NUCLEAR DATA, INC.
Post Office Box 451
Palatine, lllinois 60067

“PRINCIPLES OF PROGRAMMING
“THE'ND812 COMPUTER

o Copyright 1971 by Nuclear Data, Inc.

Printed in LJ,S A

TABLE OF CONTENTS

SECTION TITLE | PAGE
| - INTRODUCTION e e e e e e e e e e e e o 1=l
1.1 Minicomputers and the Systems Concept. 1-1
1.2 Purpose of thisManual 1-2
Il COMPUTER NUMBER SYSTEMS 21
2,1 General v . . L L L e e e e e e 24
2.2 Introduction o e e e e e e e e e e e e 2-1
2.3 The Binary System e e e e e e e e 2-2
2.4 The Octal System e e e e e e e e e e e 2-5
2.5 Intra-System Conversions o ..o L., 2-7
Hl COMPUTER ORGANIZATION o 3
. .
3.1 General . . . oL L L e e 3-1
3.2 ND812 Architecture . v v v v v v v o e e . 3-2
3.3 Computer Word Formats. o v v v v v v v v w v e e 3-4
3.4 Addressing L w e e e e e e e e e e 3-9
v INSTRUCTION REPERTOIRE 4-1
4.1 General B 4-1
4.2 Memory Reference Instructions. e .. 4=
4.3 Logical Operations . . . v v v v v v v v e 4-4
4.4 Arithmetic Operations on Accumulator Registers 4-5
4.5 Shift/Rotate Instructions . o . v v v w w o w a e e 4-9
4.6 Load and Exchange Operations o . v v v v v v v v v v . . 4-10
4.7 Control Instructions e e e e e e e e 4-12
4.8 Literal Instructions . . . v s e e e e 4-20
4.9

Input/Output e e e e e e e e e 4-21

SECTION TITLE PAGE
\ PROGRAMMING FUNDAMENTALS e e e e e e 5=
5.1 General . . ot e e e e e e e e e e e e e e e e 5-1
5.2 Programming Procedures v o e 5-1
5.3 FlowCharting. . . v v v v v v e e e e e e e e 5-2
5.4 Programming Concepts v v v v v v v 4 e e e e e e e e . 5-3
5.5 Program Preparation e e e e 5-8
Vi COMPUTER LANGUAGES e e e e e e . .A :. . 6-1
6.1 BASC-12 Assembly Langucge W . 6-1
6.2 NUTRAN Language. . S e e e e e e e e e e e e e e e 6-2
VI DESCRIPTION OF THE ND812 PROCESSOR AND PERIPHERALS . . . 7-1
7.1 General L s e e e e e e e e e e e e . 7-1
7.2 The ND812Computer v v v v v v v v v v v e e e e e 7-1
7.3 The ASR33 Teletypewriter. e e e v s e e e s e 7-12
| 7.4 Peripheral Equipment 0 0 e e e e . 7-13
VI THE ND PROGRAMLISTING e e e e . 8-
8.1 General . . . v o L L i e e e e e e e e e . 8-1
8.2 Utility Programs. o v v v v v i e e e e e e e e e e e 8-1
8.3 System Software. i i e e e e e e e .. 8-4
8.4 Diagnostic Programs v v h e e e e e e e e 8-6
8.5 Physics Analyzer Programso, 8-9
APPENDICES
A ND8]2 INSTRUCTION SET IN ALPHABETIC ORDER BY MNEN\ONIC A-1
B ND812 INSTRUCTION SET IN NUN\ERICAL ORDER BY OCTAL CODE B 1
C FLOWCHARTING SYN\BOLS e e ... C-
D POWERS OF TWO. .« « « v v e e e e e e .. D-I
E OCTAL-TO- DECIN\AL CONVERSION TABLE E-1
F FRACTIONAL CONVERSION TABLE F-1
G oooooooooooooo . G-]

ND CODE CONVERSION CHART

FIGURE

3-1
3-2
3-3
3-4
3-5
3-6

37
3-8
41
4-2
4-3
4-4
5-1
5-2

5-3

LIST OF ILLUSTRATIONS

TiLE PAGE
Computer Elements. ., ., . T T TP T
Data Word Format . . . c e e e e e e e e e e e e e e e 3-4
Single=Word Format , | . L 3-5
Two-Word Format o . v . . . L v . v e e e e 3-6
Literal Format, & . v o 0 0 L 0 e e e e e e e 3-;7
Group 1 Format e e e e e e e e e . ;t_. . 3-8
Group 2 Format DR g .‘ e e V. . 3-8
Status Word Bit Assignments (J—Regis'ter). ?.: .j‘ e . . b. . . 3—?
Typical Cassette Read Flowchart, 4-2§ “
Typical Cassette Write Data Elow Chart. S . . 4-30
Typical Cassette Write Filém;r.l; lél;éw CharYf‘ . . . | e .. 4-31
Typical Cassette Filemark Search Flow Chart | .. .’ e 4-32
A Straight-Uine Flow Chart . . .+ o oo Lo oL 53
A branched Flow Chart. . .« + . . o A 5-4
Typical Looping Sifucf?on | 7. ‘. .« .. 5=5
Typical Address Modification Situation . . . » .+ L s

FIGURE

5-5

7-1

Example Problem Flow Chart

ND812 Front Panel , . . .

TABLE

2-1

LIST OF TABLES

nTe PAGE_
Octal Multiplication Table . &« o v o o o o o v o o o 0 o o .. 2-7
Tape Cassette Control Flags. 4-25
Example Problem, Coded ¢ o ¢ v v v v 0. 5-11
Teletype Printout of Example Problem. W . 5=17
Li.s’ring of Example Program Produced by Assembler 5-23

ND812 Central Processor Coatrols and Indicators.,

SECTION |
INTRODUCTION

1.1 MINICOMPUTERS AND THE SYSTEMS CONCEPT

As recently as the early 1960's computerization was a prerogative of only very well capita-
lized people. The equipment was massive and complex; therefore, only highly-trained
personnel could hope to extract the benefits such apparatus offered. Strict environmental
control was often a necessity as well.

However, the advent of the minicomputer voided this situation. Barely larger than an

attache case, the minicomputer can do almost anything that its big brothers do. It can

perform the same type of logical and arithmetic operations and use the same data storage

and input/output devices that the large computers do such as card readers and punches, magnetic
tape and disk systems, cathode ray tube displays, plotters, and line printers. Advances in
electronic circuitry and a reduction of environmental restrictions have allowed the "mini"

to find applications in loci other than hermetically-sealed, antiseptically clean rooms.

The minicomputer also offers more computing power per dollar invested. For less than
$10, 000 a central processor and 4, 096 words (4K) of core memory can be purchased -
hardware that approximates the computing power of the larger computers available today.

The applications of the minicomputer run the gamut of the computer business. It is used
alone to solve scientific and engineering problems. [t gives both small and large businesses
the obility to automate payrolls, billings and inventory-control operations. It is used to
control the operations of process industries and manufacturing plants. It replaces hard-wired
logic in switching systems. It performs as a data concentrator for data-communications
systems. It operates test lines in manufacturing and reads, records, and reduces data for
engineers in development laboratories. It maintains the medical and financial records of
patients in hospitals. The list is endless.

Because they are so much smaller and less expensive than big computers, most minicomputers
find applications where large computers are never seen - built into research and general-
purpose laboratory instruments, connected to industrial process and manufacturing equipment,
in field research labs, and even in classrooms.

1-1

Minicomputers are so inexpensive that they are often used as special-purpose computers.
Rather than trying to put together a laboratory system that interfaces one large computer

with many instruments, an industrial or research laboratory may dedicate one minicomputer

to each important instrument. In this case, a program is developed, the interface is designed,
and the computer never does anything but the specific dedicated function. It becomes a
permanent part of an instrument system. ‘The implications of all this are exciting to
contemplate, but one must first learn to program, and teaching that is the purpose of this.
Manual .

1.2 PURPOSE OF THIS MANUAL

This Manual is oriented toward the programming novice; its intent is to provide the ND812
user-errant with the technical foundation he will need to fully exploit the capabilities
of his machine.

Section Il is a discussion of computer number systems and their impact for the programming
student.

Section 1l is a discussion of basic computer architecture, the configuration of computer
"words", and the techniques which the programmer uses in communicating with his machine.

Section |V delineates in useful detail the ND812 instruction repertoire, which is nothing
more than the range of operations the computer can perform upon receipt of the appropriate
command(s). oo

Section V is a discussion of the mechanics of the programming task.

Section VI contains descriptions of the programming languages commonly used with the

" ND812 computer,

Section VII consists of general descriptions of the ND812 computer itself and the sundry
hardware devices available for use with it which offer the user so much flexibility in
constructing task-dedicated systems.

Section VIl describes the programs presently available for the ND812,

The reader should also take note of the time-saving appendices to the volume.

Nuclear Data offers another companion volume ("NUTRAN") which augments the concepts
offered in this book, It is obtainable from:

The Technical Documentation Department
Nuclear Data, Inc.

Golf and Meacham Roads

Schaumburg, lllinois 60172

1-2

'SECTION I
COMPUTER NUMBERING SYSTEMS

2.1 - GENERAL

Numbering systems are generally identified by their respective radices (bases). The radix
of any numbering system is the number of digit symbols which comprise that system, The
decimal system is so named because it uses ten digit symbols (the numerals 0 through 9).
This means that each system is based upon a radix, or root number, and that each position
within a number represents a specific power of the radix of the system being used,

Programming principles derive from the extrapolation of mnemonics and number sy stems,
It is therefore vital that the potential programmer master these concepts before he proceeds,

2.2 INTRODUCTION

In the decimal system, a number is represented by a sum of positional terms, each of which
represents the product of a power of ten and some integer from 0 to 9. The number 283
may be expressed as the sum of each positional integer and the product of that positional
power of ten: (2 x 102) +(8x 100 + (3 x 100), Note, 100 equals one. In binary
representation of numbers, the positions do not have the meaning of units, tens, hundreds,
thousands, etfc.; instead, these positions signify units, twos, fours, eights, sixteens, etc.
The sum of these binary positions yields the same decimal sum.

Binary Decimal
28 27 6 25 A P 2 o1 L0 102 10" 100
1 0 0 0 1 1 0 1 1 2 8 3
‘ L 1 unit L 3 units
l 1 two 8 tens
0 fours 2 hundreds
1 eight
1 sixteen 283
0 thirty-twos
0 sixty-fours

0 one-twenty-eights
1 two~fifty-six

283

2.3 THE BINARY SYSTEM

The ND812 computer uses a number system based on a radix of two (binary) and so uses
two digits, 0 and 1. Binary is the common internal system for digital computation
because of its relative simplicity. The electronic components that make up a digital
computer are inherently binary. A relay is either opened or closed; magnetic materials
(tape or cores) are magnetized in one direction or another; a transistor is either fully
conducting or not conducting; an electrical pulse may be transmitted at a given time
or not transmitted,

2.3.1 COUNTING IN BINARY NUMBERS

Binary counting starts in the same manner as in the decimal system with O for zero and 1
for one. However, because all possible symbols are then used, another position must be
used fo designate a decimal two. Therefore, at two in the binary system the same move is
made that is made when ten is reached in the decimal system. That is, a one is placed

in the position to the left and a zero is retained in the original position. In the binary
system, any even number will contain a zero in the least significant position; an odd
number will have a one in this position. Thus, the binary symbol 11 is equivalent to a

3 in the decimal system. Counting is continued with a carry into the position to the left
each time the radix is exhausted.

Binary Decimal
0 0
1]
10 2
11 3
100 4
101 5
110 6
[RR 7
1000 8
1001 9
1010 10

Convention dictates that whenever two or more number systems are under discussion, the
expressions are subscripted with their respective radices (bases). For instance, the decimal
expression 530 would be written 5307, etc.

2,3.2 BINARY ADDITION
Three rules apply in binary addition:

a. 0+0=0

2-2

b. 0+1=1+0=1

co T+ 1= 0, with a carry of one to the position to the left, i.e., =10

EXAMPLE

lés 8s 4s 25 1s Decimal
Carries 1 1 1
Augend 0 1 1 1 0 = 14
Addend 0] 0 1 1 =411
Sum 1 1 0 0 1 = 25

2.3.3 BINARY SUBTRACTION

Four rules apply in the binary subtraction operation:

1, 0-0=0
2,1-1=0
3.1-0=1

4, 0-1=1, with one borrowed from the left
EXAMPLE

16s 8s 4s 25 1s Decimal

Borrows -1 -1

Minuend 1 1 0 1 0 = 26
Subtrahend 0 T 1 1 0 14
Difference 0 11 0 0 =12

Rule 1 applies in the 1's column. Rule 2 applies to the 2's column. Rule 4 applies to the
4's column. Rules 2 and 4 apply to the 8's column. Rule 2 applies to the 16's column.
The difference contains ones in the 8's and 4's columns, The decimal sum of this binary
presentation is equal to 12, which is the correct difference of 26 and 14,

2.3.4 BINARY MULTIPLICATION

Three rules apply for binary multiplication:

1) 0x0=0

2-3

2) Ox1=1x0=0
3) Tx1=1

No carries are considered in multiplying. Each digit of the multiplier is examined; when
a one is found, the multiplicand is added to the result. When a zero is found in the
multiplier, zeros are added to the result. The multiplicand must be shifted left one

digit for each multiplier digit.

EXAMPLE
Multiplicands: 01101 = 8+ 4+ 0+ 1 =13
Multipliers: x 0101 = 0+4+0+1 = x5
1101
0000
1101
0000
Products: 1000001 = 64+ 0+0+0+0+0+1 =65

2.3.5 BINARY DIVISION

By applying the concepts of binary addition, subtraction, and multiplication, division
may be accomplished. The dividend is inspected for the first group of digits from which
the divisor may be subtracted once. A one is placed in the quotient over the last digit
of the dividend group. This is continued with zeros appearing in the quotient where a

" subtraction is not possible after the next dividend digit is brought down to form
the least significant digit of the new dividend.

EXAMPLE

1100/100 12/4

11=3 (Quotient)
(Divisor) 100 [TT00 (Dividend)
100
100
100
)

The binary symbol 100 is greater than the binary symbol 1 or 11; therefore, binary 100
cannot be subtracted from binary 11, Binary 100 is subtracted from binary 110. The new
dividend, binary 100, is formed by bringing down the next digit of the original dividend.
The binary quotient is 11,

2-4

2.4 THE OCTAL SYSTEM

The octal system of assigning numerical values to binary forms is useful as a shorthand
method of writing pure binary numbers. The octal system deals with groups of three binary
positions; each group is considered a single digit. This means that, in any octal digit,
there is a possibility of eight different binary positions; each group is considered a single

digit (that is, 000, 001, 010, 011, 100, 101, 110, and 111). The octal equivalents of
these representationsare: 0, 1, 2, 3, 4, 5, 6, and 7 respectively. Given a series of binary
digits, the first three on the far right are represented by the decimal notation 1,2,3... 7x80
and the next three digits toward the left are represented decimally by 1,2,3.. .7x8V. 1t can
be seen that each group of three ginary bits represents some number (from 0-7) multiplied

by a posifiona!;ower of base eight, Also, the sum of these octal equivalent groups, i.e.,
(1,2,3,..7 x 8 ,...+(1,2,3...7 x 81)+(1,2,3...7 x 80) yields the decimal equivalent.

EXAMPLE
Binary Groups Octal Equivalenfs' Decimal
~ Equivalents
001 101 (1x 89+ (4x8l)+ (5x 8%

™ ~ N — —— ~— 5
Octal b4 3 | 32
Notation _ ; : +64
101

This binary number can be converted without using octal notation; however, the
process requires the addition of seven quantities, rather than the three in octal
notation.

2,40 OCTAL ADDITION

Addition for octal numbers should be no problem if the following basic rules for addition
in any number system are kept in mind:

a. If the sum of any column is equal to or greater than the base of the system being used,
the base must be subtracted from the sum to obtain the final result of the column.

b. If the sum of any column is equal to or greater than the base, there will be a carry
to the next column which is equal to the number of times the base was subtracted,

c. If the result of any column is less than the base, the base is not subtracted and no
carry will be generated. Examples:

5 = 510 4 5g f%m
+ 4 = 410 5 2g 10
Z 1 9 7 7910
= -8 8

s =%10 T

2.4.2 OCTAL SUBTRACTION

Subtraction is performed directly in the octal number system,

4567 4213
- 4321 - 3564
0248, 0427

Whenever a borrow is needed in octal subtraction, an 8 is borrowed as in the second example
above. In the first column, an 8 is borrowed and added to the 3 already in the first

column and the 4 is subtracted from the resultant T1. In the second column, an 8 is borrowed
and added to the 0 which is already in the column (after the previous borrow) and the 6 is
subtracted from the resultant 8, In the third column 8 is borrowed and added to the 1 which is
already in the column (after the previous borrow) and the 5 is subtracted from the resultant 9,
and in the last column 3 - 3 =0,

2.4.3 OCTAL MULTIPLICATION

Multiplication of octal numbers is performed like multiplication of decimal numbers as long
as the result is less than 108, Obviously this could be a problem if it weren't for the fact
that an octal multiplication table can be established which makes the job of multiplication

of octal numbers quite simple. On the next page is an octal multiplication table that
is quite useful,

Using the octal multiplication table 2-1, the following problems may be solved.

262g NOTE
X 2l1g
87 The left most digit (from table 2-1) is carried and
544 added to the next number to the left as follows.
5722g
4567g
X 12343
22734~ [1 3
16145 45674 _[> 4g x 7g = 34g
11356 48 4g x 6g = 308
4567 Carry 2233 —— 48 x 5g = 24g
06]3]2048 Result 22734 — 48 x 4g = 20g

2-6

Table 2-1, OCTAL MULTIPLICATION TABLE

0 1 2 3 4 5 6 7

0 0 0 0 0 0 0 0 0

] 0 1 2 3 4 5 6 7

2 0 2 4 6 |10 [12] 14 | 16

3 0 3 6 |11 1 14 [17] 22 25

4 0 4 |10 | 14 20|24 30| 34

S 0 S |12 [17 | 24 | 31| 36 | 43

6 0 6 | 14 | 221 30| 36| 44| 52

71 0 7116 | 25| 34| 43| 521 @1

2,4.4 OCTAL DIVISION

Octal division uses the same principles as decimal division. All multiplication and
subtraction must, however, be done in octal (per the octal multiplication table 2-1). The
following problems illustrate octal division,

Octal Decimal Octal Decimal
6bg 5410 2355 12617
— — = 1879 = 710
38 310 15g 379
22 141
3[66 15 (2355
6 15
06 65
6 64
0 22g =184 Bk
15
0 1415 = 9710
2.5 INTRA-SYSTEM CONVERSIONS
2.5.1 DECIMAL TO BINARY CONVERSION

A decimal number can be converted to its binary equivalent by dividing the number by two.
If there is a remainder after the first division is performed, a binary bit of one will appear

2-7

in the least significant binary position. The appearance or lack of a remainder after each
division determines the binary state of each position as illustrated below. Binary and
octal conversion tables are provided as appendices to this manual for quick reference.

EXAMPLE
Convert Decimal 145 to Binary

2 145 with remainder of 1

2 V with remainder of O
2 7-36— with remainder of O
2 W with remainder of 0
2 79— with remainder of 1——
2 T with remainder of 0
2 V with remainder of O

2 3]— with remainder of]—l

0 msB 1.0 0 1 00 O 1 LSB

2.5.2 BINARY TO DECIMAL CONVERSION

Binary is converted to decimal by (starting with the most significant binary digit) multiplying
each digit by two (the radix of the system) and adding the binary value of the next
digit to the right as shown on the next page.

2-8

EXAMPLE
Convert 10010001 to Decimal

MsB 1 0 0 1 0 O O 1 LSB

Binary can also be converted to its decimal equivalent by (starting with the right most
binary digit) multiplying each binary digit by its positional power of base two and adding
the decimal values together as illustrated below,

1001 00 01 Binary Number

l ' L—1x20=1x1 = 1

o0x2l=0x2 = 0

0x22=0x4 = 0

0x23=0x8 = 0

I1x24=1x16 = 16

0x22=0x32 = 0

0x20=0x64 = 0

1x27 =1x128 = 128

145y,

2-9

Note that where a binary 1 appears, the positional power of base two is used directly and
where a binary 0 appears, the resultant is 0.

2.5.3 DECIMAL TO OCTAL CONVERSION

A decimal number can be converted to an octal equivalent by dividing the decimal number
by eight and developing the octal number from the remainder as illustrated below.

EXAMPLE

Convert Decimal 135 to Octal

Y 135 with remainder of 7
) 16 with remainder of 0 '
) 2 with remainder of 2—| I

2 0 7

oo 00 0
e |

2.5.4 OCTAL TO DECIMAL CONVERSION

Octal representation can be converted to its decimal equivalent by (starting with the right
most octal digit) multiplying each octal digit by its positional power of base eight (the
radix of the system) and adding the decimal values together as illustrated below.

EXAMPLE
Convert]4278 to Decimal

1

N

27

‘L‘7x80=7x1 = 7

2x8l=2x8 = 16

4x82=4x64 =256

1x8=1x512 =512
790

2,5.5 FRACTIONAL CONVERSION

Fractional conversions are performed in essentially the same manner as the respective integer
conversions, A fractional decimal number can be converted to octal by multiplying the
decimal number by eight. The fractional octal number is developed from the numbers to

the left of the decimal point and must be preceded by a decimal point itself, It should

be noted that conversion from decimal to octal or binary results in an approximation that
may be carried to any number of places.

EXAMPLE

Convert Decimal 0.214 to Octal

214

8

1 0712

8

5 0.69%

8

5 0.568

8

4 0.544
—
5 5 dg
EXAMPLE

Convert Octal 0.432 to Base 10 Equivalent
0.432= (4x8)+ 3x82 + (2x8

= (4/8 + 3/64 + 2/512)

= 282/512

= 0.5507 (or rounded)

= 0,551

2-11

EXAMPLE

Convert Decimal 0.432 to Binary

0 .592
X2
1 0.7184

0.0 1 1 0 1] 1 0 1 + etc.

2,5.6 IMPROPER FRACTION CONVERSION

Improper fractions are converted from one system to another by converting the digit to the
left of the decimal and the fraction separately. The result is then combined to form the
conversion presentation,

2.5.7 OCTAL TO BINARY AND BINARY TO OCTAL CONVERSION

An octal number can be converted to binary form by considering each digit as a binary
group of three. Also, a binary number can be converted to octal by considering each
binary group of three as a digit.

EXAMPLE
Octal 2 7 0
010 11 000 = 0101”0002
Binary 010 111 000
—— N —!
2 7 0 = 270g

SECTION I1I
COMPUTER ORGANIZATION

3.1 GENERAL

A machine, if it is to be called a computer, must be able to perform a certain type of
logical operations. The element of the computer that performs this task is called the
arithmetic/logical unit. If the arithmetic/logical unit is to perform its required task,
it must be told what to do. The computer element performing this task is called the
control unit,

Because mathematical operations are performed by the arithmetic unit, it may be necessary
to store a partial answer while the unit is computing another part of the problem, This
stored partial answer can then be used to solve other parts of the problem. The element
meeting this requirement is called the memory or storage unit. The prime purpose of a
digital computer is to provide a service; if it is to do this, there must be a means of both
communicating needs to the computer and of obtaining the results. The element serving
these functions is the input/output unit. Figure 3-1 shows the relationship of these units.

T T T T T Control
[' ——— Unit
| i
| 1
| |
i |
] |
J !
Y [
|
|
Input/output " Memory | = —————— = Control
Unit - | Unit —————— _ Data
|
|
!
I
|
|
I
|
' Arithmetic/
Peripheral L——® Logical
Unit

Figure 3-1. Computer Elements

3-1

3.2 ND812 ARCHITECTURE

The ND812 is a high-speed, general purpose, digital computer which operates on 12-bit
binary numbers. It is a single-address, synchronous, sequential, parallel machine using
two's complement arithmetic. It is composed of the four basic computer elements:
control, arithmetic/logical, memory, input/output units,

3.2,1 CONTROL UNIT

The control unit is the coordinator or director of all operations within the computer. lts
actions include directing the reading of information from memory, controlling the inputs
and outputs of the computer, directing the operations within the arithmetic unit, and
transferring information back into memory. It is consequently necessary for the control
unit to determine each operation to be performed, the location of the data involved in
the operation, and where to place the results. The control unit knows what it is to do
by interpreting a set of instructions. This set of instructions is called a program and is
stored in the memory unit,

The two basic functions of the control unit are (1), to obfain instruction words from memory,
and (2), to execute these instructions. The control function performs these actions in

two cycles: it fetches and executes. The fetch cycle is performed under the direct
influence of the stored program so that the instructions are read in a fashion determined

by program logic.

Each instruction reod from memory is fed to the instruction register (IR), which holds the
instruction word throughout the execution cycle. The instruction word contains two
sections: the first indicates the function or operation code and the second is the operand
(although it most frequently contains the address of data involved). The operand portion
of the instruction word may be the number to be used in a calculation or it may be the
address in memory of the number to be used. The second part of the instruction word
(namely, the address section) generally represents the memory address of the data to be
operated on. It should be understood that the instruction word does not necessarily contain
the address of the operand; that is, it may be the address of an address of the operand.

Another portion of the control unit is the program counter (PC) which is used to record the memory
location of the instruction to be executed. The PC always contains the address of the

next instruction to be executed. Normally, instructions are executed in sequence; there-

fore, the PC is incremented by one to obtain the address of the next instruction. When an
instruction causes transfer to another portion of the program, the PC is set to the appropriate
address. '

3.2,2 ARITHMETIC/LOGICAL UNIT
The arithmetic/logical unit performs all the actual work of the computation and calculation of a

program in operation. Data which the arithmetic unit uses in performing computation are
obtained from memory via the control unit. Arithmetic operations to be performed are also

3-2

determined in the control unit. The results of the arithmetic operations may then be stored
back into memory, The basic arithmetic operations performed by the ND812 are addition,
subtraction, multiplication, and division.

The ND812 arithmetic/logical unit has four 12-bit accumulator registers; two are capable

of restricted operations. They are called accumulators because they accumulate partial
sums during operation, All arithmetic operations are performed in the accumulators, The
four accumulator registers are the J, K, R, and S registers. Registers J and K are commonly
referenced as the main accumulators, because they are capable of direct storage and loading
from the memory and are used in transmitting (under program control) 12 or 24-bit input/
outputs. These contents may be added to, subtracted from, or exchanged. As a rule,

all arithmetic results will appear in these two registers. There is only one exception:
multiplication, in which the result appears in the R and S accumulators.

Registers R and S are commonly referenced as the sub-accumulators., They cannot be
directly loaded from or stored into memory. They can, however, be exchanged, loaded,
added to, and subtracted from the contents of the J and K accumulators, No result will

appear in either of these two registers except for the aforementioned multiplication results.
1

3.2.3 MEMORY UNIT

The memory unit of the computer (also called magnetic core storage) contains information
for the control and arithmetic units. The stored information for the control unit is in the
form of instructions which are used to direct the processing of data in a predetermined
and organized fashion, The information for the arithmetic unit is called data.

The ND812 memory unit is composed of ferrite cores which record binary information via
the polarities of their magnetization. The memory unit is configured so that it can store

8K (8192) 12-bit words of binary information.

Each core storage location has a unique address. This method of storage is referred

to as random-access storage. This means that any specific location in memory can be address-
ed as readily as any other and in the same amount of time. The ND812 basic memory unit

is equipped with an 8,192 word (12-bit/word), 2 microsecond magnetic core memory,

The memory unit is also available in 4K, 12K and 16K word memory configurations.

There are two major registers in a memory unit configuration: the memory address register
(MAR) and the memory data register (MR).

The MAR, a 12-bit register, contains only the address of the memory location currently
being accessed. The MAR specifies (during both the fetch and execute cycles) which
location is currently being used == first for the instruction itself and then the execute phase
(if there is one) for the operand. The register is not directly accessible to the programmer,
It can be displayed and loaded, when desired, from the front panel.,

The MR, a 12-bit register, is the data transfer path between the other registers of the
ND812 and memory. It holds data read from the memory and any to be entered into memory

MSB

and is used in restoring data to a register. The MR is not directly accessible to the program-
mer, but it can be loaded and displayed, when desired, on the maintenance panel,

3.2.4 INPUT UNIT

Input devices are used to supply data needed by the computer and the instruction which
tells the computer what to do with the data. Typical input devices are: teletype,
magnetic tape, paper tape, punched cards, and disc units.

3.2.5 OUTPUT UNIT
Output devices record the results of the computer operations. Results may be recorded in
a permanent form (such as printout on a teleprinter) or may be images on CRT devices,

Many of the media used for input (paper tape, punched cards, magnetic tape, disc, etc.)
can also be used for output,

33 COMPUTER WORD FORMATS

3.3.1 STORAGE DATA WORD FORMAT

The ND812 is oriented toward 12-bit binary words. The octal numbering system is employed
to represent the binary word because it is more compact than binary. It can represent the
state of each group of three bits in a word with a number representable by the arabic
numerals 0 to 7, Consequently, the value representable in any single word will range from
0000 octal to 7777 octal, or from zero decimal to 4095 decimal.

A 12-bit word may represent decimal numerical values from zero to 4095 (4096 values).

Therefore, a 12-bit word has the capacity to address the same number of words, which
is precisely the number of words in a standard ND812 memory stack. Thus, a value
contained in a single 12-bit word can address any location within a stack. The basic
data word format is shown in Figure 3-2,

[O

Figure 3-2. Data Word Format

3-4

Numbering of bit positions in each word is conventional; that is, the left-most bit is
numbered zero, and the right-most bit, 11, Therefore, the most significant bit is bit g
and the least significant bit is 11,

Two's complement arithmetic is employed in the addition and subtraction operations of
the ND812, Bit f may be used to test the polarity of the number. If bit # equals @
the number is positive. If bit § equals 1, the number is negative.

7

3.3.2 INSTRUCTION WORD FORMAT

There are three major instruction formats: single-word, two-word, and operate instructions.
Although operate instructions are single word commands, their format is quite different
from all others,

An important sub-class is the literal command. These are the only commands whose
address portion is actually the operand employed in the instruction. Three are single
word instructions. One is a modified single-word instruction.

Input/Output commands are also included in single and two-word formats,

3.3.2.1 SINGLE WORD FORMAT. Single-word memory reference instructions occupy
only one 12-bit word. Because there are 4K words in a memory field, the bits in a single
word are not sufficient to specify an operation code and a full address. In fact, only six
bits are designated to specify the address of the operand in single-word memory reference
instructions; those remaining are the command and variance bits.

The six address bits can specify a displacement which is added to the program counter to
obtain the effective address. Because the value contained is equivalent to the range

0 to 63 (decimal), that is the range of addresses which can be accessed, However, one
of the operation code bits (bit 5) can specify whether this range is forward or backward,
so that a single-word memory reference command can access plus or minus 63 locations
from its location in the program. The single-word format is shown in Figure 3-3,

Instruction /| + Displacement
(Operation Code) 7
0 1 2 3 4 5 6 7 8 9 10 11

Figure 3-3. Single-Word Format

3-5

Bit 4, when set to 1, permits indirect addressing, When the displacement is used as

an indirect address, the contents of the location which is plus or minus 63 locations from
the instruction location is used as a pointer to the actual operand. Normally, only a
single level of indirect address is possible.

