
~~ Advanced
A~~Personal Computer

TM

MSTM_DOS System Reference Guide

NEe
NEe Information Systems, Inc.

819-000103-2001 REV 01
9-83

Importa:nt Notice

(1) All rights reserved. This manual is protected by cO,pyright. No part of this manual may be
. reproduced in any form whatsoever without the written permission of the copyright owner.

(2) The policy of NEC being that of continuous product improvement, the contents of this manual
are subject to change, from time to time, without notice.

(3) All efforts have been made to ensure that the contents of this manual are correct; howeve'T, should
any errors be detected, NEC would greatly appreciate being informed.

(4) NEC can assume no responsibility for errors in this manual or their consequences.

©Copyright 1983 by NEe Corporation.

MSTM_DOS, MACRO-86 Macro Assembler™, MS-LINK Linker UtilityTM, MS-LIB Library Mana­
gerTM, MS-CREFTM Cross Reference Utility, EDLIN Line Editor™ are registered trademarks of the
Microsoft Corporation.

PLEASE READ THE FOLLOWING TEXT CAREFULLY. IT
CONSTITlJTES A CONTINUATION OF THE PROGRAM

LICENSE AGREEMENT FOR THE SOFTWARE APPLICA­
TION PROGRAM CONTAINED IN THIS PACKAGE.

If you agree to all the terms and conditions contained in both parts
of the Program License Agreement. please fill out the detachable
postcard and return it to:

NEC Information Systems, Inc.

LIABILITY

Dept: Publications
1414 Mass. Ave.

Boxborough, MA 01719

In no event shall the copyright holder. the original licensor nor any
intermediate sublicensors of this software be responsible for any
indirect or consequential damages or lost profits arising from the
use of this software.

~~ Advanced
Ar-~ Personal Computer

1M

Program Name (as it appears on diskette label)

Serial Number

Dealer Name and City

Your Name

Your Address

City

COPYRIGHT

The name of the copyright holder of this software must be recorded
exactly as it appears on the label of the original diskette as supplied
by N ECIS on a label attached to each additional copy you make.

You must maintain a record of the number and location of each
copy of this program.

All NECIS software programs and copies remain the property of the
copyright holder. though the physical medium on which they exist is
the property of the licensee.

MERGING, AL TERA TION

Should this program be merged with or incorporated into another
program. or altered in any way by the licensee. the terms of the
Warranty contained herein are voided and neither NEelS nor the
copyright holder nor any intermediate sublicensors will assure the
conformity of this software to its specification nor refund the license
fee for such nonconformity.

Upon termination of this license for any reason. any such merged or
incorporated programs must be separated from the programs with
which they have been merged or incorporated and any altered
programs must be destroyed.

819-0001 02-8DO 1

NEe
NEe Information Svstems,lnc.

Date Purchased

State ZIP

"Warranty Requires Return of This Card"

BUSINESS REPLY CARD
FIRST CLASS PERMIT NO. 386 LEXINGTON MA

POSTAGE WILL BE PAID BY ADDRESSEE

NEe Information Systems, Inc.
Dept: Publications

1414 Mass. Ave.
Boxborough, MA 01719

111111 NO POSTAGE
NECESSARY

IF MAILED
IN THE

UNITED STATES

Contents
Page

Chapter 1 MS-DOS System Overview

MS-DOS SOFTWARE .. I-I
MS-DOS INITIALIZATION 1-2
ALLOCATION OF DISK SPACE FOR FILES 1-4

Cluster Arrangement 1-5
File Allocation Table Format 1-5

MS-DOS ROOT DIRECTORY STRUCTURE 1-5.
PERIPHERAL DEVICE AND DEVICE CONTROLLER

CHARACTERISTICS ... 1-9
The APC Screen .. 1-9
Printers•.......... 0 0 0 0 0 0 • 0 0 0 • 0 0 0 • 0 0 0 • 0 0 0 0 0 • 0 •• 1-9
Diskette and Hard Disk Drives . 0 0 0 0 000 0 0 0 0 0 0 0 • 0 ••• 0.0. 0 0 0 0 0 0 000 1-10

DISK ATTRIBUTES 000 0 0 0 • 0 • 000 0 0 • 0 0 • 0 0 •••• 0 0 0 • 000 0 • 0 0 o. 1-10
HARD DISK ATTRIBUTES 0 0 0 I-II

Chapter 2 MS-DOS System Calls

PROGRAMMING CONSIDERATIONS .00.0 •••••••• 0 •• 0 ••••••• 0 0" 2-1
Callingfrom the MACRO-86 Macro Assembler 2-1
Calling from a High-Level Language 0 0 •••••••• 0 o 0 • 0 00' 2-1
Returning Control to MS-DOS 0000 •• 0 •• 0 •• 0000 ••• 0 • 0 • 0 o. 0 o. 0 0 0'0 2-2
Console and Printer Inputj Output Calls 0 •• 0 0 •• 0 0 •• 0 0 •• 0 0 0 0 0 • 0 0 • 0 0 2-2
Disk 110 System Calls . 0 •• 0 0 ••• 0 • 0 ••• 0 0 0 0 •• 0 0 0 0 •• 0 0 0 ••••••• 0 0 o. 2-2

FILE CONTROL BLOCK FORMATo 0 0 0 0 • 0 0 0 0 • 0 0 0 0 0 • 0 0 0 0 0 000 0 0 0 0 000 2-2
File Control Block Fields . 0 • 0 0 • 0 • 0 0 • 0 0 0 0 0 0 • 0 0 •• 00' 0 •• 0 •••• 0 •• 0 o. 2-3
Extended File Control Block o. 0 • 0 0 0 0 0 0 •• 0 • 0 0 0 0 0 0 ••• 0 0 ••••• 0 0 • 0 0 0 2-5

SYSTEM CALL DESCRIPTIONS 0 0 • 0 • 0 ••• 0 ••• 0 • 0 0 •••• 0 • 0 ••••••• 0 • 0 2-6
Interrupts 0 0 0 0 •• 0 • 0 0 0 ••• 0 0 0 • 0 0 • 0 • 0 • 0 •••• 0 0 0 0 0 •••••• 0 ••••••••• 0 2-6

FUNCTION REQUEST 0 .. 0 0 0 0 0 0 2-8
INTERRUPTS 22H, 23H, AND 24H 0 0 00.. 2-9
ERROR CODES .. 0 •• 0 • 0 0 0 0 • 0 0 0 ••• 0 • 0 0 0 0 • 0 •• 0 0 0 • 0 ••••••• 0 2-11
RETRIES .. 0 ••• 0 •• 0 0 ••• 0 0 • 0 • 0 0 •••• 0 •• 0 • 0 •••• 0 0 •• 0 ••••• 0 0 2-12
STACK. o. 0 ••• 0 ••• 0.0 •• 0000.00 ••• 00 •• 00 •••• 00. 0 0 •••••••• 2-12
ABSOLUTE DISK READ 0 2-13

iii

Contents (cont'd)
Page

ABSOLUTE DISK WRITE 2-15
TERMINATE BUT STAY RESIDENT ._ 2-17

Function Requests. .. 2-18
CP/M (R)-COMPATIBLE C~LLING SEQUENCE 2-18
TREATMENT OF REGISTERS 2-18
XENIX-COMPATIBLE CALLS 2-21
TERMINATE PROGRAM 2-23
READ KEYBOARD AND ECHO 2-24
DISPLAY CHARACTER. .. 2-25
READ KEYBOARD AND ECHO 2-26
AUXILIARY OUTPUT 2-27
PRINT CHARACTER 2-28
DIRECT CONSOLE I/O 2-29
DIRECT CONSOLE INPUT 2-31
READ KEYBOARD 2-32
DISPLAY STRING 2-33
BUFFERED KEYBOARD INPUT 2-34
CHECK KEYBOARD STATUS 2-36
FLUSH BUFFER, READ KEYBOARD 2-37
DISK RESET ... 2-38
SELECT DISK .. 2-39
OPEN FILE 2-40
CLOSE FILE 2-42
SEARCH FOR FIRST ENTRy 2-43
SEARCH FOR NEXT ENTRy 2-44
DELETE FILE .. 2-46
SEQUENTIAL READ 2-47
SEQUENTIAL WRITE 2-49
CREATE FILE .. 2-51
RENAME FILE ... 2-52
CURRENT DISK .. 2-54
SET DISK TRANSFER ADDRESS 2-55
RANDOM READ 2-56
RANDOM WRITE 2-58
FILE SIZE .. 2-60
SET RELATIVE RECORD 2-62
SET VECTOR ... 2-64

IV

Contents (cont'd)
Page

RANDOM BLOCK READ. .. 2-65
RANDOM BLOCK WRITE 2-68
PARSE FILE NAME 2-70
GET DATE ... 2-73
SET DATE ... 2-74
GET TIME .. 2-75
SET TIME .. 2-76
SET/RESETVERIFYFLAG 2-77
GET DISK TRANSFER ADDRESS 2-79
GET DOS VERSION NUMBER. 2-79
KEEP PROCESS .. 2-80
CTRL~CHECK .. 2-81
GET INTERRUPT VECTOR. 2-81
GET DISK FREE SPACE 2-82
RETURN COUNTRY-DEPENDENT INFORMATION 2 .. 83
CREATE SUB-DIRECTORY 2-86
REMOVE A DIRECTORY ENTRy 2-87
CHANGE THE CURRENT DIRECTORy 2-88
CREATE A FILE .. 2-88
OPEN A FILE 2-89
CLOSE A FILE HANDLE 2-91
READ FROM FILE/DEVICE 2-91
WRITE TO A FILE/DEVICE 2-92
DELETE A DIRECTORY ENTRY 2-93
MOVE FILE POINTER 2-94
CHANGE ATTRIBUTES 2-95
I/O CONTROL FOR DEVICES 2-96
DUPLICATE A FILE HANDLE , 2-99
FORCE A DUPLICATE OF A FILE HANDLE 2-100
RETURN TEXT OF CURRENT DIRECTORY 2-100
ALLOCATE MEMORY , 2-101
FREE ALLOCATED MEMORY 2-102
MODIFY ALLOCATED MEMORY BLOCKS 2-103
LOAD AND EXECUTE A PROGRAM 2-104
TERMINATE A PROCESS 2-107
RETRIEVE THE RETURN CODE OF A CHILD 2-107
FIND MATCH FILE 2-108

v

vi

Contents (cont'd)
Page

STEP THROUGH A DIRECTORY MATCHING FILES 2-109
RETURN CURRENT SETTING OF VERIFY AFTER WRITE

FLAG ... 2-110
MOVE A DIRECTORY ENTRY 0.0.000. 0" 2-110
GET/SET DATE/TIME OFA FILE 0000. 0 0 0 •• 0 •• 0 0 0 o. 0 0 0 0 2-111

MACRO DEFINITIONS FOR MS-DOS SYSTEM CALL
EXAMPLES .. o. 0.000 ••••• 0 0 0 0000. 0 o. 0 0 000. 0 0 •••• 0 •••• 00.00.0 2-112

AN EXTENDED EXAMPLE OF MS-DOS SYSTEM CALLS .. 0., 000 2-121
Chapter 3 The Extended 1/0 System Functions

GET TIME AND DATE 0000.000. 0.00 •••• 0. 000. 0 •• 0 •• 0 •• 0.0 •• 0 0 0 0 o. 3-1
SET TIME AND,DATE o. 0 o. 0 0.00000 ••••• 0 000000 •• 0.0 •• 0 0 0 0" 0 0 0 0 0 3-2
PLAY MUSIC 0 0 0 • 0 0 0 0 • 0 • 0 •• 0 0 0 0 • 0 0 0 0 •• 0 0 • 0 0 • 0 • 0 0 0 ••••• 0 0 • 0 ••• 0 0 0 0 3-3

Control Data .. 0 0 0 • 0 • 0 •• 0 0 0 0 • 0 0 • 0 0 0 0 0 0 0 • 0 • 0 • 0 ••• 0 • 0 0 0 •• 0 0 0 0 0 0 0 3-3
Scale Date 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 • 0 0 0 0 •• 0 0 0 • 0 0 •• 0 •• 0 0 •••• 0 0 • 0 0 0 0 0 0 0 0 3-4
Complete Melody Data Format 0 0 0 0 0 0 0 0 • 0 0 0 0 0 0 0 0 0 ••• 0 0 0 •• 0 0 •• 0 o. 3-6

SO UND BEEP 0 0 0 •• 0 •• 0 0 0 0 ••• 0 • 0 0 • 0 •• 0 0 0 0 0 • 0 0 0 • 0 0 0 ••• 0 0 • 0 •• 0 0 • 0 • 0 3-6
Control Commands 0 0 0 0 0 •• 0 • 0 • 0 0 • 0 0 •• 0 •• 0 0 ••••• 0 •••••• 0 0 0 0 0 • 0 • 0 3-7
Beep Sound Parameters o. 0 • 0 0 •• 0 0 0 • 0 • 0 0 0 0 0 0 ••• 0 0 •••••••••• 0 •• o. 3-8
Complete Beep Command Format 0 ••••••••••••••• 0 • 0 •• 0 •• 3-8

REPORT CURSOR POSITION ENTRY 0 ••••••••••• 0 •• 0 •••••• 0 3-9
AUTO POWER OFF ... 0 •••••••••••••••••••••••••••••••••• 0 •••• 0 •• 3-9
INITIALIZE KEYBOARD FIFO BUFFER 3-10
DIRECT CRT I/O 0 •••••••••••••••••• 0 ••••••••••••••••• 00 ••• 3-10

Display Request Block 0 ••••••••••••••••••••• 0 ••••••• 0 • • • •• 3-11
Video Memory Format 0 ••••• 0 ••••••••••••••••• 0 • • • ••• 3-13
String Data Format .. 0 o. 3-13
Attribute Data Format 0 •••••••••••••• 0 •••••••••••••• 0 ••• o. 3-13
Direct CRT I/O Command Descriptions o ••••••• 0 • • • • •• 3-14

CMD#O - DISPLAY VIDEO MEMORY FORMAT DATA
ON CRT. 0 ••••••• 0 •••••••••••••••••••• 0 •••••••••• 0 •••• 3-14

CMD#1 - DISPLAY STRING DATA ON CRT 0 ••• 3-15
CMD#2 - REPORT CURSOR POSITION 0 •••••••• 3-15
CMD#3 - ROLL DOWN SCREEN. 0 ••••••••••••••••••••••• 3-16
CMD#4 - ROLL UP SCREEN 3-16

WRITE CMOS 0 •••••• 0 •••••••••••••••• 0 •••••• 3-17
READ CMOS 0 ••••••••••••••••••••••• 0 •••• 0 ••••••••••••• 0 ••••••• 3-17
INITIALIZE RS-232C .. 3-18

Contents (cont'd)
Page

Chapter 4 The APe Escape Sequence Functions

ESCAPE SEQUENCE FORMAT 4-1
CURSOR UP ... 4-3
CURSOR DOWN 4-3
CURSOR FORWARD .. 4-3
CURSOR BACKWARD. 4-3
CURSOR POSITION ... 4-4
SET CHARACTER ATTRIBUTES 4-4
ERASE WITHIN DISPLAY 4-5
ERASE WITHIN LINE 4-5
AUXILIARY CHARACTER SET 4-5
SET A MODE: ... 4-6
RESET A MODE ... 4-6
DEVICE STATUS REPORT 4-6
CURSOR POSITION REPORT 4-7
SAVE CURSOR POSITION 4-7
RESTORE CURSOR POSITION 4-7
ADM-3A MODE CURSOR POSITION ESCAPE SEQUENCE 4-7

Chapter 5 MS-DOS Graphics Supplement

EXECUTING THE GRAPHICS TEST 5-3
USING THE GRAF-DRAW UNIT 5-4
THE GRAF-DRAW UNIT 5-5
THE INTERFACE UNIT .. 5-5
TERMS THAT DESCRIBE SCREEN DISPLAyS 5-11
GRAF-DRAW UNIT PROCEDURES 5-12
PROCEDURE MOVE-ABS 5-12
PROCEDURE MOVE-REL 5-13
PROCEDURE SET_CURSOR 5-13
PROCEDURE SIZE_CURSOR 5-14
PROCEDURE SET-FILL 5-15
PROCEDURE BOX-ABS 5-15
PROCEDURE BOX-REL 5-16
PROCEDURE WRITE--BLOCILJ>IXELS 5-17
PROCEDURE READ--BLOCK-PIXELS 5-18
PROCEDURE SET_CHARUP 5-18
PROCEDURE SET-FONT 5-19

VB

viii

Contents (cont'd)
Page

PROCEDURE TEXT 00000000.00000.0000000.0 5-19
PROCEDURE SET-LINE--STYLE 0 0 • 0 0 0 0 0 0 0 0 0 0 0 0 • 0 0 0 o. 0 0 0 0 0 0 0 0 0 5-20
PROCEDURE LINE-ABS 00.000000000.00000.0000.00000.000000000 5-21
PROCEDURE LINE--REL 0 0 • 0 0 0 0 0 0 •• 0 0 0 0 0 0 0 • 0 0 0 0 0 • 0 0 0 o. 0 0 0 0 0 000 0 5-22
PROCEDURE PLINE-ABS 000 0 000 0 00. 0 • 0 0 00. 0 0 0 • 0 0 0 0 0 .0 0 0 • 0 0 0 000 5-22
PROCEDURE PLINE-REL 0 0 0 0 0 0 • 0 00. 0 0 0 0 0 0 ~ 0 0 0 • 0 0 0 0 .00 000 0 0 0 0 0 5-23
PROCEDURE CIRCLE-ABS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 • 0 0 0 0 0 0 0 0 0 .0 000 0 0 0 0 0 0 5-24
PROCEDURE CIRCLE-REL 0 0 0 0 0 0 0 0 000 0 0 0 •• 0 0 000 0 0 0 0 .0 0 0 0 0 0 0 0 0 0 5-25
PROCEDURE DEFINE_COLOR 00000000000 •• 000000000.0000000000 5-26
PROCEDURE INQ_COLOR 0 0 0 0 0 0 0 0 0 • 0 0 0 0 000 0 0 0 0 • 0 0 0 0 • 0 00. 0 000 0 0 5-26
PROCEDURE INQ_ VALUE 00 0 0 0 0 0 0 0 0 0 0 0 0 0 .00 0 0 0 0 • 0 0 0 • 0 0 0 0 0 0 0 0 •• 5-27
PROCEDURE PLANE-ENABLE 0 0 0 0 0 0 0 0 0 0 •• 0 0 0 0 0 0 0 0 0 • 0 000 0 0 0 0 0 0 5-28
PROCEDURE PLANE_VISIBLE 0000000000000000000000.0000000000 5-28
PROCEDURE SET-PALETTE 00.00.000000000000000000.0000000000 5-28
PROCEDURE SET_VALUE 000.0.00000000 ••• 000000000.000000000. 5-29
PROCEDURE ERASE 00 0 0 0 0 0 0 0 0 0 0 0 • 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 • 0 0 0 0 0 0 0 0 0 0 5-30
PROCEDURE ERASE-ALPHA 0 0 0 0 0 0 0 0 0 0 0 000 0 0 0 0 0 0 0 0 0 • 0 0 0 0 0 000 o. 5-30
PROCEDURE FLOOD 00000.0000.000.00000 ••• 000000000.0000000000 5-31
PROCEDURE ARC-REL 000000.000000000000000000000.000000000. 5-31
PROCEDURE ARC-ABS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 • 0 0 0 0 0 0 0 0 0 0 0 • 0 0 0 0 0 0 0 0 0 0 5-33
THE FONT COMPILER 000 0 0 0 0 •• 0 0 0 • 0 000 0 •• 0 0 0 0 0 0 0 0 0 0 • 0 0 0 0 0 0 000. 5-34

Font Text Files 0 0 •• 0 0 0 0 0 0 0 0 • 0 0 0 0 0 • 0 0 0 0 • 0 0 • 0 0 0 0 0 0 0 0 • 0 0 0 0 0 0 0 0 o. 5-35
Font Data Files 0 0 0 • 0 0 •• 0 0 0 0 •• 0 0 0 • 0 0 0 0 0 •• 0 0 0 0 0 0 0 0 0 0 • 0 0 0 0 0 0 • 0 o. 5-36

THE PATTERN COMPILER 000.000.000000000000000000.0000000.00 5-37

Appendix The MS-DOS Interrupt Vectors

CPU INTERRUPT VECTORS 00.000.0000000.0000000000.0000000000. A-3
DEVICE INTERRUPT VECTORS 0 0 0 0 0 0 0 0 0 0 ••• 0 0 0 0 0 0 0 0 0 .0 0 0 0 0 000 0 0 0 A-3
MS-DOS RESERVED INTERRUPT VECTORS .000.0000 •• 000.000000 A-4
USER INTERRUPT VECTORS. 0 0 0 0 0 0.000000.000.00000.00000000 .. 00 A-4
APC RESERVED INTERRUPT VECTORS 00.0000000000.000.000000. A-4

Tables
Table Title Page

1-1 Directory Entry Fields 1-6
2-1 File Control Block Fields .. 2-3
2-2 MS-DOS Interrupts 2-7
2-3 Disk Error Operation Codes (AH) 2-11
2-4 Disk Error Codes (Lower Half of DI) 2-11
2-5 MS-DOS Function Requests 2-19
2-6 Directory File Attributes 2-22
3-1 Melody Data Control Commands 3-3
3-2 Note Values .. 3-4
3-3 Duration Values 3-5
3-4 Short Sound Control Commands 3-7
3-5 Beep Sound Parameters 3-8
5-1 Core Record Fields 5-10

IX

Illustrations
Figure Title Page

I-I Logical Memory Structure of the APC and
Memory Max '. 1-3

2-1 File Control Block 0 •••••••••• 0 • • • • • • • • • • • • • • • • • 2-3
3-1 DMA Transfer 0 0.................. 3-11
3-2 Display Request Block o. • 3-12
5-1 Graphics Application Development Process 5-5
A-I MS-DOS Interrupt Vector Table A-2

x

Chapter 1

MS-DOS System Overview
The MSTM-DOS operating system for the APC isdivided into two subsystems: the Disk
Operating System (DOS) and the I/O System. The DOS routines are for file manage­
ment. data blocking and deblocking, and a variety of internal functions. I/O System
routines include standard functions, extended functions. and escape sequence func­
tions. Standard I/O routines perform basic functions. such as program termination
and absolute disk reads or writes. The extended I/O routines add facilities like music
playing and direct CRT 1/ O. APC escape sequence functions are called by user
programsl to control screen 1/ O.

MS-DOS SOFTWARE

The MS-DOS software consists of three programs: MSDOS.SYS, IO.SYS. and
COMMAND.COM.

• MSDOS.SYS provides access to DOS routines. When these routines are
called by a user program, they accept high-level information through register
and control block contents. Then for device operations. they translate the
requirement into one or more calls to IO.SYS (see below) to complete the
request. Thus, MSDOS.SYS calls both DOS and standard functions for the
I/O System.

• IO.SYS executes all the hardware dependent routines for the APC. In addi­
tion to the standard I/O System functions called by MSDOS.SYS. this
program executes the extended 110 System functions and the APC escape
sequence functions. When user programs issue calls for extended 110 func­
tions, they access IO.SYS directly, bypassing MSDOS.SYS. IO.SYS receives
requests to perform escape sequence functions through MSDOS.SYS. as it
does for standard 110 functions.

• COMMAND.COM (Command Processor) interprets the MS-DOS com­
mands entered at the APC keyboard, converting them into calls to MSDOS­
.SYS. How the Command Processor resides in memory and details on its
operations are given in the section THE COMMAND PROCESSOR.

I-I

MS-DOS System Overview

1-2

The following illustration represents the interactions of user programs and the MS­
DOS subsystems.

User Program

Interrupt 2xH Interrupt 220H

DOS Calls

DOS Extended
Function Call s

DOS Calls to the I/O System

I/O System

Standard I/O I
System Functions I

-------------i Extended Functions
Escape Sequence I

Functions I

The user program issues any calls to the DOS through Interrupts 20H to 27H. (For a
further explanation of these interrupts, see Chapter 2.) To use an extended function,
the program must issue a call through Interrupt 220H. (Chapter 3 presents the
extended I/O functions for the I/O System.)

MS-DOS INITIALIZATION

MS-DOS initialization consists of several steps. First, a ROM (Read Only Memory)
bootstrap obtains control and reads the boot sector off the MS-DOS system diskette.
The loaded bootstrap then loads IO.SYS. Next, IO.SYS loads MSDOS.SYS. Finally,
MSDOS.SYS loads COMMAND.COM.

Figure I-I illustrates both the logical memory structure of the APC and a memory
map. MS-DO~ occupies memory beginning after the interrupt vectors at absolute
address 400H. The interrupt vectors for the APC are categorized as the CPU, device,
MS-DOS reserved, user, and APC-reserved interrupt vectors. See Appendix A for a
description of these vectors.

A resident portion of IO.SYS, remaining in memory after its loading tasks, follows the
interrupt vectors.

OH

10000H

20000H

30000H

40000H

50000H

60000H

70000H

BOOOOH

90000H

AOOOOH

BOOOOH

COOOOH

DOOOOH

EOOOOH

FOOOOH

FEOOOH

~ Standard RAM (128 KB) -

... Optional RAM (640 KB) ...

... ...

- -
~ ...

I- ...

- -
- ...

CMOS (4KB)

~ ...

Standard character ROM

AUX character RAM (8 KB)

Special character RAM

BOOT ROM (8KS)

MS-DOS System Overview

---... OH

400H

1

}

}

Interrupt vector (1 KB)

1 OOOOH

10. SYS
(resident portion only)

2 OOOOH

3 OOOOH

*AP PROX
400H~------------------~ 5

*AP PROX MSDOS. SYS

A COOH ~--------------------~

~

COMMAND.COM
(resident portion)

COMMAND. COM
(transient portion)

batter y backed memory

displa y pattern

boots trap loader

* INDICATES THOSE LOCATIONS THAT VARY WITH THE RELEASE VERSION.

Figure 1-1 Logical Memory Structure of the APCand Memory Map.

1-3

MS-DOS System Overview

1-4

MSDOS.SYS resides in memory after the resident portion of IO.SYS.

Last, COMMAND.COM occupies memory after ACOOH (approximately). The
Command Processor code is divided into three sections:

• A resident portion that resides in memory immediately following MSDOS­
.SYS and its data area. This portion contains routines to process interrupt
types 22H (Terminate Address), 23H (CTRL-C Exit Address), and 24H (Fatal
Error Abort Address), as well as a routine to reload the transient portion of the
Command Processor (see item 3), if needed. Note that all standard MS-DOS
error handling is done within this portion of COM MAND.COM. This
includes displaying error messages and interpreting the replies to the messages
displayed with" Abort, Retry, or Ignore."

• An initialization portion that follows the resident portion (actually in the user
area) and is given control during startup. This section contains the AUTOEX­
EC. BAT file processor setup routine. The initialization portion determines the
segment address at which programs can be loaded. It is overlaid by the first
program COMMAND.COM loads because it is no longer needed.

• A transient portion that is loaded at the high end of memory. This portion
contains all of the internal command processors and the batch file processor.

Portion 3 of COMMAND.COM displays the MS-DOS system prompt
(default A», reads a command from the keyboard (or batch file), and causes
the command to be executed. For external commands, it builds a command
line and issues an EXEC function call to load and transfer control to the
program.

When a program terminates, a checksum methodology determines if the
program had caused the transient portion to be overlaid. If so, it is reloaded.

ALLOCATION OF DISK SPACE FOR FILES

MS-DOS organizes the space on disk (,4disk" will be used from this point on to refer to
both diskette and hard disk, unless otherwise stated) as follows:

• reserved area -v.ariable size

• first copy of the File Allocation Table - variable size

• second copy of the File Allocation Table - variable size (optional)

• root directory - variable size

• data area.

MS-DOS System Overview

Space for a file is allocated in the data area only when needed~ it is not pre-allocated.
The space is allocated one cluster (unit of allocation) at a time. A cluster is always one
or more consecutive sectors. and all of the clusters for a file are "chained" together in
the File Allocation Table (FAT). containing pointers to the individual files on the disk.
There is usually a second FAT kept. which is a copy of the first. for consistency of
format. Should the disk develop a bad sector in the middle of the first FAT. the second
can be used. This avoids data loss due to a defective disk.

Cluster Arrangement

Clusters are arranged on disk to minimize head movement on multi-sided media. All
of the space on a track (or cylinder) is allocated before the next track is selected.
Consecutive sectors on the lowest-numbered head are used. followed by all the sectors
on the next head, and so on. until all sectors on all heads of the track are used. The next
sector to be used will be sector I on head 0 of the next track.

File Allocation Table Format

The File Allocation Table consists of l2-bit entries (1.5 bytes) for each cluster on the
disk. The first two FAT entries (24 bits) map a portion of the directory. These FAT
entries contain indicators of the size and forinat of the disk. The first byte of the two
entries designates the type of disk: single- or double-sided and single- or double­
density. The second and third bytes always contain FFFH.

The third FAT entry begins the mapping of the data area (cluster 002). Files in the data
area are not necessarily written sequentially on the disk. The data area space is
allocated one cluster at a time~ clusters already allocated are skipped. The first free
cluster found will be the next cluster allocated. regardless of its physical location. This
permits the most efficient use of disk space because clusters made available by erasing
files can be allocated for new files. (Refer to the description of the MS-DOS 2.0 File
Allocation Table format in the MS-DOS System Pro!?rammer's Guide for more
information.)

MS-DOS ROOT DIRECTORY STRUCTURE

The MS-DOS FORMAT utility (invoked by the HDFORMAT external command)
initially builds the root directory for all diskettes. This utility allocates the root
directories for hard disk volumes. The location (logical sector number) and the
maximum number of entries for a root directory can be obtained through device driver
interfaces.

Since directories other than the root directory are actually files. there is no limit to the
number of entries they may contain.

1-5

MS-DOS System Overview

1-6

All directory entries are 32 bytes in length. Table I-I lists the fields in an entry, giving
their names, sizes. and byte offsets in hexadecimal and decimal.

Table 1-1 Directory Entry Fields

SIZE OFFSET
NAME (BYTES) HEX DECIMAL

Filename 8 00H-07H 0-7
File extension 3 08H-OAH 8-10
File attributes I OBH II
Reserved 10 OCH-15H 12-21
Time of last write 2 16H,17H 22,23
Date of last read 2 18H,19H 24,25
Reserved 2 IAH,IBH 26,27
File size 4 ICH-IFH 28,31

The following provides more information on the directory entry fields.

