform these functions require the data
definitions of the master record, the transaction record, and the tax table.

Master File

The amount of each employee's withholding tax is determined by his gross pay
and the number of his dependents. The number of dependents for each employee
is contained on a master record.

DEPENDENTS §

NEAT/3 -- INSTRUCTIONS Apr. 70
TAB 4 -- PUB. NO. 3) Page 2

TABLE STRUCTURE 1

Transaction File

Each employee's gross pay is contained on a transaction record.

WEEKSPAY

Tax Table

Since many employees fall within the same salary range and have the same
number of dependents, the programmer defines a precalculated tax table as
being freestanding in memory. This tax table can be accessed any time during
processing. Each item in this freestanding tax table contains three fields:

GROSSPAY, DPENDNTS, and WITHHOLD.

GROSSPAY l DPENDNTS WITHHOLD

NEAT/3 -- INSTRUCTIONS Apr. 70
TAB 4 —- PUB. NO. 3 Page 3

Procedural Instructions

Using the contents of WEEKSPAY and DEPENDENTS, the program performs a table
lookup for the item applicable to each employee. When this information is
found, the program subtracts the withholding tax from the employee's salary.

After the program subtracts all other deductions pertinent to this master
record, it prints the paycheck and branches to get the next transaction
record. Consider the following flowchart.

A transaction record.

The corresponding master record.

TFINDS In the tax table the item whose major key
equals the contents of WEEKSPAY and whose
minor key equals the contents of DEPENDENTS.

The withholding tax from the contents
of WEEKSPAY.

Other deductions pertinent to this
master record.

Print the paycheck.

To get the next transaction record.

BUILDING THE TABLE

A fixed-length table within an area (structure 1) may be initially built in
any of three ways: through the execution of TBILDD, through the execution of
TBILDN, or through data definitions. The method chosen to build the table
depends upon table use.

The following guidelines are by no means definitive. They are merely suggested
approaches to building a table. If a programmer has an application that will
process well by combining some of the following suggestions, he is free to do

NEAT/3 -- INSTRUCTIONS Apr. 70
TAB 4 -- PUB. NO. 3 Page 4

TABLE STRUCTURE 1

so as long as he does not violate any conventions pertaining to table structure
or instructional use, e.g. he may not in any circumstance use a TSERT in-
struction on a fixed-length table within an area.

Building the Table with TBILDD

TBILDD is used to build a fixed-length table that is to be processed by item
location and that has insertion/deletion capabilities.

Since all fixed-length tables within an area must use the slot processing
technique, the only way items can be inserted into the table is through the
execution of TBILDD. TBILDD does not look at the contents of the keys to
determine where to build the item. It builds an item into the first, fourth,
tenth, fiftieth, etc. item location in the table. This requires that the
programmer know into which location the item is to be inserted.

Hence, if items are to be added to or deleted from the table, the programmer
should process this table by item location rather than by key comparison. The
following instructional variations logically complement each other and should
be used when processing a table within an area that has insertion/deletion
capabilities:

To build the table, use TBILDD.

To access items within the table, use TFINDD.
To insert items into the table, use TBILDD.
To delete items from the table, use TDEL.

Building the Table with TBILDN

TBILDN is used to build during program execution a fixed-length table that is
to be processed by key comparison but that has no insertion/deletion capabilities.

A programmer may wish to build a fixed-length table within an area during
program execution. The keys of this table are constant for today's run, i.e.
the program will never insert items into or delete items from the table once
the table is built. Tomorrow, however, an entirely new table may be built
whose keys may or may not resemble today's keys. (The data comprising the
actual contents of the keys may originate from a COT reader or from magnetic
media as an output of another program.)

The following instructional variations complement each other and should be
used when processing a fixed-length table by key comparison:

e To build the table, use TBILDN.
e To access items within the table:

e Use TFINDN or TFINDP if the items are to be accessed sequentially
(one after the other).

e Use TFINDR if the items are to be accessed randomly and if the keys
are not sequentially organized.

e Use TFINDB, TFINDS, or TFINDO if the items are to be accessed ran-
domly and if the keys are sequentially organized.

NEAT/3 -~ INSTRUCTIONS Apr. 70
TAB 4 -- PUB. NO. 3 Page 5

Building the Table with Data Definitions

Data definitions may be used to build into an object program a fixed~length
table which is to reside in a memory area during program execution. Each time
this program is called into memory, this table of constants is also read in.
The only reason a programmer would want to build a table this way is if the
data in the items is never to change and if no items are to be inserted into
or deleted from the table.

The items may be accessed either by item location or by key comparison. If
the items are accessed by location, the data in the items should never change.
This method of table search requires that the programmer know which item loca-
tion is desired and use the TFINDD instruction to access the desired item.

If the items are accessed by key comparison rather than item location, the
contents of these keys (and optionally the contents of the entire item) are
built into the table with data definitions. At least the contents of the keys
must remain the same from one processing day to the next; the other data in
the items may either remain constant or change depending upon program require-
ments. However, the programmer must note that if he changes data in the table
during one processing run, the next time this program is called into memory,
the table contains the original data (that specified by the data definitions)
and not the updated information. These items may be accessed in one of three
ways:

e Use TFINDR if the items are to be accessed randomly and if the keys are
not sequentially organized, or if it is a relatively small table (1-30
items) and positioning after a not-found search is not critical.

e Use TFINDB, TFINDS, or TFINDO if the items are to be accessed randomly
and if the keys are sequentially organized.

e Use TFINDN or TFINDP if the items are to be accessed serially (one after
the other).

CONVENTIONS

The following rules apply to a fixed-length table that uses the slot processing
technique (structure 1):

e The maximum length permitted for each key is 255 characters.
e The table instructions that can be executed on this table are:

TBEGB, TBEGF

TBILDD, TBILDN

TDEL

TFINDN, TFINDD, TFINDR, TFINDS, TFINDB, TFINDP, TFINDO
TSHIFT

TPACK

TSORTA, TSORTD

TMARK

TRESET

TJUMP

NEAT/3 -- INSTRUCTIONS Apr. 70
TAB 4 —— PUB. NO. 3 Page 6

FIXED—LENGTH TABLE WITHIN A RECORD

USING THE SLOT PROCESSING TECHNIQUE

(STRUCTURE 2)

A table whose length never changes during processing is a fixed-length table.
In other words, each item is the same length as the other items, and the
overall length of the table remains the same during processing.

A fixed-length table may reside in each record in a file. The table may be
preceded or followed by fields of data common to all records, e.g. customer
name, address, account number, etc.

The following illustration shows the format of a fixed-length table within a
record.

Item Item Item Item Item Item Item
(-

—
Fixed-Length Table

Information
common to
all records

(U

N
Record

SLOT PROCESSING TECHNIQUE

Slot processing is the only technique that can be used on fixed-length tables.
Slot processing is a technique of table handling that allows items to be added
to or deleted from the table not by altering the overall length of the table,
but by simply considering each item to be either active or nonactive.

NEAT/3 -- INSTRUCTIONS Apr. 70
TAB 4 -- PUB. NO. 4 Page 1

To Delete an Item Using TDEL

To delete an item from the table, the TDEL instruction places a code in the
item. It now considers this item to be nonactive or deleted.

In the following example, TDEL deletes item B from the table using the slot
processing technique. Note that the table size does not change.

To Insert an Item Using TBILDD

To insert an item into a table, TBILDD directly inserts the item by placing a
new item into the location specified by the user. However, if the location is
currently active, TBILDD does not insert the new item but sets the E flag and
transfers control to the routine specified by the branch operand.

In the following example, TBILDD is to insert a new item into the second item
position. This new item has a key of 7.

BUILDING THE TABLE

A fixed-length table within a record (structure 2) may be initially built in
any of three ways: through the execution of TBILDD, through the execution of
TBILDN, or through initial file input (data definitions).

The following guidelines are by no means definitive. They are merely suggested
approaches to building a table. If a programmer has an application that will
process well by combining some of the following suggestions, he is free to do
so as long as he does not violate any conventions pertaining to table structure
or instructional use, e.g. he may not in any circumstance use a TSERT instruc-
tion on a fixed-length table within a record.

Building the Table with TBILDD

TBILDD is used to build a fixed-length table that is to be processed by item
location and that has insertion/deletion capabilities.

NEAT/3 —-- INSTRUCTIONS Apr. 70
TAB 4 -- PUB. NO. & Page 2

TABLE STRUCTURE 2

Since all fixed-length tables within a record must use the slot processing
technique, the only way items can be inserted into the table is through the
execution of TBILDD. TBILDD does not look at the contents of the keys to de-
termine where to build the item. It builds an item into the first, fourth,
tenth, fiftieth, etc. item location in the table. This requires that the pro-
grammer know into which location the item is to be inserted.

Hence, if items are to be added to or deleted from the table, the programmer
should process this table by item location rather than by key comparison. The
following instructional variations logically complement each other and should
be used when processing a table within a record that has insertion/deletion
capabilities:

To build the table, use TBILDD.

To access items within the table, use TFINDD.
To insert items into the table, use TBILDD.
To delete items from the table, use TDEL.

Building the Table with TBILDN

TBILDN is used to build during program execution a fixed-length table that is
to be processed by key comparison but that has no insertion/deletion capabil-
ities.

A programmer may wish to build during program execution a fixed-length table
within each record in a file. The keys of each table are constant for today's
run, i.e. the program will never insert items into or delete items from the
table once the table is built. Tomorrow, however, an entirely new table may
be built into each record whose keys may or may not resemble today's keys.
(The data comprising the actual contents of the keys may originate from a COT
reader or from magnetic media as an output of another program.)

The following instructional variations complement each other and should be
used when processing a fixed-length table by key comparison:

e¢ To build the table, use TBILDN.
e To access items within the table:

e Use TFINDN or TFINDP if the items are to be accessed sequentially
(one after the other).

e Use TFINDR if the items are to be accessed randomly and if the keys
are not sequentially organized.

e Use TFINDB, TFINDS, or TFINDO if the items are to be accessed
randomly and if the keys are sequentially organized.

Building the Table Through Initial File Input (Data Definitions)

A fixed-length table within a record may be built through initial file input
if no items are to be added to or deleted from the table and if the data (or
keys) in the items are to remain constant from one processing day to the next.
The only reason a programmer would want to build a table this way is if each
record is to contain a table of unchanging data, i.e. if each record is to
contain a table of constants.

NEAT/3 -- INSTRUCTIONS Apr. 70
TAB 4 -- PUB. NO. 4 Page 3

The items may be accessed either by item location or by key comparison. If
the items are accessed by location rather than by key comparison, the data in
the items should never change. This method of table search requires that the
programmer know which item location is desired and use the TFINDD instruction
to access the desired item. :

If the items are accessed by key comparison rather than item location, the
contents of these keys (and optionally the contents of the entire item) are
built into the record during initial file input, i.e. from the data deck. At
least the contents of the keys must remain the same from one processing day to
the next; the other data in the items may either remain constant or change
depending upon program requirements. However, the programmer must note that
if he changes data in the table during one processing run, the next time this
file is processed, the table in each record contains the updated information
and not the original data. These items may be accessed in one of three ways:

e Use TFINDR if the items are to be accessed randomly and if the keys are
not sequentially organized, or if positioning after a not-found search
is not critical.

e Use TFINDB or TFINDS if the items are to be accessed randomly and if the

keys are sequentially organized.
e Use TFINDN if the items are to be accessed serially (one after the other).

