
I

INTRODUCTION

General Description of the lOZ-A System

The CRC lOZ-A is a general purpose automatic digital com­

puter, capable of being internally programmed.

The ability to be "internally programmed" means the ex­

istence of a memory system, in which can be stored numerically

coded instructions and data necessary for the solution of a given

problem. "General Purpose" implies the property of flexibility;

that is, a general purpose computer is capable of being programmed

to solve a variety of problems, whereas a special purpose computer

is designed to solve only a definite class of problems. The ability

to perform arithmetic operations, alter its own computational routine,

and make decisions which will govern the course of action is an im­

portant feature of the lOZ-A. "Automatic" signifies that after the

start of computation the computer is capable of execution of all pre­

stored instructions without the aid of an operator.

The 102.-A, then, is capable of receiving information (instru,c­

tions and data) from an operator and storing it in its memory,

following the instructions automatically, and delivering the results

to the operator. Most important is that this is all done at very

high speeds.

The CRC lO_Z-A system consists of a computer proper and

the associated equipment necessary to provide all of the functions

of a general purpose computer. They are specifically:

I-1

MODEL 102-A PROGRAMMING MANUAL

The CRC 102-A Computer

This machine is the outgrowth of the prototype model 102

developed and built by CRC. It is a binary, magnetic drum, serial

computer housed in a single cabinet, complete with power supply,

all logical elements and air conditioning equipment.

The CRC 102-A Console

This is a desk of a conventional design into which has been

built the operator's console. This console consists of six push

buttons, six toggle switches, and seven indicator lights. A Flexo­

writer, mounted on the desk, is electrically connected to the

computer so that signals from its keyboard may be used to fill

and control the computer.

The CRC 126 Magnetic Tape Unit

The computer may utilize up to seven of these tape units,

which are connected to it through a common bus. Each tape unit

contains logical circuitry which enables it to search for informa­

tion stored on its tape independently of the computer.

The IBM Machines

The computer is capable of accepting data from, and trans­

mitting data to, IBM cards and requires two specially modified

IBM machines to provide this feature. These modifications are

provided by IBM upon request when ordering the IBM machines.

Two machines are used separately, one to read, and one to punch

the cards.

General Machine Operation

Essential Computing Machine Terminology and Principal

Units of the Computer Proper:

I-Z

INTRODUCTION

1. Memory - The "memory" is the computer's informa­

tion-storage device. It is distinguished from other

storage devices by the fact that it is automatically

controlled by the computer, and any part of it is auto­

matically accessible to the computer. Memory may

be inter~l (Magnetic Drum), or external (Magnetic

Tape). ~emory may also be classified as "volatile"

or "non-volatile", according to whether stored infor­

mation will be lost or not, if the computer's power

supply is turned off. Magnetic drum and magnetic

tape are both non-volatile;

2. Cell - The allotted space in the memory for the basic

unit piece of information in the computer (word) is re­

ferred to as a "cell".

3. Address - The physical position of a cell in the memory

is identified numerically. The "address" of a cell is

the number that designates a particular memory location.

4. Instruction - An "instruction" is a particular operation

the computer is capable of obeying, that is, add, sub­

tract, etc.

5. Word - The basic unit of information in the computer is re­

ferred to as a "word". A word may be a numerically

coded command, a nine-digit decimal number with a plus

or minus sign, or six characters of alphabetical informa­

tion, occupying a one-cell storage space in the memory.

6. Command - A word which causes the computer to perform

an operation is called a "command". A command word con­

sists of a. numerically coded instruction and the memory

addresses of the operands.

I-3

MODEL 102-A PROGRAMMING MANUAL

ARITHMETIC COMMAND: Calls for one of the

operations of arithmetic.

LOGICAL COMMAND: Used for certain operations

which modify data for processing, and also in re­

quiring the computer to make a decision in order

to decide what course of action must be taken.

INPUT and OUTPUT COMMANDS: Direct the

computer to accept information from, or deliver

information to, external equipment.

7. Program - A "program" (often referred to as a routine or

code) is the complete set of commands and data, expressed

in computer language, and arranged in proper sequence, to

direct the computer to perform a desired task.

8. Control and Arithmetic Unit - This unit of the computer

is basically a single section. The control unit interprets

the commands specified in the program, and informs the

memory and the arithmetic unit how to communicate with

one another. The arithmetic unit temporarily stores the

operands and the result of a machine operation.

The computer is internally programmed by proper positioning

of commands and numerical data in the memory. Computation is

started in a "pushbutton" fashion; and because of the automatic

feature, intervention by the operator is very rare. The following

analogy will perhaps serve as a brief illustration of the general

machine operation.

Consider the memory as a filing cabinet containing 1, 000

numbered drawers, and the control section as a very moronic, but

efficient, secretary who can count, and who can understand

I-4

lHTRODUCTION

and execute a very limited number of fundamental operations.

Consider the arithmetic unit as her tools for executing these

operations. She cannot think creatively, but will faithfully

follow instructions; consequently, we load the filing cabinet

with a pre-determined sequence of commands and numbers and

tell her to start in drawer 0100, in which we have stored the

first of the sequence of commands.

She immediately opens drawer 0100 and automatically

interprets its contents as a command. For example, this

drawer may contain the number 35 012.7 062.Z 0736, but she is

able to interpret it as saying "Take the number you find in

drawer 0127 and add (code 35) it to the number in drawer 062.Z,

putting the result in drawer 0736, after discarding whateYer else

was in drawer 0736. 11 Also, she makes certain to retain the

original values in drawer 012.7 and 062.Z. Having done so, she

proceeds to open drawer 0101, interprets and executes the com­

mand herein, and continues this procession sequentially through

the cabinet drawers. However, her procession may be inter­

rupted and she may be transferred elsewhere for her next com­

mand. For example, as she proceeds through drawers 0102.,

0103, , 0136, she may come upon the number 34 02.00 0165 0300

in drawer 0136, which she interprets as "Compare (code 34) the

number in drawer 02.00 against the number in drawer 0165 and if

the number in drawer 02.00 is larger, take your next instruction

from drawer 0300, otherwise continue to drawer 0137. Assuming

this test does send her to drawer 0300, she would then continue in

the sequence 0300, 0301, ... , etc., until she would again be re­

l"IOuted, or finally told to stop.

At this time we wish to place emphasis on the brevity of this

analogy, and explain that it is only intended to help unveil any

1-5

MODEL 102-A PROGRAMMING MANUAL

mystery that accompanies the automatic feature and "thinking"

capacity of the machine. An attempt has been made to illustrate

these powerful machine tools in use, and at the same time famil­

iarize the programmer with some of the problems he will have to

cope with in preparing a program. It should be clear now that

the machine will only do what it is told to do, and optimum

efficiency through programming will be achieved only when we are

thoroughly familiar with the nature of the machine's operation and

its functional capacity.

Consider, now, the skeleton program illustrated in the pre­

vious analogy, and how it would look when written on a code sheet

by the programmer. First, of course, the programmer would

determine the necessary logical and arithmetic operations. Next,

he would decide on the most efficient memory storage for the com­

mands and data and he would indicate this on a standard code sheet

as shown below. The column headings I, m 1 , m 2 , m 3 represent

the instruction digits, and the memory addresses of a command word.

Address

(drawer number)

0100

0136

I

35 0127 0622 0736

34 0200 0165 0300

I-6

Remarks

Add contents of 0127 +
contents of 0622. and store
the sum in 0736.

If contents of 0200 greater
than contents of 0165 go
to 0300

INTRODUCTION

In order that the programmer properly utilize a word to

represent a command, he must be aware that the contents of the

command word will be scrutinized by the control unit as three

addresses and an instruction code. In most commands the m 1
and mz addresses name the operands, and m 3 is the put-away

address of the result.

This illustration is not intended as a tutorial example in

programming; however, it is felt that the general appearance of

a code and a few comments. relative to the command structure at

this time will be beneficial to the reader.

I-7

II

NUMBER SYSTEMS

The subject of primary importance in connection with an

electronic computer is the machine language. Communication

with the machine is an essential prerequisite for programming.

When considering the subject of arithmetic and its assoc­

iated operations, our early teachings and experience familiarize

us, as a rule, only with the decimal number system and the digits

0, 1, .•. , 9. However, since a number system is fundamentally

a scheme for counting, it is quite feasible for us arbitrarily to

choose a number system to suit our needs.

The binary number system, which concerns itself only with

the digits 0 and 1 (referred to as bits), was chosen with the design

of the lOZ-A. Arithmetic operations in the binary system are

extremely simple by virtue of the existence of only these two nu­

merical characters, and consequently, lead to simple machine

mechanization. For example, representation of the "0" or "l" bits

can be made to corr~spond to the cut-off or conducting state of a

vacuum tube, to the opposite states of polarity of an electrical

charge, to the existence or non-existence of a pulse, or any "yes"

or "no" form for differentiating between 0 and 1. Now, analogous

representation of the 0, 1, ... , 9 digits in the decimal system

would be impossible in most cases; however, where it would be

possible, it would perhaps require ten different voltage levels.

Number Representation

The method of re:presenting numbers in the binary system

becomes quite reasonable to us when we recall the fundamental

II-1

MODEL 102.-A PROGRAMMING MANUAL

principals of the familiar decimal system.

As an example, consider the number 3974. 2.3. The follow-

ing equality, 3974. 2.3 = 3x1000+9x100+7x10+4x1 +2. x 110 + 3x 1 ~0 ,

reminds us of ·the expression, "3 is the thousands digit; 9 is the
I

hundreds digit; etc. , " and illustrates the weight factor associated

with each digit. We will find it more advantageous, however, if

we write this equality with proper powers of ten, i.e.,

3 2. 1 O* -1 -2. 3974.2.3=3xl0 +9xl0 +7xl0 +4xl0 t2.xl0 +3xl0 ,

where we consider 10 as the base of the number system. Thus,

the true meaning of a number in any system is best illustrated when

expanded as shown here.

In a similar fashion the number 11011. 001 in the binary sys­

tem (base 2.) would be written as

. 4 3 2. 1 -1 -2. -3
11o11. oo 1 = 1 x z. + 1 x z. + o x z. + 1 x z. + 1 x 1 + o x z. +o x z. + 1 x z. .

Just as the decimal point separates the integral and fractional

parts of a decimal number, so does the binary point.

Conversion from Binary to Decimal

Number representation in systems other than base 10 frequently

conveys no information to us unless first converted to the equivalent

decimal notation. Nevertheless, the corresponding decimal number

can always be obtained from the expanded form of the binary repre­

sentation if one would merely execute the indicated operations using

decimal arithmetic. Let us then consider the previous example.

0 0 1
11011. 001 = 1 x 16 + 1 x 8 + 0 x 4 + 1 x 2. + 1 x 1 +z:- + 4 + 8

= 2.7. 12.5 (decimal equivalent)

* By definition, any number to the zero power equals 1.

II-2.

NUMBER SYSTEMS

Conversion from Decimal to Binary

Conversion in this direction must be considered independ­

ently for integral numbers and fractions. Mixed numbers, on the

other hand, must be resolved into the sum of the whole plus the

fractional parts. Consider the following example:

Example 1. Convert 937 to an equivalent binary number.

Now, conversion in this direction implies the determination of

the digits corresponding to the b's in the following expansion.

n n-1 1
937 =b xZ. +b 1 xz. + ... +b1 xz. +b xl, n n- o

where n indicates the la+gest power of the new base necessary

for representation of the given decimal number. A well known

algorithm for obtaining these coefficients is successive divisions

of the decimal number by the base (2.) until the quotient is zero.

The remainder at each step, beginning with the units position, is

the required digit; i.e., dividing 937 successively by 2. we have

Remainder

2. I 937 1 units digit

2. 1468 0

2. I z.34 0

2. .l!.!l_ 1

2. ~ 0

z L22_ 1

z l.!! 0

2. L2. 1

2. u_ 1

2. L!_ l

0

II-3

MODEL ioz-A PROGRAMMING MANUAL

Hence, the equivalent binary number is 1110101001.

Example Z. Convert 0. 8493 to an equivalent binary frac­

tion. In this example the b ... s. of the following series must be ob­

tained.

b_1 b_z b_3
0. 8493 = --- +---.;- + -3 + ..•.•

z z"' z

where the negative subscripts correspond to the negative powers

of the base, or fractional weight factors. It is well to note at this

time that an exact fraction in one number system may become a

repeating fraction when converted to another number system.

The algorithm used here is successive multiplication of the

decimal number by the new base (Z) and the integral part of the

product is the required digit in the new number system, beginning

with the most significant fractional digit. The fractional part of

the product is the new multiplicand for the next successive mul­

tiplication by the base. The successive multiplication is continued

until the fractional part of the product becomes zero; or the result

is repetitive; or until a sufficient number of digits have been ob­

tained. This process is illustrated below in tabular form.

CONVERSION TO BINARY

Binary
Digit

0.8493xZ= 1
0.6986xZ= 1
0.397ZxZ= 0

etc.

!

1
1
0
0
1
0
1
1
0

Fractional
Part of
Product

6986
397Z
7944
5888
1776
355Z
7104
4Z08
8416
683Z
3664
73Z8

The converted binary fraction, then, is 0. 110110010110---.

II-4

NUMBER SYSTEMS

Relationship between the Binary and Octal Number Systems

In the binary system a number of any size or a fraction of any

precision requires a long string of zeros and ones. In practice

this becomes very difficult to work with outside the computer, so

a substitute system which incorporates the binary system exacUy

is usually substituted. One system which lends itself to this

definition is the octal system. The octal system has as a base

the number eight, which is equal to z.3 . Thus any combination

of three binary digits giv~s a digit in the octal system (0, 1, ... , 7).

All the possible combinations of three binary digits and their ootal

equivalents are shown below in Table 1.

Binary Group

000

001

010

011

100

101

110

111

TABLE l

Octal Digit

0

1

2

3

4

5

6

7

Rapid conversion between the binary and octal systems is

trivial inasmuch as every triad of binary digits, marked off from

either side ef the binary point, correlates an octal digit. The

following example of a binary number marked of' in triads illus­

trates the simplicity by which conversion may take place in either

direction.

11 111 100 . 110 111

t ! t l t
3 7 4 6 7

11-5

MODEL lOZ-A PROGRAMMING MANUAL

In order to validate this operation, one could easily show

that these two numbers are precisely equal in magnitude, perhaps

convert each to a decimal number and compare the results.

In the light of the above example, emphasis must be placed

on the impossibility of conversion, in a similar fashion, between

the binary and decimal systems. The reason, of course, is a lack

of correlation between a single decimal digit and a fixed set of

binary digits; that is, the inability to express the base 10 as an

integral power of Z (in contrast to the binary and octal bases, where

z3 = 8). However, for the sake of proving a point, let us attempt

such a conversion from a decimal to a l:>inary number. This

attempt might not appear invalid in as obvious a fashion as it would

if we were to first attempt a conversion in a binary to decimal

direction.

For example, we will "convert" the decimal number 89 in

this manner and examine the result; that is,

f ?
1000 100 l

If we examine the result, 1000100 l, as a binary number, we have

7 3 1000100l=lxZ +lxZ +lxl=l37,

which is not equivalent to 89. This falacy was not obvious, how­

ever, until we checked our result.

Now, let us attempt to convert in the opposite direction -

binary to decimal. Choose the number, 11001011,

? ?

t t
11001011

II-6

NUMBER SYSTEMS

and we are obviously "stopped in our tracks," because there are

no decimal digits corresponding to 1100 and 1011. Howe:ver, if

we thought we could merely write the decimal equivalents to 1100

and lOll, we would have

ll

t
lOll

but

110010ll = 2.03 (decimal equivalent).

Just how many bits in a set then, would we choose to repre­

sent a single decimal digit? Inasmuch as we know sets of three

bits convert to the base 8, apparently four bits convert to the base

16 (Z.4 = 16). Consequently, we just can't convert between decimal

and binary numbers digit by digit, as we can between octal and

binary numbers.

Arithmetic in the Binary and Octal Number System

Arithmetic operations in any number system are fundamen­

tally the same; that is, they are simply variations in methods of

counting. Thus, if one would commit to memory the following

addition and multiplication tables of the binary and octal number

systems, he could perform arithmetic operations in these sys­

tems with as much ease as he does in the decimal system.

II-7

MODEL 102-A PROGRAMMING MANUAL

ADDITION

0 1

o~
1 [EJ

MULTIPLICATION

0 1

0 fOTOl
1 [EJ

01234567 01234567
0
c
T
A
L

0

1

2

3

4

5

6

7

0 1 2

2 3

4

3 4

4 5

5 6

6 7

10

5 6

6 7

7 10

10 11

11 12

12 13

14

7

10

11

12

13

14

15

16

0

1

2

3

4

5

6

7

0 0 0 0 0 0 0 0

1 2 3 4 5 6 7

4 6 10 12 14 16

11 14 17 22 25

20 24 30 34

31 36 43

44 52

61

Examples of arithmetic operations in the binary and octal

number systems:

ADDITION BINARY OCTAL

1011011 306702
1101110 531066

11001001 1037770

110101 6753
1011 506

MULTIPLICATION

110101 51602
110101 426270

1101010
1001000111 4334502

II-8

DIVISION

NUMBER SYSTEMS

1011
11010lfl001000111

110101
1001111

110101
110101
110101

506
6753/4334502

4Z6Z7
516oz
5160Z

This, then, is an introduction to the binary and octal

number systems as related to our familiar decimal system.

The need for an understanding of these number systems will

be further emphasized in the following sections.

11-9

III

MEMORY

The model 102-A is a magnetic-drum-memory machine. The

drum is a cylinder coated with a magµetic material, and measures

approximately twelve inches in diameter and six inches in length.

Once a small spot on this material is magnetized to either

of two possible states, it will remain so indefinitely unless changed.

Since we represent the values 110" and rc1" by these two states, a

series of magnetized spots corresponds to a sequence of binary

digits. This is the way in which information is recorded on the

surface of the drum. These spots are located on circular tracks

(channels) around the circumference of the drum; each track is

divided into 64 sectors (cells); each· sector has a 42 binary digit

storage capacity (i.e. , one word, see Section IV).

The drum is enclosed in a cylindrical housing within the

computer, and rotates continuously about its vertical axis at the

rate of 40 rps. As the drum rotates, information is "read off"

or "written on" the drum via a channel read-write head. The read­

write heads are embedded in the drum housing at equal vertical

intervals in order t~ fix the physical position of each channel.

<J

7/
read-write
heads

<I
magnetized

spots <I

Figure 1

III-1

MODEL lOZ-A PROGRAMMING MANUAL

The permanent memory, word channel, buffer register,

recirculating registers, and two clock channels comprise twenty­

one memory channels.

The Permanent or Main Memory consists of 16 channels of

64 cells each, or a total of 10Z4 words of permanent storage.

Permanent storage implies a non-volatile type of magnetic drum

recording, where the magnetic pattern remains on the memory

when the machine power is turned off.

In order to refer to these 10Z4 main memory cells in a

convenient manner we shall assign numbers to each channel and

each sector. However, we shall use numbers which are most

convenient for the computer. Instead of numbering the sixteen

channels in the normal manner, we shall use, for reasons which

will become obvious later, the following sixteen numbers:*

00, 01, OZ, 03, 04, 05, 06, 07, 10, 11, lZ, 13, 14, 15, 16, 17

For the same reasons, the sixty-four sectors will be assigned

the following numbers: *
00, 01, oz. 03, 04, 05, 06, 07, 10, 11, lZ,

65, 66, 67' 70, 71, 7Z, 73, 74, 75, 76, 77

Each main memory cell is assigned a four-digit octal address.

The two left octal digits represent the channel number and the two

right octal digits specify the sector number. The addresses are,

then,

0000, 0001,

0177, ozoo,
0007, 0010, ... 0077, 0100, ...

etc. to 1 777.

*The reader should recognize these numbers as "octal" numbers.

III-Z

MEMORY

The single read-write head associated with each channel

will write information on the drum as it rotates past and simul­

taneously erase what was previously written; but will read from

the drum and not cause an erasure. It is obvious now that any

given cell in the main memory is made available to the computer

once during a drum revolution.

Since the drum revolves at the rate of 40 rps., one drum

revolution requires . 025 sec. , or 25 ms. (1000 ms = 1 sec.).

Hence, the time required for a sector to pass its respective chan­

nel read-write head - referred to as one word time - is 25/64 ms.,

or approximately . 4 ms.

The Word Channel is a single track on the drum. The sole

purpose of the word channel is to monitor the reading and writing

of words between the control and arithmetic units and the memory.

During filling of the computer, during computation, and for

output of information, the word channel serves to physically locate

the sector position of a pre- selected channel. Each sector .of the

word channel has permanently recorded in it a sequence of binary

digits equivalent to one of the 64 sector numbers to which an ad­

dress may refer (i.e. - octal numbers 00 thru 77) - (Figure 2).

By means of the word channel read-write head the computer is

capable of locating any one of these 64 sector positions.

By means of the read-write heads the sector addresses of

all channels are correlated to those of the word channel. This

correlation is brought about by virtue of the fact that when a word­

channel sector, containing the permanently recorded number,

passes its read-write head the sector passing a read-write head

of a main memory channel is automatically located. However, in

111-3

MODEL 102-A PROGRAMMING MANUA.L

I I

ii
Figure 2

main memory
(16 channels)

order to allow for the time necessary to recognize the sector ad­

ress recorded in the word channel, it will be the sector address of

the next cell to pass under the main memory chan:r:iel read-write

head (see Figure 3).

There are four one-word Recirculating Registers associated

with a single channel on the drum. They are referred to as the E,

F, G, and H registers, and act as temporary one-word storage

units for the arithmetic and control units of the computer. Distinct

Tead and write heads are assigned to each one-word register, as

indicated in the diagram {Figure 4) of this single track on the drum.

Information held in these registers is constantly recirculating as

ti1e drum revolves.

Let us suppose a word is written on the drum between the

read and write heads of a register. As the drum rotates {indicated

III-4

MEMORY

cell 0022

Figure 3

by arrow), the bits are read off, one by one, at the read head

and recorded back on the drum through the write head. Current

information in a register will continue to recirculate until it is

written over by new information entering that register. This is

a rather superficial explanation of the behavior of these registers,

but adequate for the present time.

H ~W
- <_, ~
R~ 1

Read {';>._E

1 P~Write

~~word~

Figure 4

III-5

MODEL 102-A PROGRAMMING MANUAL

The function of these registers is as follows:

E - Arithmetic unit register. Also, intermediate

storage for information during input and output.

F - Arithmetic unit register.

H - Control register.

G - "Hybrid" register; i.e., it participates either as

a control register or as an arithmetic unit

register, depending on the phase of machine

operation.

