304 ofeaz MANUAL

; Etnmaniat

National's
Electronic
Autocoding

Technique FOR THE

NCR 304 ELECTRONIC
DATA PROCESSING SYSTEM

304 ctea MANUAL

National’s
Electronic
Autocoding

Technique FOR THE

NCR 304 ELECTRONIC
DATA PROCESSING SYSTEM

ol
gyt
Copyright @ 1958 by

THE NATIONAL CASH REGISTER COMPANY - DAYTON 9, OHIO

The cfeal System consists of:

e The e#éal FORMAT, in which the National 304 Electronic Data Processor
is programmed, and

e The cfeal ASSEMBLY program, which automatically translates the pro-
grammer's code from ¢#ea? FORMAT into final Processor code.

The CHeal FORMAT furnishes the programmer with:

e A simple format for each Instruction;

e An easily-remembered abbreviation for the name of each operation;

e Reference to data-fields by name, rather than by Address and Partial-Word;
e Direct naming of Constants within each Instruction;

® Designation of the sequence of Instructions by Reference Numbers (sometimes
called “‘Relative Addresses’’ or ‘‘Floating Addresses’”) rather than by fixed
Memory addresses, freely permitting insertion and deletion of Instructions
in the program;

e Automatic inclusion of STEP (Standard Tape Executive Program) for all
File housekeeping operations.

Since the individual Processor Instructions in the NCR 304 System are on generally the
same level of thought as the “pseudo-instructions” used in conventional compiling systems,
cWeal furnishes all the freedom and convenience of such compilers, yet the programmer
always writes the actual Processor Instructions which will be executed. Optimum program-
ming is therefore easy to achieve, and code-checking is performed rapidly and conveniently.

This Manual discusses the use of C#al FORMAT by the programmer in writing his pro-
grams; operation of the cHeal ASSEMBLY program is described in a separate
Operating Manual. Our present discussion assumes a complete familiarity with the NCR 304
Programming Manual, and is conducted in tutorial form. The details are then described in
systematic fashion for reference purposes in a series of Appendices which appear at the
back of this Manual:

APPENDIX A: cHteal Sheets

Header Sheet

File Specification Sheet
Data Defining Sheet
Coding Sheet

APPENDIX B: STEP (Standard Tape Executive Program)
APPENDIX C: cteal Instruction Formats

The material in this Manual is designed to teach the programmer to write programs in
cHeal FORMAT and to give him a general understanding of the functions performed by the
ceal ASSEMBLY program. It is supplemented by the cfeal Operating Manual which
provides keypunching instructions for paper tape and punched cards, detailed operating
instructions for using the cHeal ASSEMBLY showing all available options and all possible
printouts, and a more complete description of the cHeal ASSEMBLY itself. The cHeal

1

Operating Manual also discusses the Librarian Program which places each assembled pro-
gram on the Program-Library Tape.

EXAMPLE 1:

As an initial example of coding in cHéal FORMAT consider a small portion of the pro-
gram for processing an industrial payroll. Earlier portions of the program have brought into
Memory a string of File Items and a string of Input Items, and are in process of building up
a string of Output Items. The format of each of these items is:

Employee Master File ltems

9 8 7 6 5 4 3 2 1 0
DEPF ENF HRTE
Department Employee Number) Hourly Rate
GRTD
Gross Yearly Earnings To Date > [
WTTD WTR
Withholding Tax To Date Withholding Tax Rate
DETD DCF DEDF
Miscelloneous Deductions To Date Dé:::" Weekly Miscellaneous Deduction

J—

$$

. Social Security Number

EMPLOYEE'S NAME

Number of
Dependents

Input ltems
9 8 7 6 5 4 3 2 1 0
HRWK PLY Jos DEPI
Hou‘rs Worked This \A{eek Plant Job Number Department
ENIN

Employee Number

Output Items

9 8 7 6 5 4 3 2 1 0
EN® '
Employee Number
bco DED®
Deduct. q
Code | Weekly Miscellaneous Deduction |-
WITW e
Withholding Tax This Week Net Earnings This Week:

A convenient, but arbitrary, section of the overall program has been designated “Region
F5” and within that Region Gross Earnings This Week and FICA This Week have already been
computed and stored in the Output Item. In all, 22 steps have been written within this Region
and, starting with step 23, we wish to accumulate FICA To Date and Net Earnings This
Week, subject to the condition that FICA To Date may not exceed $94.50.

The initial flow chart for this portion of the program will appear as:

Add FICA This Week to FICA To Date
Is FICA To Date greater than 94.507

Make the necessary adjustments

Subtract FICA This Week from Gross Earnings This Week fo obtain Net Earnings This Week

At the time this flow chart is written it will be realized that step 25 will actually require
several Instructions to accomplish, but study of such a detail is not appropriate at this stage
of developing the program.

After the logical structure of the entire program has been established, another flow chart
will be drawn, showing all the detail omitted previously, and essentially containing one step
for each Instruction:

F5.23 FICA To Date <+ FICA This Week /> FICA To Date

24 Is FICA To Date greater than 94.507

NO

YES

FICA To Date — 94.50 —> Temporary Storage
Store 94.50 as FICA To Date
FICA This Week — Temporary Storage —> FICA This Week

Gross Earnings This Week — FICA This Week = Net Earnings This Week

The more precise re-drawing of this flow chart will name the actual Instructions to be used,
and will refer to the data fields by their specific designators:

ADD: FITD + FITW ——> HID
CN: “9451” vs FITD
GRZE‘;T“ SUB: FITD — “9450" —> ¢08:30
25.1 DIST: “9450" —> FITD & ¢09:90
25.2 SUB: FITW — (¢08:30) ——> FTW
SUB: GRES — FITW —_ NET

The final G#ea@l code for this portion of the program will be merely a transcription of
this last flow chart to a columnar sheet:

Reference No. : g

Region| Position | M || Operation ‘V Misc. R A Tag B Tag c Tag| &
F5a3ol | gdD | . FITo| | F1Tw| | FITD >
240l | eNi | 94 51/¢] FITD| |F.52¢0 >
250 | svBl | . . FITD 94 50lc|to 230 >
25 drsT |, 9y sole| FITD 09490 >
2,52 svg!l | FITwW |[¢o 30 FITW >
260 | SvuB: G RES FITW | NET >
i ! >

Note that Reference Number F5.26.0 is specified as the Jump Address for the COMPARE
NUMERIC Instruction (step 24).

Note also the use of the Tag “C” to indicate that “9451” and “9450” are Constants; a
Constant named within an Instruction in this fashion is called a Named Constant. The chead
ASSEMBLY places all Named Constants into the irrelevant fields of Instructions in the program,
and then cross-indexes the stored locations of these Constants into the Instructions which
name them.

Note also the means of referring to the “Special” Cells. When programming in cHeal
FORMALT it is sometimes necessary to refer to an actual Memory address; such an address may
be either one of the “Special” Cells, or a Cell in Main Memory (in the latter case, almost
invariably one of the Index Registers).

The “Special” Cells are referred to by means of the normal 3-character Address and the
Partial-Word, as illustrated for ¢08:30 (steps 25 and 25.2) and for £09:90 (step 25.1).

A Cell in Main Memory is referred to by its 4-digit address (there are no Address-Type
Numbers in C#%2al FORMAT) and Partial-Word, using an auxiliary line on the Coding Sheet
as illustrated in Example 2, below.

In order that the C#@al ASSEMBLY may translate the Field Designators into Memory ad-
dresses, the programmer makes up a Data Defining Sheet for each kind of Item referred to by
the program. On this sheet he lists the Designator for each Field in the Item, and shows its
location within the Item. The program which has been written in cHeal FORMAT, and the
information on the Data Defining Sheets, are punched into paper tape or cards, and they are
read into the Processor by the cYeal ASSEMBLY program. The information on the Data
Defining Sheets becomes a “dictionary” by which the cHeal ASSEMBLY can translate each
Field Designator into an actual Memory address and Partial-Word, as part of the process of
assembling the code, written in cHeal FORMAT, into a finished program.

Field Designators, then, are used in W FORMAT as convenient references to the loca-
tions of data-fields within an Item. Even though the same information may appear in different
fields, each field must be assigned a unique Designator. Thus in the previous example we
have Employee Number (Input) ENIN, Employee Number (File) ENF, and Employee Number
(Output) ENG.

Many programmers prefer to use mnemonic, or suggestive, abbreviations as Field Designa-
tors, as in the previous example. Others feel that 2 mnemonic system becomes so elaborate
in actual use that it is no longer suggestive in any practical sense; they prefer to use an ar-
bitrary alphanumeric code to designate fields, and have the programmer look at the Item
layouts each time he uses a particular field in his program, rather than rely on his memory
for the designators.

This Manual takes no position in this controversy, and will make no attempt to recommend
one method over the other. Mnemonic Field Designators are used in the examples because
they appear to be more convenient for training purposes, and their use here does not neces-
sarily imply any recommendation of their use in production programming.

EXAMPLE 2:

The next example introduces the use of an Index Register, and shows the programming to
summarize the weekly sales of each of 150 salesmen. For purpose of this example, the SUM-
MARIZE Instruction is not used.

Input Items

5

4

3 2 1

Output ltems

7 6 5

L s L !

4

3

2 1 .0

SNI

Salesman’s Number

SALE
Net Sales Monday

SUM
Net Sales for Week

SNE&

Salesman’s Number

Net Sales Tuesday

Net Sales Wednesday

Net Sales Thursday

Net Sales Friday

Net Sales Saturday

Blank areas in the Input Items represent additional information which would be stored in
the Item, but which is not pertinent to this example.

The initial low chart will be:

Clear an Index Register

Clear the Summary Field

Plant Salesman’s Number 7n the Output

Add 1st Day’s Sales o the Summary

COUNT ¢o the Next Day. 6 days?

COUNT #0 the Next Salesman. 150 salesmen?

In the final flow chart, the symbol @ which appears in Instructions 2 and 4 indicates that
each of these Instructions uses Index Register 7. Underlining individual syllables within an

Instruction indicates that those syllables are to be relative to the Index Register.

M2.1 DIST: “o"
r——.

2 pis. (7) NI
aoD: (7) SALE

CNT: 1)

2)

CNT: 1)

2)

—>

—_—

007:90

¢09:90

& ¢09:90
& NS
90

Note that this Instruction performs steps 2 and 3 of the previous flow chart, and
thus there will be no step 3 in the final code.

The required [-putuwuy is not actually to the field designated SNO (the 30-field)
but rather to the 90-field of the Word in which SNO appears. Note how this is
indicated on the flow chart and in the C#%2aZ FORMAT into which it is transcribed.

An odditional, overlopping Field Designator might have been defined for the
90-field of this word, but such a procedure is usvally cumbersome and inconvenient.

+ sum
(007:96)
(007:99) v®s
(007:90)
(007:20) @

_ SUM
*1001"
6

“4 000 001 001"

150

In transcribing this flow chart into ceal FORMAT, it will be promptly observed that the
10-digit Constant “4 000 001 001" required by Instruction 6 cannot be written in a 5-place
column on the Coding Sheet. Any Constant of more than 5 characters is placed by the pro-
grammer into a separate word of Constants (See CNST, Appendix page C-10) and the In-
struction refers to it by “Address” (ie- Reference Number) and Partial-Word. Often all long
Constants used anywhere in the program will be placed in a single Region; the example shows
this Constant placed in Position 1 of Region CN with, therefore, Reference Number CN.01.0.

Reference No. : g
Region| Position | M| Operation IV Misc. A Tag B Tag [Tag| &
M2o)iol DTS T 0l¢]l 0001 |¢0 %90 >

| L . X . >
0o 2i0| DI ST! SNIX|foog0 s Naolx| |°
- o L L . .90 >
o 4o0l | AdO | SALEX SvmMmx| . SumXx| |’
osiol | eNT [1.69 1.001]c 00t |Mao 4o >
040 | eNT. |1.0¢ |[¢.Noz.o 1. 50| |Maoao0 >
! i 9 0 >

! i >

Reference No. : IS,
Region| Position |M| Operation | V| Misc. A Tag B Tag ¢ Tag| &
CN o,/§0 C,NLS,Tir Y 000|C 0.0.1|C oo1lcl |’

i : >

Note the use of the Tag “X” to designate those syllables of an Instruction which are relative
to the Index Register.

The format of CNT is explained in the Appendix, page C-5. The B-syllable of CNT is not
tagged “C”, since 006 is not a Constant used by the Instruction; it is part of the Instruc-
tion itself.

In this example, there is no step 3 in the program. Since the Reference Numbers indicate
only the relative positions of the Instructions within the program sequence, the C/eal
ASSEMBLY will cause step 4 to follow immediately after step 2 in the final program. Similarly,
in Example 1 we were able to interpolate additional Instructions (Steps 25.1 and 25.2) into
the program without difficulty.

The program must always contain the Instructions neces-

Remember sary to accomplish all initial presetting of Index Registers.

EXAMPLE 3:

There are occasions when it is necessary to treat a Reference Number as though it were a
Constant, as in the following illustration:

AA16 Plant "AC.01.0" as the C-Address AB.31 Plant “"AD.19.0" as the C-address
of Instruction AA.26 of Instruction AA.26

AA.26 Is the Account Balance negative? (—vAC.Ol
NO YES or
L AD.19

In writing Instruction AA.16 the programmer must not use Tag “C” with the A-column, as
that would cause the M ASSEMBLY to treat the contents of that column as a Named
Constant, and store the characters “AC010” as a 5-character field. What the programmer
actually wants the C#@al ASSEMBLY to store as a Constant is the 3-character Address-Type
field containing the actual Memory address into which Reference Number AC.01.0 will be
translated. “AC010” is, therefore, not yet a Constant, but it is rather a Constant “once
removed”; the C#eal ASSEMBLY must:

a) Translate the Referente Number into an actual Memory address;

b) Then treat the resulting Memory address as though it were a
Named Constant.

A Constant “once removed” is specified by using the Tag “R”. Thus Instruction AA.16
would be written:

Reference No. : |s,
Region | Position | M| Operation : v Misc. | R A Tag B Tag c Tag| &
AA|) 6ol [DT sT Ae 0.1 0|R[¢ 0990 |AA2¢.o0 >

! ! L 2.0 >
X i] //\J/\/\L)/

e

Note that, in the C-column, Reference Number AA.26.0 will be translated by the ctead
ASSEMBLY into the Memory address of the first word of Instruction AA.26; therefore this
Reference Number is entered as the address of the putaway, while the Partial-Word field of
the putaway is specified in the auxiliary line.

Field Designators, Item Designators (not yet defined), 4-digit Memory addresses, and
4-digit Tallies, when desired as Constants, are all specified as Constants “‘once removed”,
since they each must first be translated into an Address or an Address-Type Number, and then
treated as a Named Constant.

EXAMPLE 4:

Suppose now that we are required to operate on the second word of an Instruction:

R3.02 Plant "86" as the ALAR of Instruction S4.11
Reference No. : IS,
Region| Position |M| Operation ::V Misc. R A Tag B Tag| [Tag| &
R3loalel (DI ST | plc|s411.0] |#0490 >
1 |
: 1.54 ’
) |~ | L~ A

The Reference Number $4.11.0 specified for the B-putaway will initially be translated by
the cfeal ASSEMBLY into the Memory address of the first word of Instruction $4.11; but
now the auxiliary line specifies the increment 1 which is to be added to the specified address
after translation, as well as the Partial-Word 54 within the desired word. Therefore, the
B-putaway will be made to the 54-field of the second word of Instruction S4.11.

STORAGE OF NAMED CONSTANTS:

After the code, written in cléal FORMAT, has been key-punched and then read into the
Processor by the cHeal ASSEMBLY program, each column on the Coding Sheet (between
the double-ruled lines) is placed in Memory right-justified in a separate word.* (It will be
seen that the practice of writing left-zeros on the Coding Sheet, as shown in the examples up
to now, is optional at the programmer’s taste.) Whenever a column contains a Named Con-
stant (that is, carries Tag “C” within an Instruction) the cHeal ASSEMBLY counts the number
of significant characters in it, and adds it to its own list of Constants. Then, after all duplica-
tions have been eliminated, the Constants are placed into the irrelevant fields of Instructions
in the program. If a program should name more Constants than can be fitted into the available
fields, the CHeal ASSEMBLY will set up additional words of Constants at the end of the
program. After all Named Constants have been stored, their locations will be cross-indexed
into the Instructions which name them.

*Complete instructions for key-punching oféal FORMAT into paper tape or cards, including the ex-
tent to which blank columns must be punched as zeros, are given in the efeal Operating Manual.

8

However, if the programmer should wish to name the 3-character Constant “002” for
example, the cHeal ASSEMBLY could not distinguish it from “2”, and would store it in a
1-character field. Therefore the programmer requires some means of reserving significant
left-zeros in Named Constants.

RESERVING LEFT-ZEROS IN NAMED CONSTANTS:

The programmer may unambiguously define the field length of a Named Constant by sub-
stituting the character *“+” for the leftmost significant zero. Whenever the W ASSEMBLY
finds a **+” in that position, it will change the “+” into a “0” but will also reserve the full-size
field for the Constant. This translation of “+" into “0” occurs only in the leftmost significant
character-position, so that:

NAMED WILL BE

CONSTANT STORED AS
+02 002
++05 0+05
B+ +05 B+ +05

This technique raises the question of naming a Constant such as “4&d” which might be
required to establish some specific binary configuration. Such a Constant may be entered in
either of two ways:

a) Name the Constant, in the Instruction, as “++&d”, in which
case it will be stored as a 4-character field “0+&d” which will
serve just as well for right-justified operations;

b) Place the Constant, as “+&d”, into a Pseudo-Instruction CNST
(Appendix page C-10) where the problem of reserving left-
zeros does not arise.

The method of writing a ““+” to mark the leftmost significant zero is also used when the
programmer specifies, in an auxiliary line to an Instruction, that the 00-field of a word is
addressed; he writes it as **+00”. Suppose that in Example 1, page 2, the program included a
test to see whether the Department Number (Input) is an odd number. This would appear
on the Coding Sheet as:

Reference No. : IS’
Region | Position | M Operation EV Misc. R A Tag B Tag c Tag| &
Fsloyio \[TBIT! | DEPT o 1le|6T7 140 >
.) | L | L __+ o090 L L >

SINGLE-LINE REFERENCE TO THE INDEX REGISTERS:

The technique of using the character “+” to reserve left-zeros also allows the programmer
to address any of the Index Registers by designating the Address and Partial-Word within
5 characters on a single line of the Coding Sheet, just like references to the Special Cells. For
this purpose the first 10 Cells of Memory are given the pseudo-addresses +00 through +09,
and the first Instruction in Example 2, page 6, could have been written:

9

Reference No.

[a1

I
.
Region| Position |M| Operation @V Misc. | R A Tag B Tag c Tag

M2o)iol IDT s T | ~ ole|+o. 1.90| |¢g0 990 >

There can be no ambiguity between this reference to Cell 007, and a reference to the Cell
whose actual Memory address is +07, because there are no Address-Type Numbers in cheal
FORMAT, and the latter Cell may only be referred to by the 4-digit address 2007; in fact, the
programmer will always think of it as Cell 2007, not as Cell +07.

