ORGANIZATION OF A SOURCE PROGRAM

INTRODUCTION

Previous chapters of this manual have included explanations of the various
source statements (control instructions, specifications, data, and coding)

which distinguish the general categories of program information. As a word of
explanation, the terms source statement and source line, which are used through-
out this manual, are synonymous. Each represents one line of program informa-
tion as handwritten on any of the various worksheets. Once the source line or
statement is punched into a data recording media, a source record is created.
Each source line, statement, or record then represents an integral part of the
total input known as the source program.

To create an object program from the source program, the source records must
be presented to the compiler in a predetermined sequence. The programmer
assigns page and line numbers which follow this required sequence.

The illustration used for this discussion appears on the following page. It
shows the correct sequence of source statements for an initial compilation.
Although the illustration uses punched-cards, the sequence does not vary when
using paper tape. For the purpose of showing various possible arrangements of
source statements, the illustration includes a main program and two overlays.

NEAT/3 COMPILATION PROCESS Jun. 68
TAB 1 -- PUB. NO. 1 Page 1

REQUIRED SOURCE

Overcay Grour

(TWO SECTIONS) ((

)
(
(

CODING INST.
ATH SECTION

ATH SECTION
CONTROL INST,

CODING INST.
3RD SECTION

AREA FIELD

DEF INITIONS * OVERLAY GROUP

AREA (a)
STATEMENT *

3RD SECTION
CONTROL INST,

CODING GROUP

(ADDITIONAL SECTIONS,

WITHIN MAIN PROG,)
(8)

ENTRY POINT
CONTROL INST,

OVERLAY GROUP #2
(SEE EXPANSION)

1
(SEE EX(P)ANSION)
)

PROGRAM SEQUENCE

Eno oF ProGgram

END GROU
(ENDS IN COLS 1-4

y, &

—

OVERLAY CONTROL
INSTRUCTION

OVERLAY CONTROL
INSTRUCTION

| e—

2ND SECTION
CONTROL INST

d
[

OVERLAY

d

CODING INST.
MAIN PROGRAM

CONTROL INST.
CODING GROUP
(MAIN (P;;OGRAM)

MAIN PROGRAM

CODING INST,
ADDITIONAL SECTION
(SEE EXPANSION)

ITEM FIELD
DEFINITION(S)
Overeay Grour ITEM (1)
(ONE SECTION) CODING INST. STATEMENT

THIS OVERLAY FREE STANDING

544 TABLE GROUP
CODING INST, ey TABLE SPECS.
THIS OVERLAY
AREA (A)
ENTRY POINT STATEMENT
CONSTANTS
CONTROL INST. ASonNsTANTS
STORAGE AREA FIELD .
OVERLAY GROUP DEFINITION(S)
CONTROL INST. %)
AREA (A)
STATEMENT
MAIN PROGRAM

ITEM FIELD
DEFINITION(S)

%

(UP TO 1ST OVERLAY INSTRUCTION)

ITEM (1)
STATEMENT

TABLE IN /
RECORD
) (

(
P

FIELD
(DEFINITION(S)*

R ORD
DEFINITION

SECTION CONTROL
INSTRUCT ION

TABLE SPEC
FILE B

IELD

FILE B
WITH TABLE F
DEF INITION*

FIELD
DEFINITION*

RECORD
ODEFINITION

SPEC FILE B

FILE GROUP
A
(2)

SPEC. FILE A

ENTRY POINT
CONTROL INST.

d
4
(

CONTROL
GROUP
(@)

OPTION CONTROL

STATEMENT** * OPTIONAL

** REQUIRED WHEN
APPLICABLE

AUTHOR OPTION
STATEMENT*

COMPILAT ION
CONTROL.
STATEMENT

(NEAT/3)
STarT oF Program

CODING INST,
2ND SECTION

CODING INST.

2ND SECTION
CODING INST,
2ND SECTION

2ND SECT!ON
CONTROL INST.

AooiTioNnaL SEcTION
(Main Procram)

NEAT/3 COMPILATION PROCESS
TAB 1 -- PUB, NO. 1

Jun.
Page

ORGANIZATION OF A SOURCE PROGRAM

As an aid in understanding the card by card illustration, the following out-
line is presented to show the various groups (control, file, etc.) of source
statements that may be found in a source program. The sequence of the source
statements in the outline is established by reading across and down the page,
beginning with the control group (1) and terminating with the END group (11).
For example, in the control group, the required initial source statement is
the compilation control statement. This is followed by the author option
statement (if desired), option control statement (if applicable), entry con-
trol instructions, and section control instruction (if applicable) in that
order

REQUIRED INITIAL
NO. GROUP SOURCE STATEMENT OTHERS REQUIRED OPTIONAL
1 | Control Compilation Control
Statement
Author Option
Statement
Option Control
Statement
(If Applicable)
Entry Control
Instruction
Section Control
Instruction
(If Applicable)
2 | File A File Specifications
3 File B
Record Definition
Field
Definitions
4 | Table in Table Specifications
File Record
Item (I) Statement
Item Field
Definitions
) Constants Area (A) Statement
and Working
Storage
Area Field
Definitions
6 | Free-Stand-| Area (A) Statement
ing Table
Table Specifications
Item (I) Statement
Item Field Definitions
NEAT/3 COMPILATION PROCESS Jun. 68
Page 3

TAB I -- PUB. NO. 1

REQUIRED INITIAL

NO. GROUP SOURCE STATEMENT OTHERS REQUIRED OPTIONAL
7 | Main Coding Instructions
Program
Coding
8 | Main Section Control
Program Instruction
(Additional
Sections) Coding Instructions
Coding
9 | First Over-| Overlay Control
Lay - with Instruction
One Section
Entry Control
Instruction
Coding Instructions
10 | Second Overlay Control
Overlay - Instruction
with Two
Sections Entry Control
Instruction
Section Control
Instruction
Area (A)
Statement
Area Field
Definitions

Coding Instructions

Section Control
Instruction

Coding Instructions

NEAT/3 COMPILATION PROCESS
TAB 1 -- PUB. NO.

1

Jun. 68
Page 4

ORGANIZATION OF A SOURCE PROGRAM

The minimum source program is made up of the following groups:

Control (1)

File (2)

Main Program Coding (7)
END (11)

A discussion of the source statements within the various groups of the illus-
trated program follows:

CONTROL GROUP (1)

Compilation Control Statement

The NEAT/3 compilation control statement, which is coded on compiler specifi-
cation sheet 1, must always be the first source statement of the main program
presented to the compiler. As the initial statement, it must always be
assigned page/line number 000000. If the initial source statement is not the
compilation control statement, the compiler halts with an error display.

Author Option Statement (Optional)

If the programmer chooses to include his name in the source program, the
author option statement is provided for this purpose and must always follow
the compilation control statement. If used, this source statement is coded

at the bottom of compiler specification sheet 1 and is assigned page/line
number 000001. Columns 18 through 23 are filled with the word AUTHOR followed
by the author's name in columns 24 through 43.

Option Control Statement

The option control statement, which is an extension of the compilation speci-
fication statement, is coded on compiler specification sheet 2 (reverse side
of compiler control sheet 1). This statement must follow the sheet 1 if the
source program contains any of the special set of instructions available as
optional hardware features in more advanced members of the NCR Century Series.

Entry Control Instruction

An entry control instruction must be presented to the compiler immediately
following both the compilation specification statement (and related state-
ments) for the main program and each overlay control statement.

Normally, when a NEXTDO is used to call a program (e.g. NEXTDO PROGNAME),

the execution of the program begins with the instruction referenced in the
first entry control instruction following the compilation specification state-
ment. If the programmer chooses to start at some other entry point in the
main program, he may specify the desired entry point as qualified by the pro-
gram name, e.g. NEXTDO PROGNAME.ENTPNTNAME. (The term PROGNAME represents

the desired program name and the qualifier, ENTPNTNAME, represents the desired
entry point.) This paragraph applies to an entry point in a main program
only. The application of an entry point in an overlay is explained later in
this chapter.

NEAT/3 COMPILATION PROCESS Jun. 68
TAB 1 -- PUB. NO. 1 Page 5

Section Control Instruction

The program may contain one or more sections; if the entire source program
consists of only one section, a section control instruction is not necessary.
It may be used purely for documentation. However, if multiple sections are
used (as in this chapter), the section control instruction must be presented,
both here and where necessary, to indicate to the compiler that subsequent
statements are to be included in a section. When assigning sections, discre-
tion should be used to ensure that they begin with a different source-state-
ment category. For example, do not begin a section within a group of file
specifications or between the file specifications and their related record

definitions.
Next in the required sequence are the various source statements that can be

used to describe each file in the source program. These statements are
separated into two groups - file A without tables and file B with tables.

FILE (A and first half of FILE B) GROUP (2 & 3)

File Specifications

All file specifications must appear in the main program and each must precede
the definition of the records within that file. The required initial source
statement(s) of each file group is the file specification. These file speci-
fications may require only one source statement as shown in file group A or
more than one as shown in file group B.

Record Definition

A related record definition must immediately follow each set of file specifi-
cations. This statement, coded on a data layout sheet, defines the length
of the records in the file.

Field Definitions (Optional)

Following each record definition may be a series of field definitions if
desired by the programmer. These statements, coded on a data layout sheet,

define the fields within the record.

TABLE IN FILE RECORD (second half of FILE B) GROUP (4)

Table Specifications

Next in sequence and similar in form to the file specification statements are
the table specifications which define the table within the record. The table
specifications must immediately follow the record and field definitions of

the file to which the table is related.

Item (I) Statement

Following next is the item (I) statement. This statement is coded on a data
layout sheet and must follow the table specifications to which it refers.

NEAT/3 COMPILATION PROCESS Jun. 68
TAB 1 -- PUB. NO. 1 Page 6

ORGANIZATION OF A SOURCE PROGRAM

Item Field Definition(s) (Optional)

After the I statement and relative to it are the item field definition(s),
coded on data layout sheets, which define the fields within the items of the

table.

CONSTANTS AND WORKING STORAGE GROUP (5)

Area (A) Statement

A programmer may choose to have an area in memory reserved for constants and/
or working storage. Since constants and working storage areas should be
described independently of the files and tables, this group is presented next
- prior to the precedural instructions. The initial entry in this group, the
area (A) statement, must be coded on a data layout sheet. This statement
defines the length required for the area and reserves the necessary memory

space.

Area Field Definition(s) (Optional)

The programmer may use the area field definition(s) to divide an area of
memory into fields. These fields are described on data layout sheets and, if
used, must follow their repsective area descriptions.

MEMORY RESIDENT TABLE GROUP (6)

Area (A) Statement

If the programmer chooses to use a memory resident table, a definition of the
length required for this table area must precede the table specifications.
The area (A) statement, coded on the data layout sheet, is the initial source
statement of this group.

Table Specifications

Next in sequence must be the table specifications which are coded on the table
specification sheet.

Item (I) Statement

Following next must be the item (I) statement. This source statement is coded
on the data layout sheet and must follow the specifications for the table.

Item Field Definition(s)

After the item (I) statement, and relative to it, must follow the item field
definition(s). These source statements, coded on data layout sheets, define
the fields within the items of the table.

NEAT/3 COMPILATION PROCESS Jun. 68
TAB 1 -- PUB. NO. 1 Page 7

MAIN PROGRAM CODING GROUP (7)

Coding Instructions

Up to this point, the format of the data (files, records, fields, tables,
items, and constants) has been defined to the compiler. The remaining source
statements are procedural instructions.

NOTE: If no additional sections or overlays were needed, the END$ statement
would be presented next to signify the end of the source program.

MAIN PROGRAM (Additional Sections) CODING GROUP (8)

For the purpose of this chapter, a second section is inserted into the
source program sequence to illustrate a method in which coding for the main
program may be accomplished by more than one programmer.

Section Control Imnstruction

As discussed earlier in the control group, sections may be used to permit more
than one programmer to use duplicate reference tags freely within the same
source program. The initial source statement of each additional section must
be a section control (SECT) instruction. This instruction indicates to the
compiler both the end of the previous section and the beginning of a new
section.

Coding Instructions

The procedural instructions for this section of the main program must be pre-
sented next.

NOTE: If no additional sections or overlays were needed, the END$ statement
would be presented next to signify the end of the source program.
Except for the END$ statement, this concludes the explanation of source
statements belonging to the main program.

Following the main program there may be, at the discretion of the programmer,
groups of optional source statements which concern the use of the overlay.

As shown in the illustration, the first overlay contains one section (of
coding only) and the second overlay contains two sections.

FIRST OVERLAY GROUP - WITH ONE SECTION (9)

Overlay Control Instruction

The initial source statement in all overlays must be the overlay control
instruction. This instruction, coded on either a coding sheet or a data
layout sheet, is used to inform the compiler that the statements which follow
are to be incorporated in an overlay. In addition, this instruction auto-
matically indicates to the compiler that the previous section is ended and a
new section is begun; therefore, it also serves as a section control instruc-
tion,

NEAT/3 COMPILATION PROCESS Jun. 68
TAB 1 -- PUB. NO. 1 Page 8

ORGANIZATION OF A SOURCE PROGRAM

Entry Control Instruction

Immediately following the overlay control instruction must be an entry
control instruction to inform the compiler of each entry point into this
overlay.

NOTE: Although not shown in this overlay, the area (A) statement and the
area field definition(s), in that order, could also be included next
in the sequence, if desired.

Cading Instructions

Since there are no data definitions within this overlay, the procedural
instructions for this overlay must be presented next.

NOTE: If no additional sections or overlays were needed, the END$ statement
would be presented next to signify the end of the source program.

SECOND OVERLAY GROUP - WITH TWO SECTIONS (10)

Overlay Control Instruction

The initial source statement in all overlays must be the overlay control
instruction. This instruction is used to inform the compiler that the pre-
vious section is ended and a new section is begun; therefore, it also serves
as a section control instruction.

Entry Control Instruction

Another entry control instruction must be presented next to inform the compiler
of each entry point into this overlay.

Section Control Instruction

At his discretion (at any point in the source program), the programmer indi-
cates the beginning of a new section by presenting a section control instruc-
tion; this is discussed previously for the main program.

Area (A) Statement (Optional)

The programmer may desire to reserve a work or storage area in this overlay.
These areas are not associated with the previously mentioned records or files
in the main program and are associated only with this overlay. This area (A)
statement must appear prior to the coding instructions in this overlay.

Area Field Definition(s) (Optional)

The area in memory (mentioned above) may be divided into fields. These fields
are described by field definition statements and must follow their respective
area descriptions.

NEAT/3 COMPILATION PROCESS Jun. 68
TAB 1 -- PUB. NO. 1 Page 9

Coding Instructions

The procedural instructions for this section of the overlay must now be
presented to the compiler. In addition to the data defined in the main
program, the data defined in this overlay can also be manipulated by these
instructions. However, it is important to note that data defined in this
overlay cannot be manipulated by the coding in the main program.

Section Control Instruction

The programmer may include more than one section within an overlay. For the
purpose of this discussion, this overlay includes a second section - possibly
to divide the coding work within the overlay. To do this the programmer

must present a section control instruction at this point in the source program.

Coding Instructions

The procedural instructions for this section of the overlay are now presented
to the compiler.

END GROUP (11)

ENDS

The last source statement in the source program must be the END$. Coded on a
standard coding sheet (in columns 1-4), this statement signifies to the com-
piler the end of the source program.

NEAT/3 COMPILATION PROCESS Jun. 68
TAB 1 -- PUB. NO. 1 Page 10

PUNCHING PUNCH CARD SOURCE PROGRAM RECORDS

Before the various source program records can be entered into the NCR Century
computer in the required sequence, they must be properly punched in a format
acceptable to SPUR (Source Program Utility Routines).

This document describes the means and methods required for converting source
lines, as prepared by the programmer, into precise program input records.

It is assumed that the programmer has properly filled out the necessary NEAT/3

source documents and that each source line contains a page and line number to
guarantee that SPUR's sort routine sequences each line properly.

CARD PUNCHING EQUIPMENT

There are various machines and combinations of machines capable of recording
information on punched cards. Although a keypunching device can be actuated by
parent equipment (such as an accounting machine), this is not practical when
punching source lines. Instead, it is more practical to punch cards directly
by using one of the available keypunches.

SITE STANDARD CODE

Punch all control items and source statements in the site standard code
(Hollerith Extended "A" Set or "H" Set). This code, set up during the initial
installation, must be a site specified code. The procedures for establishing
a site standard code are described in the Operators Manual. Normally, punch
card source lines will be punched in the NCR Century Series standard Extended
"A" Set, This code is illustrated in the document "Punch Card Files' under

FILES, tab 1.

PROGRAM CARD

Without Alternate Program

When the alternate program feature is not available on the keypunch, you must
punch the source lines contained on the coding and data layout sheets under
primary program control. Punch all other source lines without program control.

The following is a suggested way to layout the program card. Your individual
needs will dictate the most efficient layout for you.

NEAT/3 -- COMPILATION PROCESS Jun. 68
TAB 1 -- PUB. NO. 2 Page 1

COLUMNS MODE FIELD

1-3
4-6
7
8-17
18-23
24-29
30
31-50
51-74
75-80

Page

Line

CorD

Reference

Code and Location or Operation
Start of Operands or Length and DP
Operands or Type

Operands or Value

Comments

Identification

g B A

With Alternate Program

When an alternate program feature is available on the keypunch, use the primary
program (upper portion of program card) when punching source lines from the
coding sheet and the alternate program (lower portion of program card) when
punching source lines from the data layout sheet. Punch all other source lines
without program control.

The following is a suggested way to layout the program card. Your individual
needs will dictate the most efficient layout for you.

COLUMNS FIELD MODE COLUMNS FIELD MODE

1-3 Page

4-6 Line

7 C

8-17 Reference
18-23 Operation
24-50 Operands
51-74 Comments
75-80 Ident.

Page

Line

D
Reference
Code
Location
Length, DP
Type
Value
Comments
Ident.

= 22
> 2ZZ2Z2>>>2a2

A = Alpha, N = Numeric

NEAT/3 -~ COMPILATION PROCESS Jun. 68
TAB 1 -- PUB. NO. 2 Page 2

PUNCHING PUNCH CARD SOURCE PROGRAM RECORDS

PUNCHING PROCEDURES

General Procedures

Providing the page number in columns 1 through 3 and the worksheet code in
column 7 do not change from one source line to the next, duplicate them from
the preceding card.

To enter a delete digit in column 74, skip to column 75 and backspace to
column 74.

Special Characters

When using the NCR Century Series standard Hollerith Extended "A" Set, NEAT/3
source records may require (depending on equipment) the use of special charac-
ters not included on the keyboard. These characters and their respective codes
are illustrated in the following table.

SPECIAL SPECIAL
CHARACTER DIGITS CHARACTER DIGITS

\

CORRECTION PROCEDURES FOR PUNCHING ERRORS

Correct errors on punched card entries found prior to compilation by physically
replacing the card in error with a correctly punched substitute.

NEAT/3 -- COMPILATION PROCESS Jun. 68
TAB 1 -- PUB. NO. 2 Page 3

PUNCHING PAPER TAPE SOURCE PROGRAM RECORDS

Before the various source program records can be entered into the NCR Century
computer in the required sequence, they must be properly punched in a format
acceptable to SPUR (Source Program Utility Routine). In addition, control
lines to be input to Monitor must also be punched in the proper format.

This publication describes the means and methods required for converting source
lines, as prepared by the programmer, into precise program input records using
an NCR carriage-type accounting machine wired to a punched paper tape recorder.

It is assumed that the programmer has properly filled out the necessary NEAT/3
source documents and that each source line contains a page and line number to
guarantee that SPUR's sort routine sequences each line properly.

It is also assumed that the wiring of the accounting machine is standard. For
a discussion of the types of wiring classified as standard, see the TECHNIQUES
AND PROCEDURES REFERENCE MANUAL, GENERAL, 'Standard Accounting Machine Wiring".

CODE SETS

Site Standard Code

All control items (NEXTDO, etc.) and source statements must be punched in the
site standard code. This code, set up during the initial installation and used
primarily by SPUR and Monitor, must be a site-specified code. The procedure
for establishing a site standard code is described in the UTILITY ROUTINES
REFERENCE MANUAL, DATA AND MEDIA ORIENTED, pub. no. 6.