There are many single=word instructions which do not reference memory. These are the
instructions of the operate classes (Class | and Class 1) and the input/output instructions,

Operate class instructions are instructions which do not reference memory. They do not,

as a result, need bits 4 and 5 to specify forward/backward and direct/indirect addressing.
Instead, these bits become part of the operation specification in the eight bits following

the instruction code., These meanings vary, depending upon which group is being specified.

Single=word instructions for input/output are characterized by the presence of the octal
operation code of 7400, The remaining eight bits specify device selection and which
peripheral control pulses are desired.

3.3.2.2 TWO-WORD FORMAT. Two-word memory reference instructions have the
operation code in the first word and the absolute 12-bit address in the second. The two
must be contiguous and in the same field. The format of the first word of a two-word
format is shown in Figure 3-4,

The specification of the operation to be performed is in the first word, but, to indicate
that this is the two word format, bits 0, 1, and 2 of the first word are always set to zero.
The remaining nine bits specify the command to be executed.

‘The numerical values of the instruction codes for memory reference instructions are the

same in two-word format as in single-word format, except that the contents of the instruction
code field have been effectively shifted right three bits or one octal digit. Otherwise,

their value is exactly that of the corresponding single=word commands. The two-word
format is shown in Figure 3-4,

Operation Code Instruction IND | KJ |Changd MF1 | MF2
I l ACC | Fields
0 1 2 3 4 5 6 7 8 .9 10 11
First Word

Absolute 12-bit Address

0 i 2 3 4 5 6 7 8 9 10 11
Second Word

Figure 3-4, Two-Word Format

3-6

This format offers considerably more control than single word format. It provides the ability to
address operands in fields other than the one in which the instruction resides. This ability
generates from the fact that bits 10 and 11 can refer to any one of four fields, 00 to 11 (binary).
However, by setting bit 9 to a zero, this effect could be cancelled. So, by controlling

bit 9, it is possible to cause the absolute address in the second word to reference the

.current field or another field. If the instruction with bit 9 set to one is a jump command,

or a jump-to-subroutine command, the change is permanent until it is changed by another
jump.or indirect jump. For all non-jump commands, the field selection change is only

for the execute portion of that instruction.

The two-word format also allows determination of which of the main accumulators is
employed in the operation specified (if applicable). If bit 8 is one, the ND812 will
employ the upper accumulator (the K register) if it is zero, the ND812 will employ the

~lower accumulator (the J register). Bit 7 allows the selection of an indirect address. |f
bit 7 is a one, indirect addressing is specified.

The two-word format input/output instruction is characterized by its content of the value
0740 octal as a basic; the second word is used to develop device addresses and control.
This permits 12-bit control words.

3.3.2.3 LITERAL FORMAT. It is unusual for a 12-bit word computer to incorporate literal
instructions; the ND812 does. These instructions permit the programmer to save both time
and storage space, because the literal instructions enable the storage of counter initial-
ization constants, increment and decrement constants, and logical AND masks in the
instruction which uses the value. This saves space otherwise needed to store the constants
separately and the time to access these constants.

Operation Code Instruction Literal Value

|| [|

0 1 2 3 4 5 6 7 8 9 10 11

Figure 3-5. Literal Format

The values in bits 4 and 5 specify which operation is performed, while the value used is
inbits 6 to 11, One special case uses the literal value to obtain a value located in
memory as a 12-bit literal value.

3-7

3.3.2.4 GROUP 1 INSTRUCTION FORMAT. Instructions of the Group 1 class are
characterized by the bit pattern 0010 in bit positions 0-3. They are generally concerned
with performing arithmetic, logical, exchange and shifting functions in operations on the
internal accumulator registers. This group also contains the hardware multiply and divide
instructions. Most Group 1 instructions have the format shown in Figure 3-6.

, Shift
OP1 = 0010 K J Rotate Shift Count
ACC | ACC

| 1| | | |

0 1 2 3 4 5 6 7 8 9 10 11
Figure 3-6. Group 1 Format

Bit 4 is set if the K register is to be affected; bit 5 is set if the J register is to be affected:;
and bits 4 and 5 are set if both the J and K registers are to be affected.

3.3.2.5 GROUP 2 INSTRUCTION FORMAT, The instructions of Group 2 are primarily
concerned with testing for internal conditions of the main accumulators (registers J and
K). Several variants of the Group 2 instructions can also test, set, clear, and complement

the overflow and flag bits; others can complement, increment, and negate the contents
of the J and K registers.,

The instructions of this group are microprogrammable, i.e., they can be OR'ed together
to produce both results. The bit pattern constituting the instruction may be combined to
produce different effects. The format for Group 2 instructions is shown in Figure 3-7.
Note that various bit positions have different assignments; some address and others control.

If it is desired, for instance, to determine a condition in the J register, a "1" in bit 5
would address it, The same would apply to bit 4, which addresses the K register. Bits
9, 10, and 11 all control the selection of conditions to be tested,

OP2 = 0011 K J OV |Comp | Clear o' 2 0| #0
ACC | ACC Set 1 1 7

| I l | €0 £0

0 1 2 3 4 5 6 7 8 9 10 11

Figure 3-7. Group 2 Format

When a condition is tested via the group 2 instructions, the ND812 takes one of two
possible actions:

1) If the condition fested is TRUE, the contents of the program
counter are incremented again by one, so that the word
immediately following is skipped over;

2) If the condition tested is FALSE, the contents of the program
counter are not incremented and the instruction in the following
location will be executed.

3.3.2.6 STATUS WORD FORMAT. The status register does not actually exist as a true
register, It is the contents of several groups of indicators, all commonly accessed by
storing them in the J register, when desired. Since each bit of each indicator is stored

at a particular bit position of the J Register, it is customary to refer to this bit order as
the bit assignments of the status register.

The bit assignments for the status word are shown in Figure 3-8, A single instruction
will result in the storing of the indicated bits into the J register, The two, 2-bit

fields, labled JPS and INT are the storage for the current memory field contents
whenever a Jump to Subroutine or Interrupt are encountered. These two bits are actually
the values which are restored into the current execution memory field bits when the INT
or JPS registers recognize that a return condition exists,

Current
Flag oV JPS INT JONL [TONA| IONB|IONH| Execution
MF& I MF1 MFg IN\F] MF@ | MFI
[1 2 3 4 5 6 7 8 9 10 11

Figure 3-8, Status Word Bit Assignments (J-Register)

Two bits, the flag and overflow, appearing in J@ and J1, may be transferred to their
respective registers by the execution of a RFOV instruction. However, most of the status
bits must be restored by executing the instructions which create the conditions stored.
For example, executing an [ONH instruction to set bit 9 of the status register.

3.4 ADDRESSING

The memory storage locations which contain the instructions and data of a program are
identified to the machine by their particular memory addresses, Every word in memory
is directly addressable with a unique address,

3-9

An instruction is stored in a field of one or two words, depending on the type of instruction
and the mode of address,

3.4.1 DIRECT ADDRESSING

The two=-word format is used to oﬁn‘oin direct addressing of all of memory. Because 12
bits can reference only 4096 (2]) locations, the last two bits of the first word specify
which of the four possible memory stacks the address is in; through this combination, the
ND812 has direct addressing of all memory.

3.4.2 RELATIVE ADDRESSING

A relative address is always relative to the program counter; the single-word format is used
to obtain the relative addressing of memory. Because the value contained is equivalent

to the range 0 to 63 (decimal), that is the range of addresses which can be accessed,
However a seventh bit (bit 5 of the word) can specify whether this range is forward or
backward, so that a single-word memory reference command can access plus or minus

6310 locations from its location in the program.

3.4.3 INDIRECT ADDRESSING

The indirect addressing uses the relative addressing form or the single~word format. The
only difference between the address forms is that bit 4 of the word is set to specify indirect
addressing. Relative addressing is defined by the value being added or subtracted from

the program counter to determine the location of the corresponding word. Indirect
addressing is one step further (i.e., the effective address of the word is contained in

the relative address). The relative address word specifies an address of the address;

thus, the indirect addressing capability. Although single or two-word indirect addressing
is possible, there is only a single level of indirect addressing possible in either case.

3.4.4 AUTO-INDEX ADDRESSING

Two words in each memory field of the ND812 may be used as auto-index locations,

These locations have the property that if they are addressed directly, their behavior is

normal; that is, they act as the operand location and their contents are used nomally.

However, if they are indirectly addressed by a single-word instruction, they first increment
their contents by one and store the resulting value as their contents (which points to the operanc
The ND812 uses the modified contents of the auto-index location to access the operand desired.

Single-word format instructions may address these two locations relatively, indirectly,
and directly; however, the operand (with one exception) must be in the field in which
that instruction resides,

When a single-word format instruction directly accesses either of the two locations, it
specifies as much with a special value in the displacement field, ("00" octal). The
forward/backward bit specifies which of the two locations is used; the direct or indirect
bit specifies whether the contents of the auto-index location are the operand or point to
the operand.

Two-word format memory reference instructions may also use the auto-index location (both
as an operand and as the pointer to the operand in an indirect address). When used
indirectly (in the two word format), the auto-index locations do not automatically increment.,

3-11

SECTION IV
INSTRUCTION REPERTOIRE

4.1 GENERAL

This chapter describes the instruction set for the ND812, The instructions are described
in functional order. The ND812 repertoire includes nine types of instructions: memory
reference, logical, arithmetic, shift/rotate, load and exchange, control, literal, input/
output, and miscellaneous.

Within each group the instructions are described in detail. Listed in each entry, from left

to right, are the assembler mnemonic, the octal code, a verbal description, and the affect-

ed registers, Below the instruction mnemonic is a description of the effective operation of that
instruction and any restrictions or suggestions,

4.2 MEMORY REFERENCE INSTRUCTIONS

All instructions which can reference memory for the word to be used in the execution

of an instruction are called memory reference instructions. They include all foads,
stores, compares, most addition and subtraction, and the increment and decrement
contents of memory instructions, Jump and jump-to-subroutine are also classed as memory
reference instructions,

There are two classes of memory reference instructions: two-word and single-word.,
Chapter 3 contains complete descriptions of their formats. In the following listing,
if an instruction can have either the single or two-word format, the first line of the
description is the single-word format and the second is the two-word.

ANDF 20X X AND with J, Forward J

Quantity (12-bit) located within 63 locations of this instruction is ANDed with contents
of J. Result replaces previous contents of J. Memory is unaltered. Only forward,
relative addressing is permitted. Indirect bit (bit 4) must be used for part of operation
code; therefore, execution time is fixed, Literal in this case is really displaced. 12-bit
value rather than indirect address pointer,

LDJ 5000 Single-Word, Load J J
TWLDJ 0500 Two~Word, Load J

Loads J with contents of effective memory address. Original contents of J are lost,
Memory is unchanged. All address modes are pemitted,

STJ 5400 Single=Word, Store J Memory
TWSTJ 0540 Two-Word, Store J

Stores contents of J in contents of effective memory address, Original contents of
memory are lost, Contents of J are unchanged. All address modes are permitted.

TWLDK 0510 Two-Word, Load K K

Loads K with contents of effective memory address, Original contents of K are lost.
Memory is unchanged. Address modes are direct and indirect,

TWSTK 0550 Two=-Word, Store K Memory

Stores contents of K in contents of effective memory address. Original contents of
memory are lost, Contents of K are unchanged. Address modes are direct and indirect,

ADJ 4400 Single~Word, Add J J, OV
TWADJ 0440 Two-Word, Add J

Adds contents of effective address fo contents of J, The sum appears in J. Overflow
will complement overflow bit. All address modes are permitted,

SBJ 4000 Single-Word, Subtract from J J, OV
TWSBJ 0400 Two-Word, Subtract from J

Subtracts contents of effective address from contents of J, The difference appears in
J. Overflow will complement overflow bit. All address modes are permitted.

TWADK 0450 Two-Word, Add K K, OV

Adds contents of effective address to contents of K, The sum appears in K. Overflow
will complement overflow bit, Address modes are direct and indirect,

TWSBK 0410 Two-Word, Subtract from K K, OV

Subtracts contents of effective address from contents of K. The difference appears in K.
Overflow will complement overflow bit. Address modes are direct and indirect,

ISZ 3400 Single-Word, Increment Memory, PC
Memory and Skip if Zero
TWISZ 0340 Two-Word, Increment

Memory and Skip if Zero

Increments contents of effective address by one. If result equals zero, next locc*ion
is skipped. Overflow is not possible. All address modes are permitted.

4-2

DSz 3000 Single~Word, Decrement Memory, PC
Memory and Skip if Zero

TWDSZ 0300 Two-Word, Decrement
Memory and Skip if Zero

Decrements contents of effective address by one. If result equals zero, next location
is skipped. Overflow is not possible. All address modes are permitted.

SMJ 2400 Single-Word, Skip PC

if Memory Not Equal J
TWSMJ 0240 Two-Word, Skip

if Memory Not Equal J

Compares contents of effective address with contents of J, If not equal, next location is
skipped. If equal, next location is accessed. Contents of memory and contents of J
are not altered. All address modes are permitted.

TWSMK 0250 Two-Word, Skip PC
if Memory Not Equal K

Compares contents of effective address with contents of K, If not equal, next location
is skipped. If equal, next location is accessed, Contents of memory and contents of K
are not altered. Address modes are direct and indirect.

JMP 6000 Single=Word, PC
Unconditional Jump

Relative and indirect addressing are permitted. Relative addressing results in algebraic
sum of displacement and current contents of program register replacing current contents of
Program Counter. Indirect addressing results in indirectly addressed value obtained from
pointer replacing 12-bit contents of program counter.

TWJIMP 0600 Two~Word, PC

Unconditional Jump

- i ¢
Replaces contents of program counter with contents of address portion or contents of
indirectly addressed location. Contents of program counter are lost. If field bits are

set and selection bit 9 is set, jump can be to another field.

JPS 6400 Single-Word Memory, PC
Jump Subroutine

Relative and indirect addressing are permitted. Relative addressing results in algebraic

sum of displacement and current contents of program counter replacing current contents
of memory address register. Current-contents of program counter are then written into

4-3

memory at address loaded into the memory address register. The memory address register

is then incremented and placed into program counter (replacing its original contents).

If indirect addressing is employed, operand address obtained from location obtained

by algebraically adding program counter and displacement is placed in memory address
register. Contents of program counter are written into memory at that location. Contents of
memory address register are incremented. Result replaces current contents of program counter.

TWJPS 0640 Two=-Word Jump Memory, PC
Subroutine

Direct and indirect addressing are permitted. For direct or indirect addressing, contents

of second word (or word pointed to by indirect pointer) are loaded into memory address
register, Contents of program counter are written into memory at that location. Contents of
memory address register are incremented. Result replaces contents of program counter.

XCT 7000 Execute Instruction

Execute enables performance of ali instructions except JMP and TWJMP without changing
current contents of program counter, Is especially useful for programs which are varied
in function each time they are run., No two-word form exists. Relative and indirect
addressing are permitted,

Instruction located at effective address may be any legal ND812 instruction (single=word

or two-word). This includes execute instruction itself. Obvious error to avoid is executing
execute instruction which referenced first execute (creating endless loop). If jump is
executed by XCT command, contents of program counter are changed and original contents
are lost,

XCT instruction with indirect address may also execute instruction with indirect address,
This is only way to get more than single level of indirect addressing.

4.3 LOGICAL OPERATIONS

The ND812 can perform the logical AND function by using the contents of accumulator
registers J and K as a mask, The result appears in the register shown in each instruction,

but it is always one of the two arithmetic registers. All require one memory cycle.

The logical operation instructions use the Group 1 instruction format described in Section 1.

AND J 1100 Logical AND J, K J

into J
Using contents of K as mask, logical AND function is performed on contfents of the J & K accum-

ulators. Results replace previous contents of J. K is not altered. AND states that resultant
bit is zero unless corresponding bits in both accumulators are "ones",

4-4

AND K 1200 Logical ANC J, K
Kinto K

Using contents of J as mask, logical AND function is performed on contents of the J & K
accumulators, Results replace previous contents of K., J is not altered. AND states that
resultant bit is zero unless corresponding bits in both accumulators are ones.

AND JK 1300 Logical AND J, J,K
Kinfo J, K

Using K as mask, logical AND function is performed on contents of the J & K accumulators.
Results replace contents of the J & K accumulators, AND states that each resultant bit is
zero unless corresponding bits in both accumulators are "ones".

4.4 ARITHMETIC OPERATIONS ON ACCUMULATOR REGISTERS

This instruction group includes addition, subtraction, multiplication, and division
operafions. All require one memory cycle to perform, (except for the multiply and
divide), and all four accumulator registers may participate. Overflow will complement
the overflow bit, These instructions all use the Group 1 instruction format described

in Section 1lI,

AJK J 1120 J+KtoJ J, OV

Adds contents of J to contents of K. Replaces contents of J with sum. Overflow is
possible, K is unaltered,

NAJK J 1130 -(J+K) toJ J, OV

Adds contents of J to contents of K, Negates sum. Replaces contents of J with negated
sum, Overflow is possible, K is unaltered,

SJK J 1121 J-KtoJ J, OV

Subtracts contents of K from contents of J. Replaces contents of J with difference,
Overflow is possible., K is unaltered,

NSJK J 1131 -(J-K) toJ J, OV

Subtracts contents of K from contents of J, Negates difference. Replaces contents of
J with negated difference., Effect is to subtract J from K and place difference in J,
Overflow is possible. K is unaltered.

ADR J 1122 R+ JtoJ J, OV

Adds contents of R to contents of J. Replaces contents of J with sum. Overflow is
possible. R is unaltered.

4-5

NADR J 1132 -(R+ J) to J J, OV

Adds contents of R to contents of J. Negates sum. Replaces contents of J with negated
sum, Overflow is possible. R is unaltered.

ADS J 1124 S+ Jtod J, oV

Adds contents of S to contents of J, Replaces contents of J with sum. Overflow is
possible, S is unaltered,

NADS J 1134 ~(S+ J) to J J, oV

Adds contents of S to contents of J. Negates sum. Replaces contents of J with negated
sum. Overflow is possible. S is unaltered.

SBR J 1123 R~JtolJ J, OV

Subtracts contents of J from contents of R. Replaces contents of J with difference.
Overflow is possible. R is unaltered.

NSBR J 1133 -(R-J)toJ - J, oV

Subtracts contents of J from contents of R, Negates difference. Replaces contents of
J with negated difference. Effect is to subtract R from S and place difference in J.
Overflow is possible. R is unaltered. '

~SBS J 1125 S-JtoJ J, OV

Subtracts contents of J from contents of S. Replaces contents of J with difference.
Overflow is possible. S is unaltered.

NSBS J 1135 -(S=J) toJ J, OV

Subtracts contents of J from contents of S. Negates difference. Replaces contents of J
with negated difference, Effect is to subtract S from J and place difference in J.
Overflow is possible. S is unaltered.

AJK K 1220 J+ KtoK K, OV

Adds contents of J to contents of K. Replaces contents of K with sum, Overflow is
possible, J is unaltered,

NAJK K 1230 ~(J+ K) to K | K, oV

Adds contents of J to contents of K. Negates sum. Replaces contents of K with negated
sum, Overflow is possible. J is unaltered.

4-6

SJK K 1221 J-KtoK K, OV

Subtracts contents of K from contents of J. Replaces contents of K with difference.
Overflow is possible. J is unaltered. ‘

NSJK K 1231 -(J - K) to K

Subtracts contents of K from contents of J. Negates difference. Repiaces contents of
K with negated difference, Effect is to subtract J from K and place difference in K,
Overflow is possible. J is unaltered.

ADRK 1222 R+ KtoK | K, OV

Adds contents of R to contents of K, Repiaces contents of K with sum. Oveiflow is
possiole, R is unaltered.

NABR K 1232 -(R+ K) to K K, oV

Adds contents of R to contents of K. Negates surm. Replccas contents of K with negated
sum. Overflow is possible, R is unaltered. :

ADS K 1224 S+ K to K K, OV

Adds contents of S to contents of K. Replaces contents of K with sum. Overflow is
possible. S is unaltered,

NADS K 1234 ~(5+ K) to K K, OV

Adds contents of S to contents of K, Negates sum. Replaces contents of K with negated
sum, Overflow is possible, S is unaltered.

SBR K 1223 R - K to K ' K, OV

Subtracts contents of K from contents of R. Replaces contents of K with difference.
Overflow is possible. R is unaltered.

NSBR K 1233 (R = K) to K K, OV

Subtracts contents of K from contents of R. Negates difference. Replaces contents of
K with negated difference, Effect is to subtract R from K and place difference in K,
Overflow is possible. R is unaltered.

SBS K 1225 S~KtoK K, OV

Subtracts contents of K from contents of S. Replaces contents of K with difference.
Overflow is possible, S is unaltered.

4-7

NSBS K 1235 -(S-K) to K K, OV

Subtracts contents of K from contents of S. Negates difference. Replaces contents of
K with negated difference. Effect is to subtract S from K and place difference in K.
Overflow is possible, S is unaltered.

AJK JK 1320 J+Ktod, K J, K, OV

Adds contents of J to contents of K. Replaces contents of both J and K with sum.
Is not a 24-bit sum in two registers. Overflow is possible, Both J and K are altered.

NAJK JK 1330 -(J+K)toJ, K J, K, OV

Adds contents of J to contents of K. Negates sum. Replaces contents of both J and K
with negated sum. [snot a 24=bit sum in two registers, Overflow is possible. Both
J and K are altered.

SJK JK 1321 J-KtoJ,K

Subtracts contents of K from contents of J. Replaces contents of both J and K with
difference. Overflow is possible, Both J and K are altered,

NSJK JK 1331 ~-(J-K)toJ, K

Subtracts contents of K from contents of J. Negates difference. Replaces contents of
both J and K with negated difference. Effect is to subtract J from K and place difference
~in both J and K. Overflow is possible. Both J and K are altered.

MPY 1000 Multiply J by K J, K, R, S, OV

Logically multiplies contents of J by contents of K, Multiplication requires all four
accumulators, Multiplier is looded into J register and multiplicand into K register.

Product appears in sub-accumulators, Most significant half goes into $ and least significant
half into R, R and S are cleared prior to starting of product accumulation, They do not
require instructions to clear prior to multiplication, Multipler and multiplicand are assumed
to be positive integers. J,K,R and S are altered by multiply. Overflow in Multiplication
is not possible, but the previous contents of the OV indicator may be destroyed.

Fixed multiplication time makes it possible to accurately estimate execution time of
process control and real-time programs as they are written, Because ND812 has single-
word and two-word instructions which can load J and K register before commencement of
multiplication, time-critical situations and noncritical situations can be solved.

DIV 1001 Divide K, J by R » J, K, R, OV, S

Logically divides contents of J and K by contents of R, Divide is also a register~to-
register operation. Previous to execution of DIV, divisor must be loaded into R and
dividend in K and J. Most significant half of 24-bit dividend resides in K; Least significant
half of dividend is in J. At completion of DIV, quotient appears in J and remainder

in K. S may be altered on divide. Overflow clears at start of DIV operation.

If contents of R is less than contents of K and J at beginning of DIV, divide error is
indicated by setting of overflow bit to one and termination of any activity on remainder

of DIV time. None of the factors in J, K or R registers is altered in event of divide
overflow. Condition of overflow register should be tested at completion of DIV instruction,
Divide by zero also sefs overflow register to one and terminates DIV activity.

While divide is infrequent in operation of most programs, it is of value on programs doing
non-integer factor scaling, ratioing of variables, etc, Because these are usually real-
time operations, the fact that divide is fast and fixed in execution time is of great benefit
on pre-analysis and program writing for fixed reaction times,

4.5 SHIFT/ROTATE INSTRUCTIONS

A single instruction can shift or rotate the contents of J or K or both up to 15 bit positions.
The four=bit value in bits 8 to 11 of the instruction specify the number of positions to be
shifted. The actual time to shift or rotate each bit in the J and K registers is 0.125 ps

per bit. In a full cycle, eight shift periods are available. This allows up to 8 bit shifts
or rotates in a single memory cycle. More than 8 bit positions shifted or rotated will take
longer, but only the amount of time consumed for the number of bits shifted in excess of
eight. The shift/rotate instructions use the Group 1 instruction format described in
Section I1.

SFTZ J 1140 Shift J Left N J

Shifts contents of J left by N bits, N ranges from 0 to 15 (as specified by bits 8 to 11

of instruction). Each bit position shifted requires 0.125 us. 8 or fewer bits can be shifted
in 1 memory cycle., More than 8 automatically obtain required delay to complete. Bits
shifted out of Bit 0 of J are lost. Zeroes are shifted into Bit 11, Overflow bit is
unaffected,

SFTZ K 1240 Shift K Left N K
Shifts contents of K left by N bits, N ranges from 0 to 15 (as specified by bits 8 to 11
of instruction). Each bit position shifted requires 0.125 us. 8 or fewer bits can be shifted

in 1 memory cycle. More than 8 automatically obtain required delay to complete, Bits
shifted out of Bit 0 of K are lost, Zeroes are shifted into Bit 11, Overflow bit is unaffected,

4-9

SFTZ JK 1340 Shift J to K Left N J, K

Shifts contents of both J and K left by N bits. N ranges from 0 to 15 (as specified by
“bits 8 to 11 of instruction). Bit O of J is shifted into bit 11 of K and bits shifted out of bit
0 of K are lost, Zeroes are shifted into bit 11 of J, Each bit position shifted requires
0.125 ps. 8 or fewer bits can be shifted in 1 memory cycle. More than 8 automatically
obtain required delay to complete. Overflow bit is unaffected.

ROTD J 1160 Rotate J Left N J

Rotates contents of J left N bits, N ranges from 0 to 15 (as specified by bits 8 to 11 of
instruction). Bit O of J is shifted into bit 11 of J, No bits are lost. Each bit position
rotated requires 0.125 ps. 8 or fewer bits can be shifted in 1 memory cycle. More than
8 automatically obtain required delay to complete, Overflow bit is unaffected.

ROTD K 1260 Rotate K Left N

Rotates contents of K left N bits, N ranges from O to 15 (as specified by bits 8 to 11

of instruction). Bit O of K is shifted into Bit 11 of K, No bits are lost, Each bit position
rotated requires 0,125 ps. 8 or fewer bifs can be shifted in 1 memory cycle. More than
8 automatically obtain required delay to complete, Overflow bit is unaffected.

ROTD JK 1360 Rotate J, K Left N J, K

Rotates contents of both J and K left N bits. N ranges from 0 to 15 bits (as specified

by bits 8 to 11 of instruction). Bit O of K is shifted into Bit 11 of J. Bit 0 of J goes into
- bit 11 of K, No bits are lost. Each bit position rotated requires 0,125 ps, 8 or less
bits can be shifted in 1 memory cycle. More than 8 automatically obtain required delay
to complete, Overflow bit is unaffected,

Because J and K are each 12-bits long, effective right shift of either can be performed

in single ROTD J or K., Example: to effectively right shift J three positions, execute
ROTD J, 9 places.

4.6 LOAD AND EXCHANGE OPERATIONS

This group of instructions enables the exéhange of information between the accumulators
and the switch and status registers. No other method is provided for loading and storing
the contents of the two sub-accumulators, R and S, for they lack a direct route to memory.

The Status Register enables storage of internal status conditions in the event of a power
failure condition. |t stores the present conditions of the overflow register, flag register,
enabled interrupts, current memory field, and the INTERRUPT and JPS memory fields.
The load and exchange operations enable, among other things, the ability to store and
reload status conditions. These instructions use the Group 1 instruction format described
in Section Il11. All instructi ns in this grouping require 1 cycle for execution.

4-10

LJSW 1010 Load J From Switch Register J

Replaces contents of J with contents of switch register, as determined by positions of
front panel SWITCH REGISTER switches,

LRF J 1101 Load R From J | R

Replaces contents of R with contents of J, J is unaltered,

LJFR 1102 Load J From R J

Replaces contents of J with contents of R, R is uﬁcﬂ’rered.

EXJR 1103 Exchange J and R R, J

Exchanges contents of J and contents of R. Information is exchanged without alteration,
LSFK 1201 Load S from K R

Replaces contents of S with contents of K, K is unaltered.

LKFS 1202 Load K from S K

RepAlaces contents of K with contents of S, S is unaltered,

EXKS 120 Exchange K and s S, K

'Exchcmges contents of K and contents of S, Information is exchanged without alteration.
LKFJ 1204 Load K from J K

Replace contents of K with contents of J. J is unaltered,

EXJK 1374 Exchange J and K J, K

Exchanges contents of J and contents of K, Information is exchanged without alteration.
LRSFJK 1301 Load R, S from J, K R, S

Replaces contents of R with contents of J. Replaces contents of S with contents of K,
Both J and K are unaltered.

LJKFRS 1302 Load J, K from R, S J, K

Replaces contents of J with contents of R, Replaces contents of K with contents of S.
Both R and S are unaltered,

4-11

EXJRKS 1303 Exchange J, Kand R, S J, K, R,S

Exchanges contents of J with contents of R. Exchanges contents of K with contents of
S. Information is exchanged without alteration.

LJST 1011 Load Status Register in J J

Replaces contents of J with contents of status register. All bit positions are
represented in J. If contents of J are stored in memory after loading of J, information
may subsequently be used to return ND812 to its original status.

RFOV 1002 Read Flag, OV from J v J

Contents of J (bits 0 and 1) are ORed into flag and overflow bits. Flag and overflow bits
should be clear prior to this instruction. No other status register bits are affected by this
instruction,

4.7 CONTROL INSTRUCTIONS

4,7.1 CONDITIONAL SKIPS

This instruction group fests the respective registers for certain conditions. If the condition is
true, the next instruction is skipped; otherwise the next instruction is executed. All
instructions in this grouping require 1 cycle for execution. These instructions use the
Group 2 instruction format described in Section Il1.

SIZ) 1505 Skip if J equals zero PC
Tests contents of J for all-zero. If true, skips next word; otherwise, next word is executed.

SIZ K 1605 Skip if K equals zero PC

Tests contents of K for all-zero, If true, skips next word; otherwise, next word is
executed.,

SIZ JK 1705 Skip if both J and K PC

equal zero

Tests contents of both J and K for all-zero condition. If both J and K equal zero, next
word is skipped; otherwise, next word is executed.

SNZ J 1501 Skip if J not PC

equal zero

Tests contents of J for presence of at least single one. If true, skips next word;
otherwise, next word is exec' ted.

4-12

SNZ K 1601 Skip if K not PC

equal to zero

Tests contents of K for presence of at least single one. If true, skips next word; otherwise,
next word is executed,

—

SNZ JK 1701 Skip if J or K PC

not equal zero

Tests contents of both J and K for presence of at least single one. If true, skips next
word; otherwise, next word is executed, :

SIP J 1502 Skip if J positive PC

If J bit zero equals zero, value contained is positive. All-zero also tests as positive.
If true, skips next word; otherwise, next word is executed.

SIP K . 1602 Skip if K positive PC

If K bit zero equals zero, value contained is positive. All-zero also tests as positive.
If true, skips next word; otherwise, next word is executed.

SIP JK 1702 Skip if both J and K PC

positive

If bit zero of both J and K is zero, value contained in both is positive. All-zero also
tests as positive, If true, skips next word; otherwise, next word is executed.

SIN J 1506 Skip if J negative PC

If bit zero of J is one, value contained is negative. If true, skips next word; otherwise,
next word is executed.

SIN K 1606 Skip if K negative PC

If bit zero of K is one, value contained is negative. If true, skips next word; otherwise,
next word is executed,

SIN JK 1706 Skip if both J and K PC

negative

If Bit of J and K are both one, value contained in both is negative. If true, skips next
word; otherwise, next word is executed.