OTHER COLUMNS ON THE CODING SHEET:

We have covered, informally, most of the columns on the cHeal Coding Sheet. All possible
entries are tabulated systematically in Appendix A, but for completeness the remaining col-
umns are briefly described here also:

M: Automonitor Digit.

V: Variation Designator. However, observe that the variations defined in
eteal FORMAT do not exactly correspond to those in the final code.
The efféal FORMAT Operations and their Variations have been defined
for the maximum convenience to the programmer.

Misc: The information entered in this column is specifically defined for each In-
struction which uses it. See CNT in example 2, page 6, for illustration.

SP&: § in this column indicates that the Sign of V is to be negative.

P in this column Protects the Instruction against the storage of any
Named Constants within it. Sometimes a complete Instruction will be
replaced by the program itself, and in that case it is essential that no
Constants be stored within that Instruction.

& in this column indicates bozh minus-V and Protect.

SEQUENCE OF REGIONS WITHIN A PROGRAM:

The CHeal ASSEMBLY normally assembles the Regions in the same sequence as they
are presented to it. The sequence of Regions may, however, be unconditionally determined
by the use of the Assembly Instruction NEXT (see Appendix, page C-17).

SEQUENCE OF INSTRUCTIONS — CORRECTIONS TO A PROGRAM:

The CHeal ASSEMBLY will arrange the Instructions within a Region into the numerical
sequence of their Position-numbers, regardless of their sequence on the Coding Sheet. When-
ever it finds an Instruction whose Reference Number does not belong in the Region where it
appears, it places that Instruction into the proper Region. Whenever two or more Instructions
have identical Reference Numbers, the C#%2aZ ASSEMBLY retains the latest one, and discards
the others. When all the Instructions in a Region have been brought together, they are then
sorted into proper numeric sequence.

Suppose that the program for Region UD has been written, as shown below. Note that,
after writing the program (but before keypunching) the programmer noticed that Instruction
3 should have followed Instruction 4. In order to make this correction he merely renumbered
Instruction 3 as Instruction 4.5 and the C#%al ASSEMBLY then placed it into the proper
position in the sequence of Instructions.

10

Reference No. : ;
Region| Position | M| Operation V| Misc. |R A Tag B Tag| c Tag| &
up| 1! mveTh | @003 3 _ 3o0le|TNo g0 >
K3 MoV E | 7] . PNX| 1 S >
45 Meve | L MEL L 8 #1190 |]
L a DI sT | CNojgol |[cNo1o|l |[too2o >
: : o S0 . >
Si|lcempi | 7] Q@smx| PF2al | LBR|X| |’
b ENT! |08 el . 3.50] |INO#2 >
//\9\:/'_ i \W’\J/ |

However, after the program had been keypunched, fed to the C#2al ASSEMBLY, and
assembled into a finished program, our programmer found a number of other errors during
his code-checking. The corrections which are now needed in Region UD are:

® An additional Instruction is required between 5 and 6.

® An additional Instruction is required immediately following
the one which is now numbered 4.5.

® Instruction 1 should call for multiplication by 20 rather than
by 30.
® Instruction 2 must be dropped from the program.

The programmer makes up another Coding Sheet, listing the corrections:

Reference No. ; lS,
Region| Position | M| Operation EV Misc. | R A Tag B Tag c Tag| &
vp| sis| |TeTi | esM | ety lubogo >
T IMADD | +04 20 1.2 45|R|t+ o ¢ 20 >
il mveTi | | |@oo 33 | 2ao0/¢|]INo 10 >
R NEE DN N N I ERE
1 &M T >
| i >
G —— S S Suy =

11

This sheet is keypunched, and the additional cards placed at the back of the program deck,
or the additional paper tape spliced to the end of the previous program tape, as the case may
be. Then the entire program is fed to the ceal ASSEMBLY again, and a new assembled
program is automatically prepared. In the new assembly, the sequence of Instructions in
Region UD will be:

UD.01.0 MULT (new version—multiply by 20)
04.0 DIST
04.5 MOVE
04.7 MADD
05.0 COMB
05.5 TBIT
06.0 CNT
07.0 MADD
—etc.—

DATA DEFINING SHEET:

It has already been mentioned that the programmer makes out a Data Defining Sheet for
each kind of Item referred to by the program. Each sheet names an Item by assigning an Item
Designator to it, and shows all the information-fields within that Item. Initially, the pro-
grammer lists in the Description column all the fields he expects to use, with the additional
information provided for his convenience. These Field Descriptions will suffice for the early
planning stages of the program, and in fact the list will grow as detailed analysis of the prob-
lem indicates the need for additional information within the Item.

As work progresses toward a final program, the specific Item layouts will be drawn, and
Field Designators assigned. The Field Designators will be entered on the Data Defining
Sheets with their positions (location and field) within their respective Items. The position
of a Field within an Item is its “relative address” with respect to the first word of the Item.
The sequence in which the Fields are listed need bear no relationship whatever to their posi-
tions within the Item, and in fact they will be listed as the need for each of them comes to the
programmer’s mind. At some convenient time the headings of the sheet will be filled in, and
now the sheet is complete, except for Memory Allocation, and Base.

Assigning the Memory Allocation to each Gulp of Items is just a matter of dividing up
whatever Memory space is not used by the program. After the complete program has been
written, it is easy to make an accurate estimate of the amount of Memory space required for
it, since the W FORMAT is one-to-one with Processor Code; then the remaining Memory
space is available for data. Assume that the total program for Example 1 required 1052 words;
the data area would start in Cell 1053, and 948 words of a 2000-word Main Memory would
be available for data.

Referring to the Item layouts of Example 1, which are repeated on page 15, suppose that
the programmer chose to place 50 Input Items per 100-word Record; 5 Output Items per
15-word Record; and of course, 1 Master File Item per 18-word Record. He further decided
that Input would be handled in Gulps of 3 Records (300 words), Output in Gulps of 13
Records (195 words), and the Master File in Gulps of 25 Records (450 words), using 945
of the 948 words available for data.

12

CHeal DATA DEFINING SHEET NCR 304 DATA PROCESSOR

FILE NAME FILE DESIGNATOR .
ITEM NAME STANDARD ABBREV.
REMARKS PAGENO._____ FOR THIS 1.D.
D AT Al>| TEMLNGH_____ WORDS MEMORY ALLOCATION _ WORDS
ITEM — / PREPARED BY DATE
DESIGNATOR
BASE S APPROVED BY. DATE
FIELD LOCATION | FIELD DESCRIPTION — COMMENTS No.of | o
DESIGNATOR Characters N
/ >
/- BE
/ >
/ >
/ i >
. 7 . .)
. ;)
B ; >
. ; .)
/ >
. 7 . >
e >
- ; . .)
/ >
/ >
/ >
. / ‘ :
/ >
VB >
/ >
/I ,
. / . . >
X-l7‘42-2‘6 5-1-58 THE NCR Co. : *Trade-Mark Reg. U. S. Pat. Off.

13

These Memory Allocations may now be entered on the Data Defining Sheets, and the Base
of each Item assigned. Let us say that the programmer wishes the Output Items to be at the
beginning of the data area; then the Input Items; and finally the Master File Items. He will
first assign Base zero to Output, meaning that the Output Gulp will start zero words after the
Origin of the data area. Then, since the Memory Allocation for Output is 195 words, the
Input Items are to start 195 words later in Memory, and they will be assigned Base 195. Next,
since the File Items are to start 300 words later than Input, they will be assigned Base 495.

As a precaution against his own arithmetic errors, the programmer will then make out one
more Data Defining Sheet, defining Item X, which is to follow the File Items, and which
therefore has Base 945. If the programmer has made an error, and there is not sufficient Mem-
ory space for the 450 words he wishes to allocate to the File Items, the cHeal ASSEMBLY
will not be able to fit Item X into Memory, and will immediately notify him by means of a
printout. This warning will save the programmer from getting into serious trouble during
code-checking, as it immediately permits him to reassign Memory Allocations on the basis
of accurate information furnished by the C#al ASSEMBLY, and then reassemble.

These decisions may be summarized in the following table:

oest o | T | el | Mcone | ecotes | wiGCRTON | ase | ComtestoNoe
Output| SUM 3 5 15 13 195 0 SUM
Input | TIME 2 50 100 3 300 195 TCS
File EMF 18 1 18 25 450 495 EMF
X X 1 — — — 1 945 —

While writing the program, the programmer will not be able to complete any of the Mag-
netic Tape, Paper Tape, Punched Card, or Count Instructions until he has determined how
big a Gulp of each kind of Item will be processed. But he usually cannot determine Gulp
sizes until the entire program has been written and he knows how much Memory space is
available for data. Therefore it is wise to mark all these incomplete Instructions clearly in
the margin of the Coding Sheet, and also to keep a list of them. They may then be completed
after the Data Defining Sheets have been made up, and if any change in Gulp sizes is later
made, these Instructions can be changed to conform.

On the other hand, if the programmer has been trained to proper work habits, and proceeds
systematically through a sequence of well-documented and increasingly detailed flow charts
before reaching for a Coding Sheet, he will be able to estimate the length of his program
quite closely, and assign Memory allocations for data, on the basis of his flow charts. In that
case he will not have to leave any blanks in his program when he does write it in cheal
FORMAT. 1t is also wise, of course, not to use every last Cell of Memory for data, but to leave
enough room to permit later changes and corrections in the program without having to
reassign Gulp lengths.

14

The Item layouts and Data Defining Sheets for Example 1 are shown below, and on the

following two pages.

Employee Master File Items
9 8 7 6 5 4 3 2 1 0

0 DEPF ENF HRTE
Department Employee Number _, Hourly Rate
1 GRTD FITD
Gross Yearly Earnings To Date [F. 1. C. A To Date
2 WTTD WTR
Withholding Tax To Date Withholding Tax Rate
DETD DCF DEDF
3 Deduct.

Miscellaneous Deductions To Date Code | Weekly Miscellaneous Deduction
NW
ﬁ'\b

17 $s Number of
Social Security Number Dependents
Input ltems
4 8 7 6 5 4 3 2 1 0
0 HRWK PLT JosB DEPI
Hours Workgd This Week Plant Job Number Department
1 ENIN
X) . Employee Number
Output ltems
9 8 7 6 5 4 3 2 1 0
EN® GROS
0 Employee Number Gross Earnings This Week
e DED® FITW
1 Deduct.
Code | Weekly Miscellaneous Deduction F. L C. A. This Week
2 wTTW NET
Withholding Tax This Week Net Earnings This Week

15

cHeéal DATA DEFINING SHEET
Z(/Méq, W@JJ(/WVW

g

NCR 304 DATA PROCESSOR

FILE DESIGNATOR LS_‘KJB

C

FILE NAME I
ITEM NAME W /UV M"WW% STANDARD ABBREV.
REMARKS %ﬁ%&o&__éﬂﬁgmw %MWW pace N0 | FoR THIS 1D,
D AT A|»| TEMLNeTH__T___woRos MEMORY ALLOCATION___/_9£_WORDS
T ‘ SA oM / PREPARED BY DATE
BASE o> APPROVED BY DATE
DESAMroR | LOCATION | FIELD DESCRIPTION — COMMENTS opho. of %
,E‘N,G'/ 096 ’ M&b Y2irntler 4 |A
GJR,0,S/ 0 51 >)&W Mm W_eo be. L
ower)/ 251 vk Wﬂww,uk L
———’_\.&/ ; ‘ > | g

cHéal DATA DEFINING SHEET

NCR 304 DATA PROCESSOR

FILE DESIGNATOR &Lﬂ

FILE NAME

ITEM NAM:’&%&W JJ/WW Card

STANDARD ABBREV.

nmmxs_f_ﬂ‘%/wa &WW’W %MW"W PAGENO.___ ! FOR THIS ID.
DAT A ITEM LENGTH___ % WORDS MEMORY actocation_ 292 woros
— PREPARED BY DATE
n:snlgmmn TIME /
BASE R APPROVED BY DATE
195
DES T oR LOCATION FIELD DESCRIPTION — COMMENTS cn;‘;’a-c‘;;rs %
D.f‘P,I/ 010|° O parlrrenl o] N
] 4
.P.L.T/\ 0‘5',f> Y lanZ / N
! J&B/ 14’2 ’ MW\/ 3 N
I !
H R wkl/ 09 0| Senntoihod thiw' ol Gradecnd i) 4 ¥
J—\l_—’),_‘,—_—/___/’__/\. L

16

W DATA DEFINING SHEET R /7‘7»: NCR 304 DATA PROCESSOR
k‘h?

FILE NAME W«W aclic F Al FILE DESIGNATOR EM ;
ITEM NAME cﬁww,&q,w YNaalic Fibe STANDARD ABBREV.
nmms_w &’V"MW YJ/MW/VW PAGENO__ ! FOR THIS LD.

DAT Al> memenati_ /& woros Memory autocation_# 5 O woros
ITEM ‘ PREPARED BY DATE
DESIGNATOR EMF /
BASE ‘ E APPROVED BY DATE
DESIONRTOR LOCATION FIELD DESCRIPTION — COMMENTS o of %
.E,N,F/ A017,‘7L> WW 4 |R
(7 J
vere/ 0ae)| Department 2 |
. 15.5/‘ .1.713‘1 ’ JMJWW 7 N
Here/ 030 bl Rats (5 Cocirmat placs) | 4 N
——— Uy y:»

W DATA DEFINING SHEET /7‘7»: NCR 304 DATA PROCESSOR
,}1?

FILE NAME FILE DESIGNATOR

ITEM NAME ' STANDARD ABBREV.

REMARKS %M %W/&m (/)W/W PAGENO.__/ FORTHIS 1.

mEMLENGTH_ | womos MemoRy LLocaTioN [WORDS
DAT A
ITEM PREPARED BY DATE
DESIGNATOR X /
BASE 4 X APPROVED BY DATE
45
-)
FIELD : No. of
DES R OR LOCATION FIELD DESCRIPTION — COMMENTS charsctrs| &
/ >

——— /‘L_/ o

17

ASSEMBLY OF DATA REFERENCES:

After the cféal’ ASSEMBLY has put the Instructions of the program into proper sequence,
and assigned a precise Memory Address to each of them, it is ready to cross-index the data
references. In the previous example, we assumed that the program required 1052 words of
Memory, and therefore the data area began at Cell 1053.

Item Designator SUM is specified as having Base zero, relative to the Origin of data area,
and therefore the first word of the first SUM Item will be in Cell 1053. The C#2al ASSEMBLY
then calculates the Memory address of each Field Designator in the Item by adding:

Origin of the data area,
plus Base of the Item, relative to the Origin,
plus Location of the Field, within the Item.

Thus Field Designator EN® corresponds to Cell 1053, and of course the 96-field of that
Cell. GROS corresponds to Cell 1053:51, NET to 1055:51, etc.

When all the Fields in the first Item Designator have been assigned Memory addresses, the
ceal ASSEMBLY proceeds to the next Item Designator which, in this example, is TIME
with Base 195. Therefore the first word of the first Item in the Gulp of Employee Time Cards
will be in Cell 1248, and within that Item, Field Designator ENIN corresponds to Cell
1249 (1053 + 195 + 1 = 1249), the 30-field. And so on, until every Field Designator in
every Item has been assigned a Memory Address. The Item Designators, too, are treated as
though they were actually Field Designators, each referring to the 90-field of the first word
of the Item, and they are added to the list.

All the Item Designators and Field Designators are then sorted into a single alphanumeric
sequence to form a table. The cfeal ASSEMBLY looks up every program data reference in
this table to find the actual Memory address, and plants the address into the Instruction
referring to that data.

Note that an Item Designator and its Field Designators are defined only with respect to
the first Item in the Gulp. This corresponds to the fact that in the final program, all data refer-
ences are coded with respect to this first Item, and references to succeeding Items in the
Gulp are made by means of Index Register modification of the Instructions.

FILE SPECIFICATION SHEET:

The programmer fills out a File Specification Sheet for each File used in the program. For this
purpose, any body of information recorded on Magnetic Tape is regarded as a “File”. The
Files used in a Payroll Computation Program (such as is simplified in Example 1) might be:

Sorted Time Cards (source tape only);

Employee Master File (both source and destination tape);
Earnings Summaries (destination tape only);
Exceptions and Statistics (destination tape only).

The first information to be entered on the File Specification Sheet consists of the File-Table
Number, the File Designator, and the Index Register which is to control the Handler Assign-
ments for that File. Each File used in the program is represented by a File-Table which the
c¥eal ASSEMBLY sets up as part of the assembled program. Each File-Table contains the
information given on the File Specification Sheet for that File, such as the Controller and
Handler assignments for the File, and the alternation of Handlers for successive reels of the

18

W FILE SPECIFICATION SHEET NCR 304 DATA PROCESSOR

FILE NAME FILE DESIGNATOR A
PROGRAM PROGRAM DESIGNATOR

PREPARED BY. DATE L .
CHECKED BY DATE

[F 1L ED]

File-Table Number. (1—9)

File Designator. (A? least one character must be a letter of the alphaber)

III
NONN

INDEX REGISTER assigned to this File. (1—9) (If none, enter N)

_ SOURCE TAPES for this File (Enter Controller, Primary Handler, Alternate Handler.
If no Source Tapes, enter N)

DESTINATION TAPES for this File (Enter Controller, Primary Handler, Alternate Handler.
If no destination Tapes, enter N)

Is automatic SETUP desired on this file? (Enser Y for Yes, N for No)
|/

Length of the longest Record in this File.

N

Branch Address for BUSY Exit. (If no branch desired, enter STI(K)

‘ I / l Branch Address for NON-EQUAL STOP Exit. (If #his Exit not expected, enter N)
L L ’ /] Branch Address for CRM Exit. (If this Exit not expected, enter N)
L J / , Branch Address for Programmer Intervention during END-OF-TAPE. (If no intervention desired, enter N)

. Is USE LOCKOUT desired on Rewind? (Enter Y for Yes, N for No)

Shall RESCUE POINTS be established on the Destination Tapes of this File? (Enter Y for Yes, N for No)

Relative Position (0—7) of the UNIQUE WORD within each Record.
(If no Rescue Points on any file in this Program, enter N)
Number of periods during which this File is to be protected by expiration-check.
(If File is on M-period, enter W and two digits)

Number of periods prior to this run, when Source-Tape was made.
(If File is on M-period, enter M and two digits)

X-1742-13 6-1-58 The NCR Co. *Trade-Mark Reg. U. S. Pat. Off.

M

19

File, all of which are usually controlled by the A-syllable of an Index Register. The File-Table
also tallies successive reels of the File, to be sure the reels are processed in proper sequence,
and it is consulted by the label-checking functions of STEP. The format of the File-Tables
is shown in Appendix B.

The File-Tables are numbered from 1 to 9, depending on the number of Files used in the
program, and one File-Table Number is intimately associated, within a given program, with
each File and File Designator. In the assembled program, every Magnetic Tape Instruction
carries the designation F in the 55-field of its second word; this is the File-Table Number
corresponding to the particular File which is mounted on the Handler(s) addressed by that
Instruction. This is automatically planted in every Magnetic Tape Instruction by the
ASSEMBLY.

