N/ C R

REFERENCE
MANUAL

NEAT
COMPILER

NCR 315

315
NEAT' COMPILER

THE NATIONAL CASH REGISTER COMPANY
DAYTON 9, OHIO, U.S.A.

PRINTED IN U. S. A,

The NCR 315 NEAT (National Electronic Autocoding Technique) System is a series of programs
and techniques developed by the National Cash Register Company for the continued superior sup-
port of NCR computer products and customers. This is a complete package to enable the
programmers to write and process efficient computer programs with a minimum expenditure
of time and effort. Alloftheprograms which make up the series will run efficiently in conjunc-
tion with one another.

In order to obtain the greatest benefit from the NCR 315 NEAT Compiler, it is necessary to un-
derstand the functions of the associated programs(CRMX-II and the CRAM Librarian or STEP
and the Magnetic Tape Librarian). Where necessary to the understanding of the Compiler, de-
tails of these programs have been included in this manual; however, for complete information
about the supporting programs in the NEAT System, refer to the manual covering that particu-

lar program.

1.

II.

II1.

TABLE OF CONTENTS

INTRODUCTION . . . ottt et et et e e et ettt e i s s oas 1
A. Equipment Requirement 1
B. Compiler Functions 1
1. Actual Machine Code i, 1

2. Automatic Programming 1

a. Symboliccoding 2

b. Assignment of absolute memory addresses 2

c. Assembly function, 2

d. Printout e e e e 3

€. RemarKksS i i it e e e e e e e e 3

f. Control instructions oo 3

3. MacrolInstructionso 4

4. Scientific Subroutines o e n e 5

C. File Tables i v it e e et e e e e e e e i et e e e 5
D. Executive RoOutines i v it v it i it i oo 5
E. Librarian i e e e e e e e e e e e e e e e 5
F. ProcedUre v i v vt it ot et et ettt i e e e e s 5
G. Sequence of Events 6
EXPLANATION OF THE PROGRAMMING WORKSHEET 8
A. Programming Worksheet 8
1. Pageand Linet 8

2. Reference i i e e e 10

3. Operation (Op:V)t ittt i e 10

a. 315 machine instructions 11

b. Control instructions 00 11

c. Macroinstructions 0 e 11

4, Length o e e e 11

B X e e e e e e e e e e e e e e e e 12

6. Operands and Remarks 12

A, Operandso e e e s 12

b. Useof literalasoperandovuvvunonen. 13

c. Remarks @ . i e e 13

7. Identification e - 13

B. Writing Machine Instructions 13
1. Single Stage Instructions 14

2. Double Stage Instructions 14

C. Compiler Instruction Format 15
DEFINITION OF DATA i i e e e e i i e e 16
A, General e e e e e e e e e e e 16
B. Organizationof Data, 16
C. Conceptof Levels ittt 17
D. Data Definition e e 18
E. Use of the Programming Worksheet for Data Definition 19
1. PageandLine 0t iiiieneneenenenn 19

2. Referencet 19

3. Operation 19

4., Level ... e e e e e e 20

5 Z P 20

6. Length, Type and Remarks 20

1v.

TABLE OF CONTENTS (Cont.)

RS = =3 V- o <= O R 23

8. Identificationttt 23

F. Addressingof Datao0ee v 23
1. Relative Nature of 315 Addressing 23

2. Static AdAresSes . . . v vt ittt e e e e 23

3. Dynamic Addresses 24

4, Indexing . . . v i vt it i i e e e e 24

G. DATA e e e e e e e e e 25
H. INDEX . . ittt i it i et et et i et it it eaeee oo en s 26
I. REDFN . . ittt i it ittt et e e e e i e e e e 27
J. CRAM Track Labels v it in e ennen 29
K. Variable Length Recordscccunenon. 30
1. CRAM . . . it i i e et e e e e e e e e 30

2. Magnetic Tape0ttt 30
COMPILER CONTROL INSTRUCTIONSt 31
A, General e e e e e e e e e e e 31
B. Description of Control Instructions 31
1. For Definition of Constants 31

a. ALPHA e e e e 31

Be DIGIT . i ittt e it et et e et et e e e 32

C. NUMBER . .. i ittt it ittt ittt i sae s 33

d. PAIR . . . e e e e e e e e e e e 34

€. SLAB . . it e e e e e e e e e 36

. SGL vt i e e e e e e e e e e e e e e e e e e 36

2. Literal Constants ittt i ittt e o 36

a. ALPHA literal i it i i 37

b. DIGIT literal i it it ittt it e it en e 37

c. Numeric literaly 38

d. Referenceliteral 39

3. To Control the Location Counter 39

a. ORIGIN e it e e e i e 40

b. OVRLAY. e e e e e e . 41

Co SAVE. . it it e e e e e e e e e 42

d. LITORG . . ot o vt e et et ettt e e i i e e e s 42

4, TFor Referencing v iv v v v v ve ot n 43
EQUATE it et e it e e e 43

5. For Program Addressing 44

2. BASE . . e e e e e e e e e 44

b, JVAL . . e e e e e e e e 45

6. To Modify the Printout 45

a. PAGEo it e e e e 45

b. UNLIST . . ot it it e e e e e i e e e 46

C. LIST oo i i i i e e e e e e e e e e e 46

7. To Delete a Line During Initial Compilation 46
0, O 46

8. To Delete One or More Lines During a Recompilation 46
10117 0 45 46

9. For Definitionof Data 47

10. To Identify Object Program File Specifications 47

a. FORMAT C .. ittt e et et e et e i 47

b. FORMAT T .. . ittt it i i i it it ie e e 47

11. To Identify Compiler Input and Output Specifications 47
NEAT ot it e e e e e e e e e 47

12. To Identify the Last Line Input to the CompilerRun 48

END . ..t e e e e e e 48

VII.

VIIL

TABLE OF CONTENTS (Cont.)

13. To Identify the Last Card of a Correction Deck Input

to a Recompilation 48
ENDMOD . . i it i e et st et e e aas oo oo s oo s o 48
C. AdAresSing v oo v it it e e e e e e 48
1. Types of AdAresseso v e vvee e e 48
a. Simple address 48
b. Compound address 49
c. Asteriskaddresso e 49
d. Reference literal address 49
e. Positive AorB: e e e e e e e e e e e e e 50
f. Blankoperand 50
2. Descriptive Character of Symbolic Addresses 50

3. To Modify Descriptive Definitions by Using Length and
X ENtries . . v o o e e e e e e e e e e e 51
MACRO INSTRUCTIONS . . o ittt e e i e e e e e s 52
A, General e e e e e e e e e e e e e e e 52
B. Writing Macro Instructions 52
C. Scientific Subroutines i e oo n e 53
COMPILER INPUT i e e et e et e et e e e e e 54
A. Control Worksheet, Form F-2691 54
B. CRAM File Tables it 59
C. CRAM File Specification Worksheet, Form F-7304 60
D. FILEC e i e e e e e e e e e e e e e e e 66
E. Magnetic Tape File Tables 67
F. Magnetic Tape File Specification Worksheet, Form F-7304 ... 67
G. FILE e et it e e e e e e e e e e e e e 73
H. ConventionsS v v v i it it ettt v e e st e e e 74
1. SequenceofInput 74
A, NEAT o e e e e e e e e e e e e e e e e T4
De END oottt i it e e e e e e e e e e s 74
c. ENDMOD i i it ittt vttt toa et e s o s s s e T4
d. FINISHC or FINISHt 74
2. Other Requirementso 74
a. FORMAT Cand FILECc0ov e, 74
b. FORMAT Tand FILE 74
I. Changes . . . v v it it it e e e et e e e 75
J. DeletionS . . v v v v it e e e e e e e e e e e e 75
COMPILER OUTPUTottt ettt it it et et e e e s 76
A. CRAM or Magnetic Tape 76
1. Object Program cuve e onnenne 76
2. Recompilation Master oy 76
B. Optional Punched Output 76
1. Punched Paper Tape ot vt 76
2. Punched Cardsot vtnnennuenoeeon 76
C. Printout @ . i e e e e 76
KEYPUNCHING PROCEDURESo 80
A, General i e e e e e e e e e e e e e e e e 80
B. Paper Tape o ot it ittt e e 80
1. General e e e e e e e e e 80

B W N

un

By o o

Figure No.

DU W DN

oo 3

Table No.

I
I

TABLE OF CONTENTS (Cont.)

Control Worksheet, Form F-2691
File Specification Worksheet, Form F-7304
Programming Worksheet, Form F-2689
a. Punching the references
b. Punching the remarksc...
c. Punching the operands
Correcting Punching Errors"
End of Paper Tapeo vv v
ched Cards
General e e e e e e e e e e e
Control Worksheet, Form F-2691
File Specification Worksheet, Form F-7304
Programming Worksheet, Form F-2689
a. Keypunching the remarks
b. Keypunching the operands
Correcting Keypunching Errors
Keypunching Non-IBM Characters

......................................

LIST OF ILLUSTRATIONS

Title

Run Charts Showing Sequence of Events
Programming Worksheet
Control Worksheet, CRAM
Control Worksheet, Magnetic Tape
File Specification Worksheet, CRAM

CRAM File Table Showing Fields Affected by Entries

on File Specification Worksheet
File Specification Worksheet, Magnetic Tape

Magnetic Tape File Table Showing Fields Affected by

Entries on File Specification Worksheet

LIST OF TABLES

Title

NCR 315 NEAT Compiler Command Formats
NCR 315 Character Punch Configurations

.............................

Page

56
57
61

62,63
68

70,71

I. INTRODUCTION

The 315 NEAT Compiler is an automatic programming system which will greatly reduce the time
and effort required to prepare programs for the NCR 315 Computer. The programmer can use
mnemonics and symbolic and relative references to write a source program independent of fixed
memory locations; control instructions to direct the compiling process; and macro instructions
to call upon an expandable library of macro subroutines. The Compiler will process the source
program, assign memory locations to all instructions and data, generate and insert subroutines
where indicated by macro instructions, and produce a complete object program in the language
of the 315 Computer.

A.

EQUIPMENT REQUIREMENT

The 315 NEAT Compiler is designed to be run on an NCR 315 Computer System with the
minimal equipment:

A 10,000 slab memory

Five magnetic tape handlers; or one CRAM unit
A paper tape or punched card reader

A high-speed printer

The Compiler will of course operate efficiently on a 315 system with a larger memory
(15,000, 20,000, 30,000, or 40,000 slabs), and will compile programs to be run on 315 Com-
puters with any size memory.

COMPILER FUNCTIONS

1.

Actual Machine Code

A computer program requires: (1) instructions to the computer to process data, and
(2) the data which is to be processed.

During the running of the program, both the instructions and the data are stored in-
ternally in the computer in numbered locations which have been previously designated
to receive this information.

The instructions are composed of several elements, some or all of which are present in
every instruction: (1) theoperation whichthe computer will execute, (2) the address of
the memory location(s) which contains the data affectedby the operation, and (3) in cer-
tain situations, the address of the next instruction to be executed.

The computer operations and the memory addresses are expressed by combinations of
decimal numbers and other characters which are represented in memory by a series
of coded binary digits. It would be impractical for a programmer to attempt to think
and write using binary notations. For convenience, the programmer can express his
program in decimal numbers which correspond to the operations and to the actual
addresses in memory in which the data and instructions are to be stored.

Using this notation, the programmer can write the coded decimal equivalent of the ele-
ments of each instruction and of the addressesin memory that are referenced.

Automatic Programming

Writing a program using actual machine code and actual memory addresses is time
consuming. Also, many errors are possible, both in writing the program on the
programming worksheets, and in transcription to punched paper tape or punched cards
which serve as input media to the computer, A number of techniques are available to
avoid this difficulty, some of which are described as follows.

Symbolic coding

For ease in handling, symbols or symbolic names can be assigned to much of the
program data. This permits the use of terms or combinations that are an aid to
memory, or ''mnemonic". The program (called the source program) is punched
from the programming worksheets into paper tape or cards and becomes input to
a Compiler program which converts the symbols into binary form and produces a
program in the language of the computer on which this program will be run, This
finished program is called the object program,

1) Operations

Mnemonic symbols can be assigned to machine operations, for example: "
which represents the operation Load Accumulator can be written "LD", and
157" which represents the operation Jump can be written "JUMP'", LD and
JUMP are punched into paper tape or cards and are converted by the Compiler
into the binary representation of 1 and 57as required by the computer on which
the object program will be run.

2) Addresses

The programmer can assign symbolic namesor references (sometimes called
tags or labels) to the data, and to the memory addresses of this data. Sub-
routines or other program points may alsobe referred to by assigning a name.
These names may be mnemonic, may be abbreviations, or may be simply com-
binations of letters of the alphabet or of letters and numbers. In this way the
programmer need not concern himself with where in memory the data is
stored; he merely writes the name of the unit as the operand of an instruction,
For example: LD AMOUNT. The Compiler will determine the memory loca-
tion assigned to the AMOUNT field, and will use this address wherever the
name AMOUNT appears as the operand of an instruction. If the load instruction
entry were assigned the name CALCULATE, then a jump could be taken to this
instruction by writing: JUMP CALCULATE.

Assignment of Absolute Memory Addresses

The Compiler must assign absolute (actual) memory addresses to all parts of the
object program. This includes the assignment of addresses for data input/output
areas, all constants used in the program, and all instructions which constitute the
object program. To do this, the Compiler utilizes what is normally termed a
"ocation counter''. A more detailed explanation of the location counter is pre-
sented in Chapter IV,

Assembly function

Assume that in the following instructions AMOUNT is a two-slab field located at
03210, and the LD instruction is assigned memory address 04321,

The following entries:

T Towern INSTRUCTIONS: OPERANDS
REFERENCE O | V ne| X [DATA DEFINITIONS: LENGTH, TYPE
8 9 10 11 12 13 14 15 16 1 19 20 21 12:23 24|25 26|27 28)29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
CALCULATE L. ! AMOUNT
Pl e W Pt i Tt Fbt Y | —1— ' 2 ' PP TR T

J UMP') ICALCULATE

would be converted into:

XxF C| A
311[210

457321

The creation of an object programinabsolute form from a series of instructions in
symbolic form is called an "assembly' process, and is an inherent feature of the
Compiler.

Printout

An important function of the Compiler is that it will produce a printout which will
include the entire source program and the object program showing the absolute
addresses allocated for each instruction, constant, data unit, etc., and the contents
of these memory locations.

The printout also contains a listing of errors that have been detected by the Com~
piler and their point of occurrence. Extensive checks are made throughout the
compilation process so that programming errors which can be checked are noted

to the programmer,

Another portion of the printout contains a cross-reference listing of all symbolic
references used in the program with their absolute addresses, showing where they
were defined and where they were used as operands.

The printout is a valuable aidtothe programmer. It provides a picture of internal
memory and a complete record of hisprogram, and enables him to locate and cor-
rect errors in his program and to make whatever additions, deletions, or substitu-
tions may be necessary.

Remarks

Another useful feature of the Compiler is the ability to carry "Remarks'. These
are notes written on the programming worksheet by the programmer and punched
with the instructions, and appear on the printout. The remarks perform no function
for the Compiler but are useful for documentation and checking purposes.

Control instructions

In writing a program tobe compiled, the programmer uses symbols in lieu of actual
machine operations and addresses. This produces a program in an artificial or
"pseudo’ language. These pseudo codesareina form that is similar but not iden-
tical to the machine code format for the instructions which they represent.

In addition to representing machine instructions, pseudo language can be used to
supply special information which will be required by the Compiler. These
directives--called '"control instructions'--while affecting the compiling process,
will not introduce any instructions into the object program. Control instructions

are used to describe data and constants, and to direct the Compiler in the alloca-
tion of memory space and assignment of addresses.

For example:

[V 2T INSTRUCTIONS: OPERANDS
REFERENCE o Tever DATA DEFINITIONS: LENGTH, TYPE
8 9 10 11 12 13 14 15 16 17 ': 19 20 21 22:23 24|25 26|27 28|29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48'l
AMOUNT. UMBER| 2/ [1223
1

The control instruction NUMBER directs the Compiler toplace the numerals 1223
right justified in two slabs of memory to be referred to as AMOUNT. Assuming
that at the time the instruction is converted into absolute code, the next available
location in memory is 03210, the Compiler will allocate memory location 03210 and
03211 and will remember that the length of AMOUNT is two slabs and contains:

03210 03211
0‘ 0' 112 2 3

When the reference AMOUNT is enteredasthe operand of an instruction, the Com-
piler will use the address and length of AMOUNT in creating the absolute code.

For example:

! LENGTH INSTRUCTIONS: OPERANDS
REFERENCE
¢ Op Vv LEVEL X DATA DEFINITIONS: LENGTH, TYPE
8 9 10 11 12 13 14 15 16 17 920 2 22123 24|25 26127 28§29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
D)) AMOUNT

becomes:

X xF C A

3 1 1]2 1 0
1

A n L

Thus, the programmer can write AMOUNT to indicate the address of the memory
location containing the value 1223, In this way, he need not be concerned with the
length of this particular constant, or where in memory the constant will be stored.

The use of a Compiler program provides many benefits. The source program be-
comes easier to write. Mnemonics are easier to learn and to use than are machine
codes, Specific memory addresses can be ignored completely. There are fewer
possibilities of error in the writing of a program and in its conversion to punched
paper tape or punched cards. Less time is required between the definition of a
problem and its production running. Several programmers can work together writ-
ing separate parts of a program without loss of time or efficiency.

Macro Instructions

One of the mostpowerful features of the Compiler is the ability to call upon a library of
macro subroutines. These subroutines exist in a generalized form as part of a macro
generator which is stored in a library (either on CRAM or on magnetic tape).

The programmer simply writes a line of coding (referred to as a macro instruction) on
the programming worksheet, at the point where the subroutine is to be executed in the
object program. The macro instruction consists of the name of the subroutine and any
parameters (entered as operands) that are required so that the subroutine can execute
its function for this particular program. The Compiler will obtain the desired macro
generator, identified by the macro name, from thelibrary, and will transfer control to
it.

The generator contains within itself a subroutine in skeleton form. The generator se-
lects the appropriate sections of the subroutine and modifies individual instructions to
suit the parameters. These instructions are generatedin symbolic form and the Com-
piler will assign the appropriate memory locations to this completed subroutine and
convert the instructions to absolute form.

4, Scientific Subroutines

For scientific applications, a Compiler is available having a complete package of
subroutines necessary to perform higher order mathematical formulae. Examples of
these subroutines include calculation of square root, complex addition and normalize,
floating decimal operations, integration, algebraic operations, and many others.

FILE TABLES

An advanced technique employed by the NEAT Systemis the use of file tables. These tables
are created by the Compiler and will be held in memory during the running of the object
program. They will contain the parameters pertinent to the various CRAM or magnetic tape
files, and will alsobe used to store data generated during the running of the object program,
In writing the macro instructions in the source program, in most cases it is only necessary
to enter the reference to the file table for a particular file. The macro generator and the
Compiler will supply the appropriate addresses of the fields in the file table and insert them
in the machine instructions in the generated subroutine.

EXECUTIVE ROUTINES

A complete package of executive routines is provided to automatically handle the many
repetitive and routine situations encountered during the running of a program. This in-
cludes file label checking, end-of-file procedures, read-write error procedures, rescue
point procedures, overlay control, and other important routines. These routines make con-
siderable use of the file tables.

CRMX-II is the executive system provided by NCR for programs using CRAM

STEP (Standard Tape Executive Program) is the executive system provided by NCR for
programs using magnetic tape.

LIBRARIAN

Object programs produced by the Compiler may be used to add to, delete from, or change
the program library. These functions areperformedby a CRAM Librarian for programs on
CRAM, or by a Magnetic Tape Librarian for programs on tape.

PROCEDURE

The programmer must provide the Compiler withall the information required to produce the
object program, This information will be in the form of machine instructions, control
instructions, macro instructions, constants, remarks, file table information, etc., which
constitute the source program, The Compiler will use this source program to produce the
object program.

Following is a brief statement of some of the steps involved in using the 315 NEAT
Compiler.

1.

The programmer writes the source program in the form of entries in a specified format
on printed forms designed for convenience in writing and keypunching,

Entries on these forms are keypunched into paper tape or cards.

The punched paper tape or cards become inputto a computer Compiler run, The main
output of this run is the object program on CRAM or on magnetic tape. The object
program may also be output on punched cards or paper tape.

The object program on CRAM or magnetic tape becomes input to a computer Librarian
run. This run incorporates the program as a part of a new Program Library, making
any changes to the program as directed by the programmer.

The object program on the Program Library becomes input to a computer run for
processing data, The output of this run may be one of the following, depending upon
the application and equipment involved: CRAM, magnetic or paper tape, punched cards,
printout, or inquiry.

SEQUENCE OF EVENTS

Figure 1 is a set of run charts showing the sequence of events normally involved in compil-
ing an object program which will beusedto process data, In the figure, a CRAM system is
shown; however, a magnetic tape system may be used as well. The figure illustrates the
compatibility of the NCR software programs, showing how the output of one program be-
comes the input of the nextprogram. It should also be noted that, for simplicity of illustra-
tion, only the minimumnumber of CRAM units necessary to convey the functions of input and
output are shown. Thisisnotnecessarily the actual number of CRAM units required, as this
will vary, depending upon the individual user's requirements.