• Filename (offset DOH). Eight characters, left-aligned and padded (if necessary)
with blanks. MS-DOS uses the first byte of this field for three special codes:

OOH Has never been used. This is used to limit the length of
directory searches for performance reasons.

E5H Was used, but the file has been erased.

2EH The entry is for a directory. If the second byte is also 2EH,
then the cluster field contains the cluster number of this
directory's parent directory (OOOOH if the parent directory
is root directory).

Any other character is the first character of a filename.

• Filename extension (offset 08H). Three characters, left-aligned and padded (if
necessary) with blanks. This field can be all blanks (no extension).

• File attributes (offset OBH).

The following are the values of the attributes.

hex value

OIH

02H

04H

07H

08H

OAH

16H

20H

binary value

00000001

00000010

00000100

00000111

0000 1000

00010000

00010110

00100000

MS- DOS System Overview

File is marked read-only. An
attempt to open the file for writing
using function call 4DH results in
an error code being returned. This
value can be used with values
below.

Hidden file. The file is excluded
from normal directory searches.

System file. The file is excluded
from normal directory searches.

Changeable with CHGMOD.

The entry contains the volume
label in the first II bytes. The entry
contains no other usable informa­
tion (except the date and time of
volume creation) and may exist
only in the root directory.

The entry defines a sub-directory,
and is excluded from normal direc­
tory searches. Note that a directory
listing gives only the highest-level
directory name where there are
parent directories involved.

Hard attributes for FINDENTRY.

Archive bit. The bi t is set to on
whenever the file has been written
to and closed. This bit can be used
along with other attribute bits.
Note that IO.SYS and MSDOS­
.SYS are marked as read-only,
hidden, and system files. Files can
be marked hidden when they are
created. Also, the read-only, hid­
den, system, and archive attributes
may be changed through the Func­
tion 43H.

1-7

MS-DOS System Overview

1-8

• Reserved (offset OCH). Reserved for MS-DOS .

• Time of Last Write (offset 16H). The time the file was created or last updated.
The hour, minutes, and seconds are mapped into two bytes as follows:

Offset 17H
H H H H H M M M

15 II 10

Offset 16H
M M M S S S S S

5 4 0

Or, described as mapped bits:

hh m m x x
15 1'4 13 12 II 10 9 8 7 6 5 4 3 2 0

where:
hh is the binary number of hours (0-23)
mm is the binary number of minutes (0-59)
xx is the binary number of two-second increments.

• Date of Last Write (offset 18H). The date the file was created or last updated.
The year, month, and day are mapped into two bytes as follows:

Offset 19H
Y Y Y Y Y Y Y M

15 98

Offset 18H
M M M D D D D D

54 0

Or viewed as mapped bits:

15
y

where:

14 13 12
y y. y

mm is 1-12
dd is 1-31

25
II 10 9

y y y

yy is 0-119 (1980-2099).

8
m

24
7 6 5 4 3 2 1 0
m m m d d d d d

M S-DOS System Overview

• Reserved (offset I A H). Starting cluster or the relative cluster number of the
first cluster in the file. Note that the first cluster for data space on all disks is
cI uster 002. The cluster number is stored with the least significant byte first.
(Refer to information on the File Allocation Table in the MS-DOS System
Pro[?rammer :~. Guide for details on converting cluster numbers to logical
sector numbers.)

• File Size (offset I CH). The size of the file in bytes. The first word of this 4-byte
field is the low-order part of the size.

PERIPHERAL DEVICE AND DEVICE CONTROLIJER CHARACTERISTICS

The following are characteristics of the peripheral devices attached to the APC and
their device controllers.

The APC Screen

The APC screen i~ controlled by the Graphic Display Controller (G DC). G DC

• generates the basic video raster timing

• partitions the screen into areas for independent scrolling

• performs zooming and panning operations

• modifies video-display memory and moves data

• calculates the video-display memory address

• performs DMA operations between the main memory and video-display
memory.

Some further characteristics of the CRT-control design are

• a display buffer independent of system memory

• an 80-character by 25-line screen (2000 characters)

• a direct drive output

• an 8-dot by 19-dot character box

• a 7-dot by II-dot character box

• 16-dot by 16-dot special programmable characters.

Printers

The printer driver supplied with MS-DOS controls the following NEC printers:

1-9

MS-DOS System Overview

1-10

• the NEC 8023 Dot Matrix Printer operating at 100 characters/ second with
136 characters/ line

• the NEC Spinwriter 3530 operating at 350 words/ minute.

Diskette and Hard Disk Drives

MS-DOS provides drivers for controlling four diskette drives and two hard disk
drives.

DISKETTE ATTRIBUTES

The APC uses 8-inch (200 mm) diskettes for storing information. In the APC system,
"diskette" is the term used for "floppy disk," "floppy," or "disk."

You can use two types of diskette on the APC. One is a single-sided, single-density
diskette (called FD I); the other is a double-sided, double-density diskette (called
FD2D).

The FD I diskette uses the IBM 3740 format with the following characteristics:

• 128 bytes per sector, soft sectored

• 4 sectors per allocation unit

• I reserved sector

• 2 FATs
• 68 directory entries in the root directory area

• 77 x 26 sectors.

The MS-DOS FORMAT command does not format an FDI diskete for use as a
system diskette. The Boot Loader that resides in ROM will not load the MS-DOS
programs from an FD I diskette, so placing these programs on this type of diskette is of
no use.

MS-DOS System Overview

The FD2D diskette has the I BM-compatible format of

• 1024 bytes per sector. soft sectored

• I sector per allocation unit

• I reserved sector

• 2 FATs
• 192 directory entries in the root directory area

• 77 x 8 x 2 sectors.

The FORMAT command formatsan FD2Ddiskette for use as a system diskette or as
a data diskette. However. a system diskette will not have a standard Microsoft boot
sector format.

HARD DISK ATTRIBUTES

Hard disk configuration attributes are

• 512 bytes per sector

• 2 sectors per allocation unit

• 0 reserved sectors

• 2 FATs
• 1024 entries in a root directory area

• a variable number of sectors. as specified by the user during Hard Disk
Formatter (HDFORMAT) execution.

1-11

Chapter 2

MS-DOS System Calls
MS-DOS uses two types of system calls: interrupts and function requests.

Interrupts are the lowest-level primitives available in the operating system. They
provide access to standard function routines in the 110 System.

Function requests provide access to primitive routines in the DOS. The DOS primi­
tives, in turn, call the interrupts to perform their processing.

PROGRAMMING CONSIDERATIONS

System calls free you from having to invent your ovm ways to perform primitive
functions. They make it easier to write machine-independent programs. Some knowl­
edge of system control blocks is required to use the disk input! output system calls.
These control blocks are described in this chapter.

Calling from the MACRO-86 Macro Assembler™

System calls can be invoked from the MACRO-86 Macro Assembler simply by
moving any required data into registers and issuing an interrupt. Some of the calls
destroy registers, so you may have to save registers before using a system call. The
system calls can be used in macros and procedures to make your programs more
readable.

Calling from a High-Level Language

System calls can be invoked from any high-level language whose modules can be
linked with assembly language modules.

2-1

MS-DOS System Calls

2-2

Returning Control to MS-DOS

Control can be returned to MS-DOS in three ways:

.• Call interrupt 20H:

INT 20H

This is the quickest way .

• Jump to location 0 (the beginning of the Program Segment Prefix):

JMPO

Location 0 of the Program Segment Prefix contains an INT 20H instruction,
so this technique is simply one step removed from the first.

• Call Function Request OOH:

MOY AH,OOH
INT 21 H

This causes a jump to location 0, so it is simply one step removed from
technique 2, or two steps removed from technique I.

Console and Printer Input/ Output Calls

The system calls for the console (keyboard) and printer let you read from and write to
the console device and print on the printer without using any machine-specific codes.
You can still take advantage of specific capabilities (display attributes such as position­
ing the cursor or erasing the screen, printer attributes such as double-strike or
underline) by using constants for these codes and reassembling once with the correct
constant values for the attributes.

Disk I/O System Calls

Many of the system calls that perform disk input and output require placing values
into or reading values from two system control blocks: the File Control Block (FCB)
and the directory entry.

FILE CONTROL BLOCK FORMAT

The Program Segment Prefix control block, built by MS-DOS for each program to be
executed, includes room for two File Control Blocks (FCBs) at offsets 5CH and 6CH.
The system call descriptions refer to unopened and opened FCBs. An unopened FCB
is one that contains only a drive specifier and filename, which can contain wild card
characters (* and ?). An opened FCB contains all fields filled by the Open File system
call (Function OFH). Figure 2-1 illustrates the format of the FCB.

o

8

16

24

32

(Offsets are in decimal)

-7r---, --------------r---, FCB

I hex FF I Zeros I Attribute I extension
I I I I

Drive Filename (8 bytes) or Reserved device name

Filename Filename extension Current block Record size cont'd

File size (low part) I File size (high part) Date of last write Time of last write

Reserved for system use

Current Random record I Random record I
record number (low part) number (high part)

Unshaded areas must be filled in by the using program.
Shaded areas are filled in by the DOS and must not be modified.

Standard
FCB

Figure 2-1 File Control Block

File Control Block Fields

Table 2-1 lists each field of the FCB, giving its SIZe and offset In decimal and
hexadecim~l

Table 2-1 File Control Block Fields

SIZE OFFSET

NAME (BYTES) HEX DECIMAL

Drive number 1 OOH 0
Filename 8 01 H-08H 1-8
Extension 3 09H-OBH 9-11
Current block 2 OCH,ODH 12,13
Record size 2 OEH,OFH 14.15
File size 4 IOH-13H 16-19
Date of last write 2 14HJ5H 20,21
Time of last wri te 2 16HJ7H 2223
Reserved 8 18H-IFH 24-31
Current record 1 20H 32
Relative record 4 21H-24H 33-36

M S- DOS System Calls

2-3

MS-DOS System Calls

2-4

Additional information about the FCB fields is as follows:

• Drive Number (offset OOH). Specifies thedrive~ I means drive A, 2 means drive
B, and so forth. If the FeB is to be used to create or open a file, this field can be
set to 0 to specify the default drive~ the Open File system call Function (0 FH)
sets the field to the number of the default drive.

• Filename (offset 0 I H). Eight characters, left-aligned and padded (if necessary)
with blanks. If you specify a reserved device name (such as LPTI), do not put a
colon at the end.

• Extension (offset 09H). Three characters, left-aligned and padded (if neces­
sary) with blanks. This field can be all blanks (no extension).

• Current Block (offset OCH). Points to the block (group of 128 records) that
contains the current record. This field and the Current Record field (offset
20H) make up the record pointer. This field is set to 0 by the Open File system
call.

• Record Size (offset OEH). The size ofa logical record in bytes. Set to 128 by the
Open File system call. If the record size is not 128 bytes, you must set this field
after opening the file.

• File Size (offset 10 H). The size of the file in bytes. The first word of this 4-byte
field is the low-order part of the size.

• Date of Last Write (offset 14H). The date the file was created or last updated.
The year, month, and day are mapped into two bytes as follows:

Offset 15H
y Y Y Y Y Y Y M

15 9 8

Offset 14H
M M M D

5 4
D D D D

o
• Time of Last Write (offset 16H). The time the file was created or last updated.

The hour, minutes, and seconds are mapped into two bytes as follows:

Offset 17H
H H H H H M M M

15 II 10

Offset 16H
M M M S

5 4
S S S S

o
• Reserved (offset 18H). These fields are reserved for use by MS-DOS.

• Current Record (offset 20H). Points to one of the 128 records in the current
block. This field and the Current Block field (offset OCH) make up the record
pointer. This field is not initialized by the Open File system call. You must set it
before doing a seq uential read or write to the file .

• Relative Record (offset 21 H). Points to the currently selected record, counting
from the beginning of the file (starting with 0). This field is not initialized by
the Open File system call. You must set it before doing a random read or write
to the file. If the record size is less than 64 bytes, both words of this field are
used. If the record size is 64 bytes or more, only the first three bytes are used.

NOTE

If you use the FCB at offset 5CH ofthe Program
Segment Prefix, the last byte of the Relative
Record field is the first byte of the unformatted
parameter area that starts at offset 80H. This is
the default Disk Transfer Address.

Extended File Control Block

The Extended File Control Block (Extended FCB) is used to create or search for
directory entries of files with special attributes. I t adds the following seven-byte prefix
consisting of a name, size, and decimal offset to the normal FCB:

Byte

FCB-7

FCB-6 to FCB-2

FCB-8

Function

Flag byte containing FFH to indicate an Extended FCB.

Reserved.

Attribute byte (02H = hidden file; 04H = system file). Also refer
to Function Request II H (Search for First Entry) for details on
using the attribute bits during directory searches. This function
allows applications to define their own files as hidden and
thereby exclude them from directory searches. It also allows for
selective directory searches.

Any references in the MS-DOS function calls to an FeB, whether opened or
unopened, may designate either a normal or extended FCB. If using an extended FCB,
you should set the appropriate register to the first byte of the prefix rather than the
drive-number field.

MS-DOS System Calls

2-5

MS-DOS System Calls

2-6

SYSTEM CALL DESCRIPTIONS

The system calls to DOS and standard I/O System routines are described in the pages
that follow. The descriptions of the system calls provide some or all of the following
information:

• A representation of the registers that shows their contents before and after the
system call. Many system calls require that parameters be loaded into one or
more registers before the call is issued. Most calls return information in the
registers (usually a code that indicates the success or failure of the operation).

• More information about the register contents required before the system call.

• An explanation of the processing performed.

• Error returns from the system call, if any.

• An example of its use.

A macro is defined for each system call, then used in an example. In addition, a
few other macros are included in the examples. These macros make the
examples appear more like complete programs, rather than isolated uses of the
system calls. All macro definitions are listed at the end of the chapter.

Examples are not intended to represent good programming practice. In
particular, error checking and good documentation have been sacrificed to
conserve space. You may, however, find the macros a convenient way to
include system calls in your assembly language programs.

In their detailed descriptions, system calls are listed in numeric order. The interrupts
are described first, then the function requests.

Interrupts

NOTE

Unless otherwise stated, all numbers in the sys­
tem call descriptions - both text and code -
are in hex.

MS-DOS reserves interrupts 20H through 3FH for its own use. The table of interrupt
routine addresses (vectors) is maintained in locations 80H-FeH. Table 2-2 lists the
interrupts in numeric order.

Table 2-2 MS-DOS Interrupts

INTERRUPT

HEX DEC
DESCRIPTION

20H 32 Program Terminate
21H 33 Function Request
22H 34 Terminate Address
23H 35 CTRL-C Exit Address
24H 36 Fatal Error Abort Address
25H 37 Absolute Disk Read
26H 38 Absolute Disk Write
27H 39 Terminate But Stay Resident

28H-40H 40-64 RESERVED - DO NOT USE

User programs should issue only interrupts 20H, 21 H, 25H, 26H, and 27H.

NOTE

Interrupts 22H, 23H, and 24H are not interrupts
that can be issued by user programs. They are
simply locations where a segment and offset
address are stored.

PROGRAM TERMINATE

ENTRY

CS Segment address
of Program
Segment Prefix

RETURN

INTERRUPT 20H

Interrupt 20H terminates the current process and returns control to its parent process.
All open file handles are closed and the disk cache is cleaned. This interrupt is almost
always used in .COM files for termination.

The CS register must contain the segment address of the Program Segment Prefix
before you call this interrupt.

MS-DOS System Calls

2-7

MS-DOS System Calls

2-8

The following exit addresses are restored from the indicated offsets of the Program
Segment Prefix.

Exit Address

Program Terminate
CTRL-C
Critical Error

All file buffers are flushed to disk.

CAUTION

Offset

OAH
OEH
12H

Close all files that have changed in length before
issuing this interrupt. If a changed file is not
closed, its length is not recorded correctly in the
directory. See Function 10H for a description of
the Close File system call.

Interrupt 20H is provided for compatibility with versions of MS-DOS prior to 2.0.
New programs should use Function 4CH, Terminate a Process.

Macro Definition:

terminate macro

Example:

int 20H
endm

;CS must be equal to PSP values given at program start
;(ES and DS values)

INT 20H
;There is no return from this interrupt

FUNCTION REQUEST

ENTRY

AH Function number
of other registers
in individual
function

INTERRUPT 21H

RETURN

As specified in
individual
function

Interrupt 21 H allows for calling of a specified function. The A H register must contain
the number of the system function. See the section FUNCTION REQUESTS for a
description of the MS-DOS system functions.

Example:

NOTE

No macro is defined for this interrupt because all
function descriptions in this chapter that define
a macro include Interrupt 21 H.

To call the Get Time function:

mov ah,2CH
int 2lH

;Get Time is Function 2CH
;THIS INTERRUPT

INTERRUPTS 22H, 23H, AND 24H

Interrupts 22H, 23H, and 24H are not true interrupts, but storage locations for a
segment and offset address. The interrupts are issued by MS-DOS under the specified
circumstance. You can change any of these addresses with Function Request 25H (Set
Vector) if you prefer to write your own interrupt handlers.

Interrupt 22H - Terminate Address

When a program terminates, control transfers to the address at offset OAH of the
Program Segment Prefix. This address is copied into the Program Segment Prefix,
from the Interrupt 22 H vector, when the segment is created. If a program executes a
second program, it must set the terminate address. before it creates the segment for the
second program. Otherwise, when the second program terminates, it will transfer to
the first program's termination address.

Interrupt 23H - CTRL-C Exit Address

If you press CTRL-C during keyboard input or display output. control transfers to the
address at offset OEH of the Program Segment Prefix. This address is copied into the
Program Segment Prefix, from the Interrupt 23H vector, when the segment is created.

If the CTR L-C routine preserves all registers, it can end with an I RET instruction
(return from interrupt) to continue program execution. When the interrupt occurs, all
registers are set to the value they had when the original call to MS-DOS was made.
There are no restrictions on what a CTRL-C handler can do - including MS-DOS
function calls - so long as the registers are unchanged if IRET is used.

MS-DOS System Calls

2-9

MS-DOS System Calls

2-10

If Function 09H or OAH (Display String or Buffered Keyboard Input) is interrupted
by CTRL-C, the three-byte sequence 03H-ODH-OAH (ETX-CR-LF) is sent to the
display, and the function resumes at the beginning of the next line.

If the program creates a new segment and loads a second program that changes the
CTRL-C address, termination of the second program restores the CTRL-C address to
its value before execution of the second program.

Interrupt 24H - Fatal Error Abort Address

If a fatal disk error occurs during execution of one of the disk 110 function calls,
control transfers to the address at offset 12H of the Program Segment Prefix. This
address is copied into the Program Segment Prefix, from the Interrupt 24H vector,
when the segment is created.

NOTE

Interrupt 24H is not issued if the failure occurs
during execution of Interrupt 25H (Absolute
Disk Read) or Interrupt 26H (Absolute Disk
Write). These errors are usually handled by the
MS-DOS error routine in COMMAND.COM.
This routine retries the disk operation, then
gives the user the choice of aborting, retrying the
operation, or ignoring the error.

The following sections provide information for
interpreting the error codes, managing the regis­
ters and stack, and controlling the system's
response to an error in order to write your own
error-handling routines.

ERROR CODES

When an error-handling program gains control from Interrupt 24H. the AX and DI
registers can contain codes that describe the error. If bit 7 of A H is I. the error is a bad
memory image of the File Allocation Tabie. No further information is available.

If bit 7 of AH is O. it is a disk error~ the following registers describe the failure.

AL identifies the drive (0 = A. 1 = B. and so on.). '

AH identifies the operation and affected area.

The lower half of 01 identifies the error.

Table 2-3 describes the operation code in AH.

Table 2-3 Disk Error Operation Codes (A H)

CODE OPERATION AFFECTED AREA

0 Read
1 Write System files
2 Read
3 Write File Allocation Table
4 Read
5 Write Directory
6 Read
7 Write Data area

Table 2-4 describes the error code in the lower half of DI.

Table 2-4 Disk Error Codes (Lower Half of DJ)

CODE MEANING

0 Attempt to write on write-protected diskette
2 Drive not ready
4 Data error
6 Seek error
8 Sector not found
OAH Write fault
OCH General disk failure

MS-DOS System Calls

2-11

MS- DOS System Calls

2-12

RETRIES

The DS, BX, ex, and DX registers contain the required data for a retry of the
operation. Specify the action to be taken by putting one of the fol1owing values in AL
and executing an IRET.

Value
o
I

2

Meaning
Ignore the error

Retry

Abort the program

If you retry, do not change the contents of the DS, BX, CX, or DX registers.

STACK

The stack contains the following:

Top of stack - IP
CS
Flags
AX
BX
ex
DX
SI
DI
BP
DS
ES
IP
CS
Flags

System registers from
Interrupt 24H
(fatal error interrupt)

User registers from
Interrupt 21 H
(disk operation system call)

If your error-handling routine does not return to MS-DOS, it should discard the first
and last three words from the stack (IP, CS, and Flags at both the top and bottom).

ABSOLUTE DISK READ

ENTRY

AL Drive number

DS:BX Disk Tranfer
Address

I INTERRUPT 25H I

ex Number of sectors

DX Beginning relative
sector

RETURN

AL Error code if
eF=]

Flags: CF = 0 if
successful

CF =] if
not suc­
cessful

Interrupt 25H transfers control directly to the MS-DOS I/O System for a disk read.

The registers must contain the following values:

AL Drive number (OA, I B, and so on)

BX Offset of Disk Transfer Address (from segment address in DS)

ex Number of sectors to read

DX Beginning relative sector.

The number of sectors specified in ex is read from the disk to the Disk Transfer
Address. Its requirements and processing are identical to Interrupt 26H, except that
data is read rather than written.

NOTE

All registers except the segment registers are
destroyed by this call. Be sure to save any
registers your program uses before issuing the
interrupt.

M S-DOS System Calls

2-]3

MS-DOS System Calls

2-14

The system pushes the flags at the time of the call; they are still there upon return. (This
is necessary because data is passed back in the flags.) Be sure to pop the stack upon
return to prevent uncontrolled growth.

If the disk operation was successful, the Carry Flag (CF) is o. If the disk operation was
not successful. CF is I and AL contains an MS-DOS error code (see Table 2-4 for the
codes and their meanings).

M aero Definition:

abs-<:liskJead macro disk, buffer, numJectors,start
al,disk

Example:

mov
mov
mov
mov
int
endm

bx,offset buffer
CX,numJectors
dh,start
25H

The following program copies the contents of a single-sided diskette in drive A to the
diskette in drive B. It uses a buffer of 32K bytes.

prompt

start
buffer

inL25H:

copy:

db
db
dw
db

"Source in A, target in B", 13,10
"Any key to start. $"
o
64 dup (5 12 dup (?));64 sectors

display prompt
read-.kbd
mov cx,5

push cx
abs_diskJead 0, buffer,64,start
abs_disk_write l,buffer,64,start
add start,64 ;
pop Cx;
loop copy

;see Function 09H
;see Function 08 H
;copy 5 groups of
;64 sectors
;save the loop counter
;THIS INTERRUPT
;see INT 26H
do the next 64 sectors
restore the loop counter

ABSOLUTE DISK WRITE

ENTRY

AL Drive number

DS:BX Disk Transfer
Address

CX Number of sectors

DX Beginning relative
sector

INTERRUPT 26H

RETURN

AL Error code if
CF=]

Flags: CF = 0 if
successful
CF= I if
not suc­
cessful

Interrupt 26H transfers control directly to the MS-DOS I/O System for a disk write.

The registers must contain the following values:

AL Drive number (0 = A, I = B, and so on)

BX Offset of Disk Transfer Address (from segment address in DS)

CX Number of sectors to write

DX Beginning relative sector.

The number of sectors specified in ex is written from the Disk Transfer Address to the
disk. Its requirements and processing are identical to I nterru pt 25 H. except that data is
written to the disk rather than read from it.

NOTE

All registers except the segment registers are
destroyed by this call. Be sure to save any regis­
ters your program uses before issuing the
interrupt.

The system pushes the flags at the time of the call~ they are still there upon return. (This
is necessary because data is passed back in the flags.) Be sure to pop the stack upon
return to prevent uncontrolled growth.

MS-DOS System Calls

2-15

MS-DOS System Calls

2-]6

If the disk operation was successful, the Carry Flag (CF) is o. If the disk operation was
not successful, CF is 1 and AL contains an MS-DOS error code (see Table 2-4 for the
codes and their meanings).

Macro Definition:

abs_disk_write macro
mov
mov
mov
mov
int
endm

disk,buffer,numJectors, start
al,disk

Example:

bX,offset buffer
cX,num-sectors
dh,start
26K

The following program copies the contents of a single-sided diskette in drive A to the
diskette in drive B, verifying each write. It uses a buffer of 32K bytes.

off
on

prompt

start
buffer

inL26H:

copy:

equ
equ

db
db
dw
db

o
1

display prompt
readjbd
verify on
mov cx,5
push cx
abs_disk-fead 0, buffer,64,start
abs_disk_write] ,buffer,64,start
add start,64
pop cx
loop copy
verify off

"Source in A, target in B", 13,10
"Any key to start. $"
o
64 dup (512 dup (?»;64 sectors

;see Function 09 H
;see Function 08H
;see Function 2EH
;copy 5 groups of 64 sectors
;sa ve the loop counter
;see INT 25H
;THIS INTERRUPT
;do the next 64 sectors
;restore the loop counter

;see Function 2EH

TERMINATE BUT STAY RESIDENT

ENTRY

CS: OX First byte
following last
byte of code

INTERRUPT 27H

RETURN

Interrupt 27H keeps a piece of code resident in the system after its termination.
Typically, this call is used in .COM files to allow some device-specific interrupt handler
to remain resident to process asynchronous interrupts.

DX must contain the offset (from the segment address in CS) of the first byte following
the last byte of code in the program. When Interrupt 27H is executed, the program
terminates but is treated as an extension of MS-DOS. That is, the program remains
resident and is not overlaid by other programs when it terminates.

If an executable file whose extension is .COM ends with this interrupt, it becomes a
resident operating system command.

This interrupt is provided for compatibility with versions of MS-DOS prio~ to 2.0.
New programs should use Function 31 H, Keep Process.

Macro Definition:

stay_resident

Example:

macro
mov
mc
int
endm

last~nstruc
dx,offset last_instruc
dx
27H

;CS must be equal to PS P values given at program start
;(ES and DS values)

mov DX,LastAddress
int 27H

;There is no return from this interrupt

MS-DOS System Calls

2-17

MS- DOS System Calls

2-18

Function Requests

The standard sequence to call a function request is straightforward.

1. Move any required data into the appropriate registers.

2. Move the function number into AH.

3. Execute Interrupt 21H.

CP IM(R)-COMP A TIBLE CALLING SEQUENCE

A different sequence can be used for programs that must conform to CP/M calling
conventions.

1. Move any required data into the appropriate registers Gust as in the standard
sequence).

2. Move the function number into the CL register.

3. Execute an intrasegment call to location 5 in the current code segment.

This method can only be used with Functions OOH through 24H, which do not pass a
parameter in AL. Register AX is always destroyed when a function is called this way.

TREATMENT OF REGISTERS

When MS-DOS takes control after a function call, it switches to an internal stack.
Registers not used to return information (except AX are preserved. The calling
program's stack must be large enough to accommodate the interrupt system - at least
128 bytes in addition to other needs.

The macro definitions and an extended example for MS-DOS system calls OOH
through 2EH can be found at the end of this chapter.

Table 2-5 lists the function requests.

MS-DOS System Calls

Table 2-5 MS-DOS Function Requests

FUNCTION FUNCTION NAME
NUMBER

OOH Terminate Program
OlH Read Keyboard and Echo
02H Display Character
03H Auxiliary Input
04H Auxiliary Output
05H Print Character
06H Direct Console 1/0
07H Direct Console Input
08H Read Keyboard
09H Diplay String
OAH Buffered Keyboard Input
OBH Check Keyboard Status
OCH Flush Buffer, Read Keyboard
ODH Disk Reset
OEH Select Disk
OFH Open File
IOH Close File
IIH Search for First Entry
12H Search for Next Entry
I3H Delete File
I4H Sequential Read
I5H Sequential Write
I6H Create File
I7H Rename File
I9H Current Disk
IAH Set Disk Transfer Address
2IH Random Read
22H Random Write
23H File Size
24H Set Relative Record
25H Set Vector
27H Random Block Read
28H Random Block Write
29H Parse File Name

2AH Get Date
2BH Set Date

2-19

MS-DOS System Calls

Table 2-5 MS-DOS Function Requests (cont'd)

FUNCTION
NUMBER FUNCTION NAME

2CH Get Time
2DH Set Tinle
2EH Set/ Reset Verify Flag
2FH Get Disk Transfer Address
30H Get DOS Version Number
3lH Keep Process
33H CTRL-C Check
35H Get Interrupt Vector
36H Get Disk Free Space
38H Return Country-Dependent Information
39H Create Sub-Directory
3AH Remove a Directory Entry
3BH Change the Current Directory
3CH Create a File
3DH Open a File
3EH Close a File Handle
3FH Read From File/ Device
40H Write to a File / Device
4tH Delete a Directory Entry
42H Move a File Pointer
43H Change Attributes
44H I/O Control for Devices
45H Duplicate a File Handle
46H Force a Duplicate of a Handle
47H Return Text of Current Directory
48H Allocate Memory
49H Free Allocated Memory
4AH Modify Allocated Memory Blocks
4BH Load and Execute a Program
4CH Terminate a Process
4DH Retrieve the Return Code of a Child
4EH Find Match File
4FH Step Through a Directory Matching Files
54H Return Current Setting of Verify
56H Move a Directory Entry
57H Get / Set Date / Time of File

2-20

XENIX-COMPATIBLE CALLS

The hierarchical (that is, tree-structured) directories MS-DOS 2.0 supports, are
similar to those found in Microsoft Xenix. (For information on tree-structured
directories from the end-user's point of view, refer to the MS-DOS System User:~
Guide.)

The following system calls are Xenix-compatible.