The assignments for the Payroll Computation Program would be:

Thate i _—
b | oesicuaTon FILE WAME REG,
1|7 ¢ S |fordatdemelordea |1

2|E M F WW‘}% E|

35 U M| Gmirge) haarmmary| |

4 E X W%Jm X

50 ’

e — "~

It will be seen that, although each file must have its own File-Table, a file used as source
only, may be assigned the same Index Register as some other file used as destination only,
provided both files are on the same Controller. Also, only the A-syllable of each Index Register
is involved in these assignments.

The programmer next assigns Controller, Primary Handler and Alternate Handler for the
Source Tapes and Destination Tapes of the file. If any file consists of only one reel of tape, and
therefore no alternation is required, the same Handler-number will be entered as both Primary
and Alternate.

The next question on the File Specification Sheet deals with SET FILE, which is one of the
first steps any program must perform. This involves:

e Preset the appropriate Index Register for the Primary Source Handler and/or
Primary Destination Handler.
e Label-check the first reel of Source Tape to be sure if is:
The correct file;
The first reel of that file;
The correct day’s recording of that file;

e If this is 2 file on which Rescue Points have been established, Index Forward
over the Memory Dump which follows the Label-Record.

e Label-check the first reel of Destination Tape to be sure it is obsolete, and may
safely be written on.

e Record a new label on the Destination Tape to identify the information which
is about to be recorded on it.

20

These operations are performed as part of the Executive functions of STEP, and are normally
performed automatically on each file at the beginning of each day’s run, before STEP permits
the program itself to begin operating. However the programmer may, instead, choose the
moment at which these functions are to be performed on any file by answering “No” to the
question “Is automatic SETUP desired on this file” and by placing the Pseudo-Instructions
SET:S and/or SET:D into his program at the desired place (see Appendix, page C-16).

The remaining questions on the File Specification Sheet are discussed in Appendix A.

FILES, FILE DESIGNATORS, and ITEM DESIGNATORS:

The distinctions among a File, the Items in the File, and the Item Designators associated
with those Items, are important and must be clearly understood.

A File, naturally, consists of Items, each of which has its specific format, as displayed in the
Item layouts, and the information on a Data Defining Sheet will initially be drawn up as part
of planning a File. Once an Item is in Memory, however, it loses all connection with the File,
and the Item Designator is just a reference to a particular Memory location. Similarly, the
File Designator is, as far as the program is concerned, nothing but a convenient way of ex-
pressing the Controller and Handler to be addressed by some Magnetic Tape Instruction.
The programmer, of course, always thinks in terms of the File which is mounted on a par-
ticular Handler, and he thinks of the Items in it as belonging to that File. Yet in the actual
mechanics of coding, when operating on Items which have been brought into Memory, or
which are being built up in Memory, he must remember that Item Designators are merely
Memory addresses, and File Designators are merely Controller-Handler designations.

Therefore, if an Item is moved from one Memory area to another, a new Item Designator
(with its complement of Field Designators) must be defined for the new area. Of course, only
those Fields which are referred to in each area need receive Field Designators within that
corresponding Item Designator, and in many cases no Field Designators at all will be defined
for one of the areas.

Further, some Items will exist without reference to any File at all, as when the programmer
sets up an area of Memory as Working Storage. He assigns an Item Designator to this area,
and sets up as many Field Designators as may be convenient.

The connection between an Item and a File is established by the Magnetic Tape Instruc-
tions, as when reading Input in the preceding example:

Reference No.

Region{ Position { M Operation v Misc. R A Tag| B Tag| c Tag|

READ 3 TCS TIME 300

This Instruction says READ 3 Records
—from the Handler corresponding to File Designator TCS
—into the Memory Cell corresponding to Item Designator TIME
—filling not over 300 words of Memory.

It will often be convenient to use the same code for a File Designator and for a correspond-
ing Item Designator, provided the programmer never forgets that he is thereby using the same
name for two different things. This has been done for the Output in the preceding example,
and the Magnetic Tape Instruction for writing Output would be:

21

mo

Reference No. J
Region| Position | M Operation : V Misc. |R A Taf [] Ta [Tag|

WTF| 13 SUM SUM 15

This Instruction says WRITE (Fixed-Length) 13 Records
—on the Handler corresponding to File Designator SUM (see File Specification Sheet)
—from the Memory Cell corresponding to Item Designator SUM (Sce Data Defining Sheet)

—each Record to be 15 words long.

Thus the Item Designators lead a “double life”. Internally they are Memory addresses;
while externally they have, in the programmer’s mind, an association with their correspond-

ing Files.
Suppose that the first two programs of a daily Processor run are:

A I B I1 D
TODAY'S N TODAY'S . TRANSACTIONS TO FILE POSTING
TRANSACTIONS TRANSACTIONS So 77 T0 BE POSTED PROGRAM
SORTED N TODAY
N
X
/, \\ E
c
_ REMAINING
UNPOSTED GRS Y UNPOSTED
TRANSACTIONS TRANSACTIONS
Z
& NEXT DAY <

Program II points up the necessity of thinking of an Item Designator within a program
solely as a Memory Address. From the external point of view, all the Items involved in
this program are “transactions”, and they are all the same kind of thing, as they are shuffled
around among the four tapes. But within the program, four Memory areas (and therefore,
four Item Designators) will be set up for the transactions:

Read-in area from tape B,
Read-in area from tape C,
Write-out area for tape D,
Write-out area for tape E.

As a reflection of the “double life” which Items lead, provision is made on the Data Defining
Sheet to assign an informal standard abbreviation for the Item, if desired. When mentioning
an Item in its “external” capacity, it will often be convenient to refer to it by this standard
abbreviation. In this example, there will be occasion to speak in this informal manner of the
flow of “transactions” throughout the entire Processor daily run, and TRANS would be an
appropriate standard abbreviation for this purpose.

The File Designators lead a similar “double life”. Internally for the purpose of the cteal
ASSEMBLY, a File Designator is a Controller-Handler designation; but externally, it serves as
a File Title within the label-record which is recorded on every reel of Magnetic Tape, and
which STEP uses to guarantee that the correct tapes have been mounted on the Handlers
for each program.

To clarify the function of the File Designator in its “external” capacity of File Title, the
following illustration shows the last two Processor programs in an Accounts Payable opera-
tion. The letter-designations of each tape merely permit identification within this illustration,
and must not be confused with the File Designators which the programmer will assign.

22

VENDOR NAME,
ADDRESS &
HISTORY FILE

P
VENDOR
INVOICES

SORTED

EDITED TAPE
FOR PRINTING
CHECKS TO
YENDORS

PRINTER
CONYERTER

Yy

H
ORDERS &
RETURNS

SORTED

PROCESSOR

PROGRAM
I

L
DISCREPANCIES
PRINTED
ON-LINE

PROCESSOR

PROGRAM
m

J
RECEIVING
DOCUMENTS

SORTED

S

OPEN ORDER
FILE

UPDATED

M
OPEN ORDER
FILE

INTERIM

K
OPEN ORDER
FILE

< NEXT DAY

A

Tapes H, J, P and R are all separate Files, and each must have a unique File Title. But note
that tape Q becomes tape N the following day, and must have the same File Title as tape N;
tapes N and Q are, therefore, defined as the source and destination tapes of a single file. They
may be distinguished from each other by the fact that their labels show them to have been
recorded on different days.

Similarly, tape S becomes tape K the following day; it must have the same File Title, and
must be considered the same File, as tape K. Tape M, however, is not the same File as K
and S. Tape K is the Open Order File updated for both merchandise and payments as of
yesterday; tape.S is the same File updated for both merchandise and payments as of today.
But tape M is updated for merchandise as of #oday, and for payments as of yesterday; it can
never serve as tape K, and in fact it is essential to label it in such a way that it is impossible,
by accident, to use it as tape K. This is achieved by considering it as a different File, with a
different File Title.

Once this principle has been understood, however, it must be recognized that this approach
may involve us in a contradiction, or may at least cause some inconvenience. It will clearly
be more convenient, when writing program VII, to consider Tapes K and M as the same File
with the same File Designator; and when writing program VIII, to consider Tapes M and S
as the same File with the same File Designator. Furthermore, if COPY is used in either pro-
gram, the two tapes involved in the COPY must have the same File Designator.

23

PRINTED OFF-LINE

This difficulty is resolved by pointing out that the File Designator will sually serve as the
File Title for both source and destination tapes, but there are occasions (like this one) when
it will not so serve. In this example, the programmer will use the same File Designator for
Tapes K, M and S in programs VII and VIIL, but will use some other 3-character code as the
File Title for Tape M (destination tape) in program VII, and for Tape M (source tape) in
program VIIL

Since the File Designators will usually serve as File Titles, the C#aal ASSEMBLY stores
each File Designator in the appropriate File-Table as the File Title of the source tape, and as
the File Title of the destination tape. In a case such as this one, when certain tapes require
File Titles which are different from their File Designators used during the Assembly, the
programmer may change the File Titles after the program has been assembled, before re-
cording it in the Program-Library.

This subject is discussed at greater length in Appendix B, in connection with the label-
checking functions of STEP.

24

APPENDIX A
ofeit SHEETS

APPENDIX A

Program Header Sheet............ i A- 3

OVErIaYSo A- 8
File Specification Sheet. A-13
Data Defining Sheet. SO A-19

Coding Sheet. e A-23

PROGRAM HEADER SHEET

cHeal PROGRAM HEADER SHEET NCR 304 DATA PROCESSOR

PROGRAM PROGRAM DESIGNATOR . . . L .
REMARKS. PREPARED BY DATE
CHECKED BY DATE
FILES USED IN THIS PROGRAM
TrAillEE FILE INDEX
Ho. DESIGNATOR FILE NAME REG.
1 .
2 ; .
3 .
4 . .
5 . }
6 .
7 .
8 .
9 ,)
[HE.AD[>
r L l . l / J Program Designator. (Name and Identification Number)
l L I / | Memory Address for Program Origin. (If unspecified, enter NEAT)
| L ‘ /j Memory Address for Data Origin. (If unspecified, enter NEAT)

ormon Shall the assembled program be punched? (i.e. on Paper Tape or Cards)
1 (Enter Y for'Yes, N for No)
ornon Shall the assembled program be recorded on Magnetic Tape?
1 (Enter X for Yes, N for No)
M;M Will the Printer be on-line or off-line during the assembly? (Enzer 6N or ofF)
OPTION
4 Is this a Main Program or an Overlay? (Enter P or)
l /J If this is a Main Program, what is the START Address? (If Overlay, enter 8)
ornon s Standard Rescue Point Subroutine desired with this Program?
5 (Enter Y for Yes, N for No)

X-1742-17 6-1-58 The NCR Co. *Trade-Mark Reg. U. S. Pat. Off.

PROGRAM HEADER SHEET

One Header Sheet will be filled out for each program to be assembled; the information on
it will be keypunched into cards or paper tape, and will be input to the cHeal ASSEMBLY
along with the information from the File Specification Sheets, Data Defining Sheets and
Coding Sheets.

The upper portion of the Program Header Sheet provides for entries to identify the program,
and to summarize the assignment of File-Tables and of the Index Registers which control the
alternation of Handlers for each File used in the program. The lower portion of the sheet,
containing the information to be keypunched, specifies certain options which may be exer-
cised to govern the assembly process.

The operator uses the Console Option Switches, and manual entries through the Console
Typewriter, to inform the ceal ASSEMBLY whether input is from paper tape, punched
cards, or magnetic tape; which Handlers are available to the assembly; etc. These details are
described in the ¢#éal Operating Manual.

In the assembly, Cells 0000 - 0009 are reserved for the Index Registers; Cell 0010 is re-
served as a special putaway address used by STEP; Cells 0011 - 0015 are reserved for File-
Table No. 0, which governs use of the Program-Library Tape mounted on Controller No. 0,
Handler No. 0; and starting in Cell 0016 are as many File-Tables as are specified for the
program, occupying 5 words each. Even though some File-Table Numbers may be unused,
the CH#eal ASSEMBLY will set aside 5 words for each Table, up to and including the highest
File-Table Number assigned. Thus, for example, if File-Table No. 4 is assigned to a File in
the program, it will always appear in Cells 0031 - 0035, whether or not File-Tables 1, 2 and 3
are being used. After the last File-Table is a sentinel-word.

Normally, the program is stored immediately after the highest-numbered File-Table, and
the data area falls immediately after the last word of the program. But these dispositions may
be changed by the entries on the Header Sheet.

A-3

ASSEMBLY OF A PROGRAM IN MEMORY

0000-
0009

0011~
0015

0016-
0020

0021-
0025

/V
A=
-
/V\/
o
N
N
=
I~
A

N

{

INDEX REGISTERS

MISCELLANEOUS PUTAWAY CELL FOR STEP
FILE-TABLE No. 0

FOR PROGRAM-
LIBRARY TAPE
FILE-TABLE No. 1

FILE-TABLE No. 2

LAST FILE-TABLE

SENTINEL WORD

PROGRAM AREA

DATA AREA

PROGRAM DESIGNATOR:

This consists of an 8-character alphanumeric Name, and a 2-digit numeric Number, identi-
fying the program.

The designation may be Program Name, with the numbers identifying successive correc-
tions and revisions of the program, and also different overlays used within the program, for
example:

PAY IN 04 Input Regimentation (4th version)

PAYSORT1 01 First Sorting Operation (1st version)

PAY FILE 10 Posting Employee Master File (10th version)

PAY FILE 52 Overlay A (2nd version)

PAY FILE 67 Overlay B (7th version)

PAY FILE 71 Overlay C (Ist version)

PAYSORT2 01 Second Sorting Operation (Ist version)
........ .. andsoon.

Another possible scheme would be the assignment of a Job Name, and Program Number
within the job, with successive versions of any program keeping the same Designator, for
example:

PAYROLL 10 Input Regimentation

PAYROLL 20 First Sorting Operation

PAYROLL 30 Posting Employee Master File

PAYROLL 31 Overlay A

PAYROLL 32 Overlay B

PAYROLL 33 Overlay C

PAYROLL 40 Second Sorting Operation
........ .. andsoon.

Since the assignment of Program Designator is completely arbitrary, these two schemes
are merely illustrative of the available choices, and any scheme may be adopted which suits
the convenience of a particular installation.

MEMORY ADDRESS FOR PROGRAM ORIGIN:

Instead of permitting the C#@al ASSEMBLY to place the first word of the program im-
mediately after the last File-Table, or immediately after the Standard Rescue Point Subroutine
if it is used (Option 5), the programmer may specify the precise Memory address for the
Origin of the program. This facility is particularly useful when assembling an overlay which
is to be used with a main program. Overlays are discussed on page A-8.

If a Memory address is specified for program origin, it will, of course, be expressed as a
4-digit number, since there are no Address-Type Numbers in cHeal FORMAT.

MEMORY ADDRESS FOR DATA ORIGIN:

In similar fashion, the programmer may choose to specify (as a 4-digit number) the precise
Memory address which shall correspond to Base zero of the data area.

A-5

SHALL THE ASSEMBLED PROGRAM BE PUNCHED?

If the answer is “Yes” the C#eal ASSEMBLY will punch the final program into paper tape
on-line if the C#eal FORMAT was input from paper tape; or it will record the program on
magnetic tape for off-line card punching if the input was from cards.

SHALL THE ASSEMBLED PROGRAM BE RECORDED ON MAGNETIC TAPE?

If “Yes” the c#eal ASSEMBLY will comply. This will not be the Program-Library Tape,
however; recording that tape is performed only by the Librarian Program, described in the

c¥eal Operating Manual.

WILL THE PRINTER BE ON-LINE OR OFF-LINE?

When the c/#eal ASSEMBLY is finished, it prints all pertinent information about the pro-
gram it has just assembled. The major part of this printout consists of lists of all Item Desig-
nators and Field Designators, with the actual Memory addresses assigned to them, and then,
in parallel columns:

Each Instruction in the original cHeal FORMAT, with its Reference
Number;

The Processor Instruction into which it has been translated, with
its actual Memory address;

Any comments pointing out possible inconsistencies or errors in
writing the program.

This printout may be obtained on-line during the assembly, or recorded on magnetic tape
for off-line printing later.

IS THIS A MAIN PROGRAM OR AN OVERLAY?
The assembly of overlays is discussed on page A-8.

WHAT IS THE START ADDRESS?

If this is a main program, this address (which is not necessarily the Program Origin) will
be stored in the Program Label which is recorded with this program on the Library Tape.
When this program is to be run, the executive portion of STEP will bring it into Memory
from the Library, and then automatically jump to this address to begin executing the program.

If this is an overlay program, the main program must contain an Instruction to jump to
this overlay, after using the executive portion of STEP to bring it into Memory from the
Library. (See page A-8).

IS STANDARD RESCUE POINT SUBROUTINE DESIRED?

If, on any File Specification Sheet for this program, the RESCUE POINT question is an-
swered “Yes”, then this question on the Header Sheet must also be answered “Yes”. If no
Rescue Points are desired within this program, answer this question “No”. Rescue points
are discussed on page A-15.

If this question is answered “Yes”, the cHeal ASSEMBLY places the Standard Rescue
Point Routine immediately after the File-Tables. The program being assembled then has its
origin immediately after this Subroutine, or at the actual Memory address specified, according
to the entry on the Program Header Sheet.

A-6

CHANGES TO THE HEADER SHEET:

Once the program has been keypunched into paper tape or cards, the programmer may
wish to change some of the entries on the Header Sheet. He makes up a new Header Sheet,
has it keypunched, and places the additional cards at the front of the program deck, or splices
the additional paper tape to the beginning of the previous program tape, as the case may be.
The c#eal ASSEMBLY will retain only the entries from the first Header-sheet for any program.

A-7

OVERLAYS

An overlay is a section of coding which is not part of the main program, but which is brought
into Memory whenever it is needed, usually to provide for some exceptional circumstance
in the data. When brought into Memory, it is laid over some other section of coding which
is no longer needed. Sometimes it will overlie part of the main program; more commonly,
the programmer will choose to set aside a portion of Memory, within the main program,
just for overlays, using the Pseudo-Instruction SAVE (see page C-10) to reserve the
necessary number of Memory Cells.

In writing an overlay program, the programmer uses the same Item Designators and Field
Designators as in the main program; if the overlay performs any Magnetic Tape operations,
he also uses the same File Designators. (However, if the overlay uses a File to which the main
program does not refer, that File Specification Sheet must be included with the main program
in order to set up a File-Table). In naming the Regions for the overlay program, he takes
care not to duplicate any Region used by the main program.

The main program is assembled first. The printout furnished by the W ASSEMBLY will
indicate the actual Memory addresses of the first word in the overlay Region, and of the first
word in the data area. Then the programmer fills out a Program Header Sheet for the overlay
program, entering these two Memory addresses as the Program Origin and the Data Origin,
respectively. The input to the cHeal ASSEMBLY for the overlay program consists of:

The overlay’s Program Header Sheet;
The same Data Defining Sheets as used for the main program;

If the overlay program performs any Magnetic Tape operation, the
same File Specification Sheets as used for the main program;

The Coding Sheets for the overlay program.