COMPILATION RUN

INPUT

COMPILER
PROGRAM

9

PAPER TAPE
OR
PUNCHED CARDS

r—

SOURCE
PROGRAM

_%_1

]

315
IPROCESSOR

COMPILER
PRINTOUT

OUTPUT

OBJECT
PROGRAM

re
! PAPER TAPE
OR

'PUNCHED CARDS|

]

OPTIONAL
OUTPUT

LIBRARIAN RUN

INPUT

OBJECT
PROGRAM

T

OUTPUT

UPDATED
PROGRAM
LIBRARY

EXISTING PROGRAM
LIBRARY WITH

A LIBRARIAN PROGRAM

|

]

|
4

L]
e
| paper TAPE |
| OR

' PUNCHED CARDS |

L J
LIBRARIAN

CONTROL
INSTRUCTIONS

315
PROCESSOR

LIBRARIAN
PRINTOUT

—

PRODUCTION RUN

INPUT

PROGRAM
LIBRARY

PUNCHED CARDS

MICR I

|oPTICAL READER|

CRAM

| MAGNETIC TAPE |

INQUIRY |

Figure 1. Run Charts Showing Sequence of Events

MASTER
FILE

OUTPUT

Dx ding upon the application and

315
[PROCESSOR

equipment used, the output may be:

CRAM
MAGNETIC TAPE
PUNCHED CARDS

PAPER TAPE
PRINTOUT
INQUIRY

II. EXPLANATION OF THE PROGRAMMING WORKSHEET

A. PROGRAMMING WORKSHEET

The Programming Worksheet, Form F-2689, is provided for convenience in writing and
keypunching the source programs. Each line on the sheet has the maximum capacity of 80
characters, corresponding to the 80 columns of a punch card or 80 characters punched
into paper tape. In general, an entry on one line of the programming worksheet will
represent one instruction in the source program.

The following is abrief description of the entries in the various columns of the programming
worksheet,

1. Page and Line (columns 1-6)

The Page and Line columns are used to indicate the sequence in which lines of coding
are to be compiled., They may contain any of the 64 characters from the 315 Code
Chart; however, if a sort is to be performed externally, characters must be used
which will be recognized by the sort equipment being used.

A unique page number may be assigned to each programming worksheet, or one page
number may include several sheets, The line numbers are assigned in ascending
alphanumeric sequence within the page number. Each line of coding is assigned a
line number,

Page and Line entries should consist of three characters each., Spaces (or punched
card blanks) should not be used unless it is intended that they have their literal value.
If no value is desired, leading zeros should be entered. For example:

LINE LINE
4 5 6 4 5 6

9.0 should be written 090
100 100

Otherwise, an out-of-sequence condition will result since ¥,9,0, has a greater alpha-
numeric (binary) valuethan,1,0,0,. (The symbol @ represents the character "'space'.)

In assigning page and line numbers, allow for the possible insertion of additional lines
of coding, This can be done simply by leaving a gap between numbers on subsequent
lines. For example, the assignment:

LINE

4 5 6
110
120
130
140

would permit nine additional lines (counting numerically) tobe inserted between any two

N c R PROGRAMMING WORKSHEET

31 5 N EAT' Program Prepared by
COMPILER D o

of

: REMARKS

PAGE REFERENCE op | v furer INSTRUCTIONS OPERANDS IDENTIFICATION
! ovey DATA DEFINITIONS; LENGTH, TYPE REMARKS

12 3 8 9 10 1) 12 13 14 15 18 V7 1920 21 22'23 24|25 26|27 28(29 30 31 32 33 34 35 36 37 I8 29 40 41 42 43 44 45 46 47 4!149 50 51 52 53 54 55 56 57 38 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74|75 76 77 78 79 80
| 1

. i) — . R
1 1
l 1
1 1
I |
1 I
A .

|
1 1
) \
1 1
] I
I i
\
I i
1
I 1
) |
.) \ . —
\ ,
t I
1 i
1 I
! |
1 1
| 1
1 1
i 1
I I
t . I — '
] 1
1 I
') 1)) | !

1]

T2 3 9 10 11 12 13 14 15 16 V7 i' 19 20 20 22: 23 2425 26|27 28(29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 48 47 A!:AV 30 51 52 53 54 55 56 57 58 59 60 61 42 63 84 45 66 67 48 49 70 7V 72 73 74

F-2689 ® TRADEMARK *SERVICE MARK PRINTED IN U S A

Figure 2. Programming Worksheet

10

existing lines without the needto renumber or to repunch any lines. If letters and other
characters, as well as numbers, are beingusedfor Line entries, this would provide 63

additional lines.

The Page-Line column may be left blank; however, this is not recommended.

Reference (columns 8-17)

In writing the source program extensive use can be made of symbolic names and ref-
erences. These names (sometimes called tags or labels) are assigned to identify the
data which is to be processed, and the constants and working storage required by the
program, as well as instructions and other lines of coding to which the program will
refer. A name canthenbeusedas a 'reference" to the data, or memory location, etc.,
which it identifies. Thus the reference is entered as the operand of an instruction
rather than the actual memory address.

A reference may be from one to ten characters long and may be made up of any of the
letters of the alphabet (A to Z) and any of the decimal numerals (0 to 9) but must con-
tain at least one letter. A name may not contain a space.

There is one exception to this rule: that is in
the assignment of program names. See Pro-
gram Names, Chapter V.

Names may be mnemonic or abbreviations, or simply arbitrary combinations of let-
ters of the alphabet or letters and numbers. For example, a Transaction File could
be named:

TRANSFILE or TRFILE or F3

The Compiler will equate the reference with the address of the coding or the memory
area resulting from this line. If theline contains a control instruction which sets up a
constant or defines a data unit, the Compiler will also associate the length and the
characteristics of the coding or memory area resulting from this line. Thus, a refer-
ence is said to be "defined'.

A reference name used as the operand of an instruction must be defined once and only
once (must appear once in the Reference column of some line).

Since references mustbe unique, no two lines of coding may be assigned the same name.

At times, it may be convenient to assigna name merely for identification even though it
may never be used for reference elsewhere in the program.

Reference entries must be left justified. Maximumfield size is 10 alphanumeric char-
acters.

Note: An asterisk (*) enteredincolumn 8 (the first column of the Reference field) sig-
nifies that the entry on this line is to be treated as a remark. See Remarks.

Operation (Op :V) (columns 19-24)

The Operation column (designated Op :V) isusedto indicate the purpose of the instruc-
tion represented by that line of coding. There are three classes of instructions avail-
able for use with the Compiler. These are: (1) 315 machine instructions, (2) control
instructions, and (3) macro instructions.

11

a. 315 machine instructions

These instructions specify particular computer operations, e.g., Load Accumulator,
Add to Accumulator, Store Accumulator, Add to Memory, etc. The operation
portion of a machine instruction is written using the mnemonic form, e.g., LD,
ADD, ST, ADD M, etc.

The mnemonic operation code is entered left justified in the Op portion of the col-
umn, and the variation code, if applicable, is entered left justified in the V portion,
Machine instructions are described inthe 315 Programming Handbook, MD 315-02.

b. Control instructions
These instructions, e.g., DATA, ALPHA, SAVE, END, etc., facilitate the definition
of data and constants, assignment of memory locations, and otherwise control the
compiling process.

Control instruction mnemonics are entered left justified in the Operation column,
Control instructions are described later in this manual,

c. Macro instructions

These instructions, e.g., MLDR, DYDUMP, NEXTIN (for CRAM), or NEXTI (for
magnetic tape), etc., are each replaced by the Compiler with a series of instruc-
tions which will be generated using the library of macro subroutines.

Macro instruction mnemonics are entered left justified in the Operation column.
Macro instructions are describedinthe 315 Macro Instructions Manual, MD 315-44,

Caution: The Operation entries must be spelled and written correctly. The Compiler
will compare the entry with lists of instruction names. If the entry does not corres—
pond exactly to any in the lists, it will be treated as an error.

Length (columns 25 and 26)

Length entries represent the length of the operands in slabs and may be either left
justified or right justified. Length entries mustbe numeric. Symbolic entries are not
permitted in this field.

Some single stage machine instructions (LD, ST, ADD, etc.) normally require a Length
entry; however, with the Compiler, lengthneedbe entered only where the operand is an
absolute address.

The Length column can usually be left blank since most instructions in the Compiler do
not require a length entry.

Length is not required in a single stage machine instruction where the operand is a
symbolic reference., The Compiler will use the length associated with the descriptive
definition of the symbolic operand; that is, the length assigned at the time the data unit
or the constant was defined.

If a length is entered with a symbolic operand, then for that instruction only, the Com-
piler will use thisnewlengthinplace of that associated with the operand. This permits
the temporary modification of the length of a machine instruction operand, but only for
the instruction containing the modifying Length entry., If Length is left blank the next
time the symbolic operand is used, the Compiler will use the length as originally
defined.

Caution: A blank length field witha compound operand field (e.g. AMOUNT + TAX) will
be assigned the length associated with the first term (sic. AMOUNT),

12

5.

Length is never required with any double stage machine instruction (MOVE:B, MOVE:E,
SAUG:R, etc.).

Length is not required with most control instructions--except ALPHA, DIGIT, and
NUMBER.

Length is usually not required with macro instructions.
X (columns 27 and 28)

X entries usually represent index registers associated with the operands and may be
either left justified or right justified.

X is used mainly with Data Definitions, with machine instructions having absolute
operands, and occasionally with some of the control instructions or some of the macro
instructions.

X, like Length, can usually be left blank. X may also be symbolic,
X is not required in machine instructions with symbolic operands, and if entered, the
Compiler will use this index register for this one instruction, instead of the index

register originally associated with the operand.

Operands and Remarks (columns 29-74)

This is a combined column containing Operand and Remark entries as indicated below.

a. Operands

The entries in the Operands portion of the column are determined by the charac-
teristics of the instruction.

Operand entries are left justified, When an instruction requires several operands,
they are written as a continuous statement, separated only by commas, Where a
particular operand of an instruction is not required, it is not entered; however a
comma is entered in its place, if it is followed by another operand. Thus trailing
commas can be omitted.

Operands may not contain spaces nor may there be spaces between operands, and
an Operands entry may not be extended to the next line. (Macro instructions are
the exception to this rule. See Writing Macro Instructions, Chapter V,)

Two consecutive spaces occurring in this column denote to the Compiler that this
is the end of the Operands entry and that Remarks follow.

References may be usedas operands of instructions. Normally the reference could
either have been defined previously in the source program, or in some later por-
tion. However, there are four control instructions (ORIGIN, OVRLAY, SAVE, and
EQUATE) which require that where a reference is used as an operand, it must have
been defined earlier in the source program,

If an asterisk (*) is entered as an address, it represents the address of the first
slab of coding generated by that line.

Caution: Absolute addresses are permitted as operands; however, great care
should be taken since their correct use requires a thorough knowledge of the
Compiler program and of the CRMX-II or STEP routines. Symbolic operands
are more flexible and much more convenient to use.

13

In writing an absolute address, leading zeros may be omitted, For example, the
entry 123 would be treated by the Compiler as 00123,

b. Use of Literal as Operand

A literal is a unit of data whose value is identical to those characters composing
the unit. A literal may be enteredas an operand by writing in the Operand column
the number sign "#'" and a letter designating the type of literal, followed by the
actual value enclosed in parentheses. One-slab literals will be compiled as the
operand of the instruction for those instructions that permit it, Literals larger
than one slab will be placed in a storage area (called the Program Safe Area) and
the address of this literal will be storedas the operand of the instruction. Writing
of literals is explained later in greater detail. (See Literals, Chapter Iv.)

c. Remarks

The information entered in the Remarks portion of the column is punched and will
be included by the Compiler in the source program listing in the printout, but is
not treated as part of the object program, Remark entries may contain any charac-
ter in the 315 Code Chart, including spaces.

Remark entries are usually comments which may be helpful in documenting and
checking the program, For example, remarks may be used to explain the functions
of the program or to state the reasonfor a particular instruction when its purpose
is not obvious.

As was stated above, two spaces (blanks) indicate that the following are remarks.
Remarks may begin anywhere in the column provided there are at least two spaces
between the last operand and the remarks. However, a listing is much easier to
read if the lines have a common left margin, and for this purpose, column 49 of the
programming worksheet is marked with a vertical broken line. For uniformity, and
for convenience in keypunching and reading, remarks should begin at column 49.
But this is merely a convention, and if the last operand extends past column 47,
leave two spaces, then start the remarks, if any.

A long Remarks entry that would extend past column 74 can be continued on the
following lines. Simply assign the next line number, write an asterisk (*) in col-
umn 8, and continue the remarks.

Note: An asterisk (*) entered in column 8 (the first column of the Reference
column) signifies that the entire line is to be considered a remark, In this case,
the remark may begin anywhere on the line from column 9 on.
7. Identification (columns 75-80)

The Identification column is not used with punched paper tape.

When punched cards are used, an entry in this column permits a six character identifi-

cation to be punched into each card so that it will be possible to visually identify the

program to which the card belongs. However, identification is for external use only.

The Compiler does not check these columns.

Any character in the 315 Code Chart may be used.

B. WRITING MACHINE INSTRUCTIONS

Machine instructions are written on one line of the programming worksheet. Entries are
made according to the following pattern:

14

Column Entry

Op Operation code

A% Variation code

Length Length

X Index Register

Operands A operand (then B and Y operands if double stage instruction)

Single Stage Instructions

For example: The instruction to add the contents of the accumulator to a two-slab
memory word beginning at address 400 relative to index register 7, could be shown
on the flow chart as:

OpV L X A
(:) abp:M L2 (7) (400)

The corresponding entry on the programming sheet would be:

o 1 v [rerets INSTRUCTIONS: OPERANDS REMARKS
P ! LEVEL DATA DEFINITIONS: LENGTH, TYPE REMARKS
19 20 2 22}23 24125 260127 28129 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 43149 50 51 52 53 54 55 56 57 58 59 60 61 .

ApD M | 2| 7l400 '

(PR PR YRR N TRNNR JRNY JRNN PR TR PR PN Y
I

This would be converted by the Compiler into the absolute format of a single stage
instruction and stored in two slabs as:

X xF C A

7 1 914 0 0

Actual values may be used to designate length, index register, and memory address for
each instruction, as shown above. However, itis more common and more advantageous
to use the various symbolic and relative addressing tools provided by the Compiler.
Thus, this instruction could be written simply:

LENGTH INSTRUCTIONS: OPERANDS

Op V A [
P Op 1 V Fner| X [DATA DEFINITIONS: LENGTH, TYPE
ADD:M NET AMT 19 20 21 22:23 24|25 26|27 28|29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
ADD 'M NETAMT -~

Double Stage Instructions

For double stage instructions, the A, B, and Y operands are written as a continuous
statement, separated only by commas. No spaces are permitted between operands of
machine instructions. Some instructions donot require entries for all of the operands,
The absence of an operand entry inadouble stage instruction is indicated by a comma.
For example:

OpV L X A B Y
(:) MOVE:RR 3 5
X xF, C A
o ! v fewemH INSTRUCTIONS: OPERANDS Y yQ G B
P ! LEVEL DATA DEFINITIONS: LENGTH, TYPE 1 |
19 20 21 21:23 24|25 26(27 28)29 30 31 32 33 34 35 36 37 38 39 40 4] 42 43 44 45 46 47 48' 8 I@ ‘0 Ol OL 0
M.O.Z.E;R.R PA3. s , 5,0,410,0,3

C. COMPILER INSTRUCTION FORMAT

The following table shows the format of the instructions used in the Compiler program.

15

Op Vv L X Operand Op V L X Operand Op V L X Operand
*ADD L|X[A PAST | XB X |A,L *SHFT | AL XA
*ADD |M [L[X]A PAST | XL X [AL *SHFT | AR XA
AUG |J X[AN, Y PAST | XR X AL *SHFT | DL XA
AUG |R X|ANY PKT X [A,Y *SHFT | DR XA
*BADD L|X[|A PNCH X |ASY *SHFT | RR XA
BACK LY PPT |C X | AN, Y *SHFT | RC X|A
*CLRF |LH XA PPT |S X |ANY *SHFT | LC X 1A
*CLRF |RH XA PRNT X |A,MF,Y SKIP G
*CLRU |C XA RCC X ALY SLD |J X |AN,Y
*CLRU |P X|A RCK X |[AY SLD |R X |ANY
*CLRU |Q X|A RCOL X | AN, Y SPRD | B #,B,Y
*CLRU |S XA RCOL|F X | AN, Y SPRD | E #B,Y
*CNT X|[AGY RCOL|T X |ANY *ST LIX|A
*COMP L|{X|A RCOL| TF X |ANY ST J X |AN,Y
*DIV L{X[|A RMT X ALY ST R X |ANY
DLR RPT |C X |AN,Y STDA X |AL
EDIT L{iX|[A RPT (CX X [A,N,Y STRT | S
HALT |A XA RPT |S X [ANY STOP | S
HALT |D XA SAUG |J X |AN,Y *SUB LIX|[A
JUMP X|J SAUG |R X {ANY SUPP LIX|A
JUMP |1 XA SCNA |v X |ALY TEST | E X |(J
JUMP |IP XA SCND | v X ALY TEST | G X|(J
*LD LIX|A SELC | DN X |AJ,Y TEST | L X |J
LD J X|[AN,Y SELC | DP X | AJ,Y TEST | - X|{J
LD R X |ANY *SELC | R X |AJ,Y TEST | O X|J
LDAD X|ALY *SELC | T X | AJY TEST | D X1|J
LDAD | XB X|ALY *SELP X | AJ,Y TEST| T X |Jd
LDAD | XL X|ALY *SELQ X | AJY *TEST | LH X |AJ
LDAD | XR X|ALY *SELS XI1AJY *TEST | RH X|1AJ
MLRA G SETF |+ *TEST | SW X14A,J,Y
MOVE|B X |A,B,Y SETF | - TYPE| A X | AN
MOVE | E X|[A,BY SETF | O TYPE| AP X [AN
MOVE|JJ X|{,NY SETF | D TYPE| D X |AN
MOVE|JR X|,NY SETF | T WIND LY
MOVE|RJ X|,N,Y *SETF | LH X| A WIND | L LY
MOVE|RR X|,NY *SETF | RH X| A WCC XI1ALY
*MULT L|X *SETU | C X| A WMT X ALY

*SETU | P X| A
*SETU | Q X| A
*SETU | S X1 A

* means A may be a literal

TABLE I. NCR 315 NEAT COMPILER COMMAND FORMATS

means A is required to be a literal

16

lll. DEFINITION OF DATA

GENERAL

In generating the object program, the Compiler must allocate memory area for data to be
referenced and must set up aprecise addressing pattern for the fields contained in the data.
This must be done for files that are read into memory from an external medium (CRAM,
magnetic tape, punched paper tape, punched cards), for files that are written out to an
external medium from memory, and for files that are manipulated while in memory. This
must also be done for other data suchas tables that are referenced in memory. To do this,
the Compiler requires a description of the size and characteristics of this data as well as
the memory location, This descriptive process is called Data Definition.

ORGANIZATION OF DATA

An important function of a data processing systemis the creation and manipulation of files.
A file is composed of a set of related records (sometimes called logical records). A record
contains pertinent information about a common subject. Records are transferred to and
from CRAM or magnetic tape inthe formof blocks (sometimes called physical records). A
block usually contains several records; however, it may at times contain only one record or
a part of a record.

The most basic subdivision of a recordiscalled a field. A field is composed of successive
characters which specify a particular unit of information. Each field is a separate entity;
however, this same field may also be a part of another field, and it may similarly include
other fields within its own definition.

INVENTORY DATE

For example, a three-slab field containing INVENTORY DATE 7
XX |XIX|XX

would be treated as a single unit of information,

INVENTORY DATE

If the fields within INVENTORY DATE are to be referenced

Month| D
individually, it would be treated as having three fields of one slab o,n ?y Ye.ar
each: MONTH, DAY, and YEAR. Thus, MONTH would be assigned XX |XX|XX
the same memory address as INVENTORY DATE, o T os |00
If only MONTH and DAY are to be referenced individually, YEAR INVENTORY DATE
need not be specifically defined; however, its presence should be Month| Day /

noted since it is included in INVENTORY DATE,

XX | XX | XX

007 008 009

For the purpose of Data Definition, a field will be referred to as a 'data unit''. The term
data unit will also be applied toa record and to a block. Each data unit that will be refer-
enced must be assigned a unique name,

List the named data units in the order in which they occur; that is, a unit, any sub-units, then
the next unit, indenting each time a division or subdivision occurs, and entering the length

17

of each unit, Where a unit is not divided, return to a similar previous indentation. This
indented listing will help show the relationship of any data unit to any other data unit.

Example: AParts Procurement File is composed of blocks of records containing an inven-
tory and status of manufactured parts. Eachblock contains 70 records; each record contains
20 slabs.

PARTS RECORD
PART NUMBER DESIGN DATE INVENTORY DATE| STATUS ¢ (Quantity Manufactured in Each Quarter)

A Y
SERIALNUMBER |CODE MON | DAY IN PROCESS| QMEQ ! ! >

XX|IXX XX XX XX [XX |XX|XX|XX XX [XX|XX|XX|XX|[XX|XX |[XX|XX|XX|xX

000 001 002 003 004 005 006 007 008 009 010 on 012 013 014 015 016 017 018 019

Data Unit Length
PARTS BLOCK 1400 slabs
PARTS RECORD 20 slabs
PART NUMBER 4 slabs
SERIAL NUMBER 3 slabs
CODE 1 slab
DESIGN DATE 3 slabs
INVENTORY DATE 3 slabs
MON 1 slab
DAY 1 slab
(not named) 1 slab
STATUS 10 slabs
IN PROCESS 2 slabs
QMEQ 2 slabs
QMEQ 2 slabs
QMEQ 2 slabs
QMEQ 2 slabs

C. CONCEPT OF LEVELS

If we examine the record layout, we can see that the arrangement of units suggests a data
hierarchy. The block occupies the highestlevel, the record is next, then a number of units.
Some of these units are broken down still further into sub-units.

