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PHYSICAL DESCRIPTION OF CRC 102-A 

THE GENERAL PURPOSE DIGITALCOMPUTER 

Briefly, a general purpose digital computer performs numerical mathematical oper­

ations according to a series of commands· (program). The computer· can modify its own 

commands during a program, either in a preordained manner, or conditionally, accord­

ing to the outcome of certain tests on intermediate results of computation. 

The general purpose computer basically consists of input-output devices, control 

elements, storage (memory), and arithmetic elements. 

THE CRC 102-A GENERAL PURPOSE COMPUTER 

The mode of operation of the CRC 102-A is serial -- all information in the com­

puter is stored on single channels, and access to the information is on a time­

sequential basis. All information is synchronized by a single timing signal (clock) 

generated in the computer. 

Input and output information may be conveyed to and from the computer proper by 

electric typewriter (Flexowriter), punched paper tape (Flexowriter tape), magnetic 

tape (CRC 126 tape drive mechanism), or punched cards (IBM). 

MACHINE LANGUAGE 

Number System. Internally, the computer is all binary (base 2). Input-output may be 

·octal (base 8) or decimal (base 10), at the will of the programmer. (Computation using 

decimal input-output requires the us.e of conv~rsion routines in the computer, which, 

'lnce introduced, can be fully automatic). 
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In general, a num.ber. is represented in a positional notation by coefficients 

(d1.gits) written· from left·· to right· and··· associated conventionally w:tttr decre11:sing 

powers of the base of the number system. A Whole nwnber of n digits, base b, can 

be expressed in the form 

where the a's may have any value 0 b-1. The magnitude represented by this 

notation is 

a bn-1 
n-1 

The period (decimal point, octal point, etc.) is placed to the right of the co-

efficient of the zero power of the base. Coefficients to the right of the point are 

associa"ted with negative powers of the base in decreasing order. 

a-. 2 a-3 . . . a­
n 

= x b-l x b-2 x b-3 a-1 . '°' a-2 . . "9' a-3 + • • • + 

In the binary system, the base is two, and the digits are 0 and 1. This system 

is eminently stti ted to electrical or electronic representation, as any device with 

two stable states can be used to store a digit (on-off switch, vacuum tube saturated 

or cut-off, 0 flip-flop 0 circuit, magnetic surface magnetized to saturation in either 

direction, etc.). Also, binary arithmetic, although it follows the same rules as 

arithmetic to any base, may be represented in very simple tabular form. 
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Binary Addition Binary Multiplication Decimal Equivalents 

0 + 0 = 0 0 x 0 = 0 00~ = od 

0 + l = l 0 x l = 0 OOlb = ld 

l .. 0 = l l x 0 = 0 OlOb = 2d 

1 + l = 10 1 x l = l Ollb = 3d 

lOOb = 4d 

lOlb = 5d 

llOb = 6d 

lllb = 7d 

lOO°t> = sd etc. 

In the octal system the base is 8 and the digits are O, 1, 2, 3, 4, 5, 6, 7. 

Octal Addition Table Octal Multiplication Table Decimal Equivalents 

l 2 3 4 5 6 7 1 2 3 4 5 6 7 0 thru 7 = 0 thru 7d 0 

1 2 3 4 5 6 7 10 1 1 2 3 4 5 6 7 100 = sd 

2 3 4 5 6 7 10 11 2 2 4 6 10 12 14 16 110 = 9d 

3 4 5 6 7 10 11 12 3 3 6 11 14 17 22 25 170 = 15d 

4 5 6 7 10 11 12 13 4 4 10 14 20 24 30 34 200 = 16d 

5 6 7 10 11 12 13 14 5 5 12 17 24 31 36 43 770 = 63d 

6 7 10 11 12 13 14 15 6 6 14 22 30 36 44 52 1000 = 64d etc. 

7 10 11 12 13 14 15 16 7 7 16 25 34 43 52 61 

0 + n = n 0 X n = 0 
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Octal Addition (Decimal Check) 

367 = 3.s2 + 6.8 + 7.8° .. 247d 

733 = 7.82 * 3.8 + 3.8° = 475d 

1322 = 1.83 + 3.82 + 2.8 "'/> 2.80 = 722 

Octal Multiplication (Decimal Check) 

54 = 44d 

26 = ~ 
410 88 

130 88 

1710 ... 968d 

Conversion from the binary representation in the computer to the octal notation 

used in read-in, read-out, and programming merely requires setting off the binary 

number in groups of three binary digits, starting from the binary point, and inter­

preting each group of three binary digits as its octal equivalent. The inverse of 

this process is used to convert octal to binary. 

Binary Octal 

000 0 

001 l 

010 2 

011 3 

100 4 

101 5 

110 6 

111 7 

= 

Example· 

101'110 1 100'111.101'000'101 1 101' 

5 6 4 7 • 5 0 5 5 

03.1777 Octal 

000011.001111111111 Binary 

Binary 

Octal 
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He-rea:fte-r, binary digits will be referred to as "bits" and octal di.gits as 

.. digits". 

Words. In the CRC 102-A computer, a word consists of 14 octal digits (00 thru 013 >. 

Each digit contains three bits (P0 , P1 , P2 ). Thus a word contains 42 bits, which are 

A word may be either a number or a command. If the word is a number, it consists 

of two sign digits and 12 magnitude digits. 

~Sign~ 

l NUMBER 

The digits o0 thru 011 represent the magnitude of the number. In this presenta­

tion, the octal point will be assumed to lie to the left of 011 • Thus all numbers will 

be represented as octal fractions -1 <:n <::1. The sign convention is as follows: 

00 Positive 

02 Negative 

01 Positive with overflow 

03 Negative with overflow 

As all numbers are here represented smaller in magnitude than 1, any arithmetic 

operation giving a result '.:>l will cause an overflow indication. Unless certain 

precautions are observed, an overflow Will automatically stop computation so that the 

operator can determine the cause of the overflow. 
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Commands in the CRC 102-A contain a two-digit number (the instruction) signify-

ing· thellmthema:t1cal·, logi:cal 9 or· input .... outputoperation···to··be performed, and·tbree 

four-digit numbers (m1 , m2 , m3) which represent addresses {locations of information 

in the computer storage). 

Instruction ~ Addresses ~ -,, 

ml m2 m3 

013 012 0 0 0 08 07 06 0 04 03 0 0 00 11 10 9 5 2 1 
COMMAND 

An example of a command is 35 0123 0126 0277 which would mean "lookup the 

number in memory location 0123, look up the number in memory location 0126, add (35 

is the "add" instructi10>n) the latter to the former, and put the result away in memory 

location 0277." Parentheses used around an address as (m1 ) are used to represent 

" fadd " contents o ress m1 • It is important to make the distinction between an address 

m1 , and the information which is stored at that address, (m1). 

THE MEMORY 

Magnetic Drum. Information is stored in the CRC 102-A as magnetic impulses on the sur-

face of a rotating drum. Th~ drWl!. is 12 inches in diameter, 6 inches high, and rotates 

at a speed of 40 revolutions per second. The surface of the drum is coated with 

magnetic iron oxide, and information is recorded and played back with magnetic heads 

similar to those used in conventional tape recording. A pulse of curren.t in one 

direction through the coil of a recording head magnetizes a saall area of the drum 

surface to saturation in a corresponding direction, arbitrarily representing a binary 

"l". A puls.e of current in the opposite direction through the recording head saturates 

the surface in the opposite direction, representing a binary "o". 

Recording on the magnetic S'!irface is of the "non-return-to-zero1111 form; that is, 
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the surface ts magnetized to s-aturation in one direction or the other in every access-

ible bit•space on the drum at all times. 

Once a series of bits has been recorded on the drum, it ~an be played back in-

definitely without affecting the content of the number. However, recording new in-

formation in a space on the drum simultaneously removes the previous content of that 

space. 

The operation of recording is also called "writing"; playback is referred to as 

"reading". 

The drum is divided into a number of circular tracks or channels, each equipped 

with one or more reading, writing, or combination read-write heads. 

Main Memory-Addresses. Sixteen of these channels comprise the main memory, M. Each 

main memory channel contains 64 words of 42 bits each, thus the total main memory 

capacity is 64 X 16 = 1024 words. Each main memory channel has one combination read• 

write head. The spacing of channels is about i inch on centers; channel width is 

about .2 inch. There are about 71 bits/inch on a channel. 

The main memory channels are numbered octally from 00 to 17 for addressing pur-

poses. Circumferential divisions of the drum are called sectors and are one word in 

length. The sectors are numbered octally from 00 to 77. The four octal digits of an 

address then identify a particular sector of a particular channel. The location on 

the drum corresponding to an address is called a "cell". 

Typical address: 13 25 

I\ 
Channel 13 Sector 25 
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Addresses in the main-111e1110-ry- run :from 0000 (channel 00 sector 00) to 1777 

_(channel 17 sector 77) octally, representing 1024 (decimal) addresses in all. 

Buffer Register. In Addition to · the mai.n -- memory, there is· an eight word recirculating 

line (J register), called the buffer. The buffer ~as a read head and a- write head 

spaced eight words apart on the drum cirewnferenee. The read and write heads are 

placed so that information read off the drum by the read head is re-recorded on the 

drum by the write head eight word spaces away from the read head in the direction 

opposite to the direction of drum rotation. (see figure) 

REAO READ 
HEAD CIRCUITS 

I 
I EIGHT WORD I 
I REC.IRCULATING 

DRUM DRUM \-SWORDS 
R9TAT10N I REGISTER 

I 
I 
I 

f WRITE WRITE 

MEAD CIRCUITS 
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Thus information once recorded in the buffer continues to recirculate around the drum 

read-head write-head path until the line is broken for the insertion of new infoTmation. 

It is to be noted that the content of the J register (buffer) can be read out for com­

putation purposes without affecting the recirculation. Addresses in the J register 

are numbered octally from 2000 to 2007. 

One-Word Recirculating Registers. On another channel of the drum are located four 

pairs of read-write heads, forming four recirculating lines similar to the J register. 

Each of these registers is one word in length. They are the E, F, G, and H registers. 

The E and F registers are used for arithmetic purposes, to store operands and results 

of operations. The B register is called the control register. It is used to con­

tain the instruction number, the addresses of operands, and the address of the next 

command. The G register is used sometimes for control purposes and sometimes for 

storing results of computation of operands. 

During computation, operation of the E, F, G, and H registers is automatic. They 

are not available to the programmer for storage purposes. 

Storage in the E, F, G, H, J recirculating registers is volatile. If the com­

puter power is turned off, their content will be lost. Storage in the main memory is 

permanent; once recorded, information will remain on the drum until intentionally 

changed, even when the computer is turned off. 

Timing Channels - Word Channel. The remaining three channels on the drum are permanently 

recorded, and are used for timing and sector identification: 
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The clock channel, C, has exactly 64 X 42 = 2688 clock pulses recorded in a 

closed loop around the drum. Each clock pulse corresponds to one bit-space in all 

channels of the drum. Output of the clock playback circuit is a square wave of 

64 X 42 X 40 (rps) = 107,520 CPS frequency. All logical operations in the computer 

are synchronized to this clock wave form, thus minor variations in drum rotation speed 

(~ 53) do not affect the process of computation. 

The location of the sectors of the main memory and buffer channels is fixed by 

the word channel, lflw• which contains 64 words of the form 

02 0000 0000 0000 to 02 0077 0077 0077 

The first two digits of an address are used to select the correct channel, then 

the last two digits of the address are compared to the output of the word channel read 

circuits. When the word channel digits coincide with the sector address digits, the 

next word appearing in the selected channel is read out for computation purposes, or 

the result of a computation is read into the memory channel selected. 

If a buffer cell address is called for, only the least significant digit of one 

of the word channel addressas is compared with the least significant digit of the 

buffer address. 

Numbering of the word channel may be in any order around the drum, as long as 

each consecutive group of eight word-channel words contains the digits 0 through 7 in 

the same order in the least significant position of each of the three sector addresses, 

to permit proper access to the buffer when required. 

The pulse appearing in P1 012 of each sector is required to synchronize the pulse 

and digit counter when the clear proposition (Z) is true. During this time the counter 

counts when either P1 012 • or Mw is true. Thus, during sector 02 0000 0000 0000 the 
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counter will reach the configuration P2 012 and stop counting until the pulse in Kw 
appears. From then on each time the configuration P1 012 is true, (P1 012 ' false) Mw 

will be true to keep the counter counting. 

One additional pulse is generated for test purposes. This is derived from a bit 

in P1 013 of one of the sectors. The product of Mw and P1 013 gives a timing proposition 

appearing once per drum revolution. 