The procedure just described takes care of all data references and file references within the
overlay program, but the programmer will have taken several additional steps to provide for
jumps back and forth between the overlay and the main program.

JUMPS TO THE OVERLAY PROGRAM:

1) Suppose an overlay program has a single entry-point, which is its first Instruction. The
main program will contain a jump to the Reference Number which is designated within the
main program as the beginning of the overlay area. The actual Memory address corresponding
to this Reference Number is the Program Origin for the overlay, and when the overlay pro-
gram has been brought into Memory its first Instruction will occupy that address. The main
program, therefore, will have jumped to the overlay’s entry-point.

2) If, when the overlay program has been written, its entry-point is not the first Instruction,
the programmer need only add one Instruction at the beginning of the overlay program—
a GOTO (see page C-9) the overlay’s entry-point.

3) But suppose some overlay has several alternative entry-points. Then the programmer
begins the overlay program with a Jump Table, containing a separate GOTO for each entry-
point. In terms of the Reference Numbers within the main program, the future location
of each of these GOTO Instructions is known, and the main program may jump to them
as required.

A-8

To illustrate this last situation, consider an overlay program which has 5 entry-points.
Its first Region will be:

Reference No. : |§
Region| Position | M| Operation Ev Misc. | R A Tag B Tag c Tag| &
RJ| 1! | I6eoT 6!)) Rjo01.0

R GOTO! R1.017.2

| 3! GoT o R9 020

4. | lcoT 0 S2.1.6.0
5 o100 | Sy o1o0
b | INEXT! | R

See page C-17 for NEXT

Excerpts from the main program are:

Reference No. : IS’
Region| Position | M|| Operation .V Misc. R A Tag B Tag [+ Tag| &
oLl 1 SAVE 145 ZERO | o

See page C-10 for SAVE.
This reserves 146 Cells for the overlay area.
R1.A GeTo | . . L o GLO] O
Jumps to RJ.01 which is GOTO R1.01
A2 GoT O) 6LO1O
. | _.2.00

Jumps to RJ.02 which is GOTO R1.07.2

A-9

Jumps to RJ.05 which is GOTO §4.01

JUMPS BACK TO THE MAIN PROGRAM:

Usually the main program, when jumping to the overlay program, uses minus-V, or some

B1| 71| |GoTp! gLO1O

400
Jumps to RJ.03 which is GOTO R9.02

Be| 1! | |6oTO oL01.0

! b 0O

' 1r 4~ T~ —
Jumps to RJ.04 which is GOTO §2.16

BR| #ib| GoTO! oLO1.0

_ i L £00

— L1 ~—L _—

ather linking procedure, and the return from the overlay is perfectly straightforward.

If not, then after the main program has been assembled, the actual Memory addresses of
the re-entry points are determined from the cHeal ASSEMBLY’S printout, and these are

entered, as 4-digit Memory addresses, at the proper points in the overlay program.

A-10

FILE SPECIFICATION SHEET

A-11

W FILE SPECIFICATION SHEET

FILE NAME

NCR 304 DATA PROCESSOR

FILE DESIGNATOR

PROGRAM

PROGRAM DESIGNATOR

PREPARED BY

DATE

CHECKED BY

DATE

M

X-1742-13 6-1-58 The NCR Co.

File-Table Number. (1—9)

File Designator. (A# Jeast one character must be a letter of the alphaber)

INDEX REGISTER assigned to this File. (1—9) (If none, enter N)

SOURCE TAPES for this File (Enter Controller, Primary Handler, Alternate Handler.
If no Source Tapes, enter N)

DESTINATION TAPES for this File (Enter Controller, Primary Handler, Alternate Handler.
If no destination Tapes, enter N)

Is automatic SETUP desired on this file? (Enter Y for Yes, N for No)

Length of the longest Record in this File.

Branch Address for BUSY Exit. (If no branch desired, enter STIK)

Branch Address for NON-EQUAL STOP Exit. (If #his Exit not expected, enter N)

Branch Address for (RM Exit. (If #his Exit not expected, enter N)

Branch Address for Programmer Intervention during END-OF-TAPE. (If no intervention desired, enter N)

Is USE LOCKOUT desired on Rewind? (Enter Y for Yes, N for No)

Shall RESCUE POINTS be established on the Destination Tapes of this File? (Enter Y for Yes, N for No)

Relative Position (0—7) of the UNIQUE WORD within each Record.
(If no Rescue Points on any file in this Program, enter N)

Number of periods during which this File is to be protected by expiration-check.
(If File is on M-period, enter M and two digits)

Number of periods prior to this run, when Source-Tape was made.
(If File is on M-period, enter M and two digits)

*Trade-Mark Reg. U. S. Pat. Off.

FILE SPECIFICATION SHEET

The heading of the sheet provides reference entries to identify the File and the program.
The body of the sheet contains the entries which are to be keypunched and input to
the cfal ASSEMBLY.

FILE-TABLE NUMBER:

Each File used in a program is assigned a File-Table, which the c#@al ASSEMBLY stores
in Memory as part of the assembled program, and which contains essentially the information
on the File Specification Sheet. The cfaal ASSEMBLY automatically plants, in the 55-field
of the second word of every Magnetic Tape Instruction, the File-Table Number for the File
to which that Instruction refers. In the event of any Tape-Exit condition while the assembled
program is operating, STEP picks up the File-Table Number from the Instruction causing the
exit, refers to the corresponding File-Table, and conditions itself accordingly.

FILE DESIGNATOR:

A File Designator may be any collection of up to three characters, except that at least one
character must be a letter of the alphabet. Whenever the programmer feels that it is convenient
to do so, a File Designator may duplicate an Item Designator.

Within any one program, a File Designator is solely an index to Controller, Primary and
Alternate Handlers for source and destination tapes. However, the File Designator is also
recorded as part of the Label-Record on each reel of magnetic tape, and in that capacity it
serves as a File Title which identifies the physical File.

INDEX REGISTER:

Alternation of Handlers for successive reels of source and destination tapes of a File is con-
trolled by the contents of the A-syllable of an Index Register. Index Register #0 is reserved
for STEP and for other self-contained subroutines; any of the other Index Registers may be
used for controlling the Files. While each File must have its own File-Table, one File using
only source tapes may be controlled by the same Index Register as another File using only
destination tapes, provided they are on the same Controller.

If any File is contained on a single reel of tape, and therefore no alternation of Handlers
is called for, no Index Register need be specified for that File.

SOURCE TAPES and DESTINATION TAPES:

If source and /or destination tape is contained on a single reel, and therefore no alternation
is required, enter the same Handler number for both Primary and Secondary. Then in the
event the programmer makes an error, and the File does at some time exceed a single
reel, STEP will halt the Processor, after appropriate printout on the Console Typewriter.

Source and destination tapes of any File must be on the same Controller.

A-13

IS AUTOMATIC SETUP DESIRED ON THIS FILE?
This significance of this option is discussed on page 20, and on page C-16.

LENGTH OF THE LONGEST RECORD IN THE FILE:

When the assembled program is operating, and an error is detected during a WRITE TAPE
operation, the program branches into STEP on the tape-exit condition. STEP then repeats
the operation, writing one record at a time, t0 isolate the record in which the error occured.
If that record cannot successfully be written after several tries, STEP assumes that there is a
flaw in the tape, and records a special “skip” record, which is as long as the longest record
in that file. The writing operation is then resumed, and when it is completed, STEP jumps
back to the main program.

This “skip” record will, because of its special characteristics, always be detected whenever
that tape is read as a source tape at some later time. This will generate a tape-exit condition,
whereupon STEP will identify the “skip” record, ignore it, and allow the main program
to proceed.

During recording, STEP tallies the number of “skip” records placed on any reel of tape.
If the number exceeds a predetermined figure, STEP prints out that fact on the Console
Typewriter, as an indication that it is probably time to discard that tape. The “skip”
record is described in detail in Appendix B.

BRANCH ADDRESSES FOR BUSY, NON-EQUAL STOP, CRM:

These are the three branch conditions which the programmer must program for himself;
he enters in these spaces the Reference Numbers, or the 4-digit Memory addresses, of his
subroutines which handle these conditions. If he does not anticipate the possibility of Non-
Equal Stop, or of CRM, he enters “N” for either condition; then if he has made an error, and
the condition does arise, STEP will halt the Processor, after appropriate printout on the
Console Typewriter.

PROGRAMMER INTERVENTION DURING END-OF-TAPE:

The programmer may, if he wishes, intervene with some programming of his own, after
detection of end-of-tape on any File, and just before STEP rewinds the tape. The intervention
subroutine may perform any work the programmer deems appropriate, except that it must
not disturb the contents of Index Register #0, or of Cell ¢00:53, and #¢ must not perform any
Magnetic Tape Operation which can encounter end-of-tape. The intervention subroutine must
end with a Jump to Cell O18, back into STEP for the rewind, alternation of Handlers, and
label-check of the next reel.

The programmer may be assured that, even though an error may occur in writing the last
Gulp on the reel (and STEP then records these records one at a time, as already described),
STEP will still put on that reel all the records which the programmer specified for the Gulp.

Since any intervention will probably be performed by a single subroutine, the following
information will be of interest:

A-14

o File-Table No. F is in Cell ¢25:55.

e If end of source:
Cell ¢00:53 contains “062”.
Cell 029:00 contains 7,
Cell 000:86}
Cell 000:53

e If end of destination:
Cell ¢00:53 contains “090”.
Cell 029:00 contains “6”.
Cell 000:86}

each contain 5F.

Cell 000:53, each contain 5F + 2.

Cell 000:20

IS USE LOCKOUT DESIRED ON REWIND?

Every Rewind, of either source or destination tape in this File, will be performed in accord-
ance with the answer to this question.

Remember that this applies only to intermediate Rewinds at the end of successive reels in
the File. The final Rewind, at end-of-file, is written by the programmer himself.

RESCUE POINTS:

If desired, STEP will establish a Rescue Point on each new reel of destination tape within
this File. In doing so, STEP “marks your place” on every other magnetic tape in the system,
and then records the entire contents of the Memory immediately after the label-record on the
new destination tape. Then in case of accident the program can always be resumed from the
last Rescue Point, without requiring a complete re-run; a Resumption Program is provided
for this purpose.

When this destination tape becomes, in its turn, the source tape for some other operation,
the end-of-tape subroutine within STEP will recognize the “Memory Dump” immediately
after the label on each reel, and will Index the tape over it so that it never enters the Memory
during routine operations.

If this question is answered “Yes” for any File used in the program, then the Rescue Point
question (Option 5) on the Program Header Sheet must also be answered “Yes”. The cHead
ASSEMBLY will then include the Standard Rescue Point Subroutine as the first Region of the
assembled program, immediately after the last File-Table. When the assembled program is
operating, and encounters an end-of-destination-tape, STEP will rewind the tape, alternate
Handlers, label check the next reel, record a new label on it, and then jump to the Standard
Rescue Point Subroutine, which performs a “Memory Dump” on that tape, and then jumps
back within STEP for the return link to the operating program:

UNIQUE WORD WITHIN EACH RECORD:

In order that STEP may “mark your place” on each tape in the system when establishing a
Rescue Point, every record in every File must contain some word which is unique to that
record, within its File. That word will usually be the one containing the Account Number or
similar identification.

A-15

In establishing a Rescue Point, STEP reads the next record from every tape in the system,
and records the contents of its #nique word in a table which is included in the Memory Dump.

After reading the next record on each tape, that tape is automatically Indexed- Backward
to its original position, so that routine processing may be resumed.

NUMBER OF PERIODS FOR EXPIRATION-CHECK PROTECTION:

The programmer specifies the number of periods, including the current one, during which
the label-checking functions of STEP shall not permit any other information to be recorded
on any of the destination tapes of this File. When that interval has expired, the tapes are
considered obsolete, and may be re-used as destination tapes for some other operation.

Thus if a tape recorded, say, on Monday is to be retained through Wednesday but becomes
obsolete by Thursday morning, it must be protected for 3 periods, including the one during
which it was recorded. If the operation is on a monthly cycle, and the destination tapes are
to be held for eleven additional months, they are to be protected for M12 periods.

NUMBER OF PERIODS PRIOR TO THIS RUN, WHEN SOURCE TAPE WAS MADE:

If the source tape for this program was recorded the previous day, it was recorded 1 period
ago. If it is on a weekly cycle, it was recorded 5 periods ago (5-day week), or 6 periods ago
(6-day week). If the operation is on an M-cycle, and is being used 3 M-periods after it was
recorded, then it was recorded MO3 periods ago.

CHANGES TO THE FILE SPECIFICATION SHEET:

Once the program has been keypunched into paper tape or cards, the programmer may
wish to change some of the entries on the File Specification Sheet. He makes up a new Sheet,
has it keypunched, and places the additional cards at the back of the program deck, or splices
the additional paper tape to the end of the previous program tape, as the case may be. The
cHeal ASSEMBLY will discard the entries from the first File Specification Sheet for any
File-Table, and retain those from the latest one it receives for that File-Table.

A-16

DATA DEFINING SHEET

A-17

CHeal pATA DEFINING SHEET

cm,
oy

NCR 304 DATA PROCESSOR

FILE DESIGNATOR \

FILE NAME
ITEM NAME STANDARD ABBREV.
REMARKS PAGENO.______ FOR THIS LD.
DAT A TEM LENGTH WORDS MEMORY ALLOCATION WORDS
ITEM — / PREPARED BY DATE
DESIGNATOR .
BASE APPROVED BY DATE
FIELD LOCATION | FIELD DESCRIPTION— COMMENTS No.of | o
DESIGNATOR Characters |
/ >
/ >
/ >
/ >
/ >
/ >
/ >
/ >
. Y, >
/ »
. 7 >
. y)
‘ ; >
/ >
. / :
/ >
/ >
/ >
/ >
‘ / >
/ | >

X174226 5158 THE NCR Co.

A-18

*Trade-Mark Reg. U. S. Pat. Off.

DATA DEFINING SHEET

The heading of the sheet, and the rightmost three columns of the body of the sheet, provide
reference entries for the programmer’s convenience. Those entries which are keypunched,

and input to the C#eal ASSEMBLY, are briefly defined below.

ITEM DESIGNATOR:

An Item Designator may be any collection of up to four characters, except that at least one
character must be a letter of the alphabet, and no Item Designator may duplicate any Field
Designator.

BASE:

The “Relative address” of the first word of the first of these Items in the Gulp, relative to
the Data Origin.

FIELD DESIGNATOR:

A Field Designator may be any collection of up to four characters, except that at least one
character must be a letter of the alphabet, and no Field Designator may duplicate any Item
Designator.

LOCATION:
The “relative address” of the word containing this Field, relative to the first word of the Item.

FIELD:
The partial-word designators for this Field.

DEFINING DATA-FIELDS:

Item Designators and Field Designators are “dictionary entries”, from which the C/2al
ASSEMBLY obtains the actual Memory addresses for the data-fields named within the program.

Therefore, it is not necessary that the Field Designators cover every field within an Item;
any fields which are not referred to within a particular program need not be defined for that
program. The programmer may also prefer not to define some of the infrequently-used fields,
but to refer to them by their relative positions with respect to some other field which is defined.
This was done in Example 2, page 6, and was commented on at that time.

Similarly, the programmer may define overlapping Field Designators to whatever extent he
finds convenient. In fact, he will often wish to use the same Memory area, at different points
in the program, for completely different Items and need merely set up two or more Item
Designators, @/l with the same Base, each having its full complement of Field Designators.

A-19

CHANGES TO DATA DEFINING SHEETS:

Once the program has been keypunched into paper tape or cards, the programmer may
wish to change some of the data definitions. He makes up a new Data Defining Sheet for each
Item which is to be changed or added, has it keypunched, and places the additional cards at
the back of the program deck, or splices the additional paper tape to the end of the previous
program tape, as the case may be.

If a new Data Defining Sheet names an Item Designator which did not previously appear,
the cfeal ASSEMBLY will add it, with its Field Designators, to its own data tables in the
usual fashion.

If one of the new Sheets names an Item Designator already in the data tables, the Base named
on the new Sheet will replace the previous Base of the Item, and any new Field Designators
will be added to the Item. If the positions of any Fields within the Item are to be changed, the
programmer lists those Field Designators, giving their new Locations and partial-word Fields.
Thus, the programmer need list on the new Sheets only those Field Designators which are
to be added, or whose positions are to be changed.

There is no need to delete Item Designators or Field Designators which are no longer
wanted, as they merely remain in the data tables, but are never referred to during the Assembly.

A-20

CODING SHEET

A-21

(444

ofeal CODING SHEET offau: NCR 304 DATA PROCESSOR

PROGRAM PROGRAM DESIGNATOR
REGION_________WHICH HAS THE FUNCTION CODED BY DATE
CHECKED BY. DATE
Reference No. : L 'S'
C ® D E | > |Region| Position {M| Operation : V| Misc. |R A Tag B Tag) c Tag| & REMARKS
| | >
L H H N R
| ! >
] . .
i >
: 1 >
. N ! . , . N . -
| | >
i | >
i : >
| i >
1 i ! 1 H 1 1 A 1 i 1 1
i 5 ’ , L >
| | >
| | >
| ! >
! ! R . -
| |) L L >
| e i
: i >
| ! . N NN
1 1
{ ¢ >
| | >
] 1 *
! ! >
a | >
L e >

X-1742-12 5158 The NCR Co. *Trade-Mark Reg. U. S. Pat. Of. PAGENO.________ WITHIN REGION

CODING SHEET

REFERENCE NUMBER:

The Region designation may be any two characters, except that the first character must be
a letter of the alphabet. Region designations in which the first character is not a letter of the
alphabet, are reserved for standard subroutines. Therefore it is impossible for the program-
mer inadvertently to use any Region designation which is also used by a standard subroutine.

Position must be expressed as three numeric digits.

MONITOR LEVEL:

The column M designates the level of automonitoring to which each Instruction in the
assembled program will be subject. It has the same significance as M in the Processor format
of the Instruction.

OPERATION and VARIATION:
In this column is entered any of the 75 Instructions, Pseudo-Instructions, Assembly In-
structions, and their variations, listed on page C-1.

If the programmer records a non-existent Operation Code (such as SUBT, instead of SUB,
for Subtract), or if the keypunch operator hits a wrong key (punching, for example, AFF
instead of ADD), the ¢#aal ASSEMBLY will substitute the “next best” and printout a com-
ment to that effect. When the assembly is complete, the programmer reviews all these com-
ments, and determines what corrections, if any, must be made.

MISCELLANEOUS:

The information to be entered in this column is specifically defined in Appendix C for each
Instruction which uses this column.

INDEX REGISTER:

Column R designates the Index Register, if any, to which each Instruction shall be relative.
If no Index Register is used with an Instruction, this column is left blank, and keypunched
as “‘zero”.

The program must always contain the Instructions neces-

Remember sary to accomplish all initial presetting of Index Registers.