Function 39 H
Function 3AH
Function 3BH
Function 3CH
Function 3DH
Function 3 FH
Function 40H
Function 4 I H
Function 42H
Function 43 H
Function 44 H
Function 45 H
Function 46H
Function 4BH
Function 4CH
Function 4DH

Create Sub-Directory
Remove a Directory Entry
Change the Current Directory
Create a File
Open a File
Read From Filel Device
Write to a File or Device
Delete a Directory Entry
Move a File Pointer
Change Attributes
110 Control for Devices
Duplicate a File Handle
Force a Duplicate of a Handle
Load and Execute a Program
Terminate a Process
Retrieve Return Code of a Child

There is no restriction in MS-DOS 2.0 on the depth of a tree (the length of the longest
path from root to leaf) except in the number of allocation units available. The root
directory will have a fixed number of entries (64 for a single-sided diskette). For
non-root directories, the number offiles per directory is limited only by the number of
allocation units available.

Pre-2.0 diskettes will appear to MS-DOS 2.0 as having only a root directory with files
and no subdirectories.

Implementation of the tree structure is simple. The root directory is the pre-2.0
directory. Subdirectories of the root have a special attribute set indicating that they are
directories. The subdirectories themselves are files, linked through the FAT as usual.
Their contents are identical to the contents of the root directory.

MS-DOS System Calls

2-21

MS-DOS System Calls

2-22

Pre-2.0 programs that use system.calls not described in this chapter will be unable to
make use offiles in other directories. Those files not necessary for the current task will
be placed in other directories.

Table 2-6 lists the directory file attributes and compares them to the attributes for other
types of files.

Table 2-6 Directory File Attributes

ATTRIBUTE MEANING/ FUNCTION MEANING/ FUNCTION
FOR NON-DIRECTORY FILES FOR DIRECTORIES

Volume ID Present at the root. None.
Only one file may have this set.

Directory None. Indicates that the directory entry
is a directory. Cannot be changed
with Function 43 H.

Read only Old-FCB create, new None.
create, new open (for write or
read I write) will fail.

Archive Set when file is written. None.
Setl reset via Function 43H.

Hiddenl Prevents file from Prevents directory
system being found in search entry from being

first/ search next oper- found. Function 3BH
ation. New open will will still work.
fail.

TERMINATE PROGRAM

ENTRY

AH OOH

CS Segment address of
Program Segment
Prefix

RETURN

FUNCTION OOH

Function OOH immediately calls Interrupt 20H to terminate a Program. The CS
register must contain the segment address of the program Segment Prefix before you
call this interrupt. The following exit addresses are restored from the specified offsets
in the Program Segment Prefix.

Exit Address

Program terminate
CTRL-C
Critical error

All file buffers are flushed to disk.

CAUTION

Offset

OAH
OEH
12H

Close all files that have changed in length before
calling this function. I f a changed file is not
closed. its length is not recorded correctly in the
directory. See function IOH for a description of
the Close File system call.

MS-DOS System Calls

2··2J

MS-DOS System Calls

2-24

Macro Definition:

terminate_pro gram

Example:

macro
xor
int
endm

ah,ah
21H

~CS must be equal to PSP values given at program start
~(ES and DS values)

movah,O
int 21 H

~There are no returns from this interrupt

READ KEYBOARD AND ECHO

ENTRY

AHOIH FUNCTION 01 H

RETURN

A L Character typed

Function 0 I H waits for a character to be typed at the keyboard, then echoes the
character to the APC screen and returns it in AL. If the character is CTRL-C,
Interrupt 23 H is executed.

Macro Definition:

read_k bd-and_echo macro
mov
int
endm

ah.OIH
21H

Example:

The following program both displays and prints characters as they are typed. If you
press RETURN. the program sends Line Feed-Carriage Return to both the screen and
the printer.

func_OI H: read_k bd-R nd_ech 0 ;THIS FUNCTION
print_char al ;see Function 05 H
cmp aLODH ;is it a CR?
Jne funcOIH ;no. print it
print_char 10 ;see Function 05 H
display_char 10 ;see Function 02H
Jmp func_OI H ;get another character

DISPLAY CHARACTER

ENTRY RETURN

AH 02H I FUNCTION 02H I
D L Character to be

displayed

Function 02H displays the character in DL. If CTRL-C is pressed, Interrupt 23H is
issued.

Macro Definition:

display_char macro
mov
mov
int
endm

character·
d I ,character
ah,02H
21H

MS-DOS System Calls

2-25

MS-DOS System Calls

2-26

Example:

The following program converts lowercase characters to uppercase before displaying
them.

read-1<bd
cmp al,"a"
jl uppercase
cmp al,"z"
Jg uppercase
sub al,20H

uppercase: display_char al
jmp func_02H:

READ KEYBOARD AND ECHO

ENTRY

;see Function 08 H

;don't convert

;don't convert
;convert to ASCII code
Jor uppercase
;THIS FUNCTION
;get another character

AH 03H I FUNCTION 03H I
RETURN

AL Character from
auxiliary device

Function 03H waits for a character from the auxiliary input device, then returns the
character in AL. This system call does not return a status or error code.

Macro Definition:

aux-input macro
mov
int
endm

Example:

ah,03H
21H

The following program prints characters as they are received from the auxiliary device.
It stops printing when an end-of-file character (ASCII 26, or eTR L-Z) is received.

aULinput
cmp al,lAH
je continue
print_char al
jmp func_03H

continue:

;THIS FUNCTION
;end of file?
;yes, all done
;see Function 05 H
;get another character

AUXILIARY OUTPUT

ENTRY

AH 04H

DL Character for
auxiliary device

RETURN

FUNCTION 04H

Function 04H sends the character in DL to the auxiliary output device. This system
call does not return a status or error code.

Macro Definition:

Example:

macro
mov
mov
int
endm

character
d I.character
ah.04H
21H

The following program gets a series of strings of up to 80 bytes from the keyboard.
sending each to the auxiliary device. It stops when a null string (CR only) is typed.

string db 81 dupe?)

get-string 80.string
cmp string[1].0
Je continue
mov cx. word ptr string[I]

mov bx.O
send~t: au x-output string [bx+2]

inc bx
loop send it
jmp func_04H

continue:

~see Function OAH

~see Function OAH
~null string?
~yes. all done
~get string length
:set index to 0
~THIS FUNCTION
:bump index
~send another character
~get another string

M S-DOS System Calls

2-27

MS-DOS System Calls

2-28

PRINT CHARACTER

ENTRY RETURN

AH05H FUNCTION 05" I·

DL Character for
printer

Function 05H prints the character in DL. If you press CTRL-C, Interrupt 23H is
issued.

Macro Definition:

Example:

macro
mov
mov
int
endm

character
d I ,character
ah,05H
2IH

The following program prints a walking test pattern on the printer. It stops if CTRL-C
is pressed.

line-Ilum db 0

func_05H: mov cx,60 ;print 60 lines
start-line: mov bl,33 Jirst printable ASCII

;character (!)
add b 1 ,line-Ilum ;to offset ne character
push cx ;save number-of-lines counter
mov cx,80 ;loop counter for line

print~t: print_char bI ;THIS FUNCTION
mc bl ;move to next ASCII character
cmp b I, 126 ;last printable ASCII

;character 0
jl nOJeset ;not there yet
mov bI,33 ;start over with (!)

nOJeset: loop print-.it
print_char 13
print_char 10
inc line-'1um
pop cx
loop start-1ine;

DIRECT CONSOLE I/O

ENTRY

;print another character
;carriage return
;line feed
;to offset I st char. of line
:restore #-of-lines counter
;print another line

RETURN

AH 06H FUNCTION 06H AL If DL = 225
before call

DL 225 = Return
character that was
typed

Zero clear if no charac­
ter is typed

Return zero set if
character is typed

Not 225 = Display this
character

Zero not set: No
character was ready

Zero set: AL = 0 if
character was typed

Function 06H receives input from and sends output to the APe console directly. The
processing depends on the value in DL when the function is called .

• DL is FFH (255) -If a character has been typed at the keyboard, it is returned
in AL and the Zero flag is 0; if a character has not been typed, the Zero flag is I .

• DL is not FFH - The character in DL is displayed.

This function does not check for CTRL-C.

MS-DOS System Calls

2-29

MS-DOS System Calls

2-30

Macro Definition:

Example:

macro switch
mov d Lswitch
movah,06H
int 21 H
endm

The following program sets the system clock to ° and continuously displays the time.
When any character is typed, the display stops changing. When any character is typed
again, the clock is reset to 0 and the display starts again.

time db "00:00:00.00", 13, 10, "$" ;see Function 09H
;for explanation of $

ten db 10

func_06H: set_time 0,0,0,0 ;see Function 2D H
read_clock: get_time ;see Function 2CH

convert ch, ten, time ;see end of chapter
convert c1,ten,time[3] ;see end of chapter
convert dh,ten,time[6] ;see end of chapter
convert dl,ten,time[9] ;see end of chapter
display time ;see Function 09H
dir_console~o FFH ;THIS FUNCTION
Jne stop ;yes, stop timer
Jmp read_clock ;no, keep timer

;runmng
stop: read~bd ;see Function 08H

Jmp func_06H ;start over

DIRECT CONSOLE INPUT

ENTRY RETURN
-------.--~

AH 07H FUNCTION 07H AL Character from
keyboard

Function 07H waits for a character to be typed. then returns it in AL. This function
does not echo the character on the APC screen or check for CTRL-C. For a keyboard
input function that echoes. see Function 01 H. For one that checks for CTRL-C. see
Function 08H.

Macro Definition:

dir_console~nput macro
movah.07H
int 21 H
endm

Example:

The following program prompts for a password (eight characters maximum) and
places the characters into a string without echoing them.

password
prompt

continue:

db
db

8 dup(?)
"Password: $"

display prompt
mov cx,8
xor bx.bx
dir_console~nput
cmp al,ODH
je continue
mov password[bx],al
mc bx
loop get_pass

~see Function 09H for
~explanation of $

;see Function 09H
~maximum length of password
~so B L can be used as index
~THIS FUNCTION
~was it a CR?
~yes, all done
~no, put character in string
~bump index
~get another character
~BX has length of password+ 1

MS-DOS System Calls

2-3 I

MS-DOS System Calls

2-32

READ KEYBOARD

ENTRY RETURN

AH 08H FUNCTION 08H AL Character from
keyboard

Function 08H waits for a character to be typed, then returns it in AL. IfCTRL-C is is
pressed, Interrupt 23H is executed. This function does not echo the character on the
APC screen. For a keyboard input function that echoes the character, see Function
OIH. For one that does not check for CTRL-C, see Function 07H.

M aero Definition:

readjbd macro

Example:

mov
ah,08H
int 21 H
endm

The following program prompts for a password (eight characters maximum) and
places the characters into a string without echoing them.

password
prompt

continue:

db
db

8 dup(?)
"Password: $"

display prompt
mov cx,8
xor bx,bx
readjbd
cmp al,ODH
je continue
mov password[bx],al
inc bx
loop get_pass

;see Function 09 H
;for explanation of $

;see Function 09H
;maximum length of password
;BL can be an index
;THIS FUNCTION
;was it a CR?
;yes, all done
;no, put char. in string
;bump index
;get another character
;BX has length of password+ 1

DISPLAY STRING

ENTRY RETURN

AH 09H FUNCTION 09H

DS:DX String to be
displayed

Function 09H displays a character string. DX must contain the offset (from the
segment address in DS) of a string that ends with "$." The string is displayed (the $ is
not displayed).

Macro Definition:

display macro string

Example:

mov dX,offset string
movah,09H
int 21 H
endm

The following program displays the hexadecimal code of the key that is typed.

table db
sixteen db
result db

~'O 123456789ABCDEF"
16
"- OOH", 13,10,"$"

read_k bd-'lnd_ech 0

convert al,sixteen,result[3]
display result
Jmp func_09H

;see text for
~explanation of $

;see Function 01 H
;see end of chapter
;THIS FUNCTION
;do it again

MS-DOS System Calls

2-33

MS-DOS System Calls

2-34

BUFFERED KEYBOARD INPUT

ENTRY RETURN

AHOAH FUNCTION OAH

DS:DX Input buffer

Function OAH allows for buffering of keyboard input. DX must contain the offset
(from the segment address in DS) of an input buffer. The information in this buffer is
the following:

Byte Contents

Maximum number of characters in buffer, including the CR (you must
set this value).

2 Actual number of characters typed, not counting the CR (the function
sets this value).

3-n Buffer. Must be at least as long as the number in byte l.

Function OAH waits for characters to be typed. Characters are read from the keyboard
and placed in the buffer beginning at the third byte until you press RETURN. If the
buffer fills to one less than the maximum, additional characters typed are ignored and
ASCII 7 (BEL) is sent to the APC screen until you press RETURN. The string can be
edited as it is being entered. If you press CTRL-C, Interrupt 23H is issued.

The second byte of the buffer is set to the number of characters entered (not counting
the RETURN).

Macro Definition:

geL_string macro
mov
mov
mov
int
endm

limit, string
dx,offset string
string,limit
ah,OAH
21H

Example:

The following program gets a 16-byte (maximum) string from the keyboard and fills a
24-line by 80-character screen with it.

buffer
max~ength

chars_entered
string
strings_per ~ine

crlf

func_OAB:

displaYJcreen:

display~ine:

label byte
db ?
db ?
db 17 dup (?)
dw 0

db 13,10,"$"

get_string 17,buffer
xor bx,bx

moy bl,chars entered
moy buffer [bx+2],44$"
moy al,50H
cbw
diy chars_entered

xor ah,ah
moy strings_per~ine,ax
moy cx,24
push cx
moy cx,strings_per ~ine
display string
loop display~ine
display crlf
pop cx
loop display_screen

;maximum length
;number of chars.
;16 chars + CR
;how many strings
;fit on line

;THIS FUNCTION
;so byte can be
;used as index
;get string length
;see Function 09H
;columns per line

;times string fits
;on line
;c1ear remainder
;saye col. counter
;row counter
;saye it
;get col. counter
;see Function 09H

;see Function 09H
;get line counter
;display I more line

M S-DOS System Calls

2-35

MS-DOS System Calls

2-36

CHECK KEYBOARD STATUS

ENTRY RETURN

AHOBH FUNCTION OBH AL 225 (FFH) =
Characters in
type-ahead
buffer

o = No characters in
type-ahead buffer

Function OBH checks whether there are characters in the type-ahead buffer. If so, AL
returns FFH (255); if not, AL returns O. If CTRL-C is in the buffer, Interrupt 23H is
executed.

M aero Definition:

check_kbd--Status macro
mov ah,OBH
int 21 H
endm

Example:

The following program continuously displays the time until you press any key.

time
ten

db
db

"00:00:00.00",13, 10, "$"
10

get_time
convert ch,ten,time
convert cl,ten,time[3]
convert dh,ten,time[6]
convert dl,ten,time[9]
display time
checLk bd--Status
cmp al,FFH
Je alLdone
Jmp func_OBH

;see Function 2CH
;see end of chapter
;see end of chapter
;see end of chapter
;see end of chapter
;see Function 09H
;THIS FUNCTION
;has a key been typed?
;yes, go home
;no~ keep displaying
;time

MS-DOS System Calls

FLUSH BUFFER, READ KEYBOARD

ENTRY RETURN

AH OCH FUNCTION OCH AL 0 = Type-ahead
buffer was
flushed; no other
processmg was
performed

AL 1,6,7,8, or 10 =
The corresponding
function is called
Any other value =
no further
processmg

Function OCH empties the keyboard type-ahead buffer. Further processing depends
on the value in AL when the function is called .

• I, 6, 7, 8, or 10 - The corresponding MS-DOS function is executed .

• Any other value - No further processing; AL returns O.

M aero Definition:

flush~nd_readjbd macro
mov
mov
int
endm

Example:

switch
aI, switch
ah,OCH
21H

The following program both displays and prints characters as they are typed. If you
press RETURN, the program sends Carriage Return-Line Feed to both the APC
screen and the printer.

flush-'lnd_readjbd I
print_char al
cmp al,ODH
Jne func_OCH
print_char 10
display_char 10
Jmp func_OCH

;THIS FUNCTION
;see Function 05 H
;is it a CR?
;no, print it
;see Function 05 H
;see Function 02H
;get another character

2-37

MS-DOS System Calls

2-38

DISK RESET

ENTRY RETURN

AHODH FUNCTION ODH

Function ODH ensures that the internal buffer cache matches the specified disks in the
drives. This function writes out dirty buffers (buffers that have been modified), and
marks all buffers in the internal cache as free.

Function OD H flushes all file buffers. It does not update directory entries. You must
close files that have changed to update their directory entries (see Function IOH, Close
File). This function need not be called before a disk change if all files that changed were
closed. It is generally used to force a known state of the system. CTRL-C interrupt
handlers should call this function.

Macro Definition:

disueset macro
mov
int
endm

Example:

mov ah,ODH
int 21 H

disk
ah,ODH
2lH

;There are no errors returned by this call.

SELECT DISK

ENTRY

AH OEH

DL Drive number
(0 = A"I = B,
and so on)

FUNCTION OEH

RETURN

AL Number of
logical drives

Function OEH allows for selecting a default disk drive. The drive specified in DL (OA,
I B, and so on) is selected as the default disk. The number of drives is returned in AL.

M aero Definition:

select_disk macro disk
dl,disk[-64]
ah,OEH
21H

Example:

mov
mov
int
endm

The following program selects the drive not currently selected in a two-drive system.

select_b:
continue:

current_disk
cmp al,OOH
je select_b
select_disk "A"
Jmp continue
select_disk "B"

;see Function 19H
;drive A selected?
;yes, select B
;THIS FUNCTION

;THIS FUNCTION

M S-DOS System Calls

2-39

MS-DOS System Calls

2-40

OPEN FILE

ENTRY

AHOFH

DS:DX Unopened
FCB

FUNCTION OFH

RETURN

AL 0 = Directory
entry found
255 (FFH) =
No directory
entry found

Function OFH opens a specified file. DX must contain the offset (from the segment
address in DS) of an unopened File Control Block (FCB); The disk directory is
searched for the named file.

If a directory entry for the file is found, AL returns 0 and the FCB is filled as follows:

• If the drive code was 0 (default disk), it is changed to the actual disk used (I A,
2B, and so on). This lets you change the default disk without interfering with
subsequent operations on this file.

• The Current Block field (offset OCH) is set to zero.

• The Record Size (offset OEH) is set to the system default of 128.

• The File Size (offset IOH), Date of Last Write (offset 14H), and Time of Last
Write (offset 16H) are set from the directory entry.

Before performing a sequential disk operation on the file, you must set the Current
Record field (offset 20H). Before performing a random disk operation on the file, you
must set the Relative Record field (offset 21 H). If the default record size (128 bytes) is
not correct, set it to the correct length.

If a directory entry for the file is not found, AL returns FFH (255).

M aero Definition:

open macro fcb
mov dX,offset fcb
mov ah,OFH
int 21H
endm

Example:

The following program prints the file named TEXTFILE.ASC that is on the diskette
in drive B. If a partial record is in the buffer at end-of-file, the routine that prints the
partial record prints characters until it encounters an end-of-file mark (ASCII 26, or
CTRL-Z).

fcb db 2, "TEXTFI LEASC"
db 25 dup (?)

buffer db 128 dup (?)

func_OFH: set_dta buffer ;see Function lAH
open fcb ;THIS FUNCTION

read.-line: read.-Seq fcb ;see Function 14H
cmp al,02H ;end of file?
je all_done ;yes, go home
cmp al,OOH ;more to come?
jg check-Illore ;no, check for partial

;record
mov cx,128 ;yes, print the buffer
xor si,si ;set index to °

print~t: print_char buffer [si] ;see Function OSH
inc si ;bump index
loop print~t ;print next character
jmp read line ;read another record

check-Illore: cmp al,03H ;part. record to print?
jne alLdone ;no
mov cX,128 ;yes, print it
xor si,si ;set index to °

find_eof: cmp buffer [si],26 ;end-of-file mark?
Je all_done ;yes
print_char buffer [si] ;see Function 05H
inc si ; bump index to next

;character
loop find_eof

all_done: close fcb ;see Function IOH

MS-DOS System Calls

2-41

MS- DOS System Calls

2-42

CLOSE FILE

ENTRY

AH 10H FUNCTION 10H

DS:DX Opened FCB

RETURN

A L 0 = Directory
entry found
225 (FFH) =
No directory
entry found

Function 10H closes a specified file. DX must contain the offset (to the segment
address in DS) of an opened FCB. The disk directory is searched for the file named in
the FCB. Thus, Function 10H must be called after a file is changed to update the
directory entry.

If a directory entry for the file is found, the location of the file is compared with the
corresponding entries in the FCB. The directory entry is updated, if necessary, to
match the FCB, and AL returns O.

If a directory entry for the file is not found, AL returns FFH (255).

M aero Definition:

close macro fcb
moy dx,offset fcb
moy ah,IOH
int 2IH
endm

Example:

The following program checks the first byte of the file named MODl.BAS in drive B
to see if it is FFH, and prints a message if it is.

message
fcb

buffer

db
db
db
db

"Not sayed in ASCII format", 13,10,"$"
2,"MOD I BAS"
25 dup (?)
128 dup (?)

func_IOH: set_dta buffer
open fcb

;see Function I AH
;see Function OFH

all_done:

read-.Seq f c b
cmp buffer,FFH
jne alLdone
display message
close fcb

SEARCH FOR FIRST ENTRY

ENTRY

AH llH

DS:DX Unopened
FCB

~see Function 14H
~is first byte FFH?
;no
;see Function 09H
;THIS FUNCTION

FUNCTION IIH

RETURN

AL 0 = Directory
entry found
FFH (225) =
No directory
entry found

Function I I H searches for the first entry in a disk directory for a filename. DX must
contain the offset (from the segment address in DS) of an unopened FCB. The disk
directory is then searched for the first matching name. The name can have the? wild
card character to match any character. To search for hidden or system files, DX must
point to the first byte of the Extended FCB prefix.

If a directory entry for the filename in the FCB is found, AL returns 0 and an opened
FCB of the same type (normal or extended) is created at the Disk Transfer Address.

If a directory entry for the filename in the FCB is not found, AL returns FFH (255).

M aero Definition:

search.Jirst

Example:

macro
mov
mov
int
endm

fcb
dx,offset fcb
ah.I IH
2IH

The following program verifies the existence of a file named REPORT.ASM on the
diskette in drive B.

M S-DOS System Calls

2-43

MS-DOS System Calls

2-44

"FILE EXISTS.$" yes
no
fcb

db
db
db
db
db

"FILE DOES NOT EXIST.$"
2,"REPORT ASM"

buffer

not_there:
continue:

25 dup (?)
128 dup (?)

set_dta buffer
searchJirst fcb

cmp
je
display
Jmp
display
display

al,FFH
not_there
yes
continue
no
crlf

SEARCH FOR NEXT ENTRY

ENTRY

;see Function lAH
;THIS FUNCTION

;directory entry found?
;no
;see Function 09H

;see Function 09H
;see Function 09H

RETURN

AH 12H FUNCTION 12H AL 0 = Directory
entry found
FFH (225) =
No directory
entry found

DS:DX Unopened
FCB

Function 12H is used after Function II H (Search for First Entry) to find additional
directory entries that match a filename that contains wild card characters. DX must
contain the offset (from the segment address in DS) of an FCB previously specified in a
call to Function II H. The disk directory is searched for the next matching name. The
name can have the? wild card character to match any character. To search for hidden
or system files, DX must point to the first byte of the extended FCB prefix.

If a directory entry for the filename in the FCB is found, AL returns 0 and an opened
FeB of the same type (normal or extended) is created at the Disk Transfer Address.

If a directory entry for the filename in the FCB is not found. AL returns FFH (255).

M aero Definition:

search_next macro

Example:

mov
mov
int
endm

fcb
dx,offset fcb
ah,12H
21H

The following program displays the number of files on the diskette in drive B.

message db "No files", 10,13,"$"
files db 0
ten db 10
fcb db 2, "???????????"

db 25 dup (1)
buffer db 128 dup (?)

func_12H: set_dta buffer ;see Function IAH
searchJirst fcb ;see Function II H
cmp al,FFH ;directory entry found?
je all_done ;no, no files on disk
inc files ;yes, increment file

;counter
search_dir: search_next fcb ;THIS FUNCTION

cmp al,FFH ;directory entry found?
je done ;no
inc files ;yes, increment file

;counter
jmp search_dir ;check again

done: convert files,ten,message ;see end of chapter
all_done: display message ;see Function 09H

MS-DOS System Calls

2-45

MS-DOS System Calls

2-46

DELETE FILE

ENTRY

AH 13H

DS:DX Unopened
FeB

FUNCTION 13H

RETURN

A L 0 == Directory
entry found

FFH (225) ==
No directory
entry found

Function 13H searches a disk directory for a specified entry to delete it if found. DX
must contain the offset (from the segment address in OS) of an unopened FCB. The
directory is searched for a matching filename. The filename in the FCB can contain the
? wild card character to match any character.

If a matching directory entry is found, it is deleted from the directory. If the ? wild card
character is used in the filename, all matching directory entries are deleted. AL
returns O.

If no matching directory entry is found, AL returns FFH (255).

M aero Definition:

delete macro

Example:

mov
mov
int
endm

fcb
dX,offset fcb
ah,13H
21H

The following program deletes each file on the diskette in drive B that was last written
before December 31, 1982.

year
month
day
files
ten
message

fcb

dw
db
db
db
db
db

db
db

1982
12
31
o
10
"NO FILES DELETED.", 13, 1 O,"$~'

;see Function 09H for
;explanation of $

2,"??????????"
25 dup (?)

buffer

compare:

next:

alLdone:

db 128 dup (?)

set_dta buffer
searchJirst fcb
cmp al,FFH
je all_done
convert_date buffer
cmp cX,year
Jg next
cmp dl,month
Jg next
cmp dh,day
jge next
delete buffer
mc files

search.J1ext fcb
cmp al,OOH
Je compare
cmp files,O
Je all_done

convert files,ten,message
display message

SEQUENTIAL READ

ENTRY

;see Function 1 A H
;see Function I 1 H
;directory entry found?
;no, no files on disk
;see end of chapter
;next several lines
;check date in directory
;entry against date
;above & check next file
;if date in directory
;entry isn't earlier.
;THIS FUNCTION
;bump deleted-files
;counter
;see Function 12H
;directory entry found?
;yes, check date
;any files deleted?
;no, display NO FILES
;message.
;see end of chapter
;see Function 09H

RETURN

AH 14H FUNCTION 14H AL 0 = Read
completed
successfully
1= EOF

DS:DX Opened
FCB

2 = DTA too
small
3 = EO E partial
record

M S- DOS System Calls

2-47

MS-DOS System Calls

2-48

Function 14H reads the next record in a sequence of records. DX must contain the
offset (from the segment address in DS) of an opened FCB. The record pointed to by
the current block (offset OCH) and Current Record (offset 20H) fields is loaded at the
Disk Transfer Address, then the Current Block and Current Record fields are
incremented.

The record size is set to the value at offset OEH in the FCB.

AL returns a code that describes the processing result.

Code Meaning

o Read completed successfully.

I End-of-file, no data in the record.

2 Not enough room at the Disk Transfer Address to read one record;
read canceled.

3 End-of-file; a partial record was read and padded to the record
length with zeros.

M aero Definition:

read-seq

Example:

macro
mov
mov
int
endm

feb
dX,offset fcb
ah,14H
21H

The following program displays the file named TEXTFILE.ASC that is on the
diskette in drive B; its function is similar to the MS-DOS TYPE command. If a partial
record is in the buffer at end of file, the routine that displays the partial record displays
characters until it encounters an end-of- file mark (ASCII 26, or CTRL-Z).

fcb

buffer

read~ine:

db
db
db

2, "TEXTFI LEASC"
25 dup (?)
128 dup (?), "$"

set_dta buffer
open fcb
read-seq fe

;see Function 1 AH
;see Function OFH
;THIS FUNCTION

cmp al,02H
Je alLdone
cmp al,02H

Jg check-ITIore
display buffer
jmp read~ine

check-ffiore: cmp al,03H
Jne all_done
xor Sl,Sl

find_eof: cmp buffer [si],26
Je all_done
display_char buffer [si]
inc si

jmp find_eof
all_done: close fcb

SEQUENTIAL WRITE

ENTRY

~end-of-file?
~yes

~end-of-file with partial
;record?
~yes

;see Function 09H
;get another record
;partial record in buffer?
;no, go home
;set index to a
; is character EO F?
;yes, no more to display
;see Function 02H
~bump index to next
;character
;check next character
~see Function IOH

RETURN

AH I5H FUNCTION 15H AL OOH = Write
completed
successfully
OIH=Diskfull
02H = DTA too
small

DS:DX Opened
FCB

Function I5H writes the next record in a sequence of records. DX must contain the
offset (from the segment address in DS) of an opened FCB. The record pointed to by
Current Block (offset OCH) and Current Record (offset 20H) fields is written from the
Disk Transfer Address, then the current block and current record fields are
incremented.

The record size is set to the value at offset OEH in the FeB. If the Record Size is less
than a sector, the data at the Disk Transfer Address is written to a buffer. The buffer is
written to disk when it contains a full sector of data, or the file is closed, or a Reset Disk
system call (Function ODH) is issued.

MS-DOS System Calls

2-49

MS-DOS System Calls

2-50

AL returns a code that describes the processing result.

Code Meaning

o Transfer completed successfully.

I Disk full; write canceled.

2 N at enough room at the Disk Transfer Address to write one record;
write canceled.

Macro Definition:

write~eq macro

Example:

mov
mov
int
endm

fcb
dX,offset fcb
ah,15H
21H

The following program creates a file named DIR.TMP on the diskette in drive B,
which contains the disk number and filename from each directory entry on the
diskette. (Disk numbers are assigned as 0 = A, I = B, and so on.)

record~ize equ 14 ;offset of Record Size
;field in FCB

fcbI db 2,"DIR TMP"
db 25 dup (?)

fcb2 db 2, "r?r??r?r??? «
db 25 dup (?)

buffer db 128 dup (?)

func_15H: set_dta buffer ;see Function I AH
searclLiirst fcb2 ;see Function II H
cmp al,FFH ;directory entry found?
Je all_done ;no, no files on disk
create fcbl ;see Function 16H
mov fcbl [record~ize],12

;set record size to 12

write-.it: write-seq
search_next
cmp
je
Jmp
close

CREATE FILE

ENTRY

AH 16H

DS:DX Unopened
FCB

fcbl
fcb2
al,FFH
all_done
write-.it
fcbl

FUNCTION 16H

~THIS FUNCTION
;see Function 12H
;directory entry found?
;no, go home
;yes, write the record
;see Function 10 H

RETURN ..