4.7.2 CLEAR, COMPLEMENT, INCREMENT AND SET

The instructions in this group can clear, complement, increment, and set the registers.,
All instructions in this grouping require 1 cycle for execution and use the Group 2
instruction format described in Section Il1.

CLR J 1510 Clear J J

Unconditionally sets all bits of J to zero,

CLR K 1610 Clear K K

Unconditionally sets all bits of K to zero.

CLR JK 1710 Clear both J and K J, K
Unconditionally sets all bits of both J and K to zeré.

CMP J 1520 Complement J J

Changes all 1 bits to 0 and all 0 bits to 1 in J,

CMP K 1620 Complement K / K

Changes all 1 bits to 0 and all 0 bits to 1 in K,

CMP JK 1720 Complement both J J, K
and K

Changes all 1 bits to 0 and all @ bits to 1 in both J and K,

SET J 1530 Set J to -1 J
Sets J to all one's.

SET K]630 Set K to -1 K
Sets K to all one's,

SET JK 1730 Set both J and K to J, K
-1

Sets both J and K to all one's,

4-14

4,7.3 OVERFLOW BIT INSTRUCTIONS

The overflow bit is a part of the arithmetic unit employed to indicate whether an overflow
condition existed on the last operation. |t can also be program-controlled as part of a
program's logic. Every arithmetic operation, whether memory reference or operate, can
complement the overflow bit, It should be tested immediately after an arithmetic

operation which might generate an overflow condition of interest. These instructions use

the Group 2 instruction format described in Section Ill.

SIZ O 1445 Skip if Overflow Zero PC

If overflow bit is zero, skip next word; otherwise, execute next word.

SNZ O 1441 Skip if Overflow One PC

If overflow bit is one, skip next word; otherwise, execute next word.

CLR O 1450 Clear Overflow oV

Unconditionally sets overflow bit to zero.

CMP O 1460 Complement Overflow ov

If overflow bit is zero, set to one; if one, set to zero.

SETO 1470 Set Overflow ov

Unconditionally sets overflow bit to one.

4,7.4 FLAG BIT INSTRUCTIONS

The flag bit can be set, cleared, complemented, and tested by the program. It can therefore
be used to indicate the presence of some condition, remember a program branching condition,
or indicate the state of some external condition. These instructions use the Group 2 instruction
format described in Section Il

SIZ 1405 Skip if Flag Zero PC

If flag bit is zero, skip next word; otherwise, execute next word.

SNZ 1401 Skip if Flag One PC

If flag bit is one, skip next word; otherwise, execute next word.

4-15

CLR 1410 Clear Flag F
. Unconditionally sets flag bit to zero.

CMP 1420 Complement Flag F
If flag bit is zero., set to one; if one, set to zero.

SET 1430 Set Flag | F
Unconditionally sets flag bit to one.

4,7.5 INCREMENT AND NEGATE

Although it is possible to microprogram (e.g., "OR") the several kinds of instructions
described in paragraphs 4.7.1 through 4.7.4, not all such microprogrammed instructions
are either meaningful or executable. Specifically, the functions of increment and negate
(two's complement) are mutually exclusive with any skip instruction, because the three
bits 9 to 11 which specify skipping conditions, must not contain any pattern other than
"700" (octal 4); otherwise, incrementation and negation may not be performed. These
instructions use the Group 2 instruction format described in Section 1. All instructions in
this grouping are performed in one memory cycle. There are no execute cycles.

INC J 1504 Increment J J

Adds one to contents of J. Replaces contents of J with sum. [f previous contents of J
. were 7777g, overflow is complemented.

INC K 1604 Increment K 7 K

Adds one to contents of K. Replaces contents of K with sum. If previous contents of K
were 77774, overflow is complemented.

INC JK 1704 Increment both J and K J, K

Adds one fo contents of both J and K. Replaces each with its own incremented contents.
If contents of either J or K were 7777 g prior to execution of this instruction, overflow
is complemented,

NEG J 1524 Negate J J

Complements and increments contents of J, leaving result in J. Effect is to generate two's
complement of value. Overflow bit is unaltered unless contents of J were zero,

NEG K 1624 Negate K K

Complements and increments contents of K, leaving result in K. Effect is to generate

two's complement of value. Overflow bit is unaltered unless contents of K
were zero. ‘

NEG JK 1724 Negate both J and K J, K

Complements and increments contents of both J and K, leaving result of each in itself.
Effect is to generate two's complements of their separc’re values. Overflow bit is unaltered
uniess contents of J or K were zero, ‘

4,7.6 INTERRUPT INSTRUC TIONS

The interrupt system is controlled by instructions in the instruction Group 2 set. These

instructions control the enabling and disabling of the three interrupt-enable lines to the
peripheral devices. For ease of use, the system is treated as if there were four possible
interrupt enable conditions:

1. The highest level ("H");

2. The high and middle level ("A")
3. The high and middle level ("B")
4, All levels.

The very highest priority devices (such as ADC's) are not connected to the ND812 via
any of the interrupt-enable levels. Instead, such devices are directly connected to the
interrupt request line so that if the interrupt system itself is enabled by at least an |ONH
instruction, those devices can always request an interrupt at any time.

The instructions in this set of Group 2 instructions can merely enable or disable levels;
they do not themselves generate an interrupt request, nor do they initiate the interrupt
response routines, except insofar as the devices they enable have the ability to "trap"
the ND812 to such a routine. '

It must be emphasized that a wire nomed "level H" does not exist. The term "level H"

is for convenience of reference, and means simply that one is referencing the interrupt
flip-flop itself. It can be understood that when any device is directly connected fo the
interrupt request line, it is actually requesting that the interrupt state flip=flop be set.

If a device is connected via one of the interrupt enable levels, the level must be low if
the device is to generate the interrupt request. Otherwise, there is no real difference be-
tween "level H" and the other levels. It should be remembered that it is the use which
causes the difference, '

When the ND812 recognizes the interrupt request, it effectively disables the interrupt
request line. This prevents an interrupt response from being interrupted itself until safe,

4-17

This is assured by the program re-enabling only those interrupt enables which are desired
upon completing the interrupt request, thus re-enabling the device which causes the
particular interrupt request,

]ONH 1004 Enable Level H

Enables interrupt system and all devices directly connected via the interrupt request line.
Any device not furnishing trap address traps to MF@, location 0001, Until this instruction
is executed, no devices of high priority can generate an interrupt request (sets bit 9 in
Status register).

JONA 1006 Enable H and Level A

Enables interrupt system and interrupt enable level B, Any devices on level B can then
initiate interrupt requests. Devices not furnishing trap address will trap to MF@, location
0001. No devices on level B can initiate interrupt requests unless this instruction or
IONN instruction is executed (sets bits 8 and 9 in Status register).

{ONB 1005 Enable H and Level B

Enables interrupt system and interrupt enable level A, Any devices on level A can then
initiate interrupt requests. Devices not furnishing trap address will trap fo MF@, location
0001. No devices on level A can initiate interrupt requests unless this instruction or
IONN instruction is executed (sets bits 7 and 9 in Status register). »

IONN 1007 Enable All Levels

Enables interrupt system and all interrupt enable levels. Any devices then present can
generate an interrupt request. |If some devices present do not have ability to generate
trap address, ND812 responds by trapping to MF@, location 0001, This instruction enables
all devices present to initiate interrupt requests (sets bits 6,7,8, and 9 in Status register).

|OFF 1003 Disable All Interrupts

Disables all lines so that they do not respond to interrupt request (clears bits 6,7,8 and 9

in Status register).

It should be noted once again that this instruction is given if all devices are to be prevented
from interrupting. However, when ND812 responds to interrupt request, it effectively
executes an |OFF instruction, because it disables all interrupt enable levels; (but does not
clear the Status word bits); they must be re-enabled as required by executing proper
enable instructions.

4,7.7 POWERFAIL LOGIC INSTRUCTIONS

Powerfail instructions are concerned solely with use of the internal powerfail detector logic.
This logic monitors internal voltage levels from the power supply and determines whether the.s
are at a certain predetermined level. When it detects a deviation which is considered

dangerous, it will raise its "Power Low" Flag. If the logic has been enabled to interrupt,
and if the interrupt system itself is allowed, this action will also generate an interrupt
request to the ND812, The logic will raise its flag even if the powerfail interrupt is not
enabled and can still be program-tested. '

There is approximately 1 ms of secure power remaining after a powerfail is detected (hence,
many memory cycles before complete failure); however, because external peripheral
conditions may take longer to execute, this condition should be the first tested in the
polling routine,

Powerfail may be allowed (turned ON) or disallowed (turned OFF). It must be emphasized
that if powerfail is ON, but the interrupt system has not been enabled by execution of at least
the IONH instruction, the interrupt request generated by the powerfail logic will not be
recognized, It is essential for proper operation of powerfail logic that both it and the
interrupt control logic be enabled.

PION 1500 Powerfail On

Enables powerfail interrupt. Until this instruction is executed, powerfail does not operate.,
After this instruction, interrupt system must be enabled to permit powerfail to generate
interrupt request (even though it is enabled).

PIOF 1600 Powerfail Off

Disables powerfail interrupt. After this instruction is executed, powerfail logic will not

attempt to generate interrupt request. No inferrupt request can be generated even if
interrupt system is enabled and power fail logic raises "Power Low" flag.

SKPL 1440 Skip on Power Low PC

If powerfail logic detects that internal voltages have deviated from optimum value, power-
fail logic raises "Power Low" flag. Regardless of condition of interrupt system, or whether
powerfail interrupt has been enabled, this instruction skips next word if powerfail flag is
up. Otherwise, next word is executed,

It is usual for SKPL instruction to be given in the interrupt polling routine, following _
location #0082 on memory field zero. It is also usually the first instruction in the routine.
Following example illustrates polling routine and how powerfail and other interrupts can
be efficiently handled.

SAMPLE POLLING ROUTINE

0

~ 0000 0000
0001 0000 INTPR, 0 /PR AFTER INTERRUPT
0002 1440 SKPL /POWER LOW:
0003 6002 SKIP /
0004 6076 JMP PDOWN /YES - STORE REGISTERS
0005 7414 TOS /NO - TELETYPE FLAG?
0006 6002 SKIP /
0007 6050 JMP TTYOUT /YES
0010 7404 IS /NO - READER FLAG?
0011 6002 SKiP /
JMP READ /YES
e e /NO
0030 1007 IONN /INTERRUPT LOW ON
0031 6330 JMP@ INTPR /RETURN TO PROGRAM
4.8 LITERAL INSTRUCTIONS

Literal instructions save both time and memory space because they permit frequen’rly—used
constants and counter~-initializations to be stored in the same instruction space as the command
which employs the data. The ND812 is equipped with three literals which pemit the use

of six-bit literal quantities. Literal quantities may be ANDed with, added to, or sub-
tracted from J. These instructions use the Group 2 instruction format described in

Chapter 3.

ANDL 21XX AND Literal J

Six bits of literal are ANDed with bits 6 to 11 of J register, J register bits O to 5 are
cleared to zero because literal value is considered to have six zero bits for its bits 0 to 5.
Results are in J (replacing its former contents). Memory is unaltered.

ADDL 22XX Add Literal J, O
Six bits of literal field of instruction are added to contents of J; sum replaces its previous

contents. Literal is considered to be six-bit, positive value with bits 0 to 5 being zero,
Overflow is possible. Memory is unaltered.

4-20

SUBL 23XX Subtract Literal J, O

Six bits of literal are subtracted from J register. J Register bits ﬂ—Srare cleared to zeroes
because literal value is considered to have six zero bits for its bits 8-5. Difference
replaces previous contents of J, Memory is unaltered and overflow is possible.

4.9 INPUT/OUTPUT

This section treats the standard input/output instruction set with which the ND812 is
equipped. Some of these instructions are two-word |/O and others are single-word 1/0O,
The two-word |/ O commands are designated TWIO and are followed by the command

description. This always implies that the octal value of the first word of that command is
0740. The two-word /O cycle time is 5 ps.

Certain instructions are included which do not appear to be input/output commands
(primarily those which handle the INT and JPS registers). They, however, use the single-
word format, and are based upon the octal code for single=word I/O commands, 7400.
The single-word 1/O cycle time is 3 us.

4.9.1 INT AND JPS REGISTER INSTRUCTIONS

There are three instructions in this group. Their function is to enable the preservation and
reloading of the contents of the JPS and INT registers. They store the address at which
the program counter was dzposited upon generation of either a JPS instruction or an
interrupt condition. It is essential that their contents be preserved if a powerfail condition
should arise, because there would be no way of recovering the status of the system if

their contents were lost,

LDREG 7720 Load JPS from J, INT from K

Restores contents of JPS and INT registers previously loaded from memory (following their
deposition there in powerfail condition). Loads JPS and INT registers at any time,

LDJK 7721 Load JPS to J, INT to K

Loads contents of JPS register into J and contents of INT register into K. s usually
in powerfail routine to allow saving of JPS and INT register contents.

RJIB ‘ 7722 Set JPS and INT status

The two memory field bits for JPS and two memory field bits for INT are OR'ed from
their locations in J (J2 and J3 for JPS, J4 and J5 for INT) to the status register.

4-21

4.9.2 TELETYPE SYSTEM

~ The ND812 is usually equipped with a teletype interface, to which an ASR33 teletype is
normally connected. This device ontains a keyboard, printer, paper tape reader, and
a paper tape punch; all operate at 10 characters/second. The ASR33 cannot punch
independently of printing. It is a serial device; that is, the 11 bits constituting each
character are received by the interface and sent out least significant bit first, Eight

of the bits are information bits; the other three are timing or synchronizing bits.

When a character has been loaded into the input register of the teletype interface, the
interface raises its flag. Similarly, when a character has been shifted out of the print
buffer of the interface and print/punched, a separate flag is raised. Both flags will
generate an interrupt at the lowest level if it is enabled by an IONN instruction.

If the level is not enabled, or after the interrupt, the status of the flags may be tested
toward determining what is to be done.

Teletype input and teletype output each has four commands which may be executed to
transfer data into and out of the ND812, It is unnecessary that the ND812 operate in the
interrupt mode, but if a steady stream of characters is incoming, the programmer must be
certain that if he does not desire to operate in the interrupt environment, there is a status
and data transfer instruction executed at least every 80 ms; otherwise, there is a possibility
that data will be lost. The teletype always operates in the step modes.

TIS 7404 Skip if Keyboard Ready

Skips if character is ready from keyboard/reader. If tape were in reader and reader

. switch is set to START, or if key were struck, keyboard flag ready would be raised as
soon as that character were shifted into the interface buffer. If ND812 is operating in
interrupt mode, interrupt would be generated. If not, this instruction could be loop-
executed until it skips. In either event, skip occurs when flag is raised.

TIR 7402 Load Keyboard Into J

Loads contents of keyboard buffer into J. Clears keyboard ready flag. Does not cause
another character to be read from reader or keyboard.

TIF 7401 Keyboard-Reader Fetch

Reads another character into keyboard buffer. Does not transfer information into J,
Clears keyboard ready flag until loading complete. Then sets flag again.

TRF 7403 Keyboard Read~Fetch

Combines functions of TIR and TIF. Transfers keyboard buffer contents into J. Reads
more tape from keyboard into keyboard buffer. Clears keyboard ready flag until loading
complete,

4-22

TOS 7414 Skip if Printer-Punch Ready
Skips if teletype ready to accept character.

TOC 7411 Clear Flag

Clears print-punch ready flag. Is used if it is desired to lower flag without printing another
character, Clears out put interrupt conditions.

TCP 7413 Clear Flag, Print-Punch
TOP 7412 Print-Punch

Clears flag. Loads new character into print-punch buffer. New character is printed.
When print is complete, interface raises flag again. If lowest level interrupt is enabled
by an IONN instruction, a trap to location 1 (field @) will occur. These two commands
are approximately equivalent (resulting in same effect).

4,9.3 HIGH SPEED PAPER TAPE

The ND812 High Speed Paper Tape System is an opﬂon consisting of either a 125 or 300
character/second optical reader or a 110 character/second punch. Both input and output
through the J register.

Operation of the high speed paper tape is very similar to that of the low speed teletype.
The high speed paper tape and high speed paper tape punch have four commands to control
them. Both devices may be operated in either the interrupt or programmed modes. The
instruction timing is as given for all instructions.

HIS 7424 Skip HS Reader Ready

If character has been read since high speed reader flag was cleared, causes processor to
skip next instruction. Raising of HS reader flag generates (if lowest level interrupt is
enabled) interrupt request.

HIR . 7422 Clear Flag; Read HS buffer

Clears HS reader flag, transfers contents of HS reader buffer to least significant 8-bits of
J (bits 4 to 11), Does not cause HS reader to read another character.

HIF 7421 HS Reader Fetch

Causes HS reader to move and read another character from paper tape and clears récdy
flag. Does not clear buffer,

4-23

HRF 7423 HS Reader Read-Fetch

Combines actions of HIR and HIF. Causes transfer of character into J. Clears flag.
Causes HS reader to read another character,

NOTE

There is a similarity between the commands for the HS reader and the
standard teletype read-keyboard commands; therefore, the same programming
techniques work,

HOS 7434 Skip if HS Punch Ready

Initiates punch sequence after initial HOL command is given. Skips when HS punch buffer
has completed punching of last character. Raising of flag generates interrupt from lowest
interrupt enable if enabled.

HOL 7432 Clear Flag; Load Buffer

Clears HS punch flag and loads HS punch buffer from bits 4-11 or J register, Does not
alter J, '

HOP 7431 Punch on HS Punch
Initiates HS punch cycle. Does not clear flag. J is not altered.

HLP ' 7433 Load and Punch HS Punch

Combines functions of HOL and HOP commands to cause clearing of flag, reloading of
punch buffer and punching of character.

4,9.4 MAGNETIC CASSETTE TAPE SYSTEM

The magnetic cassette tape system records and recovers digital data from the ND812
processor on and from tape cassettes. Data is transferred via the lower 8 bits

of the J register at a rate of 500 characters/second. Facilities are included for installing
from one to three cassette tape drives, all of which can read and write filemarks, and move
forward at high speed or rewind. All of these operations are under program control,

If multiple cassette tape units are installed, each may be individually selected and
commanded to perform functions. Only one may be reading or spacing forward at a time,
but all may be writing or rewinding.

The cassette tape system is supplied with a full set of operating instructions (including the

ability to operate in the interrupt mode). In the interrupt mode, the cassette tape system
requests interrupts when enak'ed with the level output from the Level A interrupt enable

4-24

line, The cassette tape system generates trap addresses to the ND812, thus permitting
efficient program utilization of the interrupt system.

There are instructions to test for end-of-tape, beginning-of-tape, and filemark. Read and
write ready may also be tested, so operation of the magnetic cassette tape system in the
polled mode is possible. Testing of the non-read error may also be accomplished.

4,9.4.1 CONTROL FLAGS. Nine hardware flags are generated by the Tape Cassette
System which control the programming sequence. For example, a CSWR (skip if write
ready) instruction will not cause a skip unless the Ready Flag is set to "1", Table 4-1 lists
and describes the states of all nine control flags.

Table 4-1. Tape Cassette Control Flags

Flag Name Signal Name Flag States

Tape Error Flag ERFG ON (set to "1"):
Transport selected, a CRDT instruction
issued, and an error detected in both
track A and B,
OFF (set to "@"):
Reset by a CCLF instruction or read
re-initialized.

Read Flag ' RDFG ON (set to "1"):
Selected transport in read mode and a
character has been read into the read
buffer,
OFF (set to "@"):
Reset by a CRDT or CCLF instruction,
or the detection of an interrecord gap.

Write Flag WTFG ON (set to "1"):
Selected transport in write mode and
the write buffer is empty.
OFF (set to "@"):
Reset by a CWRT instruction.

Write Interrupt Flag WTIFG ON (set to "1"): ,
’ When Write Flag makes transition from
OFF to ON,
OFF (set to "@"):
Reset by a CCLF or CWRT instruction.

4-25 - e

Table 4-1, Tape Cassette Control Flags (Cont'd.)

Flag Name Signal Name Flag States
Ready Flag RDY ON (set to "1"):
Transport selected, cassette mounted,
and transport motion stopped.
OFF (set to "@"):
Transport not selected, or cassette not
mounted, or transport in motion.
NOTE
This flag is a test flag and
cannot be reset.
Ready Interrupt Flag RDYFG ON (set to "1"):
When Ready Flag makes a transition
from OFF to ON,
OFF (set to "@"):
Reset by a CCLF instruction or
processor start clear.
BOT Flag ‘ BOT ON (set to "1"):
When Ready Flag is on and transport
rewound to beginning of tape.
OFF (set to "@"):
When Ready Flag is off and transport
not at beginning of tape.
NOTE
This flag is a test flag and
cannot be resef,
EOT Flag EOT ON (set to "1"):

4-26

When Ready Flag is on and transport
wound to end of tape,

OFF (set to "@"):

Reset by a CSLCT or CHSR instruction,
or processor start clear.

Table 4-1. Tape Cassette Control Flags (Cont'd.)

Flag Name Signal Name Flag States

Filemark Flag FMFG ON (set to "1"):
When transport is selected and a
filemark is read during forward or
reverse tape motion.
OFF (set to "@"):
Reset by a CCLF instruction, when BOT
is on, or processor start clear.

4.9.4.2 PROGRAMMING GUIDELINE. Three trap locations in Memory Field 80 can be
used by the ND812 Central Processor if the user desires to program the Tape Cassette
System on an interrupt basis. To use the trap locations, the processor's level A interrupt
-circuitry (IONB) must be enabled and one of the following conditions must exist.

a. Read Flag set to "1", Causes the processor to trap to location ﬂﬂ/ﬂs.

b. Write Interrupt Flag set to "1". Causes the processor to trap to location

4051 5.

c. Filemark Flag or Ready Interrupt Flag set to "1". Causes the processor to
trap to location 8d61g.

NOTE

If the low level interrupt circuitry is accidently
enabled and programming provisions were not made
for interrupt servicing, the program will begin
executing at one of the three trap locations.

Records written on tape can vary in length from 1 character (8 bits) to 120, 000 characters
(limited by tape length). Termination of a record will be accomplished when the processor
fails to respond to a Write Flag within 400 us. |If the processor does not load additional

data within this time, the Write Flag will be reset and the write process will terminate.

When writing data or filemarks, do not issue another transport select until the currently
selected transport becomes ready (Ready Flag set to "1"),

A read operation will be terminated on an interrecord gap (IRG).

Start clear is generated when the ND812 Central Processor is turned on. Start clear rewinds

4-27 - e

all cassette transports to BOT, and clears all control flags.

‘When a cassette transport is runninn, a cassette select 1/O instruction (760X) will be ignored
by the transport, To ascertain that a cassette is properly selected, the following routine
is suggested,

CRDY, 0
760X
TWIO
CSTR
JMP.-3
JMP @ CRDY

4,9.4.3 TYPICAL PROGRAM SEQUENCE. Four flow charts are included which depict
typical cassette routine programming sequence. These figures are intended as a guide not
as a standard convention. Figure 4-1 provides a typical ready flow chart; figure 4-2
provides a typical cassette write data flow chart; figure 4-3 provides a typical write file-
mark flow chart; and figure 4-4 provides a typical cassette filemark search flow chart.

4.4,4.4 SPECIFIC INSTRUCTION SET. The Tape Cassette System is a software controlied
device that responds to a selected number of 1/O instructions. The following discussion lists
and describes these |/O instructions in four groups; Transport Select Instructions, Transport
Status Instructions, Transport Write Instructions, and Transport Read Instructions. Transport
Select Instructions are single word /O instructions; all others are two word instructions.
Refer to Table 4-1 for a description of control flags.

4.9.4.4.1 Transport Select Instructions. Magnetic cassette tape units do not obey commands
unless they are first selected by a cassette tape unit select command. These commands are

all single-word instructions. Whenever a cassette tape unit is to be selected, it must be
stopped. Selection can, in fact, be accomplished only when all units have completed any
prior commands and stopped. Once a unit has been selected and commanded to perform a
function, its selection or function may not be changed until it has again come to a stop.

CSLCTI 7601 Place Cassette 1 On=Line

Selects cassette tape unit one and de-selects all other cassette tape units previously
selected. No commands are accepted by cassette tape unit one until it is selected.

CSLCT2 7602 Place Cassette 2 On-Line

Selects cassette tape unit two and de-selects all other cassette tape units previously
selected. No commands are accepted by cassette tape unit two until it is selected.

CSLCT3 7604 Place Cassette 3 On-Line

Selects cassette tape unit three and de-selects all other cassette tape units previously
selected. No commands are accepted by cassette tape unit three until it is selected.

4-28

Select
CSLCT — — — transport

CRDT — — —/ bitsinto
J Register

Figure 4=1, Typical Cassette Read Flow Chart

4-29 - B

Load J
LDJ — ——| with 8 bits
Select
CSLCT — — — transport
CSWR _———
Transfer
CWRT —— — —/ 8-bit
character
CSTR — — — Transport

ready?

Figure 4-2. Typical Cassette Write Data Flow Chart

4-30

!

Select

CSLCT — — — | Transport

CSWR o Transport
ready?
Yes
Write
CSFM - filemcrk
CSTR —_——

Figure 4-3. Typical Cassette Write Filemark Flow Chart

4-31 -

Select
CSLCT —— — Transport
Space
_ ___ito
CSPF filemark
CSTR

Figure 4-4, Typical Cassette Filemark Search Flow Chart

4-32

4.9.4,4.2 Transport Status Instructions. After a cassette tape unit has been selected,

its ready status should be checked to determine whether a cassette has been mounted or all
previously selected operations have been completed. A selected cassette tape unit can

test ready only if it has a tape mounted and has completed a previous operation, or is at BOT,

CSTR © 0740-0124 Selected TWIO Skip if Transport is Ready (Ready Flag
set to "1")

If selected unit is finished with any command, and if cassette tupe is mounted, next command
is skipped. If cassette tape unit did not have tape mounted, command does not skip. [f
cassette tape unit was moving its fape on read or write, or had moved forward to EOT, skip
would not result, If cassette tape unit is high-speed-reversed, resulting BOT condition
enables skip function, '

CSFM 0740-0104 Skip on Filemark (Filemark Flag set to "1")

If a filemark has been sensed by system hardware, interrupt request is generated if lowest
interrupt enable were allowed. Cassette tape system then traps to location octal 61, MFC.
If interrupt system were off, interrupt would not occur but detection of filemark would cause
this instruction to skip. Filemark may be detected by system at any time. Skip executes
properly if it is given before tape unit passes end of record gap.

CSET ’ 0740-0110 Skip if Transport at End of Tape (EOT Flag set to "1")

Skips if On-Line magnetic cassette tape unit is in EOT condition. EOT condition is
logically derived from sensing tape-end signal while in forward motion state. If cassette
tape is dismounted after EOT is reached, interface recognizes EOT signal as BOT signal
when tape is remounted. It is therefore impossible for unit on which it was mounted to
obey high speed backward to BOT (rewind) command.

CSNE 0740-0122 Skip if NO-ERROR (Tape Error Flag set to "@")

If no track switching (as result of read error) has occurred since last time this instruction was
given, skip is executed. This instruction must be given within 1 ms following successful
skip on read ready flag. No-skip does not necessarily indicate that erroneous character was
transferred, because system hardware selects data from other tape track automatically.

CSBT 0740-0130 Skip if Transport at Beginning of Tape (BOT Flag set to "1")

Skips in BOT condition. s arrived at by sensing end of high-speed reverse command or
mounting cassette tape. Whenever unit is initially turned on, it attempts to rewind (HS
reverse) to BOT, If cassefte tape is mounted, it will do so.

The flags should be cleared to initialize the unit after a powerfail or turn-on. However, it

is not desirable that this command, if given at any other time, clear the write flag, because
this could prevent termination of an otherwise normal write operation.

4-33 -

CCLF 0740-0141 Clear All Cassette Control Flags

Resets the Read Flag, Write Inferrupf Flag, Ready Interrupf Flag, Filemark Flag, and Tape
Error Flag set to "g".

4,9.4,4.3 Transport Write Instructions. A write operation may be executed if a cassette
tape unit is in the ready state. Write status is attained by executing a skip if write ready,
This instruction actually causes the cassette tape unit to begin moving and enter the write
condition. [f no subsequent write transfer instruction is given within 400 ps, the system
assumes that the last character has been transferred, writes the initial interrecord gap, resets
the write flag, and stops. This is the normal method for terminating a write operation.
" Record length wrnHen is limited only by the length of the tape (approximately 120,000
characters).

CWFM 0740-0151 Write Filemark

Writes filemark code on cassette on=line unit. Unit must be ready, not executing any other
command, and not be at either BOT or EOT.

CSWR 0740-0152 Skip if Write Ready (Write Flag set to "1")

When initially given, causes motion of cassette tape; also places unit in write condition.

In interrupt mode, raising of flag causes interrupt if lowest level interrupt enable is armed.
This command does not clear write flag. Skipping occurs only when unit has transferred
previous character onto tape and is ready to write next character, or when initial interrecord
gap writing has been completed.

CWRT 0740-0154 Write Transfers 8 Bits to Buffer

Must be given within 400 ps of raising of write flag. Transfers data from bits 4=11 of J into
buffer of magnetic cassette tape unit controller. Also clears flag and is only command
which can clear write flag.

4,9.4.4.4 Transport Read Instructions, A read operation may be executed, if a cassette
tape unit is in the ready state. Read status is achieved by executing the instruction to skip
if read ready. The actual transfer of data from the cassette tape unit is accomplished by
executing a transfer eight bits to J. If the read status is attained by executing a skip if
read ready, but no subsequent transfer data to J is given, the selected cassette tape unit
will continue moving the tape forward; continue raising its flag to request data transfer or
no data; or will transfer, If the Level A interrupt enable is disarmed, no further interrupts
will be recognized. When the cassette tape unit finds the interrecord gap, however, it
comes to a halt and is ready to read the next block of data.

CSRR 0740-0142 TWIO Skip if Read Ready (Read Flag set to "1")

If selected cassette tape unit is stopped in interrecord gap or is at BOT, execution of this

4-34

command starts tape moving in forward direction; when first character of data is read from
tape, read ready flag is raised and skip occurs.

If Level A interrupt line is enabled during the time the read ready flag is raised, interrupt
occurs, If interrupt enable were not allowed, skip if read ready causes skip of next instruc-
tion. In either event, execution of skip if read ready instruction results in clearing of

read ready flag.

CRDT 0740-0144 TWIO Read Transfer 8=bits of J

If read ready flag is raised (signifying that cassette tape unit has loaded 8-bits into cassette
tape unit buffer), execution of this command causes 8 bits to be loaded into J register (bit
positions 4 to 11). Buffer is then cleared, and the read Ready Flag is set to "@". Tape
Error Flag is set to "1" if errors were detected,

CHSF 0740-0101 High Speed Forward To EOT

Causes the transport to run forward (left to right) at high speed if the Ready Flag is set to
“1", Sets the Filemark Flag to "1" on detection of a filemark. Forward motion is terminated
when EOT Flag is set to "1" or when CSPF is issued.