In applications where computing time must be minimized, it is occasionally necessary 

to re-number the address channel for minimum-access coding of the problem in hand. The 

re-numbering can be accomplished using the Flexowriter (or Flexowriter tape) and a 

special circuit built into the computer. Provision is also made in the computer for the 

re-recording of the start pulse channel • 

• Access to the Memory. In the process of carrying out an arithmetic command, two operands 

must be "looked up'', the operation perforaed, and the result "put away" in the memory. 

Consider the example given. 

35 0123 0126 0277 

"Add contents of 0126 to contents of 0123, put away sum in 0277". 

In the execution of all arithmetic commands, the command (instruction and three 

addresses) is read into the H register. Then the contents of ~ of B is read into 

the E register, the contents of m2 of H is read into the F register, the operation 

, (add, divide, etc.) is carried out with result appearing in the E register, replacing 

the operand, which is no longer needed and the new contents of the E register are read 

into the memory cell called out in m3 of H. 

In the example, m1 of B is 0123. Channel 01 is selected electronically, and the 

output of Mw (word channel) is compared with the digits 23. When coincidence occurs, 

the channel 01 read circuit is connected to the input of the E line for one word time 

only, causing the content of cell 0123 to be read into the E line, Where it will re­

circulate (the information also remains in cell 0123). Then, as m2 of H is 0126, 
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channel 01 -would be selected again, and 26 is compared to ·the word· chatmel output. At 

coincidence, the next word frU1channel 01 is read into the F register, where it will 

l'.ecircu.late. 

The -addition is performed, with result being inserted into the E line, replacing 

the augend m1 • 

Then the E line is connected to the channel 02 record circuit for one word time 

after co1.neidence between the last digits of m3 of H (77) an.d the word channel, accomp­

lishing the desired putaway of the sum into cell 0277. 

Note that the actual location of a sector on the drum- is physically displaced 

one word space from the word channel number associated with it. This allows time for 

the sector look-up circuits to operate in the manner described. 

Special Addresses. 2000 Series (buffer)·- Whenever the first two digits of an address 

are 20, the buffer is selected instead of a main memory channel. Comparison is ma~ 

between only the last digit of the word channel and the last digit of the desired 

address. At coincidencep the proper connection is made between the E or F register 

and the buffer output or input ci.rcui ts. 

"Cell 2100" - When the digits 2100 are called out as an address in the m1 or m2 

(lookup) positions in H, (not in m3), the E or F register will be filled automatically 

with zeros. This cell does not exist physically, as filling with zeros is accomplished 

electronically by breaking the E or F line for one-word time. Therefore there can be 

no putaway to "Cell 2100". If 2100 is put into m3 of H, the 1 in the second place of 

the address will be ignored and the information will be put away in cell 2000 (cell 00 

of buffer). 

( 
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Cell 3000 - If 3000 is called for inm1 of H, theeontents of the G register are 

trlllSferred to the E register. If 3000 is called for in m2 of H, the contents of the 

G register are transferred to the F register. 3000 in m3 of H will result in buffer 

cell 00 putaway as for "Cell 2100". 

Access Time. The drum rotates at 40 RPS, requiring 25 milliseconds for one revolution. 

If a desired word has just passed a main memory channel read-write head when sector 

lookup commences, a full revolution will be required before transfer of information 

will take place. Thus for the main memory, maximum access time is 25 milliseconds. 

Mean random access time is about half this figure or 12.5 milliseconds. For the buffer, 

maximum access t,ime is 25/8=3.125 milliseconds; mean random access time is about 1.56 

milliseconds. 

FILLING THE MEMORY - STARTING COMPtn'ATION 

Filling E Register From Flexowriter. Between the write head and the read head of the 

E register, there is a chain of five flip-flop delay stages (E1 , E2 , E3, E4 , E5). During 

normal recirculation of the contents of E, the read circuit is connected to E1 , E1 to 

E2 , E2 to E3 , E3 to E4 , E4 to E5, and E5 to the record circuit or E line input, E0 • 

The spacing between the write head and the read head is adjusted such that the combin­

ation of drum and flip-flops always contains exactly 42 bits. The flip-flops are 

driven by clock pulses in synchronism with the drum so that each bit progresses doWD 

the flip-flop chain at the same rate as on the surface of the drWJ. 

In order to change the information in the E register, the E5-E0 connection is 

broken and the new information is fed synchronously into E0 , low order digit first, 

for the required number of pulse (bit) or digit times. This action will shift bits 
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into- the low· order end of the E line, and an equal number of bits will be lost at the 

high order end of the E line. 

The actual shifting in of information is accomplished by inserting additional 

flip-flops (one or more of AP A2 , A3 , A4) into the E line between E5 and E0 , for one 

or more word times. If the A flip-flops are preset to a particular state, the number 

(binary, octal, or coded-decimal) represented by that state will be shifted into the 

right hand (low order) end of the E word. 

For example, suppose the E line is cleared to all zeros, then flip-flops A1 , A2 , 

and A3 are all set to the "1 11 position and inserted in the E line for one word ti•e. 

E line before: 000 000 000 000 000 000 000 000 000 000 000 000 000 000 

E line after: 000 000 000 000 000 000 000 000 000 000 000 000 000 111 

In the octal notation, this would be written 

Before 00.0000 0000 0000 

After 00.0000 0000 0007 

This process is used to fill information from the Flexowriter into the E register. 

With the control console set :for octal fill (fill switch on. "Base s'' light on) every 

time a numeral key from 0 through 7 is struck (lower case L = 1), flip-flops A1 , A2 , 

and A3 are set to the correct three-bit state representing the octal digit and are then 

connected into the E line for one word time. If the keys 7, 3, 4, 2 are struck in 

order, the E register would progress as follows: 

00.0000 0000 0000 

00.0000 0000 0007 
00.0000 0000 0073 
00.0000 0000 0734 

00.0000 0000 7342 
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lfote- that, in order to write the number 00.7342, it would be nec-essa'ry to strike 

the 7, 3, 4, -and 2 keys in order, then strike the zero key eight times. As a con-

venience to -the operator, the "f" key on the Fle,xowri ter may be used to fill four 

zeros at one time in such situations. Thus 00.7342 could be filled by striking 

7342 ff. (Always assuming the E register was cleared originally). 

Hereafter the octal notation will ordinarily be used, but it should be remem-

bered that an octal number such as 00.7342 would actually appear in the computer as 

000 000.111 011 100 010 000 000 000 000 000 000 000 000. In preparation for filling 

octal digits, if the "Base 811 light is out ("Base 10" light on) striking the letter o 

on the Flexowriter or momentarily depressing the base 8 button on the control panel 

Will set up the machine for octal filling. 

Selecting an Address for Putaway. Before filling the first number or command into the 

computer, a memory location for that word must be selected. The computer is set up so 

that depression of the "Tab" (tabulate) key on the Flexowriter transfers the contents 

of the E register to the memory cell called out in the m3 position of the H register. 

' The "hyphenn (distinguished from "minus0 sign) key on the Flexowriter transfers 

the contents of the E register to the H register. To select a momory cell for put-

away, type the four octal digits of the address, then strike the hyphen key. The 

address will transfer in to m3 of H and the E register will be cleared. 

Example - selecting cell 1324 for next putaway: 

E 00 0000 0000 0000 

H 00 0000 0000 0000 

Type 1324 

E 00 0000 0000 1324 



H 00 0000 -0001>" 0000 

Type "hyphen'' 

E 00 0000 0000 0000 

H 00 0000 0000 1324 
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If the number to be put away into the JQ,emory is 03.7654 4412 0000, -- type 

03 7654 4412 f (f = Fill four zeros) 

E 03 7654 4412 0000 

H 00 0000 0000 1324 

Type "tab" 

I 00 0000 0000 0000 

Sector 24 channel 13 (cell 1324) 03 7654 4412 0000 

H 00 0000 0000 1325 

The first word has now been put away in cell 1324 and the E register is cleared 

for the next word. Note that 1 was automatically added to the m3 portion of H. This 

facilitates filling a long series of words into consecutive memory locations without 

the necessity of writing the next address each time. 

Decimal Fill. Striking the "d" key on the Flexowriter or momentarily pressing the 

"Base 10" button on the control panel permits filling binary-coded decimal information 

into the memory, according to the 8-4-2-1 system. 

Decimal 

0 

1 

Binary 

0000 

0001 
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Decimal Binary 

2 0010 

3 0011 

4 0100 

5 0101 

6 0110 

7 0111 

8 1000 

9 1001 

Pour binary digits are required for each decimal digit filled, therefore, the word 

capacity is now 9 decimal digits and sign. 

As each number key is struck, flip-flops A1 , A2 , A3 , A4 are set up in the correct 

configuration corresponding to each binary-coded decimal digit, then inserted into the 

E line for one word time, shifting digits in from the right as before. 

The computer must be returned to the "octal fill" condition before any commands 

are inserted, as all operation numbers and addresses are in the octa~ system. 

NOTE 

The computer is not capable of operating directly on binary-coded decimal 

numbers; a suitable decimal to octal conversion routine must be included 

in all programs in Which computation using decimal information is con­

templated. 
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StartingComputation. After thecommands·andnumbersconstituti.ng·a programare 

filled into the computer, the address of the first command must be written in the m2 

position of the H register before computation is started. This is done by typing the 

four octal digits of the address of the first command, then typing f (fill four zeros)· 

then striking the hyphen key (transfers E to H). 

The H register will then contain the address of the first command in the m2 

position. 

Striking the s key will then start computation. The first command will be look-

ed'up and executed, and the program will be carried out in the desired order. 

COMMANDS IN THE CRC 102-A 

The Instruction Digits. Octal digits 013 and 012 of a command are the instruction 

digits. Any octal combination from 00 to 37 may be transferred from the memory to the 

command register H, during computation. 

The significance of each configuration of 0 
13 

table. 

0 is indicated in the following 
12 
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Octal Code Abbreviation Meaninl 
(o13 on left) 

00-03 Numbers cause alarm* 

04 bO Buffer Out 

05 bl Buffer Load 

06 er Read Card 

07 Extra - causes alarm* 

10 Extra - causes alarm* 

11 fl Fill (from paper tape) 

12 pd Punch Decimal 

13 po Punch Octal 

14 bs Block Search 

15 wt Write (magnetic) Tape 

16 rt Read (magnetic) Tape 

17 ts Test Switch -- Test Search 

20 Extra - causes alarm* 

21 pr Print (on Flexowriter) 

22 ht Halt (computation) 

23 dr Divide and Round-Off 

24 dd Divide and Save Remainder 

25 mr Multiply and Round-Off 

* When used as an instruction. 
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Octal Code Abbreviation Meaning 

26 md Multiply Double Length 

27 sl Shift Logically 

30 sm Shift Magnitude 

31 sf Scale Factor 

32 ex Extract 

33 ta Test Algebraically 

34 tm Test Magnitude 

35 ad Add 

36 SU Subtract 

37 to Test for Overflow Marker 

For detailed explanation of all instructions 9 see NCR Electronics Division 

publication uprogramming Manual for Model 102-An o 

Execution of Commands. In the normal course of computation, the command is first reaJd 

into the H registero Then the contents of the ~ address is read into the E register, 

and the contents of the m2 address: is read into the F registero In arithmetic opera­

tions the result appears in the E register1 from which it is transferred to the memory 

location called for in m3 of Ho 

All putaways in the memory come from the E registero In the case of double­

length results (multiply double length, divide with remainder) the first half of the 

result is transferred from E to the memory, as the second half is transferred from 

G to E, then the second half of the result is transferred from E to the next physically 

adja:cent memory cell on the drumo 
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Example - double length multiplication (Instruction No. 26) 

If the command to be executed reads 26 0102 0103 0244 and the content of cell 0102 

is 00 OOOQ 0000 0006 and the content of cell 0103 is 00 0000 0000 0004 the operation 

proceeds as follows: 

Start 

Look up m1 

Look up m2 

E oo·oooo 0000 0000 

F 00 0000 0000 0000 

H 26 0102 0103 0244 

E 00 0000 0000 0006 

F 00 0000 0000 0000 

E 00 0000 0000 0006 

F 00 0000 0000 0004 

] 

During the multiplication, the content of the F register is added to the G 

register if the right-hand bit of the E register is a 1. Then the E and G registers 

are shifted right one bit, with the right-hand bit from the G register shifting into 

the left end of the E register. If the right hand bit in the E register is a 0, no 

addi-tion takes place, and the E and G registers are shifted right one bit, as shown 

in the following steps: 

E Multiplier 

I F Multiplicand 

G Partial Product 



II 
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E Least significant Most significant 
bits of Product Multiplier 

F I Mul tipH.cand ] 
+---___;;,_------1 ~{added to G if 0 

0 

G I Partial Product 

bits of 

/ 
is a l) 

E I Least significant half, of Product J ~ To Memory 

F I Multiplicand 

G I Most significant half of Product I To E, then Memory 

The numerical result, with the example given, would be 

E 00 0000 0000 0030 

F I 00 0000 0000 0004 

G t 00 0000 0000 0000 

0 
0 

The multiplication takes place only over the magnitude section of the two numbers. 

