NUCLEAR DATA, INC.
Post Office Box 451
Palatine, Illinois 60067

June, 1971

ND812 UTILITIES MANUAL

Copyright 1971 by Nuclear Data, Inc.
Printed in U.S.A.

TABLE OF CONTEMNTS

Section | Title _ - ; , Pa.ge
1 Paper Tape and Cassette Loader (ND41-0005) , 1-1
2 Integer Package (ND41-0017) ', . v v v ¢ & o o o« o« « o 2-1
3 Binary Tape Copier (ND41-0008) « + « & ¢ ¢ ¢ ¢ ¢ o o o« 3=1
4 Multiple Field Verifier - Reloader High/Low Speed (ND41-0010) , 4-1
5 - Short For Binary Loader (ND41-0022) , + & & « & & & o o+ 5-I
6 Binary Writer for High Sp;ed Punch (ND41-0023) « « « + « + 6-1
7 Octal Debugging Aid (Nb41-ooz4) R 2
8 Multiple Field Paper Tape and Cassette Writer (ND41-0031). . . 8-1
9 Floating Point (ND41-0041) + + & ¢ « &« & ¢« « ¢ « o o« o 9-1
10 Extended Function Package #1 (ND41-0042) e 1041
N Extended Function Package #2 (ND41-0043) , 11-1

12 Extended Operate Instructions (ND41-0044) 12-1

1. INTROBUCTION

A. PROGRAM SUMMARY

The Binary Loader loads binary formafted program record into the ND812 Central Processor
via the high or low speed paper tape readers or the Magnetic Tape Cassette Unit.

B. PROGRAM AREA

76008g through 7753g.

C. STARTING ADDRESS
7708, | .
D. EQUIPMENT CONFIGURATION

Minimum requirements are an ND812 Central Processor equipped with an ASR-33 Teletype.
Optional peripherals include a high speed reader and a Magnetic Tape Cassette Unit.

E. DEFINITIONS
1. STATUS WORD

This is a 12-bit binary word interpreted by the Binary Loader to determine the input
device and, if necessary, the tagword of a magnetic tape cassette record, This word
is either entered manually by setting it info the Switch Register before the program is
started or it is loaded into the J-register when the Binary Loader is entered under soft-
ware control (Software Entry).

2., PROGRAM RECORD

The program record is the collection of binary words, etc. which, when interpreted by
the appropriate loader, results in the processor being loaded with machine instructions

1-1

and data executable as a program. The Object Coding produced by an assembler is the
commonest example of a program record. The Binary Loader discussed here is designed to
interpret object coding from the BASC-12 Assembly Language Processor, program records
produced by the Multiple Field Binary Writer or any other records in "Binary Format",

3. TAGWORD

This is an 8-bit character appearing after the file mark on a magnetic tape cassette
program record which identifies the record to the loader. The practice allows more
than one record to be written on a single cassette and random loading of any one of
them.

4. FILE MARK

This is a special character written between records to separate program records on a
cassette.

5. BLOCK

The block is a series of consecutive 12-bit memory addresses preceded by an origin.
A program record consists of one or more blocks.

6. ORIGIN

The origin is a 12-bit word which is interpreted by the Binary Loader as an address where
the first 12-bit word of a block is to be loaded. Subsequent words of the block are loaded
_into consecutive memory locations until another origin is detected or the end of the
program record is reached, Thus, each block is preceded by one "origin".

2. PROGRAM DESCRIPTION

Because the Binary Loader is itself a program, there must be some means of loading it

into memory, This is accomplished with a Bootstrap, which is a very short program loaded
from the Switch Register. When executed, the Bootstrap loads enough of the Binary
Loader to allow the Binary Loader to complete loading itself. The Bootstrap is destroyed
in the process so that if it is necessary to reload the Binary Loader, the Bootstrap must
first be reloaded from the Switch Register.

The Binary Loader begins loading a program from one of the paper tape readers by
reading leader. Actual loading of the processor begins when the Binary Loader detects
the first character different from 0200g (eight level punch only). For this reason, it

is essential that a program tape be placed in the reader with the leader at the read
station. Should the program tape be placed in the reader with blank tape at the read

1-2

station, the Binary Loader begins loading zeros into memory beginning with location
ﬁﬂﬁﬁg Blank tape is not a 200 level and the loader assumes that it must begin
loading another program. The actual leader of the program record is interpreted as
trailer.

The loading process consists of assembling consecutive pairs of frames using levels one
through six as high and low order halves of 12=bit words. The assembled 12-bit words
are stored in the processor in consecutive memory locations as determined by the presence
and interpretation of the origins on the paper tape. Field change characters cause the
storage to take place in memory fields specified by the last 2 bits of the characters.
When a program record is created, the last two characters are written in such a way as
to make the sum of all the 12-bit words (including the last) on the tape equal to zero.
The loader keeps a running sum or checksum of the 12-bit words in the record. When
the loader detects the trailer, it tests the checksum and if it is zero, the loading process
is assumed to be correct and the loader stops with the J-register equal to zero. If the
checksum is non-zero, the loading process is assumed to be in error. In any case, the
checksum is left in the J=register when the program stops.

The following describes the various parts of Figure 1:

1) Leader/Trailer - Leader and trailer are punched idenfically
and indicate, respectively, the beginning and end of a
binary format program record on paper tape. Program records
written on magnetic tape use a file mark and tagword instead
of leader.

2) Field Change Character - A special character created by the
FIELD directive in the BASC~12 Assembly language Processor
used to indicate the field in which the program is to be stored
as it is loaded. If this character does net appear on the tape,
the loader will load into the same field in which it itself is
located. Levels eight and three are punched to indicate to the
loader a field change and levels one and two are used to in-
dicate the new field (8, 1, 2 or 3). Levels four through seven
must not be punched.

3) Origin = A 12-bit word punched in two frames of six bits each
interpreted by the Binary Loader as an address at which to
begin storing programs. Origins are generated on a program
source tape with the use of the special character asterisk (*).
An origin is distinguished from program words on the binary
tape by the presence of the seven level punch, Levels one
through six are the higher 6-bits of the address. The low
order 6-bits may be found in levels one through six of the
next tape frame,

O .
O °
O .
L~ N\ ——

1-4

LEADER
(8th level only)

FIELD CHANGE
(8th and 3rd levels with

Ist and 2nd indicating
field)

CRIGIN

PROGRAM

CHECKSUM

TRAILER

4) Program - The program consists of 12-bit data words which are
to be stored in the processor for execution as the user's program.
The 12-bit data words appear on the tape as two consecutive frames
of 6-bits each. The seven and eight levels must not be punched.

5) Checksum - This is a running sum of all the 12-bit words on the
tape, including the program words and origin, excluding field
change characters and the checksum itself. Thus, the sum of
all the 12-bit words on the tape including the checksum should
be zero, If the result is not zero, the program was not correctly
loaded and must be reloaded by repeating the operational steps
of the Binary Loader. The checksum is always written in two
halves as the last two frames in the record and is further indicated
by a 7-level punch on the first half.

There are three alternative methods of using the Binary Loader. In all cases the format of
the record being loaded remains the same. The differences lie in the manner of entering
the Binary Loader and exiting once the loading process has been completed. In all three
of the cases to be described, location 7751g contains the exit address. That is, instead of
stopping when the loading process is complete, the Binary Loader performs a jump to the
address contained in location 77518, provided the contents of location 7751g is not zero.
This feature will be described as the Auto-start feature of the Binary Loader.

Manual Load with Auto-start is the simplest use of the Auto-start feature of the Binary
Loader. The program record being loaded includes the necessary coding to cause location
77518 to be set equal to some non-zero address. When the Binary Loader completes the
loading process, it will jump to this address with the checksum, (normally zero), in the

J register and the exit address in the K register to determine if the loading process was
correct and take appropriate action should the J register be non-zero.

Second use of the Auto-start involves performing a JPS to the Binary Loader from a program
outside the Binary Loader. The JPS is performed to location 7751g. When the loading
process is completed the Binary Loader will return to the calling location plus one with the
checksum in the J register, as though the Binary Loader were a sub-routine. The program
being loaded must not alter location 7751g. When entering the Binary Loader in this
fashion, it is necessary that the status word, which is normally loaded from the switch
register, be loaded in the J register by the calling program before the JPS to the Binary
Loader is executed,

The third method of using the Auto-start feature is very similar to the second method but
rather than a JPS, the calling program performs a JMP to location 7752g. Again, the

status word must have been loaded into the J register by the calling program. It is necessary
that the calling program either set location 7751g to zero, thereby causing the Binary
Loader to stop at the end of the loading process (provided the program being loaded does

not alter the location 7751g) or the calling program should set an appropriate exit address
into location 7751g.

1-5

3. OPERATOR OR USER CONTROL

The status word is the only control the user has over the loader. The bits of the status word
are interpreted by the loader as follows: BITS @ and 1 determine the input device, BITS

2, 3 and 4 determine the input cassette drive if the cassette was selected, and BITS 5 through
11 indicate the tagword when loading from magnetic tape cassette. Each one of these

three functions is described in detail below.