This concept of levels, whichis inherentinthe structure of a record, is also represented in
the indented listing. In order to express these logical indentations to the Compiler program,
we can use a system of levelnumbers, The most inclusive unit would be assigned the level
number 1, the next level wouldbe level 2, then 3, 4,etc., in the manner in which we indented
to show a lower level division. Where a unit is not divided, assign the same level number
that was assigned to a previously named unit which occupies the same relative position in
the hierarchy, for example PART NUMBER and DESIGN DATE,

ZPARTS RECORD

3 3 3 3
PART NUMBER DESIGN DATE _ [INVENTORY DATE|STATUS

4 lc4 1 1 1 1 Z —

| SERIAL NUMBER |ICODE MON| DAY IN PROCESS QMEQ i
XX XX |XX XX |XX |XX | XX | XX | XX | XX XX [XX |[XX [XX [XX |XX |XX [XX|XX |xX
000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019

18

Data Unit Level Length
PARTS BLOCK 1 1400 slabs
PARTS RECORD 2 20 slabs
PART NUMBER 3 4 slabs
SERIAL NUMBER 4 3 slabs
CODE 4 1 slab
DESIGN DATE 3 3 slabs
INVENTORY DATE 3 3 slabs
MON 4 1 slab
DAY 4 1 slab
(not named) 4 1 slab
STATUS 3 10 slabs
IN PROCESS 4 2 slabs
QMEQ 4 2 slabs
QMEQ 4 2 slabs
QMEQ 4 2 slabs
QMEQ 4 2 slabs

DATA DEFINITION

A complete definition of a data unit includes the following information:

Name of the data unit (reference)

Operation code (DATA and INDEX, and where applicable REDFN)

Level number

Index register number (in some cases assigned by the Compiler)

Length of the data unit

If the Manufactured Parts Record is to be defined, first complete a Record Layout Work-
sheet (Form F-2074) using the actual names assigned (to be used as references) to the data

units.
:&Mn:!:ﬁr'ncoan ::'::%:‘:s ?’:n BLOCK
REFERENCE BASE
01
PARTSBLOCK
11
e name_ Parts Procurement File RECORD NAME Manufactured Parts Record
2
PARTSREC
03 03 03 03
PARTNUM DESIGNDATE INVENDATE STATUS
04 04 04 04 04 04
SERIALNUM CODE MON|{ DAY INPROCESS QMEQ >
XX [X XXX XX (XX | XX[XX XX XX|XX|XXIXXIXX XX XX |XX|IXX[|XX|XX!IXX
000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019

Note that there is no entry in the Base column since it is not known where in memory
the Compiler will store the block. The actual address of PARTSBLOCK can be obtained
by referring to the listing of references in the printout.

Now transfer the information from the record layout worksheet to the programming work-
sheet, The following illustration shows the actual Data Definition of PARTSBLOCK (a block
containing a series of Manufactured Parts Records). The areas printed in grey (DATA, IN-
DEX, etc.) are also part of the Data Definition and will be explained later in this chapter.

19

R r— TNSTRUCTIONS: OFERANDS REMARKS
REFERENCE O | V Foe| X [DATA DEFINITIONS: LENGTH, TYPE REMARKS

8 9 10 11 12 13 14 15 16 17 9 20 21 22:23 24|25 26|27 28|29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48:49 50 51 52 53
PARTS BLOCK |
1
PART.SIR‘E‘CI 10 .O.S. !
PARTNUM 0,3 5, '
S.E.R.I.A.L.N.U.M. 0‘4 .Sl '
CODE : 04 S :
DESI 'GIN‘DXA‘TIE : 0.3 .S“ :
I.N.V.E.N.D.A.T.E. | : 0.3 IS‘ :
MON, | 04 S, :
DAY) : 0.4 .S.) :
STATUS |03 oS B f
INPROCES S : 04 S '
QME,Q, ' |oafiles, !

USE OF THE PROGRAMMING WORKSHEET FOR DATA DEFINITION

Data Definitions may occur anywhere in the source program. Beginning with the next
available slab, the Compiler will allocate memory for the size shown for the entire block,
and will assign addresses to data units within the block according to their description
(definition) as shown on the programming worksheet,

The following is abrief description of the entries in the various columns of the programming
worksheet when it is used for Data Definition.

1, Page and Line (columns 1-6)

Entries in the Page and Line columns are the same as described in Chapter II,

2. Reference (columns 8-17)

An entry in the Reference column becomes the name (reference) of the data described

on that line.

If the data described will not be referenced directly elsewhere in the

program, a name need not be assigned.

Reference entries must be left justified. The rules for assigning references are stated

in Chapter II,

3. Operation (columns 19-24)

There are three control instructions which are used for Data Definitions:

DATA

INDEX

REDFN

indicates to the Compiler that this and the following lines are
Data Definitions.

indicates to the Compiler that the index registers listed will con-
tain the base address of the data unit described on the next line.

indicates to the Compiler that the previous data unit with the level
named will be redefined and the corresponding memory area will
be reallocated to the data units described on the following lines.,

20

4.

Only these three control instructions maybe used within a set of Data Definitions. Any
other instruction will break the sequence of the definition and result in incorrect level
and memory space assignments,

Operation entries must be left justified. The use of these control instructions is
described later in this chapter.

Level (columns 25 and 26)

Entries in the Level column represent the level number assigned to the data unit de-
scribed on this line.

The most inclusive data unit is assigned level number 1. Lesser units are assigned
level 2, 3, 4, etc. Alevelincludes all the data units described under it which have level
numbers larger than its own,

The numbers 1, 2, 3, 4 in the example could have been 1, 2, 4, 6 or 1, 3, 5, 7 or any
combination, provided not more than one level number is skipped between successive
lower level entries., However, for simplicity, it is recommended that the pattern 1,
2, 3, 4, etc. be used,

The Compiler will reserve memory according to the length shown for higher level data
units. This eliminates the need to describe every slab of every data unit in the block.
For example, although the record PARTSREC occurs 70 times in memory (PARTS-
BLOCK contains 70 records), it need be described only once, The Compiler will re-
serve 1400 slabs for the entireblock according to the level 1 entry. Note also that slab
9 is not shown as a separatelevel 4 entry. The Compiler will still be able to assign the
correct address for INPROCESS since the length shown for INVENDATE is three slabs,

Level entries may be either left justified or right justified. Level numbers 1 through 9
may be written as a singlenumeral (1,2, 3, etc.), or as two numerals (01, 02, 03, etc.).

5. X (columns 27 and 28)

Entries in the X column designate the index registers to be used by the Compiler when
constructing references to this data unit, Thisincludes the data unit described on this
line and all lower level units that are included in its definition until a different index
register number occurs in the X column.

Index register numbers need notbe repeatedfor lower level data units. If the X column
is left blank, the Compiler will use the last named index register. If no register has
been designated, the Compiler will construct addresses using the index register that
contains a value within 1000 of the address.

If a data unit has a fixed location in memory, there is no need to designate an index
register for it, However, if the data unit is repeated (e.g. elements of an array, such
as records in a block or values in a table), an index register must be designated in
order to step through the data units, incrementing the index register by the size of the
unit,

Entries in the X column may be either left justified or right justified,

Length, Type and Remarks (columns 29-74)

This is a combined column containing Length, Type, and Remark entries as indicated
below.

a, The first entry in this column indicates the length (size) of the data unit. The
Compiler will use the Length entries to allocate memory and to calculate addresses
for the data units. Length may be stated in one of three ways:

1)

2)

3)

21

An integer followed by an S,
This states the length of the data unit in slabs. For example, the entry 2S

indicates the length is 2 slabs.

A simple integer.
This states the length in characters (Alpha form--6 bits)., For example, the
entry 4 indicates the length is 4 Alpha characters.

A mixed number containing a decimal point,

This states the length in Digits (4 bits) and indicates a number of fractional
positions. For example, the entry 4.2 indicates a 6 Digit number having 2
fractional positions. The entry 6.0 indicates a 6 Digit number having no
fractional positions, The entry 0.6 indicates a 6 Digit number having 6
fractional positions. The decimal point is punched but does not occupy any
space in memory.

The first example (28S) will reserve 2 slabs of memory. The second example
(4 representing 4 Alphas) and the third example (4.2 or 6.0 or 0.6 represent-
ing Digits) can also reserve 2 slabs, and will supply additional information
regarding the data units. This additional information is useful for documenta-
tion purposes, and will enable the programmer to specify to the Compiler how
the data is to be packed.

The Compiler will reserve an integral number of slabs in memory according
to the length stated for level 1 entries. Lower level data units will be stored
left justified as permitted within the area reserved for its next higher level.

In the following example, note that the Compiler will allocate two slabs for
each data unit even though each one has been described differently (2 slabs,
4 Alphas, 6 Digits).

REFERENCE

INSTRUCTIONS:
DATA DEFINITIONS:

! LENGTH)
Op ! LEVEL

X

8 9 10 11 12 13 14

15 16 17F18119 20 21 2223 24|25 26|27 28{29 30 31 32 33 34 35 02
+ ENTRY

ENTRY

! 02 6 S

NUMERATL

03 03 03
03l lz s NUMERAL| CLASS | RATING

CLASS |,

XX | XX

' [} 1 1 [

XXX

03 4 XxX

RATING

000 001 " 002 ' 003 004 005

03 (4.2

The instructions:

INSTRUCTIONS:
DATA DEFINITIONS:
29 30 31 32 33 34 35

NUMERA L

! LENGTH!

Op | v LEVEL

19 20 21 22:23 24|25 26|27 28

LD !

references a 2-slab unit
beginning at slab 000

LID. B C.LA‘s|s. references a 2-slab unit
— =ttt beginning at slab 002

references a 2-slab unit
beginning at slab 004

RATING

22

However, if NUMERAL had been described as 3 Alphas, the following assign-
ment would result:

! LenGTH INSTRUCTIONS:
REFERENCE O 1V Fee| X [DATA DEFINITIONS: ENTRY
8 9 10 11 12 13 14 15 16 17} 19 20 21 22:23 24125 26§27 28|29 30 31 32 33 34 35
t NUMERAL
ENTRY ! 02 6 S
1 1 1. 1 1 , (] 1 1 1 (] 1 1 1 1 V 1 i [
NUMERAL A L% I T B2 91 B9 77 N A I
CLASS | 03 4 ~ 000 001 002 003 004 005
RATING ! 03 4.'.2.
|
CLASS
T V 1
L—-—I_I—ﬁ?(_ _)$_}\(_ -—Xl A_n_r_ PR S P
000 001 002 003 004 005
RATING
T A T T
ol Rxxxxlxx
000 001 003 004 005
The instructions:
T enorn TNSTRUCTIONS:
O 1V Iwe| X [DATA DEFINITIONS:
19 20 20 22{23 24|25 26|27 28129 30 31 32 33 34 35 f 2 1 b t b . . t l b
T references a 2-slab unit beginning at sla
LD NUMERAL 000 which also contains part of CLASS
o o references a 2-slab unit beginning at slab
LD | CLASS 001 whichalso contains part of NUMERAL
‘="' and part of RATING
it 11—, references a 3-slab unit beginning at slab
LD | RATING 003 which also contains part of CLASS
= T T plus an excess Digit
Data may be packed in this manner; however, in this case it is necessary to
manipulate the data units by using appropriate machine instructions, LDAD,
STDA, PAST, etc., in order to process the data correctly,
b. The second entry in this column indicates the type of the data unit. Any one- or

two-character code which is understood by the macro generator subroutines may
be entered here. Some possible types are:

A
D
N
+N
FP

The Type entry is optional,
descriptive definition of the data unit,

future macros.

Alpha (6 bits)
Digit (4 bits)
numeric (0 through 9)

numeric, guaranteed positive
floating point

If entered, it will be carried by the Compiler in the
The Type option is provided for use by

F.

23

A Type entry is separated from the Length entry by a comma. For example:
4.2,+N

Length and Type entries are left justified. No spaces are permitted. As with
machine instructions, two spaces occurring in this column denote to the Compiler
that this is the end of the entry and that Remarks follow,

Remarks
The rules for Remark entries are the same as stated in Chapter II,

Identification (columns 75-80)
The rules for Identification entries are the same as stated in Chapter II,

ADDRESSING OF DATA

1.

Relative Nature of 315 Addressing

A 315 address consists of 5 digits. In absolute format, part of the address is stored in
the A field of a single stage instruction (also the B field for a double stage instruction).
A or B are one slab in length and can contain only 3 digits., The remainder of the ad-
dress is stored in an index register namedin the X (or Y) field, thus making it relative
to the A (or B) address.

An index register namedin an instruction must contain the appropriate value to augment
the contents of the A (or B) fieldto equal the correct memory address. For program-
ming convenience, the following index registers will be set initially by the executive
system to contain the following values:

IR0OO through IR09 - 00 000 through 09 000
IR16 through IR25 - 10 000 through 19 000

For CRAM only, IR24 contains 38 000 and IR25 contains 39 000,

Static Addresses

The Compiler can make use of these standard register settings when constructing
addresses for instructions, constants, and data units that have a fixed location in mem-
ory. It will search a table of IR-numbers and their contents to find an index register
which contains a value whichis within 1000 of the address desired, subtract the register
value from the address, and store the difference in the A (or B) field of the machine
instruction,

For example, assume that in the allocation of memory, a two-slab constant named
AMOUNT was assigned an area in memory beginning at location 03210, The following
instruction:

o ! y [enerdl o INSTRUCTIONS: OPERANDS
P 1 LEVEL DATA DEFINITIONS: LENGTH, TYPE
19 20 21 22123 24125 26|27 28|29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
L || _|AMOUNT

would be treated by the Compiler as though it had been written:

o T e INSTRUCTIONS: OPERANDS
P LEVEL DATA DEFINITIONS: LENGTH, TYPE
19 20 21 12123 24125 26}27 28|29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48

Lb ' 2 3210

24

Dynamic Addresses

The standard register settings cannot be used when it is necessary to advance through
a series of similar data units withina record, or from one record to the next in a block.
In this case a register must be assigned in order not to interfere with the normal pat-
tern of the Compiler for static addresses, as was described above.

For example, assume that index register 10 has been assigned by the programmer to
reference PARTSREC and data units within PARTSREC, and that in the allocation of
memory, PARTSBLOCK was assigned a 1400 slabarea in memory beginning at location
04321. The following instruction:

t y |mememHl o INSTRUCTIONS: OPERANDS
Op ! LEVEL DATA DEFINITIONS: LENGTH, TYPE
19 20 21 22,23 24|25 26|27 2829 30 31 32 33 34 35 36 37 38 39 40 4 42 43 44 45 46 47 48
Lo . | .| JLNVENDATE,
I

would be treated by the Compiler as though it had been written:

o 1 i INSTRUCTIONS: OPERANDS
P LEVEL DATA DEFINITIONS: LENGTH, TYPE
19 20 21 22123 24|25 26|27 2829 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
LD_ __._|_.21L9007
!

In this case, the programmer would have had to load the base address of the block
(04321 which is also the address of the first slab of the first record) into index regis-
ter 10,

In order to reference INVENDATE inthe second record of the block, the program must
increase the contents of index register 10 by the size of the record (20).

Indexing

This technique of using an index register and an A address to reference repeated data
units is called ""Indexing'.

The assigned index register will contain the base address (first slab) of the record. The
values stored in the A (or B) portion of machine instructions that reference the data
units within the record will indicate the position of the unit relative to the base address,
for example, 000 if the first slab, 001if the second slab, etc. To reference the second
record of the block, add the record size to the contents of the index register. This will
set the register to the first slabof the second record. All related machine instructions
will still reference the correct data units since the A (or B) values of the instructions
will be added to the new value of the register.

After all the records in the block have been processed, a new block of data is read into
memory and the base address is loaded into the assigned index register. Thus the
register is reset to the address of the first slab of the first record, and the cycle may
be repeated for each record in the new block.

For additional details regarding the assignment anduse of index registers, seethe con-
trol instructions DATA, INDEX and REDFN in this chapter, and BASE in Chapter IV,

25

G. DATA
This control instruction indicates to the Compiler that this line and the following lines with
blank Operation codes are Data Definitions. The Compiler will allocate memory for the
described data units according to the contents of the location counter,
This control instruction is used to: (1) name the data units, (2) show their physical position
within the largest unit and their logical relationship to other data units, (3) show the length
and type of the data units, and (4) show the index register assigned to be used for addressing
the data units,
PAGE | LINE [REFERENCE Op : v ‘L‘:v“":‘ X LTTTU;E?&T:;N& LOELEGR':: DTSVPE
12 3|4 5 6 8 910 11 1213 14 15 16 17[X8419 20 21 22023 2425 26]27 28|29 30 31 32 33 34 33 36 37 38 39 40 41 47 43 44 45 4o &7 a8
DATA vl lreglleng th, type “
DATA must be entered in the Operationcolumnfor the first level 1 in a series. The Oper-
ation column of subsequent Data Definition lines may be left blank unless an INDEX or a
REDFN entry occurs, in which case DATA is again entered in the first line following the
INDEX or REDFN,
The following is an example of a Data Definition of a file. The level 1 entry assigns the
name PARTSBLOCK to an input/output area in memory, and states the size of this area is
1400 slabs. The Compiler will reserve 1400 slabs in memory and will associate the Refer-
ence PARTSBLOCK with the base address of thisarea. Index register 10 has been assigned
by the programmer to be used to advance through the four QMEQ data units. Note that only
the first of the four QMEQdata units need be listed since the remaining three fall within the
20 slabs allocated for the level 2 entry,
SLABS PER RECORD RECORDS PER BLOCK
REFERENCE BASE
SIARTS BLOCK
11
fie name_ Farts Procurement File recorp name_ Manufactured Parts Record
02
PARTSREC
03 03 03 03
PARTNUM DESIGN DATE INVENDATE STATUS
04 04 04 |04 04 04 .
SERIAL CODE MON | DAY IN PROCESS| QMEQ >
XX | XX XX XX XIX XX).(X XX | XX XX X X XX X X XX XX I XX XX |XX|XX|XX
000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019
PacE | Ne | - LV R X | oAt verITIoRE e riFE
12 3[4 5 6p248 9 10 11 1213 14 15 16 17[AB]19 20 21 22123 24|25 26]27 28|29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 a5 & 23
020/010 PIARTSBLOCD‘A‘TlAj 01 14008 :
020loz20 INDDX 1o, 11 T
020/030 PARTS REC DATA' 02|]10[(208) '
020/040 PARTNUM 03 4 S I
020050 SERITIAL ! 04 38 |
0o2o0lo6oficopE 04 [1s
020/070]_)IE‘SIGNDATE ' 03 38 :
020(080 INVENDATE 03 3S |
020|090 M‘OIN 04 18 !
02010~0_ —DA_Y 04 18 '
E:ZOllO:;‘STATUS 03 10.S 4
020120/ |]INPROCESS 04 28
020/130[]QMEQ . 041128

26

H.

INDEX

This control instruction indicatesto the Compiler that the index registers listed will contain
the base address of the data unit described on the next line of the programming sheet.

Ty Jerer [INSTRUCTIONS: OPERANDS
O LEVEL DATA DEFINITIONS: LENGTH, TYPE
19 20 21 22:23 24125 26|27 28|29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
INDEX | | ,|ILR_number(s)

Enter INDEX in the Operation column, and enter the assigned index register numbers, sep-
arated by commas, in the Operands column, If more than one index registers are assigned,
they must be consecutive,

In the X column of succeeding lines, enter the specific index register number assigned to
that data unit. The number need not be repeated if it is the same as that on the previous
line,

This index register assignment applies to the data unit named on that line, and for all sub-
units (lower level units, designatedby alevel number that is larger than that of the previous
unit),

I INDEX were not used, the Compiler would calculate addresses for data units using the
standard index register settings. However, where INDEX is used, the Compiler will assume
that the base address will be loaded in the registers., The Compiler will calculate the A
(or B) field of machine instructions referencing each data unit according to their relative
position from the base address.

For example, if each of the data units defined below was referenced by a machine instruc-
tion, and the base address was 04321, the Compiler would generate coding for the machine
instructions with entries in the X and A fields as shown below.

In order for these addresses to function correctly, the base address must be in the index
register, It is the programmer's responsibility to load and advance the index registers;
however, many of the macro instructions will do this automatically.

REFERENCE Op | v [Eem :;q,:rTU;:ET;&T:;:Ns; XxFC| A
8 9 10 11 12 13 14 15 16 1 19 20 21 22;23 24125 26|27 28|29 30 31 32 33 34 35 YleG B
PARTSBLOCK|IDATA [o1] [i14005
S INDEX | | [10,11 L
PARTS REC DATA [02(10[2058 @ 000
PARTNUM o3 48 @ 000
SERIA L C o4 38 @ looo
CODE, - '+ lo4| |1s @ 003
DESIGNDATE i 03 38 @ 004
INVENDATE |03 38 @ o007
MO N ' loa 18 @ l007
DAY v o4 18 @ o038
STATUS , IRLE 108 @ [o1o
INPROCESS. lo4| 2s @ {010
QME Q E 0411|128 ’ 012

.

21

REDFN

This control instruction indicates to the Compiler that the last previous data unit with the
level named will be redefined and the corresponding memory area will be reallocated to the
data units described on the following lines.

t LENGTH INSTRUCTIONS:

%% |V Mo DATA DEFINITIONS:
19 20 21 72:23 24|25 2627 28{29 30 31 32 33 34 35

REDFN |Ivl

The Compiler will reset the location counter to the address of the previously defined data
unit having the same levelnumber and will reassign these addresses beginning with the data
unit described on the next line. A DATA instruction must occur immediately after a
REDFN entry and before any other instruction except INDEX,

The use of REDFN permits an area in memory to have more than one data definition. For
example, an input block may contain several different types of records. The organization
of the data units may vary depending upon the particular type of record.

In our example, some of the manufactured parts may have been discontinued in which case
the last ten slabs of the record wouldbe redefined, Note that slabs 17, 18, and 19, which do
not contain any useful information, are ignored in the redefinition since they fall within the
20 slabs allocated for the level 2 entry (PARTSREC).