CSPF 0740-0102 Space Forward to Filemark

Causes the transport to run forward at normal speed until the Filemark Flag is set to "1",

Can be used with CHSF or CHSR for a high speed filemark search or during a read operation
to position the tape at the next filemark. After accepting command, unit stops in interrecord
~ gap following filemark,

CHSR 0740-0121 High-Speed Reverse to BOT

Causes the transport to run in reverse at high speed if the Ready Flag is set to "1". Sets the
Filemark Flag to "1" on detection of a filemark. Reverse motion is terminated when BOT
flag is set to "1" or if a CSPF is issued. It is good practice to give more than one on-line
unit this command (provided that, of course, more than one unit is off BOT position). BOT
is logically derived from unit being turned on initially, or EOT condition following a high
speed reverse command. High-speed continues at approximately twice normal motion rate
until BOT is sensed or space forward to filemark command is given.

4.9.4.5 MISCELLANEOUS INSTRUCTIONS. Two instructions perform important functions
which do not really fit the other functional classifications, They are STOP and unconditional
skip. Because it is often important to bring the ND812 to an order by program control, the
STOP command is important; the unconditional skip pemits skips of two-word and one-word
commands.

STOP 0000 Stop Execution

Causes ND812 to suspend operation. Depression of continue switch causes ND812 to resume

4-35 :

operation (if desired). Contents of low=-order six bits is inconsequential. These can be
employed to contain numerical value identifying which STOP has been executed in a prograr
_containing several STOPS,

SKIP 1442 Unconditional Skip

This instruction is a skip unconditionally command which skips the instruction following it.

IDLE 1400 One cycle delay
| Delays execution of next instruction for one memory cycle.
™WIO 0740 Two Word 1/0

First word of a two-word input/output instruction,

Fd X XX4 Field @
Fl XXX5 Field 1
F2 XXXb Field 2
F3 XXX7 Field 3

Specifies memory field in which two-word memory reference instructions will be executed.

4-36

SECTION V
PROGRAMMING FUNDAMENTALS

5.1 GENERAL

Understanding the instruction set is the first step in learing to program the ND812 computer
system. The next is learning the use of the instruction set to obtain correct results efficiently.
This is best done by studying the following programming procedures and techniques.

5.2 PROGRAMMING PROCEDURES

To successfully solve a problem with a computer, the programmer proceeds through the
phases of writing a program. These can be broken down into six basic steps.

5.2.1 DEFINITION

The definition of the problem is not always obvious. A great amount of time and energy
- can be wasted if the problem is defined inadequately; therefore, the programmer must form
a clear and comprehensive statement of the problem.

5.2.2 ANALYSIS

Determining the method to be followed is the second important step. There are, conceivably,
many methods of solving the problem, but one must be selected. After a method is selected,,
other analysis consists of laying out the problem in a form susceptible to arithmetical and/or
logical computation, determining what logical decisions must be made, and in what format
the data must be .

5.2.3 FLOW DIAGRAM

The programmer must design and analyze the solution by identifying the necessary steps
to solve the problem and arranging them in a logical order. Flowcharting is a graphical
means of representing the logical steps of the solution by the use of special symbols which
denote the various operations and the sequence in which they occur. The flowcharting
technique provides an overview of the logical solution flow.

5-1

5.2.4 CODING

Having designed the problem solution, the programmer begins to code the solution in the
programming language. This step is commonly called programming but is actually coding and
is only one part of the programming process. Coding is the process of converting the
operations listed in the flowchart into the language the computer will use (either instruction
language or compiler statements). When the program has been coded and the program
instructions have been stored in the computer memory, the problem can be solved.

5.2.5 DEBUGGING
The program checkout step requires the programmer to retrace the flow of the instruction
methodically to find any program errors that may exist.

If needed instructions are omitted or coding is performed incorrectly, the results will be

in error. These flaws ("bugs) must be found and corrected. Debugging is the process of
locating these errors in the program and correcting them. Various techniques are available
for this purpose. A program may be written to include some aids or a separate debugging
program may be run to test the operation of a malfunctioning program.

5.2.6 DOCUMENTATION

Merely writing a program which runs properly is not sufficient. Changes may be necessary

or it may be desirable to use the program or subroutines from it within another program. To
accomplish any of these tasks readily, it is necessary to include documentation which includes
a description of the program, flowcharts, and data format layouts of inputs and outputs.

5.3 FLOW CHARTING

When a complex problem is to be solved by a computer, the program involves many steps;
writing it often becomes tedious and confusing. A written method of solving a problem is
extremely difficult to follow; coding of computer instructions from such a document would

be equally difficult.

The flowcharting technique serves a number of very important functions. It is a map of how
the programmer intends to solve a problem. The chart illustrates the logical steps required,
the decisions to be reached, and the paths to be followed as a result of the decisions. If

it is properly annotated, it calls the programmer's attention to memory allocation, input/
output requirements, data accuracy considerations, and register usage. The flow diagram
is of vital importance in making such program changes as may be required and debugging «
malfunctioning program,

Flowcharts may be constructed at various levels of complexity. A high-level flow chart
is a very general overview, while a low-level flow chart may reach a correspondence
between symbols and instructions. Painstaking flowcharting has its own reward in the
encoding and debugging stages; the returns increase in direct proportion to the complexuty
of the program,

5-2

The flowchart is basically a collection of boxes and lines. The boxes indicate what is to
be done and the lines indicate the sequence. The boxes are of various shapes which repre-

sent actions performed in the program. Appendix B is a guide to the flowchart symbols and
- procedures used, '

The following flowcharts are examples of two types of flowcharting. The first is straight=line
programming, and the second is decision-making and branching. The examples illustrate
methods of attacking the problem via a computer program as well as flowcharting techniques.
In Figure 5~1, two numbers are added together and the result is stored in a third location

X+ Y—=>2).
‘ Start)

Clear
Accumulator

Load X Into
Accumulator

\

Add Y to

Accumulator

Store Accumu-
lator at Z

Figure 5-1. A Straight-Line Flowchart

Figure 5-2 illustrates how the largest and smallest of three unequal numbers (A, B, C)
are determined. The program must branch upon determining which numbers are larger
or smaller.

5.4 PROGRAMMING CONCEPTS
There are many concepts and techniques involved in programming which constitute the basis
of writing and developing a good program. Full understanding of when and where these

concepts can or should be used comes only from experience gained in programming. Some
of these basic concepts are discussed in the following paragraphs.

5-3

Clear

Accumulator

V

Load A Into
Accumulator

V

Subtract
B from A

Is

AC

Yes

Subtract C

sitiv

No

Subtract C

from A as abovd

from B as above

Subtract C

from B as above

__Yes

Subtract C
IFrom A as Oboﬁ

S

AC

Yes

ositive

No

C>A>B

A>B>C

A>C> B

NOTE: AC denotes Accumulator

Figure 5-2. A Branched Flowchart

5.4.1 LOOPING

A loop is a group of instructions designed to perform an iterative function. Therefore, the
loop must initiate, compute, modify, and terminate. Looping of a program is one of the

most powerful tools the programmer has. It enables him to perform similar operations many
times using the same instructions; thus memory locations are saved because he is not required
to store identical instructions several times. Looping also renders a program more flexible,
because it is relatively easy to change the number of loops required for various conditions

by resetting a counter. It should be remembered that looping is little more than a jump to

an earlier part of the program; however, the jump is usually predicated upon changing program
conditions. Figure 5-3 shows a typical looping situation.

(Start)

4

Load count of 100g in line
counter loc.

|

Load data into print buffer

\

[Print one line
of data

Decrement amount in line
counter by one,

Line
counter

> 8

Figure 5-3. Typical Looping Situation

5-5

5.4.2 ADDRESS MODIFICATION

Address modification is a very powerful tool of the programmer. Address modification refers
to the inclusion of instructions in a program to modify the operand portion of a memory
reference instruction. It is a particularly useful technique in working with large blocks of
stored data. However, because addresses are modified as the program runs, the program
cannot be rerun without being reloaded. Moreover, in debugging, the addresses will not
be as shown in the assembler listing. A programmer should include extra instructions in

the program to reset these values before they are encountered. This procedure is often
referred to as "housekeeping". Figure 5-4 shows a typical address modification situation.

‘ Start)

Set buffer start address to
1000q

Figure 5~4, Typical Address Modification
Situation

5.4.3 INDEXING

This term refers to a number of operations. The operation can be counting the number of
times an operation is performed; the process of modifying the operand portion of an instruction
word prior to its execution (without modifying it as contained in memory); or tagging data

in a file in memory.

Certain addressable registers are built into the computer to facilitate indexing. These

index registers and their associated circuitry are able to increment and/or decrement them-
selves as the result of a comparison of their contents and some other value.

5-6

The index registers are counters which are generally used to change the numerical value
of the address portion of a computer instruction to obtain an effective address. This
action is accomplished by modifying the word address register with the absolute value of
a number stored in the index register. The index process does not alter the instruction
word nor the number contained in the index register; thus, the use of the word as many
times as necessary in ifs indexed or non-indexed form is made possible.

5.4.4 AUTO-INDEXING

The method of indexing used in the ND812 is called auto-indexing. Two words are used
as auto-index registers in each memory stack of the ND812,

These locations have the property that if they are addressed directly, their behavior is
normal; that is, they simply act as the operand location and their contents are used normally .
However, if they are indirectly addressed by a single-word instruction, they first increment
their contents by one, after which the resultant value is restored as their contents. Finally,
the ND812 uses the modified contents of the auto-index location to access the operand

desired.

Single-word format instructions may address these two locations relatively, indirectly and

directly, but the operand must always be in the memory stack in which that instruction
resides.

When a single-word format instruction directly accesses either of the two locations, it
specifies this with a special value in the displacement field ("00g"). The forward/backward
~ bit specifies which of the two locations is to be used, and the direct or indirect bit specifies
whether the contents of the auto-index location are the operand or the address of the
operand. Two-word format memory reference instructions use the auto-index locations as
either an operand or the address to the operand in an indirect address. When used indirectly,
“the auto-index locations do not automatically increment.

5.4.5 SUBROUTINES

Subroutines are important means of developing conciseness in a program. Obviously, as

a program grows larger, certain functions are repeated. If the instructions required to perform
these functions are grouped, they may be referenced by relatively few instructions in the
main program -- thus obviating the necessity of writing the instructions in the main program
each time the function is being performed. A subroutine may contain other subroutines and
also be a part of a larger subroutine.

Included in the instruction repertoire is the instruction, "Jump-to-Subroutine". This
instruction makes linking to a subroutine from the main program possible. The "Jump-to-
Subroutine" instruction automatically stores the address of the instruction after the "Jump-to-~
Subroutine" in the location to which the program is instructed to jump; thereby, a return

is enabled. The programmer need only terminate the subroutine with an indirect jump to

5-7

the first location of the subroutine (JMPC) to return to the next instruction following the
" Jump-to Subroutine" in the main program.

5.4.6 INPUT/OQUTPUT PROGRAMMING

Input/output programming is the process of communicating with the computer. It involves
not only the transfer of data, but commands which control the operation of the peripheral
equipment. The computer I/O section is independent of the rest of the computer once it
is initiated; this permits 1/O operations and computations to occur simultaneously. For
instance, it is often desirable to alert the main program when a block buffer is complete;
the 1/0 instruction can perform such a function, which is generally classified as an I/O
interrupt. That is, when the data block has been transferred in or out, the I/O section
generates an interrupt command to notify the processor that the 1/O transfer is complete.
This does not specify that it was a good transfer of data; that is for the programmer to
determine. ‘ : :

5.5 PROGRAM PREPARATION

Now that programming procedures, flowcharting, and various programming concepts have
been defined, an example problem can be presented which will demonstrate the mechanics
involved in solving a problem using the ND812 computer. The example problem illustrates
programming concepts such as branching, looping and input/output subroutines. The

example problem also illustrates the mechanics involved in generating and modifying a source
program via Teletype keyboard using the Text Editor, and then assembling the source program
into an object (binary) program via the Assembler. The object program is then loaded into
the ND812 Computer and executed to solve the example problem.

5.5.1 DEFINITION OF EXAMPLE PROBLEM

The example problem is as follows. Input two unequal numbers defined as "A" and "B",
compare the two numbers and determine which is larger, and output a literal statement

"A >B", or "B>A" as applicable.
5.5.2 ANALYSIS AND FLOWCHARTING OF EXAMPLE PROBLEM

Since the example problem is infended to demonstrate the mechanics involved in solving a
problem using the ND812 Computer, the program will be as brief as possible. The following
ground rules apply to programming the example problem.

a. The inputs will be limited to two numbers defined as "A" and "B" for brevity.
The inputs will be unequal numbers in order to eliminate a check for A equal
to B, The inputs will be printed (echoed) at the Teletype for verification. The
inputs will be converted from ASCIl Code to a constant and stored in memory.

b. The inputs will be compared to determine which is larger. The result will
point to one of two addresses for a literal statement "A > B" or "B DA™,

5-8

c. The literal statement "A > B" or "B >A" will be printed at the Teletype.

d. The input and output controls will be programmed as subroutines since they
are used more than once.

Now that the example problem has been defined and analyzed, a flowchart can be con-
structed. Figure 5-5 illustrates the flowcharting of the example problem.

5.5.2.1 FLOWCHART DESCRIPTION OF EXAMPLE PROBLEM. (Refer to Figure 5-5.)
The program is given a starting address. The Teletype flag is cleared, and a jump to the
input subroutine is initiated to fetch an input for "A", The input is fetched, echoed at
the Teletype, and converted from ASCII to a constant. A jump is initiated which allows return
to the main program. The constant for input "A" is stored in memory. A jump to the input
subroutine is initiated to fetch an input for "B". The input is fetched, echoed at the Teletype,
and converted from ASCII to a constant. A jump is initiated which allows return to the main
program. The constant for input "B" is stored in memory. The value for "A" is loaded into
the accumulator. The memory location containing value "B" is subtracted from the accumu-
lator. The resultant is tested for a positive value. If resultant is positive, the accumulator
is loaded with the address of the literal statement "A > B". If resultant is not positive,

the accumulator is loaded with the address of the literal statement "B > A",

A jump to output subroutine is initiated. The address of "A > B" literal or "B > A" literal
is stored at memory location which is used in the output routine.

NOTE

The output subroutine consists of a loop which outputs
ASCII characters one at a time. A constant defined as
loop counter is stored in memory, and is set equal to the
number of loops required to output a given set of stored
ASCI! characters. During each loop, the address
(which points to the address of next ASCII character) is
incremented by one and the loop counter is decremented
by one. When the loop counter is zero, indicating all
ASCII characters have been printed at the Teletype, o
jump is made back to the main program,

After the address of the first ASCII character has been stored in memory, the loop counter
constant is loaded into the accumulator from memory. The loop counter is then stored in a
difference memory location to allow a decrement of one during each output loop. An
instruction is executed which loads the first ASCIl character into the accumulator. The first
character is printed on the Teletype, and the Teletype flag is cleared when done. The
literal address is incremented by one, the loop counter is decremented by one and the loop
counter is tested for a zero. If the loop counter is not zero, the next ASCIl characrer is
loaded into the accumulator, The second character is then printed on the Teletype, and
the Teletype flag is cleared when done. The literal address is incremented by one, and the

5-9

loop counter is again tested for a zero. If the loop counter is not zero, the cycle repeats
until the loop counter is zero indicating that all ASCII characters have been printed at the
Teletype. A jump is then executed for return to the main program. Upon return to the

main program, a stop is initiated. When the computer front panel CONT switch is depressed,
a jump is executed to return to the starting address. The jump instruction eliminates re-
loading the program into the computer.

5.5.3 CODING EXAMPLE PROBLEM IN ASSEMBLY LANGUAGE

Now that solution of the example problem is defined, and flowcharted (Figure 5-5), the
problem is ready to be coded. This step is commonly referred to as programming, but is
actually coding and is only one phase of the programming process. The problem is coded
in Assembly Language utilizing the Assembler mnemonics presented in Section |V, Refer
to Figure 5-5, and Section IV while coding the example problem. The coding for the
example problem is given in Table 5-1,

The example problem (Table 5-1) is coded in the source program format acceptable by the
BASC-12 Assembler. The statement format has four fields; a LABEL field, an INSTRUCTION
field, an OPERAND field, and a COMMENT field. Refer to the applicable BASC~12 Gen-
eral Assembler Software Instruction Manual, Section I, for a detailed definition of terms,

symbols, and terminators (such as a comma, slash, or asterisk) used in coding the éxcxmple
problem,

5.5.3.1 LOCATION ASSIGNMENT. The programmer assigns an absolute location to the
first instruction which serves as the starting address. The Assembler then assigns successive
locations in order when the program is assembled. In programming the ND812 Computer, the
initial location is preceded by an asterisk (*). When the program is assembled via the
Assembler, the Assembler maintains a "current location counter" by which it assigns successive
locations to instructions. The asterisk causes the current location counter to be initially set
to the value followed by the asterisk. The starting address is usually 0200 denoted as *200

in the coded program (Table 5-1).

5.5.3.2 SYMBOLIC ADDRESSES. When coding the program initially, the programmer
does not know which locations he will use to store constants or instructions. Therefore,
when coding a Memory Reference Instruction, the programmer assigns symbolic address tags
which were predefined or will be defined later (a symbolic name followed by a comma isa
symbolic address). The Assembler maintains a symbol table in which it records the octal
values of all symbolic addresses. Refer to Table 5-1 and note the symbolic address name
tags following each Memory Reference Instruction, '

5-10 .

Table 5-1, Example Problem, Coded

COMMENTS

LABEL INSTR OPERAND
/Input and store values for A & B
*200
Start, TIF
JPS Input
STJ A
JPS Input
STJ B
/
/Determine which of the two values is larger
LDJ A
SBJ B
SIP J
JMP BRAN
LDJ ABCST
SKIP
BRAN, LDJ BACST
/
/Set up and output expression
/
JPS ouT
STOP '
JmP START
/
/Working or data storage area
/
A, g
B, g
ABCST, AB
BACST, BA
C269, 2640
/ ,
/Input routine + ASCII zone strip
/
Input, g
TIS
JP =1
TRF
TCP
TOS
JMP -1
SBJ C260
JMP@ T INPUT
/

5-11

/Clear TTY Flag
/Get Value for A

/Get Value for B

/Subtract B from A
/Test for A positive
/No! B > A

/Yes! A >B

/Skip Next Instruction

/Constant A

/Constant B

/Address of A > B Literal
/Address of B > A Literal
/ASCIl Zone Constant

/Entry Point

/Echo Input at Teletype

Table 5-1. Example Problem, Coded (Cont'd.)

OPERAND

COMMENTS

/Qutput Routine = Output ASCII Expression

i

LABEL INSTR

/

Out,)
STJ
LDJ
STJ

/

/ Output Data Loop

/

Loop, TWLDJ
g
TCP
TOS
Jmp
1Sz
DSZ
JMP
JMP@

C5, 5

CIR, 7}

/Output Messages

/

AB, 215
212
301
276
302

BA, 215
212
302
276
301

$

LOOP+1
C5
CTR

o1
LOOP+1
CTR
LOOP
ouT

/A
/>
/B

/B
/>
/A

/Entry Point

/Set Number of Character Constant

/Test For All Characters Out
/No
/Return

/End Character

NOTES: 1. The dollar sign is the terminal character for the assembler. 7
2. The comma after a symbol (e.g., START,) indicates to the assembler that

the symbol is a symbolic address.

5-12

5.5.3.3 DESCRIPTION OF CODING FOR EXAMPLE PROBLEM. The coding for the
example problem (Table 5-1) is divided into eight groups for ease of understanding. The
groups are headed by a comment line preceded by a slash. The comment lines have no
significance in solution of the problem by the computer, and are provided only as an aid in
understanding the coding. Comment lines are always preceded by a slash. The eight groups
are as follows (refer to Table 5-1),

1. /Input and Store Val ves for A & B
2. /Determine Which of Two Values is Larger

3. /Set Up and Output Expression

4. /Working or Dc;fc Storage Area

5. /Ihpuf Routine + ASCIl Zone Strip

6. /Output Routine - Output ASCII Expression |
7. /Output Data Loop (Part of outp‘uf routine)
8. /Output Messages

The fo”owing discussion of the coding will be presented under the above headings indivi-~
dually,

+5.5.3.3.1 Input And Store Values For A & B. The starting address for the example problem
is 0200 signified by *200, which sets the program counter to 0200. The START, in the label
field of the second line of coding provides a tag for return to the beginning of the program.
Next, the Teletype flag is cleared to allow an input for "A" to be entered into the Teletype
buffer via keyboard. The JPS instruction initiates a jump to the input subroutine +ASCII
Zone strip defined by INPUT tag. The input for "A" is fetched from the Teletype buffer and
stored in the accumulator (J register), echoed at the Teletype printer, and the number 260
(stored in memory) is subtracted from the J register. Thus, the ASCII character input from
the Teletype is now converted to a decimal constant which resides in the J register. Next,
an unconditional jump (JMP@) is initiated which allows return back to the main program
via INPUT tag (which contains return address).

The J register which contains the decimal constant for input "A" is stored in memory. The
second JPS instruction initiates a jump to the input subroutine +ASCII Zone strip. The input
for "B" is fetched from the Teletype, echoed, and converted to a decimal constant which
resides in the J register. An unconditional jump is again initiated which allows retumn to
the main progrom via INPUT tag. Next, the J register which contains the decimal constant
for input "B", is stored in memory.

5.5.3.3.2 Determine Which Of Two Values Is Larger. The decimal constant for "A" is

5-13

loaded into the J register from memory. The memory location containing decimal cons
for "B" is subtracted from the J register. The J register is tested for a positive value, «
_positive, the next instruction is skipped. The J register is then loaded with "ABCST",

is the address of the ASCII Code for a carriage return in the literal output statement.
skip instruction allows an unconditional skip of the next instruction. The next instructi
a JPS instruction which initiates a jump to the output subroutine (paragraph 5.5.3.3.6)

If the J register is not positive, indicating B>A, an unconditional jump is initiated to
"BRAN", a symbolic address tag for an LDJ instruction. The LDJ instruction causes the
J register to be loaded with "BACST", which is the address of the ASCII Code for a
carriage return in the literal output statement. The next instruction is a JPS instruction
which initiates a jump to the output subroutine (paragraph 5.5.3.3.6).

5.5.3.3.3 Set Up And Output Expression. This area consists of a JPS, STOP, and JMP
instruction. The JPS instruction allows a jump to the output subroutine, and OUT provide
a tag to the saved address for return to the STOP instruction. The STOP instruction stops
the computer signifying the end of this computation, The JMP instruction allows return to
START (via symbolic address tag "START") when the computer front panel CONT switch is
depressed. This instruction eliminates reloading the program for execution of successive
inputs for "A" and "B", '

5.5.3.3.4 Working Or Data Storage Area. This area provides storage for symbolic address
tags A, B, ABCST, BACST, and C246@. Locations "A" and "B" are initially loaded with the
value zero, and provide storage for the decimal constants for "A" and "B" during execution
ABCST is the address of AB which contains the ASCII Code 215, BACST is the address of

BA which also contains the ASCI] Code 215, C26@ contains the value of ASCIl Zone consta
- 260 which is subtracted from the Inputs to obtain the decimal constants for "A" and "B".

5.5.3.3.5 Input Routine +ASCIl Zone Strip. Input (initially set to zero) is the saved
address for return to the main program after completion of the input subroutine. The TIR
instruction checks Teletype flag, and if the flag is not cleared, the JMP .-1 causes loop
back to the TIS instruction until an input is entered at the Teletype keyboard. When an
input for "A" or "B" is entered at the Teletype keyboard, the TRF instruction causes the
flag to be cleared, the input is loaded into the J register, and the flag is set to one when
done. The TCP instruction causes the input for "A" or "B" to be echoed at the Teletype
printer. The TOS and JMP . -1 instructions check to see if the input has been printed and
causes a skip to the next instruction when done. The SBJ instruction causes the stored
ASCIl constant 268 to be subtracted from the contents of the J register via symbolic address
tag C26@. The J register now contains the decimal constant for the "A" or "B" input. The
JMP@ instruction allows a jump back to the main program area via symbolic address tag

INPUT.

5.5.3.3.6 Output Subroutine = Output ASCII Expression. Out (initially set to zero) is the
saved address for return to the main program after completion of the output subroutine., At
entry of the subroutine, the J register contains the address of the first character for the

"A > B" or B> A" literal (which is a carriage return), The STJ instruction causes this address

to be stored one location past loop via loop+1 symbolic address tag. The LDJ instruction causes
the J register to be loaded with the address of the loop counter constant. The STJ instruction
causes the contents of Memory at C5 to be stored at memory location defined as CTR.

NOTE

The output data loop is set up to produce a carriage
return and line feed at the Teletype and output

"A > B" or "B >A" literally, one character at a time.
The number of output characters is five, thus five

loops are required to output all characters. Therefore,
memory location C5 contains a decimal constant of five.
The CTR location allows this count to be decremented
during each loop thus saving the constant loop value
contained at location C5 for successive executions,

5.5.3.3.7 Output Data Loop. The output data loop begins with a TWLDJ instruction which
is a two-word instruction. The J register now contains the first ASCII literal character (ASCII
value 215). The TCP instruction causes the first output character (carriage return) to be sent to the
Teletype printer. The TOS and JMP.-1 instructions check to see if the Teletype input

has been printed, and causes a skip to the next instruction when done. Ths [SZ instruction
causes the memory location "LOOP+1" to be incremented by one via symbolic address tag
"LOOP+1". Loop+1 now contains the address of next ASCII character (212), The memory
location tagged CTR is decremented by one, and checked for a zero. If location CTR is

not zero, the JMP instruction causes an unconditional jump to loop. The J register is

loaded with the next ASCII character (212), The above loop repeats itself until all charac-
ters are printed out at the Teletype (CTR = @). When CTR is equal to zero, the next
instruction (JMP) is skipped, and the JMP@ instruction causes a return to the main program
via saved address at label OUT,

5.5.3.3.8 Output Messages. The output messages contain the literal statements to be
printed at the Teletype during the output data loop. The "AB" is the label for the first
character of the A > B literal message, and the "BA" is the label for the first character
of the B > A message. ASCII values 215 and 212 cause a carriage return and line feed at
the Teletype, respectively. During the output data loop, the A > Bor B > A literal
characters are printed one ot a time. For example, if the inputs for "A" and "B" were "3"
and "6" respectively, the output would be as follows.
36
3>a63
& B

5.5.4 TEXT EDITOR

The Symbolic Text Editor (a program itself) is used to create and modify symbolic program
(source) tapes via the Teletype keyboard on line. This eliminates the tedious task of
generating source program tapes off-line.

5-15

7

With the Symbolic Text Editor loaded into the ND812 Computer, the programmer uses the
Teletype keyboard as a typewriter. As the program is entered on the keyboard (as coded),
it is immediately stored in a buffer storage area of the ND812 Computer where it can be
checked, corrected, and modified. When the programmer is ready to generate the source
program tape, the proper command causes the Symbolic Text Editor to produce a source tape
suitable for assembling into an object (binary) tape which will, in turn, run on the ND812
Computer, ' ‘ ’

The Symbolic Text Editor operates in either Command Mode or Text Mode to distinguish
between editing commands, and actual text which is entered into the buffer. All
commands are single letter or single letter with arguments. Commands are executed by
typing the RETURN key at the Teletype keyboard. Refer to the ND812 Symbolic Text

Editor Software Instruction Manual, IM41-0002 for detailed description and use of the
Editor, o '

5.5.4.1 PRODUCING EXAMPLE PROGRAM USING THE SYMBOLIC TEXT EDITOR. Now
that the example problem has been coded (Table 5-1), the programmer may generate a
symbolic source tape via the Symbolic Text Editor. Refer to ND812 Symbolic Text Editor
Software Instruction Manual, IM41-0002 for loading and use of the Editor. Appendix

A of the Editor Manual provides complete loading and initialization procedures for the
ND812 Text Editor. Sections | through V describe the Symbolic Text Editor and its use

in generating source program tapes.

Upon command, the Symbolic Text Editor will print the contents of the text buffer at the
Teletype. A printout of the example is given in Table 5-2,

- 5.5.5 BASC-12 GENERAL ASSEMBLER

The BASC-12 Assembler is a 2-pass Assembler (with optional 3rd pass) which is loaded into

the ND812 Computer via Teletype or Tape Cassette, The BASC-12 Assembler, hereinafter

referred to as the Assembler, translates symbolic mnemonics (source programs in the form of
paper tape or cassette) into binary machine instructions (object program). The object pro-

gram is then directly executable by the ND812 Computer.

There are three Assemblers, as follows.

1. BASC-12 General Assembler, 41-0001, designed to run in a 4K ND812
Computer.

2, BASC-12 General Assembler (8K) for Line Printer Printout, 41-0028.
3. BASC-12 General Assembler (8K) for Teletype Printout, 41-0084;

Refer to the BASC-12 General Assembler Software Instruction Manual, IM41-0001 for
detailed description and use of the Assembler.

5-16

Table 5-2. Teletype Printout of Example Problem

L
/LABEL INSTR OPERAND COMMENTS
/
/INPUT AND STORE VALUES FOR A & B
*200 : '
START., TIF /CLEAR TTY FLAG
JPS INPUT /GET VALUE FOR A
STJ A :
JPS INPUT /GET VALUE FOR B
STJ B
/
/DETERMINE WHICH OF THE TwWO VALUES IS LARGER
L.DJ A
SBJ B /SUBTRACT B FROM A
SIP J /TEST FOR A POSITIVE
JMP BRAN /JNOY!Y B > A
LDdJ ABCST /YES! A > B
SKIP /SKIP NEXT INSTRUCTION
BRAN » LDJ BACST
/
/SET UP AND OUTPUT EXPRESSION
/
JPS ouT
STOP
JMP START
/ '
JWORKING OR DATA STORAGE AREA
/
As 6] /CONSTANT A
B» a /CONSTANT B ,
ARCST, AB /ADDRESS OF A > B LITERA
BACST, BA /7ADDRESS OF B > A LITERAL
C269, 264 /ASCII ZONE CONSTANT
/
ZINPUT ROUTINE + ASCII ZONE STRIP
/
INPUT,] /ENTRY POINT
TIS
JMP =1
TRF
TCP /ECHO INPUT AT TELETYPE
TOS
JMP o=-1
SRJ ca60
JMPe INPUT

Table 5-2. Teletype Printout of Example Problem (Cont'd.)

/
/0UTPUT ROUTINE - OUTPUT ASCII EXPRESSION
/
QUT, %] /ENTRY POINT
STJ LOOP+1
LDJ CS /SET NUMBER OF CHARACTER CONSTANT
. STJ CTR
/
/0UTPUT DATA LOOP
/
LOOP, TWLDJ
)
TCP
TOS
JMP o-1
152 LOOP+1 .
DSz CTR /TEST FOR ALL CHARACTERS 0OUT
JMP LOOP /NO
JMPe OUT / RETURN
C5» S
CTR,]
/
/0UTPUT MESSAGES
/
AB, 21%
212
301 /A
276 />
3a2 /B
BA, 215
212
332 /B
276 />
321 /A
% /END CHARACTER

5.5.5.1 ASSEMBLING THE EXAMPLE PROGRAM USING THE BASC-12 ASSEMBLER.
Once the source tape for the example program has been produced, the programmer may
generate a binary (object) tape via the Assembler. There are various options available to
the programmer in assembly of the source program. Refer to the BASC-12 General Assembler
Software Instruction Manual, IM41-0001 for specific instructions on loading and using the
Assembler. Appendix E of the Assembler Manual provides complete procedures for loading
and initialization of the Assembler. Sections | through V describe the Assembler, the
options available, and the use of the Assembler in generating binary tapes and listings.

