4 SNOILVYIIdO TVNY3INI SLE

THE AHadional 315

ELECTRONIC DATA PROCESSING SYSTEM

s L e T T e T
INTERNAL OPERATIONS

COPYRIGHT © 1961 BY

THE NATIONAL CASH REGISTER COMPANY « DAYTON 9, OHIO

NTEp *Trade Mark Reg. U.S. Pat. OFff.
F-7403 10-61 Th . jafe farx Reg
' e NCR Co *NEAT, STEP, PACE and MAP are Service Marks of The National Cash Register Company

BUFFERED
MAGNETIC PAPER PUNCHED
CHARACTER TAPE CARD
READERS READER READER
Up to 4
Y Y Y
MAGNETIC
TAPE 315

HANDLERS [~ -

Up to 8 CENTRAL gzr:&s‘ion
e PROCESSOR T e

CARD PROCESSING
Acts. and Console
A CCESS
Memory |4—————>
UNITS
Up to 16
Y
Up to 4, any combination Y
BUFFERED BUFFERED PAPER
PRINTERS- CARD TAPE
LISTERS PUNCHES PUNCH

CONTENTS

MICR SOLter-REAAErocooioeiioe oo 1
Optical Character Reader ... 9
90-Column Card Reader ... 13

Punched Card Code ..o e 16
Unbuffered Printer and Buffered INUmMeric LiStEro.coociiiiiiiiiiiiii e 17

Flow Charts of Printer MOdeS............. oo 23
Ready Status and Demand Interrupt, all Peripherals ... 31

Timing Charts, all Peripherals ... 32

TABLE OF CONTENTS

Memory, Storage of information.
Accumulator.
Index Registers.
Addressing methods. Lo
Jump Registers.
Instruction formats.
Flags.
Display of registers.
Using the registers.
Special functions of some registers......................
Flow chart, execution of an instruction.
Flow chart, jumps and interrupts.
Flow chart, effect of a new Demand upon DLR.
Naming of literals
Effective length of the Accumulator.
Definitions
Descriptions of internal operations.
Addition-Subtraction Tables
*LD Load Accumulator. PP
*ST Store Accumulator.
*ADD : Add to Accumulator.
*SUB : Subtract from Accumulator............
*ADD M AddtoMemory.
*COMP: Compare.
*DIV : Divide Accumulator.
*MULT: Multiply Accumulator...........
*BADD: Binary Add to Accumulator. Ll
EDIT: Edit .
SUPP: SUPPress.
SETF:+ SetSignflagplus................................ e
SETF:~ SetSignflagminus..........
SETF:¢ SetOverflowflag.............
SETF:D Set Demand Permitflag.
SETF:T Set Tracer Permitflag..............
*SETF:LH Set Left-hand Memory flag..........
*SETF:RH Set Right-hand Memory flag.

*CLRF:LH Clear Left-hand Memory flag.
*CLRF:RH Clear Right-hand Memory flag..................................

* These instructions permit a “‘literal”’ to be named as “'A’" if desired.

1

TEST:
TEST:
TEST:
TEST:
TEST:
TEST:
TEST:
*TEST:

*TEST

JUMP:
JUMP:
JUMP:
SKIP:
DLR :
MLRA:

*SHFT:
*SHFT:
:RR
*SHFT:
:RC
*SHFT:
*SHTF :

*SHFT

*SHFT

*CNT

LD
LD
SLD
SLD
ST
ST

AUG
AUG :
SAUG:
SAUG:
MOVE:
MOVE:
MOVE:
MOVE:

MEVE:
MOVE:
**SPRD:
#**SPRD :

R R R R

o]

MR

-1 O Q@ |

LH

:RH
*TEST:
TEST:
TEST:
TEST:

SW
SL
SM
SR

DL
DR

LC

AL
AR

[P R
G G

m W0

Test Greater flag.
TestLess flag.
Test Equal flag.
Test Sign flag negative
Test Overflow flag.
Test Demand Permit flag
Test Tracer Permit flag.
Test Left-hand Memory flag.,
Test Right-hand Memory flag

Unconditional jump.
Unconditional jump, indirect address.
Unconditional jump, indirect address, keep previous link.
Skip within the program.
Demand Link Return.............
Main Link Return and augment control register.

Shift digits left.............
Shift digits right.
Shift digits right and roundoff.
Shift digits left circular..........o
Shift digits right circular.o
Shift alphas left..........o
Shift alphas right.

Load R-regisSters. i i
Load J-registers. i
Spread-load Reregisters.
Spread-load J-registers.
Store R-registers.
Store J-registers.
Augment R-registers..............o
Augment J-registers.
Spread-augment R-registers.
Spread-augment J-registers.
Move R’sinto R’s.
Move J'sinto R's.
Move R'sinto J's.
Move J'sinto J's.

Move Memory, start at beginning of data........................
Move Memory, startatend of data.
Spread a literal in Memory, start at beginning of area...........
Spread a literal in Memory, start at end of area............... ...

* These instructions permit a “literal”’ to be named as ""A’" if desired.
** These instructions require a “'literal’’ to be named as A",

SCND:

SCND:
SCND:
SCND:
SCND:
SCND:
SCND:
SCND:

SCND:

SCND:
SCND:
SCND:
SCND:
SCND:
SCND:
SCND:

SCND:

(El
(E2
SCND:
SCND:
SCND:
SCND:
(E7

SCND
SCND

SCND

SCNA:

SCNA:
SCNA:
SCNA:

SCNA:

SCNA:
SCNA:
SCNA:

SCNA:

SCNA:
SCNA:
SCNA:

PAST

LDAD:
LDAD:
:XR
:XB

LDAD
LDAD

STDA:

G

Gl
G2
G3
G4
G5
G6
G7

Ll
L2
L3
L4
L5
L6
L7

E3
E4
E5
E6

Gl
G2
G3

Ll
L2
L3

El
E2
E3

: XL
PAST:
PAST:

XR
XB

XL

Scan digits for greater, all positions. (Same as G7).............. 32

Selective Scans

Scan digits for less, all positions. (Same as L7).................. 32

Selective Scans

Scan digits for equal, all positions. (Same as E7)................ 32

Selective Scans

Scan alphas for greater, all positions. (Same as G3).............. 32

} Selective Scans

Scan alphas for less, all positions. (SameasL3)............. ... 32

l

5/ Selective Scans

Scan alphas for equal, all positions. (Same as E3)................ 32

} Selective Scans

Partial alpha store Except LH position of memory word. 34
Partial alpha store ~ Except RH position of memory word. 34
Partial alpha store Exceptboth.............. 34
Load alpha-to-digit All characters......................... ... 35
Load alpha-to-digit ~ Except LH character of memory word 35
Load alpha-to-digit Except RH character of memory word. 35
Load alpha-to-digit Exceptboth......., 35
Store digit-to-alpha All characters.......................... .. 36

MEMORY, STORAGE OF INFORMATION:

A fundamental characteristic of any Electronic
Data Processor is its internal information-
storage, or memory, in which it is able to store
both that part of the data which is being oper-
ated on at the moment, and also the program
for processing that data. National’s 315 Data
Processor is available with memories of 2 000,
5 000, 10 000, 15 000, 20 000 or 40 000 per-
manently-numbered storage locations, which con-
tain stored information. The number assigned
to each location is its address. The range of
addresses is:

MEMORY

SIZE ADDRESSES

2 000 00 000 thru 01 999

5 000 00 000 thru 04 999
10 000 00 000 thru 09 999
15 000 00 000 thru 14 999
20 000 00 000 thru 19 999
40 000 00 000 thru 39 999

Memory references are cyclic modulo memory-
size, That is, if an address is used which is beyond
the memory, the memory-size is automatically
subtracted from this address again and again,
until a new address is obtained which is within
the memory. However, with 15 000-slab memory,
5 000 is subtracted and then, if necessary,
15 000.

Information is stored in memory by means of
magnetic cores, which are tiny rings of ferrite
material, strung on a lattice of wires. Each core
may be selectively magnetized in either of two
states which, for convenience, are designated O
and 1. These symbols are not numbers; they are
merely convenient marks used to distinguish the
two states of a single magnetic core, and any
other pair of conventional symbols would serve
as well. The marks 0 and 1, corresponding to the
two possible magnetized states of a core, are
called b:ts and therefore a single core may store
either a 0-bit or a 1-bit.

Information may be either numeric or alpha-
numeric. Numeric information (spoken of as
“Digits”) comprises the 10 decimal digits and
the six symbols (the non-decimal digits) shown
in the first row of the Language Code Table.
Alphanumeric information (spoken of as
“Alphas’’) comprises the entire set of 64 charac-
ters shown in the four rows of the table.

A Digit is represented by a combination of
four bits, stored in four magnetic cores, whereas
an Alpha is represented by a combination of six
bits, stored in six magnetic cores. Of these six
bits, the right-hand four are called numeric bits
and the left-hand two are called zone bits.

It will be evident that the sixteen characters
which appear in the first row of the table may be
represented within the processor memory as
either 4-bit Digits or 6-bit Alphas, and in practice
they are stored in both forms at different times.
All input-output communication with paper tape,
punched cards, and printer is performed in terms
of Alphas; all arithmetic operations are per-
formed in terms of Digits; at other times, the
convenience of the programmer will determine
the form in which numeric information is stored.
Special operations are included in the processor
to condense and expand information from one
form to the other.

The information stored in a single memory
location is called a slzb, and consists of 12 bits.
Since these 12 bits may be divided into two
groups of 6, or into three groups of 4, a slab may
store either two Alphas or three Digits:

B R |3 A|2 4 6|le 4 9

Alpha slabs Digit slabs

The term slab is a contraction of “syllable™:
part of a word.