ADDRESS and TAG COLUMNS:
The possible entries in the address-columns are tabulated below.

There are four possible entries in each of the Tag columns:
Tag “0”: Blank column, keypunched as zero.

The entry in the address-column is to be translated into an ad-
dress or an Address-Type Number.

Tag “C”: The entry in the address-column is a Named Constant of up to 5
alphanumeric characters.

See page 9 for use of "4’ to reserve left-zeros.

A-23

Tag “R”: The entry in the address-column is a Constant ‘‘once removed™.

The efeal ASSEMBLY must first translate it into an address or an
Address-Type Number, then treat it as a2 Named Constant.

Tag “X": The corresponding syllable of the assembled Instruction is to be
relative to the Index Register which is specified in Column R.

The use of the Tags in the Pseudo-Instruction CNST is slightly different, and is tabulated
on page C-10.

The entry in an address-column may be:

e Reference Number May have Tag “0”, “R”, “X”
e Item or Field Designator May have Tag “0”, “R”, “X”
e 4-digit Main Memory address May have Tag “0”, “R”, “X”
e Address of “Special” Cell

and partial-word May have Tag “0”, “X”
e Address of Index Register

and partial-word May have Tag 07, “X”
e 4-digit tally or limiter May have Tag 07, “X”
® Named Constant Must have Tag “C”

When the Tag is “0” or “X”, the entry in the address-column is interpreted by the cheal
ASSEMBLY as follows:
Five characters, leftmost character is @, ¢, 0O, A, %, £, d, s:
Leftmost 3 characters are address of a **Special’” Cell;
Rightmost 2 characters are partial-word.

When used in a full-word operation, such as MOVE, the partial-word
designation should be 90.

Five characters, leftmost character is +:
Leftmost 3 characters specify address of an Index Register;
Rightmost 2 characters are partial-word.

When used in a full-word operation, such as MOVE, partial-word
designation should be 90.

Five characters, leftmost character not one of the above:
Reference Number of an Instruction in the program.

If the programmer names a Reference Number which does not appear
in the program, the c#ead ASSEMBLY uses the ‘‘next best’” and prints
a comment.

Four characters or less, one of them a letter of the alphabet:
Item Designator or Field Designator.

If the programmer refers to a Designator which has not been listed on
any Data Defining Sheet in the program, the c#eal ASSEMBLY uscs
the '‘next best’’ and prints a comment.

Any Item Designator or Field Designator may be used in a full-word
operation, such as MOVE, to refer to the word in which it appears.

Four characters or less, all numeric:

An actual Memory address, a tally or a limiter, expressed as a 4-digit number.
The c#eal ASSEMBLY will translate the entry into an Address-Type Number.

A-24

The interpretation of File Designator, and other address-column entries in Magnetic Tape
Instructions, are discussed on page C-11.

A few Instructions require more than one line in C#af FORMAT. Only Tag “0” (blank)
is permissible in any additional line.

INCREMENTS and DECREMENTS, WITH PARTIAL-WORD:

On pages 6 and 8, the use of an auxiliary line for an Instruction was illustrated. An entry
on the auxiliary line contains an increment and a partial-word designation, supplementing
the address-reference in the Instruction itself. The increment may be negative, in which case
it is called a decrement.

Any Reference Number, Item or Field Designator, or 4-digit Main Memory address may
carry such a supplement unless the entry has Tag “R”. An entry with Tag “R” may have an
increment and partial-word, only within the Pseudo-Instruction CNST (see page C-10).

The rightmost two digits of the supplement are always interpreted as the partial-word, and
the leftmost three digits are the increment (up to 999) or decrement (up t0-99). The partial-
word designation in a supplement always supplants the normal partial-word associated with
an Item or Field Designator; therefore, if an increment or decrement is used, the partial-word
designation must always be used with it.

SP& COLUMN:
S in this column indicates that the Sign of V is to be negative.

P in this column Protects the Instruction against the storage of any Named Constants within
it. Sometimes a complete Instruction will be replaced by the program itself, and in that case
it is essential that no Constants be stored within that Instruction.

& in this column indicates both minus-V and Protect.

CHANGES TO CODING SHEETS:

Changes in the code, after it has been keypunched, are discussed in the tutorial section of
this Manual, pages 10-13.

A-25

APPENDIX B
STEP

APPENDIX B

File-Tables. oot e B- 1
Tabulation of Tape-Exit Conditions.................., B- 3
CSKIp” ReCOTd.o B- 5
Table Labels. B- 6
Daily Startup. B- 7
Program Labels. B- 9
Progressing from Program to Program e B-10
OVELLAYSot B-10
Label-Checking............................... e B-11

SIGNIFICANT ADDRESSES WITHIN STEP

Address of WRITE-COPY must be stored in 20-fieldof @01
First 8 words for WRITE-COPY-READ must be preservedin...................... ¢11-¢18
After end-of-tape intervention, jump to.................. ... 018
Sequence Number of next program is stored in 60-field of e £99
Sequence Number of next overlay is stored in 90-field of A03
To bring in an overlay, jump with minus-Vlinkto A98
For next program, JUMP tO it e A42

See also pages C-2 and C-3 for conventions governing ¢00-¢09, 000-0009.

USE OF OPTION SWITCHES IN STEP

 Option Switch #0 ON: Override label-check failure.

Option Switch #1 ON: Operator enters Date This File Recorded before source tape
label-check is performed.

STEP

STEP (Standard Tape Executive Program) is a universal subroutine which performs all
“housekeeping” functions connected with Magnetic Tape Operations. Using STEP, the
programmer is never concerned with such conditions as Error or End-of-Tape, and he writes
his programs as though these problems did not exist. STEP is completely self-contained, and
lies entirely within the 400 “Special” Cells which are present with a 2000-word Main Memory;
STEP occupies no space whatever in Main Memory.

FILE-TABLES:

The C#eal ASSEMBLY sets up a series of File-Tables for each program, and these are
stored on the Program-Library Tape with the program itself. When the program is being run,
the File-Tables govern the action of STEP in accommodating all tape-exit conditions to the
requirements of each File. The format of a File-Table is:

9 8 7 6 5 4 3 2 1 0

UNIQUE[INDEX END OF TAPE
cO PH AH CODE
P ° ° WORD | REGISTER EXIT
CURRENT
FILE TITLE ENT
DESTINATION REEL CURR
(DESTINATION) NUMBER PERIOD NUMBER
UNIGUE PERIOD NUMBER WHEN
COs PHy AH; | copE 0] DESTINATION TAPE
‘ ' WORD BECOMES OBSOLETE
FILE TITLE CURRENT PERIOD NUMBER WHEN
SOURCE TAPE
(SOURCE) SOURCE REEL NUMBER WAS RECORDED
tf:‘?.l.ﬂ NON-EQUAL STOP CRM BUSY
RECORD EXIT EXIT EXIT

Remember that any body of information recorded on magnetic tape is spoken
of as a File. From the point of view of the “‘housekeeping’’ operations such as
label-checking, there is no distinction between a ‘‘file”’ (in the conventional
sense) and any other magnetic tape.
COp, PHo, AHb are the Controller, Primary Handler, and Alternate Handler for destination
tapes of this File. If there is no destination tape for this File, this field will contain XXX.

CO:s, PHs, DHs are the Controller, Primary Handler, and Alternate Handler for source
tapes of this File. If there is no source tape for this File, this field will contain XXX.

Index Register contains the rightmost two digits of the address of the Index Register used
to control alternation of Handlers for this File. If no Index Register has been assigned, this
field will contain 10.

Code represents a bit-wise code in one character:

1-bit if RESCUE POINTS are to be established on this File.
1-bit if automatic SETUP is desired on this File.

0-bit always.

0-bit always.

1-bit if USE LOCKOUT is desired on Rewind.

Tm9o¢@® >

1-bit always.

Code s set up by the c¥eal ASSEMBLY inaccordance with the entries on the File Specifica-
tion Sheet, and is identical for both source and destination tapes.

Unique Word is the relative position of the unique word within each record. It is set up
by the cHeal ASSEMBLY from the entry on the File Specification Sheet, and is identical for
both source and destination tapes.

There mayv be occasions when the programmer does not wish Code or Unique
Word o be the same for source and destination tapes. He can make these changes
in the File-Table after the program has been assembled, and before it is recorded
in the Library.

File Titles. The cfeal ASSEMBLY enters the File Designator into these fields, since that
will usually serve as the File Title for both source and destination tapes.

These will be occasions (as mentioned on page 23) when different File Titles
must be used for source and destination Tape-Labels. The programmer may
change cither Title in the File-Table after the program has been assembled, and
before it is recorded in the Library.

He may also, when required, have the program itself change the Titles in the
File-Table, as illustrated on page B-1.

Current Reel Number for source and destination tapes, each start with Reel #1. The ap-
propriate tally is advanced each time an end-of-destination or end-of-source is encountered.

Each Period Number is filled in by the daily STARTUP Program, as described on page B-8.

Each of the four Exits contains either the address specified on the File Specification Sheet
for the respective condition, for this File, or an address within STEP for standard handling
of the condition.

Length of Skip Record is approximately the same as the longest record in the File. The
entry in the File-Table is actually 1/10 of the record-length.

B-2

TABULATION OF TAPE-EXIT CONDITIONS:

After any branch out of a Magnetic Tape Instruction, STEP examines the 55-field of the
second word of that Instruction, to obtain F, the File-Table Number corresponding to the
File addressed by that Instruction. Stored within this File-Table is information (specified by
the programmer on the File Specification Sheet) to enable STEP to take the correct action
for each condition which may arise in processing that individual File.

BUSY

GOTO the address stored in the 20-field of the 5th word of the File-Table. This is the address
specified by the programmer for the BUSY branch.

If the programmer has specified *'STICK’* on Busy, this is the address of the
link within STEP, to repeat the Instruction which branched.

USE LOCKOUT

Type LOCKOUT and the contents of Cell @00, then Halt. When the operator presses the
START button, repeat the Instruction which branched.

READ ERROR
Try again 3 times. If able to read without error GOTO the next Instruction in the program.

In most Magnetic Tape systems, ‘‘reading’’ errors are usually due to the fact that
the information was incorrectly recorded on the tape in the first place. In the
304 System, all recording is automatically verified, a# the time of recording, and
the only reading errors encountered will be true reading failures. Such failures,
when they do occur, are almost invariably due to a transient condition such as a
speck of dust on the tape, and will correct themselves during the 3 re-readings
of the record.

In rare cases, the tape may have been worn or aged to the extent that it may
accept recording satisfactorily on one day, but some point on the tape may be
unable to reproduce that recording on some successive day when the tape is used
as a source. In such case, the operator has the option of *‘jamming’’ the program
past the error, in order to complete the rest of the day’s work, and attempt to
restore the one or two garbled characters in this record at a later time.

If STEP is unable to read any record after a total of four attempts, it will type
on the Console Typewriter REC BAD, the garbled record, and the contents of
Cell @00. The operator may stop the Processor, go back to the previous period’s
work to re-create the entire reel of tape, and then resume today’s work from the
last rescue point. Probably, however, the operator will allow STEP to con-
tinue, whereupon it will drop the garbled record from the File, and continue the
processing. Usually the record can be corrected from other information available,
and replaced in the File the following period.

WRITE ERROR
Index the tape backward to the beginning of the Gulp, then rewrite the Gulp, one record at a
time (whether they are fixed or variable length records). Ignore end-of-tape warning till Gulp
is complete. If unable to write any record without error, try it again.

If still unable to write, assume there is a flaw at that spot, and record a *‘skip"’
record. Then resume writing one record at a time till the Gulp is complete. Tally
the number of *‘skip’’ records on each reel of tape. For detail of “‘skip’’ record,
see page B-5.

COPY OR COPY-READ ERROR
Try 3 times to resume the operation (Copy or Copy-read portion only).

If unable to resume without error, read one record from the source tape. If this
is done without error, the fault must have been on the destination tape, so
record a “'skip” record. Index Backward the source tape one record, and
resume the Copy.

If unable to read, use the '‘jamming’’ procedure, which is
described under Read Error.

If it was Write-Copy, GOTO the Instruction which branched.

If it was Write-Copy-Read, GOTO the next Instruction.

ERROR IN WRITE PORTION OF WRITE-COPY-READ

The first eight words of the written record, which have been obliterated in Memory, were
saved by the programmer in Cells ¢11 thru ¢18. Restore these eight words, and try again

3 times.
If the record still cannot be written without error, record a *'skip’” record, then

try again. Tally the number of *‘skip’’ records on each reel of tape.

GOTO the next Instruction.
END OF TAPE

GOTO the address stored in the 20-field of the first word in the File-Table. This is normally

gi1s.
If the programmer wishes to intervene at end-of-tape, this address is the one he

specified for his intervention subroutine. This subroutine must end with a jump
to Cell O18.

Rewind the tape, and alternate the source or destination Handler-designations in the File-
Table and in the appropriate Index Register. Label-check the tape on the alternate Handler.

If end of destination tape, check the label for expiration, Index backward, and
record a new label. If rescue points are called for on this File, perform a Memory
Dump.

If end of source tape, check the label for File Title, Reel Number, and Date Re-
corded. If rescue points are called for on this File, Index forward over the Mem-
ory Dump which is on the tape.

If end of source tape, type on the Console Typewriter log:

NEW SRL ON__(Controller and Handler holding the next reel).

B-4

If end of destination tape, type on the Console Typewriter log:

PUT THIS LBL ON__(Controller and Handler holding the rewound reel);
then the second word of the File-Table, and the 30-field of the third word of
the File-Table, which is the information to be written on the outside of the
reel, as a visible label.

If this was a branch without execution

—Because a previous Write-Copy found end of source tape or end of destination
tape, resume the Write-Copy (Copy portion only) and GOTO the Instruction
which branched.

If this was a branch after termination

—Because Write-Copy-Read found end of source tape or end of destination tape,
resume the Write-Copy-Read (Copy-Read portion only) and GOTO the next
Instruction.

—Because Write Tape found end of destination tape, GOTO the next In-
struction.

—Because Read Tape found end of source tape, GOTO the Instruction which
branched.
CONTROL RECORD MARK

GOTO the address stored in the 53-field of the fifth word in the File-Table. This is the address
specified by the programmer for the CRM branch.
If the programmer entered N for this branch on the File Specification Sheet (no

CRM expected) this address jumps into STEP, which types UNEX CRM and
the contents of Cell @00, then halts.

UNEQUAL STOP

This is the one case in which STEP does not select the File-Table corresponding to the
Instruction which branched. If the Un-Equal Stop terminated an off-line Copy, STEP selects
the File-Table corresponding to the Copy Instruction, and then chooses the branch address
from that File-Table.

GOTO the address stored in the 86-field of the fifth word of the File-Table. This is the address
specified by the programmer for the Un-Equal Stop branch.

If the programmer entered N for this branch on the File Specification Sheet (no
Un-Equal Stop expected) this address jumps into STEP, which types UNEX UES
and the contents of Cell @00, then halts.

“SKIP”” RECORD:

This is a special record, approximately as long as the longest record in the File, containing
the configuration SKIPspvwsdd in its first, fourth and seventh words. It is recorded
whenever a persistent Write error indicates that there must be a flaw on the tape. When
recording a “skip” record, the Controller will, of course, indicate a Write error; in this
case, STEP expects the error, and ignores it.

Whenever a Read error is encountered, STEP examines the first, fourth and seventh words
of the error record, since experience indicates that tape flaws, when they do occur, are far too
small to garble all three of these words. If any one of them has the prescribed configuration,
this is a “skip” record; STEP drops it from the File, and resumes the program.

B-5

It sometimes happens that an error which persists when attempting to record one configura-
tion of bits will not occur when recording some other configuration. Even if the “skip” record
should, by this kind of accident, be recorded on the destination tape without error, STEP
guarantees that the program will not attempt to treat the “skip” record as though it were a
legitimate record in the file.

It will be noticed that the “skip” record is also a CRM record, and will terminate any Read
operation. For this reason, before taking any CRM-jump, STEP checks the CRM record to
see whether it is also a “‘skip” record; if so, STEP drops it from the File, and resumes the
program.

On the other hand, the “skip” record is also a Reject record, which can never terminate a
Search or Copy operation, regardless of any accidental compliance with the search condition
(see pages IV-Tapes-8 and 9 in the 304 Programming Manual). Therefore, if a Copy en-
counters a “‘skip”’ record which was recorded without error, that record will be transcribed
harmlessly onto the destination tape. “Skip” records will be rare, and those recorded without
error will be rarer still, so this additional accumulation of “skip” records within a File is of

no significance.

TALLYING “SKIP” RECORDS:

STEP maintains an independent tally of “skip” records recorded on every Handler in the
system. Since this tally is reset to zero every time a new reel of tape is used on the Handler,
it is actually a tally of the number of “skip” records on every reel of tape used in the system.
Whenever the number of “skip” records on any reel exceeds 30, STEP types on the Console
Typewriter log SKIP OVER 30 —— naming Controller and Handler, as an indication that it
is probably time to discard that tape once its information expires.

The figure 30 is purely arbitrary, and may be changed at will.

TALLYING ERRORS:

For the benefit of the maintenance personnel, STEP maintains an approximate tally of
magnetic tape errors in which each Handler is involved.

TAPE LABELS:

The first record on every reel of magnetic tape is recorded as a label, in the following format:

B-6

9 8 7 6 5 4 3 2 1 0

NUMBER OF THIS REEL PERIOD NUMBER WHEN
WITHIN THE FILE THIS TAPE WAS RECORDED

1 1 A

FILE TITLE

PERIOD NUMBER WHEN
THIS TAPE BECOMES OBSOLETE

\/\”\
~—_

The information in the Tape Label identifies every reel, and is used by STEP in Label-
checking. Only the first word, and the 30-field of the second word, are relevant within the
Label; therefore STEP records a destination Tape Label as a minimum-length record start-
ing with the second word of the File-Table, and a source Tape Label as a minimum-length
record starting with the fourth word of the File-Table.

DAILY STARTUP:

In order to minimize the possibility of manual interference with the 304 System when it is
operating, the Console Typewriter is the only device in the System which can be started by
the operator. Therefore the day’s work is started each morning by means of the Typewriter.

When the day’s Input has been placed on the Paper Tape Reader, or the Punched Card
Reader, and all Magnetic Tapes have been mounted on their proper Handlers, a short piece
of paper tape is placed in the Typewriter’s reading station, and the START READ button
on the Typewriter is pressed.

The paper tape contains a brief program, which is described in detail in the /274 Operat-
ing Manual. This program brings into Memory the STARTUP Program, and File-Table #0,
from the Program-Library Tape. (In reading the following consult page C-2 in connection
with references to the “Special” Cells.) The STARTUP Program brings STEP into Memory
from the Library, and thenit

B-7

— Types TODAYS PERIOD and halts.

The operator enters Today's Unit Period Number* on the Typewriter keyboard,
followed by a “‘Compute’ Code. The STARTUP Program checks to be sure he
has made the entry, and puts the information into Cell [100:96. Then it

— Types CURRENT M—-PERIOD and halts.