CONVENTIONS

The following rules apply to a fixed-length table that uses the slot processing
technique (structure 2):

e The maximum length permitted for each key is 255 characters.
e The table instructions that can be executed on this table are:

TBEGB, TBEGF

TBILDD, TBILDN

TDEL

TFINDN, TFINDD, TFINDR, TFINDS, TFINDB, TFINDP, TFINDO
TSHIFT

TPACK

TSORTA, TSORTD

TMARK

TRESET

TJUMP

NEAT/3 -- INSTRUCTIONS Apr. 70
TAB 4 -- PUB. NO. 4 Page 4

FIXED—LENGTH TABLE (MINOR TABLE)

IN AN ITEM OF ANOTHER TABLE

USING THE SLOT PROCESSING TECHNIQUE

(STRUCTURE 3)
DESCRIPTION

A major table, i.e. a table within an area or a table within a record, may con-
tain a minor table which subdivides the data in each item in the major table.

Each item in the major table contains the keys of the major table, any optional
fields of data that are needed, and a minor table. Consider the following
illustration.

Keys in Major Table | Optional Data Minor Table

Major Key|Minor Key | XXXXXXXXXXXXX Item | Item | Item

For instance, a major table may limit its items to a specific make and model
of automobile, and the minor table may further break down each car into its
parts and their prices.

The following example shows how this data could be arranged. The number of
items in the minor table can be expanded to include many other parts and prices.
This illustration only shows how live data would look in both the major and
minor tables.

Keys in Major Table Items in Minor Table

Make A Model A Part X Price Part Y Price Part Z Price
Make A Model B Part X Price | Part Y Price | Part Z Price
Make B Model A Part X Price Part Y Price Part Z Price

NEAT/3 -- INSTRUCTIONS Apr. 70
TAB 4 -- PUB. NO. 5 Page 1

If the price of part Z in Make A Model B is desired, the program first searches
the major table for Make A Model B. Once this item in the major table is made
accessible, the program searches the minor table within the item for part Z.
The desired item in the minor table is now accessible, and the program can
access the price of part Z in the Make A Model B car.

SLOT PROCESSING TECHNIQUE

Slot processing is the only technique that can be used on minor tables. Slot
processing is a technique of table handling which allows items to be added to
or deleted from the table not by altering the overall length of the table, but
by simply considering each item to be either active or nonactive.

To Delete an Item Using TDEL

To delete an item from the table, the TDEL instruction places a code in the
item. It now considers this item to be nonactive or deleted.

In the following example, TDEL deletes item B from the table using the slot
processing technique. Note that the table size does not change.

[(A]8]cfo | [AJnafc]oD]

To Insert an Item Using TFINDN, COMP, and MOVE

To insert into a minor table, the TFINDN instruction is used to find the de-
sired item location. The COMP instruction must be used as each item becomes
accessible to make a key comparison. When the desired item location is found,
the MOVE instruction must be used to insert the new data. Consider the
following illustration.

TBEGF Initialize the minor table.

TFINDN Select the first item in the table, when following
TBEGF. When encountered subsequently select next
sequential item.

Test for desired key. If NO, branch to FINDN; if
YES, to MOVE.

Insert data into item.

To next appropriate instruction.

NEAT/3 -- INSTRUCTIONS Apr. 70
TAB 4 -- PUB. NO. 5 Page 2

TABLE STRUCTURE 3

In the following example, the second item location has been made accessible by
the TFINDN and COMP instruction and the MOVE instruction inserts the new data

with a key of 7.

BUILDING THE TABLE

Since the TBILD instructions cannot be used on a minor table, the programmer
must construct all minor tables himself. The following program constructs a
major and a minor table concurrently. The program requires a transaction file,
a table area, and a workarea.

Transaction File

A large firm wishes to take inventory on all pieces of business equipment in
its office complex. It records the quantity of each type of equipment in each
office on a transaction record and inputs these records to the program.

TRANSACTION RECORDS

Coded Floor | Office | Quantity
Equipment Number | in Office
Number

Table Area

The program is to access a transaction record and use the information in it to
build the major and the minor tables. The programmer reserves an area in mem-
ory for the entire table. Each item in this major table contains a minor table.
The following illustration shows the format of each item in the major table.

MINOR TABLE WITHIN AN ITEM IN THE MAJOR TABLE

Keys in Major Table [tems in Minor Table

Quantity

I
Coded Floor Office | Quantity Office 1

Equipment Number | in Office | Number : in Office
|

Number

NEAT/3 -- INSTRUCTIONS Apr. 70
TAB 4 -- PUB. NO. 5 Page 3

Workarea

Bafore the program can build an item into the major table, it must first con-
struct this item in a workarea. The first three fields of the workarea are
initially zero-filled. The remainder of the area (that part corresponding to
the items in the minor table) is space-filled.

Coded Floor
Equipment
Number

¢——— Zero-Filled Space-Filled

Procedural Instructions

The procedural instructions access a transaction record and use the information
in it to build the major and the minor tables.

NEAT/3 -- INSTRUCTIONS Apr. 70

TAB 4 -- PUB. NO. 5 " Page 4

TABLE STRUCTURE 3

Initialize the major table.

GET A transaction record.

TFINDR Search the major table for the item whose keys
correspond to the equipment and floor fields in
the transaction record. If the item does not
exist in the major table, branch to build the
item into the table.

The contents of the office field to the contents
of the floor-total field.

TFINDR Search the minor table within the accessed major
jtem for the minor item whose keys correspond to
the office field in the transaction record. If
this item does not exist in the minor table,
branch to build the jtem into the table.

Branch to a TRANSERR routine. If control falls
through to this instruction, the current trans-
action record is a duplicate of a previous one.

The contents of the equipment and floor fields in
the transaction record into the corresponding
fields in the workarea.

MOVE The contents of the office field to the contents
of the floor-total field.

TBILDN In the major table the item contained in the work-
area.

TBEGF Initialize the minor table.

TFINDR Find the first ' @ ' in the minor table. Since the
table area is originally space-filled, this
instruction accesses the first vacant jtem position
in the minor table.

The office and quantity fields from the transaction
record into the corresponding fields in the
accessed minor table.

To get another transaction record.

NEAT/3 -- INSTRUCTIONS Apr. 70
TAB 4 -- PUB. NO. 5 Page 5

CONVENTIONS

The major table must be fixed in length.

The minor table must be fixed in length.

The minor table must use the slot processing technique.

The maximum length permitted for each key in the minor table is 255
characters.

The table instructions that can be executed on a minor table are:

TBEGF

TFINDN, TFINDD, TFINDR, TFINDS, TFINDB, TFINDP, TFINDO
TDEL

TSHIFT

TPACK

TSORTA, TSORTD

TMARK

TRESET

TJUMP

e The minor table generally has an offset of at least the key length of
the major table.

SOURCE-LINE ORGANIZATION

The table specification sheet and the item and field definitions for the minor
table must follow the item and field definitions for the major table.

NEAT/3 -- INSTRUCTIONS Apr. 70
TAB 4 -- PUB. NO. 5 Page 6

VARIABLE—LENGTH TABLE WITHIN AN AREA

USING THE SLOT PROCESSING TECHNIQUE

(STRUCTURE 4)
DESCRIPTION

A table whose length may expand or contract during processing is a variable-
length table. A variable-length table must contain fixed-length items, but
the number of items in the table may increase or decrease during processing.

During processing, a programmer may frequently wish to access a variable-length
table containing information common to many records or even to many files. To
do this, he may define this table to be freestanding in a memory area.

Each variable-length table must have a table length indicator (TLI) as its
first two 8-bit characters. This TLI must contain a binary number that spec-
ifies the total number of characters (including the two characters for the
TLI) currently in the table.

A variable-length table expands or contracts by increasing or decreasing the
total number of items in the table. In the following example, the table is
variable in length. Note the table length indicator.

[tem Item Item Item Item Item Itemg)

Variable-Length Table

Area

The programmer's definition of this area must reserve enough memory to contain
the maximum size table. The compiler assigns an area in memory to this table
from the programmer's entries on the data layout sheets.

NEAT/3 -- INSTRUCTIONS Apr. 70
TAB 4 -- PUB. NO. 6 Page 1

SLOT PROCESSING TECHNIQUE

Slot processing is a table-handling technique in which software considers
items to be either active or nonactive. When the slot processing technique
is used on a variable-length table within an area (structure 4), items may be
deleted from the table with a TDEL instruction, and they may be inserted into
the table with either a TBILDD or a TSERT instruction.

To Delete an Item Using TDEL

To delete an item from the table, the TDEL instruction places a code in the
item. It now considers this item to be nonactive or deleted. In the following
example, TDEL deletes item B from the table using the slot processing technique.
Note that the table size remains the same after deletion as it was before
deletion.

[Al8sfclD | [A[nafcjoD]

To Insert an Item Using TBILDD

TBILDD directly inserts an item into the table by placing a new item into the
table in the location specified by the user. However, if the location is cur-
rently active, TBILDD does not insert the new item but sets the E flag and
transfers control to the routine specified by the branch operand.

In the next illustration, TBILDD is to place a new item into the fifth item
location of a variable-length table. Since the table currently contains only
three items, TBILDD expands the length of the table to accommodate the insertion.

NEAT/3 —- INSTRUCTIONS Apr. 70
TAB 4 -- PUB. NO. 6 Page 2

TABLE STRUCTURE 4

To Insert an Item Using TSERT

TSERT looks for the first nonactive item following the desired position,
pushes down the intermediate active items in the table, and inserts the new
item into its proper location.

In the following example, item B is to be inserted between items A and C.
TSERT pushes items C and D down the table to fill up the first nonactive item
encountered. It then inserts item B into the vacant position.

If, however, there is no nonactive item following the desired position, TSERT
borrows a function of the pushdown technique and pushes one item length down
the table all items following this position, thereby extending the table
length by one item. It then inserts the new item into the position it has
just vacated. Consider the following example.

NEAT/3 -- INSTRUCTIONS Apr. 70
TAB 4 -- PUB. NO. 6 Page 3

BUILDING THE TABLE

A variable-length table within an area using the slot processing technique
(structure 4) may be initially built through the execution of either TBILDD
or TBILDN.

The following guidelines are by no means definitive. They are merely suggested
approaches to building a table. If a programmer has an application that will
process well by combining some of the following suggestions, he is free to do
so as long as he does not violate any conventions pertaining to table structure
or instructional use.

Building the Table with TBILDD

TBILDD is used to build a variable-length table that is to be processed by
item location rather than by key comparison.

TBILDD does not look at the contents of the keys to determine where to build
the item. It builds an item into the first, fourth, tenth, fiftieth, etc.
item location in the table. This requires that the programmer know into which
position the item is to be inserted.

Hence, if the programmer decides to process this table by item location rather
than by key comparison, he should use the following instructional variations
which logically complement each other:

To build the table, use TBILDD.

To access items within the table, use TFINDD.
To insert items into the table, use TBILDD.
To delete items from the table, use TDEL.

Building the Table with TBILDN

TBILDN is used to build a variable-length table that is to be processed by key
comparison rather than by item location.

A programmer may wish to build a variable-length table in a memory area. Later
during processing the programmer can access the items by key comparison, store
information in the items, obtain information from the items, and add items to
and delete items from the table.

The following instructional variations complement each other and should be
used when processing a variable-length table by key comparison:

e To build the table, use TBILDN.
e To access items within the table:

e Use TFINDN or TFINDP if the items are to be accessed sequentially
(one after the other).

e Use TFINDR if the items are to be accessed randomly and if the keys
are not sequentially organized.

e Use TFINDB, TFINDS, or TFINDO if the items are to be accessed
randomly and if the keys are sequentially organized.

NEAT/3 -- INSTRUCTIONS Apr. 70
TAB 4 -- PUB. NO. 6 Page 4

TABLE STRUCTURE 4

e To insert items into the table, use TSERT.
e To delete items from the table, use TDEL.
CONVENTIONS

The following rules apply to a variable-length table within an area using the
slot processing technique (structure 4):

The first two characters in the table must be the table length indicator
(TLD).

The maximum length permitted for each key is 255 characters.