Definition of Terms

The following list provides definitions of terms with which the punched paper
tape user should be familiar:

e Data Character - A character which is regarded as data; part of a record.

e Control Characters ~ A non-data character used to format data characters
into records.

e Invalid Character - A character which is not defined within the site-
specified code set; any character which is not a data or control character.

o Record Termination Character - A control character which is recognized by
NCR Century paper tape software as an end-of-record indicator. The record
termination character of one record is also used as the originating control
character for the next record on the tape.

NEAT/3 -- COMPILATION PROCESS Nov. 69
TAB 1 -- PUB. NO. 3 Page 1

CONTROL CHARACTERS

Control characters are used to separate data records on punched paper tape.
The basic control characters for the standard NCR Century USASI code and the
NCR 315 General Purpose (GP) code sets, and their meanings to NCR Century
Punched Paper Tape software, are shown in the following table.

Tape Feed (Null) TAPE FEED
Delete DELE
Escape ---
End-of-Media STOP

End-of-File COMP
Lower-Shift LOWER-SHIFT

Upper-Shift UPPER-SHIFT
Record Termination Characters

Line Feed (New Line)

Carriage Return

Horizontal Tabulation (Tab) -—

Void Data PUT
Synchronize CLEAR
End-of-Record (Rec. separate) CARRIAGE RET
End-of-Field (Unit separate) TAB

*NCR 315 General Purpose code is available through the Site Code Change Routine.
See the UTILITY ROUTINES REFERENCE MANUAL, DATA AND MEDIA ORIENTED, pub. no. 6.

Not all of the control characters described in the table above apply to all
code sets. The user must know the limitations of the particular set he is
using. For example, only certain control characters can be used with NEAT/3
source records. The characters and their meanings to NCR Century Punched
Paper Tape software are shown in the following table.

End-of-File (File Separator)
End-of-Record (Record Separator)
End-of-Media

Void Data

Delete

Tape Feed (Null)

Escape

Carriage Return

End-of-Field (Unit Separator) and
all other control characters

The NCR Century standard code set is an 8-channel, even-parity, one-shift type
and uses all of the aforementioned control characters except the Lower-Shift
and Upper-Shift characters. Any other code set must be completely defined by
the user. (See the UTILITY ROUTINES REFERENCE MANUAL, DATA AND MEDIA ORIENTED,

pub. no. 6.)

NEAT/3 -- COMPILATION PROCESS Nov. 69
TAB 1 -- PUB. NO. 3 Page 2

PUNCHING PAPER TAPE SOURCE RECORDS

Internal CHARACTER Internal
value hex 1/D value hex

20 40
21 41
22 42
23 43
24 44
25 45
26 46,
27 47
28 48
29 49
2A 4A
2B 4B
2C 4C
2D 4D
2E 4E
2F 4F
30 50
31 51
32 52
33 53
34 54
35 55
36 56
37 57
38 58
39 59
3A SA
3B SB
3C 5C
3D 5D
3E 5E
3F 5F

o |0 oo ~a] o wn] £ Lof] | O~

olojejolojo|eo|o|e|o]o|o|ele|eo|e]|o|e|e|o]o]o]ojejejo|0le]eojaejej o
cjloejojolo[ejojo|e|o|ofe[o]o|o|o|o|oje|e|e]joie|(e|e|o]|o|e]efe|oie |iw

o|ojejo|o|ejele
] >h—a/'—N"<><E<CHWNO’UOZK(“NQH=O"’F’UOB’>@

|y u|Ape
00000000

60
6l
62
63
64
65
66
67
68
69
6A
6B
6C
6D
6E
6F
70
71
72
73
74
75
76
77

Jv—ﬁsw:xt<:nmnpwo:’5p-ru-~:rmmmn.nc'm/
olo|/eojo|ojeo|o|o|e|o|/ejo|o|ejo|/o|o|oie|o|o|eoe[e(0|0|e]|o o | e e

[=]
™
il

Null End-of-Media
Horizontal Tabulation (Tab) Escape

Line Feed (New Line) End-of-File
Carriage Return End-of-Record
Invalid (Undefined) End-of-Field
Synchronize Delete

Void Data

NEAT/3 -- COMPILATION PROCESS Nov. 69
TAB 1 —-- PUB. NO. 3 Page 3

EQUIPMENT SETUP

The accounting machine used in punching paper tape must have at least a 16
inch carriage, a typewriter with alpha character capabilities, and must be
wired to a punched paper tape recorder. NCR class 31, 32, 33, 35 and 36
accounting machines can be used to punch paper tape.

Punched paper tape codes are entered through the typewriter keyboard exclu-
sively when punching NEAT/3 source records in paper tape. A journal containing
a visual record of entries is created as a by-product of punching source records.

Standard accounting machine wiring (as discussed in the TECHNIQUES AND PROCE-
DURES REFERENCE MANUAL, GENERAL, "Standard Accounting Machine Wiring") is
assumed with the following exceptions. In the operating instructions included
in this publication, the following keys are assumed to be wired to perform a
specific function in addition to their normal function. If the key/function
relationship is different on the customer's accounting machine, the operating
instructions should be modified to reflect his system.

e The typewriter TAB key and the R2 key are wired to emit the hexadecimal
code for the unit separator control character (9F) in addition to their
normal functions.

e The Rl key is wired to turn OFF the Alpha Typing switch, yet emit no code,
in addition to its normal function.

e The R3 key is wired to emit the hexadecimal code for the record separator
control character (9E) in addition to its normal function.

NOTE

The Alpha Typing light must be ON before the keys will
cause the correct character to be punched.

Form Bars Used to Punch NEAT/3 Source Records

e Front Form Bar

STOP STOP CONSTRUCTION LOCATTION

1 (Tape Feed) 3 block and 4 insert 5.0 = 5.3 left of O
2 Type 4.3 - 4.4 left of O
3 Tvpe 3.5 - 3.6 left of O
4 (Home Position) 3 block and 4 insert 3.0 - 3.3 left of O
5 Type 1.9 - 2.0 left of O
6 Type 0.8 - 0.9 left of O
7 3 block and 2 insert 1.6 - 1.9 right of O
8 Type 2.3 - 2.4 right of 0
9 Type 5.1 - 5.2 right of O
10 Type 5.7 - 5.8 right of 0

NEAT/3 -- COMPILATION PROCESS Nov. 69

TAB 1 -- PUB. NO. 3 Page 4

PUNCHING PAPER TAPE SOURCE RECORDS

NOTE

Depending on the type of Alpha Coupler and wiring present
on the accounting machine, refer to the appropriate section
of the Accounting Machine Product Information manual for
instructions for turning Alpha Typing ON.

e If the accounting machine is equipped with the T feature, refer to the
programming instructions on form F-3303.

e If the accounting machine is equipped with WA wiring and a 434-2 Alpha
Coupler, refer to the wiring principles discussed in section 8 of the 395
Product Information manual.

e If the accounting machine is equipped with WLA wiring, refer to section
35-200 of the Accounting Machine Product Information manual.

e If the type of coupler and/or wiring is not known, refer to the Common
Carriage section of the Accounting Machine Product Information manual.

Column Typing Guide

The accuracy of the source records and the ease of reference for punching them
depends, in a large measure, on the construction and use of the column typing
guide. This paper guide fits under the clear plastic shield on the face of
the front form bar cover. When properly positioned, this guide shows the
column into which the next data character will be entered.

e Types of Scales

There are three scales on the column typing guide to indicate the three
cifferent types of source line entries.

e D Scale

Use this scale exclusively when entering columns 1 through 29 of the
data layout worksheet.

e C Scale

Use this scale when entering all columns of the coding worksheet, as
well as columns 30 through 80 of the data layout worksheet.

e C-C Scale

Use this scale when entering source lines from all other worksheets.

NEAT/3 -- "COMPILATION PROCESS Nov. 69
TAB 1 -- PUB. NO. 3 Page 5

e Constructing the Column Typing Guide

1 2 2
456 78901234567 890123 4567 89

1 2 3 4 S L] [7 8
asu 78901234567 890123 456789012345078901234567890 1234506789012345:7840123 4 S6THIO
1

1 2 3 4 s o 7 8 9 o
456 7890123450789012345678901234567890123456789012345678901234567890123456789012345078901234567890

Final

Place the paper on which the guide is to be printed into the carriage.
This paper must be at least 15 inches wide.

Install the front form bar, and position the carriage on stop 4 (the
home position).

Follow the illustration to create the guide. Press the type TAB key
whenever there is a separation between groups of characters.

Allow enough room between scales to permit the entry of the appropriate
tens digit above each zero (see the column typing guide illustration).
Space all three scales so that they can easily be seen within the area
provided on the front form bar cover.

Place the completed guide in the front form bar cover. Position it so
that column 1 on the scale is aligned with the type indicator when the
carriage is in the home position (stop 4).

Preparation

It is

important that the final stage of equipment setup be handled in a system-

atic manner. These steps should be followed:

1. Mount the appropriate front and (if needed) rear form bars.

2. Check the paper tape supply in the recorder.

3. Empty the chad drawer in the paper tape recorder, and empty it at
intervals during the punching process.

4. Set the spacing levers on R1l, R2 and R3 to feed the journal.

5. Load journal paper for a hard copy record.

6. Turn on all equipment, including the paper tape recorder.

7. Move the carriage to the tape feed position (stop 1). To do this,
press the CARR RET key all the way down (causing the carriage to return
to the extreme right); then press the TAB key on the upper keyboard to
position the carriage at stop 1.

8. Press the paper tape feed button until approximately five feet of
leader has been punched. Thread the leader onto the takeup reel.

9. Press the middle motor bar to tabulate the carriage to the home
position (stop 4). The type location indicator is now pointing to
column 1 on the column typing guide. The Alpha Punch indicator must
be ON when the carriage stops in the home position.

10. Punch the paper tape source lines.
NEAT/3 -- COMPILATION PROCESS Nov. 69
TAB 1 -- PUB. NO. 3 Page 6

PUNCHING PAPER TAPE SOURCE RECORDS

PUNCHING PROCEDURES

Splicing

Because paper tape is a continuous media, splicing is occasionally required.
Splicing can be expedited by punching a series of ignore codes (such as tape
feed) on a reel of source tape at each of the following locations:

1. After the entries on the last sheet of the set of compiler specification
worksheets.

2. Before the ENDS entry.

3. Before the End-of-Media (EM) control code.

4. Before the EXITTO entry.

Zero Suppression

When a field is terminated with an end-of-field character (US), punch only the
significant characters (if any) in that field. SPUR right-justifies all
numeric fields and zero-fills to the left. SPUR also left-justifies all

alpha fields and space-fills to the right. If there are no significant char-
acters within the field, SPUR sets the entire field to spaces.

Zero suppression cannot be used when entering records in the column-for-column
format.

Paper Tape Format Code

The paper tape format code must be the first entry made each time the source
document type changes. This code is preprinted on each source document.

For example, when using the column-for-column format, enter /99 as the format
code.

First and Last Source Lines

The following conventions apply to all fields in which no data is to be
entered.

e Records Using the Column-for-Column Format (End-of-Field not used)

If there are no succeeding fields of significant data within the record,
terminate the record with a record separator character (RS).

If there are succeeding fields of significant data within the record,
punch each column of the current field with a space character to maintain
the column-for-column format.

NEAT/3 -- COMPILATION PROCESS Nov. 69
TAB 1 -- PUB. NO. 3 Page 7

e Records Using End-of-Field (Unit Separator - US) Termination of Data Fields

If there are no succeeding fields of significant data within the record,
terminate the record with a record separator character.

If there are succeeding fields of significant data within the record,
enter a unit separator character in the current field and each succeeding

field that has no data.

Early Termination of Records

Whenever the last significant data character has been entered in any record,
terminate the record with a record separator (RS) character. Any succeeding
field not entered is assumed to be spaces.

Double-Control Code at the End of a Record

Some paper tape readers are controlled by special control codes punched in

the paper tape. To accommodate this situation, use a double-control code
(record separator and carriage return symbols) to terminate a source record.
SPUR ignores the carriage return code and performs the usual record termination
when the record separator code is detected.

If a double code is necessary, the user must punch the record separator first
and follow it be a carriage return. SPUR ignores the carriage return only if
it immediately follows a record separator and if no data characters are trans-
mitted with it.

End-of-Media Procedure

If the tape supply is running low and punching has not been completed, use the
following procedure:

1. Punch record separator (RS) code after the last source record on the

current reel.

Punch a series of ignore characters (NUL) to facilitate possible splicing.

Punch the EM character.

Punch about five feet of tape with a series of ignore codes.

Load a new reel of paper tape.

Punch about five feet of tape with a series of ignore codes.

Punch the label (if being used) and follow it with a series of ignore

codes.

8. Punch the paper tape format code. The first source record of a new reel
of paper tape must be preceded by the appropriate paper tape format code.

9. Continue punching the source lines.

N VLW N

Control Code Patterns for Source Documents

Each source document has a unique control code pattern which will normally be
used when data is punched from that specific document. The pattern is used
by the compiler to establish the location and limits of all fields designated
for a particular document.

NEAT/3 -- COMPILATION PROCESS Nov. 69
TAB 1 —- PUB. NO. 3 - Page 8

PUNCHING PAPER TAPE SOURCE RECORDS

Punch a unit separator code (except when using the column-for-column format)
whenever the symbol » appears on the source document. If the symbol is above
a column, the unit separator code is punched prior to punching the column.

Punch a record separator code whenever the symbol = appears on the source
document and at the end of each source record.

Punching Source Records

The punching of paper tape requires a systematic approach. The following
descriptions assume the use of the column typing guide.

e Optional Label

To facilitate the referencing of various reels of paper tape, the user has
the option of punching an information label ahead of the source program.
If the source program extends to more than one reel of paper tape, label
each reel with the same program name and number the reels sequentially.
The label has no paper tape format code. Following the punching of a
leader (approximately five feet), prepare the label as follows:

1. Make sure the carriage is in the home position, with the type location
indicator pointing to column 1 on the column typing guide.

2. Type the language name (e.g., NEAT/3).

3. Press the R2 key. This causes a unit separator code to be punched,
returns the carriage to the home position, and spaces the journal.

4. Type the user's program name (10 characters maximum), if one is used,
and press R2. If no program name is used, press the typewriter TAB key.

5. Type a 3-character numeric reel count (001-099).

6. Press the R3 key. This causes a record separator code to be punched,
returns the carriage to the home position, and spaces the journal.

7. Continue by entering the source records. Make sure the format code
precedes the first record of each reel.

e Coding Worksheets

Coding worksheet entries are made using the C scale on the column typing
guide, unless the operands and/or comment entries extend to an additional
line. In this event, it is easier to use the column-for-column format on
the C-C scale.

1. Make sure the carriage is in the home position with the type location
indicator pointing to column 1 on the column typing guide.

2. If this is the first of a series of coding sheets, type the 3-character
paper tape format code.

3. Press the R3 key. This causes a record separator code to be punched,
returns the carriage to the home position, and spaces the journal.

NOTE
Ignore steps 2 and 3 if the paper tape format code has
already been entered for a previous coding sheet within
the same series of like entries.

NEAT/3 -- COMPILATION PROCESS Nov. 69
TAB 1 -- PUB. NO. 3 Page 9

4. With type location indicator pointing to column 1, type a 3-digit page
number; press the type TAB key. If the page number of this source line
is the same as that of the previous source line, press the type TAB key
without entering a page number.

5. With the type location indicator pointing to column 4, type a 3-digit
line number.

6. Press the type TAB key.

7. Type the balance of the source line using the C scale. After entering
the last character of each field (with the exception of the last field
of the source line), press the type TAB key. This causes a record
separator code to be punched and tabs the carriage to the next field.
After entering the last field of the source line, press the R3 key.
This causes a record separator code to be punched, returns the carriage
to the home position, and spaces the journal.

8. Continue entering coding source lines in the same manner.

e Data Layout Worksheets

When punching source lines from data layout worksheets, use both the D and
the C scales. As shown in the column typing guide illustration, the D scale
extends only to column 29. Press R2 and punch the remaining columns using
the C scale. By using both scales, one source line appears as two lines

on the journal.

In some cases, the value or picture field may extend beyond the column
limits (column 50) on the C scale. Therefore, after punching in column
50, the column location can be maintained only by referencing the entry
on the data layout worksheet.

1. Make sure the carriage is in the home position, with the type location
indicator pointing to column 1 on the column typing guide.

2. If this is the first of a series of data layout worksheet entries, type
the 3-character paper tape format code.

3. Press the R3 key. This causes a record separator code to be punched,
returns the carriage to the home position, and spaces the journal.

NOTE
Ignore steps 2 and 3 if the paper tape format code has
already been entered for a previous data layout worksheet
within the same series of like entries.

4. With the type location indicator pointing to column 1, type a 3-digit
page number; press the type TAB key. If the page number of this source
line is the same as that of the previous source line, press the type
TAB key without entering a page number.

5. With the type location indicator pointing to column &4, type a 3-digit
line number.

6. Press the type TAB key.

NEAT/3 -- COMPILATION PROCESS Nov. 69
TAB 1 -- PUB. NO. 3 Page 10

PUNCHING PAPER TAPE SOURCE RECORDS

7. Type the succeeding characters through column 29 using the D scale.
After entering the last character of each field (with the exception of
column 29), press the type TAB key. This causes a unit separator code
to be punched and tabs the carriage to the next field. After typing
the character in column 29, press the R2 key. This causes a unit
separator code to be punched, returns the carriage to column 30 on the
C scale, and spaces the journal.

8. Type the balance of the source line using the C scale. After entering
the last character of each field (with the exception of the last field
of the source line), press the type TAB key. After entering the last
field of the source line, press the R3 key. This causes an RS code to
be punched, returns the carriage to the home position, and spaces the
journal.

9. Continue entering data scurce lines in the same manner.

LISTING FORMAT FOR VERTICALLY FORMATTED WORKSHEETS (Compiler Control, File
Spec., Etc.)

When using the listing format, use the column typing guide for home position
referencing.

NEAT/3 source lines may be punched in this format as well as vertically
formatted worksheets as long as there are not more than 39 characters in
any field. If the source document exceeds this 39 character limit, use
the column-for-column format.

1. Turn the recorder OFF. Lock the R2 key to the type tab function by
moving the Carriage Position Control lever toward the front of the
machine.

2. Make sure the carriage is in the home position, with the type location
indicator pointing to column 1 on the column typing guide.

3. Turn the recorder ON.

4, Type the 3-character paper tape format code.

5. Press the R3 key. This causes an RS code to be punched, returns the
carriage to the home position, and spaces the journal.

6. Type the balance of the worksheet.

Whenever the symbol » appears, press the RZ2 key. The carriage returns
to the home position and immediately tabs to a typing stop; a US code
is punched, and the journal spaces.

Whenever the symbol = appears, press the R3 key. The carriage returns
to the home position, but does not tab to a typing stop; an RS code is
punched, and the journal spaces.

7. When you are finished using the listing format, turn off the recorder
and disengage the Carriage Position Control Slide by moving it toward
the back of the machine.

8. Turn the recorder ON before punching any other format.

NEAT/3 -- COMPILATION PROCESS Nov. 69
TAB 1 -- PUB. NO. 3 Page 11

Column-for-Column Format

When using the column-for-column format, punch columns 7 through 100 (or less)
using the C-C scale. Punch one column at a time, including spaces, without
any intervening US codes. Any or all NEAT/3 source lines may be punched using
this format. However, the records being punched in this format will usually
be from source documents other than data layout and coding worksheets.

1.

2.

9.

Make sure the carriage is in the home position, with the type location
indicator pointing to column 1 on the column typing guide.

If this is the first of a series of column-for-column entries, type the
3-digit paper tape format code /99.

Press the R3 key. This causes a record separator code to be punched,
returns the carriage to the home position, and spaces the journal.

NOTE

Ignore the steps 2 and 3 if the paper tape format code has
already been entered for a previous entry within the same
series of like entries.

With the type location indicator pointing to column 1, type a 3-digit
page number, and then press the type TAB key. If the page number of
this source line is the same as that of the previous source line, press
the type TAB key without entering a page number.

With the type location indicator pointing to column 4, type a 3-digit
line number.

Press the type TAB key.

With the type location indicator pointing to column 7, type columns 7
through 100 (or less), one column at a time including spaces, without
any intervening unit separator codes.

After entering the last significant character, press the R3 key. This
causes a record separator code to be punched, returns the carriage to
the home position, and spaces the journal.

Continue entering the source lines in the same manner.