LANGUAGE TABLE

ZONE
BITS 0000 0001 0010 Q011 0100 0101 0110

NUMERIC BITS

0111 1000 1001 1010 1011 1100 1101 1110 1111

o |0 1 2 3 4 5 6

01 ¢ A B € D E F
10 + J K L M N 0
11 « # S T U VvV W

7 8 9 @ o st & o -
6 H 1 O A m n o p
P 0 R % £ $§ C) /
X Y Z d s 0 v w x

The basic unit of information for processing is
the word, which contains a single item of infor-
mation, such as Account Number, Name, Gross
Pay Year-to-Date, Quantity on Hand, etc. A word
may be up to 8 slabs long, and will usually con-
tain all Digit, or all Alpha, information.

The algebraic sign of a Digit-word is deter-
mined by its extreme LH (left-hand) digit. If the
LH digit is the character hyphen, then the word is
negative; if the LH digit is anything else, then the
word is positive. Thus the number + 7968 would
be stored in a 2-slab word as:

0079 68

and in a 3-slab word as:

000/007|9 68

whereas the number - 7968 would be stored in a
2-slab word as:

-07|9 68

and in a 3-slab word as:

-00(007(9 68

Therefore the longest negative number that can
be stored in a given word is one digit shorter
than the longest positive number that can be
stored in the same word.

A word is referred to by naming the address of
its LH slab, and by specifying its length (1 to 8
slabs). There are no markers within the infor-
mation to designate the beginning and end of a
word, and therefore the programmer may, at his
convenience, regard a sequence of slabs some-
times as a single word, and at other times as
several words.

Suppose the following three words are in mem-
ory, describing an item in the inventory file:

00101 00 102 00103 00 104

I
|
i
STOCK NUMBER

SIZE COLOR

The programmer may, if he chooses, compare
the 4-slab word starting at location 00 101 with a
similar 4-slab word elsewhere in memory (con-
taining the same information about an item re-
ceived) to see if they are the same. Then, for some
succeeding operation, he may again regard this
information as comprising three different words.

ACCUMULATOR:

In addition to the numbered locations of mem-
ory, the processor contains an 8-slab storage
called the Accumulator, and referred to as @. It is
implicitly involved in almost every operation per-
formed by the processor, although it is never
named explicitly. The capacity of the Accumulator
is 16 Alphas, or 24 Digits. Since the sign of the
Accumulator is held in the Sign flag (described
later) rather than in the Accumulator itself, the
intermediate results of a computation may range
up to 24 digits, positive or negative. However,
the final result which is to be stored in memory
may not exceed 24 digits positive, or 23 digits
negative, unless double-precision techniques are
used.

Consider the problem of adding the contents
of two Digit-words, and storing their sum in a
third word. Suppose the initial contents of the
three words, and of the Accumulator are:

02 344 02 345 02 346 02 347

16 999 17 000 17 001 17 002 17 003
N © o [0 o oo o [N

210 12211 12 212 12213 12214

320 "
2(1408|469|250(862/436|7909

e First LOAD the Accumulator with the contents
of the 2-slab word starting at location 02 345,
The Accumulator now contains:

0|0 00[000|00O0(00O0(47 7523

e Then ADD to the Accumulator the contents of
the 3-slab word starting at location 17 000.
The Accumulator now contains:

QOOO

® Now STORE the contents of the Accumulator
in the 3-slab word starting at location 12 211.
The three words and the Accumulator now
contain:

000(00O0|00S5(47 7|52 4

02 344 02 345 02 346 02 347

17 002 17 003

17 000 17 001

000

16 999

@

@

@

12 210

1221 12212 12213

12214

-
/

[&]

00547

00 00|00 00|000|00S5(477|524

This illustrates several important character-
istics of the processor:

» The processor selects the desired words within
memory, without being concerned about the
information on either side of a word.

e "Reading” or copying information from a
word, or from any register, does not alter the
information in that word or register.

Placing information into a word or a register
completely replaces the information previously
there, and the previous information is then lost.

All transfers of information within the pro-
cessor are right-justified. That is, the right-hand
end of the information-source is always lined
up with the right-hand end of the information-
destination.

If the destination is longer than the source, the
destination is always filled out to the left with
zeros.

INDEX REGISTERS (R-registers):

An instruction of the type just illustrated
names an Operation, an Address in memory, and
a Word Length. The instruction also names one of
32 Index Registers which are always used by the
processor in executing any instruction. An index

register holds an address—a positive number up
ta 39 999.

In order to determine the actual address in
memory to which the instruction refers, the
processor automatically adds the address named
in the instruction, plus the address stored in the
index register.

Suppose that index registers 16, 17, 18 con-
tained:

16 02005

17 16900

18 12200

Then the three instructions just illustrated could
have been written:

LOAD 2 slabs from (R16) 340.
ADD 3 slabs from (R17) 100.
STORE 3 slabsin (R18) O11.

ADDRESSING METHODS:

An instruction names 3 digits in the address
column, specifying the position of a word within
an item of data. The index register names the
base of the item—the address of the first slab of
the item.

[from 02 345]
[from 17 000]
lin 12 211]

Suppose a series of transactions in memory
which are to be posted by a Commercial Bank to
its checking-account file. Each transaction com-
prises four words, occupying nine slabs of mem-
ory, and the first transaction starts in location
04 996:

4 5 6 7 Remarks

Account number

Amount of trans.

Transaction code

Batch number

Account number

Amount of trans.

Transaction code

Batch number

Account number

Amount of trans.

Transaction code

Batch number

Mdress (L [Pos.| DAl O | 1 2 3
_ {04993 |0]|D
S04 99904 |3|D
% 05 003|1 |7|D
" [05 004 1|8|D
. |105005(3|0|D
§ 05 008|4 | 3| D
% 05 0121 |7|D
“ o5 013]1 |8 D
_|05014[3|0|D
§ 05 017|4 | 3| D
% 05 021(1|7|D
" los o22|1 8] D
£|05 0233 |0|D
;MQ_A Z1ln

Account number

| S.

In the program for posting these transactions,
every instruction referring to Account Number
will contain 000 as its address reference; every
instruction referring to Amount will contain
003; every instruction referring to Transaction
Code will contain 007; etc.

Before starting to post, an index register will
be preset to contain 04 996. Every instruction
will then refer to the appropriate word in the first
transaction. When that transaction is completely
posted, the index register will be augmented by
9, and will then contain 05 005 (the address of
the first slab of the second transaction) where-
upon each instruction will refer to the appro-
priate word in the second transaction. And so on.

In general, one Index Register will be used to
control each data stream.

JUMP REGISTERS (J-registers):

A total of 32 jump registers are also provided
in the processor. Each of these holds an address—
a positive number up to 39 999.

Many instructions provide for alternate exits,
depending on conditions encountered while the
instruction is being executed. If such a condition
is found, then the processor will not proceed
to the next instruction in sequence when the
instruction is completed, but will instead jump
to an instruction whose address is stored in one
of the J-registers.

Such an instruction will name a J-register as
being the first register in the jump table for that
instruction. The jump table contains as many
J-registers as there are possible exits from that
particular instruction. Suppose, for example,
that some instruction has three possible exits,
correspondixjg to conditions “A”, “B”, “C”’; and
in writing the instruction the programmer speci-
fies J23 as the beginning of the jump table. Then
if the instruction finds condition “A”, the proces-
sor will jump to the address stored in J23 after
this instruction is complete; if condition “B”, it
will jump to the address stored in J24; if condi-
tion “C”, it will jump to the address stored in
J25. If none of these conditions exist, the pro-
cessor will execute the next instruction in the
normal program sequence.

Certain of the R-registers and J-registers per-
form special functions, and are not normally used
in the fashion just described. A detailed discus-
sion of the characteristics of those registers is
given later.

SINGLE STAGE INSTRUCTIONS:

A single stage instruction is written in the
following format:

Op v L X A

1 1 1 ! i 1 1

Op and V name the operation to be performed,
and the variation if any. L indicates the length of
the word (up to 8 slabs), X the index register to
be used, and A the address reference. The pro-
cessor obtains the actual address by adding A
to the contents of the index register.

When this instruction is actually stored in the
processor memory, as part of a program to be
executed, it occupies two slabs of memory. The
first slab contains Op, V, L and X, all condensed
into 12 bits; the second slab contains A.

DOUBLE STAGE INSTRUCTIONS:

A double stage instruction is written in the
following format:

Op vV L] xgy A/B

1 1 1 | | 1 1

i 1 | 1 1 | |

Note that the instruction requires two lines, and
that the L column is not used. A is the address
reference; B specifies other information as re-
quired by each instruction. X usually specifies an
R-register, and Y usually specifies a J-register, but
not invariably. Therefore in the description of
each instruction, an R-register will be called RX
if it is specified by X, and RY if it is specified by
Y; a J-register will be called JX if it is specified
by X, and JY if it is specified by Y.

When this instruction is stored in memory, it
occupies four slabs. Op, V, X and Y are con-
densed into the 24 bits of the first and third
slabs; the second and fourth slabs contain A
and B respectively.

FLAGS:

A number of flags are provided in the pro-
cessor. These may be turned on and off by the
program at will, and perform certain automatic
functions, as well as storing conditions which
the program may test at a later time. The terms
onfoff, set/cleared are used interchangeably to
describe the two states of a flag.

SIGN FLAG:

This flag is associated with the Accumulator;
it automatically indicates the algebraic sign of
the Accumulator contents, and governs all arith-
metic operations accordingly. However, for
special purposes, it may be set positive or negative
by the program, independently of the Accumu-
lator contents.

Testing the Sign flag does not change its setting.

OVERFLOW FLAG:

Whenever an attempt is made to store more in-
formation into a word than that word can hold,
putaway stops at the LH (left hand) end of the
word, and the remaining information is not
stored. When this occurs, or when certain other
conditions arise, the processor usually sets the
Overflow flag. The precise circumstances under
which each operation might set Overflow are
described specifically for the individual opera-
tions.