The programmer's definition of the area must reserve enough memory to
contain the maximum size table.

Extremely large tables with a high degree of insertion/deletion lend
themselves to this type of table.

All table instructions can be executed on this table. These are:

TBEGB, TBEGF
TBILDN, TBILDD

TFINDN, TFINDD, TFINDR, TFINDS, TFINDB, TFINDP, TFINDO
TSERT

TDEL

TSHIFT

TSORTA, TSORTD

TPACK

TMARK

TRESET

TJUMP

NEAT/3 -- INSTRUCTIONS Apr. 70
TAB 4 -- PUB. NO. 6 Page 5

VARIABLE—LENGTH TABLE WITHIN AN AREA

USING THE PUSHDOWN PROCESSING TECHNIQUE

(STRUCTURE 5)
DESCRIPTION

A table whose length may expand or contract during processing is a variable-
length table. A variable-length table must contain fixed-length items, but
the number of items in the table may increase or decrease during processing.

During processing, a programmer may frequently wish to access a variable-length
table containing information common to many records or even to many files. To
do this, he may define this table to be freestanding in a memory area.

Each variable-length table must have a table length indicator (TLI) as its
first two 8-bit characters. This TLI must contain a binary number that spec-
ifies the total number of characters (including the two characters for the TLI)
currently in the table.

A variable-length table expands or contracts by increasing or decreasing the
total number of items in the table. In the following example, the table is
variable in length. Note the table length indicator.

[tem Item Item Item Item Ttem Item<)
NS
Variable-Length Table
N
Area

The programmer's definition of this area must reserve enough memory to contain
the maximum size table. The compiler assigns an area in memory to this table
from the programmer's entries on the data layout sheets.

NEAT/3 -- INSTRUCTIONS Apr. 70
TAB 4 -- PUB. NO. 7 Page 1

PUSHDOWN PROCESSING TECHNIQUE

A variable-length table within a memory area uses the pushdown processing
technique. Pushdown processing is a technique of table handling in which the
size of a table expands and contracts as items are added to and deleted from
the table.

Consider the following example. Before item B is inserted into its proper
place, the TSERT instruction pushes down all items in the table that are to
follow item B. This extends the length of the table as far as necessary to
accommodate the insertion. TSERT then inserts item B.

To delete an item, the reverse is true. The TDEL instruction removes item B
from the table. Then, to fill the vacant position, it pushes up the table all
items which followed item B, thereby contracting the length of the table.
Consider the following illustration.

SAMPLE PROGRAM

The following program illustrates the use of a variable-length table within an
area. The table uses the pushdown processing technique and contains sequen-
tially organized items.

The program is to access each transaction record and update its corresponding
item in the table. If the desired item is not in the table, the program is
to insert it into its proper location. The following procedural instructions
perform these functions.

NEAT/3 -- INSTRUCTIONS Apr. 70
TAB 4 -- PUB. NO. 7 Page 2

TABLE STRUCTURE 5

l1ls]7]9]15] [Tii] 1] 77]9]

GET A transaction record.

TFINDS In the table the item whose key corresponds to
the key in the transaction record. If this item
does not exist, transfer control to the routine
specified by the branch operand.

The item in the table.

To get another transaction.

Construct The new item in a workarea.

TSERT The new item into the table.

BR To get another transaction.

Let's analyze the preceding program. When transactions 1, 7, and 9 are acces-
sed, the items in the table corresponding to these transactions are updated.

When transaction 5 is accessed, TFINDS makes the item with key 7 accessible,
sets the E flag, and transfers control to the routine specified by the branch
operand. During the execution of this branch routine, TSERT pushes items 7
and 9 one item length down the table and inserts item 5 into the vacated
position.

When transaction 15 is accessed, TFINDS makes accessible the position immedi-
ately following the item with key 9, sets the G flag, and transfers control to
the routine referenced by the branch operand. During the execution of this
branch routine, TSERT inserts item 15 immediately after item 9.

NEAT/3 -- INSTRUCTIONS Apr. 70
TAB 4 -- PUB. NO. 7 Page 3

After all transactions have been processed, the table contains the updated
items 1, 7, and 9 and the newly inserted items 5 and 15.

BUILDING THE TABLE

Because of the very nature of a table using the pushdown processing technique,
items are continually changing their location within the table. As an item is
added to the table, all items that are to follow the item are pushed down the
table to accommodate the insertion. As an item is deleted from the table, all
items that followed this item are pushed up the table to fill the vacant posi-
tion. Hence, it is virtually impossible to process by item location a variable-
length table within an area that uses the pushdown processing technique.

All tables using the pushdown processing technique should be processed by key
comparison. The table instructions are then able to access the desired item
regardless of item location. Therefore, the TBILDD and TFINDD instructions
are not used with this structure.

TBILDN is used to build a variable-length table that is to be processed by
item location. Later during processing, the programmer can access the items
by key comparison, store information in the items, obtain information from the
items, and add items to and delete items from the table.

The following instructional variations logically complement each other and
should be used when processing a table by key comparison:

e To build the table, use TBILDN.
e To access items in the table:

e Use TFINDN or TFINDP if the items are to be accessed sequentially
(one after the other).

e Use TFINDR if the items are to be accessed randomly and if the keys
are not sequentially organized, or if the table is relatively small
(1-30 items) and positioning after a not-found search is not critical,
i.e., TSERT is not required.

e Use TFINDB, TFINDS, or TFINDO if the items are to be accessed randomly
and if the keys are sequentially organized.

e To insert items into the table, use TSERT.
e To delete items from the table, use TDEL.

NEAT/3 —-- INSTRUCTIONS Apr. 70
TAB 4 -- PUB. NO. 7 Page 4

TABLE STRUCTURE 5

CONVENTIONS

The following rules apply to a variable-length table within an area using the
pushdown processing technique (structure 5):

e The first two characters in the table must be the table length indicator
(TLI).

o The maximum length permitted for each key is 255 characters.

e The programmer's definition of the area must reserve enough memory to
contain the maximum size table.

e The table instructions that can be executed on this table are:

TBEGB, TBEGF
TBILDN

TFINDN, TFINDR, TFINDS, TFINDB, TFINDP, TFINDO
TSERT

TDEL

TSHIFT

TSORTA, TSORTD

TMARK

TRESET

TJUMP

NEAT/3 -- INSTRUCTIONS Apr. 70

TAB 4 -- PUB. NO. 7 Page 5

VARIABLE—LENGTH TABLE WITHIN A RECORD

USING THE PUSHDOWN PROCESSING TECHNIQUE

(STRUCTURE 6)

DESCRIPTION

A table whose length may expand or contract during processing is a variable-
length table. A variable-length table must contain fixed-length items, but
the number of items in the table may increase or decrease during processing.

A variable-length table may reside in each record in a file. This table con-
tains information that may have been systematically input during numerous
processing runs. A variable-length table in a record must occupy the last
portion of a variable-length record.

Each variable-length table must have a table length indicator (TLI) as its
first two 8-bit characters. This TLI must contain a binary number that spec-
ifies the total number of characters (including the two characters for the
TLI) currently in the table.

A variable-length table expands and contracts by increasing and decreasing the
total number of items in the table. In the following example, the table is
variable in length. Note the table length indicator.

I R |
| |

LVLIJﬁ f |]TLI |Item lItem |Item lItem y_
L

_———b
JAN J

-~

Information Variable-Length Table
common to all
records.

Variable-Length Record

NEAT/3 -- INSTRUCTIONS Apr. 70
TAB 4 -- PUB. NO. 8 Page 1

PUSHDOWN PROCESSING TECHNIQUE

A variable-length table within a record uses the pushdown processing technique.
Pushdown processing is a technique of table handling in which the size of a
table expands and contracts as items are added to and deleted from the table.

Consider the following example. Before item B is inserted into its proper
place, the TSERT instruction pushes down all items in the table that are to
follow item B. This extends the length of the table as far as necessary to
accommodate the insertion. TSERT then inserts item B.

To delete an item, the reverse is true. The TDEL instruction removes item B
from the table. Then, to fill the vacant position, it pushes up the table all
items which followed item B, thereby contracting the length of the table. Con-
sider the following illustration.

BUFFER-AREA CONSIDERATIONS

As the size of the table contracts and expands, the size of the record also
contracts and expands. Therefore, before modifying the size of the table, use
the DELETE instruction to move the current record out of the buffer area and
into a workarea. This protects the information in other records in the input
buffer area from being destroyed. Since the table is to be accessed while the
record is in the workarea, two coding rules must be followed:

1. On data layout sheets define the workarea as containing all the fields
that are to be accessed while the record is in the area. This includes
the item and field definitions for the table.

NEAT/3 -- INSTRUCTIONS Apr. 70
TAB 4 -- PUB. NO. 8 Page 2

TABLE STRUCTURE 6

2. On the table specification sheet (whose source line when input to the
compiler must immediately precede the item definition), specify that
this table is within a record. During processing, then, the table
instructions treat this table as a table within a record.

If a variable-length table within a record is to be accessed during a partic-
ular run that does not alter the length of the table or the record (for in-
stance, if the program is to print each item in the master record), the record
may remain within the input buffer area during processing. On data layout
sheets, define the record as containing all the fields that are to be accessed
while the record is in the buffer area. This includes the item and field
definitions for the table.

SAMPLE PROGRAM

A bank wishes to save each depositor's transactions within the depositor's
master record. Later the bank can copy these transactions (withdrawals and
deposits) onto the monthly statement sent to the depositor. The procedural
instructions which perform this function require data definitions of the mas-
ter file, the transaction file, and two workareas.

Master File

The master file contains a record for each depositor. The record contains a
variable-length table. Each time a depositor makes a transaction, a record

of this transaction is kept in the master record. The following master record
contains two tabled items.

Account #|Name Street City/State/Zip Balance
17-463-92|John P. Depositor[174 W. Spruce St [Dayton,Ohio 45409]$100.03

Item Counter | TLI | Date Code|Amount [Balance|Date [Code|Amount [Balance
2 031468 | 2 [$10.00] $90.03|031668] 2 $7.14 | $82.89

Note that the first field of the master record is the variable-length indicator
(VLI) for the master record. The next five fields contain information common
to all master records, i.e. information about the depositor and his account.

Note also that the seventh field in the record, the item counter, indicates
that two items are currently contained in the table. The eighth field is the
table length indicator (TLI) for the table.

Next comes the first item in the table. Each item (two in all) contains four
fields: date, code, amount, and balance. (A code of 1 indicates that the
transaction is a deposit; a code of 2 indicates that it is a withdrawal.)

NEAT/3 -- INSTRUCTIONS Apr. 70
TAB 4 -- PUB. NO. 8 Page 3

Transaction File

Each time a depositor makes a deposit or a withdrawal, the information is put
onto a transaction record.

ACCNO NAME DATE AMOUNT
17-463-92 | John P. Depositor | 031768 $75.98

This transaction record is used to update the table in the master record.

Workarea: NEWITEM

The item to be inserted into the table must first be constructed in a workarea.

[DATE | CODE | AMOUNT | BALANCE |

Workarea: UPDATEMAS

Because the length of the master record is to be altered, the program moves
the master record into a workarea called UPDATEMAS. UPDATEMAS is of the same
format as is MASTEREC.

Procedural Instructions

From information in the transaction record and in the last item of the table

in the master record, the program constructs in the workarea NEWITEM the item
to be inserted into the table. The program then builds into its proper place
the item to be inserted into the table.

The table instruction which builds the new item automatically updates the
information in the item counter and in the variable and table length'indicators.
After the master record has been updated, the program inserts the record back
into its buffer area.

NEAT/3 -- INSTRUCTIONS Apr. 70
TAB 4 ~-- PUB. NO. 8 Page 4

TABLE STRUCTURE 6

The updated master record contains the following information.