The _proper sign is a~tomatically inserted in the sign position of both halves of the 

product. 

B. Example - division With remainder 

In division with remainder» the dividend is in E, the divisor is in F 

at the start of the operation. As the division progresses» F is compared with 

E and if smaller, Fis subtracted from E, a 1 is recorded in G, and E and G 

are shifted left. At the end of the division, G will contain the quotient and 

E the remainder. Content of E is put away in cell called for in m3 of H, con-

tents of G going t~ F. Next contents of E (quotient) is put away in the next 

physically adjacent cell en the drum~ 
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Other commands are carried out in similar fashion. 

Modifying a command. One of the most useful features of the CRC 102-A is its ability 

to modify commands during computation. If the address of a command is called out in 

the m1 position of an add or subtract command, the address portion of the command 

can be changed by adding or subtracting any number. The operation portion of the 

command will be unaffected by the addition or subtraction. The address portion of the 

command being altered will always be treated as a positive number. 

GENERAL DESCRIPTION OF CRC 102-A OPERATION 

Computer Logic. The CRC 102-A computing circuits have been designed by means·ofdtwo­

valued symbolic logic, and all signals in the logical networks of the computer are con­

strained to one of two voltage levels, +100 volts or +125 volts. The output of any ciPo 

cuit which is restricted to these levels is called a proposition, analogous to the 

semantic application of symbolic logic. A proposition is "true" or in the "one" state 

if the voltage is ""125 or "high"; a proposition is .,false" or in the "zero~' state if 

the voltage is •100 or "low''. The flip-flops used as part of the recirculating re­

gisters, and additional flip-flops used for logical, control, and other purposes, 

operate (either directly or through driver amplifiers) between the two logical voltage 

levels. Mixing and gating of signals between flip-flops is accomplished by germanium 

diodes arranged to carry out the functions of logical sum (mixing) and logical product 

(gating or coincidence). 

ORGA?UZA"f'lO!i OF THE COMPUTER 

The Program Counter - The Flow Diagram. The number of flip-flops in the co•puter has 

been liaited to the aaximum number required to carry out a single operation. The 
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flip•:flops correct"ly·arranged in tti.e diode network for each step in the sequence 

accordi~ to the state of a nine-stage binary register called the program counter. 

The -program eounte-r can represent, binary· fashion, any octal number "'from-HOOO- to 

777. The program counter controls the state of the· diode network and thus the inter-

connection between memory, recirculating lines 9 input-output devices, and logical 

flip-flops. 

Operation of the program counter is automatic. It is not accessible to the pro-

grammer. 

The time-sequential nature of the logical circuits does not readily permit 

separation into a conventional block diagram,·but the sequence of events.for any 

20243003). 

Each block in the flow diagram corresponds to a configuration of the program 

counter as shown by the octal number in the upper left-hand corner of the block. 

The program counter may change its state in one of two ways - it may count pro-

gressively, 000,001, 002, etc., or it may skip from one state to another as required 

by the outcome of a particular operation. 

A horizontal line leaving a block indicates counting in the program counter; a 

vertical line leaving a block indicates skipping. In several cases (see Blocks o. 7. 

173) the-·program counter may skip back into the configuration just left. This oper-

ation ±s referred to as sticking. In leaving any block there are only two alter­

natives for the program counter: count or skip (Where sticking is included. as a 

special case of skipping). 
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Whether the program counter is to count or skip from a block is determined by its 

previous state and the result of the operation carried out in that block. 

Except when sticking, the program counter stays in one configuration (one flow 

diagram block) for one-word time (14 octal digits, or 42 bits, approximately 420 u sec). 

At the end of each word-time, (actually during P2 013> the state of the decision flip­

flop (K) determines whether the program counter is to count or skip. If K is false, 

the program counter counts into the next block; if K is true, the program counter skips 

(or sticks) as shown in the flow diagram. The state of K at the end of a word-time is 

a result of the logical equations describing the operation during that word time and 

the actual propositions being handled during the word time. 

Example Fill 7 into E 

As an example of a flow diagram sequence, consider the operation of filling an 

octal 7 into the E register from the Flexowriter. 

When the computer has been turned on, and the warm-up period is over, the pro­

gram counter returns to 0 (rest - upper left hand corner of flow diagram). Assuming 

the "Base 8" button has been pressed, and the fill switch turned to "fill" position, 

the 7 key on the Flexowriter is struck, setting ones into logical flip-flops A1 , A2 , 

and A3 . Striking any significant Flexowriter character also sets K false and the pro­

gram counter counts to block l (001), where the signal sent from the Flexowriter is 

examined to determine whether it was a character (0-7) or a control symbol (d, o, s, f, 

hyphen, tab). Identification of the 7 as a character sets K true and the program 

counter skips to block 41 where A1 , A2 , and A3 are inserted into the E line for one 

word time, shifting E left one octal digit and inserting a 7 in the least significant 



- 26 -

position. (A4 is inserted into the E line only when decimal information is filled. 

K is always true coming out of block 41, so the program counter skips to block 40, 

where flip-flops A1 - A5 are reset to O. The program counter skips to block O, K re­

mains true, and the program counter sticks in 0 repeatedly until another significant 

Flexowriter key is struck. 

Function of Flip-Flops. 

Arithmetic flip-flops A1 through A are set up through the diode network to per-
12 

form the function required in each program counter block. 

Decision and carry flip-flop K is set up at the end of each word-time, in order 

to determine whether the program. counter is to count or skip. In some program counter 

blocks, K is used during the remainder of the word-time as a carry flip-flnp in Ad-ii t!~!?., 

and for other arithmetic purposes. 

Program counter flip-flops N1 through N9 control the interconnection of all logical 

elements (flip-flops, recirculating line and memory inputs and outputs~ etc.). The 

logic for the program. counter flip-flops is such that they operate as a conventional 

9-digit binary (3-digit octal} counter if K is false, advancing one step at the end of 

each word time. If K is true at the end of a word time, the N flip-flops are forced 

into a non-consecutive configuration determined by the previous program counter number. 

It is frequently arranged that the state of only one N flip-flop need be changed to 

accomplish the skip. For exa:mple from flow diagram block 24 (000 010 100), K true at 

end of word causes skip to block 64 (000 110 100), requiring only that N6 be set true. 

Octal digit counter flip-flops D1 through D4 function as a binary counter which 
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re-cycles after counting to 13. The flip-flop outputs drive an array of logical pro-

duct circuits (matrix) which produces a true output proposition on one of thirteen out-

put lines corresponding to the location in time of each of the octal digits o0 through 

013 . These octal digit propositions are used to control the logic of operations which 

are to take place during only part of a word (sign changes in 012 , channel and sector 

selection in o0 - o3 , etc.). 

Pulse counter flip-flops B - B function as a binary counter which re-cycles 
1 2 

after a count of 2 and is driven by the clock pulses from the drum. The pulse counter 

outputs are combined in a matrix as above to provide output propositions P0 , P1 and P2 

which are true during one bit-time of each octal digit-time. The P2 proposition drives 

the octal digit counter. Thus an operation which is to occur during the least signifi-

cant bit of each octal digit would be controlled by proposition P0 ; an operation which 

is to occur during the most significant bit of the m1 address portion of a word would 

be controlled by P2 and 011 (from the octal digit counter). 

Record flip-flops R1 and R2 are used to control all recording of information in 

the memory. R1 is set true for transferring the contents of the E register to the main 

memory (M), R2 is set true for transferring the contents of the buffer (j) to the main 

memory. 

Channel selector flip-flops L1 through L5 are set up to correspond to the first 

two digits of an address for lookup or putaway of information. Some examples of channel 

selection are shown below. 
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Octal Channel No. Channel Selector Flip-Flops 
(First two digits L5 L L3 L2 Ll 

of address) 4 Location Selected 

00 0 0 0 0 0 Channel 00 Main Memory 

05 0 0 1 0 1 t! 05 ti It 

17 0 l 1 1 1 .. 17 •• " 

20 1 0 0 0 0 Buffer 

21 1 0 0 0 1 (In lookup-"Cell 2100'' 
(In putaway - Buffer 

30 1 1 0 0 0 Cell 3000 

Function of Recirculating Registers During Computation 

First Command Lookup. After a program h.as been filled into the memory, including a 

sequence of commands and the necessary numbers (constants, etc.), pressing the "start'' 

button or striking us" on the Flexowriter will start computation. 

The number in the m2 position of the H register (the control number) is the address 

of the first command which will be carried out. If the H register was cleared before 

the start signal, the computer will look in cell 0000 for the first command. If the 

first command is located in (say) cell 0136, the operator must type 0136 f - (hyphen) 

before starting computation. This will put address 0136 in the m2 position of H. 

Sending a start signal causes the program counter to count to block 6 (see flow 

diagram.). In blocks 6 and 7 the address in m2 of H (first command) is looked up, and 

in block 10, the first command is read into the H register. At the same time, the 

previous contents of H are transferred to G with one being added to the control number, 

m2 , in the process. 



- 29 -

Example - Add Command 

A. Command lookup. Assuming all registers (except H) cleared at start, and the first 

command (in cell 0136) was 35 0123 0124 0263, the register contents would change as 

follows: 

E 00 0000 0000 0000 

F 00 0000 0000 0000 
I Going into block 6, flow diagram 

G 00 0000 0000 0000 

H 00 0000 0136 0000 

E 00 0000 0000 0000 

F 00 0000 0000 0000 
II At end of block 10, flow diag~am 

G 00 0000 0137 0000 

H 35 0123 0124 0263 

B, E and F lookup. In blocks 11 and 12 the address of the first operand (0123) is 

looked up, and in blo~k 13 the·e~ntents of m1 of Hare read into E. In blocks 14 

and 15 the address of the second operand (0124) is looked up and in block 16 the 

contents of m2 ~f H are read into F. 

If cell 0123 contained 00 1111 1111 1111 

and cell 0124 contained 00 2222 2222 2222 

the register content at the end of block 16 would be: 

I 

E 00 1111 1111 1111 

F 00 2222 2222 2222 

G 00 0000 0137 0000 

B 35 0123 0124 0263 

At end of block 16, flow diagram 
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As the information in m of H is no longer needed, the new control number (address 
2 

of next command) is transferred from G back to H in block 17, leaving G available 

for arithmetic ~se if required. 

E 00 1111 1111 1111 

F 00 2222 2222 2222 
II At end of block 17, flow diagram 

G 00 0000 0137 0000 

H 35 0123 0137 0263 

The address 0127 also remains in G, but filling in another word in G will shift 

out this superfluous information. 

C. Test for Instruction. In blocks 20 through 37, 1 is added to the instruction 

portion of H (35 in example) in each block starting with 20. The decision flip-

flop, K, remains false until the addition results in an overflow into the P2 013 

position, at which time K is set true and the program counter skips as indicated. 

In the example the instruction number (I) is 35 (add). In block 20, I is increased 

to 36; in block 22, I becomes 40 (100 000); K is set true an' the program counter 

skips to block 122 - start of add routine. 

D. Putaway of Results. At the conclusion of the add routine (block 124, 125, or 127 

depending on the nature of the operands) the program counter skips to block 134, 

for the putaway routine. 

At the start of block 134 the registers appear as follows: 

E 00 3333 3333 3333 (sum) 

F 00 0000 0000 0000 (cleared) 

G 00 0000 0137 0000 (G was not used in the add 
routine) 

H 40 0123 0137 0263 
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In blocks 134 and 135 the channel and sector of the putaway address (0263) are 

located and in block 136 the contents of E are transferred to the appropriate memory 

cell. Block 137 is used for putting away the second half of double-length results, 

when required. 

After putaway, the program counter skips to block 6; the next command is looked up 

(in cell 0137 in example) and a new command cycle commences. 

ALARMS 

Non-Existent Instruction or Number for Command. If, during the examination of the in­

struction portion of H for the type of instruction (blocks 20-36, 400-403, 410-417, 

flow diagram), a configuration representing a number (00, 01, 02, 03) or a non-existent 

instruction (07, 10, or 20) is found, the program counter will skip to block 434, 

initiating a routine for printout of the content of the G register. The information 

printed out will indicate which step in the program caused the alarm.. (For details 

of G register printout, see CRC 102-A Specifications). 