The Overflow flag may also be set for special
purposes by the program, independently of other
operations.

Once Overflow has been set, the flag remains
set until the program tests it, at which time it is
automatically cleared.

GREATER, LESS, EQUAL FLAGS:

These flags are set automatically, to indicate
the result of a COMPARE or a COUNT in-
struction, and also to record detailed information
about the execution of a SUPPRESS or a SCAN
instruction.

The G, L and E flags are not independent; only
one of them may be on at a time. However, they
may all be off at the same time.

Testing theseflags does notchange their setting.

MEMORY FLAGS:

It is often convenient for the programmer to
designate flags of his own, to record information
for later use. For example, it may take many tests
to determine if an individual employee should
receive overtime pay, and this yes or no answer
may be required at two or more widely separated
points in the payroll program. Rather than repeat
the entire series of tests each time this answer is
needed, the program obtains the answer the first
time, and records it in 2 memory flag. Thereafter
it is only necessary to test this flag each subse-
quent time the answer is needed.

Any slab in memory may be designated as
containing a pair of flags, corresponding to the
two Alphas which the slab can store. These
then become the LH (ieft hand) and RH (right
hand) flags in that slab. If a flag contains the
Alpha character zero it is off, if it contains any
other Alpha character it is on. These flags may
be set, cleared, and tested independently of each
other. Since any slab of memory may contain a
pair of flags, the number of such flags available
to the programmer is practically unlimited.

Testing a memory flag does not change its
setting.

DEMAND PERMIT FLAG:

Many of the peripheral units have the ability
to interrupt the main program (fo demand pro-
cessor attention) when they have completed an
operation previously assigned to them. In this
fashion, the relatively slow input-output units
may be kept running at maximum rate, while the
processor is performing some other job; oc-
casionally the main program will be interrupted
for a brief interval to attend to one of the input-
output units, and then immediately resume, while
the slow unit continues to operate independently
at its own speed.

The programmer will wish to permit Demand
interruption during certain portions of his pro-
gram, and to forbid it during other portions.
The Demand Permit flag gives him this facility.

While the Demand Permit flag is on, any pe-
ripheral unit whose Unit Demand flag (see
below) is on, will exercise Demand whenever it
is ready to receive information from the proces-
sor, or to deliver information to the processor.

When Demand is exercised, the processor
always completes the current instruction in the
main program, then jumps to the demand pro-
gram. The programmer may specify different
demand programs for different portions of the
main program, if he wishes. There is a single
entry-point to any demand program, regardless
of which among several possible peripheralunits
may have interrupted, and no indication is fur-
nished to show which unit actually did exercise
Demand. This gives the programmer complete
flexibility in assigning priorities among com-
petitively demanding units. The demand program
merely attempts to SELECT each unit in turn,
until it finds one which is in the ready state, and
then gives attention to that unit. The assigning of
prioritiesamong units is performedin the simplest

possible fashion—by specifying the sequence in
which the units are tested.

Entering a demand program turns off the
Demand Permit flag, since normally it is not
desirable to have the demand program itself
interrupted. However, the programmer may
permit this if he chooses, merely by having the
demand program turn the Demand Permit flag
back on. Just before this, he will probably have
specified a different demand program to be used
for the time being.

The instructions TEST:D, TEST:T, SETF:D,
SETF:T are protected against Demand; the pro-
cessor never permits interrupt after completion
of one of these four instructions.

The program may set and test the Demand
Permit flag. It is turned off automatically either
when tested, or when Demand interrupt occurs.

UNIT DEMAND FLAGS:

The following peripheral units are capable of
exercising Demand: Printers, Card Readers, Card
Punches, CRAMs (Card Random Access Mem-
ories), Magnetic Character Readers, Inquiry
Stations. Each of these units has within it a Unit
Demand flag, which may be set and cleared by
the program.

The programmer will often wish to permit
some of the peripheral units, but to forbid others,
to exercise Demand during a particular part of
the program. He then has the program turn the
Unit Demand flags in the permitted units on, and
those in the forbidden units off. Any device whose

Unit Demand is off may still be used by the pro-
cessor at any time; but it must await the pro-
gram’s convenience, rather than being able to
demand attention at its own convenience.

TRACER PERMIT FLAG:

To facilitate code-checking, it is customary to
use supplemental tracing or automonitoring pro-
grams which permit the operator to follow the
execution of the program being checked. In
order to provide communication between the
main program (the one being checked) and the
tracing program, a Tracer interrupt facility is
provided, controlled by the Tracer Permit flag.

When this flag is on, end the appropriate Con-
sole switch is also on, then at the conclusion of
the execution of each instruction in the main
program the processor automatically jumps to
the tracing program.

The instructions TEST:D, TEST:T, SETF:D,
SETF:T, DLR are protected against tracing; the
processor never permits Tracer interrupt after
completion of one of these five instructions.

The program may set and test the Tracer Per-
mit flag. Itis turned off automatically either when
tested, or when Tracer interrupt occurs.

REGISTERS:

The 32 R-registers and 32 J-registers may be
thought of as existing in the following array,
which indicates the special functions assigned to
some of the registers:

JUMP

RELATIVE ADDRESS B
(INDEX)
—REGISTERS
R —REGISTERS J G
00 16 |00 0 16 »
N A
L () (]
T £ 0° 5
. O : B N , ~ ‘ . 2 \
o1 ° 17 T ¢ |0 o 17 o
-~ Qo 3 ~] O
« ° ° Qx
) b
02 i OA n]8 L " “{_g 02 i 1 f 'y 18 i a 9? — i _j
2 S W S > N
o
-~ L =L
x s . . 28 R gD
03 [19 o 9 03 2 19 g 9
O o) o 2 ¢
| =~ N .} Q& L)
Q. &]] O
0 . n i _c N & L L i @ - 1
04 Qo '5 20 8 & 04 20 o
8 @ o 2 0 o
& o 2 1
5 —_~_ > S . . &
05 o 2 21 o 05 a 21]
S © S 2 w =
(] o o ey
L= S8 & <
e o .?_ [+] s 1 L i . i L e
06 < 22 £ a 06 | 22
™ oy w W
§ 13 ~ £ &g N
Py 8 - < .‘!’ "‘? <.
N . . . : . . : . : 5 —9—
o7 © 23 g o 07 > 23 X5 2
4 ~ 2 o “ 9 9o
L i3 = A S
;‘o i i “2 .a i ! x '.E i i ‘-‘: dn ..._Jf
£ % & o |08 0 YR
% 3 < S F aQ
£ £ » £ > W
3 @ A
= [c_& ; ; Lo , ; ‘ ; ;
09 M~ 25 @ & 09 & 25
£ = o
~]
i i i L i & i A
“ .
10 26 10 @ 26
&
>
7]
it L u e i
11 27 1" << 27
Q.
I
12 28 12 28
Registers 28 and 29 .
are used by STEP, Reglstersla qnd 29 are
PACE, macros and sub- used by macros and ‘sub- _|
13 29 coutines. Their contents 13 29 routines. Their contents are
are not preserved. not pres,e’rv,ed.,
2 " n . e O L T
30 Processor stores 14 Jump-Table 38 Demand-Program
an Address here Link Jump Address
3 . : . . i . ; ;
l Main Link 31 Sequence-Control 15 Demand-Program 3 Tracer-Pragram
i {Program Decision} Register Link Jump Address

10

USING THE REGISTERS:
LOADING THE REGISTERS:

An address is loaded into a register from a
memory pair—a 2-slab word of memory. In this
loading operation only the RH 18 bits (4%
digits) of the pair are placed into the register.

This is equivalent to saying that, if an attempt
is made to load a negative number into a register,
the negative sign is ignored, and the number is
loaded as positive. If an attempt is made to load
a number greater than 39 999, the processor
automatically subtracts 40 000 from that number
againand again until the resultis less than 40 000.

STORING THE REGISTERS:

An address is stored from a register into the
RH 18 bits of a memory pair. The LH 6 bits
(11 digits) of the pair are automatically set
to zero.

ADDING AND SUBTRACTING IN THE REGISTERS:

Any addition and subtraction performed in
the registers is modulo 40 000.

This is equivalent to saying that, if a number
is added to the contents of a register and the sum
is greater than 39 999, the processor automatic-
ally subtracts 40 000 again and again until the
result is less than 40 000. If a number is sub-
tracted from the contents of a register, and the
result is negative, the processor automatically
adds 40 000 again and again until the result is
positive (or zero).

NOTE: The contents of a register is always a
positive number from 00 000 thru 39 999, since
each of the registers contains 18 bit-positions.
In loading a register, only the RH 18 bits of the
memory pair are loaded, with the LH 6 bits
ignored. In storing a register, the RH 18 bits
of the pair are stored, and the LH 6 bits set to
zero. In adding and subtracting in a register, the
augmenter is in a memory pair, and only the RH
18 bits of the augmenter are used; except that if
the LH 4 bits of the augmenter form the Digit
hyphen then the augmenter is treated as negative.
The result of the addition or subtraction is stored
in the register modulo 40 000 as a positive
number.

However, once the processor is given an
address to lookup in memory, that address is
interpreted modulo memory-size in memories of
less than 40 000 slabs, except for the special rule
for 15 000-slab memory, stated on page 4.

11

SPECIAL FUNCTIONS OF SOME REGISTERS:

In order to obtain cross-references within the
program, the first 10 index registers (ROO thru
RO9) always contain the addresses 00 000,
01 000, 09 000 respectively. Thus a jump
to the instruction in location 06 785 would be
written:

Op vV L} X A
J U M P 0 6|7 8 5

1 L 1 ! 1 1 1

R30. When the processor performs an opera-
tion whose scope is variable, it automatically
stores the terminating address in R30. Therefore
R30 will not normally be used by the program-
mer for routine address-modification. Magnetic
Tape and Input instructions, as well as SCAN,
store information in R30.