Although these registers are, in effect, storage in the

memory, they are volatile in the sense that the meaning of their

information is lost when the machine is turned off.

The Buffer Register is an eight-word recirculating register

physically located on a distinct channel of the memory (see Fig­

ure 5). This register offers an extension of eight words of

temporary (volatile) storage to the main memory. These eight

words are accessible to the programmer by the addresses

2000 - 2007.

words

Figure 5

III-6

MEMORY

One of the outstanding features of the buffer register is the

rapid access to its contents as compared with that of a main mem­

ory cell. This rapid access is achieved primarily by the fact that

the buffer register recirculates and makes its contents available

exactly eight times per drum revolution. Also, only the least sig­

nificant octal digits of the word channel are inspected when a buffer

cell address {channel 2.0) is recognized; that is, the least significant

digits of the buffer register cells, 0 - 7, are synchronized with the

least significant digits, 0 - 7, of the word channel eight times per

drum revolution. General use of these cells for storage of often­

used constants, or commands, in a routine will cut down computing

time considerably.

Communication between the 102.-A, punched card, and mag­

netic tape units is accomplished by means of the buffer register.

These units are connected directly to the buffer, and any informa­

tion entering or leaving the 102.-A memory via punched card or

magnetic tape must first be placed in the buffer register. The

102.-A command list includes "buffer out" and "buffer load" com­

mands, which permit the transfer of blocks of eight words between

the main memory and the buffer register.

Two Clock Channels occupy two additional tracks on the

magnetic drum memory.· These clock channels contain the

permanently recorded clock pulses that regulate the timing and

synchronization of machine operation. There are forty-two pulses

to a word, hence 64 x 42. or 2.688 clock pulses over the entire

channel. The circuitry of the machine enables clock pulses to be

counted and recorded for determination of the unit time: one word.

III-7

MODEL 102-A PROGRAMMING MANUAL

Cell 2100. Although this is not a cell actually located on the

drum, but a bit of logical circuitry in the machine, we will discuss

it at this time since it is referred to by an address. This circuitry

actually provides us with a cell of all zeros whenever needed. It

is often called a-"minimum access-time zero," and actually turns

off the circuitry so that the machine reads nothing for one word

time and the result is all zeros in the desired register. Effectively,

it is absolutely nothing. The nature of cell 2100 will become more

apparent after one becomes familiar with the control system for

reading and writing of memory cells.

Cell 3000. This cell is in reality the G register previously

mentioned. It is worthy of additional note now since it is also re­

ferred to by a memory address. Thus, the programmer is pro­

vided with the ability to remove information from the G register

during a routine, and obtain knowledge which is very convenient

for controlling the sequence of events of a program. Further

clarification of the behavior of cell 3000 is given in the discussions

of the control unit.

III-8

IV

WORD STRUCTURE

In the previous sections the "word" was depicted as being

the unit piece of information in the machine - stored on the sur­

face of the drum as a block of forty-two binary digits which can

represent a command or a number.

The purpose of this section is to familiarize the reader

with the function within the machine of the forty-two binary digits

of a word, and the equivalent octal representation of the word

outside the machine.

Basically all words are considered as split into the two

major sections shown below. The following discussions will

illustrate the word structure for commands and numbers with

respect to these two sections.

I
6 bits* 36 bits*

Commands

All command words are cornJ>rised of an instruction code,

and addresses referring to memory locations of the operands

involved in the operation specified by the instruction code.

* "Bit" is the accepted contraction for "binary digit. 11

IV-1

MODEL 102-A PROGRAMMING MANUAL

Instruction Addresses

I I ·1 ml m2 m3,

6 bits 12 bits 12 bits 12 bits

The instruction section is that physical portion of the word

structure allotted for the numerical code that designates the oper­

ation to be performed. These six instruction bits are represented

by two octal digits according to the code in 'Tu.ble 4 , page VIII-1.

The thirty-six bit section of a command word is scrutinized

by the machine as three independent twelve-bit sections; namely,

m 1 , m 2 , and m 3 . Each twelve-bit section, represented by four

octal digits, is an address referring to a memory cell. In most

commands the m 1 and m 2 sections are the addresses of the oper­

ands, and the m 3 section is the put-away address of the result

(thus, the 102-A is classified as a three address machine).

Emphasis must be placed on the fact that the octal numbers

to be placed in the m 1 , mz, and m 3 sections of a command word

are only addresses of memory cells and not the actual numerical

values of the operands. Thus, a command, when stored as a

sequence of binary digits in the machine, would have no meaning

until interpreted sectionally by the control unit (Section VII).

Example of a command that instructs the machine to add

the numbers in cells 10Z6 and 1037, and record the result in cell

0345.

I

35 1026 1037 0345

IV-2

WORD STRUCTURE

Numbers

The constituents necessary for complete numerical repre­

sentation are the sign and magnitude. Consequently, in the lOZ-A
.....--

all numbers are represented according to the following schematic.

Sign

I I : :
I I I I
I I , ,

Magnitude

overflow bit
albegraic sign bit

The magnitude section stores any number that can be repre­

sented by a sequence of thirty-six binary digits. All arithmetic

operations consider the entire magnitude section as a thirty-six

bit number. It is noteworthy that the binary point does not occupy

any physical space in the word; however, during computation its

position is kept track of by programming.

The six-bit sign section consists of four zero bits, the sign

bit, and the overflow bit (see above diagram);·

Sign bit: A binary "0" is plus and a binary "l"

is minus.

Overflow bit: During normal computer operation

this bit will be "0". If the result of an

arithmetic operation exceeds the capacity

of the thirty- six bit magnitude section, a

"1 11 will carry over into this bit pos~tion.

Unless the machine is programmed to do

otherwise, it will immediately halt when

overflow occurs.

IV-3

MODEL 102-A PROGRAMMING MANUAL

The following examples illustrate numbers as they would

appear on the coder's sheet and their corresponding binary con­

figurations within the machine.

Example 1 : The negative octal number 0. 137670245206

Sign Magnitude

; 2* I I I
' I 4: 0 1 3 7 I 6 I 7: 0 I 2 I 5 21 0 6

I I I I I

I • I '

ooo~o 10 oo l;o 11:111: 110:111:000:010:100; 10 l!o lo;ooo~ l~O

Example 2: The positive octal number 375. 6672

Sign Magnitude

0 : 0 3 : 7 : 5 : 6 : 6 : 7 : 2 : 0 0 0 I 0 0

I

ooo;ooo 011:111~101:110;110!111:010;oooiooo:ooo!_ooo:ooo

The above examples suggest that in order to use numerical

data in the computer, we must first find the equivalent octal num­

ber representation, since undoubtedly numerical data relative to

a given problem will usually be available in the decimal number

system. Fortunately, decimal numbers may be entered directly

into the 102-A, and manual conversion from decimal to octal is

not necessary, since the computer can be programmed to do this.

Input in the decimal mode is accomplished by a simple pre­

liminary setting of the proper control, and the computer is pre­

pared to accept a group of four bits per decimal digit from the

Flexowriter.

*For input, "-" ("NEG." Key) may also be used to enter
a negative sign.

IV-4

WORD STRUCTURE

Example 3: The negative decimal number 9Z8. 75

Sign Magnitude

0 z 0 0 0 0 9 z 8 7 5

I I : I I I 1 I
00 !0010 000 ;0000:0000;0000:1001:0010:1000:0111 :0101

It should be apparent that this number, as it appears in the

machine, can only be utilized as a method of keeping track of the

decimal digits of the original number. If, for example, this binary

configuration was mistakenly used in normal computer operation,

the machine would consider all thirty-six bits as one number, and

not scrutinize th~m four at a time. Since we can only consider

these groups of four bits per decimal digit as a code, we refer to

them as binary coded decimal digits in the machine. Consequently,

prior to the use of decimal numbers in normal machine operation,

it will be necessary to automatically convert them within the

machine, by means of a conversion routine, to a true binary

representation.

IV-5

v

FUNDAMENTALS OF PROGRAMMING

When a problem involving numerical computation is dele­

gated to a human operator for execution on a suitable desk type

machine it is necessary that he be supplied with a list of instruc­

tions and data, or "program. 11 Similarly, if we expect an auto­

matic electronic computer to do our work for us, we must supply

it with a "program. 11

However, when dealing with an electronic computer, the

probelm of supplying a "program" becomes two-fold: (a) Pro­

gramming, or preparation of the code; and (b) Proper insertion

of the code into the machine. In this section we will discuss only

the first of these problems.

The first phase of programming is planning. Once a suitable

plan is formulated, it is best illustrated by means of a flow-chart.

A flow-chart is a written schematic of the logical sequence of oper­

ations necessary for the completion of the given problem. In the

second phase, each operation noted in the flow-chart is represented

by one or more 102-A commands, which involves choosing suitable

storage space in the memory and translating the program into

numerically coded form.

For the sake of simplicity, we will choose a trivial example

to illustrate these essential phases of programming. Consider,

then, the problem of obtaining the difference between a given num­

ber, A, and the sum of a given set of ten numbers, and storing

the result ready for printing. The development of a program which

will supply a satisfactory answer to this problem is explained in the

following paragraphs.

V-1

MODEL 102-A PROGRAMMING MANUAL

The procedure of obtaining a flow-chart is simplified by

the use of formulas and algebraic symbols, whenever possible.

For example, if we represent the ten given numbers by c 1• c 2 , ...

c 10 • we can write the following equation:

Hence, the logical sequence of operations necessary to obtain

the answer becomes more apparent to us. One of the many recom­

mended forms of writing a flow-chart is the following:

Start
1-

Add the l st two numbers.

Add the 3rd number to the
previous partial sum .

.

.

.

Add the 10th number to the
previous partial sum.

Subtract the sum obtained
from A.

Halt.

The program is obtained, now, by simply transforming

the steps in the flow-chart into satisfactory 102-A commands.

First, of course, the programmer must know the functional cap­

abilities of the 102-A commands, and how they must be coded.

FUNDAMENTALS OF PROGRAMMING

Rather than attempt to introduce the student to the entire command

list at one time, we will familiarize him with command usage by

means of tutorial examples such as this one. The entire command

list, nevertheless, is explained in detail in Section VIII.

In this example we will need commands which will add and

subtract numbers, and a command which will halt computation.

The word structure for these commands is as follows:

ADD - "ad" - code 35

.r

ad address of : address of 1 address of
augend l addend l sum

The "add" command will add the contents of memory cells

m 1 and mz and store the sum with proper sign in memory cell m 3 .

SUBTRACT - "su" - code 36

I

SU
address of l address of l address of

minuend l subtrahend _l_ difference

The "subtract''command will subtract the contents of memory

cell mz from the contents of memory cell m 1, and store the differ­

ence with proper sign in memory cell m 3 .

HALT - "ht" - code ZZ

I

ht xxxx xxxx xxxx

Then "halt" command will halt automatic computer operation

and put the computer in a state of "rest." The m 1 and mz

V-3

MODEL 102-A PROGRAMMING MANUAL

addresaes are irrelevant, that is, they can be any four octal digit

numbers. The m 3 address is irrelevant for our present purpose.

It is noteworthy, once again, that when the command word

is actually coded it contains only the memory addresses locating

these quantities -- not the quantities themselves.

Once we have decided on suitable storage space in the mem­

ory for the commands needed in this program and for the eleven

given numbers, we will be ready to complete the code. Fortunately,

we can begin by storing the commands anywhere in the memory,

but we are restricted by the fact that after choosing sto•age for the

first command subsequent commands must occupy successive mem­

ory cells, since normal computer operation is sequential. For

this problem, assume the first command to be stored in cell 0100

and the eleven numerical constants, c 1, c 2 , .•. , c 10 , A, in cells

0600 -0612, respectively. Also, working storag.e space (memory

cells to store intermediate results) must be allotted. In this ex­

ample we will choose cell 0700 in which to accumulate the answer.

Referring to the flow-chart, we will replace the prescribed

operations by the proper 102-A commands, coded with the selected

memory addresses. The final code shown below is in the standard

format used by the programmer. Included, then, on -every code

sheet will be the word structure of the command& and numerical

data, their respective memory addresses, and a•1Remarks" column.

The "Address" and "Remarks" cplumns are indispensable for ~od­

ing subsequent commands after the first, during code checking, and

as a future refe·rence. Also, the "Address" column is needed when

the program is filled into the computer (Section VI).

V-4

FUNDAMENTALS OF PROGRAMMING

Address

0100

0101

OlOZ

0103

0104

0105

0106

0107

0110

0111

0112

0600

0601

0611

061Z

I

35 0600 0601 0700

35 0700 060Z 0700

35 0700 0603 0700

35 0700 0604 0700

35 0700 0605 0700

35 0700 0606 0700

35 0700 0607 0700

35 0700 0610 0700

35 0700 0611 0700

36 061Z 0700 0700

zz 0000 0000 0000

oz 0000 OOZl 6532

00 0007 5063 1005

oz 0000 0110 774Z

00 0000 0060 4306

Remarks

cl + cz-+-0700. (*)

(0700)+ c 3-+0700. (**)

(0700)+ c4~0700.

(0700)+ C5-+0700 .

(0700)+ c6-.+0700.

(0700)+ c 7-+0700.

(0700)+ ca---+-0700.

(0700)+ c 9--+0700.

(0700)+ c 1o-+0700.

A - (0700)--+0700.

Halt computation.

~Octal Numbers.

Problems that warrant the use of an electronic computer

are certainly much greater in magnitude and more profound than

the previous example. The need for more subtle programming

techniques is evident. For instance, if the previous problem had

been one that involved many more additions, it would be imprac­

ticable to repeat the "add" command as we have done. The

(*) - The arrow is used to symbolize "stored in;" i.e. - "The
sum c 1 + cz is stored in cell 0700.

(**) - Parentheses used around the address of a cell indicates
the contents of that cell. i.e. - "The sum c3 + (Contents
of cell 0700) is stored in cell 0700."

V-5

MODEL 102-A PROGRAMMING MANUAL

development of a more efficient code, and one which will be appli­

cable regardless of the number of additions, is not difficult once

we are more familiar with certain fundamental programming tech­

niques and with the versatility of the command list.

Since our objective in seeking a more efficient program is

the elimination of repetitive "add" commands, let us consider the

code just developed and see what logic;al changes would have to be

made in order to achieve this goal. Perhaps the computer will be

capable of executing the logic we will prescribe.

Close examination of the nine successive "add" commands

suggests that we possibly can use the same "add" command for

all the additions if we can successively increase its mz address

by "l ", and then interrupt the machine's sequential mode of opera­

tion in order to repeat this modified "add" command. We must

also control this cyclic procedure in some manner in order that

it will terminate after the required number of additions have been

made. To accomplish such a control, the machine must be made

aware at the end of each cycle of the number of additions completed.

Let us consider, then, the possibility of keeping a tally after each

addition.

The essence of this procedure is more clearly illustrated

by the following flow-chart:

V-6

FUNDAMENTALS OF PROGRAMMING

Start

1
Add; i.e., accumulate sum by _,IL

' adding next number.

Modify previous "add" com-
mand (add 11 111 to m2.

.address).

Tally "l" for each addition.

Have we added ten numbers? NO

"'°YES

Subtract the sum from "A".

Halt.

The ability of the machine to modify its own commands, and

to make decisioas is the crux of this procedure. In this example

the prescribed logic can be fulfilled by means of the "add" and the

"test magnitude" commands.

First, let us consider the modification of a command word,

which is made possible by special use of the "add" command. A

number can be added to a command word, and the instruction

digits of the command word will be retained in the sum, if the ad­

dress of the command word is-named by m 1 of the "add" command.

Consequently, we will write our code such that a word containing

a "1 11 in its m2. position will be added to the initial "add" command

and recorded back in the same memory location. Thus, we will

have modified the initial "add" command by augmenting its m 2
address by 11 1." Now, when the computer repeats this command

(as indicated in the flow-chart) the next number will be added to

the previous partial sum. Assuming the same memory storage

for the program and the constants as in the previous example, the

V-7

MODEL 102.-A PROGRAMMING MANUAL

following assumptions and schematics illustrate this procedure:

Assume the initial "add" command to be

co ioo> =I 35 I 0100 ! 0600 1 0100 f

and a 11 111 to be stored in the m 2 position of 0613

(0613) =I oo I 0000 i ooo 1 !. 0000

Assume the secon~ command in the program to be one which adds the

two words above

(0101) =I 35 I 0100 t 0613 ! 0100 I

The result of this command will be the following addition:

(35 ·I 0700 0600 ;. 0700 I

I 00 I 0000 0001 i 0000 I
Sum in (0100) =I 35 I 0700 0601 : 07001

The reader is cautioned that this operation will be executed properly

by the "add" command only if the command word is named by m 1
and the number by m 2 . If these addresses are interchanged in the

"add" command, the machine will add the two words as two algebraic

numbers, and will not retain the instruction digits of the command

word.

Secondly, we will consider how it is possible to cause the

computer to interrupt the normal sequence of operation and repeat

a set of commands. Referring to the flow-chart, we are reminded

that our plan is to tally after each addition. Therefore, we will

add "l" to a tally storage cell, and immediately ask the question:

"Has the tally count reached 10?" This, then, is where the decision

has to be made as to whether we will return to the "add" command,

or continue in the program. If the answer is "no", we must cycle

V-8

FUNDAMENTALS OF PROGRAMMING

back and continue adding, but if the answer is "yes," we are

ready to continue.

The 102-A "test magnitude" command, whose word structure

fS shown below, is designed to ask such a question and act accord­

ingly.

TEST MAGNITUDE - 11tm 11 - code 34

I ml m2 m3

address of
T

address of 1 address of tm I I magnitude1 I magnitude2 alternate
I I

command j_ j_

This command actually causes the computer to compare the

magnitude sections of the two memory cells named by its m 1 and

m 2 addresses, and make the following decision: If the magnitude

portion of cell m 1 is greater than that of m 2 , the address of the

next command is automatically the m 3 address; otherwise, the

computer will take the next command in the normal sequence.

In this problem a satisfactory decision will be made if we

pre-store the octal equivalent of 1110 11 in the memory and name its

address as the m 1 portion of the 11tm11 command; also, we must

name the address of the variable tally count as the m 2 portion;

and m 3 must be the address of the initial "add" command.

The code for the solution of this problem follows.

V-9

MODEL 102-A PROGRAMMING MANUAL

Address I ml m2 m3 Remarks

0100 ad 35 0700 [o6oor 0100 Next number added to (0700)
((0700) initially zero).

0101 ad 35 0100 0613 0100 Modify (0100); i.e. , add "l"
to m 2 of 0100.

0102 ad 35 0614 0615 0615 Tally "l" in 0615.

0103 tm 34 0616 0615 0100 Has tally reached "9"?
If not, next command 0100.

0104 SU 36 0612 0700 0700 A - (0700)-+0700.

0105 ht 22 0000 0000 0000 Halt computation.

0600 oz 0000 0021 6532 cl.

0601 00 0007 5063 1005 c2.

0611 02 0000 0110 7742 clO'
0612 00 0000 0060 4~06 A.

0613 00 0000 0001 0000 Modifier for 0101.

0614 00 0000 0000 0001 11 1 " £or tallying •

0615 00 0000 0000 0000 Tally count storage, initially zero.

0616 00 0000 0000 0012 Octal equivalent of ''10 11 as
gauge for 010 3.

0700 00 0000 0000 0000 Working storage, initially zero.

This code could be used, then, to add as many numbers as

we wish. We would merely have to change the contents of the word,

0616, which acts as th~ gauge in the. "test magnitude" command.

* Brackets are used in a command word to indicate which
address in the word structure will be modified in the course
of machine computation.

V-10

FUNDAMENTALS OF PROGRAMMING

The next example will introduce the reader to two more

powerful machine tools, and a technique for using them.

Consider the problem of adding forty numbers which are

stored in the memory in such a way that every storage word con­

tains two of the given numbers. Assuming each number to be

six octal digits or less, and the two numbers "packed" in the same

storage word to be of the same sign, the following diagram illus­

trates how each number will occupy half of the magnitude section

of the storage word.

oo I 0506 73 !. 11 475Z

In this case the two numbers are + 50673 and+ l 1475Z.

In addition to the commands previously discussed it will be

necessary in this problem for the student to be familiar with the

"shift magnitude" and "extract" commands. The word structure

and function of these commands are as follows:

SHIFT MAGNITUDE - "sm" - code 30

I

sm address of : address of 1
word to be 1 shift- cont rel I

shifted I word 1
j_ .1

address of
shifted
result

Under the influence of this command, the machine will shift

the magnitude section of a word a specified number of bit positions

to the right or left; zeros will appear at either end of the magni­

tude section to replace digits that are shifted off the other end.

The sign portion will be unchanged. The m 1 address of the "sm"

V-11

MODEL lOZ-A PROGRAMMING MANUAL

word structure identifies the word to be shifted; the m 3 address

specifies the memory address in which to store the shifted re­

sult; the mz address designates the word whose contents specify

the direction and number of shifts. The contents of m 2 must be

formed by the programmer in the following manner:

direc­
tion

number of shifts

The number of shifts is specified by the magnitude section as an

octal number; the direction of shift is specified by the sign section,

that is, a negative number will cause a right shift and a positive

number will cause a left shift.

Also available, the "shift logically" command ("sl" - code 27)

is identical to the "shift magnitude" command except that the entire

word is shifted.

EXTRACT - "ex" - code 3Z

I ml mz m3

address of T address of 1 address of
ex wol'd to be I extractor cell altered

copied I I by extTact
i l

The "extract" command permits selected bits from one word

to be copied into the correspon~ing bit positions of another word.

This operation functi'ons in such a way that the binary digits of (m 1),

which are in the same positions as the binary "ones" of (m2), re­

place the corresponding binary digits of (m3), and the bit positions

of (m3) corresponding to the binary "zeros" of (m2) will not change.

It may be helpful to think of the extractor (m2) as a sieve, in which

11 l11 bits represent the holes. Bits of (m1) are dropped through this

sieve into (m3).

V-lZ

FUNDAMENTALS OF PROGRAMMING

The availability of these two commands permits us to con­

sider the following plan for the addition of the given forty numbers,

and leaving the resu11t stored in the memory. Consider, again,

the plan of "packing" two numbers in a single word.

sign Number1 Number2

and the steps necessary to "unpack" and add them:

have:

1. Extract Number2 into temporary storage.

Z. Shift Number1 completely to the right (18 bit positions).

3. Add the two numbers.

4. Accumulate sum.

5. Repeat this cycle until all forty numbers ~ave been
added (ZO cycles).

Now incorporating these ideas in the form of a flow-chart, we

Start
l_

Extract Numberz into temp. ..,. •
storage cell (initially zero). '

Shift Number1 18 bit positions
to the right.