The operator enters Current Major Period Number*, followed by a *‘Compute”’
Code. The STARTUP Program checks to be sure he has made the entry, and
puts the information into Cell (J01:97. Then it

— Types TODAYS DATE and halts.

The operator enters Today's Date as a 6-digit number (month, day, year),
followed by a “‘Compute’ Code. The STARTUP Program checks to be sure he
has made the entry, and puts the information into Cell [J00:50, where the
main program may find it for editing Output. Then it

— Types FIRST DO YYYYYYY and halts.

YYY. .. represents the Program Sequence Number* of the program which is
usually executed first each day, and is located in Cell ¢99:60. If the operator
wishes to execute this program, he strikes ““Compute’* Code on the Typewriter
keyboard. If he wishes to execute some other program as the first one today, he
enters its 7-digit Sequence Number on the Typewriter keyboard, and zhen
strikes *‘Compute’” Code, in which case the new Sequence Number is auto-
matically stored in Cell ¢99:60.

STEP now takes over. It locates, on the Library Tape, the program whose Sequence Number
is in Cell ¢99:60, and reads it into Memory, with its File-Tables. Then it updates each File-
Table in turn:

It plants the Current Period Number into the 30-field of the second word of the
Table. This is either the Unit Period Number (from [(100:96), or M followed by
the Major Period Number (from [101:97), whichever is appropriate for that File.

When the File-Table first comes into Memory from the Library Tape, the
30-fields of its third and fourth words contain, respectively:

Number of periods, including the processing date, during which desti-
nation tape is to be protected (increment), taken from the File Specifi-
cation Sheet.

Number of periods, prior to the processing date, when source tape
should have been recorded (decrement), taken from the File Specifica-
tion Sheet.

STEP adds the increment to the Current Period Number, to obtain the actual
Period Number when today’s destination tape will become obsolete, and plants
that into the 30-field of the third word of the File-Table. Then STEP subtracts
the decrement from the Current Period Number, to obtain the actual Period
Number when today’s source tape should have been recorded, and plants that
into the 30-field of the fourth word of the File-Table.

The File-Table now contains the information shown in the illustration on
page B-1.

*Each of these terms is defined and discussed later in this Appendix.

B-8

If the File is to receive automatic SETUP, STEP next performs the operations of SET:D
and /or SET:S, so that the main program is releived of these chores.

In executing SET:D, STEP plants COp and PHo from the first word of the File-
Table, into the 88-field and the 66-field of the designated Index Register to preset
the Index Register for the Primary Destination Handler. (If no Index Register
is specified for this File, the putaway is made to Cell 0010, where it is ignored).
STEP then reads the Label-Record from the tape mounted on that Handler,
and performs Destination-Tape Label-Check.

In executing SET':S, STEP plants COs and PHs from the third word of the File-
Table, into the 88-field and the 77-field of the designated Index Register to preset
the Index Register for the Primary Source Handler. (If no Index Register is
specified for this File, the putaway is made to Cell 0010, where it is ignored).
STEP then reads the Label-Record from the tape mounted on that Handler,
and perfo-ms Source-Tape Label-Check.

When all the File-Tables have been processed in this manner, STEP jumps to the START
address of the main program (which was specified on the Program Header Sheet when this
program was assembled), and the main program then starts to run.

PROGRAM LABELS:

Each assembled program, when recorded on the Library Tape, is preceded by a Program
Label. This Label is a minimum-length record, created by the Librarian Program at the time
the assembled program is placed in the Library. The complete contents, and the format, of this
Program Label are shown in the chead Operating Manual as part of the discussion of the

Librarian Program.

For our present purpose, we note that the information in the Program Label includes:
Program Sequence Number
Program Designator
Program Origin
START address, if a main program (not an overlay)
Sequence Number of the program normally executed next.

The first and last of these items are specified at the time the Librarian Program makes up

the Label for inclusion in the Library Tape. The rest are specified on the Program Header
Sheet at the time of assembly.

Once a program has been assembled, and placed in the Library, the Program Sequence Num-
ber supersedes the Program Designator as the identification of the program. The Program
Designator is not used again unless the program is to be changed and reassembled.

The Sequence Number defines the position of the program within the recording sequence
in the Program-Library. It is a 7-digit number for a main program, with the same 7 digits
being followed by the 3-digit Overlay Number for Overlays within the program. The Sequence
Numbers are completely arbitrary except that, as far as possible, programs should be recorded
in the Library in the same sequence as they will most often be used. If some program is used
more than once during a Processor run, it might be well to record that program in several
places within the Library, using a different Sequence Number each time.

B-9

PROGRESSING FROM PROGRAM TO PROGRAM:

As each successive program is read from the Library into the Processor Memory, STEP
stores the Sequence Number of the wsually-next program in Cell ¢99:60, where it remains
throughout the execution of the present program.

During the present program, some characteristic of the data (or perhaps the state of a
Console Option Switch) may effect the choice of the next program to be executed. If so, the
present program must plant into Cell ¢99:60 the 7-digit Sequence Number of the program

which is «ctually to be next, replacing the previous contents of that Cell.

When the present Program is complete, and it is time to proceed to the next program, the
present program must jump to Cell A42, within STEP.

STEP types out, on the Console Typewriter:
PROGRM XXXXXXX COMPLETE
NEXTDO YYYYYYY

where XXX . . . represents the Sequence Number of the program just finished, and YYY . ..
represents the contents of Cell ¢99:60, the Sequence Number of the next program to be
executed. Then STEP halts the Processor. If the operator wishes to have some other program
executed next, he enters the 7-digit Sequence Number of that program on the Typewriter

Keyboard; STEP plants this into Cell ¢99:60.

Then the operator strikes “Compute” Code on the Typewriter Keyboard (or presses the
START button on the Control Panel); STEP finds the next program on the Library Tape,
brings it into Memory, updates the File-Tables, executes SET:D and/or SET:S on each File
for which automatic SETUP is prescribed, and then jumps to the START address of the

program, as described on page B-8.

OVERLAYS:

The procedure for bringing an Overlay program into Memory is similar to that for a main
program. The sequence of Overlays usually depends on the data being processed, with Over-
lays being called in as they are needed; whenever an Overlay is wanted, the main program
must plant into Cell A03:90 the 10-digit Sequence Number of that Overlay, before calling the

Overlay into Memory.

The main program must then jump to Cell A98 within STEP, with a minus-V liok. STEP
finds the Overlay on the Library Tape, and brings it into Memory.

At this point, the procedure for getting ready to execute an Overlay differs from that for a
main program. An Overlay uses the File-Tables of its main program, and has none of its own;
therefore STEP performs no automatic SET FILE operations for the Overlay. Further, STEP
does not initiate execution of the Overlay; it returns to the main program, using the minus-V
link, and the main program must then jump to the Overlay, as described on page A-8. STEP
furnishes no type-out when bringing in Overlays; if the programmer wishes to have these
events recorded on the Console Typewriter’s log, he includes appropriate Instructions in the

main program, or in the Overlays.

B-10

LABEL-CHECKING

Automatic label-checking of magnetic tapes is a technique which permits the Processor
program to verify the work of the people at a data processing installation, and to guarantee
that they always mount the correct tape on the correct Handler at the correct time. Although
every magnetic tape used in the System is clearly labeled on the face of the reel, and although
tape-utilization schedules are always carefully maintained, the possibility of human error can
never be disregarded. The consequence of such human error is so drastic that the need for
the additional protection of programmed label-checking is universally recognized.

It must be admitted that, despite the universal recognition of this need, the use of pro-
grammed label-checking is far from universal. The principal objection has been that most
label-checking systems are too inflexible for the varied needs of a business data processing
system, and they require the exercise of so much human judgment on the part of the Console
operator that they offer only illusory protection. In most cases, in order to provide any pro-
tection at all, the automatic label-checking system must be f00 conservative; it rejects a large
proportion of the tapes used, whereupon the operator must verify whether each reel 7s actually
safe to use. If so, he overrides the label-check failure. In practice, these continual interruptions
are inconvenient and time-consuming, in addition to the fact that this habitual overriding
tends to make the operator careless. It is often felt that under such circumstances an installa-
tion is better off without programmed label-checking.

The STEP label-checking system has been designed with just these considerations in mind;
by setting a new standard of flexibility and control, it interrupts Processor operation only
when an improper tape actually has been mounted, and there is no occasion for the Console
operator to exercise his discretion at that time.

THE PHILOSOPHY OF LABEL-CHECKING:

The object of label-checking is to guarantee that the correct tape is always being used as a
source, and that only an obsolete tape, whose information is no longer of any value, may be
used as a destination. For this purpose, the first record on every reel of tape is recorded as a
Label-record to identify that reel. As shown on page B-7, the label contains:

File Title;

Number of this reel within the File;

Period Number when this tape was recorded;
Period Number when this tape becomes obsolete.

Because of the variability of processing schedules, and the incidence of weekends and
holidays, sequential Period Numbers, rather than calendar dates, are used for dating magnetic
tapes. Two independent sets of Period Numbers are offered by STEP:

The Unit Period (usually daily), which is a 4-digit number;
The Major Period (usually monthly), which is a 3-digit number.

Almost any common processing cycle can be expressed in terms of one of the other of these
Period Numbers. Thus a weekly cycle consists of 5 (or 6) Unit Periods; a quarterly, semi-
annual or annual cycle consists of 3, 6 or 12 Major Periods. STEP also contains provision
for short cycles (due to holidays, for example) and for irregular cycles, such as for reports
submitted only on demand; these facilities will be discussed further on.

As described on page B-8, Today’s Unit Period Number, and the Current Major Period
Number are always stored in Cells [100:96 and [101:97, respectively. One or the other of these
is used to set up in each File-Table the three “‘dates” which are pertinent to that File. Each of
these “dates” will appear as a 4-digit number for a File whose processing cycle is based on
Unit Periods, or as M followed by a 3-digit number for a File whose processing cycle is based
on Major periods. STEP performs all label-checking in terms of whichever sequence of
Period Numbers is appropriate to the File being checked.

Thus STEP furnishes the ability to cope automatically with the two incommensurable sets
of processing cycles found in every business data processing system; and in doing so it per-
mits #o manual “tinkering” with the completely automatic label-checking process.

Ln the case of a short cycle, or an irregular cycle, the predicted Period Number when source
tape was recorded (stored in the File-Table) is incorrect, but before starting the day’s work
the operator knows just when the tape was recorded. He turns Console Option Switch #1
ON, and begins the program. STEP will then type out the fourth word of each File-Table
before label-checking that File, and will halt. The fourth word contains File Title (Source),
Current Source Reel Number (which will always be 1 at this point), and predicted Period
Number when source tape was recorded. If this File-Table does not pertain to the partic-
ular File which is on the irregular cycle, the operator strikes “Compute” Code on the
keyboard; STEP label-checks that File, then types out the fourth word of the next File-Table
and halts again.

When this process reaches the File-Table which contains the incorrect “Date Recorded”,
the operator simply enters on the Typewriter Keyboard the correct Period Number when this
source tape was recorded, and then strikes “Compute” Code. STEP plants this entry into
the File-Table, replacing the Period Number previously stored there, and then label-checks
this File.

Thus the operator never has the opportunity of saying to himself, “The label-check failed,
but I know it’s all right, so go ahead.” STEP forces him to enter the correct “Date Recorded”
from his own records, without permitting him to know what is on the tape label,

If any label-check shoxld fail, STEP types a notice on the Console Typewriter, indicating
which Controller and Handler holds the incorrect tape, whether it is source or destination,
and sufficient information from the File-Table and the Tape Label to show the reason for the
label-check failure, as shown on pages B-13 and B-14. STEP then halts the Processor. The
operator must remove the incorrect tape, mount the correct tape on that Handler, then press
the START button on the Console. STEP trusts no-one, and immediately proceeds to perform
the same label-check on this new tape.

B-12

The Program-Library Tape will, of course, have a Label, and the Number of periods during
which #his File is to be protected by expiration-check will be 9999 Unit Periods, giving it
permanent protection against accidental recording. When a Library Tape is to be revised,
the Librarian Program will record a complete new tape, and then record an expired label on
the obsolete one. This accomplishes two desirable things:

® The obsolete Library Tape is now released from protection, and
may be used as a destination tape, just like any other expired tape.

® It becomes impossible for someone accidentally to use the expired
Library Tape, containing obsolete programs, as a program tape.

This does not forbid retaining both the old and the new version of some of the programs
in the Library. They may both be recorded in the revised Library, with different Program
Sequence Numbers, and either one remains available to anyone who wishes to use it.

THE MECHANICS OF LABEL-CHECKING:

SOURCE TAPE

If Option Switch #1 is ON, STEP types out the fourth word of the File-
Table, and halts, When operation is resumed, STEP plants any entry made
through the Console Typewriter keyboard into the 30-field of the fourth word
of the File-Table, and then proceeds to label-check.

STEP reads the first record on the tape into its own Working Storage, and performs a
COMPARE EQUALITY between the first word of the label-record, and the fourth word of
the File-Table. If these two words are identical, this is the correct reel of tape, and STEP
returns to the main program.

If these two words are not identical, then at least one of:
File Title
Reel number
Date recorded

does not match, and this is the wrong reel of tape. STEP types out on the Console Type-
writer, and then halts:

CK STAPE LBL ON__ (Controller and Handler)

FOURTH WORD OF FILE-TABLE ~——————————— THE TWO WORDS OF TAPE LABEL
XXXXXXXXXX XXXXXXXXXX XXXXXXXXXX

2% o% 4% 270, &, 4%

%% D S “r, R %

% %% % %%
< Q4P O %
Y, EEY
% % °

B-13

DESTINATION TAPE

STEP reads the first record on the tape into its own Working Storage, and compares
Period Number when this tape becomes obsolete with the current Period Number. If the
leftmost character in this label-field is M the comparison is between the 20-field in the label,
and (001:97). If the leftmost character is numeric, the comparison is between the 30-field
in the label, and (0000:96). In either case, if the Period Number in the label is less than, or
equal to, the Period Number in Memory, the tape has expired, and may be written on; so
STEP returns to the main program.

If the Period Number in the label is greater than the Period Number in Memory, the tape
has not expired, and the label-check fails. STEP types out on the Console Typewriter, and
then halts:

CK DTAPE LBL ON __ (Controller and Handler)

THE TWO WORDS OF TAPE LABEL

XXXXXXXXXK XXXXXXXXXX

a/ A,
A9, 4, o]
%%, % %27%\ /’f%?}o
2% r R4 K0
¢ T, Opin % BN
Y4 < G <
> 7.5
o, P
‘%‘0@7
O
<

AFTER LABEL-CHECK FAILURE

When operation is resumed after any label-check failure, STEP examines Option Switch
#0. If this Switch is OFF, STEP assumes that the incorrect tape has been manually rewound
and changed. It therefore performs the same label-check again on that Handler, as described

on page D-x.

If Option Switch #0 is ON, STEP types the word OVERRIDE near the right margin of the
Console Typewriter log (where it will be quite conspicuous), and returns to the main program
as though the label-check has not failed.

OVERRIDING LABEL-CHECK FAILURE:

The success of any label-checking system depends entirely on rigorous control of operator
override. The STEP label-checking system gives the operator no excuse whatever to override
label-checks, except in the most unusual circumstances. Further, the operator and his super-
visor should always know in advance when an override will be needed, and the operator should
be forbidden to use it without prior authorization. One of the essential audit requirements
of the System is a daily review of the Console Typewriter’s log, and this review must include
checking for unauthorized overrides.

B-14

The principal objection to label-checking systems has been that their inflexibility requires
frequent operator override of label-check failure. In such systems, the operator must over-
ride so often that he tends to become careless, and to override every failure without checking
it carefully.

STEP, however, furnishes the flexibility and control which are necessary to eliminate the
human factor from automatic label-checking. Just as it is the responsibility of the Supervisor
of the installation to exercise this control, so it is the responsibility of the programmer to
organize the system so that this control can be conveniently exercised. It is well worth a little
effort and ingenuity on the programmer’s part to adapt STEP’s label-checking facilities to
his installation’s special requirements so as to make it unnecessary, and in fact, impossible,
for the Console operator to “tinker” with the system.

The balance of this section deals with some of the “fine points” of label-checking, and
shows STEP’s flexibility under several conditions in which label-checking is often con-
sidered impracticable.

EXAMPLE 1:

This situation arises in a cycle-billing operation. The Customer Master File is divided into
22 cycles, corresponding to the 22 working days in the average month, with customer pur-
chases and payments being posted daily to the entire File. After posting, four of the cycles
are selected according to a schedule to go through the next program, where three of them are
checked for delinquency, and bills are made up for the fourth. The following illustration
shows a portion of the System Model, displaying only these operations on the Customer
Master File.

XII
NI CHECK
3 CYCLES FOR
poST
PURCHASES DELINQUENCY

AND
PAYMENTS

ISSUE BILLS

4 (YCLES ON
1 CYCLE

CUSTOMER
MASTER
FILE

CUSTOMER
MASTER
FILE

CUSTOMER
MASTER
FILE

22 CYCLES

NEXT DAY

In order to organize this operation conveniently, each of the 22 cycles is set up as a separate
File, with its own File Title. Note that the File Titles of the four cycles which are to enter
Program XII each day must have their File Titles changed when they come out of Program XI,
so that they can never be confused with the tapes which later come out of Program XII.

Set up a system of File Titles in which the first character is either the letter “F” or the letter
“G”, and the last two characters are the cycle-number. In Program XI, all Master File source
tapes contain the letter “F” in their File Titles, and the Master File destination tapes for the
18 cycles which require no further action today will also contain the letter “F”’; but the destina-
tion tapes for the four cycles which must next enter Program XII will contain the letter “G”.
In Program XII, all Master File source tapes will contain the letter “G”, and all the destination
tapes will contain the letter “F”.

B-15

The first record on the Cycle 1 Master File, immediately following the tape label, is a Pro-
gram Modifier Record. It contains a list of the four cycles which went through Program XII
yesterday, and noting which one of them was billed. The first operation in Program XI,
therefore, must update this list, and record the updated Program Modifier Record on the
Master File destination tape for Cycle 1. The list is also held in Memory throughout
Programs XI and XII, and it governs the File Title assignments, and the label-checking,
during both programs.

The File-Table for the Customer Master File in Program XI will initially contain “FO1”
as File Title for both destination and source tapes. These File Titles will be changed by the
program itself as it progresses. The following flow chart shows the operations in Program
XI to adapt the File Titles to the STEP label-checking system. If different protection intervals
are desired for the “F” and the “G” tapes, Program XI may change the Expiration Date in the
File-Table at the time it changes the File Title. References to This Cycle in the flow chart
mean the last two digits of the destination and source File Titles—the 87-field of the second
and fourth words of the File-Table. Use automatic SETUP on the Customer Master File in
Program XI.

B-16

Read Master File, 1 record, into Working Storage.
(Program Modifier Record).

Update Modifier Record.
Should cycle 1 go to Program XII today!?
Index Backward, Master File, 1 record.

Plant “G” in destination File Title.
(Second word of File-Table, 99-field).