NUMBER OF NUMBER OF
SLABS PER RECORD RECORDS PER BLOCK
REFERENCE BASE

01
PARTS BLOCK
11

FILE NAME

Parts Procurement File RECORD NAME Manufactured Parts Record

03 03 03
DISCONDATE AUTHNUM | ON HAND ////// -/

o 'm | | 777

XX I XX [XX|XX | XX | XX!XX

oT0 011 012 013 014 " 015 016 017 Ola 0]9

28

REFERENCE

Op

LENGTH

INSTRUCTIONS:

OPERANDS

LEVEL

DATA DEFINITIONS:

LENGTH, TYPE

6 8 9 10 11 1213 14 15 16 17

920 21 22,23 24

25 26

28129 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46

020

020

0

. HIREDFN l03| | | - o
020 DISCONDATE| IDATA 03 38
020 __E 04 185 B ,
020 1 o4 1s - .
020 . o Jos 1s B .
020 . o3| |2
) B - 3 2S

Data may be redefined at any level, including level 1 and level 2. The following is an
example of a redefined record, level 2,

NUMBER Of
SLABS PER RECORD

NUMBER OF

RECORDS PER BLOCK

REFERENCE

01

PARTS BLOCK

= =
=
=lo (3

BASE

Parts Procurement File

Purchased Parts Record

FILE NAME RECORD NAME
PARTSRECP

03 03 03 03 03 o
PARTNUMP LASTPURCH ON ORDER VALUEYTD QPREQ i

04 04 04 04

SERIALP copep M | D | ¥

XX |XX | XX XX | XX |[XX|XX|XX XXXXXXXXXAXXXX XX XX XX [XX|XX|XX|[XX

000 001 002 003 004 003 006 007 008 009 o0 | "o | or2 0ia 014 015 016 o7 018 019

29

e INSTRUCTIONS: OPERANDS
PA
GE REFERENCE Op | V | X [DATA DEFINITIONS: LENGTH, TYPE
T2 3 8 9 10 11 12 13 14 15 16 17 519 20 21 22:23 24|25 26127 28}29 30 31 32 33 34 35 36 I7 38 39 40 41 42 43 44 45 46

1 ' 1 1l 1 1 1 1 1 012 1 i I 1 1
020 PARTS RECP ATA |o210[208 o ,
020 PARTNUMP ICE 4s ‘ -
020 SERIALP 1 lo4 |38
0 2 0 CODEP 1 |04 1s . '
020 LASTPURCH BENEE ‘ ,
02 0 o4 1s .
020 ' B .J 04 1s ‘
020 y 0 os 18
020 ONORDER ‘JJ 03 28 ,
020 VALUEYTD o losl |7..2 , -
020 Q PREC . o fosl Jzs ‘

CRAM TRACK LABELS

When using CRAM files,
track number for the file must be containe

the installation deck number, the CRAM card number, and the
d in the first four slabs of each block, This

four-slab data unit must be shown in the data definitions for the file. Show this unit as
the first level 2 entry. It is not necessary to assign a name in the Reference column to
the track label.

In the following illustration, note that the INDEX entry is placed after the four slabs for
the track label. Thus all associated index registers will be set up properly to the beginning
of the first record, immediately following the label. Note also that the four slabs are
included in the total block size shown for the level 1 entry.

PAGE | LINE REFERENCE op v [x ::f::usg;&?:’wsz Z:fg?: Drsvpe

1 2 314 5 6 8 9 10 11 12 13 14 15 16 17 [3E{19 20 21 22:23 24|25 26|27 28[29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44

020[010 [IPARTS BLOCK v Jo1 |14048

020[020} . 1 loz2| |as . ‘

020030 | " JIINDEX_ | | 110,11 ,

020040 JPARTS REC DATA lo2| |205 ,

020050 |[PARTNUM . los| las .

020060 SERI AL , 0 loa 38,

020070 ICODE, lo4| |is . -
.

30

K. VARIABLE LENGTH RECORDS

1.

for the file.

CRAM

When using variable length CRAM records, the record length must be contained in the
first slab of each record. Thisone-slabdata unit must be shown in the data definitions
Show this unit as the first level 3 entry. It is not necessary to assign a
name in the Reference column to the record length.

In the following illustration, note that the INDEX entry is placed after the four slabs for
the track label, but before the record definition (level 2 entry) which contains the one-
slab unit for the record length. Note also that the slab is included in the record size,
and is included in the total block size shown for the level 1 entry,

O |V FERY X |TATA DERRITIONS EGHH, TV7E

1 2 3| 4 8 9 10 11 12 13 14 15 16 17 9 20 21 22123 24|25 26[27 28|29 30 31 32 33 34 35 36 37 38 39 40 4) 42 43 44
0200 PARTSBLOCK| [DATA |01 14748

02 0[0 ozl las

0200 oo blinpEx | 10,11

02 0f0 PARTS REC DATA loz2(10/21s

0200 _._f 03 [1s

0200 " los| |as

02,900, " lo4| (38

0200 o4 [vs

Magnetic Tape

When using variable length magnetic tape records, the record length must be contained
in the first slab of each record., This one-slab data unit must be shown in the data
definitions for the file. Show this unitas the first level 3 entry. It is not necessary to
assign a name in the Reference column to the record length.

In the following illustration, note that the INDEX entry is placed before the record
definition (level 2 entry) which contains the one-slab unit for the record length. Note
also that the slab is included in the record size, and is included in the total block size

shown for the level 1 entry,

PAGE | LINE REFERENCE op |V e x ::AS]'TU:EI;:&T‘I'SI:C)NS: gim:: vape
1 2 3|14 5 8 9 10 11 12 13 14 15 16 17; 19 20 21 22:23 24125 26(27 28|29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
0. 2.0 0, 1. P.A.R.T.S.B.L.O.C. : ' 01 14708
02002 e f1,0...1,1,
0‘ 2‘ 0 0. 3‘ IA,R‘T.S .R.E.C. 02 218
0|2.0 0.4, R'L' e 0 3 1
020 05 PARTNUM 0,3 4,8,
0.2.0 O_6l S|E.R‘IlAILI 04 3.8,
0‘ 2‘0 0. 7‘ C‘O'DIEI ! 04 1S
!

31

IV. COMPILER CONTROL INSTRUCTIONS

A. GENERAL

Control instructions provide a number of functions peculiar to the compiling process.
Among these are: to setup constants, to direct the allocation of memory and assignment of
addresses, to define data and assign index registers, to control the Compiler output, and to
identify special source program information.

Where appropriate, references maybeused as operands of some of the control instructions.
Where a reference is used as an operand of the control instructions ORIGIN, OVRLAY,
SAVE or EQUATE, it must havebeen defined previously in the source program. In all other
cases, the reference may be defined anywhere in the source program.

Absolute addresses are permitted as operands; however, be very careful in their use.

A control instruction must be complete on one line. The operand may not be extended to the
next line.

Remarks may be entered in most cases. However, where remarks are not permitted, this
is indicated in the description of the particular instruction.

Always be sure to leave at least two spaces before beginning the remarks.

Following is a complete list of the Compiler control instructions and a description of their
use.

B. DESCRIPTION OF CONTROL INSTRUCTIONS

1. For Definition of Constants

There are two methods by which constants may be set up. A constant may be written
as a literal in the operand of an instruction, in which case the Compiler will store it
as an out-of-line constant in the Program Safe Area and store its address as the A or
B operand of the instruction. Use of literals as operands is described later in this
chapter.

Constants may be stored in-line by use of various control instructions. In this case, the
constant will be stored in memory where it occurs in the source program, The constant
is assigned an address equal to the contents of the location counter (next available slab),
The location counter is then advanced by the size of the constant (number of slabs--
usually specified in the Length column), and the location counter is thus set to the next
available slab following the constant just set up.

A name shall be assignedto each constant (entered in the Reference column for that in-
struction) so that it may then be used as the operand of other instructions. The
Compiler will store the address of the constant as the A or B operand of the compiled
instruction, and where appropriate, will store the length (as L-1) in the F field of the
instruction in absolute format,

The following control instructions define in-line constants having the desired format,
and containing the characters (or values) specified in the operands column.

32

a.

ALPHA

This control instruction will set up a constantin Alpha form (two 6-bit characters
per slab).

Ty] 5, [INSTRUCTIONS: OPERANDS
REFERENCE O 1V e DATA DEFINITIONS: LENGTH, TYPE
8 9 10 11 12 13 14 15 16 17 | 19 20 21 22:23 24125 26127 28}29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
hame . ALPHA |len) |Alpha characters ., .,
]

Successive pairs of characters, beginning at the first position of the Operands
column, are placed in successive slabs in memory. The Alpha characters are left
justified and the field is filled out to the right with spaces.

The following entry:

T Tawern INSTRUCTIONS: OPERANDS
REFERENCE O 1 V Foe| X [DATA DEFINITIONS: LENGTH, TYPE
8 9 10 11 12 13 14 15 16 17 R 19 20 21 22:23 24125 26|27 28129 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
REF 1 ALPH:A 3 ABCDS5
]
becomes:
1 1 1
AB| CD | 5@
1] 1 1] | 1 1

Any of the 64 characters in the 315 Code Chart may be used.

The Length column specifies the length of the constant (number of slabs to be set
up). Maximum length is 21 slabs.

Note: For this instruction, a space does not terminate the operand. The number
of characters to be included in the operand is specified by the number of slabs
entered in the Length column. If remarks are entered, be sure to allow for the
correct number of characters in the constant so that a portion of the remarks
will not be picked up and stored as part of the constant.

ALPHA may be used to set up constants in Alpha form.

ALPHA may also be used to include anarea of slabs containing spaces in an over-
lay which can be used later to make program patches through the Librarian,

DIGIT

This control instruction will set up a constant in Digit form (three 4-bit charac-
ters per slab),

' LenoTh INSTRUCTIONS: OPERANDS
REFERENCE Op | V Fam| X [DATA DEFINITIONS: LENGTH, TYPE
8 9 10 11 12 13 14 15 16 1 19 20 21 22:23 24|25 26|27 28129 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48

name Digit characters

DIGI'T len

33

Successive triples of characters, beginning at the first position of the Operands
column, are placed in successive slabs in memory. The Digit characters are
left justified and the field is filled out to the right with spaces.

The following entry:

REF 2 IGIT 2 12345

l

becomes:

123450

Only the Digit characters (the 16 characters appearing in the first row of the 315
Code Chart) may be used, that is:

Othrough9 @ , 2 & . -

If any non-digit characters are used, the Compiler will retain only the right-hand
four bits, and will print an error notation on that line of the listing.

The Length column specifies the length of the constant (number of slabs to set up).
Maximum length is 14 slabs.

Note: For this instruction, a space does not terminate the operand. The number
of characters to be included in the operand is specified by the number entered in
the Length column. If remarks are entered, be sure to allow for the correct
number of characters so that a portion of the remarks will not be picked up and
stored as part of the constant.

DIGIT may be used to set up constants in Digit form.,

DIGIT may also be used to include an area of slabs containing zeros in an overlay
which can be used later to make program patches through the Librarian.

NUMBER

This control instruction will set up a constant in numeric form.

] EnaTH INSTRUCTIONS: OPERANDS
REFERENCE Op YV Faw| X |DATA DEFINITIONS: LENGTH, TYPE
8 9 10 11 12 13 14 15 16 17 19 20 2! 22:13 24|25 26|27 28|29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
name NUMB:ERlen numerals

Successive triples of characters, beginning at the first position of the Operands
column, are placed in successive slabs in memory. The Digit characters are
right justified and the field is filled out to the left with zeros.

34

The following entries:

REF 3 . [INUMBER| 2| [12345

REF 4 INUMBER| 2| [-4321 .

REF 5 INUMBER| 3 123.4567

become: ' : ' : : : :
012345 -04‘321 001‘234"567
—t L L] 3 L 1 [} 1] L 1 1 "\ il 1

Only the decimal numerals zero through nine, the minus sign, and the decimal
point (0 through 9 -~) are permitted. If any other characters are used, the
Compiler will retain only the right-hand four bits, and will print an error notation
on that line of the listing. If a minus sign is entered as the first character in the
Operands column, it will be stored in the left-hand Digit position of the field. If
a decimal point is included, it will not occupy any memory space in the constant.
However, the position of the decimal point will be noted by the Compiler so that it
may be used by macro instructions written to handle a decimal point in a numeric
constant,

The Length column specifies the length of the constant (number of slabs to be set
up). Maximum length is 8 slabs,

Note: For this instruction, a space does terminate the operand. If the number of
characters in the operand is greater than the length specified, the Compiler will
pick up only the number specified beginning at the first position of the Operands
column,

NUMBER may be used to set up constants in numeric form which will be used for
arithmetic operations.

PAIR

This control instruction will set up a two-slab address-constant.

E o Uy Jewersl INSTRUCTIONS: OPERANDS
REFERENC . P TEvEL DATA DEFINITIONS: LENGTH, TYPE
8 9 10 11 12 13 14 15 16 17 19 20 21 22123 24|25 26|27 28|29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
name of address-~ AI R address to be stored in two slabs

constant !

The operand is evaluated and that value (which represents a five-digit address)
is placed right justified in a memory pair (a two-slab field to be used as an
address-constant), The left-hand six bits of each pair are normally set to zero
by the Compiler. The value of the operand may range from -39,999 to +39,999.

The operand may be a reference or may be an absolute address.

The operand may be negative, and if so, the minus sign will be stored as the left-
hand four bits of the pair. However, as this is intended as an address-constant,
the Compiler will flag the line as a possible error,

If the next available slab is memory location 01112; and the address of AMOUNT
is 03210, the following entries:

35

REFG6 AMOUNT
R‘E_F'7. 1'2.3|4‘)
01112 01113 01114 01115
become: i 7 T 7
003210 001|234
[} | 1 1 | 1 [} 1
REF6: 01112
REF7: 01114

PAIR may be used to set up individual address~constants for indexing or for index
register manipulation, and may also be used toset up a series of addresses, as in

a table.

Since only the right-hand 18 bits are required to represent any address on the 315 Compu-
ter, the unused portion (left-hand six bits) may be utilized as a memory flag. This can be
done by writing an A (for Alpha) or a D (for Digit) left justified in the X column (in column
27) followed by the desired character or digit (in column 28).

If an A is entered (in column 27), the Compiler will place the desired character (entered in
column 28) in the left-hand six bits of the pair. To obtainthe character '"space",enter "A @ "
in the X column,

If a D is entered (in column 27), the Compiler will place the right-hand four bits of the
desired digit in the left-hand four bits of the pair, with the remaining two bits being set to
zero. If a D is entered and the next character has a one in either of the zone bits, the Com-
piler will retain only the right-hand four bits and will print an error notation on that line
of the listing.

If the operand is negative, the left-hand six bits of the pair should not be used to store a
flag since the generated character will interfere with the minus sign. Also, if an A is
entered and the nextcharacteris ' (Binary 111100), € (111101), 1 (111110),o0r \ (111111),
the entire field will appear negative.

If the X column is left blank, all six bits will be set to zero.

The following are examples of how memory pairs may be used:
To load the address 012345 in IR27:

PAIRADDR

12345

PAIRADDR ,1, 217

Assuming a block will be read in from magnetic tape, toloadthe base address of
the first record in PARTSBLOCK:

PARTSBLOCK

1 ' YRR PR VAN YA JUR TR TR U SR PR U S |

INPUT ,2 , 10

36

e. SLAB
This control instruction will set up a one-slab address-constant.

address to be stored in one slab

name of address

constant

The operand is evaluated and that value (which represents a three-digit address)
is placed in a slab in memory. If the value is greater than 999, the Compiler will
retain only the right-hand 12 bits and will print an error notation on that line of

the listing.

f. SGL (Single)
This control instruction will set up a dummy single-stage instruction.

GL : ~|len |reg| operand to be stored

name of dummy

cqn§ta;nt

The Length, X, and Operands columns are evaluated and the Compiler will convert
these entries into absolute instruction format and store the result in a two-slab
field as a single-stage instruction with an operation code of zero.

SGL may be used to set up dummy instructions which can be used for instruction
modification using the machine instruction Binary Add to Accumulator,

Literal Constants

Constants can be set up in a program by using control instructions. The constants
can be named and described, and the Compiler will set up the corresponding values
in memory.

Constants can also be set up in a program by simply including their literal values as
the operands of the instructions which refer to these values. This may be done by
writing in the Operands column the number sign and a letter designating the type of
literal, followed by the actual value enclosed in parentheses. For example:

o 1 v fewsrl o INSTRUCTIONS: OPERANDS REMARKS
P ! LEVEL DATA DEFINITIONS: LENGTH, TYPE REMARKS
1920 21 22,23 24]25 2627 2829 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 4849 50 51 52 53 54 55 56 57 58 59
TYPEA | | [#A(ABCDE) !
I i

The Compiler will automatically allocate memory space for the information repre-
sented by the literal., One-slab literals willbe set up as the operand of the instruction
in absolute format if the instruction is one which permits this. Literals larger than
one slab will be set up as a constant in the Program Safe Area and the address of this
literal constant will be stored as the operand of the instruction,

The Compiler will set up a literal inthe Program Safe Area only once, even though the
same literal may be entered as the operandin several instructions. Duplicate literals
will not result in duplicate constants, so that memory space is not wasted.

The length of a literal is limited by the size of the operand which the particular in-
struction can accommodate. A literal cannot extend to the next line of coding. For
example, a literal used with the machine instruction LD could not be larger than

37

eight slabs (maximum length of the accumulator), while a literal used with the machine
instruction TYPE:A could not be larger than 21 slabs (42 columns remaining in the
Operands column of one line of the programming worksheet following the #A()
entry).

There are four types of literals: Alpha, Digit, Numeric, and Reference.

a.

ALPHA literal

Alpha literals are written:

!) _|# A (astring of Alpha characters),

This literal is set up in exactly the same manner as in the control instruction
ALPHA. The characters enclosed by the parentheses will be left justified in the
correct number of slabs, two 6-bit characters per slab, and the field will be filled
out to the right with spaces.

L . [#A(ABCDS5)

i
-

CD

- o
- 8

Any of the 64 characters in the 315 Code Chart, except the right parenthesis, may
be used.

The right parenthesis ')" cannot appear within a literal, If parentheses are re-
quired as characters in a constant, the constant must be set up in the program
using the control instruction ALPHA,

DIGIT literal

Digit literals are written:

' .|, |#D, (astring of Digit characters)_,

This literal is set up in exactly the same manner as in the control instruction
DIGIT. The Digits enclosed by the parentheses will be left justified in the correct
number of slabs, three 4-bit characters per slab, and the field will be filled out
to the right with spaces.

#D (12345)

38

Only the Digit characters (the 16 characters appearing in the first row of the 315
Code Chart) may be used, that is:

Othrough9 @ , ¥ & . -

If any non-digit characters are used, the Compiler will retain only the right-hand
four bits, and will print an error notation on that line of the listing.

Numeric literal

Numeric literals are written:

This literal is set up in exactly the same manner as in the control instruction
NUMBER., The Digit characters are right justified in the correct number of
slabs, three 4-bit characters per slab, and the field will be filled out to the left
with zeros. T

......

o) _|[FN(12345)

........

012345

Only the decimal numerals zero through nine, the minus sign, and the decimal
point (0 through 9 - .) are permitted. If any other characters are used, the
Compiler will retain only the right-hand four bits, and will print an error nota-
tion on that line of the listing.

If a minus sign is entered as the first character of the literal, it will be stored
in the left-hand Digit position of the field.

L #N(-4321)

-l0’4 321

If a decimal point is included, it will not occupy any memory space in the constant,
However, the position of the decimal point will be noted by the Compiler so that it
may be used by macro instructions written to handle a decimal point in a numeric
literal.

b) _|#FN(123.4567)

3.

39

d. Reference literal

Reference literals are written:

b . # R (a reference)

v . . #lR.(.ar}qbs‘ol_utg address) |

This literal is set up in exactly the same manner as in the control instruction
PAIR, The entry enclosed by the parentheses is evaluated and that value (which
represents a five-digit address) is placed right justifiedin a memory pair (a two-
slab field to be used as an address-constant), The field will be filled out to the
left with zeros. (Note: The left-hand six bits cannot be used as a memory flag.)

If the next available slab in the Program Safe Area is memory location 00346 and
the address of AMOUNT is 03210, the following entries:

v | | |#r(AMOUNT)

e) C[#R(1234)

become: 00346 00347 00348 00349

0|0|3l2|1‘0 001|234

Note: Compound references may notbeusedin a reference literal, If a compound
reference is desired, use the control instruction PAIR as described earlier in this
chapter,

The following are examples of how reference literals may be used in lieu of the
control instruction PAIR:

To load the address 12345 in IR27:

#.R.(.1.2.3.4.5.).’.1.’.2.7. S

Assuming a block willbe read in from magnetic tape, to load the base address
of the first record in PARTSBLOCK:

#R(PARTSBLOCK), 2,10

To Control the Location Counter

The Compiler will allocate memory according to the needs of the entire system, that is,
the requirements of the object program, the executive routines, and the Librarian,
Several of these memory requirements are fixed and constant for all programs; others

are variable, Starting in the low order of memory, areas are reserved for Universal

Temporary Storage, the Universal Safe Area, and File Table O, which are used by the
executive routines and by the Librarian. Next are the object program file tables, fol-
lowed by the Program Safe Area, which contains out-of-line coding such as generated

literal constants, generated macro subroutines, and, usually, some executive routines,
The in-line coding portion of the object program (containing the program instructions,
input-output areas, constants, ect., generated in-line) follows the Program Safe Area.

(Refer to the CRMX-II or STEP Manual for absolute address memory layout.)

In allocating memory for the in-line coding portion of the object program, the Compiler
will start with the first available slabfollowing the Program Safe Area, and assign this
location to the first element of the object program that will occupy memory. This may
be an instruction, a constant or data unit, or a work area to be used for input, output,
or temporary storage, etc.

As each assignment is made, a count is maintained of the amount of memory allocated
(length in slabs of the size of theunit), For example, it will add two (slabs) if a single
stage instruction is generated, or four for a double stage instruction. This counting
process is done by the Compiler in the ""location counter', At any point in the Compiler
run, the contents, or value, of the location counter will equal the address of the next
available location, that is, the address to be assigned to the next unit.