ERROR CORRECTION PROCEDURES

NEAT/3 source statements must be processed by SPUR, which permits the user to
take advantage of SPUR's error correction procedures.

If the error is detected before the record separator character is punched,
enter the void record code (CAN) followed by a record separator code; then
repunch the control statement.

If the error is detected after the record separator character has been
punched, repunch the record correctly, using the same page and line number
as the incorrect record. When two or more records have the same page and
line number, SPUR retains only the last record received.

Errors made when punching Compiler Control statements are not omitted by
SPUR; therefore, a correct Compiler Control statement must be spliced in
place of the erroneous record.

NEAT/3 -- COMPILATION PROCESS Nov. 69
TAB 1 -- PUB. NO. 3 Page 12

PUNCHING PAPER TAPE SOURCE RECORDS

MONITOR INPUT CONVENTIONS

The procedures for punching control instructions to be input directly to
Monitor are the same as those described under "'PUNCHING PROCEDURES", with
the following exceptions:

Monitor will not accept label entries; do not punch them.

Because Monitor has no sort capabilities, punch the control instructions
in the desired input sequence.

To correct an error before punching the record separator code, enter

the void record code followed by the record separator code. Repunch

the corrected record.

To correct an error after punching the record separator code, repunch
the entire control instruction and splice the new instruction in place
of the original.

Punch approximately twelve null or delete codes after each record separator

code,

to enable visual location of the end of each record and to allow for

splicing.

The format code should be punched each time it changes, provided that all
Monitor master control items are punched from coding sheets (format 00) as
specified. If the Monitor master control items are punched with other than
format 00, the format code should be punched ahead of each line.

Each series of control items punched on one piece of paper tape should end
with a FINISH or an INTYPE control item, to bring Monitor to an orderly
display at the end of each piece of paper tape. Monitor does not recognize
the end-of-media control code (EM).

NEAT/3 -- COMPILATION PROCESS Nov. 69
TAB 1 -- PUB. NO. 3 Page 13

OVERVIEW OF THE COMPILATION PROCESS

INTRODUCTION

The compilation process is the procedure by which a source program is trans-
lated and assembled into an object program. More specifically, this process
involves the precompilation of a source statement file from either punched
cards or punched paper tape and generating a source program file on disc. The
precompilation phase is required because the compiler only accepts input from
disc. During the compilation phase, the compiler translates the source pro-
gram file and generates an object program file on the same disc pack. The
object program file is then copied to another disc pack to create the final
object program. Both the precompilation and compilation phases are capable

of producing complete program listings as required.

To accomplish this processing for the NEAT/3 language requires the use of
three separate but related software systems:

e Source Program Utility Routines (SPUR)
e NEAT/3 Compiler
e Object Program Utility Routines (OPUR)

Each of these systems is discussed briefly in this publication. For a com-
plete description of SPUR and OPUR, see UTILITY ROUTINES REFERENCE MANUAL,
PROGRAM ASSOCIATED, "Source Program Utility Routines - SPUR" and "NCR Century
OPUR."

The relationship between these three systems during the compilation process is
shown in the following illustration.

SOURCE OBJIECT
PROGRAM PROGRAM

NCIate

SPUR NEAT/3 COMPILER

NEAT/3 -- COMPILATION PROCESS CG-9450-81.01 Jul. 70
TAB 2 -- PUB. NO. 1 Page 1

Types of Compilation

The programmer may specify any of four types of compilation for the NEAT/3
Compiler.

o A full compilation (type F) is always required for the initial compil-
ation, and whenever source program changes occur in the main program
(with the exception explained for partial compilations).

e An overlay compilation (type 0) is always a recompilation and is specified
whenever source program changes occur in one or more of the program over-
lays. Only those overlays receiving changes are recompiled. In addition,
overlay compilation is used in conjunction with full and partial compila-
tions to compile large programs. The use of overlay compilation is
discussed in the TECHNIQUES AND PROCEDURE REFERENCE MANUAL, COMPILER
RELATED, '"Independent Overlay Compilation" and "Compiling Programs
Exceeding 12,000 Source Statements.'

e A partial compilation (type P) is always a recompilation and is applicable
only to large programs exceeding approximately 12,000 scurce statements.

NOTE

Large programs must be divided into two sections to be
compiled. The initial compilation requires a full com-
pilation followed by an overlay compilation.

A partial compilation is specified whenever changes occur in the main
program and overlays contained in the first section of large programs
and is followed by an overlay compilation for changes occurring in the
second section. Overlays of large programs may be compiled independ-
ently when main program changes are not present. The use of partial
compilation is discussed in the TECHNIQUES AND PROCEDURES REFERENCE
MANUAL, COMPILER RELATED, 'Compiling Programs Exceeding 12,000 Source
Statements.'

e A module ccmpilation (type M) is specified for source programs that
have been organized into modules. This type of compilation is to be
discussed in a future publication.

The table on the following page illustrates the relationship between the
various types of compilation available for the NEAT/3 Compiler.

NEAT/3 -- COMPLLATION PROCESS CG-9450-81.01 Jul. 70
TAB 2 -- PUB. NO. 1 Page 2

OVERVIEW OF THE COMPILATION PROCESS

TYPE OF PROGRAMS NOT EXCEEDING LARGER PROGRAMS WITH
COMPILATION 12,000 SOURCE OVERLAYS AND/OR MODULES
STATEMENTS EXCEEDING 12,000 SOURCE
STATEMENTS

Initial Full Compilation Full Compilation
Compilation Overlay Compilation

Recompilation Full Compilation Partial Compilation
Entire Program Overlay Compilation

Recompilation Overlay Compilation Overlay Compilation
Overlays Only

Recompilation Module Compilation Module Compilation
Modules Only

THE COMPILATION PROCESS

The compilation process, which involves the translation of a source program
into an object program, is essentially the same for all types of compilation.
The general functions performed by the three basic software systems during
the compilation are discussed in the following sections.

Source Program Utility Routines (SPUR)

The source program is first processed by SPUR, which performs certain functions
required for the NEAT/3, COBOL, and FORTRAN Compilers. These compilers accept
input from disc only. SPUR converts the source program input from punched
cards, punched paper tape or disc and arranges this input on another disc for
use by one of the compilers. Other input media, such as magnetic tape from

the NCR 736 Magnetic Tape Encoder, is not directly acceptable to SPUR. This
media must be copied by a utility routine to a disc prior to input to SPUR.

SPUR performs the following functions for the NEAT/3 Compiler:

e Reads source program from punched cards, punched paper tape, or disc.

e Sorts the source program into page and line number sequence if requested
on the Compiler Control Statement.

e Performs COPY operations.

Performs OMIT operations.

e Retains only the last source record read when two or more source records
have duplicate page and line numbers.

e Merges corrected source records with the Recompilation Master (previously
compiled source program).

e Reassigns page and line numbers to the source program as specified on
the Compiler Control Statement.

NEAT/3 -- COMPILATION PROCESS Jul. 70
TAB 2 -- PUB. NO. 1 Page 3

e Prints a listing of all records upon which some action was taken or an
error noted. Opposite the source record is printed a notation which
describes such actions/errors as:

Copied source records.

Deleted and retained source records.

Added source records (for a recompilation).
Untranslatable characters.

No COPY - invalid statement.

Sort

On the initial compilation run the SPUR program reads each source record of
the input data. If a sort is requested on the Compiler Control Statement, the
page and line numbers are sequence~checked and any out-of-sequence records are
sorted and merged later with the in-sequence records. If no sort is requested,
the source records will be renumbered automatically. Source records must be
sorted when doing a recompilation.

COPY

The COPY operation may be used in the source program to indicate to SPUR

that certain source records in another source program, residing on the source-
object disc, are to be copied into the source program that is being processed.
For example, file specifications and related data definitions may be copied
into the source program from another program.

OMIT

The OMIT operation is used in the source program to remove incorrect source
records during the recompilation run.

The SPUR Listing

The listing printed by SPUR indicates all the actions taken and all the format
errors detected during the SPUR run. (To make any corrections in the source
program, the programmer must rerun SPUR before presenting the source program
to the NEAT/3 Compiler.)

NEAT/3 Compiler

The next step in the compilation process belongs to the NEAT/3 Compiler program.
It processes the source program, which has been placed on the disc by SPUR,

and creates a complete object program along with a printed listing of the
program.

The source program to be compiled may be any of the following types:

e A complete program including overlays.
e A program to which overlays will be added later.
e An overlay to add to an existing program.
e An overlay to replace an overlay in an existing object program.
NEAT/3 -- COMPILATION PROCESS CG-9450-81.01 Jul. 70

TAB 2 -- PUB. NO. 1 Page 4

OVERVIEW OF THE COMPILATION PROCESS

In addition to compiling the object program, the NEAT/3 Compiler generates a
complete program listing. This listing shows all the source lines in their
proper order and identifies incorrect source lines with error comments.

At the programmer's option, the NEAT/3 Compiler also produces a cross-reference
listing of all the reference names used in a program.

Object Program Utility Routines (OPUR)

The Object Program Utility Routines (OPUR) perform the following functions:

e Copy the object program from the source-object disc pack to another
disc pack.

e Insert an overlay in an existing program.

e Replace an overlay in an existing program with a later version overlay.

RELATED PUBLICATIONS

The broad scope of the compilation process is applicable to both user programs
and system control strings, and is dependent upon several utility routine func-
tions and procedural techniques. The many related publications are therefore
contained in several different manuals. The following is a general listing

by manual of specific publications concerning the compilation process.

e NEAT/3 REFERENCE MANUAL, INSTRUCTIONS, tab 3,
Compiler Control Statements
COPY Control Instructions
OMIT Control Instructions
Overlay Control Instructions
ENTRY Control Instruction
SECTION Control Instructions
RENAME Control Instruction
END Control Instruction
SETPL Control Instruction

e NEAT/3 REFERENCE MANUAL, COMPILATION PROCESS, tab 1,
Organization Of A Source Program
Punching Punch Card Source Program Records
Punching Paper Tape Source Program Records

e NEAT/3 REFERENCE MANUAL, COMPILATION PROCESS, tab 2,
Overview Of The Compilation Process
Related Software
Creating A Production Program

e NEAT/3 REFERENCE MANUAL, COMPILATION PROCESS, tab 3,
Compiler Output Printing
Error Comment Directory

e NEAT/3 REFERENCE MANUAL, APPENDIX, tab 1,
Peripheral Type Codes
Data Format Codes
Symbolic Unit Designators

NEAT/3 -- COMPILATION PROCESS CG-9450-81.01 Jul. 70
TAB 2 -- PUB. NO. 1 Page 5

e NEAT/3 REFERENCE MANUAL, APPENDIX, tab 2,
Compiler Control Instructions
Source Program Organization

e OPERATING SYSTEM REFERENCE MANUAL, MONITOR, Description & Functionms,
General Description
The System Control String
The Override Control String
Punched Media Input To Monitor

e OPERATING SYSTEM REFERENCE MANUAL, MONITOR, Control Instructions,
HEADCS Control Instruction

e UTILITY ROUTINES REFERENCE MANUAL, PROGRAM ASSOCIATED,
Language Directory List Routine
Source Program Utility Routines (SPUR)
NCR Century OPUR
Symbolic Debug Routine
Flowrite
Production Debug Routine

e TECHNIQUES AND PROCEDURES REFERENCE MANUAL, COMPILER RELATED,

Independent Overlay Compilation
Compiling Program Exceeding 12,000 Source Statements

NEAT/3 -- COMPILATION PROCESS CG-9450-81.01 Jul. 70
TAB 2 -- PUB. NO. 1 Page 6

RELATED SOFTWARE

The software for the NCR Century Series is highly interdependent. For instance,
no compiled NEAT/3 program can function without the use of the Input/Output
Executive which handles all the details of data transfers between units of

the system. The Input/Output Executive finds all the information needed for
its operation in the compiled NEAT/3 program.

The Monitor is another major software item. It is used to call into memory
all necessary programs, including the Source Program Utility Routines and
the NEAT/3 Compiler. This section briefly describes those areas of the
Monitor that are used in the compilation process.

MONITOR

The primary functions of the Monitor are to load programs and to automati-
cally link system runs (programs) as predetermined by the programmer.
Automatic program linking provides a streamlined operation with a minimum
need for operator intervention. The programmer has complete flexibility

in establishing the most efficient program sequence. He may designate
programs to be run conditionally, depending on calendar dates, day of week,
or other information in memory; or he may designate programs to be run uncon-
ditionally.

The Monitor is concerned with programs on disc only. It cannot directly
load programs from any other media.

The Control String

At the beginning of a series of programs or after a program has been run,
the Monitor takes control and reads the first or next segment of a control
string to determine what to do next.

A control string is basically a sequence of Monitor control instructions
and program names. The sequence in which these program names appear in
the control string reflects the order in which the programs are to be run.

NEAT/3 -- COMPILATION PROCESS Nov. 68
TAB 2 -- PUB., NO. 2 Page 1

A typical control string is shown below.

REFERENCE OPERATION OPERANDS

put B

8 9 10 11 12 13 t4 15 16 17 19 20 21 22 23|24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 43 46 47 48 49 3O

ADCS
X_T DO|[RUN
D.O|R UN
D.0[R_UN
D O[R_UN
D.O|R.U.N
DO[RUN
TDOJRUN
ISH

~

m

ACCTSRCV

JEVEY N S U R N N

ojojojofojaojolalo
— Jm [m [m [m [[m m

The name of this control string is ACCISRCV (Accounts Receivable). Its
function is to automatically link seven individual programs to completely per-
form an accounts receivable task.

In this example the individual program names reflect the sequence in which
the programs are executed, (Normally the function, rather than a sequence,
is reflected by a program name.)

The coding of control string items is similar to the coding of NEAT/3 source
lines,

Control strings may be stored on punched cards, punched paper tape, or on
a disc. The programmer may place control strings on any disc by using the
Source Program Utility Routines (SPUR).

Monitor Control Instructions

The following are some Monitor control instructions that the programmer may
use in the process of compiling a source program., A more detailed explana-
tion of all the Monitor Control Instructions is contained in a separate
publication on the Monitor,

e DATE

]
'
i
i
)
]
]
-

REFERENCE OPERATION OPERANDS

8 9 10 11 12 13 14 13 16 17|18 19 20 21 22 2324 23 26 27 26 29 30 31 32 33 34 35 36 37 36 39 40 41 42 43 44 45 48 47 48 49 %0

DATE 25/06/68/ TUE ,25/06/68/TUE

]
{
i
!

The DATE control instruction causes the Monitor to store the virtual and
actual dates in the reserved memory area. The DATE control instruction
also sets the 30 parameter characters in the reserved memory area to zero.

NEAT/3 -- COMPILATION PROCESS Nov. 68
TAB 2 -- PUB. NO. 2 Page 2

RELATED SOFIWARE

The virtual date is the date for which the running of a program is
scheduled; the actual date is today's calendar date. For instance, if a
string of programs is scheduled to be run on a Monday, but is actually
run on a Tuesday, the virtual date is Monday's calendar date and the
actual date is Tuesday's calendar date.

The actual date can only be stored in the reserved memory by the COT
Start Routine (part of Monitor). If the DATE instruction is read by the
Monitor at any other time, only the virtual date (positions 24-31) can
be changes.

e Positions 1-3 contain the page number.

e Positions 4-6 contain the line number.

e Position 7 contains C.

e Positions - 18-21 contain DATE to indicate a date control.

e Positions 24-47 contain the virtual day, month, year, and day of week
by the actual day, month, year, and day of week.

e HEADCS

bl bl

T
8 9 10 11 12 13 14 1S 16 17(18 19 20 21 22231://"50:!! 52 53 34 33 S6 57 S8 39 60 61 62 63 64 65 66 67 68 69 70 7V 72 73174

i !

: :

REFERENCE OPERATION - COMMENTS)
T

]

1

[}

NAME HEADCS)// 30 parameters

The HEADCS control instruction denotes the beginning of a control string.
The name in the reference column of the HEADCS instruction becomes the
name of the control string. When the Monitor encounters this control
instruction, it moves the 30 parameter characters (see explanation below),
into the reserved memory area, and then reads in the next control item

in the string.

e Positions 1-3 contain the page number.
e Positions 4-6 contain the line number.

e Position 7 contains C.

e Positions 8-15 contain the name that the control string assumes when
it is placed on disc by the Source Program Utility Routines. Positions
16 and 17 contain the version number of the control string, if applicable.

e Positions 18-23 contain HEADCS to indicate that this is the header for
a control string.

e Positions 51-80 contain 20 parameter characters which permit a wide range
of options. These options are not needed for a simple compilation of a
source program. All the options are fully explained in a separate publi-
cation dealing with the Monitor.

NEAT/3 -- COMPILATION PROCESS Nov. 68
TAB 2 -- PUB. NO. 2 Page 3

e NEXTDO

COMMENTS

REFERENCE OPERATION

T
8 9 10 11 12 13 14 13 16 17[18 19 20 21 222!2‘1!2.172.}ﬁ50)!| S2 S3 54 35 36 57 58 39 60 61 62 63 64 65 66 67 68 69 70 Tt T2
1

NEXTDO nalnejV i30 parameters

The Monitor control instruction NEXTDO calls a program into memory. The
operands column contains either a program name or the name of a control
string.

If the name in the operands column is the name of a program, the Monitor
calls this program into memory.

If the name in the operands column is the name of a control string, the
Monitor reads the first NEXTDO instruction in this control string and
calls the program named in this NEXTDO instruction into memory. After
this program has been run, the Monitor sequentially reads the other NEXTDO
instructions in the control string and calls the named programs into
memory until all the programs named in the control string have been run.

The Monitor searches the program directories on both the current and
the alternate system discs to locate the latest version of the program
named by the NEXTDO instruction,

e Positions 1-3 contain the page number.

e Positions 4-6 contain the line number.

e Position 7 contains C.

e Positions 18-23 contain NEXTDO to indicate that a new program is to
be called into memory.

e Positions 24-50 contain the name of the program or control string to
be run.

e Positions 51-80 contain 30 characters which permit certain options.

For full details, refer to the publication describing the Monitor.

NEAT/3 -- COMPILATION PROCESS Nov. 68
TAB 2 -- PUB. NO. 2 Page 4

RELATED SOFTIWARE

e FINISH

M|

REFERENCE OPERATION OPERANDS

*

8 9 10 19 12 13 14 13 16 1718 19 20 21 22 2324 23 26 27 26 29 30 31 32 33 34 35 36 37 308 39 40 41 42 43 44 45 45 47 48 49 0

FINISH

T
|
1
¥
i
'
]
1
'
T
|
|
|
[}

The FINISH instruction indicates the end of a control string. When the
Monitor reads this instruction it links back to the source from which the
present control string was accessed and reads the next item from that
source. The source is usually the integrated punched card or paper tape
reader, but it may also be another control string. If the Monitor reads a
FINISH instruction in the punched card or paper tape reader, the pro-
cessor halts.

CARD READER

NEXTDO A

CONTROL STRING CS1

NEXTDO CS1 NEXTDO B

NEXTDO C CONTROL STRING CS2

o

NEXTDO |

j NEXTDO G NEXTDO E

NEXTDO CS2 NEXTDO D

NEXTDO NEXTDO F
NEXTDO J H

/__i__

FINISH

FINISH FINISH

e Positions 1-3 contain the page number.
® Positions 4-6 contain the line number.
e Position 7 contains C.

e Positions 18-23 contain FINISH which indicates the end of a control
string.

NEAT/3 -- COMPILATION PROCESS Nov. 68
TAB 2 -- PUB. NO. 2 Page 5

e STOPRD

REFERENCE OPERATION OPERANDS

8 # 10 11 12 13 14 15 16 17[18 19 20 21 22 2324 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 30O

STOPRD

If the Monitor reads STOPRD from a punched card or from punched paper tape,
the next record (on punched card or paper tape) is either data input to
the program presently being loaded by the Monitor or a control instruction
for the program that is to be called next,

e Positions 1-3 contain the page number.
® Positions 4-6 contain the line number,
e Position 7 contains C.

e Positions 18-23 contain STOPRD,

Nov. 68

NEAT/3 -- COMPILATION PROCESS
Page 6

TAB 2 -- PUB. NO. 2

RELATED SOFTWARE

Placing a Control String on Disc

The following is a hypothetical example that illustrates how a control string
may be placed on a disc and how the programs within that control string may

be subsequently run. This example has been chosen to give the reader a better
understanding of some of the Monitor functions. Normally, the operator would
place the control string on a disc at one time and run the programs specified
by this control string at another time. Also, the operator would use the
Monitor Boot only after a reset from the console or following a shut-down of
the system after power has been turned on again. The DATE instruction is
needed only if a date change is required.