After the printout, the program counter will skip to 0 and the computer will be 

in rest. 

Automatic Overflow Test. If an addition, subtraction, or division operation gives a 

result >- 1 in magnitude, and the "automatic overflow test" switch is in the "in" 

position, the contents of the G register will be printed out as above, and the computer 

will halt, unless the next instruction is "Test for Overflow" (to) or "Shift Logical" 

(sl). In these latter cases it is assumed that the operator has anticipated the over­

flow and computation will continue according to the prograln. 
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PROGRAMMING 

Programs. In order to carry out a computation or series of computations, the CRC 102-A 

must be programmed by the operator. 

In general, the operator will fill a group of commands into the memory, fill the 

numerical information into the memory, fill the address of the first command into m2 

of H and start the computer. Ordinarily the program will include one or more output 

commands (print, punch IBM cards, etc.) and a command to halt at the end of the program •. 

The computer ordinarily carries out a program according to the sequence of 

commands in the program, obtaining a command from the memory, executing that command, 

storing the results (if any), obtaining the next command from the memory, executing 

the command, etc. 

Only one arithmetic .operation can be carried out for each command (some commands 

require two or more logical steps in the computer, such as "multiply and round off", 

but such a group of steps will be referred to as one operation, as it is called for 

by one instruction, in this ease ''mr''). For instance, "add two numbers together and 

divide the sum by two'', would require two commands in the computer, one for the 

addition and one for the division. 

Filling Methods. The information may be filled directly into the computer using the 

Flexowriter, or a Flexowriter tape can be punched and the taped information filled into 

the computer at some later time by running the tape through the tape reader attached 

to the Flexowriter on the computer control console. In either ease, a printed record 

of the program will be typed by the Flexowriter as the program is fed into the computer. 
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Review of Flexowriter symbols for filling computer: 

Set-up of A flip-Flops 
in Computer 

Flexowriter 
Key A5 A4 A3 A2 Al Notes 

c 0 0 0 0 0 0 All characters: contents of 

H A - A are filled into E 
1 4 

A register if filling in dee-

R imal mode 

A 
1 (Lower Case 

c L) 0 0 0 0 1 Contents of A1 - A3 are 

T filled into E register if 

E filling in octal mode 

R 2 0 0 0 1 0 

s 3 0 0 0 1 1 

c 4 0 0 1 0 0 

H 5 0 0 1 0 1 

A 6 0 0 1 1 0 

R 7 0 0 1 1 1 

A 8 0 1 0 0 0 Will fill correctly only in 

c decimal mode. If filling 

T octally 8 fills as O, 9 fills 

E 9 0 l 0 0 l as 1 

R + 0 0 0 0 0 Same as 0 

s - Minus 0 0 0 1 0 Same as 2 (distinguished from 

hyphen key) 
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Set-up of A Flip-flops 
in Computer 

Flexowriter 
Key A5 A4 A3 A2 Al Notes 

Space 0 1 1 0 0 Special characters for decimal 

filling. If filling octally 

space fills as 4, period fills 

Period 0 l 1 1 1 as 7 

c d 1 l 0 0 1 Sets A6 true for filling four 

0 bits from A1 -A4 into E register 

N 
0 1 l 0 0 0 Sets A false for filling three 

T 6 

bits from A1 -A into E register 
R 3 

0 Hyphen 1 1 1 0 0 (Distinguished from minus key) 

L Transfers content of E register 

to H register 

Tab 1 1 1 1 0 Records contents of E register in 
s 

memory. (In main memory, p2 0 
y 13 

always records as 0) 
M 

B s 1 1 1 1 1 Starts computation 

0 
f 1 0 0 0 0 Fills 4 zeros in either decimal or 

L 
octal mode, during initial filling 

s 
of cleared registers 

Note: A5 identifies control symbols 
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A Sample Program 

A. Problem and Approach. As an example, assume it is desired to compute the square 

root of an octal number, X between O and 0.7777 7777 7777. 

One method of computing the square root in such a case is as follows: 

1. Assume initially that the square root of X is the largest possible value, 

0.7777 7777 7777. Call this the first trial value T1 

2. 

3. 

Square T1 

2 Compare T1 with X 

4. If T12 is within 0.0000 0000 0002 of X, assume that the computation is 

finished and that T1 =~ (as nearly as this method permits) 

5. If T12 exceeds X by more than .0000 0000 0002, obtain a second trial value 

T2 , according to the formula T2 .. (It can be shown that a 

sequence of such trial values Will converge to the square root cf X). 

6. Repeat steps 2, 3, and 4 using T2 • 

7. If computation is not finished, obtain T3 by the method of step 5 

= 

8. Repeat steps 2, 3, and 4 using T3 • 

9. Continue the process until step 4 determines that computation is finished. 

10. Print the result on the Flexowriter. 

11. Cause the computer to halt. 
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B. Computer Steps. The above sequence of events, broken into steps for computer oper-

ations, can be tabulated to indicate the sequence of commands required. 

1. Set up T = .7777 7777 7777 

2. Multiply T by T 

3. Subtract X from T2 

~. Compare result with .0000 0000 0002 

5. 
2 

If T - X exceeds .0000 0000 0002 divide X by T (If not, 9. Print T 
( 

6. Add result to T ( 10. Halt 

7. Divide SWll by two, giving T 
2 

8. Return to step 2 using new trial value 

This is new trial value. 

) 
) 
) 

C. Allocating Memory Space. Ordinarily a set of consecutively nWllbered memory cells 

is allocated for the commands in a program, and another set of cells is set aside 

for numbers and storage of results. 

From the above diagram it can be seen that approximately ten commands will be re-

quired for the program. Let us reserve cells 0100 thru 0117 in the main memory for 

commands and put the numbers in cells starting with number 0120. 

D. Making Out The Program. If cell 0120 is used for the location of the trial value 

of the square root the first step in the program requires 00.7777 7777 7777 to be 

placed in cell 0120. This could be accomplished with an add command: 
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Commands 

Address Command Address 

0100 ad 0121 2100 0120 0120 

(contents of "cell 2100" • 0) 0121 

The next step calls for the squaring of the trial value: 

0101 mr 0120 0120 0122 0122 

Then X must be subtracted from T2 

0102 SU 0122 0123 0122 

(the previous information in 0122 is 
no longer needed s~ this result can now 
be stored there). 

Numbers 

Number 

Trial value of sq. root 

00.7777 7777 7777 

Temporary s·tcrage of 

intermediate results 

E. Complete Program. After pr<0>ceedin.g similarly through the entire tabulation of ope!'-

ations the complete program appears as follows: 

Commands 

Address Command 

0100 ad 0121 2100 0120 

0101 mr 0120 0120 0122 

Notes 

Adds .7777 7777 7777 to 0 and puts result 

in cell 0120. Effectively copies contents 

cf 0121 into 0120 ("contents" of 2100 are 

always 0) 

T2 in Gl22 



Commands 

Address Command 

0102 SU 0122 0123 0122 

0103 tm 0122 0124 0106 

0104 pr 0120 2100 0001 

0105 ht 2100 2100 0000 

0106 dr 0123 0120 0122 

0107 ad 0122 0120 0122 

0110 sl 0122 0125 0120 

0111 tm 3000 2100 0101 
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Notes 

T2 -X in 0122 

Test for end of computation 

If end reached, print T, otherwise jump 

to 0106 for next command. (2100 in m2 

causes printout in octal mode, full 

length. 0001 in m3 means print one word 

only. 

Halt. 2100 2100 0000 provides minimum 

access time. Any addresses may be used. 

If end not reached, divide X by T 

X/l' in 0122 

x T + T in 0122 

Shift content of 0122 one binary digit 

right. Divides by two; also removes over-

flow if any. T /2 + X/2T in 0120 ready 

for next trial. 

Unconditional jump to 0101. Content of 

cell 3000 is always O in this case, 

since the control number > 0. 
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Numbers Notes 

Address Number 

0120 Latest trial value of 

square root Replaced by new value at sl command 

0121 00.7777 7777 7777 First trial value 

0122 Temporary storage of 

intermediate results No two of these results are needed 

T2 , T2 -X, X/I', T ... X/I' simultaneously. 

0123 x Number for which square root required 

0124 00.0000 0000 0002 Used in tm command to determine whether 

to print or continue trials 

0125 02.0000 0000 0001 02 indicates right shift. 1 X 2-12 

indicates one bit shift 

F. Filling the Program into the Computer. Assuming the computer and Flexowriter to 

be turned on, the following sequence of steps would fill the sample program and 

start computation: 

Step Notes 

Turn on 11 fill 11 switch Connects Flexowriter to Computer 

Press "clear11 button Clears and synchronizes computer circuits 

Press "base 8" button or "o" 

key on Flexowriter Prepares computer for filling octal mode, 



Type 0100 

Strike "hyphen" key 

Type 35 0121 2100 0120 

Strike "tab" key 

Type 25 0120 0120 0122 

Strike "tab" key 
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Notes 

Pills "0100" into o3o2o1o0 of E register 

Tr~sfers 0100 (address of first putaway) 

to m3 of H 

Puts first command in E register (35 = add) 

Transfers 35 0121 2100 0120 to cell 0100. 

Increases m3 of H to 0101 (address of next 

putaway) 

Puts second comm.and in E register (25 = mr) 

25 0120 0120 0122 to cell 0101. Increases 

m3 of H to 0102 

Continue to putaway of last cemmand in cell 0111, then 

Type 0121 

Strike 0 hyphen" key 

Type 00.7777 7777 7777 

Strike "tab" key 

Strike "tab" key 

Type sign (00) 8.Jld magnitude X 

Strike "tab" key 

Fills 0121 into o3o2o1o0 of E register 

Transfers 0121 (address of next putaway) 

to m3 of H. 

Contents of cell 0120 makes no difference: 

first step in program puts desired infor-

mation into cell 0120 

Pills number into E ,.-egister 

00.7777 7777 7777 to cell 0121. m3 of B 

increases to 0122 

Skips cell 0122, m of H increases to 0123 
3 

Fills X into E register 

Puts X into cell 0123; increases m3 of H 

to 0124 
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Logical Structure of the CRC 102-A 

COMPtJTER BLOCK DIAGRAM AND DESCRIPrION 

INPUT 
DEVICES 

FLIP­
FLOPS 

ORUM 

TIMti.16 

DIODE NETWORK 

FL.IP-FLOPS : 
PROEiRAM C.OUMTER. 

PULSE COUNTER 
DIGIT COUNTER 

WORD CMAMNEL Mw 
START PUL.SE Ms 

C.LOC.K C 

FLIP­
FLOPS 

OUTPUT 
DEVICES 

The clock provides the basic repetition rate for the computer. 

Clock Waveform 
<P> 

The computer circuits are designed through the use of symbolic 

+125 v 
+100 v 

logic. The logic is handled in mathematical form according to a set of rules called 

Boolean Algebra. A proposition in the computer is analogous to a proposition in 

' semantics - it can be in one of two states, true or false, corresponding to one of two 

voltages appearing at the point under consideration in a netwo~ or circuit. "True" 

is indicated by a high (+125 v) voltage. "False" corresponds to a low voltage (+100 v). 

True and false are also represented by the binary digits l and 0 respectively. 

By defining certain logical operations, we can combine propositions in various 

ways to achieve desired electronic results in the computer. The operations used are 

aegation ("Prime", "not", or ••inversion"), "and" (logical product, gating, or coincidence), 

and "or" (logical sum or mixing). 
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The simplest logical operation is negation. If a proposition, A, is true, 

then its negation, A', is false. This relation can be shown in a truth table as 

follows: 

Proposition }__..;, 
operated on 
possible } 
values of ~ 
proposition ~ 

A 

0 

1 

A' Operation 

1 
Result of operation 

0 

The "and" (logical product) operation combines two or more propositions in 

such a way that both must be true for the result to be true; the symbol for logical 

product is the same as the algebraic symbol for multiplication, a dot between the 

two letters representing the propositions, or simply juxtapositien of the two 

letters: A.B = AB = A and B • (logical) product of A and B. 

Truth Table for Logical Product 

A B 

0 0 

0 1 

1 0 

1 1 

AB 

0 

0 

0 

1 
' 

AB = BA 

ABC = A(BC) • (AB)C 

A.l = A 

A.O = 0 

The "or" operation (logical sum) combines two (or more) propositions in such 

a way that the sum is true if at least one of the propositions is true. The symbol 

for logical sum is +. •' 
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Truth Table for Logical Sum 

A B A+B 

0 0 0 

0 1 1 

1 0 1 

1 1 1 

Some additional 

AA' = 

A+A' = 
A(B+C) 

(AB) I 

(A+B)' 

A + B = B ... A 

A+B+C = A ... (B+C) = (A+B) +C 

A + 1 • l 

A+ 0 =A 

rules for logical algebra. 