Normally, the location counter is set initially to the first available slab following the
Program Safe Area. As each assignment is made, the number of slabs assigned
(length of the unit) is added to the contents of the location counter. The result is the
address of the next instruction or memory area,

It is possible to modify this normal counting procedure. The control instructions
ORIGIN, OVRLAY, SAVE and LITORG provide this ability. Care should be exercised
in the use of absolute addresses to reset the location counter.

a. ORIGIN

This control instruction causes a new program block to be output beginning with
the next instruction of the source program,

T o] 5 | INSTRUCTIONS: OPERANDS
REFERENCE % cever DATA DEFINITIONS: LENGTH, TYPE
8 9 10 11 12 13 14 15 16 17 19 20 21 22523 24125 26127 28|29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
g ORIGIN desired value of location counter
I

The operand is evaluated and the location counter is reset to this value.
The value of the operand must lie in the range 0 to 39,999.

It is advisable to use a reference (rather than an absolute value) as the operand of
an ORIGIN,

A reference used as an operand must have been previously defined.

If a name is entered in the Reference column for this instruction, it will be as-
signed the resulting value of the operand evaluation.

A new block of coding is outputbeginning with the instruction following the ORIGIN
control instruction. The new contents of the location counter (value of the operand)
will be assigned as the address of the first slab of the new block,

41

In generating the object program, the Compiler will itself make use of the control
instruction ORIGIN,

Normally the Compiler will assign memory addresses to the generated in-line
coding beginning at the memory area immediately following the Program Safe
Area. By using ORIGIN (and an operand) as the first instruction of the program,
a different memory location can be specified where the coding will start.

OVRLAY

In some instances, especially where a limited memory size is a problem, it may
be desirable to bring a part of the program into main memory at locations allo-
cated to a previous portion of the program. This is known as an overlay and is
accomplished by using the control instruction OVRLAY, This control instruction
causes a new overlay to be created beginning with the next instruction of the
source program.

- - : T] [INSTRUCTIONS: GPERANDS
REFERENCE Op Mever DATA DEFINITIONS: LENGTH, TYPE
8 9 10 '1 12 13 14 15 16 17 19 20 2% 27[73 24125 26|27 28}29 30 31 32 33 34 35 36 37 38 39 40 4! 42 43 44 45 46 47 48
overlay name OVRLAY putaway address
JERNY DU DU NS SN NS P DS R PR ‘,._l____l_.' 1 1 ' 1 1 I T o, | 1 p— R R pu—] | JOUY U P, —
1

The operand is evaluated and the location counter is reset to this value.
The value of the operand must be in the range 0 to 39,999.

A reference used as an operand must have been previously defined.

A unique name must be assigned to eachoverlay (entered in the Reference column
of this instruction). If a name is entered in the Reference column, it will be
assigned the number of the new overlay (e.g. 01, 02, etc.), not the value of the
putaway address. This assigned overlay number is used when making program
patches during the Librarian run,

A new block of coding is output beginning with the instruction following the OVRLAY
control instruction. This block becomes the first block of a new overlay. The
new contents of the location counter (value of the operand) will be assigned as the
address of the first slab of the overlay.

The main program is automatically set up by the Compiler as though it were
Overlay 00, When the object programisrun, the System Supervisor will read this
portion of the program into memory.

Any subsequent overlays must be created by the use of OVRLAY. Each new over-
lay will be assigned the next consecutive overlay number (01, 02, etc.).

In producing overlays, the Compiler will also generate the control information
necessary to permit it to be read into its correct position in memory. To call an
overlay into memory, use the control instruction CALLC, or CALL, as described
in the Macro Instructions Manual. Note that Overlay 00 is intended to contain the
main program and cannot be recalled into memory.

In assigning a putaway address for an overlay, be certain that the overlay when
called into memory will notoccupy an areathat contains data needed by the portion
of the program currently being processed.

42

SAVE

This control instruction causesanareain memory to be left unaffected, by advanc-
ing the contents of the location counter.

REFERENCE o Ty el o INSTRUCTIONS: OPERANDS
P LEVEL DATA DEFINITIONS: LENGTH, TYPE
8 9 10 11 12 13 14 15 16 17 9 20 21 22:23 24125 26[27 28129 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
SAVE number of slabs
- _ _ 2V) \ SR —— i
t

SAVE merely advances thelocation counter by the value of the operand. It does not
produce any coding in the object program,

The value of the operand must be positive or zero, and must be in the range 0 to
39,999,

If a Reference is used as an operand, it must have been previously defined.

If a name is entered in the Reference column for this instruction, it will be as-
signed the current value of the location counter, that is, the value before addition.

A new block of coding will be generated beginning with the instruction following
the SAVE control instruction. When the object program is read into memory, no
coding will be read into the area skipped by this SAVE, In this way, SAVE can be
used to retain information left in memory from a previous overlay.

Note: This "'saved" memory area cannot be used to make program changes (using
patches) through the Librarian. To reserve memory for patches by the Librarian,
use the control instruction ALPHA or DIGIT toinclude an area of slabs containing
spaces or zeros, etc., or use the macro instruction ZERO,

SAVE can also be used to reserve an area in memory which can be used for input
or output, or as a work area.

SAVE can be used as a limiter to mark the end of the memory area immediately
preceding the SAVE control instruction. SAVE withan operand of zero (0) will not
advance the location counter. A name entered in the Reference column for this
instruction will be assigned the same value as the location counter; however, if
this reference is used as the operand of an instruction, the absolute coding gener-
ated by the Compiler will contain only the starting location of the saved area, but
not the length.

LITORG

This control instruction causes the memory location of the Program Safe Area to
be changed.

LENGTR) INSTRUCTIONS: OPERANDS
LEVEL DATA DEFINITIONS: LENGTH, TYPE

25 26127 28129 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48

absolute address of first

REFERENCE

8 9 10 11 12 13 14 15 16 17

1t ——

slab in—_Program Safe Area

RN PR, PO — — § R P

The Program Safe Area will be relocated to start at the address assigned to the
operand,

43

The operand must be an absolute address and must be in the range 0 to 39,999.
A reference may not be used as an operand of this instruction,

The Program Safe Area is a variable length area containing the literal constants
generated out-of-line by the Compiler, macro subroutines generated out-of-line,
the Rescue Routine, and for magnetic tape programs, the Extremity Routine.
Normally the Compiler will store the Program Safe Area in memory immediately
following the file tables. This position in memory can be changed by using
LITORG.

LITORG may be used only once in a program,

For Referencing

In many cases it isuseful toreferto the same constant or instruction or data area with
several names. It is also useful to assign the same values or addresses to several
names used previously. The following control instruction will provide this ability.

EQUATE

This control instruction will associate the value, address, or reference, entered
as the operand, with the name entered inthe Reference column. Only one operand
is permitted for each EQUATE instruction. All descriptive information previously
assigned to the operand is assigned to the reference to which it is equated (i.e.
length, associated index registers, type).

| v LENGTH X INSTRUCTIONS: OPERANDS
o tEveL DATA DEFINITIONS: LENGTH, TYPE
19 20 21 22:23 24125 26|27 28|29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
EQUATE
X, =

REFERENCE

8 9 10 11 12 13 14 15 16 17

value or address or reference

The operand is evaluated and the resulting value, or address, is associated with
the name entered in the Reference column.

The operand may be a single value, address, or reference, or it may be compound.

The names used in the Reference column and the references used in the Operands
column may be any allowable name (e.g., may refer to a constant, an instruction, a
data unit, etc.).

A reference used as an operand must have been previously defined.

Examples:
MAXIMUM | . 999
LOCATIONT | {EQUATE 12345, ,
I
LIMIT [{EQUATE] UNITH 3 . .

EQUATE may be used to:
assign a name to numeric value or address
assign a numeric value or address to a name,
associate a name with a name that has been previously defined.

assign the same value or address to two or more names.

44

For

EQUATE can be used to assign symbolic names to index registers or to jump
registers. Enter the register number in the Operands column and assign a one-
or two-character symbol in the Reference column. For example:

REFERENCE T, Jmren] [INSTRUCTIONS: OPERANDS
ERE % Tever DATA DEFINITIONS: LENGTH, TYPE

8 9 10 11 12 13 14 15 16 17 19 20 2% 22:23 24125 26127 28129 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
A 1 QU A: TE 12

T 2285 A s

The Reference Al can now be used as an operand of machine instructions which
refer to IR12 or to JR12,

Note: Symbolic index register references may not be used in Data Definitions.

A compound operand may contain the operators *,/,+, or - (representing multiplied by,
divided by, plus, minus). The Compiler will perform the arithmetic in the following order:
multiplication, division, addition, subtraction. All arithmetic is strictly digital; the frac-
tion part of each computation is ignored.

Program Addressing

BASE

In constructing addresses, the Compiler must be able to depend on the values con-
tained in certain index registers at the time the object program is executed. For
programming convenience, the following index registers will automatically be set
initially by the CRMX-~II or STEP System Supervisor to contain the following values:

IROO through IR09 - 00 000 through 09 000
IR16 through IR25 - 10 000 through 19 000

For CRAM only, IR24 contains 38 000 and IR 25 contains 39 000

The Compiler can make use of these standard register settings when constructing
addresses for instructions, constants, and data units that have a fixed location in
memory. It will search atable of IR-numbers and their contents to find a register
which contains a value which is within 1000 of the address desired, subtract the
register value from the address, and store the difference in the A (or B) field of the
machine instruction,

When it becomes necessary to change a standard setting, the Compiler must be in-
formed of the new value so that the assembled instructions and the Compiler
printout will contain the correct addresses.

The control instruction BASE informs the Compiler that while the instructions
that follow are being assembled, it can assume that the index registers shown in
the Operands column will contain the values shown.,

i enoTh INSTRUCTIONS: OPERANDS
REFERENCE
¢ Op 1V Fever] X [TDATA DEFINITIONS: LENGTH, TYPE
8 9 10 11 12 13 14 15 16 1 19 20 21 22:23 2425 26|27 28|29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 44 47 48
BA SE! register1 /Valuel, x‘egister2 /value2 .
J— —_—r— _l—l_' 1 1] 1] ¥ 1 1]] 1]] 1“~=_] 1 1 p—

The value may be absolute, or it may be a reference. The value may not be com-
pound, and literals may not be used.

45

These stated values must then be loaded by the programmer in the respective
registers (using the machine instruction LD:R or the macro instruction MLDR).

BASE guarantees to the Compiler that during the execution of the instructions
which follow, certain values will be in certain index registers. These guarantees
hold until changed by a subsequent BASE. (The new values must also be loaded by
the programmer into the index registers.)

A situation where it will be necessary to use BASE would occur in the case of an
object program to be run using a computer with 10,000 slabs of memory. Index
registers 16 through 25 would then be available for indexing of dynamic addresses
(but not IR24 and IR25 for CRAM).

Another example wouldbe the case of an object program to be run using a computer
with 40,000 slabs of memory, where it is necessary for the Compiler to construct
static addresses for instructions, constants, or data units that have a fixed location
in memory which fall in the range greater than 19,999. One solution would be to
assign an index register for each 1000 segment affected. If it becomes necessary
to use any of the standard registers, BASE must be used to inform the Compiler of
the change in contents of the registers. The registers must also be loaded with
the correct values at the appropriate point in the program. In this case, it may
also be necessary to change the contentsback to the initial standard settings if the
program jumps to a subroutine stored in a range lower than 19,999.

Remember that the function of BASE is to state index registers and their intended
values. The values must still be loaded into the respective registers by the pro-
grammer,

b, JVAL

This control instruction states the values which the CRMX-II or STEP System Super-
visor will place in the specified jump registers.

i L enath INSTRUCTIONS: OPERANDS
REFERENCE Or | ¥V R X [DATA DEFINITIONS: LENGTH, TYPE
8 9 10 11 12 13 14 15 16 17 19 20 20 22123 24125 26127 28|29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
.V.é.L; ‘ . . re‘gilstfzrl /Ya.lue.l 5 r‘eg‘isxtell*zl/va}lu'ezl Ce e
|

The value may be absolute, or it may be a reference, The value may not be com-
pound, and literals may not be used.

The registers may be any jump registers except 0-5 in tape systems and 6 to 10
in CRAM.,

The Compiler will place the values in the Program Header. When the object pro-
gram is read into memory, the System Supervisor will load these values from
the Header into the specified jump registers. The jump registers not mentioned
in a JVAL instruction will be set to their standard values.

Only one JVAL instruction may occur in a program.

For a complete list of the standard index and jump register settings, see the CRMX-II
and STEP manuals.

To Modify the Printout

a, PAGE

Listing on the printer is spaced to the top of the next page. No operand is neces-

46

1.

8.

sary. This line is not printed.

i (ener] [INSTRUCTIONS: OPERANDS
REFERENCE O 1V ew DATA DEFINITIONS: LENGTH, TYPE
8 9 10 11 12 13 14 15 16 17 19 20 21 22123 24|25 26127 28{29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
PAGE ‘
]
UNLIST

Listing on the printer is suppressed beginning at the point where this instruction
occurs in the source program, Nooperandis necessary. This line is not printed.

! LenoTn INSTRUCTIONS: OPERANDS
REFERENCE Op PV Teve DATA DEFINITIONS: LENGTH, TYPE
8 9 10 11 12 13 14 15 16 17 19 20 21 22123 24125 26|27 28|29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48

UNLI:ST

1

LIST

Listing on the printer is resumed. This instruction counteracts the effect of
UNLIST. LIST is the normal caseandis assumed at the beginning of the program.
No operand is necessary. This line is not printed,.

LENGTH INSTRUCTIONS: OPERANDS
REFERENCE Vo lteve| X DATA DEFINITIONS: LENGTH, TYPE
8 910 11 12 13 14 15 16 17 23 24125 2627 28|29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48

1
|
|
{
|

To Delete a Line During Initial Compilation

XXX

This control instruction directs the Compiler to delete from the source program,
the instruction with the page-line number indicated,

No operand is necessary. This instruction may be used only during the initial
compilation, and only when the Sort option has been specified.

REFERENCE 1 v |eewsml o INSTRUCTIONS: OPERANDS
Op ! LEVEL DATA DEFINITIONS: LENGTH, TYPE
8 9 10 11 12 13 14 15 16 17 F3] 19 20 21 22{23 24125 26[27 28[29 30 31 32 33 34 35 36 37 38 39 40 41

Note: The Compiler will accept XXX during a recompilation to delete source lines
entered as changes. This could be used to make a correction to a line entered as
a change.

To Delete One or More Lines During a Recompilation

OMIT

This control instruction directs the Compiler to delete from the source program,
the lines with the page-line number(s) indicated. Remarks may be punched, but
will not be printed.

To delete a single line, enter its page-line number in the Page-Line column and
leave the Operands column blank. Remarks must not appear within the first six
character positions of the Operands column,

10,

11,

For

47

PAGE LINE REFERENCE o 1 v frerel o INSTRUCTIONS: OPERANDS

P ! LEVEL DATA DEFINITIONS: LENGTH, TYPE
12 3|4 5 8 9 10 11 12 13 14 15 16 17 920 21 22:23 24|25 26|27 28|29 30 31 32 33 34 35 36 37 38 39 40 4}
pageline : omrm | | |¢dwaeed ——

To delete several consecutive lines, enter the page-line number of the first line
to be deleted, in the Page-Line column, and enter the page-line number of the
last line to be deleted, in the Operands column,

S PR DR PRI DU PR P |

last page-line

first

_lin

Note: OMIT should be used only during a recompilation from an ACRAM or an
ATAPE. It can beused to omit single lines only in an initial compilation, but XXX
is recommended for this purpose.

Definition of Data

a.

b.

C.

DATA
These control instructions

INDEX are described in detail in
Chapter III,
REDFN

To Identify Object Program File Specifications

a.

FORMAT C

This control instruction, preprinted on the CRAM File Specification Worksheet,
identifies the file specifications if the object program is to be run using CRAM,

FORMAT T

This control instruction, preprinted on the Magnetic Tape File Specification Work-
sheet, identifies the file specifications if the object program is to be run using
magnetic tape.

To Identify Compiler Input and Output Specifications

NEAT

This control instruction, preprinted on the Control Worksheet, identifies the input
and output specifications for this Compiler run. It must be the first line physically
input to the Compiler rumn.

48

12. To Identify the Last Line Input to the Compiler Run

END

This control instruction identifies the last line of coding (end) of the source pro-
gram, It is the last line physically input to the Compiler run. If the Sort option
is specified, it must also bear the highest page-line number. END stops the
Compiler input and indicates the Program Starting Address (address of the first
instruction to be executed in the object program), An END instruction must be
present in every program,

! program starting address

13. To Identify the Last Card of a Correction Deck Input to a Recompilation

Since the end of a correction deck would probably not occur simultaneously with the
end of the source program, END would be an ambiguous way to terminate the cor-
rection deck. Thus ENDMOD is used to signify the end of the correction deck.

REFERENCE o Ty el [INSTRUCTIONS: OPERANDS
P LEVEL DATA DEFINITIONS: LENGTH, TYPE
8 9 10 11 12 13 14 15 16 17 19 20 21 22:23 24(25 26127 28(29 30 31 32 33 34 35 36 37 38 39 40 4) 42 43 44 45 46 47 481
ENDMOD program starting address !
' 1 1 ! 1 1 1 1 1 1 1 1] { PR P | 1 1 1 P] 1 1 1 1 1 ;

C. ADDRESSING

1. Types of Addresses

a.

Simple address

A simple addressis expressedasa single operand, and may be an absolute address
or may be symbolic,

1) Absolute

An absolute address is represented by anactual value entered in the Operands
column., For example:

2) Symbolic

A symbolic address is represented by the name (reference) assigned to the
particular data unit or memory location being referenced, For example:

DIE‘S'I‘G‘N.DIA.TIE'

Any name that appears in the Reference column in a program may be used as
a symbolic operand. The Compiler will convert the operand to the correct
absolute addressing notation, which in this case would be 04325 (assuming
that the base address of the Manufactured Parts Record is 04321),

49

Compound address

A compound address is represented by any combination of references and absolute
values connected by the arithmetic operators: + or - (plus or minus), For
example, the operand DESIGNDATE+2 would reference the memory location 04327,

A compound operand must be complete on one line,
Parentheses and literals are not permitted.

The arithmetic operators: * and / (multiplied by and divided by) may be used in a compound
operand but are permitted only with the control instruction EQUATE., The Compiler will
perform the arithmetic in the following order: multiplication, division, addition, subtrac-

tion.

Asterisk address

An asterisk address is represented by the symbol * entered as the first character
of an operand (first character in the Operands column, first character following a
comma, or first character following an arithmetic operator). In evaluating the
operand, the Compiler will treat the asterisk as though it were a reference to the
instruction itself and will assigna value to the asterisk that is equal to the address
of the first slab of coding which results from that line on the programming sheet.

An asterisk may be used as a simple operand. It may be used as part of a com-
pound operand only in EQUATE,

Note: Two additional uses of the asterisk are: (1) to extend remarks to a suc-
ceeding line, and (2) to represent the arithmetic operator multiply.

Reference literal address

A reference literal is represented as an operand by writing the characters #R
followed by a reference enclosed in parentheses. The Compiler will treat this
operand as the reference of a two-slab data unit containing the address of the
data ‘unit to be referenced. For example, the instruction:

;R.)) #.R.(.I‘N'P.U.T'B_L.OIC‘KI)I,I1',I1|3'

would be interpreted by the Compiler as though it had been written:

REF 8

AIR | | |[INPUTBLOCK

D 'R) |REFS8 , 1,13

For additional details, see Reference Literal.

Note: A compound operand is not permitted in a reference literal.

50

e. Positive A or B

The A (or B) portion of an instruction, which will be added to the contents of an
index register to form the full address, must be a positive value. A negative
increment is not permitted as part of the coded instruction. When using a com-
pound address, be certain that the result of the operand evaluation does not resulit
in a negative value. For example, using the Data Definition example in Chapter
III, the operand: DESIGNDATE-1 would be permitted since the evaluation would
result in 003 relative to IR10, However, the operand: DESIGNDATE-4 would
result in an error since the result would be negative: -01 relative to IR10,

f. Blank operand

If the Compiler encounters a machine instruction in which a required operand has
not been entered, it will construct the absolute coding allowing the correct number
of slabs, but will substitute zeros for the missing information and will usually
print an error notation on that line of the listing,

Descriptive Character of Symbolic Addresses

A name entered in the Reference column for an instruction will be assigned the ad-
dress of the coding that results from that line on the programming worksheet. When
the reference is used as an operand in another instruction, the Compiler will convert
the reference into the correct address notation. In the following example:

DESIGNDATE

J REF

if the LD instruction were stored in memory at location 02001, the Compiler would
treat the JUMP instruction as though it had been written:

1 RN PR PR RN PSR PR B JHY VAN S '

2001

In certain cases, additional descriptive information will be associated with the refer-
ence. For example, a reference named with the control instruction ALPHA will have
associated with it, the address of the Alpha constant, and also the length of the con-
stant,

The reference of a data unit named with the control instruction DATA will have
associated with it, the address of the data unit, the length of the data unit, and also
the index register to be used if one has been assigned.

When the reference is used as an operand, and the Length and X columns are left
blank, the Compiler will supply the correct Length, X and A entries from the descrip-
tive information associated with the reference,.

In the case of one or more references used with a compound address, the Compiler
will use the descriptive information associated with the first reference.

51

To Modify Descriptive Definitions by Using Length and X Entries

The descriptive definition of a symbolic operand can be modified temporarily without
changing the original definition. The memory location, length, and index register
associated with a reference can be changed and this change will apply only to the in-
struction which contains the modifications.

In constructing the absolute coding, the Compiler will use the new values only for this
particular instruction. When the reference is again used as the operand of another
instruction, and the Length and X columns are left blank, the Compiler will use the
descriptive definition as originally assigned.

To modify the memory location referenced by a machine instruction, use a plus or a
minus and an integer following the reference. To assign a different length of a differ-
ent index register, enter the new length or the new index register number in those
columns.