AL OOH = Empty
directory found
FFH (225) = No
empty directory
found

Function 16H searches a disk directory for an empty entry or an entry for a specified
filename. DX must contain the offset (from the segment address in DS) of an
unopened FCB. The directory is then searched for the specified entry.

If an empty directory entry is found. it is initialized to a zero-length file. the Open File
system call (Function OFH) is called, and AL returns O. You can create a hidden file by
using an extended FCB with the attribute byte (offset FCB - 1) set to 2.

If an entry is found for the specified filename. all data in the file is released. making a
zero-length file. and the Open File system call (Function OFH) is issued for the
filename. In other words. if you try to create a file that already exists. the existing file is
erased. and a new. empty file is created.

If an empty directory entry is not found and there is no entry for the specified filename,
AL returns FFH (255).

M aero Definition:

create macro
mov
mov
int
endm

fcb
dx.offset fcb
ah,16H
2lH

MS-DOS System Calls

2-51

MS-DOS System Calls

2-52

Example:

The following program creates a file named DIR.TMP on the diskette in drive B,
which contains the disk number and filename from each directory entry on the
diskette. (Disk numbers are assigned as 0 == A, 1m == B, and so on.)

record-size equ 14

fcbl db 2,"DIR TMP"
db 25 dup (?)

fcb2 db 2, "???????????"
db 25 dup (?)

buffer db 128 dup (?)

func_16H: set_dta buffer
searchJirst fcb2
cmp al,FFH

found? je all_done
create fcbl
mov fcbl[record-size], 12

write~t: write--Seq fcbl
searclLnext fcb2
cmp

found? Je
Jmp

all_done: close

RENAME FILE

ENTRY

AH 17H

DS:DX Modified
FCB

al,FFH
all_done
write~t
fcbl

FUNCTION 17H -I

;offset of Record Size
;field of FCB

;see Function 1 AH
;see Function I I H
~directory entry
;no, no files on disk
;THIS FUNCTION

;set record size to 12
;see Function ISH
~see Function 12H
;directory entry
;no, go home
;yes, write the record
;see Function IOH

RETURN

AL OOH ==
Directory entry
found
FFH (225) == No
directory entry
found or destina­
tion already
exists

Function 17H renames the filename in a disk directory entry. DX must contain the
offset (from the segment address in DS) of an FCB with the drive number and filename
filled in, followed by a second filename at"offset II H. The disk directory is searched for
an entry that matches the first filename, which can contain the? wild card character.

If a matching directory entry is found, the filename in the directory entry is changed to
match the second filename in the modified FCB (the two filenames cannot be the same
name). If the? wild card character is used in the second filename, the corresponding
characters in the filename of the directory entry are not changed. AL returns O.

If a matching directory entry is not found or an entry is found for the second filename,
AL returns FFH (255).

Macro Definition:

rename macro
mov
mov

Example:

int
endm

fcb,newname
dx,offset fcb
ah,17H
21H

The following program prompts for the name of a file and a new name, then renames
the file.

fcb db 37 dup (?)
prompt I db "Filename: $"
prompt2 db "N ew name: $"
reply db 17 dup(?)
crlf db 13,10,"$"

func_I7H: display prompt I ;see Function 09H
get.-String 15,reply ;see Function OAH
display crlf ;see Function 09H
parse reply[2],fcb ;see Function 29H
display prompt2 ;see Function 09H
get.-String 15,reply ;see Function OAH
display crlf ;see Function 09H
parse reply[2],fcb= 16] ;see Function 29H
rename fcb ;THIS FUNCTION

MS-DOS System Calls

2-53

MS- DOS System Calls

2-54

CURRENT DISK

ENTRY RETURN

AH 19H FUNCTION 19H AL Currently
selected drive (0
= A, 1= B, and
so on)

Function 19H searches for the currently selected (default) drive. AL returns the drive
letter (0 = A, I = B, and so on).

M aero Definition:

current_disk macro
mov ah,I9H
int 2IH
endm

Example:

The following program displays the default diskette drive in a two-drive system.

message

crIf

disLb:
alLdone:

db "Current disk is $" ;see Function 09H
Jor explanation of $

db 13, 10, "$"

display message
current_disk
cmp al,OOH
jne disLb
display_char "N'
jmp all_done
display char"B"
display crlf

;see Function 09H
;THIS FUNCTION
;is it disk A?
;no, ifs disk B:
;see Function 02H

;see Function 02H
;see Function 09H

SET DISK TRANSFER ADDRESS

ENTRY

AHIAH

DS:DX Disk Transfer
Address

FUNCTION IAH

RETURN

Function 2AH sets the Disk Transfer Address. DX must contain the offset (from the
segment address in DS) of the Disk Transfer Address. Disk transfers cannot wrap
around from the end of the segment to the beginning, nor can they overflow into
another segment.

Macro Definition:

set_d ta macro

Example:

mov
mov
int
endm

NOTE

If you do not set the Disk Transfer Address.
MS-DOS defaults to offset 80H in the Program
Segment Prefix.

buffer
dx.offset buffer
ah.IAH
2lH

The following program prompts for a letter, converts the letter to its alphabetic
sequence (A = l, B = 2, and so on), then reads and displays the corresponding record
from a file named ALPHABET.DAT on the diskette in drive B. The file contains 26
records. Each record is 28 bytes long.

record-.Size equ

relativeJecord equ

14 ~offset of Record Size
;field of FCB

33 ~offset of Relative Record
;field of FCB

MS-DOS System Calls

2-55

MS- DOS System Calls

2-56

feb

buffer
prompt
crlf

db
db
db
db
db

2, "ALPHABETDAT"
25 dup (?)
34 dup(?),"$"
"Enter letter: $"
13, 10, "$"

func_IAH: set_dta buffer
open fcb
mov fcb[record-.Size],28
display prompt
read-1< bd-'lnd_ech 0

cmp al,ODH
Je alLdone
sub alAIH

mov
display
readJan
display
display
Jmp
close

RANDOM READ

ENTRY

AH 21H

DS:DX Opened
FCB

fcb[relativeJecord],a I
crlf
fcb
buffer
crlf
get_char
fcb

FUNCTION 21H

;THIS FUNCTION
;see Function OFH
;set record size
;see Function 09H
;see Function 0 I H
;just a CR?
;yes, go home
;convert ASCII
;code to record #
;set relative record
;see Function 09H
;see Function 21 H
;see Function 09H
;see Function 09H
;get another character
;see Function 10H

RETURN

AL OOH = Read
completed
successfully
OIH = EOF
02H = DTA too
small
03H = EOF,
partial record

Function 21 H reads the record at a specified address. OX must contain the offset
(from the segment address in OS) of an opened FCB. The Current Block (offset OCH)
and Current Record (offset 20H) fields are set to agree with the Relative Record field
(offset 21 H), then the record addressed by these fields is loaded at the Oisk Transfer
Address.

AL returns a code that describes the processing result.

Code Meaning

o Read completed successfully.

I End-of-file; no data in the record.

2 Not enough room at the Oisk Transfer Address to read one record;
read canceled.

3 End-of-file; a partial record was read and padded to the record
length with zeros.

Macro Definition:

readJan

Example:

macro
mov
mov
int
endm

fcb
dx,offset fcb
ah,2lH
21H

The following program prompts for a letter, converts the letter to its alphabetic
sequence (A = 1, B = 2, and so on). then reads and displays the corresponding record
from a file named ALPHABET.OAT on the diskette in drive B. The file contains 26
records. Each record is 28 bytes long.

record-size equ

relativeJecord equ

fcb

buffer

db
db
db

14 ;offset of Record Size
;field of FCB

33 ;offset of Relative Record
;field of FCB

2,"ALPHABETOAT
25 dup (?)
34 dup(?),"$"

MS-DOS System Calls

2-57

MS-DOS System Calls

2-58

prompt
crlf

db
db

"Enter letter: $"
13,10,"$"

func-2IH: set_dta buffer
open fcb
mov fcb[record size],28
display prompt
read~bd~nd_echo

cmp al,ODH
Je all done
sub alAIH

mov

display
readJan
display
display
Jmp
close fcb

RANDOM WRITE

ENTRY

AH 22H

DS:DX Opened
FCB

feb [relativeJecord],al

crlf
feb
buffer
crlf
get_char

FUNCTION 22H

;see Function I AH
;see Function OFH
;set record size
;see Function 09H
;see Function 0 I H
;just a CR?
;yes, go home
;convert ASCII code
;to record #
;set relative
;record
;see Function 09H
;THIS FUNCTION
;see Function 09H
;see Function 09H
;get another char.
;see Function 10H

RETURN

AL OOH = Write
completed
successfully
01 H = Disk full
02H = DTA too
small

Function 22H writes a specified record. DX must contain the offset from the segment
address in DS of an opened FeB. The Current Block (offset OCH) and Current Record
(offset 20H) fields are set to agree with the Relative Record field (offset 21 H), then the
record addressed by these fields is written from the Disk Transfer Address. If the
record size is smaller than a sector (512 bytes), the records are buffered until a sector is
ready to write.

AL returns a code that describes the processing result.

Code Meaning

o Write completed successfully.

1 Disk is full.

2 Not enough room at the Disk Transfer Address to write one record;
write canceled.

M aero Definition:

writeJan macro fcb

Example:

mov
mov
int
endm

dx,offset fcb
ah,22H
21H

The following program prompts for a letter, converts the letter to its alphabetic
sequence (A = I, B = 2, and so on), then reads and displays the corresponding record
from a file named ALPHABET.DAT on the diskette in drive B. After displaying the
record, it prompts the user to enter a changed record. If you type a new record, it is
written to the file; if you just press RETURN, the record is not replaced. The file
contains 26 records. Each record is 28 bytes long.

recordJize equ 14 ;offset of Record Size
;field of FCB

relativeJecord equ 33 ;offset of Relative Record
;field of FCB

fcb

buffer
prompt 1
prompt2
crlf
reply
blanks

db 2,"ALPH ABETDAT"
db 25 dup (?)
db 26 dup(?),13, 10,"$"
db "Enter letter: $"
db "New record (RETURN for no change): $"
db 13,10,"$"
db 28 dup (32)
db 26 dup (32)

MS-DOS System Calls

2-59

MS-DOS System Calls

func~2H: set_dta buffer ;see Function I A H
open fcb ;see Function OFH
mov fcb[record size],32 ;set record size

get_char: display promptl ;see Function 09H
readJbd_and_echo ;see Function 0 1 H
cmp al,ODH ;just a CR?
Je all_done ;yes, go home
sub al,41H ;convert ASCII

;code to record #
mov fcb[relativeJecord],al

;set relative record
display crlf ;see Function 09H
readJan fcb ;THIS FUNCTION
display buffer ;see Function 09H
display crlf ;see Function 09H
display prompt2 ;see Function 09H
geLstring 27,reply ;see Function OAH
display crlf ;see Function 09H
cmp reply[I],O ;was anything typed

;besides CR?
Je get_char ;no

;get another char.
xor bx,bx ;to load a byte
mov bl,reply[l] ;use reply length as

;counter
move-.String blanks, buffer,26 ;see chapter end
move-.String reply[2], buffer, bx ;see chapter end
write_ran fcb ;THIS FUNCTION
Jmp get_char ;get another character

alLdone: close fcb ;see Function 10H

FILE SIZE

ENTRY RETURN • ~

AH 23H FUNCTION 23H ALOOH =
Directory
entry
FFH (225) = No

DS:DX Opened directory entry
FCB found

2-60

Function 23H searches for the size of a specified file. DX must contain the offset (from
the segment address in DS) of an unopened FeB. You must set the Record Size field
(offset OEH) to the proper value before calling this function. The disk directory is
searched for the first matching entry.

If a matching directory entry is found, the Relative Record field (offset 21 H) is set to
the number of records in the file, calculated from the total file size in the directory entry
(offset leH) and the Record Size field of the FeB (offset OEH). AL returns 00.

If no matching directory is found, AL returns FFH (255).

NOTE

If the value of the Record Size field of the FeB
(offset OEH) doesn't match the actual number of
characters in a record, this function does not
return the correct file size. If the default record
size (128) is not correct~ you must set the Record
Size field to the correct value before using this
function.

Macro Definition:

file-Bize

Example:

macro
mov
mov
int
endm

fcb
dx,offset feb
ah,23H
21H

The following program prompts for the name of a file, opens the file to fill in the
Record Size field ofthe FeB, issues a File Size system call, and displays the file size and
number of records in hexadecimal.

fcb
prompt
msgl
msg2
crlf
reply
sixteen

db 37 dup (?)
db "File name: $"
db "Record length: ",13,10,"$"
db ·'Records: ",13, 10,'''$''
db 13,1 0:'$"
db 17 dupe?)
db 16

M S- DOS System Calls

2-61

MS- DOS System Calls

2-62

func23H:

get~ength:

converLjt:

show~t:

display prompt
get~tring 17.reply
cmp reply[I].O
Jne get~ength
Jmp all done
display crlf
parse reply[2]Jcb
open fcb
file~ize feb
mov siJ3

mov di.9
cmp fcb[si].O
je show~t
convert fcb[si].sixteen,msg~ [di]
mc
mc
Jmp
convert
display
display
Jmp
close

Sl

di
convert it
fcb [14],sixteen.ms~I[15]
ms~1
ms~
func~3H
feb

SET RELATIVE RECORD

ENTRY

AH 24H

DS:DX Opened
FCB

FUNCTION 24H

;see Function 09H
;see Function OA H
;just a CR?
;no, keep going
;yes, go home
;see Function 09H
;see Function 29H
;see Function OFH
;THIS FUNCTION
;offset to Relative
;Record field
;reply in ms~
;digit to convert?
;no, prepare message

; bump n-o-r index
; bump message index
;check for a digit

;see Function 09H
;see Function 09H
;get a filename
;see Function 10H

RETURN

Function 24H sets the relative record address for a random read and write operation.
DX must contain the offset (from the segment address in DS) of an opened FCB. The
Relative Record field (offset 21 H) is set to the same file address as the Current Block
(offset OCH) and Current Record (offset 20H) fields.

Macro Definition:

setJelativeJecord macro
mov
mov
int
endm

fcb

Example:

dx,offset fcb
ah,24H
21H

The following program copies a file using the Random Block Read and Random
Block Write system calls (Functions 27H and 28H). It speeds the copy by setting the
record length equal to the file size and the record count to I, and using a buffer of 32K
bytes. It positions the file pointer by setting the Current Record field (offset 20H) to 1
and using Set Relative Record to make the Relative Record field (offset 21 H) point to
the same record as the combination of the Current Block (offset OCH) and Current
Record (offset 20H) fields.

currentJecord equ 32 ;offset of Current Record
;field of FCB

fileJize equ 16 ;offset of File Size
;field of FCB

fcb
filename
prompt 1
prompt2
crlf

file~ength
buffer
func-24H:

db 37 dup (?)
db 17 dup(?)
db "File to copy: $"
db "Name of copy: $"

;see Function 09H for
;explanation of $

db 13,10,"$"

dw
db
set_dta
display
getJtring
display
parse
open
mov

?
32767 dup(?)
buffer
prompt I
15Jilename
crlf
filename[2]Jcb
fcb
fcb[currentJecord],O

setJelativeJecord fcb
mov ax, word ptr fcb[file size]

;see Function I A H
;see Function 09H
;see Function OA H
;see Function 09H
;see Function 29H
;see Function OFH
;set Current Record
Jield
;THIS FUNCTION
;get file size

MS-DOS System Calls

2-63

MS-DOS System Calls

2-64

mov file~ength,ax

ran_blockJead fcb, I,ax
display prompt2
getJtring 15,filename
display crlf
parse filename[2],fcb
create fcb
mov fcb[current record],O

setJelativeJecord fcb
mov ax,file~ength

ran_block_write fcb, I,ax
close fcb

SET VECTOR

ENTRY

AH 25H

AL Interrupt number

DS:DX Interrupt­
handling
routine

FUNCTION 25H

;save it for
;ran_block_ write
;see Function 27H
;see Function 09H
;see Function OAH
;see Function 09H
;see Function 29H
;see Function 16H
;set Current Record
;field
;THIS FUNCTION
;get original file
;length
;see Function 28H
;see Function 10H

RETURN

Function 25H should be used to set a particular interrupt vector. The operating system
can then manage the interrupts on a per-process basis.

DX must contain the offset (to the segment address in DS) of an interrupt-handling
routine. AL must contain the number of the interrupt handled by the routine. The
address in the vector table for the specified interrupt is set to DS:DX.

Macro Definition:

set_vector macro
mov
push
mov
mov
mov
mov
int
pop
endm

interrupt,seg..Addr,ofL..addr
a I,interrupt
ds
ax,seg-llddr
ds,ax
dx,off-llddr
ah,25H
21H
ds

Example:

Ids dx,intvector
mov ah,25H
mov a I ,intnumber
int 21 H
;There are no errors returned

RANDOM BLOCK READ

ENTRY

AH 27H

DS:DX Opened
FCB

CX Number of blocks
to read

FUNCTION 27H

RETURN

AL OOH = Read
completed
successfully
OIH=EOF
02H = End of
segment
03H = EOF

CX Number of
blocks read

Function 27H reads a specified block of records. DX must contain the offset (to the
segment address in DS) of an opened FeB. CX must contain the number of records to
read. If it contains 0, the function returns without reading any records (no operation).
The specified number of records - calculated from the Record Size field (offset OEH)
- is read starting at the record specified by the Relative Record field (offset 21 H). The
records are placed at the Disk Transfer Address.

M S-DOS System Calls

2-65

MS- DOS System Calls

2-66

AL returns a code that describes the processing result.

Code Meaning

o Read completed successfully.

1 End-of-file; no data in the record.

2 Not enough room at the Disk Transfer Address to read one record; read
canceled.

3 End-of-file; a partial record was read and padded to the record length
with zeros.

CX returns the number of records read. The Current Block (offset OCH), Current
Record (offset 20H), and Relative Record (offset 21 H) fields are set to address the next
record.

Macro Definition:

ran_blockJead macro fcb,count,rec~ize
dx,offset fcb
cx,count

Example:

mov
mov
mov
mov
int
endm

word ptr fcb[14],rec~ize
ah,27H
21H

The following program copies a file using the Random Block Read system call. It
speeds the copy by specifying a record count of I and a record length equal to the file
size, and using a buffer of 32K bytes. The file is read as a single record. (Compare to the
sample program for Function 28H, which specifies a record length of 1 and a record
count equal to the file size.)

currentJecord equ 32 ;offset of Current Record field
16 ;offset of File Size field file~ize equ

fcb
filename
prompt 1
prompt2

db
db
db
db

37 dup (?)
17 dup(?}
"File to copy: $"
"N arne of copy: $"

;see Function 09H for
;explanation of $

crlf
file.-length
buffer

func~7H:

db 13.1 0,"$"
dw ?
db 32767 dup(?)

set_dta buffer
display prompt 1
getJtring 15,filename
display crlf
parse filename[2],fcb
open fcb
moy fcb[current_record],O

setJelatiYeJecord fcb

moy ax, word ptr fcb[file~ize]

moy file.-length,ax

ran_block_read fcb, I,ax
display prompt2
get_string 15,filename
display crlf
parse filename[2],fcb
create fcb
moy fcb[current record],O

setJelatiye_record fcb
moy ax, file_length

ran_block_write fcb, I,ax
close fcb

;see Function 1 A H
;see Function 09H
;see Function OAH
;see Function 09 H
;see Function 29H
;see Function OFH

;set Current
; Record field

;see Function 24H

;get file size
;saye it for
;ran_block_write
;THIS FUNCTION
;see Function 09H
;see Function OAH
;see Function 09 H
;see Function 29H
;see Function 16 H
;set Current Record
Jield
;see Function 24H
;get original file
;size
;see Function 28 H
;see Function 10 H

MS-DOS System Calls

2-67

Al S-lJUS System Calls

2-68

RANDOM BLOCK WRITE

ENTRY

AH 28H

DS:DX Opened
FCB

Number of blocks to
write (0 = set File Size
field)

FUNCTION 28H

RETURN

AL OOH = Write
completed
successfully
01 H = Disk full
02H = End of
segment

CX Number
of blocks
written

Function 28H writes a specified block of records. DX must contain the offset (to the
segment address in OS) of an opened FCB. CX must contain either the number of
records to write or O. The specified number of records (calculated from the Record Size
field, offset OEH) is written from the Disk Transfer Address. The records are written to
the file starting at the record specified in the Relative Record field (offset 21 H) of the
FCB. If CX is 0, no records are written, but the File Size field of the directory entry
(offset 1 CH) is set to the number of records specified by the Relative Record field of
the FCB (offset 21 H). Allocation units are allocated or released, as required.

AL returns a code that describes the processing result.

Code Meaning

o Write completed successfully.

1 Disk full. No records written.

2 Not enough room at the Disk Transfer Address to read one record;
read canceled.

CX returns the number of records written. The current block (offset OCH). Current
Record (offset 20H). and Relative Record (offset 21 H) fields are set to address the next
record.

M aero Definition:

raILblock_write macro
mov
mov
mov
mov
int
endm

Example:

fcb,count,rec-.Size
dx,offset fcb
cx,count
word ptr fcb[14],rec-.Size
ah,28H
2JH

The following program copies a file using the Random Block Read and Random
Block Write system calls. It speeds the copy by specifying a record count equal to the
file size and a record length of I, and using a buffer of 32K bytes. The file is copied
quickly with one disk access each to read and write. (Compare to the sample program
for Function 27H, which specifies a record count of I and a record length equal to file
size.)

currentJecord equ 32 ;offset of Current Record field
16 ;offset of File Size field file-.Size eq u

fcb
filename
prompt I
prompt2
crlf
numJecs
buffer

func-.28H:

db 37 dup (?)
db 17 dup(?)
db "File to copy: $" ;see Function 09H for
db "N arne of copy: $" ;explanation of $
db 13,10,"$"
dw ?
db 32767 dup(?)

set_dta
display
get-.String
display
parse
open
mov

buffer
prompt I
15,filename
crlf
filename[2],fcb
fcb
fcb [current record],O

;see Function JAH
;see Function 09H
;see Function OAH
;see Function 09H
;see Function 29H
;see Function OFH

;set Current Record
;field

M S-DOS System Calls

2-69

MS-DOS System Calls

2-70

setJelativeJecord fcb
mov ax, word ptr fcb[file-size]

mov numJeCS,ax

raILbloclLread fcb,numJecs,1
display prompt2
get-string 15,filename
display crlf
parse filename [2],fcb
create fcb
mov fcb[current record],O

setJelativeJecord fcb
mov ax, file~ength
rall-block_write fcb,numJecs, I
close fcb

PARSE FILE NAME

ENTRY

AH 29H FUNCTION 29H

AL Controls parsing

DS:DI String to parse

;see Function 24H

;get file size
;save it for
; ran_block_ write
;THIS FUNCTION
;see Function 09H
;see Function OAH
;see Function 09H
;see Function 29H
;see Function 16H
;set Current
;Record field
;see Function 24 H
;get size of original
;see Function 28H
;see Function 10H

RETURN

AL OOH = No
wild characters

01 H =Wild card
characters used
FFH (225) =
Drive letter

DS:SI First byte
past string
that was
parsed

ES:DI Unopened
FCB

Function 29H parses a command line (string) for the filename. SI must contain the
offset (to the segment address in DS) of a string (command line) to parse. 01 must

contain the offset (to the segment address in ES) of an unopened FeB. The string is
parsed for a filename of the form d:filename.ext. If one is found. a corresponding
unopened FeB is created at ES:DI.

Bits 0-3 of AL control the parsing and processing. Bits 4-7 are ignored.

Bit

o

2

3

Value

o
I

o

o

o

Meaning

All parsing stops if a file separator is encountered.

Leading separators are ignored.

The drive number in the FeB is set to 0 (default drive) if the
string does not contain a drive number.

The drive number in the FeB is not changed if the string
does not contain a drive number.

The filename in the FeB is not changed if the string does not
contain a filename.

The filename in the FeB is set to 8 blanks if the string does
not contain a filename.

The extension in the FeB is not changed if the string does
not contain an extension.

The extension in the FeB is set to 3 blanks if the string does
not contain an extension.

If the filename or extension includes an asterisk (*). all remaining characters in the
name or extension are set to question mark (?).

The following are legal filename separators:

. + / " [] space tab

Filenames in a string are ended by filename terminators. Filename terminators can be
any of the filename separators or any control character. A filename cannot contain a
filename terminator. If one is encountered. parsing stops.

If the string contains a valid filename.

• AL returns I if the filename or extension contains a wild card character (* or ?);
AL returns 0 if neither the filename nor extension contains a wild card
character.

M S-DOS System Calls

2-71

MS- DOS System Calls

2-72

• DS:SI point to the first character following the string that was parsed .

• ES:DI point to the first byte of the unopened FCB.

If the drive letter is invalid, A L returns FFH (255). If the string does not contain a valid
filename, ES:DI+ I points to a blank (ASCII 32).

Macro Definition:

parse macro string,fcb
mov si,offset string
mov di,offset fcb
push es
push ds
pop es
mov aLOFH ;bits 0, L 2, 3 on
mov ah,29H
int 21H
pop es
endm

Example:

The following program verifies the existence of the file named in reply to the prompt.

fcb db
prompt db
reply db
yes db
no db

func~9H:

not_there:
continue:

37 dup (?)
"Filename: $"
17 dupe?)
"FILE EXISTS",13,10,"$"
"FILE DOES NOT EXIST", 13, 10,"$"

display
geL_string
parse
searchJirst
cmp
Je
display
jmp
display

prompt
15,reply
reply[2],fcb
fcb
al,FFH
not_there
yes
continue
no

;see
;see Function OAH
;THIS FUNCTION
;see Function II H
;dir. entry found?
;no
;see Function 09 H

GET DATE

ENTRY

AH2AH FUNCTION 2AH

RETURN

CX Year (1980-2099)

OX Month (1-12)

OL Oay (1-31)

Function 2AH returns the current date set in the operating system as binary numbers
in CX and OX.

Macro Definition:

get_date macro

Example:

mov
int
endm

ah,2AH
21H

The following program gets the date, increments the day, increments the month or
year, if necessary, and sets the new date.

month db 31,28,31,30,31,30,31,31,30,31,30,31

func-2AH: get_date ~see above
mc dI ;increment day
xor bx,bx ;so BL can be used as index
mov bl,dh ;move month to index register
dec bx ;month table starts with 0
cmp d I ,month[bx] ;past end of month?
jle month_ok ;no, set the new date
mov d 1,1 ;yes, set day to I
mc dh ;and increment month
cmp dh,I2 ;past end of year?

page jle month_ok ;no, set the new date
mov dh,1 ;yes, set the month to I
mc cx ;increment year
set_date cx,dh,d I ;THIS FUNCTION

M S- DOS System Calls

2-73

MS-DOS System Calls

2-74

SET DATE

ENTRY RETURN

AH 2BH FUNCTION 2BH AI OOH = Date
was valid

CS Year (1980-2099) FFH (225) =
Date was invalid

DH Month (1-12)

DL Day (1-31)

Function 2BH sets the system daie. Registers CX and DX must contain a valid date in
binary.

If the date is valid, the date is set and AL returns O. If the date is not valid, the function
is canceled and AL returns FFH (255).

M aero Definition:

set_date macro

Example:

mov
mov
mov
mov
int
endm

year,month,day
cx,year
dh,month
dl,day
ah,2BH
21H

The following program gets the date, increments the day, increments the month or
year, if necessary, and sets the new date.

month

func-.2BH:

db

get_date
mc
xor
mov
dec
cmp
jle

31,28,31,30,31,30,31,31,30,31,30,31

dl
bx,bx
bl,dh
bx
dl,month[bx]
month_ok

;see Function 2AH
;increment day
;so B L can be used as index
;move month to index register
;month table starts with 0
;past end of month?
;no, set the new date

mov dl, I
mc dh
cmp dh.I2
jle month_ok
mov dh,l
inc cx
set_date cx,dh,dl

GET TIME

ENTRY

;yes. set day to 1
;and increment month
;past end of year?
;no. set the new date
;yes, set the month to 1
;increment year
;THIS FUNCTION

RETURN

AH 2CH FUNCTION 2CH CH Hour (0-23)

CL Minutes (0-59)

OH Seconds (0-59)

OL Hundredths of a
second (0-99)

Function 2CH returns the current time set in the operating system as binary numbers
in CX and OX.

Macro Definition:

get_time macro

Example:

mov
int
endm

ah,2CH
21H

The following program continuously displays the time until any key is pressed.

time
ten

func-2CH:

db "00:00:00.00",13,10,4'$"
db 10

get_time
convert
convert

ch, ten, time
cl, ten, time[3]

;THIS FUNCTION
;see end of chapter
;see end of chapter

M S-DOS System Calls

2-75

MS-DOS System Calls

2-76

SET TIME

convert dh,ten,time[6]
convert dl,ten,time[9]
display time
checLk bd--.Status
cmp al,FFH
je alLdone
Jmp func--2CH

ENTRY

;see end of chapter
;see end of chapter
;see Function 09H
;see Function OBH
;has a key been pressed?
;yes, terminate
;no, display time

RETURN

AH2DH FUNCTION 2DH AL OOH = Time
was valid
FFH (225) =
Time was
invalid

CH Hours (0-23)

CL Minutes (0-59)

D H Seconds (0-59)

DL Hundredths of a
second (0-99)

Function 2DH sets the system time. Registers CX and DX must contain a valid time in
binary.

If the time is valid, the time is set and AL returns O. If the time is not valid. the function
is canceled and AL returns FFH (255).

M aero Definition:

macro
mov
mov
mov
mov
mov
int
endm

hour,minutes,seconds,hundredths
ch.hour
cLminutes
dh,seconds
dl,hundredths
ah,2DH
21H

Example:

The following program sets the system clock to 0 and continuously displays the time.
When a character is typed. the display freezes. When another character is typed. the
clock is reset to 0 and the display starts again.

time db "00:00:00.00".13,10,"$"
ten db 10

func-2DH: set_time
read_clock: get_time

convert
convert
convert
convert
display
dir_console_io
cmp
jne
jmp

stop: read_kbd
jmp

SET/RESET VERIFY FLAG

ENTRY

AH 2EH

AL OOH = Do not
verify
01 H = Verify

0.0.0.0 ;THIS FUNCTION
;see Function 2CH

ch.ten,time ;see end of chapter
cl,tenJime[3] ;see end of chapter
dh,ten. time[6] ;see end of chapter
dL tenJime[9] ;see end of chapter
time ;see Function 09H
FFH ;see Function 06H
aLOOH ;was a char. typed?
stop ;yes. stop the timer
read_clock ;no keep timer on

;see Function 08H
func-2DH ;keep displaying time

RETURN

FUNCTION 2EH

Function 2EH sets and resets the verify flag for a write. AL must be either I (verify
after each disk write) or 0 (write without verifying). MS-DOS checks this flag each
time it writes to a disk.

