A’ Advanced
B Personal Computer

MS -DOS System Reference Guide

NEC

NEC Information Systems, Inc.

819-000103-2001 REV 01
9-83

Important Notice
- (1) Al rights‘reserved. This manuél is protected by copyright. No part of this manual may be
‘reproduced in any form whatsoever without the written permission of the copyright owner.

(2) The policy of NEC being that of continuous product improvement, the contents of this manual
are subject to change, from time to time, without notice.

(3) Allefforts have been made to ensure that the contents of this manual are correct; however, should
any errors be detected, NEC would greatly appreciate being informed.

(4) NEC can assume no responsibility for errors in this manual or their consequences.

©Copyright 1983 by NEC Corporation.

MS™.DOS, MACRO-86 Macro Assembler™, MS-LINK Linker Utility™, MS-LIB Library Mana-
ger™, MS-CREF™ Cross Reference Utility, EDLIN Line Editor™ are registered trademarks of the
Microsoft Corporation.

PLEASE READ THE FOLLOWING TEXT CAREFULLY. IT
CONSTITUTES A CONTINUATION OF THE PROGRAM
LICENSE AGREEMENT FOR THE SOFTWARE APPLICA-
TION PROGRAM CONTAINED IN THIS PACKAGE.

If you agree to all the terms and conditions contained in both parts
of the Program License Agreement, please fill out the detachable
postcard and return it to:

NEC Information Systems, Inc.
Dept: Publications
1414 Mass. Ave.
Boxborough, MA 01719

LIABILITY

In no event shall the copyright holder. the original licensor nor any
intermediate sublicensors of this software be responsible for any
indirect or consequential damages or lost profits arising from the
use of this software.

Ar Advanced
B Personal Computer

Program Name (as it appears on diskette label)

COPYRIGHT

The name of the copyright holder of this software must be recorded
exactly as it appears on the label of the original diskette as supplied
by NECIS on a label attached to each additional copy you make.

You must maintain a record of the number and location of each
copy of this program.

Al NECIS software programs and copies remain the property of the
copyright holder, though the physical medium on which they exist is
the property of the licensee.

MERGING, ALTERATION

Should this program be merged with or incorporated into another
program, or altered in any way by the licensee, the terms of the
Warranty contained herein are voided and neither NECIS nor the
copyright holder nor any intermediate sublicensors will assure the
conformity of this software to its specification nor refund the license
fee for such nonconformity.

Upon termination of this license for any reason, any such merged or
incorporated programs must be separated from the programs with
which they have been merged or incorporated and any altered
programs must be destroyed.

819-000102-8D01

NEC

NEC Information Systems, Inc.

Serial Number

Date Purchased

Dealer Name and City

Your Name

Your Address

City

State ZIP

“Warranty Requires Return of This Card™

BUSINESS REPLY CARD

FIRST CLASS PERMIT NO. 386 LEXINGTON MA

|
POSTAGE WILL BE PAID BY ADDRESSEE

NEC Information Systems, Inc.
Dept: Publications
1414 Mass. Ave.
Boxborough, MA 01719

NO POSTAGE
NECESSARY
IF MAILED
IN THE
UNITED STATES

Contents

Page
Chapter 1 MS-DOS System Overview
MS-DOS SOFTWARE .. ittt ittt ittt ian e 1-1
MS-DOS INITIALIZATION ...ttt ittt iatniiiinennennnees 1-2
ALLOCATION OF DISK SPACEFORFILESccviiiiian, 1-4
Cluster Arrangementveeeinenenereeieseencnosenesasoennns I-5
File Allocation Table Formatccciiiiiiiinnvnnen., 1I-5
MS-DOS ROOT DIRECTORY STRUCTUREcccintn.. 1-5
PERIPHERAL DEVICE AND DEVICE CONTROLLER
CHARACTERISTICS .ottt ittt ettt ieieeenennasens 1-9
The APC Screenoiiiiiiiiiiiiiii it i tiiiieansneenas 19
5 90 1175 ¢ AP PR 1-9
Diskette and Hard Disk Drivesc.iiiiiiieiiirrernencnnns 1-10
DISK ATTRIBUTES it iintiieeiananns 1-10
HARD DISK ATTRIBUTESoiiiiiiiiiiiiiiiiinnnn, 1-11
Chapter 2 MS-DOS System Calls
PROGRAMMING CONSIDERATIONS iiiiiiiiiierennnnnn 2-1
Calling from the MACRO-86 Macro Assembler 2-1
Calling from a High-Level Languagecoiivevienennnnn. 2-1
Returning Controlto MS-DOSottt ittt . 22
Console and Printer Input/Output Calls et er e 2-2
Disk I[/OSystem Callsooiiiiiiiiiiiiiiiiiiiiiiiiieennn. 2-2
FILE CONTROL BLOCK FORMATiiiitiiiiiiieenieennanennnns 2-2
File Control Block Fieldsciiiiiiiiiiiiiiiiiiianeennnn. 2-3
Extended File Control Blockcciiiiiiiiiiiiiniiiennnn. 2-5
SYSTEM CALL DESCRIPTIONS ... ittt iiiiieiieinnannannns 2-6
041105 g 03 o] £ Ot 2-6
FUNCTION REQUEST ...ttt iiiieniinnennennnns 2-8
INTERRUPTS 22H,23H,AND24Hccciiiiiiunnnnns 2-9
ERROR CODES ... ittt iiiiiieenaieennannnas 2-11
RETRIES i i i i it it eetiieeaannnns 2-12
ST ACK i i ittt it tee e ae et taaeeraaaaaanaas 2-12
- ABSOLUTEDISK READiiiiiiiiiiiieiiiiiieennnn, 2-13

iii

Contents (cont’d)

Page

ABSOLUTEDISK WRITE, 2-15
TERMINATE BUT STAY RESIDENTccoc...... 2-17
Function REQUESES . .. oottt iiiiiiiianenenn 2-18
CP/M (R)-COMPATIBLE CALLING SEQUENCE 2-18
TREATMENT OF REGISTERSt 2-18
XENIX-COMPATIBLE CALLSciiiiiiiiiiianan.n 2-21
TERMINATE PROGRAMottt 2-23
READ KEYBOARD ANDECHOccoiiiiinnnnn.. 2-24
DISPLAY CHARACTER ...ttt it 2-25
READ KEYBOARD ANDECHOccoiviiinnnn... 2-26
AUXILIARY OUTPUT ... i e 2-27
PRINT CHARACTER ... ittt 2-28
DIRECT CONSOLEI/O ..ottt iiiiiiiiieeaeen 2-29
DIRECT CONSOLE INPUT ...ttt 2-31
READ KEYBOARDottt 2-32
DISPLAY STRING ... i it it e iaeeen 2-33
BUFFERED KEYBOARD INPUTcooiiiiiinet. 2-34
CHECK KEYBOARD STATUSciiiiiiiiiiiiiinnnnn. 2-36
FLUSH BUFFER, READ KEYBOARD 2-37
DISK RESET ..\ttt ieiiiiieneniann 2-38
SELECT DISK ..ttt ittt iieiiniiaeannans 2-39
OPENFILE ...t ittt enann 2-40
CLOSEFILE ...\ttt iiiieiiie e ceinanns 2-42
SEARCH FOR FIRSTENTRY ..., 2-43
SEARCH FOR NEXT ENTRYooiiiiiiiiiiine. 2-44
DELETEFILEttt iiiiiieiiiaereeeannnns 2-46
SEQUENTIALREADttt 2-47
SEQUENTIAL WRITE ...t 2-49
CREATEFILE ... i it iiieaeenes 2-51
RENAMEFILE ...ttt ienenn 2-52
CURRENT DISK ..ttt ci e i e 2-54
SET DISK TRANSFER ADDRESScoiiiiinn... 2-55
RANDOM READ ... ittt e e 2-56
RANDOM WRITE it i, 2-58
FILE SIZE ..ottt ettt iinaaaenaeanns 2-60
SET RELATIVERECORDccoiiiiiiiiiiiannnn.. 2-62

SET VECTOR ... i i it ei e e 2-64

Contents (cont’d)