Account #|Name Street City/State/Zip Balance
17-463-92 [John P. Depositor|174 W. Spruce St|Dayton, Ohio 45409]$100.03

Item Counter | TLI|Date Code | Amount | Balance | Date |Code|Amount | Balance
2 031468 2 | $10.00] $90.03 [031668] 2 | $7.14]$82.89

Date Amount [Balance
031768 $75.98| $158.87

The steps needed to complete this problem are illustrated in the following
flowchart.

NEAT/3 -- INSTRUCTIONS Apr. 70
TAB 4 -- PUB. NO. 8 Page 5

GET A transaction record.

GET The corresponding master record.

DELETE MASTEREC from its buffer area, and
place it in the UPDATEMAS area.

MOVE The date in the transaction record
into the date field in NEWITEM.

MOVE The code in the transaction record
into the code field in NEWITEM.

MOVE The amount in the transaction record
into the amount field in NEWITEM.

TBEGF Initialize the table.

TFINDN Find the last item in the table.

COMP Is the transaction record a deposit?

ADD The deposit to the balance field in
the last item, and place the results
in the balance field in NEWITEM.

The withdrawal from the balance field
in the last item, and place the
results in the balance field in
NEWITEM.

TBILDN Build this NEWITEM into the table at
the next item location.

INSERT The updated master record found in
UPDATEMAS back into its buffer area.

To get another transaction record.

NEAT/3 -- INSTRUCTIONS Apr. 70
TAB 4 -- PUB. NO. 8 Page 6

TABLE STRUCTURE 6

BUILDING THE TABLE

Because of the very nature of a table using the pushdown processing technique,
items are continually changing their location within the table. As an item is
added to the table, all items that are to follow the item are pushed down the
table to accommodate the insertion. As an item is deleted from the table, all
items that followed this item are pushed up the table to fill up the vacant
position. Hence, it is virtually impossible to process by item location a
variable-length table within a record that uses the pushdown processing
technique (structure 6).

All tables using the pushdown processing technique should be processed by key
comparison. The table instructions are then able to access the desired item
regardless of item location. Therefore, the TBILDD and TFINDD instructions
are not used with this structure.

TBILDN is used to build a variable-length table that is to be processed by
item location. Later during processing, the programmer can access the items
by key comparison, store information in the items, obtain information from
the items, and add items to and delete items from the table.

The following instructional variations logically complement each other and
should be used when processing a table by key comparison:

e To build the table, use TBILDN.
e To access items in the table:

e Use TFINDN or TFINDP if the items are to be accessed sequentially
(one after the other).

e Use TFINDR if the items are to be accessed randomly and if the keys
are not sequentially organized, or if positioning after a not-found
search is not critical, i.e., TSERT is not required.

e Use TFINDB, TFINDS, or TFINDO if the items are to be accessed randomly
and if the keys are sequentially organized.

e To insert items into the table, use TSERT.
e To delete items from the table, use TDEL.

NEAT/3 -- INSTRUCTIONS Apr. 70
TAB 4 -- PUB. NO. 8 Page 7

CONVENTIONS

The following rules apply to a variable-length table within a record using
the pushdown processing technique (structure 6):

The first two characters in the table must be the table length indicator
(TLI).

The maximum length permitted for each key is 255 characters.

The table must occupy the last portion of a variable-length record.
Before modifying the size of the table, the current record must be moved
out of the buffer area and into a workarea. (See BUFFER-AREA CONSIDER-
ATIONS in this publication.)

The table instructions that can be executed on this table are:

TBEGB, TBEGF

TBILDN

TFINDN, TFINDR, TFINDS, TFINDB, TFINDP, TFINDO
TSERT

TDEL

TSHIFT

TSORTA, TSORTD

TMARK

TRESET

TJIJUMP

NEAT/3 -- INSTRUCTIONS Apr. 70
TAB 4 -- PUB. NO. 8 Page 8

TBEG INSTRUCTIONS

There are two variations of the TBEG instruction, TBEGB and TBEGF. One of the
variations of TBEG must be the first table instruction encountered during the
processing of a table. Each is discussed separately.

TBEGB

Function

TBEGB (begin to build) initializes the building function of table processing.
It assumes that a table is to be built or that an already existing table is to
be completely rebuilt. Its execution ensures that the next table instruction
encountered during processing starts its manipulations at the beginning of
this table.

If the specified table uses the slot processing technique, TBEGB makes all
the items in the table nonactive.

If the specified table is variable in length, TBEGB sets the TLI to 02, in-
dicating that the table contains only the TLI.

If the specified table has the optional item counter, TBEGB sets it to zero.
If the table is within a record, TBEGB adjusts the VLI if necessary.

After TBEGB has been executed, the next table instruction encountered begins
its table manipulations at the first item position in the table.

Consider the following illustration of a table initialized by TBEGB.

b TALEAREA

ITEMCOUNTER 1ST ITEM [2ND ITEM 3RD ITEM

00 nonactive|nonactive nonactive

NEAT/3 -- INSTRUCTIONS Apr. 70
[AB 4 -- PUB. NO. 9 Page 1

Example

OPERATION OPERANDS

18 19 20 21 22 23 {24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 S0

TBEGB |TABLEA

Conventions

Since it initializes the building function, TBEGB must be the first table
instruction encountered during the processing of a table that is to be built.

If the table to be built is in a record, TBEGB should initialize the table in
each record. One possible way to do this is to execute TBEGB after the GET.
Consider the following example.

OPERATION OPERANDS

18 19 20 21 22 23 {24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 A7 48 49 50

GET MASTEREC
1 1 1t 11 | S M S N BN S SN S]
T[B'EIGIB| MIA|S|TlElRlTlBlL]

TBEGB may be reexecuted in the same program as many times as the programmer
wishes to reinitialize the table.

TBEGB may be executed on the following tables:

e TFixed-length table within an area using the slot processing technique
(structure 1).

e TFixed-length table within a record using the slot processing technique
(structure 2).

e Variable-length table within an area using the slot processing technique
(structure 4).

e Variable-length table within an area using the pushdown processing
technique (structure 5).

e Variable-length table within a record using the pushdown processing
technique (structure 6).

NOTE

Literal operands are not used with TBEGB.

NEAT/3 -- INSTRUCTIONS Apr. 70
TAB 4 -- PUB. NO. 9 Page 2

TBEG INSTRUCTIONS

TBEGF

Function

TBEGF (begin to find) initializes all the functions of table processing except
the building function. It assumes that a table already exists and that the
table instructions following it are to access items, to insert and delete
items, and/or to perform special table functions.

After execution of TBEGF, the next table instruction encountered begins its
table manipulations at the first item position in the table.

Consider the following illustration of a table initialized by TBEGF.

1ST ITEM | 2ND ITEM 3RD ITEM 4TH ITEM 999TH ITEM

data data data data data

Example

18 19 20 21 22 23|24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

i
|
I
|
OPERATION OPERANDS |
|
|
|
i
g

TBEGF |[TABLEB,

Conventions

Since it initializes all functions except the building function, TBEGF must be
the first table instruction encountered during the processing of a table that
has already been built.

If the table is in a record, TBEGF should initialize the table in each record.
One possible way to do this is to execute the TBEGF after the GET. Consider
the following example.

NEAT/3 -- INSTRUCTIONS Apr. 70
TAB 4 -- PUB. NO. 9 Page 3

OPERATION OPERANDS

18 19 20 21 22 23124 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
GET MASTEREC
| B N | 1 | S N T N S SN e
TBEGF |[MASTERTBL
1 1 1 [S B B S SRS S I . |

1 1 | I { 1 1 1 1 1] 1 1 1 1 1 | S | 1

ll'Ll!!!lllll!lllJ_._'

TBEGF may be reexecuted in the same program as many times as the programmer
wishes to reinitialize the table.

TBEGF may be executed on all types of tables.

NOTE

Literal operands are not used with TBEGF.

NEAT/3 -- INSTRUCTIONS Apr. 70
TAB 4 -- PUB. NO. 9 Page 4

TBILD INSTRUCTIONS

There are two variations of the TBILD instruction, TBILDN and TBILDD. Each is
discussed separately.

TBILDN
Function

TBILDN (build next) sequentially builds a table by placing an item into the
next location in the table. It assumes that the table has previously been
initialized.

If TBILDN is the first table instruction encountered after the execution of a
TBEGB, TBILDN moves the item specified by the second operand into the first
item position in the table.

If the execution of TBILDN is preceded by the execution of any table instruc-
tion (even another TBILDN) except TBEGB, TBILDN selects the next location in
the table and then moves the item specified by the second operand into this
location.

If the current table length is the maximum length allowed, the execution of
TBILDN cannot build another item. Instead, it transfers control to the rou-
tine specified by the branch operand. The last item in the table is accessible
to the program. The item specified by the second operand has not been built
into the table.

If the specified table has the optional item counter, TBILDN increments it
each time it builds an item into the table.

If the table is variable in length, TBILDN increments the TLI each time it
builds an item into the table.

If the table is within a variable-length record, TBILDN increments the VLI
each time it builds an item into the table.

Example

»

OPERATION OPERANDS

18 19 20 21 22 23|24 25 26 27 28 29 30 31 32 33 34 3?35 37 38 39 40 41 42 43 44 45 46 47 48 49 SO

TBILDNTABLEA,ITEMS5 ,TOO0FAR

*

S1 S2 53 34

T
1
'
|
]
1
I
1
'
1
1
i
[l
i
]

NEAT/3 —- INSTRUCTIONS Apr. 70
TAB 4 -- PUB. NO. 10 Page 1

In positions 18 - 23, enter TBILDN.

As the first operand, enter the reference of the table to be built or
accessed, TABLEA in this example.

As the second operand, enter the reference of the field containing the item,
ITEM5 in this example, to be moved into the table.

As the branch operand, enter the reference of the user's routine to receive
control, such as TOOFAR, when TBILDN tries to access a location beyond the
limits of the table.

NOTE

References in the operands column may be as long as 10
characters and may extend into the comments column when
necessary.

Conventions

TBILDN may be used to construct either a fixed- or a variable-length table.

A fixed-length table within a record may initially be built using TBILDN.
However, since the only technique permitted for updating these records is the
slot processing technique using TBILDD, the programmer may wish also to build
the table using TBILDD.

TBILDN may be used to construct the following tables:

e Fixed-length table within an area using the slot processing technique
(structure 1).

e Fixed-length table within a record using the slot processing technique
(structure 2).

e Variable-length table within an area using the slot processing technique

(structure 4).

e Variable-length table within an area using the pushdown processing
technique (structure 5).

e Variable-length table within a record using the pushdown processing
technique (structure 6).

Literals are allowed in the second operand of TBILDN. If used, their length
will be that of the image shown. X is the assumed type.

References used in the second operand of this instruction must not be con-
tained within the table referenced by the first operand.

NEAT/3 —- INSTRUCTIONS Apr. 70
TAB 4 -~ PUB. NO. 10 Page 2

TBILD INSTRUCTIONS

TBILDD
Function

TBILDD (build direct) has two functions: to build a table that has been ini-
tialized with TBEGB, and to insert an item into an existing table that has
been initialized with TBEGF.

TBILDD assumes that the table uses the slot processing technique. It con-
siders the first item in the table as item 1, the second item as item 2, etc.
Each time TBILDD is executed, it either builds a table or inserts information
specified by the second operand into an existing table at the item specified
by the third operand.

If the specified item is beyond the current length of a variable-length
table, TBILDD expands the table length to accommodate the insertion.

If the specified item is beyond the maximum length of the table, TBILDD sets
the greater (G) flag and transfers control to the user's routine specified
by the branch operand. The new item has not been inserted into the table.

If the specified item is currently active, TBILDD makes this active item
accessible, sets the equal (E) flag, and transfers control to the user's
routine specified by the branch operand. The new item has not been inserted
into the table.