Number1 + Number2 .

Accumulate sum.

Modify m1 of "ex" and "shift"
commands to operate on next

storage word.

Have we completed ZO cycles? NO

YES
+

Halt.

V-13

MODEL lOZ-A PROGRAMMING MANUAL

V-14

FUNDAMENTALS OF PROGRAMMING

Use of buffer register cells in this program does not imply

a new programming technique, but is intended to show the reader

that they are used exactly like main memory cells. The advantage

in using cells 2000 - 2007 ia that they a.re accessible to the com­

puter eight times as fa.t, :o~ the average, as are main memory

cells.

The method whiy:h we used in this example to cause the com­

puter to make the decision relative to cycling back is worthy of

additional note. This is the method, perhaps, that most pro­

grammers would use inasmuch as it eliminates tallying. The fact

that we are augmenting the m 1 address of (0200) by ''l" each cycle

provides us with a tally. Since the last two numbers to be added

are stored in 032.3, and since (02.00) is modified at the end of the

cycle, the contents of command word 02.00 at the end of the last
I .

cycle will be:

co zoo) = I 3z I [o 3z~ 032.4 ozoo

He_nce, if we are cognizant of this fact and store a word whose

magnitude section is equal to that noted above, we will have a

. "gauge" word (or limiter) for the "test magnitude" command in

02.05. The reader should recall now that the.11test magnitude"

command causes the computer to take its next command from

the m 3 address only if the contents of m 1 is greater than the

contents of m 2 . Consequently we chose to store the following

word in 032.7:

co 32. 7) = _I _0_0 ____ 0_3_2_4 __ 0 3_2_4___.i_z._oo_o_

V-15

MODEL 102.-A PROGRAMMING MANUAL

Now, when the computer executes the "tm" command in cell 02.06

(0206) = I 34 I 0327 l 0200 [0200 I
it will recognize equality between (0327) and (0200), and take its

next command from 0207, which is the "halt"· command.

The next example is intended to instruct the student in the

use of the "test for overflow marker" command as a means of

transferring computer control away from the normal sequential

mode of ope ration.

The word structure and function of this command are as

follows:

TEST FOR OVERFLOW MARKER - "to" - code 27

I ml m2 m3

address of T T address of to I xxxx I
word to be I I alternate

tested l I command
l_

The "to" command causes the computer to test the contents

of the word named by the m 1 address for the presence of a

binary "one" in the overflow bit position. If a bit is present in

this position the machine will automatically take its next com­

mand from the address named in m 3 , otherwise it will continue

in the normal sequence. The m 2 address is irrelevant. It is

noteworthy that in this command the computer bases its decision

merely on the presence of a 11one11 bit in the overflow position of

the specified word, and doe a not- concern itself with how it got

there.

V-16

FUNDAMENTALS. OF PROGRAMMING i· .. : ·

One of the principal uses of the 11to11 command is its use in

conjunction with the "add", "subtract", or "divide'' commands.

The reader's attention is called to the automatic alarm signal
-

built in the computer; that is., if an overflow bit is generated as

a result of any of these commands the computer will automatically

print the contents of the G register (cell 3000) on the Flexowriter

and halt, unless the command in the-program immediately follow­

ing the command that caused the overflow is either "test for

overflow marker" or "shift logically".

In many problems we know ahead of time that the magnitude

of our data will not exceed the thirty-six bit capacity of a word,

consequently,it is not necessary to incorporate any precautionary

logic in the program. However, when it is not known ahead of

time whether overflow will occur, it is necessary to include in

the program logic which will satisfactorily handle the situation

and also prevent the computer from baiting. The following ex­

ample illustrates a· typical method of using the 11to" command for

this purpose.

Assuming the possibility of overflow now, the following

flow-chart shows how we intend to handle this situation in a prob­

lem which requires the sum of ten given numbers:

V-17

MODEL lOZ-A PROGRAMMING MANUAL

Sl:_rt

Add; i. e. , accumulate
--" , sum by adding next

number.

Test sum for overflow. YES .. Tally 11 111 for record
~

of overflow.

+NO Return to routine
1 (unconditional transfer).

Modify previous "add" ~

command (add 111" to
mz address).

NO Have we added ten
numbers?

YES
,tio

Halt.

Since we will follow the "add" command by a "test for over­

flow marker" command the computer will not halt if overflow

occurs, but will take its next command from a cell which will

instruct it to tally 11 111 , and unconditionally return to the routine

so that the problem may continue. At the conclusion of the

problem, the cell containing the tally of overflows would be the

most significant part of the sum.

Consider the ten numbers stored in cells 1100 - 1111, and

the program beginning in 12.00. The corresponding code is

shown:

V-18

FUNDAMENTALS OF PROGRAMMING

Address I Remarks

lZOO ad 35 zooo ~ 10~ zooo Next number added to (ZOOO),
initially zero.

lZOl to 37 zooo ZlOO* lZOS Is an overflow bit present
in (ZOOO)?

lZOZ ad 35 lZOO 1Z07 lZOO Modify (lZOO); i.e.• add "l"
to m 2 of lZOO.

1Z03 tm 34 lZlO lZOO lZOO Have we added ten numbers?
No, return to lZOO.

1Z04 ht zz 0000 0000 0000 Halt computation.

1Z05 ad 35 lZll Z.001 ZOOl "l" + (ZOOl)-+ZOOl - (overflo w
tally), initially zero.

1Z06 tm 34 lZlO ZlOO lZOZ Return to 1 ZO Z.

1Z07 00 0000 0001 0000 Modifier for lZOZ.

lZlO 00 zooo l llZ zooo "Gauge" for test in 1Z03.

lZll 00 0000 0000 0001 11 111 for tally in 1Z05.

1100 00 650Z 3450 0000 I".'.

1101 oz 7300 Z540 0300
>Numerical

. Data .

1111 00 0470 6600 0000 ,

2.000 00 0000 0000 0000 Working storage, initially zer

2001 00 0000 0000 0000 Used for tally, initially zero.

*Since the m 2 addr~ss in the "to" command is irrelevant, use 2100.

Emphasis is placed on commands, 1Z05 - 12.06, which keep

track of the number of overflows and return computer control to the

routine of adding. We referred to command 1Z06 as being as un­

conditional transfer command; it is coded in such a way that the test

V-19

o.

MODEL 102-A PROGRAMMING MANUAL

will always "work" and computer control will always transfer to

1202. The reader is reminded that address 2100 supplies us with

a cell of all zeros, hence, any available non-zero program constant

can be used as the m 1 reference in command 12.06.

At the present time we will not attempt to familiarize the

student with additional 102-A commands. The next two sections

will deal with general internal computer operation, followed by

the entire command list and additional tutorial examples.

V-ZO

VI

FILLING THE COMPUTER

At this point we will endeavor to bridge the gap in

comprehension that so often occurs when passing from a general

discussion of the machine to a discussion of the intrinsic nature

of its operation, as presented in the following section on the

control unit.

When the computer is being filled the control unit plays

its simplest role; hence, the information contained in this section

will serve as an excellent stepping stone for grasping knowledge

of the essence of the lOZ-A. We will restrict the discussion, for

the present time, to initial input from the Flexowriter unit -- the

primary source of all input.

Initial filling, or proper internal positioning of a given

routine, merely implies transcribing words from a code sheet to

the designated memory cells. Simplicity of the fill process is

further emphasized by the fact that the entire contents of a word

are numerical characters, which correspond to the Flexowriter

numerical keys. Also, the appearance of the Flexowriter unit

(page V-la) is similar to an ordinary typewriter, and when the

proper key is struck binary information automatically enters the

102-A.

First it will be necessary for the student to learn the

function of a few additional Flexowriter keys that control the

positioning of information being filled into the computer, and some

of the functions of the E and H registers.

1. The E register, which is a one-word input register, is

the only means by which information can enter the 102.-A

from the Flexowriter. When a Flexowriter key which is

Vl-1

MODEL lOZ-A PROGRAMMING MANUAL

significant to the computer is struck, the equivalent

binary representation automatically enters the least

significant end of the E register.

Z. The Flexowriter 11 0 11 key prepares the computer for octal

fill, and clears the E register (resets to zeros). Once

the 11 0 11 key has been struck, any significant Flexowriter

key will cause three bits per character to enter the E

register according to Table 6, page VIII- Z6 . It is

noteworthy, however, that the computer is normally

prepared for octal input.

3. The Flexowriter 11 d 11 key prepares the computer for deci­

mal fill, and clears the E register. Once the 11d 11 key

has been struck, any significant Flexowriter key will

cause four bits per character to enter the E register

according to Table 5, page Vill-Z5.

The following example illustrates the function of the E regis­

ter during fill:

The result after striking the 11 0 11 key, then the 11 7 11 key:
7

(Note that the 11 0 11 key has cleared the E register)

Then, after striking the 11 511 key:

7 5

El 111 1011

Then, after striking the 11 311 key:

7 5 3

El 111 101 0111

VI-Z

FILLING THE COMPUTER

In this same example, if the Hd" key had been struck in­

stead of the "o" key, the res\ilt would have been:

7 5 3

E -"~---~~~~~~~-0_1_11~0-1_0_1~0_0_11_.

This procedure of filling the most significant digit of a word

first, and the automatic shifting of the word as the next digit

enters, would continue until the one-word capacity of the E

register is satisfactorily filled. If additional digits are

entered after the E register is completely filled (14 octal or

10 decimal digits), the equivalent number of digits will be

lost off the left end.

4. The H register is a one-word control register. During "fill"

the function 0£ the H register is to control the transferring

of the word in E to the memory cell named by the address in

m 3 of H.

5. The te_tt (hyphen) key will transfer information from the E

register to the H register, and also clear the E register.

It is in this manner that we are able to place a monitoring

address in Hat any time. For example, if we wish to place

the octal address, 162.5, in m 3 of H we merely type it into E,

and transfer its contents into H by use of the hyphen key.

This procedure is illustrated below:

Type "162.5":

E I 00 0000 l. 0000 t 162.5 1

H I xx :xxxx ; :xxxx ! xxxx I (irrelevant)

VI-3

MODEL 102-A PROGRAMMING MANUAL

Strike the 11 - 11 key and the result will be:

E oo 1 0000 opoo 0000 I
H oo 1 0000 0000

Ii 16zs I
All addresses and command words must be filled in the

octal mode.

6. The "TAB" key. The transfer of the contents of the E regis­

ter to the memo:ry cell named by the address in the m 3
portion of the H register is effected by striking the Flexo­

writer "TAB" key. Striking the ''TAB" key also clears the

E register, and augments the current address in m 3 of H

by "1." The fact that m 3 of H is automatically increased

by "l" when the "TAB" key is struck permits information

to be filled into sequentially numbered memory cells when

only the initial address is placed in H.

7. The Flexowriter "f" key is a special character that is used

to fill the equivalent of four octal or four decimal zeros. -- --------
Striking the "f" key enters~~ and signals the computer

to circulate the contents of E left three additional digit posi­

tions (octal or decimal, depending on the mode of input).

If, in the example of Item l, the "ff' key had been struck next,

the E register would contain the following:

1 s 3 o* o 0 0

E I 111 101 011 000 000 ooo ooo I
However, if E contained

E 0 z 1 z 5 0 7 7 3 z 5 0 3 5

*Indicates the "zero" entered because of the "f" key.

VI-4

FILLING THE COMPUTER

and the "f" key was struck, the result would be

E I s o I 1 1 3 z s o 3 s o* o 2 i j

Consequently, the "f" key will enter four zeros only when

the three left most digits of E are zeros.

8. The Flexowriter .. !." key controls the start of machine

computation. After the routine is completely filled, we

insert the address of the first command to be executed in

the !!1z position of.!:!· Thct E and H registers would take

on the following form during this procedure:

Type address of initial command: (abed denotes an abritrary
address)

mz m3

E 0000 0000 abed

Strike the "f'' key:

E I 00 0000 abed 0000

Strike the "-"key:

H I 00 0000 abed 0000

Now, when the "s" key is struck, computer operation will

be initiated according to the address in mz of H.

As an illustrative example of the fill process, consider_ the

sample code on Page V-5. In this example, we have indicated

that we want to fill data in main memory cells 0600 - 0612. and the

sequence of commands in cells 0100 - 0112.. The sequence of

events for filling this e~mple are as follows:

*Indicates the "zero" entered because of the Hf" key.

VI-5

MODEL 102.-A PROGRAMMING MANUAL

(1) Strike "o," which clears E and prepares computer to

accept octal address 0100. and octal command words

to follow.

(2.) Type "0100."

E I 00 I 0000 0000 0100

(3) Strike "-" {hyphen), which transfers E to Hand clears

the E register.

(4) Type 35060006010700.

E I 35 I' 0600 i 0601 0700

(5) Strike "TAB." Contents of E are transferred to main

memory cell 0100;,E is re-set to all zeros; H now

contains:

H I 00 I 0000 ! 0000 0101

(6) Continue typing the command list, and tab after each

command is properly filled in E.

(7) After the last command is filled m 3 of H contains 0113.

In order to begin entering data in cell 0600, we must

change m 3 of H; hence, type "0600."

E I 00 I 0000 ! 0-000 ! 0600

(8) Strike "-" (hyphen), which transfers E to H and clears

the E register.

H 00 0000 0000 0600

VI-6

FILLING THE COMPUTER

(9) Type 2.0000002.16532.

0000 002.1 6532.

(10) Strike "TAB. 11 Contents of:& are transferred to main

mem.ory cell 0600; Eis reset to all zeros; H now contains:

H t 00 0000 l 0000 0601

(11) Type remaining data words and tab after each number

has been properly filled in E.

(12.) Type "0100f, 11 which p~aces initial command address in

m2. of E.

E I 00 .I 0000 0100 0000 I
(13) Strike "-" (hyphen), which transfers E to H.

H I 00 .I 0000 0100 ! 0000

(14) Strike "s." Computer operation begins (see Section VII­

Control Unit). Pressing the "compute" button on the oper­

ator""s console has the same effect.

Since errors will often occur when typing on the Flexowriter,

the following methods indicate how corrections can be made:

1. If an error is noted before the "TAB" key is struck,

it can be corrected by merely typing in the full word

again. The contents previously entered can actually

*It is not necessary to type zero in this position if the
E register is already clear.

VI-7

MODEL 102-A PROGRAMMING MANUAL

be ignored because the E register ha• only a one-word

capacity and all previous information will have been, so

to speak, pushed out. Consider the octal number,

+603215270317; and the typographical error indicated

below:

E _ , + 6 o s I
\error

The following schematics illustrate the contents of the E

register as the correction is made.

*
E + 6 0 5 0 + 6 0 3

*
E jo +16 0 3 Z 1 5 2 7 0 3 1 7

An alternate method for correcting an error before the

"TAB" is struck would be to strike the "d" or "o" key

(depending on the mode of fill at the time), and then re­

type the correct information. The "d" or "o" key~­

matically clears the E register.

2. If an error is detected after the "TABH key has been struck,

it is necessary to re-enter the address in the H register

before entering the correct information. In this way, we

_merely write over the incorrect data already entered in the

memory.

*When a number is filled initially, this zero is usually omitted
because the E register has previously been re-set to all zeros.
However, if it were not entered while making this ·correction,
the preceding 5" would not be pushed off and remain as incorrect
data.

VI-8

FILLING THE COMPUTER

Flexowriter Paper Tape. Attached to the side of the Flexo­

writer unit is a paper tape "punch" and "read" unit. It is possible

to simulate the complete fill process by punches on a paper tape.

Preparation of the paper tape is identical to the manual filling

process. Once the "PUNCH ON" control is depressed, striking

any Flexowriter key will automatically punch a distinct configura­

tion of holes in the paper tape as shown in the following diagram.

0 0 0 0

Sprocket holes

0 0 0
0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

00 0
00 0
0 0 0

1 Z 5 TAB f

T
7/811

l_

A "READ TAPE" Flexowriter control permits punched paper

tape to be fed into the Flexowriter and communicate with the lOZ-A.

The Flexowriter interprets the punched holes as if a human operator

were striking a key. Paper tape feeding may be halted automatically

by a "STOP CODE" punch on the tape. A punched paper tape, then,

can fill the computer, start computation, and halt itself from further

feeding.

The principal feature of using punched paper tape is that the

tape can be prepared on a separate Flexowriter unit, and it can be

proofread and corrected prior to its being fed into the computer.

Hence, many new tapes can be prepared and checked while computer

operation is in progress. Also, paper tape makes a permanent and

accurate copy of a routine available for future use.

At the beginning of this section emphasis was placed on the

simplicity of the filling process because only the Flexowriter o,

VI-9

MODEL 102.-A PROGRAMMING MANUAL

d, -, f, s, TAB, and numerical keys are used. No comments

were made relative to the results of striking any of the Flexo­

writer keys not mentioned above. However, it is noteworthy now

that all other Flexowriter characters ~ not significant to the

computer, with the exception of the PERIOD key and SPACE bar; -- -- -- -
Nothing will enter the 102.-A, then, unless one of the above men-

tioned characters is struck.

A more technical discussion of the functioning of the E

register in conjunction with the Flexowriter data and control keys

during fill is given in appendix I.

VI-10

VII

CONTROL UNIT

The control unit, consisting of the H and G registers, is in

essence the automatic feature of the computer. Its function is to

guide the complete operation of the machine under the influence

of the coded program.

Section VI dealt with filli11g the eomputer and illustrated

how the address of the initial comrnaJid in the program was placed

in m 2 of th~ H register. The next, and final, step listed in the

sequence of events was to strike the "s" key on the nexowriter

or the ."COMPU'J;'E" button on the operator.,& console. From this

point on the control unit, or automatic feature of the machine,

takes over.

Sketches illustrating the contents of the H and G registers

during the various phases of control are furnished to aid in the

discussion. We will follow the example on page V-5 under i:Q.­

fluence of the control unit. We start, then, with the address of

the initial command in the m 2 portion of H, and the "s" key having

been struck. The H register appears as follows:

I

H 00 0000 0100 0000

The initial address, 0100, is referred to as the control number.

First, the machine will automatically seek the contents of

cell 0100; that is, the start of any computation is always channel

and sector selection of the m 2 address of H. After cell 0100 is

selected the following events take place simultaneously during the

next unit tii;ne interval of machine operation (one word-time):

VII-1

Thus,

MODEL 102.-A PltOGRAM;MING MANUAL

l; The control number (m2) is augmented by one and

the entire contents of Hare transferred to G.

2.. The con.tents of cell 0100 are read from the mem-

ory and written in H.

G and H contain:

I ml mz m3

G 00 0000 ~- 0101 ooooj

H 35 0600 : 0601 07001

Next, the computer proceeds to locate the memory cells

named by the m 1 and m 2 addresses in H. The contents of these

cells are read from the memory and written in the E and F reg­

isters, respectively. Immediately after the contents of cell 0601

are found and written in F, the next control number in m 2 of G

(0101) is copied into H. The appearance of Hafter execution of

these phases of control is shown below:

I

H 35 0600 0101 0100 I
Next, the operation named in the I section of His per­

formed. Since this is an "add" command, the E and F registers,

which hold (0600) and (0601) are added and the sum is generated

in E.

Finally, the result is written into the memory cell named

by m 3 of H, namely, 0700. At the conclusion of this phase of

control the machine will automatically return to the first phase

of control operation

Vll-2.

CONTJlOL UNIT

The procedure from now on is actually repetitive. As be­

fore, the cell named in the m 2 portion of H {new control number)

identifies the next command to be obeyed. After having selected

this cell the machine reads its contents from the memory and

writes it in H, and at the same time augments 0101 by one, when

transferring H to G. Hence, the contents of H and G would be:

I

G 00*1 0600 0102. 0700

H I 35 I 0700 0602. 0700

This, then, is a brief illustration of how the computer would

obey the first command of a given program, and proceed sequen­

tially until the problem would be completed. The final command

that definitely tells the computer to stop is the "halt" command in

cell 0112,interpreted as such by the machine from the 2.2. code.

Since execution of the "halt" command becomes effective as

soon as the control unit recognizes the 2.2. code, the m 1 and m 2
add:resses are irrelevant -- they are merely selected and read

from the memory because of the systematic procedure of control

unit operation. "Rest" is the idle conQition, in which the computer

remains until either the operator's console HCOMPUTER" button

is pressed, or the Flexowriter "s" key is struck.

~.!!~~t Operation Procedure Briefly Summarized:

1. The computer selects the memory cell named by

the address in m 2 of H (control number).

2. The contents of this cell are read from the memory

and copied into H, and at the same time the content•

then in Hare transferred to G with Hl" being added

*In the course of executing a command the computer reduces
the I digits in H to 00; consequently, the I digits of G will be
00 when His transferred to G.

VII-3

MODEL 102-A PROGRAM.MING MANUAL

to the m 2 address (m2 of G now holcls the next

control number).

3. The cell named by m 1 of H ia read from the

memory and its content• are. copied into the

E register.

4. The cell named by m 2 of H ia read from the

memory and its conten.ts are copied into the

F register.

5. The m2. address of G (next control number) is

copied into H. Note that only m 2 of G is copied.

6. The operation called for by the instruction in

the I portion of H is executed, and the I portion

of H becomes zero.

7. The result, now in E, is written into the mem­

ory cell named by m 3 of H.

8. Return to 1 above. or to "rest. "

The alternate code for adding ten numbers on page V-10

utilized the procedure of transferring control away from the

sequential mode of operation by means of a decision command.

What. then, will be the reaction of the control unit under the in­

fluence of a decision command?

The reader is reminded that during autopiatic control \lnit.;

operation the address of the next command in numerical sequence

is always in m 2 of H (step 5 above) just prior to the conclusion of

execution of the current command: However, in a decision com­

mand, if the test works, the address of the next command is in

m 3 of H. Therefore, since the address of the next command must

always be in m 2 of H (step 1 above), the final phase of control

VII-4

CONTROL UNIT

operation in a decision command when the ~ works will ~­

maticail~irculate H ~ ~ octal digit positions (m3 of H-+mz

of H). However, in a decision command when the test fails, H

will not be circulated left and the next command in numerical se­

quence will still be in mz of H. Hence, in either case (test fails,

or works) when computer control is returned to step 1 at the con­

clusion of a decision command, the proper address will be in mz

of H.

As an illustration, consider the sample code on page V- 10.