If Assembly Language mistakes exist in the coding, the Assembler will detect these errors

and provide an error message on printout (pass 3) of the assembler. The following is an
example of an error indication on the pass 3 printout.

/OUTPUT MESSAGES

/
254 ©3I21 AB, 3a1 /A
0251 0276 276 />
8252 w3g2 3g2 /B
8253 232 BA, Jaz /8
IS & AT 2254
m254 fago 276 >
2255 pf3ey 321 /A

 Note the "IS A AT #254" which indicates that an error exists at location #254. The >
character should have been preceded by a slash (i.e., / >).

Even though a source program assembles successfully, the Computer will not execute the

program if logic errors exist. In this case, the program would require debugging, editing,
and re-assembly.

Table 5-3 provides a listing of the example program as produced by pass 3 of the Assembler.
5.5.6 LOAD AND EXECUTE THE EXAMPLE PROBLEM,

The binary object paper tape produced by the Assembler may be loaded directly into the
ND812 Computer via Teletype and executed.

Load and execute the binary tape as follows.

a. Set Computer front panel power switch to POWER ON position, and Teletype
LINE/OFF/LOCAL switch to LINE, .

b. Depress ND812 Computer STOP switch.

c. Place the binary tape into the Teletype Reader with the leader (level 8
punched) over read head.

d. Set Teletype START/FREE/STOP switch to START position.

e. Simultaneously depress ND812 LOAD AR and NEXT WORD switches. The
Teletype Reader will step through the paper tape leader and read the program
into the ND812 Computer Memory. Upon completion, the Reader automatically
stops. After Reader stops, set ND812 Computer SELECTED REGISTER switch
in J position and verify that J register is zero (all lamps off). If J register is
not zero, repeat steps a through e,

f. Set Teletype START/FREE/STOP switch to FREE position.

g. Set ND812 SWITCH REGISTER switches to 82080, and depress LOAD AR and
START switches,

The example program is now in the computer and running waiting for an input for "A",

Type a number at the Teletype keyboard and the number will be immediately echoed at the
Teletype. Now type another number greater or less for input "B" and the number will be
immediately echoed at the Teletype. Next, a carriage return and line feed will occur and a
literal statement "A > B" or "B > A" will be printed at the Teletype. The Computer will
then stop. Depressing the CONT key restarts the computer for successive execution of the

program.

5-20

Clear
TTY flag

JPS (1),
Fetch
input
for A

'

Store

constant
for A

in memory

JPS (1),
Fetch
input
for B

!

Store
constant
for B

in_memory

'

Load A
into
accumulator

!

Subtract
B from A

Yes (A > B)

Load J Registen
with address
of B >A

literal

No (B > A)

with address

of A > B

Load J Register

literal
i

-

JPS (2)

Stop

Figure 5-5. Example Program Flowchart

(Sheet 1 of 2)
5-21

Input
subroutine(1)

Fetch char.
from TTY,
foad in
accumulator

Echo input

Strip ASCII
zone bits
from input

Figure 5-5. Example Program Flowchart
(Sheet 2 of 2)

5-22

——

Output
subroutine (2)

Store addr.
of A >Bor
B > A lit.

in memory

i

Load foop
counter in
accumulator

'

Store
counter

Load
accumulator
with

literal

lear print/
punch, out-
put char.,
IeoL print
bunc

Increment
literal
address

1

Decrement
loop
counter

Yes
oop counfe Return
= g?

Table 5-3. Listing of £xample Program Produced by Assembler

/INPUT ANC STCRE VALUES FOR A & B

*200
pa2cs 740y START, TIF /CLEAR TTY FLAG
heny 6423 JPS INPUT /GET VALUE FOR A
gzr2 5415 8TJ A ; ,
©Len3d 64zt JPS INPUT /GET VALUE FOR B
n2c4 3414 ‘ STJ 8 .
/
JOETERMINE wHICH OF THE TwQO VALUES IS LARGER
©wanrs m@12 LDJ
Bere 4w12 SBJ B /SUBTRACT B FROM A
wae7 1562 SIP J /TEST FOR A POSITIVE
g219 &Y JMP BRAN /NO! B » A
P21l sSat1y LDJ ABCST /YES] A » B
HK212 1442 SKIP /SKIP NEXT INSTRUCTION
213 5aB7 BRAN, LDJ BACST
/
/SET UP AND OUTPUT EXPRESSION
/
214 6421 JPS ouTv
215 waga STOP
216 6116 JMP START
/
/WORKING OR DATA STORAGE AREA
/
2217 uvaAgd A, 2 /CONSTANT A
p22a gugp B, 0 /CONSTANT B
@221 ©254 ABCST, A8 /ADDRESS OF A » B LITERAL
w222 @261 ©HACST, BA /ADDRESS OF B » A LITERAL
P23 (c26¢ (263, 262 /ASCII ZONE CONSTANT
/
JINPUT RAOUTINE + ASCII ZONE STRIP
/
p2ed wvupd INPUT, 0 /ENTRY POINT
C225 7424 TIS
pees o6iet JMP o=
n227 7413 TRF
0238 7413 TCP /ECHO INPUT AT TELETYPE
padL 7414 T0S
©232 6141 JMP sl
B3I 41192 sB8J C262
t234 631¢ JMFP e INPUT
/
/Z0UTPUT ROJTINE = QUTPUT ASCII EXPRESSION
/
£235 avge OuUT, 2 /ENTRY POINT
2236 54¢4 STJ LOOP+}
£237 5013) LoJ cs /SET NUMBER OF CWMARACTER CONSTANT

5-23

Table 5-3. Listing of Example Program Produced by Assembler (Cont'd.)

@249 5413 STJ CTR

/

/O0UTPUT DATA LOOP

/

~Bedy wi4@ LOOP, TWLDJ

ged2 gep? 2
w243 7443 TCP
244 74414 TOS
peds §Ss1iled JMP 2!
g246 3ISe4 182 LOCP+1
p24a7 3Juvr4 D82 CTR /TEST FOR ALL CHARACTERS OQUT
pese o617 JMP LOOP /NO
p251 63414 JMP® ourT /RETURN
gar2 ¢eps5 C5, 5
0253 ¢3¢0 CTR, [

/

/0UTPUT MESSAGES

/
2284 €215 AB, 215
P25 pea12 212
ness v3gt 301 /A
ves7 pe7e6 276 />
263 p3p2 Ja2 /8
P261 0215 BA, 215
p2e2 e242 212
8263 @3m2 322 /B
R2r4 pr76 276 />
p2ss 23nt 301 /A

8E 12¢¢

A a 3217

AB ® 1254

ABCST . 2224

3 s N220

BA n V261

BACST a 4222

BRAN s 4213

ca6e s 48223

Cs s 8252

CTR 3 4253

INPUT s Q2224

LOOP s A24¢

ourT s 4235

START s 2200

ER o2¢0

5-24

SECTION VI
COMPUTER LANGUAGES

6.1 BASC-12 ASSEMBLY LANGUAGE

The BASC-12 Assembly Language provides the programmer with symbolic mnemonics which
can be interpreted by the BASC-12 Assembler. [t is composed of simple, brief expressions
which provide translation from symbolic coding to machine language object coding for the
ND812. The BASC-12 Assembler is a two-pass assembler (with an optional third pass) which
translates the mnemonics of the source language into machine instructions executable by

the ND812 hardware. Pass one generates a symbol table, pass two produces a binary (object)
output tape, and pass three provides a listing of the program. :

The assembly language includes a wide variety of operations which allow the fabrication of
desired fields based on information generated at assembly time. The instruction operation
codes are assigned mnemonics which describe the hardware function of each instruction.
Assembler directive commands provide the programmer with the ability to generate data

words and values based on specific conditions at assembly time. The program counter provides
a means of controlling address generation during assembly of a source code program.

6.1.1 SYMBOLIC CODING FORMAT

In writing instructions using the assembly language, the programmer is primarily concerned
with three fields: a label field, an operation field, and an operand field. It is possible to
relate the symbolic coding to its associated flowchart (if desired) by appending comments to
each instruction line or program segments. All of the fields are free-form to provide the
greatest convenience possible for the programmer, Consequently, the programmer is not
hampzred by the necessity to consider fixed-form boundaries in the design of his symbolic
coding. ‘

6.1.2 MNEMONIC INSTRUCTION DIRECTIVES

The assembly program recognizes a set of mnemonic instructions representing the machine
cade instructions listed in Appendix B.

The symbolic assembler directives control the assembly processor just as operation codes

6-1

control the central processor. These directives are represented by mnemonics which are
written in the operation field of a symbolic line of code; the flexibility of these directives
is the key to the power of the assembler. The directives are used to equate expressions,
adjust the program counter values, and afford the programmer special control over the
generation of object coding, These directives and their respective functions are as follows.

a. BLOCK, which repeats an instruction n times.

b. PAUSE, which stops the program to allow some job to be performed and
continues when the operator requests it.

c. FIXTAB, allows labels to be added to permanent symbol table which would
normally be erased after pass one.

d. ERASE, which deletes all entries in the label table except standard system
directive labels,

e. RETURN, which generates the necessary instruction at the end of a subroutine
to allow the program to return to the main program.

f. ENABLE, which definesa speciél directive for a programmer and allows him
to code his own directive.

6.2 NUTRAN LANGUAGE

- NUTRAN is a conversational, FORTRAN-like language intended for general computational
use in scientific applications. Simple commands, a conversational mode, and thorough input
checking make the language easy to use without previous programming experience. The
NUTRAN programming concept thereby provides the user with an ultimately flexible,
expandable, and extremely "usuable" data acquisition and analysis center which users can
tailor to subjective needs.

The uses of NUTRAN are varied. Nuclear Data initially designed NUTRAN for scientific
uses, and in particular, for stating mathematical and scientific problems in a language more
closely associated with experimental requirements than with direct control of the ND812
Computer. NUTRAN, however, has also proven itself in many commercial and industrial
applications. As specific user needs develop, any of the valid NUTRAN commands described
in NUTRAN manual may be implemented to further extend the practicality of NUTRAN,

The outstanding characteristic of NUTRAN is the continuing dialog between user and
computer. NUTRAN statements are entered by the user at a remote device. When the
program is executed, the statements are then automatically translated during execution, the
interpreter responds by directing an error printout on Teletype. Also, if desired, as the
program is being executed, literal messages and results of computations may be printed on
Teletype. The features of NUTRAN conversational language are as follows.

6-2

The user has immediate and sustained access to the computer.

The user may selectively construct, execute, and edit statements or complete
routines, change values of variables, and request information from th
computer, ' ‘

The user has diagnostic facilities to debug his NUTRAN program.

The user need not be concerned about integer and floating point data type
formats,

SECTION Vil :
PROCESSOR AND PERIPHERALS

7.1 GENERAL

A typical ND812 processing system is comprised of an ND812 computer, an ASR33 Tele-
typewriter set, and an assortment of peripheral devices tailored to needs of the user. This
chapter addresses itself to general descriptions of the individual equipments or "building
blocks" which constitute Nuclear Data systems,

7.2 THE ND812 COMPUTER

The ND812 is a general-purpose computer designed for scientific applications. The basic
ND812 is a 12-bit, 4K computer, with optional 8K, 12K or 16K memories. The ND812 is
extremely versatile in that all core locations (up to 16K) are directly addressable by a
two=word instruction. A total of 256 single-word or 4095 two-word input/output (I/O)
commands is possible. Other outstanding features are the 12 or 24-bit programmed 1/O
transfer, a four-level programmable priority interrupt, four microprogrammable pulses per
I/O instruction, direct memory access, four arithmetic registers, hardware multiply and
divide, and fully-integrated control logic circuitry.

7.2,1 ND812 COMPUTER FRONT PANEL

Figure 7-1 illustrates physical location of the ND812 Central Processor front panel controls
and indicators. Table 7-1 lists and describes ND812 Central Processor front panel controls
and indicators, The first column lists nomenclature, second column lists the control descrip-
tion and the third column describes the function,

Table 7-1, ND812 Central Processor Controls and Indicators

Control/Indicator A Description Function

POWER OFF/POWER Three position Placing this key switch in POWER OFF
ON/CONTROL OFF key switch position disables all primary power for the
switch processor. In POWER ON position, power

is applied to all circuits and manual
program control is possible.- In

7-1

$10JDDIPU| PUD S|0JJUOY) J0SSBJ04Y [PUUDD) ZI8QN ° L=/ @4nBiy

e b i - - N
— N
LJ ..DD | 440 340
104 LNOD ¥in0d
T V 1 NG
I T TP y € ,, 1 10, .1 o yanoa
4ILS193U ANONIN G314 ANDWIN
OO0 OO0OO0O0O0O0O0OO0O0OO0OO0 o O
LeN¥UILNT NNY 1t ot 8 8 L 8 S y € z t 0 t 0
L J L | I - e J
= ¥ILS1938 03193738 IITEISE] snLvs
= %_ooooooooooooo @
it 0g 8 8 L] [v [4 1 ¥
JISNLSIS, oy NI 3)L) 4 a0v4¥3A0 P
¥3LS193Y
ﬁ 123138
J
st

7-2

Table 7-1. NDB812 Central Processor Controls and Indicators (Cont'd.)

Y

Control/Indicator

Description

Function

SELECT REGISTER

switch

SELECTED REGISTER

indicators

Eight position
rotary switch

12 selectable
indicator lamps

7-3

CONTROL OFF position, power is
maintained but all ND812 front panel
switches are disabled.,

SELECT REGISTER switch is an eight
position rotary switch that allows the
contents of major registers to be displayed
when the processor is stopped. Content

of the chosen register is displayed by
SELECTED REGISTER indicator lamps.

Displays contents of the register selected
by SELECT REGISTER switch. Listed
below are individual SELECT REGISTER

switch selections and their significance.
a. STATUS position

This position monitors an extremely
valuable 12-bit word that indicates the
following conditions.

SELECTED
REGISTER
Indicator
Lamp Designation
0 When this lamp is on, the
flag is non-zero. This
lamp is extinguished when
the flag is zero,
1 When this lamp is on, the
overflow is non-zero,
This lamp is extinguished
when the overflow is zero.
2 These lamps indicate the
3 Memory Field in which the

last executed JPS Instruc-
tion is located that caused

Table 7-1.

ND812 Central Processor Controls and Indicators (Cont'd.)

Control/Indicator

Description

Function

Or

the program to branch to
another Memory Field.

Memory Lamp Lamp
Field 2 3

off off
off on
on off
on on

LN — O

These lamps indicate the
Memory Field in which
execution was taking
place at the time the last
interrupt occurred.

Memory Lamp Lamp
Field 4 5

off off
off on
on off
on on

WK - O

When this lamp is on, the
highest level priority
interrupt circuitry is
enabled,

When this lamp is on, the
highest level and the B
level priority interrupt
circuits are enabled,

When this lamp is on, the
highest level and the A
tevel priority interrupt
circuits are enabled.

Table 7-1. ND812 Central Processor Controls and Indicators (Cont'd.)

Control/Indicator Description Function

9 When this lamp is on, the
lowest level priority
interrupt circuitry is
enabled as well as the
A, B, and highest level
interrupt circuitry.

10 These lamps indicate the

11 Memory Field in which the

program is currently being
executed (actual extension
of the Program Counter
and Address Register) .

Memory Lamp Lamp
Field 10 11

0 off off
1 off on
2 on off
3 on on

b. S Position

Displays the 12-bit contents of the S
Register via the SELECTED REGISTER

indicator lamps.
c. R Position

Displays the 12-bit contents of the R
Register via SELECTED REGISTER

indicator lamps.
d. K Position
Displays the 12-bit contents of the K

Register via SELECTED REGISTER

indicator lamps.

Table 7—1 . ND812 Central Processor Controls and Indicators (Cont'd.)

Control/Indicator

Description

Function

OVERFLOW

indicator

NEXT WORD

switch

CONT

switch

Indicator
Lamp

Momentary
contact rocker
switch

Momentary
contact rocker
switch

e. J Position

Displays the 12-bit contents of the J
Register via SELECTED REGISTER

indicator lamps.
f. ADDRESS Position

Displays the 12-bit contents of the
Address Register via SELECTED REGISTER

indicator lamps.
g. PC Position

Displays the 12-bit contents of the
Program Counter via SELECTED REGISTER

indicator lamps.
h. EXTERNAL Position
Used for service only.

An overflow condition created by either

a J or K Register arithmetic operation
causes the overflow bit to be complemented.,
OVERFLOW indicator lamp will light

when the overflow bit is non=zero.

Momentarily depressing the spring loaded
NEXT WORD switch, sets the contents

of the Program Counter into the Address
Register, increments the Program Counter,
and updates the MEMORY REGISTER
indicator lamps to reflect the contents of
memory at the address now contained in
the Address Register.

Momentarily depressing the spring loaded
CONT switch initiates program execution
at the address specified by the Program

Table 7-1. ND812 Central Processor Controls and Indicators (Cont'd.)

Control/Indicator

Description

Function

SINGLE STEP/
INSTR switch

INTERRUPT

indicator

RUN indicator

MEMORY REGISTER

indicators

Two position
rocker switches

Indicator
lamp

Indicator
famp

Indicator

lamp (12)

7-7

Counter, Start clear is not generated.

This switch is disabled when the processor
isin the run mode.

With the SINGLE STEP switch in the Up
position, the run mode is terminated and
the timing circuits are disabled at the
completion of one cycle (step) of the
current instruction, Depressing CONT
switch advances the program one additional
cycle of the current instruction.

Interrupt circuitry is disabled when a
Single Step operation is performed.

With the SINGLE INSTR switch

in the Up position, execution is stopped
at the end of each complete instruction.
Depressing CONT switch executes the
next logical instruction.

DMA circuitry is disabled when a Single
Instruction operation is performed.

When the INTERRUPT indicator lamp is
lit, one or more of the priority interrupt
levels are enabled,

When the RUN indicator lamp is lit,
program execution is in process,

MEMORY REGISTER indicator lamps
indicate the 12-bit contents of memory at
the location specified by the Address
Register. The 12-bit word is displayed in
binary format with bit O representing the
most significant bit.

Table 7-1. ND812 Central Processor Controls and Indicators (Cont'd.)

Control/Indicator

Description

Function

LOAD MR

switch

LOAD AR

switch

STOP switch

START switch

SWITCH REGISTER

switches

Momentary
contact rocker
switch

Momentary
contact rocker
switch

Momentary
contact rocker
switch

Momentary
contact rocker
switch

Two position
rocker switches

7-8

Momentarily lifting the LOAD MR switch
transfers the Program Counter into the
Address Register, initiates a memory cycle
that loads the Switch Register contents
into the address specified by the updated
Address Register, and increments the
Program Counter. Memory Register
indicator lamps will then display the
deposit, and the Address Register indicator
lamps will display the deposit address.

This switch is disabled when the processor
is in the run mode,

Momentarily depressing the LOAD AR
switch loads the contents of the Switch
Register into the Program Counter and
Address Register, and updates the Memory
Register to reflect the contents of memory
at the address contained in the Address
Register. MEMORY FIELD switches are
loaded into the Memory Field bits as an
extension of the Program Counter,

Momentarily depressing the STOP switch
terminates program execution at com=~
pletion of the current instruction. Program
Counter contains the address of the next
instruction after program termination.

Momentarily depressing the START switch
initiates program execution at the memory
location specified by the Program Counter
and generates a start clear. This switch
is disabled when the processor is in the
run mode.

Manual loading of a 12-bit word is accom-
plished by these switches. Words are
arranged in binary format with bit O repre-

Table 7-1.

ND812 Central Processor Controls and Indicators (Cont'd.)

Control/Indicator

Description

Function

MEMORY FIELD
switches and
indicators

Two position
rocker switches
and indicator
lamps

7-9

senting the most significant bit. Switches
in the Up position correspond to binary
1's, Down to 0's. Contents of the SWITCH
REGISTER is loaded into the Program
Counter and Address Register by depressing
the LOAD AR switch, or into memory by
lifting the LOAD MR switch. In addition,
the SWITCH REGISTER can be read by the
processor during program execution with

a LJSW Instruction,

MEMORY FIELD switches determine the
specific Memory Field into which data is
read from, or loaded into, or execution
initiated. Functionally, these switches
are an exfension of the Program Counter
and Address Register and only affect the
Hardware Loader and the LOAD AR
switch. Memory Fields are numbered in
binary increments from 0 to 3 and each
field represents 409610 or 10000g memory
locations (0000-7777g).

Memory Switch Switch

Field 0 1
0 off off
1 off on
2 on off
3 on on

MEMORY FIELD indicator lamps indicate
the Memory Field in which a program is
currently being executed. Lamps are
numbered in a form identical to the
Memory Field switches.

7.2.2 REAR PANEL

External features of the ND812 Processor rear panel consist of printed circuit and coaxial-

type electrical connections:
Panel Device

Input/ Output Printed

Circuit Board Connec-
tors (2)

Teletype Integrated
Circuit (IC) Connec-

tor

AC Line Receptacles

)

Function

Provided connection for the 1/O signals of I/O
devices, Refer to the FUNCTIONAL ANALYSIS
section of the ND812 Computer Maintenance
Manual for individual signal terminations,

Provides connection for the input/output signals

of the Teletype 33ASR. Refer to the FUNCTIONAL
ANALYSIS Section of the ND812 Computer
Maintenance Manual for individual signal
termination,

Provide connection for supplying primary pdwer to
the teletype.

7.2.3 ND812 TECHNICAL SPECIFICATIONS

Feature

- Memory

Addressing

Arithmetic

Instructions

Input/Output

Function

Magnetic core, 4096 words, 12 bits, 2 ps cycle
time, Memory options: minimum 4K, field
expandable to 16K in 4K increments,

Relative, indirect, and direct. Hardware multiple
field control,

Parallel, binary, fixed point, 2's complement,
Hardware multiply and divide are standard features.

Single and two-word instructions which include
sixteen memory reference instructions, three literals,
and more than fifty arithmetic and register control
instructions,

Interrupt: programmable 3-level priority interrupt.
Trap to any odd numbered core location in first
4K of memory,

Feature Function

Programmed 1/O transfer; capability per single
1/ O instruction:

Transmit 12 or 24 bits,
Receive 12 or 24 bits,
Transmit 12 and receive 12 bits,
Receive 12 and transmit 12 bits,

1/0 instruction: Includes four micorprogrammable
pulses for multi-function operation with a single
instruction,

Single-word instructions: 256 possible I/O commands
at 3 ps per instruction,

Two-word instructions: 4096 possible 1/O commands
at 5 ps per instruction,

Control, data, and sense lines: total of 75
available on a single connector.

Direct Memory Access (DMA): 6 megabits per
second; read, load, increment or decrement on
DMA on a single cycle.

Accumulator Dual accumulators with individual subaccumulators,

Control Panel Constant display of memory register with switch-
selected display of six other registers and two
busses,

Front panel removable key Iock.‘ Power off, on,
panel lock,

Timing 16 MHz crystal-controlled clock assures absolute
timing and drift-free operation,

Size 19-in w x 7=in h x 22-in d.
Weight 60 Ib,
Power Requirements 400 W @ 115/230 Vac, 50/60 Hz.

7-11

7.3 THE ASR33 TELETYPEWRITER

ND has selected Model 33ASRs (automatic send-receive) as the basic input/output (I/0)
- terminals for its computer systems because it has proved to be the most versatile, reliable,
and economical device available for rapid data communications.

7.3.1 CAPABILITIES

The Model 33ASR can transmit information manually (through its keyboard) or automatically
(by sensing the perforations in paper tape). It can receive data from its own keyboard or
tape reader or from distant sets (such as page copy with or without an accompanying -
perforated tape).

The equipment operates on an 8-level code compatible with the permutation code approved

by the American Standards Association for Information Interchange (ASCII). This means that the
Model 33 can communicate with computers and other business machines to provide a fast,
efficient system for the collection, processing, and distribution of data. Teletypes can

also use the eighth level of the code to generate "even" parity for error detection,

The paper tape punch and reader of the Model 33ASR offers a number of data communication
uses; for instance, it can combine tape data from a number of sources into one error-free
master tape. The tape reader then can automatically transmit this data to other teletypes

or computers at maximum speed.,

Use of paper tape offers many advantages. It is easy to handle, accommodates data of
any length, and is still the least expensive and most reliable continuous recording medium
- available,

7.3.2 TECHNICAL SPECIFICATIONS

Feature Function

Speed Char/sec 6.0 6.0 7.5 10
Wds/min 60.0 66.0 75 100
Bauds 66.0 74.0 82,5 110

Code 8-level, 11 unit basis (ASCII)

Tape 8-level, 1-in wide oiled paper

Printer Friction feed platen for 8 1/2-in single or multiple-
ply paper

Horizontal spacing 10 cpi (12 characters optional)

Vertical spacing single or double row (3 or 6 Ipi)

7-12

Feature Function

Keyboard ‘ 4-row, 8-level. Similar to typewriter.
Temperature Operating: 40°-110°F ombit;n’r; humidity:
95% max.,
Size 22-in w x 37 1/2-in h x 18 1/2~in d.
Weight . 56 |b,
Power Requirements 115V AC:+ 10%, 60 Hz + 0,45 Hz, single-phase

synchronous motor; 50 Hz motor also available,

Approx. input current:

starting running
8 A 2A
Approx. wattage:
RO - 95w
KSR - 95 W
ASR - 110W
Maintenance Interval Once every six months or after 500 operating hours,

whichever occurs first.

7.4 PERIPHERAL EQUIPMENT

Selection of peripheral equipment and software are fundamental aspects of computer
system design; these considerations, quite literally, are what distinguish a mere processor
from an application-tailored, cost-efficient computer system. Some of the options and
peripheral equipment presently available for ND812 systems are outlined below.

7.4.1 ND812 MEMORY EXTENSIONS

The Memory Extension option expands the storage capacity of the ND812 computer to
16,384, 12-bit words. Two types of memory extension are available: 4096, 12-bit

words or 8192, 12-bit words. Expansion of the 4K, ND812 computer to 8K is accomplished
by exchanging the 4K memory stack for an 8K memory stack and adding one memory

field control (MFC) and memory inhibit sense (MIS) printed circuit board. Expansion of
the 8K ND812 computer to 12K or 16K is accomplished by addition of the 4096, 12-bit

or 8192, 12-bit memory extension units. The 8K ND812 computer, equipped with a

4K memory extension unit, can be expanded to 16K by exchanging the 4K memory stack

of the extension unit for an 8K memory stack and adding one MIS printed circuit board,

Extended address selected control for directly addressing up to 16,384 words is provided by

the MFC printed circuit board. Addition of this board activates the indicators and
switches associated with the extended addressing capability. These switches function

~in the same manner as the switch register to load information into the memory register when

the load address key is depressed.

7.4.2 TAPE CASSETTE SYSTEm

The Nuclear Data Tape Cassette System (TCS) is a high-performance, serial-by-bit,

digital tape cassette drive designed specifically to provide a precision data storage/retrieval
capability for the ND812 computer. Other systems applications of this unit include:

data acquisition, keyboard control, analytical instrumentation, medical instrumentation,

or any area in which high density storage and high speed read/write capability are required.

The tape cassette is available with one, two or three tape cassette drives; hence the
computer or data system offers the advantages of multiple magnetic tape files in a single
integrated unit, Data are written on two redundant tracks to provide single-bit error
correction on a character~by-character basis, Each tape unit employs a spindle rather
than capstan drive. This decreases tape wear and allows easier bi-directional operation
and faster access to stored information. Adaptation of the tape cassette to most data
systems is accomplished by use of single input/output (1/O) circuitry. All 1/0 logic
levels are DTL/TTL compatible.

The tape cassette operates under program control of the ND812 or applicable data systems.
Each cassette is independently controlled (providing up to three separate files),

Data are written in records of any length., The records may be written or read alternately
among the cassettes in any program sequence, Standard ND812 program controls are:
write data, write a filemark, read data, high speed forward, space forward, space forward
to a selected file, and high speed reverse.

7.4.3 MAGNETIC TAPE

The magnetic tape provides an [BM-compatible magnetic tape 1/ O facility for the ND812
Computer; it is capable of operating at a synchronous read/write speed of 45 in/s. The
system consists of a synchronous read/write, 7 or 9-track magnetic tape transport, a

7 or 9-Track magnetic tape formatter and an interface to the ND812 computer,

The tape transport employs a single capstan velocity drive system and a constant tension
mechanism to hold the tape in contact with the capstan at all times. The controlled-
tension tape path offers increased tape life and maximum tape protection. Start/stop
characteristics and tape speed are determined solely by the servo driver single capstan
and are held constant regardless of normal environment, line voltage, or frequency
variations. Positive control of start/stop cycles results in restriction-free programming.
The unit uses a single magnetic head which is electronically switched from write or read
operations, Because the read/write head is the only surface in sliding contact with the
oxide side of the tape, dropout errors are virtually eliminated.

An operator control panel is supplied with the unit for local operation and indication.
Indicators show the status of the systems under both local and remote command conditions.

Local operator controls include; on/off, load, on-line/off line, forward, reverse, and
rewind. :

The data format is NRZI, 1BM-compatible including the precise requirements for System/
360, 9-track, 800 BPI, operation. All IBM-required tape marks, gaps, parities, and
cyclic redundancy checks are performed internally.

7.4.4 CARTRIDGE DISC mEMORY

The cartridge disc memory is a medium-speed, random-access, bulk storage device.
The standard system operates through the ND812 data break facility to provide one
million, unformatted, 12-bit words of storage.

Two basic assemblies comprise the disc memory system: a cartridge disc drive unit and
a controller interface to the ND812 computer. The drive unit contains a removable
cartridge which houses one disc; a spindle drive and control circuit; and a single read/
write head positioner. Start/stop characteristics of the head positioner and spindle
drive speed are electronically controlled and held constant regardless of line voltage
or frequency variations by a regulated power supply. A single controller unit can be
used to service up to four disc drive units.

The disc drive unit, controller, and associated power supplies are contained in standard
19-in rack mount chasses,

- 7.4.5 FIXED HEAD DISC MEMORY

The fixed-head disc memory is a high-speed, random-access, bulk storage device. The
disc memory operates through the ND812 data break facility to provide 262,000 12-bit

words of storage. Optional disc memories with storage capacities from 32,000 to 500, 000
words are available,

Two basic assemblies comprise the disc memory: a fixed-head disc storage unit and a
controller-interface for the ND812 computer. The storage unit contains a nickel cobalt-
plated disc, driven by an integrally mounted, direct-drive motor, Data are recorded on
a single disc surface by a separate read/write head for each track. The integral drive
system and electronic track switching combine to maximize system data throughput.

The disc memory, controller, and associated power supplies are contained in a standard
19-in rack mount chassis. '

7.4.6 LINE PRINTER AND CONTROL

The line printer and control provides a high speed output facility capable of printing
alphanumeric data at speeds of up to 1110 lines per minute. The line printer is an impact

type which uses a revolving é64-character drum and one hammer per column. The drum
speed of 1760 rpm allows printing speeds of 356 lines per minute for a full 80 columns and
 listings as fast as 1110 lines per minute for 20 columns.

Paper feed is controlled by a pair of pen~fed tractors for 1/2-in hold center, edge-
punched, fan-fold paper. The tractors are adjustable to accommodate paper widths
from 4 to 9-7/8 inches. The printer uses single-ply or multiple-ply carbon fan-fold
paper and prints up to six copies.

7.4.7 PAPER TAPE PERFORATOR, READER AND CONTROL

The Paper Tape Perforator, Reader and Control provide either a medium or high-speed
program and data input and/or output facility for the ND812 Computer. Each system
consists of a paper tape punch and reader interface to the ND812 Computer and a
compatible reader, punch, or reader-punch combination.