If the specified table has the optional item counter, TBILDD increments it
each time it builds a table or inserts an item into the table.

If the table is variable in length, TBILDD increments the TLI each time it
extends the length of the table.

TBILDD is to insert this item I Key 3 into item 3 in each of the following
tables. ‘

Key 8 Key 7

Nonactive Key 2

Nonactive

NEAT/3 -- INSTRUCTIONS Apr. 70
TAB 4 -- PUB. NO. 10 Page 3

Example

>

18 19 20 21 22 23|24 2% 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50151 52 %}

\

OPERATION OPERANDS -
[
i

TBILDDTABLEB ,KEY3,ITEM4 ,EXCEPT

In positions 18 - 23, enter TBILDD.

As the first operand, enter the reference of the table to be built or accessed
(TABLEB in this example).

As the second operand, enter the reference of the field containing the infor-
mation (KEY3 in this example) to be inserted into the table.

As the third operand, enter the reference of the field containing an unsigned
decimal number (ITEM4 in this example) that indicates which item in the table
is to be built.

As the branch operand, enter the reference of the user's routine to receive
control (EXCEPT in this example) when TBILDD tries to access an item beyond
the limits of the table or when TBILDD accesses a currently active item.

NOTE

References in the operands column may be as long as
10 characters and may extend into the comments column
when necessary.

Conventions
TBILDD may be used to construct or to insert an item into the following tables:

e TFixed-length table within an area using the slot processing technique
(structure 1).

e TFixed-length table within a record using the slot processing technique
(structure 2).

e Variable-length table within an area using the slot processing technique
(structure 4).

Literals are allowed in both the second and third operands of TBILDD. If used,
their length will be that of the image shown. X is the assumed type of the
second operand, and U is the assumed type of the third operand. The value of
the third operand must never be zero.

References used in the second and third operands of this instruction must not
be contained within the table referenced by the first operand.

NEAT/3 -- INSTRUCTIONS Apr. 70
TAB 4 -- PUB. NO. 10 Page 4

TFIND INSTRUCTIONS

There are seven variations of the TFIND instruction: TFINDN, TFINDD, TFINDR,
TFINDS, TFINDB, TFINDP, and TFINDO. Each is discussed separately.

TFINDN

Function

TFINDN assumes that TBEGF has previously been executed.

TFINDN selects the next sequential item in the table except in two instances:

e If the last table instruction encountered was a TBEGF, TFINDN selects
the first item in the table.

e If the table uses the slot processing technique, TFINDN selects the next
active item in sequence.

The data in the item selected by TFINDN can be accessed by the program.

If the currently accessible item is the last item in the table, the execution
of TFINDN cannot select another item. TFINDN makes the last item in the table
accessible to the program and transfers control to the routine specified by
the branch operand.

Example

OPERATION OPERANDS

18 19 20 21 22 23|24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

TFINDNITABLEA,TOOFAR
I RS N AR TN AN N A N N M B NN D N A N A |

In positions 18 - 23 enter TFINDN.

As the first operand, enter the reference of the table to be accessed, TABLEA
in this example.

As the branch operand, enter the reference of the user's routine to receive
control, such as TOOFAR, if the item accessed is the last item in the table.

NEAT/3 -- INSTRUCTIONS Apr. 70
TAB 4 -- PUB. NO. 11 Page 1

NOTE

References in the operands column may be as long as 10 char-
acters and may extend into the comments column when necessary.

One possible use of TFINDN is to move today's date into each item in the table.
Consider the following illustration:

TODAY’ S DATE TABLE

yyyvyyy Date Information

YYyyyy

YYyyyy
XXXXXX

XXXXXX
XXXXXX

Initialize the table.

TFINDN Find the next item. Branch to UPDATE when
EOT occurs.

MOVE Today's date into the item's date field.

BR To find next item.

Update routine.

Conventions
TFINDN can be executed on all types of tables.

Literal operands are not permitted in TFINDN.

NEAT/3 -- INSTRUCTIONS Apr. 70
TAB 4 -- PUB. NO. 11 Page 2

TFIND INSTRUCTIONS

TFINDD

Function

TFINDD assumes that TBEGF has previously been executed. The items in the
table may be arranged in ascending, descending, or random sequence of keys.

TFINDD uses the direct mode to select a specific item in the table by con-
sidering the first location in the table as item 1, the second location as
item 2, etc. It accesses the table item which is specified by the second

operand.

If the number of the specified item is greater than the number of the last
item in the table, TFINDD transfers control to the routine specified by the

branch operand.
If the table uses the slot processing technique and if the specified item is

nonactive, TFINDD makes this nonactive item accessible, sets the equal (E)
flag, and transfers control to the routine specified by the branch operand.

Example

OPERATION OPERANDS

18 19 20 21 22 23|24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

TFINDDTABLEB,ITEMG6, TOOFAR

In positions 18 - 23, enter TFINDD.

As the first operand, enter the reference of the table to be accessed,
TABLEB in this example.

As the second operand, enter the reference of the field containing an
unsigned decimal number, ITEM6 in this example, which indicates the
desired item.

As the branch operand, enter the reference of the user's routine to receive
control, such as TOOFAR, if the specified item is beyond the range of the
table or if the specified item is nonactive.

NOTE

References in the operands column may be as long as 10 char-
acters and may extend into the comments column when necessary.

NEAT/3 -- INSTRUCTIONS Apr. 70
TAB 4 -- PUB. NO. 11 Page 3

In the following illustration, TFINDD directly accesses the third item in the
table.

Make this item accessible.

In the following illustration, TFINDD is to directly access the sixth item in
the table. If there are not six items in the table, TFINDD is to branch to a
routine referenced by TOOFAR.

Key

] Data J
Key

2 Data 4
Key

3 "~ ata | °
Key

4 T T hata 8
Key

5 |m—fpmae—-- 1
Data

*end of table Branch to TOOFAR.

Conventions

The items in the table may be arranged in ascending, descending, or random
sequence of keys.

TFINDD may be executed on the following tables:

e Fixed-length table within an area using slot processing technique

(structure 1).
e Fixed-length table within a record using slot processing technique

(structure 2).
e Fixed-length table (minor table) within a table using slot processing

technique (structure 3).

NEAT/3 -— INSTRUCTIONS Apr. 70
TAB 4 —-- PUB. NO. 11 Page 4

TFIND INSTRUCTIONS

e Variable-length table within an area using slot processing technique
(structure 4).

Literals are allowed in the second operand of TFINDD. If used, their length
will be that of the image shown; i.e., a literal of 666 must be expressed as
'666'. U is the assumed type. The value of the second operand must never
be zero.

References used in the second operand of this instruction must not be contained
within the table referenced by the first operand.

NEAT/3 -- INSTRUCTIONS Apr. 70
TAB 4 -- PUB. NO. 11 Page 5

TFINDR
Function

TFINDR assumes that TBEGF has previously been executed. The items in the
table may be arranged in ascending, descending, or random sequence of keys.

TFINDR performs a serial search for the desired item. It begins its search
with the first item in the table and compares the key of this item with the
contents of the second (and optionally third) operand.

If the compared fields are not equal, TFINDR selects the next item in sequence
and compares its key to the contents of the second (and optionally third)

operand.

If the compared fields are equal, a hit occurs. TFINDR makes the data in this
item accessible to the user's program.

If the items in the table are exhausted before a hit occurs, TFINDR transfers
control to the user's routine specified by the branch operand.

If the slot processing technique is used on this table, TFINDR ignores each
nonactive item it encounters and selects the next item in sequence.

Example

OPERATION OPERANDS

18 19 20 21 22 23|24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 5051 %%S
TFINDRTABLEB, '036250"', ,NOTFOUND i
TFINDRTABLEB,"'036250"',"'76"',NOTFO UT:N_ D

a

In positions 18 - 23, enter TFINDR.

As the first operand, enter the reference of the table to be accessed (TABLEB
in this example).

As the second operand, enter the reference of the field containing the data
(a literal of 036250 in this example) to be compared to the major key of each
item in the table.

As the third operand (optional), enter the reference of the field containing
the data (a literal of 76 in this example) to be compared to the minor key of
each item in the table. If a l-key format is used, enter a comma to indicate
that no minor key comparison is made.

As the branch operand, enter the reference of the user's routine to receive
control (such as NOTFOUND) if the compared fields are not equal.

NEAT/3 -- INSTRUCTIONS Apr. 70
TAB 4 -- PUB. NO. 11 Page 6

TFIND INSTRUCTIONS

NOTE

References in the operands column may be as long as 10 char-
acters and may extend into the comments column when necessary.

In the following illustration, TFINDR searches the table to
the item with a key of 4. If the item is not in the table,

make accessible
TFINDR is to

transfer control to the routine referenced by NOTFOUND. An asterisk indicates
the first item that TFINDR selects.

is not equal to 4.

Select next item.

is not equal to 4.

Select next item.

is not equal to 4.

Select next item.

nonactive

Select next item.

is not equal to 4.

Select next item.

*end of table

Branch to NOTFOUND.

In the following illustration TFINDR is to make accessible the item with a
key of 4. An asterisk indicates the first item that TFINDR selects.

- 1
not equal to 4.

Select next item.

not equal to 4.

Select next item.

not equal to 4.

Select next item.

not equal to 4.

Select next jtem.

equal to 4.

Make this item
accessible.

NEAT/3 -- INSTRUCTIONS
TAB 4 -- PUB. NO. 11

Apr.
Page

Conventions

The items in the table may be in either ascending, descending, or random
sequence of keys.

If the table has a small number of items, a serial search (TFINDR) proves
quickest in accessing the individual items.

TFINDR may be executed on all types of tables.

Literals are allowed in both the second and third operands of TFINDR. If
used, their length will be that of the image shown, i.e. a literal of ABC
must be expressed as 'ABC'. X is the assumed type.

References used in the second and third operands of this instruction must not
be contained within the table referenced by the first operand.

NEAT/3 -- INSTRUCTIONS Apr. 70
TAB 4 -- PUB. NO. 11 Page 8

TFIND INSTRUCTIONS

TFINDS

Function

TFINDS assumes that TBEGF has previously been executed. The items in the
table must be arranged in either ascending or descending sequence of keys.

TFINDS performs a sequential search for the desired item. It begins its

search with the first item in the table and compares the key of this item

with the key of the desired item (the contents of the second operand). (Assume
the keys to be in ascending sequence for documentary purposes.)

If the key of the item selected in the table is less than the key of the
desired item, TFINDS selects the next item in sequence and compares its key
with the key of the desired item.

If the compared fields are equal, a hit occurs. TFINDS makes the data in
this item accessible to the next instructions in sequence in the program.

If, however, the key of the item selected in the table is greater than the
key of the desired item, TFINDS makes this item accessible, sets the equal
(E) flag, and transfers control to the user's routine specified by the branch
operand.

If the items in the table are exhausted before an equal-to or greater-than
condition is met, TFINDS makes accessible the position immediately following
the last item in the table, sets the greater (G) flag, and transfers control
to the user's routine specified by the branch operand.

If the slot processing technique is used on this table, TFINDS ignores each
nonactive item it encounters and selects the next item in sequence.

When the keys are in descending sequence, the greater-than and less-than
rules are reversed.

Example

by

51 52 é\
TFINDSITABLEA,ITEM4, ,NOTFOUND o \
TFINDSTABLEA,I TEM4 . SUBITE M‘Z_,_N_O_T_F‘O:ULNJDJ

18 19 20 21 22 23 {24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

i
|
|
:
OPERATION OPERANDS ;*
[
]
|
i
|

In positions 18 - 23, enter TFINDS.

As the first operand, enter the reference of the table to be accessed (TABLEA
in this example).