In the course of computer execution of this code, and during step Z

of computer control, when (0103) is read from the memory and

written in the H registel", G and H will contain the following:

I ml mz m3

G 00 0614 0104 06151

H 34 0616 0615· 0100 I
After (0616) and (0615) are read into E and F, and the control

number is copied from mz of G into mz of H (thru phase 5 of

control unit operation), the H register will contain

H I 34 I 0616 ! 0104 I 0100 I
Next, the instruction specified in this "test magnitude" com­

mand causes the computer to compare (0616) with (0615), which

are held in E and F, respectively. If the magnitude section of E

is larger than the magnitude section of F, the test works and His

circulated left four octal digit positions; that is, H will contain

the following:

VII-5

MODEL lOZ-A PROGRAMMING MANUAL

H 16 0104 0100 0000* I
Hence, if the test works the next control number is 0100.

On the other hand, if the test fails, H remains unchanged

and the address of the next command, 0104, remains in ml of H.

In either case, computer operation is immediately returned to

the first step of control unit operation.

An understanding of the functioning of the control registers

will prove to be of considerable help to the programmer.

1. He may wish to use cell 3000 as an operand in

a command. A knowledge of its contents would,

of course, be essential.

l. Alarm checks exist that cause the computer to

print the contents of the G register on the Flexo­

writer. This will occur whenever a number,

rather than a command, is brought into the

control unit, or whenever overflow occurs dur­

ing addition, subtraction or division. Thus, re­

calling that G will always contain the next con­

trol number, we can scrutinize m 2 of G and

determine the guilty memory cell.

The discussion of the control unit presented in this section

illustrated the automatic operating features of the machine.

*The first of these four zeros is intr'oduced by the computer
when it circulates the H register. The next two zeros have
peen carried around from the I portion (previously reduced to
00). The last zero is the most significant digit from the m 1
address, also carried around by the circulation of the H register.

VII-6

CONTROL UNIT

Emphasis is placed on the fact that once computation has been

started with the address of the initial command it will auto­

matically continue with commands located in numerically se­

quential cells, unless a decision command causes a transfer of

control. When a transfer of control does take place, the com­

puter will automatically resume its sequential mode of operation

beginning with the command named by the m 3 address of the

transfer command.

Channel and Sector Selection Operation for Reading and Writing

This systematic procedure by which the machine reads and

writes information to and from the memory is a function of how an

address appearing in the H register is interpreted with respect to

channel and sector selection, which was treated as a routine step

in the previous discussion.

For investigative purposes let us label the octal digits of any

address present in either m 1• mz• or m 3 of Has o4 • o3• Oz• o1,

and the corresponding bits by the L"s and B's indicated in

Tables 2 and 3. First, the computer will scrutinize the L 1 -L5
bits and select the corresponding memory channel by bringing

the proper circuitry into operation. Next, selection of the de­

signated sector of this channel is accomplished by means of the

word channel. In brief, the bits corresponding to the sector portion

of the address (02 o1) are compared with those of the permanently

recorded word channel, as the word channel passes its read-write

head. Only when these numbers coincide does the machine know

that it has located the correct sector. Since a full word time is

involved in comparing each sector of the word channel, the next

cell to appear under the read-write head of the chosen channel will

be the correct cell as named by the address in the H register.

VII-7

MODEL lOZ-A PROGRAMMING MANUAL

It is noteworthy that the selection procedure of a main

memory cell is the same whether reading or writing. The

selection procedures for cells ZlOO, 3000 and the buffer regis­

ter differ when reading or writing. The following tables will

help emphasize this difference.

04 03 Oz 01

L6 Ls L4 L3 Lz Ll B6 BS B4 B3 Bz Bl Memory Address

1 1 3000

1 0 l ZlOO

1 0 0 0 0 0 zooo

1 0 0 0 0 1 ZOOl

1 0 0 0 1 0 zooz

1 0 0 0 1 1 Z003

1 0 0 1 0 0 Z004

l 0 0 1 0 1 zoos

1 0 0 1 1 0 2.006

1 0 0 1 1 1 ~007

0 x x x x x x x x x x Main Memory

Table Z. Channel and Sector Selection for Reading

VII-8

CONTROL UNIT

04 03 02 01

L6 Ls L4 L3 Lz Ll B6 BS B4 B 3 Bz. B 1 Memory Address

1 0 0 0 2.000

1 0 0 1 2.001

1 0 1 0 2.002.

1 0 1 1 2.003

1 1 0 0 2.004

1 1 0 1 2.00S

l 1 1 0 2.006

1 1 1 1 Z007

0 x x x x x x x x x x Main Memory

Table 3. Channel and Sector Selection for Writing

X: denotes the possibility of either 0 or 1.

Hyphen(-): denotes bits ignored by machine during selection.

Careful examination of these tables reveal the following important

facts:

1. The differences in reading and writing procedures

are based primarily on the differences in channel

selection.

Z. The L 6 bit (most significant bit of an address) is totally

irrelevant. ·

3. The Ls bit selects either 2.100, 3000, or the buffer if

equal to "l"; and the main memory if equal to HO".

4. The L 1, L 2 , L 3 , and L 4 bits are ignored when writing

(if Ls is "1") hence, it is impossible to write into cells

2.100 and 3000. The buffer would be selected instead.

VII-9

MODEL 102-A PROGRAMMING MANUAL

5. Sector selection for the buffer takes place only over

the least significant octal digit o1.

6. The machine ignores any four octal digit addresses

referring to a non-existent memory cell, and will

choose a cell according to the bits significal'lt to the

ma.chine. For example, if told to ~ from cell

2106, the machine would read cell 2100, since only

the underlined bits are relevant.

If told to write into this same cell, cell 2006 would

be written into, since a different set of bits are

relevant for writing.

02.

000

It is essential that the programmer become familiar with

the procedure used within the machine for interpreting an ad­

dress when reading or writing. Many useful applications in

problem programming will result from a skillful use of the facts

illustrated in Tables 2 and 3.

VII-10

\

VIII

COMMANDS

Before further study in programming is attempted, it is

esaential that the student become familiar with the entire list of

lOZ-A commands, which are the programmer's tools for in­

structing the computer to efficiently carry out the solution of a

given problem. Techniques of using the commands will be

further illustrated by tutorial examples in the following sections.

Listed below are the twenty-five commands in the order

of thei::r octal codes.

Octal* Abbrevi-
Code ation Instruction

04 bo Buf,.fer out
OS bl Buffer Load
06 re Read I. B. M. card
11 fl Fill (from Flexowriter tape)
l;I pd Punch I. B. M. cal'd - decimal
13 po Punch I. B. M. card - octal
14 bs Block Search
15 wt Write Magnetic Tape
16 rt Read Magnetic Tape
17 ts Teat Switch or Test Sea.rch
21 pr Print on Flexowriter
22 ht Halt computation
23 dr Divide and Round-off
24 dd Divide and Save Remainder
25 mr Multiply and Round-Off
26 md Multiply Double Length
:J.1 sl Shift Logically
30 sm Shift Magnitude
31 sf Scale Factor
3Z. ex Extract
33 ta Test Algebra~cal::t}s
34 tm Test Magnitude
35 ad Add
36 SU Subtract
37 to Test for Overf19w Marker

Table 4.

*Any octal code other than those listed, if used in a command
word, would cause the computer to print the contents of the G
register on the Flexowriter and automatically halt computation.

VIII-1

MODEL lOZ-A PROGRAMMING MANUAL

Emphasis must be placed on the fact that the contents of a

word in the memory may be either a command or a number, and

both commands and numbers can be referred to as operands by

any command. The approach, then, when learning the commands

is to concentrate on the basic function of each command, while

keeping in mind that the operands could be either commands or

numbers.

All commands are of the form

Hence, we will expound each command by qualifying its m 1, m 2 ,

and m 3 addresses. The contents of a cell is distinguished from

its address by parenthesizing that address -- (m1), (m2). or (m3).

ADD - "ad" - code 35

This command operates in two distinct ways, as indicated below:

a. Addition of two numbers. The magnitude sections of (m1)

and (m2) are added algebraically (signs considered), and

the sum is recorded in m 3 . If the sum exceeds the

capacity of the thirty- six bit magnitude section, a "l"

is recorded in the overflow bit position, whereupon the

machine prints the contents of G and automatically halts

computation. However, if the next command is "Test

for Overflow Marker" or "'Shift Logically," G will not

be printed and computation will continue normally.

b. Addition of a number and a command. This alternate

mode of addition is intended for modification of the

address(es) of a command word; that is, the magnitude

vm-z

COMMANDS

section of a number addressed by m 2 is added to the

magnitude section of a command word addressed by m 1,

and the instruction code of the command word is re­

tained in the sum. Even though overflow might have

occured in this mode of addition, the overflow bit will

not be generated and the overflow alarm will not be set.

The reader is cautioned that this operation will be

executed properly by the "ad" command only if the com­

mand word is named by m 1 and the number by m 2 . If

these addresses are interchanged, the machine will add

the two words as two algebraic numbers, and not retain

the instruction digits of the command word.

The above expositiOn of the "ad" command is certainly ade­

quate for the average programmer's use; nevertheless, experience

has taught us that the programming student has a strong desire to

understand how the control and arithmetic unit functions during the

execution of arithmetic operations. Consequently, we will simulate

the operational procedure of the control and arithmetic unit during

the execution of a sample "ad" operation. However, we will not

treat all commands in this way, since an understanding of the mech­

anization of commands is not a prerequisite for programming.

Example: Consider the "adtt command,

I ml mz m3

35 0410 0411 0410,

where (0410) = 36 02.06 02.2.0 0600

(0411) = 00 0000 0001 0000

We intend this "ad" command to add "l" to the m 2 address

of the command in 0410. Consider, then, that this command has

VIII-3

MODEL lOZ-A PROGRAMMING PROGRAM

been brought into the control unit and that the systematic oper­

ation of the control unit has automatically read and recorded

(0410) and (0411) into the E and F registers, respectively.

Consider, also, that the new control number has been copied

from G to H.

Now, the add operation will be carried out. First, the

proper mode of addition must be determined. The machine makes

this decision by scrutinizing the I portion of E (the contents of F

plays no role in this decision). The decision is·: If E contains a

command, then E and F are a:dded accordingly, otherwise E and

F will be added as if they are both numbers.

Next, the addition is performed according to the above de­

cision, with the result appearing in E as follows:

E contains a command. According to the sign bit of F,

ite magnitude section is added to or subtracted from

the absolute value of the magnitude section of E. The

sum is collected in E, and the instruction digits in E

are retained. The geAeration of an overflow bit is

suppressed in this mode of addition. From the example,

we have, then:

E 36 OZ06 ozzo 0600

F 00 0000 0001 0000

Adding, the computer obtains

E + F--+ E =I _3_6~1 __ o_z_o_& ___ o_z_2_1_....__0_6_0_0__,

Finally, the sum in E is recorded in the memory cell named by m 3.

VIII-4

COMMANDS

We are now in a position to consider what would happen if,

in attempting to modify a command, we interchanged the m 1 and

mz addresses. Of course, E would not contain a command, and

the computer would decide to add E and Fas if they both contain

numbers. This mode of addition -- two numbers -- is executed

by the machine in the following manner:

The magnitude sections of E and F are added alge­

braically, as the computer considers only the single

sign-bit of the I portion of each word, and the sum

is collected in E. An overflow bit will be recorded

in E, if necessary, and a warning to print G and halt

computation will be is sued to the computer in the

event the next command entering the control unit is

not a "test for overflow marker" or "shift logically"

command.

It is noteworthy that the overflow bit of either

operand might, for various reasons, contain a-"1"

prior to addition. If this bit is present in E it will

appear in the result; if this bit is present in F (but

not in E) it will not appear in the result. However,

in either case the overflow alarm will not be set un­

less actual arithmetic overflow occurs.

Using the above example for this mode of

addition, E and F would contain:

E 00 0000 0001 ! 0000

F 36 0206 0220 I 0600

vm-s

MODEL 102-A PROGRAMMING MANUAL

Since E contains a number, E and Fare added

algebraically: That is, F will be considered a

negative number in the addition process because

of the "l" in the sign bit position (36 = 011 1 !0).

Hence, the result

E + F--+ E = ... l _0_2 __ ! _0_2_0_6__._0_2_1_1___.,___0_6_0_0__,

would be meaningless on the basis of our intent to

modify the given command.

Modification of a command, then, involves a conditional use

of the "ad" command. Because of the automatic traits of the add

operation it is imperative that the "ad" command be used properly-­

m1 must name the command word and m 2 must name the modifier.

SUBTRACT - "sun - code 36

This command is executed by the computer in the same

manner as the "ad" command, to the extent that the computer will

recognize a command named by the m 1 address and modify it by

the number named by the m 2 address. For subtracting numbers,

the word structure for the subtract command is:

Example:

(m 1) = minuend

(m2) = subtrahend

m 3 = address of difference

SU m 1 m 2 m 3
36 0312 0345 0400

(031Z) = 00 000000005642

(0345) = 00 000000000 l la
Result in (0400) = 00 00000000 5530

vm-6

COMMANDS

MULTIPLY DOUBLE LENGTH - "md" - code 2.6

Mechanized multiplication in the 102.-A automatically mul­

tiplies the contents of two words as two numbers; that is, the

magnitude sections of (m1) and (m2) are multiplied to form the

product. Since each operand is thirty-six bits long and the auto­

matic multiplication process considers all thirty-six bits (zeros,

or not), the available product is seventy-two bits long, or two

full words. The sign of the product, determined from the sign

bits of {m 1) and (m2), appears in each word of the product. Any

other information present in the sign portion of the operand will

not effect the product.

The "md" command allows for a two word product storage

by recording the least significant half of the product in cell m 3
and the most significant half of the product in the next cell ad­

jacent to m 3 on the surface of the drum.

In illustrating the "multiply" and "divide" commands, in

order to enable the student to follow the arithmetic more con­

veniently, we have chosen decimal numbers and shown the re­

sults in decimal form. The student is cautioned again that, when

using the arithmetic commands, decimal numbers must first be

converted to octal form.

Consider the "md" command,

md

2.6

*In these examples, we have written the command to store the
result in the buffer register, since in the buffer, consecutively­
numbered cells are physically adjacent. However, in the main
memory, consecutively numbered cells are not physically ad­
jacent. The programmer need not concern liiiiiself with this fact
except in using the five multiple-put-away commands noted in this
section. In the section dealing with minimum-access coding, we
will discuss the numbering scheme used in the main memory.

vm-1

MODEL 102.-A PROGRAMMING MANUAL

Example 1:

(02.10) = +000056933

(02.00t = -000067083

product = -000000003 -8192.36439

(2.001) (2.000)

M. S. H. L. S. H.

Example 2.:

(02.10) = +000000012.

(02.00t = +000000012.

product= +000000000 +000000144

(2.001) (2.000)

Example 3:

(02.10) = +120000000

(02.llt = +12.0000000

product= +014400000 +000000000

(2.001) (2.000)

Example 4:

(02.10) = -900000000

(02.l lt = -800000000

product= +72.0000000 +000000000

(2.001) (2.000)

MULTIPLY AND ROUND-OFF - "mr" - code ZS

The "mr" command obtains a product in exactly the same

way as the Hmd" command, except that only the most significant

half of the product is retained by the machine; it is rounded if

the least significant half is 1I2. or greater, and then recorded in

cell m 3 . If the "mr" command was used in the above examples,

the rounded products would be as follows:

Vlll-8

COMMANDS

Example 1:

(2000) = -000000004

Example 2:

(2000) = +ooooooooo

Example 3:

(2000) = +o 14400000

Example 4:

(2000) = +720000000

These examples clearly indicate that a product will never

overflow; and emphasizes the importance of digit position in a

word with respect to the position of the product, and with respect

to the choice of the most satisfactory multiply command.

DIVIDE AND SA VE REMAINDER - "ddtt - code 24

Mechanized division in the CRC 102-A divides the algebraic

value of (m 1) by the algebraic value of (m2) and produces a quotient

with the proper algebraic sign; however, a valid quotient is solely

dependent on the position of the operands within the word. The in­

flexibility of the mechanized procedure assumes the binary points

of both divis.or and d.ivident to be located in the same position in

the word, and automatically forms the fractional quotient as if its

binary point is at the left end of the magnitude section. If the ab­

solute quotient is less than two, the unit digit ("l" or "0") will ap­

pear in the overflow position and the fractional representation will

appear in the magnitude section. On the other hand, if the quotient

is two or greater, it will be recorded as a meaningless number.

In either case, when an overflow bit is generated, the computer

will cause an overflow alarm and react in the same manner as in

the "ad" command.

VIII-9

MODEL 102.-A PROGRAMMING MANUAL

The "ddH command assumes the following word structure:

(m 1) = dividend

(lllz} = divisor

Remainder is recorded in m 3.

Quotient is recorded in next cell adjacent to m 3 on the

surface of the drum (See footnote to "multiply double" command,

page Vlll- 7).

The remainder will appear in m 3 in proper position for a

repeated division, if desired, and it will have the same sign as

(ml).

Consider the "dd" command,

dd

2.3

and the following examples, using decimal numbers as before:

EXa.mple 1:

(02.10) = -2.00000000

(02.11) = +300000000

Quotient in (2.00 ll = - • 666666666

Remainder in (2000} = -200000000

Example 2:

(0210) = +300000000

(0211} = -200000000

Quotient in (2.001) = -1. 500000000 (overflow alarm)

Remainder in {ZOOO)· = +000000000

VIII-10

COMMANDS

Example 3:

(0210) = +030000000

(0211) = -200000000

Quotient in (2001)" = -. 150000000

Remainder in (2000) = +000000000

Example 4:

(0210) = -000000020

(0211)" = -000000030

Quotient in (200 l} = +. 666666666

Remainder in (2000) = -000000020

Example 5:

(0210) = +000020000

(0211} = +000003000

Quotient in (200 l} = meaningless

Remainder in (2000} = meaningless

DIVIDE AND ROUND-OFF - ''dr" - code 23

(overflow alarm)

The "dr" command word structure is the same as "dd, 11

except that the quotient is rounded according to the ratio of the

remainder and the divisor, and recorded~ cell m 3• If the "dr"

command was used in the above examples, the rounded quotients

would be as follows:

Example 1:

(2000) = -. 666666667

Example 2:

(2000) = -1. 50000000 (overflow alarm)

Example 3:

(2000) = -. 150000000

VIII-11

MODEL 102.-A PROGRAMMING MANUAL

Example 4:

(2.000) = +. 666666b67

Example 5:

(2.000) = meaningless (overflow alarm)

SHIFT LOGICALLY - " sl" - code 2. 7

The "sl" command will shift the entire contents of a

word a specified number of bit positions to the left or right.

Digits shifted off one end of the word will be replaced by zeros

on the opposite end.

Command structure:

(m 1) = word to be shifted

(m2) = the direction and number of shifts. The

number of shifts is specified by the magni­

tude section as an octal number; The

direction of shift is specified by the sign

section, that is, a negative number will

cause a right shift and a positive number

will cause a left shift.

m 3 = address of shifted word.

Example: Consider the problem of shifting the com­

mand word.

35 0100 0101 02.2.2

in such a way that the I portion will occupy the m 1
position, and of storing the result elsewhere in the

memory (shift 12 bit positions to the right). Assume

the command word which will be shifted to be stored

in cell 0300.

vm-12

COMMANDS

Solution: Write the "sl" command,

27 0300 0400 0320

where (0400) = 02 0000 0000 0014

The shifted result would be:

(0320) = 00 0035 0100 010 l .

SHIFT MAGNITUDE - "sm" - code 30

The function of the ttsm" command is exactly the same as

the "sl" command except that only the magnitude portion of the

operand will be shifted. Zeros will appear at either end of the

magnitude section to replace digits that are shifted ~ff the other

end; the sign portion will be unchanged. For instance, if in the

previous example a "sm" command was used, the result would be

(0320) = 35 0000 0100 0101.

SCALE FACTOR - "sf" - code 31

The "sf" command will shift the magnitude portion of a word

left until a binary "one" appears in the most significant binary

position of the magnitude. The machine records the number of

bit positions shifted by subtracting this number from (m 1). The

command structure is as follows:

(m 1) = an arbitrary number (chosen by the programmer)

from which the numbe'r of shifts is subtracted.

(m2) = word which will be shifted.

(m3) = (m 1) minus the number of bit positions shifted.

The shifted word is recorded in the next cell adjacent to m 3 on the

surface of the drum (See footnote to "multiply doubletr command,

page Vfil-7)

VID-13

MODEL 102-A PROGRAMMING MANUAL

Example: Consider the "sf" command,

where,

31 2100 0100 ~000

c2100) = +oooo 0000 0000

(0100} = -0146 7203 2457

Results of this command would be:

(2000) = -0000 0000 0005

(ZOO l} = -6335 O 152 2740

It is suggested that the reader verify this result by writing

(0100) and (2001) in binary form.

In the event (m2) is zero, the machine will record sixty­

four (octal 100) shifts and terminate the "sf" operation, instead

of recording a countless number of shifts as a result of its attempt

to locate a "one" in the most significant bit position.

EXTRACT "ex" - code 32

The "ex" command permits selected bits from one word to

be copied into the corresponding bit positions of another word.

This operation functions in such a way that those binary digits of

(m 1) which are in the same positions as the binary "ones" of

(m2) replace the corresponding binary digits of {m3), and the bit

positions of (m3) corresponding to the binary "zeros" of (m2)

will not change.

For example, consider the "ex" command,

32 1100 llZO 1130,

where, (1100) = 00 0000 0237 0000

(1120} = 00 0000 7777 0000 (extractor)

(1130) = 26 0404 0460 0406

Vfil-14

COMMANDS

Results of this "ex" command would be

(1130) = Z6 0404 OZ37 0406

Since tpe binary "ones" of the extractor, l lZO occupy the

entire mz position, the corresponding portion of the word in cell

1100 replaces the m 2 address of the command word in cell 1130.

Hence.the address of a command has been modified. It is note­

worthy that the extract command can function over the full length

of a word, including the Sign or Instruction digits.

TEST FOR OVERFLOW MARKER - "to" - code 37

The "to" command tests the contents of a word for the

presence of a binary ''one" in the overflow bit position. If an

overflow marker is present in (m 1), the machine will automatically

take the next command from cell m3; otherwise it will continue in

the normal sequence.

The m 2. address of the "to" command is irrelevent.

TEST MAGNITUDE - "tm" - code 34

Tbe "tm" command compares the magnitude sections of the

two words named by the m 1 and m 2 addresses. If the magnitude

section of (m 1) is greater than the magnitude section of (m2_>,

the machine will automatically take the next command from cell

m 3 . Otherwise it will continue in the normal sequence of com­

mands.

Example: Consider the "tm" command,

where,

34 1102. 1Z05 0112.