The following sequence of punched card or paper tape records may be used to
place a control string on a disc and to start the execution of the programs
within that control string.

» TABS

RECORD
NUMBER REFERENCE OPERATION OPERANDS

s 9 10 11 12 13 14 15 16 1718 19 20 21 22 2324 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 M4

(MONTITO|R BOOT

1% & 2 ¢t 3 3 & 2 1 1 1 1 3)l {4 3 ¢ % 8 s ¢ g 3 ¢+ ¢ ¢t g 2 ¢ ¢ 3 ¢ 2 2

DATE 28/03/69/TUE

NLEIXITIDIO SIPIUIRI 1 1 1 1 1 1 1 1 1 1 1 1
S.T,0,P.R.D

L T T B] 11 1.1 2 1 - | 11 8

~

L1 3 3 ¢ 3 3. 32

ACCTSRCV . |[HEADCSIN

N NEXTDORUNT | L
NEXTDORUNZ
s e h s wa NEXTDO[RUNS3,
NEXTDORUNSZ4
NEXTDO|RUNS,
NEXTDORUN 6

NEXTDORUNZ7
FINISH

2t ¢ ¢ 3 3 3

00 ~N O O & W N -

| B S |

L1 .1 1 2 2 1 1 1 1 3 t.

EXITTO

NEXTDOACCTSRCYV
STOPRD
FINISH

2 3 3 ¢t 3 3 3 2

000
000
000
000
000
000
000
000
000
000
000
000
END
000
END
000
000
000

aaojojaojaojojojojojoojojojojojo0ialo

g8 3 1 3 8 3¢

NEAT/3 -- COMPILATION PROCESS Nov. 68
TAB 2 -- PUB. NO. 2 Page 7

® Record No., 1

The operator uses the console switches to read the Monitor Boot into mem-
ory. The Monitor Boot then calls the Monitor from disc into memory.

e Record No. 2

The Monitor reads the DATE instruction and stores the virtual date in the
reserved memory area and on disc,

e Record No., 3

The Monitor reads the NEXTDO instruction which calls in SPUR.,

® Record No. 4

The Monitor reads the STOPRD instruction, stops reading records, and loads
SPUR into memory.

e Record No. 5

SPUR now reads the HEADCS instruction which indicates to SPUR that a
control string is to be placed on a disc. The name to be given to this
control string appears in the reference column of the HEADCS instruction.
This name may be a maximum of eight characters (the remaining two are
reserved for a version number that is assigned by SPUR when applicable).

An N in position 24 specifies that this is the initial construction of

a control string. A Y in position 35 of the HEADCS instruction specifies
that SPUR will sequence-check the page~line numbers of the following
control string item (records). If these items are found to be out of
sequence, SPUR sorts them before placing them on a disc., N in position
36 specifies that the page-line numbers of the control string items are
not to be changed. See the OPERATING SYSTEM REFERENCE MANUAL, MONITOR,
control instructions tab, "HEADCS Control Instruction'.,

® Records No, 6-13

SPUR reads these control string items and places the control string on
disc. (See Record No. 5 for option to sort and renumber these records.)

® Record No. 14

END$ indicates to SPUR that this is the end of the control string. This
record does not beoome part of the control string.

® Record No, 15

SPUR reads the control instruction EXITTO which instructs SPUR to return
control to the Monitor.

NEAT/3 -- COMPILATION PROCESS Nov. 68
TAB 2 -~ PUB. NO, 2 Page 8

RELATED SOFTWARE

e Record No, 16

The software that handles punched card input requires that the EXITTO
control instruction be followed by ENDS.

o Record No., 17

The Monitor reads this NEXTDO instruction which indicates that the
ACCTSRCV c¢ontrol string (RUN1) is to be called into memory.

e Record No., 18

The Monitor reads this STOPRD instruction which indicates that no more
records are to be read by the Monitor at this time. Control is trans-
ferred to the RUN1 program.

When RUN1 is finished, the Monitor is called into memory, where it reads
the next item from the ACCTSRCV control string on disc. Since this next
item specifies NEXTDO RUN2, the Monitor reads the program for RUN2 into
memory.

This action repeats itself until all seven runs in the ACCTSRCV control
string are completed.

When the Monitor reads the FINISH instruction at the end of the

ACCTSRCV control string on disc, the Monitor links back to the punched
card or paper tape reader from which the ACCTSRCV was accessed.

e Record No. 19

The Monitor reads the FINISH instruction in the punched card or paper tape
reader., This FINISH instruction halts the processor,

x kX %

NEAT/3 -- COMPILATION PROCESS Nov. 68
TAB 2 -- PUB. NO. 2 Page 9

CREATING A PRODUCTION PROGRAM

This section describes the normal sequence of steps for creating a production
program from a newly prepared source program. Also, the operational steps
required for running a compilation on an NCR Century System are briefly ex-
plained in this section.

FROM SOURCE PROGRAM TO PRODUCTION PROGRAM

The flowchart on the following page illustrates the necessary steps for cre-
ating a production program from a newly written source program. A short expla-
nation of each step follows.

Desk-Check the Source Program

Desk-checking the source program is the first requirement. Before taking the
program to the computer, the programmer must review the logic flow of his

program to ensure that it will precisely perform the desired tasks. The pro-
grammer should also organize the various types of data to be used by his pro-
gram and, if possible, he should check the source program for punching errors.

Run the Appropriate Software Program and Correct Errors

The desk-check does not usually uncover all errors. Therefore, the programmer
should specify on the Compilation Control Statement that this program is to be
compiled in the debug mode.

Following the SPUR run, the programmer should use the SPUR listing to correct
possible format errors. SPUR should be rerun after every correction until all
format errors have been eliminated from the source program.

The NEAT/3 Compiler must be run next. The programmer must now check the NEAT/3
Compiler listing for error notations, make the necessary corrections in the

source program, and recompile.

Recompile the Program

The programmer recompiles a program by entering only the corrected source
records, the Compilation Control Statement, and the END sentinel (END$). The
corrected source records must follow the order described under COMPILATION
PROCESS, tab 1, "Organization of a Source Program" and must have page and
line numbers corresponding to those of the incorrect source records.

The recompilation begins by rerunning the corrected source records through
SPUR. This produces a corrected source program (recompilation master). If

NEAT/3 -- COMPILATION PROCESS Nov. 68
TAB 2 -- PUB. NO. 3 Page 1

SPUR does not detect any errors in this run, the source program may then be
run through the NEAT/3 Compiler. If any errors are detected by the NEAT/3
Compiler, the recompilation process must be repeated. This process must be
continued until no errors are detected by either SPUR or the NEAT/3 Compiler.

DESK CHECK
SOURCE
PROGRAM

!

RECOMPILE

MAKE
CORRECTION

ANY YES

ERRORS?

CREATE
TEST~DATA
FILE

DEBUG
.‘ RUN

PE RFORM
DEBUG
ROUTINE

READY FOR
PRODUCTION
RUN

Nov, 68

NEAT/3 -- COMPILATION PROCESS
Page 2

TAB 2 -- PUB. NO. 3

CREATING A PRODUCTION PROGRAM

Test the Program and Debug

After correcting all the errors detected by SPUR and the NEAT/3 Compiler, the
programmer is now ready to test his program on the computer. The data used
for this test should not be voluminous, but should represent every type of
record that may be processed, so that every path in the program may be tested.

NCR supplies software to aid the programmer in debugging his program. Two of
these software aids are the Datawriter Program and the Symbolic Debug System
which are fully described in the Utility Routines Reference Manual.

® Datawriter Program

Before a program can be debugged, it must have data to process. This data
is referred to in the flowchart as the Test-Data file. The Datawriter uses
punched card or punched paper tape input to generate a data file on magnetic
media.

e Symbolic Debug System

As shown on the flowchart, the programmer now uses the Symbolic Debug System
when running the program. At the programmer's option, the Symbolic Debug
System prints information regarding program branches, records, fields,
constants, and work areas whenever a specified condition exists,

After running the Debug Routine the programmer should review the printed list-
ings and make the necessary corrections., Corrections at this point require a
recompilation - again beginning with SPUR,

Run the Program

As a final step, the programmer places the debugged production program on the
appropriate disc(s) for production work.

NEAT/3 -- COMPILATION PROCESS Nov. 68
TAB 2 -- PUB. NO. 3 Page 3

COMPILING A PROGRAM ON THE NCR CENTURY SYSTEM

Following is a description of one of several procedures that may be used for
compiling an object program on the NCR Century System. In this example, the
programmer uses a software control string which automatically links the nec-
essary software routines to read NEAT/3 source statements and to compile a
program.

COMPILE Control String

The compiler disc contains a COMPILE control string which the programmer may
use to read NEAT/3 source statements and to compile a program. The COMPILE
control string first calls SPUR to read the source statements. Then the
COMPILE control string calls the NEAT/3 compiler to compile the program.

Compilation Procedure

Compiling a NEAT/3 program requires two discs: a compiler disc with the
necessary software, and a program disc for storing the source statements and

the object program.

In the following example, the operator uses the illustrated sequence of punch
card records to access the COMPILE control string and to compile the program.
The use of the Monitor Boot (records 1 and 2) is only necessary following a
reset from the console or following a system shut-down after the power is
turned on again. The DATE instruction (record 3) is only needed if a date
change is required.

> TABS

RECORD
NUMBER REFERENCE OPERATION OPERANDS COMMENTS

8 9 10 11 12 13 14 15 16 1718 19 20 21 22 23|24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 1 62 63 64 65

(MONITOIR BOOT

4 L DATE | 2'71/11.0'/'6'9:/:TIU.E' N

NEXTDOJCOMPILE

..., IsToPRD /
(ORGANTI[ZED SOJURCE, lPLROGRAM)I

T S Tl TR Tl R | I R TR B B A)

FI B W N S N B |

7
Cc
Cc
Cc
C
C
C

]
__._/

FIRE S WO N SN SO A B |

ololo[alalo]dq

NEAT/3 -- COMPILATION PROCESS Nov. 68
TAB 2 -- PUB. NO. 3 : Page 4

CREATING A PRODUCTION PROGRAM

e Record No, 1

The Monitor Boot records call the Monitor into memory.

e Record No. 2

The Monitor reads the DATE instruction and stores the virtual date in the
reserved areas in memory and on disc.

e Record No., 3

The Monitor reads the NEXTDO instruction and then accesses the COMPILE
control string. The character in position 51 clears the Monitor flags.
The numeric digit in position 62 of the NEXTDO instruction affects SPUR,
which is called by the COMPILE control string. The 2 in position 62
indicates that SPUR will read NEAT/3 source statements from the card
reader.

The other possible codes in position 62 of the NEXTDO instruction are
fully explained in the UTILITY ROUTINES reference manual,

e Record No. 4

The Monitor reads the STOPRD instruction which indicates that no more
records are to be read by the Monitor at this time. Control is trans-
ferred to the COMPILE control string which calls for SPUR,

® Records No. 5-183

SPUR reads the organized NEAT/3 source program (records number 5 through
183) and writes it on the program disc.

e Record No, 184

SPUR reads the END$ instruction which indicates the end of the source
statements. Control is again transferred to the Monitor, which accesses
the COMPILE control string and calls the NEAT/3 Compiler into memory to
compile the program.

NOTE

After the program has been compiled, the COMPILE control
string loops back to its beginning (SPUR) to compile another
program unless an EXITTO instruction initiates an exit from
the COMPILE control string.

e Records No., 185-186

SPUR reads EXITTO and ENDS, which initiate an exit from the COMPILE
control string after the program has been compiled.

As a result of the previous EXITTO instruction the COMPILE control string now
calls for a printout of the program directory on the program disc. This direc-
tory includes the name of the newly compiled program. At the end of the
printout routine, control is again transferred to Monitor.

NEAT/3 -- COMPILATION PROCESS Nov. 68
TAB 2 -- PUB. NO. 3 Page 5

e Record No. 186

SPUR reads the END$ record which indicates that no more records are to be
read at this time.

As a result of the previous EXITTO instruction, the COMPILE control string
now calls for a printout of the program directory on the program disc.
This directory includes the name of the newly compiled program. At the
end of the printout routine, control is again transferred to the Monitor.

e Record No. 187

The Monitor reads the FINISH instruction which halts the processor.

PSS

NEAT/3 -- COMPILATION PROCESS Nov. 68
TAB 2 —-- PUB. NO. 3 Page 6

COMPILER OUTPUT PRINTING

GENERAL DESCRIPTION

A final function of compiler output is the printing of the compilation list-
ing, a line-by-line document of the user's source program. This listing is of
particular usefulness in providing the programmer with the following aids:

e A printed copy of the source program.

e A map (or listing) of source line locations in memory and a summary of
major portions of the program.

o A classification of all compiler-detected errors.
e A cross-reference index, if requested.
e The object coding created for each source line, if specified.

The compilation listing consists of four divisions, or sublistings, that
present in differing formats the compiler input and output data. The first
division, compiler control statements, and the second division, data and
coding statements, form the program listing. The third division, a program
memory map, and an optional fourth division, a cross-reference index, form
the supplementary listing.

Each division of the compilation listing is printed on a new page with a
division heading consisting of two printed lines. A main header line, similar
for all divisions but identifying each one, is printed on the first line
(printline 4). Following each main header line is printed a subheader line
(printline 6) which defines the data to be presented within the division.

When an end-of-page condition is encountered for those divisions which extend
beyond one page, line spacing to the top of the next page occurs and the divi-
sion heading is repeated before printing of the text continues., Essentially
the header lines are self-explanatory; however, they are considered briefly
under the discussion of each division.

NEAT/3 -- COMPILATION PROCESS Nov. 69
TAB 3 -- PUB, NO. 1 Page 1

The compiler for the NCR Century 100 uses only the 51 characters contained in
graphics code A when printing the compilation listing.

The pound sign (£) and the dollar sign (§) are interchangeable depending on
the installation. The 51st character is the space (). Any character not
included in the graphics code A is considered untranslatable and printed as a
space,

Printing is controlled by options available to the programmer on the compiler
specification worksheet. A review of these options is included in the follow-

ing chart.

DIVISION SHOULD OBJECT SHOULD LISTING SHOULD CROSS REF=- DELETE DIGIT
CODING BE LISTED? BE DOUBLE ERENCE INDEX BE
S PACED? LISTED?

COMPILER CONTROL |NOT AFFECTED BY NOT AFFECTED BY |[NOT AFFECTED BY ONLY THE FIRST CON-—
STATEMENTS THIS OPTION, THIS OPTION, THIS OPTION, TROL STATEMENT
CANNOT BE DELETED

[Fixeo FormAT] SINCE IT SETS THE
DELETE DIGIT,

DATA AND CODING ENTRY [N] ENTRY [N]

STATEMENTS

STATEMENTS ARE STATEMENTS LINES|NOT AFFECTED BY STATEMENTS SUP-—
[FiIxep FORMAT] PRINTED. NO OB— | ARE SINGLE THIS OPTION, PRESSED BY THE
JECT CODING IS SPACED, DELETE DIGIT ARE
PRINTED, PRINTED AS THOUGH
ENTRY [Y] THEY WERE COMMENT
entry [v] LINES.

STATEMENTS
ALL STATEMENTS LINES ARE
CONTAINED IN THIS | DOUBLE SPACED.
DIVISION ARE
PRINTED WITH OB-—
JECT CODING FOR
EACH STATEMENT.

PROGRAM MEMORY NOT AFFECTED BY NOT AFFECTED NOT AFFECTED BY NOT AFFECTED BY
MAP THIS OPTION, BY THIS OPTION, THIS OPTION., THIS OPTION,

[Fixep FormaAT]

CROSS REFERENCE NOT AFFECTED BY NOT AFFECTED ENTRY [N] NOT AFFECTED BY
INDEX THIS OPTION. BY THIS OPTION. THIS OPTION,

[oPTiONAL LISTING] THIS DIVISION IS
NOT PRINTED.

ENTRY [P]
THIS DIVISION IS

PAGE AND LINE].
ENTRY [A]

THIS DIVISION IS
PRINTED IN ALPHA-—
BETICAL SEQUENCE,

ENTRY [B]

BOTH ALPHABETICAL
AND PRESENTATION

SEQUENCE LISTINGS
ARE PRINTED.

NEAT/3 -- COMPILATION PROCESS Nov. 69
TAB 3 -- PUB. NO. 1 Page 2

COMPILER OUTPUT PRINTING

PROGRAM LISTING

The program listing is the printed copy of the source program and consists of
two divisions., The first division, the compiler control statements, is the
record of control information and the options requested on the compiler speci-
fication worksheet. The second division contains the data and coding state-
ments which were prepared on the data and coding worksheets and input to the
NEAT/3 compiler.

Compiler Control Statements Division

The compiler control statements division of the program listing is normally
printed as a single page and may include three statements.

e The Control Statement

This mandatory statement is the record of control information defined on
the first page of the compiler specification worksheet (excluding the
author statement at the bottom of the first page of the worksheet.) This
statement is always printed in a fixed format and is not affected by the
print options, nor can it be deleted by the delete digit, since it is this
statement which sets the delete digit.

e The Author Statement

This optional statement records the author's or programmer's name as
entered at the bottom of the first page of the compiler specification
worksheet.

e The Option Statement

This optional statement is the record of control information defined on
the second page of the compiler specification worksheet.

The preestablished format for this division is not affected by print options
requested on the compiler specification worksheet. The text of the control
statement is double-spaced and presented in two columns on the page, with
approximately 1 inch spacing between the two columns of information. The
author statement, when present, is printed as a single line across the page.
The option statement, when present, follows the same format as the control
statement.

NEAT/3 -- COMPILATION PROCESS Nov. 69
TAB 3 -~ PUB. NO. 1 Page 3

Normally, the l-page format for control statements satisfies most requirements.
However, when additional pages are warrented, this format can be expanded as
follows:

e Placing asterisks in columns 8 and 9 of either the author statement or
option statement causes the statement line to be printed at the top of
a new page and treated as a comment line. Comment lines are printed in
a collapsed format that does not follow columnar field spacing and do
not become part of the object coding.

e Inserting a separate dummy control statement with asterisks in columns
8 and 9 to precede either the author statement or option statement causes
the dummy statement to be printed at the top of a new page and to be
treated as a comment line. The author or option control statement is
printed as the second line on the new page. In this instance the author
and/or option statements are included in the object coding.

e Division Heading

The division heading appears at the top of each page with the main header
line printed on printline 4 and the subheader line printed on printline 6.

NCR NEAT/3 000 MAIN PROGRAM PROGRAM XXXXXXXX00 CONTROL STATEMENTS DATE 00/00/00 PAGE 000

P/L CD STATEMENT COL STATED ASSUMED STATEMENT CGL STATED ASSUMED

NEAT/3 —- COMPILATION PROCESS Nov. 69
TAB 3 -- PUB. NO. 1 Page 4

COMPILER OUTPUT PRINTING

The contents of these two lines are considered separately in the following
charts.

Printer Image

Meaning

NCR NEAT/3 000

Compiler name and version number

MAIN PROGRAM

Defines page as part of main program,
rather than an overlay

PROGRAM XXXXXXXXO0O0

Program name and version number

CONTROL STATEMENTS

Division name

DATE 00/00/00

Date of compilation

PAGE 000

Page number

e

Columnar Title

Meaning

P/L

Page and Tine number

CD

Worksheet code (P)

STATEMENT™*

Source statement

coL*

Source column number

STATED*

Source entry

ASSUMED*

Assumed entry whenever source entry
is left blank

* These columnar titles are presented two to the page.

e Error Comment And Compiler Comment Lines

Error comment and compiler comment lines appear on a single-spaced print-
line immediately preceding the first printline of the statement. Both
error comment and compiler comment lines are further explained in the next
section, data and coding statements division. Error comment and compiler
comment coding are discussed in further detail under separate publication
in this manual. See COMPILATION PROCESS, tab 3, 'Language Directory".