Page
RANDOM BLOCK READooiiiiieiiinininnnn.... 2-65
RANDOM BLOCK WRITE ...ttvviiiiiirinniineeneennnnn. 2-68
PARSE FILENAMEoititiiiiiineiinrinneennenenns, 2-70
(€253 1 Y- 1 = 273
SETDATE S 2-74
€354 0 1Y 275
) =1 3 0 2-76
SET/RESET VERIFY FLAG ...uuuieeeiinaaniinaannnnn.. 277
GET DISK TRANSFER ADDRESSccvvivinnn..... 2-79
GET DOS VERSION NUMBERviiieeeieninnnnnn.. 2-79
KEEP PROCESSuuuttttentttteeeeeeeeeeannnnnnnn, 2-80
CTRL-CHECK ... \ttttiiiiiiiiaaeeeaeeaeeeaiaaaaaannn, 2-81
GET INTERRUPT VECTOR ...\viiieeenaianaannnnn. 2-81
GET DISK FREE SPACE . ..\tuuiiiiieeieaeeaanaanaennnn. 2-82
RETURN COUNTRY-DEPENDENT INFORMATION 2-83
CREATE SUB-DIRECTORYuuunniianinennnnaannn. 2-86
REMOVE A DIRECTORY ENTRYvuvvienennnnnnnn. 2-87
CHANGE THE CURRENT DIRECTORYc.ovun.... 2-88
CREATE AFILE ...toiiiiiiiaeiiiiaiiiiiaiiineennnnnnnnn 2-88
(0323 3NN 31 5 2-89
CLOSE AFILEHANDLE ...0uiiiiiieeeinieieneaanannnn. 291
READ FROM FILE/DEVICEcccvviniinniinnnnnn.. 291
WRITE TO A FILE/DEVICEoiiiiiiiieninnnannn. 2-92
DELETE A DIRECTORY ENTRYcccveeennnn... 2:93
MOVE FILE POINTERciiiiiiiiiiiiiinneiannnnnn. 2-94
CHANGE ATTRIBUTEScviiiiieiiiniiiieennnnnnnn. 295
1/O CONTROL FOR DEVICESceouveriineennnnnnn.. 2-96
DUPLICATE A FILEHANDLEccocevvivnnn... 2-99
FORCE A DUPLICATE OF A FILE HANDLE 2-100
RETURN TEXT OF CURRENT DIRECTORY 2-100
ALLOCATE MEMORYcovvvan.n... feeveeereas 2-101
FREE ALLOCATED MEMORYccovnvvnennn... 2-102
MODIFY ALLOCATED MEMORY BLOCKS 2-103
LOAD AND EXECUTE A PROGRAM 2-104
TERMINATE A PROCESScovviriiiiranannnnnnnnn. 2-107
RETRIEVE THE RETURN CODE OF A CHILD 2-107

FIND MATCHFILE ... i 2-108

Contents (cont’d)

Page

STEP THROUGH A DIRECTORY MATCHING FILES 2-109
RETURN CURRENT SETTING OF VERIFY AFTER WRITE

FLAG i it it it iitiiaenenaeanen 2-110
MOVE A DIRECTORY ENTRYccoiiviiiinn.... 2-110
GET/SET DATE/TIMEOFAFILEcccciiiiiioa... 2-111
MACRO DEFINITIONS FOR MS-DOS SYSTEM CALL
EXAMPLES i i i i e et e 2-112
AN EXTENDED EXAMPLE OF MS-DOS SYSTEM CALLS 2-121
Chapter 3 The Extended 1/0 System Functions
GET TIME AND DATE ..ottt ittt iiiiritaneanenennnnns 3-1
SETTIME AND DATE .. ittt ittt iianiieneieannnnn 3-2
PLAY MUSIC . i i ittt ittt ie s eranneeerasnoneasnnnanns 3-3
Control Data ...ttt ittt iiiai e ieeanannn 3-3
Scale Date . .ovviiii it i i e e e e i e e 3-4
Complete Melody Data Format ciiiiiiiiiinnin, 3-6
SOUND BEEP ..ttt it ittt iteniineennaaanns 3-6
Control Commandsouiiitinineniininenirronreeneaoananns 3-7
Beep Sound Parametersc.ciiiiiiiiiiiiiiii it 3-8
Complete Beep Command Formatccoiiiiiiiaan.. 3-8
REPORT CURSOR POSITION ENTRYoiiiiiiiiiininnnnnnnnn. 3-9
AUTOPOWEROFF ... ittt ittt it e cieneens 39
INITIALIZE KEYBOARD FIFOBUFFERccoiiiiiiinnn.. 3-10
DIRECT CRT I/O ittt ittt ittt tinetensrnnnennaannns 3-10
Display Request Block ...ttt iiiiinennnnn. 3-11
Video Memory Formatcoiiiiiiiiiiiiiieiiennnennnn. 3-13
String Data Formatoiiiiiiintinnnientnenennecnnannnns 3-13
Attribute Data Formatciiiiiiiiiiiiinerinennennnn, 3-13
Direct CRT I/O Command Descriptionsccceveuieenennn.. 3-14
CMD#0 - DISPLAY VIDEO MEMORY FORMAT DATA
ON CRT ottt it it i ittt teeiteeeiieeanaennnns 3-14
CMD#1 - DISPLAY STRING DATAONCRT 3-15
CMD#2 - REPORT CURSOR POSITION 3-15
CMD#3 - ROLL DOWN SCREENiiiiiiiiiiiinnnnnn, 3-16
CMD#4 - ROLLUP SCREENoiiiiiiiiiiiiieannnnn, 3-16
WRITE CMOS i it it ittt tteetsteinennannaenns 3-17
READ CMOS ittt ittt ittt tteetnnetnenennnnnacannns 3-17

Contents (cont’d)

Page

Chapter 4 The APC Escape Sequence Functions

ESCAPE SEQUENCE FORMATttt iiiininnennnn. 4-1
CURSOR UP Lttt ittt iieetttaeeeetoaneneaenaanannnnas 4-3
CURSOR DOWN Lottt iiiee s ttieneetnaaansenenaanennasas 4-3
CURSOR FORWARD ... ittt ittt i iiieiaeenaens 4-3
CURSOR BACKWARD .. ittt it ittt ittt teetneetsnnneeacans 4-3
CURSOR POSITION .. ittt itiitetiieaeeetenannannenas 4-4
SET CHARACTER ATTRIBUTESciiiiiiiiiiiiiiiiiiaennnn, 4-4
ERASE WITHIN DISPLAY ..ottt it ieeieeaeannns 4-5
ERASE WITHIN LINEttt eiiiinenenanennn 4-5
AUXILIARY CHARACTER SET ...ttt iiiiiiiiieiieeannenn, 4-5
SET AMODE &ttt ittt ttiee et teeeeraaeeannaneens 4-6
RESET AMODE ...ttt ittt ineeernineeaanaanens 4-6
DEVICE STATUS REPORTottt ittt iieienannn, 4-6
CURSOR POSITION REPORT ...ttt iiaaee e 4-7
SAVE CURSOR POSITIONiiiiiiiiiiittiineertineeennnnenns 4-7
RESTORE CURSOR POSITION ciiiiiiiiiiiiiiiiieiinnanenn. 4-7
ADM-3A MODE CURSOR POSITION ESCAPE SEQUENCE 4-7
Chapter 5 MS-DOS Graphics Supplement

EXECUTING THE GRAPHICS TESTcciiiiiiiiiiiiinanennn. 5-3
USING THE GRAF_DRAW UNITiiiiiiiiiiiiiiiiiianann. 5-4
THE GRAF_DRAW UNIT ... ittt ieieiieaeeenn. 5-5
THE INTERFACE UNIT .. ittt ittt 5-5
TERMS THAT DESCRIBE SCREEN DISPLAYS 5-11
GRAF_DRAW UNIT PROCEDURESccoiiiiiiiinnennn.. 5-12
PROCEDURE MOVE_ABS ...ttt i iiiiianeannnn 5-12
PROCEDURE MOVE_REL ... ittt ittt iiiinnennnn. 5-13
PROCEDURE SET_CURSOR ittt it 5-13
PROCEDURE SIZE_CURSOR ... ittt i, 5-14
PROCEDURE SET_FILLco..iiiiiiiiiiitiiiaeretrnnannannn. 5-15
PROCEDURE BOX __ABS ...t iiiiiiiitiiiiettiaieaetennannnnnns 5-15
PROCEDURE BOX__REL ...ttt iiiiteeneneennnnn 5-16
PROCEDURE WRITE_BLOCK_PIXELSccciiiiennnn. 5-17
PROCEDURE READ_BLOCK_PIXELScciiiiiiant.. 5-18
PROCEDURE SET_CHARUPottt 5-18
PROCEDURE SET _FONT ...ttt iiiieiiinaneannnn 5-19

vii

viil

Contents (cont’d)