0 always false 

1 always true 

= AB ... Ac 

= A' ... B' 

= A'B' 

Propositions to the left of the double line in the charts above can be con­

sidered as imputs to a logical circuit, and propositions to the right as outputs. 

Germanium diodes are used in the CRC 102-A computer to perform the logical product 

and sum operations. The diod~ is a non-linear electronic component which exhibits a 

low resistance (say 300 ohms) to current flow in one direction and a high resistance 

(say 300,000 ohms) to current flow in the opposite direction. 

)i J/300 ohms i( ,/ 300, 000 ohms 

----.11 + 

-11 
Diode Conducting Diode cut-off 
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The logical operations of Sllll and product are performed with diodes as foi1ows: 

+225\1. 

R » 300.n. 
-r-----e-----t1-AB 

A B 

LOG I CAL PRODUCT 

A B 

.__---+----11 ... A+ B 
R » '300..n. 

LOGICA~ SUM 

Equivalent circuits for four cases of logical product: 

-t-2.25V. 

R»'IOQ.n. 
AB=IOOV F,._LSE) 

'300.n. '&00.A. 

·A:+IOOV B=+IOOV 
FALSE FALSE 

+2.2.S\I. 

R » '300A 

AB:IOOV(FAL!!iE) 

300.n. 300K 

Aa+IOOV S=+l?.5V 
FALSE TRUE 

+215V. 

R.))300"1. 

AB= IOOV(FALSE) 

3001( 300A 

A.=+1asv a::+1oov 
TRUE FAL!:>E 

+22.SV. 

R.)) 300A 
AB= 125\/ (TRUE) 

300..t\. 

A.•+11.SV 
TRUE 

Ba.+12.SV 
TA.UE 

Reference to the truth table for logical product shows that the above circuit 

satisfies the four requirements. Similarly, equivalen"t circuits·forthe :four"Cases of 

logical sum verify the operation of the sum circuit. 

Note that the output of a logical circuit is of the proper form and voltage to be 

the input to another circuit. 
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A+ SC ----.....----::! ~c 

+2Z5 

B c 
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+22S 

B 
---+----1~ (A.+B) C 

11 B c 

Obtaining the Primes~ The negations (primes) areobtainednfrombistable (two-stable-

state) electrical circuits (flip•flops) or from- drivers (inverters). The flip-flop has two 

inputs and two outputs. One output is the negation of the other. 

Flip-flop Representation 

A negative pulse on input an sets output An true ( +125 v.) an-a output ~ false 

( 't 100 v.). A negative pulse on input 0 an sets. output An false and output ~ true. 

Pulsing-an is also called "setting 1° or "setting~ true". Pulses for setting flip-

flops are obtained by coincidence (logical product) with the fall of the clock wave-

form. (C). +225 

Q c 

An 
i---~An 

i---~An 

If Q is true, flip-flop A will be set true when e drops from + 125 to ·"100 v, if 
n 

11 was originally in the false state. If An was originally in the true state, it will 

remain so until a negative pulse is applied to a • Clock products used to drive flip­o n 

flops in this fashion are called grid propositions. 
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The driver stage- is an --amplifier --wi.-th output clamped-by diodes to 1111lit tlae out-

put voltage to-th• range +125 volts. Drivers are usually p-laced--between flip-flops 

and large diode---Jle"'tWorks -to supply the 1-arge currents required without undue loading 

of the flip-flop. 

FROM A 
FLIP-FLOP -----. 

-'300V. 

SIMPLIFIED DRIVER CIRCUIT WITH 01JTP1JT CLAMPING 

+100 

CLAMP DIODE 

-------A' 
CLAMP OIOOE Ip 

NORMAL (R) 
LOAD LINE 

+100 +125 

300.n. 
LOAD LINE 

PLATE CHll>.RACTERISTICS 
FOR CLAMPED DRIVER 

Dual trlode tubes are often used so th-at -troth outputs o-f a flip•flop-.ay-be -amplified 

in one, unit. 
···-~······ 

I:n order to synchron1:z-e the operat-ton of various flip--flops in the e~er, a product 

is formed between logical network output propositions and the clock signal. 

+225 

L 
QC /' __ _..._, 

Q c 
FROM LOGICAL NETWORK 

The exponential rise of the product depends on the time constant of the product resistor 

and the stray circuit capacitance. The resistor is selected as large as possible in 

order to conserve network current,- yet not so large as to prevent the clock product 

from rising to full 125 v. amplitude in 5 microseconds. The fall time of the clock pro-· 
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duct is short, as the drivers for the product diodes represent low impedance sources. 

It is the fall of the product proposition which triggers the flip-flops. The flip-flop 

output cannot change until one clock pulse time after the input proposition (Q) goes 

true. This is an important consideration in the design of the computer circuits. 

The flip-flop input circuit is designed to respond only to negative-going pulses 

over a certain minimum amplitude. 

FLIP-FLOP INPUT CIRCUIT 
(In plug-in Unit) 

A +225~ A' 
r-------- ----------- ---------- - --- -----, 

I 
I 
I 
I 
I 
I 
I 
I 
I 

a. INPUT N&:TWOA.I(. I 
-SAME AS FOR A 1 0a. 
GRID. I 

Cw=STRAV I 
CIRCUIT R1 Xz 7 I 

tAPAtlTf-NCE l 
L ___ ---- ------------- ---------------------1 

Q c +6V. -ev. -300V. 

If the flip-flop is in condition to be triggered by a negative pulse, the left grid 

will be at about 0 volts, diode x1 will be cut off until the input signal drops at 

least 6 volts, and diode x2 will be cut off until the grid drops to at least -9 volts. 

Thus, if a negative stray or noise pulse of 5 volts or less is applied to the flip~flop 

input, no signal will reach the grid. 

However, when the desired trigger signal, QC, is applied to the flip-flop input, 

it is· differentiated by the input capacitor, C, the res31lting negative spike is well 

over 6 volts in amplitude, and the flip-flop reverses its state, the left hand grid 

dropping to -9 volts, where it is clamped by diode x2 , and the left-hand plate rising 

(O about +180 v. No further change will take place until a negative pulse is applied 

to the opposite flip-flop input. 
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When the left-hand grid is at -9 volts, the flip-flop could be triggered by a 

stray positive pulse at the grid, but as diode x1 is cut off, application of positive . 

pulses to the flip-flop input produces no effect. 

LOGICAL DESIGN 

A logical equation for a network is derived from the information contained in a 

truth table by equating the proposition at the head of an "output" column of the table 

to the (logical) sum of all combinations of the input propositions which correspond to 

a .. l" in that output column. Each combination of input propositions is expressed as 

a (logical) product. 

Where the output is a grid proposition, C (clock proposition) must be included as 

a factor in each product. 

Example: Writing logical equation from truth table 

Truth Table 

Resulting Equation: 

A B D oa 
= (A'BD • ~'D' + ABD') C 

0 0 0 0 

0 0 1 0 

0 l 0 0 

0 l 1 1 

l 0 0 1 

l 0 l 0 

l l 0 1 

1 1 l 0 



- 49 -

As an example of logical formulation, consider the use of two flip-flops as a 

seale-of-3 counter. A table of the desired successive states of the flip-flops can be 

drawn as follows: 

Time A B a----1 
oa ___ -1 A 

t-1 1 0 

t 0 0 0 

t l 0 1 

t 2 1 0 B 

t 3 0 0 

Then the desired grid signals for each next successive state of the flip-flops 

~an be filled in: 

One 
Cycle 

( 
< 

~ 

A 

0 

0 

1 

0 

B a 

0 0 

1 1 

0 0 

0 0 

oa b ob 

0 1 0 

0 0 l 

1 0 0 

0 1 0 

etc. 

As the operation is cyclic, only the first three tabular entries need be consider-

ed. The logical equations for the network can now be written, where C is the clock 

proposition needed for timing the counter. 

a = BC 

b = A'B'¢ 

0 b = BC( •a) 
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Then the corresponding diode circuit can be drawn. 

+22.5 +22.5 +2es 

,.---_.., __ ,.._--I~ b 

B A' B' c 

The flip-flop output propositions A and B would then appear as follows. (Assume 

at start the flip-flops are in the A'B' state) 

A 
ETC. 

B 
-----TIME 

Thus the two f:lip-flops and the diode network form a two-digit binary counter Which 

resets to 0 after a count of two. A similar counter (pailse counter) is used in the com-

puter to locate the positions in tiae of bits P0 , P1 , P2 , of each octal digit. 

If a unique output is required for each configuration of such a counter, a logical 

matrix is used which produces a true output on a separate line for each state of the 

counter. For the above scale-of-three counter a very simple matrix results. 

a. A A=TRUE AT tz 
A A' 

~ 8 1 : TRUE AT t,0 ; ,,: 

b B B=TRUE AT t 1 COUNTER 
ob 8 Bo 

NE.TWORK 

In the computer, flip-flops B1 and B2 constitute the pulse counter, and the pro­

duct B1 1 B2 1 in the output.matrix is also used as part of the counter network. 

) 
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Simplified logic is as follows : 

bl = PC pl = B 
0 1 

b = B1C Where P2 = B2 0 1 

b2 • B10 Po = B' B' 
1 2 

ob2 = s2c 

FLIP-FLOP OtJTPtJT WAVEFORMS IN PULSE COUlft'ER 

l 

etc. 

The complete logic includes the reset proposition Z Which is true when the reset 
I 

button is pressed, and the start pulse Ms Which occurs at P0o0 time. 

Expressed in words, the pulse counter should count as above except When the reset 

proposition is true, When it should set to the P1 state (B1B12) at the time the start 

pulse occura. 

COllPLITB LOGIC l'O& PULSI COUlft'IB 

bl • (PO • Z X.> C 

obl • Bl (Z' • M',) C 

(Z' • M' ) C 
I 

Prem the above it can be 1een that Whenever ZM1 11 true, the parenthetical por­

tions o:f the :f1rat and :fourth equation.• will be true and the counter Will set to the 

P1 1tate. Whenever Z 11 :fal1e, the 10110 reduce• to the 11mpl1:f1ecl cue. 



- 52 -

A nrore--complieated case of a COl:IDter amt·matrix ts the di"g:t.t counter, which 

lCJCates-the-positionintimeof eacm of the octal digits O through 0 • It is a 
0 13 

scale-of-14 counter, using flip-flops D1 through D4 and the logic is as follows: 

dl = D' (Z' .,. M ') P2C 1 s 

Odl = (DlP2 .,. ZMS) C 

d2 = D1D2 (D'+D') (Z' ... M ') P2C 3 4 s 

d = (DlD2P2 + ZM8 ) C 
0 2 

d3 = DlD2D3' (Z I ... M ') P2C s 

d = (DlD2D3P2 + P20l3 + ZM ) C 
0 3 s 

d4 = D1D2D3D4' (Z I + M ') P2C s 

Od4 = (P20l3 .,. ZM) C 
s 

Assuming Z is false which removes all terms of the form ZMs and all factors of.the 

form (Z' ... 118 °) and noting that factors P2C mean that the change to the next state 

occurs every third bit (every octal digit), it can be shown that the counter progresses 

~n ordinary four-digit binary fashion from o0 to O at which time the flip-flop out-
. 13 

put propositions are as follows: 
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At time P2o13 , D1 is set 0 by D1P2C, d2 and 0 d2 are both false, so D2 remains 

in the O state, and D3 and D4 are set O by P2o13c, thus the counter is reset for the 

next cycle. 

A matrix for producing a unique output corresponding in time to each octal digit 

could be constructed as follows: 

Dz 

D' I 

Writing Oo - D 'D • D f D ' 1 2 3 4 

0 = DD' D' D' 
1 1 2 3 4 

o2 = D' D D' D' 1 2 3 4 

etc. to 

+ + 
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Examination of the completed matrix shows the correct combination of the partial pro-

ducts (shown in parentheses) to produce the desired output propositions as indicated. 

As another example of a logical network, consider a full serial adder for binary num-

bers. The adder will have three pairs of inputs» A and A• (Addend), B and B' (Augend), 

Kand K' (carry from previous pulse time). The outputs are S(sum) and the grid pro-

positions for the carry for the next digit k and k. 
0 

SERIAL ADDER 

A 
A S 

I - LOGICAL 8 --
B' NETWORK 

--

K. k 
K --

l<I FLIP- ok 
FLOP ... 