NEAT/3 -- COMPILATION PROCESS Nov. 69
TAB 3 -- PUB. NO. 1 Page 5

Data and Coding Statements Division

This division of the program listing is printed by overlay in the order that
source statements are presented to the compiler. Data statements are printed
first, followed by coding statements for the main program and each overlay.
The first data statement is printed at the top of a new page, when the first
coding statement is encountered, automatic line spacing to the top of a new
page occurs before the coding statements are printed. Within the listing of
either data or coding statements, additional new pages are printed whenever
an end of page is encountered, an asterisk appears in columns 8 and 9, indi-
cating a comment statement, or a section or overlay control instruction is
encountered.

e Data Statements

The first part of this division presents a listing of all data statements
as prepared on the data worksheets.

e Division Heading

The division heading appears at the top of each page in this section
with the main header line printed on printline 4. On printline 6, the
subheader line is printed for data statements and includes mnemonic
columnar titles to correspond with field definitions on the data
worksheet.

NCR NEAT/3 000 MAIN PROGRAM PROGRAM XXXXXXXX00 SECTION XXXXXXXXXX DATE 00/00/00 PAGE 000

P/L CD RF CE LC LN DP TY VL/PC & COMMENTS ADDR CONTENTS

NCR NEAT/3 000 OVERLAY XX-XXX PROGRAM XXXXXXXX00 SECTION XXXXXXXXXX DATE 00/00/00 PAGE 000

P/L CD RF CE LC LN DP TY VL/PC & COMMENTS ADDR CONTENTS

NEAT/3 -- COMPILATION PROCESS Nov. 69
TAB 3 -- PUB. NO. 1 Page 6

COMPILER OUTPUT PRINTING

The contents of these two lines are considered separately in the following

charts.

Printer Image

Meaning

NCR NEAT/3 000

Compiler name and version number

MAIN PROGRAM or

Defines page as part of main program,

OVERLAY 00-000

or overlay group and number

PROGRAM XXXXXXXX00

Program name and version number

SECTION XXXXXXXXXX

Section name

DATE 00/00/00

Date of compilation

PAGE 000

Columnar Title

Page number

Meaning

Page and line number of source statement

CD

Worksheet code (D)

RF

Reference name

CE

Definition code (R, A, I, or F)

LC

Defined location

LN

Defined length

DP

Defined decimal point

TY

Data type

VL/PC

Data value or data picture

COMMENTS

Programmer's remarks, if any

ADDR

Memory location

CONTENTS

Object coding, when requested

NEAT/3 -- COMPILATION PROCESS
TAB 3 -- PUB. NO. 1

Nov. 69
Page 7

e Statement Format

The printline created for each data statement is in the same format and
sequence as the information was entered initially on the data worksheet.
Data fields are printed under their appropriate columnar titles in the
subheader line. Comment statements are printed in a collapsed format
without regard for columnar headings.

e Programmer Comments

When a partial-line comment has been included in a source line, the
comment is preceded by an asterisk and printed under the comments field.
If the comment is too long for the printspace available, a comment over-
flow is carried to the next line. When both comment overflow and object
coding overflow occur, both overflow portions use the same line and are
printed under their columnar fields.

Statements which are suppressed by the delete-digit logic are printed
as though they were comment statements, in the collapsed-line format.

® Memory Location

All memory addresses for related source statements are carried in
hexadecimal and printed under the ADDR field, Addresses are determined
by hexadecimal counting as shown in the following examples.

P/L CD CE LC LN DP TY VL/PC & COMMENTS ADDR CONTENTS

009240 D SAVE A 0006 0 U 000000 00 454C 303030303030

009270 D COUNTER A 0001 0 UO 00 4552 30

e The first statement defines an area, and shows its address as
00 454C.

e The length of the statement is six characters.

e The second statement also defines an area, and shows its
address as 00 4552.

NEAT/3 -- COMPILATION PROCESS Nov. 69
TAB 3 -- PUB. NO. 1 Page 8

COMPILER OUTPUT PRINTING

An expanded view of the ADDR and CONTENTS fields illustrates how this
counting is accomplished.

4D AE 4F 50 3]

00 454C

/30 30 30 30 30 30
00 45_5_2/30

e The address, 00 454C, is the beginning address assigned to the
first character of the statement.

e FEach subsequent character increments the address by 1 hex digit
to the end of the statement, ending at memory location 00 4551.

e The next statement is assigned the next available memory address,
00 4552.

In the next example, the object coding for the statement is too long
to fit in the available printspace for the line. This condition
causes the object to overflow to the next printline.

P/L CD RF CE LC LN DP TY VL/PC & COMMENTS ADDR CONTENTS
009030 D COMMENT1 A 0021 B 1 00 4500 00000000000000000000000000000000

0000000001

e The statement defines an area, and shows its address as 00 4500.
e The length of the statement is 21 characters.

An expanded view of this example is shown below.

/m_ 05 06 07 08 09 OA 0B OC 0D OE OF
00 4500 00 00 00 00 00 OO0 00 00 00 OO 00 00

(00 4510)/00

NEAT/3 -- COMPILATION PROCESS Nov. 69
TAB 3 -- PUB. NO, 1 Page 9

e The address, 00 4500, is the beginning address of the first
character of the statement.

e Each following character increments the address by 1 hex digit
until the end of the printline (32 print positions) is reached.

e The object coding overflows to the next printline (the complete
address of the first overflow character is shown in parentheses)
and each character continues incrementing the address by 1 hex
digit to the end of the statement, ending at memory location
00 4514,

In a final example, two statements are shown having the same memory
address. This is possible when the second statement is a field
definition within the first statement, and the field's relative loca-
tion within the area definition is O.

P/L CD RF CE LC LN DP TY VL/PC & COMMENTS ADDR CONTENTS

009300 D CONTROLL A 0004 X 00 4558
009330 D F 0003 XN 00 4558 4E2020
009360 D F 0001 00 455B FF

009390 D CONTROL2 0004 00 455C

® The first statement defines an area, and shows its address as
00 4558. This is a 4-character, X-type area. Since no value
entry is present, no object coding is printed for this line.

e The next statement is a 3-character X-type field with a relative
location of O within the area. Therefore, the first character of
the field is the first character of the area at memory address
00 4558.

e The third statement completes the area definition. It is a B-type
field one character long (the remaining character within the area)
and is at relative location 3 within the area. Its memory address
is 00 4558,

e Since the area definition is complete, the next area statement is
assigned the next available address, 00 455C.

NEAT/3 -- COMPILATION PROCESS Nov. 69
TAB 3 —- PUB., NO. 1 Page 10

COMPILER OUTPUT PRINTING

An expanded view of this example is shown below.

Defined 4-character area

00 4558 //
|

relative location

1st field within the area

00 4558 4t

2nd field within the area

/’/i
00 455B FF

Next defined area

00 455C

e Object Coding

When the programmer requests an object listing for the source
program, both source and object appear side by side on the same
line, with the object coding printed under the contents field.

Object values for all data statements are interpreted in hexa-
decimal coded USASI, with 2 hex digits representing each 8-bit
memory location. For a more detailed discussion of translating
NCR Century internal code into hexadecimal, see NEAT/3 MANUAL,
APPENDIX, tab 1, "Hexadecimal Code to NCR Century Internal Code."

Consider the following examples.

P/L CD RF CE LC LN DP TY VL/PC & COMMENTS ADDR CONTENTS

009090 D COMMENT2 A 0006 0 U 000000 00 4515 303030303030

e The object coding for the value of this statement is 303030303030.

e 30 is the hexadecimal coding for O.

NEAT/3 -- COMPILATION PROCESS Nov. 69
TAB 3 -- PUB, NO. 1 Page 11

Data object is left-justified, beginning in print position
101, and continuing through print position 132. Therefore,

a total of sixteen 2-character hex codes can be printed on
each line. In the instance where object coding exceeds the
available printspace, object overflow occurs on the following
line(s), as seen in the next example.

P/L CD RF CE LC LN DP TY VL/PC & COMMENTS ADDR CONTENTS

009120 D COMMENT3 A 0021 X ACCOUNT CREDITED WITH 00 451B 4143434F554E54204352454449544544

2057495448

e The object coding for this statement is too long for one
printline and causes object overflow. The meaning of the
object coding is shown below.

41 43 43 4F 55 4E 54 20 43 52 45 44 49 54 45 44 20 57 49 54 48

A C C O UNT C R ED I T E D W I T H

e Coding Statements

This part of the program listing presents a record of all coding statements
as entered on the coding worksheets.

e Division Heading

The division heading appears at the top of each page in this section
with the main header line printed on printline 4, On printline 6,
the subheader line is printed for coding statements and includes
mnemonic columnar titles to correspond with field definitions on the
coding worksheets., The content of the main header line is the same
format as previously described for data statements.

NCR NEAT/3 000 MAIN PROGRAM PROGRAM XXXXXXXX00 SECTION XXXXXXXXXX DATE 00/00/00 PAGE 000

P/L CD RF OPERANDS & COMMENTS ADDR CONTENTS

NEAT/3 -- COMPILATION PROCESS Nov. 69
TAB 3 -~ PUB., NO. 1 Page 12

COMPILER OUTPUT PRINTING

The content of the subheader line is considered in the following chart.

Columnar Title Meaning

Page and Tine number of source statement

CD Worksheet code (C)

RF Reference name

0P Operation code

OPERANDS Operand expression

COMMENTS Programmer's remarks, if any

ADDR Memory location

CONTENTS Object coding, when requested

e Statement Format

The printline created for each coding statement is in the same format and
sequence as the coding worksheet, with the statement fields printed under
the appropriate columnar titles in the subheader line.

e Programmer Comments

When a partial-line comment has been included in a source line, the
comment is preceded by an asterisk and printed under the comments
field. Comments beyond printer column 84 are carried to an overflow
line as described for data statements.

e Memory Location

Memory locations for coding statements are carried in hexadecimal and
printed under the ADDR field. Addresses are determined by hexadecimal
counting as described for data statements, and because of hardware
command formats, are normally incremented by 4 or 8.

e Object Coding

Object values for coding statements are left-justified, beginning
in print position 101, and are printed in hexadecimal groups: two
characters per memory location, 4 memory locations (8 characters)
per group, with a space between groups. This grouping is created
for ease of reference.

NEAT/3 -- COMPILATION PROCESS Nov. 69
TAB 3 -- PUB. NO. 1 Page 13

e Major Functions

When the coding of a source program specifies a major function, the
generated coding (associated with the function) is not printed in the
program listing. What does appear in the listing is the function
definition as it was generated by answers to parameter questions. The
questions and answers appear as comment lines, printed in two columns
and following the card image format of the parameter questions.

The comments defining the function appear in the program listing in all
cases except where the minimum number of parameters is not present,
Generation of a major function is not attempted if the basic set of
parameters for the function is not present. A comment indicating that
the function was not generated will precede the parameters.

In addition, in the following instances, the basic set of parameters is
present, but the function cannot be generated.

® An input or output data area is not indicated on the parameters, or
the data definition for this area does not exist.

e The name of the function is not indicated, or one of the required
exits has not been indicated.

e A key question for a particular function has not been answered.

When the generation of a function is aborted, the comments defining the
function are preceded by a comment line indicating that the function was
not generated.

When errors are detected in answers to parameter questions, whether or
not the function is aborted, either one or two asterisks will appear to
the left of the comment defining the particular parameter questions.

® One asterisk is used when an illegal answer is found, but a substitute
answer can be generated. When a substitute answer is made, the
substituted or assumed answer is printed in parentheses to the right
of the user's illegal answer.

P/L CD RF opP OPERANDS & COMMENTS

100A05 C * * INDICATIVE FROM REC--G (F) EXCESS O/P AREA TO BE--Z

NOTE
If the user's answer to this question is other than F or L, an F is assumed.
® Two asterisks are used when an incomplete answer is found, and due

to the conditions of the user's answer, the logic associated with this
particular answer is not generated.

NEAT/3 -~ COMPILATION PROCESS Nov. 69
TAB 3 -- PUB. NO. 1 Page 14

COMPILER OUTPUT PRINTING

P/L CD RF opP OPERANDS & COMMENTS

100A14 C * ** I/P TOTAL 02--SALARY 0/P TOTAL 02--

NOTE
The name of field in the output record for the Total 2 Control is incomplete.
All comments with asterisks indicating an error are preceded by an
error comment line which points to specific error comments listed in

the language directory.

Below is a typical printout of the Accumulate function as it might
appear in the program listing.

P/L opP OPERANDS & COMMENTS
100A01 ACCUMULATE FUNCTION PAGE NO--100 NAME--ACCFUNCT
100A02 I/P AREA--WORK1 0/P AREA--WORK2
100A03 GETMORE (EX1)--CARDREG NEXTDO (EX2)--REPORTER
100A04 END OF DATA (EX3)--CLOSERT
100A05 INDICATIVE FROM REC--F EXCESS 0/P AREA TO BE--Z
100A06 NO. ADDED FLDS--2
100A07 REC. CNT. FIELD--RECCNT
100A08 REC. O/P IF ALL ADDED FLDS. ZERO--Y
100A09 UNIOUE CHAR. OVR. FLD--OVRFIELD UNIQUE CHAR--$
100A10 NO. CONTROL KEYS--2
100A11 KEY 1--NAME
100A12 KEY 2--EMPLNO

100A13 I/P TOTAL 01--HRSWORKEDA 0/P TOTAL 01--HRSWORKEDB

100A14 I/P TOTAL 02--SALARY 0/P TOTAL 02--SALARYTD

NEAT/3 —- COMPILATION PROCESS Nov. 69
TAB 3 —- PUB. NO. 1 Page 15

e Options

Certain options are available on the compiler control worksheet. If
requested, these options affect or appear in the format of the data and
coding statements division.

e Line Spacing

Normally printlines are single-spaced unless the double-space option
is requested. Conventional single-spacing or double-spacing occurs
throughout the division listing with the exception of error comment
and compiler comment lines.

® Object Coding

When requested, the object coding is printed under the contents field
for each statement in the collapsed line format.

e Delete Digit

Statements suppressed by the delete digit are printed as though they
were comment lines.

o Error Comment and Compiler Comment Lines

When either the error comment line or compiler comment line is created, it
always precedes the printline of the statement to which it refers.

An error comment line is distinguished by an E in the first print position
on the line. This line contains one or more 4-character error codes which
point to specific error comments listed in the language directory.

A compiler comment line is distinguished by a C in the first print posi-
tion on the line. The 4-character codes point to specific compiler
comments listed in the language directory. These comments are used to
bring a specific situation in the source program to the attention of the
programmer. When a source statement contains both an error comment and
compiler comment, they are flagged as an error comment line.

When printlines are single-spaced, an error comment or compiler comment
line is preceded by a double-spaced line.

P/L CD RF VL/PC & COMMENTS CONTENTS

009030 D COMMENT1 PREVIOUS BALANCE 202020202050524556494F5553204241
4CL14EL345

009060 D COMMENT2 PAY THIS AMOUNT 20202020202050415920544849532041
4D4F554ES54

*RF ‘

009090 D COMMENT 3 A 0021 X ACCOUNT CREDITED WITH 4143434F554E562043524544469544544
2057495448

009120 D ACCUMCHRG A 0007 D +0000.00 3030303030302B

009150 D F 00000 0006 U 0000.00 303030303030

009180 D ACCUMPAY A 0007 D +0000.00 3030303030302B

009210 D F 00000 0006 U 0000.00 303030303030

NEAT/3 -- COMPILATION PROCESS Nov. 69
TAB 3 -~ PUB. NO. 1 Page 16

COMPILER OUTPUT PRINTING

When printlines are double-spaced, an error comment or compiler comment
line is followed by a single-spaced line.

P/L CD RF CE LC LN DP TY VL/PC & COMMENTS ADDR CONTENTS
009030 D COMMENT1 A 0021 0 X PREVIOUS BALANCE 00 4500 202020202050524556494F5553204241

4C414EL345

009060 D COMMENT2 A PAY THIS AMOUNT 00 4515 20202020202050415920544849532041

4D4FS54ES4

E *RF
009090 D COMMENT 3 A 0021 X ACCOUNT CREDITED WITH 00 452A 4143434F554E54204352454449544544

2057495448

As an additional aid to the programmer, these special comments are printed
at the bottom left of the page.

e The page on which an error comment or compiler comment line occurs
will contain, EXAMINE THIS PAGE.

e If the next consecutive page is without an error comment or compiler
comment line it will contain, EXAMINE PRIOR PAGE.

e If an error comment or compiler comment line occurs on two con-
secutive pages, the second page will contain, EXAMINE THIS PAGE AND

PRIOR PAGE.

This insures that one or the other of these comments is visible on the
outward edge of the folded printer listing.

e Nonformat Statements

Comment statements are remarks that the programmer makes to document his
program. These may be partial-line comments, that are part of the source-
line in which they occur, these comments do not become part of the object
program.

In addition, the programmer may indicate, by an asterisk in columns 8 and
9, that an entire line is a comment and is for documentation of the
program. A complete-line comment is printed in collapsed-line format
without regard for columnar spacing of the statement. Source statements
which are deleted by the delete digit option are printed as complete-line
comments. See INTRODUCTION AND DATA, tab 3, "Programming Worksheets."

Other nonformat statements include flowcharting and error statements.

e First Print Column Flags

Error comment and compiler comment lines that appear in the program listing
are flagged by single characters in the first print column. The letter E
denotes an error comment line; and the letter C denotes a compiler comment
line,

NEAT/3 -- COMPILATION PROCESS Nov. 69
TAB 3 -- PUB. NO. 1 Page 17

SUPPLEMENTARY LISTING

The supplementary listing is the printed copy of certain special classifica-
tions of the object program and for format purposes consists of two divisions.
The first division, program memory map, shows that portion of memory assigned
to the compilation. Since the second division (the cross-reference index) is
an optional listing, it is only printed when requested by the programmer to
show what page/lines use each reference.

Program Memory Map Division

The program memory map division presents a summary of the memory requirements
of the object program and includes that portion of memory used by software over
which the programmer has no direct control.

e Division Heading

The division heading appears at the top of the page with the main header
line printed on printline 4 and the subheader line printed on printline 6.

NCR NEAT/3 000 PROGRAM XXXXXXXX00 MEMORY MAP DATE 00/00/00 PAGE 000

ALLOCATION BEG ADD END ADD DEC LEN SUBROUTINE NAME AND DECIMAL LENGTH OF COMPILER INCLUDED SUBROUTINES

The contents of these two lines are considered separately in the fol-
lowing charts.

Printer Image Meaning

NCR NEAT/3 000 Compiler name and version number

PROGRAM XXXXXXXX00 Program name and version number.

MEMORY MAP Division name

DATE 00/00/00 Date of compilation

PAGE 000 Page number

NEAT/3 -- COMPILATION PROCESS Nov. 69
TAB 3 -- PUB. NO. 1 Page 18

COMPILER OUTPUT PRINTING

Columnar Title Meaning

ALLOCATION Allocation name or overlay

BEG ADD Beginning address

END ADD Ending address

DEC LEN Decimal length

SUBROUTINE NAME AND DECIMAL Up to five subroutines listed per line.
LENGTH OF COMPILER INCLUDED
SUBROUTINES

e Map Text

The memory map accounts for the executive and program allocations and, when
applicable, the overlay directory, buffers, data, file tables, coding,
literals, and subroutines within the main program and each overlay. The
name of each compiler included subroutine is printed. The length of major
portions of the program and subroutine are printed in decimal. The starting
addresses and ending addresses are printed in hexadecimal.

Cross Reference Index Division

The cross-reference index division, when requested by the programmer, is print-
ed from the cross-reference file created during data and coding statement pro-
cessing of the compilation.

e Division Heading

The division heading appears at the top of the page with the main header
line on printline 4 and the subheader line on printline 6.

NCR NEAT/3 000 PROGRAM XXXXXXXX00 CROSS REFERENCE DATE 00/00/00 PAGE 000

P/L RF PAGE AND LINE OF REFERENCING STATEMENTS

The contents of these two lines are considered separately in the fol-
lowing charts.

NEAT/3 -- COMPILATION PROCESS Nov. 69
TAB 3 -- PUB, NO. 1 Page 19

Printer Image Meaning

NCR NEAT/3 000 Compiler name and version number

PROGRAM XXXXXXXX00 Program name and version number

CROSS REFERENCE Division name

DATE 00/00/00 Date of compilation

PAGE 000 Page number

Columnar Title Meaning

P/L Page and line number

RF Reference name

ADDR Memory location

PAGE AND LINE OF REFERENCING STATEMENTS (see NOTE)

Columnar Title Meaning

RF Reference name

P/L Page and line number

ADDR ' Memory location

PAGE AND LINE OF REFERENCING STATEMENTS

NOTE

Page/line entries of referencing statements from overlays different
from that of the reference name will be preceded by an asterisk.