1) Input Device Selection - BITS @ and 1 determine the device from
which the record is to be read. [fBIT 1 is "B", input is from cassette
and BIT f is ignored. I[fBIT 1 is “1", input is from one of the paper
tape readers as controlled by BIT "#". When BIT § is "@", the input
is from the high speed reader and if BIT @ is "1", the input is from .
low speed or teletype reader.

2) Cassette Drive Selection = BITS 2, 3 and 4 permit the user to
select one of the three cassette drives for input. No two of
of these bits should be on together as the loader will try to
read from two or more drives simultaneously. BIT 2 set to "1"
selects drive three, BIT 3 selects drive two, and BIT 4 selects
drive one.

3) Tagword Selection = Any tagword from B00808g to B177g may be
selected by BITS 5 through 11. Capacity to select a tagword
allows the user to select at random one of many records on a
particular cassette without the need to hunt manually for the
record in question. Starting with the beginning of the cassette,
the Binary Loader will search for the correct tagword by spacing
forward to file mark and reading the tagword, The Binary
Loader will continue to space forward and read the tagword
until the selected tagword is found.

NOTE
Entering the Binary Loader under software control demands that the

J register be set to the desired status word by the software performing
the call to the Binary Loader (as described above).

4. OPERATIGMAL PROCEDURE

The following is the procedure by which the Bootstrap is loaded in the ND812.

1) Place the POWER ON/POWER OFF/CONTROL OFF switch in
the POWER ON position.

2) Set the Switch Register to 7762g and depress LOAD AR.

3) It is now necessary to load fourteen instruction from the Switch
Register, each of which is followed by depressing the LOAD MR
key.

ADDRESS INSTRUCTION ADDRESS INSTRUCTION

7762 7404 7771 7404
7763 6101 7772 6101
7764 7403 7773 7403
7765 1146 7774 1122
7766 1501 7775 5700
7767 6105 7776 6114
7770 1101 7777 7745

4) To check if the instructions were stored in the proper locations,
set the Switch Register to 7762g and depress LOAD AR. Place
the SELECT REGISTER switch in the ADDRESS powition. Depress-
ing the NEXT WORD key causes the SELECTED REGISTER indica-
tor lamps the contents of the address. Continue to depress the
NEXT WORD key until all instructions have been checked.

5) Set the Switch Register to 7773g and depress LOAD AR,

6) Place a paper tape of the ND41-0005 Binary Loader into low
speed reader taking care that leader appears at the read station,
turn teletype to LINE and reader ON.

7) Depress S_TJ\’R{ S T o {

The paper tape is read and will stop on reaching trailer, If the
J register is zero after reading the paper tape, no errors occurred.
Repeat the above from step 2 if J register is non-zero,

The Binary Loader is now in memory and is used to load program records
from either paper tape or cassette.

LOW SPEED PAPER TAPE
1) Set the Switch Register to 77803 and depress LOAD AR.

2) Place the binary formatted program tape to be read into the ASR-33
Reader with the leader at the read station taking care that leader
appears at the read station.

1-7

Place the START/STOP switch on ‘the ASR-33 Reader to START.

Depress SJAR'f.

The Binary Loader will read the program tape and stop at trailer.
If the content of the J register is zero at completion of the load-
ing process, the program tape was loaded correctly. If the J
register is non-zero, re-start this operational procedure from

Step 2.

HIGH SPEED PAPER TAPE

D)
2)

.3)

4)

5)

Set the Switch Register to 77}25}258 and depress LOAD AR.
Se’r‘ Switch Register BIT @ to "g",

Place the binary formatted program tape to be read into the
high speed reader with the leader at the read station.

Depress START.

The Binary Loader will read the program tape and stop at
trailer. If the content of the J register is zero at completion
of the loading process, the program tape was loaded correctly.
If the J register is non-zero, re-start this operational proce-
dure from Step 2.

MAGNETIC TAPE CASSETTE PROCEDURE

1)
2)

3)

4)

Set the Switch Register to 77@80g and depress LOAD AR.

Set Switch Register BITS § and 1 to "8", set BITS 2, 3 and 4
for the desired cassette drive, set BITS 5 through 11 to desired
tagword.

Depress START.

The Binary Loader will space forward to file mark and read the
tagword, and continue to do so until selected tagword is found.
When the tagged record is reached, the Binary Loader will
read the record and stop at completion. If the content of the
J register is zero, the loading process was correct. If the
content of the J register is non-zero, re=start from Step 2.

1-8

NOTE

If the Binary Loader proceeds to the end of tape without stopping,

the user has specified a tagword which does not exist on the cassette.
To recover from this condition, depress STOP and re-start from Step 1,
and ascertain that the tagword specified exists on the cassette.

5. ERROR DIAGHOSTICS

The checksum is stored in the J register at the completion of either a manual or software
controlled program loading procedure. A non-zero J register indicates an erroneous

load. Refer to the section of the CPERATIONAL PROCEDURE appropriate to the input
devices and re-load the program. [f an error is encountered under software control, check
the calling program and the exit address of the Binary Loader.

If @ non-existent input device is specified, the Binary Loader will enter an endless loop.
The processor must be stopped with the front panel STOP switch and the loader re-started.

Failure to load a tape with leader over the read station will cause the loader to stop

on reaching the program's leader. The J register will be zero, but since the program was
not read, it will not be loaded, The user is particularly warned against placing blank
tape at the read station when loading overlays, as part of the background program is
likely to be lost when the loader tries to load the blank tape.

6. COLMAND SUIAMARY

STATUS WORD

INPUT DEVICE BIT 0 BIT 1
Cassette g g
High Speed Paper Tape Reader o 1
Low Speed Paper Tape Reader (ASR 33)] 1
CASSETTE DRIVE BIT 2 BIT 3 BIT 4
DRIVE 1 # B 1
DRIVE 2 g 1 [/
DRIVE 3 - 1 I o

BITS 5 through 11 are used to specify the tagword.
1-9

7. FLOW CHART

(Next Page)

8. PROGRAM LISTING

Not Applicable.

Load status
word from

SR

Clear exit
Address

High
speed

reader

speed
reader

|

Cassette

Select
drive

Save
tagword

BINARY LOADER

Sof’rwc re

Enfry

T

Status in J,
set 77518 into
exit address

ransport

ready
YES
Read
first 8=bit
Char.
Space
forward YES
to file
mark
—Pi| READ
YE
> Leader
NO

Save

high order
6-bits

READ

' o
BINARY LOADER N

S

Assemble
12-bit word

YES Origin

l <

Store in Store fin
TORIGIN® specified MF
. at address

in "ORIGIN"

|

Increment

"ORIGIN"

|
Add 12-bit
word to

B checksum

|

READ

Checksum

NO YES | —>

Test
Exit add.

1. INTRODUCTION

A. PROGRAM SUMMARY

This program contains programmable subroutines that provide fast double precision addition,
subtraction, multiplication, division and I/O routines.

B. PROGRAM AREA

B408083 through ”5258'
C. STARTING ADDRESS '

The subroutines are called by software commands from the main program.

D. EQUIPMENT CONFIGURATION

Minimum requirements are an ND812 Central Processor. An ASR-33 Teletype is needed
if input or output is desired.

E. DEFINITIONS

None.
2. PROGRAM DESCRIPTION

This program contains @ two-word (24 bit) Integer Accumulator (locations P46fg and B4610)
and a two-word operand holding register (ﬂ4568 and ﬂ4578) that make up an intricate
section of the instruction interpreter. The interpreter uses a format modeled after the
standard MRI's i.e., a 4-bit instruction code, an indirect bit, a direction bit and 6
address bits,

The interpreter is entered by a "JPS" to @4fflg. Thereafter, the Integer Package will
interpret the contents of successive memory locations following the "JPS 84f0g" as
instructions. A "B@G0" instruction causes an exit from the package and return of control

to the machine instruction following the "@880". Prior to exiting with the "IEXT" (octal
equivalent = 8000), only those instructions listed as appropriate to the integer package
operations should be used. Although use of the BASC-12 language instructions is

possible while in Interpreter Mode, the results will not correspond to the BASC~-12 mnemonics,
it is necessary to execute and "IEXT" instruction. To revert back to integer coding, it is

necessary to perform a "JPS Mﬂﬂg" .

Note that the Integer Package must reside in the same memory field from which it is
called, ‘ ;

The instructions described below are to be used according to the rules for Single-word
Memory Reference Instructions. There are no two=-word instructions and all instructions
except DINPUT and DOUTPT require an address (for the operand)., Operands are expected
to be in two locations; at the effective address and the effective addresses of the instructions.
The effective address is found in the same manner as the effective address of a Single-word
Memory Reference Instruction. Operands are stored in two consective memory locations

with first location containing the 12 low-order bits and the next location containing the

high 11 bits and sign. The sign convention used is Bit 8 = @ for positive numbers, Bit §=1
for negative numbers with the remaining 23 bits containing the two's complement of the
number, The first word (low order bits) is tagged for reference by the Integer Instructions.

DILOD - Transfers the operand located at the effective address of the instruction to the
Integer Accumulator, Data is left in memory.

DISTR - Transfers the Integer Accumulator to the effective address of the instructions.
Data remains unchanged in the Integer Accumulator.,

DIADD - The operand at the effective address of the instruction is added to the Integer
Accumulator. Data in memory is unchanged and the overflow bit is set if the magnitude
of the result is greater than 8. The sign of the result is arithmetically logical.