Verbally, the rules for the adder network are as follows: If there are no l's 

in the (unprimed) inputs, the sum output should be 0 and the carry flip-flop (k) should 

be set to O. If there is one 1 among the unprimed inputs the sum output should be 1 

and the carry flip-flop should be set o. If there are two l's among the unprimed in-

puts, the sum output should be 0 and the carry flip-flop should be set 1. If the un-

primed inputs are all l's, the sum output should be 1 and the carry flip-flop should 

be set 1. 
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TRUTH TABLE FOR SERIAL ADDER 

A B K s k ok 

0 0 0 0 0 0 
Logic for serial adder 

0 0 1 1 0 1 
C = clock proposition 

0 1 0 1 0 0 
0 k = A'B'KC, k = ABK'C 

0 1 1 0 0 0 
S = A'B'K + A'BK' -t AB'K' + ABK 

1 0 0 1 0 0 

1 0 1 0 0 0 
NETWORK FOR SERIAL ADDER 

1 1 0 0 1 0 

1 1 1 1 0 0 

+ 

+ + + + 

A' B' 

Example of circuit simplication by logical algebra: consider the proposition 

X = AB(C' + B) (CD+ A)+ E'. The network for the proposition as it stands would 

require 12 diodes. 
+ 

E' 

C' B 
A B 

x_ 

c D -::-

-: ":" 
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Mul tiplying--out- tJie exp;ression and cUscarcUng factors which are always true and terms 

which are always false: 

x = (ABC' + AB) (CD • A) +E' 

x :: AB(C' + 1) (CD+ A) +E' 

x = AB(CD ... A) + E' 

x = ABCD ... AB + E' 

x = AB(CD ... 1) + E' 

x = AB+ E' 

Example - logic for the "Extract" comm.and. 

EO - E register input proposition 

E5 = E register output proposition 

F2 = F register output proposition 

G5 = G register output proposition 

()ply four diodes in 
~•sulting circuit: 

E' 

A B 

Part of the extract command (laloek·lOO, Flow Diagram)·says·"Extract the digits of the 

number in the E register into the munber in the G register according to the number in 

the F register and put the res.ult back into the E register". This is written E0 = E5 

F2 + G5 F' 2 • Thus, at any particular pulse time during extraction, if F2 is true, the 

digit in E5 will go back into the E register; if F2 is false, the digit in G5 will go 

into the E register. 

x 

Example - Test for sign in the ta command. As part of the 0 Test Algebraically" command 

(Block 64, Flow Diagram), the number in the E register is compared to the number in 

the F register. If the number in the E regi~r is larger Algebraically (more positive) 

than the number in the F register, flip-flop A1 is to be set true. 

At the time the thirteenth octal digit (012 ) of the E register is in E5 and the 

thirteenth octal digit of the F register is in F2 , flip-flops A1 and A2 are in these 
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states: 

If the two numbers are equal in magnitude, A2 is false; if they are unequal in 

magnitude A2 is true. 

If the magnitude of the number in E is greater than the magnitude of the number 

in F, A1 is true; otherwise A1 is false. 

The second bit of the thirteenth octal digit (P 0 ) indicates the signof the 
l 12 

number, 0 for positive, 1 for negative. The logical formulas for this time reduce to: 

= A' F (E' + A ) C 
1 2 5 2 

= A E C 
1 5 

If the two numbers are equal in magnitude, A2 is false, and the equations reduce to 

-....1 = 

The results for this case can be shown in a table. (In a previous step, A1 was set 

false). In this example, the table ()n the right expresses in one-zero notation, the in-

formation contained in the table on the left. 

sign sign is E5 F2 al 
of (E) of (F) E)F? 

+ + no 0 0 0 

+ - yes 0 l l 

- + no l 0 0 

- - no 1 1 0 

Thus, A1 is set true only for the case E>F. If the two numbers are unequal in magnitude, 

~2 is true, and al = A' 1F2C With A2 true, 

Oal = A1E 5C 
Al /El> /Fl means 

A' means IFl>IEI 1 



Sign Sign 
Is IE/> /Fl? of (E) of (F) 

-

yes + + 

yes + -
yes - ... 

yes - -
no + ... 

no + -
no - + 

no - -

yes 1 

yes 1 

no 1 

no 1 

no 0 

yes 0 

no 0 

yes 0 

- &58 -

0 0 0 

0 1 0 

l 0 0 

1 1 0 

0 0 0 

0 1 1 

1 0 0 

1 1 1 

0 

0 

l 

1 

0 

0 

0 

0 

Resulting 
state of 

Al 

1 

1 

0 

0 

0 

1 

0 

1 

Thus, A1 becomes (or remains) true only if E)F, and the conditions of the algebraic 

test are satisfied. 



APPENDIX 

NUMBER SYSTEMS 

Since computers work with numbers, it is necessary to get some idea of exactly 

how a number system functions. 
3 2 For example, 1954 can be expressed as 1 x 10 ~ 9 x 10 + 

5 x 101 + 4 x 10°. Similarly 1 a decimal fraction like .30103 can be expressed as 

3 x 10-l + 0 x 10-2 + 1 x 10-3 + 0 x 10-4 + 3 x 10-5• From this illustration, it can 

be seen that any number can be expressed as a combination of powers of ten. 

It is possible, however, to use powers of some other number than 10 and equally 

well represent a number. To see how this ~ay be done, consider using the powers of 5: 

Powers of 5 

(1244)5 

(125 ... 50 + 20 + 4) 
10 

Powers of 10 

Thus, the number (1244) 5 is the same as the number (199)10• 

The number which is raised to the different powers in representing quantities 

is called the base of the number system. We will make it a practice to indicate 

the base of the number by a subscript. 

It is sometimes useful to represent numbers in terms of powers of 2. This is of 

value because the base of the number system is always 1 larger than the value of any 

digit in a number. This means that the only values that the individual digits can 

take are 1 or 0. These two combinations can be represented by two conditions of a 

circuit (conducting or non-conducting), (high or low voltage). In order to put this 

system to use, it becomes necessary to change from the decimal base 10 to the base 2 

(i.e. use powers of 2 instead of 10). 
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Since 2 and 10 are not related by any Whole number power and since the number 8 

is the third power of 2, in practice it is convenient to first change from the base 

10 to the base 8 and from the base 8 to the base 2 according to the following table: 

Base 8 Base 2 

0 000 (0) 
1 001 (0 ... 0 + 1) 
2 010 (0 .... 2 ... 0) 
3 011 (0 ... 2 + 1) 
4 100 (4 ... 0 "/' 0) 
5 101 (4 + 0 ... 1) 
6 llO (4 • 2 ... 0) 
7 lll (4 ... 2 "/' 1) 

There are several schemes to change from the base 8 to the base 10 or vice 

versa. For example, to change from the base 10 to the base 8, one could write the 

number in terms of powers of 10, change each number to its equivalent octal (Base 8) 

value and perform the indicated operations using .!!!! octal multiplication and addition 

tables. However, for one accustomed to decimal arithmetic, the following system is 

easier: 

1954/8 = 244 + 2/8 2 is last digi.t 

244/8 = 30 ... 4/8 4 is third digit 

30/8 = 3 ... 6/8 6 is second digit 

3/8 = 0 ... 3/8 3 i:s first digit 

Or: (1954)10 = (3642)8 = (011 110 100 010) , the last number from the table 
3 6 4 2 2 

above. 

To get from octal (base 8) to decimal, the following system is probably the 

easiest: 

(3642)8 = 3 2 1 0 3 x 8 ... 6 x 8 ... 4 x 8 ... 2 x 8 = 3 x 512 + 6 x 64 + 4 x 8 + 2 x 1 = 
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It should be emphasized that either system maybe used for eitheT change, but 

care must be taken to use the right arithmetic system in each case. 

To convert decimal fractions to octal ones, the following system may be used: 

.30103 
8 

2.40824 
8 

3.26592 
8 

2.12736 
8 

1.01888 
8 

0.15104 

First digit is 2 

Second digit is 3 

Third digit is 2 

Fourth digit is 1 

Fifth digit is 0 

Thus, (0.30103)10 = (0.23210)8 

The change from octal back to decimal fractions may ~e made as follows: 

(.23210)8 = 2 x 1/8 + 3 x 1/82 + 2 x 1/83 + 0 x 1/84 .30078125 

The difference between these two represents a rounding error. Again it must 

be ·emphas·ized that either of these processes may be used for either conversion, if 

the proper arithmetic system is used. 

Since the 102A uses binary (Base 2) arithmetic, it is convenient for the octal 

code to be used; it converts easily to binary, and it takes up little more space than 

decimal, (binary code would take up 3.6 times as many characters). 

As a sample of non-decimal arithmetic, let us multiply together two numbers in 

octal notation. To do this we shall need octal multiplication and addition tables: 



0 
1 1 
2 2 
3 3 
4 4 
5 5 
6 6 
7 7 

1 2 3 4 5 6 7 
2 3 4 5 6 7 10 
3 4 5 6 7 10 11 
4 5 6 7 10 11 12 
5 6 7 10 11 12 13 
6 7 10 11 12 13 14 
7 10 11 12 13 14 15 
10 11 12 13 14 15 16 

Addition 

2357 
1774 

11674 
21211 

21211 
2357 
4724104 

A-4-

0 1 2 3 4 5 6 7 
1 0 1 2 3 4 5 6 7 
2 0 2 4 6 10 12 14 16 
3 0 3 6 11 14 17 22 25 
4 0 4 10 14 20 24 30 34 
5 0 5 12 17 24 31 36 43" 
6 0 6 14 22 30 36 44 52 
7 0 7 16 25 34 43 52 61 

llul tiplication 

This is done in the same way as decimal arithmetic except that the octal multi-

plication and addition tables were used. Persons using the CRC 102-A should become 

familiar with octal arithmetic because it is used by the machine for calculations. 

The complement of a number is that number which when added to the given number 

will clear the storage register of a machine. This number is useful in subtracting 

in a machine not designed with a special mechanism for subtraction. To see how this 

might be usedp assume that the register of the machine will hold numbers from O to 99 

with a place for an overflow marker to note when the machine has exceeded 99. Let 

us subtract 77 from 99: 

99 - 77 = 99 • 100 - 77 - 100 
= 99 • 23 - 100 
= 22 + (overflow - 100) 

Since we recognize that the answer is 22, and that the overflow represents the 

fact that the register has recognized that over 100 counts have been put into it, we 

may form a rule thai if the register shows an overflow, we will throw it away and the 
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remaining part of the answer is the correct solution. Let us now interchange the 

numbers so that we may see what we would do it we got a negative answer. 

77 - 99 =· 77 ... 100 - 99 - 100 
= 77 + 1 - 100 - 78 - 100 (no overflow) 
= -(100 - 78) 
= -(complement of 78) - -22 

Thus, if no overflow is formed in this operation, the answer is minus the com-

plement of the sum. This seemingly involved method is used because the operation 

of taking the complement is easier, in practice, than a special subtract operation. 

The method can be used, of course, in any number system. 
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BOOLEAN ALGEBRA 

Pe·rhaps- the most important single invention in the field of logic is the in-

ventionby Boole of a symbolic representatien of propositions in such a fashion 

that they can be easily manipulated without reference to the contents of the pro-

position. The key idea is probably contained in the equation A • A' = 1. (Read 

A plus not A is everything). A' or "not A0 is thus a symbol for "everything not in 

A". The other things we are interested in can be represented by A.B (everything 

in both A and B) and A + B (everything in A or B, or both). 

The sort of relations among propositions which interest us are those which are 

true regardless of the truth of the propositions themselves. These universally true 

relations are called tautologies. They can be verified by what is called a truth 

table. In a truth table, one assigns values (true or false) to each proposition 

and observes the truth of the relation. For example, if 1 represents true, and 0, 

false, the elementary propositions given above will be seen to be: 

A AO B B' A ... B AB 
1 0 l 0 1 l 
1 0 0 1 1 0 
0 l 1 0 1 0 
0 l 0 l 0 0 

This table can be explained as follows: 

If A is true, not A is false; if A is not true, not A is true 

If B is true, not B is false; if B is not true, not B is true 

If either A or B or both are true, A ~ B is true 

If and only if both A and B are true, AB is true 
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This table can be thought of as defining these operations. Note that the arith-

metic signs have been chosen so that performing the indicated operation on the truth 

value of the proposition automatically gives the truth value of the relation. 

We can use these relations to verify tautologies. To see how this is done, let 

us verify the relation A + A' = 1. 