R15 and R31 may never be used for address-
modification.

R31 is used by the processor as its Sequence-
Control Register; each time a new instruction is
to be executed, the processor finds the address of
thatinstruction in R31, and immediately replaces
that address with the address of the next instruc-
tion in the normal sequence. If an instruction
requires a branch or jump out of the normal
program sequence, the processor saves the new
contents of R31 as a /ink back to the normal
sequence, and then plants the jump address
into R31.

R15 is used as the Link Register for program-
decision jumps, and is called the main link.
When the jump is the result of a program decision
(such as TEST FLAG or Unconditional Jump)
the contents of R31 are saved in R15 before the
jump address is placed into R31. There are only
three branching instructions (JUMP:IP; TEST:D;
TEST:T) which do not link.

The programmer may at any time impose a
jump on the program (without the use of a
branching instruction) by changing or replacing
the contents of R31. Since these are operations on
one of the registers, they are not classified as
jumps, and do not link. Similarly, the pro-
grammer is free to change or replace the con-
tents of any of the link registers.

This process can best be illustrated by a flow
chart which shows the detailed steps performed
by the processor in executing an instruction. The
notation (R31) means the contents of R31.

TO EXECUTE NEXT INSTRUCTION

START

\ O
DOUBLE

SINGLE

Execute the instruction.

Jump instruction.

Check for any kind of jump

Tracer, Demand).

(P Link as required.

___J

J30 and J31 hold the Demand program and

Tracer program jump addresses, respectively.

The programmer stores the appropriate ad-
dresses in these registers at the beginning of the
program, and of course he has the privilege of
changing them at any time during the program
if he sees fit to do so.

When either Demand interrupt or Tracer in-
terrupt occurs, the contents of R31 are preserved
in J15; then the contents of J30 or J31, as ap-
propriate, are planted into R31, imposing a jump
to the Demand or to the Tracer program.

J15 holds the link—the address of the next
instruction in the interrupted program—for
either Demand or Tracer interrupt.

J14 holds the link if any instruction takes a
jump table exit. The contents of R31 are saved
in J14; then the contents of the designated one of
the J-registers are planted into R31.

Q Add (R31) + "2"—R31.

Add (R31) 4 "2"—R31.

(Program-decision, Jump-Tab

Read the two slabs of memory starting at the location whose address is in R31.

Is this a single stage or double stage instruction?

Read two more slabs of memory starting at the location whose address is #ou in R31.

Note that the instruction may operate on the registers, and in particular may change
the contents of R31. This will cause a jump in the program, but is not classified as a

&This is shown in detail on the next chart.

Jump address— R31, ——/

It occasionally happens that the programmer
does not care whether an exit condition occurs
or not during execution of an instruction. He can
then suppress the exit by naming J14 as the jump
register for that instruction. The sequence of
events within the processor after detection of the
exit condition then is:

® Plant the contents of R31 (the address of the
next instruction in sequence) into J14.

¢ Plant the contents of the designated J-register
(which is J14, and which now has the same
contents as R31) into R31.

e The contents of R31 thus remain unchanged,
and the processor takes the next instruction
in sequence.

All these processes are illustrated on the fol-
lowing flow chart (an expansion of one section
of the previous chart) which also shows the
result if two, or all three, of these jumps are re-
quired simultaneously.

12

TO EXECUTE NEXT INSTRUCTION

L

Execute the instruction.

Is this a program-decision?
YES

NO

Does it cause a Jump-Table exit?

{R31)=—>J14.

Qb J———R31.

Does the decision call for a jump?
NO
ES

OO0

(R31)—>R15.
This step is omitted in JUMP: 1P
TEST:Ds TEST:T.

=)

J =———R31.

=

gl Check for Tracer interrupt.
YES
NO

(Q Check for Demand interrupt.

NO

Turn off Tracer Permit.

(R31)=——>J15.
This may be a branch address, planted
by step A or step B above.

{J31) ==——>-R31.

To Tracer program, whose address is in J31.

Return to the main program is by SETF:T then DLR.
Since these are both protected against tracing, interrupt
does not recur until after the next instruction in the main
program has been executed.

If (R31) is a previously-stored branch address, then DLR
“returns” to the branch program.

in case Demand is also operating, the first instruction in the
Tracer program is TEST : D so that it will not suffer Demand
interrupt. The Tracer program ends with SETF:D (if the
original test said yes) then SETF : T then DLR. For the effect
of Demand upon DLR see the next chart.

Turn off Demand Permit.

(R31)=——>J15.
This may be a branch address, planted
by step A or step B above.

(J30)=———-R31.

To Demand program, whose address is in J30.

Return to the main program (or branch program) is by
SETF:D then DLR. For the effect of a new Demand upon
DLR see the next chart.

13

TO THE NEXT INSTRUCTION
(IN THE MAIN PROGRAM)

-

It is not immediately obvious that a Demand
interrupt occurring at the conclusion of a DLR
instruction will work correctly. It will, however,
because DLR is an operation on the contents of
R31 (thus imposing a jump) but is not a jump
mnstruction. The following flow chart of part of
the DLR instruction shows how it works:

C) Execute the instruction.
DLR plants (J15)=——R31,

DLR is not a program-decision.

DLR does not cause a Jump-Table exit.

Does not check for Tracer interrupt, since DLR
is protected against Tracing.

Check for Demand interrupt.

NoO

Turn off Demand Permit.

(R31)—>J15,
This leaves (J15) unchanged, and it
still links to the main program.

(J30) =—R31.

BACK TO THE DEMAND PROGRAM.

14

NAMING OF LITERALS:

Certain of the instructions permit naming
index registers R15 and R31 as though they were
to be used for address-modification, but when
this is done, the processor accepts it as an indi-
cation to perform a special function.

Whenever R15 or R31 is named in the X col-
umn (in those instructions which permit it) then
the processor interprets the contents of the A
column not as the address of the data, but as the
data itself. The L column is then not used.

Thus suppose it is desired to multiply the Ac-
cumulator contents by 17, and then to add 125
to the result. The instructions would be:

Op v [t x | A

1 1 1 | ! 1 |

A DD 1 5(1 2

1 1 1 | il | 1

Whenever it is desired to name a literal, rather
than an address, in one of the instructions which
permit it, the programmer puts an A or a D into
the X column, and this will cause the instruction
to be stored in the program with a reference to
R15. D specifies a Digit literal, and A specifies
an Alpha literal. Thus:

Op v L] X A
L D D 7T 5

1 1 1 1 1 Il |

will load Digits “075” (binary 000001110101

Op A L X A
L D A |7|5

1 1 1 |]
will load Alphas 75" (binary 000111000101)

Those instructions, and variations, which per-
mit naming a literal in this fashion are marked
throughout this manual with an *.

THE “EFFECTIVE LENGTH” OF THE
ACCUMULATOR:

Although the actual length of the Accumulator
is, and always remains, 8 slabs, the concept of
its “effective length” is a useful one when dis-
cussing overflow conditions, and in the formulas
for the execution times of the instructions.

The effective length of the Accumulator is
simply the number of slabs, counting from the
RH end, which contain all the non-zero informa-
tion in the Accumulator. However, the effective
length is never zero, so a cleared Accumulator
has an effective length of one slab.

ACCUMULATOR CONTENTS errscrive
1o 00Jooofoo1fooofooofooo]s1 5009 6
|A B]C D[E F]G H[I J[K M]N &]P Q] 8
[0 0]o o]0 o]0 0J0o 0[0 #[N C[R s| 3
[0 0 0Jo 0 0]o 0 o]0 0 0Jo 0 oo 0 o]0 0 o]0 0 o] 1

15

w

TUDENT’'S NOTES

16

LH
RH

@)
Op:V

A-word

RX
RY
JX

JY

Alpha

Digit

slab

word

pair

k%

DEFINITIONS
Left-hand.
Right-hand.
The Accumulator.
The contents of the Accumulator.
Operation and variation.
The A-address named in an instruction.
The length of the word referred to in an instruction.

The word referred to by the address A.

The address of the LH slab of the word is obtained by adding
A + contents of an index register.

The length of the word is L slabs.

The R-register specified by X.

The R-register specified by Y.

The J-register specified by X.

The J-register specified by Y.

An augmenter named in an instruction. May range from —99 thru 999.
A 6-bit character.

A 4-bit character.

The information stored in a single memory location.
A slab comprises 2 Alphas or 3 Digits.
The term “slab” is a contraction of “syllable”: part of a word.

A single unit of information, consisting of 1 to 8 slabs. A few operations
permit longer words than this.

A 2-slab word containing an address or an augmenter in its RH 18 bit-
positions. If the pair contains an augmenter, then it may be positive or
negative.

The number of times a sub-unit of an operation is to be performed.
(ie- Load N registers; Move N slabs; etc.)

Jump address named in an instruction.
Indicates an instruction which permits naming of a “literal” if desired.

Indicates an instruction which requires naming of a “literal”.

17

*]OAD Accumulator

* STORE Accumulator

Op v |1 X

3>

Op v i X

L D L X A

1 1 1 1 1 1 1

(A) replaces (@)
or "A” replaces (@)

This operation may be performed on either
Digit or Alpha information.

The A-word is transcribed into the Accumula-
tor, right-justified, and the Accumulator is filled
out with zeros to the left.

SIGN FLAG: The processor does not “know”
whether the programmer re-
gards the A-word as made up of
Digits or of Alphas. Therefore,
if the left-hand four bits of the
A-word are all 1-bits, the pro-
cessor assumes a negative digit-
word, sets the Sign flag negative,
and replaces those four 1-bits in

the Accumulator with four 0-bits.

Otherwise the Sign flag will be
set positive.

