
I M41-0059-00
NUTRAN USER ANID PROGRAMMERS
GUIDE

I'\D NUCLEAR DATA IINC

"THIS DOCUMENT IS THE EXCLUSIVE PROPERTY OF NUCLEAR DATA, INC. AND
MAY NOT BE REPRODUCED, NOR MAY THE INFORMATION CONTAINED THEREIN
OR DERIVABLE THEREFROM BE USED IN ANY MANNER, EXCEPT BY WRITTEN PER­
MISSION OF NUCLEAR DATA, INC. THE PROPRIETARY RIGHTS TO THE AFORESAID
INFORMATION, BOTH OF A PATENTABLE AND UNPATENTABLE NATURE, ARE
EXPRESSLY RESERVED TO NUCLEAR DATA, INC. II

A

I M41-0059-00

NUCLEAR DATA, INC.
Post Offi ce Box 451
Palatine, III inoi s 60067

November, 1972

INUTRAN USER ANI) PROGRAMMERS
GUIDE

Copyright 1972 by Nuclear Data, Inc.
Printed in U.S.A.

"THIS DOCUMENT IS THE EXCLUSIVE PROPERTY OF NUCLEAR DATA, INC. AND
MAY NOT BE REPRODUCED, NOR MAY THE INFORMATION CONTAINED THEREIN
OR DERIVABLE THEREFROM BE USED IN ANY MANNER, EXCEPT BY WRITTEN PER­
MISSION OF NUCLEAR DATA, INC. THE PROPRIETARY RIGHTS TO THE AFORESAID
INFORMATION, BOTH OF A PATENTABLE AND UNPATENTABLE NATURE, ARE
EXPRESSLY RESERVED TO NUCLEAR DATA, INC. II

A

PREFACE

Most problems are presented in the form of information or data which requires some action
or decision to produce a result. To solve sutCh problems, the information or data input
must be read and understood, the input must be properly manipulated or processed to produce
the correct result, and the result must be distributed or read out in an intelligible form.
The ND812 Computer, when properly programmed, can discern typed conversational lan­
guage inputs, accurately process those inputs, and develop Teletype compatible output
resu Its.

The ND812 Computer, like other general purpose digital computers, is a complex electronic
device, and normoilly, programm ing such a devi ce would requi re the knowledge of a pro­
fessional programmer as well as a thorough understanding of the ND812 electronics and
instruction set. Fc)rtunately, however, it is not necessary to know how the ND812 Computer
operates, or to be familiar with complicated machine instructions in order to be able to
develop and write simplified, but comprehensive programs. The NUTRAN Interpreter
(41-0095) now provides a completely conversational language called NUTRAN, that
operates similar to FORTRAN and allows an)' user to communicate directly with and totally
exercise specific functions of the ND812 CC1mputer.

The uses of NUTRAN are varied. Nuclear Data initially designed NUTRAN for scientific
uses, and in partic:ular, for stating mathematical and scientific problems in a language more
closely associated with experimental require!ments than with direct control of the ND812
Computer. NUTRAN, however, has also proven itself in many commercial and industrial
applications. As specific user needs develop, any of the valid NUTRAN commands de­
scribed in this manual may be implemented to further extend the practicality of NUTRAN.

i/ii

SECTION

II

III

TABLE OF CONTENTS

TITLE

INTRODUCTION ••
1 • 1
1.2
1.3
1.4

General • • • • • •
Equipment Required For Using NUTRAN.
The Computer.
Core Map ••

FLOWCHARTING.

2. 1 General...
2.2 Flowcharting Fundamentals.

NUTRAN LANGUAGE FUNDAIv\ENTALS ••

3. 1 General.......
3.2 NUTRAN Structure •
3.2. 1 Executable Statements •
3.2.2 Non-Executable Statements.
3.3 NUTRAN Character Set

. . .

3.4 NUTRAN Statements. • • • • •
3.4. 1 Line Numbers. • • • •
3.4.2 Spaces. • • • • • •• • ••••
3.5 NUTRAN Language Structure • • • •
3.5. 1 C on stan ts • • • • • • • • • • • • •
3.5.2 Variable Identifiers •••
3 .5 • 3 Array s. . • • • • •
3.5.4 .Arithmeti c Expressions • •
3.5.5 Arithmetic Operators
3.5.6 ,Arithmetic Assignment Stortements

.

.

. . . .

. .

.

.

3.5.7 Subprogram Statements •••••••••••••

iii

PAGE

1-1

1-1
1-1
1-2
1-3

2-1

2-1
2-1

3-1

3-1
3-1
3-2
3-2
3-2
3-2
3-3
3-3
3-3
3-3
3-4
3-5
3-5
3-6
3-8
3-8

SECTION

IV

V

5

VI

COMMAND MODE

4. 1
4.2

General ••
Command Description

TITLE

TEXT MODE - NUTRAN CONTROL STATEMENTS.

5. 1 General . · · · · · · · · · · 5. 1 • 1 Adding/Deleting Statement Lines
5. 1.2 Special Teletype Key Commands.
5.2 IN PU T/PRI N T Control Statements
5.2. 1 INPUT Statement · · · ·
5.2.2 PRI NT Statement · · · · · · · 5.3 STOP Statement. · · · · · · · · ·

· · · ·
· · · ·
· · · · · · ·
· · · · 5.3. 1 Example Program Using INPUT, PRI NT and STOP Statements.

5.4 FM T (Format) Statement · · · ·
5.4. 1 I nteger (I) FOllTlat Statement. · · ·
5.4.2 Floating (F) Format Statement. · · 5.4.3 Exponential (E) FOllTlat Statement
5.4.4 Defau I t FOllTlat · · · · · · · ·
5.4.5 Rounding. · · · · · · · · · · · · · · · · · 5.4.6 Example Program Using FM T Statement •
5.5 LI STand ERASE Statements • · · · . 5.6 CONTINUE Statement. · · · · · · · · · · · · · · · 5.7 I F Statement · · · · · · · · · · · 5.7. 1 Example Program Using I F Statement •
5.8 GOTO Statement. · · · · · · · · 5.8. 1 Example Program Using GOTO Statement. · · · · 5.9 DO Statement · · · · · · · · · · 5.9. 1 DO Loops · · · · · · · · · · · · 5.9.2 Nested DO Loops • · · · · · · · · · · · · · 5.9.3 Example Program Using DO Statement · · ..
5.9.4 Example Program Using DO, GOTO, IF and FMT Statements ..
5. 10 CALL, SUBROUTINE and RETURN Statements. · · · · · ..
5.10.1Example Program Using CALL, SUBROUTINE, and RETURN

Statements • · 5. 11 FI SET, PUT, and GET Statements · · · · · • · · · · · 5. 11 • 1 Example Program Using FI SET, PUT, and GET Statements

CALCULATOR MODE · · · ·
6. 1 General . 0 0 · · · ·

iv

·

·

· ·
·

PAGE

4-1

4-1
4-1

5-1

5-1
5-1
5-2
5-2
5-2
5-3
5-4
5-4
5-5
5-6
5-6
5-7
5-7
5-7
5-9
5-11
5-12
5-12
5-13
5-15
5-15
5-17
5-18
5-19
5-19
5-22
5-23

5-24
5-26
5-26

6-1

6-1

SECTION TITLE PAGE

APPENDICES

Appendix A - Loading and Initialization. • • • • • • • • • • •• A-l
Appendix B - Locating NUTRAN, in Memory Fields other Than X1 and 1 B-1
Appendix C - Error Diagnostics.. • • • • • • • • C-1
Appendix D - User Written Subprogram Functions • • • • • • • • • D-1

"

FIGUR~

1-1
1-2
2-1
2-2
2-3
5-1

TABLE

1-1
1-2
3-1
3-2

LIST OF ILLUSTRATIONS

TITLE

Basic Computer, Block Diagram • •
NUTRAN Interpreter, Core Map. • • •
Flowchart Symbol s. • • • • • • • • • • •
Example Flowchart for Selecting and Reading a Magazine •
Example Flowchart for Multiplication Problem ••
Flowchart for Computing Sum of Squares • • • • • • • • •

LIST OF TABLES

TITLE

Equipment Required for NUTRAN
Optional Equipment • • • • • •
Arithmetic Operators • • • • • •
Arithmetic Operations Hierarchy.

vi

. . .

PAGE

1-2
1-3
2-2
2-3
2-4
5-14

PAGE

1-1
1-1
3-6
3-7

SEtCTION I
INTRODUCTION

1.1 GENEFtAL

In addition to being a workhorse for Nucleclr Data Systems, the ND812 Computer can also
be used to solve problems using NUTRAN conversational language. This manual describes
the use of the NUTRAN Interpreter (ND41-0059). Program tape loading and initialization
procedures are given i /1 Appendix A. A di scussi on of basi c computer operati on and a basi c
core map of the NIUTRAN Interpreter are also included in this section.

1.2 EQUIP~i1ENT REQUIRED FOR USING NUTRAN

Table 1-1 lists the! required hardware for using NUTRAN.

Table 1-1. Equipment !Required for NUTRAN

Minimum Hardware Requirements

ND812 Central Prc)cessor/8K Memory
Model TC33ASR TE~letype

1·-1

Nuclear Data Part Number

88-0397/84-0097
86-0085

1.3 THE COMPUTER

Figure 1-1 shows a block diagram of a basic computer system. The main components of
the system are the central processor and input/output devices. (The TC33ASR Teletype
handles both input and output functions for NUTRAN.)

The central processor includes control logic to interpret, execute, and maintain the sequence
of program instructions, memory storage to store directly accessible program and data infor­
mation, arithmetic logic to perform mathematical calculations, and input/output logic to
transfer data to/from the central processor. Refer to Principles of Programming The ND812
Computer (Nuclear Data Part Number ND IM41-0000) for a more detailed discussion of the
ND812 Central Processor.

Computers require specified instructions organized in a logical sequence to solve a given
problem. Thi s sequence of instructions is called a program. Ths program directs the computer
to operate on information or data from an external device (punched cards, magnetic tape,
etc.) or on data developed during the execution of the program. Though the total number
of instructions may be extensive, the programmer generally has at his command instructions
to perform the following functions o

,­
I r---- -- ------...,
I
I
I
I
I
I
I
I

I
I
I
I

---, I

MEMORY
(STORAGE)

ARITHMETIC
MAN I PULAT I ON _.J

CENTRAL ~L;..;..O..;...G....;I C~_---,

I
I
I

~OCESSOR_ _ _ _ _ ___________ _

- - - CONTROL I NFORMAT ION
-- DATA FLOW

Figure 1-1. Basic Computer, Block Diagram

1-2

I
I
I
I
I
I
I
I
I
I

J

1) Arithmetic - permits desired mathematical calculations and manipulations.

2) Input/output - permits communication with external storage or readout
devices (magnetic tapes, punched cards, etc.) to obtain specific data to
be processed or to deliver resultant data to the output unit.

3) De(:ision making - permits ccmparisons of data to determine which of
sev1eral possible operations is to be performed.

4) Control - permits selected operations to be performed or repeated a specified
number of times and allows changes to be made in sequence of instruction
exe'cution.