DISUB - The operand at the effective address of the instruction is subtracted from the
Integer Accumulator. Overflow cannot occur. The sign of the result is arithmetically
logical.

DIMULT = The Integer Accumulator is multiplied by the operand. The low order 23 bits
of the result are left in the Integer Accumulator and the sign is restored to the highest
order bit according to arithmetic logic.

The algorithm used for the multiply instruction first determines the sign of the result from
the signs of the operands and stores this information. The hardware multiply instruction
is then used to multiply first the low order 12 bits of the operand by the low order 12
bits of the Integer Accumulator. Next, high order 12 bits of the operand are multiplied

2-2

by the low order 12 bits of the Integer Accumulator and the low order 12 bits of the results
are added to the high order 12 bits of the first result. Finally, the low order 12 bits of the
operand are multiplied by the high order 12 bits of the Integer Accumulator and the low

12 bits of the results are added to the high order 12 bits of the previous sum. This total

is placed in the Integer Accumulator and the sign (Bit) is set to conform to the value pre-
viously stored. '

DIDIV - Divides the operand into the Integer Accumulator. The algorithm consists of 23
subtractions and integer accumulator left shifts. The operand is the divisor, the integer
accumulator the dividend and the quotient is shifted into the Integer Accumulator from the
right. The fractional part of a quotient and/or the remainder is lost. An attempt to divide
by zero causes §731g to set = 1 and the division routine is by-passed.

DINPUT - Reads a number from the teletype, converts it to binary format (23 bits of data
plus one sign bit) and leaves the result in the Integer Accumulator. Values can range

from -8388608 to +8388607. Input is terminated by an 8th digit or a non-numeric character.
A "RUBOUT" re-initializes the input routine and echoes a back arrow.

DIOQUTPT - Performs a running Binary to BCD conversion of the Integer Accumulator contents
and types the result on the teletype in an 8 column field where the first column maybe a
minus sign. Leading zeros are suppressed as is the sign if the number is positive. If the
number is negative, the minus sign is printed in the first column.

" 3. OPERATOR OR USER CONTROL

The following is a sample program illustrating use of the package.

40400 p64p TWJPS
4081 pARD 2420

4802 5086 DILOD A (1)
ABE3 4447 DIADD B (2)
4804 7610 DIMLT D (3)
4075 5411 DISTR D (4)

40806 papp DIEXIT
4087 20p0 STOP
4010 28P0 A B
4011 262 2
4012 pepg B, 8
4013 pap4 4
4014 popg (oF
4815 2006 6
4016 JuJvaly D2
4/517 2008 o

2-3

In the preceding sample program the interpreter is entered with a two-word JPS, A is loaded
into the integer accumulator, B added to it, multiplied by.C and stored in D. The inter-
preter is then exited and the program stops. The following table contains the status of
HORD and LORD (the Integer Accumulator for each instruction in the sample routine.

STEP 1 2 3 4
HORD [Jj Jof i
LORD 2 6 44 44

4. OPERATIONAL PROCEDURE

1) Load the Integer Package (ND41-0017) program tape with Binary
Loader (refer to Binary Loader (ND41-0005) for description of the
loading procedure.

2) Call desired routine from main program.

5. ERROR DIAGIIOSTICS

A division by zero will cause the contents of location #7314 to be incremented by one
(initially set to f) and the division routine to be bypassed.

6. CORAMAND SUMMARY

INSTRUCTION CODE INSTRUCTION DESCRIPTION
0000 DIEXIT This instruction exits the interpreter
mode,
3000 DINPUT This fnsfrucfion causes a JPS to the

input routine. A number is read in
from the keyboard and stored in the
integer accumulator. This number
can range from -8388608 to
+8388607.

INSTRUCTION CODE INSTRUCTION DESCRIPTION

3400 DOUTPT This instruction causes a JPS to the
output routine and destructively out=-
puts the number in the Integer
Accumulator, The form of the output
is a sign and seven digits, The '
number can range from -8388608

to +8388607

4000 DISUB This instruction causes a double
precision subtraction of the operand
from the Integer Accumulator, The
results are left in the Integer
Accumulator.

4400 DIADD This instruction causes a double
precision addition of the operand
to the Integer Accumulator. The
results are left in the Integer
Accumulator,

5000 J . DILOD This instruction loads the operand

into the Integer Accumulator,

5400 ‘ DISTR This instruction stores the Integer
Accumulator in the effective
address. The contents of the
Integer Accumulator are left
unchanged.

6400 DIDIV This instruction causes a division
of the Integer Accumulator by the
contents of the effective address,
The quotient is left in the Integer
Accumulator. Division by zero
causes location G731, to be set
#0 and the division is bypassed.

7000 DIMLT This instruction causes the Integer
Accumulator to be multiplied by
the contents of the effective
address. Note that only the low
order 24 bits are generated,

7. FLOV/ CHART

(Next Page)

8. PROGRAIM LISTING

Not Applicable.

2-6

Pick up
instruction

<

Increment
return ADD.
and exit

Calculate
and fetch
operand

Determine OP
code & JPS to

routine

INTERPRET ER

Set loop
b counter &
sign, CLR
cC

Determine
number
sign

Get

input g

YES

YES

Mult. old no.
by 10 & add
no,

~digits

NO

YES

INPUT ROUTINE

Determine
sign of
number

Get number,
set counter

Get number
to be
subtracted

Qutput
digit
counter

Increment
digit

counter

OUTPUT ROUTINE

Add low
order words

Test

overflow

v

Increment
high order
word

—p]

Add high

order words

ADDITION ROUTINE

Negate
operand

Use
addition
routine

SUBTRACTION ROUTINE

2-10

.Change
ACC &
operand
to_positive

Multiply
fow
orders

Mult. high
order operand
by low order

ACC

Mult. high
order ACC
by low

order oper.

Correct
produce
signh

< Return)

MULTIPLICATION ROUTINE

2-11

Set ACC =+
Set oper, = -

Set error
& return

NO

Set loop
counter

>

Subtract
oper. from

ACC

NO

YES

Set bit in
quotient

_ﬂ

Shift dividend
and quotient

Change ACC

NO dzzz YES to proper
sign

DIVISION ROUTINE

1. INTRCDUCTION

A. PROGRAM SUMHMARY

The Binary Tape Copier Program duplicates and verifies binary formatted paper tapes,

B. PROGRAM AREA

The program resides in core locations #801g through #8322 and uses locations 0323
8 8
through 7577g as a buffer.

C. STARTING ADDRESS
B801g for read and punch, ﬂﬂ228 punch only, ﬁ1328 verify only.
D. EQUIPMENT CONFIGURATION

Minimum requirements are an ND812 Central Processor equipped with an ASR-33 Teletype.
Optional peripherals are high speed punch and/or reader. .

2. PROGRAIA DESCRIPTION

This program reads the punched binary tape and stores the data in a packed 12-bit format
(two 6-bit bytes from the tape). Storage starts at location £323g and continues until
terminated by the trailer (8th | evel punch). Every tape read is given an Origin which
are stored in memory. Location 7577g will contain the first Origin, the second location
7576g, and decrementing one location for each successive Origin. After all binary

fapes are read, the program reads the Switch Register to obtain the number of duplicates
and starts duplication. A checksum is kept of the output data and each duplicate contains
a reader, trailer, and a separation of blank tape.

If field change characters are present on the binary tape the program stores the first field
change character in location 75773, and decrementing one location for each successive

3-1

field change character, The Origin pointer and previously stored Origins are shifted one
location down for each field change character. A field change character does not update
the checksum,

Verification is accomplished by reading the duplicate and keeping a running checksum,
The running checksum is the added to the program checksum and is the result is non-zero
the program enter on error condition and the program stops.

3. OPERATOR OR USER CoNTROL

The number of duplications is determined by status of Switch Register Bits 2 through 11,
These switches represent binary increments with BIT 11 weighted as one. To select high
speed reader set BIT @ to "1", or low speed reader set BIT & to B. To select high speed
punch set BIT 1 to "f". For each verification the user must depress CONTINUE. Refer
to Starting Addresses for various functions.

4. OPERATIONAL PROCEDURE

1) Load program tape with the Binary Loader (refer to Binary Loader
(ND41-0005) for a detailed description of its use). :

2) Place blank paper tape in punch and turn punch ON. Place tape
to be duplicated in desired reader, making sure that blank tape
or leader (8-level punches) appear at the read station.

3) Set Switch Register to 48015,

4) Depress LOAD ADDRESS.

5) Set Switch Register BITS 2 through 11 to number (octal) of
duplicates desired. :

6) Set Switch Register BIT £ to "1" for high speed reader or to "gn
for low speed reader.

7) Set Switch Register BIT 1 to "1" for high speed punch or to "g"
for low speed punch,

8) Depress START.

3-2

9) The pfogram will now read the users tape, punch the number of
duplicates indicated by the Switch Register, and stop.

10) To verify duplicate tapes, place the duplicate in the reader,
making sure that blank tape appears at the read station.
Depress CONTINUE. The program will read and verify the
entire tape. If the tape is acceptcble, the program will
stop when the end of trailer is at the read station. Repeat
for each tape to be verified.