Both paper tape readers are unidirectional, use servo stepping motors, and contain
photoelectric tape sensors. One reader is equipped with two tape-handling reel assemblies,
each of which consists of a six-inch reel; a constant torque drive; a tension arm; and an
"on/off" switch operated when the tension arm is in its raised position. Each reeler
operates independently and allows high-speed spooling when the tape is not passed through
the read head. Loop tape operation is possible by placing both tension arms in the raised
position, The other reader is designed for strip and loop reading and is equipped with sup-
ply and take-up bins for fan-fold paper tape. Both readers can be mounted in standard
19-in racks for simple, full-view tape loading. »

The paper tape perforator is unidirectional, uses a synchronous sprocket drive, contains

a removable chad disposal bin, and is equipped with a paper tape supply reel. Included
with the perforator is a 19-in rack mount unit which contains a power supply and the
punch drive circuits, The perforator is equipped with an automatic punch turn-on circuit.
This circ uit places the punch motor under control of the ND812 Computer so that it

is enabled only during punch operations. The punch turn-on circuit can also be enabled
by a front-panel pushbutton for generating blank tape.

7.4.8 COMPUTER INPUT/OUTPUT WRITER

The computer input/output writer provides a hard copy output and keyboard input facility
with input/output speeds of 15 characters per second. Both keyboard entry and typeout
use |BM-correspondence code to provide all alphabetic, numeric and special characters.
Input facilities for carriage return, space, tabulation, backspace, and upper case are
provided by the keyboard, Output facilities for carriage return, space, tabulation, upper
case and lower case are provided by the ND812 computer.

7.4.9 POWER RESTART OPTION
A power restart option is available which traps to octal location 40 whenever a pbWer

failure or low power problem is encountered. Data contained in all registers are saved
and a routine is written which restores these registers and re-initiates the program.,

7-16

7.4,10 REAL TIME CLOCK OPTION

This is a program-controlled, 100-kHz, clock-interrupt which can be preset to 20 Hs
minimum to 10 s maximum. Two presettable digits can be loaded into the J register
while the clock is running, allowing the program to determine the remaining time before
the next clock event, This option is of value for any timed or gated event, €.9.,

acquisition time or variable pulse generator applications. The clock-interrupts trep to
octal location 1,

SECTION Vill
THE ND PROGRAM LISTING

8.1 GENERAL

The Nuclear Data Program Listing iterates all software available for the ND812 processor.
Programs are arranged by category (utility, system, or diagnostics) and

control number (e.g., 41-0001); beside each entry is a brief description of the given
program's capability.

The dynamics of computer technology are such that new programs and program applications
are generated at a rate which requires a continuing update of the Program Listing. Conse-
quently, ND publishes addenda for the benefit of ND812 users and other interested parties
which are periodically compiled into new master listings. Copies are available from:

Technical Documentation Department
Nuclear Data, Incorporated

Golf and Meacham Roads
Schaumburg, Illinois 60172

Following is the ND812 Program Listing; for the aforementioned reason, however, it should
not be construed to be comprehensive,

8.2 UTILITY PROGRAMS

Control No. Title Description

41-0005 Binary Loader Loads binary formatted program records
into the computer via high or low speed
Paper tape or magnetic tape cassette,

41-0006 Binary Writer Writes binary formatted records in
arbitrary block sizes from the memory
field in which it is located via low
or high speed paper tape or magnetic
tape cassette,

41-0007 Chess Game A demonstration game which pemits the

user fo play chess with the ND812, The

Control No, Title Description

program maintains the chess board and
will not allow an illegal move. Chess
moves are entered via the Teletype.

41-0008 Binary Copier Duplicates and verifies binary formatted
' paper tapes.

41-0009 Master Tape Duplicator Permits duplication of any paper
tape. The program allows for creation
of a master tape, duplication of the
master tape and verification of the
duplicate or master,

41-0010 Binary Loader/Verifier Compares the original binary format-
ted paper tape with the contents of
the computer memory. Differences
are listed on the teletype as they are
encountered. The program also
allows reloading of the original
tape during comparison.

41-0017 Integer Interpreter Provides double precision addition,
subtraction, multiplication, division,
and |/O routines for the BASC-12

coded programs,

41-0018 Numbers Game A demonstration game designed
to indicate the sort of user=-processor
interaction that is typical of ND812
software systems.

41-0022 Short Form Binary Loads binary formatted paper tapes
Loader into the computer via the low speed
reader only.

41-0023 Short Form Binary Writes binary formatted program
Writer records in arbitrary block sizes
from the memory field of the computer
in which it is located via the high
speed paper tape punch only,

41-0024 Short Form Octal Permits interrogation and modifica~
Debug Aid tion of the computer memory using
the teletype keyboard. The progrom

Control No.

41-0030

41-0031

41-0033

41-0035

41-0041

41-0042

41-0043

Title

Binary Paper Tape to
Magnetic Tape Cassette
Copier

Multiple Field
Binary Writer

Multiple Field
Octal Debug

Disk System Supervisor

Multiple Field
Floating Point
Interpreter

Extended Functions |

Extended Functions [1

Description

aids in debugging and modification
of programs created with the BASC-12
General Assembler (41-0001).

Duplicates binary formatted paper
tapes on magnetic tape cassettes,

Writes binary formatted program
records in arbitrary block sizes
from any of the computer memory
fields via low or high speed paper
tape or magnetic tape cassette,

Permits interrogation and modification
of the contents of any address in

any memory field via the teletype
keyboard. The program aids in
debugging and modification of
multiple field programs created

with the BASC-12 General Assembler
(41-0001),

Defines the read/write commands for
the cartridge disk. Included are

set and print disk read/write
address, load program from the
teletype at current disk write
address and load program into
computer memory from current disk
read address,

Provides multiple field arithmetic
floating point and input/output
(1/O) routines for the BASC~12

coded programs.

An overlay program for the Multiple
Field Floating Point Interpreter
(41-0041) which provides exponent
log, square, and square root functions.

An overlay program for the Multiple
Field Floating Point Interpreter
(41-0041) which provides sine,

cosine, and arc tangent functions,

Control No.

41-0044

41-0050

41-0052

41-0053

41-0054

41-0080

41-0085

41-0089

41-0091 .

Title

Floating Point Operate
Instructions

Cassette Verifier

Basic Disk Autoloader

Basic Disk Handler Dump

Octal Memory Dump

Disk System Supervisor -
Hi Density

PEC Magnetic Tape Copier

Multi-Field Binary Loader
For High Speed Reader

Binary Handler

Description

An overlay program for the Multiple
Field Floating Point Interpreter
(41-0041) which provides floating
point and operate (FNEG, FCLR,
FSIM, FSIP and FSIZ) instructions,

Compares the original binary formatted
magnetic tape cassette with the
content of the computer memory,
Differences are listed on the teletype
as they occur.

Writes itself into disk sector one (auto-
load sector). When autoload is selected,
the Disk System Supervisor (41-0039) is

loaded into memory and activated.

Writes the Disk System Supervisor
(41-0035) from memory to the appro-
priate disk sectors for the Basic Disk
Autoloader (41-0052).

Dumps the enfire contents of any
memory field at the teletype or

line printer with address identification
every eighth address. The program
aids in debugging when an image

of the entire memory is to be studied
in detail to localize a problem,

Basically the same as the Disk System
Supervisor (41-0035) except that is uses
a high density cartridge disk.

Reads or writes 8K core images from or
to PEC 7 or 9 track magnetic tape with
each 8K block identified by a user
specified tagword.

Loads binary formatted programs into
any ND812 memory field via high-
speed paper tape reader.

Transfers binary formatted program

records from high or low speed tape
reader or magnetic tape cassette

to high or low speed tape punch

or another magnetic tape cassette.

Control No. Title

41-0116 Trace Diagnostic Program

8.3 SYSTEM SOFTWARE

Control No. Title

41-0001 BASC-12 General Assembler

41-0002 Symbolic Text Editor

41-0026 BASC-12 Line Printer
Assembler

41-0028 BASC-12 Line Printer

Assembler (8K)

8-5

Description

A single-field relocatable diagnostic
that prints out ND812 status infor-
mation for each line of code. Print-
out may be via high-speed line
printer or Teletype.

Description

Translates source progrcms written

in BASC-12 assembly language into
binary formatted object programs.
Statements are translated on a one-
for-one basis, allowing complete
control over the statements actually
executed by the computer during run
time. Input is via the Teletype or
magnetic fape cassette. Output is
via the Teletype.

Manipulates strings of BASC-12 coded
source programs or ther text material
using keyboard entry commands.
Insertions, deletions, and additions
to the text are accomplished without
retyping the entire text each time
modification is necessary. Output

is via the Teletype or magnetic tape
cassette,

Basically the same as the BASC-12
General Assembler (41-0001) except that
it uses a line printer as an output device
in place of the Teletype.

Basically the same as the BASC-12
Line Printer Assembler (41-0026)
except that it allows use of a larger
number of user symbols and pemits
output via magnetic tape cassette.
Requires an 8K computer memory.

Control No. Title

41-0036 Disk Editor

41-0037 BASC-12 Disk Assembler

41-0059 NUTRAN Conversational
Complier

471-0081 Basic Disk Assembler ~
Hi Density

41-0084 BASC-12 General Assembler
(8K)

8.4 DIAGNOSTIC PROGRAMS

Control No. Title

41-8001 OPR-MRI Test

Description

Basically the same as the symbolic
Text Editor (41-0002) except that
it allows a larger amount of text
material and uses a cartridge disk
as an output device in place of the
Teletype. Requires an 8K computer
memory .

Basically the same as the BASC-12
General Assembler (41-0001) except
it allows a larger number of user
symbols and uses a cartridge disk

as an output device in place of the
Teletype. Requires 8K computer
memory .

NUTRAN is an on-line conversational
complier which pemits interpretive
execution of programs written in
FORTRAN syntax using the Teletype
as the principal input/output device.
The program is intended to provide
the scientific user with a means of
wrifing mathematically oriented
programs with a minimum of program-
ming knowledge. Requires an 8K
computer memory.,

Basically the same as the Basic Disk
Assembler (41-0037) except that it uses
a high density cartridge disk. Requires
an 8K computer memory.

Basically the same as the BASC~12 Generai
Assembler (41-0001) except that it allows

a larger number of user symbols and

permits output via a magnetic tape cassette.
Requires an 8K computer memory.

Description

Serves as a go, no-go check for
both classes of operate instructions

Control No.

41-8002

41-8004

41-8005

41-8006
41-8007
41-8008

41-8009

Title

XCT-TWI Test

Memory Address Test

High/Low Speed
Reader Test

Low Speed Punch
Test

High Speed Punch
Test

High Speed Reader
Test

Cassette Dianostic
Test

Description

and all forms of single-word memory
reference instruction using forward,
reverse and indirect references.

Serves as a go, no-go check of
the execute instructions, all forms
of two-word memory reference
instructions, and combinations of
single and two-word memory
reference .instructions with the
execute instructions.

Tests the addressing circuitry of the
computer memory to verify that each
word has a unique address. This is
accomplished by setting the contents
of a word equal to the address and
checking the contents forward and
backward.

Tests the high or low speed reader
using a tape loop.

Tests the punched paper tape output
of the Teletype for missing or extra
levels,

Tests the accuracy and registration
of the high speed punch with the
high speed reader.

Tests the high-speed reader for
accuracy and stopping ability with
random length character blocks.

Tests input/output and control
functions of the Single, Dual or
Triple Magnetic Tape Cassette
System using keyboard entry
routines. Detection of errors is
indicated by messages printed at the
Teletype.

Control No.

41-8013
41-8014
41-8015
41-8016
41-8018
41-8019
- 41-8026
41-8028

41-8030

41-8041

Title

Random [SZ-DSZ Test

Random ADJ-SBJ Test

Random LDJ-STJ Test

Random JMP-JPS Test

Creepy Crawler

Hardware Multiply/Divide
Test

Multiple Field Random

TWJIPS-TWJPS@ and In-
terrupt Test - 8K/16K

Multiple Field Random
TWJPS-TWJPS@ and
Interrupt Test - 12K

PEC Diagnostic Test

Worst Case Memory
Pattern Test

8-8

Description

Tests the 1SZ and DSZ memory
reference instructions using random
or fixed addresses,

Tests the ADJ and SBJ memory
reference instructions using random
or fixed addresses.,

Tests the LDJ and STJ memory
reference instructions using random
or fixed addresses.

Tests the JMP and JPS memory
reference instructions using random
or fixed addresses.

Tests the storage capability of the
computer memory by sesquentially
addressing each memory location.

Tests the hardware multiply and divide
functions (ND812 serial numbers 0 -235).

Tests random two=-word jumps, indirect
or direct, and the four level interrupt
in any memory field of the 8K or 16K

computer, |

Tests random two word jump, indirect
or direct, and the four level interrupt
in any memory field of the 12K computer.

Tests the input/output and control
function of the PEC 7 or 9-Track
Magnetic Tape System using keyboard
entry routines. The program also
pemits exchanging blocks of data
between the computer memory and
magnetic tape and provides a means
of altering data in a specific area

of memory.

Tests the computer memory core
stacks using worst case patterns,

Control No.

41-8042

41-8043

41-8045

41-8054

41-8055

41-8057

Title

Literal Exerciser

Diablo Disk Diagnostic

Hardware Multiply/Divide
Test

Teletype Speed Test

Semiconductor Memory Test

Semiconductor Memory
Addressing Test

8-9

Description

Tests the literal, combined operate
group 2, rotate and interrupt instruc-
tions using a program loop.

Exercises the Diablo Disk Interface

and the Diablo Disk Drive using a

worst case serial bit pattern. The test
parameters inputted via the Teletype
include: drive selection, data field,
starting sector, last sector, errors printed
per sector, test disk, and last data word.

Tests the hardware multiply and divide
functions (ND812 serial numbers 236
and up).

Measures Teletype speed by averaging
the time between print/punch flags
for ten characters, eliminating the
need for oscilloscope adjustment

of interface print/punch circuitry.

Completely tests memory and associ-
ated peripheral logic by three basic
tests: 1) field addressing test to verify
that a field requested can be addressed;
2) immediate load and read test to
check for bit errors, and; 3) worst case
pattemn test.

Fully excercises all memory addressing
logic by three tests: 1) data test;
2) pattern test, and; 3) write/read test.

Mnemonic

ADDL
ADJ
ADR J
ADR K
ADS J
ADS K
AJK J
AJK K
AJK JK
ANDF

AND J
AND K
AND JK
AND L

CCLF
CHSF
CHSR
CLR
CLR J
CIR K
CLR O
CLR JK
CMP
CMP J
CMP K
CMP O
CMP JK
CRDT
CSBT
CSET

APPENDIX A

ND812 INSTRUCTION SET IN
ALPHABETIC ORDER BY MNEMONIC

Octal Code

22xx
4400
1122
1222
1124
1224
1120
1220

. 1320

20xx

1100
1200
1300
21xx

0141
0101
0121
1410
1510
1610
1450
1710
1420
1520
1620
1460
1720
0144
0130
0110

Operation

Add last 6 bits of instruction (xx) to J
Add memory to J

R+JtoJ

R+ KtoK

S+ JtolJ

S+ Kto K

J+ Kitol

J+ KtoK

J+ KtoJ,K

Logical AND J with memory (forward
only = no indirect)

Logical AND J,K to J

Logical AND J,K to K

Logical AND J,K to J,K

Logical AND last 6 bits of instruction (xx)

with Jg to Jyy, set JotoJ5=0
Clear all cassette flags (TWIO)
High Speed forward to EOT (TWIO)
High speed reverse to BOT (TWIO)
Clear flag bit

Clear J

Clear K

Clear overflow bit

Clear J and K

Complement flag bit

Complement J

Complement K

Complement overflow bit
Complement J and K

Transfer cassette buffer to J (TWIO)
Skip if cassette at BOT (TWIO)
Skip if cassette at EOT (TWIO)

Time (pS)

NN BRN

N NN

G OOPNNDNNONNONNNNNRODRODNOO OGN

Mnemonic Octal Code Operation Time (pS)

CSFM 0104 Skip on cassette filemark (TWIO) 5
CSLCT1 7601 Set cassette 1 on-line 3
CSLCT2 7602 Set cassette 2 on-line 3
CSLCT3 - 7604 Set cassette 3 on=line 3
CSNE 0122 Skip if no cassette errors (TWIO) 5
CSPF 0102 Space cassette forward to filemark (TWIO) 5
CSRR 0142 Skip if cassette read flag = 1 (TWIO) 5
CSTR 0124 Skip if on-line cassette ready (TWIO) 5
CSWR 0152 Skip if cassette write flag = 1 (TWIO) 5
CWFM 0151 Write filemark on cassette (TWIO) 5
CWRT 0154 Transfer J to cassette buffer (TWIO) 5
DIV 1001 J,K/R to J; remainder in K 11
DSz 3000 Decrement memory; skip if =0 4
EXJK 1374 Exchange J and K 2.5
EXJR 1103 Exchange J and R 2
EXJRKS 1303 Exchange Jand R; K and S 2
EXKS 1203 Exchange K and § 2
HIF 7421 Clear HS reader flag, read next character

in HS reader buffer and set HS reader flag

= 1 when done 3
HIR 7422 Clear HS reader flag and load J from HS

reader buffer , 3
HIS 7424 Skip if HS reader flag = 1 3
HLP 7433 HOL and HOP combined 3
HOL 7432 Clear HS punch flag and load HS punch

buffer from J 3
HOP 7431 Clear HS punch flag and punch HS punch

buffer 3
HOS 7434 Skip if HS punch flag =1 3
HRF 7423 HIR and HIF combined 3
IDLE 1400 One cycle delay 2
INC J 1504 Increment J 2
INC K 1604 Increment K 2
INC JK 1704 Increment J and K 2
|OFF 1003 Diable all interrupts 2
IONA 1006 Enable class A and highest priority interrupts 2
IONB 1005 Enable class B and highest priority interrupts 2
IONH 1004 Enable highest priority interrupt 2
IONN 1007 Enable all interrupts 2
1SZ 3400 Increment memory; skip if =0 4
JMP 6000 Jump unconditionally 2
JPS 6400 Jump to subroutine 4
LDJ 5000 Load memory into J 4
LDJK 7721 Load J from JPS; K from INT 3
LDREG 7720 Load JPS from J; INT from K 3

A-2

Mnemonic Octal Code Operation Time (uS)

LJFR 1102 Load J from R 2
LJKFRS 1302 Load J from R; K from S 2
LIST 1011 Load J from status bus 2
LJSwW 1010 Load J from Switch Register 2
LKFJ 1204 Load K from J 2
LKFS 1202 Load K from S 2
LRFJ 1101 Load R from J 2
LRSFJK 1301 Load R from J; S from K 2
LSFK 1201 Load S from K : 2
MPY 1000 JxKtoR,S 10.75
NADR J 1132 -R+ J) to J 2
NADR K 1232 -(R+ K) to K 2
NADS J 1134 -(S+ J) toJ 2
NADS K 1234 -(S+ K) to K 2
NAJK J 1130 ~(J+K)toJ 2
NAJK K 1230 ~(J+ K) to J 2
NAJK JK 1330 -(J+ K) to J,K 2
NEG J 1524 Negate J (complement and increment J) 2
NEG K 1624 Negate K (complement and increment K) 2
NEG JK 1724 Negate J and K (complement and
~increment J and K) 2
NSBRJ 1133 ~(R - J) to J 2
NSBR K 1233 -(R-K) to K 2
NSBS J 1135 -(S-J)toJ 2
NSBS K 1235 -(S-K) to K 2
- NSJK J 1131 -J-K)toJ 2
NSJK K 1231 -(J -K) to K 2
NSJK JK 1331 -(J - K) to J,K 2
PIOF 1600 Disable power interrupt 2
PION 1500 Enable power interrupt 2
RFOV 1002 Restore flag and overflow bits 2
RJIB 7722 Restore JPS and INT field bits 3
ROTD J 1160 Rotate data left in J (0 to 15 binary n<8=2
positions) n>8=2+0,125(n-8)
ROTD K 1260 Rotate data left in K (0 to 15 binary n< 8=2
positions) n> 8=2+0,125(n-8)
ROTD JK 1360 Rotate data left in J,K (0 to 15 n< 8=2
binary positions) n>8=2+0,125(n-8)
SBJ 4000 Subtract memory from J 4
SBR J 1123 R-JtoJ 2
SBR K 1223 R-KioK 2
SBS J 1125 S-JtoJ 2
SBS K 1225 S-KtoK 2
SET 1430 Set flag bit = 1 (clear & complement flag bit) 2
SET J 1530 Set J =7777g (clear and complement J) 2

A-3

Mnemonic Octal Code Operation Time (uS)

SET K 1630 Set K = 77774 (clear and complement K) 2
SET O 1470 Set overflow bit = 1 (clear and
complement overflow bit) 2
SET JK 1730 Set J and K = 7777 4 (clear and
complement J and |§) 2
SFTZ J 1140 Shift zeroes left into J (0 to 15 binary n<8=2
positions) n>8=2+0,125(n-8)
SFTZ K 1240 Shift zeroes left into K (0 to 15 binary n<8=2
positions) n> 8=2+0,125(n-8)
SFTZ JK 1340 Shift zeroes left into J,K (0 to 15 n< 8=2
binary positions) n>8=2+0,125(n-8)
SIN J 1506 SkipifJ< O 2
SIN K 1606 Skip if K< 0 2
SIN JK 1706 Skip if Jand K < 0 2
SIP J 1502 Skipif J > 0 2
SIP K 1602 Skip if K> 0 2
SIP JK 1702 SkipifJand K 0 2
SIZ 1405 Skip if flag bit=10 2
SIZ J 1505 Skipif J=0 2
SIZ K 1605 Skip if K=0 2
SIZ O 1445 Skip if overflow bit = 0 2
SIZ JK 1705 Skip if J and K = 0 2
SJK J 1121 - J-KtoJ 2
SJK K 1221 J-KtoK 2
- SJK UK 1331 J-KtoJ,K 2
SKIP 1442 Skip unconditionally 2
SKPL 1440 Skip on power low 2
SMJ 2400 Skip if J # memory 4
SNZ 1401 Skip if flag bit #0 2
SNZ J 1501 Skipif JAO 2
SNZ K 1601 Skip if K #0 2
"SNZ O 1441 Skip if overflow bit # 0 2
SNZ JK 1701 Skip if Jand K #0 2
STJ 5400 Store J in memory 4
STOP 0000 Stop execution of program 2
SUBL 23xx Subtract last é bits of instruction (xx)
_ from J 2
TCP 7413 TOP and TOC combined 3
TIF 7401 Clear keyboard/reader flag, read next
character into keyboard/reader buffer
and set keyboard/reader flag = 1 when
done 3
TIR 7402 Clear keyboard/reader flag and load J
from keyboard/reader buffer 3

TS 7404 Skip if keyboard/reader flag = 1 3

A-4

Mnemonic

TOC
TOP

TOS
TRF
TWADJ
TWADK
TWDSZ
TWIO
TWISZ
TWJIMP
TWJPS
TWLDJ
TWLDK
TWSBJ
TWSBK
TWSMJ
TWSMK
TWSTJ
TWSTK
XCT

Octal Code

Operation

7411
7412

7414
7403
0440
0450
0300
0740
0340
0600
0640
0500
0510
0400
0410
0240
0250
0540
0550
7000

Clear printer/punch flag
Clear printer/punch flag, load printer/
punch buffer from J and print/punch
Skip if printer/punch flag = 1
TIR and TIF combined

Add memory to J

Add memory to K

Decrement memory; skip if = 0
Two-word 1/0

Increment memory; skip if =0
Jump unconditionally

Jump to subroutine

Load memory from J

Load memory from K

Subtract memory from J
Subtract memory from K

Skip if J # memory

Skip if K #memory

Store J in memory

Store K in memory

Execute instruction n

Time (pS)

w

- O OO OO OO0 W W W

[\
+

APPENDIX B
ND812 INSTRUCTION SET IN
NUMERICAL ORDER BY OCTAL CODE

Octal Code Mnemonic Operation ~ Time (uS)

0000 STOP Stop execution of program 2
0101 CHSF High speed forward to cassette EOT

(TWIO) 5
0102 CSPF Space forward to cassette filemark (TWIO) 5
0104 CSFM Write filemark on cassette (TWIO) 5
0110 CSET Skip if cassette at EOT (TWIO) 5
0121 CHSR High speed forward to cassette BOT (TWIO) 5
0122 CSNE Skip if no cassette errors (TW1O) 5
0124 ' CSTR Skip if on=line cassette ready (TWIO) 5
0130 CSBT Skip if cassette at BOT (TWIO) 5
0141 CCLF Clear all cassette flags (TWI O) 5
0142 CSRR Skip if cassette read flag = 1 (TWIO) 5
0144 CRDT Transfer cassette buffer to J (TWIO) 5
0151 CWFM Write filemark on cassette (TW10O) 5
0152 CSWR Skip if cassette write flag = 1 (TWIO) 5
0154 CWRT Transfer J to cassette buffer (TWIO) 5
0240 TWSMJ Skip if J # memory 6
0250 TWSMK Skip if K # memory 6
0300 TWDSZ Decrement memory; skip if =0 6
0340 TWISZ Increment memory; skip if =0 6
0400 TWSBJ Subtract memory from J 6
0410 TWSBK Subtract memory from K 6
0440 TWADJ Add memory to J 6
0450 TWADK Add memory to K 6
0500 TWLDJ Load memory into J 6
0510 TWLDK Load memory into K 6
0540 TWSTJ Store J in memory 6
0550 TWSTK Store K in memory 6
0600 TWJIMP Jump unconditionally 4
0640 TWJPS Jump to subroutine 6
0740 TWIO Two word 1/O 5
1000 MPY JxKtoR,S 10.75

Octal Code

1001
1002
1003
1004
1005
1006
1007
1010
1011
1100
1101
1102
1103
1120
1121
1122
1123
1124
1125
1130
1131
1132
1133
1134
1135
1140

1160

1200
1201
1202
1203
1204
1220
1221
1222
1223
1224
1225
1230
1231
1232
1233
1234
1235

Mnemonic

DIV
RFOV
|OFF
IONH
IONB
IONA
IONN
LISW
LJST
AND J
LRFJ
LJFR
EXJR
AJK J
SJK J
ADR J
SBR J
ADS J
SBS J
NAJK J
NSJK J
NADR J
NSBR J
NADS J
NSBS J
SFTZ J

ROTD J

AND K
LSFK
LKFS
EXKS
LKFJ
AJK K
SJK K
ADR K
SBR K
ADS K
SBS K
NAJK K
NSJK K
NADR K
NSBR K
NADS K
NSBS K

Operation

J,K/R to J; remainder in K
Restore flag and overflow bits
Disable all interrupts

Enable highest priority interrupt

Enable class B and highest priority interrupts
Enable class A and highest priority interrupts

Enable all interrupts
Load J fron Switch Register
Load J fron Status Bus
Logical AND J,K to J
Load R from J

Load J from R
Exchange J and R

J+ Kto)

J-Ktol

R+ JtoJ

R=-JtolJ

S+ JtoJ

S-JtoJ

-(J+ K) to J

~(J-K) to J

-(R + J) to J

-R=-J)toJ

~(S+ J) to J

=(S=J)toJ

Shift zeroes left into J (0 to 15 binary
positions)

Rotate data left in J (O to 15 binary
positions)

Logical AND J,K to K

Load S from K

Load K from §

Exchange K and S

Load K from J

J+KtoK

J-KtoK

R+ Kto K

Time (uS)

—

MNP POPPDPOMPOMONPOPDMOPODNNNMNONNONRNNNNMNINNNMNNONN —

n<8=2

n>8=2+0,125(n-8)

n< 8=2

n>8=2+0.125(n

LVELSELS AV SE NE SESESE SH SN SN SN S O SN

_8)

Octal Code

1240
1260

1300
1301
1302
1303
1320
1321
1330
1331
1340

1360

1374
1400
1401
1405
1410
1420
1430

1440

- 1441

1442
1445
1450
1460
1470

1500
1501
1502
1504
1505
1506
1510
1520
1524
1530
1600
1601
1602

Mnemonic

SFTZ K

ROTD K

- AND JK

LRSFJK
LJKFRS
EXJRKS
AJK JK
SJK JK
NAJK JK
NSJK JK
SFTZ JK

ROTD JK

EXJK
IDLE
SNZ
SI1Z
CLR
CMP
SET

SKPL

SNZ O
SKIP

SIZ O
CLR O
CMP O
SET O

PION
SNZ J
SIP J
INC J
SIZ J
SINJ
CLR J
CMP J
NEG J
SET J
PIOF
SNZ K
SIP K

Operation

Shift zeroes left into K (0 to 15 binary
positions) ’
Rotate data left in K (0 to 15 binary
positions)

Logical AND J,K to J,K

Load R from J; S from K

Load J from R; K from S

Exchange J and R; K and S
J+KtoJ, K

J-KtoJ,K

-(J+K) to J,K

-(J - K) to J,K

Shift zeroes left into J, K (0 to 15
binary positions)

Rotate data left in J,K (0 to 15
binary positions)

Exchange J and K

One cycle delay

Skip if flag bit £ 0

Skip if flag bit =0

Clear flag bit

Complement flag bit

Set flag bit = 1 (clear and complement
flag bit)

Skip on power low

Skip if overflow, bit# 0

Skip unconditionally

Skip if overflow bit=0

Clear overflow bit

Complement overflow bit

Set overflow bit = 1 (clear and
complement overflow bit)

Enable power interrupt

Skip if J#0

SkipifJ >0

Increment J

Skip if J = 0

Skipif J< O

Clear J

Complement J

Negate J (complement and increment J)
Set J =7777g (clear and complement J)
Disable power interrupt
Skip if K £ 0

Skip if K > 0

Time (uS)

n< 8=2
n> 8=2+0,125(n-8)
n< 8=2
n> 8=2+0,125(n-8)

NNNNNDNDDNODN

n< 8=2

n>8=2+0,125(n-8)

n< 8=2

n> 8=2+0,125(n-8)
2,5

NN DNDNDN

NNBNMNNDMDDNDON

NRNONNDDNDDMONMNDMNDRNDMDNDNDNDN

Octal Code Mnemonic Operation Time (uS)

1604 INC K Increment K 2
1605 SIZ K Skip if K=0 2
1606 SIN K Skipif KK 0 2
1610 CLR K Clear K 2
1620 CMP K Complement K 2
1624 NEG K Negate K (complement and increment K) 2
1630 SET K Set K =77774 (clear and complement K) 2
1701 SNZ JK Skip if Jand K#0 2
1702 SIP JK Skipif Jand K > 0 2
1704 INC JK Increment J and K 2
1705 SIZ JK Skip if Jand K=0 2
1706 SIN JK Skipif Jand K < 0 2
1710 CLR JK Clear J and K 2
1720 CMP JK Complement J and K 2
1724 NEG JK Negate J and K (complement and
increment J and K) 2
1730 SET JK Set J and K =7777, (cl ear and
complement J and Ig) 2
20xx ANDF Logical AND J with memory (forward
only; no indirect) 4
21xx ANDL Logical AND last 6 bits of instruction (xx)
with J to J”;’setJ to Je =0 2
21xx ADDL Add last 6 bits of insfructidon (xx) to J 2
23xx SUBL Subract last 6 bits of instruction (xx)

. from J 2
2400 SMJ Skip if J # memory 4
3000 DSZ Decrement memory; skip if =0 4
3400 1SZ Increment memory; skip if = 0 4
4000 SBJ Subtract memory from J 4
4400 ADJ Add memory to J 4
5000 LDJ Load memory from J 4
5400 STJ Store J in memory 4
6000 JMP Jump unconditionally 2
6400 JPS Jump to subroutine 4
7000 XCT Execute instruction n 2+t
7401 TIF Clear keyboard/reader flag, read next

character into keyboard/reader buffer

and set keyboard/reader flag = 1 when

done 3
7402 TIR Clear keyboard/ready flag and load J

from keyboard/reader buffer 3
7403 TRF TIR and TIF combined 3
7404 TIS Skip if keyboard/reader flag = 1 3
7411 TOC Clear printer/punch flag 3

B-4

Octal Code Mnemonic Operation Time (uS)

7412 TOP Clear printer/punch flag, load printer/

punch buffer from J and print/punch 3
7413 TCP TOP ‘and TOC combined 3
7414 - TOS Skip if printer/punch flag = 1 3
7421 HIF Clear HS reader flag, read next character

into HS reader buffer and set HS reader

flag = 1 when done 3
7422 HIR Clear HS reader flag and load J from HS

reader buffer 3
7423 HRF HIR and HIF combined 3
7424 HIS Skip if HS reader flag = 1 3
7431 HOP Clear HS punch flag and punch HS

punch buffer 3
7432 HOL Clear HS punch flag and load HS punch

buffer from J 3
7433 HLP HOL and HOP combined 3
7434 HOS Skip if HS punch flag = 1 3
7601 CSLCTI Set cassette 1 on-line 3
7602 CSLCT2 Set cassette 2 on-line 3
7604 CSLCT3 Set cassette 3 on-line 3
7720 LDREG Load JPS from J; INT from K 3
7721 LDJK Load J from JPS; K from INT 3
7722 RJIB Restore JPS and INT field bits 3

APPENDIX C

FLOW CHARTIN

G SYMBOLS

The American Standards Institute has adopted the following symbols for flow diagram use.