NEAT/3 -- COMPILATION PROCESS Nov. 69
TAB 3 -- PUB. NO. 1 Page 20

COMPILER OUTPUT PRINTING

e Index text
The cross-reference index may be printed in either or both of the fol-
lowing formats, as designated on the compiler specification worksheet.
e Presentation Sequence
Each reference name is listed by page and line number in descending
order, together with its object address. The page and line numbers of
all statements in which the reference name appears as an operand are
listed in the order the statements are presented to the compiler.
e Alphabetical Sequence
The reference names are alphabetically sorted prior to being printed,
and are listed in that order, together with their object addresses. The
page and line numbers of all statements in which the reference name
appears as an operand are listed in the order the statements are
presented.
e Options
The cross-reference division may be requested to be listed in either
presentation or alphabetical sequence, or both.
NEAT/3 -- COMPILATION PROCESS Nov. 69

TAB 3 —- PUB. NO. 1 Page 21

LANGUAGE DIRECTORY

INTRODUCTION

The language directory is part of the system software and exists as a data
file on the compiler disc pack. The directory is copied from disc to printer
by the NEAT/3 directory list routine. Any number of copies of the directory
can be printed, as needed; these copies are generally retained as standard
reference documents. In this way, the directory does not have to be printed
following every compilation.

Changes and/or additions to the language directory are performed as required
by the NEAT/3 directory management routine. Minor changes and/or additions
can be made in the printed directory as hand corrections, until the number

of changes and additions warrant the printing of a new edition of the directory
or until a new version of the NEAT/3 Compiler is released.

Because the language directory has an extract of all formatting and procedural
rules, it serves as a grammatical text governing the use of the NEAT/3 language.

SECTIONS
The language directory is printed in five sections.

Section I - NEAT/3 Release Notifications

This section contains the version number of the corresponding NEAT/3 Compiler
and comments pertaining to current NEAT/3 language usage and restrictions in-
cluding release notifications for future applications.

Section II - NEAT/3 System Tags

This section contains a listing of two types of reference tags used in the NCR
Century system:

e General system tags, identified by the prefix >EXEC., are presented
first. Each tag is briefly defined.

e File system tags, identified by the prefix FR.$, are presented next
and are likewise briefly defined.

Section III - SPUR Comments

The comments found in this section are precompilation errors detected during
input to the source program utility routines and may appear in the remarks
column of the SPUR exception report. Each comment is briefly defined.

NEAT/3 -- COMPILATION PROCESS Nov. 69
TAB 3 -- PUB. NO. 2 Page 1

Section IV - Format and Expression Error Comments

This section, which is indexed by a series of 4-character error codes with
mnemonic significance, generally relates to elementary errors of invalid for-
mat or expressions of information as entered in the source program worksheets,
Statements and instructions flagged with error comments from this section
require a correction to the referenced statement or operand expression.

e Statement Error Comments

These error comments (listed below) are indexed alphabetically using the
2-character field mnemonics assigned as column titles in the program listing.

Field Mnemonics Source Field

CD Presentation code format
CE Definition code format
DP Decimal point field format
LC Location field format
LN Length field format

*L0 Length/Offset format

*NA Index register assignment

oP Operation code format
PC Picture field format
*SK Skipped field format
RF Reference field format
TY Type field format

VL Value field format

*These error codes do not represent specific source fields,
but do reflect error classifications detected in source
statements.

In addition, certain miscellaneous field mnemonics as assigned, as listed
below.

Field Mnemonic Title

cC Control statements
PS Presentation sequence error

NEAT/3 -~ COMPILATION PROCESS Nov. 69
TAB 3 -- PUB. NO. 2 Page 2

ERROR COMMENT DIRECTORY

The following illustration shows the format of the statement error comments,

*XXX
4

l {——This character position is left blank.

The second and third characters indicate the field mnemonic
in which the error occurred.

The first character is always an asterisk which indicates
the mnemonic significance of the comment.

Example:

P/L CD RF CE LC LN DP TY VL/PC & COMMENTS

E *CE
009300 D CONTROL1 S 0004

Using the error code, *CE , the corresponding entry in the error comment
directory indicates the following:

*CE *DEFINITION CODE FORMAT.
THE DEFINITION CODE FORMAT

(COLUMN 18) WILL CONTAIN
AN R, FOR RECORD DEFINITIONS WHICH
ARE VALID ONLY IN CONTEXT WITH FILE
CONTROL SPECIFICATIONS;
AN A, FOR AREA DEFINITIONS WHICH ARE
USED TO RESERVE OR DEFINE AN AREA IN
MEMORY ;
AN I, FOR ITEM DEFINITIONS WHICH ARE
VALID ONLY IN CONTEXT WITH TABLE
CONTROL SPECIFICATIONS;
AN F, FOR FIELD DEFINITIONS WHICH ARE
USED AS SUBGROUPS OF THE ABOVE
DEFINITION FORMAT CODES.

Since the definition code must be an R, A, I, or F, the S entry is
invalid and must be corrected.

NEAT/3 -- COMPILATION PROCESS Nov. 69
TAB 3 -- PUB. NO. 2 Page 3

e Operand Error Comments

These error comments are indexed alphabetically on the 3rd character by three
error classes: D for duplicate, I for illegal, and U for undefined. Each
class is further indexed numerically and alphabetically on the 4th character.
The following illustration shows the format for operand error comments.

*nXX
vy

)
1——The fourth character may be alphabetic or numeric and points
to the offending member.

The third character is alphabetic and indicates the mnemonic
error class.

—— The second character is numeric and designates the operand
number.

The first character is always an asterisk which indicates
the mnemonic significance of the comment.

Example:

P/L CD RF OPERANDS & COMMENTS

E *11$
011210 C

Using the error code, *1I$, the corresponding entry in the error comment
directory would indicate the following:

*-1$ *ILLEGAL LOCAL TAG.
OPERANDS EXPRESSING LOCAL TAGS
MUST BE AT LEAST TWO CHARACTERS AND

NOT MORE THAN THREE CHARACTERS IN
LENGTH BEGINNING WITH THE § FOLLOWED
BY NUMERICS AND MAY NOT EXCEED THE
RANGE $00 THRU $24.

NEAT/3 -- COMPILATION PROCESS Nov. 69
TAB 3 -- PUB, NO, 2 Page 4

ERROR COMMENT DIRECTORY

Section V - Procedural Error Comments and Compiler Comments

This section of the directory, which is indexed by a series of 4-character
error codes with no mnemonic significance, generally relates to errors dis-
covered by the compiler with regard to procedural usage of the NEAT/3 language.
Error classifications are arranged in the following alphabetical order:

A - general error comments.

B - compiler usage comments. These comments are not expressions of
source language errors, but rather, indicate the compiler has en-
countered internal difficulty in accessing or processing a specific
command., Since the compiler indicates this command cannot be gen-
erated, other coding must be devised for a successful compilation.
If an error comment occurs in this classification, it should be
reported to your NCR representative.

C - compiler comment codes. These comments refer to some specific ap-
plication used in the source program., The application is governed
by a conditional restriction. The compiler creates these comments
to bring the situation to the attention of the programmer.

D - arithmetic and manipulative error comments. These comments reflect
arithmetic and data manipulative errors.

E - general error comments.

F - file control error comments. These comments reflect invalid or con-
flicting entries detected in file specifications.

G -

H E} input/output error comments, and linking error comments.

J_

K = reserved for NCR usage.

L - 1literal error comments.

M -

N -

P - reserved for NCR usage.

Q -

R -

S - subroutine error comments,

T - table control error comments.

U =

vV -

W -

X - reserved for user macro-generator error comments.

Y -

7 -

Error comments are further arranged within each error classification in numeric
order, ranging from 00 through 99 inclusive. Statements and instructions flagged
with error comments from this section must be redefined or correctly expressed
before a successful compilation can be created.

Compiler comments from this section relate to conditional situations that require
the attention of the programmer.

NEAT/3 -- COMPILATION PROCESS Nov. 69
TAB 3 -- PUB. NO, 2 Page 5

e Statement Error Comments

These error comments are indexed alphabetically by error classification on
the second character and numerically by comment on the third and fourth
characters. The following illustration shows the format of statement error
comments,

xnn

A

—{:—-Error comment classification and number, The second character
is alphabetic A through Z, except for I and 0O, and designates
the error classification. The third and fourth characters are
numeric 00 through 99 and point to the error comment.

——— The first character is blank to indicate a statement oriented
indicator.

e Operand Error Comments

These error comments are indexed alphabetically by error classification on
the second character and numerically by comment on the third and fourth
characters. The format of an operand error comment is shown below.

Error comment classification and number. The second character
is alphabetic A through Z, except for I and 0, and designates
the error classification. The third and fourth characters are

numeric 00 through 99 and point to the error comment.

L——The first character is numeric and designates the offending
operand number. In the directory this character is repre-
sented by a dash (-).

NOTE

Generally the first character is replaced by an operand
number when printed in the error comment line, i.e.,
1A07; however, in some instances, the error code in the
error comment line may appear as expressed in the direc-
tory, i.e., -AO07.

NEAT/3 -- COMPILATION PROCESS Nov. 69
TAB 3 -- PUB. NO. 2 Page 6

TABLE OF NEAT/3 INSTRUCTIONS

Instr. Operands Description

ADD A, B (A) + (B) - B

ADD A,B,C (a) + (B) » ¢

ADDC A, B, 2Z If overflow, branches to

ADDC A,B,C,zZ zZ.

ADDL A,B, 2 If overflow, links to

ADDL A,B,C,z z.

ADDR A, B, .

ADDR ALB . Rounds off decimal places.

ADDRC A,B,Z Rounds off decimal places;

ADDRC A,B,C,2Z if overflow, branches
to Z.

ADDRL A,B,2Z Rounds off decimal places;

ADDRL A,B,C,2Z if overflow, links to Z.

BEGDBG Establishes point at
which debugging begins.

ENDDBG Establishes point at
which debugging ends.

BLKCHK FR, A , Z Branches to Z if block
length is > (A).

BLKOUT FR OQutputs short block.

BR Y4

BRE z

BRG 2

BRL VA Branches; stores no link.

BRGE Z

BRLE z

BRU z

CLOSE FR Closes named file.

CLOSEO FR Closes and obsoletes named
magnetic media file.

CNSOUT A Relays (A) to the
operator.

CNSIN A . B Relays (A) to the
operator and requires an
input to B in hexadecimal.

CNSINA A, B Relays (A) to the operator
and requires an input to
B in either alpha or
numeric.

COMP A, B Compares (A) to (B).

COND A, B (A) » B; length of B must
be one-half the length
of A.

COPYA A Copies entire source pro-
gram. (A = PROGNAME)

CcorPYP A,B,C Copies partial source pro-
gram. (B = starting page/
line #, C = ending page/
line # or ENDS)

COPYR A,B,C Copies partial source pro-
gram, (B = starting refer-
ence name, C = ending ref-
erence name or END$)

DEFALT FR1,...,FR4 Closes current section;
opens next section,

Instr. Operands Description

DELETE FR Removes current record
from a source-destination
chained file.

DELETE FR, WA Removes current record
from file and stores
record in workarea.

DIV A,B,C (B) : (a) »~ C

DIVC A,B,C,2Z If overflow, branches
to Z.

DIVL A,B,C,2Z If overflow, links to Z.

DIVR A,B,C Rounds off decimal places.

DIVRC A,B,C, 2z Rounds off decimal places;
if overflow, branches
to Z.

DIVRL A,B,C, 2 Rounds off decimal places;
if overflow, links to Z.

DSCOFF A Informs operator to re-
move disc pack on unit
referenced by (A).

END$ Indicates end of input
data.

ENTRY Establishes entry point
into program or overlay.

FINISH Returns control to Monitor.

GET FR Presents records
sequentially.

GET FR, WA Presents records se-
quentially; moves them to
a workarea.

LGET FR Reads a label from
magnetic tape,

RGET FR, A Presents record addressed
by (a).

RGET FR, A , 2 Presents record addressed
by (A); branches if null
block.

SGET FR, 2 Presents next record;
branches if null block,
E-0-B, E-0-S.

SGETC FR, Z1, z2 Presents next record;
branches Z1 as SGET;
branches Z2 if last
record in block has been
presented and record over-
flow flag is OFF,

SGETL FR, 21, 22 Presents next record;

branches Z1 as SGET;
branches Z2 if the last
record in the block has
been presented.

NEAT/3 -- APPENDIX
TAB 1 -- PUB, NO. 1

Legend:

A,B,C operands
WA workarea
() contents

file reference
table reference
branch address

Jun. 70
Page 1

sorting program to insert
a new record.

Instr. Operands Description Instr. Operands Description
INSERT FR, WA Places a record from ROPENS FR Reopens named file as a
workarea into current source file.
position in sorted file. ROPEND FR Reopens named file as a
destination file.
LINK z ’1’;::‘:“9" and stores a ROPENR FR Reopens named file as a
- source~destinacion file.
LOG A Places (A) in the log. ROPENP FR Reopens named file as a
MARK FR, A Stores in the A the file lo- piggyback file.
cation of the current SECT Starts a program section.
record in memory. (Reference columns 8-17 =
MOVE A, B Moves (A) to B. section name.)
SETPL A Causes SPUR to renumber
MULT A,B,¢C (&) = (B) € or (B) x the next source statement
(A) » C (smaller x)
with the page and line
MULTC A B c .z %?rger);l b h number indicated by
. R , 2 i Zver ow, branches operand A,
MULTL A,B,C,2Z 1f overflow, links to Z. SPREAD A, B Spreads A throughout B,
MULTR A,B,C Rounds off decimal places. SUB A, B (B) - (A) - B
MULTRC A,B,C,2 Rounds off decimal places;
SUB A,B,C (B) - (A) ~ C
branches if overflow.
MULTRL A,B,C,2Z Rounds off decimal places; SUBC A,B, 2 If overflow, branches
links if overflow. SUBC A,B,C to Z.
* (RENAME) Assigns reference without SUBL A,B,2Z If overflow, links
establishing new program SUBL A,B,C to Z.
region,
SUBR A, B
OMIT Omits source line indi~ SUBR A,B,C Rounds off decimal places.
cated in colums 1-6 SUBRC A,B,z Rounds off decimal places;
during recompilation. SUBRC A,B,C branches if overflow.
OMIT PAGELINE Omits source lines during i :
recompilation; beginning SUBRL A,B,2 Rounds off decimal places;
page/line indicated in SUBRL A,B,C links if overflow.
columas 1-6, ending page/ TBEGB = Initializes the table to
ne indicated by operand. be built.
OPEN FR Opens named file. TBEGF TR Initializes the table to
OPENS FR, A Opens named file at perform all other
section (and relative functions.
sector) specified by A. TBILDD TR, A, B Builds or inserts (A) into
OVRLAY Indicates beginning of new the item location speci-
program overlay. fied by (B); branches when
OVRLAYG Indicates beginning of new location specified by (B)
program overlay and new is beyond the limits of
overlay group. the table or when the
specified item is active.
PUT FR ‘f’ﬁges a record in named TBILDN TR, A, Z Builds (A) into the next
PUT FR, WA Places a record from named location; branches when
. next location is beyond
workarea into a file. limits of the table
LPUT FR Places a label on z
magnetic tape. TDEL TR, , 2 Delets the current item;
branches when no items
RDUMP Creates a rescue dump. remain in the table or
RFILE FR, WA Randomly places a record when the current item is
in a file. nonactive,
RELINK Removes address stored in TDEL TR, &, 2 Stores current item in
A, then deletes current
link list during last
item from the table;
LINK: returns control to
branches as TDEL above.
that address.
RELINK Z Removes address stored in
link list during last
LINK; transfers control to
the routine referenced by
the operand.
RESET FR, A Restores into memory the
record whose address was
saved by MARK.
RETNOR Causes a return to the
sorting program to sort
the record normally.
RETDEL Causes a return to the
sorting program to delete
the current record.
RETADD WA Causes a return to the

NEAT/3 ~-- APPENDIX
TAB 1 -- PUB. NO.

1

June 70
Page 2

TABLE OF NEAT/3 INSTRUCTIONS

Description

Instr. Operands
TFINDB TR, A, ,2Z
TFINDB TR, A, B, 2
TFINDD TR, A , 2
TFINDN TR, 2

TFINDO TR, A, , Z

TFINDO TR, A, B, Z

TFINDP R, Z
TFINDR ™, A, ,2
TFINDR TR, A, B, 2
TFINDS TR, A, ,Z
TFINDS TR, A,B,Z

Performs a binary search
for item whose key is (A);
branches when the desired
item either is beyond the
range of the table (turns
G flag on) or is within the
range, but physically
missing from the table
(turns E flag on).
Performs a binary search
for the item whose keys
are (A) and (B); branches
as TFINB above.

Accesses the item whose
position is specified by
(A); branches either when
the specified location is
beyond the range of the
table or when the specified
item is nonactive.
Accesses the next item;
branches when the next
item is beyond the limits
of the table.

Beginning where previous
search ended, performs
sequential search for
item whose key is (A);
branches when desired
item is beyond the range
of the table (turns G
flag on) or is within

the range but physically
missing from the table
(turns E flag on).
Beginning where previous
search ended, performs
search for item whose
keys are (A) and (B);
branches as TFINDO above.
Accesses the previous
item; branches when the
previous item is beyond
the limits of the table.
Performs a serial search
for item whose key is (A);
branches if no item exists
whose key is (A).

Performs a serial search
for item whose keys are
(A) and (B); branches if
no item exists whose keys
are (A) and (B).

Performs sequential

search for item whose key
is (A); branches when the
desired item either is be-
yond the range of the
table (turns G flag on) or
is within the range but
physically missing from
the table (turns E flag
on).

Performs sequential
search for item whose keys
are (A) and (B); branches
as TFINDS above.

Instr.

TMARK

Operands

TR, A

Description

Stores in A the address of
the current item.

TPACK

TR, Z

Moves active items to
beginning of table, in-
active items to end;
branches if table contains
no active items.

TRESET

TR, A , Z

Makes accessible the item
whose address is stored in
A; branches if the address
is no longer within the
current limit of the
table.

TSERT

TR, A, 2Z

Inserts (A) into the
table at the current
location,

TSHIFT

TR, A

Destroys last item; moves
other items toward end of
table; inserts (A) into
first position.

TSORTA

TSORTD

Sorts items in table into
ascending sequence.

Sorts items in table into
descending sequence.

WRITEBI

FR

Causes software to write
immediately the current
block of a source-destina-
tion file.

WRITSP

FR

Causes the software to
write the current block.

TIJUMP TR, A, 2

Calculates relative loca-
tion of an item in a table
and transfers control to
the corresponding transfer-
of-control instruction in
a list whose base is
referenced by A. Branches
to Z if imstruction is
other than a LINK or BR
or if table reference

(TR) finds an off table
condition,

XPAND

(A) > B; the length of B
must be twice the length
of A.

NEAT/3 -- APPENDIX

TAB 1 -- PUB. NO.