A A' A+ A' 1 (The relation is true because 
0 1 l 1 A A and 1 
1 0 1 1 agree for all values of the 

proposition 

Again, AA' = 0 

A A' AA' 
1 0 0 
0 1 0 

Let us verify the following list of useful propositions: 

A + A=A A A+ A 
1 1 
0 0 

BA= AB A B AB BA 
0 1 0 0 
0 0 0 0 
1 0 0 0 
1 1 1 1 

A+B=B+A A B A.., B B ... A 
0 0 0 0 
0 1 1 1 
1 0 1 1 
1 1 1 1 

A(B C) (AB)C A B c (BC) (AB) A(BC) (AB)C 
0 0 0 0 0 0 0 
0 0 1 0 0 0 0 
0 1 0 0 0 0 0 
0 1 1 1 0 0 0 
1 0 0 0 0 0 0 
1 0 l 0 0 0 0 
1 l 0 0 1 0 0 
1 1 1 1 1 1 l 
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In a like manner, the following propositions may be verified: 

A + (B + C) = 
A (B • C) • 

(A + B) • C 
AB ,. AC 

A + BC = (A + B)(A • C) 
AO= 0 
Al = A 
A• 0 =A 
A + 1 • 1 
AA' = 0 
(A')' = A 
(AB) ' = A I + B I 
(A+ B) = (A'B')' 
A•AB=A 
A• A'B • A• B 

WITH THESE SIMPLE PROPOSITIONS AND THE FURTHER RULE THAT A PROPOSITION MAY BE SUB­
STITUTED POR ITS EQUAL IN ANY EXPRESSION, ANY TAUTOLOGY MAY BE VERIFIED, AND NEW 
ONES MAY BE DEVELOPED. 

Example: 
ABC + A'BC + AB'C +ABC' + A'B' • C + A'BC' + AB'C' + A'B'C' 
= A(BC + B'C +BC' + B'C') + A'(BC + B'C •BC' + B'C') 
= (A+ A')(BC + B'C +BC' + B'C') 
= (A + A' )(B(C + C') .. BI (C + C')) 
= (A+ A')(E + B')(C + C') 
= (I)(I)(I) 
• I 

An alternative method of establishing the fundamental relations in Bool~an Algebra 

is by use of a Venn's diagram. In this diagram, I is the area of the rectangle and A, B, 

and C are the points in each of t~ree circles. A' is then the points in I but outside 

A, AB is the set of points in A or B or both, and AB is the set common to both circles. 

This diagram is labeled to show a solution of the example above • 

.ABC' 
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COMPUTER ELECTRONICS 

The operations of Boolean Algebra can easily be represented in terms of 

voltages. In the CRC 102-A the voltages chosen are 125 V for true and 100 V for 

false. The drivers of the logical circuits are clamped at these values, and 

these are the reference voltages used in the "not" circuit shown below: 

A 

A B c 

c c 

B A 

A B c A B c A c 
100 100 100 100 100 100 100 125 
100 125 100 100 125 125 125 100 
125 100 100 125 100 125 
125 125 125 125 125 12,5 c = A' 

or c = (A .,. B) 

0 0 0 
0 1 0 
1 0 0 
1 1 l 

c = AB 

Thus, we can use a combination of diodes t@ represent a proposition in Boolean 

Algebra. If we set up a matrix to give the sum. illustrated in the section on 

\ 
Joolean Algebra, 
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\ 

A B c A' B c A B' c A' B' c 

A B C' A' B C' A B' C' A' B' C' 
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The truth table for this net work is: 

A B c ABC A'BC AB'C ABC' AB'C' A'BC' A'B'C A'B'C' SUM 

0 0 0 0 0 0 0 0 0 0 1 1 
0 0 1 0 0 0 0 0 0 1 0 1 
0 1 0 0 0 0 0 0 1 0 0 1 
0 1 1 0 l 0 0 0 0 0 0 1 
1 0 0 0 0 0 0 1 0 0 0 1 
1 0 l 0 0 1 0 0 0 0 0 1 
1 1 0 0 0 0 1 0 0 0 0 1 
1 1 1 1 0 0 0 0 0 0 0 1 

This table reveals that each set of the type ABC is true for only one con-

dition of the values of A, B, C, so that it might be considered as a counter with 

8 stable states. Thus, by choosing the proper combination of terms any one of 28 

possible functions might be chosen in the logical networks. Of course, some of 

these could be simplified in some fashion, but the number of possibilities is still 

quite large. 

As an exercise the basic tautologies in the section on Boolean Algebra may be 

set up and truth tables made to verify them, using the 1 to signify 125 V con-

dition and 0 for the 100 V condition. 

It is important in a computer that all stages of the counter change states 

at the same time, rather than in serial fashion, as in ordinary scalers. A "cleo>ick" 

circuit synchronizes the machine, delivering one pulse for each binary digit. These 

pulses serve as gate pulses in the diode networks. 
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The computer uses flip-flops or Eckles-Jordan circuits to store information and 

drive the logical circuits. These will be represented symbolically as follows: 

K K' 

k ok 

Notice that the grids of these flip-flops are not driven by the same signal, so 

that the proper grid must be triggered to change their states. Clipper diodes are 

placed in the grid circuits to prevent positive signals from affecting the circuits, 

and the resultant circuit will respond only to negative pulses. The input circuits 

are further arranged to differentiate the rectangular clock pulses to provide a sharp 

triggering waveform. 

A scale of 16 counter may be set up using four flip-flops. These counters take 

on the following states: 

A4A3A2Al 

0 0 0 0 
0 0 0 l 
0 0 l 0 
0 0 l l 
0 l 0 0 
0 l 0 l 
0 l 1 0 
0 1 1 1 
1 0 0 0 
1 0 0 1 
1 0 1 0 
1 0 1 1 
1 1 0 0 
1 1 0 l 
1 1 1 0 
1 1 1 1 
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After the 16th pulse, the counter resets itself to 0000. 

Each counter may be considered as a proposition in Boolean Algebra. When A is 

not conducting, and A' is, the voltage at the plate of A is more positive than that 

of the conducting A'. These plates are clamped at the logical voltages, 100 V and 

125 V. Thus, we may think of A being true when it is not conducting and false when 

it is conducting, according to the convention we have developed. On inspection of 

the table for this circuit, it will be observed that when Ai is true we must change 

the flip-flop to A1 is true. This can be done by supplying a clock pulse to A1 • 

When A1 is true and the clock is true, the flip-flop should change to Ai is true. 

Putting these sentences into Boolean Algebra, we find that 

a Ac 
0 1 1 

In a like manner, the flip-flop A2 should be triggered so that A2 will become 

true, if the counter now has A1 true and A2 false; and A2 should be triggered so 

that A2 will become false if A2 is true and A1 is true: 

= 

= A A' c 
1 2 

A3 should be triggered when A1 and A2 are true: 

= 

= 
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Similarly, 

These equations can be translated into diode networks in the fashion shown 

below: 

c 

-------a-------e-------.... ---_.,.~Al 

A' 
3 

c 

A 
3 

A' 1 

c 

Al C A2_ 
OA2--~~--~__..._~_.._~--

c 

A 
2 

A 
l 

A 
3 

c 

A' 
4 

c 

A 
l 

In practice, we combine these circuits as much as possible in order to save diodes. 
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+ 

This network saves 12 + 

diodes over the previous one, A' 
4 

but the total number of 

resistors in each network 1' + 

is the same: one for 

each output desired. 

+ -, + 

A' A2 2 
OAl 

A 

(A C) 
1 

C Af C 
Th~ grid equations could also be derived by listing the conditions immediately 

before a given change of state. For example: 

a = A1A2A3A,i + A A'A A' ... A A'A'A + A A'A A 
1 1 2 3 4 1 2 3 4 1 2 3 4 

= A A' (A' A' + A A' + A'A + A A ) 
1 2 3 4 3 4 3 4 3 4 

= A A' (A I (At A ) A (A' A )) + ... 
1 2 3 4 4 3 4 4 

= A A' (A' + A )(A' + A ) 
1 2 3 3 4 4 

= A A' 
1 2 
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As a second example of counter design, let us consider a scaler like the pre-

ceding one, except that it shall be made to reset to zero after 13 counts. 

Al A2 A3 A4 

0 0 0 0 
0 0 0 1 
0 0 1 0 
0 0 1 1 
0 1 0 0 
0 1 0 1 
0 1 1 0 
0 1 1 1 
1 0 0 0 
1 0 0 1 
1 0 1 0 
1 0 1 1 
1 1 0 0 
1 1 0 1 
0 0 0 0 

The following observations may be made: 

If A' 1 is false, it Will change to true at the next clock pulse; 

If A1 is false, it Will change to true at the next clock pulse; 

If A' 
2 is false and A1 is true, A' will change to true on the next clock pulse; 

If A2 is false and A1 is true and A1A2A3A4 is not true, A2 will change to true 

on the next clock pulse. 

If A3 is false and A1 and A2 are true, A3 will change to true on the next clock 

pulse. 

If A31 is false and A1 and A2 are true of if A A'A A is true, A' will become true 
1 2 3 4 3 

on the next clock pulse. 

If A4 is false and A1 and A2 and A3 are true, then A4 will change to true on the 

next clock pulse. 
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If these statements are reduced to Boolean Algebra, they become: 

Oal = A1c 

al = A'c 1 

oa2 = A1A2c 

a2 = A1A2(A1A2A3A4 )•c 

a2 = A A' (A' + A' )c 
1 2 3 4 

a = A1A2A;c 3 

oa3 = (A A A + A1A2A3A4 )C 1 2 3 

Oa3 = AlA3(A2 ... A4)c 

Oa4 = A1A2A3A4c 

a 

Consider next the biquinary system as might be used in a counter: 

A4 A3 A A 
2 1 

0 0 0 0 0 
1 0 0 0 1 
2 0 0 1 0 
3 0 0 1 1 
4 0 1 0 0 
5 1 0 0 0 
6 1 0 0 1 
7 1 0 1 0 
8 1 0 1 l 
9 l 1 0 0 
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If A1 = o, it will change to 1 if A3 is not 1 next clock pulse. 

If A1 = 1, it will change to 0 next clock pulse. 

If A2 = 0 and Al = 1, A2 will change to 1 next clock pulse. 

If A2 = 1 and Al = 1, A2 will change to 0 next clock pulse. 

If A3 = 0 and A1 = A2 • 1, A3 will change to 1 next clock pulse. 

If Aa = 1, it will change to 0 next clock pulse. 

If A4 = 0 and Aa = 1, A4 will change to 1 next clock pulse. 

If A4 = 1 and Aa = 1, A4 will change to 0 on next clock pulse. 

In Boolean terms: 

Al = A' A' C 1 3 

0A1 = Al c 

A2 = Al A' c 2 

0A2 = Al A2 C 

A3 = Al A2 A' C 3 

OA3 = A3 c 

A4 = A3 A' c 
4 

OA4 = A3 A4 c 

The method of selecting those terms for which a change will occur would not give 

these results after simplification unless a further rule is used; this specifies that 

a pulse may be added corresponding to a condition that the counter does not reach in 

normal operation, or suppress a pulse the counter does not reach in normal operation. 
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Since this counter has "forbidden states", it is necessary to check to be sure 

that if it takes on such a configuration when the machine starts, it will get back 

to its normal counting routine. This may be checked by using the counter equations to 

determine the next states of the counter for such conditions. For example, if this 

one started in 

the next states would be 

1110 

0010 
0011 
0100 
1000 
1001 
1010 
1011 
1100 
0000 
0001 
0010 
etc. 

Thus, the counter would not recirculate between forbidden states if started in 

this position. In a like manner it can be shown that starting from any other "for-

bidden state" will soon give rise to normal operation. 

It is possible to construct the network to evaluate 

ABCK + ABC'D + AB'CD + A'BCD + A'B'CD + A'BC'D • AB'C'D + A'B'C'D + ABCD' • ABC'D' + 

ABC'D' + AB'CD' + A'BCD' + A'BCD' ~ A'B'CD' ? A'BC'D ~ AB'C'D' • A'B'C'D by use of 

what is called a matrix, This is done as follows: 
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A'B'C'D' 

A' 

AB'C'D' 

etc. 
A B' 

A1 B 

A B 

c• D' C . D1 C' D c D 

No resistors are necessary on A'B', etc. unless it is desired to use this pro-

position by itself. 

Su~pose that two numbers are added, one digit at a time. To do this with usual 

arithmetic operations, one adds the least significant digits, records the least signi-

ficant digit of the sum, records most significant digit of the sum to be added to the 

sum of the ne~t pair of digits, and continues. If this most significant digit be 
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denoted by K, the two numbers by E and F, and the sum by S, these could be written as 

follows: 

K 1 0 0 0 0 1 0 
E 3 1 4 1 5 9 
F 7 • 3 0 l 0 3 
s 03. 4 4 2 6 2 

This example was done in decimal arithmetic. Note that the least significant 

carry (K) is always zero. 