OVERFLOW: Cannot occur.

18

(@) replaces (A)
or (@) replaces "A”

This operation may be performed on either Digit
or Alpha information.

The Accumulator is transcribed into the A-word
right-justified. If the A-word is shorter than the
effective length of the Accumulator, overflow
occurs.

SIGN FLAG: If the Sign flag was previously
set negative, and if the LH digit
of the stored A-word is zero, then

that digit is replaced by hyphen.

If the LH digit of the stored
A-word is not zero, then there
is no room for the negative sign,
and overflow will occur.

In case of data overflow, the LH
digit of the stored A-word might
accidentally be zero; in this case
a negative sign is not stored.

Setting of the Sign flag remains
unchanged.

ACCUMULATOR: Remains unchanged.

OVERFLOW: 1. The A-word is shorter than
the effective length of the Ac-

cumulator.

2. Sign flag is negative, and there
is not room to store the sign
in the A-word, even though
there is room for all the digits.

* ADD to Accumulator

*SUBTRACT from Accumulator

Op

\' L

Op

\'

L

X

L

X

]]] 1 | 1 1

(@) + (A) replaces (@)
or (@) + “A” replaces (@)

This operation may be performed only on Digit
information.

If the LH digit of the A-word is hyphen then the
wordisconsidered negativeand thatdigit isadded
as though it were a zero; otherwise the word is
considered positive. The setting of the Sign flag
designates the algebraic sign of the Accumulator.

The addition is performed according to the
algebraic law of signs, and the sign of the result
causes a new setting of the Sign flag.

NOTE: If any ADD operation yields a
result of “zero”, then the Sign

flag remains unchanged.

SIGN FLAG: Designates the sign of the Ac-

cumulator;

Then is set by the sign of the
result.

ACCUMULATOR: Holds the result of the operation.

OVERFLOW: If the result contains more than

24 digits.

The Accumulator will then hold
the RH 24 digits of the result,
and the Sign flag will be set
correctly.

19

(@) — (A) replaces (@)
or (@) — "A” replaces (@)

This operation may be performed only on Digit
information.

If the LH digit of the A-word is hyphen then the
word is considered negative and that digit is
subtracted as though it were a zero; otherwise
the word is considered positive. The setting of
the Sign flag designates the algebraic sign of
the Accumulator.

The Subtraction is performed according to the
algebraic law of signs, and the sign of the result
causes a new setting of the Sign flag.

NOTE: If any SUB operation yields a
result of “zero”, then the Sign
flag remains unchanged.

SIGN FLAG: Designates the sign of the Ac-

cumulator;

Then is set by the sign of the
result.
ACCUMULATOR: Holds the result of the operation.

If the result contains more than
24 digits.

OVERFLOW:

The Accumulator will then hold
the RH 24 digits of the result,
and the Sign flag will be set
correctly.

* ADD to Memory * COMPARE
Op A L X A Cp \' L X A
A D D M L X A Cc & M P L X A
1 1 1 { 1 | | 1 1 1 1 1 1 1

(@) + (A) replaces (A)
or (@) + "A” replaces "A”

This operation may be performed only on Digit
information.

If the LH digit of the A-word is hyphen then the
word is considered negative and that digit is
added as though it were zero; otherwise the word
is considered positive. The setting of the Sign
flag designates the algebraic sign of the Accumu-
lator.

The addition is performed according to the
algebraic law of signs, and the sign of the result
is stored in the A-word with the result itself.
However, the Sign flag is not changed by the
result.

NOTE: If this operation yields a result
of zero the original sign of the
A-word remains unchanged.

SIGN FLAG: Designates the sign of the Ac-

cumulator;

Remains unchanged.

ACCUMULATOR: Remains unchanged.

OVERFLOW: 1. If the result contains more
significant digits than the A-

word can hold.

2. If the sign of the result is
negative, and there is no room
(see STORE) for the sign in
the A-word. The sign is not
stored.

(@) is compared with (A)] and G, L, E flag is
or (@) is compared with AS set accordingly.

This operation may be performed on either Digit
or Alpha information.

20

OVERFLOW:

The G-flag is set if (@) is Greater;
The L-flag is set if (@) is Less;
The E-flag is set if (@) is Equal.

With Digit information:

If the LH digit of the A-word is hyphen then the
word is considered negative and that digit is
compared as though it were a zero; otherwise
the word is considered positive. The setting of
the Sign flag designates the algebraic sign of
the Accumulator.

The comparison is performed according to
the algebraic law of signs, whereby any nega-
tive number is smaller than any positive num-
ber; and of two negative numbers, the larger
magnitude is the smaller number.

If any non-decimal digits are present, the
result can be predicted by giving the digits
their binary values.

With Alpha information:

Since the operation does not distinguish be-
tween Digit and Alpha information (the actual
comparison is bit-by-bit) it is essential that the
Sign flag be set positive before this operation
is performed. In dealing with Alpha informa-
tion, this will usually be the case anyway.
However, note that if the LH character of the
A-word is v, v, w, x then the A-word will be con-
sidered negative.

NOTE: If the two numbers being com-
pared are “positive zero” and
“negative zero” then this opera-
tion sets the E-flag.

SIGN FLAG: Designates the sign of the Ac-

cumulator.

Remains unchanged.

ACCUMULATOR: Remains unchanged.

Cannot occur.

*DIVIDE Accumulator
Op v] x

(@ replaces LH (
— @)
(A) P Remainder re-

1 RH
or(%(%), replaces LH (@) places (@)

This operation may be performed only on Digit
information.

The quotient appears, right-justified, in the LH
4 slabs of the Accumulator. The remainder ap-
pears, right-justified, in the RH 4 slabs of the
Accumulator.

If the LH digit of the A-word is hyphen then the
word is considered negative and the digit is
treated as though it were a zero; otherwise the
word is considered positive. The setting of the
Sign flag designates the algebraic sign of the
Accumulator.

The division is performed according to the alge-
braic law of signs, and the sign of the result
causes a new setting of the Sign flag.

No sign is explicitly associated with the re-
mainder; it is understood that the remainder has
the same sign as the dividend (initial setting of
the Sign flag).

After storing the result of the division, the
quotient and remainder should thereafter be
treated as separate words. The remainder word
will appear to be positive, and the programmer
must keep track of what its sign ought to be.

If for any reason the remainder alone is to be
stored, observe the comments under STORE,
with regard to overflow and storage of the Sign
flag. Particular care must be taken at this point
if there is a possibility that the quotient may be
either zero or minus-zero.

SIGN FLAG: Designates the sign of the Ac-

cumulator;

Then is set by the sign of the
Quotient.

ACCUMULATOR: Holds the dividend (numerator);
Then receives the result of the
operation.

* MULTIPLY ACCUMULATOR
Op v |t] x A
M UL T L| X A
1

Il 1 1 H | 1

(@) x (A) replaces (@)
or (@) X “A” replaces (@)

This operation may be performed only on Digit
information.

If the LH digit of the A-word is hyphen then the
word is considered negative and that digit is
multiplied as though it were a zero; otherwise
the word is considered positive. The setting of
the Sign flag designates the algebraic sign of the
Accumulator.

The multiplication is performed according to
the algebraic law of signs, and the sign of the
result causes a new setting of the Sign flag.
SIGN FLAG: Designates the sign of the Ac-
cumulator;

Then is set by the sign of the
result.

ACCUMULATOR: Holds the result of the operation.

If the sum of:
Length of the A-word and
Effective length of the
Accumulator.
is more than 8 slabs.

OVERFLOW:

No multiplication will be per-
formed, and the contents of the
Accumulator will be unchanged.

OVERFLOW: No division is performed, and
overflow occurs, in the follow-

ing cases:
1. The A-word contains zero,

2. The A-word is more than 4
slabs long.

3. The effective length of the
Accumulator is more than
4 slabs, unless the A-word
containsanumber of greater
magnitude than the number
in the LH 4 slabs of the
actual Accumulator. This is
the criterion for obtaining a
quotient more than 4 slabs
long, which is forbidden.

* BINARY ADD to Accumulator

Op

s

>
3

v L

B A D D
1 1

1

L X
1

(@) + (A) replaces (@)

or (@)+ “A” replaces (@)

SIGN FLAG:

ACCUMULATOR:

OVERFLOW:

Addition is Mod-64
with no carry between
Alpha positions.

Addition is normal,
with full carries.

Ignored. Both operands con-
sidered positive.

Remains unchanged.
Holds result of the operation.

When adding (A), overflow can-
not occur.

When adding “A”, overflow will
occur if the result exceeds the
96-bit capacity of the Accumula-
tor, but this is unlikely.

ADDITION TABLE
TOR BINARY ADD

0 1
0 0 1
1 1 cO

“c" means carry

~N
n

EDIT

n
A

Y

—

P

E D I T L| X A
| S |

1

Edit (A) into @ according to format-control
previously in @.

This operation may be performed only on Alpha
information.

The characters of the A-word are transcribed,
one by one, from right to left, into the Accumula-
tor, replacing certain of the characters previously
in the Accumulator.

In order to do this, the characters in the Ac-
cumulator are scanned from right to left, until
either m or comma is found.

If m Replace the m by the next
(initially the rightmost) charac-
ter of the A-word, and continue
to scan the Accumulator.

If comma If the next character of the A-

word is anything other than
asterisk or space then leave the
comma unchanged and continue
to scan the Accumulator.

If the next character of the A-
word is either asterisk or space
then replace the comma with that
character, but do not advance to
the next character of the A-word.

The operation terminates when the A-word is
exhausted.

SIGN FLAG: Remains unchanged.

ACCUMULATOR: Holds the format-control pat-
tern;

Then holds the edited A-word.

OVERFLOW: Cannot occur.

ERROR HALT: If the Accumulator is completely
scanned, and some characters of
the A-word have not been tran-

scribed.