5. ERROR DIAGNOSTICS

When an error occurs, a single letter is typed on the teletype and the program STOPS.
The J register always contains the ASCII code of the letter typed (shown in parenthesis
below) should any confusion arise. Should an error occur, it will be necessary to restart
the program at the starting address appropriate to the mode in which the program was
operating when the error occurred.

The following is a table of possible errors, their cause and correction.

ERROR CAUSE CORRECTION

S(323) Start error. Re-start program from Step 1 of
Did not start on the Operational Procedure. Be
blank tape or leader. sure to place blank tape or leader

(8-level) over read station,

R(322) Reader error. Re-start program from Step 1 of
the Operational Procedure.

0(317) Buffer overflow. Program or prografns for duplication
too large for buffer, Cannot be
duplicated with this program,

V(326) Verification error. Possible punch error. Re-verify
tape, if error occurs again, dispose
of tape.

6. COMMAND SUMRARY

The program is controlled via the Switch Register which must be set up before the program
is started,

3-3

BITS 2 through 11 determines number of copies produced in the duplication mode.

INPUT BIT 8 OUTPUT BIT 1
Low speed g Low speed J|
reader (tele- punch (tele-

type) type)

High speed 1 High speed 1
reader punch

7. FLOW CHART
(Next Page)
8. PROGRAL LISTING

__Not Applicable

3-4

Store
pointers

l

Punch
leader

Output
Character

Output Output
origin word

NO

for last
word

END OUTPUT

OUTPUT MODE

0001

Get and
Assemble

Specify low or
high speed
peripherals

Set up
buffer
pointers

Read

Ist word

Store
address

v

Decrement
address
buffer pointer

START
ERROR

for leader

for blank

NO

Read
next
word

for leader

YES

Overflow
error

INPUT MODE

3-6

12-bit

data words

L b in data

Store word

Move
origin

add. buffer
down 1

buffer

for leader

End of
input

0123

I

Input
tape

LEGAL

Read
1st word

est

LEGAL

Start
error

INVALID Verify

Ist word

P next word

Read

Verify
word

error

Reader

error

for leader

Verify
“error

Punch
leader

Add to
Checksum

VERIFY MODE

3-7

STOP

1. ITROBUCTION

A. PROGRAM SUMMARY

The Verifier-Reloader Program compares stored memory data with a paper tape and ferifies
the contents. Any differences are printed on the teletype and can be reloaded or left
unchanged.

B. PROGRAM AREA

7408 through 7574g. o
C. STARTING ADDRESS
7480 | ‘

D. EQUIPMENT CONFIGURATION

Minimum requirements are an ND812 Central Processor equipped with an ASR-33 Teletype.
The optional peripheral is a high speed reader.

E. DEFINITIONS

None

2. PROGRAIA DESCRIPTION

This program is of great value to the user in debugging., Questionable programs and
overlays can be quickly verified and reloaded. Any differences between the stored memory
data and the paper tape are read printed on the teletype. The following is an example of
a verification output.

4-1

Fl

1473 4g24 g241
B -

F2

Each memory field is identified whether or not an error is encountered,

The memory address where the difference is encountered is printed first (1473), next the
current content of this location (6024), and third, the correct value (6241),

Switch Register BIT 1 set to "@" allows the user to reload the erraneous location from the
paper tape and if set to "1" the current content is left unchanged. In either case, the

program will print the location, current content and correct value.

At the completion of the verification run, the checksum is calculated and printed on the
teletype. '

3. OPERATOR OR USER CONTROL

Switch Register BIT @ set to "8" specifies the high speed reader as the input device and
set to "1" specifies the low speed reader (ASR-33 Teletype).

Switch Register BIT 1 set to "@" automatically reloads the erroneous location from the
paper tape and if set to "1" the current content is left unchanged.

4. OPERATIONAL PROCEDURE

1) Load the Verifier-Reloader High/Low Speed program tape with
the Binary Loader (refer to the Binary Loader (ND41-0005) for a
detailed description of its use). '

2) Set the Switch Register to 748fdg.

3) Depress LOAD AR.

4) Specify the input device and reload option if desired (BITS @ and 1).

5) Place the verification program into the selected reader with the
leader at the read station,

6) Depress START.

7) The program will now be read in and compared with the data stored
in memory. Verification errors are read out and the correct values
reloaded (if specified in Step 4). At completion, the checksum is
printed on the teletype, Any value other than 8000 indicates a reader
error. Re-start this procedure from Step 1,

5. ERROR DIAGMOSTICS

Any differences between the stored memory data and the paper tape are read out to the
teletype. The memory field where the difference is encountered is printed first, next the
address, the current content of this location, and the correct value.

6. COLILIAND SULIMMARY

Bit @ =f - Read from teletype reader.
=1 -~ Read from HS reader.

Bit 1 = - Reload program.
1 - Leave memory unchanged.

7. FLOW CHART

Not Applicable.

8. PROGRAIA LISTING

Not Applicable.

4-3

1. INTRODUCTION

—

A. PROGRAM SUMMARY

The Short Form Binary Loader is a single field loader occupying a minimum of memory
that loads binary formatted program records into the ND812 Central Processor via the
low speed paper tape reader.

B. PROGRAM AREA
76008 through 7647g.

C. STARTING ADDRESS
76805 |
D. EQUIPMENT COMFIGURATION

Minimum requirements are an ND812 Central Processor equipped with an ASR-33 Teletype.
There are no optional devices.

E. DEFINITIONS
1. PROGRAM RECORD

The collection of binary words, etc., which when interpreted by the appropriate loader,
results in the processor being loaded with machine instructions and data executable as a
program. The Object Coding produced by the assembler is the commonest example of a
program record. The Binary Loader discussed here is designed to interpret object coding
from the BASC-12 Assembly Language Processor, program records produced by the Multiple
Field Binary Writer, or any other records in " Binary Format",

2. BLOCK

A series of consecutive 12-bit memory addresses preceded by an origin. A program record
consists of one or more blocks,

3. ORIGIN

A 12-bit word which is interpreted by the Binary Loader as an address where the first
12-bit word of a block is to be loaded. Succeeding words of the block are loaded
into consecutive memory locations until another origin is detected or the end of the program
record is reached. Thus each block is preceded by an “origin®.

2. PROGRA DESCRIPTION

Since the Binary Loader is itself a program, some means must be provided to load it into
memory. Unlike the Paper Tape and Cassette Loader (ND41-0005) using a Bootstrap,
this program must be manually loaded through the Switch Register. This loader can also
be loaded with the Hardware Loader, if the processor is equipped with this option,

In loading a program from a paper tape reader, the Binary Loader begins by reading
leader. Actual loading of the processor begins when the Binary Loader detects the

first character different from 82005 (eight level punch only). For this reason, it is
essential that a program tape be placed in the reader with the leader at the read station.
Should the program tape be placed in the reader with blank tape at the read station, the
Binary Loader will begin loading zeros into memory beginning with location 2038 .
Blank tape is not a 200 level and the loader assumes that it must begin loading another
program. The actual leader of the program record will be interpreted as trailer,

The loading process consists of assembling consecutive pairs of frames using levels one
through six as. high and low order halves of 12-bit words. The assembled 12-bit words

are stored in the processor in consecutive memory locations as determined by the presence
and interpretation of the origins on the paper tape. When a program record is created, the
last two characters are written in such a way as to make the sum of all the 12-bit words
(including the last) on the tape equal to zero. The loader keeps a running sum or checksum
of the 12-bit words in the record, When the loader detects trailer, it tests the checksum
to determine whether or not the loading process has been correct. If the checksum is zero,
the loading process is assumed to be correct and the loader will stop with the J register
equal fo zero. If the checksum is non-zero, the loading process may be assumed to be

in error. In any case, the checksum is left in the J register at the completion of the
loading process.

5-2

The following describes the various parts of Figure 1.

1

2)

3)

Leader/Trailer - Leader and trailer are punched identically and
indicate the beginning and end of a binary format program respectively
on paper tape. Program records written on magnetic tape substitute

a file mark and tagword for the leader.

Crigin = A 12-bit word punched in two frames of six bits each
interpreted by the Binary Loader as an address at which to begin
storing programs. Origins are generated on a program source
tape with the use of the special character asterisk (¥). An
origin is distinguished from program words on the tape by the
presence of the seven level punch. Levels one through six

are the higher 6-bits of the address. The low order 6-bits may
be found in levels one through six of the next tape frame.

Program -~ The program consists of 12-bit data words which are
to be stored in the processor for execution as the user's program.
The 12-bit data words appear on the tape as two consecutive
frames of 6-bits each. The seven and eight levels must not be
punched.

Checksum =~ This is a running sum of all the 12-bit words on
the tape, including the program words and origin, excluding
field change characters and the checksum itself. Thus, the
sum of all the 12-bit words on the tape including the check-
sum should be zero. If the result is not zero, the program
was not correctly loaded and must be reloaded by repeating
the operational steps of the Binary Loader. The checksum

is always written in two halves as the last two frames in

the record and is further indicated by a 7-level punch on
the first half,

NOTE

Field Change characters will be ignored. The loader can load only
into the field in which it is itself located.

None.