Write Master File, 1 record, starting with 2nd word
\ > of File-Table. (New Tape Label).

Write Master File, 1 record.
(Updated Program Modifier Record).

Read Master File.
POSTING

Close out Master File Destination Tape.
PROGRAM

N

Is This Cycle the last cycle in the File?

Advance This Cycle by 1.

Should This Cycle go to Program XII today?

YES

Plant “F” in destination File Title. Plant “G” in destination File Title,
(Second word of File-Table, 99-field). (Second word of File-Table, 99-field).
- And GOTO.

Set destination reel number and source reel number
each to zero. (64-field of second and
fourth words of File-Table).

M
\J

GOTO STEP end-of-destination.

(@

augment reel number, label-check

} Rewind, alternate Handlers,
next reel.

GOTO STEP end-of-source.

O

augment reel number, label-check
next reel.

} Rewind, alternate Handlers,

GOTO.

/
~—ON

Leave Program Modifier List
in Cells ¢05 — ¢08, where
Program XII may find it.

Close out all other Files.
Rewind all tapes.
GOTO A42 for Program XII.

Suppose that, within this program, the Reference Number of the Instruction corresponding
to operation A is symbolized as RR.PP.0 and the Reference Number of the Instruction cor-
responding to operation B is symbolized as RR.PQ.0. Then the coding for operation A is:

Reference No.

won

Region| Position | M Operation iv Misc. R A Tag| B Tag| [4 Tag

RRIPPO| [DIST RRPP1R[¢0990| |@0090
PP1| [CNST Y ooolc] ooolc] O82C
PP2| [CNST | © ooojci Foolc| o0o00|C

and the coding for operation B is:

Reterence No.

12

Region| Position | M Operation v Misc. R A Tag| B Tag [Tag

RRIPQO| DIST RRPQL[R|¢0990| |@0090
PQL| [CNST Y ooolc|f ooofc| O56C
PQ2| [CNST! | © ooolc{ Foolc| ooolC

The symbox F refers to the File-Table Number for the Customer Master File. The same coding
applies to these operations on the succeeding flow charts.

The pair of constants in PP.1 and PP.2 are actually an Instruction, written in
Processor format within the e#al FORMAT. They constitute a conventional
GOTO Instruction, except that the File-Table Number F is in the 55-field of the
second word, as though it were a Magnetic Tape Instruction. The same is true
of PQ.1 and PQ.2.

The next flow chart shows the operations in Program XII to adapt the File Titles to the
STEP label-checking system. References to This Cycle in the flow chart mean the last two
digits of the destination and source File Titles—the 87-field of the second and fourth words
of the File-Table. Do not use automatic SETUP on the Customer Master File in Program XIIL

B-18

f___’

NO|

Plant the first cycle-number in the
list (in ¢05 — ¢08) as This Cycle.

SET:D on Master File.

SET:S on Master File.

Is This Cycle to be billed today?

—

YES

Read Master File

y

r—-’

THE
Read Master File

THE
CHECKING

PROGRAM

CRM \ 4

v
CRM

BILLING

PROGRAM

Close out Master File destination tape.

00

Is This Cycle the last in today’s list?

Plant the next cycle-number in the list
as This Cycle.

Set destination reel number and source reel number
each to zero. (64-field of second and
fourth words of File-Table).

() GOTO STEP end-of-destination.

Rewind, alternate Handlers,
} augment reel number, label-check

O

next reel.

GOTO STEP end-of-source.

Rewind, alternate Handlers,
} augment reel number, label-check

Y

Close out all other Files.
Rewind all tapes.
GOTO A42 for next program.

GOTO.

next reel.

B-19

EXAMPLE 2:

In the previous example, the entire file was posted every day, and then those cycles to be
processed further each day were selected according to a schedule.

In this example, 2// daily posting is cyclic; there is no single reel of tape which is pro-
cessed every day, and which could contain a Program Modifier Record. Therefore the Pro-
gram Modifier List must be entered manually by the Console operator. But note that, even
here, he is required to enter this List before any label-checking has been performed, so that
STEP still furnishes an independent verification of the tapes which have been mounted on
the Handlers, with no discretion being exercised by the operator.

In this situation, the distinction between “F’ and “G” tapes is not needed, and the only
modification of File Titles is in This Cycle—the 87-field of the second and fourth words of
the File-Table. Do not use automatic SETUP on the Customer Master File in this program.

B-20

PROGRAM

N\

—

_/

HALT.

Operator enters Program Modifier List,
and presses START.

Plant first cycle-number in the list
as This Cycle.

SET:D on Master File.
SET:S on Master File.

Read Master File

. Close out Master File destination tape.
Is This Cycle the last in today’s list?

Plant the next cycle-number in the list
as This Cycle.

() Set destination reel number and source reel number
each to zero. (64-field of second and
fourth words of File-Table).

(4) GOTO STEP end-of-destination.

augment reel number, label-check
next reel.

} Rewind, alternate Handlers,

GOTO STEP end-of-source.

augment reel number, label-check
next reel.

} Rewind, alternate Handlers,

GOTO.

\

Close out all other Files.
Rewind all tapes.
GOTO A42 for next program.

B-21

EXAMPLE 3:

In some circumstances, it is necessary to record a Suspense Tape each day, containing
items which are not to be processed until the end of the week. These are often items of sum-
mary information which will be used for a weekly report. The Suspense Tape, therefore,
must build up with the daily recording until the end of the week, when it is used as a source
tape for the weekly operation, and then becomes obsolete.

This requirement presents an unusual label-checking condition, since on Monday the
normal destination tape label-check is required, to insure that only an expired tape may now
be used for recording; but on every other day of the week a kind of source tape label-check
must be made to insure that the correct tape is about to be written on.

Such a Suspense Tape will contain the conventional label as its first record, with an ex-
piration interval of one week. Monday’s program will check this label for expiration, and then
record Monday’s suspense items. After the last output Gulp has been closed out, and a CRM-
record placed on the tape, the program will record an awxiliary label-record behind the
CRM-record, showing the File Title and Date Recorded (the Expiration Date is immaterial
here), followed by another CRM:record.

Every day except Monday, the program will initially search for this auxiliary label-record,
read it into Memory to verify that this s the Suspense Tape which was recorded yesterday,
and that this is the point at which yesterday’s recording ended. The program then Indexes
the tape backward two records to the beginning of the first CRM-record, and is ready to
begin recording today’s suspense items at that point, obliterating the two CRM-records and
the auxiliary label-record between them.

At the end of that day’s recording, the program will record a CRM-record, a new auxiliary
label-record, and a final CRM-record, to mark the point at which the following day’s re-
cording will begin.

The following flow chart shows these operations on the Suspense File. Ordinarily, a Sus-
pense Tape of this sort will not exceed one reel of tape; there will be no alternation of Hand-
lers, no Index Register assigned to this File, and no necessity to preset the Write Tape In-
structions for the Suspense File. Do not use automatic SETUP on this File in this program.

B-22

REST OF
WEEK OFF

TEST Option Switch.
MONDAY ON

SEARCH-READ Suspense File.
Search Key = “xxxxxxxxxx”’. .
(Will terminate with CRM record in Memory,
ready to read the auxiliary label-record).

SET:S on Suspense File.

(Reads the auxiliary label-record which was recorded
yesterday by operation Y. Checks that this is the
correct tape to be written on today).

Index Backward, Suspense File, 2 records.
(Positions the tape at beginning of CRM-record,
ready to write today’s transactions over it).

THE

PROGRAM

END OF PROGRAM

\

y

SET:D on Suspense File.

(Checks that this is an expired tape, then
records a new label, identifying this tape,
expiration 1 week).

GOTO.

Close out Suspense File.
Write a CRM-record on Suspense File.

Write Suspense File, 1 record, starting
with 2nd word of File-Table.

(This is the auxiliary label, to be checked
tomorrow by operation X).

Write a CRM-record on Suspense File.

Close out all other files.

Rewind all tapes.

GOTO A42 for next program.

B-23

APPENDIX C

INSTRUCTION FORMATS

OPERATION CODES, OPERATION NAMES, and c#2aZ (ODES for

mmoAnws»P [Joew-weow

TOovQ=E

Add
Subtract
Muitiply
Round
Divide Right-Justified
Round
Divide Left-Justified
Modify Add
Modify Subtract
Extract
Insert
Add Binary
Modulo 64
Complement Binary
Test Bit
Compare Numeric
Compare Alphanumeric
Compare Equality
Count
Test
Overflow
Option Switch
Reader Code
Punch Code
Combine
Distribute
Sign Split-off
Suppress
Sign Split-off
Edit
Check-Protection
Merge
Cutoff
Runout
Move
Pack
Unpack
Sift
Summarize

APPENDIX C

The following list gives the

in the National 304 Data Processor

ADD:
SUB:
MULT:
MULT:
DRJ:
DRJ:
DLJ:
MADD:
MSUB:
EXT:
SERT:
BINA:
BINA:
BINC:
TBIT:
CN:
CA:
CE:
CNT:

TEST:
TEST:
TEST:
TEST:
COMB:
DIST:
DIST:
SUPP:
SUPP:
EDIT:
EDIT:

MRGE:
MRGE :
MOVE:
PACK:
UNPK :
SIFT:
SUMM:

TN Q@

Page

(4
4
4
4
4
4
4
C-4
4
(4
4
4
(4
(-4
-4
4
4
-4

5
G5
G5

4
4
4
4
(4
(-4
(-4

C-6

C6
7
7
7
7

> E<c<c

~N

Rewind Magnetic Tape
Source Tape
Destination Tape
Use Lockout, Source
Use Lockout, Destination
Read Magnetic Tape
Complete Records
Partial Records
Test Branch Conditions
Index Forward
Index Backward
Write-Copy
Write-Copy-Read
Copy
Copy-Read
Write Magnetic Tape
Fixed-Length Records
Variable-Length Records
Test Branch Conditions
Write Tape and Erase to End
Fixed-Length Records
Variable-Length Records
Print
Type-Punch
Console Typewriter
(variations 0 thru 5)
High-Speed Punch
Fixed Format
Programmed Format
Read Paper Tape
Halt
Read Cards

PSEUDO-INSTRUCTIONS:

Unconditional Jump
Constant
Save N Words
Set File
Source Tape
Destination Tape

ASSEMBLY INSTRUCTIONS:

Omit an Instruction
Next Region
Fence

all operations

WIND:
WIND:
LOCK:
LOCK:

Ownown

READ:
READ:
READ:
INDX:
INDX:

WC:

WC:
COPY:
COPY:R

w =3

x

WT:
WT:
WT:

WTE:F
WTE:V
PRNT:

TYPE:

PPT:F
PPT:P
RPT:
HALT:
RCD:

GOTE:
CNST:
SAVE:

SET:S
SET:D

OMIT:
NEXT:
FENC:E

H<T

Page

C-16
C-16
C-16
C-16

(12
(12
C12
(12
C-12
(-4
14
C15
15

C-13
C13
C13

13
C13
-8

-8

Lo B vn T ou TN o BN o |
]]]] fl
D O o0 00 oo

c-10
¢-10

C-16
C-16

17
c17
C-18

@00

¢00
¢01
¢02
¢03
£04
£05
¢06
¢07
£08
¢09

oo
o1l
o2
o3
o4
o5
o6
oz
0os
o9

PROGRAMMING CONVENTIONS

“SPECIAL” CELLS

The conventions and restrictions for use of the “Special” Cells are:

9 8 7 6 5 4 3 2 1 0

Used by the Processor to store supplemental information generated by Input
and Magnetic Tape operations, and by Multiply, Divide, Summarize

Used by the Processor
as Sequence-Control
Register

May be used by the
Programmer to store
a programmed link

Used by the Processor
for self-linking

This Cell will always be named as the irrelevant address whenever only
one half of a DISTRIBUTE or a COMBINE is used

I

TODAY'S DATE
Month | Day | Year

Today's Unit Period Number

Current
Maijor Period Number

Memory Size as a Memory Size as an
4-digit Number Address-Type Number

d \nfofm.cﬁo“

Add“‘;ono\ Fixe h 'n\s‘o\\o\'\o\‘\
. . . . o4 by €9¢ _
as reauir®
* + - 0
x x x x x x x x x x
C . R _ M _space space Vv space o 1 . 0
0 0 0 0 0 0 0 0 0 0
space space space space space space space space space space
9 8 7 6 5 4 3 2 1 0

C-2

ey 3y

(3os), (Oo07), (O08) permit the programmer to pick up variable-length fields of “x’s”,
“zeros”, or “‘spaces” with a minimum of setups.

(006) is used as the first word of a CRM Record. If the rest of the Record is irrelevant, it
may be written directly from this address, as either a Fixed-Length or a Variable-Length Record.

(009) furnishes a convenient standard location from which to pick up any 1-digit constant.
The CHeal ASSEMBLY references all 1-digit Named Constants to Cell 009.

(0O04:30) is used in converting a 4-digit Memory address into an Address-Type Number.
Assume the address is in Cell XXX:85:

DIST: (XXX:88)—>the 55-field and the 44-field of the
second word of the next Instruction.
(Set up the AL and Ar positions.)

SERT: (O04:--) by (0O04:33)—>XXX:77.
(XXX:75) now contains the Address-Type Number.

THERE SHOULD NEVER BE ANY REASON FOR THE PROGRAMMER TO
MAKE A PUTAWAY INTO ONE OF THE 0O-CELLS.

All other “Special” Cells in a 2400-word Memory are used by STEP, and are not available
to the programmer.

The additional 400 “Special” Cells in a 4800-word Memory are available to the program-
mer without restriction, except that they are sequential only within groups of 200 Cells; there
is not, in any useful sense, any “next” Cell after £99 or s99.

INDEX REGISTER #0

Index Register #0 (Cell 000) is reserved for use by STEP, and by other self-contained sub-
routines. While the programmer is permitted to use Index Register #0 in his own coding,
he must remember to preserve its contents before entering any subroutine, and before using
any Magnetic Tape Instruction.

CONSOLE OPTION SWITCHES #0 AND #1

These Switches are reserved for use by STEP (Standard Tape Executive Program), and must
not be used for any other purpose. They are normally OFF. See Appendix B for descrip-
tion of their use, in connection with Label-Checking of magnetic tapes.

HANDLER #0

Handler #0, on Controller #0, is always reserved for the Program Library Tape.

INSTRUCTION FORMATS

On the following pages are displayed the ctead formats, and Processor formats, for all
operations. Whenever a symbol is shown, it appears in BOLD face. Whenever an actual char-
acter is shown, it appears in TYPEWRITER face. No entries are shown for the columns
REFERENCE NUMBER, M, R, TAG, SP&.

C-3

STANDARD OPERATIONS

Reference No.

Region| Pesition | M Operation : ¥ Misc. IR A Taj

[] Tag| c

Op| A B C

o

Tag|

Op iV A B C V|M|S|R|ALAr|BLBr |CLCr

1 Add ADD: A + B—>C
2 Subtract SUB: A — B—>C
3 Muitiply MULT: A X B—>C L.J. Next 10 digits—>@00:90

Round MULT:R C is rounded
4 Divide Right-Justified DRJ: B + A—>»C Remainder —>@00:90

Round DRJ:R C is rounded. No remainder stored
5 Divide Left-Justified DLJ: B +~ A—>C C is rounded. No remainder stored
6 Modify Add MADD: A® B—C
7 Modify Subtract MSUB: AQ@B—C
8 Extract EXT: A by B—>C C is automatically cleared first
9 Insert SERT: A by B—>C
O Add Binary BINA: A + B—>C

Modulo 64 BINA:M No carry between characters
A Complement Binary BINC: A comp—>C
H Combine COMB: A & B—>C
J Distribute DIST: A—»B & C CisR.J; thenBisLJ.

Sign Split-off DIST:S
K Suppress SUPP: A—B & C B and C are zero-suppressed

Sign Split-off SUPP:S
L Edit EDIT: A—B & C B is zero-suppressed

Check-Protection EDIT:P
STANDARD COMPARISONS
Reterence o ; Op| A B
Region| Position | M Operation . V Misc. |R A T; 8 Tag| 4 Tag| &
. . A has all 1-bits of B | |

A Test Bit: TBIT: If { B has all O-bits of A} jump to J
B Compare Numeric CN: If Ais greater than B jump to J
C Compare Alphanumeric CA: If Ais greater than B jump to J
D Compare Equality CE: If A isidentical with B jump to J

C-4

COUNT
Reterence No. ! .‘“ ; A T J
Region| Position | M Operation ¥ Misc. R A T. 8 Tag| c Tag{ &
: CNT I It A T J O|M|S|R|ALAR | O |Ir|Iwr| I

1) MADD: (001:9Ir) ® A—>00L:91r

2) If T does not equal contents of the tested syllable of (00I), jump to J.
It designates which syllable is to be tested.

It may be written as: 9, A, B, C.

TEST OVERFLOW

Reference No. J
P
Region | Position | M Operation : V Misc. R Ta B Tag| c Tag| &

TEST G‘“

If previous Instruction set Overflow Alarm, jump to J.

TEST OPTION SWITCH

Reference No. J
Region| Position | M Operation | V Misc. | R A T 8 Tag| [Tag|

TEST S N J

mon

If Console Option Switch #N is turned on, jump to J.
Nmaybe O, 1, . . . 9.

TEST READER CODE

Reference No. ' J “
Region} Position | M Operation . V Misc. R A Tay 8 Tag| c Tag|

TEST iR N J

mon

If High-Speed Paper Tape Reader is set to read Code #N, jump to J.
Nmaybe O, 1, 2.

TEST PUNCH CODE

Reference No. .J S
P
[Region | Position | M Operation | ¥ Misc. |R A T: B Tag| [Tag| &

{ | | TEST P N

If High-Speed Paper Tape Punch is set to Punch Code #N, jump to J.
N may be O, 1.

MERGE— Cutoff

[——, : " “ s M| A B
Region| Position | M|l Operation v [Misc. |R A Tag 8 Tag c Tag| &
i MRGE ol L A B C VI{M|S|R|XLXr|YLYr
1 K Na Ne Nc 0 AF . BF
21 X: X0 Xe | | Y:YiYe 0/{000j000j000
3 JA B ile L | x |Y
JB JC
MERGE—Runout
T 1] :
Region| Position | M| Operation |V [Misc. |® A Ta 8 Tag] Tag} &
MRGE R| L A B C
1 K Na Ns
2 X XuXR []| Y: Y YR

A, b, C: Designate first word, first item, each string.
Na, Ng, Nc: Number of items in each string.
X: X. Xg: Relative position of Major Key (if any), within item.
Y: Y. Ye: Relative position of Minor Key within item.
K: Number of keys (1 or 2) for the Merge.
L: Length of each item.
JA, JB, JC: Specify the three exits of Cutoff Merge.

MOVE
Reference No. 'I ; A
Region| Position | M Operation V Misc. | R A Tay B Tag| [Tag| &

MOVE A N C O|M|S

Transcribe the N words starting at A, into N Cells starting at C.

C-6

PACK

YL YR

AF

Words| # ltems

Number of items (and number of words
in those items) whose keys are less than,

or equal to, the key of the sieve.