Page
PROCEDURE TEXT ittt ittt it iiesitiieinennnn 5-19
PROCEDURE SET_LINE _STYLE ...t iiiiiiiiiiiiinnnnn. 5-20
PROCEDURE LINE _ABS ... ittt it ittt tetaenenennn. 5-21
PROCEDURE LINE _REL ..ottt ittt iiiieieiiiteiaeiennnnn. 5-22
PROCEDURE PLINE _ABS ...ttt ittt it itcaeenenenens 5-22
PROCEDURE PLINE _REL ...ctiiiiiit i iiiiiiiennenenenennnnnn 5-23
PROCEDURE CIRCLE _ABS ... it ittt it eaiennennnns 5-24
PROCEDURE CIRCLE _REL ..ottt iiiit i iienennannnns 5-25
PROCEDURE DEFINE_COLOR ...ttt iiiiieeinnnnen. 5-26
PROCEDURE INQ__COLORttt ittt ittt iieiaeinanannn 5-26
PROCEDURE INQ__VALUE ... ittt i et vt ieeeiaaaeens 5-27
PROCEDURE PLANE_ENABLEottt iiiiiei i, 5-28
PROCEDURE PLANE_VISIBLEci i, 5-28
PROCEDURE SET_PALETTE ... ittt i iieeiiinaenn 5-28
PROCEDURE SET _VALUE ... ittt ittt iiiatennnnnen 5-29
PROCEDURE ERASE . ittt ittt ittt it iietneraraenenenns 5-30
PROCEDURE ERASE_ALPHAttt ittt i 5-30
PROCEDURE FLOOD ...ttt ittt it ittt cte it eeteiannnns 5-31
PROCEDURE ARC _REL ... ittt ittt eeeiiaenn, 5-31
PROCEDURE ARC _ABS ..ttt ittt e it ii it inennn 5-33
THE FONT COMPILER ... it iiiiiiiittieeennanereaneanaannas 5-34
Font Text Filesviiii ittt iieeeetanasosanncennsns 5-35
FontData Filescviviiiiiniiiiiiiiietiiernenanernennnens 5-36
THE PATTERN COMPILER .. ittt ittt i iiinnrernnannnans 5-37
Appendix The MS-DOS Interrupt Vectors
CPU INTERRUPT VECTORS ..ttt ittt ittt it iieeiaennnnnns A-3
DEVICE INTERRUPT VECTORS ... it eiiiiienanns A-3
MS-DOS RESERVED INTERRUPT VECTORS ..., A-4
USER INTERRUPT VECTORS ... ittt iaennenannn .. A4
APC RESERVED INTERRUPT VECTORS ...ttt iiiiinennn A-4

Tables

Table Title Page
1-1 Directory Entry Fieldsc.o ittt 1-6
2-1 File Control Block Fieldscciiiiiiniaa.. 2-3
2-2 MS-DOS INterruptsooveiveernerennnneeecnnnannn 2-7
2-3 Disk Error Operation Codes (AH), 2-11
2-4 Disk Error Codes (Lower Half of DI) 2-11
2-5 MS-DOS Function Requestsccooiivinn.... 2-19
2-6 Directory File Attributesccvviiiiiiinennnnennn. 2-22
3-1 Melody Data Control Commandsc.ocuunn... 33
3-2 Note Valuesovviiiiiiiiiiiiieiinenisenniarnnennns 3-4
3-3 Duration Valuescciiiiiiiiiniiiiineiiiennn, 3-5
34 Short Sound Control Commands 3-7
3-5 Beep Sound Parameters i, 3-8
5-1 Core Record Fieldsoviiiiiiiiiine .., 5-10

Illustrations

Figure Title Page

1-1 Logical Memory Structure of the APC and

Memory MaxX ...cooveiiiinnneeinnnneeennns e, 1-3
2-1 File Control Blockicoiiiiiniin, Ceeeaiee 2-3
3-1 DMA Transfercoceiiiiiiieninninnennsnneeans 3-11
3-2 Display Request Blockcoiiiiiiiiiiiiiiiana, 3-12
5-1 Graphics Application Development Process 5-5
A-1 MS-DOS Interrupt Vector Tablec0o0. .t _ A-2

Chapter 1

The MS™-DOS operating system for the APC isdivided into two subsystems: the Disk
Operating System (DOS) and the 1/ O System. The DOS routines are for file manage-
ment, data blocking and deblocking, and a variety of internal functions. I/ O System
routines include standard functions, extended functions. and escape sequence func-
tions. Standard 1/ O routines perform basic functions, such as program termination
and absolute disk reads or writes. The extended 1/ O routines add facilities like music
playing and direct CRT 1/0O. APC escape sequence functions are called by user
programs to control screen 1/ 0.

MS-DOS SOFTWARE

The MS-DOS software consists of three programs: MSDOS.SYS, 10.SYS. and
COMMAND.COM.

e MSDOS.SYS provides access to DOS routines. When these routines are
called by a user program, they accept high-level information through register
and control block contents. Then for device operations, they translate the
requirement into one or more calls to I0.SYS (see below) to complete the
request. Thus, MSDOS.SYS calls both DOS and standard functions for the
1/O System.

® 10.SYS executes all the hardware dependent routines for the APC. In addi-
tion to the standard I/O System functions called by MSDOS.SYS, this
program executes the extended 1/O System functions and the APC escape
sequence functions. When user programs issue calls for extended 1/ O func-
tions, they access 10.SYS directly, bypassing MSDOS.SYS. IO.SYS receives
requests to perform escape sequence functions through MSDOS.SYS, as it
does for standard 1/O functions.

¢ COMMAND.COM (Command Processor) interprets the MS-DOS com-
mands entered at the APC keyboard, converting them into calls to MSDOS-
.SYS. How the Command Processor resides in memory and details on its
operations are given in the section THE COMMAND PROCESSOR.

1-1

MS-DOS System Overview

1-2

The following illustration represents the interactions of user programs and the MS-
DOS subsystems.

User Program

Interrupt 2xH Interrupt 220H
A

DOS Calls

Y

DOS Extended
Function Calls

y DOS Calls to the I/O System

1/0 System
Standard /0O 1
System Functions ! .
_____________ 4 Extended Functions
Escape Sequence 1
Functions !

The user program issues any calls to the DOS through Interrupts 20H to 27H. (For a
further explanation of these interrupts, see Chapter 2.) To use an extended function,
the program must issue a call through Interrupt 220H. (Chapter 3 presents the
extended 1/0 functions for the IO System.)

MS-DOS INITIALIZATION

MS-DOS initialization consists of several steps. First, a ROM (Read Only Memory)
bootstrap obtains control and reads the boot sector off the MS-DOS system diskette.
The loaded bootstrap then loads 10.SYS. Next, 10.SYS loads MSDOS.SYS. Finally,
MSDOS.SYS loads COMMAND.COM.

Figure 1-1 illustrates both the logical memory structure of the APC and a memory
map. MS-DOS occupies memory beginning after the interrupt vectors at absolute
address 400H. The interrupt vectors for the APC are categorized as the CPU, device,
MS-DOS reserved, user, and APC-reserved interrupt vectors. See Appendix A for a
description of these vectors.

A resident portion of I0.SYS, remaining in memory after its loading tasks, follows the
interrupt vectors.

MS-DOS System Overview

——— oH
oH 400H Interrupt vector (1 KB)
10000H |~ Standard RAM(128KB) - 10000H |- 4.
10. SYS
(resident portion only)
20000H 20000H |- -
30000H L. Optional RAM (640 KB) - 30000H L.]
*APPROX
40000H [~ - $400H
*APPROX MSDOS. SYS
50000H |- o ACOOH
COMMAND,COM
(resident portion)
60000H | : - \/\
F COMMAND.COM
70000H hn (initialization portion)
User area
80000H |~ - £ 4

COMMAND.COM
(transient portion)

S0000H |~ ﬂ
AO0000H
CMOS (4KB) battery backed memory
BOOOOH = .T
CO000H 9
Standard character ROM
DOOOOH

L display pattern

AUX character RAM (8 KB)

EOQ000H
Special character RAM
F0000H - /
FEOOOH [BOOT ROM @ K8) } bootstrap toader

* INDICATES THOSE LOCATIONS THAT VARY WITH THE RELEASE VEQSION.

Figure 1-1 Logical Memory Structure of the APC and Memory Map.