(1102.) = 00 153Z 1001 0600

(12.05) = 2.6 1500 1001 0600

VIII-15

MODEL 102.-A PROGRAMMING MANUAL

Since the machine compares only the magnitude portions

of (1102.) and (12.05), the sequence of digits, 1532. , in 1102.

will be considered greater than the sequence, 1500 , in

12.05; hence, the next command will be taken from cell 0112..

TEST ALGEBRAICALLY - ''ta" - code 33

The "ta" command compares the algebraic contents of the

two words named by the m 1 and m 2 addresses, that is, both

words are treated as positive or negative numbers, according

to their sign bits. If (m 1} is greater algebraically than (m2}.

the machine will automatieally take the next command from cell

m 3 . Otherwise it will continue in the normal sequence of com­

mands.

Example: Consider the "ta" command,

where,

33 1065 1074 0300

(1065) = 02. 12.56 7362. 032.7

(1074} = 02. 2.376 2.370 02.45

Since the machine compares (1065) and (1074) algebraically,

and the negative number, 12.5 ~, is greater than the negative

number, 2.37 ..•• , the next command will be taken from cell 0300.

TEST SWITCH - "ts" - code 17

The "ts" command is unique in that it is the only 102.-A

command which allows the operator to exercise manual control

of machine operation. There are four toggle switches, labeled

2.010, 2.02.0, 2.040 and 2.100, on the operator;& console. This

command causes the computer to "examine" the switch designated

by m 1 and, if that switch is in the "up" position, to take its next

command from the address in m 3 ; if the switch is in the "down"

VIII-16

COMMANDS

position, the computer will take the next command in the normal

sequence. The m 2 address of the "ts" command is irrelevant.

Note that m 1 is not an address, but the actual number of the switch

being tested.

Example: Consider the following "ts" command to be stored

in 02.12.:

17 2.02.0 2.100 0400

If test switch 2.02.0 is in the "up" position, the computer

will take its next command from cell 0400; if test switch 2.02.0 is

in the "down" position, the next command will be taken from 02.13.

HALT - "ht" - code 2.2.

The "ht" command, immediately after being executed in the

course of a routine, stops automatic computer operation and re­

turns the computer to an idle condition. The manner in which the

halt command is executed by the computer allows it to name the

address of the first word of any information that might be filled

from the Flexowriter.

Since the "ht'·' command word structure remains in the H

register after the computer has returned to "rest," the computer

is prepared to fill octal information from the Flexowriter into the

memory cell named by the m 3 address of the "ht" command. The

m 1 and m 2 addresses are irrelevant with respect to the "halt"

operation; however, if it is intended that the "ht" command is also

to be used for subsequent filling, m 1 should be 2.100 to insure

clearing of the E register . Furthermore, automatic control unit

operation places the next control number {address of next command)

in m 2 of H during the course of execution of the command. The

halt command, then, may be used as a means of temporarily halting

VIII-17

MODEL 102-A PROGRAMMING MANUAL

computation, while new data is entered into the computer. Computa­

tion will resume !n the nqrmal sequence when the ''compute,. button

is depressed.

Example: Consider the "ht" command of a program as

being stored in cell 0321.

(0321) = 22 ZlOO ZlOO 0700,

Immediately upon execution of this command the computer would go

to rest and the H register would contain the following:

I

H 00 2100 03Z2 0700 I
This is the same configuration that an operator would fill into the

m 2 and m 3 portions of the H register if he intended to fill the initial

word from the Flexowriter into memory cell 0700; and start compu­

tation in memory cell 032Z.

FILL (from Flexowriter Tape) - "fl" - code 11

The "fl" command is used to control the automatic filling

of information from Flexowriter paper tape in the course of execution

of a routine. The "fl" command functions in exacUy the same way

as the halt command, with respect to the haltfng of computation and

the configuration that remains in the H register, but in addition, the

computer automatically starts the Flexowriter paper tape reader.

If the "fl" command is to be used to temporarily halt compu­

tation and fill t;he information from the paper tape automatically,

without manual intervention, it is necessary that the paper tape con­

tain the necessary control characters. Such characters would

normally be the "s" (start computation) and "STOP" (stop paper

tape reader) codes.

Vill-18

COMMANDS

BUFFER LOAD - "bl" - code 05

The "bl" command will copy any block of eight physically

adjacent main memory cells into the buffer register. The m 3
address of the "bl" command names the first of the eight words

to be copied from the main memory to the buffer -- m 1 and m 2
are irrelevant. The first of the eight buffer cells to be filled

will be that one which has the same least significant digit as m 3.

Example: Consider the "bl" command,

05 2100 2100 12.2.3

The following cell coincidence between the main memory and the

buffer will take place:

Main Memory

12.2.3

Buffer

2003

2.004

2.005

2.006

2.007

2.000

ZOOl
____ ..,.. 2.002.

We remind the reader at this point that consecutively numbered

cells in the main memory are not physically adjacent.

In order to execute the "bl" command, the computer

locates address m 3 by making the proper channel and sector

selections. Immediately after locating the cell specified by m 3 ,

the computer reads its contents and the contents of the next seven
.,

physically adjacent words continuously by means of the selected

channel's read-write head and records them into the buffer register.

VIII-19

MODEL 102-A PROGRAMMING MANUAL

BUFFER OUT - "bo" - code 04

The 11bo" command will copy the contents of the eight words

of the buffer register into any block of eight physically adjacent main

memory cells. The command word structure and cell coincidence

is exactly the same as in the "bl" command -- merely reverse the

arrows in the previous example.

PRINT - "pr" - code Z 1

The "pr" command will cause the contents of one or more

words in the memory to be printed on the Flexowriter in the course

of a given routine. The entire, or partial, contents of the word(s)

can be printed in the octal, or decimal mode (with or without their

respective cell addresses), or in the alphabetic mode.

The word structure of the "pr" command controls printing

in the following manner:

m 1 = address of the first word to be printed.

m 2 = address of the print control word, whose contents

specifies the print mode and the number of

characters to be printed from the magnitude

section of each word. The sign portion of each

word is automatically printed in accordance

with the mode. (see Table 5, page VIU-.Ztl.

m 3 = the total number· of words to be printed by the

11pr11 command. This number must be written

as an octal number in the command word structure. ---- ---------
The programmer is cautioned not to use m 3 as

the address of a word whose contents specify the

number of words to be printed.

The contents of the word named by m requires considerable

description in order to code the print command properly. Since the

VIII-2.0

COMMANDS

contents of m 2 must designate two distinct qualities of the word(s)

to be printed, the sign and magnitude sections are coded independ­

enUy to represent the mode and the number of characters, respec­

tively.

PRINT CONTROL WORD -- Sign Section

The octal sign digits of the print control word determine

the mode of printing, according to the following list:

Sign Digits

00

.02

01

03

10

Mode of Printing

Octal - Type the sign and magnitude

digits as an octal number according to

Table b.

Octal and address - Type the octal address

of the cell being printed, a space, and the

contents of the cell in the octal mode.

Decimal - Type the sign and magnitude

digits as a decimal number according to

Table 5.

Decimal and address - Type the octal ad­

dress of the cell being printed, a space,

and the contents of the cell in the decimal

mode.

Alphabetic - Print the alphabetic or n1JJiler­

ical characters which correspond to the two­

octal-qigit codes contained in the magnitude

section of the word(s) which are to be printed.

(See Table 7.) The sign section is not printed

in the alphabetic mode.

Both the octal and decimal modes of printing automatically tab

the Flexowriter carriage to the next preset tab stop after printing each

vm-21

MODEL 102-A PROGRAMMING MANUAL

word. However, there is no automatic tabbing after printing each

word in the alphabetic mode. Therefore, any desired editorial

characters (shifting up or down, color shifting, backspace, etc.)
I

must be coded just as any other alphabetic characters.

PRINT CONTROL WORD -- Magnitude Section

The number of characters which will be printed from each

word is controlled by coding a binary "l" in the proper position in

the magnitude section of the print control word.

Consider the magnitude section of the print control word

as being divided into groups of three, four, or six bits, according

to whether printing is to be octal, decimal, or alphabetic. Each

of these groups of bits will then correspond to a similar group,

representing one character in the word to be printed. The first

of these group$, within the print control word, which contains a

binary 11 111 in the units position corresponds to the last character

to be printed from the word.

For example, the print control word 00 0000 0001 0000

will cause printing to be in the octal mode without addresses, and

will print the sign digits and the first eight octal digits of the mag­

nitude of each word.

The print control word 03 0000 002.0 0000 will cause

printing to be in the decimal mode with addresses, and will print

the decimal sign digit and the first five decimal digits of the mag­

nitude of each word. This will be clearer if we write the magnitude

section of this print control word in binary form, and mark off the

bits in groups of four:

I I

0000:0000:0000
I I

I I

0000: 000 i: 0000
t I
I I

I I

0000:0000:0000
I I
I ,

VIII-2.2.

COMMANDS

The group which has been underlined corresponds to the fifth decimal

digit in the magnitude of the word being printed, and that digit will

therefore be the last one in each word which will be printed.

The print control word 10 0000 0100 0000 will cause

printing to be in the alphabetic mode, and will print the first three

alphabetic characters of each word.

Example 1: Assume the contents of 1045 and 1046 to be as

indicated below:

(1045) = Z3 OZOl 0202 0201

(1046) = 35 0201 0304 0201

Cohside-r the print command,

2.1 1045 ZlOO 0002.

Since this command specifies printing two full

octal words beginning with (1045), the result

would be:

2.3020102.020201 35020103040201

Example Z.: Assume the contents of 01~0 to be:

(0120) = 02. 406Z70000000

Consider the print command

2.1 012.0 0435 0001,

and

(0435) = 02 000010000000

Since this command specifies printing one word,

(0120), according to (0435), the result would be:

0120 0240627 {Note: the first two digits
are the sign digits)

VIIl-23

MODEL 102.-A PROGRAMMING MANUAL

Example 3: Assume the contents of 1734 to be:

(1734) = + 690890000 (decimal, four bits
per digit).

Consider the print command,

2.1 1734 1600 0001,

and

(1600) = 01 0000002.00000 (binary "l" in units
position of fifth decimal digit)

Result:

+ 69089

Example 4: Assume the contents of the cells llOO - 1107

to be as indicated below:

{llOO) = 00 32.7536744564

(1101) = 00 326636417560

{l lOl.) = 00 776641716432.

(ll03) = 00 62.3641447464

{1104) = 00 32.6336457360

{ll05) = 00 447545636432.

{1106) = 00 62.3677767041

(1107) = 00 6654:Z7 6412.12.

Consider the print command,

2.1 1100 02.00 0010

and

{02.00) = 10 000000000000.

Since the word structure of this print command

specifies the alphabetic printing of eight full

words, beginning with 1100, the magnitude sec­

tions of 1100 - 1107 would be scrutinized six bits

at a time and the result would be (See Table 7):

The National Cash Register Company.

VIIl-2.4

COMMANDS

DECIMAL MODE

Flexowriter Print-Out Flexowriter Fill

Binary Printout from Printout from
Configuration: Sign Portion Magnitude Portion Key for Fill

0000 + 0 0, +
0001 (Positive,)

P (overflow) 1 l

0010 z 2, NEG

0011 (Negative,)
3 3 n (overflow)

0100 4 4 4

0101 8 5 5

0110 6 6 6

0111 5 7 7

1000 Ignore 8 8

1001 Ignore 9 9

1010 Ignore Ignore No Flex Key

1011 Ignore Ignore No Flex Key

1100 Space Space Space Bar

1101 Backspace Backspace No Flex Key

1110 Ignore Ignore No Flex Key

1111 Ignore Period Period

Table 5.

The reader will recall that the sign portion of a word con­

sists of six binary bits, whereas only four bits have been shown in

the above table as determining the configuration to be printed from

the· sign :p,ortion•:. 1n· Q~cin'l~l printing, the computer ignores the two

left-~ost: ~it:s .o.f the •ign ·.portion, an.d. these bits are therefore

complete! y irrelevant to the printing.

VIII - 25

MODEL 102-A PROGRAMMING MANUAL

It should be noted that the first four configurations may

appear in the sign portion of a word as the result of normal com­

puter operation. However, any configuration may be placed in the

sign portion by the programmer for special purposes.

OCTAL MODE

Binary Printout from Sign Flexowriter
Configuration or Magnitude Portion Key for Fill

000 0 o. +. 8

001 1 1, 9

010 z Z, NEG

011 3 3

100 4 4, Space Bar

101 5 5

110 6 6

111 7 7, Period

Table 6.

VIII - 26

COMMANDS

Flexowriter Printout in the Alphabetic Mode from Information con-

a_ined in the Magnitude Section.

Flexowriter Character Octal Flexowriter Character Octal
Printout Code Printout Code

Upper Lower Upper Lower

A a 41 z z 55

B b 57 & a 00

c c 62. I 3 01

D d 47 $ 4 04

E e 45 % 5 07

F f 46 ? 6 06

G g 73 ' 7 03 •
H h 74 * 8 05

I i 60 (9 53

J j 43 t 0 52.

K k 42.

--
Neg. (minus) 2.2.

L 1 71 = + 2.3

M m 76 .. 2.0

N n 66 , , 2.6

0 0 77 2.7
p p 70 - (hyphen) 21

Q q 50 2.4

R r 63 shift down 32.

s s 44 shift up 36

T t 75 carriage return 34

u u 40 back space 15

v v 72 space bar 64

w w 51 color shift 67

x x 56 tab 31
y y 54 code delete 12.

Table 7.

VIII - 2.7

MODEL IOZ-A PROGRAMMING MANUAL

The programmer is cautioned against using any combi­

nations not listed in Table 7. Some of them will be ignored and

others will cause the computer to- "hang-up."

The complete list of twenty-five CRC lOZ-A commands is

summarized into a tabular listing on the following page.

Included in this list are the Punched Card Unit and Magnetic Tape

Unit commands, although they will not be considered until these

units are discussed in their respective sections. Hence, this

list will serve as a unified rapid reference when programming.

VIII - 28

Operation Instr
&: Code

Add ad -35

Subtract SU - 36

Multiply-Round mr- 25

Multiply-Double md-26

Divide-Round dr - 23

.Divide-Double dd- 24

Shift Logical sl • 27

Shift Magnitude sm-30

Scale Factor sf - 31

Extract ex.- 32

Test Overflow to - 37

Test Magnitude tm- 34

Test Algebraic ta -33

Test Switch ts - 17

Test Search ts - 17 ·

Print pr.• 21

Halt ht- 22

Fill fl - 11

Buffer Out ho -04

Buffer Load ·bl -05

Block Search bs -14

Write Tape wt -15

Read Tape rt - 16

Read Card re -06

Punch Decimal pd- 12

Punch Octal po - 13

COMMANDS

COMMAND LIST FOR CRC 102-A

m1 m2 m3

---ADDRESSES OF---

Augend Addend Sum

Minuend Subtrahend Difference

Multiplier Multiplicand Product

Multiplier Multiplicand LSH of Product

Dividend Divisor Quotient

Dividend Divisor Remainder

Operand Shift control Result

Operand Shift control Result

Control Operand (m1) - fl ahifts

Source-word Extractor Cell Modified

Tested Word - · 2100 or 3000 Alternate Cmnd.

Magnitude1 Magnitud~ Alternate Cmnd.

-~:,:;It. c;A. Alternate Cmnd.

Switch No. 2100 or3000 Alternate Cmnd.

2400 2100 or 3000 Alternate Cmnd~

First Word Print control No. of Words
to be printed (not an addreSB)

2100~ 2100 or 3000 Fill from Flex.

2100 ·or 3000 2100 or 3000 Fill from Flex.

2100 or 3000 2100 or3000 { Fkatof8 }
2100 or 3000 2100 or 3000 Memory Cells

2100 or 3000 -T-A AAAA

2100 or 3000 -T·K - 0
2100 or3000 -T-K - N
Input Addend N

Input Addend N

Input Addend N

VIII - 29

Remarks

{
If (m1) is a command, the I portion is

retained and (m2) is treated as a number

Product is rounded

MSH of Product-+ Cell following m3

Quotient :is rounded

Umounded quotient-+ Cell following m3

{
Magnitude oHin2)=No. of binary shifts
I of (m2) : + = Shift left

- = Shift right

Shifted operand -+ Cell following m3

Bita of (ml)-+ (m3) per "l" bits of (m2)

If overflow bit, execute alternate command

If Mag1 > Ma!2, execute alternate command

wwi::4 t!rll If . > 2• execute alternate command

If switch.is up, execute alternate command

If "bs" still .in progress, execute alternate
cmnd.

No
A·ddr. Addr.

00 02

01 03

10 -

I of (m2)

is mcide
Octal

Decimal

Alpha-
betic

Bit fo Magnitude
of (m2) deter­
mine• nU111ber of
_..printed

Cll&IUl~r.11.S

Computer to rest; wait for Flexowriter

Computer to rest; fills from Flexowriter

{ Leut alguilicont d of m3 c~aponda }

to least significant digit of first buffer cell r ... e-· } A: block address (0 0000 thru I 7777)

K : tape section; N : buffer cell t ' fi..t of the low boflm cells }
involved in the command

IX

TECHNIQUES OF PROGRAMMING

This section will be devoted to programs which will instruct

the student in the use of commands and programming techniques

that heretofore have not been illustrated. Generally, these pro­

grams will be of a practical nature and can perhaps be used ef­

ficiently in actual problems that the student will eventually run on

the 102-A. Detailed explanations of the techniques used in each

example will be given with the code.

Inasmuch as decimal numbers mu~t be converted to binary

numbers before they can be operated upon in the 102-A, consider

as the first example, the program for the conversion of an integral

decimal number to an equivalent binary number.

Example l: Convert the decimal number, 89079, to a binary

number. Assume, however, that the number is stored in a word

in the computer as indicated:

I o o 1 o 0 0 0 8 9 0 7 9

The student is reminded that this number is recorded in the mem­

ory as a sequence of binary coded decimal digits (4 bits per decimal

digits) as shown below.

00 0000 0000 0000 0000 0000 1000 1001 0000 0111 1001

The solution of the problem will be more apparent if we write

the given number in the following form

4 3 2 1
89079 = 8xl0 + 9xl0 + OxlO + 7xl0 9xl

Since each decimal digit of the given number is represented within

the machine by its equivalent four binary digits, it seems feasible

that if we store the binary equivalents of "1 11 and "10 11 in a word we

could then generate the binary equivalents of each term in the

IX-1

MODEL 102-A PROGRAMMING MANUAL

expanded form of the decimal number. Then, when these terms

are added their sum would yield the equivalent binary number de­

sired.

The basic plan, then, is outlined below.

1. Extract a binary coded decimal digit.

2. Multiply by the proper power of ten which is

expressed in binary form.

3. Add the products obtained in step 2 to form th~

desired binary number.

The following flow chart incorporates the steps outlined above.

Start

l
0400 {< Extract a decimal digit into zero

.L

storage. -i

0401 Multiply by the proper power of
ten (initially by 11 111).

0402 Accumulate the products.

0403 Obtain next power of ten.

0404
Shift given decimal number 4 bits
to right to extract next digit.

0405 Have we finished converting; i.e. ' NO is decimal number = 0?

YES
'

0406
Plant converted number in
permanent memory storage.

0407 Halt

The corresponding code is shown on the standard 102-A coding

sheet on page IX-4. Memory storage was chosen as follows:

*It is helpful to include addresses in the flow-chart
once the code has been written.

TX-2

TECHNIQUES OF PROGRAMMING

Decimal number to be converted in 0200; commands and program

constants in 0400 - 0413; converted number will be stored in 0300;

working storage in the buffer register. The detailed description of

the code is outlined below:

1. Command 0400: In this command the student is introduced

to a technique which is equivalent to extracting bits from

a selected word in the memory into a word of all zeros.

This technique eliminates the necessity of first clearing

the cell that the bits are to be copied into, but also re­

quires that the cell being copied into be a buffer cell,

which in most cases is an advantage. Command,

32 0200 0410 2101, accomplishes this feat because of

the 2101 address in m 3 . The reason is that the 11 extract11

operation automatically requires the contents of m 3 to

be read into the arithmetic unit, and after the "extract"

operation is completed, the result is then automatically

written into memory address m 3 . The 11 exov command

is the only 102-A command that utilizes the m 3 address

for both reading and writing processes during its exe­

cution. Since the computer interprets addresses such

as 210X (X = 0-7) differently when reading and writing,

2101 will be interpreted as 2100 during the reading

process; hence, a word of all zeros will be read into

the arithmetic unit, into which the desired bits will be

extracted. However, when writing the result of the

extraction into the memory, 2101 will be interpreted

by the computer as 2001 (See Tables 2 and 3, pages

VII - 8, 9). It is noteworthy that in this procedure the

o:r:iginal contents of 2001 are irrelevant.

IX-3

SAMPLE
CRCI02A The National Cash Register Company

ELECTRONICS DIVISION --Free Address Coding Sheet

Job No. 100 Dote 1 - 3 - 55 Page 1

of .. 1 TITLE1 Conversion of an integral decimal
number to an equivalent binary number.

Coder M. H.

ADDRESS INST. Remarks

_ Q_4QO __ ~x..=3..? 0200 _ __, _ 0410 __ 2101 _ -~:lf.t _d~cimat <i_ig_it_~Jde2-;r)~Q._O_l. ____ _

0401 md-26 0411 200 l 2002 {Decimal digit} x {powe::' of ten}-+2002.
-------------~----------------------------------

0402 ad -35 2004 2002 2004 Accumulated products-+2004.iinitially Q). --------+--------------------------------- --- --
_Q_4Q_3_ -~d-=2_6 +- __91_1_! ___ 0_4!_2 ___ Q_4_! l ___ Y2~m__ n_e~t _h~he.!' .P~Vo~!__ ~ !_e_E-~_Q11J . __ _

0404 sm-30 0200 0413 0200 ~hift ~£i~~l_!1~mb~:i:_ 1-_bjt..§ _to_the_r..igb.t __
-----~--------~----~----

0405 tm-.34 0200 2100 0400
----~--------~----r----
0406 ad-35 2004 2100 0300

~-----------------------
0407 ht -22 2100 2100 0000

0410 02 0000 0000 0017
~----~--------r----~----

0411 00 0000 0000 0001
-f-----~----r----+-----

0412 00 0000 0000 0012
----~---------~----r----
0413 02 0000 0000 0004

~----~--------~----r----
2004 00 0000 0000 0000
----~--------~~---r----

I) ~d~cinial !!_UJPQeJ _:Q_?_N_o__._ :r.etu.DLJ:a. 0_4QCL l
Plant converted number in 0 300. ------------------------
Halt computation.