NEAT/3 -- INSTRUCTIONS Apr. 70
TAB 4 -- PUB. NO. 11 Page 9

As the second operand, enter the reference of the field containing the data
(ITEM4 in this example) to be compared with the major key of each item in the
table.

As the third (optional) operand, enter the reference of the field containing
the data (SUBITEM2 in this example) to be compared with the minor key of each
item in the table. If a 1l-key format is used, enter a comma to indicate that
no minor key comparison is made.

As the branch operand, enter the reference of the user's routine to receive
control (such as NOTFOUND) when the desired item is beyond the range of the
table or is within the range but physically missing from the table.

NOTE

References in the operands column may be as long as 10 char-
acters and may extend into the comments column when necessary.

In the following illustrations, the items are arranged in ascending sequence
of keys. TFINDS is to search the table for the item with a key of 4. If the
item is not in the table, TFINDS is to transfer control to the routine refer-
enced by NOTFOUND. An asterisk indicates the first item that TFINDS selects.

CONTENTS

OF KEY COMPARISON ACTION

1 is less than 4. Select next item.

2 is less than 4. Select next item.

3 is less than 4. Select next item.

Make this item

4 is equal to 4. accessible.

CONTENTS
OF KEY COMPARISON ACTION

1 1 is less than 4. Select next item.

nonactive Select next item.

3 is less than 4. Select next jtem.

Make this item accessible,
5 is greater than 4.| set E flag,

branch to NOTFOUND.

NEAT/3 —-- INSTRUCTIONS Apr. 70
TAB 4 -- PUB. NO. 11 Page 10

TFIND INSTRUCTIONS

In the following illustration, the keys are arranged in descending sequence
of keys. TFINDS is to make accessible the item with a key of 4, TIf the item
is not in the table, TFINDS is to transfer control to the routine referenced
by NOTFOUND. An asterisk indicates the first item that TFINDS selects.

8 is greater than 4.| Select next item.

7 is greater than 4.| Select next item.

nonactive Select next item.

5 is greater than 4. Select next item.

Set G flag,
*end of table branch to NOTFOUND.

If the NOTFOUND routine executes a TSERT instruction, the new item with a key
of 4 is inserted immediately after the item with a key of 5, thereby extending
the length of the table.

In the following illustration, the keys are arranged in descending sequence of
keys. TFINDS is to make accessible the item with a key of 4. If the item is
not in the table, TFINDS is to transfer control to the routine referenced by
NOTFOUND. An asterisk indicates the first item that TFINDS selects.

CONTENTS '
OF KEY COMPARISON ACTION

6 6 is greater than 4.| Select next item.

5 is greater than 4.| Select next item.

Make this item accessible,
3 is less than 4. set E flag,
branch to NOTFOUND.

NEAT/3 —— INSTRUCTIONS Apr. 70
TAB 4 —- PUB. NO. 11 Page 11

Conventions

The items in the table must be arranged in either ascending or descending
sequence of keys.

When the TFINDS instruction is used to locate the position in the table of
where an item is to be inserted, control is transferred to the branch operand

in two instances:

e If the key of the item to be inserted is within the range of the keys
currently in the table, TFINDS sets the E flag and transfers control to

the branch routine.
e If the key of the item to be inserted exceeds the key of the last item
in the table, TFINDS sets the G flag and transfers control to the branch

operand.

If the user wishes to process each of these conditions differently, he may
code a BRG or a BRE as the first instruction in the branch routine, thereby
setting up a routine for an equal condition and a routine for a greater-than
condition. However, in any instance, the execution of a TSERT inserts the
item into its proper location.

The end results of both TFINDS and TFINDB are the same; however, processing
time differs. If a table has a large number of sequentially organized items,
a binary search (TFINDB) proves quickest in accessing the individual items.
If the table has a small number of sequentially organized items, a sequential
search (TFINDS) is optimal.

TFINDS may be executed on all types of tables.

Literals are allowed in both the second and third operands of TFINDS. If
used, their length will be that of the image shown, i.e. a literal of XYZ
must be expressed as 'XYZ'. X is the assumed type.

References used in the second and third operands of this instruction must not
be contained within the table referenced by the first operand.

NEAT/3 -- INSTRUCTIONS Apr. 70
TAB 4 -- PUB. NO. 11 Page 12

TFIND INSTRUCTIONS

TFINDB

Function

TFINDB assumes that TBEGF has previously been executed. The items in the
table must be arranged in either ascending or descending sequence of keys.

TFINDB performs a binary search for the desired item. It begins its search
with an item in the last half of the table (the position of this item is
calculated by TFINDB) and compares the keys of this item with the keys of the
desired item (the contents of the second and optionally third operands).

TFINDB determines whether the desired item is above or below the item selected
in the table and selects, in the appropriate direction, an item half the
distance between the uncompared items. It then compares the keys of this

item with the keys of the desired item.

If the slot processing technique is used on this table, TFINDB ignores each
nonactive item it encounters and selects in the appropriate direction the
next item in sequence.

TFINDB continues to select the item half the distance between the uncompared
items in the table until a hit occurs. TFINDB then makes this item accessible
to the program.

If the desired item is within the range of the items in the table but is not
physically in the table, TFINDB sets the equal (E) flag, and makes accessible
the next higher item (if the keys are in ascending sequence) or the next
lower item (if the keys are in descending sequence). TFINDB then transfers
control to the user's routine specified by the branch operand.

If the desired item is not within the range of the items in the table, TFINDB
sets the greater (G) flag and transfers control to the user's routine speci-

fied by the branch operand.

Example

OPERATION OPERANDS

18 19 20 21 22 23|24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
TFINDBITABLEC, I TEMZ2, ,NOTFOUND

1] 1 1 1 1 1 1 1 | S B | 1 1 1 1 1 1 1 1 1 1 1 1 1] 1 1 1
TleILNlD'B T|A|B|LIE|CL"I'T'ElMlzl’|S|U‘B|]I’INIOITIFIOIUIN'DJ

In positions 18 - 23, enter TFINDB.

As the first operand, enter the reference of the table to be accessed
(TABLEC in this example).

NEAT/3 -- INSTRUCTIONS Apr. 70
TAB 4 -- PUB. NO. 11 Page 13

As the second operand, enter the reference of the field containing the data
(ITEM2 in this example) to be compared with the major key of each item in the
table.

As the third (optional) operand, enter the reference of the field containing
the data (SUBL in this example) to be compared with the minor key of each item
in the table. If a l-key format is used, enter a comma to indicate that no
minor key comparison is made.

As the branch operand, enter the reference of the user's routine to receive
control (such as NOTFOUND) when the desired item either is beyond the range
of the table or is within the range but physically missing from the table.

NOTE

References in the operands column may be as long as 10 char-
acters and may extend into the comments column when necessary.

In the following illustration, TFINDB is to make accessible the item with the
key of 15. TFINDB begins its search by selecting the eighth item in sequence.

8 is less than 15. Go down, select item 6.

13 is less than 15. Go down, select item 7.

Set flag, make this

15 is equal to 15. item accessible.

17 is greater than 15./Go up, select item 4.

NEAT/3 -- INSTRUCTIONS Apr. 70
TAB 4 -- PUB. NO. 11 Page 14

TFIND INSTRUCTIONS

In the following illustration, the table is arranged in ascending sequence of

keys.

TFINDB is to make accessible the item with a key of 22,

If the item is

not in the table, TFINDB is to transfer control to a routine referenced by
NOTFOUND. TFINDB begins its search by selecting the eighth item in sequence.

17 is less than 22.

Go down, select item 9.

21 is less than 22.

*end of table

Set G flag.
branch to NOTFOUND.

NEAT/3 -- INSTRUCTIONS
TAB 4 -- PUB. NO. 11

Apr. 70
Page 15

In the following illustration the items are arranged in ascending sequence of
keys. TFINDB is to make accessible the item with the key of 15. TFINDB
begins its search by selecting the eighth item in sequence.

 COMPARISON

6 is less than 15. Go down, select jtem 6.

Keep going up, select

nonactive : .
next item in sequence (3)

Keep going down, select
next item in sequence (7)

Set E flag, make this
item accessible.

nonactive

15 15 is equal to 15.

17 is greater than 15. Go up, select item 4.

Conventions

The items in the table must be arranged in either ascending or descending
sequence of keys.

The end results of both TFINDS and TFINDB are the same; however, processing
time differs. If a table has a large number of sequentially organized items,
a binary search (TFINDB) proves quickest in accessing the individual items.
If the table has a small number of sequentially organized items, a sequential
search (TFINDS) is optimal.

TFINDB may be executed on all types of tables.

Literals are allowed in both the second and third operands of TFINDB. If
used, their length will be that of the image shown, i.e. a literal of 12A
must be expressed as '12A'. X is the assumed type.

References used in the second and third operands of this instruction must not
be contained within the table referenced by the first operand.

NEAT/3 -- INSTRUCTIONS Apr. 70
TAB 4 -- PUB. NO. 11 Page 16

TFIND INSTRUCTIONS

TFINDP
Function
TFINDP assumes that TBEGF has previously been executed.

TFINDP selects the previous sequential item in the table. The first item
selected by TFINDP is one position prior to the previously executed table
instruction. If the table uses slot processing, TFINDP selects the previous
active item. Data in the item selected by TFINDP can be accessed by the

program.

If the currently accessible item is the first item in the table, TFINDP cannot
select another item. When this situation occurs, TFINDP makes the first item
in the table accessible to the program and transfers control to the routine
specified by the branch operand.

The TFINDP instruction is useful when the programmer desires to select a pre-

vious item in the table without beginning a search at the first item. TFINDP
makes an item accessible to the next instruction in sequence in the program.

Example

OPERATION OPERANDS

18 19 20 21 22 23{24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 S0

TFINDPITABLED,TOOFAR

———fmm e

In positions 18 - 23, enter TFINDP.

As the first operand, enter the reference of the table to be accessed, TABLED
in this example.

As the branch operand, enter the reference of the user's routine to receive
control, such as TOOFAR, when the item accessed is the first item in the table.

NOTE

References in the operands column may be as long as 10 char-
acters and may extend into the comments column when necessary.

Conventions
TFINDP can be executed on all types of tables.

Literal operands are not permitted in TFINDP.

NEAT/3 -- INSTRUCTIONS Apr. 70
TAB 4 -- PUB. NO. 11 Page 17

TFINDO
Function

TFINDO assumes that TBEGF has previously been executed. The items in the
table must be arranged in either ascending or descending sequence of keys.

TFINDO performs a sequential search for the desired item by key comparison.
It begins searching at the position determined by the previously executed
table instruction; i.e., it begins where the previous search ended. TFINDO
compares the key of the item selected with the key of the desired item (the
contents of the second operand). If the compared fields are equal, TFINDO
makes the data in this item accessible to the next instructions in sequence
in the program.

If the keys are in ascending sequence, TFINDO continues to search until it
reaches a key greater than the key of the desired item. TFINDO makes this
table item accessible, sets the equal (E) flag, and transfers control to the
user's routine specified by the branch operand. If the items in the table
are exhausted before an equal-to or greater—than condition is met, TFINDO
makes accessible the position immediately following the last item in the
table, sets the greater (G) flag, and transfers control to the user's routine
specified by the branch operand.

NOTE

When the keys are in descending sequence, the greater-than
and less-than rules are reversed.

If the table uses slot processing, TFINDO ignores each nonactive item it
encounters and selects the next item in sequence.

Example

OPERATION OPERANDS

18 19 20 21 22 23|24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
T1F111N|D|O T|A|B|L|E|A1’|I|T1E1M|81’|’IN101T1F101ULN1D| [HE B B |
TIF]IINlDlO T|A18|L|E|Al’rlnTnEth81’|S|U18131’1N|O|T|F|O:U1N1D|

In positions 18 - 23, enter TFINDO.