The flag is normally off. You may wish to turn it on when writing critical data to disk.
Because disk errors are rare and verification slows writing, you will probably want to
leave it off at other times.

M S-DOS System Calls

2-77

MS-DOS System Calls

2-78

M aero Definition:

verify macro

Example:

mov
mov
int
endm

switch
aI.switch
ah,2EH
21H

The following program copies the contents of a single-sided diskette in drive A to the
diskette in drive B, verifying each write. It uses a buffer of 32K bytes.

on equ
off equ

prompt db
db

start dw
buffer db

func-.2D H: display prompt
read_kbd
verify on

mov cx,5

copy: push cx
abs_diskJead

add start,64
pop cx
loop copy
verify off

diskJead O,buffer,64,start
abs_disk_write

add start,64

I
o

"Source in A, target in B"J3,10
"Any key to start. $"
o
64 dup (512 dup(?)) ;64 sectors

;see Function 09H
;see Function 08H
;THIS FUNCTION

0, buffer, 64,start

1,buffer,64,start

1,buffer,64,start

;copy 64 sectors
;5 times
;save counter

;see Interrupt 25H

;see Interrupt 26H
;do next 64 sectors
;restore counter
;do it again
;THIS FUNCTION
;see Interrupt 25H

;see Interrupt 26H
;do next 64 sectors

pop
loop
verify

cx
copy
off

GET DISK TRANSFER ADDRESS

ENTRY

AH 2FH FUNCTION 2FH

Function 2FH returns the DMA transfer address.

Error returns:

None.

Example:

mov ah,2FH
int 21H

;es: bx has current 0 M A transfer address

GET DOS VERSION NUMBER

ENTRY

AH 30H FUNCTION 30H

;restore counter
;do it again

RETURN

ES: BX Points to
Disk
Transfer
Address

RETURN

AL Major version
number

A H Minor version
number

Function 30H returns the MS-DOS version number. On return, AL:AH will be the
two-part version designation; that is, for MS-DOS 1.28, AL would be I and AH would
be 28. For pre-1.28 DOS, AL = O. Note that version 1.1 is the same as 1.10, not the
same as 1.0 I.

MS-DOS System Calls

2-79

MS- DOS System Calls

2-80

Error returns:

None.

Example:

mov ah,30H
int 21H

; al is the major version number
; ah is the minor version number
; bh is the OEM number
; bl:cx is the (24 bit) user number

KEEP PROCESS

ENTRY

AH 31H

AL Exit code

DX Memory size
in paragraphs

[FUNCTION 3lH

RETURN

Function 31 H terminates the current process and attempts to set the initial allocation
block to a specific size in paragraphs. It will not free up any other allocation blocks
belonging to that process.

The exit code passed in AX is retrievable by the parent via Function 4DH.

Error returns:

None.

Example:

mov aI, exitcode
mov dx, parasize
mov ah,31H
int 2] H

CTRL-CHECK

ENTRY

AH 33H

AL Function OOH =
Request current
state
01 H = Set state

DL (if setting)
OOH = Off
OIH = On

FUNCTION 33H

RETURN

DL OOH = Off,
OIH = On

MS-DOS ordinarily checks for a CTRL-C on the controlling device only when doing
function call operations 01 H-OCH to that device. Function 33H allows you to expand
this checking to include any system call. For example, with the CTR L-C trapping off,
all disk I/O will proceed without interruption. With CTRL-C trapping on, the
CTRL-C interrupt is given at the system call that initiates the disk operation.

Error return:

AL = FF. The function passed in AL was not in the range 0: I.

Example:

mov dl,val
mov ah.33H
mov alJunc
int 21 H

; If al was 0, then dl has the current value
;of the CTRL-C check

GET INTERRUPT VECTOR

ENTRY

AH 35H FUNCTION 35H

AL Interrupt number

RETURN

ES:BX Pointer to
interrupt
routine

MS-DOS System Calls

2-81

MS-DOS System Calls

2-82

Function 35H returns the interrupt vector associated with an interrupt.

Error returns:

None.

Example:

mov ah,35H
mov aI,interrupt
int 2lH

; es: bx now has long pointer to interrupt routine

GET DISK FREE SPACE

ENTRY

AH 36H

D L Drive (0 = default,
I = A, and
so on)

FUNCTION 36H

RETURN

BX Available
clusters

DX Clusters per
drive

AX FFFF if drive
number is
invalid; other­
wise, sectors per
cluster

This function returns free space on disk along with additional information about the
disk.

Error return:

AX = FFFF. The drive number given in DL was invalid.

Example:

mov ah,36H
mov dl, Drive ;0 = default, A = 1
int 21 H

; bx = Number of free allocation units on drive
; dx = Total number of allocation units on drive
; cx = Bytes per sector
; ax =. Sectors per allocation unit

RETURN COUNTRY-DEPENDENT INFORMATION

ENTRY

AH 38H

DS:DX Pointer to 32-
byte memory
area

AL Function code: in
MS-DOS 2.0,
must be 0

FUNCTION 38H

RETURN

Carry set: AX = 2
file not found
Carry not set:
DS:SX filled with
country data

Function 38 H returns country-dependent information. The value passed in AL is
either 0 (for current country) or other country code. Country codes are typically the
international telephone prefix code for the country.

If DX = -1, then the call sets the current country (as returned by the AL = 0 call) to the
country code in AL. If the country code is not found, the current country is not
changed.

NOTE

Applications must assume 32 bytes of informa­
tion. This means the buffer pointed to by
DS:DX must be able to accommodate 32 bytes.

This function returns, in the block of memory pointed to by DS:DX, the following
information, which is pertinent to international applications.

WORD
Date/time format

5 BYTE ASCIZ string
Currency symbol

2 BYTE ASCIZ string
Thousands separator

2 BYTE ASCIZ string
Decimal separator

MS-DOS System Calls

2-83

MS- DOS System Calls

2-84

2 BYTE ASCIZ string
Date separator

2 BYTE ASCIZ string
Time separator

I BYTE
Bit field

I BYTE
Currency Places

I BYTE
Time format

DWORD
Case Mapping call

2 BYTE ASCIZ string
Data List separator

The format of most of these entries is ASCIZ (a NUL terminated ASCII string), but a
fixed size is allocated for each field for easy indexing into the table.

The date I time format has the following values:

Value

o
I
2

Format

USA standard
Europe standard
Japan standard

h:m:s m/d/y
h:m:s dimly
y/m/d h:m:s

The bit field contains eight bit values. Any bit not currently defined must be assumed
to have a random value.

Bit 0 = 0 If currency symbol precedes the currency amount.

= I If currency symbol comes after the currency amount.

Bit 1 = 0 If the currency symbol immediately precedes the currency amount.

= 1 If there is a space between the currency symbol and the amount.

The time format has the following values:

Value

o
1

Format

12 hour time
24 hour time.

The Currency Places field indicates the number of places that appear after the decimal
point on currency amounts.

The Case Mapping call is a FAR procedure that will perform country specific
lower-to-uppercase mapping on character values from 80H to FFH. It is called with
the character to be mapped in A L. It returns the correct uppercase code for that
character, if any, in AL. AL and the FLAGS are the only registers altered. It is
allowable to pass this routine codes below -80H~ however, nothing is done to charac­
ters in this range. When there is no mapping, AL is not altered.

Error return:

AX
2 = File not found. The country passed in AL was not found (no table for specified

country).

Example:

Ids dx, blk
mov ah,38H
mov al, Country_code
int 2IH

~AX Country code of country returned

M S- DOS System Calls

2-85

MS- DOS System Calls

2-86

CREATE SUB-DIRECTORY

ENTRY

AH 39H

DS:DX Pointer to
path-name

FUNCTION 39H

RETURN

Carry set:
AX 3 = Path not

found
5 = Access
denied

Carry not set: No
error

Given a pointer to an ASCIZ name, FUIlction 39H creates a new directory entry at the
end.

Error returns:

AX

3 = Path not found. The path specified was invalid or not found.
5 = Access denied. The directory could not be created (no room in parent directory),

the directory I file already existed or a device name was specified.

Example:

Ids dx, name
mov ah,39H
int 21 H

REMOVE A DIRECTORY ENTRY

ENTRY

AH3AH

DX Pointer to
pathname

FUNCTION 3AH

RETURN

Carry set:
AX 3 = Path not

found
5 = Access
denied
16 = Current
directory

Carry not set: No
error

Function 3AH is given an ASCIZ name of a directory. That directory is removed from
its parent directory.

Error returns:

AX

3 = Path not found. The path specified was invalid or not found.
5 = Access denied. The path specified was not empty, not a directory, the root

directory, or contained invalid information.
16 = Current directory. The path specified was the current directory on a drive.

Example:

Ids dx, name
mov ah,3AH
int 21 H

M S- DOS System Calls

2-87

MS-DOS System Calls

2-88

CHANGE THE CURRENT DIRECTORY

ENTRY

AH 3BH

DS:DX Pointer to
pathname

FUNCTION 3BH

RETURN

Carry set: AX =
Path not found

Carry not set: No
error

Function 3BH is given the ASCIZ name of the directory which is to become the
current directory. If any member of the specified pathname does not exist, then the
current directory is unchanged. Otherwise, the current directory is set to the string.

Error return:

AX

3 = Path not found. The path specified in DS:DX either indicated a file or the path
was invalid.

Example:

Ids dx, name
mov ah,3BH
int 21 H

CREATE A FILE

ENTRY

AH 3CH

DS:DX Pointer to
pathname

CX File attribute

FUNCTION 3CH

RETURN

Carry set:
AX 5 = Access

denied
3 = Path not
found
4 = Too many
open files

Carry not set: AX is
handle number

Function 3CH creates a new file or truncates an old file to 7.ero length in preparation
for writing. If the file did not exist, then the file is created in the appropriate directory
and the file is given the attribute found in CX. The file handle returned has been
opened for read / write access.

Error returns:

AX

5 = Access denied. The attributes specified in CX contained one that could not be
created (directory, volume 10), a file already existed with a more inclusive set of
attributes, or a directory existed with the same name.

3 = Path not found. The path specified was invalid.
4 = Too many open files. The file was created with the specified attributes, but there

were no free handles available for the process, or the internal system tables were
full.

Example:

Ids dx, name
mov ah,3CH
mov CX, attribute
int 21 H

; ax now has the handle

OPEN A FILE

ENTRY

AH30H

AL Access:
o = File opened
for reading
1 = File opened
for writing
2 = File opened
for both reading
and writing

FUNCTION 30H

RETURN

Carry set:
AX 12 = Invalid

access
2 = File not
found
5 = Access
denied
4 = Too many
open files

Carry not set: AX is
handle number

MS-DOS System Calls

2-89

MS-DOS System Calls

2-90

Function 3DH associates a 16-bit file handle with a file.

The following values are allowed:

Access

o
I
2

Function

File is opened for reading
File is opened for writing
File is opened for both reading and writing.

DS:DX point to an ASCIZ name of the file to be opened.

The read I write pointer is set at the first byte of the file and the record size of the file is
one byte. The returned file handle must be used for subsequent 110 to the file.

Error returns:

AX

12 = Invalid access. The access specified in AL was not in the range 0:2.
2 = File not found. The path specified was invalid or not found.
5 = Access denied. You attempted to open a directory or volume-id, or open a

read-only file for writing.
4 = Too many open files. There were no free handles available in the current process,

or the internal system tables were full.

Example:

Ids dx, name
mov ah,3DH
mov aI, access
int 21 H

; ax has error or file handle
; I f successful open

CLOSE A FILE HANDLE

ENTRY

AH 3EH

BX File handle

FUNCTION 3EH

RETURN

Carry set: AX 6 =
I nvalid handle

Carry not set: No
error

If BX is passed a file handle (like that returned by Functions 3DH, 3CH, or 45H),
Function 3E H closes the associated file. I nternal buffers are flushed.

Error return:

AX

6 = I nvalid handle. The handle passed in BX was not currently open.

Example:

mov bx, handle
mov ah,3EH
int 2tH

READ FROM FILE/DEVICE

ENTRY

AH 3FH

DS:DX Pointer
to buffer

CX Bytes to read

BX File handle

FUNCTION 3FH

RETURN

Carry set:
AX Number of

bytes read
6 = Invalid
handle
5 = Error set

Carry not set: AX =
number of bytes
read

Function 3FH transfers count bytes from a file into a buffer location. It is not
guaranteed that all count bytes will be read. For example, reading from the keyboard
will read at most one line of text. If the returned value is zero, then the program has
tried to read from the end of file.

M S-DOS System Calls

2-91

MS-DOS System Calls

2-92

All I/O is done using normalized pointers; no segment wraparound will occur.

Error returns:

AX

6 = I nvalid handle. The handle passed in BX was not currently open.
5 = Access denied. The handle passed in BX was opened in a mode that did not allow

reading.

Example:

Ids dx, buf
mov CX, count
mov bx, handle
mov ah,3FH
int 21 H

~ ax has number of bytes read

WRITE TO A FILE/DEVICE

ENTRY

AH 40H

DS:DX Pointer to
buffer

BX File handle

FUNCTION 40H

RETURN

Carry set:
AX Number of

bytes written
6 = Invalid
handle
5 = Access

Carry not set: A =
Number of bytes
written

Function 40H transfers count bytes ftom a buffer into a file. It should be regarded as
an error if the number of bytes written is not the same as the number requested.

The write system call with a count of zero (CX = 0) will truncate the file at the current
position.

All I/O is done using normalized pointers. No segment wraparound will occur.

Error returns:

AX

6 = Invalid handle. The handle passed in BX was not currently open.
5 = Access denied. The handle was not opened in a mode that allowed writing.

Example:

Ids dx, buf
mov cx, count
mov bx, handle
mov ah,40H
int 21 H

~ax has number of bytes written

DELETE A DIRECTORY ENTRY

ENTRY

AH 41H

DS:DX Pointer to
pathname

FUNCTION 41H

RETUkN

Carry set:
AX 2 = File not

found
5 = Access
denied

Carry not set: No
error

Function 41 H removes the directory entry associated with a filename. If the file is
currently open on another handle, the'1 no removal will take place.

Error returns:

AX

2 = File not found. The path specified was invalid or not found.
5 = Access denied. The path specified was a directory or read-only.

Example:

Ids dx, name
mov ah,4tH
int 2tH

M S-DOS System Calls

2-93

MS-DOS System Calls

2-94

MOVE FILE POINTER

ENTRY

AH 42H

CX:DX Distance to
move In

bytes

AL Method of moving

BX File handle

FUNCTION 42H

RETURN

Carry set:
AX 6 = Invalid

handle
] = Invalid
function

Carry not set:
DX:AX = New
pointer location

Function 42H moves the read / write pointer according to one of the following
methods.

Method Function

o
]

The pointer is moved to offset bytes from the beginning of the file.
The pointer is moved to the current location plus offset.

2 The pointer is moved to the end of file plus offset.

Offset should be regarded as a 32-bit integer with CX occupying the most significant] 6
bits.

Error returns:

AX

6 = Invalid handle. The handle passed in BX was not currently open.
] = Invalid function. The function passed in AL was not in the range 0:2.

Example:

mov dx, offsetlow
mov cx, offsethigh
mov aL method
mov bx, handle
mov ah,42H
int 21 H

; dx:ax has the new location of the pointer

MS-DOS Systern Calls

CHANGE ATTRIBUTES

ENTRY

AH 43H

OS: OX Pointer to
pathname

es (if AL = 01)

AL Function 01 = set
to ex; 00 = return
in ex

FUNCTION 43H

RETURN

Carry set:
AX 3 = Path not

found
5 = Access
denied
1 = Invalid
function

Carry not set: ex
attributes
(if AL = 00)

Given an ASCIZ name, Function 43H will setl get the attributes of the file to those
given in cx.

A function code is passed in AL.

AL Function

o Return the attributes of the file in CX.
t Set the attributes of the file to those in ex.

Error returns:

AX

3 = ' Path not found. The path specified was invalid.
5 = Access denied. The attributes specified in CX contained one that could not be

changed (directory, volume 10).
1 = Invalid function. The function passed in AL was not in the range 0: I.

Example:

Ids
mov
mov
int
int

dx, name
CX, attribute
al, func
ah,43H
2IH

2-95

MS-DOS System Calls

2-96

I/O CONTROL FOR DEVICES

ENTRY

AH 44H

BX Handle

BL Drive for calls
AL = 4,5 (0 = default,
1 = A, and so on)

DS:DX Data for
buffer

CX Bytes to read or
write

AL Function code

FUNCTION 44H

RETURN

Carry set:
AX 6 = Invalid

handle
1 = Invalid function
13 = Invalid date
5 = Access denied

Carry not set:
AL if 2, 3, 4, 5 then
AX = Count
transferred
if 6, 7 then 00 =
Not ready;
FF = ready

Function 44H sets or gets device information associated with an open handle, or
sends/ receives a control string to a device handle or device.

The following values are allowed for the function:

Request

o
1
2
3
4
5
6
7

Function

Get device information (returned in DX).
Set device information (as determined by OX).
Read CX number of bytes into DS:DX from device control channel.
Write CX number of bytes from DS:DX to device control channel.
Same as 2 only drive number in BL (0 = default, A = I, B = 2, ...)
Same as 3 only drive number in BL (0 = default, A = I, B = 2,. ..)
Get input status.
Get output status.

Function 44H can be used to get information about device channels. Calls can be made
on regular files, but only calls 0,6 and 7 are defined in that case (AL = 0,6, 7). All other
calls return an invalid function error.

Calls AL = 0 and AL = I

The bits of DX are defined as follows for calls ALO and AL I. Note that the upper
byte MUST be zero on a set call.

15 14 13 12 II 10 9 8 7 6 5 4 3
R C I E R S I
E T S 0 A P S
S R Reserved D F W E C

L E C L
V L K

ISDEV = I if this channel is a device
= 0 if this channel is a disk file (Bits 8-15
= 0 in this case)

If ISDEV
EOF
RAW

=1
= 0 if End Of File on input
= 1 if this device is in Raw mode
= 0 if this device is cooked
= lif this device is the clock device
= I if this device is the null device
= 1 if this device is the console output
= 1 if this device is the console input
= 1 if this device is special

2 J 0
I I I
S S S
N C C
U 0 I
L T N

ISCLK
ISNUL
ISCOT
ISCIN
SPECL
CTRL = 0 if this device cannot do control strings via calls

AL = 2 and AL = 3
CTRL = 1 if this device can process control strings via calls

AL = 2 and AL = 3
NOTE that this bit cannot be set.

If ISDEV = 0
EO F = 0 if channel has been written
Bits 0-5 are the block device number for the channel

(0 = A, 1 = B, and so on)

Bits 15,8-13,4 are reserved and should not be altered.

Calls AL = 0 through AL = 5

These four calls allow arbitrary control strings to be sent or received from a device.
The call syntax is the same as the read and write calls, except for 4 and 5, which
take a drive number in BL instead of a handle in BX.

M S-DOS System Calls

2-97

MS-DOS System Calls

2-98

An invalid function error is returned if the CTRL bit (see above) is o.

An access denied is returned by calls AL = 4, 5 if the drive number is invalid.

Calls AL = 6 and AL = 7

~hese two calls allow you to check if a file handle is ready for input or output.
These calls are intended for checking the status of handles open to a device, but
they can also be used to check the status of a handle open to a disk file. The statuses
are defined as follows:

Input:

Always ready (AL = FF) until EOF reached, then always not ready
(AL = 0) unless current position changed via LSEEK.

Output:

Always ready (even if disk is full).

CAUTION

The status is defined at the time the system is
called. On future versions, by the time control is
returned to the user from the system, the status
returned may not correctly reflect the true cur­
rent state of the device or file.

Error returns:

AX

6 = Invalid handle. The handle passed in BX was not currently open.
1 = Invalid function. The function passed in AL was not in the range 0:7.

13 = I nvalid data.
5 = Access denied (calls AL4 through AL 7).

Example:

mov
(or mov

mov
(or Ids

bx, Handle
bI, drive for calls AL = 4,5
o = defauIt,A = 1. ..)
dx, Data
dx, buf and

mov CX, count for calls AL = 2,3.4,5)
mov ah,44H
mov aI, fune
int 21 H
; For calls AL = 2,3,4,5 AX is the number of bytes
; transferred (same as READ and WRITE).
~ For calls AL = 6, 7 AL is status returned, AL = 0 if
~ status is not ready, AL = OFFH otherwise.

DUPLICATE A FILE HANDLE

ENTRY

AH 45H FUNCTION 45H

BX File handle

RETURN

Carry set:
AX 6 = Invalid

handle
4 = Too many
open files

Carry not set: AX =
new file handle

Function 45H takes an already opened file handle and returns a new handle that refers
to the same file at the same position.

Error returns:

AX

6 = Invalid handle. The handle passed in BX was not currently open.
4 = Too many open files. There were no free handles available in the current process

or the internal system tables were full.

Example:

mov bx, fh
mov ah,45H
int 2] H

~ ax has the returned handle

MS-DOS System Calls

2-99

MS-DOS System Calls

2-100

FORCE A DUPLICATE OF A FILE HANDLE

ENTRY

AH 46H

BX Existing file
handle

CX New file handle

FUNCTION 46H

RETURN

Carry set:
AX 6 = Invalid

handle
4 = Too many open
files

Carry not set:
No error

Function 46H takes an already opened file handle and returns a new one that refers to
the same file at the same position.

Error returns:

AX

6 = I nvalid handle. The handle passed in BX was not currently open.
4 = Too many open files. There were no free handles available in the current process

or the internal system tables were full.

Example:

mov bx, fh
mov cx, newfh
mov ah,46H
int 21 H

RETURN TEXT OF CURRENT DIRECWRY

ENTRY

AH 47H • I FUNCTION 47H

DS:SI Pointer to 64-
byte memory
area

DL Drive number

RETURN

Carry set:
AX J 5 = Invalid

drive

Carry not set:
No error

Function 47H returns the current directory for a particular drive. The directory is
root-relative and does not contain the drive specifier.

The drive codes passed in DL are 0 = default, I = A, 2 = R and so on.

tYror return:

AX

15 = Invalid drive. The drive specified in DL was invalid.

Example:

mov ah,47H
Ids S),area
mov dLdrive
int 21 H

; ds:si is a pointer to 64 byte area that
; contains drive current directory.

ALLOCATE MEMORY'

F~TRY

AH 48H

BX Size of memory to
be allocated

FUNCTION 48H

RF·I·l:R~

Carry set:
AX 8 = Not enough

memory
7 = Arena
trashed

BX Maximum size
that could
be allocated

Carry not set: AX =
Pointer to allocated
memory

Function 48 H returns a pointer to a free block of memory that has the requested size in
paragraphs.

MS-DOS System Calls

2-101

MS-DOS System Calls

2-102

Error returns:

AX

8 = Not enough memory. The largest available free block is smaller than that
requested or there is no free block.

7 = Arena trashed. The internal consistency of the memory arena has been
destroyed. This is due to a user program changing memory that does not belong
to it.

Example:

mov bx,size
mov ah,48H
int 2lH

; ax:O is pointer to allocated memory
; if alloc fails, bx is the largest block available

FREE ALLOCATED MEMORY

ENTRY

AH 49H

ES Segment address of
memory area to
be freed

FUNCTION 49H

RETURN

Carry set:
AX 9 = Invalid

block
7 = Arena
trashed

Function 49H returns a piece of memory to the system pool that was allocated by the
Allocate Memory function.

Error returns:

AX

9 = Invalid block. The block passed in ES is not one allocated via Function 48H.
7 = Arena trashed. The internal consistency of the memory arena has been

destroyed. This is due to a user program changing memory that does not belong
to it.

Example:

moves, block
mov ahA9H
int 2JH

MODIFY ALLOCATED MEMORY BLOCKS

ENTRY

AH4AH

ES Segment address of

BX Requested memory
area size

FUNCTION 4AH

RETURN

Carry set:
AX 9 = Invalid

block
7 = Arena

8 = Not enough
memory

BX Maximum size
possible

Carry not set: No
error

Function 4AH will attempt to grow / shrink an allocated block of memory.

Error returns:

AX

9 = Invalid block. The block passed in ES is not one allocated via this function.
7 = Arena trashed. The internal consistency of the memory arena has been

destroyed. This is due to a user program changing memory that does not belong
to it.

8 = Not enough memory. There was not enough free memory after the specified
block to satisfy the grow request.

M S- DOS System Calls

2-103

MS-DOS System Calls

2-104

Example:

mov eS,block
mov bX,newsize
mov ah,4AH
int 21 H

; if set block fails for growing, BX will have the
; maximum size possible

LOAD AND EXECUTE A PROGRAM

ENTRY

AH4BH

DS:DX Pointer to
pathname

ES:BX Pointer to
parameter block

AL 00 = Load and
execute program
03 = Load program

FUNCTION 4BH

RETURN

Carry set:

function
10 = Bad
environment
11 = Bad format
8 = Not enough
2 = File not
found

Carry not set:
No error

Function 4BH allows a program to load another program into memory and begin
execution of it (through a default).

DS:DX point to the ASCIZ name of the file to be loaded. ES:BX point to a parameter
block for the load.

The following function codes are passed in AL.

AL Function

o Load and execute the program. A program header is established for the
program and the terminate and CTRL-C addresses are set to the instruction
after the EXEC system call.

NOTE

When control is returned, via a CTRL-C or
terminate from the program being EXECed, all
registers are altered including the stack. This is
because control is returned from the EXECed
program, not the system. To regain your stack,
store an SS:SP value in a data location reach­
able from your CS.

3 Load (do not create) the program header and do not begin execution. This is
useful in loading program overlays.

For AL = 0, the parameter block has the following format.

WORD segment address of environment.

DWORD pointer to command line at 80H

DWORD pointer to default FCB to be passed at
5CH

DWORD pointer to default FCB to be passed at
6CH

For AL = 3, the paralneter block format is as follows.

WORD segment address where file will be
loaded.

WORD relocation factor to be applied to the
Image.

Note that all open files of a process are duplicated in the child process after an EXEC.
This is extremely powerful. The parent process has control over the meanings of stdin,
stdout, stderr, stdaux and stdprn. The parent could, for example, write a series of
records to a file, open the file as standard input, open a listing file as standard output
and then EXEC a sort program that takes its input from stdin and writes to stdout.

Also inherited (or passed from the parent) is an "environment." This is a block of text
strings (less than 32K bytes total) that convey various configuration parameters. The
format of the environment is as follows.

MS-DOS System Calls

2-105

MS-DOS System Calls

2-106

(paragraph boundary)

BYTE ASCIZ string 1

BYTE ASCIZ string 2

BYTE ASCIZ string n

BYTE of zero

Typically the environment strings have the format:

parameter = value

For example, COMMAND.COM always passes its execution search path as:

PATH = A:BIN;B:BASIC LIB

A zero value for the environment address causes the child process to inherit the
parent's environment unchanged.

Note that on a successful return from EXEC, all registers, except for CS:IP, are
changed.

Error returns:

AX

1 = Invalid function. The function passed in AL was not 0, I, or 3.
10 = Bad environment. The environment was larger than 32K b.
11 = Bad format. The file pointed to by DS:DX was an EXE format file and contained

information that was internally inconsistent.
8 = Not enough memory. There was not enough memory for the process to be

created.
2 = File not found. The path specified was invalid or not found.

Example:

Ids dx, name
les bx, blk
mov ah,4BH
mov aI, func
int 21 H

TERMINATE A PROCESS

ENTRY RETURN

4H 4CH FUNCTION 4CH

AL Return code

Function 4CH terminates the current process and transfers control to the invoking
process. In addition, a return code may be sent. All files open at the time arc closed.

Error returns:

None.

Example:

mov aI, code
mov ah,4CH
int 21 H

RETRIEVE THE RETURN CODE OF A CHILD

ENTRY RETURN

AH4DH FUNCTION 4DH AX Exit code

Function 4DH returns the Exit code specified by a child process. It returns this Exit
code only once. The low byte of this code is that sent by the Exit routine. The high byte
is one of the following:

MS-DOS System Calls

2-107

MS-DOS System Calls

2-108

Code Function

o Terminate/ abort
1 CTRL-C
2 Hard error
3 Terminate and stay resident

Error returns:

None.

Example:

mov ah,4DH
int 21 H

; ax has the exit code

FIND MATCH FILE

ENTRY

AH4EH

DS:DX Pointer to
pathname

CX Search attributes

FUNCTION 4EH

RETURN

Carry set:
AX 2 = File not

found
18 = No
more files

Carry not set: No
error

Function 4EH takes a pathname with wild card characters in the last component
(passed in DS: DX) and a set of attributes (passed in CX). then attempts to find all files
that match the pathname and have a subset of the required attributes. A datablock at
the current DMA is written that contains information in the following form:

find_buf~ttr

find_buf_time
find_buf_date
find_buLsize~
find_buLsizej}
find_buf_pname
find_buf ENDS

DB?
DW?
DW?
DW?
DW?
DB 13

; attribute found
; time
; date
; low(size)
; high(size)
DUP (?); packed name

To obtain the subsequent matches of the path name, see the description of
Function 4FH.

Error returns:

AX

2 = File not found. The path specified in DS:DX was an invalid path.
18 = No more files. There were no files matching this specification.

Example:

mov ah,4EH
Ids dx, path name
mov CX, attr
int 21 H
; dma address has datablock

STEP THROUGH A DIRECTORY MATCHING FILES

ENTRY

AH 4FH FUNCTION 4FH

RETURN

Carry set: AX = 18,
no more files

Carry not set: No
error

Function 4FH finds the next matching entry in a directory. The current D M A address
must point at a block returned by Function 4EH (see Function 4EH).

Error return:

AX

18 = No more files. There are no more files matching this pattern.