1.4 CORE IVlAP

Figure 1-2 shows the basic core map for thte NUTRAN Interpreter. The basic NUTRAN
Interpreter program resides in locations ,0,0,0:3 through 4,095 in memory field ,0 and ,0,0,0,0
through ,0745 in memory field 1. (Each memory field contains 4096 (4K) directly accessible
locations.) The ttext buffer, containing the user entered program, is variable in size and
is built up in field 1 from location ,0745 as "the program is entered via Teletype. The data
base buffer, opercmd stack, and polish (indcex) stack are also variable in size and are built
downward from location 3967 in field 1 whEm the program in the text buffer is executed.
The data base buffer contains variables which are either entered via Teletype or generated
by the program during execution. The polish stack contains indices to the symbols and
arithmetic operat()rs included in the symbol table of the basic NUTRAN Interpreter program.
The operand stack contains the actual valuE!s assigned to the symbols indexed in the polish
stack. The numbE~rs in the operand stack appear in the same order as the respective symbol s
appear in the polish stack. (Refer to Appendix B for locating NUTRAN in memory fields other
than ,0 and 1.)

CONTENTS

OCTAL
LOCATIONS

TEXT
BUFFER~

NUTRAN . '\

r ----' NTERPRETER­
PROGRAM

DATA POLISH
BASE OPERAND (INDEX)
BUFFER STACK STACK
~ I /.

0003 0745 3967

lL((~_~1 I ---------tJ;~~11
I __ ""~ELD 0 .1. FIELD 1 .1
~ (4K TOTAL) (4K TOTAL)

Figure 1-2. NUTRAN Interpreter, Core Map

1··3

2.1 GENEFtAL

SECT'ION II
FLOWCI-IARTING

Before a problem can be solved with a digitoll computer, it is necessary to thoroughly
analyze the problem, decide on a procedure for solution, and to generate a set of step­
by-step instructions to perform the procedure~. This logical set of instructions is called a
program, and can be represented graphically' by a flowchart.

2.2 FLOWCHARTING FUNDAMENTALS

Flowcharts are basIcally a collection of boxes and lines. The boxes indicate what is
to be done, and the lines indicate the sequence. The boxes are of various shapes which
represent acti ons tc) be performed in the program. Figure 2-1 shows a set of symbol s that
can be used in constructing flowcharts.

For simple problems, programs can generally be written without the use of flowcharts.
However, more complex problems requi re many steps, and writing programs for them often
becomes involved cmd confusing. The flowchart is a map illustrating the logical steps
requi red to sol ve a problem, the dec i si ons to be reached, and the paths to be foil owed as
a result of the decisions. Figure 2-2 shows cln example flowchart describing the various
steps involved in the selection and reading of a magazine.

The flowchart assumes that the person followIng the steps wants to read a magazine. A
decision block (diolmond) may have been inserted after the "START IJ oval to determine
1100 YOU WANT TO READ A MAGAZINE't' ''. A "YES" answer would have led the
user normally to th,e IIPICK UP A MAGAZINE" block. A "NO" answer would have led
the user to the end of the program ("STOP" oval) or to another program, since the magazine
selection flowchart' would have been useless for him at that time.

The flowchart also assumes that it is bed-timce. Another decision block (diamond) may
have been inserted in place of the "GO TO SLEEp lI processing block (rectangle) to
determine the time of day. A branch to another decision block or perhaps to an entirely
different flowchart may have then been initicJted to determine the next activity to be
pursued.

2-·1

D
<>
o
()

o

RECTANGLE - INDICATES ANY PROCESSING
OPERATION, EXCEPT DECISION.

DIAMOND - INDICATES DECISION. LINES
LEAVING BOX ARE LABELED WITH DECISION
RESULTS (YES/NO, LEFT/RIGHT, ETC.)
THAT CAUSE EACH PATH TO BE FOLLOWED.

TRAPEZOID - INDICATES INPUT OR
OUTPUT OPERATION.

OVAL - INDICATES BEGINNING OR ENDING
POINT OF PROGRAM.

SMALL CIRCLE - INDICATES CONNECTION
BETWEEN TWO POINTS IN A FLOWCHART.
IT MAY BE USED WHEN AN INTERCONNECTION
ON ONE PAGE IS CUMBERSOME OR TO
INTERCONNECT POINTS ON SEPERATE PAGES.

ARROWS - INDICATE DIRECTION OF FLOW
THROUGH THE FLOWCHART. EVERY LINE
SHOULD HAVE AN ARROW.

Figure 2-1. Flowchart Symbols

A flowchart may al so be constructed for a mathematica I problem. For example, a possi ble
flowchart for the multiplication of two numbers (positive or negative) is shown in Figure
2-3. The first decision block (diamond) determines whether either of the inputs is negative
and the second, if both are negative. If both are negative or positive, the absolute
value of A (IAI) is multiplied by the absolute value of B and the result is printed. If one
or the other is negative, a minus sign is printed and the product of the absolute values of
the two entries is then calculated and printed.

2-2

NO

[GO TO
SLEEP

(

~.~A_RT_..,.,

PICK UP
MAGAZINE

DISCARD NO
MAGAZINE

TURN
PJ\GE

YES

[:AO
YES NO

Figure 2··2. Example Flowchart For Selecting And Reading A Magazine

2-3

IAI Times lsi
= X

End

Start

Figure 2-3. Example Flowchart for Multiplication Problem

2-4

SECTION III
NUTRANLANGUAGEFUNDAMENTALS

3.1 GENEA:AL

The outstanding characteristic of NUTRAN iis the continuing dialog between user and
computer. NUTRAN statements are entered by the user at a remote devi ce. When the
program is executE~d, the statements are then automatically translated and verified as
valid commands. If invalid statements are E~ncountered in a program during execution, the
interpreter responds by directing an error priintout on Teletype. (Refer to Appendix C for
error diagnostic information.) Also, if desired, as the program is being executed, literal
messages and results of computations may be printed on Teletype. The features of NUTRAN
conversational language are as follows.

1) The user has immediate and sLlstained access to the computer.

2) The user may selectively construct, execute, and edit statements or complete
routines, change values of variables, and request information from the
computer.

3) The user has diagnostic facilHies to debug his NUTRAN program.

4) The user need not be concerned about integer and floating point data type
formats.

This section describes the structure and specifies the contents of a NUTRAN statement.

12 NUTRANSTRUCTURE

The basic element in the NUTRAN language! is the statement. A NUTRAN statement, like
an Engl i sh sentence, expresses a complete idea. A statement may be executable by
specifying actions or procedures such as input/output routines or mathematical calculations.
Or the statement may be non-executable by providing information such as format speci­
ficotions to the Interpreter.

3-,1

3.2. 1 EXECUTABLE STATEMENTS

Two forms of executable statements may be written in NUTRAN. The first is written like
an algebraic formula as follows.

A = B + C/3

This type of construction is called an arithmetic assignment statement. (Refer 'to paragraph
3.5.5 for a more detailed discussion of arithmetic assignment statements.) It indicates that
the expression (B+ C/3) is to be evaluated and the value calculated is to be assigned to the
variable A.

The second form of executable statement consi sts of a word or words defined by the NUTRAN
language. Such a word, when interpreted by the processor, always results in the same
program action. These special words contain programmer-supplied parameters upon which
or through which the action occurs. For example, in NUTRAN, there is a statement called
the DO statement. The word DO tell s the NUTRAN Interpreter that a group of statements
is to be executed a number of times. The number of times the statements are to be executed
is supplied by the programmer. Any variation in the execution of the total statement of
which DO is a part is controlled by specific parameters supplied by the programmer. Refer
to paragraph 5.9 for a detailed description of the DO statement.

3.2.2 NON-EXECUTABLE STATEMENTS

A NUTRAN statement may also be non-executable. Non-executable statements are
directives to the NUTRAN Interpreter specifying, for example, format for print out of
numerical data, or directing the Interpreter to enter a subroutine program. Format and
subroutine statements are di scussed in Secti on V.

3.3 NUTRAN CHARACTER SET

Any characters from the following character set may be used to write statements and
comments in a NUTRAN program.

Alphabetics (Letters)
Numerics (digits)
NUTRAN Symbols
Blank Space

A through Z (written as capi tal s)
o through 9
=, ()+ -*/.
Denoted by a space

Up arrow (~) which is equivalent to **, may also be used under Teletype control.
** indicates the number before the ** is rai sed to the power of the number following the
i i.e., X2 (or X 1 2) indicates X2.

a4 NUTRANSTATEMENTS

NUTRAN statements may be made in one of three modes - Command mode (discussed in
Section IV), Text mode (Section V), or Calculator mode (Section VI).

3-2

3.4. 1 LINE NUMBERS

Each statement in Text mode must begin with a line number to identify the statement within
the program and tc:> specify the order in which statements are executed. The choice of
line numbers is arbitrary but limited to six dligits. The statements are executed in numerical
order (although they need not be entered in numerica I order). As the statements are entered,
the NUTRAN proglram sorts and edits the pr()gram, putting the statements into the order
speci fi ed by thei r respective line n um bers.

In Command mode, a statement mayor may not begin with a line number. In Calculator
mode, statements begin by depressing SPACE bar and never contain line numbers.

3.4. 1. 1 Deleting or Replacing Line Number and NUTRAN statement

A line number and NUTRAN statement are deleted by entering the specific line number on
the Teletype keyhoard and depressing carriage return. A line is replaced by entering the
line number and the ne'w NUTRAN statement via Teletype keyboard and depressing carriage
return.

3.4.2 SPACES

Spaces have no si~Jnificance (except in I iteral printout character strings) and are used
arbitrarily to makE~ printout of statements more readable. In literal printout commands
(paragraph 5.2.2), the space appears as specified in the command.

3.5 NUTRANLANGUAGESTRUCTURE

3.5. 1 CONSTANTS

Any literal, expli,::it number in a statement is called a constant. A quantity that is given
a name is called a variable. Either real or integer constants may be entered, but all
constants, whether real or integer are stored by NUTRAN as real (floating point) numbers.
Representing numbers in floating point form is a method similar to scientific notation, in
which a number is treated as a fraction (between O. 1 and 1.0), times a power of 10. The
magnitude of the number so represented lies approximately between the limits of l(t 300

and 10-300 or is zero.

All numerical constants may be preceded by a plus or minus sign to specify positive or
negative values. Unsigned constants are always considered positive values by NUTRAN.
The following are acceptable integer constants.

o -300
+600 54321

3-3

The following are acceptable real constants.

0.0 -200
6.0 -.00123
6. +15.25

The decimal point may appear at the beginning or end of a number or between '~wo digits.
A floating point constant may have any number of digits, but only seven decimal digits of
significance are retained by the computer.

Constants may be followed by the letter D or E and a positive or negative power of ten by
which the number is multiplied. This simplifies writing very large or very small numbers.
Thus, the following are further examples of acceptable floating point constants.

3.5.2

Constant

5.0E+6
6.25EB
2.B9D2
-7.0E3
4.33E-4

VARIABLE IDENTIFIERS

Equivalent to

5.0x106

6.25 xl OB
2 2.B9x10
3 -7.0x10

4.33x10-4

A variable identifier is a name given to a designated quantity whose value may change
during execution of a program. The name of a variable consists of one or more alpha­
numeric characters, the first of which must be alphabetic. Only the first two characters
are interpreted as defining the variable name and the rest are ignored. Therefore, each
variable name must be unique within the first two characters.