MS-DOS System Overview

MSDOS.SYS resides in memory after the resident portion of 10.SYS.

Last, COMMAND.COM occupies memory after ACOOH (approximately). The
Command Processor code is divided into three sections:

A resident portion that resides in memory immediately following MSDOS-
.SYS and its data area. This portion contains routines to process interrupt
types 22H (Terminate Address), 23H (CTRL-C Exit Address), and 24H (Fatal
Error Abort Address), as well as a routine to reload the transient portion of the
Command Processor (see item 3), if needed. Note that all standard MS-DOS
error handling is done within this portion of COMMAND.COM. This
includes displaying error messages and interpreting the replies to the messages
displayed with “Abort, Retry, or Ignore.”

Aninitialization portion that follows the resident portion (actually in the user
area)and is given control during startup. This section contains the AUTOEX-
EC.BAT file processor setup routine. The initialization portion determines the
segment address at which programs can be loaded. It is overlaid by the first
program COMMAND.COM loads because it is no longer needed.

A transient portion that is loaded at the high end of memory. This portion
contains all of the internal command processors and the batch file processor.

Portion 3 of COMMAND.COM displays the MS-DOS system prompt
(default A>), reads a command from the keyboard (or batch file), and causes
the command to be executed. For external commands, it builds a command
line and issues an EXEC function call to load and transfer control to the
program.

When a program terminates, a checksum methodology determines if the
program had caused the transient portion to be overlaid. If so. it is reloaded.

ALLOCATION OF DISK SPACE FOR FILES

MS-DOS organizes the space on disk (“disk™ will be used from this point on to refer to
both diskette and hard disk, unless otherwise stated) as follows:

reserved area -variable size

first copy of the File Allocation Table - variable size

second copy of the File Allocation Table - variable size (optional)
root directory - variable size

data area.

MS-DOS System Overview

Space for a file is allocated in the data area only when needed: it is not pre-allocated.
The space is allocated one cluster (unit of allocation)at a time. A cluster is always one
or more consecutive sectors, and all of the clusters for a file are “chained” together in
the File Allocation Table (FAT), containing pointers to the individual files on the disk.
There is usually a second FAT kept, which is a copy of the first, for consistency of
format. Should the disk develop a bad sector in the middle of the first FAT, the second
can be used. This avoids data loss due to a defective disk.

Cluster Arrangement

Clusters are arranged on disk to minimize head movement on multi-sided media. All
of the space on a track (or cylinder) is allocated before the next track is selected.
Consecutive sectors on the lowest-numbered head are used, followed by all the sectors
on the next head, and so on, until all sectors on all heads of the track are used. The next
sector to be used will be sector 1 on head 0 of the next track.

File Allocation Table Format

The File Allocation Table consists of 12-bit entries (1.5 bytes) for each cluster on the
disk. The first two FAT entries (24 bits) map a portion of the directory. These FAT
entries contain indicators of the size and format of the disk. The first byte of the two
entries designates the type of disk: single- or double-sided and single- or double-
density. The second and third bytes always ¢ontain FFFH.

The third FAT entry begins the mapping of the data area (cluster 002). Files in the data
area are not necessarily written sequentially on the disk. The data area space is
allocated one cluster at a time; clusters already allocated are skipped. The first free
cluster found will be the next cluster allocated, regardless of its physical location. This
permits the most efficient use of disk space because clusters made available by erasing
files can be allocated for new files. (Refer to the description of the MS-DOS 2.0 File
Allocation Table format in the MS-DOS Svstem Programmer’s Guide for more
information.)

MS-DOS ROOT DIRECTORY STRUCTURE

The MS-DOS FORMAT utility (invoked by the HDFORMAT external command)
initially builds the root directory for all diskettes. This utility allocates the root
directories for hard disk volumes. The location (logical sector number) and the
maximum number of entries for a root directory can be obtained through device driver
interfaces.

Since directories other than the root directory are actually files, there is no limit to the
number of entries they may contain.

MS-DOS System Overview

All directory entries are 32 bytes in length. Table 1-1 lists the fields in an entry, giving

their names, sizes, and byte offsets in hexadecimal and decimal.

Table 1-1 Directory Entry Fields

SIZE OFFSET

NAME (BYTES) HEX DECIMAL
Filename 8 00H-07H 0-7
File extension 3 08H-0AH 8-10
File attributes 1 OBH 11
Reserved 10 OCH-I15H 12-21
Time of last write 2 16H,17H 22,23
Date of last read 2 18H,19H 24.25
Reserved 2 1AH,IBH 26,27
File size 4 ICH-1FH 28,31

The following provides more information on the directory entry fields.

o Filename (offset 00H). Eight characters, left-aligned and padded (if necessary)
with blanks. MS-DOS uses the first byte of this field for three special codes:

00H

ESH
2EH

Has never been used. This is used to limit the length of

directory searches for performance reasons.

Was used, but the file has been erased.

The entry is for a directory. If the second byte is also 2EH,
then the cluster field contains the cluster number of this
directory’s parent directory (0000H if the parent directory

is root directory).

Any other character is the first character of a filename.

e Filename extension (offset 08 H). Three characters, left-aligned and padded (if

necessary) with blanks. This field can be all blanks (no extension).
e File attributes (offset 0BH).

1-6

The following are the values of the attributes.

hex value
OlH

02H
04H

07H
08H

0AH

16H
20H

binary value
0000 0001

0000 0010
0000 0100

00000111
0000 1000

0001 0000

0001 0110
0010 0000

MS-DOS System Overview

File is marked read-only. An
attempt to open the file for writing
using function call 4DH results in
an error code being returned. This
value can be used with values
below.

Hidden file. The file is excluded
from normal directory searches.

System file. The file is excluded
from normal directory searches.

Changeable with CHGMOD.

The entry contains the volume
labelin the first I 1 bytes. The entry
contains no other usable informa-
tion (except the date and time of
volume creation) and may exist
only in the root directory.

The entry defines a sub-directory,
and is excluded from normal direc-
tory searches. Note that a directory
listing gives only the highest-level
directory name where there are
parent directories involved.

Hard attributes for FINDENTRY.

Archive bit. The bit is set to on
whenever the file has been written
to and closed. This bit can be used
along with other attribute bits.
Note that 10.SYS and MSDOS-
.SYS are marked as read-only,
hidden, and system files. Files can
be marked hidden when they are
created. Also, the read-only, hid-
den, system, and archive attributes
may be changed through the Func-
tion 43H.

MS-DOS System Overview

e Reserved (offset 0OCH). Reserved for MS-DOS.
e Time of Last Write (offset 16H). The time the file was created or last updated.

The hour, minutes, and seconds are mapped into two bytes as follows:

Offset 17H
H H H H H M M M
15 11 10

Offset 16H .
M M M S S S S S

54 0
Or, described as mapped bits:

hh m m X X
1514 13 121110 9 8 7 6 5 4 3 2 1 0

where:
hh is the binary number of hours (0-23)
mm is the binary number of minutes (0-59)
xx is the binary number of two-second increments.

Date of Last Write (offset 18 H). The date the file was created or last updated.
The year, month, and day are mapped into two bytes as follows:

Offset 19H
Y YYYYYYM
15 98

Offset 18H
MMMDDDDD
54 0

Or viewed as mapped bits:
25 2

4
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
yy vV.y yvyy mmmmddddd
where:
mm is 1-12
dd is 1-31

yy is 0-119 (1980-2099).

MS-DOS System Overview

® Reserved (offset | AH). Starting cluster or the relative cluster number of the

first cluster in the file. Note that the first cluster for data space on all disks is
cluster 002. The cluster number is stored with the least significant byte first.
(Refer to information on the File Allocation Table in the MS-DOS System
Programmer’s Guide for details on converting cluster numbers to logical
sector numbers.)

¢ File Size (offset ICH). The size of the file in bytes. The first word of this 4-byte

field is the low-order part of the size.

PERIPHERAL DEVICE AND DEVICE CONTROLLER CHARACTERISTICS

The following are characteristics of the peripheral devices attached to the APC and
their device controllers.

The APC Screen
The APC screen is controlled by the Graphic Display Controller (GDC). GDC

generates the basic video raster timing

partitions the screen into areas for independent scrolling
performs zooming and panning operations

modifies video-display memory and moves data
calculates the video-display memory address

performs DMA operations between the main memory and video-display
memory. '

Some further characteristics of the CR T-control design are

a display buffer independent of system memory

an 80-character by 25-line screen (2000 characters)
a direct drive output

an 8-dot by 19-dot character box

a 7-dot by 11-dot character box

16-dot by 16-dot special programmable characters.