1

June 70
Page 3

PERIPHERAL TYPE CODES

MODEL PERIPHERAL
PERIPHERAL DESCRIPTION NUMBER TYPE CODE
CARDS
Integrated (300 cpm) Card Reader 682-100 00
Freestanding (750/100 cpm) Card Reader/Punch 686-100 01
Freestanding (750 cpm) Card Reader 686-201 02
Freestanding (100 cpm) Card Punch 686-301 03
Freestanding (300 cpm) Card Punch 688-301 04
PAPER TAPE
Integrated (1000 cps) Paper Tape Reader 662-100 10
Freestanding (1500 cps) Paper Tape Reader 660-101 11
Freestanding (200 cps) Paper Tape Punch 665-101 12
PRINTERS
Integrated
132 column, 450 lpm, single numeric 640-102 20
132 column, 450 lpm, double numeric 640-102 21
132 column, 1500 lpm, single numeric 640-200 22
132 column, 1500 lpm, double numeric 640-200 23
160 column, 1500 lpm, single numeric 640-210 24
160 column, 1500 lpm, double numeric 640-210 25
132 column, 600 1pm, expanded character set 640-300 26
Freestanding
132 column, 450 lpm, single numeric 640-102 60
132 column, 450 lpm, double numeric 640-102 61
132 column, 1500 lpm, single numeric 640-200 62
132 column, 1500 lpm, double numeric 640-200 63
160 column, 1500 lpm, single numeric 640-210 64
160 column, 1500 lpm, double numeric 640~-210 65
132 column, 600 lpm, expanded character set 640-300 66
NEAT/3 -- APPENDIX Jun. 70
TAB 1 -- PUB. NO., 2 Page 1

MODEL PERIPHERAL
PERIPHERAL DESCRIPTION NUMBER __TYPE CODE
DISCS
108 kb Integrated NCR Century 100 Disc Unit 655-101 30
108 kb Second Integrated NCR Century 100 Disc Unit 655-102 31
108 kb Freestanding Disc Unit 655-201 32
180 kb Freestanding Disc Unit 655-202 33
MAGNETIC TAPES
Phase Mode, 9 Channels - 1600 bpi
80 kb Single Unit (50 ips) 633-111 40
80 kb Dual Unit (50 ips) 633-121 43
144 kb Single Unit (90 ips) 633-211 41
144 kb Dual Unit (90 ips) 633-221 44
240 kb Single Unit (150 ips) 633-311 42
NRZ Mode
40 kc Unit , 9 Channels -~ 800 bpi 633-119 45
10-28-40 kc Unit , 7 or 9 Channels - 200/556/800 bpi 633-117 48
CRAM
145 million character capacity 653-101 50
Console
Input/Output Writer (integrated) F2
Input/Output Writer (freestanding) F3
MICR
MICR Sorter (600 DPM, 11 Pockets) 670-101 80
MICR Sorter (1200 DPM, 18 Pockets) 671-101 81
OCR
Optical Character Reader 420-1 70
Optical Character Reader 420-2 71
OCR connected to 329 Controller 72
ENCODERS
Magnetic Tape Encoder 736 90
PLOTTER
Calcomp Plotter AO
NEAT/3 -- APPENDIX Jun. 70
TAB 1 -- PUB. NO. 2 Page 2

PERIPHERAL TYPE CODES

PERTPHERAL DESCRIPTION

MODEL PERIPHERAL
NUMBER TYPE CODE

COMMUNICATIONS MULTIPLEXORS

Communication Multiplexor
Communication Multiplexor

REMOTE TERMINALS

Online Adapter

NEAT/3 -- APPENDIX
TAB 1 -- PUB. NO. 2

621-101 BO
621-102 Bl
Cco
Jun. 70
Page 3

DATA FORMAT CODES

EXTERNAL CODE SET

DATA FORMAT CODE

Punched Card Stacking Functions Not Used

No Translation - 1 Character Per Column

Standard NCR Century H Set
Standard NCR Century A Set
315 Hollerith Set

Binary

Punched Card Stacking Functions Used

No Translation - 1 Character Per Column

Standard NCR Century H Set
Standard NCR Century A Set
315 Hollerith Set

Binary

Punched Paper Tape

NCR Century Standard Code Set —- USASI
User Defined

Printer
No Format Control
Standard Vertical Format Control

Reporter

Magnetic Tape

NCR Century Internal Code -~ USASI
IBM BCD Code

IBM EBCDIC Code

315 Internal Code

315 Internal Code and Label Format

735 Magnetic Tape Encoder (International)

NCR Century Internal Code —- USASI
IBM BCD Code
315 Internal Code

NEAT/3 -- APPENDIX
TAB 1 -- PUB, NO. 3

00

01
02
03
04

10

11
12
13
14

20
2D

00
30
31

00
40
41
42
43

00
40
42

Jun. 70
Page 1

736 Magnetic Tape Encoder (Domestic)

NCR Century Internal Code -- USASI 00
IBM EBCDIC Code 41

Disc and CRAM

NCR Century Internal Code -- USASI 00

NEAT/3 -- APPENDIX Jun. 70
TAB 1 -- PUB. NO. 3 Page 2

SYSTEM TAGS

The following is a list of reference tags used in the NCR Century System. The
NEAT/3 compiler automatically assigns these reference tags and their reserved
memory area during a compilation run. The user may access these areas by
using their reference tags as operands of instructions in his own program.

GENERAL. SYSTEM TAGS

>EXEC.ACDATE

This tag refers to a 6-character memory field (X type) which contains the
actual date expressed as day, month, year. (For instance, the actual date
May 17, 1968 is expressed as 170568.) This field contains three 2-character
fields: >EXEC.ACDATEDA, >EXEC.ACDATEMO, and >EXEC.ACDATEYR. The programmer
may use these as source fields, never as destination fields.

>EXEC. VRDATE

This tag refers to a 6-character memory field (X type) which contains the
virtual date expressed as day, month, year. (For instance, the virtual date
May 17, 1968 is expressed as 170568.) This field contains three 2-character
fields: >EXEC.VRDATEDA, >EXEC.VRDATEMO, and >EXEC.VRDATEYR. The programmer
may use these as source fields, never as destination fields.

>EXEC.MFO1 through >EXEC.MF30

These 30 tags refer to the l-character fields (X type) which contain Monitor
Flags 01 through 30. The information in these fields is initially specified
by the programmer's entries in positions 51 through 80 of the NEXTDO, HEADCS,
and NEXTBR instructions. During program execution, the programmer may alter
the contents of these flags with a MOVE instruction. These fields may be used
as source-destination fields.

>EXEC.REMAINDER

This tag refers to a 20-character field (U-type) that contains the remainder
resulting from a decimal-divide instruction in the user's program. This
remainder is stored as an unsigned integer. The programmer may use this as
a source field, never as a destination field.

>EXEC.SIMOPTSW

This tag refers to a l-character binary field in memory. The bits Mj through
M5 of this field simulate option switches for control of Monitor. See
OPERATING SYSTEM, MONITOR, "The Monitor Simulated Option Switch'" for the
function of each of these bits.

NEAT/3 -- APPENDIX Jun. 70
TAB 1 -- PUB. NO. 4 Page 1

>EXEC,VRJULDATE

This tag refers to a 5-character, X-type field that contains the Julian date
written as YRDAY. The DAY is expressed sequentially, from 1 to 365,

>EXEC ., RMPRGF INAD

This tag refers to a memory field that contains the final address of a program

plus 1.

>EXEC.ZERO

This tag is used with the ORIGIN instruction to assign an absolute starting
memory address to coding or data so that it remains relocatable.

>EXEC.SORTSUD

This tag refers to a 2-character field that contains the symbolic unit desig-
nator (SUD) of the output unit when it is assigned by the General Sort program.
The programmer may use this field as a source field, never as a destination

field.

Jun. 70

NEAT/3 ~- APPENDIX
Page 2

TAB 1 -- PUB. NO. 4

FILE-ORIENTED SYSTEM TAGS

FILE—ORIENTED SYSTEM TAGS

The following fields are compiled for each disc and CRAM file in the user's
program. To access the information in them, the user codes an instruction
with a qualified operand. The qualifier is the file reference name, and the
second part of the operand specifies the field desired. For instance, to
determine the status of the last block of data read from the chained master
file, the programmer codes a COMP MASTERFILE.$NULLFLAG, 'l' instruction.

FileReference., SNONRESTOR

This tag refers to a l-character flag (B type) associated with each chained
file on CRAM or disc. After an INSERT instruction has inserted a record
into its buffer area and has pushed down all records necessary to accommodate
the insertion, INSERT checks the status of the SNONRESTOR flag. Normally,
this flag is OFF (binary 0); INSERT reads back into memory the block con-
taining the newly inserted record and makes this record available. However,
if the programmer intends to do a random access next and does not want soft-
ware to restore into memory this newly inserted record (thereby saving
execution time), he may set the SNONRESTOR flag ON (not binary 0) before

he codes the INSERT. INSERT then bypasses the restoration of this record
but sets the $NONRESTOR flag OFF for future insertion.

FileReference.$SNULLFLAG

This tag refers to a l-character field (B type) that contains information
regarding the latest block of data read from a chained file. Reference to
this field enables the programmer to minimize wasted space within the area
allocated to a chained file. See the NEAT/3 REFERENCE MANUAL, INSTRUCTIONS,
tab 1, "GET Instructions'" for an explanation of the contents of this field.

FileReference, SCARDFLAG

This tag refers to a l-character flag (B type) associated with each CRAM
file., Normally this flag is set to binary zero indicating that CRAM cards
accessed are to be released only after updating. When CRAM cards are not
to be updated after reading, the programmer can save execution time by
requesting their immediate release from the capstan. If the current card
is not to be updated, the user may request the release of the current card
only by setting the FileReference.$CARDFLAG to binary 2. If none of the
cards accessed is to be updated, the user may request the release of all
cards by setting the flag to binary 4.

FileReference.,$BINARYTBL

This tag refers to an area associated with each disc and CRAM file. Before
the execution of a random-access READ or WRITE instruction, the programmer
must update this area, directly or indirectly, with the relative address

of the desired block (see the NEAT/3 REFERENCE MANUAL, APPENDIX, tab 3,
"Level Two Supplement,'" for further details).

The BINARYTBL area associated with a disc file contains the following fields:
FileReference,$SECTION, FileReference.$RFLAG, and FileReference.S$SSECTOR.

NEAT/3 -- APPENDIX Jun., 70
TAB 1 -- PUB. NO. 4 Page 3

FileReference.$SECTION is a l-character field (B type) containing the
number of the section to be accessed.

FileReference.$RFLAG, a l-character field (B type), is the random flag.
Normally this flag is set to binary 1 to indicate that the next block
in the file is to be accessed. The user must set this flag to binary
zero each time this series of fields is reset for a random access.

FileReference.$SECTOR is a 2-character field (B type) containing the
relative number of the sector to be accessed with the section specified
by FileReference.$SECTION.

The BINARYTBL area associated with a CRAM file contains the following fields:
FileReference,$SECTION, FileReference.SCARD, and FileReference.$TRACK.

FileReference.$SECTION is a l-character field (B type) containing the
number of the section to be accessed.

FileReference.$CARD is a 2-character field (B type) containing the
relative number of the card to be accessed within the section specified
in the FileReference.S$SECTION field.

FileReference.$TRACK is a l-character field (B type) which contains the
relative number of the track to be accessed on the card specified in the
FileReference.$CARD field,

The following fields are compiled for each paper tape file in the user's
program. FileReference.$BADCHAR and FileReference,$REPLACHAR are also

compiled for each punched card file.

FileReference.SBADCHAR

This field contains a binary count of the invalid characters encountered
during translation of each record when reading punched paper tape or punched
cards.

FileReference, SORIGINATE

This field contains the control characters taken from input paper tape if
record terminators were defined as preceding the records.

FileReference.STERMINATE

This field contains the control characters taken from input paper tape if
record terminators were defined as following the records.

FileReference, SRLENGTH

This field may be set to a binary value that alters the maximum record

length designated on the file specification sheet to reflect the anticipated

length of the next record. The field is restored to its original value prior
to termination of the GET or PUT instruction. If this field is set to zero,

the next record read by the GET instruction is ignored.

NEAT/3 -- APPENDIX Jun. 70
TAB 1 -- PUB. NO. 4 Page 4

FILE-ORIENTED SYSTEM TAGS

FileReference.SFILSTATUS

When the user detects end-of-media from information in the previous record
(rather than detection of the end-of-media character), he may set this flag
to binary 2, which calls Extremity to alternate sections of the file; or

he may set it to binary 4, which calls Extremity to transfer control to the
user's own source file routine. On outputting, if section alternation may
occur after any record, the software automatically sets this flag to 2 when
the impending end-of-media condition is detected.

FileReference.SERRTYPE

The user may access this field to determine the type of error encountered by
the Paper Tape Translation routine.

FileReference.SREPLACHAR

When an invalid character is detected in punched card or paper tape input,
the user may set this field to any other internal character representation
except hex FE (the configuraiton to which all undefined characters are set).

FileReference,SPTFLAG

When an excess record length condition is detected by the Paper Tape Trans-
lation routine, the user may set this flag to binary zero, which causes the
excess characters to be ignored.

FileReference,SEXCEPCHAR

When a control character is found in an output record and no escape character
has been defined in the code set, the user may move this field (which con-
tains the control character) to SREPLACHAR, which retains the control char-
acter in the output record.

FileReference.SCHARCOUNT

This field contains a count of the data characters read into the designated
workarea.

FileReference,$SLSTLINE

This field contains the number of the last data line to be printed.

FileReference,$CURLNUM

This field contains the number of the current line to be printed.

FileReference.$LSTLINEXX

This field is used when a report is being printed from an interim file. This
field contains the number of the last data line to be printed and the sequen-—
tial number of the report, designated in XX. The sequential number, which is
assigned by the software for use in the file table, corresponds to the order
in which the report's associated printer file specification is input.

NEAT/3 -- APPENDIX Jun. 70
TAB 1 -- PUB. NO. 4 Page 5

FileReference.$CURLNUMXX

This field is used when a report is being printed from an interim file. This
field contains the number of the current line being printed and the sequential
number of the report, designated in XX. The sequential number, which is
assigned by the software for use in the file table, corresponds to the order
in which the report's associated printer file specification is input.

TABLE—ORIENTED SYSTEM TAGS

TableReference.STEMLEN

This field contains the length of an item in a table.

TableReference,STOFFSET

This field contains the relative location of the first item in a table. |,

NEAT/3 —-- APPENDIX Jun. 70
TAB 1 -- PUB. NO. 4 Page 6

CONVERTING HEXADECIMAL. CODE TO NCR CENTURY INTERNAL CODE

To find the two proper hexadecimal characters for representing an NCR Century
data character, locate the desired character in its non-shaded square on

the above chart. The shaded box to the left of the data character (on same
1ine) contains the left-hand hexadecimal character, and the shaded box
above the data character (same column) contains the right-hand hexadecimal
character.

Following are some examples of NCR Century data characters and their corre-
sponding hexadecimal representation.

NUL = 00 + = 2B R = 52

NEAT/3 -- APPENDIX Jun. 70
TAB 1 -- PUB. NO. 5 Page 1

SYMBOLIC UNIT DESIGNATORS

SYMBOLIC UNIT

PERIPHERAL TYPE DESIGNATORS
Online Adapters AO0 - AFF
CRAM col - €99
Disc DOl - D99
I1/0 Writer 101 - 199
Magnetic Tape MOl - M99
Printer P01 - PO9
Card Reader P11 - P19
Card Punch P21 - P29
Paper Tape Reader P31 - P39
Paper Tape Punch P41 - P49
Optical Character Reader P51 - P59
MICR P61 - P69
Calcomp Plotter P71 - P79
736 Encoder RO1 - R99
NEAT/3 -- APPENDIX Jun. 70

TAB 1 -- PUB. NO. 6

Page 1

NCR CENTURY EXECUTIVES

INTRODUCTION

The NCR Century operating systems software is modular in design and resides
both on disc and in memory. The majority of the software is disc resident to
save memory space.

e The memory-resident portion of the I/0 Executive (resident executive)
handles all normal operating functions such as setting up and executing
1/0 operations and normal verification of completed I/0 functions. 1In
addition, the resident executive supervises linkage between subroutines
within the user's program and the system software.

o The disc-resident portion is read into memory only when needed by the
resident executive. However, when larger memories are used, some of the
more frequently used subroutines become memory resident, providing faster
program execution.

Several operating systems, each containing one or more resident executive
formats, are available to the NCR Century series. The user informs Monitor
which available resident executive format is to be used. The various oper-
ating systems and their resident executives are listed below.

BASIC OPERATING SYSTEM (B1)

The basic operating system, Bl, contains an input-output Executive, Monitor,
a System Disc Log and Disc Management. The B2 and B3 systems, which provide
online communications and multiprogramming support respectively, are exten-
sions of the basic Bl system. The Bl system contains the following resident
executives:

e Bl-1 is the normal resident executive for the NCR Century 100. This
executive occupies 4.0K of memory and has 16 control words available
for I/0 operations.

e Bl-2 is the normal resident executive for the NCR Century 200 series.
B1-2 occupies 5.5K of memory, and it has 32 control words available for
I/0 operations. This executive is loaded in the NCR Century 200 unless
there is insufficient space for the executive and the user's program,
in which case Monitor will load the Bl-2A resident executive.

e Bl-2A, a smaller version of B1-2, is loaded by Monitor when there is
insufficient space in the NCR Century 200 for B1l-2. The B1l-2A resident
executive occupies only 4.0K of memory and has 16 control words.

NEAT/3 -- APPENDIX Jun. 70
TAB 1 -- PUB. NO. 7 Page 1

ONLINE OPERATING SYSTEM (S2/B2)

The online operating system, B2, contains all the features of the basic Bl
system, plus the following resident executives:

e The B2 resident executive is a dedicated online or dual programming
executive for use on the NCR Century 100 or 200. It will operate in a
minimum memory configuration of 16K and occupies 8K to 11K of memory.
The B2 executive has 32 to 96 control words, and the following online
features:

e Tasking - the ability to run individual portions of the user's
program concurrently.

e Queueing - the ability to stack requests for service on a list to
await program action.

e Dynamic Storage Allocation - the ability to dynamically allocate
storage areas in memory from a central pool for use as I/O areas or
work areas.

e Dual Programming - the ability to process both an online and a
batch program concurrently.

e Chaining - the method of grouping together related memory areas,
although these areas may be scattered throughout memory.

e Unsolicited Input - the ability to input messages to the online
program or the operating system through the I/0 writer.

Tasking, dual programming, and the number of control words used
determines the physical size of the B2 resident executive.

e B2-2A is a dedicated online resident executive for the NCR Century 200.
This executive is a B2 resident executive with restrictions which provide
minimum software requirements for online operations. B2-2A occupies
only 5.5K of memory and it will run in any memory size from 32K up.

This executive has 16 control words, and has the following online
features: queueing, dynamic storage allocation, chaining, unsolicited
input.

e S2 is a dedicated online resident executive for the NCR Century 100 with
a minimum memory size of 16K. S2 occupies 5.5K of memory, has 16
control words available and has the following online features: queueing,
chaining, unsolicited input.

MULTIPROGRAMMING SYSTEM (B3)

The B3 operating system provides multiprogramming capability for the medium
and large scale NCR Century 200 configurations that have the multiprogramming
hardware options. The B3 system is a fixed partition system, providing for
as many as nine programs to operate independently in separate partitionms,
sharing central processor time. Each partition has available its own basic
Bl or B2 resident executive, which requires a minimum memory configuration of
16K. However, when partition sizes over 16K are required, they must be in
multiples of 2K.

NEAT/3 —-- APPENDIX Jun. 70
TAB 1 -- PUB. NO, 7 Page 2

NCR CENTURY EXECUTIVES

At the start of the day the B3 initializer divides memory into fixed parti-
tions, with sizes designated by the user. The B3 initializer allocates
peripherals to the partitions, and assigns priorities to the partitions in
the order in which they are presented. The initializer then overlays itself
with the B3 resident executive (Kernel and Satellite). The B3 operating
system has only one resident executive, described below:

e The B3 resident executive occupies from 16K to 32K and requires a
minimum memory configuration of 64K (the B3 executive occupies the
first 16K leaving 48K for three 16K partitions). Included in the B3
executive are the B3 Kernel and the B3 Satellite:

e The B3 Kernel controls overall operation of the multiprogramming
environment.

e The B3 Satellite controls operator communications and printer
spooling. By creating a file on disc for output to the printer,
spooling allows multiple partitions to share a common printer without
any delay or interruption of the individual partition's operations.

(8]
= % B1-2 200 32 5.5K 40
e B1-2A 200 16 4K 08
B2 100 or 200 | 32 to 96 8K to 11K |18 (C-100)
@ 58 (C-200)
S =
= B2-2A 200 16 5.5K 50
$2 100 16 5.5K 10
o
[and
LE
05 s B3 200 32 16K to 32K 80
3D
= 0
[4
a-
NEAT/3 -- APPENDIX Jun. 70

TAB 1 —— PUB. NO. 7 Page 3

SUBJECT INDEX FOR NCR CENTURY SERIES NEAT/3

TAB TAB PUB.