A. Input/Output

|/

B. Punched Tape

C. On-line Storage

D. Magnetic Tape

Q!

E. Document

This symbol represents the basic functions of
entering data into the computer or outputing
the data. This is a high level symbol,
because individual devices have unique
symbols,

This symbol represents an 1/O function
which uses devices. It can represent the
reading in of data from punched tape through
reader or the dumping data by punching
tape.

The on-line storage symbol indicates the use
of a mass storage unit such as disk file or drum.
The symbol may indicate the storage and/or
retrieval of data. The data is directly
accessible to the computer,

This symbol indicates the use of magnetic
tape as the /O medium, ‘

The document symbol denotes the use of a
line or page printer as an output device.

F. Display Output

)

. Punched Card

H. Off Line Storage

\/

. Manual Input

—

J. Manual Operation

\/

- K. Processing

L. Decision

<>

M. Terminal

C_

N. Communication Link

=

This symbol represents the video display of
computer data.

This symbol is used whenever the input and/
or output data will be on a punched card.

The use of this symbol refers to data storage
which is not directly accessible by the
computer,

The manual input symbol represents the use
of a keyboard device, such as teletype, to
enter data into the computer.

This symbol denotes data handling not involv-
ing the computer, or throwing a switch on
the computer, efc.

The processing symbol is used for several
functions. It may, at the lowest level,
represent one instruction; at a higher level,
it represents all instructions necessary to
perform a given task.

The decision symbol marks the branch point
in a program. Therefore, there are two or
more possible exits from the symbol,

The terminal marks the beginning of and
all possible terminations to the program,

This symbol indicates the transferral of data
between various locations. Phone lines
and radio networks are common examples.

C-2

O. Flow Direction The various symbols are connected by lines;
) convention dictates that flow will normally
be from top to bottom and from left to right.

P. Connector The connector symbol is used to identify

O common points in the flow paths when con-

necting lines either cannot be drawn or
would be confusing.

C-3

APPENDIX D
POWERS OF TWO

2n " 2att
1 o] 1.0
2 1 0.5
4 2 0.25
8 3 0.125
16 4 0.062 5
32 5 0.031 25
64 6 0.015 625
128 7 0.007 812 5
256 8 0.003 906 25
512 9 0.001 953 125
1 024 10 0.000 976 562 5
2 048 11 0.000 488 281 25
4 096 12 0.000 244 140 625
8 192 13 0.000 122 070 312 5
16 384 14 0.000 061 035 156 25
32 768 15 0.000 030 517 578 125
65 536 16 0.000 015 258 789 062 5
131 072 17 0.000 007 629 394 531 25
262 144 18 0.000 003 814 697 265 625
524 288 19 0.000 001 907 348 632 812 5
1 048 576 20 0.000 000 953 674 316 406 25
2 097 152 21 0.000 000 476 837 158 203 125
4 194 304 22 0.000 000 238 418 579 101 562 5
8 388 608 23 0.000 000 119 209 289 550 781 25
16 777 216 24 0.000 000 059 604 644 775 390 625
33 554 432 25 0.000 000 029 802 322 387 695 312 5
67 108 864 26 0.000 000 0Ol4 901 161 193 847 656 25
134 217 728 27 0.000 000 007 450 580 596 923 828 125
268 435 456 28 0.000 000 003 725 290 298 461 914 062 5
536 870 912 29 0.000 000 001 862 645 149 230 957 031 25
1 073 741 824 30 0.000 000 000 931 322 574 615 478 515 625
2 147 583 648 31 0.000 000 000 465 661 287 307 739 257 812 5
4 294 967 296 32 0.000 000 000 232 830 643 653 869 628 906 25
8 589 934 592 33 0.000 000 000 116 415 321 826 934 814 453 125
17 179 869 184 34 0.000 000 000 058 207 660 913 467 407 226 562 5
34 359 738 368 35 0.000 000 000 029 103 830 456 733 703 613 281 25
68 719 476 736 36 0.000 000 000 014 551 915 228 366 851 806 640 625
137 438 953 472 37 0.000 000 000 007 275 957 614 183 425 903 320 312 5
274 877 906 944 38 0.000 000 000 003 637 978 807 091 712 951 660 156 25
549 755 813 888 39 0.000 000 OO0 001 818 989 403 545 856 475 830 078 125

D-1

APPENDIX E
OCTAL-TO-DECIMAL CONVERSION TABLE

o] 1 2 3 4 5 6 7 []) 1 2 3 4 5 6 7

0000 0000 0000 | 00000001 0002|0003 | 0004 | 0005 | 0006 10007 0400 | 0256025710258|0259{026010261 {0262 {0263

to to 0010 | 00080009} 0010{0011|0012{0013|0014 {0015 0410 | 0264 {0265]0266|0267|0268{0269 |0270{0271
0777 0511 0020 | 001600170018 0019{0020| 002100220023 0420 | 0272102731027410275|02760277{0278{0279
(Octal){{Decimal 0030 | 0024 0025|0026 0027}0028] 002900300031 0430 } 0280[0281[0282|0283(0284 102850286 {0287

0040 } 003200330034 {0035 |0036!0037|0038{0039 0440 | 0288(0289 0290|0291 | 029210293 0294 10295
0050 } 0040{0041]/ 0042100430044 {0045{0046{0047 0450 | 02961029710298|0299(0300{0301 {0302 {0303
Octal Decimal 0060 | 004810049| 0050|0051 {0052{0053| 0054 { 0055 0460 | 0304 {0305 0306|0307 0308 |0309[0310{0311

10000 = 4096 0070 | 0056 |0057| 0058} 0059 | 0060|0061 | 006210063 0470 | 0312|0313[0314]0315/0316|0317({0318{0319
20000 - 8192
30000 - 12288 0100 | 0064 [0065{ 0066|0067 | 0068|0069 0070|0071 0500 | 0320{0321/032210323{0324 {0325|0326(0327
40000 - 16384 0110 { 0072[0073]0074!0075|0076| 0077 | 0078! 0079 G510 | 0328]03291033010331|0332{0333{0334 10335
50000 - 20480 0120 | 0080|0081|0082]|0083|0084|0085}0086!0087 0520 | 033610337/0338{0339{0340/0341{0342/0343
60000 = 24576 0130 | 0088&{0089 0090|0091 |0092!|0093|00%4 {0095 0530 | 0344 {0345{0346|0347 0348 |0349{0350{0351
70000 = 28672 0140 | 0096|0097 0098!0099[0100;0101{0102{0103 0540 § 0352 |0353{0354[0355]{0356 035703580359
0150 | 0104 {0105{0106({0107/C108!0109}0110/0111 0550 | 0360|0361 |0362(0363 0364 |0365|0366 |0367

0160 [011210113{0114{0115|0116i0117{0118,0119 0560 | 0368|0369{0370!0371{0372|0373|0374!0375
0170 {0120]0121{0122|0123 012410125 0126|0127 0570 {0376 [0377(|0378{0379{0380/0381!0382)0383

H T
0200 |1 0128|0129(|0130|0131{0132i0133;0134,0135 0600 | 0384 |{0385]038610387 /0388 |0389]0390|0391
0210 |0136{0137{0138{0139 0140i0141 014210143 0610 | 03920393 (039410395|0396{0397!0398 0399
0220 [0144{0145{0146!0147|0148i0149i0150{0151 0620 | 0400|0401 {0402|0403 0404 |0405]0406 {0407

0230 | 0152|0153 0154{0155|0156(015710158:0159 0630 | 0408 |0409{0410{0411 0412041310414 |0415
0240 [0160]0161{0162{0163|0164{0165|0166;0167 0640 [0416|0417/0418,0419[0420{0421 /0422|0423
0250 {0168]0169[0170101710172!0173]0174!0175 0650 | 0424 1042510426 |0427 {0428 |0429[0430|0431
0260 10176|0177|0178)01790180{0181/0182(0183 0660 | 0432043310434 (0435|0436 |0437,0438(0439
0270 0184101850186 |0187]0188{0189 01905‘0191 0670 {0440{0441 0442044310444 |04450446 10447

T
0300 [0192{0193[0194{0195[0196|0197/0198{0199 0700 | 0448 [0449:0450/0451 {0452 {0453 |0454 {0455
0310 | 0200|0201 |0202 0203|0204 |0205] 0206 :0207 0710 | 0456104570458 04590460 |0461 (0462|0463
0320 [0208{0209 0210(0211{021210213{0214]0215 0720 | 0464]0465[{0466 0467 10468(046910470[0471
0330 | 02160217 |0218[0219|022010221;0222:!0223 0730 {0472 ,0473 0474 1047510476 10477({0478 10479
0340 {0224 0225 {0226 0227 [0228i02290230!0231 0740 | 0480 {0481 [048210483 |0484 j0485|0486 0487
0350 |0232{0233)0234{0235[0236|0237 023810239 0750 { 0488|0489 049010491 {0492 {0493 0494 (0495
0360 | 024010241 0242|0243 (0244 10245(024610247 0760 { 049610497 1049810499 |0500 [0501 |0502 {0503
0370 |0248]0249 102500251 0252102530254 | 0255 0770 {0504 |0505 0506050710508 (0509!0510]{0511

[+] 1 2 3 4 5] 7 [¢] 1 2 3 4 5 6 7
-
; 1
1000 0512 1000 | 0512|0513 (0514:0515{0516 0517!0518‘0519 1400 | 076810769 [0770{0771 10772 {0773 |0774 {0775
to to 1010 | 0520]052110522]0523[0524{0525 0526!0527 1410 | 0776{0777:0778|0779|0780|078110782 0783
1777 1023 1020 | 0528]0529{0530:0531]0532{0533{0534:0535 1420 | 078410785 |0786{078710788|0789[0790!0791
(Octal) |(Decimal} 1030 | 05360537 |0538{0539|0540{ 0541} 0542|0543 1430 |1 0792107930794 0795|0796 {079710798{0799
1040 | 0544 0545|0546 0547 0548054910550/ 0551 1440 | 0800|0801 | 080210803 |0804 {0805 0806 {0807
1050 § 055210553]0554{0555|0556|0557] 05580559 1450 | 0808 0809|0810!0811 (081208130814 |0815
1060 | 0560|0561 |0562|05631056410565|056610567 1460 { 0816 (0817|0818 0819|0820 (0821|0822 |0823
1070 | 0568{0569{0570/0571{0572{ 0573|0574 {0575 1470 } 0824{082510826{0827|0828{0829]0830}0831
1100 | 0576]0577{05780579 |0580! 0581 | 058210583 1500 | 0832/0833i0834|0835]0836 |0837,0838{0839
1110 | 0584 |0585|0586{0587 058810589 |059010591 1510 | 0840:0841;08421084310844 1084510846{0847
1120 | 059210593 {0594 {0595 [0596{0597{0598{0599 1520 | 08481084910850/085110852{0853|0854 | 0855
1130 | 0600|0601 |06020603 0604 {0605 0606|0607 1530 | 0856:0857{0858]{ 0859086010861 0862|0863
1140 | 060810609 10610!0611[0612/0613]0614}0615 1540 | 0864086510866 |0867 ;0868108690870 |0871
1150 | 0616|0617 {0618,0619|0620/0621}{0622;0623 1550 § 087210873(0874 /0875|0876 !0877|0878|0879
1160 | 062406250626 ,0627 |062810629;063010631 1560 | 088010881{088210883|0884 |0885|0886|0887
1170 | 063210633 (0634|0635 0636‘0637 063810639 1570 | 0888 083030890 089110892 1089310894 {0895
1200 | 0640[0641 (0642|0643 ;0641 |0645]0646 0647 1600 | 0896 (0897|0898|0899|0900{090110902!0903
1210 | 0648|0649 |0650]C651 (0652|0653 |0654 {0655 1610 { 0904 } 0905|0906 {0907 {0908 |090910910 0911
1220 § 0656|0657 (0658|0659 0660|0661 | 066210663 1620 | 091210913{0914|0915|0916{0917/0918|0919
1230 | 0664 | 0665 |0666 |0667 |0668{0669|067010671 1630 | 0020}0921{0922]0923|0924 10925|0926 |0927
1240 | 067210673 ({0674 |0675 [0676 0677 | 06780679 1640 | 09281092910930]0931!0932!0933|0934 | 0935
1250 | 0680|0681 [0682 {0683 0684 {0685 |0686 0687 1650 | 0936(093710938(0939|0940{0941 0942|0943
1260 | 0688!10689 1069010691 069206930694 {0695 1660 | 0944094510946 094710948 {0949{0950[0951
1270 | 06960697 0698|0699 [0700{0701 |0702 |0703 1670 1 0952109530954 109550956 |0957 {0958 (0959
H

1300 1 0704 | 0705|0706 {0707 |0708{070910710|0711 1700 | 096010961 096209630964 {0965]0966 |0967
1310} 0712:0713 {0714 {0715 |O716 |0717|{071810719 1710 | 0908|0969!0970/0971 10972 {0973 |0974 | 0975
1320 | 07200721 {0722 0723 10724{0725:0726 {0727 1720 1 0976109770978(0979 (098010981 0982|0983
13301 072810729 |0730|0731 [0732 073310734 10735 1730 | (0984 10985]0986 (0987|0988 |[0989 {0990 | 0991
1340 | 0736|0737 |0738 /0739 (074010741 1074210743 1740 | 099209930994 [0995|0996 {0997 {0998 0999
1350 | 0744{0745 |0746 |0747 |0748 ;0749|0750 |0751 1750 | 1000|1001 |1002] 1003 {1004 | 1005 {1006 {1007
1360 [075210753 |0754 |0755 (0756 1075710758 [0759 1760 }1008|1009{10101011{1012{1013 101411015
1370 | 0760{0761 [0762]0763 |0764 [0765|0766 {0767 ¢ 1770 [1016{1017]1018[1019/1020[1021{1022{1023

E-1

[| 2 3 4 5 5 7 0 | 2 3 4 5 6 7

; ; \ ;
2000 | 1024|1025 110261027 {1028]1029] 1030} 1031 2400 13au41:ux!125 > {1283] 1284 L1285 (1286 1287 | 2000 1024
2010 | 1032103311034 {1035/ 1036 |1037| 1038} 1079 2410 138ul1959|12901 291]129211293 (1294 [1295 to o
2020 | 1040/ 10a1 {1042 1(m311044 10451 1046|1047 2420 | 12961 1297{ 1298 ’99113oo|1501 1302{1303 | 2777 1535
2030 | 1048{104911050] 1051105210531 1054 1 1055 2430 | 1304 13n‘,|1xm,13u7113uu|1309 131001311 | (0octat) | (pecimal)
2040 { 1056|1057 10581 1059} 1060'1061 1062|1063 2440 131"1113'Iil4\1315 t31611317[1318{1319

2bi1yez 1323113241325 11326 11327

2050 | 106411065 {1066 1067 l()GB] I()091 107011071 2450 | 1320113

2000 | 107211073]1074 1075,1070 10771 10781 1070 2400 1325113:u!11Jn‘1511 153)\1333]1334;1335 gcrtal Ledima
2070 | 10B0] LUBL 1082110831084} 1085! 1086|1087 2470 | 1336{ 1337, 1438 |159g134011341?1342i1343 Loo00 = 4096
- -t | : i ‘ : H . : i L - 20000 - Bl92
2100 | 1088{ 1089 L0vo 109111092:1093i1u94;1095 2500 | 1344; 1345 1346113471 133811349(13501 1351 | 30000 - 12248
2110 {109611097110981109611100711011 1102|1103 2510 | 1352013531 1354113551356 (1357113581359 | 40000 - lo3da
2120 [1104111051106/ 1107/ 1108] 1109{ 11101 1111 25201 136011361 1162113631136411365[1366[1367 | 50000 - 20480
2130 | 11121143 [1114] 1115 11t0]1017{Lli8] 111y 2530 | 13681 1369: 137011371,1372/137311374 1375 | 00000 - 24576
2140 | 1120}1121/1122{112311124]1125]1120 1127 2540 [1376.1377: 1378113791138011381 138211383 | 70000 - 28672
2150 | 1128{112911130/1131{113211133]1134:1135 2550 | 138411385/1386,1387!1388;13891139011391
2160 | 113611137{1138/1139/114011141[1142{1143 2560 | 1392]139311394]1395:1396[1397{1398|139¢
2170 § 1144 /1145|1146 /1147 {1148!1149|1150 1151 2570 | 1400 1401\1402 140311404 {1405 {1406 {1407
Lo [ESUEE EE O B T H R S S]
2200 | 1152|1153{1154{1155{1156}1157 |1158:1159 2600 | 1408114091 1410|1411 [1412|1413{1414 | 1215
2210 | 1160|1161 {11621116311164[1165| 1166 1167 2010 141611417/ 1418 1419114201421 114221423
2220 [11681116911170(1171]1172{1173| 11741175 2620 | 1a2411425{1426{14271428]1429/1430 (1431
2230 [1176|1177}1178{1179{1180|1181 1182 1183 2630 | 1432114331143411435/1436 (143714381439
2240 {1184|118511186{1187[1188|1189{1190!1191 2640 | 144011441}1442/1443{1444 144514461447
2250 | 1192|1193|1194|1195|1196{1197|1198]1199 2650 | 1448]144911450{1451{1452{1453 [1454 {1455
2260 | 1200{1201{1202(12031204{1205{1206|1207 2660 | 1456:1457}145811459,1460(1461 1462|1463
2270 {1208]1209|121011211}1212[1213{1214 1215 2670 | 1464 |1465[1466|1467 {1468 |1469 [1470 {1471
[S B P - —
2300 | 1216}1217]1218]|1219!1220i 1221 |1222!1223 2700 | 1472114731 1474147511476 (147714781479
2310 {1224{1225}1226{12271122811229|1230:1231 2710 | 1480(1481/1482}1483 1484 14851486 (1487
2320 {1232{1233,12341235{1236|1237{1238/1239 2720 | 14881148911490(1491 114921493]1494 {1495
2330 |1240(1241/1242[1243]1244}1245|1246{1247 2730 | 1496|1497 |1498|1499 1500|1501 11502 | 1503
2340 | 1248]1249{1250|1251 /125212531254 11255 2740 | 1504 [1505]1506]15071150811509}1510 1511
2350 | 1256(1257 1258|1259 {1260|1261 (1262|1263 2750 | 1512151311514 {1515}1516[1517 /1518|1519
2360 |1264|1265/1266|12671268{1269]1270(1271 2760) 152011521 {1522]1523]15241525{152611527
2370 127212731274 [1275]1276(1277 12781279 2770 11528{1529{1530]1531{1532]1533]|1534 1535
[5) 1 2 3 a 5 6 7 0 1 2 3 4 5 6]
3000] 15361537 |153611539[1540{1541{1542|1543 3400 | 179211793]179411795[1796| 1797 {1798[1799 3000 1536
3010 | 1544{1545/1546(1547|1548] 1549 1550{1551 3410 { 1800|1801 1802 1803|1804 {1805 {1806 | 1807 to to
3020| 1552155311554 {1555{1556|1557| 155811559 3420 | 1808|1809{1810!1811/1812{1813 (1814|1815 3777 2047
30301 1560(1561{156211563'1564|1565|1566 {1567 3430 | 1816[1817)|1818|1819]1820}1821 |1822|1823 | (Octal)| (Decimal)
3040 156811569/1570{1571{1572|1573| 157411575 3440 | 1824118251820 1827| 1828|1829 (18301831
3050 157611577:15781157911580|1581{1582|1583 3450 | 18321833{1834|1835|1836|1837 !1838]1839
3060 | 1584[1585:1586|1587{1588|1589(1560]1591 3460 | 1840|1841 1842/1843|1844184511846{18a7
3070 | 1592115931594 /159511596|1597| 159811599 3470 | 18481849|1850|1851[1852|1853 |1854 1855
} SR S S S
31001 1600|1601 {160211603 {1604 |1605{ 16061607 3500 | 185611857{1858|1859! 186011861 (1862|1863
3110| 160811609!161011611{1612} 1613|1614 {1615 3510 | 1864 |1Bo5| 1806 1867186811869 |1870/1871
3120 1616/161711618{1619(1620{1621|1622|1623 3520 | 1872118731 18741 1875: 18761677 | 1878|1879
3130 16241625 ,1626|1627{1628]1629]1630]1031 3530 | 18801881{1882|18831 1884|1885 1886|1887
3140] 163211633]1634|16351636|1637]1638|1639 3540 | 1888} 1889|1890]| 1891189211893 {1864 | 1895
3150 1640|1641 /1642|1643 (1644116451646 1647 3550] 18961 1897] 1498118991 1900]1901 19021903
3160 | 1648|104911650{165111652|165311654 11655 3560 | 1904[1905]1906] 1907|1908} 1909 [1910]1911
3170 1656|1657 165816591660 |1661]1662{1663 3570 | 1912]1913:191471915/191611947 (191811919
+ et } ——- S -+
3200 | 1664[1665!1666{1667{1668{1669]1670|1671 3600 1920{1021 19221192311924 119251926 11927
3210| 1672]167311674 |16751676 1677 1678|1679 36101 1928/192911930:1931:193211933 193411935
3220 1680110811682 16831684 | 1685]1686 1687 3620 | 1936°1937/1938119391 194011941 {1942{1943
3230 | 1688|1689]1690:1691 {1692(1693i1694 11695 3630 | 194419451 1940:1947/1948(1949{1950:1951
3240 | 1696|1697 11698 |16991170011701}1702|1703 3640 | 1952:1953|1954:1955; 1956|1957 119581959
3250 1704 1705 1706 {1707 1708117091710 1711 3650 | 196011961] 19621963 1964 11965 11966 | 1967
3260 | 1712171301714 ,1715:1716 1171717181719 3660 | 196811969119701 197119721973 [1974 1975
3270 17201721 1722 1172311724 11725 1726 1727 3670 | 1976{1977{1978! 19791 198011981 1198219873
-t ; 4. H— .FH_, o b— SO JEN—
3300 1728/172911730'1731 1732|1733 /17341735 3700 | 198411985(1986 198741983i1989 199011991
3310 | 17361737 (17381739 1740117411742 |1743 37101 1992719931199411995' 1996 {1997 [1998 11999
3320 1744174511746 (1747 |174811749]1750[1751 3720 { 20002001 | 2002120031 2004 { 2005 {2006 ' 2007
3330 175211753 |1754 11755 11756 ,1757 117581759 3730 g«ws"uoq1“010‘zoll “012;2013 2014:2015
3340} 1760|1761|1762 11763 [1764 1176511766 11767 3740 | 2016;2017!2018: 2019»202052021 202212023
3350 17681769 |177011771 1177211773 11774{1775 3750 | 2024120251 2326 20271 20262029 {2030 12031
3360 177611777\177811779 17801781 1178211783 3760 } 2032 >033>zo34‘2o35 2036|2037 |2038 12039
3370 | 1784117851786 (1787 {178811789]1790/1791 3770 | 2040l *0411 12120431 2044 [2045|2040 12047

E-2

4000 2048
to to
4777 2559

(Octal}| (Decimal})

5000 2560
to to
5777 3071

{Octal)} (Decimal)

0 1 2 3 1 5 6 7 0 T 2 3 q 5 [7
i j ! i]
4000 | 204812049|2050{2051 | 2052 | 2053| 2054 | 2055 4400 | 230412305/ 2306| 2307 2308| 2309|2310 2311
4010 | 2056 205720582059 2060|2061 ! 2062} 2063 4410 | 231212313{2314|2315/2316|2317(2318]2319
4020 | 2064 | 2065|2066 | 2067 | 2068 [2069] 2070| 2071 4420 | 2320] 2321, 2322| 2323{ 2324 | 23251 2326|2327
4030 | 2072|207312074 | 2075 2076!2077 2078) 2079 4430 | 2328123291 2330{ 2331} 233223331 2334|2335
4040 | 2080 {2081 | 2082 {2083 | 2084 | 2085 | 2086 | 2087 4440 | 2336|2337!2338] 23391 2340{ 2341123422343
4050 | 2088|2089 2090]2091 2092 {2093 2094 2095 4450 | 2344|2345{ 2346 2347| 2348|2349/ 2350] 2351
4060 | 2096 |2097 12098 {2099 2100121011 2102{2103 4460 | 2352|2353’ 2354 2355 2356|2357/ 2358|2359
4070 | 2104|2105| 2106|2107 2108|2109| 2110|2111 4470 | 2360|2361’ 2362] 2363] 2364123651 2366|2367
t + —+ T
4100 | 2112|2113 |2114 2115} 2116|2117, 2118| 2119 4500 | 2368|2369 2370 23711 2372| 23731 2374 2375
4110 | 2120]2121,212212123 2124 | 2125 2126{ 2127 4510 | 23761237712378| 2379, 2380 2381 23822383
4120 | 2128{2129(213012131 ;2132|2133 21342135 4520 | 2384 2385! 2386) 2387 2388] 2389 2390|2391
4130 | 2136{2137}213812139|2140i2141| 214212143 4530 | 2392]2393 2394} 2395| 2396 2397 2398 2399
4140 | 214421452146 21471 214812149|2150] 2151 4540 | 2400240112402/ 2403 | 2404 | 2405 2406 | 2407
4150 | 2152(215312154(2155}2156 2157|2158 2159 453501 2408{2409.2410|2411}2412|2413: 24142415
4160 | 21602161 |2162{216312164{2165|2166!2167 4560 | 241612417'2418}2419{ 2420|2421 2422|2423
4170 | 216812169|217012171]2172{2173|2174! 2175 4570 | 2424} 24252426 2427; 242824291 2430{2431
42001} 217612177 217Bi2179?21801216132182 2183 4600 | 2432|2433, 2434 2435 24362437 24382439
4210 | 2184 |2185{2186!2187|2188{218912190) 2191 4610 | 244024412442} 24431 2444 2445 24462447
4220 | 2192|2193{2194 121952196 2197|2198} 2199 4620 | 24481 2449:2450! 2451, 2452|2453! 2454 | 2455
4230 | 2200 |2201}2202{2203| 2204 | 2205|2206} 2207 4630 | 24562457, 2458! 2459 2460|2461/ 24622463
4240 | 2208|2209 22102211 |2212{2213 22142215 1640 | 246412465, 2466 2467| 2468|2469 2470|2471
4250 | 2216 {2217{221812219] 2220|2221 2222|2223 4650 | 2472124731 2474| 2475| 24762477/ 2478 (2479
4260 | 2224 2225!222¢6 122271 2228122291 2230 2231 4660 | 2480|2481 2482| 2483| 2484 | 24851 2486 {2487
4270 | 2232122332234 223512236 | 2237|2238 | 2239 4670 | 2488| 248912490 2491 2492124932494 [2495
4300 | 2240224112242 2243} 2244 | 2245|2246 2247 4700 | 2496|2497 2498| 2499} 2500 2501 2502 | 2503
4310 | 224812249 {2250{2251 !2252| 225322542255 4710 | 2504|2505 2506| 2507 25082509 25102511
4320 | 2256 22572258]2259. 2260|2261 2262 2263 4720 | 251212513; 2514 2515] 251612517, 2518|2519
4330 | 2264 {22651 220612267 2268|2269 22701 2271 4730 | 2520125212522 2523| 252412525 2526 /2527
4340 | 227212273 2274]2275 2276227722781 2279 4740 | 2528]2529, 2530|2531} 2532 2533; 2534 /2535
4350 { 2280|2281 |2282|2283 2284 12285/ 2286|2287 4750 | 253612537+ 2538] 2539] 254012541 2542|2543
4360 | 228812289}2290{2291 /229212293 2294|2205 4760 | 2544[2545 2546} 2547 2548|2549 25502551
4370 | 2296 [229712298|22991230012301 2302|2303 4770 | 2552]2553] 25541 2555|2556 2557|2558 | 2559
0 1 B 3 4 5 o 7 0 1 2 S] 5 © 7
; T] !] : j T !
5000 | 2560|2561 2562|2563 2564|2565 |2506] 2567 5400 | 2816|2817|2818 820‘232132522 2823
5010 | 2568 2569257012571 2572257312574 {2575 5410 { 2824 [2825!2826| 2827282828291 2830|2831
5020 | 2576125771 257812579|2580| 2581 | 2582 2583 5420 | 2832(2833/2834|2835! 2836]2837{ 2838|7339
5030 | 2584 25852586 | 2587 2588|2589 125902501 5430 | 2840/ 28412842 284312844 | 2845! 2846 2847
5040 | 2592|2593 2594259512596 /2597259812509 5440 | 28B48]2849|2850| 285128522853} 2854 | 2855
5050 | 2600{2601 2602|2603 |2604 | 260512606 | 2607 5450 | 2856] 2857 2858|2859 2860|2861 2802 | 2863
5060 | 2608 2609261012611 261212613 261412615 5460 | 2864 | 2865]2366] 2867128682869 2870|2871
5070 | 2616 2617i201 6191262012621 1262212623 5470 | 2872} 287312874]28751 2876 !2877! 2878|2879
+ 1 . t— T O - ‘7 —
5100 | 2624 1262512626 262712628/2629 2630 2631 5500 | 2880|2881 ;2882|2883 | 2884 | 2885 28806 2887
5110 | 2632 2633|2634 26352636 |2637:263812639 5510 | 2888 2889 | 2890| 2891 | 289212803 2804 | 2895
5120 | 264012641 2642|2643 |2644 | 2645264612647 5520 | 28961 289712898] 2899 |2900]2901 | 2902 | 2903
5130 | 264812649(2650]2651'2652{2653|265412653 5530 | 2904] 29052906 2907290812909 2910|2911
5140 | 2656 2657120582659 1260012661 | 266212663 5540 | 291212913:29014(291512916|2917: 2918|2919
5150 | 2664 {2665 2666|2667 2668|2669 2670|2671 5550 | 2920| 292112922{ 2923|2924 {2925| 2926 2927
5160 | 2672:267312671]2675126761 2677 1267812679 5560 | 2028| 2929,29301 2931{2932{ 2933 2934|2935
5170 | 2680126812082 2683 2084 | 2685 2686 2687 5570 | 2936/ 2937{2938] 29392940} 29411 2942} 2943
f r : e M SEEEE S S e —=-
5200 | 268812689 :2690[269112692|2693 ;2694 {2695 5600 | 294412945]2946!2947/2948 29495 2950 2951
5210 | 269612697 2698! 269912700 2701|2702 2703 5610 | 2952129531 2954| 295512956 29571 2958] 2950
5220 | 2704 [270512706 | 2707127081 270912710, 2711 5620 | 2960{ 2061 12962] 2963296412965, 2066|2967
5230 | 27121271312714|2715/2716{2717 2718{2719 5630 | 2968 2969|2970|297112972|2973: 2974 2975
5240 | 27201272112722|27231272412725,2726 2727 5640 | 2976, 2977|2978} 2979 |2980] 2981} 2982 | 2983
5250 | 2728 127292730 273112732{2733127342735 5650 | 2984} 298512986 298712988| 2989 2990|2991
5260 | 2736 1273712738|2739, 27401 2741127422743 5660 | 2992/ 2993129941 2995 {2996[2997 2998| 2999
5270 | 274427452746 |2747{27481274912750,2751 5670 | 3000/ 3001 {3002 3003 | 3004 | 3005 | 3006 3007
5300] 275212753 | 2754275512756 275712758{2759 5700 | 3008|3009, 3010/301113012| 30131 30143015
5310 | 276012761 2762276312764 2765|2766 12767 5710 | 3016 3017{3018]{ 3019 {3020| 3021 3022|3023
5320 | 2768 (2769 |2770{2771!2772] 277312774 {2775 5720 | 30241 3025} 3026] 3027|3028 3029 3030|3031
5330 | 27761277712778{277912780] 2781 | 278212783 5730 | 3032 3033|3034 3035 3036|3037 3038 | 3039
5340 | 2784 1278527862787 2788]278912790|2791 5740 | 3040] 3041{3042| 304330441 3045 3046|3047
5350 | 2792279312794 |279512796] 279712798 2799 5750 [3048 3049]3050]3051 130521 30531 3054 | 3055
5360 | 2800|2801 | 2802|2803 | 2804 | 2805| 2806 | 2807 5760 | 3056 3057 | 3058 3059 | 3060| 3061! 3062 | 3063
5370] 2808 ;2809;2810[2811 2812 2813|2814 | 2815 5770 | 3064 3065 3066[3067 3068|3069/ 3070[3071