Example:

; dma points at area returned by Function 4FH
mov ah,4FH
int 21 H

; next entry is at dma

MS-DOS System Calls

2-109

MS- DOS System Calls

2-110

RETURN CURRENT SETTING OF VERIFY AFTER WRITE FLAG

ENTRY

AH 54H FUNCTION 54H

RETURN

AL Current verify
flag value

Function 54H returns the current value of the verify flag in AL.

Error returns:

None.

Example:

mov ah,54H
int 21 H

; al is the current verify flag value

MOVE A DIRECTORY ENTRY

ENTRY

AH 56H

DS:DX Pointer to
pathname
of existing
file

ES:DI Pointer to
new path name

FUNCTION 56H

RETURN

Carry set:
AX 2 = File not

found
17 = Not same
device
5 = Access
denied

Carry not set:
No error

Function 56H attempts to rename a file into another path. The paths must be on the
same device.

Error returns:

AX

2 = File not found. The file name specifed by DS: DX was not found.
17 = Not same device. The source and destination are on different drives.
5 = Access denied. The path specified in DS: DX was a directory or the file specified

by ES:DI exists or the destination directory entry could not be created.

Ex:ample:

Ids dx, source
les di. dest
mov ah,56H
int 21 H

GET/SET DATE/TIME OF A FILE

ENTRY

AH 57H

AL 00 = get date and
time
01 = set date
and time

BX File Handle

CS If AL = 0, time to
be set

DX If AL = 01, date
to be set

FUNCTION 57H

RETURN

Carry set:
AX 1 = Invalid

function
6 = Invalid
handle

Carry not set:
No error

CX:BX set if
ftinction 0

Function 57H returns or sets the last-write time for a handle. These times are not
recorded until the file is closed.

MS-DOS System Calls

2-111

MS- DOS System Calls

2-112

One of the following function codes is passed in A L.

AL Function

o Return the time/ date of the handle in CX:DX
I Set the time/ date of the handle to CX:DX

Error returns:

AX

I = Invalid function. The function passed in AL was not in the range 0: I.
6 = I nvalid handle. The handle passed in BX was not currently open.

Example:

mov ah,57H
mov ai, func
mov bx, handle

; if al = I then then next two are mandatory
mov cx, time
mov dx, date
int 21 H

; if al 0 then cx/ dx has the last write time/ date
; for the handle.

MACRO DEFINITIONS FOR MS-DOS SYSTEM CALL EXAMPLES

The following printout summarizes the Macro definitions used in the examples given
for the MS-DOS system calls .

. xlist

.******************* ,
; Interrupts
.******************* ,

ABS_DISK_READ
abs_disk-fead macro disk,buffer,num_sectorsJirst_sector

mov aI,disk
mov bX,offset buffer

moy
moy
int
popf
endm ~

cX,num_sectors
dxJirst_sector
'37 ~interrupt 37

ABS_DISK WRITE
abs_disk_write macro disk.buffer.num-sectorsJirsL.sector

moy al,disk
moy bx.offset buffer
moy cx.num-sectors
moy dxJirst_sector

int 38 ~interrupt 38
popf
endm

sta y_resident macro last_instruc
moy dx.offset last_instruc
mc dx
int 39
endm

.******************* .
~ Functions
.******************* .
read_kbd-and_echo macro

moy ah.l
int 33
endm

display_char macro character
moy d I.character
moy ah.2
int 33
endm

aux-input macro
moy
int
endm

ah.3
33

;STAY_RESIDENT

~interrupt 39

~READ_KBD_AND_ECHO

:function I

~DISPLAY _CHAR

Junction 2

:AUX_INPUT
:function 3

MS-DOS System Calls

2-113

MS-DOS System Calls

~-1l4

aux_output macro

;;page
print_char macro

mov
mov
int
endm

character
dl,character
ah,5
33

dir_console~nput macro switch
mov dl,switch
mov ah,6
int 33
endm

dir_console~nput macro
mov ah,7
int 33
endm;

readjbd macro
mov
int
endm;

display macro
nl0V

mov
int
endm

geL_string macro
mov
mov
mov
int
endm

ah,8
33

string
dx,offset string
ah,9
33

limit,string
string,limit
dX,offset string
ah,IO
33

checkjbd.-Status macro
mov ah,II
int 33
endm

PRINT_CHAR

Junction 5

;function 6

;DIR_CONSOLE_INPUT
Junction 7

:READ_KBD
Junction 8

;DISPLAY
;function 9

;GET STRING

;function 10

;CHECK~BD_STATUS

;function II

MS-DOS System Calls

flush_and_read_kbd macro switch ;FLUSH~ND_READ_KBD

mov ai,switch
moy ah,12 Junction 12
int 33
endm

reset_d isk_macro ;RESET DISK
moy ah,13 Junction 13
int 33
endm

;;page
select_disk macro disk ;SELECT_DISK

moy dl,disk~-65j
moy ah,14 Junction 14
int 33
endm

open macro fcb ;OPEN
moy dx,offset fcb
moy ah,15 Junction 15
int 33
endm

close macro fcb ;CLOSE
moy dx,offset fcb
moy ah,16 Junction 16
int 33
endm

searchJirst macro fcb ;SEARCH_FIRST
moy dx,offset fcb
moy ah,17 ;Function 17
int 33
endm

2-115

MS-DOS System Calls

search-Ilext macro fcb ;SEARCH_NEXT
mov dx,offset fcb
mov ah,17 Junction 17
int 33
endm

delete macro fcb ;DELETE
mov ah,18 ;function 19
int 33
endm

read-..Seq macro fcb ;READ_SEQ
mov dx,offset fcb
mov ah,20 ;function 20
int 33
endm

write_seq macro fcb ;WRITE_SEQ
mov dX,offset fcb
mov ah,21 Junction 21
int 33
endm

create macro fcb ;CREATE
mov dx,offset fcb
mov ah,22 Junction 22
int 33
endm

rename macro fcb,newname ;RENAME
mov dx,offset fcb
mov ah,23 ;function 23
int 33
endm

current_disk macro ;CURRENT _DISK
mov ah,25 ;function 25
int 33
endm

~-116

M S-DOS System Calls

set_dta macro buffer ~SET_DTA

mov dx,offset buffer
mov ah,26 Junction 26
int 33
endm

alloc_table macro ~ALLOC_TABLE

mov ah,27 Junction 27
int 33
endm

readJan macro fcb ~READ_RAN

mav dx,offset fcb
mav ah,33 Junction 33
int 33
endm

writeJan macro fcb ~WRITE_RAN

mav dx,offset fcb
mav ah,34 ;function 34
int 33
endm

file--.Size macro fcb ;FILE_SIZE
mav dx,offset fcb
mav ah,35 Junction 35
int 33
endm

setJelative_record macro fcb ;SET _RELATIVE_RECORD
mav dx,offset fcb
mav ah,36 Junction 36
int 33
endm

~~page

set_vector macro interrupt,seg--'lddr,off_addr ~SET _VECTOR
push ds
mav ax,seg--'lddr
mav ds,ax
mav dx,off--'lddr

2-117

MS-DOS System Calls

2-118

mov
mov
int
endm

al,interrupt
ah,37
33

create_prog-seg macro se~addr
mov dX,seg-'lddr
mov ah,38
int 33
endm

ran_blockJead macro fcb,count,rec-size
mov dX,offset fcb
mov
mov
mov
int
endm

cX,count
word ptr fcb[14],rec-size
ah,39
33

ran_block_write macro fcb, count, rec-size

parse

mov dX,offset fcb
mov
mov
mov
int
endm

macro
mov
mov
push
push
pop
mov
mov
int
pop
endm

cX,count
word ptr fcb[14],rec-size
ah,4O
33

filename,fcb
si,offset filename
di,offset fcb
es
ds
es
al,15
ah,41
33
es

;function 37

;CREATEYROG~EG

;function 38

;function 39

;function 40

;PARSE

;function 41

get_date macro ;GET DATE
moy ahA2 Junction 42
int 33
endm

;;page
set_date macro year,month,day ;SET_DATE

moy cX,year
moy dh,month
moy dl,day
moy ahA3 Junction 43
int 33
endm

get_time macro ;GET_TIME
moy ahA4 Junction 44
int 33
endm

set_time macro
;SET_TIME

hour,minutes,seconds,hundredths
ch,hour
cl,minutes
dh,seconds
dl,hundredths

moy
moy
moy
moy
moy
int
endm

ahA5 Junction 45
33

verify macro switch
moy aI, switch
moy ahA6
int 33
endm

.******************* ,
; General
.******************* ,

moYe---.String macro source,destination,num_bytes

;VERIFY

Junction 46

MS-DOS System Calls

2-119

MS-DOS System Calls

2-120

rep

convert

table
start:

push
mov
mov
assume
mov
mov
mov
movs
assume
pop
endm

macro
local
Jmp
db
mov
xor
xor
div
mov
mov
mov
mov
mov
mov
endm

;;page
convert_to_binary

local
Jmp

ten db
start: mov

xor
mov

calc: xor
mov
sub
cmp

es
ax,ds
C3,ax

es:data
si,offset source
di,offset destination
cx,num_bytes
es:destination,source
es:nothing
es

value, base, destination
table, start
start
"01 23456789ABCDEF"
al,value
ah,ah
bx,bx
base
bl,al
al,cs:table[bx]
destination,al
bl,ah
al,cs:table[bx]
destination[1],al

;CONVERT

macro string, number, value

ten, start,calc,mult,no-Illult
start
10
value,O
cx,cx
cl,number
aX,ax
ai, string [si]
al,48
cx,2

;CONVERT_TO_BINARY

jl no_mult
push cx
dec ex

mult: mul cs:ten
loop mult
pop cx

nO-ITlu1t: add value,ax
mc Sl

loop calc
endm

convert_date macro dir_entry
mov dx, word ptr dir_entry[2S]
mov cl,S
shr dl,cl
mov dh,dir _entry [2S]
and dh,lfh
xor cX,cx
mov cl,dir_entry[26]
shr cl,l
add cx,1980
endm

AN EXTENDED EXAMPLE OF MS-DOS SYSTEM CALLS

The following program provides more examples of system calls.

title DISK DUMP
zero equ
disk_B equ
sectors_per_read equ
cr
blank
period
tilde

equ
equ
equ
equ

INCLUDE B:CALLS.EQU

subttl DATA SEGMENT
page +
data

o
I
9
13
32
46
126

segment

MS-DOS System Calls

2-121

MS-DOS System Calls

input_buffer db 9 d u p(5 12 du p(?))
output_buffer db 77 dup(" ")

db ODH,OAH,"$"
start_prompt db "Start at sector: $"
sectors_prom pt db "Number of sectors: $"
continue_prompt db "RETURN to continue $"
header db "Relative sector $"
end-string db ODH,OAH,OAH,07H,"ALL

DONE$"
~DELETE THIS

crlf db ODH,OAH,"$"
table db "0123456789ABCDEF$"

ten db 10
sixteen db 16

start_sector dw
sector-Ilum label byte
sector _n urn ber dw 0
sectors_to_d u m p dw sectors_per _read
sectorsJead dw 0

buffer label byte
max~ength db 0
current~ength db 0
digits db 5 dup(?)

data ends

subttl STACK SEGMENT
page +
stack segment stack

dw 100 dup(?)
stacLtop label word
stack ends

subttl MACROS
page +

~-122

INCLUDE B:CALLS.MAC
~BLANK LINE

blank line

print~t:

macro
local
push
call
mov
display
loop
pop
endm

subttl ADDRESSABILITY
page +
code segment

start:
mov
mov
mov
mov

subttl PROCEDURES
page +

; PROCEDURES
~ READ_DISK
read_disk

mov

geL..sector:

assume
mov
ds.ax
ax.stack
ss.ax
sp,offset stack_top

jmp

proc;
cmp
jle
bx.offset input_buffer
mov
mov
mov
cmp
jle
mov
push
int

number
print~t

cx
clear~ine
cx,number
output_buffer
print_it
cx

cs:code,ds:data.ss:stack
ax,data

main_procedure

sectors_to_dump.zero
done

dx.start--Sector
al.disk_b
cx, sectors_per -.read
cx, sectors_to_dump
get--Sector
cx. sectors_to_dump
cx
disk-.read

M S-DOS System Calls

2-123

MS-DOS System Calls

~-124

xor
done:
read_disk
;CLEAR LINE

clear -line

clear -line

;PUT_BLANK
put_blank

setup

popf
pop
sub
add
mov
si.si
ret
endp

proc;
push
mov
XOf

mov
mc
loop
pop
ret
endp

proe;
mov
mc
ret
endp

proe;
display
geL_string
display

convert_to_binary digits,
current-Iength,starL..sector
mov aX,starL.seetor

mov
display
geL_string
convert_to_binary digits,

cx
sectors_to_dump,cx
start-sector,cx
sectorsJead,cx

ex
ex,77
bx,bx
output_buffer[bx],' ,
bx
move_blank
cx

output_buffer [di]," "
di

start_prompt
4, buffer
crlf

sector-11umber,ax
sectors_prompt
4,buffer

setup

;CONVERT _LINE
eonvert-1ine

eonvert~t:

displaY-Clscii:

printable:

non_printable:

convert-1ine

display-.-Screen

;1 WANT length header

current-1ength,sectors_to_dump
ret
endp

proc;
push
mov
mov
convert
output_buffer [di]
mc
add

call
loop
sub
mov
add
mov
cmp
jl
cmp
]g

mov
mov
mc
mc
ioop
pop
ret
endp

proe;
push
call

mov

ex
di.9
cx,16
input_buffer [si],sixteen,

SI

di,2

put_blank
convert~t
si,16
cx,16
di,4
output_buffer [di],period
input_buffer [si],blank
non_printable
input_buffer[si],tilde
non_printable
dI.input_buffer [si]
output_buffer [di],dl
si
di
dis p la Y -Clsci i
cx

cx
clear_line

cX,17

dec cx
;minus I in cx

M S-DOS System Calls

2-125

MS-DOS System Calls

2-126

xor
mov
mov
mc
loop

convert
output_buffer[di]
add
convert
output_buffer [di]

blank-line 2

call

call
display
loop
blank-line 3
display
get_char-Ilo_echo
display
pop
ret

; END PROCEDURES
subttl MAIN PROCEDURE
page +
main_proced ure:
check_done:

display it:

call
cmp
Jng
call
mov
call
call
inc
loop
jrnp

di,di
al,header [di]
output_buffer [di],al
di
move~eader ;FIX THIS!

sector-Ilum[l],sixteen,

di,2
sector -Ilum,sixteen,

clear -line

convert-line
output_buffer
dump~t

continue_prompt

crlf
c.x
display-screen endp

setup
sectors_to_dump,zero
all_done
read_disk
cX,sectorsJead
dis p la y -screen
display-screen
sector -11 urn ber
display~t
check_done

display

mov

code

display
get_char_no_echo
ends
ends
end start

M S-DOS System Calls

end~tring

2-127

Chapter 3

The Extended I/O
System Functions
Calls to extended I/O System functions from user programs are issued directly to
IO.SYS. bypassing MSDOS.SYS.

Entry to these functions is accomplished through the software interrupt 220H.
Extended function calls use registers for passing function codes and parameters .

• Register CL holds the function code .

• Registers DX. DS. and AX contain additional parameters as necessary.

All registers are automatically saved upon entry and restored upon exit from the
extended function call.

GET TIME AND DATE

ENTRY

CLOOH

DS:DX Data Buffer
Address

EXT FUNC OOH

RETURN

Buffer Time and
date

Extended Function OOH returns the system time and date. Registers DS and DX hold
the address of the I/O data buffer in which the data is to be stored. The system fills the
data buffer at the indicated address in the following format.

3-1

The Extended IIO·System Functions

3-2

Year
Month Day of Week*

Day
Hour

Minute
Second

<----------1 byte--------->

*Month and Day of Week are each half byte-values.

Year=OO-99
Month=I-12
Day of Week=I-7
(I=Sun.2=Mon.,
and so on)

BDC
Hex
Hex

Day=I-31
Hour=O-23
Minute=O-59
Second=O-59

BCD
BCD
BCD
BCD

The Get Time and Date extended function performs the same operations as the Get
Time and Get Date function requests (Functions 2CH and 2AH).

SET TIME AND DATE

ENTRY

CL OIH

DS:DX Data Buffer
Address

RETURN

EXT FUNC OIH

Extended Function OOH sets the system time and date. The buffer addressed by
registers OS and DX must contain the time and date. The I/O data buffer format is the
same as that used by Extended Function OOH, Get Time and Date.

The Set Time and Date extended function performs the same operations as the Set
Time and Set Date function requests (Functions 2DH and 2BH).

The Extended 110 System Functions

PLAY MUSIC

ENTRY RETURN

CL 02H [EXT FUNC 02H

AX Buffer length

OS:OX Data buffer
address

Extended Function 02H plays music on the APC. The I/O buffer addressed by
registers DS and OX consists of melody data. Register AX is set to the I/O buffer
length in bytes.

Melody data consists of two types of information: control commands and scale data.
Control commands set the loudness and speed. Scale data refer to notes, duration, and
accent.

Control Data

Control data is written in the following format:

[M[n]] [T[n]]

Table 3-] lists the acceptable values for n. Both the loudness and speed commands are
optional, as indicated by the square brackets. The values are effective until new ones
are specified.

Table 3-1 Melody Data Control Commands

COMMAND FUNCTION

Mn Loudness
n = I piano

2 medium (default)
3 forte

Tn Speed
n = I 1.00 sec for quarter note

2 0.R7 sec (default)
3 0.56 sec
4 0.3R sec

3-3

The Extended I/O System Functions

3-4

Scale Data

Scale data sets the note values, duration, and accent. The allowable values for these
variables are defined in Tables 3-2 and 3-3.

Table 3-2 Note Values

NOTE FUNCTION

-C
-C#
-D
-D#
-E
-F
-F# low octave
-G
-G#
-A
-A#
-B

C
C#
D
D#
E
F middle octave
G
G#
A
A#
B

+C
+C#
+D high octave
+D#
+E

N rest

The Extended 110 System Functions

Table 3-3 Duration Values

DURATION FUNCTION (FOR REST NOTE)

0 Q whole
.....

1 J. dotted 1/2 .-.,

2 J 1/2 ---
3 J. dotted 1/4 ~.
4 ~ 1/4 ~
5 1>. dotted 1 /8 i.
6 J) 1/8 7
7 ~. dotted 1/16 1.
8 ~~ 1/16 1
9 }t 1/32 i

The format of the scale data command is as follows:

[S] note [duration]

The accent command is indicated by the value S in the scale data command. Both
accent and duration are optional. The accent applies only to the note value it precedes.
The duration is effective until the next duration is specified.

3-5

The Extended 110 System Functions

3-6

Complete Melody Data Format

The complete melody data format, then, is

[control data] [scale data] ...

The control data is effective until the next control data is specified.

An example of melody data follows.

M2 Tl +A3 SG#l SE5-A#O T3-F4 S-D#2 ...

'? Y ~ "f!? C(O Y
control scale control scale
data

SOUND BEEP

ENTRY

CL03H

AX Buffer length

DS:DX Data buffer
address

data data data

RETURN

EXT FUNC03H

Extended Function 03 H sounds the beep tone on the APC. The I/O buffer addressed
by registers DS and OX contains beep data. Register AX is set to the I/O buffer length
in bytes.

Beep data consists of control commands and parameters. Control commands set the
loudness and type of sound. The parameters control frequency and tone period.

The Extended 110 System Functions

Control Commands

Control commands are written in the following format.

The loudness parameter. n. is optional. Table 3-4 lists the values for n. Control data is
effective until the next control data is specified. Band P are mutually exclusive
commands; they cannot be specified together.

Table 3-4 Short Sound Control Commands

COMMAND FUNCTION

Bn B = Rectangular wave sound (beep)

Pn P = Piano sound

n = Loudness
I piano
2 medium (default)
3 forte

The parameter format is a frequency value followed. optionally. by a number
specifying the tone period.

3-7

The Extended I/O System Functions

3-8

Beep Sound Parameters

The beep sound parameters and their corresponding values are defined in Table
3-5.

Table 3-5 Beep Sound Parameters

PARAMETER VALUE MEANING

Frequency H 710 Hz
I 1202 Hz
J 2038 Hz
K 3406 Hz

Tone period 1 20 msec (min)
n 2 2xl0 msec

3 3xl0 msec

N NxlO msec

65535 65535xIO msec

Complete Beep Command Format

The complete format of the beep command is

[control data] [sound parameter]. ..

Both parts of the command are optional. An example of a command follows.

I P2 K8 BI H3 ...
\...J \OJ \..J CJ

The Extended 110 System Functions

REPORT CURSOR POSITION ENTRY

ENTRY

CL04H

DS:DX Data buffer
address

EXT FUNC 04H

RETURN

Buffer Cursor
position

Extended Function 04H gets the current active position on the console screen.
Registers DS and D X point to the address of the I/O buffer in which the data is to be
stored. The system returns the column and line numbers of the current position
prefixed by the escape (ESC) code in the following format:

E
S [PI , Pc R
C

~8 bytes -""

All characters are returned as ASCII code values. P I is the line number (01-25). Pc is
the column number (01-80).

AUTO POWER OFF

ENTRY RETURN

CL05H
EXT FUNC 05H

Extended Function 05H turns off the power of the APC. When this function is called.
the system waits approximately five seconds before turning off the power. To turn the
system back on, turn the APC power switch off. then turn it back on.

3-9

The Extended I/O System Functions

3-10

INITIALIZE KEYBOARD FIFO BUFFER

ENTRY

CL06H EXT FUNC 06H

RETURN

Extended Function 06H initializes the keyboard FIFO buffer. This function does not
pass any parameters.

DIRECT CRT I/O

ENTRY

CL07H

DS:DX Display
Request
Block address

RETURN

EXT FUNC07H

Extended Function 07H allows the assembly language programmer to perform high
speed block level I/O operations to the console through the D M A. Five different
operations may be performed through this function. They are identified by the
command number passed in the Display Request Block. The Extended Function 07H
commands are listed in Table 3-6.

Table 3-6 Direct CRT-I/O Function Commands

CMD# FUNCTION

0 Display video memory format data on CRT
1 Display string data on CRT
2 Report cursor position by binary value
3 Roll down screen
4 Roll up screen

Figure 3-1 shows how the DMA transfer function works. The Display Request Block
contains the addresses of display data in video memory format, and attribute data.
This data is transferred to the Display Data Area and the Attribute Data Area,
respectively, in video memory.

The Extended 110 System Functions

--r----
DISPLAY

DATA

AREA

VIDEO MEMORY

A
/\ , "-, " , ,

-- - --- -+-----~----_t ,'l_
I

ATTRIBUTI, \

"-
"­,

DISPl.AY REQl.'FSl BLOCK

~.
LA I cA

!'OOI.

-I'"

"'----------- - - - 1111 I 41 I 1111 I 42 I

DMA TRANSII-R
I>ISI'I .\y 1>"'1',,

I VII>I. 0 MI MOR) fORMAl)

I I
DMA TRANSFER -\TTRIHI'n DATA

DATA - - - - - - - - - - - - - --

AREA

\r-_
~ --------------------------_

__ L ___ ~I _-------....J
Figure 3-1 DMA Transfer

Display Request Block

The Display Request Block used in the Direct CRT 110 function contains control data
for the DMA exchange. It includes the command number, cursor position from which
the data is to be displayed, the number of characters to display, and the address of the
data buffer. Registers DS and DX are set to the address of the Display Request Block
prior to issuing the function call. The format of the Display Request Block is shown
below.

3-11

The Extended I/O System Functions

3-12

CMD#

LA CA

NOC

display data offset

----------- 2 words (word boundary)

buffer
address base .

attribute data offset

----------- 2 words (word boundary)

buffer
address base.

Figure 3-2 Display Request Block

The data fields in the Display Request Block are the following:

CMD#:

LA.CA:

NOC:

Display data
address:

Attribute
data address:

0-4 (Command Number)

Display / cursor position

LA (Line address) = 0-24 binary, I byte

CA (Column address) = 0-79 binary, I byte

N umber of characters to be displayed
0-2000 binary, 1 word

Starting address of display data buffer
(offset, base address; 2 words)

Starting address of attribute data buffer
(offset, base address; 2 words)

In the video memory, each display character consists of display data (two bytes) and
attribute data (one byte). The first byte of the display data identifies whether the next
code is the normal character code or the auxiliary character code, as shown in the
following illustration.

The Extended I/O System Functions

DISPLAY CHARACTER y----- DISPLAY DATA
(2 BYTES)

SECOND BYTE
OO-FFH

FIRST BYTE
OOH=NORMAL

89H=AUXILIARY

ATTRIBUTE DATA
(I byte)

With CMD#O, hoth normal and auxiliary character codes may be used in the video
memory format. With CM D# I, only normal character codes may be used.

Video Memory Format

Video memory format is the format of the Display Data Area in the video memory.
Each display data item consists of two bytes.

I
display display I display I I data I data 2 data 3

first
I

second first I second first
byte I byte byte I byte byte

I I

first byte = 00 H (normal character code)
89H (auxiliary character code)

I
I

...

I
second I byte

I
...

second byte = OOH - FFH (normal or auxiliary character code)

String Data Format

In the string data format for CMD#I, each display data item is one byte long, and only
normal character codes are available.

Attribute Data Format

The attribute data items occur in one-to-one correspondence with the display data
items. That is, there is one attribute data item for each display data item. Each attribute
data item is one byte in length, with each of the eight low-order bits set to 0 or I to
indicate no color or a color value. The colors are assigned to bits as follows.

3-13

The Extended I/O System Functions

3-14

M
S
B
7 6 5 4 3 2

L
S
B
o

!.--------- Under line
'----------- Over line

L.-___________ Vertical line

'-------------- Blink
'---------------- Reverse

L.-__________________ Red/Highlight *

'----------------------- Blue L.-__________________________ Green

* - Highlight is available for monochrome monitor only.

Colors may be used individually or in combination to generate secondary colors. For
example, the following attribute data byte displays data with blink and purple color
attributes.

o II 0 1000 (68 H)

I~Blink
l:=Red l

Blue f Purple

Direct CRT I/O Command Descriptions

CMD# 0 - DISPLAY VIDEO MEMORY FORMAT DATA ON CRT

This function displays the data, starting from the positions specified by LA and CA for
the length in NOC, on the CRT. The display data must be formatted in the video
memory format.

The Extended I/O System Functions

The contents of the display request block for this command follow.

LA

CA

NOC

Display data
address

Attribute
data address

Range is 0-24. binary. Values greater than 24 are
converted to 24.

Range is 0-79, binary. Values greater than 79 are
converted to 79.

If the number of data items to be displayed
exceeds the display area on the CRT, the
overflow data is ignored. IfNOC is O. the cursor
is positioned at LA and CA. and no other action is
taken.

The starting address should be located at
an even memory address (OM A controller's
restriction). If the base address is 0, no display
data is transferred.

If the base address is O. attribute data is not
transferred.

If the base addresses of both display data and attribute data areO. the effect is the same
as setting NOC to O. The cursor is positioned at LA,CA and no data is transferred.

After data is transferred. the cursor is positioned at the next cursor position. If the
cursor is positioned on the last screen position (25,80) when the call is issued, the
command is executed, the screen rolls up one line, and the cursor is positioned on the
first field of the bottom line.

CMD# 1 - DISPLAY STRING DATA ON CRT

This command, like CMD# 0, displays the data addressed by LA and CA for the
length in NOC on the CRT. The display data must be in string data format with each
item consisting of one byte of normal character code data.

The contents of the Display Request Block are the same for this command as for
CMD# 0, except that CMD# is 1.

CMD# 2 - REPORT CURSOR POSITION

This command returns the current cursor position in fields LA and CA in the Display
Request Block. The function uses only the Display Request Block fields listed below.
The contents of the remainder of the area are ignored.

3-15

The Extended I/O System Functions

3-16

LA Line address (0-24, binary)

CA Column address (0-79, binary)

CMD# 3 - ROLL DOWN SCREEN

This command enables the programmer to roll down a maximum of 25 lines on the
screen. The function uses only the LA field in the Display Request Block. The contents
of the remainder of the area are ignored.

LA Number of lines to roll down (1-25, binary)

The following illustrates the roll down operation.

LA Number of lines to roll down (1-25, binary)

VIDEO MEMORY

OLD
- ROLL DOWN

DISPLA YED SCREEN

CRT
29 [J CURSOR
5o ____ _

NEW

CMD# 4 - ROLL UP SCREEN

This command enables the programmer to roll up a specified number of lines on the
screen. The function uses only the LA field in the Display Request Block. The contents
of the remainder of the area are ignored.

LA Number of lines to roll up. If the number of lines to roll up exceeds the
number of lines that have been written, the next line is erased.

The following illustrates the roll up operation.

The Extended I/O System Functions

VIDEO MEMORY

~/ ~-
OLD <_. ____ _

3
4

f--...,....,,--.,-_.,.....,. ... + - - - --~ __ .,....,.-7t"'-r-7-,1

CRT

WRITE CMOS

ENTRY

CL08H

DS:DX Data buffer
address

NEW

EXT FUNC08H

RETURN

Extended 08H writes up to 512 bytes to CMOS RAM (battery back-up memory). The
data to be written is stored in an I/O buffer addressed by registers DS and DS. The
format of the buffer is as follows.

READ CMOS

ENTRY

CL09H

DS:DX Data buffer
address

RETURN

EXT FUNC 09H
Data buffer

Extended Function 09H reads data in CMOS RAM (battery back-up memory) into
the buffer addressed by registers DS and DX. The system fills the data buffer in the
format defined in Function 08H, Write CMOS.

3-17

The Extended I/O System Functions

3-18

INITIALIZE RS-232C

ENTRY

CLOAH

DS:DX Baud rate and
mode

RETURN

EXT FUNCOAH

The Initialize RS-232C function is used in asynchronous mode only to set the baud
rate (DH) and mode (DL). (In synchronous mode, an external clock determines the
baud rate.) The register values are set as follows.

D H = Baud Rate

0= 150 BPS
1 = 200 BPS
2 = 300 BPS
3 = 600 BPS
4 = 1200 BPS
5 = 2400 BPS
6 = 4800 BPS
7 = 9600 BPS
8 = 19200 BPS

DL = Asynchronous mode byte for PD8251

An illustration of the control information, including baud rate, for data transmission
follows.

NOTE

When communication software is operating, the
system timer is off and the keyboard repeat
feature does not operate.