3. OPERATOR OR USER COMTROL

5-3

-

. .
° LEADER
° (8th level only)
O« O0O| e
O+« 00O e
O e« OO
O « O O PROGRAM
Q o O O
O« OO0 O]
O« OO0O0O|]
O+« 00O CHECKSUM
) TRAILER
. (8th level only)
FIGURE 1

5-4

‘4. OPERATIONAL PROCTDURE

The following is the procedure by which the Short Form Binary Loader is manually loaded
into the processor.

1)

2)

3)

Place the POWER ON/POWER OFF/CONTROL OFF switch in the
POWER ON position.

Set the Switch Register to 76ﬂ5ﬁ8 and depress LOAD AR,

It is now necessary to load forty instructions into the Switch Register,
each of which is followed by depressing the LOAD MR switch.

ADDRESS iNSTRUCTION ADDRESS INSTRUCTION ADDRESS INSTRUCTION

7608
7601
7602
7603
7604
7605
7606
7607
7610
7611
7612
. 7613
7614
7615
7616
7617

7403 7628 5827 7640 6145
17570 7621 2800 7641 1581
5445 7622 1222 7642 6314
6427 7623 24000 7643 4443
61g1 7624 5501 7644 3512
1346 7625 4422 7645 6313
11981 7626 5421 7646 2208
6423 7627 6403 7647 Jfdlufu
6814 7638 6114
122 7631 6124
1615 7632 J1uf
6811 7633 7404
5607 7634 6101
3406 7635 7403
1490 7636 4610
6006 7637 1507

4) To check if the instructions were stored in the proper locations,

set the Switch Register to 7762g and depress LOAD AR. Place
the SELECT REGISTER switch in the ADDRESS position. Depress-
ing the NEXT WORD key causes the Selected Register indicator
lamps to display the current address and MEMORY REGISTER
indicator lamps the contents of the address. Continue to depress

- the NEXT WORD key until all instructions have been checked.

The following is the Hardware Loader procedure:

D)

Place the paper tape of the Short Form Binary Loader in the

" low speed reader (ASR-33 Teletype) taking care to place leader

at the read station, and turn reader on.

5-5

2) Simultaneously depress both the LOAD ADDRESS and NEXT
WORD switches.

3) The paper tape is read=in and will stop on trailer. If the J
register equals zero, the loading process was correct. If the

J register is non-zero, repeat from Step 1.

The Binary Loader is now in memory and is used to load other program records from paper
tape.

LOW SPEED PAPER TAPE
1) Set the Switch Register to 76ffig and depress LOAD AR.

2) Place the program tape to be read into the ASR-33 Reader
with the leader at the read station.

3) Place the START/STOP switch on the ASR-33 Reader to
START. :

4) Depress START.

5) The Binary Loader will read the program tape and stop at trailer.
If the content of the J register is zero at completion of the load-
ing process, the program tape was loaded correctly. If the J
register is non~zero, re-start this loading procedure from Step 2.

5. ERROR DIAGROSTICS

The checksum is stored in the J register at the completion of a program loading procedure.
A non-zero J register indicates an erroneous load. Refer to the section of the OPERA-

TIONAL PROCEDURE and re~load the program.

6. CO/ALAAND SURIIARY

None.

7. FLOW CHART

Not Applicable.

8. PROGRALL LISTING

Not Applicable.

S=7

1. INTRODUCTION

A. PROGRAM SUMMARY

The Binary Writer for High Speed Punch program is an independent Single Field Binary
Writer designed to create binary formatted program records via a high speed punch while
itself occupying a minimum of memory.

B. PROGRAM AREA

64805 through 6476g.

C. STARTING ADDRESS

8430 |

D. EQUIPMENT CONFIGURATION

Minimum requirements are a ND812 Central Processor equipped with a high speed paper
tape punch.

'E. DEFINITIONS

None.

2. PROGRAZA DESCRIPTION

Switch Register controls allow the user to create program records from any arbitrary block
of memory. These blocks are written on paper tape via the high speed punch and can
consist of up to 7777g consecutive memory locations. (This program occupies locations
64008 through 6476g.) This is a Single Field Binary Writer which limits the record

" selection to the field in which the Binary Writer is located.

6-1

After the Starting Address is loaded, the number of blocks to be written is loaded into the
Switch Register and the program is started. The program will then punch o leader (8th
level representing 200g) and stop. The Starting Address of the block is now set into the
Switch Register, followed by depressing CONTINUE. The program will stop again to
allow the user to enter the Stopping Address of the block. Depressing CONTINUE causes
the program to output all data between ond including the selected Starting and Stopping
addresses. |f more than one block was specified the program will stop. The user need
only to enter the Starting and Stopping Addresses for each additional block. At the com-
pletion of the last block the checksum and trailer are written to close the record,

Since the output process is non-destructive, the user is free to output any portion of
memory. However, care should be taken when outputting that portion of memory (7600g
through 7777g) which will be occupied by the Binary Loader when the record is re-loaded.
It is not possible for the Binary Loader to load itself.

If the Starting Address is larger than the Stopping Address, the Binary Writer will begin
with the Starting Address and output consecutive memory locations to the end of memory.

At this point the program will "wrap around" and continue outputting from location G40dg
until the Stopping Address is reached. '

3. OPERATOR OR USER CONTROL.

Only the number of blocks and the Starting and Stopping Addresses can be controlled by
the user. In each case the entire 12-bit Switch Register word can be utilized to specify
these controls,

4. OPERATIONAL PROCEDURE

1) Load the Binary Writer for High Speed Punch program tape with the
Binary Loader (refer to the Binary Loader (ND41-0005) for a detailed
description of its use).

2) Set the Switch Register to 6488 and depress LOAD AR.

3) Set the number of blocks to be written into the Switch Register,

4) Depress START.

| 5) The program will punch the leader and stop.

6) Set the Starting Address into the Switch Register.

6-2

7) Depre;s CONTINUE.

8) The program will now stop.

9) Set the Stopping Address into the Switch Register.
10) Depress CONTINUE. |

11) The program will output the first block and stop.

12) If more than one block was specified, return to Step 6 and specify
new Starting and Stopping Addresses.

13) At the completion of the last block, the program will write the
checksum and trailer, then stop.

5. ERROR DIAGNOSTICS

None.

6. COLILAND SUIALAARY

None.

7. FLOW CHART

Not Applicable.

8. PROGRAM LISTING

Not Applicable.

6-3

1. INTRODUCTION

A. PROGRAM SUMMARY

This program is an independent program that allows the user to examine and modify any
word in a Memory Field,

B. PROGRAM AREA

68003 through 6252,

C. STARTING ADDRESS

60103

D. EQUIPMENT CONFIGURATION

Minimum requirements are a 4K ND812 and an ASR-33 Teletype.
'E. DEFINITIONS
N = Increments current or base address by one and closes current address.

/I\ - Uses the last 7 bits of the current address contents to determine the effective address
and closes the current address.

<— - Uses the current address contents as absolute address and closes the current address.
- Returns to the base address and closes the current address.
SPACE - Prints contents of current address.

. CARRIAGE-RETURN =~ The argument preceding the carriage return is deposited in the
currently opened address. If no argument is given, the current address is closed.,

7-1

M - Location in which the users mask is stored.
N =~ Upper and lower word search limits.

W - Search word.

2. PROGRAMN DESCRIPTION

This program is controlled by special characters which are entered via the teletype keyboard.
These characters permit the user to examine the contents of a particular address and check
the results with the program listing. If the results are incorrect, the user can alter the
location,

The entry address is stored in a base and current address software registers. The base address
is updated by a new entry address or incremented with the control character "N", The

" /T‘ " and "<—=" controls will not affect the base address and after initiating one of

these controls, the base address can no longer be incremented. The current address

reflects the contents of the base address until eithera " N " or a "&—"isused., These
controls will branch the program and together with the "N" control, update only the
current address. The control character "#" returns the program to the base address.

A word search routine is incorporated in this program that prints on the teletype the

address of any preselected octal number. The search operation is the logical "AND™
of the user mask (M) and the binary words within the set limits (NJ).

3. OPERATOR OR USER CONTROL

7000 4321 1234 P
7034 4242 2008 <—
2008 3167 6543#

70800 1234

In the above example 788fg was typed on the teletype keyboard and is considered to be the
entry address. Next the SPACE bar is depressed and the contents of the entry address
(4321g) is printed. The argument 1234g is given preceding a " /i\ ",

The " /l\ " will close 78008 (now containing 1234g) and use the last 7 bits of the argument
to determine the effective address. In this example the current address is advanced 34g
locations, if the argument was 1334g the current address would be diminished 34g locations.
Location 7@834g is now opened, the contents printed and the argument 2000g is given

* preceding a "<—". Typing "<—" will close 7034g (now containing 2080g) and use 2000

7-2

as the absolute address, Location ZﬂﬂﬂS is opened, the co:'{fenfs printed and the argument
6543g is given preceding a " Typing "#' will close 2@%8 (now containing 6543g)
and return the program to the base address (7@2%8) .