- = - ~

Decimal digit and si~m extractor fo!' 0400.
- - - - - ----- 0 -----------

111'1 for units digit for 0403.

!¥ 10" for forming powe:rs in 0403.

Shifter fo:r decimal number for 0404. /

Temporary storage fo:r generating

converted number.
1---------- ----------------t- -

--------- ----------------1- -

--------~----~----------J--

~----~--~----------~----

----~---~----+----~----~----------------------~~

~----~--~----------~----r-----------------------

f------~--------~----J-----f-------------------------

r----r-------------~----~-----------------------

1-----~--------t--- - - - - --- f-------------------------
~----1--------------r----

I- - - - -~ - - - - - - - - - - - - - - - - - - i-- - - - - - -- - - - - - - - - - - - - - - - - -

!-----~-------------~----~-----------------------

~ - - - - - - - - - - - - - --- - - __, - -· - - - - - -· -- - - - - - - -- - - - - - - - - - - - - -

- - - - - - - - +- - - - - - - - - - ~ -- ·- - - - - --- - -- - -- -- ·- - - -- - - --- - - - - - - -

- - - - - - - - I- - -- - - - - - - ~ --- -- - - - - -- - -- ·-- - - - - - - - - - -- - - - - - - - -

~-------------r----~---- -----------------------
- - - - 1- - - - - - -- - - r - ·-- - - r -- -

~ - - - - I- - - --- - - -- ~ - r -- - - - - - - - --

Form E-167, 7/54 (I) T '7" A

TECHNIQUES OF PROGRAMMING

Note that the extractor, (0410). contains a "1 11 in

its sign bit position. Thus, this routine could be used

to convert negative numbers as well as positive numbers.

Each time a decimal digit would be extracted it would

contain its respective sign bit; consequently, the sub­

sequent products and sums would carry the proper sign.

2. Command 0401: We will discuss at length the "multiply

double length" command used here, since it has not been

illustrated in a program until now. This "md~v command

will multiply the decimal digit previously extracted into

2001 by the proper power of "10" stored in cell 0411, and

write the two-word product in cells 2002 and 2003. Even

though a two-word capacity is not needed for the product

in any of the multiplications in this problem, the 1~md"

has been used because of the nature of the problem and

the type of multiplication (integers). Since mechanization

of the 102.-A "md11 command is similar to that of a desk

calculator or similar to manual multiplication, it is

rather simple for the programmer to decide on how to

position the factors in their respective cells in order

that the binary point appear in the proper position in the

product. In locating the binary point in the product, the

programmer merely adds the binary places to the right

of the assumed binary point of each factor and this sum

equals the number of binary places from the least sig­

nificant end of the product. For example, during the

first cycle of computation in this problem, the product

of the contents of 0411 and 2001 is shown in the following

schematics (for convenience, decimal numbers are used

throughout this portion of the example):

IX-5

MODEL 102-A PROGRAMMING MANUAL

(0411) =I o o o o o o o o o o 1 · I

(20 o 1 > = I o o o o o o o o o o 9 · I

product =l~o __ o_.._o __ o __ o __ o __ o __ o __ o __ o __ o~l_o __ o~l_o __ o __ o ___ o __ o __ o __ o ___ o __ 9_~""

(2003 (ZOOZ {zero places)

The student is reminded that in 11md11 the m 3 address,

2002, is that of the least significant half of the two-word

product; also, the most significant half of the product,

which is automatically recorded in the cell physically

adjacent to 2002, will be zero because of the size and

position of the factors in 0411 and 200 l. When the

programmer intends to utilize only one call of the

two-word "rrrl" product he often forgets to allow storage

for the second cell. The programmer must remember

to make certain, then, that 2003 is not being used as

temporary storage to preserve a number or command

to be used later in the program.

3. Command 0402: This command is intended to accumulate

the sum of the products of the decimal digits and their

respective powers of ten. The product of the decimal

digit and its respective powers of ten, stored each cycle

in 2002, is added to the sum of the products accumulated

thus far in the routine in 2004. Initially, 2004 is filled

with all zeros.

4. Command 0403: This command is used to form the next

higher power of ten needed when the next decimal digit

IX-6

TECHNIQUES OF PROGRAMMING

is to be operated upon. Initially (0411), named as

m 1 in this command, is filled equal to 11 111 ; after being

used in command 040 l this command makes (0411) = iv10 11 ;

then, during the next cycle it is made = HIOO"; etc. Since

this command also requires a two-word put away for the

result it seems, at first glance, that the most significant

half of the product (zero) would be written into 0412 and

wipe out the constant multiplier, "lOGt. However, in the

main memory numerically consecutive cells are not

physically adjacent, as noted in Section VIII on the com­

mands. In this case, the next cell physically adjacent

to 0411 is 0452., which is not being used in the program

anyway. The actual manner in which the sectors of

physically adjacent main memory cells are numbered

will be discussed in detail in Section X; however, for

the present it should be sufficient for the student to know

that physically adjacent sectors are addressed octal

forty-one apart.

5. Command 0404: This command causes the decimal

number stored in 0200 to be shifted four bit positions

to the right (9t_4n in 0413) and recorded back in 02.00.

As a result of this shift the next significant decimal

digit in the given number will be in the units position -

ready for extraction at the beginning of the next cycle.

6. Command 0405: This command introduces a very

common programming technique for causing the com­

puter to make a decision. The essence of this technique

is to test the magnitude of the decimal number ,after the

previous decimal digit has been utilized and the decimal

number has been shifted by command 0404, against a

IX-7

MODEL 102-A PROGRAMMING MANUAL

word of all zeros. Until the decimal number becomes

"zero" (completely shifted off the right end of 0200) the

computer will recognize the magnitude of the decimal

number, (0200), as being larger than zero, (2100), and

control will be transferred back to command 0400.

When the decimal number in 0200 does become "zero",

then, of course, (0200) will no longer be larger than

(2100), and computer control will continue with the

command in 0406.

The principle advantage of using this technique is

to generalize the routine for converting any number.

The reader is reminded that the decision which this

command causes the computer to make is based on

whether the given decimal number is zero (all digits

have been utilized), and not on the number of digits

present in the given number.

7. Command 0406: The "ad" command has been used

to illustrate the most obvious way to transfer the

contents of a cell to another memory location. Ex­

amination of the word structure in this command

reveals that we intend to add the converted number

in 2003 to "zero"(2100), and record the result in

0300. Obviously, adding "zero" to (2003) will not

change the contents of 2003.

8. Command 0407: Computation is halted and the com­

puter is put in a state of "rest". Since m 1 and m 2
are irrelevant in the halt command, 2100 is used.

IX-8

TECHNIQUES OF PROGRAMMING

Example Z: Convert the fractional decimal number, . 73965,

to a binary fraction. Assume the given number to be stored in the

memory as indicated

1ool1 3 9 6 5 o o o o

Writing._the given number in its expanded form, we have

An equivalent form would be

which suggests a definite plan for the program. For example,

consider that we have stored the binary equivalent of decimal 11 10"

(binary 1010) in a memory cell. Now, if we extract the binary

coded dig~i_t, 5, and divi~e by the "10~~ we have stor~d, we obtain _

the binary equivalent of . 5. Next, we extract and add the binary

coded digit, 6, and obtain the binary equivalent of 6. 5. Dividing

by "10 11 again, adding "9", dividing by "10 11 , etc., we will finally

obtain the binary equivalent of . 73965.

Let us now illustrate this plan in the form of a flow-chart.

IX-9

MODEL 102.-A PROGRAMMING MANUAL

s 1rt

0000 Extract least sig. dee. digit.

0001 Divide dee. digit by II 10 II.

0002. Shift extractor left 4 bits. I"'"

0003 Extract next decimal digit
(also accomplishes addition).

0004 Divide previous result by "10". '

0005 Has the last decimal digit been .NO
extracted?

..,i,YES

0006 Plant converted number in
permanent memory storage.

0007 Halt

The corresponding code and selected memory storage is

shown on the following page. A detailed description of the code is

outlined below.

1. Command 0000: Since the extractor in 0010 contains

four binary ones in the fifth digit position, the least

significant decimal digit will be extracted into 2.000.

Also, the binary one in the sign bit position

0 2. 0 0 0 0 0 3 6 0

coo 1 o > =I "'""0_0_0_0_1_0 l_o_o_o_o_o_o_o_o_o_o_o_o_o_o_o_o_1_1_1_1_0 _o_o_o_. __ _...· j

IX-10

SAMPLE CRCI02A The National Cash Register Company
ELECTRONICS DIVISION Free Address Coding Sheet

Job No. 101 Date 1 - 3 - 55

TITLE 1 Conversion of a fractional decimal

number to an equivalent binary number.

_Q_oder M. H.

ADDRESS INST. m1 m2 m3 Remarks

Page 1

of 1

0000 ex-32 0100 0010 2100 Lst. sig. decimal digit---+-clear 2000. -------1--- ----~------------- ------------------
0001 dr-23 2000 0011 2001 (2000) divided by "10 11 --+2001.

-------1-----------1----~-----------------------------
0002 sm-30 0010 0012 0010 Shift (0010) (extractor) left 4 bits. --------1-------1----------1------------------------
0003 ex-32 0100 0010 2001 Extract and add next dee. digit into 2001. ________ ..,. ____ _, _________ _, _______________________ _
0004 dr-23 2001 0011 2002 Divide numberbeinggenerated,(2001),b~00 10' ----1---------1-----r---- --------------------- --
0005 tm-34 0013 0010 0002 Is extractorinmostsig. dee. digit_position?
----~--------r----r---- -~---------------- -----

0006 ad-35 2002 2100 0200 Plant converted number in 0200. 1----------1---------------------------------------
0007 ht - 22 0000 0000 0000 Halt computation.

~-- - - ~ --- ---------~----------- --- ------
0010 02 0000 0360 0000 Initial form of extractor;36=fourbin. l ""s.

----r--------r----r---- ------------------------
_02 !_l _ 1- _ _QQ.1-- _5Q.0_2 _ 1- _OQ.0_2 _ _ 0_2~0- pi_y~s~r!...OQ.OJ ~ Q.02!; ~~iv~~bin..:. lOJQ.: .:..,· _ _,

0012 00 0000 0000 0004 Shifter for 0002. t- - - - - I- - --·- - - - - - - I- -- - - - I- -1

0013 00 7400 0000 0000 Gauge for 0005.
~----1---------1------1----- -------------------------1
t-----1---------~~---1----- _______________________ _,

t--------~-----1----------t------------------------

---=~---~-~~----1----------1-~----------------------

1----~---~----~----------1-- ----------------------
~-~--t-----"----------1----- t- - - ----------------------

------1---t----- -----------1----------------------~-1

1-----1---------------r----t------------------------
r----1----------~----1-----

~----r-------------1-----

~----1----------1--- - - - - ---
t-----~-------------r----

1-----1---------------1-----

1-----1--------------1------
~-------t----- - - - ----! - -- - - - ------------------------
- - - - - - - - r - - - - - - - - - ~ - - - - - - ---- - -- -- - - - - - -- - -- -·· - - - - - - -

--------!---·-- ------1

r-------------1------~----

- - - - I- - - - - - - - - r - --- - - t- - -
----t---------1-----t-----

Form E-167, 7/54 (IJ T" 1 1

MODEL 102-A PROGRAMMING MANUAL

of 0010 will extract the proper sign bit with the decimal

digit. Once again we have used the technique of ad­

dressing m 3 as 210X to insure extraction into a cell of

all zeros.

2. Command 0001: Consider the binary contents of the

dividend and divisor immediately after the extraction

of the decimal digit 11 511 • Decimal points are indicated

(2000) = 00 0000 0000 0000 0000 0000 0101. 0000 0000 0000 0000
Dividend

(0011) = 00 0000 1010. 0000 0000 0000 0000 0000 0000 0000 0000
Divisor

in the word structure to aid in the discussion. The

reader is reminded that the binary equivalent of "10"

(divisor) is 1010, but indicated on the code sheet as an

octal number, 00 5000 ...

This command causes the binary equivalent of the deci­

mal digit 11 511 , extracted into 2000, to be divided by the

binary equivalent of decimal digit 11 10 11 , and the quotient

to be rounded and stored in 2001. Emphasis must be

placed on the choice of position of the divisor in this

example. Actually we are treating the dividend and

divisor as integers in our program, but placement of

the divisor within a word depends on where we want to

consider the decimal point in the quotient and how mech­

anized division in the 102-A functions.

IX-12

TECHNIQUES OF PROGRAMMING

The choice of placing the divisor at the extreme left

end of the word was based on the fact that the next phase

of computation required in this program is the addition

of the next decimal digit. Since we have chosen the

"extract" command as the means of adding the next deci­

mal digit, we will want the decimal point in the quotient

(. 5) to be located four decimal digit positions to the right

of the most significant end of the word.

(200 l} =I o o I o o o 0 .5 0 0 0 0

t position into which next
digit will be extracted .

Since the 102-A automatically considers the binary point

in the dividend and divisor to be located in the same posi­

tion during division and forms the quotient in such a way

that its point is assumed to be located between sign and

magnitude sections, actual location of the point in the

divisor to the right or left of that in the dividend is equiva­

lent to shifting the point in the quotient an equal number

of positions in the opposite direction. Hence, in this

example, each time the next decimal digit is extracted

into the previous quotient the next division by "10 11 will

theoretically place the point four bit positions to the left.

For example, extract the first digit.

o o I o o o o 5. o o o o I

IX-13

MODEL 102-A PROGRAMMING MANUAL

Divide by "10 11 •

Io ol o o o o .5 o o o o

Extract next decimal digit.

1oolooo6 .5 o o o o

Divide by 12 10 11 •

Io ol o o o .6 5 o o o o

Extract next decimal digit.

1ooloo9 .6 5 o o o o

Divide by 11 10 11 •

Io o 1 o o .9 6 5 o o o o

Continuing this process we will obtain the desired

binary equivalent with the point as indicated.

10 01.1 3 9 6 5 0 0 0 0

An alternate method for locating the binary point in

a quotient is to keep track of it by powers of 11 2 11 •

Consider the binary point in any dividend and divisor

as being located at the machine point {between sign and

magnitude sections), and represent the number of

positions the true point is to the right of the machine

IX-14

TECHNIQUES OF PROGRAMMING

point as a negative power of 112 11 • Manual division of

the dividend and divisor represented in this manner

will yield the position of the binary point in the quotient

as the result of the division commands. For example,

consider the first division in this problem:

5. =
10.

=

5. x2-20

10. x2 -4

.5x2-16

(5 decimal digits or 20 bit positions to the right)

(1 decimal digit or 4 bit positions to the right)

(4 decimal digits or 16 bit positions to the right)

3. Command 0002: This command causes the contents of 0010

(extractor) to be shifted four bit positions to the left and

the result written back in 0010. This shift results from

the " +4" code stored in 0012. As a result of this command,

the "extractor" is in a position to extract the next decimal

digit when needed.

4. Command 0003: This "extract" command, formed by the

11 sm11 command in 0002, is used to extract all subsequent

decimal digits, after the first, into the quotient in 2001

obtained from the previous cycle.

5. Command 0004: This "dr" command performs the sub­

sequent divisions by "10", after the first, and stores the

quotient in 2002.

6. Command 0005: This command enables the computer to

decide if the conversion has been completed. The con­

version will be completed, of course, when the last deci­

mal digit has been extracted and the result divided by

"10". The technique used here is to store a gauge word

IX-15

MODEL 102-A PROGRAMMING MANUAL

which will be equivalent to the configuration of the

magnitude section of the "extractor" when the last

decimal digit has been extracted. Then, continually

test this gauge word against the "extractor". When

the "extractor" equals the gauge word the computer

will discontinue cycling. For this reason we name

the address of the gauge word, 0013, in m 1 and the

variable "extractor", 0010, in m 2 in this 11tm 11 com­

mand. Since this command only compares the magni­

tude sections of 0013 and 0010, we have not stored a

11 111 in the sign bit position of 0013 as we have done in

0010. Indicated below is the binary configuration of

the gauge word

0 0 7 4 0 0 0 0 0 0

(0013) =I ooo oool 111 lOJLQ.QO ooo ooo ooo ooo ooo .J
The initial configuration of the "extractor" is shown in

item 1. of this discussion. After it is shifted left four

bit positions (1 decimal digit) the first time by com­

mand 0002 it will take on the following form

(0010) = looo 010 I ooo ooo oo~ 111 10..Q_Q_OO ooo .7
The magnitude section of (0013) is greater than the

magnitude section of (0010) and the computer will cycle

back to command 0002 in order to operate on the next

decimal digit. Finally after 0010 has been shifted and

used to extract the last decimal digit it will contain the

following configuration.

(0010) = l 000 010 111 100 000 000 000 000 000 000 . . . 7

IX-16

TECHNIQUES OF PROGRAMMING

Now, when the computer makes the comparison it will

find that the magnitude section of 0013 is not greater

than that of 0010 (equality is not considered greater

than) and will continue with the next command in num­

erical sequence (0006).

7. Command 0006: The converted number generated in

2.002. is transferred to the permanent memory location,

02.00; that is, its contents are added to zero and re­

corded in 02.00.

8. Command 0007: The "ht" command stops automatic

computer operation and puts it in a state of "rest."

In the previous examples we have outlined the entire program

in detail. In the remaining examples in this section, detailed ex­

planations will be given relative to the concepts and techniques which

require emphasis. It is assumed that the reader will scrutinize the

programs carefully and verify the coded commands which are used.

Example 3: Convert a fractional binary number to a fractional

binary coded decimal number.

Assume the binary number to be stored in a word in the com­

puter as follows:

(The b. 's rep.resent the binary digits of the given number.) Represent
1

the desired decimal result as, . d 1 dz d 3 ... d 9 , and we have the

following equality

IX-17

d9
+-9 .

10

MODEL lOZ-A PROGRAMMING MANUAL

The problem, of course, is to determine the binary coded decimal

digits, d 1, dz, etc., within a word in the computer ready for deci­

mal print-out.

Consider the following plan: If both sides of the previous

equation are multiplied by 11ten" in their respective number sys­

tems, the result will be two equal mixed numbers. For example,

the right hand side becomes

dz d3 d9
dl + ~ + lOZ + ... + 108

Since the whole parts and the fractional parts of two equal numbers

must be equal respectively, the integer, d 1, will equal the integral

part of the binary product on the left side. Consider, now, only

the fractional parts of each side. Successive multiplication by "ten11 ,

then, of the fractional part of each product would yield the binary

coded decimal digits, dz, d 3 , etc.

For the purpose of writing a satisfactory flow-chart, consider

the following detailed plan:

1. Multiply the given binary fraction by the binary

equivalent of "ten. "

Z. Capture the integral part of the product, d 1 , and

store in temporary storage.

3. Multiply the fractional part of the product by

11ten11 again.

4. Shift the word, which stores the first decimal

integer, four bit positions to the left and store

the second decimal digit obtained from the previous

product.

IX-18

TECHNIQUES OF PROGRAMMING

5. Continue this process of multiplying, shifting the

decimal storage word and storing the next deci­

mal digit, until the desired accuracy is obtained

or until the nine decimal digit capacity of the

storage word is used.

The following flow-chart illustrated this procedure:

Start
j._

0700 Multiply binary fraction to obtain
_,,,
I'

next decimal integer.

0701 Shift decimal digit storage word
four bits to the left.

0702 Extract decimal digit obtained
into storage.

0703 Have we obtained the desired
NO number of decimal digits?

,11 YES

0704 Halt.

The corresponding code is shown on the following page.

In addition to illustrating a method for converting a binary

fraction to an equivalent decimal fraction, this example is in­

tended to illustrate a subtle way of using the combination of the

"sl" and "to" commands to tally and to make a decision. Use of

these commands for this purpose in this problem is dependent

on the initial configuration of the program constant stored in

IX-19

CRCI02A
SAMPLE The National Cash Register Company

ELECTRONICS DIVISION Free Address Coding Sheet

Job No.

TITLE•
103

Conversion of a Fractional Binary
Number to a Fractional Decimal Number.

Coder M ..R
ADDRESS INST. m1 m2 m3 Remarks

Page l

of l

0700 md-26 2000 0710 2000 Product:Integer~2001; fract.-..2000. -------- ---------------------------------------
0701 sl -27 0705 0706 0705 Storage word shifted 4 bits left.

- - - - - - - - ..., - - - - - - - - - - - - - - -'I- -

0702 ex-32 2001 0707 0705 Extract decimal digit~0705. --------t--
0703 to-37 0705 2100 0700 If overflow bit, then~0700. -- -
0704 ht-22 2100 2100 f Halt. --------

~ _o _zo_? _ 1- _ Q_O __ _Q. .g !_ _ 1- .P!Z .!. _ t- .P!Z.Q. _ S!o _r~g_! !_o! ~e5~m~l:._ <!!&!t! ~ ________ _

0706 00 £ f 0004 Shifter for 0701. 1--
0707 OZ £ £ 0017 Extractor for 0702.

t-------------------------~-----------------------
~-0710_ .+- _ Q.O ___ £ ___ 1- _ i __ t- -~~ l~ _ ~op.s_ta_nt_ ~~ti_p.!_i~r.!. ~ Ul~· _________ _

----r---1-----1-----t----- ------------------------
t- - - - - +- - -···· - - - - - - I- ·- - - - t-- - - - - - - ~ -

Note: "f" is coi veniently used on ttie code sheet to
t-----+---------~----~---- ------------------------

indicate ~our octa zeros.
----~--------!-~---~---- ------------------------

1------------------------1------------------------
--------- ------ -----------1- - - - --------------------
1------------------------1------------------------
~----1---~----------r----

--------1-----1-----...,---------------------------...--1
~----1----1----------r----t------------------------

t-----1---------1-----1----- -----------------------
t-----1--------------1-----t------------------------
t-----1---------1--- - - - - --- !'------------------------

~----1---~----------1----- -----------------------
1-----1--------------1---- - - - ----------------------

1-----l---~----------1----- -----------------------
-~ - - - - - - - - - - - . - - - - - - --. - - - - - -- - -- - - - - - -- - - - - - - - - - - - - -
----~--- ----~-------------------------------

____ _, ___ ---- ----

-------------!------~---- -----------------------
----1---------1-----t--- -----------------------
----1-------~-1-----t----- ---------~-----------

Form E-1671 7/54 en

TECHNIQUES OF PROGRAMMING

cell 0705. The technique will be more apparent if we write this

octal constant, 00 0421 0421 0420, in binary form.