As the first operand, enter the reference of the table to be accessed (TABLEA
in this example).

As the second operand, enter the reference of the field containing the data
(ITEM8 in this example) to be compared with the major key of each item in
the table.

NEAT/3 -- INSTRUCTIONS Apr. 70
TAB 4 -- PUB. NO. 11 Page 18

TFIND INSTRUCTIONS

As the third (optional) operand, enter the reference of the field containing
the data (SUB3 in this example) to be compared with the minor key of each item
in the table. If a l-key format is used, enter a comma to indicate that no
minor key comparison is made.

As the branch operand, enter the reference of the user's routine to receive
control (such as NOTFOUND) when the desired item either is beyond the range
of the table or is within the range but physically missing from the table.

NOTE

References in the operands column may be as long as 10 char-
acters and may extend into the comments column when necessary.

In the following illustrations, the items are arranged in ascending sequence
of keys. TFINDO is to search for the item with the key of 8. If the item is
not in the table, TFINDO is to transfer control to the routine referenced by
NOTFOUND. An asterisk indicates the first item that TFINDO selects (the item
determined by the previously executed table instruction).

6 is less than 8. Select next item.

7 is less than 8. Select next 1item.

8 is equal to 8. Make this item accessible.

 ACTION

5 is less than 8. Select the next item.

Select the next 1item.

7 is less than 8. Select the next item.

9 is greater than 8. Make this item accessible,
set the E flag, branch to
NOTFOUND.

NEAT/3 -- INSTRUCTIONS Apr. 70
TAB 4 -- PUB. NO. 11 Page 19

In the following illustration, the keys are arranged in descending sequence of
keys. TFINDO is to search this table for the item with a key of 8. If the
item is not found, TFINDO is to transfer control to the routine referenced by
NOTFOUND. An asterisk indicates the first item that TFINDO selects.

12 is greater than 8. Select next item.

11 is greater than 8. Select next item.

nonactive Select next item.

9 is greater than 8. Select next item.

Set G flag,
End of table Branch to NOTFOUND.

NOTE

If the NOTFOUND routine executes a TSERT instruction, the
new item with a key of 8 is inserted immediately after the
item with a key of 9, thus extending the length of the table.

In the following illustration, the keys are arranged in descending sequence of
keys. TFINDO is to make accessible the item with a key of 8. 1If the item is
not in the table, TFINDO is to transfer control to the routine referenced by
NOTFOUND. An asterisk indicates the first item that TFINDO selects.

10 is greater than 8. | Select next item.

9 is greater than 8. | Select next item.

Make this item accessible,

7 is less than 8. set E flag,
branch to NOTFOUND.

NEAT/3 -- INSTRUCTIONS Apr. 70
TAB 4 -- PUB. NO. 11 Page 20

TFIND INSTRUCTIONS

Conventions

The items in the table must be arranged in either ascending or descending
sequence of keys.

When the TFINDO instruction is used to locate the position in the table where
an item is to be inserted, control is transferred to the branch operand.

e If the key of the item to be inserted is within the range of the keys
currently in the table, TFINDO sets the E flag and transfers control
to the branch routine.

e If the key of the item to be inserted exceeds the key of the last item
in the table, TFINDO sets the G flag and transfers control to the branch
routine.

If the user wishes to process each of these conditions differently, he may

code a BRG or BRE as the first instruction in the branch routine. This pro-
cedure sets up a routine for an equal condition and a routine for a greater-
than condition. The execution of a TSERT instruction inserts the item into

its proper location.

The end results of TFINDO, TFINDS, and TFINDB are the same; however, processing
time differs. 1If a table has a large number of sequentially organized items,

a binary search (TFINDB) is the fastest method of accessing the individual
items. Either TFINDO or TFINDS is preferable when the table has a small number
of sequentially organized items. TFINDO is used to begin the search without
returning to the first item in the table, thus reducing processing time.

TFINDO may be executed on all types of tables.

Literals are allowed in both the second and third operands of TFINDO. If used,
their length will be that of the image shown; i.e., a literal of XYZ must be
expressed as 'XYZ'. X is the assumed type.

References used in the second and third operands of this instruction must not
be contained within the table referenced by the first operand.

NEAT/3 -- INSTRUCTIONS Apr. 70
TAB 4 -- PUB. NO. 11 Page 21

TDEL INSTRUCTION

TDEL

Function

The TDEL (delete) instruction assumes that a variation of the TFIND instruction
has first located the desired item that TDEL is to delete. Then TDEL deletes
the item from the table. The item immediately following the deleted item is
now accessible to the program.

If, however, the source line contains the optional second operand, TDEL first
moves the contents of the current item into the field specified by this operand
and then deletes the current item from the table.

If the table uses the slot processing technique, TDEL deletes the item by
making it nonactive.

If the table uses the pushdown processing technique, TDEL contracts the length
of the table and adjusts the table length indicator (and the variable length
indicator if the table is within a record).

If no items remain in the table or if the item to be deleted is already non-
active, TDEL transfers control to the routine specified by the branch operand.

Example 1

1f TDEL is to move the information in the item to be deleted into another field
before deleting the item from the table, code the instruction in the following
format.

OPERATION OPERANDS

18 19 20 21 22 23|24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 S0

TDEL TABLEA,ITEMG6 ,EXCEPT,

In positions 18 - 21, enter TDEL.

As the first operand, enter the reference of the table (TABLEA in this example)
which contains the item to be deleted.

As the second operand, enter the reference of the field (ITEM6 in this example)
which is to receive the deleted item.

NEAT/3 -- INSTRUCTIONS Apr. 70
TAB 4 -- PUB. NO. 12 Page 1

As the branch operand, enter the reference of the user's routine to receive
~ontrol (EXCEPT in this example) if no items remain in the table or if the
item to be deleted is already nonactive.

Example 2

If TDEL is only to delete the item from the table, code the instruction in the
following format.

18 19 20 21 22 23|24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 SO

'
|
|

OPERATION OPERANDS |
|
I
|
:
1

TDEL I TABLEB ,,EXCEPT

In positions 18 - 21, enter TDEL.

As the first operand, enter the reference of the table (TABLEB in this example)
which contains the item to be deleted.

As the branch operand, enter the reference of the user's routine to receive
control (EXCEPT in this example) if no items remain in the table or if the
item to be deleted is already nonactive.

NOTE
1f this format is used, two commas must separate the table

reference from the branch operand. References in the
operands column may be as long as 10 characters and may

extend into the comments column when necessary.
Conventions
TDEL can be executed on all types of tables.

Before a TDEL can be executed, the item to be deleted from the table must be
made accessible.

NOTE

Literal operands are not permitted in TDEL.

NEAT/3 -- INSTRUCTIONS Apr. 70
TAB 4 -- PUB. NO. 12 Page 2

TSERT INSTRUCTION

TSERT

Function
TSERT can only be executed on a variable-length table.

The TSERT instruction assumes that a TFIND instruction has first located the
desired position into which TSERT is to insert a new item. Before it inserts
this item, TSERT uses either the pushdown or the slot processing technique
(determined by the structure of the specified table) to make room for the new
item. It then inserts into this vacant position the new item specified by the
second operand.

If the table is a freestanding, variable-length table that uses the slot tech-
nique (option 4 in position 57 of the table specification sheet), TSERT first
checks the item immediately preceding the item made available by TFIND. If
this item is nonactive, TSERT inserts the new item into this location. If it
is active, TSERT follows the normal rules. (It uses the slot technique to
vacate the location made available by TFIND and then inserts the new item into
this vacant position.)

After TSERT inserts the item into its proper position, it updates the contents
of the table length indicator. If the table is within a record, TSERT also
alters the contents of the variable length indicator.

If the specified table has the optional item counter, TSERT increments it by
one each time it inserts a new item into the table.

The newly inserted item is now accessible to the program.

If, however, the length of the table is currently the maximum length allowed
or if the insertion of this new item will extend the length of the table
beyond the maximum length allowed, TSERT transfers control to the routine
specified by the branch operand. The item made accessible by TFIND is still
accessible.

NEAT/3 -- INSTRUCTIONS Apr. 70
TAB 4 -- PUB. NO. 13 Page 1

Example

18 19 20 21 22 23 (24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

i
|
OPERATION OPERANDS }
|
i
|
I
|

TS ERT TABLED,DATAFILELD,TO0O0FAR

e — — — ——————

In positions 18 - 22, enter TSERT.

As the first operand, enter the reference of the table (TABLED in this example)
into which the item is to be inserted.

As the second operand, enter the reference of the field (DATAFIELD in this
example) containing the item to be inserted into the table.

As the branch operand, enter the reference of the routine to receive control
(TOOFAR in this example) if the current table length is the maximum length
allowed.

NOTE

References in the operands column may be as long as 10
characters and may extend into the comments column when

necessary.
Conventions
The table must be variable in length.

A TFIND instruction must first locate the desired position in the table into
which TSERT is to insert a new item.

TSERT may be executed on the following types of tables:

e Variable-length table within an area using the slot processing technique
(structure 4).

e Variable-length table within an area using the pushdown processing
technique (structure 5).

e Variable-length table within a record using the pushdown processing
technique (structure 6).

Literals are allowed in the second operand of TSERT. If used, their length
will be that of the image shown, i.e. a literal of AlO (length of 3) must be
expressed as 'Al0'. X is the assumed type.

NEAT/3 -- INSTRUCTIONS Apr. 70
TAB 4 -- PUB. NO. 13 Page 2

TPACK INSTRUCTION

TPACK

Function

TPACK can be executed only on tables using the slot processing technique. Its
main purpose is to decrease the access time needed to search a table.

TPACK moves all active items to the beginning of the table without disturbing
the sequence in which these items are currently ordered. Thus, the instruction
groups all active items at the beginning of the table and groups all nonactive
items at the end of the table.

If the table contains no active items, TPACK transfers control to the routine
specified by the branch operand.

The items in TABLEA are arranged in the following sequence of keys (na signi-
fies a nonactive item).

After TPACK has been executed on TABLEA, the items in TABLEA are arranged in
the following sequence of keys.

NEAT/3 -- INSTRUCTIONS Apr, 70
TAB 4 -- PUB. NO. 14 Page 1

Example

OPERATION OPERANDS

18 19 20 21 22 2324 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

TPACK |TABLEA,NONACTTIVE,

AT

In positions 18 - 22, enter TPACK.

As the first operand, enter the reference of the table to be accessed (TABLEA
in this example).

As the branch operand, enter the reference of the routine to receive control
(NONACTIVE in this example) if the specified table contains no active items.

NOTE

References in the operands column may be as long as 10
characters and may extend into the comments column when
necessary.

Conventions
TPACK may be executed on the following tables:

e Fixed-length table within an area using the slot processing technique

(structure 1).

e TFixed-length table within a record using the slot processing technique
(structure 2).

e Fixed-length minor table using the slot processing technique (structure
3).

e Variable-length table within an area using the slot processing technique
(structure 4).

NOTE

Literal operands are not used with TPACK.

NEAT/3 -- INSTRUCTIONS Apr. 70
TAB 4 -- PUB. NO. 14 Page 2

TSORT INSTRUCTIONS

There are two variations of the TSORT instruction, TSORTA and TSORTD. Each is
discussed separately.

TSORTA

Function

TSORTA sorts the items in the specified table into ascending sequence of keys.

The items in TABLEA are arranged in the following sequence of keys.

After TSORTA has been executed on TABLEA,
in the following sequence of keys.

Example

the items in the table are arranged

OPERATION

OPERANDS

18 19 20 21 22 23

24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

TSORTA

TABLEA

NEAT/3 —-- INSTRUCTIONS
TAB 4 -- PUB. NO. 15

Apr. 70
Page 1

Conventions

TSORTA can be executed on all types of tables. If the table is within a
variable-length record, the record must be moved to a workarea before TSORTA
can be executed.