M7677 7777 N
6247 2000 N
625 7777 7000
137W

p027 1374

1603 1374

1645 1374

61g1 1374

6174 1374

6202 1374

6217 1374

7800 1374

In the above example the mask location was opened by typing "M" and the contents printed.
The argument 7777g was given preceding a "N". Typing "N" will close the mask (now
containing 7777g) and open the lower search limit address (6247g). The contents of the
lower search limit is printed and no argument is given preceding the "N". Typing "N"

for the second time closes the unchanged lower search limit and opens the upper search
limit, The contents of the upper search limit is printed and the argument 7800g is given.
Next the CARRIAGE RETURN is depressed closing the lower search limit (now set to

70003) . 13744 is entered as the word search number and "W" is typed. The logical "AND"
of the users mask (7777g) and the binary words within the set limits is compared with the
search word and if equal, the address is printed,

M7777 [/ N
6247 Jfdfy 1400 N
6250 7777 2000

/W
1400 1738

L3

2008 #617

The above example, the word search routine is used to print a list from location]ﬁﬂﬁ8
through 2880g. This is accomplished by setting the mask to @, the limits to]ﬂﬂ,ﬁs
and 20800g, and setting the search word to g.

4. OPERATICHAL PROCEDURE

1) Load program tape with Binary Loader (refer to Binary Loader procedure).
2) Ascertain that the program to be debugged is in core.

3) Set Switch Register to 625@@8.

4) Depress LOAD ADDRESS.

5) Depress START.

6) Input entry address and refer to OPERATOR OR USER CONTROL Section
for a detailed description of control characters.

5. ERROR DIAGMNOSTICS

Entering an illegal character or erroneous number will close the current address, cause the
Teletype to print a "?" and return the carriage.

6. COLLIAND SUIMARY

None

7. FLOW CHART

Not Applicable.

8. PROGRAZ} LISTING

(Next Page)

1. INTROBUCTION

A. PROGRAM SUMMARY

This program is an independent Multiple Memory Field Binary Writer designed to create
binary formatted program records via a high/low speed paper tape punch or magnetic tape
cassette unit. :

B. PROGRAM AREA

74ﬂﬂ8 fh[‘OUgh 75678.

C. STARTING ADDRESS
74ﬁﬂ8.
D. EQUIPMENT CONFIGURATION

Minimun requirements are a ND812 Central Processor equipped with a low-speed punch.
Optional peripherals include the high speed punch or magnetic tape cassette unit,

E. DEFINITIONS

Initialization word - specifies device, tagword, and number of blocks to be written. |t
is normally acquired by the program from the Switch Register,

2. PROGRAM DESCRIPTION

This program is controlled via the Switch Register and allows the user to create program
records from up to 15 (17g) arbitrary blocks of memory. These blocks may be written on
paper tape or magnetic tape cassettes and can consists of up to 4096 consecutive memory
locations from any single memory field. An "overlap" of two memory fields in one block
is not permissable. Different blocks may come from different memory fields.

8-1

After the Initialization word (See Chapter 3) has been set into the Switch Register, the
program can be started. The program will then punch a leader (8th level representing

128g or 2801) or write a file mark and tagword and stop. The Memory Field from which
the first block is to be taken should now be set into the Switch Register (BITS 10 and 11).
If BIT 0 is set to "1", the field change character preceding each data block will be
suppressed. BITS 1 through 9 are ignored at this time. After the Memory Field number is
set into the Switch Register, the user should depress the CONTINUE switch. The program
will stop again to allow the user to enter the Starting Address of the block into the Switch
Register, followed by depressing CONTINUE. The program will stop again to allow the
user to enter the Stopping Address of the block. Depressing CONTINUE causes the program
to output all data between and including the selected Starting and Stopping Addresses.

If more than one block was specified (BITS 2-5 of the Initialization word) the program will
stop. The user need only to enter the Memory Field number, Starting and Stopping
Addresses for each additional block. At the completion of the last block the checksum and
trailer are written to close the record,

Since the output process is non-destructive, the user is free to output any portion of
memory. However, care should be taken when outputting that portion of memory (7625258 .
through 7777g) which will be occupied by the Binary Loader when the record is re~loaded.
[t is not possible for the Binary Loader to load itself.

If an attempt is made to write on the end of the tape, the program will stop with the J
register equal to 7777g. The program should be re-started with a new cassette that is
adequate to contain the entire block. Pressing CONTINUE at this point will not have any
effect. Positioning the tape in a cassette is the user's responsibility as the program will
not skip over previously written records.

If the Starting Address is larger than the Stopping Address, the Binary Writer will begin
with the Starting Address and output consecutive memory locations to the end of memory.
At this point the program will "wrap around" and continue outputting from location ﬂﬁﬁﬁs
on until the Stopping Address is reached. :

3. OPERATOR OR USER CONTROL

The Initialization word is a 12-bit word used to specify the output device, number of
blocks to be written, and tagword. The Initialization word Switch Register settings are
as follows:

OUTPUT DEVICE SELECTION BIT & BIT 1
Cassette (center drive No. 2) J) J4)
High Speed Paper Tape Punch J4)]
Low Speed Paper Tape Punch (ASR33)]]

8-2

BITS 6 through 11 are used for the tagword selection when writing on magnetic tape cass-
ette. They are written on tape at the beginning of the program record and are used to
identify the record to the Binary Loader.

BITS 2 through 5 indicate the number of blocks to be written, regardless of the output
device selected. There may be up to 15w (17g) blocks selected.

NOTE

If BITS 2 through 5 are all "@'s", the user will have selected 4096
blocks.

The Memory Field from which the first block is to be written is specified by BITS 1¢/
and 11 via the Switch Register. Permissable Memory Field selections are @, 1; 2 and

3 (in 4K increments). If BIT @ is set to "1", the field change character is suppressed.

The Starting and Stopping Addresses of a block are selected by the entire 12-bit Switch
Register word,

4. OPERATICNAL PROCEDURE

1) Load the Binary Writer program tape with the Binary Loader (refer
to the Binary Loader (ND41-0005) for a detailed description of
its use).

2) Set the Switch Register to 74@0g and depress LOAD AR.

3) Set the Initialization word into the Switch Register.

4) Depress START.

5) The program will stop after punching leader.

6) Set the Memory Field from which the block is to be written into
the Switch Register (BITS 18, 11 and 9).

7) Depress CONTINUE.
8) The program will now stop.
9) Set the Starting Address into the Switch Register.

10) Depress CONTINUE

8-3

11) The program will now stop.

12) Set the Stopping Address into the Switch Register.
13) Depress CONTINUE. ‘

14) The program will output the first block and stop.

15) If more than one block was specified by the Initialization word,
return to step 6 and specify new parameters,

16) At the completion of the last block, the program will write the
checksum and trailer, then stop.

5. ERROR DIAGHOSTICS

If an attempt is made to output to a non-existant device, the program will enter an
endless loop.
If an attempt is made to write on the end of magnetic tape, the program will stop and the

J register will equal 7777g. The program should be re~started with a new cassette that is
adequate to contain the entire block,

6. COLUAARD SUTALAARY

INITIALIZATION WORD

OUTPUT DEVICE | BIT A CBIT 1
‘Ccssette (center drive No. 2) 4])
High Speed Paper Tape Punch B 1
Low Speed Paper Tape Punch (ASR33)} 1 | S

BITS 2 through 5 indicate the number of blocks to be written, with a maximum of 15w
(17g) blocks.

BITS 6 through 11 are used for the tagword selection when writing on magnetic tape
cassette,

8-4

NOTE

If BITS 2 through 5 are all "@'s", the user will have selected 4096
blocks.

The Memory Field from which the first block is to be written is specified by BITS 10 and
11 via the Switch Register. Permissable Memory Field selections are @, 1, 2 and 3.
Bit f set to "1" suppresses the field change character.

The Starting and Stopping Addresses of a block are selected by the entire 12-bit Switch
Register word.,

7. FLOW CHART

(Next Page)

8. PROGRAM LISTING

Not Applicable.

SR—>K
g—>)

I

p—>R
(Clear
Checksum)

=g K@

High
speed
punch

(SRO)

Low
speed
punch

BINARY WRITER

K1 —>
FLAG

K2-5

BLKCTR

Wait for
drive 2

ready

Write
FILE MARK

Wait

for
ready

Set up for
cassetfte

output

Write
LEADER |

Write SR
bits 6 = 11
(tagword) |
;»‘— - — - — - Write one block
SR bits 10 —>

& 11— bits |- == Set up Memory Field
10 & 11 of LDA

SR Bit 0
—> FLAG

R—>
LDB _ _ _ Get starting address

l

SR - LDB
—> WRDCTR _ _ _ Get stopping address

/= — - LDA-300

Write
P Ifield change
Char.

Write
ORIGIN
(= LDB)

©

BINARY WRITER

Write

> program

word

Decrement

WRDCTR

NO WRDCTR
- ¢
YES

Decrement

BLK CTR

BLK CTR
< p
YES

Write
CHECKSUM

Write
TRAILER

(STOP)

BINARY WRITER

8-8

1. INTRODUCTION

A. PROGRAM SUMMARY

The Floating Point Program is a multiple field arithmetic floating point and I/O package.

B. PROGRAM AREA

The program occupies location 4805 through 2751 and uses location 2752g through
2761g as a buffer.