Printers
The printer driver supplied with MS-DOS controls the following NEC printers:

MS-DOS System Overview

1-10

e the NEC 8023 Dot Matrix Printer operatmg at 100 characters/second with
136 characters/line

® the NEC Spinwriter 3530 operating at 350 words/ minute.

Diskette and Hard Disk Drives

MS-DOS provides drivers for controlling four diskette drives and two hard disk
drives. ’

DISKETTE ATTRIBUTES

The APC uses 8-inch (200 mm) diskettes for storihg information. In the APC system,
“diskette™ is the term used for “floppy disk,” “floppy,” or “disk.”

You can use two types of diskette on the APC. One is a single-sided, single-density
diskette (called FDI1); the other is a double-sided, double-density diskette (called
FD2D).

The FDI diskette uses the IBM 3740 format with the following characteristics:

128 bytes per sector, soft sectored
® 4 sectors per allocation unit

® | reserved sector

e 2 FATs

® 68 directory entries in the root directory area
® 77 x 26 sectors.

The MS-DOS FORMAT command does not format an FDI diskete for use as a
system diskette. The Boot Loader that resides in ROM will not load the MS-DOS
programs from an FD 1 diskette, so placing these programs on this type of diskette is of
no use.

MS-DOS System Overview

The FD2D diskette has the IBM-compatible format of

1024 bytes per sector, soft sectored
I sector per allocation unit

)
[]

® | reserved sector
®

® 92 directory entries in the root directory area
[

77 x 8 x 2 sectors.

The FORMAT command formatsan FD2D diskette for use as a system diskette or as
a data diskette. However, a system diskette will not have a standard Microsoft boot
sector format.

HARD DISK ATTRIBUTES
Hard disk configuration attributes are

® 512 bytes per sector
e 2 sectors per allocation unit

e (reserved sectors

e 2 FATs

® 1024 entries in a root directory area
[]

a variable number of sectors, as specified by the user during Hard Disk
Formatter (HDFORMAT) execution.

Chapter 2

MS-DOS System Calls

MS-DOS uses two types of system calls: interrupts and function requests.

Interrupts are the lowest-level primitives available in the operating system. They
provide access to standard function routines in the I/O System. '

Function requests provide access to primitive routines in the DOS. The DOS primi-
tives, in turn, call the interrupts to perform their processing.

PROGRAMMING CONSIDERATIONS

System calls free you from having to invent your own ways to perform primitive
functions. They make it easier to write machine-independent programs. Some knowl-
edge of system control blocks is required to use the disk input/output system calls.
These control blocks are described in this chapter.

Calling from the MACRO-86 Macro Assembler™

System calls can be invoked from the MACRO-86 Macro Assembler simply by
moving any required data into registers and issuing an interrupt. Some of the calls
destroy registers, so you may have to save registers before using a system call. The
system calls can be used in macros and procedures to make your programs more
readable.

Calling from a High-Level Language

System calls can be invoked from any high-level language whose modules can be
linked with assembly language modules.

2-1

:MS-DOS System Calls

2-2

Returning Control to MS-DOS
Control can be returned to MS-DOS in three ways:

-® Call interrupt 20H:
INT 20H
This is the gquickest way.
e Jump to location 0 (the beginning of the Program Segment Prefix):
JMP 0

Location 0 of the Program Segment Prefix contains an INT 20H instruction,
so this technique is simply one step removed from the first.

e (Call Function Request O0H:

MOV AH.00H-
INT 21H

This causes a jump to location 0, so it is simply one step removed from
technique 2, or two steps removed from technique 1.

Console and Printer Input/Output Calls

The system calls for the console (keyboard) and printer let you read from and write to
the console device and print on the printer without using any machine-specific codes.
You can still take advantage of specific capabilities (display attributes such as position-
ing the cursor or erasing the screen, printer attributes such as double-strike or
underline) by using constants for these codes and reassemblmg once with the correct
constant values for the attributes.

Disk I/O System Calls

Many of the system calls that perform disk input and output require placing values
into or reading values from two system control blocks: the File Control Block (FCB)
and the directory entry.

FILE CONTROL BLOCK FORMAT

The Program Segment Prefix control block, built by MS-DOS for each program to be
executed, includes room for two File Control Blocks (FCBs) at offsets SCH and 6CH.
The system call descriptions refer to unopened and opened FCBs. An unopened FCB
is one that contains only a drive specifier and filename, which can contain wild card
characters (* and ?). An opened FCB contains all fields filled by the Open File system
call (Function OFH). Figure 2-1 illustrates the format of the FCB.

MS-DOS System Calls

(Offsets are in decimal)

48 S T T,
I hex FF | Zeros | Attribute | extension
0 ' !
Drive Filename (8 bytes) or Reserved device name gggdard
8
Fi:lgrr:?‘rge Filename extension Current block Record size
16
File size (low part) File size (high part) | Date of last write Time of last write
24
Reserved fbr system use
32
Current Random record Random record
record number (low part) | number (high part)

Unshaded areas must be filled in by the using program.
Shaded areas are filled in by the DOS and must not be modified.

Figure 2-1 File Control Block

File Contro! Block Fields
Table 2-1 lists each field of the FCB, giving its size and offset in decimal and

hexadecimal

Table 2-1 File Control Block Fields

SIZE OFFSET
NAME (BYTES) HEX DECIMAL
Drive number 1 00H 0
Filename 8 01H-08H 1-8
Extension 3 09H-0BH 9-11
Current block 2 O0CH.ODH 12.13
Record size 2 0EH.0OFH 14,15
File size 4 10H-13H 16-19
Date of last write 2 14H,15H 20,21
Time of last write 2 16H,17H 22.23
Reserved 8 18H-1FH 24-31
Current record 1 20H 32
Relative record 4 21H-24H 33-36

MS-DOS System Calls

Additional information about the FCB fields is as follows:

¢ Drive Number (offset 00H). Specifies the drive; | meansdrive A, 2 means drive

B, and so forth. If the FCB is to be used to create or open a file, this field can be
set to 0 to specify the default drive; the Open File system call Function (0FH)
sets the field to the number of the defauit drive.

Filename (offset 01 H). Eight characters, left-aligned and padded (if necessary)
with blanks. If you specify a reserved device name (suchas LPT1),donot puta
colon at the end. :

Extension (offset 09H). Three characters, left-aligned and padded (if neces-
sary) with blanks. This field can be all blanks (no extension).

Current Block (offset 0CH). Points to the block (group of 128 records) that
contains the current record. This field and the Current Record field (offset
20H) make up the record pointer. This field is set to 0 by the Open File system
call.

Record Size (offset 0OEH). The size of a logical record in bytes. Set to 128 by the
Open File system call. If the record size is not 128 bytes, you must set this field
after opening the file.

File Size (offset I0H). The size of the file in bytes. The first word of this 4-byte
field is the low-order part of the size.

Date of Last Write (offset 14H). The date the file was created or last updated.
The year, month, and day are mapped into two bytes as follows:

Offset 1SH
Y Y Y Y Y Y Y M
15 9 8
Offset 14H
M M M D D D D D

54 0

Time of Last Write (offset I6H). The time the file was created or last updated.
The hour, minutes, and seconds are mapped into two bytes as follows:

Offset 17H
H H H H H M M M
15 11 10

Offset 16H
M M M S S S S S

5 4 0
Reserved (offset 18H). These fields are reserved for use by MS-DOS.

MS-DOS System Calls

e Current Record (offset 20H). Points to one of the 128 records in the current
block. This field and the Current Block field (offset 0CH) make up the record
pointer. This field is not initialized by the Open File system call. You must set it
before doing a sequential read or write to the file.

® Relative Record (offset 21 H). Points to the currently selected record, counting
from the beginning of the file (starting with 0). This field is not initialized by
the Open File system call. You must set it before doinga random read or write
to the file. If the record size is less than 64 bytes, both words of this field are
used. If the record size is 64 bytes or more, only the first three bytes are used.

NOTE

If you use the FCB at offset SCH of the Program
Segment Prefix, the last byte of the Relative
Record field is the first byte of the unformatted
parameter area that starts at offset SOH. This is
the default Disk Transfer Address.