Variables are always stored as real values. The value range allowed a real variable is the
same as that for a real constant (zero or any constant within the range of 10±300). Examples
of acceptable and unacceptable variable identifiers are as follows.

Acceptable

KK
J2
MK

Unacceptable

31
2K
$X

It is recommended that the programmer assign names that simplify recall of the meaning of
the variable, but no such meaning is attached to the symbols by the NUTRAN Interpreter.
Every combination of letters and digits constitutes a separate name. Thus, the name "AB"
is not identical to the name "BA II

, and the names IIA" and "BII are distinct.

3-4

3.5.3 ARRAYS

An array is a group of data wi th i de~ti cal voriable names, but wi th di fferent subscripts. Each
unit of data is called oln element of the arrolY and is specified by the subscript. The NUTRAN
Interpreter allows for only one-dimensional arrays with a maximum of 4095 elements (subscripts).

3.5.3. 1 DeclarIng An Array

In the NUTRAN Interpreter, it is not necessary to declare an array (unlike FORTRAN,
where a dimension statement is required). Single-dimensional arrays are assigned only
as needed and are referenced by name and specified subscript, allowing for dynamic
a II ocati on of storclge du ri ng program execution.

3.5.3.2 Subscripts

The position in an array is identified by specifying the array name and the particular
subscript. A subscript can be an expression containing one or more terms and must not
exceed a value of' 4095. The subscript musir also be enclosed by parentheses. For example,
an array A (I) may be defined in a program where A{I) is the value of I multiplied by 2,
or A(I)=1*2. Then, I may be incremented from 1 to 3, such that an array is developed
as follows.

3.5.4

A{ 1}=2
A{2}=4
A(3)=6

ARI TH~A ETIC EXPRESSION S

An arithmetic expression is classified as onE! or more terms separated by an operator, which,
when evaluated, produce{s} a single value. In NUTRAN, a term can be a constant, a
variable, a subscripted variable (an array element), or a function (intrinsic or user written­
paragraph 3.5.7). A 1,erm in an expression is considered a reference to data (i .e., the
current value of the term designated by a nome is made available for processing during
the execution of a given statement). The general form of an arithmetic expression is as
follows.

term, operator, term, operator •••• term

The simplest form of an expression is a single term. The following are examples of simple
expressions.

Constants
Variables
Array Eleme!nts
Functic.n (intrinsic or user)

5
IN
ON (1)
ASS (X)

3-5

3. 14
TAX
TX {4}
SQRT (1)

3.5.5 ARITHMETIC OPERATORS

NUTRAN provides six basic arithmetic operators. An operator specifies that an action is
to be performed on data. An arithmetic expression is formed by combining terms with any
of the arithmetic operators shown in Table 3-1.

Table 3-1. Arithmetic Operators

Operator Aritlmetic Function

** or t Exponentiation
- Unary minus

/ Division
* Multiplication
+ Addition
- Subtracti on

NOTE

The unary minus operator is used to sign a number
or variable. An example of this is -A (or -5.3).
Unsigned constants or variables are assumed to be
positive.

If A and B represent two terms in an expression, then the following arithmetic expressions
are valid;

1) A**B equals the value of A raised to the power B. (A must be positive. If
not, an error indication is printed. Refer to Appendix A.)

2) AlB equals the value of A divided by the value B. (B must be non-zero. If
not, an error indication is printed. Refer to Appendix A.)

3) A*B equals the value of A multiplied by the value of B.

4) A+B equals the value of A plus the value of B.

5) A-B equals the value of A minus the value of B.

The following arithmetic expressions are also valid.

1) 7.0

2) A

3-6

3) 3*1

4) 3* 1+2

5) A+D*E-G/X

3.5.5. 1 Hierarchy of Operators

When arithmetic expressions are evaluated, the arithmetic operations are performed accord­
ing to the rules of precedence shown in Table 3-2.

Table 3-2. Arithmetic Operations Hierarchy

Operator

()
**
UNARY -
* and /
+ and -

Arithmetic Operation

Parentheses
Exponentiation
MINUS
Multiplication and division
Addition and subtraction

Evaluation of an expression begins with the operator of highest precedence. If operators
are of the some level, the execution is from left to right within the expression (including
** which in FORTRAN is evaluated from right to left). The following examples illustrate
the evaluation of c~xpressions.

2**3-4 = 4

3**2/3+5 = 8

5+4~~2**3 = 37

3.5.5.2 Parentheses

Exponentiati on is performed before
subtraction (8-4 = 4).

Exponentiati on is performed before
division and division before addition
(9/3+5 = 3+5 = 8).

(5+4*8 = 5+32 = 37).

There are instances in which the rules of pre!cedence are insufficient to represent the
desired sequence of operations in an expression. For example, the expression

A+B
A-B

3·-7

cannot be expressed according to the rules of precedence. To write it as A + B / A - B
i s incorrect, because thi s represents the expressi on

A + B - B
A

Therefore, another method of defining A + B and A - B as elemental factors of the division
operation is necessary. Parentheses do thi s by al tering the hei rarchy of operations (causing
NUTRAN to evaluate the expression within the parentheses) before proceeding with the
rest of the expression. Therefore, to write A + B in NUTRAN, coding should be

A-B
(A + B) / (A - B). Other examples of using parentheses to establish precedence are as
follows.

5+3*2+4/2 equals 13, whereas

(5+3*2+4)/2 equal s 7.5, and

((5+3) *(2+4))/2 equa I s 24.

When an expression has several levels of expressions enclosed within parentheses, the
evaluation begins with the innermost pair of parentheses and proceeds to the outermost pair.
Each parenthetical expression is treated asan elemental term. Parentheses may be used
freely and as often as desired to simpl ify and clarify a NUTRAN statement.

3.5.6 ARITHMETIC ASSIGNMENT STATEMENTS

An arithmetic assignment statement assigns a single arithmetic value of an expression or
variable to the name of a variable or subscripted variable. This assignment statement
causes the arithmetic value of the expression to the right of the equal sign to replace any
previous value for the variable or array element to the left of the equal sign. Thus, a
statement such as N = N + 1 indicates that 1 is added to the present va lue of variabl e Nand
that this result replaces the value in N. This effect is comparable to incrementing N by 1
and does not imply that N equals N + 1. The general form of the arithmetic statement is

variable identifier = expressi on

and is interpreted: the current value of the variable identifier is replaced by the evaluated
expressi on.

3.5.7 SUBPROGRAM STATEMENTS

At various points in a program, operations may be required which are identical (or almost
identical) to others. NUTRAN provides for a method of writing them once in a general
form, and making them avai lable as many times as necessary throughout a given program.
Each such commonly used statement or group of statements is called a subprogram, and
each has a unique reference name in a program. In NUTRAN, there are three basic kinds

3-8

of subprograms; intrinsic functions, subroutines, and user written functions.

3.5.7.1 Intrinsic Function Statements

NUTRAN intrinsic function statements are provided by the NUTRAN Interpreter and
facilitate the use of common mathematical expressions, such as square root, logarithm,
exponential, and olbsolute value. Every function has a preassigned name. For instance,
the name for the exponential function is EXP. The valid NUTRAN mathematical functions
are as fonows.

Mathem4:ltical Function

Square Root
Exponential
Natural Logarithm
Logarithm base 10
AbsolutE~ Value

NUTRAN Name

SQRT
EXP
ALOG
ALOG 10
ABS

To make use of a mathematical functi on, it is necessary only to write the name of the
function and to folilow it with an expression enclosed in parentheses. This directs NUTRAN
to compute the nama::l function of the val ue represented by the expressi on in parentheses.
For example, if the~ square root of a value is needed for part of a computation, the square
root function in a statement assumes the form:

x = Y - SQRT (Z)

where SQRT is the function and Z is the argument. (Arguments for intrinsic functions must
be enclosed in parentheses.) The value SQRT (Z) is computed and subtracted from the value
of Y. The result replaces the value for X.

3.5.7.2 Subroutine Statements

A subroutine is a subprogram which the progrc]mmer must write and input to the main program.
Arguments for subroutines mayor may not be used, but if they are used, must be enclosed
in parentheses. Refer to Paragraph 5. 10 for (] detai led descripti on of the use of subroutines.

3.5.7.3 User Written Function Statements

User written function statements are subprogroms that operate I ike NUTRAN intrinsic functions
but are not prov-ided by NUTRAN. Refer to Appendix D.

3-9

SECTION IV
COMMAI\ID MODE

NUTRAN operates iin either Command, Text, or Calculator mode. Command mode is
described in thi s Secti on. Sections V and VI di scuss Text and Calculator modes, respectively.

In Command mode, all inputs typed on Teletype request the NUTRAN Interpreter to perform
some operation. To operate in Command mode, the user mayor may not type a line number
as desired, but a pE!riod, the desired Command code, and a tenninating carriage return
must be entered. The carriage return is a non-printing character represented by the letters
CR. CR signals the Interpreter to process the infonnation just typed. No command is
executed until it is tenninated by CR. After the command is executed by NUTRAN, the
program enters Text mode, responds with a carriage return/line feed, and types > .

4.2 COMMAr~D DESCRIPTION

In Command mode, there are five one-letter commands to the NUTRAN Interpreter. These
commands are as follows.

1) • L CR - Lists all variables and constants in the symbol table. The period
must precede the "L" and carriage return (CR) must be depressed after typing
"L". If the command is preceded by a statement line number, the listing
includes only the variables and constants from that line to the end of the
symb()1 table.

2) .W CR - Prints the entire program in the text buffer. The command may also

be of the fonn,

200.W CR

when~ only the statement identified by line 200 (or any specified line num­
ber) iis printed. In either fonn l • the period must precede the "w" and the
command must be followed by CR.

4-11

3) E CR - Erases the entire text buffer and the symbol table. The command
may al so be of the form,

200. E CR

where only the symbol table and statement 200 (or any specified line number)
and larger in that text buffer are erased. In either form, the period must
precede the "E" and the command must be followed by CR.

4) . N CR - Pri nts the next I ine in the text buffer. The peri cd must precede the
"N II and the command must be followed by CR.

5) .G CR - Executes the program in the text buffer. The command may also
be of the form,

300.G CR

where execution of the program begins at line 300 (or any specified line
number in the text buffer). In either form, the period must precede the IIG"
and the command must be followed by CR.

4-2

SECTION V
TEXT MODE - NUTRAN CONTROL STATEMENTS

5.1 GENERAL

In Text mode, all typed inputs (when terminoted by carriage return CR) replace or are
added to the contents of the program text, providing a means for the programmer to code,
update and executle a program on-line. This eliminates the tedious task of compiling,
executing and debugging a program off-I ine, and reduces the time necessary to develop
new programs.

Adding/deleting statement lines in Text mode and Teletype keys having special functions
in tex t mode are d'j sc u ssed in th is sec t ion.

In order to actually write a program in Text mode, specific statements are required. This
section describes NUTRAN control statements INPUT, PRINT, CONTINUE, STOP, FMT
(format), LIST, and ERASE; transfer of control statements IF, GOTO, and DO; subprogram
statements CALL, SUBROUTINE, and RETURN; and special statements FISET, GET, and
PUT. Examples one given to illustrate the use of each statement. To understand the ex­
amples, it is recommended that the user be fam i I iar wi th the language fundamental s given
in Section III and Command mode given in Section IV. Also, in order to exercise the
examples given, the NUTRAN Interpreter program (ND41-0059) must be loaded into the
ND812 Computer CJS described in Appendix A.