Let us do a similar problem in binary arithmetic: 

K 

E 

F 

s 

1 1 1 0 

-X 1 0 l 
1 1 1 

1 1 0 0 

0 0 0 

0 1 1 
1 0 0 
1 1 1 

0 1 0 

0 0 1 
0 0 1 
0 1 0 

Since the order cf digits in the machine is the least significant digit first, followed 

by successively more significant digits, we can probably do our operations on each set 

of digits as they pass through our machine. 

If we make a table of all possible sets cf digits, and determine the swas, and 

new carry K, we can find equations for both S and the K1 

E F K s Kl 

0 0 0 0 0 
0 0 1 1 0 
0 l 0 1 0 
0 1 l 0 1 
1 0 0 l 0 
l 0 l 0 l 
1 1 0 0 1 
l 1 1 1 l 

Since we will want the carry K in the next step, it can be put into a flip-flop, 

and its output read, by use of a clock pulse, at the next digit time. We will need then 
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to know when the sum is different from zero, and how to set the K flip-flop. 

K flip-flop 

I 

K (i) -
K(i + 1) 

_1lo. -E 

__., - s F 

From the table, 

S = E'F'K + E'FK' -t EF'K' + E FK 

k = E'FK + EF'K + EFIC' + EFK 

ok = E'F'K' + E'FK' .. E'F'K + EF'K' 

s = K (EF + E 'FI) + K' (E'F + EF') 

k = K (E'F + EF') + EF (K + K') = EF + K (E'F + EF') 

ok • E'F'K' + E'F'K + E'FK' + EF'K' = E'F' (K + K') + K' (E 'F + EF') 

= E'F' + K' (E 'F + EF') 

Since the carry flip-flop will stay in one condition until changed, the second 

term of the simplified expression for k may be omitted because it says K is already set 

true. Thus k = EF; similarly 0k = E'F' 
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Suppose now that we want t@ add one to some number. If we let K be originally 

equal to one, we may substitute 0 f~r one of the addens. Suppose this one be F 

Then. 

k .. 0 

k :::: E 1 
0 

Thi~ is used in the ©RC 102~A t~ in©rease the addresses in the H line by 1. 

Consider the following problem: 

Set a flip-flop A initially o. 

Change it to 1 if E ~ W Sl!lld leave it there. 

Sol~tion: If E ~ F for at least one digitp for this digit either EvF er 

EF' is true. 

Then, the equations be~ome: 

k = 0 

= 

Problem: to fiet a flip=flop l :i.f E) :r: :U E '1 F. then the m!Q)st significant 

digit where E ¥ F determines whi©h i@ larger. !f we set the flip-flop ea©h time E ' F9 

the final state of the flip-flop shows which nwaber is largerp if it is set one way 

when E is larger and the other f©r F larger. Then 9 

{E .. 0, P = 1 i.e. E (F) 

{E "" l F ::: 0 E )F) 

before the start @f the W@rdp the ©@nditi@n of K will be 

K ::: 1, E) 1' 

K m 0 E(F 
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STORAGE STSTDS 

In the CRC 102-A memory there are three types of storage. One system, permanent 

storage, occupies most of tne magnetic drum. Information stored in this part of the 

machine will stay in it until it, is replaced. 

The other types of storage are "volatile". One, 'the buffer register, holds 8 

words and recirculates these so that one of the 8 is always available. 

Skillful use of this register will shorten considerably the look up time, which 

consumes a major part of the computer working time in any problem. The second volatile 

system is a set of 4 one word cells, E, P, G and H. E is used in input, output, and 

arithmetic operations to hold the numbers as they are being used. F is used in 

arithme~ic operations. G is shared between control functions and arithmetic opera-

tions and control functions, and is 113000" for read out only. H is the centrol cell, 

and, at various·times, contains a command, the address of the next command, or the 

address to which a word in the E register will go in the permanent storage or buffer 

The "E line" may be represented as follows: 

A 3 

Each B except B0 is a flip-flop driven from the previous flip-flop or from the shaping 

circuits frea the read out head. The grid equations for E2 -B5 are in the form: 

= Ei-lC 

= E' C 
i-1 
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To see what happens at the read head 9 we must <Consider the recording system in 

the CRC 102-A, the so-called non-return-to-zero system. In this system, the write 

head does not return to zero polarity after each bit is recorded, but only when the 

next digit is differ.ent from the preceding one: 

Return 
to 

Zer<» 

Non Re­
turn to 
Zero ____,f 

1 1 1 0 1 0 1 

Since the above wavef~rms represent idealized writing currents 9 the waveforms 

also represent the direction ~f magnetization on the drum. This may be seen from 

the diagram of the write head.: 
0 CT 1 

Energizing the "l'\ half of the winding will orient the magnetic N-S poles in the drwn 

,..llne way 9 energizing the O, half of the winding will orient the magnetic N-S poles the 

other way. The read head. will have O output except where the flux ehanges 9 and there 
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it will give a pulse of one polarity if the change is plus and a pulse of the opposite 

polarity if the change is minus. This is used to gate a very sharp clock pulse, to 

change the state of E1 as required. 

Drum 
Output 

Clipper 
~ Phase Inv. 

Special 
Clock 

Output 

E1 E1 
(\ __ ____, ___ (\~ __. v 

El 

El n-~~~~~~~__.nt--_ 

E n 
0 l 

E1 n 

In practice, the spacing between the read and write' heads is adjusted for the coinci-

dence of the output signal with the special clock pulse. In the recirculating lines, 

an erase head is used before each write head, which sets the magnetic material to ''zero" 

polarity, making the 0 winding on the write head unnecessary ("single ended writing"). 

There are no erase heads in the main storage, so the double ended system is necessary 

there to record 0 where there was a 1. 
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Returning to the discussion of the E line, it will be noticed that several flip-

flops are associated with it. At least one must be used to drive the record head, but 

the others are used in switching the line to a longer or shorter length, which will 

cause shifts when properly used. 

In the machine the magnetic line and associated circuits hold 37 bits, and 

E1 -E5 hold the remaining 5 bits. For normal reci.rculation, the circuits are set up 

If one of the A flip-flops is connected to E5 and E0 is read off 

of this flip-flop, i.e. E0 = A3 , the word is then 43 bits long, but only 42 clock 

pulses occur in any word time, so each bit advances 42/43 of a complete circuit, which 

is equivalent to 1 binary shift toward the most significant end. Notice that what 

was in A3 now is in E5 , and what was the most significant bit is now A3 • If A is set 
3 

.. 
'to zero after each word time, we would have, in effect, shift logical in a positive 

direction. 

If on the other hand we make E4 = E0 , the line is now 41 bits long, and will 

advance 42/41 binary places in one word time. Since the output is no longer taken from 

E5 , the information in it Will be read out and lost unless some precaution is taken 

to retain it eisewhere in the machine. 

How, since each bit advances one bit further than the word length in one word 

time, this corresponds to a shift toward the least significant end of one binary digit. 

However, that information which was in E4 will, after one word time, be the most signi­

ficant digit as well as the contents ef E5, unless precautions are taken to prevent 

this from happening by forcing E0 = 0 for this time. If this is done, we have a shift 

logical in the negative direction. 
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E1E2 E3E 4E5 A 

\ l I I! I 
1 longer 110 011 100 011 110 000 111 110 000 011 111 100 000 011 0 

Original 011 001 110 001 111 000 011 111 000 001 111 110 000 001 1 

l shorter 001 100 111 000 111 100 001 111 100 000 111 111 000 000 

To interpret the above diagram, consider the line to be a chain of flip-flops, 

each of which contains one bit. If this line were stopped after the last clock pulse 

of a word, the con.tents of each flip-flop would be t~e digit corresponding to the 

significance of each flip-flop in the word. If the line is lengthened or shortened 

by more than one flip-flop, a corresponding number of shifts per word time of config-

uration will result. In filling the compu~er, 3(or 4) flip-flops (octal (or decimal)) 

are added to the E line for one word time. If those are preset to correfpond to an 

octal (or decimal) digit, this will effectively store one digit in the least signifi• 

cant place in E. In a similar fashion one may read out of the E line, taking the most 

significant digit first. 

E has the following circuits: 
0 

+ 

in 

Et 
0 

• 

c 
.+ 

... 

Write 
head 
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The read head has the following circuits associated with it: 

It is desirable t~ have a counter synchronized with the word so that any part 

of the word may be examined separately, and we will know where to find it. To do 

this we will divide the 42 bits of a word into 14 octal digits, each containing 3 bits. 

We, thus, need a sc·ale of 3 counters followed by a scale of 14: 



c 

Synchronizing 
information 
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the synchronizing information may be derived as follows: Each word in the word 

channel has the following structure: 

00 ooxx ooxx ooxx 

If we form a function Q = ... 0 + 
10 

0 
11 

+ 0 + 
12 

0 
13 

Then Qw ch = 0 when the counter is synchronized. Every time Qwch = 1 let us in-

hibit the clock signal to the word counter for one clock pulse. The counter will thus 

shift until it agrees with the word channel. 

The logical network is controlled by a nine stage counter N1 •.•••••• N9 • This 

counter may either count to the next higher number or skip to a completely different 

number. A special case of skipping, is to skip to the same number (i.e. no change). 

This counter is called the Program Counter. The Program Counter is controlled by the 

state of the K flip-flop at P2o13 . 

K P 0 = 1 skip 
2 13 

= O count 
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~he count terms for the Program Counter flip-flop grids are standard binary counter 

terms. The skip terms are chosen especially for the occasion, one for each grid that 

must be changed on each skip. 

Matrices are used on the Program Counter plates so that the Program Counter 

states may be derived with a minimum of diodes. 

E and G have 5 external flip-flops. 

F, J, H have 2 external flip-flops. 

There are 12 general purpose A flip-flops, A1 •••••••• A12 , a special purpose A13 , 

and K, which has a very large number of uses. 

For recirculation: 

EO = E 
5 

G = G5 
The following Flexowriter keys have these codes: 

0 

Fo = F2 A5 A4 A3 A A 
2 1 

Jo = J2 
0 0 0 0 0 0 
l 0 0 0 0 1 

H = H2 0 

9 0 l 0 0 1 
0 1 l l l 

Sp 0 l l 0 0 

f 1 0 0 0 0 
d 1 l 0 0 1 
0 1 1 0 0 0 

1 1 l 0 0 
Te 1 l l 1 0 

s 1 l 1 l 1 



Read in circuit for main storage: 

Write Win(iing 

o other 
hannel 

cathode -...... 

To othe 
ca%R~:Fe31 

R+ Rf 
Dr 

(Rt'ii-115 

Ep(Rr• 150 

-
·-c 

p 0 . 
2 1:3 

Channel Selection 
Matrix 

Record Equations: 
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To Other Channels 

... J R 
2 2 

~·~er 
Read Wind. ·1 c::.J 

[ From other 
channel out.;. 
puts .. 

Read from E5 

Buffer into Main Storage 



• 

1.fl\ - (liiJ t. .. IJ,.,I' ,,,.,,.,,,,.,,,,, 
,,,.JV t.T11'C ;-_,,.,,; llc-i·1.1,1 

1 ... /11'1 lf',,,,,_,.,,i r;,, ,. IA(.llfl'••''" 
t---t----iln !'$'>-'I. n -lle• PJ f,._,,.,o 

A~," p,,;,,z. .; J-_,r,,., 1#.J• 
I,( /'.t<' e,t j)n • ' /f 

!ff" .,JI"/ r ..J,,, r.,t<Jlr, ,...,.· • 
fi 11,j, ~; ;.,-,,r.air J,;,,t lf'"V"-'ff 

,.._ 
; I 

/0 

·--"-----..... -



.J 

'\ J; """ ·--y---' 
~ft•.irp lifv• ,,._,.,,, '¥ /rf'""'" r '"""' I/If /VI•_.,.,' 
~,,..,., T 

~ .. le 
Jt"' Flf1;.r e 

· ·· --~ 
1•(. 

tfl< 

":'" 

eoK I 

~1)0 
I 

~ \.'.:i.._ _._... 
~,wrp ~LS'-

I"( /'ft/Miff{ ;:,,,.. ~.; 

(JY}L 

,_ 
·~ 

~ I 

z. 
lfto1rp /"4.41.se 
II'/ /rfr_ "'11/C '( 

F~''"' T 
~/f 

~ . 

a'. 

f f 


	001
	002
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	51
	52
	53
	54
	55
	56
	57
	58
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	A-11
	A-12
	A-13
	A-14
	A-15
	A-16
	A-17
	A-18
	A-19
	A-20
	A-21
	A-22
	A-23
	A-24
	A-25
	A-26
	A-27
	A-28
	A-29
	A-30
	A-31
	A-32
	B-01
	B-02