Extended File Control Block

The Extended File Control Block (Extended FCB) is used to create or search for
directory entries of files with special attributes. It adds the following seven-byte prefix
consisting of a name, size, and decimal offset to the normal FCB:

Byte Function
FCB-7 Flag byte containing FFH to indicate an Extended FCB.
FCB-6 to FCB-2 Reserved.
FCB-8 Attribute byte (02H = hidden file; 04H = system file). Also refer

to Function Request 11H (Search for First Entry) for details on
using the attribute bits during directory searches. This function
allows applications to define their own files as hidden and
thereby exclude them from directory searches. It also allows for
selective directory searches.

Any references in the MS-DOS function calls to an FCB, whether opened or
unopened, may designate either a normal or extended FCB. If using an extended FCB,
you should set the appropriate register to the first byte of the prefix rather than the
drive-number field.

2-5

MS-DOS System Calls

SYSTEM CALL DESCRIPTIONS

The system calls to DOS and standard I/ O System routines are described in the pages
that follow. The descriptions of the system calls provide some or all of the following

information:

A representation of the registers that shows their contents before and after the
system call. Many system calls require that parameters be loaded into one or
more registers before the call is issued. Most calls return information in the
registers (usually a code that indicates the success or failure of the operation).

More information about the register contents required before the system call.
An explanation of the processing performed.

Error returns from the system call, if any.

An example of its use.

A macro is defined for each system call, then used in an example. In addition, a
few other macros are included in the examples. These macros make the
examples appear more like complete programs, rather than isolated uses of the
system calls. All macro definitions are listed at the end of the chapter.

Examples are not intended to represent good programming practice. In
particular, error checking and good documentation have been sacrificed to
conserve space. You may, however, find the macros a convenient way to
include system calls in your assembly language programs.

In their detailed descriptions, system calls are listed in numeric order. The interrupts
are described first, then the function requests.

NOTE

Unless otherwise stated, all numbers in the sys-
tem call descriptions — both text and code —
are in hex.

Interrupts

MS-DOS reserves interrupts 20H through 3FH for its own use. The table of interrupt
routine addresses (vectors) is maintained in locations 80H-FCH. Table 2-2 lists the
interrupts in numeric order.

Table 2-2 MS-DOS Interrupts

INTERRUPT

HEX DEC DESCRIPTION

20H 32 Program Terminate

21H 33 Function Request

22H 34 Terminate Address

23H 35 CTRL-C Exit Address

24H 36 Fatal Error Abort Address

25H 37 Absolute Disk Read

26H 38 Absolute Disk Write

27H 39 Terminate But Stay Resident
28 H-40H 40-64 | RESERVED — DO NOT USE

User programs should issue only interrupts 20H, 21H, 25H, 26H, and 27H.

NOTE

Interrupts 22H, 23H, and 24H are not interrupts
that can be issued by user programs. They are
simply locations where a segment and offset
address are stored.

PROGRAM TERMINATE

ENTRY

CS Segment address
of Program
Segment Prefix

RETURN

INTERRUPT 20H

»-

Interrupt 20H terminates the current process and returns control to its parent process.
All open file handles are closed and the disk cache is cleaned. This interrupt is almost
always used in .COM files for termination.

The CS register must contain the segment address of the Program Segment Prefix

before you call this interrupt.

MS-DOS System Calls

2-7

MS-DOS System Calls

2-8

The following exit addresses are restored from the indicated offsets of the Program
Segment Prefix. ' '

Exit Address Offset
Program Terminate 0AH
CTRL-C OEH
Critical Error 12H

All file buffers are flushed to disk.

CAUTION

Close all files that have changed in length before
issuing this interrupt. If a changed file is not
closed, its length is not recorded correctly in the
directory. See Function 10H for a description of
the Close File system call.

Interrupt 20H is provided for compatibility with versions of MS-DOS prior to 2.0.
New programs should use Function 4CH, Terminate a Process.

Macro Definition:

terminate macro
int 20H
endm

Example:

;CS must be equal to PSP values given at program start
;(ES and DS values)

INT 20H
;There is no return from this interrupt

FUNCTION REQUEST
ENTRY RETURN

e g —3
AH Function number INTERRUPT 21H As specified in
of other registers individual
in individual function
function

MS-DOS System Calls

Interrupt 21 H allows for calling of a specified function. The AH register must contain
the number of the system function. See the section FUNCTION REQUESTS for a
description of the MS-DOS system functions.

NOTE

No macro is defined for this interrupt because all
function descriptions in this chapter that define
a macro include Interrupt 21 H.

Example:
To call the Get Time function:

mov ah,2CH :Get Time is Function 2CH
int 21H THIS INTERRUPT

INTERRUPTS 22H, 23H, AND 24H

Interrupts 22H, 23H, and 24H are not true interrupts, but storage locations for a
segment and offset address. The interrupts are issued by MS-DOS under the specified
circumstance. You can change any of these addresses with Function Request 25H (Set
Vector) if you prefer to write your own interrupt handlers.

Interrupt 22H — Terminate Address

When a program terminates, control transfers to the address at offset 0AH of the
Program Segment Prefix. This address is copied into the Program Segment Prefix,
from the Interrupt 22H vector, when the segment is created. If a program executes a
second program, it must set the terminate address before it creates the segment for the
second program. Otherwise, when the second program terminates, it will transfer to
the first program’s termination address.

Interrupt 23H — CTRL-C Exit Address

If you press CTRL-C during keyboard input or display output, control transfers to the
address at offset 0OEH of the Program Segment Prefix. This address is copied into the
Program Segment Prefix, from the Interrupt 23H vector, when the segment is created.

If the CTRL-C routine preserves all registers, it can end with an IRET instruction
(return from interrupt) to continue program execution. When the interrupt occurs, all
registers are set to the value they had when the original call to MS-DOS was made.
There are no restrictions on what a CTRL-C handler can do — including MS-DOS
function calls — so long as the registers are unchanged if IRET is used.

MS-DOS System Calls

If Function 09H or 0AH (Display String or Buffered Keyboard Input) is interrupted
by CTRL-C, the three-byte sequence 03H-0DH-0AH (ETX-CR-LF) is sent to the

display, and the function resumes at the beginning of the next line.

If the program creates a new segment and loads a second program that changes the
CTRL-C address, termination of the second program restores the CTRL-C address to

its value before execution of the second program.

Interrupt 24H — Fatal Error Abort Address

If a fatal disk error occurs during execution of one of the disk I/O function calls,
control transfers to the address at offset 12H of the Program Segment Prefix. This
address is copied into the Program Segment Prefix, from the Interrupt 24H vector,

when the segment is created.

2-10

NOTE

Interrupt 24H is not issued if the failure occurs
during execution of Interrupt 25H (Absolute
Disk Read) or Interrupt 26H (Absolute Disk
Write). These errors are usually handled by the
MS-DOS error routine in COMMAND.COM.
This routine retries the disk operation, then
gives the user the choice of aborting, retrying the
operation, or ignoring the error.

The following sections provide information for
interpreting the error codes, managing the regis-
ters and stack, and controlling the system’s
response to an error in order to write your own
error-handling routines.

ERROR CODES

When an error-handling program gains control from Interrupt 24H, the AX and DI
registers can contain codes that describe the error. If bit 7of AH s 1, the erroris a bad
memory image of the File Allocation Tabie. No further information is available.
If bit 7 of AH is 0, it is a disk error: the following registers describe the failure.

AL identifies the drive (0 = A, 1 = B, and so on.).

AH identifies the operation and affected area.

The lower half of DI identifies the error.

Table 2-3 describes the operation code in AH.
Table 2-3 Disk Error Operation Codes (AH)

CODE OPERATION | AFFECTED AREA

Read
Write System files
Read
Write File Allocation Table
Read

Write Directory
Read

Write Data area

NV EBEWN—=O

Table 2-4 describes the error code in the lower half of DI.
Table 2-4 Disk Error Codes (Lower Half of DI)

CODE MEANING
0 Attempt to write on write-protected diskette
2 Drive not ready
4 Data error
6 Seek error
8 Sector not found
0OAH Write fault
OCH General disk failure

MS-DOS System Calls

MS-DOS System Calls

RETRIES

The DS, BX, CX, and DX registers contain the required data for a retry of the
operation. Specify the action to be taken by putting one of the following values in AL
and executing an IRET.

Value Meaning
0 Ignore the error
1 Retry

2 Abort the program

If you retry, do not change the contents of the DS, BX, CX, or DX registers.

STACK
The stack contains the following:

Top of stack — 1P System registers from
CS Interrupt 24H
Flags (fatal error interrupt)
AX
BX
CX
DX
Sl User registers from
Dl Interrupt 21H
BP (disk operation system call)
DS .