5. 1 • 1 ADDINlG/DELETING STATEMENT LINES

To add a statement to a program, the user must be in Text mode. The operator need on Iy
enter a line number and follow it with the n.ew NUTRAN statement. At the end of the
statement, the operator depresses CR and the processor enters the line into the program at
the location specified by the line number. Valid statements are described in this section.

To delete a statem.ent from a program, the operator must also be in Text mode. He need
enter only the line number of the NUTRAN statement to be deleted and then depress the CR
key. The processor deletes the indicated stcltement line from the program and returns
control to the operator (Text mode) for furthcer commands.

5--1

5. 1.2 SPECIAL TELETYPE KEY COMMANDS

The following Teletype keys have special operating functions in Text mode.

1) CARRIAGE RETURN (CR - nonprinting) - Depressing the CR key causes the
line of text (NUTRAN statement) preceding it to be entered into the text
buffer where the program is stored. A typed I ine does not become part of
the buffer until it is terminated by CR.

2) BACK ARROW (~) - The back arrow is used for error recoveries and
.cancels everything to the left of itself back to the line number. The user
continues typing on the same line.

3) RUB-OUT C",) - Rub-out is al so used in error recovery. Typing a rub-out
prints II " II and deletes the last typed character.

4) AL T (non-printing) - AL T key is used to ignore the line being entered
(assuming CR has not been depressed for that line). A new line number must
then be entered to begin a new statement.

5.2 INPUT/PRINT CONTROL STATEMENTS

Solution of a problem usually requires that an input be supplied before a result is obtained.
Therefore, the programmer must have some means of supplying an input for execution
of hi s program. AI so, when the program has been executed, the results must be returned
to the programmer in some intelligible form. NUTRAN conversational language pro-
vides the INPUT/PRINT control statements for transfer of information into and out of the'

ND812 Computervia Teletype. The INPUT control statement provides manual d~ta entry to
program via Teletype, keyboard, and the PRI N T control statement provides hardcopy printout
of results. The following is a discussion of the INPUT and PRINT statements.

5.2. 1 INPUT STATEMENT

In a conversational language, data is supplied to the program by the operator through a
Teletype. This is particularly true when one person writes the program and another supplies
the data. The N UTRAN program receives data di rectly from the operator via the Teletype
by use of the I NPUT statement. An example of the I NPUT statement format is,

INPUT A

The form of the data being entered for an I NPUT statement must be either an integer or
real constant. For example, if the person writing the program wants the user to supply a

value for A and B in the program, he might use the statement,

INPUT A, B

5-2

When the program encounters this statement, a colon is printed at the Teletype. The user
must then enter a value for A and enter a telrminating character (carriage return key,
space bar, or any character other than a number or decimal point). Another colon is
printed and a valuc~ for B must be typed. After again entering a terminating character,
the program continues unti I another I NPUT statement is encountered or until the end of
program is reached.

5.2.2 PRI NT STATEMENT

In a conversationall language, it may be desi:rable for a program to communicate with the
operator or user in the form of literal character strings. A NUTRAN program
does this through Teletype by using PRINT statement. The formats for the PRINT statement
are,

PRINT 'message'

PRINT' message', Variable Identifier

PRI NT Variable Identifier 1, Variable Identifier 2, •••• Variable
Identifier N

For example, PRINT 'X+V=', Z causes "X+Y=" to be printed literally followed by the
calculated value for th«~ variable identifier IIIZ ". The PRI NT statement may be used to,

1) Skip a line and print a message on the following line using a slash as
follc)ws: PRINT I, 'message'.

2) Prinir out the results of calculCitions, as desired.

3) Print out messages included in the program.

4) Perform combinati ons of 2 and 3.

Examples of PRINT statements are as follows ..

1) 12 PRINT X, V, Z (2)
NUTRANI prints the value of X and then the value of V. The second element
of array Z is printed to the right of V.

2) 14 PRINT 'HEADED LINE'
Line 14 prints the statement HEADED LINE literally. Groups of information
can be printed out across the page by enclosing information in single quotes
and separating items within the group with commas.

3) 16 PRINT 'SQUARE OF', X, 'IS', V •••
In this example, messages and variables are combined in one PRINT statement.
The message SQUARE OF is printed literally, and is followed by the value

5-3

of X. The word IS is printed literally and followed by the value of Y,
where Y was previously calculated as X*X. At the execution of the
statement, this printout might be as follows.

SQ UA R E OF 4.0 I S 16.0

~3 STOP STATEMENT

Execution of the STOP statement causes termination of the program. This statement is
interpreted as the I ogi ca I end of the program rather than the physi ca I end. More than one
STOP statement may appear within a program. For example, a progran could have a
S TOP statement at the end of each I ogi ca I program path.

5.3. 1 EXAMPLE PROGRAM USING INPUT, PRINT AND STOP STATEMENTS

As an exercise, the following example program may be entered into the ND812 Computer
via keyboard. The printout shown below is obtained by typing. W after the program is
entered.

NOTE

Every statement must be preceded by a line number.

1 PRINT ' INPUT VALUES FOR X AND Y'
2 INPUT X,Y
3 Z=X+Y
4 PRINT 'X+Y= ',Z
5 STOP

Now enter 1. G and depress carriage return at Teletype keyboard. The program prints
line 1 literally and then types a colon (:) requesting an input for the variable X.
After the value for X is entered and carriage return is depressed, another colon is typed
for Y. When Y is entered and carriage return depressed, the program types the requested
printout. The following printout shows a calculation for X = 3 and Y = 2 using the above
program. N UTRAN then returns to Text mode and types >.

>l.G
INPUT VALUES FOR X AND Y
:3
:2
x+y= .5000000E 1

>

The values for X and Y in the above example may also be terminated by depressing space
bar. Using the same inputs for X and Y, the following printout would then result.

5-4

>l.G
INPUT VALUES FOB X AND Y
:3 :2 X+Y= .5000000E 1

>

By using space bar to terminate inputs, columns may be generated to clarify entries. For
example the above program may be rewritten as follows. The slash, "/", is included in
line 5 to assure thClt a line is skipped after the last entry.

1 PRINT 'INPUT VALUES FOR X AND Y'
2 PEINT 'X Y'
3 INPUT X,Y
4 Z=X+Y
5 PRINT I,'X+Y= ',Z
6 STOP

Then, by again entering 3 and 2 for X and Y and terminating those entries with space bar,
the following printout results.

>l.G
INPUT VALUES FOR X AND Y
X Y

:3 ::2
x+y= .5000000E 1

>

5.4 (FMT) FORMAT STATEMENT

The format (FMn statement allows the user to specify the manner in which the output from
the PRI NT statement is arranged. There are three different ways to format the data.

1) InteHer (I) - the data is printe!d as an integer, i.e., without decimal point
or fraction portion. For example,

2 It 69 is printed as 3

2) Floating (F) - the data is prin1"ed as a floating number, with decimal and
fraction. For example,

2 .. 69 is printed as 2.69

3) Expc1nential (E) - the data is printed as a fraction and is followed by a
signE~d power of ten. For example,

2.69 is printed as .269'El

5·-5

5.4. 1 INTEGER (I) FORMAT STATEMENT

Integer format statement is of the general form FMT (In), where 11111 specifies integer
format and "nil is the field width. Field width specifies that the right justified number
(with leading blanks) is printed. For example,

FMT (I 10)
PRINT 2, -1234

prints the following. n=lO

,-----------'
bbbbbbbbb~ bbbbb-1234 where "b ll indicates "space II ..

'V

n=10

5.4.2 FLOATING (F) FORMAT STATEMENT

Floating format statement is of the general form FMT (Fw,d) where "FII specifies floating
format, "w" is the field width, including sign and decimal point, and "d" is the number
of digits to the right of the decimal point. The IIW" must be ~ d + 2 to allow for the
decimal point and at least one digit. For example,

prints the following.

FMT (F8,3)
PRINT 22.355

w=8 -_ "-----..
bb22.355

:...--'
where "b" indicates "space".

d=3

NOTE

If a number to be printed exceeds the number of
digits specified in the I or F format statement, an
error printout results. The error indication includes
an asterisk (*) for each field digit position specified
in the I or F format statement. For example,

FMT (16)
PRINT 1234567

results in the following indicati on.

5-6

5.4.3 EXPONENTIAL (E) FORMAT STATEMENT

Exponential format statement is of the genercd form FMT (Ew,d) where IIEII specifies
exponential format;, IIW III is the field width, Including fraction sign, decimal point, E,
exponent sign and exponent, and "d ll is the number of digits in the fraction. The "W ll

must be ~ d+5. If fraction and exponent si~~ns are not indicated, positive is assumed.
For example,

FMT (E10,3)
PRINT 25

prints the foil owin~,.

5.4.4

w=lO

r--------"
bb.250Ebb2 where IIb" indicates "space".

'--'

d=3

NOTE

Integer, floating, and exponential format entries
may be made in the same program regardless of
format statement specifications.

D EFAUL T FORMAT

If the format is not specified in a program, FMT (E 15,7) is assumed. (Paragraph 5.4.3
describes E format.) Also, only one format may be specified in a single statement line.
That format is then used for each succeeding output unti I another format statement (on
another line) is encountered.

5.4.5 ROUNDING

The NUTRAN rounding procedure depends upon three variables; (1) format type, (2) decimal
exponent of data, (lnd (3) in the case of F and E formats, the number of digits to be printed
to the right of the decimal point. A fourth factor may also be important and should be
clearly understood to avoid confusi on. The fourth factor is the number of accurate decima I
digits expectable from the word size used in ND812 NUTRAN. Normally, one can expect
seven decimal digits of accuracy. Since machine representation is often an approximation
of the true decimal number, large numbers Olr numbers where more than seven digits are
to be printed, might not produce the expectEld result. Inspection, however, shows that
the error, if any, is in the seventh or, more likely, the eighth digit.

The rounding method generally adds 5 to the number at the first decimal digit to the right
of the rightmost diflit being outputed. For example, in integer format,

5--7

is rounded as follows,

and prints this result.

FM T (15)
PRI NT 12345.9

12345.9
+ .5

12346.4

12346

In the following floating format example, the number is rounded and printed as shown.

rounding,

and the resul tis

FM T (F 12,3)
PR IN T 3. 1234

3. 1234
+ .0005
3. 1239

3. 123

However, using the same format statement, but a larger number, the following occurs.

FM T (12,3)
PRI NT 1234.9999

The number theoretically is rounded as follows.

and prints

1234.9999
+.0005

1235.0004

1235.000

But word size could result in lost accuracy in the eighth digit and the result could be,

1234.999

5-8

Using exponential format, the following rounding occurs.

rounding,

FM T (E 10,3)
PRINT .004326

.004326
+ .000005

.004331

and the resul tis,

.433E-2

5.4.6 EXAMPLE PROGRAM USING FN~T STATEMENT

The following is an example program for addition, subtraction, multiplication, and division
which may be ente!red at the Teletype keybc1ard. A format statement FMT (F7,2)is used
as shown at line 122. The printout was generated by typing. W after the program was
entered.