A B C
M R|ALAr| BLBr [CLCr
JC J@ L

Reference No. Iﬂ H
Region| Position | M Operation Misc. A Tay B Tag| c Tag| :
PACK A N C
1
Pack N word-triples starting at A, into N word-pairs starting at C.
If any zone bits in the data are 1-bits, jump to J, after Packing is finished.
UNPACK
Reference No. "“ ’S,
Region| Pesition | M Operation Misc. A T: [] Tag] [Tag| &
UNPK A N C
Unpack N word-pairs starting at A, into N word-triples starting at C.
SIFT
Reference No. " ;
Region| Position | M Operation Misc. A Ta B Tag c Tag| &
SIFT L A B C
1 K N X: Xu Xr Y: Y YR
A: Designates first word, first item in the list.
B: Designates first word of the sieve-item.
C: Designates the location in which the tallies are to be stored. | O # Words
N: Number of items in the list.
X: Xt Xr: Relative position of Major Key {(if any), within the item.
Y:YLYr: Relative position of Minor Key, within the item.
K: Number of keys (1 or 2) for the Sift.
L: Length of each item.
SUMMARIZE
Reference No. ‘ﬂ ’| ;
Region| Pesition | M Operation H Misc. A Tay B Tag| c Tag(&
Ll lsummi | oL A B C
1 JC J@
A: Designates the first field included in the Summary.
B: Designates the field containing the Number of ltems to be Summarized.
C: Designates the putaway field for the Summary.
L: Length of each item.
JC: If the C-putaway overflows, jump to JC, after the Summary is complete.
J@: If (@00:90) also overflows, jump to J@, after the Summary is complete.

C-7

PRINT

Reference No. 'S' x A
Region| Pesition | M Operation | V Misc. |R A Taj B Tag| 4 Tag| &
PRNT A) 0)|Mm|s
A: Designates slew-control word. The 12 words immediately following
the slew-control word, constitute the edited print-line.
J: If, ofter the previous print-line, a “skip” code was encountered on the
Printer’s slew-control loop, jump to J instead of executing this PRNT
Instruction.
TYPE on Console Typewriter
Reference No. ! Jl S
Region| Pesition | ™ Operation 'V Misc. {R A T: 8 Tag] [Tag :
i ITYPE iV} G A N J
A N J
PUNCH PAPER TAPE—High-Speed Punch vl ml s| R ALAR| O G
Reference No. ‘j s
Regien| Pasition | M Operation : V Misc. | R A T: 8 Tag| c Tag :
PPT V| G A N J
A: Designates first field to be output.
N: Number of fields to be output.
G: Output a field from every G* cell.
J; Unconditionally jump to J, after output.
\£ PROGRAMMED | FIXED
FORMAT | FORMAT
TYPE 5 4 Type Only
TYPE 3 2 Punch Only
TYPE 1 0 Type & Punch
PPT P F
READ PAPER TAPE
Reference No. : 'S’ A
Region| Position | M Operation : V Misc. |[R A T; B Tag| c Tag| &
RPT A N) 6[M|S[R
A: Designates first putaway field.
N: Make not more than N putaways.
J: Designates location of Jump-Table: J3 I J2 | J

J1: Terminate after N putaways.
J2: End of Tape.
J3: Parity Error in the Tape.

Processor takes next Instruction in sequence, if termination on Compute Code.

After termination, (@00:86) contains Number of Putaways made.

(@00:33) contains Number of characters in last Putaway.

C-8

READ PUNCHED CARDS

Reference No. J
Region| Pesitien | M Operation : V Misc. | R A kt B Tag| [Tag|

RCD w A N J OjM

Read first W words from each of N cards.
Store first word in Cell A.
If Hopper empty before N cards, and if Last Batch, jump to J.

After termination, (@00:86) contains Number of Putaways made.

HALT
Reterence No. : g Z A
Region| Positien | M Operation : V Misc. R A T; 8 Tag| c Tag| &

HALT A J o|M[s

After the Halt:

A: Any input from Console Typewriter is putaway into Cell A and
successive Cells.

J: Unconditionally jump to J, when Console START button is pressed.

When operation is resumed, (@00:86) contains Number of Putaways made.
(@00:33) contains Number of characters in last Putaway.

so 10
Reference No. H ‘ll “
Region| Pesition | M Operation | V Misc. R A Ta [] Tag| c I'u:
GOTE J

This “Instruction” is used as a convenient way of writing an unconditional Jump, and
makes it easy to identify the Jump when reviewing the program.

GOTE is translated into TYPE zero words (and Jump).

CONSTANT

9 87 65 432

1

0

Reterence No.

Position | M

Operation . V Misc.

S
H
R A Tay B Tag| c Tag| &

CNST

CNST becomes a word of Constants, at the designated position within the region. Any Instruction
in the program will refer to a field within this word by its Reference Number (Region and Position),
and by partial-word selectors.

MISC:

A, B,

C:

The right-most character appearing in this column will occupy the 99-field of the word.

The contents of each of these columns will, after translation, occupy the 86-field, the
53-field, and the 20-field, respectively, of the word. The nature of the translation is
determined by the Tag of each column.

Tag “0": Zero is not admissable as a Tag in CNST.

Tag "“C": The right-most 3 characters in the column will occupy the corresponding
3-character field of the word. Since there is now no problem of reserving
significant zeros on the left, the character “~+" will always remain a “+".
A reference to one of the “Special”’ Cells must always be made by its
3-character address, with Tag “C".

Tag "R”: As elsewhere, this Tag indicates a Constant “once removed”; that is, a
Designator which must be translated into an Address or an Address-Type
Number, and which then becomes a Constant. This translated Designator will
occupy the corresponding 3-character field of the word of Constants. The
Designator may be:

A reference Number within the program;

An ltem Designator, or a Field Designator;

A Memory Address, expressed as a 4-digit number.
Within a CNST is the only place where a designator with Tag "“R” may be
associated with an increment (or decrement).

Tag “X": X is not admissable as a Tag in CNST.

SAVE
Reference No. H
Region| Position | M Operation Ev Misc. R A Tag| B Tag| 4 Tagz
SAVE N ZER®
Reference No. S
Region| Position | M Operation : V Misc. R A Tag| B Tag| [Tag:
SAVE N SPACE

This “Instruction” causes C¥eal to reserve N words at the designated position in the
region, and to fill those words with either zeros or spaces, as specified.

C-10

MAGNETIC TAPE INSTRUCTIONS

Every assembled Magnetic Tape Instruction contains, in the 55-field of its second word,
the File-Table No. F assigned to the File addressed by that Instruction. If 2 Magnetic Tape
Instruction is ever used to address different Files alternatively (as in file-splitting on two or
more Controllers), it is the programmer’s responsibility to plant the alternative File-Table
Number into the Instruction whenever its function changes.

The several ways of designating the File in a Magnetic Tape Instruction, and the assembled
results corresponding to them, are shown in the table:

Does the File Spec

Contents of

Entry in A-column Sheet for this File A-syllable in File-Table No. and Index Register
on Coding Sheet Specify an Index Assembled
Register? Instruction
File Designator Yes 0 00O F and R (obtained from the File-Table for this
File Designator) are inserted into the
A-syllable is assembled Instruction.
avtomatically
relative.
File Designator No Co Sh Dh F (obtained from the File-Table for this
File Designator) is inserted in the assembled
A-syllable is Instruction. The entry in the R-column of the
relative only if Coding Sheet is inserted as R in the
A-column has assembled Instruction.
Tag “X".
F Co Sh Dh Irrelevant Co Sh Dh F (obtained from the A-column of the
Coding Sheet) is inserted in the assembled
A-syllable is Instruction. The entry in the R-column of the

relative only if
A-column has
Tag “X".

Coding Sheet is inserted as R in the
assembled Instruction.

The C-address of every Magnetic Tape Instruction is @02 . This is the address of the first
word of the Jump Table which is used by every Magnetic Tape Instruction in the program.

C-11

READ MAGNETIC TAPE—Complete Records

Reference No.

Region

Position

i
Operation : V Misc.

A

Tag|

Tag|

Tag|

LR

READ N

FILE

READ from the Source-Tape of the designated File, N records, but not
exceeding Z words of Memory.

Store the information in Memory, starting at Cell B.

READ MAGNETIC TAPE—Partial Records

T| FILE B @0 2
M{SIR[F| N YA
T| FLE B @0 2

The Variation Designator is K rather than 2 in
order that STEP may discriminate more easily
between READ PARTIAL and INDEX FORWARD.

Reference No. S
Region| Position | M Operation ¢ V Misc. A Ta Tag| ¢ Tag :
. | |READ P} N FILE w

READ from the Source-Tape of the designated File, the first W words from
each of the next N records.
Store the information in Memory, starting at Cell B.
READ—TEST
Reterence No. 3.
Region| Position | M Operation Iv Misc. A Tag] Tag| 4 Tag IP-
READ T FILE
Do not Read. TEST branch conditions only.
INDEX FORWARD
Reference No. S
Region| Position | M Operation v Misc. A Tag| Tag| c Tag :
INDX F N FILE
INDEX BACKWARD
Reference No. s
Region| Position | M Operation v Misc. A Tag]| Tag| 4 Tag| :

INDX B N

FILE

Move the Tape forward or backward N records without reading.

C-12

WRITE MAGNETIC TAPE—Fixed Length Records

Reference No.

FILE

@0 2

FILE

@0 2

Region| Position [M Operation Misc. A Ta Tag| C Tag| &
WT :F| N FILE L
WRITE on the Destination-Tape of the designated File, N records, each L words long.
Obtain the information from Memory, starting at Cell B.
WRITE MAGNETIC TAPE—Variable Length Records
Reterence No. H S
Region | Position | M Operation Iv Misc. A Tag| Tag| c Tag; :
' WT V| N FILE
WRITE on the Destination-Tape of the designated File, N records. The length of
each record is specified in the 20-field of the first word of that record.
Obtain the information from Memory, starting at Cell B.
WRITE TAPE & ERASE—Fixed Length Records
Reference No. S
Region| Position | M Operation : V Misc. A Tag| Tag c Tag :
W1E {F| N FILE L
WRITE TAPE & ERASE—Variable Length Records
Refercnce No. J S
Region| Pesition | M Operation IV Misc. A Ta Tag| c Tag| :
WTE V| N FILE
WRITE on the Destination-Tape of the designated File, N records (Fixed or
Variable Length). Then ERASE the tape to the end of the reel.
Ignore End-of-Tape Warning.
WRITE—TEST
Reference Ne. J S
Region| Position | M Operation lv Misc. A Taj Tag| c Tag| :

WT

FILE

Do not Write. TEST branch conditions only.

C-13

WRITE—COPY

Reference No. ‘] ; U FILE @ 0 2
Region| Position | M Dperation : V Misc. | R A Tag| B Tag| [Tag| &
WC | |KIND| | FLE B L M|S|R L
1| by
WRITE—COPY—READ
Reference No. ; J ; ' FILE @ 02
Region| Position | M Operation v Misc. R A Taj B Tag| [Tag| &
' WC {R|KIND| | FILE B L M[S|R L
1i| by

WRITE a single L-word record on the Destination-Tape of the designated File, obtaining
the information from Memory starting at Cell B. Then COPY from the Source-Tape
to the Destination-Tape, using the contents of Cell BO1 as the Search Control.

Y:

KIND:

WC:

Remember

WC:R

Remember

Relative position (O to '7), within each record, of the word containing
the Search Key.

Divides the Search Control into left-hand (LH) and right-hand (RH)
portions. D is the number of characters (O to 7) in the RH portion.

Kind of Search desired.

Search is performed on the LH and RH portions independently, and each
portion may be tested either for Equality (E) or for Range (R). Further, the
operation can be made to terminate when either portion of the Search is
satisfied (LH or RH), or when both portions are satisfied (LH and RH).

OR AND
EOE LH Equality, RH Equality EAE
EGR LH Equality, RH Range EAR
ROE LH Range, RH Equality RAE
RER LH Range, RH Range RAR

If D=0 (Search Control not divided) then KIND will be stated merely
as “E" Or URI"
WRITE-COPY (off-line Copy)

The programmer must see to it that the address of the WRITE-COPY
Instruction appears in (@01:20) at the time the next Tape Instruction
on this Controller is executed.

WRITE-COPY-READ (on-line Copy)

Before executing the WRITE-COPY-READ Instruction the first 8 words
of the written record must be preserved in Cells ¢11 thru ¢18.

C-14

COPY

Reference No. : J g‘ U F".E @ 0 2
Region| Position | M Operation : V Misc. R A Taj B Tag| [Tag| &

| Jcepy | [kinD| | FLE B M{S[R 000

1i | by
COPY—READ

Reference No. ls' v F".E @ O 2
Region| Position | M Operation | V Misc. R A T. B Tag] c Tag| &

' B M|S|R 000

COPY [R|KIND| | FILE
1 | piy

Same as WRITE-COPY and WRITE-COPY-READ, except that the WRITE

portion is omitted.

COPY: COPY (off-line Copy)

The programmer must see to it that the address of the COPY
Remember Instruction appears in (@01:20) at the time the next Tape Instruction
on this Controller is executed.

COPY:R COPY-READ (on-line Copy)

SEARCH (OF-line Search)
SEARCH-READ (On-line Search)

No c¥%Zal format is provided for these operations. The programmer must write
these Instructions as either COPY or COPY :R, in such a way that the
Destination Handler is specified as 8 or 9.

If an Index Register is specified for this File, the Instruction should name the
FILE in its A-syllable in the conventional way, and the Instruction should be

preceded by:

Reference No.

Region{ Pesition | M

Dperation

Misc.

A h[l] B Tag“ [Tag|

wmon

SUB

8IC|+OR66 X

66

Where “X" represents the Reference Number of the SEARCH or

SEARCH-READ Instruction.

If no Index Register is specified, the Instruction must name the FILE in its

A-Syllable as F Co SH 8.

The progroﬁmer must see to it that the address of the Off-line SEARCH
Remember | Instruction appears in (@01:20) at the time the next Tape Instruction
on this Controller is executed.

C-15

REWIND

Reference No.

Position

L Operation . V

ron

Misc. |R A Tag| B Tag| c Tag|

WIND Vv

FiLE

REWIND WITH USE LOCKOUT

Refercnce No. ﬂ H
Region| Pasition | M Operation V Misc. R A Tag| B Tag| [Tag :
i | fLecK v FILE
WIND:S Rewind Source-Tape without Use Lockout.
WIND:D Rewind Destination-Tape without Use Lockout.
LOCK:S Rewind Source-Tape and set Use Lockout.
LOCK:D Rewind Destination-Tape and set Use Lockout.

SET FILE—Source Tape

Reference No. : .Jl 'S’ x J X®3 D l 7 @ O O
Region{ Position | M Operation | ¥ Misc. |R A T: B Tag] c Tag| &
i SET S FILE X®1 (0({0|0|0|4 0|7 7|9 O
X®2 0 0o(O5 6
X®3 0 0 X®2
SET FILE—Destination Tape
Refercnce No. J s X J X®3 D 1 7 @ 0 0
P
Regien| Position | M Operation . V Misc. |R A T B Tag| 4 Tag| & X@l 0 O O 0 4 O 7 7 9 0
SET D FILE
X®2 o8 2
X®3 X®2
SET:S sets the Index Register (if any) for Controller and Primary Source
Handler; then label-checks the first reel of Source Tape.
SET:D sets the Index Register (if any) for Controller and Primary Destination
Handler; then label-checks the first reel of Destination Tape, and
records a new label.
The “Instruction” SET is translated into two actual Instructions:
DISTRIBUTE, which makes appropriate pre-sets in STEP.
GOT® an address within STEP.
There is a question on the File Specification Sheet ‘lIs automatic SETUP
desired on this File?”” Whenever this question has been answered “Yes”
Remember | STEP will automatically SET : S and/or SET : D for that File before

allowing the main program to begin, and the programmer will have
no occasion to use SET in his program.

Under some circumstances (for example, the File in question may not be
available at the beginning of the program), automatic SET FILE will not
be used, and the programmer himself will insert SET : S and/or SET:D
into his program, at the proper point.

C-16

ASSEMBLY INSTRUCTIONS

The programmer may give ¢#zaZ certain Instructions, which will
govern the assembly process, but will insert nothing into the
program. These ASSEMBLY INSTRUCTIONS are written just like
ordinary Instructions, with appropriate Reference Numbers, but
cVeal interprets them as directions to itself.

OMIT
Reference No. S
Region| Position | M Operation | V Misc. |R A Tag| B Tag| c Tag| :
R|P OMIT
RP: Reference Number (Region and Position) of the Instruction to be omitted.
cVeal will omit from the assembled program, the Instruction which has the
same Reference Number as the OMIT, provided the OMIT appears
later than the Instruction which is to be omitted.
NEXT
Reference No. : ’I S
Region{ Pasition | M Operation I\I Misc. |R A Tag| B Tag| C Tag| :
99:8| [NEXT | | segion

eteal normally assembles the various Regions of a program in the same
sequence as they are presented to it. However, the “Instruction” NEXT
causes the designated Region to be next in the assembled program,
regardless of the sequence of Regions in the program as written.

NEXT permits the programmer to assure that, whenever the sequence
of Regions is important, c#2aZ will give him the desired sequence.

The “Instruction” NEXT must always be the last (except for FENCE)

Remember | of the Region in which it appears, and its Reference Number must

designate Position 99.8 in that Region.

C-17

FENCE

Reference No.

Position | M Operation ; V Misc. | R A Tag| B Tag| [4 Tag|

won

99:9| [FENCE

Remember

Remember

eVeal normally stores Constants anywhere in the program, in the irrelevant
fields of the Instructions. However, if a portion of the program is to be
covered by an Overlay Program, it is essential that no Constants pertaining
to any other portion of the program be stored within the Regions which are
to be overlaid.

In such a case, the programmer must segregate the Overlay Areq, by
specifying FENCES to mark its boundaries. The FENCED area extends
from the end of one Region (the one immediately preceding the Overlay
Area) to the end of another Region (the last one in the Overlay Area).

e#eal will never cross a FENCE to store a Constant. That is, all
Constants will be stored on the same side of a FENCE as the Instructions
which refer to them.

The “Instruction” FENCE must always be the last of the Region in which
it appears, and its Reference Number must designate Position 99.9 in
that Region.

The execution sequence of the Instructions in a program cannot cross

a FENCE except by means of a GOTG.

C-18

	000
	001
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	A-001
	A-002
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	A-11
	A-12
	A-13
	A-14
	A-15
	A-16
	A-17
	A-18
	A-19
	A-20
	A-21
	A-22
	A-23
	A-24
	A-25
	B-001
	B-002
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	B-08
	B-09
	B-10
	B-11
	B-12
	B-13
	B-14
	B-15
	B-16
	B-17
	B-18
	B-19
	B-20
	B-21
	B-22
	B-23
	C-001
	C-01
	C-02
	C-03
	C-04
	C-05
	C-06
	C-07
	C-08
	C-09
	C-10
	C-11
	C-12
	C-13
	C-14
	C-15
	C-16
	C-17
	C-18