ES

IP

CS

Flags

If your error-handling routine does not return to MS-DOS, it should discard the first
and last three words from the stack (IP, CS, and Flags at both the top and bottom).

2-12

MS-DOS System Calls

ABSOLUTE DISK READ

ENTRY RETURN
___._»
AL Drive number INTERRUPT 25H AL Error code if
: CF=1
DS:BX Disk Tranfer
Address
Flags: CF =0 if
successful
CX Number of sectors CF=1if
not suc-
cessful

DX Beginning relative
sector
Interrupt 25H transfers control directly to the MS-DOS 1/0 System for a disk read.

The registers must contain the following values:

AL Drive number (OA, 1B, and so on)

BX Offset of Disk Transfer Address (from segment address in DS)

CcX Number of sectors to read

DX Beginning relative sector.
The number of sectors specified in CX is read from the disk to the Disk Transfer
Address. Its requirements and processing are identical to Interrupt 26H, except that

data is read rather than written.

NOTE

All registers except the segment registers are
destroyed by this call. Be sure to save any
registers your program uses before issuing the
interrupt.

2-13

MS-DOS System Calls

2-14

The system pushes

the flags at the time of the call; they are still there upon return. (This

is necessary because data is passed back in the flags.) Be sure to pop the stack upon
return to prevent uncontrolled growth.

If the disk operation was successful, the Carry Flag (CF) is 0. If the disk operation was

not successful, CF

is | and AL contains an MS-DOS error code (see Table 2-4 for the

codes and their meanings).

Macro Definition:
abs_disk_read

Example:

macro disk,buffer,num_sectors,start

mov al,disk

mov bx,offset buffer
mov cX.nume_sectors
mov dh,start

int 25H

endm

The following program copies the contents of a single-sided diskette in drive A to the

diskette in drive B

. It uses a buffer of 32K bytes.

prompt db “Source in A, target in B”,13,10
db “Any key to start. $”

start dw 0

buffer db 64 dup (512 dup (7));64 sectors

int_25H: display prompt ;see Function 09H
read_kbd :see Function O8H
mov ¢x,5 ;copy 5 groups of

:64 sectors
copy: push cx :save the loop counter
: abs_disk_read 0,buffer,64,start :THIS INTERRUPT

abs_disk_write 1,buffer,64,start ;see INT 26H
add start,64 ; do the next 64 sectors
pop ¢x ; restore the loop counter
loop copy ‘

ABSOLUTE DISK WRITE

ENTRY

:
AL Drive number INTERRUPT 26H

DS:BX Disk Transfer
Address

CX Number of sectors

DX Beginning relative
sector

MS-DOS System Calls

RETURN)

...—_——>

AL Error code if
CF =1

Flags: CF =0 if
successful
CF=1if
not suc-
cessful

Interrupt 26H transfers control directly to the MS-DOS 1/0 System for a disk write.

The registers must contain the following values:

AL

BX

X

DX

Drive number (0 = A, | = B, and so on)

Offset of Disk Transfer Address (from segment address in DS)

Number of sectors to write

Beginning relative sector.

The number of sectors specified in CX is written from the Disk Transfer Address to the
disk. Its requirements and processing are identical to Interrupt 25H. except that data is
written to the disk rather than read from it.

NOTE

All registers except the segment registers are
destroyed by this call. Be sure to save any regis-
ters your program uses before issuing the

interrupt.

The system pushes the flags at the time of the call; they are still there upon return. (This
is necessary because data is passed back in the flags.) Be sure to pop the stack upon
return to prevent uncontrolled growth.

2-15

MS-DOS System Calls

If the disk operation was successful, the Carry Flag (CF)is 0. If the disk operation was
not successful, CF is 1 and AL contains an MS-DOS error code (see Table 2-4 for the
codes and their meanings).

Macro Definition:

abs_disk_write

Example:

macro disk,buffer,num_sectors, start

mov al,disk

mov bx,offset buffer
mov cx,nume_sectors
mov dh,start

int 26K

endm

The following program copies the contents of a single-sided diskette in drive A to the
diskette in drive B, verifying each write. It uses a buffer of 32K bytes.

off
on

prompt
start

buffer

int_26H:

copy:

2-16

equ 0

equ l

db “Source in A, target in B”,13,10
db “Any key to start. §”

dw 0

db 64 dup (512 dup (7));64 sectors
display prompt ;see Function 09H

read_kbd ;see Function 08H

verify on ;see Function 2EH

mov ¢x,5 ;copy S groups of 64 sectors
push cx ;save the loop counter

abs_disk_read 0,buffer,64,start ;see INT 25H
abs_disk_write 1,buffer,64,start THIS INTERRUPT

add start,64 :do the next 64 sectors
pop cx _ ;restore the loop counter
loop copy

verify off ;see Function 2EH

TERMINATE BUT STAY RESIDENT

ENTRY RETURN
—
CS:DX First byte INTERRUPT 27H

following last
byte of code

Interrupt 27H keeps a piece of code resident in the system after its termination.
Typically, this call is used in .COM files to allow some device-specific interrupt handler
to remain resident to process asynchronous interrupts.

DX must contain the offset (from the segment address in CS) of the first byte following
the last byte of code in the program. When Interrupt 27H is executed, the program
terminates but is treated as an extension of MS-DOS. That is, the program remains
resident and is not overlaid by other programs when it terminates.

If an executable file whose extension is .COM ends with this interrupt, it becomes a
resident operating system command.

This interrupt is provided for compatibility with versions of MS-DOS prio'r to 2.0.
New programs should use Function 31H, Keep Process.

Macro Definition:

stay_resident macro last_instruc
mov dx,offset last_instruc
inc dx
int 27H
endm
Example:

;CS must be equal to PSP values given at program start
:(ES and DS values)

mov DX, LastAddress

int 27H
;There is no return from this interrupt

MS-DOS System Calls

2-17

MS-DOS System Calls

2-18

Function Requests
The standard sequence to call a function request is straightforward.

1. Move any required data into the appropriate registers.
2. Move the function number into AH.
3. Execute Interrupt 21H.

CP/M(R)-COMPATIBLE CALLING SEQUENCE

A different sequence can be used for programs that must conform to CP/M calling
conventions.

1. Move any required data into the appropriate registers (just as in the standard
sequence).

2. Move the function number into the CL register.
3. Execute an intrasegment call to location 5 in the current code segment.

This method can only be used with Functions 00H through 24H, which do not pass a
parameter in AL. Register AX is always destroyed when a function is called this way.

TREATMENT OF REGISTERS

When MS-DOS takes control after a function call, it switches to an internal stack.
Registers not used to return information (except AX are preserved. The calling
program’s stack must be large enough to accommodate the interrupt system — at least
128 bytes in addition to other needs.

The macro definitions and an extended example for MS-DOS system calls 00H
through 2EH can be found at the end of this chapter.

Table 2-5 lists the function requests.

Table 2-5 MS-DOS Function Requests

FUNCTION
NUMBER FUNCTION NAME

OOH Terminate Program

O1H Read Keyboard and Echo
02H Display Character

03H Auxiliary Input

04H Auxiliary Output

0SH Print Character

06H Direct Console 1/O

07H Direct Console Input
08H Read Keyboard

09H Diplay String

0AH Buffered Keyboard Input
0BH Check Keyboard Status
0CH Flush Buffer, Read Keyboard
O0DH Disk Reset

0EH Select Disk

OFH Open File

10H Close File

11H Search for First Entry
12H Search for Next Entry
13H Delete File

14H Sequential Read

ISH Sequential Write

16H Create File

17H Rename File

19H Current Disk

1AH Set Disk Transfer Address
21H Random Read

22H Random Write

23H File Size

24H Set Relative Record

25H Set Vector

27TH Random Block Read
28H Random Block Write
29H Parse File Name
2AH Get Date

2BH Set Date

MS-DOS System Calls

2-19

MS-DOS System Calls

2-20

Table 2-5 MS-DOS Function Requests (cont’d)

FUNCTION
NUMBER FUNCTION NAME

2CH Get Time
2DH Set Time
2EH Set/ Reset Verify Flag
2FH Get Disk Transfer Address
30H Get DOS Version Number
31H Keep Process
33H CTRL-C Check
35H Get Interrupt Vector
36H Get Disk Free Space
38H Return Country-Dependent Information
39H Create Sub-Directory
3AH Remove a Directory Entry
3BH Change the Current Directory
3CH Create a File
3DH Open a File
3EH Close a File Handle
3FH Read From File/Device
40H Write to a File/ Device
41H Delete a Directory Entry
42H Move a File Pointer
43H Change Attributes
44H 1/0 Control for Devices
45H Duplicate a File Handle
46H Force a Duplicate of a Handle
47H Return Text of Current Directory
48H Allocate Memory
49H Free Allocated Memory
4AH Modify Allocated Memory Blocks
4BH Load and Execute a Program
4CH Terminate a Process
4DH Retrieve the Return Code of a Child
4EH Find Match File
4FH Step Through a Directory Matching Files
54H Return Current Setting of Verify
56H Move a Directory Entry
57TH Get/Set Date/ Time of File

XENIX-COMPATIBLE CALLS

The hierarchical (that is, tree-structured) directories MS-DOS 2.0 supports, are
similar to those found in Microsoft Xenix. (For information on tree-structured
directories from the end-user’s point of view, refer to the MS-DOS System User’s
Guide.)