100 ER.?\SE
105 PRINT 'ADDITION EXAMPLE'
110 PRINT /~'CALCULATE A+B~ A+B+C~ AND A+B+C+D'~/
115 PRINT 'INPUT VALUES FOR A~ B~ C~ AND D'; INPUT A~B~C~D
120 X=A+BJ Y=X+C; Z=Y+D
122 FM'T(F7~2)
125 PRINT 'A+B IS '~X

130 PRINT 'A+B+C IS '~Y
135 PRINT 'A+B+C+D IS ,~Z

140 PRINT 'END OF ADDITION EXAMPLE PROGRAM'~/~/~/~/
150 ER,?\SE
155 PRINT 'SUBTRACTION EXAMPLE'
160 PRINT /~ 'CALCULATE A··B~ B-C~ AND C-A'~/
165 PRINT 'INPUT VALUES FOR A~ B~ AND C'; INPUT A~B~C
170 X=A-BJ Y=B-C; Z=C-A
175 PRINT 'A-B IS '~X
180 PRINT 'B-C IS '~Y
185 PRINT 'C-A IS '~Z
190 PR:INT 'END OF SUBTRACTION EXAMPLE PHOGRAM' ~/ ~/ ~/ ~/
198 ERASE
200 PR,INT 'MULTIPLICATION EXAMPLE .AND USE OF PARENTHESES'
205 PRINT /~'CALCULATE A*B~ A*B*C~ AND A*(B+C)'~/
210 PRINT 'INPUT VALUES FOR A~ B~ AND C'; INPUT A~B~C
215 X=A*B; Y=X*C; Z=A*(B+C); T=A*B+C
220 PRINT 'A*8 IS '~X
225 PRINT 'A*B*C IS '~Y
230 PRINT 'A*(B+C) IS '~Z~/~'WHILE A*B+C IS '~T

5-9

235 PRINT 'SHOWING HIEHAHCHY OF OPERATIONS WITHIN PARENTHESES'
240 PRINT 'END OF MULTIPLICATION EXAMPLE PHOGRAM'"I"I"I"I
250 ERASE
255 PRINT 'DIVISION EXAMPLE'
260 PRINT I" 'CALCULATE AlB" A+B/C+D" AND CA+B)/(C+D)'"I
265 PRINT 'INPUT VALUES FOR A" B" C" AND D'; INPUT A"B"C"D
210 X=A/B; Y=A+B/C+D; Z=(A+B)/CC+D)
215 PRINT 'AlB IS '"X
280 PRINT 'A+B/C+D IS '"Y
285 PRINT 'CA+B)/(C+D) IS '"Z
290 PRINT 'END OF DIVISION EXAMPLE '
300 STOP

The above program is executed by typing 100. G and depressing carriage return ~ The
following printout shows an example execution of the program. Each colon (:) shown in
the example is followed by a number entered via Teletype. Otherwise, all other dialog
and printout is program initiated.

>100.G
ADD I T I ON EXAMPLE

CALCULATE A+B" A+B+C" AND A+B+C+D

INPUT VALUES FOR A" B" C" AND D
:2
:3
:4
:5
A+B IS 5.00
A+B+C IS 9.00
A+B+C+D IS 14.00
END OF ADDITION EXAMPLE PROGRAM

SUBTRACTION EXAMPLE

CALCULATE A-B" B-C" AND C-A

INPUT VALUES FOR A" B" AND C
:2
:4
:9
A-B IS -2.00
B-C IS -5.00
C-A IS 1.00
END OF SUBTRACTION EXAMPLE PROGRAM

5-10

MULTIPLICATION EXAMPLE AND USE OF PARENTHESES

INPUT VALUES FOR A~ B~ AND C
13
:6
15
A*B IS 18.00
A*B*C IS 90.00
A*(B+C) IS 33.00
WHILE t~*B+C IS 23.00
SHOWING HIERARCHY OF OPEHATIONS WITHIN PARENTHESES
END OF MULTIPLICATION EXAMPLE PROGRAM

DIVISION EXAMPLE

CALCULt~TE A/B~ A+B/C+D~ AND CA+B)/(C+D)

INPUT VALUES FOR A.~ B~ C~ AND D
: 11
:7
:34
:2
AlB lSI. 57
A+B/C+D IS 13.20
CA+B)/CC+D) IS .50
END OF DIVISION EXAMPLE

>

5.5 LIST AND ERASE STATEMENTS

The contents of thE~ symbol table may be printed by entering a LI ST command. To erase the
contents of the symbol table, an ERASE command may be entered. For example, the
program in Paragrcsph 5.3. 1 may be rewritten as follows to erase the symbol table before
entering variables and to then list the symbol table to assure that the new variables are
entered correctly.

1 ERAS1~
2 PRINT 'INPUT VALUES FOR X AND Y'
3 INPU~r X~Y
4 Z-X+Y
5 PRINT 'X+Y= ·~Z
6 LIST
7 STOP

5··11

The program is then executed normally with the following result.

>l.G
INPUT VALUES FOR X AND Y
:3
:2
X+y= .5000000E 1

z (
y (
X (

>

0)
0)
0)

.5000000E 1

.2000000E 1

.3000000E 1

5.6 CONTINUE STATEMENT

CONTINUE is a dummy statement which causes no action when executed within a program.
Its function merely satisfies the rule that the last statement in the range of a DO must not
be one which can cause transfer of control. (Refer to paragraph 5.9 for a discussion of
the DO statement.) It is also used to provide a statement to which an IF can transfer when
the computations in the range of a DO have been completed. This is necessary because a
transfer within the range of a DO is normally not permitted to return to the DO itself.
Transfer is legal, however, if it is actually desired to repeat execution of the DO loop.
(Refer to paragraph 5.7 for a discussion of the IF statement.) An example use of the
CONTINUE statement is included in the DO statement example in paragraph 5.9.3.

5.7 IF STATEMENT

The arithmetic I F provides a three-way test on the value of an arithmetic expression. An
arithmetic IF contains an arithmetic expression which is evaluated as less than, equal to,
or greater than zero. The specific evaluated result dictates where program control is to
be transferred. The general form of the arithmetic IF is,

IF (arithmetic expression) expression 1, expression 2, expression 3

If the value of the arithmetic expression is negative, a branch is executed to the statement
specified by expression 1i if it is zero, a branch to statement specified by expression 2 is
executed; and if it is positive, a branch to the statement specified by expression 3 is
executed. The following examples illustrate the use of the IF statement.

5 I F (A - 5) 10, 15, 20
100 IF (B*SQRT (Q) - 2), X, X+ 3, 17

In the first IF example, assuming statement lines exist with line numbers 10, 15, and 20,

5-12

If A - 4, control is transferred to statement 10.
If A = 5, control is transferred to statement 15.
If A - 6, control is transferred to statement 20.

In the second IF example, assuming statement lines exist with line numbers X, X+3, and 17,

If (B*SQRT (Q) - 2) 0, control is transferred to statement X.
If (B*SQRT (Q) - 2) = 0, control is transferred to statement X+3.
If (B*SQRT (Q) - 2) 0, control is transferred to statement 17.

NOTE

If a statement number specified by a branch from an
IF statement does not exist, an error indication is
printed. Refer to AppEmdix C for error diagnostics.

5.7. 1 EXAMPLE PROGRAM USING IF STATEMENT

This paragraph provides a ,nethod for computIng the sum of squares of 5 numbers which are
entered into the NID812 Computer via the INPUT statement. The following is the mathe­
matical notation for this problem.

SUMSQR =' ~
i= 1

X•
2

. I

A flowchart of a procedure for planning the sequence of operations for writing a program
for computing the clbove problem is given in Figure 5-1.

The following is a :sample program which may be entered at the Teletype keyboard for
computing sum of sc~uares usi ng the I F stateml~nt.

400 ERASE
402 PRINT 'SUM: OF SQUARES EXAMPL'E'
403 PRINT 'COM!PUTES SUM OF XC I) SQUARED., WHILE I GOES FROM 1 TO 5'
410 SUMSQR=O
420 1=1
430 PRINT 'INPUT A VALUE FOR X'lINPUT X
440 1=1+1
450 SUMSQR=SUMSQR+X**2
455 FMTCF6.,2)
460 IFCI-5)430.,430.,470
470 PRINT 'SUM[OF SQUARES = '., SUlMSQR
480 PRINT 'END OF COMPUTATION'
490 STOP

Now enter 400.G c:md depress carriage return at Teletype keyboard. The result is as
follows.

5-13

SUMSQR = 0

=

SUMSQR =
SUMSQR +
X2

= 1+1

Figure 5-1. Flowchart For Computing Sum of Squares

5-14

>400.G
SUM o Ii' SQUARES EXAMPLE
COMPUTES SUM OF XCI) SQUARED .. WHILE I GOES FROM 1 TO 5
INPUT A VALUE FOR X
:2
INPUT A VALUE FOR X
:8
INPUT A VALUE FOR X
:4
INPUT A VALUE FOR X
:5
INPUT A VALUE FOR X
: 1
SUM OF SQUARES :: 110.00
END OF~ COMPUTATION

>

5.8 GOTO STATEMENT

The GOTO statemE;!nt provides a means of trClnsferring control to some statement other than
the next in sequenc::e and is of the form GOrO n, where n is either a statement number or
variable name that has been assigned a val ue equal to a statement number in the program.
Wh~n such a statement is encountered, the next statement executed is the one specified by
the statement number. The unconditional GOTO statement is one in which n is a statement
number which cannot change during a program run. The conditional GOTO is one in which
n is a variable name which can change during a program run with an arithmetic assignment
stat~ment. The stoltement number transferred to is the one last assigned the variable name.
The following are E~xamples of GOTO statements.

5.8. 1

GOTO 99 (unconditional)
GOTO X (conditional assuming a statement line number exists for value of X)
GOTO X+3*Y (conditional assuming a statement line number exists for value

of X+3*y)

EXAMPLE PROGRAM USING GC)TO STATEMENT

The following is a :sample program for solution of the quadratic equation using the GOTO
statement. As an E~xerci se, thi s program can be entered into the ND812 Computer via the
Tel~type keyboard in the following format. This printout is obtained by typing .Wafter
the program is entered.

5-15

5 ERASE
10 PRINT 'SOLUTION TO QUADRATIC EQUATION'~/
12 FMT(F15~2)
15 PRINT 'ROOTS Xl AND X2 DEFINED AS FOLLOWS:'
20 PRINT' Xl = (-B + SQRT(B*B - 4AC»/2A'
25 PRINT' X2 = (-B - SQRT(B*B - 4AC»/2A'
30 PRINT /~'INPUT VALUES FOR A~ B~ AND C', INPUT A~B~C
35 D=B*B-4*A*C' F=-B/(2*A)
40 IF(D+0)45~65~65
45 PRINT 'Xl = '~F~'+ IMAGINARY'
50 PRINT 'X2 = '~F~'- IMAGINARY'
55 PRINT 'END OF COMPUTATION'
60 GOT080
65 G=SQRT(D)/(2*A)
70 R=F+GJ S=F-G
75 PRINT 'Xl = '~R~/~'X2 = '~S~/~'END OF COMPUTATION'
80 CONTINUE
85 STOP

Now enter 5. G command and carriage return at the Teletype keyboard. The following
printout shows the result for A = 2, B = -3, and C = 4.