52

V. MACRO INSTRUCTIONS

GENERAL

The Compiler can call upon an expandable library of macro subroutines. These are standard
subroutines, composed of a number of instructions performed in a given sequence, which
are common to many programs and may even be used many times in a single program,
varying only the operands. Eachsubroutine existsin a generalized form as part of a macro
generator which is stored in a library (either on CRAM or magnetic tape).

The programmer simply writes a line of coding (referred to as a macro instruction) on the
programming worksheet at the point where the subroutine is to be executed in the object
program, The macro instruction consists of the name of the subroutine (entered in the Op-
eration column) so that the subroutine can executeits function for this particular program.
The Compiler will obtain the desired macro generator from the library, and will transfer
control to it.

The generator contains within itself a subroutine in skeleton form, It uses the operands to
create the parameters required to perform this subroutine for this particular file or this
particular data, and inserts these parametersin the proper positions as part of the machine
instructions. The Compiler assigns the appropriate memory locations to this completed
routine,

Some subroutines are stored ''in-line', that is, they are inserted in their proper place in
the sequence of operation. Some subroutines are stored '"out-of-line', that is, they are
stored away from the routine that refers to them, and are connected to the routine by ap-
propriate jump instructions. If a particular subroutine will be called for at several
different points in a program, memory space is conserved by storing the subroutine only
once. The subroutine is generated so as to be stored in a reserved area in memory, and
appropriate jumps set up from the various points in the main program to the out-of-line
coding and back.

Those macro instructions which manipulate files on CRAM or magnetic tape function in
conjunction with file tables. These are the tables which were set up in memory by the
Compiler from the entries on the File Specification Worksheets. The programmer assigns
a name-~the file table reference--to each table.

The file tables will contain the parameterspertinent to the various CRAM or magnetic tape
files, and will alsobeusedto store data generated during the running of the object program.
When the file table reference is entered as an operand of the macro instruction, the Com-
piler will supply the appropriate addresses of the fields in the file table and insert them in
the machine instructions in the generated subroutines.

The number of macro subroutines which the Compiler may utilize is not limited to those
initially furnished at the time the Compiler was written or the 315 Computer system in-
stalled. Additional macro subroutines may be written as the need arises, and added to the
library of macro subroutines.

WRITING MACRO INSTRUCTIONS
In general, the rules for entering macro instructions on the programming worksheet are
the same as for machine instructions, with the following exceptions:

Operation (columns 19-24)

The Operation column is treated as a single 6-character field. Macro instruction
mnemonics are entered left justified starting at column 19,

53

Length and X (columns 25-26 and columns 27-28)
In most cases, no entry is requiredinthe Length column or in the X column. However,
a few of the macro instructions do require an entry in these columns. These are ex-
plained in the description of the individual macro instructions.

Operands and Remarks (columns 29-74)

Operands are entered in the same manner as described for machine instructions except
that there is no ""A,B,Y' as such. When an instruction requires several operands, they
are written as a continuous statement separated only by commas. Where a particular
operand of an instruction is not required, it is not entered; however, a comma is
entered in its place, if it is followed by another operand.

Two consecutive spaces occurring in this column denotes to the Compiler that this is
the end of the operands entry and that remarks follow.

Some macro instructions which permit several operands (e.g., FILEC or FILE) may
require more space for the operands entry than is contained in one line of the pro-
gramming worksheet. In this case a long operands entry may be extended to succeed-
ing lines of the programming worksheet. This is done by entering the next line
number, leaving the Operation column of the next line blank, and continuing the list
of operands in the Operands column starting at column 29. However, each operand
(and its comma) must be complete on one line.

For a description of the mnemonics, format, and function of each macro instruction, refer
to the Macro Instructions Manual, MD 315-44.

SCIENTIFIC SUBROUTINES

A Compiler is available that can call upon an expandable library of Scientific Subroutines.
These are standard subroutines that perform a particular function such as: Form the
sum of two floating point numbers, evaluate the square root of a fixed point argument,
ete. These subroutines are storedinalibrary on CRAM or on magnetic tape. The standard
Compiler does not contain these macros; however, a Compiler that does contain them is
available on request,

The programmer simply writes a line of codingon the programming worksheet, at the point
where the subroutine is to be executed in the object program. This entry consists of the
mnemonic title of the subroutine; e.g., ADD F (which represents Floating Add), or SQRT
(which represents Square Root) written in the Op and V columns, and the addresses of the
parameters, if any, written in the Operands column,

The Compiler will obtain the desired subroutine fromthe library and include it in the object
program, and will substitute a JUMP to the subroutine, in place of the mnemonic operation
code, followed by a series of PAIR's, if appropriate. Each PAIR references a two-slab
memory location which contains a parameter address.

For a description of the mnemonics, format, and function of each subroutine, refer to the
Scientific Subroutines Manual, MD 315-43.

54

VI. COMPILER INPUT

The source program consists of the information entered on the Control Worksheet, F-2691, the
File Specification Worksheet, F-7304, and the Programming Worksheet, F-2689, This informa-
tion is keypunched and the resulting punched paper tape or punched card deck becomes the input
medium to the Compiler. The Compiler will accept this input and process it as a series of
lines (in general, one line equals one instruction to the Compiler).

A.

CONTROL WORKSHEET, FORM F -2691

A Control Worksheet, Form F-2691 must be prepared for each program being compiled.
For programs being compiled on CRAM, use the side of the form entitled '""Control Work-
sheet, CRAM", and for programs on magnetic tape, use the side entitled ""Control Work-
sheet, Magnetic Tape'. The following is a brief description of the columns of the control
worksheet. The form itself contains all the information necessary for its completion;
however, additional information is given below where appropriate. Differences between the
two sides of the form are also noted.

| Page-Line

This sheet should bear the lowest page-line number in the program and it must be the first
information input to the Compiler run.

16

The characters entered here become the name of the object program. (Caution: The rules
regarding program names differ slightly from those for other names or references.) The
program name may be made up of any of the characters in the 315 Code Chart except the
comma. The program name is a ten character field; however, the first 8 characters must
contain a unique program name, and the last 2 characters should be used for a program

""version number”, Spaces are permitted between the last character of the program name
and the version number, if the name has less than 8 characters.

Explanation: Assign a program name using columns 8 through 15 on the control sheet. For
the initial compilation, the last 2 columns (16 and 17) can be left blank, or the version
number "00" can be assigned. For each recompilation, update the version number by ''1"
(01, 02, 03, etc.). For example:

OBJECT PROGRAM SPECS

8 16
S T OCK3 _0,0]] Program Name

e

Initial compilation

19

NEAT]

COMPILER INPUT SPECS

L2 Ell
]&,_._(_) ?__, Name of Input:

55

OBJECT PROGRAM SPECS

First recompilation
19

[:NQ_EA-A—IjT

COMPILER INPUT SPECS

3

This will permit identification of versions (recompilations) of the same program; the 8
character name does not change, but the 2 character version number is advanced by the
entry on the control worksheet,

At Librarian time, the instructions to the Librarian call for a program by the entire 10
characters. This will insure obtaining the latest version from the program library in the
case of several versions of the program appearing on the program CRAM (or tape), The
selected program will be included by the Librarian in a new program library.

When the object program is to be run, the System Supervisor will search the program
library for the next program to be run, but will search only for an 8 character program
name, ignoring the version number. Therefore, it is important that the correct version be
on the current program library,

19

ENIEI_A_IjT

The letters "NEAT'", representing the control instruction, have been preprinted in these
columns and will be punched. NEAT indicates to the Compiler that the information in this
line represents the input and output specifications for this Compiler run,

For CRAM:
3 ,3' J N £ Input: If recompiling from an ACRAM, enter Program Name
L‘—-'—'—‘—'-—‘—‘—’-—' ame oL IPUE 1t not recompiling from an ACRAM, enter N

For initial compilation, enter N,

For a recompilation, enter the program name (previous version) if input is from
the ACRAM, If input is from punchedpaper tape or punched cards, enter N,

For magnetic tape:

23 =L If recompiling from an ATAPE, enter Program Name
[: J Name of Input: >
e If not recompiling from an ATAPE, enter N

For initial compilation, enter N,

For a recompilation, enter the program name (previous version) if input is from
the ATAPE, If input is from punched paper tape or punched cards, enter N,

56

* CONTROL WORKSHEET

N c R CRAM

31 5 N EAT ¥ Program Prepared by.
CO M PI LE R Date = Page___of

75 IDENTIFICATION

Program Name

COMPILER INPUT SPECS

i ,3‘ __J N ¢ Input: If recompiling from an ACRAM, enter Program Name
e B B ame o put: If not recompiling from an ACRAM, enter N

33 P for punched paper tape
[___] Indicate type of punched input: € for punched cards
N for no punched input

4
[C] 1s punched input to be sorted? (Enter Y or N)

35
[[] Are new Page-Line numbers to be assigned? (Y or N)

COMPILER OUTPUT SPECS

C for CRAM

43
/D Type of Executive System which will exercise Primary Control over the Object Program: T for Magnetic Tape

44
D Memory Size of Processor on which Object Program is to be run

(Enter Appropriate Number: 40K = 8, 30K = 6, 20K = 4, 15K = 3, 10K = 2,5K = 1)
4s R
. . G for Macro Generator Library
2 .
[] To which Library should output be added? Enter: P for Program Library

“ P for punched paper tape
|:| Indicate type of punched output desired: € for punched cards
N for no punched output

47 F for Initial Compilation or Full Recompilation
[C] Enter:

P for Partial Recompilation (No Macro generation occurs on a Partial)

48
D Should Compiler printout include Cross-Reference listing? (Y or N)

49
—] Starting Card
52
. Ending Card
55
. Starting Card
58
- Ending Card

F-2691 @ *TRADEMARK *SERVICE MARK PRINTED IN U.S.A.

Designate location of program to be recompiled
ACRAM Input If not recompiling from an ACRAM leave blank

ACRAM Output Designate cards to receive Compiler output

Figure 3. Control Worksheet, CRAM

C

315 NEAT"
CCMPILER

CONTROL WORKSHEET
Magnetic Tape

Prepared by

Date. Page—of

75 IDENTIFICATION

i —1

COMPILER INPUT SPECS

23

35

Indicate type of punched input:

Is punched input to be sorted?

i ._J Name of Input:

S PR R (RS DR B PRy pu—

If recompiling from an ATAPE, enter Program Name
If not recompiling from an ATAPE, enter N

P for punched paper tape
C for punched cards
N for no punched input

(Enter Y or N)

Are new Page-Line numbers to be assigned? (Y or N)

COMPILER OUTPYUT SPECS

43
/D Type of Executive System which will exercise Primary Control over the Object Program:

44

J

€ for CRAM
T for Magnetic Tape

Memory Size of Processor on which Object Program is to be run

(Enter Appropriate Number:

To which Library should output be added? Enter:

40K = 8, 30K = 6, 20K = 4, 15K = 3, 10K = 2, 5K = 1)

G for Macro Generator Library
P for Program Library

P for punched paper tape

Indicate type of punched output desired: € for punched cards

Enter:

N for no punched output

F for Initial Compilation or Full Recompilation
P for Partial Recompilation (No Macro generation occurs on a Partial)

Should Compiler printout include Cross-Reference listing? (Y or N)

F-2691 @

*TRADEMARK *SERVICE MARK PRINTED IN U S A

Figure 4. Control Worksheet, Magnetic Tape

57

58

33

O

34

]

35

J

43
E| Type of Executive System which will exercise Primary Control over the Object Program:

44

P for punched paper tape
Indicate type of punched input: € for punched cards
N for no punched input

For initial compilation, enter P or C,

For a recompilation, enter N if the input is from the ACRAM or ATAPE, If input
is from punched paper tape or punched cards, enter P or C,

Is punched input to be sorted? (Enter Y or N)

If Y, the Compiler will sortthe punchedinput, rearranging the lines into ascending
alpha-numeric sequence according to the characters enteredin the Page-Line col-
umn, The Sort option eliminates the need to rearrange or to externally presort
the input.

If N, or if page-line numbers are not assigned, the instructions must be in correct
sequence at the time of input to the Compiler run. This is also true for changes,
deletions, or additions during a recompilation.

Are new Page-Line numbers to be assigned? (Y or N)

If Y, the Compiler will assign new page-line numbers starting with 000000 for the
first line and increasing by 10 for each subsequent line.

On the initial compilation, if Sort is also specified (Y in column 34), renumbering
will occur after the input is sorted.

For a recompilation, the new input will be sorted, if specified, then merged with
the recompilation master (which is assumed to be in correct sequence), and the
entire source program will be renumbered. If Sort is not specified, the Compiler
will merge the new input, then renumber,

€ for CRAM
Y for Magnetic Tape

Enter the appropriate letter to indicate the type of executive routines that will con-

trol the object program. For an object program to be run on a mixed system which
will require both CRMX-II and STEP, indicate which executive system will exercise
primary control (CRMX-II System Supervisor to locate the next program on CRAM,
or STEP System Supervisor to locate the next program on magnetic tape),

[] Memory Size of Processor on which Object Program is to be run

45

]

(Enter Appropriate Number: 40K = 8, 30K = 6, 20K = 4, 15K = 3, 10K = 2, 5K = 1)

Enter appropriate code number, Ifthiscolumnis left blank, the Compiler will use
the memory size of the' computer on which this compilation is being run.

G for Macro Generator Library

To which Lib hould output be added? Enter:
o which Library should output be adde nter P for Program Library

Enter appropriate letter to indicate which library is to receive output.

59

. P for punched paper tape

L__] Indicate type of punched output desired: C for punched cards
N for no punched output

The object program will be output on CRAM or magnetic tape. If punched paper
tape or punched card output is also desired, enter P or C.

é Enter: F for Initial Compilation or Full Recompilation
P for Partial Recompilation (No Macro generation occurs on a Partial)

Enter F for the initial compilation.

Enter F for a recompilation when macro instructions are to be added, changed,
deleted, ete.

P may be used for a recompilation when macro instructions will not be affected.
A partial recompilation takes less time than a full recompilation,

48
[[] Should Compiler printout include Cross-Reference listinz? (Y or N)

If Y, the Compiler printout will include a listing of all references, indicating where
each is defined and where each is used in the program,

The following columns are for use with CRAM programs only. For compilations to be
run using magnetic tape, leave them blank.

For CRAM only:

49

I__.:] Starting Card . X .
; LT e S
[:_—.j Ending Card
55
. Starting Card
58 } ACRAM Output Designate cards to receive Compiler output
Ending Card

]

75 IDENTIFICATION

{ P PR U

Enter identification, if any, as described in Chapter II,

CRAMFILE TABLES

In order to use the automatic CRAM handling facilities of CRMX-II and the input-output macro
instructions, certain information regarding each CRAM file must be present in memory dur-
ing the running of the object program. This information is maintained in memory in the form
of a table of information, called a file table, for each file.

The file tables contain information to be used for file identification and protection input-output
operations, restart procedures, end-of-file procedures, etc., and are constantly being referred
to by the CRMX-II subroutines and by the macro instructions. The file tables are also used to
store data generated during the running of the object program, e.g., card number in decimal
and in binary, address of current record, etc.

60

File tables are assigned a fixed memory area and are stored in memory in the order
generated, normally starting at memory location 00169. (When program overlays are
used, the file tables will begin 2 slabs subsequent for each overlay used.) The file tables
are produced by the Compiler using information punched from the CRAM File Specifica-

tion Worksheets.

Figure 6 shows the layout of the file table and indicates the fields in the file table that are
affected by corresponding columns in the File Specification Worksheet,

CRAM FILE SPECIFICATION WORKSHEET, FORM F-7304

A File Specification Worksheet (CRAM), Form F-7304, must be prepared for each file that
is affected by CRMX-II or by any CRAM macro instruction. The form itself contains all the
information necessary for its completion; however, additional information is given below
where appropriate. For additional detail of the functions of the various executive routines
affected, refer to the CRMX-II Manual, MD 315-80.

1 4
E.—‘———[—— \‘
B e e — Ko

Page and Line entries are the same as described in Chapter II,

\ Page-Line

File Table Reference

The characters entered here become the name of the file table for this file and will be
used as the operand of instructions to represent the memory location of the file table.

The standard rules for names and references apply to file table references; that is, any
letter or numeral butatleastone letter and no embedded spaces. File Table Reference
entries must be left justified.

When the file table reference is used as the operand of a macro instruction, the Com-
piler will provide the appropriate addresses for the particular instructions involved.

For addressing purposes, the Compiler treats the 2nd slab of the file table (containing
primary CRAM number) as the base address of the file table.

The letters "FORMAT C'", representing the control instruction, have been preprinted
in these columns and will be punched. FORMAT C indicates to the Compiler that the
information in this line and the next line represents CRAM file table specifications
which the Compiler can use to build file tables. This is done by entering the file table
reference as an operand of the macro instruction FILEC, FILEC will set up the file
table and include it as part of the object program.

Another function of FORMAT C is to identify the CRMX-II options requested for this pro-
gram. These options are indicated by a Y or N (Yes or No) entered in the appropriate
columns of the sheet, The Compiler will store the necessary executive routines on
CRAM or in memory.

27
. Primary CRAM Number

Enter primary CRAM number.

N c R FILE SPECIFICATION WORKSHEET
CRAM

315 NEAT’ Program Prepared by
C O M P I LE R Date.

Page of

ALL SYMBOLIC REFERENCES MUST BE LEFT-JUSTIFIED AND MUST CONTAIN AT LEAST ONE ALPHABETIC CHARACTER.
ALL ABSOLUTE ADDRESSES OR NUMERIC ENTRIES MUST BE RIGHT-JUSTIFIED AND MUST BE ZERO-FILLED TO THE LEFT.

1 4 75 IDENTIFICATION

] _,_l___. Page-Line | I l

L

19

_ File Table Reference

27
: Primary CRAM Number

[a—

29
L Alternate CRAM Number (If no alternation, enter Primary CRAM Number here also)

3t
D Is this a Source File? (Enter Yes or No)
D Is Automatic File Setup wanted? (Y or N)

D Is a Rescue Point wanted at the End-of-Section of this File? (Y or N)

34 Are “Card Drops” to be time-shared? (Y or N) (N must be specified if NEXTR or NEXTSP is used, or if this

[] program utilizes only one CRAM unit)

,—E] Is this File both a Source and Destination File? (Y or N) (If Yes, also place a ¥ in Column 31, If No, also place

an N in Column 36)

3 s this File an Overflow File? (Y or N) (If Yes, Columns 54 thru 71 must be identical to the File Spec Sheet
associated with NEXTR)

38
— Starting Card Number of File

“
Lo Ending Card Number of File

ad

] File Name

[S S
54
. In
T Loc:
AT S S T) ‘ ation of Output

Input Area (Maximum—1550 including 4 slabs for the Track Label)

Area

Number of slabs in

S Output re (Maximum—1540 including 4 slabs for the Track Label if NEXTR is used)

68
[] Record-length is

69

F for Fixed
V for Variable

Maximum number of slabs in Record

SR P

BRANCH ADDRESSES

1 4
R B Page-Line
29

CSYSIHALT = Halt if CM is other than SK

-~ . S _| Control Mark Reference = Entry point of Programmer’s own-code

10 CSYSIHALT2 = Pr halts—Pressing COMPUTE attempts
40 times to read bad block
le
PRSI R SR W, M P] Unreadable Block ICSYSIUSE = Use the Block and continue processing
© Reference = Entry point of Programmer’s own-code
l’f] End-of-Section CSYSIRET = Extremity Routine handles
59- et Reference = Entry point of Programmer’s own-code
[T . T .. 1 ..] Associated Index Registers
F-7304 NCR * TRADEMARK *SERVICE MARK PRINTED IN U.S. A

Figure 5. CRAM File Specification Worksheet

61

62

Relative
Slab
Description of File Table Field Position

Corresponding Columns on

Format File Specification Worksheet (CRAM)

Number of Slabs in File Table

L]

Primary Unit Number 0 h Primary CRAM Number
Card Number in Binary (Select Mode)
Installation Deck Number 2
Card Number in Decimal (Read or Write Mode) 4
Track Number 5
Number of Slabs to Read or Write 6 “Ej Number of slabs in g':::m Area
3
Control Mark Branch Address 8 F-T F-T [T] 1s a Rescue Point wanted at the End-of-Section of this File? (Y or N)
”‘_y_._.__y_._.*. Control Mark
Unreadable Block Branch Address 10 F-W F-w [’:, 15 this a Source File? (Enter Yes or No)
> Unreadable Block
End-of-Section Branch Address 12 F-yY F-y ﬁ Is Automatic File Setup wanted? (¥ or N)
ety End-of-Section
35
14 F-U I F-A |F-U [1 this File both a Source and Destination File? (Y or N)
Alternate Unit Number 15 [Altemate CRAM Number
Card Number in Decimal (Select Mode) 16
Card Number in Binary (Read or Write Mode) 17
38
Starting Card Number of File Section 18 [C.__] starting Card Number of File
Ending Card Number of File Section 19 (""" Ending Card Number of File
End-of-Data Card and Track Number 20
22 F-S
34
23 F-AC | F-AD |F-AD [[] Are “Card Drops” to be time-shared?
Date 1 (Used for Label Checking) 24
Date 2 (Used for Label Checking) 26
File Name 28 File Name
File Section Number 33

Figure 6. CRAM File Table Showing Fields Affected by Entries on File Specification Worksheet
(Sheet 1 of 2)

63

Relative
Slab Corresponding Columns on
Description of File Table Field Position Format File Specification Worksheet (CRAM)
. Input
Address of Input Area 34 F-AE Location of (B0 Area
Output
48 .
36 |F-V [F-AF [F-V [Record-lengthis |, jor Toel
Maximum Number of Slabs in Record 317 ji— Maximum number of slabs in Record

Source File - Contents of IR 30 38
Destination File - Address of Output Area plus
Number of Slabs in Output Area

Address of Current Record 40

42

This sentinel follows the last File Table in
the program and indicates

the end of the File Table area

CRAM FILE TABLE (cont'd)

Designations if ON

Dropped card was not verified (Write mode only)
File Table has been initialized

Rescue Dump wanted at End-of-Section

This is a Source-Destination file

Records are variable in length

This is a Source File

(F-W OFF - Destination File)

Automatic File Setup wanted on this file

Drop next card allowing one more read or write on
present card

Do not time share drops

Indicates activity on this block

In sequential processing - More than one input area
In random processing - Overflow has occurred

3

£<&ahy

>
Q

’*J'Iﬂ"d = "!1'11'!3’!1"']”1
B
HmO

Figure 6. CRAM File Table Showing Fields Affected by Entries on File Specification Worksheet
(Sheet 2 of 2)

64

29
- Alternate CRAM Number (If no alternation, enter Primary CRAM Number here also)

Enter alternate CRAM number.