C. STARTING ADDRESS

The routines are called by software commands from the main program,

D. EQUIPMENT CONFIGURATION

Minimum requirements are an ND812 Central Processor equipped with an ASR-33 Teletype.

E. DEFINITIONS

None

2. PROGRAM DESCRIPTION

The Floating Point Program is an arithmetic-and basic 1/O package that allows the user
to prepare programs without concern for the decimal point. The significant digits are
maintained for each number, enhancing the accuracy of any series of calculations,
Floating Point Arithmetic is of special interest in those cases where many multiplications
ond divisions are performed and the magnitudes are likely to differ greatly. The ability
to store both large and small numbers by storing the significant digits and an exponent is
the primary advantage of a floating point system.

9“] .

The Floating Point Program is written as a self-contained package with its own 1/O and
arithmetic routines, so the programmer need not prepare his own packages.

A floating point number consists of a number (mantissa) times a base raised to a power
(exponent). For example, in the decimal system, 15 may be expressed in many ways:

1500.0 %10-2
150,00 %10~
15.000 %100
1.5000 *10!
. 15000 102
etc.)

All floating point numbers are stored internally as binary numbers. For example, 7 in
decimal is 111 in binary and may be writfen as:

11100.0 #2=2 (28 * 1/4 =7)
1110.00 %21 (14 % 1/2 = 7)
111.000 #20 7*1=7)
11.1000 xg] 7/2%2=7)
1.11000 *22 /4% 4=7)
etc.)

The binary exponent is always a signed integer. A number is considered to be normalized
when a value is expressed:

MANTISSA * 2F

Where the Mantissa is a signed quantity. More significant bits are stored as a result of
this convention. For example, .1 (Decimal) written in an unnormalized binary format is:

p.ag g1 ger ge g g ger ge 11g gl

If stored in 24 bits, the leading f's are not significant and only 20 meaningful bits are
maintained, By rewriting and normalizing the number as:

273811 g1 g0 1g B gO1 g P11 gol g, . .

23 bits of significance can be stored, |

A number is considered to be normalized when ’}he absolute value of the mantissa is greater
than 1/2 and less than 1. The binary point falls after the first bit (8. indicating a positive

number 1. a negative number).

The form of a floating point number consists of three 12 bit words. They are:

- 9-2

1st Word | o A2nd Word B 3rd Word

1 11 1 11 12

Bit Bits Bit Bits Bits
~—— _——V___/ e S — v Y
~
Sign of Binary exponent Sign of High order Low order
exponent 2's complement mantissa mantissa mantissa
quantity

Thus .1 (decimal) would be stored as:

11 1 11 101
011 001 100 110
011 001 100 011

or in octal:

7775
3146
3143

The address of this number is considered to be that of the exponent; that is, if the exponent
has address 3210,

© 3210/7775
3211/3146
3212/3143

Then the number's address is 3210. The number .1 (decimal) is equal to .063145314
(octal) or g@8 118 £11 @81 186 118 £11 g61 180 (binary).

Upon normalization this becomes:

@3 x @1 g g Np g0 ge g 11,
In 2's complement, this is:

.88 g g1 g e N 11 gon,,
which is:

(273) * (4631 4632),

or:
7775

4631
4632

This number is normalized with the binary point between BITS f and 1 of the high order
word,

All operations are called through the Floating Point Interpreter which is entered with a

TWJPS to FPNT (84%0g) .

The standard Two-word Memory Reference Instruction Code format is used:

Operation code 0 0
1 1
2 2
Instruction code 3 3
4 4 Absolute address
5 5
6 6
Direct or indirect address 7 7
Not used 8 8
Field change 9 9
Field selection 10 10
11 11

The basic Floating Point Package Commands are either two word or single word instructions
that increment a single pointer by three, increment or decrement if the counter is zero,
provide a floating jump, store and load the FACC and provide four arithmetic subroutines.
A brief description of the arithmetic provided four arithmetic subroutines. A brief descrip~-
tion of the arithmetic routines are as follows:

Floating subtraction is performed by negating the operand and then calling the addition
routine. The result is normalized and control is returned to the interpreter,

Floating addition is performed by aligning the exponents of the numbers and then adding

the mantissas. Both numbers are shifted one bit to the right, preventing overflow into the

sign bit. A 2's complement addition is performed, the result is normalized, and control
"is returned to the interpreter.

Floating division is performed by subtracting the divisor exponent from the dividend
exponent, dividing the mantissas and normalizing the result. Control then returns to the
. interpreter.

9-4

Seven additional instructions are available with this basic package as single word instruc=
tion, they are; input and output routines, three operates (halt computer, exits floating
package, and normalize FACC) and two functions that will convert a floating point number
to a double precision integer and float a double precision integer.

All Floating Point Commands are multiple field, except the Floating Jump (FJMP), The
user must exit the floating point package in order to perform a jump to another field.

All Floating Point Operations are performed through a Floating Accumulator (FACC).

FACC occupies core locations 8537g, #5405 and 85415, Location B537g (EXPON)
contains the exponent and sign, location #5483 (HORD) contains the high order 11 mantissa
bits and sign, and location 8541g (LORD) contains the low order 12 mantissa bits.

3. OPERATOR OR USER CONTROL

FLOATING POINT INPUT

The input routine reads decimal characters from the ASR-33 keyboard which are internally
converted fo the Binary Floating Point format, There are several acceptable forms for
entering numbers, e.g., the number 583.9 may be entered in any of the following ways:

583.9
.5839E3
.5838E+03
+5839E-1
Etc.

Input is halted by typing a character that is not a part of this format, The conversion
of "14,0" would end at the second "." and the binary number

000 000 000 100 (octal 0004)
011 100 000 000 (octal 3400)
000 000 000 000 (octal 0000)

would be in the floating accumulator.

The routine is entered by an effective JPS 1661, Control is returned to the next
statement after the JPS when the input conversion is terminated. The number is stored
in the FACC (floating accumulator) in normalized floating binary format.

INPUT FLAGS

Two locations (flags) are associated with the input routine that can aid the u‘ser.

2166 - location 2166 contains the last character entered.

1756 - if location 1756 is zero, no conversion was made, A terminator was initially typed.

If a "RUBOUT" is entered before a terminating character, the input routine is restarted
and the previous input is destroyed,

FLOATING POINT OUTPUT

The basic output form is the exponential, or E format. As an example, if FACC contained:

0003 -
2000
0000
+0,4000000E+01 would be printed,

The output may be formatted to print an integer or decimal notation. Three locations

(2301, 2422 and 2600) control the output format, Location 2301 contains the number

of digits to be outputted, If location 2301 is zero, the output will be in E format. Location
2472 contains the number of digits outputted to the right of the decimal place (does not
apply to E format). If location 2472 is zero a decimal point will not be printed. Location
2600, when non-~zero, supresses all leading spaces (does not cpply to E format).

If the number to be outputted is larger than the specified field width (2301), "X's" will
be printed in place of a number. Any number printed will be preceded with a sign and

all leading zeros are suppressed.

The following example illustrates the Floating Point output formatting features. FACC
contains 786.324 decimal,

Output

N
w
(@]
—
N
|f:
N
N
[
o
o

+0,786324E+03
+XX

+786 ,

+ 786.32
+786,32
+786,32

+ 786

+786

AhoooowNnoO l
O OMNMNMNMNNO —

Also, location 2612 can be set non-zero and a carriage return/line feed will not be
printed after a number is printed, This location is initially set to zero and a carriage

return/line feed is printed.

The contents of FACC is not destroyed during output. The output routine is called by an
effective JPS 2227. Control is returned to the statement following the JPS.

As an example of how the Floating Point Package may be used, consider the polynomial:

Y = (B*C)/(A**3) 6 D+ E

Assuming all values are in core, this polynomial may be evaluated as follows:

START, TWJPS
FLOAD A
FMULT A
FMULT A
FSTOR TEMP]
FLOAD B
FMULT C
FDIV TEMPI
FSUB D
FADD E
FSTOR Y
FOUTPT
FEXIT
STOP
$

TEMPI1,

8
8
TEMP2, f8
8
B

/ENTER FLOATING INTERPRETER

/A**3

/B*C

/(B*C)/(A*3)
/(B*C)/(A**3) - D
/(B*C)/(A**3) - D+ E

/OUTPUT Y

4. OPERATIONAL PROCEDURE

1) Load the rloating Point program tape with the Binary Loader (refer
to the Binary Loader (ND41-0005) for a detailed description of its

~ use).

None

2) The routines are programmable subroutines called by the main

program,

SINGL E WORD COMMANDS

OCTAL CODE

1400
2000

2400

3000

3400

4000
4400
5000
5400
6000
6400

7000

MNEMONIC
FINPUT
FOUTPT

FPTR

FDSZ

FISZ

FSUB

FADD

FLOAD

FSTOR

FJMP

FDIV

FMULT

5. ERROR DIAGHOSTICS

6. COLALIANID SULILIARY

DESCRIPTION
Floating input.
Floating output.

Increments single word pointer
by three.

Decrements single word pointer
by one and skips the next floating
instruction when memory is equal
to zero,

[ncrements single word pointer

by one and skips the next floating
instruction when memory is equal
to zero,

Floating subtract.

Floating addition.

Floating load FACC.

Floating store FACC.