>5.G
SOLUTION TO QUADRATIC EQUATION

ROOTS Xl AND X2 DEFINED AS FOLLOWS:
Xl = (-B + SQRT(B*B - 4AC»/2A
X2 = (-B - SQRT(B*B - 4AC»/2A

INPUT VALUES FOR A~ B~ AND C
:2
:-3
:4
Xl = .75+ IMAGINARY
X2 = .75- IMAGINARY
END OF COMPUTATION

>

In the following two examples, the quadratic equation program is used to calculate for E
format entries. The first example uses E to indicate E format and the second uses D. E
and D are interchangeable in E format entries as shown.

5-16

>5.G
SOLUTION TO QUADRATIC EQUATION

ROOTS Xl AND X2 DEFINED AS FOLLOWS:
Xl = (-B + SQRT(B*B - 4AC»/2A
X2 = (-B - SQRTCB*B - 4AC»/2A

INPUT VALUES FOR A" B" AND C
:2E-6
:4E3
:5E2
Xl = -64.00
X2 = -1999999809.26
END OF COMPUTATION

>5.G
SOLUTION TO QUADRATIC EQUATION

ROOTS Xl AND X2 DEFINED AS FOLLOWS:
Xl = (-B + SQRTCB*B - 4AC»/2A
X2 = C-B - SQRTCB*B - 4AC»/2A

INPUT VALUES FOR A" B" AND C
:2D-6
:4D3
:5D2
Xl = -64.00
X2 = -1999999809.26
END OF COMPUTATION

>

5.9 DO STJ.'TEMENT

The DO statement is one of the most powerful features of the NUTRAN language, for through
it, repeated initia'tion and control of the eXl3cution of a section of program (with changes
in the value of a variable between repetitions) are possible. The DO statement allows the
programmer to specify the necessary parameters for ~onstructing a program loop. The general
format of the DO statement is: DO label i == parameter 1, parameter 2, parameter 3, where
the label and parameters are defined as follows.

1) The labe! is the statement number of the last or term inal statement in a
group of statements to be repeated.

2) The lIi ll isa control variable which represents a loop counter assigned the
initial value of parameter 1.

3) Parameter 1 is an initial value! (any number,:variable identifier, or arithmetic
expr1ession) for the loop countE~r.

5-17

4) Parameter 2 is an upper limit or maximum value (any number, variable
identifier, or arithmetic expression) which is not exceeded by the loop
counter.

5) Parameter 3 is an increment value (any number, variable identifier, or
arithmetic expression) by which the loop counter is to be modified after
each execution. This parameter is optional. If it is not included, a value
of one is assumed.

A typical DO statement is,

5.9. 1

DO 50 = 1, 10, 1

'---------- Initial Value L. I ~I ___ -'--~~;:~~i~i;~~I:e
--- -----. Control Variable

'--------------- Statement Number of Last Statement

DO LOOPS

The DO statement is followed by a group of statements which are repeatedly executed until
the value of the control variable exceeds the upper limit value. A DO loop is the group
of statements (including the DO). The last statement in the DO loop must be a labeleJ,
executable statement and must not be a control statement - STOP, IF, GOTO, CALL
RETURN, or DO. An example DO loop is shown below.

100 DO 120 = 1, 10,4

1
Range of DO loop

120 I
The statement, DO 120 1= 1, 10,4 specifies that the control variable representing the
loop counter is initially set to 1. The upper limit of the loop counter is 10, and the
quantity by which the loop counter is to be incremented after each execution is 4.

During the first execution of the loop, the control variable has an initial value of 1. After
each execution, the control variable is incremented by 4. During the second execution,
the control variable has a value of 5, and during the third execution it has a value of 9.
A fourth incrementation causes the contents of the loop counter to exceed the designated
upper limit value of 10. Therefore, the DO loop is tenninated after t~ third execution~

The tenninal statement in the range of a DO loop must not be GOTO, CALL, RETURN, IF,
DO or STOP'statements. However, if it is necessary to use one of these (except STOP) as
the last statement in a DO loop, the statement should be followed by CONTINUE.

5-18

5.9.2 NESTED DC) LOOPS

The rules for writing single DO loops have been described. However, it is quite useful to
write DO loops which contain other DO loops. DO loops may be nested within the range
of other DO loops if prescribed rules are followed.

1) All statements in the range of the inner DO must be completely contained
within the range of the outer DO.

2) Control variables and parameters of outer DO loops must not be altered by
inne'r DO loops. For example,

CORRECT USE

40 DO 60 I = 1, 3

INCORRECT USE

5 DO 10 I = 1, 6
7DO 20 J = 4, B

DO loops
overlap

Outer Inner [45D050J=3,10
DO loop DO loop •

50 ---------

10------- (i ncorrect)

Outer
DO loop

5.9.3

20------- __ ---J.

60 ---------

3) Nested DO loops can specify ,a common terminal statement. For example,

Inner
DO loop

5 DO 20 I = 2, 7

-10 DO 20 J = 1, 5

20--------

4) It is not recommended that transfer of control by I F or G OTO statements be
permitted into the range of any DO statement from outside its range. Such
transfer rn ight not allow the DOl oop control vari able to be properly
in itk.1 ized.

EXAMPl.E PROGRAM USING DO STATEMENT

The following is a sample program for computing the sum of squares of five numbers using
the DO statement rathelr than the I F statement given in paragraph 5.7. 1. As an exerci se,
this program may bee entered into the NDB12 Computer via Teletype keyboard as shown.

5-,19

The printout is obtained by typing. Wand depressing carriage return after the program
is entered It

500 ERASE
502 PRINT 'SUM OF SQUARES EXAMPLE'
503 PRINT 'COMPUTES SUM OF XCI) SQUAHED" WHILE I GOES FROM 1 TO 5'
510 SUMSQH=O
515 FMT CF6,,2)
520 DO 575 1=1,,5,,1
530 PRINT 'INPUT A VALUE FOB X' j INPUT X
550 SUMSQR=SUMSQR+X**2
570 PRINT 'SUM OF SQUARES = '"SUMSQR
575 CONTINUE
580 PRINT 'END OF COMPUTATION'
590 STOP

Now enter 500.G command and depress carriage return at Teletype keyboard. The result
using the indicated entries is as follows. In this program the sum of squares is typed after
each entry until a tota I of 5 entries is made.

>500.G
SUM OF SQUARES EXAMPLE
COMPUTES SUM OF XCI) SQUARED" WHILE I GOES FROM 1 TO 5
INPUT A VALUE FOR X
12
SUM OF SQUARES = 4.00
INPUT A VALUE FOR X
18
SUM OF SQUARES = 68.00
INPUT A VALUE FOR X
14
SUM OF SQUARES = 84.00
INPUT A VALUE FOR X
:5
SUM OF SQUARES = 109.00
INPUT A VALUE FOR X
: 1
SUM OF SQUARES = 110.00
END OF COMPUTATION

>

5.9.3.1 Example Program With Error

The following is an example of the program given in paragraph 5.9.3 with an error in
line 520.

5-20

500 EF!ASE
502 PRINT 'SUM OF SQUAHES EXAMPLE'
503 PRINT 'COMPUTES SUt1 OF XC I) SQUARED" \fflILE I GOES FROM 1 TO 5'
510 SUMSQR=O
515 FMT CF6,,2)
520 DO 1=1,,5,,1
530 PRINT 'INPUT A VALUE FOR X'JINPUT X
550 SUMSQR=SUMSQR+X**2
5

0

70 PRINT 'SUM OF SQUARES = '" SUMSQR
575 CONT INUE
580 PRINT 'END OF COMPUTATION'
~90 STOP

The program is then executed as shown below by typing 500.G and depressing carriage
return. The progrom proceeds as normal unti I the error is encountered and prints the error
message as shown.

>500.G
SUM OF SQUARES EXAMPLE
COMPUTES SUM OF XCI) SQUARED" WHILE I GOES FROM 1 TO 5

ER@ 520
>

Line 520 is then rewritten as shown below to show the correct terminal statement for the
DO loop.

>520 DO 575 1=1,,5,,1

The program is again executed by typing 500.G and depressing carriage return. Using the
same entries {in reverse order} as in section 5.9.3, the result is as follows.

>500.G
SUM OF SQUARES EXAMPLE
COMPUTES SUM OF XC I) SQUARED" \vHILE I GOES FROM 1 TO 5
INPUT A VALUE FOR X
: 1
SUM OF SQUARES = 1.00
INPUT A VALUE FOR X
:5
SUM OF SQUARES = 26.00
INPUT A VALUE FOR X
:4
SUM OF SQUARES = 42.00
INPUT A VALUE FOR X
:8
SUM OF SQUARES = 106.00
INPUT A VALUE FOR X
:2
SUM OF SQUARES = 110.00
END OF COMPUToATION

>
5··21

5.9.4 EXAMPLE PROGRAM USING DO, GOTO, IF AND FMT STATEMENT_S

The following program increments from the number 1 to the number 5 and compu'~es the
square for each of the incremented numbers. The incrementation/squaring procedure is
performed three times with a different printout format specified each time as shown. Also,
the contents of the symbol table is listed after each format change.

10 FMTCFI0,3)
20 J=O
30 DO 100 1=1,5
40 A(1)=I**2

100 PRINT I,ACI)
110 LIST
120 J=J+ 1
130 IF(J-2)140,150,160
140 FMTCEI0,3)
145 GOT030
150 FMTCII0)
155 GOT030
160 STOP

When the program is executed by typing lO.G and depressing carriage return, the following
printout results.

>10.G
1.000 1.000
2.000 4.000
3.000 9.000
4.000 16.000
5.000 25.000

A (5) 25.000
A (4) 16.000
A C 3) 9.000
A (2) 4.000
A (1) 1.000
> (0) 2.000
A (0) .000
> (0) 5.000
> (0) 1.000
I. (0) 6.000
> (0) 0.000
J (0) 0.000
> (0) 3.000
> (0) 10.000

.100E 1 .100E 1

.200E 1 .400E 1

.'300E 1 .900E 1

.400E 1 .160E 2

.SOOE 1 .2S0E 2

5-22

> (0) .300E 2
> (0) .140E 3
A (5) .250E 2
A (4) .160E 2
A (3) .900E 1
A (2) .400E 1
A (I) .IOOE I
> (0) .200E 1
A (0) .278E-08
'> (0) .500E I
> (0) .10OE I
I (0) .600E 1
> (0) .OOOE 1
J (0) .IOOE I
> (0) .300E I
>(0) .IOOE 2

I 1
:2 4
3 9
.l& 16
~5 25

> (0) 150
> (0) 30
> (0) 140
A (5) 25
A (4) 16
A (3) 9
A (2) 4
A (1) I
> (0) 2
A (0) 0
> (0) 5
> (0) 1
I (10) 6
> (10) 0
J (10) 2
> (10) 3
> (10) 10

>

5.10 CALL, SUBR:OUTINE AND RETURN STATEMENTS

Transfer of control to a subroutine is made by a CALL statement, specifying the name of
the subroutine. The general forms of the CALL statement are,

CALL. name

CALL.