TSORTA requires that a workarea of one item length follow the items in the
table. TFor instance, if a table is to contain a maximum of ten 10-character
items and if TSORTA is to be executed on the table, allow within the table an
additional item length (ten characters in this instance) to be used as the
workarea. Do this by the following entries:

1. Specify on the table specification sheet that the maximum length of the
table is 100 characters.

2. Specify on the data layout sheet that the item-length is 10 characters.

3. Allow 110 characters within the record or the area for the table.

NOTE

Literal operands are not permitted in TSORTA.

NEAT/3 -- INSTRUCTIONS Apr. 70
TAB 4 -~ PUB. NO. 15 Page 2

TSORT INSTRUCTIONS

TSORTD

Function

TSORTD sorts the items in the specified table into descending sequence of keys.

The items in TABLEA are arranged in the following sequence of keys.

After TSORTD has been executed, the items in TABLEA are arranged in the follow-
ing sequence of keys.

Example

OPERATION OPERANDS

18 19 20 21 22 23|24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

TSORTDTABLEA

NEAT/3 -- INSTRUCTIONS Apr. 70
TAB 4 -- PUB. NO. 15 Page 3

Conventions

TSORTD can be executed on all types of tables. If the table is within a
variable-length record, the record must be moved to a workarea before TSORTD

can be executed.

TSORTD requires that a workarea of one item length follow the items in the
table. For instance, if a table is to contain a maximum of ten l0-character
items and if TSORTD is to be executed on the table, allow within the table an
additional item length (10 characters in this instance) to be used as the
workarea. Do this by the following entries:

1. Specify on the table specification sheet that the maximum length of the
table is 100 characters.

2. Specify on the data layout sheet that the item-length is 10 characters.

3. Allow 110 characters within the record or the area for the table.

NOTE

Literal operands are not permitted in TSORTD.

NEAT/3 -- INSTRUCTIONS Apr. 70
TAB 4 -- PUB. NO. 15 Page 4

TSHIFT INSTRUCTION

TSHIFT

Function

The TSHIFT instruction shifts the items in the table one item length toward
the end of the table and inserts the item specified by the second operand into

the first position of the table. The last item in the table is destroyed.

The items in TABLEA are arranged in the .following sequence of keys.

[FEBJuANTDECTNOV [oCT [SPT]AUG LY JUN [MAY |

Assume that the contents of NEWMONTH is MAR. After a TSHIFT TABLEA, NEWMONTH
instruction is executed, the items in TABLEA are arranged in the following
sequence of keys.

[aR]FEB] JAN]DECTNOV]0CT [SPT [AuG]aLY [Jun |

Example

OPERATION OPERANDS

18 19 20 21 22 23 {24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 SO

TSHIFT|TABLEA,NEWMONTH

NEAT/3 -- INSTRUCTIONS Apr. 70

TAB 4 -- PUB. NO. 16 Page 1

In positions 18 - 22, enter TSHIFT.

As the first operand, enter the reference of the table to be accessed (TABLEA
in this example). ‘

As the second operand, enter the reference of the field (NEWMONTH in this
example) containing the item to be inserted into the first position of the
table.

NOTE

References in the operands column may be as long as 10
characters and may extend into the comments column when
necessary.

Conventions

e Literals are allowed in the second operand of TSHIFT. If used, their
length will be that of the image shown, i.e. a literal of AAA (length
of 3) must be expressed as 'AAA'. X is the assumed type.

e TSHIFT can be executed on all types of tables.

NEAT/3 -- INSTRUCTIONS Apr. 70
TAB 4 -- PUB. NO. 16 Page 2

TMARK INSTRUCTION

TMARK

Function

The TMARK instruction takes the relative memory address of the item currently
accessible and stores it in the memory area specified by the second operand.

TRESET is the logical complement of TMARK.

Example

OPERATION OPERANDS

18 19 20 21 22 23|24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

TMARK |TABLEC,DATAFIELD

In positions 18 - 22, enter TMARK.

As the first operand, enter the reference of the table to be accessed (TABLEC
in this example) .

As the second operand, enter the reference of a 3-character binary field
(DATAFIELD in this example) in a memory area into which TMARK stores the memory
address of the item currently accessible.

NOTE
References in the operands column may be as long as 10
characters and may extend into the comments column when
necessary.
Conventions

TMARK can be executed on all types of tables.

Literal operands are not permitted in TMARK.

NEAT/3 -- INSTRUCTIONS Apr. 70
TAB 4 -- PUB. NO. 17 Page 1

TRESET INSTRUCTION

TRESET
Function

TRESET makes accessible the item located at the address that TMARK has stored
in the field referenced by the second operand.

However, if this location is currently not within the boundaries of the table,
TRESET transfers control to the user's routine specified by the branch operand.

TMARK is the logical complement of TRESET.

Example

18 19 20 21 22 23|24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

:
!
QPERATION OPERANDS
i
i
i
|
]

TRESET TAA.B‘LAE‘B_,_DLAIT‘A_F_I_E_L‘D_,_N 0T FOUNTD

In positions 18 - 23, enter TRESET.

As the first operand, enter the reference of the table to be accessed (TABLEB
in this example).

As the second operand, enter the reference of a 3-character binary field
(DATAFIELD in this example) in a memory area into which TMARK has stored the
address of an item in the table.

As the branch operand, enter the reference of the routine to receive control
(NOTFOUND in this example) if the address in the field referenced by the second
operand is no longer within the table boundaries.

NOTE

References in the operands column may be as long as 10
characters and may extend into the comments column when
necessary.

NEAT/3 -- INSTRUCTIONS Apr. 70
TAB 4 -- PUB. NO. 18 Page 1

Conventions

Literals are allowed in the second operand of TRESET. If used, their length
will be that of the image shown, i.e. a literal of 001 (length of 3) must be

expressed as '001'. B (binary) is the assumed type.

TRESET can be executed on all types of tables.

NEAT/3 -- INSTRUCTIONS Apr. 70
TAB 4 -- PUB. NO. 18 Page 2

TJUMP INSTRUCTION

TJUMP
Function

The TJUMP instruction provides the capability for the program to transfer
control to a specific routine based on the program’'s current position in a
table. To do this TJUMP makes two assumptions: first, that a preceding TFIND
instruction has located a desired item in a table; second, that a list of
transfer-of-control instructions exists.

TJUMP references the table and determines the relative location of the item
position by TFIND, for example, the fourth item in the table.

TJUMP then references the list of transfer-of-control instructions and locates
the instruction at the same relative location as the item positioned in the
table, i.e. the fourth instruction in the list.

There must be a 4-character, transfer-of-control instruction for each item to
be accessed in the table, i.e. a 100 item table requires that 100 transfer-of-
control instructions be listed. Each transfer-of-control instruction must be
either a LINK or an unconditional BR. If the transfer-of-control instruction
is not a LINK or BR, the E flag is set and control is transferred to the
user's routine specified in the branch operand (of the TJUMP instruction).

If the items in the table are exhausted before an equal-to or greater-than
condition is met, the G flag is set to indicate this off-table condition, and
control is transferred to the user's routine specified by the branch operand
(of the TJUMP instruction).

If all conditions are met, the jump from table to list is made and control is
passed to the routine specified by the appropriate transfer-of-control
instruction.

Example

OPERATION OPERANDS

18 19 20 21 22 23|24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 30

TJUMP |[TRANSCODE ,ITEM2 ,ROUTINE C

NEAT/3 -- INSTRUCTIONS Apr. 70
TAB 4 -- PUB. NO. 19 Page 1

In positions 18 - 22, enter TJUMP.

As the first operand, enter the reference of the table to be accessed (TRANS-
CODE in this example).

As the second operand, enter the reference of the first 4-character instruction
in the transfer-of-control list (ITEM2 in this example). Control would be
returned to this instruction if the table reference in the first operand was
positioned on the first item.

As the branch operand, enter the reference of the user's routine to receive
control (ROUTINEC in this example) if the transfer-of-control instruction is
other than a LINK or BR or if the table reference in the first operand finds
an off-table condition.

NOTE

References in the operands column may be as long as 10
characters and may extend into the comments column when
necessary.

For example, assume the following table of transaction codes and list of
transfer-of-control instructions exist.

TRANSCODE TRANSCON
TABLE LIST

LINK ROUTINEA
LINK ROUTINEB
LINK ROUTINEC
LINK ROUTINED
LINK ROUTINEE
LINK ROUTINEF

e A TFIND instruction has made the third item, 02, in the TRANSCODE table

accessible.

e TJUMP references the TRANSCODE table and determines the third item is
accessible.

e TJUMP references the TRANSCON list and positions itself at the first
instruction and correlates to the third instruction.

e A LINK is made and control is passed to ROUTINEC.

Conventions

A list of transfer-of-control instructions must exist and contain an instruc-
tion for each item accessed in the table.

Literal operands are not permitted in TJUMP.

TJUMP can be executed on all types of tables,

NEAT/3 -- INSTRUCTIONS Apr. 70
TAB 4 —- PUB. NO. 19 Page 2

	4_28-01_COMPILER_CTL
	4_28-02
	4_28-03
	4_28-04
	4_28-05
	4_28-06
	4_28-07
	4_28-08
	4_28-09
	4_28-10_AUTHOR
	4_28-11
	4_28-12
	4_29-01_COPYA
	4_29-02_COPYP
	4_29-03_COPYR
	4_30-01_OMIT
	4_30-02
	4_31-01_OVERLAY_CTL
	4_31-02
	4_31-03_OVRLAY
	4_31-04
	4_31-05
	4_31-06
	4_31-07
	4_31-08
	4_31-09
	4_31-10
	4_31-11
	4_31-12
	4_32-01_ENTRY
	4_32-02
	4_32-03
	4_33-01_SECT
	4_33-02
	4_34-01_RENAME
	4_34-02
	4_34-03
	4_35-01_END
	4_36-01_SETPL
	4_36-02
	4_37-01_TABLE_CONCEPTS
	4_37-02
	4_37-03
	4_37-04
	4_37-05
	4_37-06
	4_37-07
	4_37-08
	4_38-01_TABLE_WORKSHEETS
	4_38-02
	4_38-03
	4_38-04
	4_38-05
	4_38-06
	4_38-07
	4_39-01
	4_39-02
	4_39-03
	4_39-04
	4_39-05
	4_39-06
	4_40-01
	4_40-02
	4_40-03
	4_40-04
	4_41-01
	4_41-02
	4_41-03
	4_41-04
	4_41-05
	4_41-06
	4_42-01
	4_42-02
	4_42-03
	4_42-04
	4_42-05
	4_43-01
	4_43-02
	4_43-03
	4_43-04
	4_43-05
	4_44-01
	4_44-02
	4_44-03
	4_44-04
	4_44-05
	4_44-06
	4_44-07
	4_44-08
	4_45-01_TBEG
	4_45-02
	4_45-03
	4_45-04
	4_46-01_TBILD
	4_46-02
	4_46-03
	4_46-04
	4_47-01_TFIND
	4_47-02
	4_47-03
	4_47-04
	4_47-05
	4_47-06
	4_47-07
	4_47-08
	4_47-09
	4_47-10
	4_47-11
	4_47-12
	4_47-13
	4_47-14
	4_47-15
	4_47-16
	4_47-17
	4_47-18
	4_47-19
	4_47-20
	4_47-21
	4_48-01_TDEL
	4_48-02
	4_49-01_TSERT
	4_49-02
	4_50-01_TPACK
	4_50-02
	4_51-01_TSORT
	4_51-02
	4_51-03
	4_51-04
	4_52-01_TSHIFT
	4_52-02
	4_53-01_TMARK
	4_54-01_TRESET
	4_54-02
	4_55-01_TJUMP
	4_55-02