N
j Is this a Source File? (Enter Yes or No)

If this is a source file, enter Y.
If this is a source-destination file, enter Y; also enter Y in column 35,
If this is a destination file, enter N.

32
:] Is Automatic File Setup wanted? (Y or N)

Y = The System Supervisor will open this file, Automatic file setup will not initialize
the associated index registers of this file (columns 59 through 66 of the second "line"
of the file specifications).

N = Automatic file setup is not wanted. If N, use the macro instruction OPENC to open
this file. OPENC will initialize the associated index registers.

33
D Is a Rescue Point wanted at the End-of-Section of this File? (Y or N)

Y = For multi-deck files, the Extremity Routine will establish a rescue dump at
the end of each section on the alternate unit according to the indicated memory size:
Card 255 in 5 or 10K; Cards 254 and 255 in 15 or 20K; Cards 252, 253, 254 and 255
in 40K,

N = No rescue dump is wanted at the end of each section.

3, Are “Card Drops” to be time-shared? (Y or N) (N must be specified if NEXTR or NEXTSP is used, or if this
D program utilizes only one CRAM unit)

Y = The next card in sequence is dropped just prior to the last read or write on the
present card.

N = Time-sharing is not wanted. Enter Nifthe macro instruction NEXTR or NEXTSP
is used. Enter N if the macro instructions NEXTIN and NEXTOT are used with the
same CRAM unit.

3, 1Is this File both a Source and Destination File? (Y or N) (If Yes, also place a Y in Column 31. If No, also place
D an N in Column 36)

Y = This is a source-destination file (will write on the same CRAM cards that were
read), Y in column 35 will turn on Flag U in the file table, which will permit writing
on this file even though it is a source file.

2. Is this File an Overflow File? (Y or N) (If Yes, Columns 54 thru 71 must be identical to the File Spec Sheet
D associated with NEXTR)

An overflow file is used in connection with a source-destination file being processed
randomly. When an input block is processed using the macro instruction NEXTR, it
may be expanded so that it exceeds (overflows) the capacity of the track from which it
was read. In this case, part of the block is written back on the original track and the
remainder is written on the next available card and track of the overflow file,

37

65

Y = This is an overflow file. Y in column 36 indicates that this file (consisting of
CRAM card numbers specified in columns 38 through 43) will be used to write this
overflow, If Y, columns 54 through 71 must be identical to the file specification

worksheet associated with NEXTR,

This column is not used.

38
. Starting Card Number of File

If cards are assigned by the programmer, enter the number of the first card assigned
to this file. Cards assigned must be consecutive and will include all cards between
starting card and ending card (columns 41 through 43), If cards are not assigned,

enter N,

o
P Ending Card Number of File

—rt

Enter the number of the last card assigned to this file, If cards are not assigned,
enter N.

e |_| File Name

| SSRDRY DRSS PR SN RN PR N .

The characters entered here become the name of the file itself, The file name will be
stored in the file table and will appear eventually in the file directory. It need not be
the same name as the file table reference.

Input

,__] Location of ¢ Area

Outpu

64

This is the name assigned to the area in memory used by this file and must also be
entered in the Reference column of the level 1 entry in the Data Definitions for this

file.

Input (Maximum—1550 including 4 slabs for the Track Label)

N .
E._x_:] umber of slabs in Output €8 Maximum—1540 including 4 slabs for the Track Label if NEXTR is used)

68

D Record-length is

Enter the block size, including track label.

F for Fixed
V for Variable

F = Record-length is fixed.

V = Record-length is variable, When using variable lengthrecords, the record-length
must be contained in the first slab of the record. This one-slab data unit must be
shown in the Data Definitions for this file,

66

Maximum number of slabs in Record

When macro instructions are used in conjunction with file tables, the maximum CRAM
record length is restricted to 999 slabs. Do not confuse this with block size (columns
64 through 67).

75 IDENTIFICATION

Enter identification, if any, as described in Chapter II,
BRANCH ADDRESSES

1 4
N Page-Line

This entry should be the next Page-Line number after the entry at the top of the File
Specification Worksheet. This is necessary because the file specifications must be
punched on two lines, and these cards must be consecutive.

29
CSYS!HALT = Halt if CM is other than SK
l e e ettt 111] Control Mark Reference = Entry point of Programmer’s own-code

If the programmer wishes to provide for a control mark other than TT, CC or «« , he
may enter a reference to his own coding. However, he must provide for a return to
the main program,

CSYS!HALT2 = Processor halts—Pressing COMPUTE attenipts

39
40 times to read bad block
Lu N R UG U S RS J | 1 Unreadable Block CSYSIUSE = Use the Block and continue processing
“ Reference — Entry point of Programmer’s own-code
[J End-of-Section CSYSIRET == Extremity Routine handles
o TOWSY U T P Reference = Entry point of Programmer’s own-code

If the programmer wishes to resolve the above conditions with his own coding, he may
do so by entering the reference to his own subroutine. Otherwise he should specify
one of the alternatives listed.

L T . 1.,] Associated Index Registers

Enter the index register(s) that must contain the base address of each record as it is
being processed. This is necessary if the macro instructions NEXTIN, NEXTOT,
NEXTSP, or NEXTR will be used to advance through the records in the block (usually
level 2 in the Data Definitions), or if the macro instruction NEXT will be used to
advance through data units within the records (usually level 3 or lower).

D. FILEC (File)

Function: This macro instruction causes the Compiler to build CRAM file tables and to
include these file tables as part of the object program,
Format:
i LenarH TNSTRUCTIONS: OPERANDS
REFERENCE O 1V [ew| X [DATA DEFINITIONS: LENGTH, TYPE
8 9 10 11 12 13 14 15 16 17§ 19 20 21 22323 24125 26[127 28|29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48

FILEC | |A,B,Cetc

E.

67

A,B,C,etc,: File table references which the programmer has assigned to name the file
tables of the various files. [Each name must also be entered as the file
table reference (columns 8 through 17) on the CRAM File Specification
Worksheet for its associated file.

Action:

The macro will set up file tables in the order listed in the Operands column, the
first-named will be set up as File Table 1.

If macro instructions are used to manipulate CRAM decks, there must be a file table
in memory for each CRAM file affected. The control instruction FORMAT C identifies
CRAM file specifications. The macro instruction FILEC will generate file tables from
these specifications. Therefore, a program that requires CRAM file tables must con-
tain the macro instruction FILEC,

A program may contain several FILEC macros., They need not be contiguous. A max-
imum of nine separate FILEC instructions is permitted.

MAGNETIC TAPE FILE TABLES

In order to use the automatic tape handling facilities of STEP and the input-output macro
instructions, certain information regarding each magnetic tape file must be present in
memory during the running of the object program., This information is maintained in
memory in the form of a table of information, called a file table, for each file.

The file tables contain information to be used for file identification and protection, input-
output operations, restart procedures, end-of-file procedures, etc., and are constantly
being referred to by the STEP subroutines and by the macro instructions. The file tables
are also used to store data generated during the running of the object program, e.g., tape
block count, address of current record, etc.

File tables are assigned a fixed memory area and are stored in memory in the order
generated, starting at memorylocation 00153, The file tables are produced by the Compiler
using information punched from the Magnetic Tape File Specification Worksheet.

Figure 8 shows the layout of the file table and indicates the fields in the file table that are
affected by corresponding columns in the File Specification Worksheet,

MAGNETIC TAPE FILE SPECIFICATION WORKSHEET, FORM F -7304

A File Specification Worksheet (Magnetic Tape), Form F-7304, must be prepared for each
file that is affected by STEP or by any magnetic tape macro instruction. The form itself
contains all the information necessary for its completion; however, additional information
is given below where appropriate, For additional details of the functions of the various
executive routines affected, refer to the STEP Manual, MD 315-60.

Page-Line

Page and Line entries are the same as described in Chapter II.

%1 File Table Reference

The characters entered here become the name of the file table for this file and will be
used as the operand of instructions to represent the memory location of the file table.
The standard rules for names and references apply to file table references; that is,
any letter or numeral but at least one letter and no embedded spaces. File Table
Reference entries must be left justified.

N c R FILE SPECIFICATION WORKSHEET
Magnetic Tape

31 5 N EAT' Program Prepared by
C O M Pl LE R Date_ - Page

ALL SYMBOLIC REFERENCES MUST BE LEFT-JUSTIFIED AND MUST CONTAIN AT LEAST ONE ALPHABETIC CHARACTER.
ALL ABSOLUTE ADDRESSES OR NUMERIC ENTRIES MUST BE RIGHT-JUSTIFIED AND MUST BE ZERO-FILLED TO THE LEFT.

of

3 4 75 IDENTIFICATION
—

MR Page-Line e

File Table Reference

N
°

Primary Handler Number

L]

Alternate Handler Number. (If no alternation, enter Primary Handler Number here also)

L]

w

Is this a Source File? (Enter Yes or No)
Rewind this File with USE-LOCK (Y or N)

Is Rescue Point wanted at the end of every reel of this File, or is the RDUMP Macro used on this File? (Y or N)

[Lle s [

Is Automatic File Setup wanted on the FIRST reel of this File? (Y or N)

w
&

Insist on WRITE-LOCK on this File (Y or N)

]

w
&>

Is Automatic File Setup wanted on the SECOND and subsequent reels of this File, or is the OPEN Macro
used on this File? (Y or N)

]

37
L_n_n_._._,_,_,_,_,_J File Name
< : Input
LI;I_|_|_]_‘_|_‘—,—J Location of Output Area
57

R Number of slabs in g‘l‘l’t‘:)tllt Area

61
. .. F for Fixed
D Record-length is V for Variable

62

e Maximum number of slabs in Record

85

BRANCH ADDRESSES
' 4
[~ _T__._] Page-Line
SYSIHALT = Halt if CM encountered is other than TT, CC or <<

/ L._._._,_,_y_._._._] Control Mark Reference = Entry point of Programmer’s own-code

SYSIHALT = Processor halts—Pressing COMPUTE drops block,
then continues processing

39 SYSIHALT2 = Processor halts—Pressing COMPUTE attempts
L _J Unreadable Block 8 times to read bad block
e SYSIDROP = Drop the Block and continue processing
SYSIUSE = Use the Block and continue processing
Reference = Entry point of Programmer’s own-code
49 SYSIHALT = Processor halts
L J End-of -Tape SYSIRET = Extremity Routine handles
e Reference = Entry point of Programmer’s own-code
F-7304 « *TRADEMARK * SERVICE MARK PRINTED IN U.S. A

Figure 7. Magnetic Tape File Specification Worksheet

69

When the file table reference is used as the operand of a macro instruction, the Com-
piler will provide the appropriate addresses for the particular instructions involved.

For addressing purposes, the Compiler treats the 2nd slab of the file table (containing
primary handler number) as the base address of the file table,

29
D Primary Handler Number

30

The letters "FORMAT T', representing the control instruction, have been preprinted
in these columns and will be punched. FORMAT T indicates to the Compiler that the
information in this line and the next line represents magnetic tape file table specifi-
cations which the Compiler can use to build file tables. This is done by entering the
file table reference as an operand of the macro instruction FILE, FILE will set up
the file table and include it as part of the object program.

Another function of FORMAT T is to identify the STEP options requested for this pro-
gram, These options are indicated by a Y or N (Yes or No) entered in the appropriate
columns of the sheet. The Compiler will store the necessary executive routines on

tape or in memory.

Enter primary handler number.

D Alternate Handler Number. (If no alternation, enter Primary Handler Number here also)

31

Enter alternate handler number,

D Is this a Source File? (Enter Yes or No)

32

If this is a source file, enter Y,
If this is a destination file, enter N,

[_—__] Is Automatic File Setup wanted? (Y or N)

33

This reel will be rewound with no reading or writing permitted.

il

Reading or writing will be permitted on this reel.

2
1

D Is Rescue Point wanted at the end of every reel of this File, or is the RDUMP Macro used on this File? (Y or N)

Y = The Extremity Routine will establish a rescue dump at the end of each reel in the

file.
Also, enter Y if the RDUMP macro is used on this file.

N = A rescue dump is not wanted at the end of each reel; also, the RDUMP macro is
not used on this file,

Relative
Slab
Description of File Table Field Position

Format

Number of Slabs in File Table

Primary Handler Number

Number of Slabs to Read or Write
Tape Block Count

Skip Record
Count (Also included in Tape Block Count)

End-of-Tape Branch Address

Control Mark Branch Address

Unreadable Block Branch Address

Alternate Handler Number
Installation Tape Number

Date 1 (Used for Label Checking)
Date 2 (Used for Label Checking)

File Name

Reel Count

10

12
13

15
16

18

20

25

U

Space

Space

i

Corresponding Columns on

File Specification Worksheet (Magnetic Tape)

29
I:] Primary Handler Number

57-

s Number of slabs in 3‘&‘:‘“ Area

32
D Rewind this File with USE-LOCK (Y or N)

?
[‘_.*‘_‘_‘_._,_4_,_. End-of -Tape

33
I:] Is Rescue Point wanted at the end of every reel of this File, or is the RDUMP Macro used on this File? (YorN)
29

L‘a.w._,_,_._-_y_._] Control Mark
31 35

D Is this a Source File? (Enter Yes or No) D Insist on WRITE-LOCK on this File (Y or N)

39

C] Unreadable Block

) 30
[:l Is Automatic File Setup wanted on the FIRST reel of this File? (Y or N) D Alternate Handler Number.

a7

L= 7] File Name

Figure 8. Magnetic Tape File Table Showing Fields Affected by Entries on File
Specification Worksheet (Sheet 1 of 2)

0L

Relative

Slab Corresponding Columns on
Description of File Table Field Position Format File Specification Worksheet (Magnetic Tape)
Input 27 - Location of IMPUt 5o,
Address of Output Area L o Output
61 .
Maximum Number of Slabs in Record 29 F-V F-V [J Record-length is |, for Fixed
62
s Maximum number of slabs in Record
Source File - Contents of IR 30 31 5
Destination File - Address of Qutput Area plus L —] Number of stabs in g‘ft‘:ut Area
Number of Slabs in Output Area
Address of Current Record 33

35

This sentinel follows the last File Table in
the program and indicates

the end of the File Table area

MAGNETIC TAPE FILE TABLE (cont'd)

Flag Designations if ON

F-S Rewind reel with USE-LOCK

F-T Rescue Dump wanted at End-of-Tape

F-U Restrict acceptable date of all subsequent reels
of this file to the ""Date Written" in the Tape
Label of the first reel -~ Source Files only

F-V Records are variable in length

F-W This is a Source File

(If flag has a value of @, insist on WRITE-LOCK)
F-W OFF - Destination File
F-Y Automatic File Setup wanted on this file

Figure 8. Magnetic Tape File Table Showing Fields Affected by Entries on File
Specification Worksheet (Sheet 2 of 2)

1L

72

34
[] Is Automatic File Setup wanted on the FIRST reel of this File? (Y or N)

Y = The System Supervisor will open the first reel of this file. Automatic file setup
wiil not initialize the associated index registers of this file (columns 65 through 72 of
the file specifications).

N = Automatic file setup isnot wanted on the first reel of this file. If N, use the macro
instruction OPEN to open this file. OPEN will not initialize the associated index

registers.

35

|] Insist on WRITE-LOCK on this File (Y or N)

Y = This is a source file on which no writing is to be done.

]

N = Writing is permitted on this file.

36 s Automatic File Setup wanted on the SECOND and subsequent reels of this File, or is the OPEN Macro
D used on this File? (Y or N)

Enter Y if this is potentially a multi-reel file. The System Supervisor will handle the
tirst reel of this file, and Y in column 36 will insure that the Extremity Routine will
be present to handle the second and subsequent reels.

C] File Name

The characters entered here become the name of the file itself. The file name will be
stored in the file table and will appear eventually in the magnetic tape label. It need
not be the same name as the file table reference.

Input
Output

[_‘ | Location of Area

e

This is the name assigned to the area in memory used by this file and must also be
entered in the Reference column of the level 1 entry in the Data Definitions for this

file,
57

A Number of slabs in gil?t‘;)tut Area

Enter the block size; maximum is 7999 slabs.

&1
. F for Fixed
D Record-length is V for Variable

F = Record-length is fixed.

V = Record-length is variable, When using variable length records, the record-length
must be contained in the first slab of the record. This one-slab data unit must be
shown in the Data Definitions for this file.

73

62

. Maximum number of slabs in Record

When macro instructions are used in conjunction with file tables, the maximum mag-
netic tape record length is restricted to 999 slabs. Do not confuse this with block
size (columns 57 through 60).

Associated Index Registers

Enter the index register(s) that must contain the base address of each record as it is
being processed. This is necessary if the macro instructions NEXTI or NEXTO will
be used to advance through the records in the block (usually level 2 in the Data Def-
initions), or if the macro instruction NEXT will be used to advance through data units
within the records (usually level 3 or lower).

75 IDENTIFICATION

[N W PR PR

Enter identification, if any, as described in Chapter II.
BRANCH ADDRESSES
"1 Page-Line
This entry should be the next Page-Line number after the entry at the top of the File

Specification Worksheet. This is necessary because the file specifications must be
punched on two lines, and these cards must be consecutive.

K SYSIHALT = Halt if CM encountered is other than TT, CC or <<
L JE S P _‘_r_‘_l Control Mar Reference = Entry point of Programmer’s own-code

If the programmer wishes to provide for a control mark other than TT, CC or ««, he
may enter a reference to his own coding. However, he must provide for a return to
the main program.

SYSIHALT = Processor halts—Pressing COMPUTE drops block,
then continues processing

39 SYSIHALT2 = Processor halts—Pressing COMPUTE attempts
[_ _I Unreadable Block 8 times to read bad block
—_—— = SYSIDROP = Drop the Block and continue processing
SYSIUSE = Use the Block and continue processing
Reference = Entry point of Programmer’s own-code
49 SYSIHALY = Processor halts
L— J End-of-Tape SYSIRET = Extremity Routine handles
—_——— = Reference = Entry point of Programmer’s own-code

If the programmer wishes to resolve the above conditions with his own coding, he may
do so by entering the reference to his own subroutine. Otherwise he should specify
one of the alternatives listed.

G. FILE (File)

Function: This macro instruction causes the Compiler to build magnetic tape file tables
and to include these file tables as part of the object program.,

Format:

! LENGTH INSTRUCTIONS: OPERANDS

Op | V Ioer| X [DATA DEFINITIONS: LENGTH, TYPE

19 20 20 22123 24|25 26|27 28[29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
FI1LE AL B, C ete,

1

REFERENCE

8 9 10 11 12 13 14

74

A,B,C,etc.: File table references which the programmer has assigned to name the file

Action:

tables of the various files. Each name must also be entered as the file table
reference (columns 8 through 17) on the Magnetic Tape File Specification
Worksheet for its associated file.

The macro will set up file tables in the order listed in the Operands column, the
first-named will be set up as File Table 1,

If macro instructions are used to manipulate magnetic tapes, there must be a file table
in memory for each magnetic tape file affected. The control instruction FORMAT T
identifies magnetic tape file specifications. The macro instruction FILE will generate
file tables from these specifications, Therefore, a program that requires magnetic
tape file tables must contain the macro instruction FILE,

A program may contain several file macros. They need not be contiguous.

H. CONVENTIONS

1. Sequence of Input

a.

NEAT

The control instruction NEAT, which identifies the Compiler input and output
specifications, must be the first instruction physically input to the Compiler run.

END

The control instruction END, which marks the end of the source program, must be
the last instruction physically input to the Compiler run, and if Sort is requested,
must also bear the highest page-line number.

ENDMOD

The control instruction ENDMOD, which marks the end of the correction deck in
a recompilation, must be the last instruction physically input to the recompilation
run.

FINISHC or FINISH

The macro instruction FINISHC (for CRAM) or FINISH (for magnetic tape) must
follow the last instruction to be executed in the object program. The Compiler
will substitute the necessary instructions to locate and read in the next program
to be run and perform the necessary pre-run setup.

2. Other Requirements

a,

FORMAT C and FILEC

If macro instructions are tobe used to manipulate CRAM files, the source program
must contain CRAM file specifications (identified by the control instruction FOR-
MAT C). The source program must also contain the macro instruction FILEC to
direct the Compiler to build CRAM file tables.

FORMAT T and FILE

If macro instructions are to be used to manipulate magnetic tape files, the source

75

program must contain magnetic tape file specifications (identified by the control
instruction FORMAT T). The source program must also contain the macro in-
struction FILE to direct the Compiler to build magnetic tape file tables.

. CHANGES

The Compiler will treat lines with identical page-line numbers according to the following
chart, These rules apply to recompilations as well as to the initial compilation,

SORT or
NO SORT PUNCHED INPUT LINES ARE COMPILER WILL USE
adjacent last line input
paper tape
not adjacent last line input
sort
adjacent last line input
cards
not adjacent last line input
adjacent last line input
paper tape
not adjacent all lines input
no sort
adjacent all lines input
cards
not adjacent all lines input

If Sort is specified, changes and corrections can be made by entering the correct line of
coding with the page-line number of the line to be changed. The Compiler will substitute
the second line (the correct line) for the original line during the sort.

If Sort is not specified, the rules vary depending on the input and whether or not the lines
are adjacent,

J. DELETIONS

For the initial compilation (if Sort is specified), to delete a line, simply enter the page-line
number of the line to be dropped, and use the control instruction XXX,

For recompilations (whether Sort is specified or not), to delete one or more lines, enter
the page-line number(s) of the line(s) to be dropped, and use the control instruction OMIT,
(OMIT may be used to delete a single line in the initial compilation.)