5-.23

The first staTement of a subroutine procedure must be the procedure definition statement
SUBROUTINE, followed by the name of the subroutine and an argument list (if one is
required). The general forms of the SUBROUTI NE statement are,

SUBROUTINE name

SUBROUTINE name (arg l' arg2' -----argn)

The last executed statement in any subprogram is normally a RETURN statement which need
not be at the physical end of the subroutine. More than one RETURN statement can appear
in a subroutine. The RETURN statement causes return from the subroutine to the statement
immediately following the CALL statement for that subroutine.

5. 10. 1 EXAMPLE PROGRAM USING CALL, SUBROUTINE, AND RETURN STATEMENTS

Refer to the example program solving for the quadratic equation in paragraph 5~ 8. 1. In
that example, any unreal (imaginary) solutions are detected, but ignored, and the statement
"IMAGINARY II is typed to indicate that the numbers entered for A, B, and C have imagl­
inary roots. However, the imaginary portions of the roots may be solved by using a
subroutine program. The program in paragraph 5.8. 1 may be rewritten as follows to
include CALL and SUBROUTINE statements.

10 PRINT 'SOLUTION TO QUADRATIC EQUATION'~/
12 FMT(F15~2)
15 PRINT 'ROOTS Xl AND X2 DEFINED AS FOLLOWS:'
20 PRINT' Xl = (-B + SQRT(B*B - 4AC»/2A'
25 PRINT' X2 = (-B - SQRTCB*B - 4AC»/2A'
30 PRINT /~'INPUT VALUES FOR A~ B~ AND C'J INPUT A~B~C
35 D=B*B-4*A*CJ F=-B/C2*A)
40 IF(D+0)43~65~65
43 CALL UNREALCA,B~C)
45 PR I NT' X 1 = ,~ F ~ '+ I MAG I NARY , ~ E
50 PRINT 'X2 = '~F~'- IMAGINARY'~E
55 PRINT 'END OF COMPUTATION'
60 GOT080
65 G=SQRTCD)/C2*A)
70 R=F+GJ S=F-G
75 PRINT 'Xl = ',R~/~'X2 = '~S~/~'END OF COMPUTATION'
80 CONTINUE
85 STOP

700 SUBROUTINE UNREALCX~Y,Z)
710 N=-1*CCY*Y)-C4*X*Z»
720 E=SQRTCN)/C2*X)
730 RETURN

5-24

In this program, a negative square root detected by the IF statement in line 40 causes a
branch to the "CALL UNREAL (A, B, C) II statement and the statement "SUBROUTI NE
UNREAL (X, Y, Z) II is immediately accessed. The subroutine program then calculates the
value of the imaginary root and returns contlrol to the line number following the CALL state­
ment in the main program. The calculated canswer is then printed and the program returns
to text mode. The program is executed by typing 10.G and depressing carriage return as
shown below. The same values for A, Bf and C (2, -3 and 4) are then entered as were
entered in the first" example in paragraph 5.:3.1.

>IO.G
SOLUTION TO QUADRATIC EQUATION

ROOTS Xl AND X2 DEFINED AS FOLLOWS:
Xl = (-8 + SQRT(B*B - 4AC»/2A
X2 = (-B - SQRT(B*B - 4AC»/2A

INPUT VALUES FOR A~ B~ AND C
:2
:-3
:4
Xl = .75+ IMAGINAHY
X2 = .75- IMAGINARY
END OF' COr--lPUTATION

>

If values for A, B, and C are entered that rE~sult in real roots, the program stays in the
main routine and calculates the roots. For E~xample, the values for A, B, and C entered in
the second examplc~ of paragraph 5.8.1 (2E-6, 4E3, and 5E2) are entered into this program
as shown below. The program is executed by typing 10. G and depressing carriage return
as shown.

>10.G
SOLUTION TO QUADRATIC EQUATION

ROOTS Xl AND X2 DEFINED l~S FOLLOWS:
Xl = (-8 + SQRT(B*B - 4AC»/2A
X2 = (-8 - SQRT(B*B - 4AC»/2A

INPUT VALUES FOR A~ B~ AND C
:2E-6
:4E3
:5E2
Xl = -64.00
X2 = -1999999809.26
END OF COMPUTATION

>

5-25

5.11 FISET, PUT, AND GET STATEMENTS

If more than the required 8K of memory is available, the remainder over 8K {Memory Fields
2 and larger} may contain data rather than specific program information. Each word of
data in these memory locations may be stored and retrieved via the FISET, PUT, and GET
statements.

Data storage may be in either one-word or two-word form. If storage is in one-word form,
each word of data is stored {most significant bit first} in one memory location. For two-word
data storage, the least significant word {first word} of data is stored in one memory location,
and the most significant word {second word} is stored in the next successive location. The
most si gn ifi can t bi t of each word sti II appea rs fi rst in each word.

The FI SET statement is used to specify one-word or two-word formats and is of the general
form FISET {n}, where lin II may be either 1 or 2, specifying one- or t~o-word format
respectively. If FI SET statement is not used, default value is 1.

The PUT statement specifies the storage location for the one or two words of data as
specified by the FISET statement. The PUT statement is of the general form PUT {A, X},
where "A" is the expression to be stored, and "X" specifies storage position in Memory
Field 2. The "X" may be an expression that is evaluated in the program or may be a
specific number. In either case, the actual storage location for the data word {or for' the
first word of two-word data} is the position specified by "X" minus 1 in Memory Field 2.
For example, if "X" is 1, storage is in location ~ of Memory Field 2. {If two-word data
is specified, the first word is stored in location~. and the second in location 1 of Memory
Field 2.} Positions greater than 4096 specify locations in Memory Field 3. For example,
position 4100 specifies location 4 in Memory Field 3.

The GET function facilitates retrieval of the data in Memory Field 2 and is of the general
form GET {x}, where "X" specifies a position in Memory Field 2. The "X" in the GET
statement follows the same rules as the "X" in the PUT statement as described above.

5.11.1 EXAMPLE PROGRAM USING FISET, PUT, AND GET STATEMENTS

The following program shows a simple PUT and GET program. The value "5" is first stored
in position 1 {location ~ of Memory Field 2}. The contents are then retrieved from posit'ion
1 and printed.

1 PUTC5,,1)
2 PRINT GET(1)
3 STOP

The program is executed by typing 1. G with the following result.

>l.G
.5000000E 1

>

5-26

If desired, FISET may be used to specify one- or two-word storage as described in paragraph
5.11. FISET may be inserted in the above program as follows to specify two-word storage.
(The second word, however, in this example would be unused.) Execution of the program
resu Its in the same printout as above.

1 FISE:1'(2)
2 PUT(S"l)
3 PRINT GET(1)
4 STOP

5··27

SEC1-ION VI
CALCULATOR MODE

6.1 GENERAL

The calculator mode allows separate executi'on of a statement outside a program, without
transferring control to the program. A spc]ce precedes the statement, rather than a
statement line number. The calculator mode may be used to perform the following.

a. Spot chE~ck values of variablE~s during the execution of a program. Use a
STC)P stcJtement in the program and then input:

The values of the specified variables are printed without changing the
va lue or destroyi ng program E~xecuti on sequence.

b. Reassign values for variables. For example,

A = 7.6

assigns a new value, 7.6, for variable A.

c. Quick computations. The foUowing printouts show example calculations
using calculator mode. No line number is needed as shown and after
computation is made and the required printout is accomplished, NUTRAN
aut10matically returns to text mode without deleting or modifying any text buffer
program.

> PRINT 2+45
• ,470000E 2

> PRINT SQRTCABSC-49»
.'700000E 1

>

6-1

d. Erase symbol table only. For example,

E

erases the contents of the symbol table. (Using. E also erases text or
specified portions of text as well as the symbol table.)

e. List symbol table. For example,

L

causes the contents of the symbol table to be listed on Teletype.

6-2

APPENDIX A
LOADING AND INITIALIZATION

In order to communicate with the ND812 Computer in NUTRAN conversational language,
the NUTRAN Interpreter program (ND41-0059) must be loaded into the ND812 Computer.
The program may be loaded via Teletype or optional High Speed Reader or Tape Cassette.
The following paro'graphs provide loading and initializing procedures for the NUTRAN
Interpreter using the above peripheral devices.

LOADING AND INITIALIZATION USING TELETYPE

The following procedures describe loading and initializing for the NUTRAN Interpreter
via Teletype. It is assumed that the ND812 Computer and the Teletype are turned on and
operating properly before the procedures are performed.

a. Depress ND812 STOP switch.

b. Set Teletype START/FREE/STOP switch to FREE.

c. Load NUTRAN Interpreter Program (41-0059) tape, Part I into Teletype
reader. Advance the tape so that the leader (level 8 punched) is over the
read head.

d. Set Teletype START/FREE/ST()P switch to START.

e. Simultaneously depress ND812 LOAD AR and NEXT WORD switches. The
tape is automatically fed through the Teletype reader. When tape motion
stops, set ND812 SELECT RE(,ISTER switch to J. All ND812 front-panel
SELIEC TED REGI STER lamps should be off. If any lamps are on, repeat steps
a through e.

f. If alII lamps are off, set Telet:tpe START/FREE/STOP switch to FREE and
remove tape. Load NUTRAN Interpreter Tape, Part II, as described in
step c.

g • Rep4sa t step d.

A-l

h. Repeat step e. If any lamps are on, repeat steps f through h.

i. If all lamps are off, set ND812 SWITCH REGISTER switches to~1~~8
(switch 5 up, all others down). Then, in sequence, depress ND812 LOAD
AR and START switches. The Teletype responds by typing>. Any valid
command described in Section IV, V, or VI may be entered. If > is not
typed, repeat all steps.

LOADING AND INITIALIZATION USING HIGH SPEED READER OR TAPE CASSETTE

The NUTRAN Interpreter Program (ND41-0059) is loaded via High Speed Reader or Tape
Cassette using the Binary Loader Program (ND41-0005). The Binary Loader Program is
loaded via Teletype. It is assumed that the ND812 Computer, the Teletype, and the
high-speed reader (or cassette unit) are turned on and operating properly before the
following procedures are performed.

a. Depress ND812 STOP switch.

b. Set ND812 MEMORY FI ELD switch ~ down and 1 up.

c. Set Teletype START/FREE/STOP switch to FREE.

d. Load Binary Loader Program (41-0005) tape into Teletype reader. Advance
the tape so that the leader (level 8 punched) is over the read head.

e. Set Teletype START/FREE/STOP switch to START.

f. Simultaneously depress ND812 LOAD AR and NEXT WORD switches. The
tape is automatically fed through the Teletype reader. When tape motion
stops, set ND812 SELEC T REG I STER swi tch to J. A II ND812 front-pane I
SELECTED REGISTER lamps should be off. If any lamps are on, repeat
steps a through e.

g. If all lamps are off, set Teletype START/FREE/STOP switch to FREE and
remove tape.

h. Set ND812 SWITCH REGISTER switches to 77~~8 (switches ~ - 5 up, 6 - 11
down) •

i. Depress ND812 LOAD AR key.

i. Perform one of the two following procedures for either high-speed reader
or tape cassette I oadi ng.

1. HIGH-SPEED READER

a) Load NUTRAN Interpreter Program (41-0059) Tape, Part ~ into

A-2

high-speed reader. Be sure leader (level 8 punched) is over the read
head.

b) Set ND812 SWI TCH RE'GI STER switches to 37,0,08 (switches 1 - 5 up,
J~ and 6 - 11 down).