Floating jump.

Floating divide.

Floating multiply

TWO WORD COMMANDS

OCTAL CODE

0240

0300
0340

0400
0440
0500
0540
0600
0640

0700

OPERATE COMMANDS

OCTAL CODE
1000
1001

7405

7406

MNEMONIC

FTWPT

FTWDS

FTWIS

FTWSB
FTWAD
FTWLD

FTWST

"FTWJP

FTWDV

FTWMT

MNEMONIC
FSTOP
FEXIT

IFIX

FLOAT

DESCRIPTION

Increments single word pointer
by three.

Decrements single word pointer by
one and skips the next floating
instruction when memory is

equal to zero.

Increments single word pointer by
one and skips the next floating
instruction when memory is equal
to zero.

Two word subtract.

Two word addition,

Two word load FACC.

Two word store FACC.

Two word jump.

Two word divide.

Two word multiply.

DESCRIPTION
Halts Computer
Exits Floating Package

Fix Floating Point number in FACC
(Double Precision)

Float Double Precision Integer

7. FLOW CHART

Not Applicable.

8. PROGRAL LISTING

Not Applicable.

1. ITRODUCTION

A. PROGRAIA SUMMARY

This program is an overlay for the Floating Point Program (ND41-0041) that provides an
exponent, log, square, and square root routines.

B. PROGRAM AREA

The program occupies locations 38@0g through 3373g and updates interpreter locations
P624g, B6254, ﬁ6328 and 634g.

C. STARTING ADDRESS

These routines user callable subroutines.

D. EQUIPFENT CONFIGURATION

Minimum requirements are an ND812 Central Processor equipped with an ASR-33

Teletype. ‘
IE. DEFINITIONS

None

2. PROGRAM DESCRIPTION

LOG

This routine calculates the natural logarithm of the absolute value of the number contained

in FACC and stores the result in FA_CC.,J‘_

10-1

e

The following identities are used in the logarithm routine:

ForX_>__1 .

Log (X) = Log 2M*A) 1 € A K 2
=M * Log (2) + Log (A)

LOG (1+ X) =8

where | i=1

Cy =+.9999964239
Cy = -.4998741238
C3 =+.3317990258
C4 = +.2407338084
Cs =+.1676540711
Co = -.0953293897
C7 =+.0360884937
Cg = -. 0064553442

For 0< X< 1
Log (X) = -Log (1/X)

EXPONENT

This routine raises E to the FACC power and stores the fesulf in FACC.
The following identity is used in the exponent routine.
EX=2X % log 2 E=2N4 F=2N#oF

Where N is an integer and 0 < F < 1

oF =142
A-F+BF2-C
D+ F2

Where

. 95459578

. 03465735903
617.97226053
87.417497202
1,4426950409

O 0

1 | { S | R

o g %>

Logo
fFX<g

X = 1/e-X
10-2

SQUARE ROOT

This routine calculates the square root of the number contained in FACC and stores the
result in FACC.

The square root is calculated by using Newton's method,
X+ 1=1/2 (Xi+ N/Xi)

For the square root of N.

SQUARE

This routine calculates the square of the number contained in FACC and stores the resul t

in FACC.
3. OPERATOR OR USER COLTROL
These routines are programmable subroutines.

4. OPERATIOLAL PROCEDURE

1) Load program tape with the Binary Loader (refer to Binary Loader
(ND41-0005) for detailed description of its use).

2) These routines are programmable subroutines and are called by the
main program, ‘

5. ERROR DIAGNOSTICS

None
6. COMMAND SUMMARY
OCTAL CODE MNEMONIC DESCRIPTION

7401 FSQRT Square root of FACC.

10-3

OCTAL CODE MNEMONIC DESCRIPTION

7402 FSQUAR Square FACC.
7407 FLOG Natural log of FACC.
7411 FEXP ~ Exponent of FACC.

7. FLOW CHART

Not Applicable.

8. PROGRAL LISTING

Not Applicable.

10-4

1. INTRODUCTION

A. PROGRAM SUMMARY

This program is an overlay for the Floating Point Program (ND41-0041) that provides a
sine, cosine, and ARC tangent routines.

B. PROGRA[A AREA

The program occupies locations 3480g through 37@1g and updates interpreter locations
06263, %278 and }%338. -

C. STARTING ADDRESS

These routines are user callable subroutines.

D. EQUIPMEHT CONFIGURATION

Minimum requirements are an ND812 Central Processor equipped with an ASR-33

Teletype.
E. DEFINITIONS

None

2. PROGRA[DESCRIPTION

SINE

This routine calculates the sine of the angle contained in FACC (assumed to be in radians)
and stores the result in FACC.

The following identities are used in the sine routine:

SIN (=X) = =SIN (X)
SIN (X) = SIN (2M+ A) = SIN (A)
SIN (T =A). = -SIN (A)

Where 0 < A < 2T and M is an integer. With these identities, the argument a
is reduced to the range = T /2 < ALT/2. If X=2A/T , -1< A < 1, then
SIN (X) = A+ Cg A3+ Cg+ Cy A + CoAT.

where
Cl1 =1,57079631847
C3 = .64596371106

C5 =+.,07968967928

C7 = -,00467376557

C9 =+.00015148419

The sine routine is valid over the range =2 TT * 2047 < X< 2T * .2047.
COSINE

This routine calculates the cosine of the angle contained in FACC (assumed to be in radians)
and stores the results in FACC.

The cosine routine uses the identify COS (X) = SIN (TT /2 = X) and then uses the sine
routine,

ARC TANGENT

This routine calculates the ARC tangent of the number contained in FACC and stores the
result, in radians, in FACC.

The following identities are used in the ARC tangent routine:

ATAN (-X) = =ATEN (X)

IFX> 1
ATAN (X) = TT/2 - ATAN (1/X)
For 0 < X< 1

ATAN (X) = X (Ag+ A, X2+ A X

Bo+ ByX2+ Byx?

where

Ay = .6402491953
A = .4229908144
Ay = . 0264694361
By = 6402487022
By = .6363779373
By = .1108328778

with results in the range:

- T/a < ATAN (X)< /2
-00< X< 00

3. OPERATOR OR USER COMNTROL

These routines are programmable subroutines.

4. OPERATIONAL PROCEDURE

1) Load program tape with the Binary Loader (refer to Binary Loader
(ND41-0005) for detailed description of its use).

2) These routines are programmable subroutines and are called from
the main program.

5. ERROR DIAGNOSTICS

None.

6. COMMAND SUMMARY
OCTAL CODE MNEMONIC DESCRIPTION |
7403 ESIN Sine of FACC.

OCTAL CODE MNEMONIC DESCRIPTION
7404 FCOS Cosine of FACC.

7410 FATAN ARC tangent of FACC.

7. ELOW CHART

Not Applicable.

8. PROGRAM LISTING

Not Applicable.

11-4

1. INTROBUCTION

A. PROGRAI SUMMARY

This program is an overlay for the Floating Point Program (ND41-0041) that provides
Floating Point Operate (FNEG, FCLR, FINC, FSIM, FSIP and FSIZ) Instruction,

B. PROGRA AREA

The program occupies locations 8300g through f354g and updates interpreter locations
Pedfg through B605g.

C. STARTING ADDRESS

These commands are programmable subroutines,

D. EQUIPMENT CORFIGURATION

Minimum requirements are an ND812 Central Processor equipped with an ASR-33
Teletype.

E. DEFINITIONS

None

2. PROGRAIA DESCRIPTION

The Operate Instructions augment the Floating Point Program allowing the user to
execute a 2's complement of the floating accumulator (FNEG), FCLR clears and FINC
increments the floating accumulator. Three skips are also included with the Operate
Instructions that skip if the floating accumulator is negative (FSIM), positive (FSIP), or
zero (FSIZ).

12-1

3. OPERATOR CR USER CONTROL

None.

4. OPERATIONAL PROCEDURE

1) Load program tape with Binary Loader (refer to Binary Loader
(ND41-0005) for detailed description of its use).

5. ERRCR DIAGHNOSTICS

None.
6. COLAIARD SUMIAARY
OCTAL CODE ' MNEMONIC DESCRIPTION
1003 FNEG 2's complement FACC,
1004 ~ FCLR Clears FACC.
1005 FINC Increments FACC.
1006 FSIM Skips if FACC negative.
1007 FSIP Skips if FACC positive.
1010 FSIZ Skips if FACC zero.

" 7. FLOW CHART
Nof Applical?le

‘8. PROGRAIA LISTING

Not Applicable
12-2

	001
	002
	01-01
	01-02
	01-03
	01-04
	01-05
	01-06
	01-07
	01-08
	01-09
	01-10
	01-11
	01-12
	01-13
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	02-08
	02-09
	02-10
	02-11
	02-12
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	04-01
	04-02
	04-03
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	06-01
	06-02
	06-03
	07-01
	07-02
	07-03
	07-04
	08-01
	08-02
	08-03
	08-04
	08-05
	08-06
	08-07
	08-08
	09-01
	09-02
	09-03
	09-04
	09-05
	09-06
	09-07
	09-08
	09-09
	09-10
	10-01
	10-02
	10-03
	10-04
	11-01
	11-02
	11-03
	11-04
	12-01
	12-02