E-3

[o] 1 2 3 4 5 6 7 (6] 1 2 3 4 5 [3) 7

T

6000 | 3072130733074 |3075| 3076|3077 3078|3079 6400 | 332813329(3320(33313332 {3333 3334|3335 6000 3072
6010 | 3080|3081 {3082| 3083|3084 | 3085 | 3086 3087 6410 { 333613337|33381333913340{3341 3342|3343 to to
6020 | 3088 3089 13090|3091|3092|3093 3094|3095 6420 | 3344334513346 33473348 3349133503351 6777 3583
6030 | 3096 [3097(3098{3099{3100[3101 31023103 6430 | 3352{3353|3354|3355!3356{335713358|3359 {Octal) | (Decimal)
6040 | 3104 [310513106|3107|3108{3109{3110}3111 6440 | 336013361(33623363 3364 (3365133663367
6050 | 31123113 {3114|3115|3116{3117{3118|3119 6450 | 3368{3369,3370(337113372|337313374,3375
6060 { 3120|3121 [3122(3123|3124|3125|3126{3127 6460 | 337613377337813379{3380{3381 33823383 Octal bDecimal
6070 | 31283129{3130!3131(|3132|3133{31343135 6470 | 3384{3385|3386(3387{3388|3389|3390/(3391 10000 - 4096

+ 20000 - 8192
6100 [313613137(3138{3139|3140|314113142!3143 ©300 | 3392339313394 3395?3396 3397339813399 30000 - 12288
6110 § 3144 13145!3146{3147{314813149|3150| 3151 6510 | 3400! 34013402 |3403:3404 340534006 {3407 40000 - 16384
6120 { 3152!3153(3154|3155{3156!3157{315813159 6520 {340813409{3410(34113412 341334143415 50000 - 20480
6130 | 31601{31611316213163{316413165(3166|3167 6530 {3410 3417[3418(3419{3420(34213422[3423 60000 -~ 24576
6140 | 3168:3169(317013171|317213173(3174!3175 6540 { 3424.342513426/342713428{3429{3430/3431 70000 - 28672
6150 | 3176 (3177|3178 (3179[3180{3181{318B2(3183 6550 | 34321343313434 1343513436 (343734383439
6160 j 3184 |3185|3186}3187[3188{3189,3160[3191 6560 { 3440'34413442|3443:3444 [344513446 3447
6170 | 3192(3193(31943195!3196{3197{3198!3199 6570 | 344834493450 3451 345234533454 |3455

6200 | 3200(3201 320232033204 |3205|3206;3207 6600 { 3456!3457[3458[3459:3460 |3461 346213463

6210 § 3208 |3209(3210}3211|321213213}321413215 6610 | 3464 {3465]34663467) 3468 {3469|3470{3471
6220 | 32163217 {32183219|3220|3221|3222'3223 6620 | 347213473 13474 {347513476 (347734783479
6230 | 3224 132253226 3227|322813229{32303231 6630 | 348013481 3482348313484 {34853486 3487

6240 | 323232333234 ,3235|3236|3237 (323813239 6640 | 3488134893490 349134923493 /34943495
6250 | 32403241 (3242132433244 |3245!324613247 6650 | 34963497 (3498349913500 |3501 {3502 |3503
6260 | 3248(3249(3250(3251(3252|32531325413255 6660 | 3504 13505{3506 35073508 |3509{3510}3511
6270 | 3256|3257 |3258|3259!3260]3261 {3262{3263 6670 | 351235133514 /35153516 |3517{3518}3519

6300 | 3264 {3265(3266|3267|3268(3269{3270/3271 6700 | 3520|3521 {3522{352313524 |3525{3526 |3527
6310 1 3272132733274 |3275(3276{327713278!3279 6710 | 352813529{3530{3531!3532 |3533|3534 {3535
6320 | 328013281 {32823283]3284 {3285 328613287 6720 | 353635373538 3539354013541 {3542(3543
6330 | 3288|3289(3290{32913292(3293 {3294 | 3295 6730 | 3544:3545(3546(3547}3548[3549|3550{3551
6340 | 3296 {3297 {3298 13299:3300}3301 |3302{3303 6740 | 3552,3553 {3554 {3555 3556 [3557 135583559
6350 | 3304 {3305 {3306 (3307{3308)3309|3310{3311 6750 | 35603561 (3562{3563 (3564 |3565 {3566 {3567
6360 | 331233133314 (3315{3316 (331733183319 6760 | 3568{3569|3570|3571 (3572 {3573 (3574|3575

6370 | 3320133213322 (33233324 {3325 (3326|3327 6770 13576 {3577 (35783579 !3580 {3581 (3582|3583
[+] 1 2 3 4 5) 7 o] 1 2 3 4 5 6 7
7000 | 358413585|35863587 3588|3589 3590?3591 7400 |3840:3841|3842|3843)3844|3845]38406]3847 7000 3584
7010 | 3592(3593{3594 3595|3596 |3597 3598|3599 7410 | 3848:3849(3850| 3851 /38521 3853138543855 to to
7020 § 3600|3601 3602 ;3603|3604 | 3605 3606]3607 7420 | 3856:385713858|3859|3860|3861{3862|3863 7777 4095
7030 § 3608|3609|361013611[3612;3613 3614;3015 7430 { 3804 ;3865|3866 3867|3868} 3869(3870]3871 (Octal) [(Decimal)
7040 1 3016|361713618|3619/3620|3621 3622:3623 7440 } 3872|3873|3874| 3875|3870 3877|3878 3879
7050 | 3624136253626 (3627362813629 36303631 7450 | 3880 °3881|388238833884|3885) 38863887
7060 | 3632|3633]36341363513636|3637|3638!3639 7460 | 38883889 3890] 3891 3892] 3893389413895
7070 | 3640/3641{3642|3643{3644 | 3645 3046i3647 7470 389033897 389813899)3900(3901|3902 3903
T T
7100 | 3648136493650|3651 365236533654 {3655 7500 | 3904 {3905 {3906 |390713908| 3909{3910! 3911
7110 | 3656! 365736583659 |3660|3661/3662{3663 7510 | 3812{3913{3914(3915/3916|3917|3918{3919
7120 | 3604 3665|32666|3667{3668|36091367013671 7520 | 3920!39213922|3923|3924(3925] 3926|3927
7130 [3672|3673]3674{3675(3676!3677 36783679 7530 | 392813929]3930[393113932|3933{3934| 3935
7140 | 368013681 {368213683 (3684 | 3685|3686 {3687 7540]13936:3937(393813939{3940|394113942| 3943
7150 | 36881368913690{3691|3692{3693 3694|3695 7550 | 3944 {3945 394613947!3948]3949] 3950|3951
7160 § 36963697 |3698(3699{3700|3701 {3702 3703 7560] 3952139531 3954| 395513956 3957|3958 3959
7170 | 3704{3705[3706 3707|3708 3709 |3710{371L 7570 | 3960(3961{3962]396313964| 3965} 3966|3967
7200 | 3712]3713(3714|{3715{37163717 (371813719 7600 | 3968 |3969{3970|39713972|3973| 39743975
7210 | 3720(372113722{3723 {3724 (372537263727 7610 3970;3977 3978|397913980(39811 3982; 3983
7220 [3728|3729|3730{373113732,3733 (3734|3735 7620 {3984 {3985|3986398713988(3989{ 3990|3991
7230 | 3736|3737(3738(3739(3749 3741 {3742(3743 7630 | 399213993(399439953996 399713998 3989
7240 | 3744 | 3745|3746 (374713748 |374913750|3751 7640 | 4000;4001{4002{4003]4004{4005{4006|1007
7250 13752(|3753|3754 (3755|3756 3757 3758{3759 7650 {4008 '4009{4010{4011}4012!4013{401474015
7260 | 3760|3761 3762376313764 {3765 |3766 13767 7600 {4010:4017]4018[4019:4020 4021!402214023
7270 1 3768|3769{3770|3771;3772{3773(377413775 7670 14024 14025(4026{4027|4028]4029 4030{403L
i !
H +
7300 | 3776 ({3777 [377813779|3780|3781{378213783 7700 | 4032 14033{4034 (4035/4036{4037}403814039
7310 | 3784|3785 (3786 {3787 |3788(3789|3790/3791 7710 i 4042[404314044 4045/ 4046|4047
7320 3792137933794 (3795|3796 {3797 (37983799 7720 ! 4050]4051{4052{4053|40541 4055
7330 | 3800{3801 {3802 3803 {3804 {3805 |3806 {3807 7730 14056 14057[4058[4059'4060|40061 4062‘4063
7340 | 3808 |3809{3810/3811,3812(3813|3814 ;3815 7740 [4064 [4065{4066{4067|4068(4069;4070{4071
7350 {3816|381713818|3819{3820{3821 |3822!3823 7750 | 407214073{4074]4075|4076{4077!3407814079
7360 | 3824138253826 |3827|3828|3829|383013831 7760 | 408014081 |408214083]4084|4085 4080;4087
7370 | 38323833 13834 3835383613837 /3838 {3839 7770 {4088.4089[4090|4091 4092|1003 409414095

E-4

APPENDIX F
FRACTIONAL CONVERSION TABLE

OCTAL __DEC IMAL GCTAL _ DECIMAL OCTAL___DECIMAL] _OCTAL _ DECIMAL]
i
.000 000000 . 100 125600 200 L 250000 L300] L375000
.00l .001953 .101 120953 .201 .251953 | .301 ' 370953
.002 003906 .102 . 128906 .202 253900 | 302 | .378006
.03 .005859 .103 130859 .203 255859 ! .303 | .380859
.004 .007812 .104 .132812 204 | .257812 | soa | L3s2elz
.005 008765 .105 .134765 .205 .259765 | 305 | 384765
.006 .011718 .106 136718 201718 | 306 | 380718
007 013671 .107 138671 .203071 1 .307 | .388671
.010 015625 .110 140625 .265625 ¢ .310 | 390625
011 .017578 L1 142578 L207578 | 311 | .392578
012 .019531 112 . 144531 209531 | 312 394531
.013 021484 L3 . 146484 271484 L313 | .396484 |
.014 023437 114 148437 .214 .273437 | 314 398437 |
.015 .025390 115 150390 .215 .275390 | .315 400390 |
016 027343 .l16 .152343 .216 .2773a3 | .3le .402343
.017 029296 117 154290 217 .279296 | ,317 404296 |
.020 .031250 .120 156250 .220 .281250 | ,320 406250
.021 033203 .121 158203 221 283203 | 321 408203
.022 035156 .122 .160156 222 .285156 | .322 .110156
.023 .037109 .123 .162109 223 .287109 | ,323 412109
.024 039062 124 164062 224 .289062 | .32 414062
.025 .041015 .125 166015 .225 .291015 | .325 .416015
.026 042968 120 .167968 226 .292968 | ,326 417968
.027 044921 127 169921 227 .294921 .327 419921
.030 046875 130 171875 .230 .296875 | .330 .421875
.031 048828 131 .173828 231, .298828 | 331 .423828
032 .0so7el | 132 .175781 232 | 300781 | .332 .425781
.033 .052734 | ,133 .177734 .233 .302734 .333 427734
.034 .054687 | 134 179687 .234 .304687 .334 429687
.035 056640 .135 181640 .235 306640 .335 .431640
.036 058593 .136 . 183593 .236 .308593 .336 .433593
.037 060546 .137 185540 .237 310546 .337 435546
.040 062500 .140 .187500 .240 312500 .340 437500
041 064453 141 .189453 .241 312453 341 .439453
.042 .066406 142 .191406 | 242 316406 .342 .441406
.043 068359 143 193359 | 243 .318359 .343 .443359
.44 .070312 .144 .195312 244 320312 .344 445312 |
.45 072265 .145 .197265 235 .322265 .345 447265 |
.06 074218 146 190218 246 .324218 .346 .449218 |
.047 .076171 147 .201171 .247 .326171 .3a7 451171 |
.050 .078125 .150 .203125 | 250 328125 | L350 .a53125 |
.051 . 080078 .151 | .205078 | 251 .330078 .351 .455078
.052 .082031 152 .207031 .252 .332031 .352 .457031
053 .083984 .153 .208584 .253 .333984 .353 .458984
054 085937 154 .210937 .254 ¢ ,335937 .354 460937
.055 . 087890 .155 212890 .255 337890 .355 462890
.056 089843 156 214843 .256 339843 .356 462843
.057 091796 157 .2167%0 .257 341796 | 357 166796
e IR SR SR B haahas
.060 093750 .160 .218750 .260 343750 .360 408750
061 .095703 .lol .220703 261 345703 .361 170703
062 097656 162 222656 L2602 347656 362 472656
063 099609 .lo3 224600 .263 .349609 .363 .474609
.064 101562 164 226502 264 351562 364 476562
065 103515 . 165 .228515 .265 353515 365 .478515
.066 105468 166 .230408 | 260 .355468 | 366 480468
067 .107421 167 .232421 267 357421 367 .482421
.070 .109375 .170 234375 270 .359375 .370 .484375
.071 .111328 171 .236328 271 .301328 371 .486328
072 .113281 172 238281 272 363281 372 .488281
.073 115234 173 .240234 .273 365234 .373 390234
.07a 117187 174 242187 .274 367187 .374 .492187
075 119140 175 .2a4140 .275 .369140 375 494140
.076 121093 .176 246093 .276 .371093 .376 .496093
077 12346 177 .2a8046 277 .373046 377 | 498046

F-1

T

OCTAL __ DECIMAL__; OCTAL _ DEC(MAL OCTAL _ DECIMAL OCTAL___ DECIMAL]
i T 1 T j
000006 § 000000 | .OVDLOV | 000244 000200 | 000488 L0U0300 | L000732
.000001 | L00DO03 | LO0OLOL | ,DLV247 L000201 | 000492 L00U301 | 000736
L000002 000007 | 000102 | 000251 L000202 | L000495 .000302 | 000744
L000003 1000011 | 000103 | 000255 L000203 | ,000499 000303 | 000743
L000004 | L000015 | .000i04 | .000259 000204 | 000503 | .000304 i 000747
.N00005 | LU0001G L 000105 | 000263 LO00205 1 .000507 000305 | .000751
L000000 | L O00022 L L006L06 | 000267 LD00206 { L0GOSLL L000300 | 000753
000007 ‘ L000020 | L000LOT 000270 LLOD207 ;.000514 1 ,000307 | ,00075
L] i e 3 e
L000010 | .00003G | L0001 Ly T L000274 LO00210 | L000518 L000310 | 000762
L0000LL | Lu00034 ; LUBOLLL | 000278 LO0021L | Looes22 .000311 | .000700!
L000012 | 000038 LD00LE2 | Lo0u282 L0DDZL2 | L0U0526 L000312 | L0077l
.000013 | .00004 1 L000L13 ¢ .000286 L000213 | L000530 L000313 | .000774
.000014 | 000045 .000114 | .000289 .000214 1 .000534 000314 | 000778l
.000015 | 000049 L000L1S |, 000293 L000215 | L 000537 L000315 | 000782
000016 | 000053 L000116 | ,000297 L000216 | 000541 .000316 | .000785!
.000017 | ,000057 L000117 | 000301 L000217 | 000545 .000317 | .000789!
.000020 | 000061 .000120 | .000305 .000220 | 000549 .000320 | 000793
.000021 | ,000064 .000121 | .000308 .000221 | L000553 .000321 | .000797]
.000022 | 000068 L000122 | 000312 .000222 | .000550 .000322 | .000801!
.000023 [000072 .000123 | .Guo3le 000223 | 000560 .000323 | 000805
.000024 | .000076 : .000124 | ,000320 .000224 ; 000564 .000324 | .000808;
.000025 | ,000080 | .000L25 | .000324 .000225 | .000568 .000325 | .000812]
.000026 | ,000083 | .000126 ; .000328 .000226 | 000572 .000326 | .000810!
-000027 | .000087 | .000127 : .N00331 000227 ‘ .000570 .000327 | .000820]
e — e et e T —
000030 | .000091 ; .000130 | .000335 | .000230 ‘ .000579 .000330 | ,000823;
. 000031 | 000095 .000131 | .000339 | .000231 | .000583 .000331 | .000827;
.000032 | .000099 1000132 | .000243 | 000232 | .000587 .000332 | .000831;
.000033 | ,000102 000133 | .000347 § .000233 | .000591 .000333 | 000835
.000034 | .000106 .000134 | ,000350 .000234 | .000595 .000334 | ,000839
.000035 | ,000110 .000135 | .600354 000235 | L000598 .000335 | .000843
.000036 | 000114 .000136 | .000358 .000236 | .000602 -000336 | ,000846
.000037 | .000118 .000137 | 000362 .000237 | .0U0606 .000337 | . 200850
— }
.000040 | .000122 L000L4G | 000366 | .000240 | 000610 .000340 | .000854
.000041 i .000125 L000141 | ,000370 | .000241 | .000614 .000341 | .000858!
.000042 | 000129 .000142 | .000373 .000242 | 000617 .000342 | .000862;
.000043 | .000133 .000143 | 000377 .000243 | 000621 .000343 | 000865,
.000044 | 000137 L000144 § 000381 L000244 | 000625 .000344 | 000869
.000045 | .000141 L000L145 | . 000385 .000245 | 000629 .000345 | 000873
.000046 | 000144 .000146 | , 000389 .000246 | 000633 .000346 | 000877
.000047 | .COUL48 L000147 | 000392 .000247 | 000637 .000347 | .000881
.000050 | 000152 L000150 | 000396 .000250 | .000640 000350 | .000885 |
.000051 | 000156 L000151 | .000400 .000251 | 000044 .000351 | 000888 |
L000052 | .00GLAO LO00152 | 000404 000252 | 000648 .000352 | 000892
.000053 | 000164 L0U0L53 | 000408 000253 | 000652 .000353 | 000896
.000054 | 000167 .000154 | 000411 .000254 | 0000656 .000354 | 000900
.000055 | .G00171 .000155 § 000415 .000255 | L000659 .000355 | 000904
L000056 | L000L7S L000156 | L000419 .000256 | 000663 .000356 | 000907
.000057 | 000179 L000157 © 000423 .000257 ¢ 000667 .000357 | .000911
000060 | 000183 00060 | 000427 . 000260 | 000671 .000360 | L000915
L000061 ¢ 00018 L000L61 | LUN0431 .000261 | 000075 .000361 | L000919
L000062 | .HO0L90 .000162 | ,000434 .000262 | 000679 .000362 | 000923 |
.000063 | ,N00194 L000163 | 000438 .000263 | 000682 .000363 | 000926
.000064 | 000198 .000164 | 000442 .000264 | .00V6BO .000364 | L000930
.000065 | 000202 LU00LES | L 000446 .000265 | L000690 .N00365 | 000934
.000066 | 000205 | ,000Le6 | .0N00450 1 000266 | 000694 .000366 | 000938
L000067 | .000208 | 000167 | .000453 | .000207 | 000698 .000367 | 000942
e o} - - [ke d
.000070 | ,000213 L000170 , .000457 L000270 | .000701 | ,000370 | 000946
L000071 | 000217 L000171 1 ,000461 LO00271 | 000705 L000371 | 000949
.000072 | .000221 L000172 1 000465 L000272 1000709 .000372 | .000953
.000073 | .000225 L000L73 | .000469 | 000273 1 .000713 .000373 | .000957
.000074 | .O00228 & 000174 | .000473 | 000274 | .000717 L000374 | ,000961
.000075 |.000232 | .000175 | .000476 | .000275 | ,000720 L000375 | L000965
.000076 | ,0UD236 | 000176 | LUCO480 | .000276 | .LOOT24 L0376 | L000908
.000077 | 000240 | .000L77 | .000484 | 000277 | ,000

OCTAL DEC IMAL OCTAL DECIMAL OCTAL DECIMAL OCTAL DECIMAL
000400 | .000976 .000500 { .001220 .000600 | 001464 .000700 | .001708
«000401 | .000980 .000501 | .001224 -000601 | .001468 .000701 | .001712
.000402 | .000984 .000502 | .001228 000602 | .001472 .000702 | .001716
.000403 | .000988 .000503 | .001232 .000603 | .001476 .000703 } .001720
.000404 | .000991 .000504 | .001235 .000604 | .001480 .000704 | .00Q1724
.000405 | .000995 .000505 | .001239 |. .000605 | .001483 000705 | .001728
.000406 | .000999 .000506 | .001243 000606 | .001487 .000706 | ,001731
.000407 | 001003 .000507 | .001247 .000607 { .001491 .000707 | .001735
.000410 | .001007 000510 | .001251 000010 | .001495 .000710 | ,001739
.000411 | .001010 .000511 | .00L255 000611 | ,001499 000711 | .001743
.000412 | .001014 .000512 } ,001258 .000612 | ,001502 .000712 | ,001747 ;
.000413 | .001018 .000513 | .001262 .000613 | 001506 .000713 | 001750 ;
.000414 | .001022 .000514 ! 001268 .000614 | 001310 000714 } .00L754 !
.000415 | .001026 .000515 | .001270 .000615 | 001514 .000715 | ,001758 !
.000416 | .00L029 .000516 | .001274 .000616 | 001518 .000716 | .0017€2 }
.000417 | .001033 .000517 | .001277 .000617 ; .001522 .000717 | .GO1760 |
}

. 000420 | .001037 .000520 | .001281 .000620 ! 001525 .000720 | .001770 |
.000421 | .001041 .000521 | .001285 .000621 | ,001529 .000721 | .001773
. 000422 | .001045 .000522 i .001289 000622 | ,001533 .000722 | .00L777
.000423 | .001049 .000523 | ,001293 000623 | .001537 .000723 | 001781
.000424 | 001052 .000524 | ,001296 .000624 | ,00L541 .000724 | ,001785
.000425 | ,001056 000525 | ,001300 .000625 | .001544 .000725 | .001789
.000426 | .001060 .000526 | ,001304 .000626 | .001548 000726 | 001792
.000427 | .001064 .000527 ; .001308 .000627 | .001552 .000727 | .001796
. 000430 | .001068 .000530 | L001312 000630 | .001556 .000730 | .001800
.000431 | .001071 .000531 ; ,001316 000631 }-.001560 .000731 | .001804
.000432 | .001075 .000532 | .001319 .000632 | .001564 .000732 | ,001808
.000433 | 001079 .000533 ; .001323 000633 | ,001567 .000733 | .001811
.000434 | ,001083 .000534 | .001327 .000634 | .001571 .000734 | ,001815
.000435 | .001087 .000535 | 001331 .Q00635 | .001575 .000735 | .001819 ;
.000436 | ,001091 000536 : .001335 . 000636 | 001579 .000736 | .001823 |
. 000437 | 001094 .000537 | .001338 .000637 | ,001583 .000737 | 001827 |
000440 | .001098 000540 ; ,001342 .000640 | ,001586 .000740 | 001831 :
.000441 | ,001102 .000541 § ,001346 .000041 | .001590 .000741 | .001834 |
000442 | .001106 .000542 | 001350 000642 | 001594 .000742 | ,001838 |
.000443 | 001110 -000543 | ,001354 .000043 | .001598 .000743 | 001842]
. 000444 | .001113 .000544 | .001358 .000044 | .001602 .000744 | .001846 |
.000445 | ,001117 .000545 | .0013061 .000645 | .001605 000745 | ,001850 |
.000446 | 001121 . 000546 | 001365 000646 | .001609 .000746 ‘ .001853 |
. 000447 | .001125 000547 | ,001369 | .000647 | .00l013 .000747 | .001857 |
. 000450 | ,001129 .Q00550 | .001373 .000650 | .001617 .000750 | .00l861 ?
.000451 | ,001132 -000551 | .001377 Q00651 | .001621 -000751 | .001865
.000452 | .001136 000552 | .001380 .000652 | .001625 000752 | .001869
000453 | .001140 .000553 | .001384 .000653 | .001628 .000753 | .001873
L000454 | .001144 .000554 | .001388 .000654 | ,001632 .000754 | .001876
.000455 | .001148 .000555 | 001392 .000655 | .00l636 .000755 | .001880
000456 | 001152 -000556 | .00139b 000656 | .001640 .000756 | .001884
.000457 | .001155 000557 | ,061399 .000657 | .00lb44 .000757 | .001888
.000460 | ,001159 0005600 | .001403 +000660 | .001647 .000760 | .001892
.000461 | .00Ll163 .000561 | ,001407 000661 | .001651 .000761 | .001895
.000462 | .001167 000562 | 001411 000662 | 001655 .000762 | ,001899
000463 | ,001171 .000563 | ,001415 .000663 | .001659 000763 | .001903
.000464 | 001174 . 000564 | .001419 .000664 | 001663 .000764 1 001907
000465 | ,O00L178 -000565 | ,001422 L000665 | ,001667 000765 | ,001911
.000466 | .001182 000566 | 001420 . 000666 | .001670 .000766 | .001914
.000467 | .00L186 .000567 | .001430 .000667 | .001674 .000767 | .001918
000470 | 001190 -000570 | .001434 L000670 | 001678 .000770 | .001922
.000471 | .001194 .000571 | .001438 .000671 | .001682 .000771 | .001926
.000472 | 001197 000572 | .001441 000672 | 001686 .000772 } .001930
.000473 ; ,001201 .000573 | ,001445 .000673 | .001689 .000773 | .001934
000474 | .001205 .000574 | .001449 000674 | ,001693 .000774 | .001937
.000475 | .001209 -000575 | .001453 .00067S | ,001697 000775 | .001941
000476 | .001313 000576 | .001457 000676 | .001701 000776 | .001945
.000477 | .001316 .000577 | .00l461 000677 | .001705 .000777 | ,001949
(W i

F-3

APPENDIX G
ND CODE CONVERSION CHART

Use of a "packed" ASCII character set permits the programmer to increase the effective
core capacity of the ND812, The code conversion character set follows.

Packed ASCH Packed ASCII
A 41 301 0 20 260
B 42 302 1 21 261
C 43 303 2 22 262
D 44 304 3 23 263
E 45 305 4 24 264
F 46 306 5 25 265
G 47 307 6 26 266
H 50 310 7 27 267
I 51 311 8 30 270
J 52 312 9 31 271
K 53 - 313 $ - 244
L 54 314 * 12 252
M 55 315 + 13 253
N 56 316 ' 14 254
O 57 317 - 15 255
P 60 320 . 16 256
Q 61 321 -/ 17 257
R 62 322 ; 33 273
S 63 323 = 35 275
T 64 324 Space 00 240
U 65 325 Tab 74 211
\ 66 326 Form Feed 75 214
212-215

w 67 327 CRLF 77

X 70 330

Y 71 331

Z 72 332

NUCLEAR DATA INC.

Nuclear Data Inc.

P. O. Box 451

100 West Golif Road
Palatine, lllinois 60067
Tel: (312) 529-4600

Nuclear Data Inc.

103 Pincushion Road
Framingham, Massachusetts 01701
Tel: (617) 899-4927

Nuclear Data Inc.

P. 0. Box 2192

14278 Wicks Boulevard

San Leandro, California 94577
Tel: (415) 483-9200

Nuclear Data Inc.

2335 Brannen Road, S.E.
Atlanta, Georgia 30316
Tel: (404) 241-3220

Nuclear Data, GmbH
Mainzerlandstrasse 29
6*Frankfurt/M, Germany
Tel: 2311 44

Nuclear Data Inc. (U.K.)
Rose Industrial Estate

Cores End Road

Bourne End, Bucks., England
Tel: 22733

Nuclear Data (lreland) Ltd.
Kinsale Road, Ballycurreen
P. O. Box #23

Cork, Ireland

Tel: 22137

Nuclear Data (Scandinavia)
Division of Selektronik A/S
Hammervej 3

2970 He¢rsholm, Denmark
Tel: (01) 86 30 00

	0-00
	0-01
	0-02
	0-03
	0-04
	0-05
	1-01
	1-02
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	4-21
	4-22
	4-23
	4-24
	4-25
	4-26
	4-27
	4-28
	4-29
	4-30
	4-31
	4-32
	4-33
	4-34
	4-35
	4-36
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	5-17
	5-18
	5-19
	5-20
	5-21
	5-22
	5-23
	5-24
	6-01
	6-02
	6-03
	7-01
	7-02
	7-03
	7-04
	7-05
	7-06
	7-07
	7-08
	7-09
	7-10
	7-11
	7-12
	7-13
	7-14
	7-15
	7-16
	7-17
	8-01
	8-02
	8-03
	8-04
	8-05
	8-06
	8-07
	8-08
	8-09
	A-01
	A-02
	A-03
	A-04
	A-05
	B-01
	B-02
	B-03
	B-04
	B-05
	C-01
	C-02
	C-03
	D-01
	E-01
	E-02
	E-03
	E-04
	F-01
	F-02
	F-03
	G-01
	Z-back