Note: The control instructions NEAT, END, ENDMOD, FORMAT C, FORMAT T, XXX, and
OMIT are described elsewhere in this manual. The macro instructions FINISHC, FINISH,
FILEC, and FILE are detailed in the Macro Instruction Manual.

76

A,

Vil. COMPILER OUTPUT

CRAM OR MAGNETIC TAPE

1. Object Program

The primary output of the Compiler isthe object program, This program is generated
as a series of blocks written on CRAM (referred to as ACRAM), or on magnetic tape
(referred to as ATAPE),

The object program can then be placed from the ACRAM or the ATAPE into a library
of programs by the CRAM Librarian, or by the Magnetic Tape Librarian.

2. Recompilation Master

The Compiler will provide a recompilation master on the ACRAM or ATAPE, This
contains the source program as written by the programmer, It also contains the in-
structions and out-of-line coding generated by the Compiler, e.g., control instructions
to set up file tables and out-of-line constants, machine instructions and subroutines
called for by macro instructions, etc. During a partial recompilation, the Compiler
will read the source program from the recompilation master, and the programmer
may use punched cards or tape to make corrections to the source program which he
has written, provided these corrections do not affect the macro instructions used in
the program. If the macro instructions are affected, the programmer must make a
full compilation using the punched medium input or the recompilation master.

OPTIONAL PUNCHED OUTPUT

1. Punched Paper Tape

If requested by the programmer (P in column 46 of the control sheet), the Compiler will
provide additional output in the form of punched paper tape containing the object pro-
gram,

2. Punched Cards

If requested by the programmer (C in column 46 of the control sheet), the Compiler
will provide additional output in the form of punched cards containing the object pro-

gram,

PRINTOUT

An important function of the Compiler is toproduce a printout which will include the entire
source program and the object program showing the absolute addresses allocated for each
instruction, constant, data unit, etc., and the contents of these memory locations.

The printout is a valuable aid to the programmer. It provides a picture of internal memory
and a complete record of his program. It enables him to locate and correct errors in his
program and to make whatever additions, deletions, or substitutions may be necessary.

The following is a brief description of the sections usually included in a Compiler printout.

The pages of the printout are numbered starting with Page 1. Each page has an identical
header format, showing page numbers, program name, date compiled, and the program
version number, Each page also has column headings which identify the information con-
tained in that column. These headings vary, depending upon the section of the printout.

T

In general, an instruction line written on the programming worksheets will be shown as a .
line in the printout. These lines bear the page-line number assigned by the programmer.
Instructions that are generated by the Compiler are assigned a unique number called a
sequence number. These can be identified by an asterisk, space, and a four-digit sequence
number printed in' the Page-Line column (for example: * 1234), For literal constants
generated out-of-line by the Compiler, the Page-Line column will be blank.

Errors in the program that have been detected by the Compiler may be shown in several
ways:

as part of the listing of errors,
as a remark line printed in its appropriate place relative to the error,
as a symbol printed at the left on the line in which the error occurs.

Error Notations:

Symbol Signifies
* Illegal Operation code
* 1, Error in the L field
*X Error in the X field
* A Error in the A operand
* B Error in the B operand
*Y Error in the Y operand
*S A or B operand undefined
*R Range of operand illegal

A printout may contain all or some of the following listings in the order indicated below:
1, Errors

In alphanumeric order by operation code.

Shows type of error, page-line number, operation code,

Some examples of these errors are: illegal codes punched in paper tape or cards,
illegal literals, illegal operands, and illegal operation codes,

2. HALT instructions

In alphanumeric order by page-line or sequence number.

Shows page-line or sequence number and complete instruction (reference, operation
code, etc.).

3. TEST:SW instructions
In alphanumeric order by page-line or sequence number,
Shows page-line or sequence number and complete instruction.
4, All Symbolic References (Cross-Reference Listing)
In alphanumeric order by reference name,.

Shows page-line or sequence number where the reference was defined, memory loca-

78

tion corresponding to the reference, points in the program (page-line or sequence
numbers) which use the reference as an operand.

Undefined references and duplicate references are also shown.

Note: Chapter II states that a reference name may be made up of any of the letters of
the alphabet (A to Z) and any of the decimal numbers (0 to 9). However, note the
presence of the following symbols: exclamation point, semi-colon, quote (! ; ") in
some of the references in the printout. The Compiler will accept them as part of a
reference; however, they should not be used by customer programmers. They are re-
served for use with macro subroutines, CRMX-II, STEP, Librarian, Sort Generators,
etc., in order that these system references will remain unique.

File Tables

In numeric order by file table number, starting with File Table 1. File tables for
object programs to be run using CRAM will start at memory location 00169, and at
location 00153 for magnetic tape. If the object program makes use of overlays, the
starting location for CRAM file tables will be two slabs greater than 00169 for each
overlay used.

Indicates options requested on the file specification sheet.
Shows memory location of each data unit in the file table, and actual contents of that
location in Digit form. On the sameline, shows the sequence number and the complete

control instruction that set up the data unit.

A one slab sentinelfollows the lastfile table in the program and indicates the end of the
file table area. This sentinel is represented as -00,

Program Safe Area begins here.

6.

Literal constants generated out-of-line by the Compiler.

In alphanumeric order by operation code, L, and operand.

Shows the memory location of the constant, the contents of that location in Digit form,
and the control instruction that set up the constant,

Out-of-Line Coding

These are closed subroutines which are furnished due to the programmer's use of
various macro instructions.

In alphanumeric order by macro name.
Shows memory location of the instruction, contents of that location (actual instruction in
absolute format), evaluated instruction, sequence number and complete machine instruc-

tion in mnemonic form, including remarks.

The column heading: EV,A/B indicates a six-character column representing the
evaluated A or B operands, and contains:

A address plus contents of the X register,
or B address plus contents of the Y register.

The column heading: CD XY A/B represents the evaluated absolute format of the

79

instruction, and contains:

C
D

C of the instruction, or G if double stage
F of the instruction, or Q if double stage

Length or F, not xF
F or Q (variation of C)

Note: Single stage --D
Double stage -~ D

The EQUATEs generated at this point by the FINISHC macro, or the FINISH macro.
Shows EV,A/B, sequence number, and complete EQUATE instruction,

These EQUATEs relate the system references to fixed memory locations, such as
memory flags in the Universal Safe Area, addresses in the Kernel, etc. They occur
where the FINISHC macro, or the FINISH macro, would appear alphanumerically among
the listing of out-of-line coding. The balance of the out-of-line macro subroutines
follows the EQUATES.

From this point on, the program is printed in the order that the lines are input to the
Compiler (physical order or alphanumeric sequence by page-line number if sorted).

8.

10.

11,

12,

13.

FORMAT C lines, or FORMAT T lines
Shows the contents of each file specification worksheet, printed on two lines.

FILEC lines, or FILE lines

Shows the page-line number and the complete instructionas written on the programming
worksheets,

DATA, INDEX, and REDFN lines

Shows the complete Data Definition lines as written on the programming worksheets,

In-line Constants

Shows the memory location of the constant, contents of that location in Digit form, the
page-line number and complete control instruction (ALPHA, DIGIT, PAIR, etc.) used by
the programmer to set up the constant.

The subroutines which contain the instructions to be executed during the running of the
object program may be written to occupy a single portion of the printout; or they may
be interspersed with control instructions that set up constants and data definitions.

Each instruction line shows the memory location of the instruction, the contents of that
location (actual instruction in absolute format), the evaluated instruction, the page-line
number, and the complete machine instruction in mnemonic form. In-line (open)
subroutines furnished for macro instructions are also included wherever the macro
instruction appears.

END line

This is the last line printed. It shows the actual Program Starting Address and the
complete END control instruction as written on the programming worksheet (page-line
number, operation code END, Program Starting Address).

80

Vill. KEYPUNCHING PROCEDURES

GENERAL

The Compiler forms an 80-character image in memory for each line of the source program;
each line corresponds to one line punched into paper tape or to one punched card.

In punching from the file specification worksheets and from the programming worksheets,
it is not necessary to hit the space bar for each blank character position on the line.
Instead, stops corresponding to the columns of the line can be set up, and in many cases it
is possible to skip from one column to the next. These stops correspond to the columns of
the programming worksheet:

Position Column
4 Line
8 Reference
19 Operation
25 Length (or Level)
27 X
29 Operands (or Length, Type)
49 Optional left margin for Remarks

Keypunching procedures for paper tape and for cards differ slightly., Aside from the dif-
ferences caused by the characteristics of the punching equipment, the only variations are in
punching the Page and Identification columns.

Caution: The program mustbe punched exactly as it appears on the sheets. A spelling or a
punching error usually causes errors in the compiled program, Also, in punching the
Operands entries, be careful not to punch spacesbetween the operands and the commas that
separate the operands.

PAPER TAPE
1. General

Set the left-hand margin of the tape-punching typewriter at a position which will ac-
commodate at least 75 characters to a line. Set the tab stops at the positions shown
above relative to the left margin, If the typewriter being used has a right-hand
margin stop, or automatic carriage-return, set it at position 75.

Each time the tab key is pressed, a specific configuration is punched into the paper
tape. The Compiler recognizes this configuration (where it is permitted) and auto-
matically fills out the current column with spaces. When not using the tab key to
tab across blank columns, type a space wherever a blank appears or wherever the
programmer has written a space symbol (@).

Each line of typing, corresponding to a line of coding, is terminated by a carriage-
return immediately after the last character of theline. There need not be a tab before
this carriage-return. The Compiler recognizes the carriage-return punched into the
paper tape, and fills out its own image of the line with spaces.

Where the page number is the same as that on the previous line, it need be punched only
for thefirstline on each sheet; for successive lines, merely tab across the Page column
to punch the line number. Whenever the Compiler finds a blank entry for Page, it
automatically fills in the page number of the preceding line.

81

Identification is never required. If there is an entry in the Identification column, it
should be ignored.

At the beginning and end of each paper tape program, punch at least two feet of "run-in"
code by holding down the tape feedkey. (In NCR General-purpose Code, this is a punch
in channels 1, 2, 3, 4, 5,and 6.) This serves as a leader and a trailer. Several inches
of tape feed should also be punched between sheets.

Control Worksheet, Form F-2691

Punch this sheet as a single continuous line of characters plus carriage-return, Do not
use the tab in this line. Punch spaces wherever necessary to fill out blanks.

File Specifications Worksheet, Form F-7304

This sheet contains two lines. Punch the first line as a continuous line of characters.
Do not use the tab in this line. Punch spaces wherever necessary to fill out blanks.
End the line with a carriage-return.

In punching the second line, tab to position 4 and type the line number in positions, 4,
5, 6. Then tab five times, or space, to position 29, and punch the remainder of the
sheet as a continuous line of characters using spaces wherever necessary to fill out
blanks. End the line with a carriage-return,

Programming Worksheet, Form F-2689

This sheet contains a maximum of 32 lines. Wherever the Page column has been left
blank or where the page number is the same as on the previous line, tab across it to
position 4 and punch the line number,

Tab to fill out any column, or to skip over a blank column. In some cases it may be
just as convenient to use spaces to get to the next column.

Carriage-return at the end of each line, after the last character punched.

a) Punching the Reference column

Note that positions 7 and 18 contain spaces. After punching the line number, punch
a space in position 7 to get to the Reference column, then punch the reference. If
there is no Reference entry, punch a space in position 7, then tab once to the
Operation column,

If there is a Reference entry, punch the reference and tab once to the Operation
column., I spaces are used to fill out the Reference column, or if the reference
contains a full 10 characters, remember the space at position 18, Punch the
Operation entry starting at position 19,

b) Punching the remarks

The remarks may begin anywhere on a line, after position 29, provided there are
at least two spaces between the lastoperand (or the end of the Length, Type entry)
and the remarks. In order to obtain an easily-read printout, many programmers
prefer to establish a specific left marginfor remarks and will start their remarks
at position 49,

If the remarks startatposition49, tab to this position after punching the Operands,
and then punch the remarks. Sometimes the Operands will extend past position 46
and make it impossible to start the remarks at position 49. (There must be at
least two spaces punched between the last operand and the remarks.) In that case,
punch two spaces after the Operands and then start the remarks.

If the left margin of the remarks is further to the right, tab to position 49 and then
punch the proper number of additional spaces.

82

If the left margin is desiredtothe left of position 49, space across to the specified
position, and do not use the tab in this part of the line.

The NCR Programming Worksheet has been designed so that the exact number of
characters may be entered per line. However, if a less precise programming
sheet is being used, the remarks may at times contain enough characters to extend
past position 74, In this case:

- Terminate the remarks at position 74, or after the last complete word
before that, Carriage-return.

- Tab to position 4. Punch a new line number, intermediate between the
previous number and the next one.

- Tab to position 8. Punch an asterisk (¥),

- Tab four times to position 29 (or five times to position 49 if desired) and
continue the remarks,

- Carriage-return after the last character of the remarks, If the remarks
have also overflowed this line, repeat the procedure as often as necessary,
using a new intermediate line number each time.

NOTE: An asterisk in position 8 indicates that the entire line is a remark. In this
case, punch an asterisk in position 8, and punch the line exactly as it is written.

¢) Punching the operands

There will occasionally be cases in which operands would extend past position 74.
The procedure for extending operands is the same as for remarks, except:

- Each operand (and its comma) must be complete on one line.

- On successive lines, leave the Reference column blank;leave the Operation
column blank.

- Begin the next operand at position 29.

Correcting Punching Errors

If the error is detected before starting the next line, carriage~-return, tab to position 4,
and repunch the entire line correctly, Whenever the Compiler finds two or more
consecutive lines with the same page-line number, it discards all but the last line.

If the error is detected after starting to punch the next line, make a note of the page-line
number, and notify the programmer, He will decide whether to make the correction
during the initial compilation, during a recompilation, or during the Librarian run.

End of Paper Tape

If the end of a reel of paper tape occurs before all the program has been punched, punch
the control character '"3'" (a single punch in paper tape channel 3), and continue punching
the program in a new tape.

Be sure to leave atleasttwofeetof run-in code at the end of the reel, and at the begin-
ning of the next reel,

C. PUNCHED CARDS

1.

General

Set up the program card with skip-stops corresponding to the columns on the program-
ming worksheets (4, 8, 19, 25, 27, 29, 49 and 75).

Set up the program card to duplicate identification (columns 75 through 80),

83

The 80 columnsona card correspond exactly to the 80 positions on the program sheets.
Punch the entries exactly as written, leaving blanks where the column on the sheet is
blank or where a space symbol (@) has ben entered. Use the skip-stops to skip
across all blank columns. The Compiler interprets blank card columns as spaces.

The Page column must be punched on every card. If the programmer has left the
column blank, this signifies that the page number for this card is the same as for the
previous card,

If an identification has been entered, this must be punched on every card. There is
usually only one identification assigned for the entire program,
Control Worksheet, Form F-2691

Punch the entries on this sheet (including identification) into one card.

File Specification Worksheet, Form F-7304

Punch two cards for each file specification worksheet. Use the dup key to duplicate the
page number when it is the same as that on the previous card. Use the skip key to
skip across blank columns.

Programming Worksheet, Form F-2689

This sheet contains a maximum of 32 lines. In general, one line equals one card, Use
the dup key to duplicate the page number when it is the same as that on the previous
card, Use the skip key to skip across blank columns.

a) Keypunching the remarks

The remarks may begin anywhere on a line, after column 29, provided there are
at least two spaces between the lastoperand (or the end of the Length, Type entry)
and the remarks. In order to obtain an easily-read printout, many programmers
prefer to establish a specific left margin for remarks and start their remarks at

column 49.

If the remarks start at column 49, skip to this column after punching the operands,
and then punch the remarks, Sometimes the operands will extend past column 46
and make it impossible to startthe remarksat column 49. (There must be at least
two spaces between the last operand and the remarks.) In that case, leave two
blanks after the operands and then start the remarks.

If the left margin of the remarks is further to the right, skip to column 49 and then
leave the proper number of additional blanks.

If the left margin is to the left of column 49, use the space bar to move over to the
specified column, and do not use the skip key in this part of the card.

The NCR Programming Worksheet has been designed so that the exact number of
characters may be entered per line, However, if a less precise programming
sheet is being used, the remarks may attimes contain enough characters to extend
past column 74, In this case:

- Terminate the remarks at column 74, or after the last complete word before
that, Duplicate the identification, then release the card and feed the next one.

- Duplicate the page number. Punch a new line number, in column 4, 5, 6,
intermediate between the previous number and the next one.
- Skip to column 8. Punch an asterisk (*).

- Skip four times to column 29 (or five times to column 49 if desired) and con-
tinue the remarks,

- Duplicate the identification, then release the card and feed the next one, If

84

the remarks have also overflowed this card, repeat the procedure as often as
necessary using a new intermediate line number each time,

NOTE: An asterisk in column 8 indicatesthat the entire line is a remark. In this
case, punch an asterisk in column 8, and punch the line exactly as it is written.

b) Keypunching the operands
There will occasionally be cases in which operands would extend past column 74,
The procedure for extending operands is the same as for remarks, except:
- Each operand (and its comma) must be complete on one card.

-~ On successive cards, leave the Reference columnblank;leave the Operation
column blank,

- Begin the next operand at column 29,
Correcting Keypunching Errors

The easiest method to correct a keypunching erroris to repunch the entire card and to
substitute this correct card for the incorrect one.

Keypunching Non-IBM Characters

The NCR 315, with a full character set of 64 configurations, contains 16 characters
which are not available on standard IBM 026 keypunches.

These configurations may easily be obtained by overpunching according to the following
table, For convenience, the semi-colon is also included in the table, since it corres-

ponds to the IBM character 0.

315 CHARACTER PUNCH HOLE CODE
exclamation point ! 78 7, 8
semi-colon ; a 12, 4, 8
quotation mark " 58 5, 8
question mark ? 127 1, 2, 7
colon : o7 5 7
left arrow - 2 4 2, 4
up arrow t GH 12, 7, 8
plus sign + -0 11, O
equal sign = VY 0, 5, 8
left parenthesis (345 3, 4,5
right parenthesis) HY 12, 0, 8
less than < CcZz 12, 0, 3, 9
greater than > & 0 12, 0
apostrophe ! PQ 11, 7, 8
left bracket t NQ 11, 5, 8
right bracket 1 XY 0, 7, 8
reverse slant N EH 12, 5, 8

TABLE II. NCR 315 CHARACTER PUNCH CONFIGURATIONS

IX.
Actual Machine Code 1
Addressing of Data 23, 48
ALPHA e e 31
Alpha Literal 37
Assembly Function 2
Asterisk Address. oo 49
Automatic Programming 1
BASE . . . e e e e e e e 44
Blank Operand 50
Changes - .« v o v v v 75
Compound Address 48
Concept of Levels 17
Control Instructions 3, 11, 31
Control of Location Couuter. 39
Control Worksheet 54, 56, 57, 81, 83
Conventions v v .. 74
CRAM File Specifications 47, 60
CRAM File Tables 59
CRAM Track Labels 29
DATA . o e e e e 25
Data Definition 16, 18
Definition of Constants 31
Deletions o i i e i 75
DIGIT . . . it e e e 32
Digit Literal 37
Double Stage Instructions 14
Dynamic Addresses 24, 49, 50
END . . it e e e 48, 74
ENDMOD « « v v et e e e e et s 48, 74
EQUATE i i i i i e 43
Executive Routines 5
FILE . . . o o e e e e e e s 73, 14
FILEC . . oo e e i 66, 74
File Specification
Worksheet 60, 61, 62, 67, 68, 70
File Tables 5, 52, 59, 67
FINISHC or FINISH 4
FORMATC or FORMATT 4
Identification 23
INDEX .o i i e e i e e 26
Indexing 24

85

INDEX
JVAL ... e 45
Keypunching Procedures 80
Length 11, 20, 51, 53
Level e 20
Librarian 5
LIST . . o o oo e e e e 46
Literal Operand 13, 36
LITORG v 42
Machine Instructions 11, 13
Macro Instructions 4, 11, 52
Magnetic Tape File Specifications . 47, 67
Magnetic Tape File Tables 67
Names and References .. 10, 19, 43, 50, 81
NEAT i 47, 55, 74
NUMBER 33
Numeric Literal 38
Object Program 2,176
OMIT.o i e i 46, 75
Operands 12, 13, 36, 50, 82, 83
Operation (OpV) 10, 19, 52
Optional Punched Output 76
Organization of Data 16
ORIGIN it 40
OVRLAY. v 41
PAGE o e 45
Page and Line 8, 19, 54, 60, 67
PAIR 34
Printout 3, 45, 76
Program Name b4
Programming Worksheet 8,9, 19, 81, 83
Recompilation 46, 48, 74
Recompilation Master. 76
REDFN oo 27
Reference Literal 39
Reference Literal Address 49
Relative Nature of 315 Addressing 23
Remarks 3, 12, 13, 20, 23, 81, 83
SAVE e 42
Scientific Subroutines 5, 53

86

INDEX (Cont.)

SGL 36
Simple Address 48
Single Stage Instructions 14
SLAB e 36
Static Addresses 23
Symbolic Coding 2
To Delete a Line During

Initial Compilation 46, 75

To Delete Lines During
a Recompilation 46, 75

UNLIST

Variable Length Records
CRAM
Magnetic Tape

.....................

46, 75

An Educational Publication
Marketing Services Department

THE NATIONAL CASH REGISTER COMPANY ¢ DAYTON. OHIO 45409

sp—1141 [114100] 0267

	000
	001
	002
	003
	004
	005
	006
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	51
	52
	53
	54
	55
	56
	57
	58
	59
	60
	61
	62
	63
	64
	65
	66
	67
	68
	69
	70
	71
	72
	73
	74
	75
	76
	77
	78
	79
	80
	81
	82
	83
	84
	85
	86
	xBack