SUBJECT TITLE NO. NO. PAGE
Actual Date « « ¢« ¢ ¢ ¢ ¢ ¢ o o o Files 1 2 12
Actuator . . ¢ v ¢ 4 e 4 e s e . Files 1 1 2
ADD Instruction . . « ¢« ¢« + o o & Instructions 2 5 1
ADDC (add & check) Instruction . Instructions 2 7 2
ADDR . v v v v v e 4 o o o o o Instructions 2 7 3
ADDRC . v v v o ¢ ¢ o o o o o o Instructions 2 7 4
Alphanumeric Characters Intro & Data 2 2 14
Applied Programs . . . + « . . . Intro & Data 1 3 6
Area Code . . . v v v ¢« ¢« ¢ + 4 . Intro & Data 3 2 5
Area, Constant . . . « « &« & & & Intro & Data 2 2 8
Area, Reserved . . . « + « « o . Intro & Data 2 2 9
Area, Working Storage Intro & Data 2 2 8
Automatic File Alternation . . . Files 1 1 29
Base 100 Software . « « + « .« « . Intro & Data 1 3 1
Base 100 System . . « « o « « o & Intro & Data 1 2 5
Basic Operating System (B1l) . . . Appendix 1 7 1
Binary Data . « . « + « « + ¢ o . Intro & Data 2 2 19
BLKCHK Instruction Instructions 1 10 1
BLKOUT Instruction . . « . .« .+ . Instructions 1 11 1
Blocks .« &« ¢« ¢ v ¢ ¢ ¢« ¢ o o o Files 0 1 22
Branch Instructions Instructions 2 2 1
Buckets « &« « ¢« ¢ ¢ 4 ¢ ¢ ¢ o o Files 0 1 24
Buffer definition Files 0 1 12
Card Deck Description Files
Card Reader . . « « ¢« ¢ + ¢ ¢ + & Intro & Data
Chained File Organization Files
CLOSE Instructions . . « « « .« Instructions
Closing a File Files
CNSIN Instruction . . . « Instructions
CNSOUT Instruction Instructions

Code Column on data layout sheet
Coding Worksheet Entries
Comments, Programmers
Common Trunk . .« « « « &+ &« o« o &
Compare Instruction
Compilation Presentation Sequence
Compilation Procedure
Compilation Process
Compile, steps tO . « &« « o « « &
Compiler, COBOL «.
Compiler Control Instructions . .
Compiler Control Statements . . .
Compiler, FORTRAN
Compiler, Output Printing . . .
Condense Instruction
CONSOLE, Operator's . . . + « « .
Constant Data . « « « « & & « + &

NEAT/3 -- INDEX AND TABLE OF CONTENTS

Intro & Data
Intro & Data
Intro & Data
Intro & Data
Instructions
Comp. Process
Comp. Process
Comp. Process
Intro & Data
Intro & Data
Intro & Data
Instructions
Intro & Data
Comp. Process
Instructions
Intro & Data
Intro & Data

NENWHWNFEFNMNNNMNOFENMFOWWOWNNORREREN

o
HNOFEFWHHWHEFRFRWHEFRFRNMHEFWNOORENDRNDW

Oct.

N
WORRERNFEFWNURPAOURERNORRHWVWOMRWEH W

70

Page 1

TAB TAB PUB.

SUBJECT TITLE NO. NO. PAGE

Continuation Line « . Intro & Data 3 3 11
Control Block-printer . . Files 1 3 2
Control String « « « . . Comp. Process 2 2 1
COPY Control Instructions . Instructions 3 2 1
Data Blocks « « . « « « « « + + « . Files 1 1 8
Data Definitions Intro & Data 2 1 2
Data Descriptions« « « « Intro & Data 2 2 3
Data Format Codes Appendix 1 3 1
Data Layout Sheet Entries Intro & Data 3 2 1
Data TYPES « « « o o o « o o o Intro & Data 2 2 12
chart e e e e Intro & Data 3 2 12
alphanumeric (X) . . e « « « 1Intro & Data 3 2 15
binary (B)« e e . Intro & Data 3 2 28
editing (E) . . . e e e . Intro & Data 3 2 33
hexadecimal (H) « . Intro & Data 3 2 31
signed decimal (D) Intro & Data 3 2 19
signed packed (P) e e Intro & Data 3 2 23
unsigned decimal (U) Intro & Data 3 2 17
unsigned packed (K) Intro & Data 3 2 21
generated spaces (S) . e . Intro & Data 3 2 27
generated zeroes (Z) Intro & Data 3 2 25
Data Utility Routines« . Intro & Data 1 3 6
DATE Instruction « « . . . Comp. Process 2 2 2
Dating Scheme Intro & Data 1 3 3
Decimal Date . . « « ¢« « +» « « « «» Intro & Data 2 2 14
Decimal Point Location Intro & Data 3 2 12
DEFALT Instruction Instructions 1 2 1
Delete Digit Instructions 3 1 7
DELETE Instruction . . . « « « +» Instructions 1 8 1
Disc Directory e e Files 1 1 7
Disc, Dual System . « « « « Intro & Data 1 2 9
Disc/File Relationship Files 1 1 7
Disc File Spec. Worksheet Files 1 2 1
Disc Management » . . ILntro & Data 1 3 5
Disc Off Imnstruction . . « « « Instructions 2 3 1
Disc Pack « + v « « « « &+ « « s+ » o Files 1 1 2
Disc Pack Formats . . . e « « « . Files 1 1 5
DIVC « ¢ & o o o « o & . . . Instructions 2 7 1
Divide Instruction Instructions 2 6 2
DIVR & ¢« « « « o o« « « o o o« o « » Instructions 2 7 3
DIVRC « « « « « « o« « « « & o« « » o« Instructions 2 7 4
Editing Masks Intro & Data 3 2 35
Editing Move Instruction Instructions 2 4 13
End of Page « + « &+ « « « « « « . . Files 1 3 11
ENDS control ¢« « « « « « « Instructions 3 8 1
ENTRY Control Instruction Instructions 3 5 1
Error Comment Directory Comp. Process 3 2 1
Error Comments . « « « « « « « « - Comp. Process 3 1 16
NEAT/3 —-- INDEX AND TABLE OF CONTENTS Oct. 70

Page 2

SUBJECT INDEX -- NEAT/3

TAB TAB PUB.
SUBJECT TITLE NO. NO. PAGE
Executive, I/0 . . . « ¢« « + « « . Intro & Data 1 3 3
XPAND . v + ¢ ¢ o o « o o o o o Instructions 2 10 3
Father-Son Processing Files 0 1 19
Fields . « + ¢ ¢ ¢ ¢« ¢ ¢ o o o o & Intro & Data 2 2 10
Field Code . . . « « ¢« ¢« ¢ ¢ o « & Intro & Data 3 2 5
File Organization Files 1 1 11
File Oriented System Tags Appendix 1 4 3
File Protection « . « « & Files 1 2 7
File Storage Codes . . . « . « « & Intro & Data 2 2 2
Files-Interim Files 1 3 18
FINISH . « ¢« v o ¢ ¢ ¢ o o« o o o & Instructions 2 11 1
Fixed-Length Records Files 0 1 9
Flexibility . . « .« . « & . . . Intro & Data 1 2 3
Freestanding Tables Instructions 4 1 9
GET Instruction « . . .+ . Instructions 1 3 1
HEADCS Instruction « « .« . Comp. Process 2 2 3
Hexadecimal Data . .« . « « « « + . Intro & Data 2 2 22
Identification Field, Source
DeCk v ¢ v ¢ 4 o o s 4 e e o Intro & Data 3 1 6
Initialization of Table Instruction 1 6 1
Input/Output Control Intro & Data 1 2 8
Input/Output Executive Intro & Data 1 3 3
Input/Output Instructions
general description Files 0 1 2
applicable peripheral Files 0 1 32
INSERT Instruction Instructions 1 6 1
Instructions, Table of Appendix 1 1 1
Instruction Types . . « « « o + . Intro & Data 2 1 2
Integrated Peripheral Units . . . Intro & Data 1 2 3
Ttem « « « & « o o o o o o o o o o Instructions 4 1 2
Key, Table . « « ¢« ¢ ¢ o« « « o o & Instructions 4 1 2
Keypunching . . . « « « ¢« « « « . Comp. Process 1 2 1
Labels, Magnetic Tape Files 2 1.1 1
Langugage Directory . . . « . . . Comp. Process 3 2 1
Length Entry on Data Layout . . . Intro & Data 3 2 11
LGET Instruction . « « « « « « .« & Instructions 1 3 3
LINK Instruction Instructions 2 3 1
Literal Operand« « . « Intro & Data 3 3 5
Local Tag « « o o o o o o o o o Intro & Data 3 3 3
Location, Data Definitions Intro & Data 3 2 6
LOG Instruction « « « « . Instructions 2 8 1
‘Log Maintenance . . + « ¢ « « o . Intro & Data 1 3 5
LPUT Instruction . . « « « « « « . Instructions 1 4 3
NEAT/3 -- INDEX AND TABLE OF CONTENTS Oct. 70

Page 3

TAB
SUBJECT TITLE

TAB
NO.

Magnetic Tape Files, NCR Century
Standard File Format Files
Magnetic Tape Files, Nonstandard

File Format . . « ¢« o « « =« Files
Magnetic Tape File Spec. Sheets Files
Main File Area . . . « « . « . Files
MARK Instruction « « . Instructions
MEemory . ¢ ¢ ¢ o o o o o o o Intro & Data
Minor Tables . . « ¢« « « « « & Instructions

Monitor « o« ¢ ¢ ¢ ¢« o o o o o .
Monitor Control Instruction . .
MOVE Instructions
Multiply Instruction
Multiprogramming System (B3) .
NCR Century Code Chart
NCR Century Executives

NCR Century Standard File Format

Magnetic Tape Files
NEXTDO Instruction . . « « . .
Nonfile Mode, Magnetic Tape . .
Nonstandard File Format,

Magnetic Tape Files

Object Program Utility
Routines (OPUR)
OMIT Control Instruction . . .
Online Operating System (S2/B2)
OPEN Instructions « .
Opening Files « « « « &
Operands . « « ¢ « o s o « o &
Operating Software System . . .
Overflow Area . . « « o ¢ o+ o =«
Overflow Check « ¢ « &
‘Overlapping Fields, Moving . .
Overlay Control Instructions .

Packing Files « « « « .
Pack Mapping . « « « « + « . .
Page/Line entries
Paper Tape Reader
PAPER TAPE SPECIFICATION SHEETS
Peripheral Type Codes
Picture . .« ¢ « ¢ « o o« o o & &
Piggyback Files . . . « « « « &
Printer-system « « . .
Printer control block
Printer Files . . .« « « « « + &
Printer File Specification
Sheet . . . ¢« ¢ ¢« ¢« & « o &

NEAT/3 -- INDEX AND TABLE OF CONTENTS

Comp. Process
Comp. Process
Instructions
Instructions
Appendix

Intro & Data
Appendix

Files
Comp. Process
Files

Files

Intro & Data
Instructions
Appendix
Instructions
Files

Intro & Data
Intro & Data
Files
Instructions
Instructions
Instructions

Files

Files

Intro & Data
Intro & Data
Files
Appendix
Intro & Data
Files

Intro & Data
Files

Files

Files

FNMOMNNMNNPEAEFERFREONN N

=N

NN N

[N

WNDNOHFH WO KMFWRH

RFHEOWHMRRWRO

'_l

PUB.

NO. PAGE
1.1 1
1.2 1
2 1
1 21
9 1
2 7
1 8
2 1
2 2
4 1
6 1
7 2
2 13
7 1
1 1
2 4
1.2 1
1.2 1
3 6
3 1
7 2
1 1
1 29
3 4
3 3
1 25
7 1
4 2
4 1
1 14
2 21
1 5
2 11
8 1
2 1
2 15
1 17
2 10
3 2
3 1
3 1

Oct. 70

Page 4

SUBJECT INDEX —-- NEAT/3

TAB TAB PUB.
SUBJECT TITLE NO. NO. PAGE

Printline

definition . . . + . + ¢« . & Files 1 3 7

construction« ¢ o o o . Files 1 3 9
Procedural Instructions Intro & Data 2 1 3
Processor, Base 100 System . . . Intro & Data 1 2 7
Production Program « . & Comp. Process 2 3 1
Program Listing . . « . . « « « & Comp. Process 3 1 3
Programming Worksheet Intro & Data 3 1 1

TYPES v o o o o o o o o o o Intro & Data 3 1 1

Worksheet Rules « . Intro & Data 3 1 3

Common Entries Intro & Data 3 1 4
Punched Card Source Program

Records . « o « « o o o o o @ Comp. Process 1 2 1
Pushdown Processing Instructions 4 1 4
PUT Instruction Instructions 1 4 1
Qualified Operand Intro & Data 3 3 6
Random Processing, Disc Files 1 1 11
RDUMP Instruction . . « . . « . . Instructions 2 14 1
Reader, Punched Card System . . . Intro & Data 1 2 11
Reader, Punched Paper Tape System Intro & Data 1 2 11
Record Code . . . « ¢« « ¢« « &« + & Intro & Data 3 2 4
Record Tables . . « « ¢ « « « « & Instructions 4 1 7
Record Types « « « « o + o o o Files 0 1 9
Reel-File Relationship Files 2 1 2
Reference Operand . . « + « « + & Intro & Data 3 3 6
Reference Tag . « « o « o « « o & Intro & Data 3 2 3
RELINK Instructionm . . . « . . & Instructions 3 7 1
RENAME Control Instruction . . . Instructions 3 7 1
Rescue Dump . « « o « ¢ ¢ o &+ & & Files 0 1 30
Rescue Point . « « « « o ¢ o + & Files 0 1 30
RESET Instruction . . « « « « « = Instructions 1 9 1
RFILE Instruction « « . & Instructions 1 7 1
RGET Instruction & Instructions 1 3 4
ROPEN Instructions« & Instructions 1 1.1 1
Rounding . « . « « « ¢« « o o & & Instructions 2 7 3
SAME . v v ¢« v ¢ o s 0 e e e w s Intro & Data 3 2 6
Scratch Files « « « « & Files 0 1 31
Section Control Instruction . . . Instructions 3 6 1
SECLOTS & & v o o o o o o o o . Files 1 1 4
Selective print character Files 1 3 4
Selecting Serial Processing . . . Files 0 1 27
Selective stacking Files 1 5 6
SETPL Control Instruction Instructions 3 9 1
SGET Instructions . . . « « « « & Instructions 1 3 7
Simultaneity . . ¢« .« .« + < + o & Intro & Data 1 2 2
Situating Files on Disc Files 1 1 23
Slot Processing . . « « « ¢ ¢ « & Instructions 4 1 4
NEAT/3 -- INDEX AND TABLE OF CONTENTS Oct. 70

Page 5

TAB TAB PUB.
SUBJECT TITLE NO. NO. PAGE
SOFtWATE « « o o o o o o o o o o o Intro & Data 1 3 1
Sort Program Generator . . . « . . Intro & Data 1 3 5
Source Program Organization . . . Comp. Process 1 1 1
Source Program Utility Routines

(SPUR) '« ¢ o o o o o o o o o &« Comp. Process 2 1 2
Special Characters . . . « « « « = Comp. Process 1 2 3
SPREAD Instruction . . « « « « « =« Instructions 2 12 1
Standard File Organization Files 0 1 18
Standard File Organization, Disc . Files 1 1 11
Standard File Organization,

Magnetic Tape Encoder Files . . Files 2 5 9
Standard File Organization,

Magnetic Tape Files « Files 2 1 3
STOPRD Instruction « . & Comp. Process 2 2 6
Structure (tables) . . . « .« « « . Instructions 4 1 6
Subtract Instruction . . . « . . =« Instructions 2 5 4
Switcher « « « o o o ¢ o o o &« o Major Functions 2 1 1
Symbolic Debug . « « « « « « « o . Comp. Process 3 1 18
Symbolic Reference Tag Intro & Data 3 3 2
System Tags « « « « o o o o « o Appendix 1 4 1
Systems Peripherals Intro & Data 1 2 7
TableS « « o o o o o o o o o s o o Instructions 4 1 1
Table Definitions « + « & Instructions 4 2 5
Table Functions . . .« « « « « + = Instructions 4 1 5
Table-Oriented System Tags Appendix 1 4 6
Table Spec. Worksheets Instructions 4 2 1
Table Structures e ¢ e e e e e Instructions 4 1 6
TBEG Instructions . . . + « « « & Instructions 4 9 1
TDEL Instructions . . . « « + « . Instructions 4 12 1
TFIND Instructions . . « .« « . « =« Instructions 4 11 1
Timing, Disc « « « « « « ¢ « « « & Files 1 1 4
TJUMP Instruction . . . « . « « . Instructions 4 19 1
TMARK Instruction « « « & Instructions 4 17 1
TRESET Instruction . . « « « « + & Instructions 4 18 1
TPACK Instruction . . « « « « « « Instructions 4 14 1
Translation Options, Magnetic

Tape Files . . . « « « ¢ « « & Files 2 1 9
TSERT Instruction . . . « « « .« & Instructions 4 13 1
TSHIFT Instruction « « « . Instructions 4 16 1
TSORT Instructions . . « « « « « & Instructions 4 15 1
Unsorted Files, Disc « « « . « « & Files 1 1 16
USASI paper tape code . . + .« . - Files 1 7 3
USASI Standard File Format Files 2 1.1 2
Utility Routines« . .« o . Intro & Data 1 3 5
Value .« ¢ ¢ o o o o o o o o o o Intro & Data 3 2 14
Variable Data . « ¢ « « o + « o o Intro & Data 2 1 3
Variable-Length Records Files 0 1 10
NEAT/3 -- INDEX AND TABLE OF CONTENTS Oct. 70

Page 6

SUBJECT INDEX -- NEAT/3

TAB TAB PUB.
SUBJECT TITLE NO. NO. PAGE
Vertical Format Control Files 1 3 11
Virtual Date . . . « « ¢« &« &+ « & Files 1 2 12
Worksheet Code . « « ¢« « ¢« « o . Intro & Data 3 1 6
Worksheets, Coding and Data
Layout o « ¢ ¢« ¢ o o o o« o o & Intro & Data 3 1 1
Worksheets, Header Intro & Data 3 2 4
Worksheets, Page and Line Numbers Intro & Data 3 1 5
Worksheets, Programming Intro & Data 3 1 1
WRITBI Instruction . . . « . .« &« Instructions 1 5.1 1
WRITSP Instruction . « « « o o &« Instructions 1 5 1
WRITTM Instruction . . « . « « . Files 2 1.2 1
XPAND Instruction « « « o o o o o« Instruction 2 10 1
ZONES v o o o o o o o o o o o o & Files 1 1 5
NEAT/3 -- INDEX AND TABLE OF CONTENTS Oct. 70

Page 7

NEE
. WORLDWIDE HEADQUARTERS
DAYTON, OHIO 45409

LP~9880—01 [988001] 0971

	5_01-01_SOURCE_ORGANIZATION
	5_01-02
	5_01-03
	5_01-04
	5_01-05
	5_01-06
	5_01-07
	5_01-08
	5_01-09
	5_01-10
	5_02-01_PUNCHED_CARD_SRC
	5_02-02
	5_02-03
	5_03-01_PAPER_TAPE_SRC
	5_03-02
	5_03-03
	5_03-04
	5_03-05
	5_03-06
	5_03-07
	5_03-08
	5_03-09
	5_03-10
	5_03-11
	5_03-12
	5_03-13
	5_04-01_COMPILATION_PROC
	5_04-02
	5_04-03
	5_04-04
	5_04-05
	5_04-06
	5_05-01_RELATED_SOFTWARE
	5_05-02
	5_05-03
	5_05-04
	5_05-05
	5_05-06
	5_05-07
	5_05-08
	5_05-09
	5_06-01
	5_06-02
	5_06-03
	5_06-04
	5_06-05
	5_06-06
	5_07-01
	5_07-02
	5_07-03
	5_07-04
	5_07-05
	5_07-06
	5_07-07
	5_07-08
	5_07-09
	5_07-10
	5_07-11
	5_07-12
	5_07-13
	5_07-14
	5_07-15
	5_07-16
	5_07-17
	5_07-18
	5_07-19
	5_07-20
	5_07-21
	5_08-01_LANGUAGE_DIR
	5_08-02
	5_08-03
	5_08-04
	5_08-05
	5_08-06
	A-01
	A-02
	A-03
	B-01
	B-02
	B-03
	C-01
	C-02
	D-01
	D-02
	D-03
	D-04
	D-05
	D-06
	E-01
	F-01
	G-01
	G-02
	G-03
	Index-01
	Index-02
	Index-03
	Index-04
	Index-05
	Index-06
	Index-07
	xBack