Chapter 4

The APe Escape Sequence
Functions
When a program calls an APC escape sequence function. it uses the following function
requests:

• Function request 02H (Console Output)

• Function request 06H (Direct Console I/O).

ESCAPE SEQUENCE FORMAT

Escape sequences consist of three fields: a sequence introducer that identifies the
instruction as an escape sequence, one or more parameters. and a final character. For
example. the format of the escape sequence to move the cursor up is

ESC [PnA

The basic elements of all APC escape sequences are t.he same.

• The Control Sequence Introducer (CSI) signals an escape sequence command
to the system. For the APC. the CSI is the ESC character (l BH).

The ESC is usually. but not always. followed by a square bracket (D.

• A parameter is a string of zero or more decimal characters that represent a
single value. Leading zeroes are ignored. The decimal characters have a range
of 0 (30H) to 9 (39H). Two types of parameters are used in escape sequences:
numeric and selective parameters.

Numeric parameters represent numbers. Unless otherwise specified. any
numeric value may be used. Numeric parameters are designated Pn in this
document.

4-]

The A PC Escape Sequence Functions

4-2

Selective parameters, designated in this document by Ps, select a subfunction
from a specified list of subfunctions.

You must replace Pn and Ps as well as certain command-specific parameters
with the appropriate values in the command.

A parameter string is a list of parameters, separated by semicolons (3BH).

A default is a function-dependent value that is assumed when no value is
explicitly specified for a parameter .

• The Final Character is a character whose bit combination terminates an
escape or control sequence. There is a different character for each escape
sequence. In the example above, "A" is the Final Character. The Final
Character must be entered exactly as it appears in the command format. Be
careful to use uppercase or lowercase correctly.

For example, the following escape sequence sets character attributes.

ESC [Ps; ... ; Psm

To select the attributes "over line" (3), "under line" (4), and "blink" (5), you would enter
the values that correspond to the following sequence. All the character attributes for
display are listed in Table 4-1.

ESC [3;4;5m

Note that lowercase m is used in this command as the final character.

The escape sequence is represented below in both decimal and hexadecimal values.

delimiter delimiter

tt , ~
ESC [2 3 4 m 18 58 32 38 33 38 34 60

t t t t t +
Selective Selective

Parameters Parameters

Parameter Parameter

String String

CSI Final (,SI Final
Character Character

The A PC Escape Sequence Functions

CURSOR UP

ESC[PnA Default value: I

This sequence moves the active position up without altering the column position. The
number of lines moved is determined by the parameter. A parameter value of 0 or I
moves the active position up one line. A parameter value of n moves the active position
up n lines. If an attempt is made to move the cursor above the first character ofthe first
display line, the cursor stops at the top margin.

CURSOR DOWN

ESC[PnB Default value: I

This sequence moves the active position down without altering the column position.
The num ber of lines moved is determined by the parameter. A parameter value of 0 or
I moves the active position down one line. A parameter value of n moves the active
position down n lines. If an attempt is made to move the cursor below the bottom
margin, the screen rolls up the required number of lines.

CURSOR FORWARD

ESC[PnC Default value: I

This sequence moves the active position to the right. The distance moved is determined
by the parameter. A parameter value of 0 or I moves the active position one position to
the right. A parameter value of n moves the active position n positions to the right. If
an attempt is made to move the cursor to the right of the right margin, the cursor
moves to the first column of the next line. If this would take the cursor below the
bottom margin, the screen rolls up one line and the cursor is positioned on the first
character of the bottom line.

CURSOR BACKWARD

ESC[PnD Default value: I

This sequence moves the active position to the left. The distance moved is determined
by the parameter. A parameter value of 0 or 1 moves the active position one position to
the left. A parameter value of n moves the active position n positions to the left. If an
attempt is made to move the cursor to the left of the left margin, the cursor moves to
the last column in the previous row. If this would place the cursor above the home
position, the cursor does not move.

4-3

The APe Escape Sequence Functions

4-4

CURSOR POSITION

ESC[PI;PcH or
ESC[PI;Pcf

Default value: I

This sequence moves the cursor position to the position specified by the parameters.

P I=Line number. A parameter value of 0 or 1 moves the active cursor position to
the first line in the display. A parameter value of n moves the active position to the
nth line in the display. If n>25, the system treats n as 25.

Pc=Column number. A parameter value of 0 or I moves the active cursor position
to the first column in the display. A parameter value of n moves the active position
to the nth column. If n>80, the system treats n as 80.

SELECT CHARACTER ATTRIBUTES

ESC[Ps; ... ;Psm

This escape sequence sets character attributes. Once the sequence is executed, all
characters transmitted afterwards are rendered according to its parameters until the
escape sequence is used again.

Parameter Meaning

Attributes off (default: green color, color monitor)
I Attributes off (default: green color)
2 Vertical line
3 Over line
4 Under line
5 Blink
6 Not used
7 Reverse
8-15 Not used

16 30 Secret
17 31 Red color / Highlight*
18 34 Blue color
19 35 Purple color
20 32 Green color (default) Color Parameters
21 33 Yellow color
22 36 Light blue color
23 37 White color

*Only the Highlight attribute is available for the monochrome CRT.

The APe Escape Sequence Functions

NOTE

The color and secret parameters are mutually
exclusive. If neither color nor secret is specified,
the green color default is used.

The attributes off parameter (Ps=O or I) cannot
be specified with other parameters. I f it is, it is
ignored.

ERASE WITHIN DISPLAY

ESC[PsJ Default value: 0

This sequence erases some or all of the characters in the display according to the
specified parameter.

Parameter Meaning

o Erase from the active position to the end of the screen.

Erase from the start of the screen to the active position.

2 Erase all of the display. All lines are erased, and the cursor does
not move.

ERASE WITHIN LINE

ESC[PsK Default value: 0

Erases some or all characters in the active line according to the specified parameter.

Parameter

o

2

Meaning

Erase from the active position to the end of the line.

Erase from the start of the screen to the active position.

Erase all of the line.

AUXILIARY CHARACTER SET

ESC(I

This function is used to access the auxiliary character codes (20H - FDH) created by
the Auxiliary Character Generator program (CHR external command). The one
character immediately following the command is treated as the auxiliary character
code. In Direct Console I/O (Function Request 06H) the available auxiliary character
codes have a range of OOH to FFH.

4-5

The A PC Escape Sequence Functions

4-6

NOTE

The character immediately following ESC is the
open parentheses character, (, not the square
bracket.

For more information on the Auxiliary Character Generator program, refer to the
MS-DOS System Programmer's Guide.

SET A MODE

ESC[Psh

This sets the mode specified by the parameter. Only the values listed below may be
used; all others are ignored.

Parameter Meaning

1 Disable system status display

2 Disable key click

5 Disable cursor display

7 Disable keyboard input

RESET A l\10DE

ESC[PsI

This escape sequence resets the mode specified by the parameter. Only the values listed
below may be used; all others are ignored. The final character is the lowercase letter I,
not the number one.

Parameter

1

2

5

7

Meaning

Enable system status display

Enable key click

Enable cursor display

Enable keyboard input

DEVICE STATUS REPORT

ESC [6 n

The A PC Escape Sequence Functions

The console driver will output a Cursor Position Report (CPR) sequence on
receipt of a Device Status Report sequence (DSR).

CURSOR POSITION REPORT

ESC [P; Po R

The Cursor Position Report (CPR) sequence reports the current cursor position via
standard input (console driver). The first parameter specifies the current line and the
second parameter specifies the current column.

SAVE CURSOR POSITION

ESC [s

The Save Cursor Position (SCP) sequence saves current cursor position. This cursor
position can be restored with the Restore Cursor Position (RCP) sequence.

RESTORE CURSOR POSITION

ESC [u

The Restore Cursor Position (RCP) restores the cursor position to the value it had
when the console driver received the SCP sequence.

Note that the Device Status Report escape sequence performs the same task as the
Report Cursor Position escape sequence.

ADM-3A MODE CURSOR POSITION ESCAPE SEQUENCE

ESC = lc

This escape sequence function is compatible with that used by the Lear Siegler
ADM-3A terminal.

This sequence moves the cursor position to the position specified by the parameters.

I = Line number. The line number is a binary value in the range 20H (first line)
-38H (25th line). If 1=38H, the system treats I as 38H. If 1 >'20H, the system
treats 1 as 20H.

c = Column number. The column number is a binary value in the range. 20H (first
column)-6FH (80th column). If c=6FH, the system treats c as 6FH. If c > 20H.
the system treats c as 20H.

4-7

Chapter 5

MS-DOS Graphics
Supplement

The MS-DOS Graphics Supplement provides a powerful interface between the APC
graphics hardware and applications running under MS-DOS. The supplement
consists of a Pascal unit called Graf_Draw. Procedures perform tasks such as drawing
lines, circles, rectangles and arcs, displaying graphics texts, polygon filling, pattern
generation, and character font generation.

To use the supplement, the following minimal APC system configuration must be
available:

• one or more diskette drive(s)

• 256K bytes or more of RAM

• an APC monochrome or color graphics board.

The following graphics application files are supplied on the MS-DOS system diskette:

FNTCOMP.EXE

PATCOMP.EXE

PRCO.OBJ,
GRIMPL.OBJ

The Character Font Compiler, which allows user-designed
character fonts to be created and stored for later use by
applications programs.

The Area Fill Pattern Compiler, which allows user-defined
patterns to be used in filling polygon areas. The patterns
can be stored for later use by applications programs.

Two object modules containing the graphics proce-
dures used by application programs. These modules are
combined by LINK.EXE with user applications to produce
an executable program.

5-1

MS-DOS Graphics Supplement

5-2

GRINTE.PAS

GPTEST.PAS

KEYBRD.ASM

GPTEST.EXE

FONTOI.TXT

FONTOI.FNT

PATOO.PAT

PATOI.TXT

PATOI.PTN

PATOZ.TXT

PAT02.PTN

PAT03.TXT

PAT03.PTN

PAT04.TXT

PAT04.PTN

File containing the Pascal constant, type, variable, and
external procedure declarations for the Graf_Draw unit. It
must be copied, using the Include compiler directive, into a
Pascal source file that uses the Graf_Draw unit. (See
GPTEST.PAS for an example of this Include.)

The validation suite for the supplement. This file contains
the Pascal source code, which can be used as an example of
the way the procedures of the Graf_Draw unit work.

Assembly language module used by the G PTEST program
to gain direct access to the APC keyboard.

The executable file for the validation suite. It can be exe­
cuted as a demonstration of the Graf_Draw unit.
G PTEST.EXE can also be used to verify proper function­
ing of the graphics hardware.

The source file for the standard character font. This file is
also an example ofthe input format for the font compiler. It
defines characters of 16 pixels by 16 pixels.

The file, written by the Font Compiler, that contains the
"object" code for the standard character font. This file is
used at run time when the application requests that charac­
ter data be displayed.

A source file processed by the Pattern Compiler to produce
a pattern data file that can be used to fill areas on the
graphics display. The file is also an example of the pattern
source file format. It defines a 16 x 16 pixel blue grid
pattern.

A source file for a 16 x 16 pixel blue and green grid.

The data file for the above pattern.

A source file for an 8 x 8 pixel red triangle pattern.

The data file for the above pattern.

A source file for a I I x II pixel green triangle pattern.

The data file for the above pattern.

A source file for a lOx I 0 pixel blue triangle pattern.

The data file for the above pattern.

MS-DOS Graphics Supplement

EXECUTING THE GRAPHICS TEST

GPTEST.PAS demonstrates the capabilities of the Graphics Supplement and verifies
that the graphics hardware of the APC is working properly.

To begin, insert the MS-DOS system diskette, containing the file GPTEST.PAS, the
font data file FONTOI.FNT, and the pattern data files (PATOO.PTN, PATOI.PTN,
and so on), into drive A. Enter G PTEST to start the test.

When the test program begins, it will prompt for three entries:

• The first entry is for the background color. Enter the index of the color you
want to be used as a background throughout the test. Use black (color) for best
results with this test program. Note that you will enter the number of the color,
not the name, for this prompt.

• The second entry is for the pattern to use for the area fill operations. Enter a
number, 0 to 4, to select the .PTN data file containing the fill pattern you want.
Entering 0 selects PATOO.PTN, 1 selects PAT01.PTN, and so on. Note that
patterns containing colors other than green will not display on a monochrome
graphics APC. Therefore. for a monochrome system. it is suggested that
pattern number 1 or 3 be selected.

• The final entry is the number of the font (.FNT) file containing the character
display font to be used for the text portion. Enter 1 to select the .FNT file
FONTOI.FNT.

At this point the graphics test begins execution. There are several subtests within the
G PTEST program. Before each one. you will be asked whether or not you want to run
the subtest. For example. before the first subtest. you will be asked "Test Cursor
(Y / N / esc) ?" Type Y to execute the cursor subtest or N to skip to the next subtest.
Press ESC to exit GPTEST and return to the system prompt.

Several times within each subtest, a display will appear for some function or
combination of functions, and will remain on the screen until you press RETURN.
This gives you time to inspect the results of each function. At these times the prompt
"type return to continue" will appear in the lower left corner of the screen.

This prompt may be difficult to see during some displays and with certain non black
background colors. If the display seems to be inactive for more than about ten seconds,
chances are that the "type return to continue" prompt is displayed but invisible because
of the colors displayed on top of it. Pressing RETU RN will allow the test to continue.

5-3

MS-DOS Graphics Supplement

5-4

Many of the displays of the G PTEST program contain colors that will not display on
monochrome APCs. For this reason, many of the functions will appear to do nothing.
Only displays (and portions of displays) that use green will be seen on a monochrome
APC.

USING THE GRAF-DRAW UNIT

To gain access to the Graph_Draw unit, a Pascal application program must do the
following:

• Use the $Include compiler directive to copy the GRINTE.PAS file into the
application. This provides the interface declarations of the Graf_Draw unit:
$INCLUDE 'GRINTE.PAS'

• Include the Uses statement to gain access to the Graf_Draw procedures:
USES GRAFj)RAW;

The application source program may make use, only once, of the Core Record
and Graf_Draw procedures described in the following section.

Before execution, you must link the actual object code for the Graf_Draw
procedures and data areas with the object code resulting from the compilation
of the application program. To do this, execute LINK.EXE (the MS-LINK
Linker UtilityTM) with GRIMPL.OBJ and PRCO.OBJ, which are supplied as
modules to be linked to the module (or modules) containing the application
program. For example, when linking the GPTEST.EXE, the following LINK
input file could be used.

gptest prcO grimpl keybrd/m/I
gptest
gptest

Figure 5-1 is a flow diagram of the graphics application development process.

M S-DOS Graphics Supplement

GRINITE. PAS INCLUDE -- ($INCLUDE 'GRINITE. PAS') r-- COMPILE

PROGRAM USER;
USES GRAF DRAW;

USER PROGRAM SOURCE FILE

Figure 5- t Graphics Application Development Process

THE GRAF-DRAW UNIT

LINK --1 USER. EXE

USER PROGRAM
EXECUTABLE FILE

The Graf_Draw unit is composed of 28 procedures written in Pascal. This program
works through a segment of code called G RINTE. PAS that acts as an interface
between Graf_Draw and applications programs. This interface segment defines values
for the next operation and a record, called the Core Record. The Core Record contains
variables describing the current state of the graphics system.

THE INTERFACE UNIT

The Interface unit. GRINTE.PAS, contains the following code. Among the values
designated in this program segment are constants, for example, the display screen size
and variables, such as the font type used by the application program. Variables are
defined in the Core Record (see the Core_Record variable).

Const Graf_ Version = 'O.4~

Type Cur~ttribute = (Cur Disable,
Cur_Enable,
Cur_ Visible,
Cur_Invisible,

Cursor disable
Cursor enable
Cursor visible
Cursor invisible

5-5

M S-D OS Graphics Supplement

Cur_Small, Cursor small
Cur_Full; Cursor full

Switch_Types = (Off, On);
Overlay_Type = (X or Mode, Replace contents

Replace); Merge contents
Display_Type = (Fast, No filling

Fill); Fill all polygons
I nt_Type = (Plain, Solid rectangle

Patterned); User pattern
Edge Type = (Solid Line, Solid border

Interior); Invisible border

Directions = (Left, Left direction or position
Right, Right direction or position
Up, Up direction
Down, Down direction
Top, Top position
Center, Center (horz/vert) position
Bottom; Bottom position

Font_Type = -1..99;
Pat_Type = -1..99;
Color_Index = 0 .. 15;
Point = Integer
Point~rray = Array 1..128 Of Point;
Sorcery = Integer;

Core_Record Record
X_Min, Left edge of screen
X_Max, Right edge of screen
V_Min, Top edge of screen
V_Max, Bottom edge of screen

X_Org, X-origin of fill pattern
Y_Org, Y -origin of fill pattern

X_CP X-current position
y_CP :Point; Y -current position
Line--.Index, Line color
Fill--.I ndex, Filled object color

5-6

Text_Index,
Background

Text color
:Color_lndex

Line_Style :Integer;
Display_M ode : Display_ Type
Overlay_Mode : Overlay_Type
PolygoILInterior :Int_ Type
Polygon_Edge : Edge __ Type

Font~umber
Font_Cols
Font_Rows

Char_Spacing
Top_Bottom
Left_Right,
Char_Path
DX_Charup,
DY_Charup
Char_Height,
Char_Width

Pat~umber
Pat_Cols,
Pat Rows

Filej> refix

Var Core : Core~ecord;

Procedure Move~bs (Xj>osition,

: Font_Type;

:Point.

:Real

: Directions;

:Integer;

:Integer

: Pat_Type

:Point;

:String I

Y _Position: Point);

Procedure Move_Cursor (Xj>osition,
Y j>osition : Point)

Procedure Move_Rei (Delta-X,
Delta_ Y : Point);

Procedure Set_Cursor (Attrib : Cur~ttribute);

Procedure Size_Cursor (Size: Integer);

Procedure Set_Fillj>attern (PatterILNum : Pat_Type);

Procedure Box~bs (X_Corner, Y _Corner: Point);

M S-DOS Graphics Supplement

Background color

line Pattern
Fast/ Fill
Replace/Xor pixel
Plain/ Patterned
Solid_line,! Interior

Current font numbers
Columns per char
Rows per char

Character pitch
Above/below text
Left/ right of text
Write direction
Char rotation X
Char rotation Y
Rows to display
Columns to display

User pattern number
Columns in pattern
Rows in pattern

Prefix for font text

5-7

MS-DOS Graphics Supplement

5-8

Procedure Box--Rel (Width, Height: Point);

Procedure Write_Block_Pixels (Data: Sorcery; Rows, Columns: Integer);

Procedure Read_BloclLPixels (Data: Sorcery; Rows, Columns: Integer);

Procedure Set_Charup (DX_Charup,
DY Charup : Integer);

Procedure Set_Font (Font~um : Font Type);

Procedure Text (The_String: String);

Procedure Set-Line_Style (Dot_I,
Dot-2,
Oot~,
00t_4,
Oot~,
00t_6,
00t_7,
00t_8 : Switch_Type);

Procedure Line-Abs (X_End,
Y_End: Point);

Procedure Line_ReI (X_Length,
Y -Length: Point);

Procedure PLine Abs (Var X-End,
Y -End: Point Array;
Count: Integer);

Procedure PLine ReI (Var X_Length,
Y Length: Point Array;
Count: Integer);

Procedure Circle Abs (X_of-Edge, Y _of_Edge: Point);

Procedure Circle_ReI (Radius: Point);

Procedure Define_Color (Index,
Red,
Green,
Blue,
Blink,
Hard_Copy: Integer);

Function Inq_ Value (Option: Integer) : Integer;

Procedure Plane-Enable (Planes: Integer);

M S- DOS Graphics Supplement

Procedure Plane_Visible (Planes: Integer);

Procedure Set_Palette (Pal~ame : String);

Procedure Set_Value (Opcode,
Value: Integer);

Procedure Erase;

Procedure Erase-Alpha;

Procedure Flood;

Procedure Arc_ReI (Radius: Integer:
Start-Angle.
E nd-A ngle : Real;
X_Start.
Y _Start.
X_End.
Y _End: Integer

Procedure Arc-Abs (Var Radius: Integer:
Var Start-Angle.

End-Angle : Real:
X_Start.
Y _Start.
X_End.
Y _End: Integer;

Table 5-1 lists the names, initial values. and a brief description of the Core Record
fields.

5-9

MS-DOS Graphics Supplement

Table 5-1 Core Record Fields

VARIABLE INITIAL VALUE DESCRIPTION

X_Min 0 * Left edge of the screen
X_Max 639 * Right edge of the screen
V_Min 0 * Top of the screen
V_Max 479 * Bottom of the screen
X_Org. ** X-origin of fill pattern
Y _Org. ** Y -origin of fill pattern
X_CP 0 X current position
y_CP 0 Y current position
Line_Index 7 (white) Color of line
FilLlndex 7 (white) Color of filled object
Text_Index 7 (white) Color of text
Background o (black) Color of background
Line_Style .) Line pattern
Display_Mode Fast (no fill) Switch for filling: Fast/ Fill
Overlay_Mode Replace Switch for Replace/Xor Pixels
Polygon_I nterior Plain Fill type: Plain/ Patterned
Polygon_Edge .) Filled object border Solid

Line / Interior
Font_Number -I (undefined) ** Current font number
Font_Cols .) ** Width of font
Font_Rows .) ** Height of font
Char_Spacing .) Spacing between characters
Char_Path ? Direction of character string
DX_Charup .) Character rotation in the X

direction
DY _Charup .) Character rotation in the Y

direction
Char_Height .) Height of text characters
Char_Width .) Width of characters
Pat_Number -I (undefined) ** Current fill pattern
Pat_Cols .) ** Width of current pattern
Pat_Rows .) ** Height of current pattern
File_Prefix .) Volume where .FNT and .PTN files

are located

5-10

MS-DOS Graphics Supplement

NOTES:

The single asterisk (*) denotes variables set once
by the system.

The double asterisks (**) indicate variables that
are automatically set by procedure calls.

You should not attempt to set the values of the Core Record (CORE.) variables
flagged by * and ** in programs. If you do, the results are unpredictable.

TERMS THAT DESCRIBE SCREEN DISPLAYS

The following terms describe elements of the APC graphics display. These terms are
used in explanations of the Graf_Draw procedures, FNTCOMP.EXE, and
PATCOMP.EXE.

Color The APC can display eight colors. These colors are fixed and cannot be altered. The
term "index" is used as a synonym for "color" in many places in this text. A color index
is a pointer into a color table that determines which color is to be used for drawing
lines, shapes, displaying text, and so on. In reality, since the color scheme is fixed, there
is no need to keep such tables around. Therefore, the color tables are conceptual only,
and the index is the color.

The color indexes are as follows:

0- Black
1 - Red
2 - Green
3 - Yellow

4 - Blue
5 - Magenta
6 - Turquoise
7- White

CP The system's current position (CP). The point within the graphic coordinate space
where the next output operationwill take place. The CP is kept in memory in the X CP
and Y _CP CORE. variables.

In this manual, the CP is occasionally indicated by an ordered pair of X and Y
coordinates, such as (100, 200).

Some of the Graf_Draw procedures have an effect on the value OJ the CP,
others do not. This effect is indicated in this discussion by the following
expression:

CP -- (New --X_ Value, New _ Y _ Value);

5-11

MS-DOS Graphics Supplement

5-12

Cursor A software controlled graphics cursor. It shows on the screen as a hairline
cross with equal vertical and horizontal bar sizes. The cursor can be any size,
up to that of the full screen. The default cursor size is 15 pixels.

Pixel The elementary display unit. Each pixel is a dot (approximately 1/10 inch)
on the APC screen. It is individually controlled by attributes stored for it in
the graphics display memory. The APC has a 640 x 480 pixel display. The
attributes for each pixel are stored in a four-bit field, where the high order bit
is always 0 and the remaining three bits give the color associated with the
pixel.

Plane The display screen may be visualized as three superimposed bit planes, one
for each of the primary colors: red, green and blue. The color for an
individual pixel is therefore determined by a three-bit value, depicting a color
value or index.

GRAF-DRAW UNIT PROCEDURES

The Graf_Draw unit procedures are described in the following pages. For each
procedure, you are given

• the complete procedure declaration with its parameters

• a description of what the procedure does

• a sample call with an explanation of the associated effect.

PROCEDURE MOVE-ABS

Declaration:

Procedure Move-Abs(X-Position, Y -Position: Point);

Description:

This procedure sets the CP to the new position given by the values in X-Position and
Y -Position.

Effect on CP:

CP -- (X_Position, Y -Position);

Example:

MOVE~BS (50,100);

This example sets CORE.X_CP to 50 and CORE.Y_CP to 100.

MS-DOS Graphics Supplement

PROCEDURE MOVE-REL

Declaration:

Procedure Move_Rel(DeItLX, DeltLY : Point);

Description:

This procedure changes the value of the current position of the variables. The
parameters DeltLX and DeltL Yare added algebraically to the values of CO R E. X_CP
and CORE.Y _CP respectively.

Effect on CP:

CP - (X_CP+DeltLY);

Example:

MOVE_REL (10,20);

This example moves the current position of X to CORE.X_CP + 10 and of Y to
CORE.Y_CP + 20.

PROCEDURE SET_CURSOR

Declaration:

Procedure Set_Cursor (Attrib : Cur-Attribute);

Description:

The various attributes for the graphics cursor are set via this procedure. Cursor
attributes and their effects are as follows.'

Cur_Visible

The cursor is disabled. All further
cursor commands will be ignored.

The cursor is enabled. Subsequent
cursor commands will be honored.

If the cursor is enabled, it will be made
visible.

5-13

MS-DOS Graphics Supplement

5-14

Curjnvisible

Cur_Small

Effect on CP:

None.

Example:

SET_CUR (Cur_Invisible);

If the cursor is enabled, it will be made
invisible. While invisible, all other cur­
sor commands can still be used but the
effects will not be apparent until the
cursor is made visible again.

The cursor is set to a default size of 15
pixels.

The cursor is set to the size of the
screen.

This example turns the cursor invisible so that it may be moved around the screen or
have its size changed before it is made visible again.

PROCEDURE SIZE_CURSOR

Declaration:

Procedure Size_Cursor (Size: Integer);

Description:

This procedure sets the size of the graphics-cursor. The size is given in pixels and can be
changed only if the cursor is enabled.

Effect on CP:

None.

Example:

SIZE_CURSOR (30);

This example results in the graphics cursor being drawn with lines that are 30 pixels
long.

MS-DOS Graphics Supplement

PROCEDURE SET_FILL

Declaration:

Procedure Set_Fill_Pattern (Pattern.-Num : Pat Type)~

Description:

When drawing boxes. circles. and other shapes. you may use user-defined patterns to
fill these areas. This procedure is used to select one of the defined patterns.

The value of the parameter must correspond to a disk file generated by the Pattern
Compiler (see the section THE PATTERN COMPILER for details). The file contain­
ing the pattern must be named PAT*.PTN where * is a number between 0 an 99.

The variables CORE.Pat~umber, CORE. Pat_Rows and CORE.Pat_Cols are set by
this procedure.

Effect on C P:

None.

Example:

SET _FILLj>ATTERN (3);

This example causes the system to read the file PAT03.PTN if it is present. All future
pattern fills will use this pattern.

PROCEDURE BOX-ABS

Declaration:

Procedure Box~bs (X_Corner: Point)~

Description:

This procedure draws a rectangular box starting at the CPo The box is drawn parallel
to the X and Y axes. One corner is located at the CP, and the opposite corner at the
point given by X-.a.nd Y _Corner.

If CORE.Display_Mode = Fast, the box will be drawn as a rectangular outline. Ifit is
Fill, the box will be drawn as a rectangular solid.

If CORE. Polygon_Edge = Solid Line and CORE.Display_Mode= Fill, the box will
be drawn as a solid rectangle with a border. If it is Interior. no border will be drawn.

5-15

MS-DOS Graphics Supplement

5-16

If CORE.Polygon-Interior = Plain and CORE. Display_Mode = Fill, the box will be
drawn as a solid-colored rectangle. If CORE. Polygon_Interior is Patterned, then the
box will be drawn using the current pattern.

If CORE.Overlay_Mode = Replace, each pixel on the screen will be overwritten by
the corresponding pixel of the box. If it is XOR, then a Boolean XOR is performed for
the screen and the box and the result is displayed.

CORE.Line-Index specifies the color in which the border of the box is drawn.

CORE.Fill-Index specifies the color to be used for a solid fill.

Effect on CP:

The CP retains the value it had before the box was drawn.

Example:

CORE.Line_Index := 1;
CORE.Fill_Index := 4;
CORE.Displaymode:= Fill;
CORE.Polygon-Interior:= Plain;
CORE.Polygon_Edge_:= Solid Line
CORE.Overlay_Mode:= Replace;

Box-A bs(90, 70);

This example draws a box with a border color of 1 and fills it with a solid color of 4.
The box starts at the CP and has its opposite corner at (90,70).

PROCEDURE BOX-REL

Declaration:

Procedure Box ReI (Width, Height: Point);

Description:

This procedure is similar to BOX-ABS. The only difference is that the point defining
the corner of the box opposite to the anchor point is given as a relative displacement
from the CPo Therefore, width is an offset from the current X position and height is an
offset from the current Y position.

MS-DOS Graphics Supplement

Effect on CP:

See BOX.-ABS.

Example:

Refer to BOX.-ABS.

PROCEDURE WRITE....BLOCKJIXELS

Declaration:

Procedure_Write_Blockj)ixels (Data: Sorcery; Rows. Columns: Integer);

Description:

This procedure writes a rectangular array of pixels from a user-defined area to the
screen starting at the CPo The parameters Rows and Columns define the size of the
pixel array to be transferred from memory. The order of display is from left to right
and bottom to top.

The memory array resides in an area pointed to by the Data parameter. This·parameter
is of the Sorcery type and needs to be set prior to the procedure call.

CORE. Overlay_Mode has an effect on this function if it is set to XOR.

Effect on C P:

None.

Example:

Var Screen_Seg : Packed array [0 .. 3000) of boolean;
Data: Integer;

begin
move left(Screen_Seg, Data,2); (*M ove the address of the
screen into Data*)

Move Abs (100,100);
Write block Pixel (Data, 20,20);

end;

This example will write the pixels from Screen_Seg to the screen starting at (100. 100).
The rectangular screen area that is affected by this code is 20 pi xels on each side.