Ie) Depress ND812 START switch. The tape is automatically fed through
the high-speed reader. When tape motion stops, set ND812 SELECT
REGI STER switch to K. All ND812 front-panel SELECTED REGI STER
:Iamps should be off. If any lamps are on, repeat steps a) through c).

d) If all lamps are off, IOCJd NUTRAN Interpreter Tape, Part II, into
Ihigh--speed reader as described in step a).

Ie) Depress ND812 CONT or START switch. After tape motion stops,
(lll SELEC TED REGI STER lamps should be off. If any lamps are on,
repeat steps d) and e).

f) If all lamps are off, proceed to step k.

2. TAPE CASSETTE

CJ) Set SWI TCH REGI STER switches,0 and 1 down, and 2, 3, and 4 to the
desired cassette number as; follows.

Cassette 1: 2 and 3 down, 4 up (,0,01)
Cassette 2: 2 and 4 down, 3 up (,01,0)
Cassette 3: 3 and 4 down, 2 up (1,0,0)

Ib) Select tagword by setting SWITCH REGISTER switches 5 through 11
to desi red number (,0,0,0,08 ·through .01778) •

c) Depress ND812 START switch. The tape is automatically read into
the ND812. When tape stops, set ND812 SELECT REGISTER switch to
K. All ND812 front-panE~1 SELEC TED REGISTER lamps should be off.
Ilf any lamps are on, repecJt steps a) through c).

d) If all lamps are off, pr()ceed to step k.

k. Set ND812 SWITCH REGI STER switches to ,01,0.08 (switch 5 up, all others
down) and ND812 MEMORY FI ELD switches.0 and 1 down. Then, in
sequence·, depress ND812 LOAD AR and START switches. The Teletype
responds by typing > . Any valid command described in Section IV, V,
of VI may be entered. If > is not typed, repeat all steps.

A-3

APPENDIX B
LOCATING I\lUTRAN IN MEMORY FIELDS OTHER THAN 4> OR 1

If the user has an ND812 Computer with a memory size greater than 8K, it may be desi r­
able to make use of more than two memory fields for NUTRAN. Two methods exist to
accomplish this. In the first method, after loading NUTRAN, Parts 1 and 2, load the
appropriate overla'y to modify NUTRAN to e!nd in Memory Field 2 (NUTRAN, Part 3) or
Memory Field 3 (NIUTRAN, Part 4). (Loading procedures are identical to those for Parts 1
and 2 shown in Appendix A.)

In the second method, a reassernhl~1 i!\ necessary, requiring only one change in the first
block of the sourcle. The statement

FLFLD := F1 lEND OF PROCESSOR MEMORY FIELD

should be changed to equate FLFLD to the ItJst field desi red (F2 or F3).

Also, if it is necessary to locate NUTRAN in two fields other than Memory Field zero
(F,0 =,0 .- 4K) and Memory Field 1 (Fl = 4K - 8K), the two directives preceding the above
FLFLD directive, namely,

F,0FLD := F,0
Fl FLD := Fl

should be changed to the new fields as desired.

B-1

APPEI'JDIX C
ERROR DIAGNOSTICS

During execution elf a NUTRAN program, two possible errors may occur - logical or
syntactical. A logical error may be an overflow of a buffer. A syntax error may be an
illegal command, improper coding, or improper placement of operators in an arithmetic
expression. When any of these errors are encountered during execution of NUTRAN, the
Teletype prints the following.

ER@ line number

The line number indicates where the error occured. Verification of the listing at that
point (using. W command for that line number) should be sufficient to detect syntax errors.
A dump of the data' tables (using. L command) should be useful in detecting logic errors.

NUTRAN returns to Tex,t mode after the error message is typed. Ordinari Iy, after
correcting the error, the user must restart his; program from the beginning (using .G
command) since thE~ return to Text mode erases DO loop buffers and subroutine argument
buffers.

c: -1

APPENDIX D
USER WRITTEN SUBPROGRAM FUNCTIONS

ADDING FUNCTI'ONS TO NUTRAN

Functions coded b), the user can be a powerful tool in using the NUTRAN Interpreter.
These "user written II functions can be named any six-character name, with the first charac­
ter being alphabetIc and the rest alphanumeric, and can be used in the same manner as
the "intrinsic" functions SQRT, ABS, etc. For example, a function MAX (A, B,C, D, E)
which finds the maximum of the five arguments can be coded and used in an expressi on
such as,

A = 41.63*MAX(3.7,C, 100, X, Y)

To append a function to NUTRAN, two tabl,es in the NUTRAN program must be modified.
These are the openCitor table, labeled FTBB, and the function table, labeled FNTB. Table
FTBB contains the instructions to transfer control to each function. Any new two-word
instruction must th,en be added to the end of the table as shown in the following example.
The name of the function (in ND-packed characters, 2 characters per word) is added at
the end of table FNTB. The last word of table FNTB must have the label ENDP as shown
below.

To facilitate adding functions to NUTRAN, only the revised tables, appropriate pointers,
and the new functIon programs have to be assembled as shown. The binary is then an over­
lay to the regular NUTRAN, Parts 1 and 2.

RETRIEVING ARGUMENTS FOR FUNCTIONS

Function arguments are retrieved from the operand stack reversed from the order in which
they are listed in the source. Therefore in the example MAX(A, S,C,D,E), the arguments
will be returned as E, D,C, B,A. The routine in NUTRAN used to get arguments is called
MOVE and requirE~s one argument as shown below. This argument is the address of a two­
word load or store instruction that points to the first word where the argument is to go. In
the example, the first argument off the list (i .e., the last argument on the list) will be
placed in a five-word field starting at location DATARA in field Fl FLD. The general
format for the five-word argument is as follc.ws.

D-l

"NORD

o
1
2
3
4

CONTENT

Variable Name
Subscript

} Floating Point Value

Therefore, if the argument is to be used for its data value only, the recipient address +2
(or in the example, DATARA+2) will point to the data itself.

FLOATING POINT ROUTINES IN USER WRITTEN FUNCTIONS

When using floating point routines in user-written functions, the left operand address for
binary operators (plus, minus, multiply, and divide) is loaded into the K register, and the
right operand address into the J register. For unary operators, the operand address is
loaded into the J register. For either the binary or unary operation, the result of the
operation is then stored in the right operand address (address contained in the J register).

In order to perform floating point operati ons, the operands must fi rst be transferred to either
location EXPFK+2 or EXP1A+2 in Memory Field~. These locations are the first word of the
three-word floating point value included in the five-word argument shown above.

PLACING RESULTS ONTO OPERAND STACK

At the conclusion of a function operation, the resultant operation must be placed on the
operand stack. (There is no legal NUTRAN statement which does not expect the result on
the stack.) The NUTRAN routine that performs this task is called REPL. REPL takes a
two-word argument, namely a two-word load (or store), including field control bits, which
points to the five words to be moved. (As shown in the example, these 5 words include
variable identifier and subscript, as well as value.)

The example also illustrates why the pointer to a two-word pointer was used in subroutin,e
MOVE. Since NUTRAN is multifield, field bits must be included in any address. The
conjunctive use of MOVE and REPL with their associated arguments, can thus save time and
space in a program. AI so, at the concl usi on of a functi on operati on and after placement
of the operand onto operand stack using REPL, control must be returned to the polish steck
processor as shown.

EXAMPLE USER-WRITTEN SOURCE LISTING

In order to properly use a user-written function, certain locations in the basic NUTRAN
program must be known. The statements for these locati ons are Ii sted in the example and
the associated locations are provided with each NUTRAN tape.

D-2

F,0FLD == F,0
F1 FLD == F1

I EQUATE STATEMENTS - LOCATIONS PROVIDED WITH NUTRAN TAPE
I LOCATIONS OF FLOATING POINT ROUTINES ARE ALSO PROVIDED

FTBB =
MOVE =
REPL =
EAPS1 =
PNTB =
EFTB =
BTBF =
ETBF =
EXPFK =
EXP1A =

[FIELD 1 IFIELD DESIGNATED BY F1FLD
* FTBB + 46

TWJMP
MAX

FNTB, 6361 I IISQUARE ROOT II

6264
,0,0,0,0
4142 IIiABSOLUTE VALUE"
63,0,0
/0,0,0,0
457,0 III EXP II
6,0,0,0
/0,0,0,0
4154 IIiALOG II

5747
/0,0,0,0
4154 IIIALOG 1,011
.5747
2120
4745 I"GETII
64,0,0
/0,0,0,0
.5541 I IIMAX II
7,0,0,0

END P, J~,0,0,0

MAX, TWJPS F,0FLD IRE/V\OVE LAST ARGUMENT IN LIST
IMOVE

D-·3

POINT I

.
lWJPS F,0FLD
REPL
lWLDJ Fl FLD

POINT I, DATARA
TW JMP F,0FLD
EAPSl

DATARA, ,0

TBFB = •

[FIELD,0

*PNTB

,0
~
,0
,0

TWLDJ F1FLD
FNTB

*EFTB
TWLDK Fl FLD
ENDP + 1

*BTBF
TWLDJ Fl FLD
TBFB - 1

*ETBF
lWLDS Fl FLD
TBFB

/PLACE RESULT ON STACK

/RETURN TO NUTRAN POLISH STACK PROCESSOR

/VARIABLE NAME
/SUBSCRIPT
/SIGN AND EXPONENT WORD
/HIGH ORDER WORD
/LOW ORDER WORD

/START OF TEXT BUFFER; ALL ASSEMBLER
LANGUAGE CODING MUST PRECEDE TBFB

/FI ELD DESIGNATED BY F,0FLD

D-4

NUCLEAR DATA INC.

Nuclear Data Inc.
P.O. Box 451
10.0 West Golf Road
Palatine, Illinois 6.0.067
Tel: (312) 529-46.0.0

Nuclear Data Inc.
1.03 Pincushion Road
Framingham, Massachusetts .017.01
Tel: (617) 899-4927

Nuclear Data Inc.
P. O. Box 2192
14278 Wicks Bou levard
San Leandro, California 94577
Tel: (415) 483-92.0.0

Nuclear Data Inc.
2335 Brannen Road, S.E.
Atlanta, Georgia 3.0316
Tel: (4.04) 241-322.0

Nuclear Data, GmbH
Mainzerlandstrasse 29
6 Frankfurt/M, Germany
Tel: 23 11 44

Nuclear Data Inc. (U.K.)
Rose Industrial Estate
Cores End Road
Bourne End, Bucks., England
Tel: 22733

Nuclear Data (Ireland) Ltd.
Kinsale Road, Ballycurreen
P. O. Box #23
Cork, Ireland
Tel: 22137

Nuclear Data (Scandinavia)
Division of Selektronik A/S
Hammervej 3
297.0 H~rsholm, Denmark
Tel: (.01) 863.0 aD

	0001
	0002
	0003
	0004
	001
	002
	003
	004
	005
	006
	1-01
	1-02
	1-03
	1-04
	2-01
	2-02
	2-03
	2-04
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	4-01
	4-02
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	5-17
	5-18
	5-19
	5-20
	5-21
	5-22
	5-23
	5-24
	5-25
	5-26
	5-27
	5-28
	6-01
	6-02
	A-01
	A-02
	A-03
	A-04
	B-01
	B-02
	C-01
	C-02
	D-01
	D-02
	D-03
	D-04
	xBack