(0705) = 1000000! 0001 0001 0001 0001 0001 0001 0001 0001 0000 1

Now, when this entire word is shifted left four bit positions by the

"shift logical" command 0701, a 11 111 will appear in the overflow bit

position eight times in succession. Consequently, when command

0703 tests this word for overflow the computer will transfer control

back to command 0700. However, the ninth time this word is shifted,

and after the ninth decimal digit has been extracted into it, the over­

flow bit position will contain a 110 11 and the computer will take the

next command in normal sequence, 0704.

Example 4. Obtain the square root of a fractional binary num­

ber. Assume the binary fraction to be sto.r.ed in a memory cell in

the following position:

The desired square root can be obtained in the following

manner:

Let
y ={X ; 0 < x < 1.

Cons~der the least square linear approximation

y = ax + (1-a), for l ~ x <1 ,

where
a= 0. 56380 67877.

This linear equation will yield an initial approximation for ~
when t ~ x <l. Now, when this initial approximation (call it y0) is

IX-21

MODEL 102-A PROGRAMMING MANUAL

is iterated twice in the following well known formula for Vx, the value

obtained will have an error less than Sxl0- 9.

Y· + 1 = 1. (Y· + 2f...) (1) 1 2 1 y.
1

Since the linear approximation y0 , restricts x such that,

l < x <l, we will first transform 0 < x <l to l < x < 1, obtain~
and then transform Vi", to Vx. The mathematics involved in the

transformation of x to x is conveniently carried out by use of the

"scale factor" command.

The student is reminded that the 11 sf" command will shift a

designated word left until a binary one appears in the most signifi­

cant binary digit position of the magnitude section; also, the number

of bit positions shifted will be recorded. Consequently, if we scale

factor the given binary number, x, (0 < x < 1) it will automatically

be transformed to i: (l < i: < 1). When x is scaled in this fashion

(shifted left n bit positions) the following equality is true

- n x = 2 x.

Hence,

or

The essence of the routine we will write for Vxis outlined

below:

1. Obtain x and n by use of the "sf" command.

2. Obtain Vi°by means of the linear approximation and

formula (1).

IX-22

TECHNIQUES OF PROGRAMMING

3. Determine whether n is even or odd.

-n

4. Obtain {X by scaling~ by 2 2 (i.e., shift

Vi: t bit positions to the right. If n is odd, shift

h the greatest whole number contained in ~ and

multiply the result by'\/~).

The details of this procedure are shown in the following flow­

chart.

IX-23

MODEL 102-A PROGRAMMING MANUAL

Start

1
Obtain x by shifting x such

1000 that!< x < 1. Use "sf",
which°'Keeps record of num-
of shifts.

1001 Obtain ax.

1002 Obtain y =ax+ (1-a).
0 -

1003 Obtain~.

1004 Obtain 2y1 =Yo +~
Y_o_

1005 Obtain y l =ZYl * --r -
1006 Obtain ~

Y1

1007 Obtain Zy2 = y 1 +~.
Y1

1010 Obtain Yz =2Yz ~* =
2

1011 Extract units bit froJ:n word
storing n (no. of shifts).

1012 Is n odd or even? Odd 1016 Obtain ~ .Vi: --, 'fl
Even1v

11017 Return to routine

1013 Obtain ~ (shift n "l"
..I J

bit _E_osition to right).
.,.

1014 Obtain Vx = 2 -=t-~
1015 Halt.

*The "sl" command will be used to perform the division by 11 2 11

to prevent the computer from halting in the event overflow occurs

as a result of the addition in 1004 and 1007.

IX-24

The National Cash Register Company
ELECTRONICS DIVISION

SAMPLE CRCl02A
Free Address Coding Sheet

Job No. 104 Date 1-12-55 Page 1

TITLE 1 Routine for{X. where 0 < x < 1. of 1

x pre-stored in 0300

Coder M. H .

• DDRESS INST. m1 m2 ma Remarks

1000 sf-31 2100 0300 2000 -n~2000; i~2001. ------- ---------------------------------------
1001 mr-25 2001 1020 2002 a x-+-2002.
-------- -----.-----------!------ ------------------

.10.Q.2 __ <:_d.:_3_? _ 2~~2 _ _, _ 1~~1- __ ~O~~ __,]" o. :_ ~ i- +_ (_!-~~~OQ3...:. __________ _

. lOQ3 __ ~_r.:.2] _2_pQ_1_.., _2_p<!_3 ___ ~o_p~ _Jtcr~_z~o~·-· ________________ _

!~~-~~~~-~~~-1-3~~-~-~~- _ly~~~~~-----------------
1005 sl-27 2003 1022 2003 ~hHt right l bi_: (y-~2_y-l. ~n_2~0]l, ___ _
----1---------1-----r---- -------- -
1006 dr-23 2001 2003 2002 · ~. ~002.
------------------------~----------------------
1007 ad-35 2003 2002 2003 2 Y2~2003. . _______________________ ._ ______________________ _

_ 1~10 _ 1-s_:-_2'!_ _ !~0~ _ r ~<!_2~ _ __2~~3- _s~i~t :i~~ _!: ~i_! ~z..~~Y_z ~n_2~0]!_: ____ _.
1011 ex-32 2000 1022 2104 Units bit of n~zero storage in 2004. ____ ._ ___ ~----r---- ---- ------------------------
1012 tm-34 2004 2100 1016 . If n odd (11 111 in 2004),---+1016.

- - - - I- - - - - - - - I- ·- - - - I- -
11013 sm-30 2000 1022 2005 Shift right l bit (f-+n in 2005). ·
----1---------1-----1----- ----~------------------
1014 sm-30 2003 2005 2006 VX = 2 Z ~~2006. .
----~--------1-~---1----- -------------------~----
1015 ht -22 2100 2100 f Halt.

----------------------------------! .~o~~- m~-~~ - 20~3- - - ~~3- - - ~~o~ -1-J.-:·_ -l_i _ _!200~ ----- - - ---- ---
~lo 17 tm-34 3000 2100 1013 Return to 1013.

-~~

1020 00 4405 2644 2047 a= 0. 5638067877 i_decimaj).
----1---~----------t----- .. ---------- --- --------
_1~21 ____ o~ 1--3~7~_., _5..!:_3]_..., -~7~1 _ _. _l:a_=_0...:~3.§_1932.!~Jde~i~all _____ ~-1
1022 02 f f 0001 Program constant for 1005, 1010, 1011, 101
----1---~----------t----- .. -1---------------------
_!02~-~--~~-~53~-l--23_i>~ -1- _l~O]_ ._-4T--=-0~~0~1067812_(d~ima!:l. _____ _

----~-------------!-----

----~--------!------ ----- -----------------------
~~i~c~~~~ L<lz_r~~~ejL i~ ~1~~\~ ~~e~t~:ij t~p. _!'~r£ !_?!_0.Qh _____________ _

this vi ord st1 ucture folr the 11tm11 commall~ is used as an
----~-------------t---- - - - ----·-------·----------
uncon~itiona transfer commanc ----1--------------t-----

-- - - - - - - - - - - - - - - - - ·-· - - - - - -· - ·- - - - - - ·- - - - - - - - - - - - - -
- ·-· - -- ·- - - - - - -- - ·- -- - - - - - - - .. -

--------~--·-- ----,
-------------1-----r---- -----------------------
----!----------~----~-- - -----------------------
----~--------t-----~----

m E-1671 7/54 en TV ?C

MODEL 102.-A PROGRAMMING MANUAL

Example 4. Compute sin 9 for g given in degrees; -360° < 6 < 360°.

We will use the following series as the basis of our compu-

tation:

where

c 1 = i. s101 949

c3 =-0. 6459 2.10

c5 = 0. 0794 877

c7 =-0. 0043 62.5

and

-1 < x < 1.

-6 The error as a result of this series will be less than 1 x 10 .

This series gives sin (~ X' , where X is that fraction of a

quadrant represented by 9. Fol example, if 9 is in the first quad­

r~nt, then X equals : 0°0 • If 0 is in one of the other three quadrants,

:oo will be greater than l; the integral part indicates the quadrant;

the fractional part (suitably complemented for the II and IV quadrants)
90 . ..

equals X. Of course 900 cannot be computed dir'ectly by the mach-

ine by a division command if : 0°0 > 1 (i.e., overflow would occur

and the quotient could be meaningless). Therefore, to obtain X, we

will obtain 3:~0 and shift the quotient left 2. bit positions. This is

most convenient because the indicator of the quadrant (integral part

of :;0) will then be in the eign and overflow bit positions.

When ~~o is obtained by shifting the word containing 366~ 0
left 2. bit positions, a "1 11 in the overflow bit positions indicates that

90 e is a II or IV quadrant angle (90 0 = "1 11 or 11 3 11); a 11 0 11 or no over-

flow, indicates that 0 is a I or III quadrant angle. Furthermore, the

IX-2.6

TECHNIQUES OF PROGRAMMING

sign and magnitude section of the shifted word equals the sign

and magnitude of X, respectively, in the I and III quadrant cases.

In the II and IV quadrant cases, to obtain X the shifted word must

first be properly complemented. Hence, in either case, the

equivalent X for a given 8 can easily be obtained from 3:~0 , and

sin 9 can be computed from the series. However, computation of

the series by the computer will be simplified if we scale the C. 's
1

such that IC. I< 1 ; that is, use "C. = C. Hence, we will compute
1 1 1

2

1 ·(II) - - 3- 5- 7
2 sm 2 X = c1 X + c3 X + c5 X + c7 X ,

and multiply the result by 11 2 11 to obtain sin (Ii X).
The computation will be carried out according to the following

flow-chart and the corresponding code.

This routine emphasizes the following programming techniques:

1. Scaling all quantities such that the binary point is

located at the most significant end of a word (be­

tween sign and magnitude sections) during all

computation.

2. Use of the "multiply and round-off" command when

the operands are fractional numbers (binary point

located as indicated in item 1 above). The binary

point in the product is then located in the same

position as the operands, which reduces computa­

tion to a fixed-point operation.

3. The "test algebraically" command has been used

to determine whether a number is positive or nega­

tive, and choose an alternative set of commands

IX-27

MODEL 102-A PROGRAMMING MANUAL

accordingly. This test is conveniently made by

testing the number against "zero" (cell 2100).

4. The "test for overflow marker" command is used

skillfully to make a logical decision, based on the

presence, or absence, of an overflow bit. This

example further illustrates the ability to use the

"to" command to make a decision, which is not

necessarily based on the presence of an overflow

bit as the result of an "add", "subtract", or

"division" operation.

IX-28

TECHNIQUES OF PROGRAMMING

l
0300

90
Obtain 3600

9--u
> O? * 0301 Is 3600 1 YES (pos.)

{Is 9 positive or negative)

1NO (neg.)

Convert to equivalent
0302 positive angle.

1
90 90

+ 360°-+ 360°
--

. 90 . 90

0303
Obtain 900 . Shift 3600

(.(----logically 2 bits to the left.

Is overflow bit present after I eo O? (" "f YE 0304 YES_ 0317 s ioi < . 1. e. ' 1
shift (i. e. , II or IV quadrants)?

II, IV
sig it present, 0 is t--

-·-·· .. ··--
I. III J. NO

in IV-
r-· II I NO IV

Obtain X . X = x 2 0305
~

0320 Complement~ to

obtain X; i.e. , 1- : 0°0 = X.

s

0306 Cr x2
~ 0321 Link to series

computation.
~'

x2
..

0307 C5 + C7

X2 (C5 + C X 2)
90

0310 0322 Complement 90 0 . Since
~ 7 90

900 <0, aubtract from 1:-1' 1

. to obtain negative comp .

- - 2 - 4 '---
0323 0311 C3 + c 5 x + c 7 X Link to aeries computation.

0312
z- - 2 - 4

X (C3 + c 5 X + c 7 X

0313
--2-4-6 * If e is negative, computation is c 1 + c 3 X + c 5 X + G7 X

based an. the equivalent positive

0314 X(C +c x2+c x4+c x;6)_sin e angle.
1 3 5 7 - ~

0315 sin 9 ~
sin 9

2

0316 Halt

IX-29

SAMPLE CRCI02A The National Cash Register Company
ELECTRONICS DIVISION Fr·ee Address CodinQ Sheet

Job No.

TITLE1
105 Date 1-19-55

Computation of sin 9 for 9 given

in degrees;-360° < e < 360°.

Store 0 in cell 0100 with octal point
_a_s_ indicated in cell 0324 (3600). Coder M. H.

ADDRESS INSt m1 m2 m3 Remarks

Page

of

1

l

_ Q.3_2~ _ <i_r:.2~ _, _D!_O_Q ___ 0_3~4_- 2000 __ ~~J_6_9~~2QO_Q _{rro_o~El._rfl.Q..w.l. ______ _

0301 ta-33 2000 2100 0303 If 0°/360 > 0,-40303 ---------<---------------------------------------
_03.Q2 __ ad-35 1--2Q.O_Q ___ 0]~5 ___ 2QO_Q __ !_f~~/J6_9~Q.,_l_j-J'~J.6_Q~~e 0llb0...o.&.--

0303 sl-27 2000 0326 2000 90/900-.-+0°/3600 in 2000. ----- --- ----- --- -- -------- - - - ------------------
0304 to-37 2000 2100 0317 If II or IV _s~~r~nt!!_ ~Q...316..!. _______ _ ----1----------1------1----- -----
0305 mr-25 2000 2000 2001 X · X = x2--.+2001
----1----------t------1----- -~-r--------------------
0306 mr-25 2001 0327 2002 C X ---+2002.

t--------------------------~-----~----------------
0307 ad-35 2002 0330 2002 C + (C X }~2002. ·

t-- t- -~- = - ::J .= - 2 - - - - - - - - - - - - - - -
~~10 - ;:i~--2~ - ~O~l- - I- _3?_0~ - ~o~~ - ~ - ~Cs~ ~7... ~ J.~~?_2.:_ _ - - - - - - - - -
O~l! _ r~-~5- t-- ~0~2- _ 1- ~~3.!_ _ ~O~~ __ ~l ~ <_c5~2~ ~7... ~4J-=-!20~2.:. _______ _

0312 lmr-25 2001 2002 2002 x2 (c3 + c5 x2+c7x4)~2002.
I- - - - - 1-- - - - - - - - t-- ·- - - - t- - - - - - - - _, - - - ::z- - L. - 4 - - - - - - - - - - -
t-~~1~ _f:~~s- _ 2~~2- _ 1- ~3_!~ _ t- ~o~~ _ ~1_+jc3 +cs.~ +o-S2' _)_~2~<?._Z:_ ____ _

0314 lmr-25 2000 2002 2002 X (2002) = Sln;; ~ 2002.
----1----------t--~---t----- -------- ---------------
0315 sl -27 2002 0333 2002 sin e 0~ sm in 2002. · .

~-----------------------~------2----------------
0316 ht -22 2100 2100 f Halt

~ b

0317 ta-33 2100 2000 0322 If e 0 /900 < 0, then 8 is in IV;--..+0322.
----~-------------------r- ----------------------

0320 su-36 0325 2000 2000 Complem~!._9~L90~~~II,_!:_!' 0/9Q_o~2_QQ_O
1--~--1--------------~----1--- --

0321 tm-34 3000 2100 0305 Link to series computation. _ -=-

0322 su-36 0334 2000 2000 Complement 9°/90° for IV -1-8-u-/900~2oolo 1-----1--------------t------r-----------------------
0323 tm-34 3000 2100 0305 Link to series computation.

b,_,,,..,,__... ~

0324 00 5500 f £ 360° = octal 5500
1-----t---------------1----- -----------------------

0325 00 7777 7777 7777 '~l ~ £.o!. £O_Elplemen~~J.~ 0302_ an<i_ Q._3~0~ _ l-----t----------1--- - - - - -- -
1- ~3~~ -1- ~q_--' _ .!_ _____ £ ____ t-0~~2- _ S_!i~t_c~n_!r~l~_(!_ei_t _?_!>!!~ i_o_E _Q~3. _ ___ _
.... ~33~ -t-- _E~ __ 0~1~ ___ ~3~3- _ t-O_?Q_O _ _ ~7 _= _d~c_!~~ .=0-=. oo~~!-3..:.. ________ _

.... ~3~<:_-1- ~<:_ ~ _03~2 ___ ~2~6- _ t--6_§Q_O _ _ ~5-=_d~c_!~~ .Q_._Q!9.Z432_. ________ ~ _

_ Ol'.D _ _, 02 _ ~'!_5~ _ _6~1.! __ 7100 ___ G.3_ := ~eELm~l:_ ..__Q~3-~2J~O~ _________ _

_ o~~ ___ o_o _ .§~2Q. __ _ T!_l~ ___ ?-1=._0Q ___ c 1 =:. c!~~i~~ _o.:.. 7~?_3~7_? ___ _ _ _ _ _ _ _ .. _

_ 0~3_3 ___ ()__9_ _ .!_ _ _ _ f_ ___ 00_9! __ s~f! ~~~t.?:~ J_l~f!_ !_ ~itl fo~ Q.3_15. _____ _

1- ~~~ __ ~~ __ 7!._7_! __ t-- '!_7!_7 __ t- 7]'!__7_ _ i~ !_"_ f~r-c~I:1~~m_e~t~n~ ~n _o~23. _____ _

----1---------t--------t--- - - --·---------------------
·----f---····--- ~-1------t--- - ·-

Form E-167, 7/54 (I) T'V" ':Jn

TECHNIQUES OF PROGRAMMING

Pre-Setting Commands and Program Constants.

Many of the programming techniques previously illustrq.ted

showed how command words or program constants in a rcutine

were modified in the course of execution of the routine. Conse­

quently, if that same routine were to be re-run, it would be

necessary to re-set the words previously modified in the routine

to their initial configuration. Furthermore, during code checking

it is very likely that errors will occur in the initial code. When

these errors are discovered and corrected, subsequent checks are

necessary for final ve11ification of the code. Each time the code

is checked, then, those words which were modified during the

previous check must first be re-set.

It is very important that pre- setting of words in a routine be

done in the simplest and fastest way possible. Certainly it would

be very expensive time-wise to make such changes manually each

time the routine is run; hence, we will code the machine to do the

job for us.

Pre-setting words in a routine can be accomplished by simply

storing, as program constants, the initial configuration of those

words which will be modified in the course of execution of the routine,

and then code the initial commands in the routine such that they will

"plant" these pre-stored words in their respective cells in the routine.

For example, consider the sample code on page V-19 (for the con­

venience of the reader this code has been copied on the following page).

As a tutorial example this code merely added ten numbers and took in

consideration the possibility of overflow after each addition. However,

it will serve as a good example for pre-setting program words.

IX-31

MODEL 102-A PROGRAMMING MANUAL

If this routine had been used to add ten numbers in cells

1100 -1111, and then ten new numbers were filled into 1100 -

1111, this routine could not be used again until cells 1200, 2000

and 2001 were re-set to their initial configuration. Consequently,

we will store these three words as program constants in cells

1212., 1213 and 1214:

(1212) = 35 2000 1100 2000

(1213) = 00 0000 0000 0000

(1214) = 00 0000 0000 0000

Now, when the following commands are affixed at the beginning of

the routine, which previously started in cell 1200, the above named

cells will be "planted" in 1200, 2000 and 2001, respectively:

Address I Remarks

1175 35 1212 2100 1200 (1212) + 110 11 ---+-1200

1176 35 1213 2100 2000 (1213) + 110 11--+2000

1177 35 1214 2100 2001 (1214) + "0".....+2001

The starting address of this routine, then, would be 1175; the com­

plete code is shown on page IX-34.

Since the programmer must first write the basic code before

he is cognizant of which cells will require pre- setting, it would be

very helpful if he were to "flag" those cells in some way as the code

is being written. This is one of the reasons why the programmer

is advised, when the code is being written, to "bracket" those com­

mand words which will be modified.

IX-32

SAMPLE CRCl02A The National Cash Register Company
ELECTRONICS DIVISION Free Address Coding Sheet

Job No.

TITLE•

106

Addition of ten numbers with
possible overflow.

Date 1-3155

Coder M. H.

~DDRESS INST. m1 m2 m3 Remarks

Page l

of 1

r U.QO _ __, .a.cl-15 -~Q.O _ _, _[u.Qcil __ Z,O~O- __ :N._e:Kt..numb,eJ;"_ ± 1.ZQQD)..;{ZCWQ)ini.t:lall.y_'~.!P.!... _

r !_2.Ql _ __, !_o..:~ _ -~Q_O _ _, _ ~l.QO_ ~ _ !_2.Q5 ___ I~ ~v~~flE'! ~i!_.e_r~s~~ _!n_(~O_Q~ ~ ____ _

1-1202 _ _, ad-35 1- _1~(!9-..., _ !_2Q.7_..., _ l 2Q.O __ -~o~!'y-_(l_2Q.Ol;_a~<!._'~ ·~ t_p ..!D..2..i>Ll~Q_O..:... __ _
1203 tm-34 1210 1200 1200 Have we added 10 nos. ? No,---+ 1200. 1-----<---1------;-----1-------1------------------------
1204 ht -22 0000 0000 0000 Halt

........_,,,._ -~ -- - - - - - - - - - - - - - - - - _,
1205 ad-35 1211 2001 2001 11111 + (2001)-+ZOOl; of.tally, init. 110 11 • ----1---------1-----1----- -~---------------------~
1206 tm-34 1210 2100 1202 Return to 1202..

-=- -=-
1207 00 0000 0001 0000 Modifier for 12.02. --------1---------------1------------------------
1210 00 2000 1112 2000 "~uge" ~or test in 1203.
----~--------1-----1----- -----------------------~

1211 00 0000 0000 0001 11 111 for tally in 1205. ----1----1------1-----r---- ------------------------
- - - - I- - -- - - - - - - t- -- - - - t- - - - - .., -
1100 00 6502 3450 0000 ----1---------t-----1----- ~-----------------------
1101 02. 7300 2.540 0300 Numerical ----1---------1--.----1----- >- - ---------------------

. Data r-----------------------1-1-----------------------
1111 00 0470 6600 0000 r-----------------------1-r----------------------

r-------- ----- ----------1- -- -- --------------------
2.000 [00 0000 0000 OOOQ) Working storage, initially zero.
-~--~~------------t----- -----------------------
2.001 I LOO 0000 0000 0000] Used for tally, initially zero.
i---------r----1---------------------------------~-

----~-------------1-----1------------------------

----t---------~----1----- -----------------------
----1---------------1-----1------------------------
----t---------~---- -----!----~-------------------

----r--~----------~---- -----------------------
----t--------------t---- - - - ----·----------------.-
----t---~----------t----- -----------------------

1--------
____, __ , __________________________ _

1-----i---
_________ ..., _________________________ _

1------i--- ---- ----

-------------~----1----- -----------------------
- - - - I- - - - - - - - - I- - -· - - - -

----!---------~----~----

rm E-167, 7/~4 en TV_'2'2

SAMPLE CRCI02A The National Cash Register Company
ELECTRONICS DIVISION Free Address Coding Sheet

Job No.