Example 1:

EDIT

A-word

AN\

sp s sp|$ m mi{m m *
s 2| F splsp sp|$ 1|5 9|4 7 2 *
Example 2:

A-word
sp s sp|$ m m m m ¥
sp sp|W splsp sp|$ *x|x 412 9 117 =

23

Accumulator initially

Accumulator finally

Same Accumulator initially

Accumulator finally

SUPPRESS
Op \ L X A

SlUlPlP L X A

Leading zeros in the A-word are replaced with
spaces.

This operation may be performed only on Alpha
information.

The A-word is scanned from left to right. If the
first character is a zerv it is replaced by a space and
the scanning proceeds to the next character; and
so on.

The operation terminates when either:

1. Thescanning processencountersany charac-
ter other than zero.

2. The A-word has been exhausted, and now
contains all spaces.

After the operation terminates:

The Accumulator contains the number of
slabs in which suppression has occurred.

If an odd number of zeros were suppressed,
the G-flag is turned on.

SIGN FLAG: Remains unchanged.

ACCUMULATOR: Holds tally of number of slabs
now containing spaces.

G-FLAG: ON if odd number of spaces.
OFF if even number of spaces.

L-FLAG; E-FLAG: Always turned OFF.

OVERFLOW: Cannot occur.

Protected

24

SET and CLEAR Processor Flags

FORMAT A:

All but Memory Flags

Op

v L X A

S E T F| (V)
) I R | 1

FORMAT B: Memory Flags
Op Vv L X A
s 1 E 1 T 1 F (VI) ¥ i 1
Op \Y L
C L R F| (V) X
L 1 1 1 1 1 1
SETF:+ Set Sign flag plus.
SETF:— Set Sign flag minus.
SETF:d Set Overflow flag on.
"‘SETF:D Set Demand Permit flag on.
ISETF‘:T Set Tracer Permit flag on.
*SETF:LH Set LH Memory flag on, §
in 1-slab A-word. § 273
£y
*SETF:RH Set RH Memory flag on, | o %E
in 1-slab A-word. &
*CLRF:LH Set LH Memory flag off, | §
in 1-slab A-word. 8. -g)
£33
*CLRF:RH Set RH Memory flag off, | o X &
in 1-slab A-word. ﬁ

SIGN FLAG: Remains unchanged, except by

SETF: 4 and SETF: —.

ACCUMULATOR: Remains unchanged.

OVERFLOW: Cannot occur, except as result of

SETF: ¢

Protected

TEST (single-stage)
Op A L X
T E S T W) X J

1 11 | 1 |

Each of these may cause a jump to the instruction
whose address is: “J" + (contents of RX)

TEST:G Jump if G-flag is on.
Set Link in R15

TEST:L Jump if L-flag is on.
Set Link in R15
TEST:E Jump if E-flag is on.
Set Link in R15

Flag not disturbed

TEST:~ Jump if Sign flag negative.

Set Link in R15

TEST:® Jump if Overflow flag is on.

Set Link in R15

TEST:D JumpifDemand Permitflagison..

Does not link.

Flag turned off

TEST:T Jump if Tracer Permit flag is on.

Does not link.

The programmer will use TEST : D
and TEST:T, with jumps sup-
pressed, to turn off the Demand
and Tracer flags. Aside from
that, these instructions are used
only for housekeeping purposes
in the “canned” portions of the
Tracer and Demand programs.

SIGN FLAG: Remains unchanged.

ACCUMULATOR: Remains unchanged.

OVERFLOW: Cannot occur.

NOTE: When testing the G, L, E flags after

SCAN, it is more convenient to use
the following alternative mnemonics.

TEST:SL Did SCAN stop on left digit or alpha?
Same command as TEST:E

TEST:SM Did SCAN stop on middle digit?
Same command as TEST:L

TEST:SR Did SCAN stop onrightdigitoralpha?
Same command as TEST:G

25

* TEST (double-stage)

FORMAT A:
Test Memory flags.
Jump to address named in instruction.

Link in R15.
Op \ L X/Y A/B
T E S T| (V) X A
1 I 1 1 1 1]
JUMP ADDRESS
(ALL 5 DIGITS)
1 1] 1 1 I 1 1
FORMAT B8:
Test Console Switches.
Jump to address “J" -+ {contents of RY).
Link in R15.
Op v [t] xy A/B
T 1 E 1 S 1 T s 1 w 1 1 A 'l
Y J
1 1 i 1 1 l 1

*TEST:LH Jump if LH flag in 1-slab A-word is
on (not equal to zero).

*TEST:RH Jump if RH flag in 1-slab A-word is
on (not equal to zero).

*TEST:SW Jump if Console Option Switch num-
ber (A) or “A” is on.
Switch number may be 000-007.

SIGN FLAG: Remains unchanged.

ACCUMULATOR: Remains unchanged.
OVERFLOW: Cannot occur.
LH, RH FLAGS: Remain unchanged.

SWITCHES: Remain unchanged. They are set

by the console operator.

JUMP
JUMP INDIRECT
JUMP INDIRECT, keep PREVIOUS Link

Op v [L] x A
JIUIMIP 1 ¥ lJl
Op A% L X
J UM P|I X
1 1 | 1 1 1 1
Op vV (L] x A
J U M P|I P X A
1 1 1 1 i 1 1

JUMP: Unconditional jump to address “J”
+ (contents of RX). Link in R15.
(R31) replaces (R15). Then Jump
address replaces (R31).

JUMP:I Unconditional jump to address stored
in 2-slab A-word. Link in R15. (R31)

replaces (R15). Then A-word replaces
(R31).

JUMP: IP Unconditional jump to address stored
in 2-slab A-word. Does not link.
A-word replaces (R31).

SIGN FLAG Remains unchanged.
ACCUMULATOR: Remains unchanged.

OVERFLOW Cannot occur.

26

SKIP within the program
Op v L X A
S K I P G

1 1 1 1 1 1 1

This instruction causes an unconditional jump
to a point up to 999 slabs after, or up to 99 slabs
before, the next instruction in the normal se-
quence.

(R31) + "G” replaces (R31).
G may range to 999 or to —99.

This is an operation upon (R31), and is not a
jump instruction. Therefore it does not set any
link.

SIGN FLAG: Remains unchanged.
ACCUMULATOR: Remains unchanged.

OVERFLOW., Cannot occur.

DEMAND LINK RETURN

Op \ L X A
R

L
| — 1 i Il] |

D

This instruction causes a return to the Demand
Link.

(J15) replaces (R31).

This is an operation upon (R31), and is not a

jump instruction. Therefore it does not set any
link.

SIGN FLAG: Remains unchanged.

ACCUMULATOR: Remains unchanged.

OVERFLOW: Cannot occur.

NOTE: This instruction is protected
against Tracing. It is not pro-

tected against Demand.

27

MAIN LINK RETURN,
and AUGMENT Control Register

Op vV |L]| X A
M L R A

1 H 1 ! 1 1 |

This instruction causes an unconditional jump
back to the Main Link, with the option of skip-
ping instead to a point up to 999 slabs after the
link, or up to 99 slabs before the link.

(R15) + “G” replaces (R31).
G may range to 999 or —99.

This is an operation upon (R31), and is not a

Jjump instruction. Therefore it does not set any
link.

SIGN FLAG:. Remains unchanged.
ACCUMULATOR: Remains unchanged.

OVERFLOW: Cannot occur.

* SHIFT Accumulator
Op v L X A
S HF T| (V)

X 1

-

This operation may be performed on either Digit
or Alpha information, as specified by the Varia-
tion.

The contents of the Accumulator are shifted
N places. N is equal to: The contents of the
A-word (always one slab long); or A" itself.
Except for SHFT:LC and SHFT:RC all shifts are
linear, ie- "off the end”.

*SHFT:DL Shift digits left,
enter zeros at the right.

*SHFT:DR Shift digits right,
enter zeros at the left.

*SHFT:RR Shift digits right and roundoff,
enter zeros at the Jeft.
Before the shift, 5 is lined up with the Nth

character from the right, and added to the Ac-
cumulator contents.

*SHFT:LC Shift digits left circular.

*SHFT:RC Shift digits right circular.

The two circular shifts operate within the effective
length of the Accumulator. They leave the effective
length unchanged even though the circulation
may bring zeros into the leftmost positions.

*SHFT : AL Shift alphas left,
enter spaces at the right.

If, before the shift, there were zeros at the RH end
of the Accumulator, these are shifted unchanged
just like any other characters; they are not replaced
by spaces.

*SHFT: AR Shift alphas right,
enter zeros at the left.

NOTE: During an Alpha shift, all zeros within the previous
effective length of the Accumulator remain significant to the
new cffective length.

Before a left or right Alpha shift of an odd number of positions,
a slab containing @ sp is inserted in the Accumulator, just to
the left of the previous effective length.

After an Alpha Righe shift of more than the previous effective
length, the Accumulator will contain the single slab sp sp.

SIGN FLAG: Remains unchanged.
OVERFLOW: Cannot occur.

If N = 0, these operations do nothing.

28

* COUNT
Op v o[L] x/y A/B
C N T X A
i 1 1 1 H i 1
Y G
i 1 1 1 1 1 1

This instruction performs two distinct opera-
tions.

1. First ADD: (RY) + “G”
replaces (RY)
G ranges to 999 or —99.

2. Then COMPARE: (RY) vs (A) completely
or (RY) vs “A” mod 1000
and set G, L, E flag.

If the LH digit of "G” is the character hyphen
then “G” is considered negative; otherwise 'G”
is considered positive. The contents of an Index
Register are always positive.

If an A-word in Memory is named, it is always
a “pair’: a 2-slab word containing a number no
greater than 39 999.

If “A” itself is used for the comparison, then
only the RH 3 digits of the Index Register are
used in the comparison.