5-17

MS-DOS Graphics Supplement

5-18

PROCEDURE READ-BLOCK-PIXELS

Declaration:

Procedure Read_BlockYixels (Date: Sorcery; Rows, Columns: Integer);

Description:

This procedure does just the opposite of WRITE_BLOCKYIXELS. It writes a
rectangular array of pixels starting at the CP from the screen to a user-defined area.
The parameters mean the same thing, except that Data is now the destination for the
screen area defined by the current position and the parameters, Rows and Columns.

Effect on CP:

None.

Example:

Refer to WRITE-BLOCKYIXELS.

PROCEDURE SET_CHARUP

Declaration:

Procedure Set_Charup (DX_Charup, DY _Charup : Integer);

Description:

This procedure establishes the rotation angle for each character output via subsequent
TEXT calls. It does not specify the direction for the character path (given by the
contents of CORE.CharYath).

The rotation angle is determined by a normalized Cartesian vector system and is
governed by the following variables:

DX_Charup DY_Charup Character Rotation

° I Right side up

° -I Upside down
I ° Rotated to the right
-I ° Rotated to the left

If DX_Charup and DY _Charup have values other than (-1,0,1), the system automati­
cally normalizes the vector based on the larger of the two values.

MS-DOS Graphics Supplement

Effect on CP:

None.

Example:

SET_CHAR UP(-I,O);

This example causes all characters output by subsequent TEXT calls to appear rotated
to the left.

PROCEDURE SET_FONT

Declaration:

Procedure Set_Font (Font~um : Font_Type);

Description:

This procedure selects a user-defined text font for use in the TEXT procedure. The file
containing the pattern must be named FONT*.FNT, where "*9' is a number between °
and 99. The variables CORE. Font_Number. CORE. Font_Rows. and. CORE.
F ont_Cols are set by this procedure.

Effect on CP:

None.

Example:

SET_FONT (3);

This example causes the system to read the file FONT03. FNT ifit is present. All future
calls to the TEXT procedure will use this font.

PROCEDURE TEXT

Declaration:

Procedure Text (The_String: string);

Description:

This procedure writes a string of text to the screen using a user-defined font. The size of
the characters, their orientation the spacing between them, and their paths can be
defined. The parameter is a standard Pascal string to be displayed.

5-19

MS-DOS Graphics Supplement

5-20

CORE . Char_Width and CORE. Char_Heightdefine the size of the characters to be
printed, rounded to the nearest mUltiples.

CORE. Char_Path defines the direction in which the text string is to be written (Left,
Right, Up or Oown).

CORE. OX_Charup and CORE. OY _Charup define the rotation at which the
characters are written. These variables can be set with the SET_CHAR UP procedure.

CORE . Char_Spacing defines the distance between characters. This is a real number
and is used to represent a unit of the character size. The number can be a fraction (for
example, .5 to move characters one-half a character space apart), or it can be a
negative number to move the characters closer together.

CORE . Left_Right and CORE. Top_Bottom are used to position the text relative to
the current position (X_CP,Y _CP). CORE . Left_Right is used to position the string so
that the "left" edge, "right" edge or "center" ofthe string is located on the X component
of the current position. CORE. Top_Bottom is used to position the string so the top
edge, bottom edge, or center is located on the Y component of the current position.

CORE .Text~ndex specifies the color for the string.

CORE Font_Number is set by the procedure SET_FONT and is the number of the
current text font.

Effect on CP:

None.

Example:

CORE .Text_Index : l~
CORE .Char_ Width : 12~
CORE .Char_Height : 30;
SET_FONT (I)
TEXT (,LETS SEE WHAT THIS LOOKS LIKE')

PROCEDURE SET_LINE-BTYLE

Declaration:

Procedure Set_Line_Style (OoLl, Oot-2, Oot~, 00t_4, 00t_5, 00t_6, 00t_7.
00t_8 : Switch_Type);

MS-DOS Graphics Supplement

Description:

By this procedure. you define the type of line that will be used to draw lines. circles and
boxes. It can be a ~ojid line. a dashed line. or a line with dots and dashes. You define
one segment of the line which is composed of eight pixels. Each of the eight pixels can
be turned either "ON" or "OFF."

Effect on C P:

None.

Example:

SET _LI N E_STYLE(0 N. ON, 0 N, 0 FE 0 FE 0 FF)~

This example creates a line that will have 4 pixels on. then 4 pixels off, then 4 on, then 4
off, and so on.

PROCEDURE LINE-ABS

Declaration:

Procedure Line-Abs (X-End, Y _End: Point);

Description:

This procedure draws a line from the CP to the point defined by X_End and Y _End.
The current position is then updated to the X_End, Y _End position.

If CORE. Overlay_Mode = Replace, each pixel on the screen will be overwritten by
the corresponding pixel of the line. If this variable equals XOR then a Boolean XOR of
the screen and the line will be performed and the result will be displayed.

CORE. Line_Index is the color in which the line will be drawn.

CORE. Line_Style is set by the SET_LINE_STYLE procedure.

Effect on CP:

CP - (X_END, Y -End);

5-21

MS-DOS Graphics Supplement

5-22

Example:

SET_LINE STYLE(o.N,o.N,o.N,o.N,OFF,o.FF,o.FF,o.FF);
Co.RE .Line-1ndex:= 1;
Co.RE . o.verlay_Mode:= xor;
Mo.VE~BS(lOO,IOO);

LINE~BS(l20,120);

PROCEDURE LINE--REL

Declaration:

Procedure Line_ReI (X_Length, Y _Length: Point);

Description:

This procedure is the same as LINE~BS except that the end point is specified by
relative displacements from the CPo

Effect on C P:

CP - (X_CP+ X_Length, Y _CP+ Y _Length);

Example:

SET _LIN E_STYLE(o.N, 0. N, 0. N, o.N, 0. FF, 0. FF, 0. FF, 0. FF);
Co.RE. Line-1ndex : 1;
Co.RE . o.verlay_Mode : XORE;
M 0. VE-ABS(lOO,IOO);
LINE_REL (21,21);

This example performs the same operation as the one in the example for LINE-ABS.

PROCEDURE PLINE-ABS

Declaration:

Procedure Pline-Abs (Var X-End, Y -End; Point-Array; Count; Integer);

Description:

This procedure draws a series of lines from the CP to the first set of points in the two
arrays X_End and Y _End. Then it draws the next line to the second position in the
array and so on for "CounC lines. At the end, the CP is pointing to the end of the last
line. A line of zero length implies a pen-up command, so the next line is interpreted as
cursor movement only with no display. The line after that will be displayed again.

MS-DOS Graphics Supplement

If CORE .Overlay_Mode = Replace, each pixel on the screen will be overwritten by
the corresponding pixel ofthe line. If it is XO R, then a Boolean XOR ofthe screen and
the line will be pel formed and the result will be displayed.

CORE .Line_Index is the color in which the line will be drawn.
CORE .Line_Style is set by the procedure SET _LINE_STYLE.

Effect on C P:

CP -(X--End[Count], Y _End[Count]);

Example:

CORE .Line_Index := I;
X--END[I] := 200;
Y-END[I] := 100;
X_END[2]:= 200;
Y _END[2] := 200;
X_END[3] := 100;
Y _END[3] := 200;
X_END[4] := 100;
Y.END[4] := 100;

MOVE ABS (l00,100);
PLINE~BS(X_END, Y _END, 4);

The above example will draw a box in color I starting at (100,100) and returning there.

PROCEDURE PLINE-REL

Declaration:

Procedure Pline_Rel (Var X_Length, Y _Length : Point~rray; count: Integer);

Description:

This procedure is the same as PLINR_ABS except that the lines are specified in terms
of relative displacements rather than absolute end point locations. A line oflength zero
~tiH implies a pen-up command.

Effect on C P:

CP - (X_Final, Y _Final);

5-23

MS-DOS Graphics Supplement

5-24

Where:
X_Final = Y _CP+ X Length [1]+ X_Length[2]+
... + X.Length[COUNT]

Y _Final = Y _CP+ Y _Length[2]+ ... + Y _Length [Count]

Example:

CORE .Line Index := 1;
X_LENGTH[I] := 100;
Y _LEN GTH[I] := 0;
X_LENGTH[2] := 0;
Y _LEN GTH[2] := 100;
X_LENGTH[3] := -100
Y _LENGTH[3] := 0;
X_LENGTH[4] := 0;
Y_LENGTH[4] := -100;
MOVE ABS (100,100);
PLINE_REL(X_LENGTH, Y_LENGTH, 4);

This example will draw a box in color 1 starting at (l00,100) and returning there.

PROCEDURE CIRCLE-ABS

Declaration:

Procedure Circle-Abs (X_of_Edge Y _OLEdge : Point);

Description:

This procedure draws a circle centered around the CP with its edge passing through the
point defined by X_Of_Edge and Y _Of_Edge. The circle can be drawn as an outline or
as a solid disk. If it is solid, it may be filled with a solid color or a user-defined pattern.

If CORE .Display_Mode = Fast, the circle will be drawn as an outline. If the variable
= Fill, the circle will be drawn as a solid.

If CORE. Polygon_Edge = Solid Line and CORE .Display_Mode = Fill, the circle
will be drawn as a solid disk with a border. If it is Interior, no border will be drawn.

If CORE .Polygon_Interior = Plain and CO RE .Display_M ode = Fill, the circle will
be drawn as a solid-colored disk. Polygon_Interior is Patterned, then the circle will be
drawn using the current pattern.

MS-DOS Graphics Supplement

If CORE .Overlay_Mode = Replace. each pixel on the screen will be overwritten by
the corresponding pixel of the circle. If the variable is XOR. then a Boolean XOR is
performed with the cunent contents of the screen before the result is displayed.

CORE .Line_Index specifies the color in which the border of the circle is drawn.

CORE .Fill_Index specifies the color to be used for a solid fill.

~frect on C P:

The CP retains the value it had before the procedure call.

Example:

CORE .Line_Index := 1;
CORE .Fill_Index :=4~
CORE .Display_Mode := Fill~
CORE .Polygon_Edge := Solid Line~
CORE .Polygon_Interior := Plain~
CORE .Overlay_Mode := Replace~

CIRCLE~BS (90. 70)~

This example draws a circle with a border color of 1 and fills it with a solid color of 4.
The circle's center is at the current position and its border passes through the point (90.
70).

PROCEDURE CIRCLE-REL

Declaration:

Procedure Circle_ReI (Radius : Point)~

Description:

This procedure is similar to the CIRCLE~BS procedure. The difference is that
CIRCLE_REL draws a circle centered at the CP whose border is drawn ""Radius"
pixels away from the center. not through a specific point.

~fJect on C P:

The CP retains the value it had before the procedure call.

Example:

Refer to CIRCLE~BS.

5-25

MS-DOS Graphics Supplement

5-26

PROCEDURE DEFINE_COLOR

Declaration:

Procedure Define_Color (Index, Red, Green, Blue, Blink, Hard_Copy: Integer);

This procedure is not implemented.

PROCEDUREINQ_COLOR

Declaration:

Procedure In'l-Color(Var Index, Red, Green, Blue, Blink, HarcLCopy:Integer);

Description:

Given the index of a color in Index, DEFINE_COLOR will set the remaining
variables according to that color's internal composition.

Red, Green, and Blue indicate the amount of each of the primary colors that is used to
make up a particular color among the eight available. The value 0 indicates the absence
of a primary color, and the value 3 indicates 100% usage of a primary color. These are
the only values that are currently used by the APC hardware.

The Blink and Hard_Copy options are not implemented in this version ofthe Graphics
Supplement.

This procedure will always return the same values for a given color.

Color Index Color RGB Blink Hard_Copy

0 Black 000 0 0
I Red 300 0 0
2 Green 030 0 0
3 Yellow 330 0 0,
4 Blue 000 0 0
5 Magenta 303 0 0
6 Turquoise 033 0 0
7 White 333 0 0

Effect on C P:

None.

MS-DOS Graphics Supplement

Example:

Index:= 2;
INQ_COLOR(Index, Red, Green, Blue, Blink Hard. Copy)

The above example will return the following values:

Color Value

Red 0
Green 3
Blue 0
Blink 0

Hard_Copy 0

PROCEDUREINQ_VALUE

Declaration:

Procedure Inq_ Value (Option: Integer) : Integer;

Description:

This procedure returns information on the type of monitor that is being used .. The
Option parameter should always be set to O. Currently, the result of this function is
always 0, indicating an APe with a 640 x 480 pixel monitor. This function will be
enhanced in future releases.

Effect on C P:

None.

Example:

Machine:= INQ_ VALUE(O);

This example will set the Machine variable to O.

5-27

MS-DOS Graphics Supplement

5-28

PROCEDURE PLANE_ENABLE

Declaration:

Procedure Plane_Enable (Planes : Integer)~

Description:

This procedure sets a binary mask that controls values written to the system's graphics
memory. The mask is set to the binary equivalent of the value in the Planes parameter.

Initially the mask is -I (Hex FFF), which lets every color value go out unchanged.
Different values of the mask will ultimately result in the suppression on one or more of
the primary colors from the final pixel color. Before a value is written to graphics
memory, it is first ANDed with the current value of the graphics output mask.

~ffect on CP:

None

Example:

PLANE_ENABLE(6)~

This example will mask out the low-order bit of every pixel value written to memory.
Therefore, the Blue component will be suppressed.

For additional details, consult the DEFINE_COLOR procedure description and the
section THE PATTERN COMPILER.

PROCEDURE PLANE_VISIBLE

Declaration:

Procedure Plane_Visible (Planes: Integer);

This procedure is not implemented.

PROCEDURE SET_PALETTE

Dec/aral ion:

Procedure Set_Palette (Pal_Name: String);

This procedure is not implemented.

M S-DOS Graphics Supplement

PROCEDURE SET_VALUE

Declaration:

Procedure Set_Value (Opcode. Value: Integer);

Description:

This procedure performs internal control functions and directly sets some of the Core
Record variables. It may prove useful in situations where bypassing the procedure
calling overhead is critical to system performance. It is recommended. however. that
you use the standard procedures that accomplish the desired result wherever possible.

The following is a list of acceptable commands.

Opcode

0

0

0
0

0

0

0

4

7
9

Effect on C P:

None.

Example:

SET_VALUE 0.3);

Value

0

10

II
12

13

14

15

xx

xx
xx

Operation

I nitializes the graphics hardware and various flags.
This is automatically called at system initialization.
Disables the software graphics cursor. Use
SET_CURSOR instead.
Enables the cursor. Use SET_CURSOR instead.
Makes the cur~or visible. Use SET_CURSOR
instead.
Makes the cursor invisible. Use SET _CU RSOR
instead.
Sets the cursor size to 15 pixels. Use
SET_CURSOR instead.
Sets cursor to full screen. Use SET_CURSOR
instead.
Sets (xx) planes enables. Use PLANE_ENABLE
instead.
Erases screen to (xx) color. Use ERASE instead.
Sets graphic cursor size to (xx) pixels. Use
SIZE_CURSOR instead.

5-29

MS-DOS Graphics Supplement

5-30

This example will erase the screen to color 3. The equivalent standard sequence is

CORE.Background :==3;

ERASE;

PROCEDURE ERASE

Declaration:

Procedure Erase;

Description:

This procedure erases the currently enabled planes to the background color. The
background color is specified through the variable CORE .Background Index.

Effect on CP:

None.

Example:

CORE .Background-1ndex:== I

ERASE;

This example clears the screen and sets it to color 1.

PROCEDURE ERASE-ALPHA

Declaration:

Procedure Erase--Alpha:

Description:

This procedure erases the alphanumeric portion of the display. It leaves all graphics
intact.

Effect on CP:

None.

Example:

ERASE--ALPHA

M S-DOS Graphics Supplement

PROCEDURE FLOOD

Declaration:

Procedure Flood;

Description:

This procedure does an area fill with the color index specified in the CORE . Fill_Index
originating from the CPO The area file operation is as follows:

1. The color at the current position is recorded as the base color.
2. Filling then occurs in all directions until a border is encountered.
3. A border is defined as pixel in any color other than the base color.

At this time the display mode (CORE . Display_M ode) must be set to Fast. In a future
release, the ability to "flood" with a user-defined pattern will be available.

Effect on C P:

None.

Example:

CORE .Fill_Index := 1;
Move~bs(30 , 20);
Flood;

This example will fill the area around the point (30,20) with red.

PROCEDURE ARC-REL

Declaration:

Procedure Arc_Rei (Radius :Integer;
Start~ngle

End~ngle : Real;
Var X_Start

V_Start,
X_End
Y~nd

5-31

MS-DOS Graphics Supplement

5-32

Description:

This procedure draws part of a circle in the following manner:

I. The center of the circle is defined by the CPO

2. The radius of the circle to be drawn is passed to the procedure in the
parameter Radius. It is measured in terms of pixels.

3. Two lines are then drawn of length Radius starting from the CP in the
direction of Start~ngle and End~ngle.

4. The Start~ngle and End~ngle are measured in radians from the X-axis in
a counterclockwise direction (that is, a line pointing directly up has an angle
measurement of PI/2).

5. The part of the circle originating at Start--Angle and going in a clockwise
direction to End~ngle is then drawn.

6. The X and Y coordinates of the point represented by the intersection of the
arc with the line drawn at the angle represented by Start~ngle are returned
to the program in the variables X_Start and Y _Start, respectively.

7. The X and Y coordinates described by the intersection of the arc with the line
drawn at the angle represented by End_Angle are returned to the program in
the variables X_End and Y _End.

The following illustrates the ARC_REL procedure.

M S-DOS Graphics Supplement

Currently, the variable CORE. Display_Mode must be set to Fast. In a future release,
it will be possible to fill an arc with a solid color or pattern.

Effect on C P:

None.

Example:

Var

PI Real;
X_S tart . Y _S tart
X_End, Y _END

PI := 3.14159;
M ove-A bs(75JOO);

Integer;

CORE .Display_Mode: = Fast;
CORE .Line_Index: = 2
Arc_Rel(50,2*PI/3. PI/6. X~tart, X~nd V_End);

PROCEDURE ARC--ABS

Declaration:

Procedure Arc-Abs (Var Radius: Integer;

Description:

Var Start~ngle,
End Angle: Real;
X_Start,
Y _Start,
X_End,
Y _End : Integer;

This procedure draws an arc in the same way as ARC_REL with the exception that
X_Start, Y _Start, X_End, and Y _End must be passed as parameters. and Radius,
Start~ngle, and End~ngle are returned by the procedure.

The arc is defined in the following manner:

I. The center of the circle is defined by the CPo

2. A line is drawn from the CP to the point defined by X_Start and Y _Start.

3. The length of this line is then returned to the calling program in the variable
passed as Radius.

5-33

MS- DOS Graphics Supplement

5-34

4. The angle at which the line was drawn (measured in the same way as described
above), is returned in the variable passed to the procedure as Start~ngle.

5. A line is then drawn in the direction described by the parameters X-End and
Y -End with a length equal to the length of the first line drawn (the value just
placed in the variable Radius).

6. The arc is drawn at the angle at which this line was drawn starting from the
angle just placed in Start~ngle, and continuing in a clockwise direction to
the angle now described by End~ngle.

Currently, the variable CORE . Display_Mode must be set to Fast. In a future release,
it will be possible to fill an arc with a solid color or pattern.

Effect on CP:

None.

Example:

Move~bs(320,1000;
CORE .Display_Mode :=Fast;
CORE .Overlay_Mode:=Replace;
CORE .Line-Index:=2;
Arc~bs(Radius , Start~ngle , End~ngle , 300 , 120 , 330 , 90);

THE FONT COMPILER

The Font Compiler (FNTCOMP.EXE) accepts a series of text files containing a font
definition and produces an . FNT data file suitable for use with the Graf_Draw unit.

To execute the Font Compiler, enter FNTCOMP. The compiler will prompt for the
name of the first text file of the font definition. This file contains font parameters and
the first part of the font definition.

The next prompt is for the name of the font data file. This should be specified as
"FONTxx.FNT", where xx is a two-digit font number (for example, 00 or 15). The
compiler will store the compiled font data in the file named.

M S-DOS Graphics Supplement

The Font Compiler then processes the character definitions until the end of the text file
is encountered. It then prompts for the name of a continuation text file. Supply that
file's name, if there is one. If there are no continuation files, pressing RETURN causes
the Font Compiler to close the .FNT data file and terminate.

Font Text Files

Font text files are line oriented. The first line of the first text file in a font definition
contains four numbers describing the font.

• The first number is the number of pixels in the horizontal direction.

• The second number is the number of pixels in the vertical direction.

• The third number is the ASCII value ofthe first character in the font definition
(for example, 32 for space).

• The fourth number is the ASCII value of the last character in the font
definition (for example, 127 for rubout).

The above numbers are separated by one or more spaces. The fourth number is
followed by a carriage return code.

The remainder of the text file (and all of any continuation text files) contains character
definitions, starting with the lowest valued character in the font and continuing
without interruption to the highest valued character in the font.

A character definition consists of a line containing the character to be defined,
enclosed in quotes, followed by several lines that define the way the character will be
formed. Together, these several lines form a picture representing pixels that are on and
off. Each line corresponds to one row of pixels in the character image. There are as
many lines as there are rows in the character image (as specified by the second number
described above, "number of pixels in the vertical direction"). Within a line, ". "s
represent pixels that are turned off, and other characters represent pixels that are
turned on. Two spaces separate each "." or other character. There will be as many pixel
characters on each line as specified by the first number described above, "number of

5-35

MS-DOS Graphics Supplement

5-36

pixels in,the horizontal direction." An example of a character definition of an 8 by 14
pixel character is

"b"

b
b
b
b b b
b b b
b b.
b b.
b b.
b b.
b b b
b b b

Note that there is never any blank line within the font text file.

F or a complete example of a font text file, see the FONTO 1. TXT file supplied with the
supplement.

FONT DATA FILES

The format of the .FNT data file is

Word 1: Number of pixels in the horizontal direction

Word 2: Number of pixels in the vertical direction

Word 3: Value of the first character in the font

Word 4: Value of the last character in the font

Word 5-? Array [Word3 .. Word4] of character images.

Each character image is an array of byte-aligned rows. Each row occupies (Word 1 + 7)
Div 8 bytes. Each character occupies Word2 * ((Word 1 + 7) Div 8) bytes. There are no
padding bytes between rows. Character definitions are word aligned.

MS-DOS Graphics Supplement

THE PATTERN COMPILER

The Pattern Compiler (PATCOMP.EXE) accepts a text file containing a fill pattern
definition, and produces a .PTN file suitable for use with the Graf_Draw unit.

To execute the Pattern Compiler, enter PATCOMP. The compiler will prompt for the
name of the text file containing the pattern definition. This file contains pattern
parameters and the pattern definitions.

The" next prompt is for the name of the pattern data output file to be produced. This
should be specified as "PATxx.PTN", where xx is a two-digit pattern number (for
example, 00 or) 5). The compiler will store the pattern definition in the file named.

The Pattern Compiler processes the pattern definition until the end of the text file is
encountered. It then closes the pattern data file and terminates.

Pattern text files are line-oriented. The first line of the text file contains two numbers
describing the pattern. The first number is the number of pixels in the horizontal
direction. The second number is the number of pixels in the vertical direction. The
numbers are separated by one or more spaces. A carriage return follows the second
number. The remainder of the text file contains the pattern definition.

A pattern definition consists of several lines containing a drawing consisting of color
identifiers representing the value of each pixel separated by two spaces. The color
identifiers are

D,d, or.
R or r
G or g
Y or y
B or b
P or p
Tor t
Worw

for dark (black)
for red
for green
for yellow
for blue
for purple
for turquoise
for white

Each line corresponds to a row of the pattern image. There are as many lines and rows
in the pattern as are specified by the numbers on the first line of the pattern text file.

5-37

MS-DOS Graphics Supplement

5-38

And example pattern test file for an II by II pattern 'is

II I I

b b b b b b b b b
y b b b b b b b g
y y b b b b b g g
y y y b b b g g g
y y y y b g g g g
y y y y y g g g g g
y y y y r g g g g
y y y r r r g g g
y y r r r r r g g
y r r r r r r r g

r r r r r r r r r .

The format of the .PTN pattern data files produced by the compiler is

Wordl:

Word2:

Word 3-?:

number of pixels in the horizontal direction

number of pixels in the vertical direction

Array [Wordl..Word2] of pattern rows.

The pattern image is an array of word-aligned rows. Each row consists of an array of
color identifiers each occupy four bits. A row occupies (Word I + 3) Div 4 words. The
pattern occupies Word 2 + «Wordl + 3) Div 4) words. Note that this format
corresponds to the internal representation of an array under the U CS D Pascal system.
An array declaration for the example pattern might be

Array [1..11] of Packed Array [1..1] of 0 .. 15;

The color token values for the possible colors are as follows:

Value
o
I
2
3
4
5
6
7

Color
for dark (black)
for red
for green
for yellow
for blue
for purple
for turquoise
for white

Appendix

The MS-DOS Interrupt Vecto

The MS-DOS interrupt vectors are as follows:

• CPU interrupt vectors

• Device interrupt vectors

• MS-DOS reserved interrupt vectors

• User interrupt vectors

• APC reserved interrupt vectors.

The interrupt vector table shown in Figure A-I consists of 256 entries. Each entry has
two 16-bit address values (4 bytes), which are loaded into the code segment (CS)
register and the instruction pointer (lP) register as the interrupt routine address when
an interrupt occurs. This means absolute locations OH to 3FFH are the transfer
address storage locations.

A-I

The MS- DOS Interrupt Vectors

A-2

372 CP220

370 1-____ I_P_22_0 ____ -t System Interrupt

j
~::;~~~~~/O

36E CP219
1-------------1 Vector 219

36C IP219

~---------------I
I
I
I

102 1 ______

C

_

S

_

6

_

4

____ -i:j Vector64
100 r IP64

FE CS63
Vector 63

FC IP63

82 '---______ C_S_32 ____ ---l:j Vector 32
80 r IP32

7E CS31
Vector 31

7C IP31

I I
I I
I I

I :

::11-______ C_S_l_6 ______ ~I} 'oc,"' "

I

16 CS5
Vector 5

14 IP5

12 CS4
Vector 4

10 IP4

OE CS3
Vector 3

OC IP3

OA CS2
Vector 2

08 IP2

06 CSl
Vector 1

04 IPl

02 CS Value-VectorO(CSO)
Vector a

00 JP Value-VectorO (lPO)

I ""'.>---- 2 Bytes -------I-I

Figure A-I MS-DOS Interrupt Vector Table

APC Reserved Interrupt Vectors

User Interrupt Vectors

MS·DOS Reserved Interrupt Vectors

(MS·DOS uses vectors 16 to 31
for device interrupts.)

Overflow

Breakpoint

Non·Maskable Interrupt (NMI)

Single Step

Zero Divide

The MS-DOS Interrupt Vectors

CPU INTERRUPT VECTORS

There are two types of CPU interrupt: the software interrupt and the hardware
interrupt. A hardware interrupt is classified as either a non-maskable interrupt (NM I)
or maskable interrupt. Regardless of its type. an interrupt results in the transfer of
control to a new location.

DEVICE INTERRUPT VECTORS

MS-DOS uses vectors 16 to 31 for device interrupts. This means absolute locations 40
to 7F hex are the transfer address storage locations used by IO.SYS. The interrupts are
as follows:

Vector 16

Vector 17

Vector 18

Vector 19

Vector 20

Vector 21

Vector 22

Vector 23

Vector 24

Vector 25

Vector 26

Vector 27

Vector 28

Vector 29

Vector 30

Vector 31

All stop

Communication

Option

Timer

Keyboard

Option

Option

ODA Printer

Option

Option

CRT

FDD

Option

Option

APU

Option

(Not currently used.)

(Not currently used.)

(Not currently used.)

(Not currently used.)

(Not currently used.)

(Not currently used.)

(Not currently used.)

(Not currently used.)

(Not currently used.)

(Not currently used.)

(Not currently used.)

(Not currently used.)

(Not currently used.)

(Not currently used.)

A-3

The MS-DOS Interrupt Vectors

A-4

MS-DOS RESERVED INTERRUPT VECTORS

MS-DOS reserves vectors 32 to 63 (absolute locations 80 to FF hex) for the DOS.
These interrupts arc a~ follows:

Vector 32 Program terminate. This is the normal way to exit a program. This
vector transfers to the logic in the the DOS for restoration of CNTL-C
exit addresses to the values they had on entry to the program.

Vector 33 Function request.

Vector 34 Terminate address. If a program is to execute a second program. it
must use Terminate Address prior to creation of the segment into
which the program will be loaded.

Vector 35 CNTL-C exit address.

Vector 36 Fatal error abort vector. When a fatal error occurs, control will be
transferred with an INT 24H.

Vector 37 Absolute disk read.

Vector 38 Absolute disk write.

Vector 39 Terminate but stay resident. This vector is used by prograins that are
to remain resident when COMMAND.COM regains control.

USER INTERRUPT VECTORS

MS-DOS allows you to use vectors 64 to 219. These vector's values are initialized to
invoke an interrupt fault process in IO.SYS. If you use any of them, you must set its
value. Be sure to reset the vector to the initial value when you have completed your
task.

APC RESERVED INTERRUPT VECTORS

MS-DOS reserves the vectors 220 to 256 (absolute locations 370 to 3FF hex) as the
trant;fer address storage locations for the APe extended functions. The one interrupt
currently defined is vector 220 for extended function call entry.

j
'" :s
CIO c
o
-;
;
(J

• Advanced
A..--"Personal Computer

NEe
NEe Information Systems, Inc.

USER'S COMMENTS FORM

Document: MSTI'-DOS System Reference Guide

Document No.: 819-000103-2001 Rev. 01

Please suggest improvements to this manual.

~
IG Please list any errors in this manual. Specify by page.
~

From:
Name __ ___

Title __ _
Company __ _

Add~ss __ __

Dealer Name __ _

Date:

Seal or tape all edges lor mailing·do not use staples.

FOLD HERE

111111

BUSINESS REPLY CARD
FIRST CLASS PERMIT NO. 386 LEXINGTON, MA

POSTAGE WILL BE PAID BY ADDRESSEE

NEe Information Systems, Inc.
Dept: Publications
1414 Mass. Ave.
Boxborough, MA 01719

FOLD HERE

Seal or tape all edges lor mailing·do not use staples.

NO POSTAGE'
NECfSSARY

IF MAILfD
IN THE

UNITFD STA n:s