TITLE1
107 Date 1-15-55

Addition of ten numbers with possible

overflow. Modified cells are pre-set.

ADDRESS INST.
Coder M. H.

Page

of

1

1

1175 ad-35 ____,. _ ~!_2 ___ 2_1Q_O ___ 1_2Q_O ___ Ll~l_?)_ +_".fl'~ -=-t 1_2Q.0..:.. __________ _

1176 ad-35 1213 2100 2000 (1213) + 110" ~2000. ____,. ____ ---------------1------ ------------------
_!_11.7 __ ad-35 t- _13!_4 ___ 2_!Q__O ___ 20Q__l ___ (_!~l~)_+ _"Q'~ ~2..QQ_l.:... __________ _

_ L2.Q.0 __ ad-35 2000 _ ... Ji.!QQL _ 2000 ___ ~e1Ct_n}ll!l~e! ± i2QO_Qh ~<!_OQ)il!!tia]Jy_ ~O~·-
i.-1-20_! _ ~~~7- _ ±~Q.-1- _?l_OQ_ _ t- _!2_0~ _ _Is_ ~v~r_!l.Q_w_l?j1_P-r~s~Itl i_nja_O.Q0.11- ____ _

_J~O~ _ ~~-1~ _ _!~Q_ -1- _!~~ _ 1- _!2__9Q_ _ -~o<!i!J J~Q_Ol;_a~d-''._!'~ t_p _El_z 2~l_EQ_O.:... __
1203 trn-34 1210 1200 1200 Have we added 10 nos. ? No, --+.1200. 1--
1204 ht-22 0000 0000 0000 Halt

-~

1205 ad-35 1211 2001 2001
----~--------!----- ---- "l"+ (2001) 2001; o. f. tally, initially 11 0°u. ------------------------

1206 trn-34 1210 2100 1202 Return to 1202.

1207 00 0000 0001 0000 Modifier for 1202.
- - - - r- - ... - - - - - - I- -- - - - r- - - - - ------------------------
1210 00 2000 1112 2000 ----r---------1-----r-----

11 Gauge 11 for test in 1203. ------------------------
_! ~l !. - i-- ~0- - - ~o~~ -1- ~O_E~ - r- ~O_E !._ - ~I !_"_f~r _t~lJ:r 2:~ 1_?~5_:_ - - - - - - - - - - - -
1212 35 2000 1100 2000 Initial configuration of 1200.

l------------------------~-----------------------
1213 00 0000 0000 0000 n " of 2000.

- --I- -

1214 00 0000 0000 0000 II II Of 2001.
1---------i---------------~- ----------------------
r--:----l---·--.,----------1-----1""'1- - ----------·-----------
1!_0~-- ~~-1-_?~0~- t-]~5~ _ _, _EQ_O~-- ____ ------------------~"""""

1101 02 7300 2540 0300 Numerical 1-----1---_,----------1-----t-t-----------------------
. > Data

~----+----------!-----~---- ----------------------
1111 00 0470 6600 0000 1-----1------------ - -1- - - -- t-_. ----------------------

1-----1---------t---- - - . ---- t------------------------
1-----1--------------1-----
~----1--------------1-----

~----1--------------1-----

-------- ---- ----------------------------------
- - - - - - - - t- - - - - - - - - - - -- - - - - - - -- ·- - - - - - -- - ·- -·· - - - - - - -

- - - - - - - - +- - -· - - - - - - ·-1

+--------------1-----t----- -----------------------
----1---------1-------t--- - -· ·' --·--------------------

----1---------1-----t-----

Form E-167, 7/54 (IJ

TECHNIQUES OF PROGRAMMING

Sub-Routines

Certain specific calculations are common to a great many

problems. Routines which will perform these specific calculations

can be coded in advance and made available for future use in any

problem in which they are applicable. Routines of such a specific

nature are called sub-routines.

Since sub-routines are coded in advance of their need, they

can be prepared on tape and carefully tested before being filed for

future use. A collection of sub-routines (referred to as anlibrary"

of sub-routines) would include, perhaps, such routines as conversion

from decimal to binary, conversion from binary to decimal, square

root, trigonometric functions, exponential functions, etc.

A library of sub-routines is often defined as an extension to the

instruction code of the machine, since a programmer would only need

to refer to a specific sub-routine in a flow-chart in exactly the same

manner as he would refer to a standard command.

Certain conventions must be adhered to when sub-routines are

prepared in order to make them convenient for general use. A sub­

routine can be designed as a sequence of commands for inclusion in

a main routine,or as a sequence of commands which will occupy an

alternate part of the memory where they would be linked to and from

by means of commands in a main routine. Since any sub-routine may

be used many times in the same problem, it should be coded such that

the operands will always be located in certain cells and the results

will always be located in certain cells. Also, sub-routines should be

coded with special emphasis on economy of memory space and on

minimum access time coding techniques (Section X).

IX-35

MODEL 102-A PROGRAMMING MANUAL

Considerable coding and computing time can be saved when

programming a problem by judicious use of sub- routines. Since

sub-routines will always have been carefully coded and checked

before filing, duplication of work is avoided, and code checking of

the entire problem is minimized.

The use of sub-routines in a program may be calssified into

two categories:

1. A sub-routine will be used only once in the course of compu­

tation of a given problem.

2. A sub-routine will be used more than once in the course of

computation of a given problem.

In the case of category 1, since any sub-routine would be used only

once in a program for the solution of a given problem, it would

perhaps be more profitable time-wise for the programmer to in­

clude the sequence of commands of the sub-routine as part of the

main routine. For this reason, one of the ways to prepare sub­

routines would be in a symbolic, or "free address" fashion, "free

address" implies that the memory addresses locating the sub-routine

commands and program constants, which are arbitrary, are repre­

sented symbolically, on a code sheet, but when the sub-routine is in­

cluded as part of the code of the main routine, precise memory

addresses will replace the free address symbols. As an example,

the code on page IX-4 is written on the following page with the free

addresses replaced by appropriate symbols. Note that the buffer

addresses and address 2100 are not changed. The programmer must

make certain, then, that these buffer cells are available at the time

the sub-routine is entered.

When considering how to prepare sub-routines, which will

occupy an alternate portion of the memory, so that they can be linked

IX-36

The National Cash Register Company
ELICTRONICS DIVISION

SAMPLE CRCl02A
Free Address Coding Sheet

Job No. 100 Date 1-3-SS Page l

of 1 TITLE• Free address code for conversion of an
integral decimal number to an equivalent
binary number.

ADDRESS INST. m1
__ rQ.. _ ex-32 _ ~~·­

- _r!... - md-26 - _ cJ _
I ad-35 2004 __ z__ ----
I md-26 C __ 3__ __]._

_ r4 _ _ s~:_3~ __ ~°_: _

-~-- t~=-3~--~~-
- _IQ. __ ":d:3! __ 2~0_4

c 02 f . __ Q__ ----c 00 f
·--L- --- ----c 00 f
1-1- - -·- - -----
·-C3_ -

02 f
--- -----

2004 00 f
·---- --- -----

oder M. H.

m3 Remarks

- _Gt_ 2101 Next decimal digit ~(clear) ZOO l.
-----------------------------2001 2002 (Decimal digit) x {power of ten)~ 2002.

2002 2004

---- ----c - _ z. - c
- :i -

- ~3 __ No.

2100 I
---- - .J)_ -

2100 Ans.

f 0017

f 0001

f 0012

f 0004

f f

Accumulated products-+o-2004 (initially 0).
----~-------------------Form next higher power of ten~041 l. ------------------------Shift decimal no. 4 bits to right. -----------------------
Is decimal No. = 0? No, return to 0400.

Plant converted number in 0300.

Dec. digit and sign extractor for 0400.

11 111 for units digit for 0403. -----------------------
11 1011 for forming powers in 0403. -----------------------
Shifter for decimal number for 0404.

Temporary storage for generating convert d
nU"moe~------~---------~-

----------------------~

- - - - - - - - - - ·-· - - - - ·- -· - -- - - - - - -- - - - - - - - - - - - - -

rm E-167. 7154 CIJ

MODEL 102-A PROGRAMMING MANUAL

with a main routine, the emphasis will be placed on their use as

indicated in category 2. The following skeleton flow-chart is only

intended to illustrate how simple it would be to link between a main

routine and a sub-routine by means of unconditional transfer com­

mands ("tm"), if the sub-routine were to be entered only once from

the main routine.

0100 First command of maip. routine

.

.

0120 (Link to sub- routine)
~

0500 First command of
tm 3000 2100 0500 sub-routine

0121 }
.... 0512 (Return to main routine)

tm 3000 2100 0121

Apparently all that is required of the programmer when preparing such

a linkage is that he know the initial address of the sub-routine and the

return address in the main routine, which are the m 3 addresses of the

unconditional transfer commands in the flow-chart.

However, when a subroutine is to be entered more than once

from the main routine, the return link must permit a transfer to

various places in the main routine. For example, consider the following

flow-chart:

IX-38

TECHNIQUES OF PJlOGRAMMING

0100 First command in main routine

0120 {Link to sub-routine) ... 0500 First command of ,
tm 3000 2100 0500 sub- routine

I

I

0121 IL I

0512 {Return to main routine)
r--1 tm 3000 2100 ?
I

I
I

~· -,
I
I
I
I
I

I

0154 {Link to sub- routine) ~..,----- -----------_J

_t_m __3_000 2100 0500 I
I

l'-0_15_5 l..__ _______ __.~-J

Obviously the unconditional transfer command in 0512 can be used

as a link to the main routine only once, unless its m 3 address is

changed each time it is used in conjunction with a different portion

of the ma!n routine. Fortunately, there is a way in which we can

cause the computer to alter the m 3 address of the exit command

each time the sub- routine is entered. The cunning manner by which

we can pre-set this exit from the sub-routine will emphasize the

importance of having access to the G r.egister by means of address

3000.

Linking, or automatic setting up of an exit from a sub-routine,

can be accomplished by coding the first two commands of a sub­

routine to capture the control number of the next command in the

main routine and plant it in m 3 of the sub- routine exit command.

The reader is reminded that the control number or address of the

next command is always held in m 2 of G duril.g automatic computer

operation, but at the conclusion of execution of a command the

IX-39

MODEL lOZ-A PROGRAMMING MANUAL

the control number appears in m 2 of H (review section VII).

Consider, then, the given sub-routine to be located in 0500-

0512; consider the first two commands to be necessary linking set­

up commands (0500 and 0501); consider the last command to be an

exit command, which will be pre-set by the two initial linking com­

mands. Hence, the previous flow chart will serve as an example

of how this sub-routine may be linked with a main routine.

Assuming that the main routine will transfer computer control

to the sub- routine (0 500) by means of an unconditional transfer com­

mand, the following two commands in 0500 and 0501 will properly

set up the return link each time the sub-routine is entered:

Address I ml mz m3 Remarks

0500 sm-30 3000 0513 zooo Shift control number in G Z4
bits to right -+ZOOO.

0501 ex- 3Z zooo 0514 0512 Extract control number
from Z000----+051Z.

0513 oz f f 0030 Shift constant (Z4 to right).

0514 00 f f 7777 Extractor (copies m 3).

The fact that these two commands will properly pre-set the return

link will be verified by the following discussion:

1. At the time the transfer command, 01 ZO, in the main

routine enters the H register (control) for execution, G and H
contain:

G I xx I xxxx OlZl xxxx

H 134 I 3000 ZlOO 0500

(X denotes irrelevant digits. They would
depend on the word structure of the previous
command in the main routine, 0117.)

IX-40

TECHNIQUES OF PROGRAMMING

2. Just prior to that phase of control unit operation which

interprets the instruction digits, the new control num-

ber, 0121, will be copied into m 2 of H. G and H will contain:

GI xx I xxxx 0121 xxxx

HI 3413000 0121 0500

3. When the computer identifies this command (0120) as

a decision command which works, the H register is

automatically circulated left four octal digit positions,

thus, the transfer address, 0500. will be in the m2

position of H. However, the control number. 0121,

which referred to the next command in the main routine

is now in m 1 of H. G and H now contain:

G j xxl xxxx 0121 xxxx

H ool 0121 0500 0003

4. The computer now sees that its next command is to

be taken from cell 0500, which is the first command

in the sub- routine. When this command is brought

into H. Hand G contain:

G I 00 I 0121 0501 0003 J
H I 3013000 0513 2.000 I

Consequently. the current command in 0500 (the

first of the two linking set-up commands of the sub­

routine) is coded to shift the contents of G. which

IX-41

MODEL 102-A PROGRAMMING MANUAL

will have been transferred to E, right twenty-four bit

positions and write the result in 2000. Cell 2000

would contain:

{2000) = I oo I 0000 0000 o 121

5. The next command in the sub- routine, 0501, is an

extract command which copies the control number

we are seeking (0121) from m 3 of 2000 into m 3 of the

exit command, 0512. Hence, 0512 would contain:

(0512) = I 341 3000 2100 0121 I
Now, when the computer terminates the sub-routine

with command 0512, computer control will be trans­

ferred back to 0 121.

Referring to the flow chart once again, we see that

the main routine will transfer control from 0154 to

the sub-routine in 0500 {dotted lines on the flow chart).

In like manner, commands 0500 and 0501 will capture

the next control number in the main routine, which is

0155 in this case, and plant it in m 3 of 0512. Thus,

the computer has been programmed to automatically

set-up the return link to the main routine whenever we

enter the sub- routine.

Consider this discussion as also being tutorial with

respect to a technique for capturing information from

the G register. The student will certainly find many

other coding applications for such a technique.

IX-42

APPENDIX I

This appendix is devoted to the general nature of the fill

operation within the machine. The following table and E regis-

ter schematics will perhaps help to clarify the procedure. Ref­

erence will be made to the flip-flops* labeled E 1 - ES and A 1 - A 6 .

The contents of TABLE la are the binary configurations set up in

the A 1 - As flip-flops when the corresponding Flexowriter character

is struck.

Flexowriter AS A4 A3 AZ Al
Character

0 0 0 0 0 0
1 0 0 0 0 1
2 0 0 0 1 0
3 0 0 0 1 1
4 0 0 1 0 0
s 0 0 1 0 1
6 0 0 1 1 0
7 0 0 1 1 1
8 0 1 0 0 0
9 0 1 0 0 1
+ 0 0 0 0 0

NEG(-) 0 0 0 1 0
Space Bar 0 1 1 0 0
Period 0 1 1 1 1

f 1 0 0 0 0
0 1 1 0 0 0
d 1 1 0 0 1

HYPHEN(-} 1 1 1 0 0
TAB 1 1 1 1 0

s 1 1 1 1 1

TABLE la

*A flip-flop (abbreviated f-f} is a vacuum tube circuit used for
temporary storage of a bit. It is principally two tubes, generally
housed in a common "bottle", with their circuitry arranged such
that when one tube conducts current the other will not. That is,
if tube A is conducting and tube B is non-conducting, the f-f is
said to be in the "l" state; and conversely, if tube Bis conducting,
the f-f is said to be in the "0" state.

AI-1

MODEL 102-A PROGRAMMING MANUAL

Examination of this table reveals the following facts:

1. The state of the As f-f, "0" or "l." informs the

computer whether a data or control key, respec­

tively, has been struck.

Z. The actual binary equivalent of the numel'.'als 0 - 9

is stored in the A 1 - A4 f-f""s {least significant

bit in A 1).

3. The "+" and "-" characters transmit the same in­

formation to the lOZ-A, via the A 1 - As £-f's, as

do the "0" and "Z" numerals, respectively.

4. The "f" character differs from the numeral zero

by virtue of the state of the As f-f. The "l" bit

present here informs the computer that certain

logical circuitry must be brought into "play" (see

Item 4 - E register schematic on the following

pages).

S. Theo, d, HYPHEN, TAB ands characters are also

control keys for the filling operation, and recognized

as such by the computer since a"l'• appears in As.

Furthermore, the distinct function of each of these

control keys is made known to the lOZ-A by the state

of the A 1 - A4 f-f""s.

6. The space bar and period key are hybrid characters

in the sense that they enter different information in

the octal and decimal modes.

Although the E register has often been referred to as a recir­

culating register, no clarification of this principle has been offered

as yet. The nature of such a register is quite simple if we first

consider the 4Z bits of a word numbered according to an octal digit

AI-Z

APPENDIX I

and one of the three bit positions within it, i.e., P 0 o0 , ... ,

Pz 0 13·

Secondly, consider these 42 bits as 36 magnetized spots on the

drum and the remaining 6 bits held in flip-flops as shown in the

following schematic:

E register

Consider the drum to be rotating in the direction indicated by the

arrow. At the beginning of a word time consider the 42 bits re­

corded as indicated. During the first pulse time P 0 o0 is written

on the drum, P 0 o2 is read off, and all other bits shifted accord­

ingly. At the end of one word time, or 42 pulse times, the word

will be recirculated and Po o0 will be located again in E 5 , P 1 o0
in E 4 , etc.

AI-3

MODEL 102-A PROGRAMMING MANUAL

The following schematic illustrates how the A flip-flops are in­

jected into E during the fi~l process.

E Register

(
7 . shift left .

~ f:l:I r:-1 r:-1 ~ E one dec1-
~rw-~- A3 - A4 ------ ?1?-1 *

I h' t t digit l
1 * e one Wrtte 1

As - Distinguishes between control information and data.

A 6 - Distinguishes between the decimal and octal infor­

mation. When the 11 d11 or 11 0 11 key is struck the

nature C?f the A 1 - As f-f set up will set A6 to 110 11

or 11 1," for octal or decimal fill, respectively. In

turn, the connections of the A 1 - A4 f-f's into the

E register would be as indicated.

The following facts illustrate the function of the A flip-flops

for the fill process:

1. Striking a Flexowriter key will always set up A 1 - As

according to Table la. Prior to this, the machine is

at rest; that is, the drum is rotating, all registers

are recircula~ing, or, . so to speak, the machine is

just waiting for a Flexowriter key to be struck and

begin the fill process.

*l - Connection into E register for filling decimal information.
*2 - Connection into E register for fillfo.g octal information.

AI-4

APPENDIX I

2. The 102-A first in&pects the As f-f in order to deter­

mine the disposition of t e binary configuration set up

in A 1 - A4 . If As is a 11 l, 11 the various control opera­

tions defined by the A 1 - 4 set-ups, indicated in

Table la, will be execute (details of how the machine

interprets these will not e included here). If A 5 is

a 110, 11 the computer trea s the contents of A 1 - A 4 as

a numeral assigned to en er the E register. However,

in order to enter a digit i E it would have been neces­

sary for the "d" or "o" k y to have been struck first.

That is, the A6 would the be properly set, and as a

result the proper connect on of A 1 - A4 into the E line

would take place (by-pas . A4 for octal fill).

3. The injection of a digit in o the E register will result

when the E line circulate for one word time with the

additional three or four b t positions (A1 - A3 for octal,

or A 1 - A4 for decimal). Referring to the above sche­

matic, it is obvious that fter 42 pulse times the bit in

A 1 would have been writt n on the drum, read off the

drum, and finally termin :te in Es; also, A 2 in E 4 , etc.

This procedure of extendijng the E register to 4S (or 46)

bits will cause the most significant digit {octal or deci­

mal) previously contained! in E to terminate in A 1 - A4 .

Hence, if another Flexowtiter key is struck, A 1 - A4

would be reset and the pjvious digit would be lost. It

is in this manner that we ill the E register, one digit

{octal or decimal) <-.t a ti e, continually shifting the

previously entered digit to the left. and losing the most

significant digit of E. Thus, we are able to make

corrections during the fill process by merely typing in

the word again.

AI-5

MODEL 102-A PROGRAMMING MANUAL

4. Emphasis will now be placed on the method whereby

the machine interprets the "f" character, which

supposedly enters either four octal or four decimal .

zeros in E. When the "f" key is struck (see Table la),

the control bit in A5 instructs the machine to circulate

the E line, which now contains zeros in A 1 - A4, four

times. This process will enter four octal or four deci­

mal zeros in the E register only if the three most sig­

nificant octal or decimal digits in E are zeros initially.

The following schematics will perhaps clarify this

feature.

Set-up when "f" is

decimal digits):

struck (X. de~otes arbitrary octal or
1

A 1 - A 4 0 0
~---. ,.-..--.----------...--------------------------~

E: 0 I..-- x 1 I I

·---J -:ir-'-..r-..o...._.,...--------------------------~
its

Result after E circulates once:

Al - A4 °13°12°11

E [~_}-jxz lx3 lx4 I
Result after E circulates four times.

Also, it is apparent now that successive striking of

the "f" key will not serve to clear the E register; it

will merely recirculate its contents, injecting a zero

every fourth digit position.

AI-6

APPENDIX I

5. Reference is now made to the 11 8, 11 119, 11 "+, 11 11 -, 11

"space bar, 11 and "period" Flexowriter characters

in Table la. Since only A 1 - A 3 are incorporated

into the E register when the octal mode is chosen,

it is obvious that when these characters are struck

the octal numbers 0, 1, 0, 2, 4, and 7, respectively,

will fill E.

It is noteworthy that the computer must be in the "rest" state

in order that the fill process take place. For this reason it is

possible to strike a Flexowriter character while the machine is in

the "computing" stage and not have it enter the memory. This is

an automatic precaution against accidentally striking a Flexowriter

character during computation and causing invalid results.

AI-7

	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	4-01
	4-02
	4-03
	4-04
	4-05
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	5-17
	5-18
	5-19
	5-20
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	6-08
	6-09
	6-10
	7-01
	7-02
	7-03
	7-04
	7-05
	7-06
	7-07
	7-08
	7-09
	7-10
	8-01
	8-02
	8-03
	8-04
	8-05
	8-06
	8-07
	8-08
	8-09
	8-10
	8-11
	8-12
	8-13
	8-14
	8-15
	8-16
	8-17
	8-18
	8-19
	8-20
	8-21
	8-22
	8-23
	8-24
	8-25
	8-26
	8-27
	8-28
	8-29
	9-01
	9-02
	9-03
	9-04
	9-05
	9-06
	9-07
	9-08
	9-09
	9-10
	9-11
	9-12
	9-13
	9-14
	9-15
	9-16
	9-17
	9-18
	9-19
	9-20
	9-21
	9-22
	9-23
	9-24
	9-25
	9-26
	9-27
	9-28
	9-29
	9-30
	9-31
	9-32
	9-33
	9-34
	9-35
	9-36
	9-37
	9-38
	9-39
	9-40
	9-41
	9-42
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07