SIGN FLAG: Remains unchanged.

G-FLAG: ON if (RY) is greater.
L -FLAG: ON if (RY) is less.
E-FLAG: ON if (RY) is equal.

ACCUMULATOR: Remains unchanged.
OVERFLOW: Cannot occur.

NOTE: Addition is always performed
modulo 40 000 regardless of the
memory size of the Processor.

LOAD Registers
SPREAD-LOAD Registers

Op N L X/y A/B

L D (V) X A
§ D | L 1 1 1

Y N
i 1 1 I 1 | 1
Op v L] X/Y A/B

S L D) X A
1 1 | | | 1 |

Y N
1 1 1 1 1 | 1
LD :R Transcribe N successive Memory

pairs (A), (A+2), etc.
into N successive R-registers
starting with RY.
LD :J Transcribe N successive Memory
pairs (A), (A+2), etc.
into N successive J-registers
starting with JY.

SLD :R Transcribe one Memory pair (A)
into each of N successive

R-registers starting with RY.

SLD :J Transcribe one Memory pair (A)
into each of N successive

J-registers starting with JY.

If any of these operations remains incomplete
after referring to R31 or J31, there will be an
error halt.

If any of these operations carries past the end of
memory, it will cycle back to location 00 000
and continue.

NOTE: Only the RH 18 bits (41 digits)
of each pair are loaded. The LH
6 bits (11 digits) are irrelevant.
SIGN FLAG: Remains unchanged.

ACCUMULATOR: Remains unchanged.
OVERFLOW: Cannot occur.

If N = 0, these operations do nothing.

29

STORE Registers

Op v X/Y A/B

S T W) X A
i 1 i 1 1 1

Y N

ST:R Transcribe N successive R-registers
starting with RY
into N successive Memory
pairs (A), (A+2,) etc.
ST:J Transcribe N successive J-registers

starting with JY
into N successive Memory
pairs (A), (A+2), etc.

If either of these operations remains incomplete
after referring to R31 or J31, there will be an
error halt.

If either of these operations carries past the end
of memory, it will cycle back to location 00 000
and continue.

NOTE: The contents of a register are
stored as the RH 18 bits (414
digits) of the Memory pair. The
LH 6 bits of the pair are set to

zero.
SIGN FLAG: Remains unchanged.
ACCUMULATOR: Remains unchanged.
OVERFLOW:

Cannot occur.

If N = 0, these operations do nothing.

AUGMENT Registers

SPREAD-AUGMENT Registers

Op v L] x/Y A/B
A U G W) X A
i 1 1 1 1 Il 1
Y N
1 1 1 1 Il 1 1
Op L| X/Y A/B
S A U G W) X A
| | 1 i I i i
Y N
1 1 Il ! 1 i |
AUG :R The contents of each of N successive
R-registers starting with RY is aug-
mented by the contents of the corre-
sponding one of N successive Memory
pairs (A), (A+2), etc.
AUG :J The contents of each of N successive

J-registers starting with JY is aug-
mented by the contents of the corre-
sponding one of N successive Memory
pairs (A), (A+2), etc.

SAUG:R The contents of each of N successive
R-registers starting with RY is aug-
mented by the contents of Memory
pair (A).

SAUG:J The contents of each of N successive

J-registers starting with JY is aug-
mented by the contents of Memory
pair (A).

Only the RH bits (4% digits) of a Memory pair
are used in augmenting a register.

If the LH digit of any Memory pair is hyphen,
then the contents of that pair is a negative number
and the contents of the register are diminished.
The contents of the register are always positive.

Addition is performed modulo 40 000 regard-
less of memory size.

If any of these operations remains incomplete
after referring to R31 or J31, there will be an
error halt.

If any of these operations carries past the end
of memory, it will cycle back to location 00 000
and continue.

SIGN FLAG: Remains unchanged.
ACCUMULATOR: Remains unchanged.
OVERFLOW:

Cannot occur.

If N = 0, these operations do nothing.

Examples
RESULT OF RESULT OF

R.E (;’TI&TLESS EMORY PAIRS AUG |R | [01}711 SAUG|R | |01|711
13006 131006

R13 {00047 01711 000:100 RI3 001 47 R13 {001 47
R14 |27 635 01713 000:200 R14 |27 835 R14 27735
RIS 39999 01715 |- 0 0/0 0 2 RIS {39997 RIS (00099
RI6 |1 5000 01717 030:000 R16 {05000 RI6 |1 5100
R1I7 |0 4296 01719 000:001 R17 {04297 Rt7 |0 43 9 6
R [02500 01721 —705000 RI8 | 12500 RIS {02600

30

MOVE information between Registers

Op \% L x/y A/B
M & V E) X
1 1 | | | | 1
Y N
1 1 | 1 I | 1

MOVE:RR Transcribe N successive R-registers
starting with RY

into N successive R-registers
starting with RX,

MEVE:JR Transcribe N successive J-registers
starting with JY
into N successive R-registers
starting with RX.

MBVE:RJ Transcribe N successive R-registers
starting with RY

into N successive J-registers
starting with JX.

MOVE:JJ Transcribe N successive J-registers
starting with JR

into N successive J-registers
starting with JX,

If any of these operations remains incomplete

after referring to R31 or J31, there will be an
error halt.

SIGN FLAG: Remains unchanged.
ACCUMULATOR: Remains unchanged.
OVERFLOW:

Cannot occur.

If N = 0, these operations do nothing.

MOVE memory | fStart at Beginning 1 obs°

** SPREAD memory | | Start at End f stabs

Op v o] xgy A/B

M & V E| (V) X A
! t 1 | | | 1

Y B
L L ! 1 1 1 L

Y specifies Index Register RY, modifying address B.

Op v o] xyy A/B

S P R D| (V) A
! 1 1 1 1 | |

Y B
| 1 1 | 1 1 i

Y specifies Index Register RY, modifying address B.

These operations may by performed on either
Digit or Alpha information.

MOVE transcribes N (up to 999) consecutive
slabs from an A-area to a B-area in
Memory.
Nisinthe RH slab of the Accumulator.
MOVE:B Start at the beginning of each area:
(A) replaces (B)
then (A+1) replaces (B+1) etc.
MOVE:E Start at the end of each area:
(A) replaces (B)
then (A—1) replaces (B—1) etc.
SPREAD transcribes “A” itself into each slab
of an N-slab B-area in Memory.
**SPRD:B “A” replaces (B)
then “A” replaces (B+1) etc.
**SPRD:E “A” replaces (B)

31

then “A” replaces (B—1) etc.

If any of these operations carries past the end of
Memory, it will cycle back to location 00 000
and continue.

SIGN FLAG: Remains unchanged.

ACCUMULATOR: RH slab holds N: the number
of slabs to be transcribed (up
to 999).
Remains unchanged.
OVERFLOW: Cannot occur.

If N = 0, these operations do nothing.

SCAN
Op v] oxygy A/B
S C N D W) X A
i 1 i 1 1 1 i
Y L
1 | 1 1 1 1 1
L is length of A-word: up to 999
Y specifies Jump Register JY
Op v o] xyy A/B
S C N A| (V) X A
1 1 | I 1 I 1
Y L
1] i 1 1 - 1

L is length of A-word: up to 999
Y specifies Jump Register JY

SCND: Scan Digits.

SCNA: Scan Alphas.

This operation may be performed on either
Digit or Alpha information, as specified by the
Variation.

Consider the Accumulator as being of the same
length as the A-word, which in this operation
may be up to 999 slabs long. Consider that
every slab in the Accumulator exactly duplicates
the RH slab.

The Accumulator and the A-word are then si-
multaneously scanned, from left to right, and
compared Digit by Digit, or Alpha by Alpha,
until one character in the A-word is found which
bears the specified relationship to the corre-
sponding character in the Accumulator. The
relationship may be specified as Greater than,
Less than, or Equal to, the corresponding charac-
ter in the Accumulator.

The LH character of the Variation specifies
whether the SCAN shall seek a character in the
A-word which is:

G: greater than

L: less than

E: equal to

the corresponding character in the Accumulator.

32

The operation terminates when either:

1 S N iy PN .
1. A character in the A-word meccts the test.

R30 then contains the address of the slab
in which this character appears.

Flags are set to indicate the position of this
character in that slab.

RH Digit or RH Alpha G-flag set
Middle Digit L-flag set
LH Digit or LH Alpha E-flag set

The Processor proceeds to the next in-
struction in normal sequence.

2. No character in the A-word meets the test.
R30 remains unchanged.
G, L, E-flags are all turned off.

The Processor takes its next instruction
from the address in JY.

Link is set in J14.

If L = 0 the Processor immediately takes ter-
mination 2.

NOTE: It may be inconvenient to remember
the correspondence of G, L, E flags to
left, middle, right positions within
the slab. Therefore three alternative

mnemonics are provided.

TEST:SL Did SCAN stop on left digit or alpha?
Same command as TEST:E

TEST:SM Did SCAN stop on middle digit?
Same command as TEST:L

TEST:SR Did SCAN stoponrightdigitoralpha?
Same command as TEST:G

SIGN FLAG: Remains unchanged.

ACCUMULATOR: RH slab contains the Scan Key,
which is considered to be dup-
licated in every slab of the Ac-
cumulator.

Note that the word “considered” indicates mere-
ly a convenient way of describing the operation.
In fact, only the RH slab of the Accumulator is
significant.

The entire Accumulator remains unchanged by
the SCAN operation.

R30: After termination 1, R30 holds
address of slab containing the
successful character of the A-

word.

After termination 2, R30 re-
mains unchanged.

G, L, E FLAGS: After termination 1, these indi-
cate the position of the successful

character within its own slab.

After termination 2, all these
flags are off.

JY: After termination 2, Processor
jumps to address stored in JY.
If desired, this jump can be sup-

pressed by naming J14 as JY.

OVERFLOW: Cannot occur.

33

SELECTIVE SCANNING:

As the characters in memory are compared
with the characters in the RH slab of the Ac-
cumulator, it is not necessary that «// the Digits
or Alphas of each slab be examined, In order
to specify which positions are actually to be
scanned, the positions in a slab are given “scan-
values’:

Digits |4 2 1

Alphas | 2 1

In the RH character of the variation, the pro-
grammer writes the sum of the scan-values of
those positions which he wishes the SCAN to
examine.

SCND:G3 means Scan Digits for Greater, ex-
amining only the RH and middle
digits of each slab (ignoring the
LH digit).

SCND:E6 means Scan Digits for Equal, examin-

ing only the LH and middle digits of

each slab (ignoring the RH digit).

SCNA:L2 means Scan Alphas for Less, examin-

ing only the LH alpha of each slab
(ignoring the RH alpha).

A “blank” as the RH character of the variation
means that all characters are significant. Thus:

SCND:G means the same as SCND:G7
SCNA:E means the same as SCNA:E3

PARTIAL ALPHA STORE

Op v oL oxgy A/B

P A S T| (V) X A
1 1 1 1 1 i i

L
1 1 1 1 1 l 1

L is length of A-word: up to 8 {or 9)

This operation may be performed only on Alpha information.

The Accumulator is stored, right-justified, in a part of the A-word.

If L =0, this operation does nothing.
PAST:XL Except the LH character of the A-word.
PAST:XR Except the RH character of the A-word.

PAST:XB Except both.
SIGN FLAG: Remains unchanged. The Sign flag is not stored in the A-word.
ACCUMULATOR: Remains unchanged.

OVERFLOW: XL: L greater than 8; 16 characters stored in A-word.
XR: L greater than 8; 16 characters, plus a zero, stored in A-word.

XB: L greater than 9; 16 characters, plus a zero, stored in A-word.

Examples: Shaded areas are unchanged.

gO I 00 I A B I C D I E F I Contents of Accumulator

3.slab A-word after PAST:XL

5.slab A-word after PAST:XL

3.slab A-word after PAST:XR

5.slab A-word after PAST:XR

3.slab A-word after PAST:XB

5-slab A-word after PAST:XB

34

LOAD ALPHA-TO-DIGIT

Op vV L] XY A/B

L D A D W) X A
1 1 1 1 i 1 1

Y L
1 1 1 1 L 1 L

L is length of A-word: up to 12 (or 13)
Y specifies Jump Register JY

This operation may be performed only on Alpha
information in Memory, which then becomes
Digits in the Accumulator.

The A-word is Loaded into the Accumulator,
right-justified, with its Alphas transformed into
Digits.

The Alphas of the A-word are transcribed, from

right to left, into the Accumulator. As each
character is transcribed, it is stripped of its zone

bits, and stored in the Accumulator as a 4-bit
Digit.
The operation terminates when either:
1. The A-word is exhausted; the Accumulator
is filled out to the left with zeros.
2. The Accumulator is filled, and the A-word is
not exhausted. Overflow then occurs.
Example 1:
1 23 4|5 F[P X
lo 0 0 0fo 1 234 5[67 7]
Example 2:
1 2[3 4|5 6|7 8]
§OOOO|012|345678|
30]o 0 o[o 0 2[3 4 5]s 7 8

%0lo0ofoo1]2 34

56 7|

{ﬂooo[ooo|234[567|

35

If any of the discarded zone bits of the A-word are
1-bits, the operation still proceeds to completion;
then the Processor takes its next instruction from
the address in JY, and sets link in J14. Otherwise
the Processor proceeds in sequence.

If L = 0, this operation clears the Accumulator.
LDAD: Load and condense the entire A-word.
LDAD: XL Exceptthe LH character of the A-word.
LDAD:XR Exceptthe RH character ofthe A-word.

LDAD:XB Except both. L may be equal to 13.
SIGN FLAG: Set positive by this operation.
ACCUMULATOR: Contains the condensed A-word.

JY: Processor jumps to address

stored in JY if any 1-bits in
zones. If desired, this jump can
be suppressed by naming J14
as JY.

OVERFLOW : If the A-word is too long.

A-word

Accumulator after LDAD
Processor jumps to address in JY.

A-word

Accumulator after LDAD

Accumulator after LDAD: XL

Accumulator after LDAD:XR

Accumulator after LDAD:XB

STORE DIGIT-TO-ALPHA

Op vV o[L] x/Y A/B

S T D A X A
i 1 1 ! i 1 1

L
I |] | i 1 1

L is length of A-word: up to 12

This operation may be performed only on Digit
information in the Accumulator, which then be-
comes Alphas in Memory.

The Accumulator is stored in the A-word, right-
justified, with its Digits transformed into Alphas.

The digits of the Accumulator are transcribed,
from right to left, into the A-word. As each digit
is transcribed, a pair of 0-bit zone bits are at-
tached to it, and it is stored in the A-word as a
6-bit Alpha.
The operation terminates when either:

1. The A-word is filled. If any non-zero digits

of the Accumulator cannot fit into the
A-word, overflow occurs.

2. The A-word has received 24 characters. If
the A-word is more than 12 slabs long,
overflow occurs.

If L = 0, this operation does nothing.

SIGN FLAG: Remains unchanged.

The Sign flag is not stored in the
A-word.

ACCUMULATOR: Remains unchanged.

OVERFLOW : 1. If the A-word is too small for
all the non-zero characters in

the Accumulator.

2. If the A-word is more than 12
slabs long.

36

ADD-SUBTRACT TABLES

ADDITION. Use this table for:

Add like signs

Subtract unlike signs

Add to Memory, like signs
Augment, add positive number
Count, add positive number

SUBTRACTION. Use this table for:

Add unlike signs

Subtract like signs

Add to Memory, unlike signs
but interchange Accumulator and Memory
for entry to the table

Augment, add negative number

Count, add negative number

If the Subtraction Table indicates that the result
of an operation ends with a borrow (for example
b823) the result is automatically complemented
and appears in the processor as negative (-177).

ADDITION

NO CARRY FROM PREVIOUS DIGIT-POSITION

Digits from Memory

[y
..0123456789&4»&&4“
...0123456789wdd£

&&..0123456789&.“2:
v}
mmu<&&..0123456789wd
9.,:<=&..0.|23456789w
(uu@.,::w&..0123456789

Gl ¥ QT RenNeQQ IS

vd

Ve r R e TeenegQ Ay

Nfr®eRkocadaateenee g s

66789wdn.um.mmﬂww@m

Mo oenNnowogoagaereeneaee@

T Mo Nw®oQg o daYTwe N e @

MO T oN oo vwen e

223456789mdd.um..dwﬂ

1123456789wdd.um.w;m

00123456789wdd.u4c.w
]

0123456789@7u&..
w

1943160y Jo Joppnuinddy wouy spbig

CARRY FROM PREVIOUS DIGIT-POSITION

Digits from Memory

.0123456789m.u.u3cd.m
..0123456789wdﬂﬁm
&..0123456789@4.,&0.
[}

m&..0123456789wﬂd
.,:E&..0123456789mlc
@,35&..0123456789m
GRTc ¥R T2eN R QP TS
WeQoaegwenee @ o0 ¢
N®e@gdaexnwen e sy
VM e R dreeNRQQ S0
Menmoeocgayraenaeego
N LN L
VT W ON®OeQ a2 TLeN R Q
NP T wonNoogagaTwen
123456789w.nnu3cm.m.mﬂ
0123456789wddﬁm.m.w

w

0123456789@9%&..

J84siBoy 1o sopnwnddy wouy subiq

37

SUBTRACTION

NO BORROW BY PREVIOCUS DIGIT-POSITION

Digits from Memory

38

o 3
N « 8
les e . 1@ e R TRy R° 1@ S i £ 23 82 Y22 YR
2 £ Dvd . o~
W LRz ¥R TR YRS e g 2z 2Ty R°
. . (3]
d|le s 1@ g 2T RN QO oflvs ¥ 2 2 Q 3 ¥ 2 X2 LRI
g g
. L] N M € un
Il 4z ¥ x@mgryReg®” 7 Sl s r @z g 2T22xy2g 0 -
iz exoenege” 8O Ay 2 @z 8 R TGO - N0
5 (=]
sl z 9 2 g menR Qo w0 m 9la @ T ¥ 2 ¥ 2 2 xR 2 - &N o
8
oz g 2xoeeygge -~ TR g ol T 2222y ge " e
[
m ™~
w2 Teeryegem 87T OEn 3 oz 2 egegrngge - e a0
w s
wm
N2 Y 2ugognego~a ms 0N WMm 7,00.%,4”%%”%”01234567
w 2
& .
Olg M e R R QO - N0 9N 2@ >Z o2 x gy O T HONS
m
w wn
nw @ ne g - 8O T 0o N 00) w2 g9 xRN O N ® o
[+
0
tle RN g o~ 8 m T woN ® 0O - @ dm g n 2 g O~ O T DO @
HMWO]23456789@’3<& 3%”“”0]23456789@9
o n N ©® -
M”0123456789@93=m& 2”%”0]2 3 o o ® e 1vis
.00,0123456789@95&&. 1“”0123456789@955&
O - N T W VO N ©® O @ ~ NS o o v 0”0123456789@93&&.
g g
0123456789@9m&..G O~ N M T D ONO®O S « = o + 1
v v

10y51B8y 10 JoppjANIdY Woiy siBid J9ysiBoy 10 JOJpIAWNIDY WOl) suBig

An Educational Publication
Marketing Services Department

THE NATIONAL CASH REGISTER COMPANY — DAYTON 9, OHIO

ATy
Lot L]

Woh SP—1128 ESTTT

	001
	002
	003
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	xBack