The following system calls are Xenix-compatible.

Function 39H
Function 3AH
Function 3BH
Function 3CH
Function 3DH
Function 3FH
Function 40H
Function 41H
Function 42H
Function 43H
Function 44H
Function 45H
Function 46 H
Function 4BH
Function 4CH
Function 4DH

Create Sub-Directory

Remove a Directory Entry
Change the Current Directory
Create a File

Open a File

Read From File/ Device

Write to a File or Device
Delete a Directory Entry
Move a File Pointer

Change Attributes

I/ O Control for Devices
Duplicate a File Handle

Force a Duplicate of a Handle
Load and Execute a Program
Terminate a Process

Retrieve Return Code of a Child

There is no restriction in MS-DOS 2.0 on the depth of a tree (the length of the longest
path from root to leaf) except in the number of allocation units available. The root
directory will have a fixed number of entries (64 for a single-sided diskette). For
non-root directories, the number of files per directory is limited only by the number of
allocation units available.

Pre-2.0 diskettes willappear to MS-DOS 2.0 as having only a root directory with files
and no subdirectories.

Implementation of the tree structure is simple. The root directory is the pre-2.0
directory. Subdirectories of the root have a special attribute set indicating that they are
directories. The subdirectories themselves are files, linked through the FAT as usual.
Their contents are identical to the contents of the root directory.

MS-DOS System Calls

2-21

MS-DOS System Calls

2-22

Pre-2.0 programs that use system calls not described in this chapter will be unable to
make use of files in other directories. Those files not necessary for the current task will
be placed in other directories.

Table 2-6 lists the directory file attributes and compares them to the attributes for other

types of files.

Table 2-6 Directory File Attributes

ATTRIBUTE MEANING/FUNCTION MEANING/FUNCTION
FOR NON-DIRECTORY FILES FOR DIRECTORIES
Volume 1D Present at the root. None.
Only one file may have this set.
Directory None. Indicates that the directory entry
isa directory. Cannot be changed
with Function 43H.
Read only Old-FCB create, new None.
create, new open (for write or
read/write) will fail.

Archive Set when file is written. None.
Set/reset via Function 43H.

Hidden/ Prevents file from Prevents directory

system being found in search entry from being

first/search next oper-
ation. New open will
fail.

found. Function 3BH
will still work.

MS-DOS System Calls

TERMINATE PROGRAM

ENTRY RETURN
»

AH 00H FUNCTION 00H

CS Segment address of
Program Segment
Prefix

Function 00H immediately calls Interrupt 20H to terminate a Program. The CS
register must contain the segment address of the program Segment Prefix before you
call this interrupt. The following exit addresses are restored from the specified offsets
in the Program Segment Prefix.

Exit Address Offset
Program terminate 0AH
CTRL-C OEH
Critical error 12H

All file buffers are flushed to disk.

CAUTION

Close all files that have changed in length before
calling this function. If a changed file is not
closed, its length is not recorded correctly in the
directory. See function 10H for a description of
the Close File system call.

b
b
]

MS-DOS System Calls

2-24

Macro Definition:
terminate_program

Example:

macro
Xor ah,ah
int 21H
endm

:CS must be equal to PSP values given at program start

:(ES and DS values)
mov ah.0
int 21H

;:There are no returns from this interrupt

READ KEYBOARD AND ECHO

ENTRY

AHOIH

FUNCTION O1H

RETURN

AL Character typed

Function 01H waits for a character to be typed at the keyboard, then echoes the
character to the APC screen and returns it in AL. If the character is CTRL-C,
Interrupt 23H is executed. 4 :

Macro Definition:

read_kbd_and_echo

macro -
mov ah,01H
int 21H
endm

Example:

The following program both displays and prints characters as they are typed. If you
press RETURN, the program sends Line Feed-Carriage Return to both the screenand
the printer.

func_01H: read_kbd_and_echo JTHIS FUNCTION
print_char al :see Function OSH
cmp al . 0DH dsita CR?
jne funcOIH :no. print it
print_char 10 :see Function 05H
display_char 10 :see Function 02H
jmp func_O1H :get another character

DISPLAY CHARACTER

ENTRY RETURN
>

AH 02H FUNCTION 02H

DL Character to be
displayed

Function 02H displays the character in DL. If CTRL-C is pressed, Interrupt 23H is
issued.

Macro Definition:

display_char macro character-

mov dl,character
mov ah,02H

int 21H

endm

MS-DOS System Calls

2-25

MS-DOS System Calls

2-26

Example:

The following program converts lowercase characters to uppercase before displaying
them.

func_02H: read..kbd :see Function 08 H

cmp al,a”

i uppercase :don’t convert

cmp al“z”

jg uppercase ;don’t convert

sub al,20H ;convert to ASCII code

;for uppercase

uppercase: display_char al ;THIS FUNCTION

jmp func_02H: ;get another character

READ KEYBOARD AND ECHO

ENTRY RETURN
>
AH 03H FUNCTION 03H AL Character from
auxiliary device

Function 03H waits for a character from the auxiliary input device, then returns the
character in AL. This system call does not return a status or error code.

Macro Definition:

aux_input macro
mov ah,03H
int 21H
endm
Example:
The following program prints characters as they are received from the auxiliary device.
It stops printing when an end-of-file character (ASCII 26, or CTRL-Z) is received.

func_03H: aux—input ;THIS FUNCTION
cmp al,1AH ;:end of file?
je continue - ;yes, all done
print_char al :see Function O5SH
jmp func_O3H ;get another character
continue:

MS-DOS System Calls

AUXILIARY OUTPUT

ENTRY : RETURN
AH 04H FUNCTION 04H
DL Character for

auxiliary device

Function 04H sends the character in DL to the auxiliary output device. This system
call does not return a status or error code.

Macro Definition:
aux—output macro character

mov dl.character
mov ah,04H

int 21H

endm

Example:

The following program gets a series of strings of up to 80 bytes from the keyboard.
sending each to the auxiliary device. It stops when a null string (CR only) is typed.

string db 81 dup(?) :see Function 0OAH
func_04H: get_string 80,string :see Function 0AH
cmp string[1].0 :null string?
je continue .yes. all done
mov c¢x, word ptr string[1] .get string length
mov bx.0 set index to 0
send_it: aux—output string [bx+2] :THIS FUNCTION
inc bx :bump index
loop send it :send another character
jmp func_04H :get another string
continue:

2-27

MS-DOS System Calls

2-28

ENTRY

PRINT CHARACTER

RETURN

AH 05H

FUNCTION 05H

DL Character for

printer

Function O5H prints the character in DL. If you press CTRL-C, Interrupt 23H is

issued.

Macro Definition:

print_char macro character
mov dl,character
mov ah,05H
int 2IH
endm
Example:
The following program prints a walking test pattern on the printer. It stops if CTRL-C
is pressed.
line_num db 0
func_05H: mov ¢x,60 ;print 60 lines
start_line: mov bl,33 Jfirst printable ASCII
;character (!)
add bl,line_num ;to offset ne character
push cx ;save number-of-lines counter
mov ¢X,80 ;loop counter for line
print_it: print_char bl ;:THIS FUNCTION
inc bl :move to next ASCII character
cmp bl 126 ;last printable ASCII
, ;character ()
jl no..reset ;not there yet
mov bl,33 ;start over with (!)

no_reset: loop print_it
print_char 13
print_char 10
inc line_num
pop cx
loop start_line;

DIRECT CONSOLE 1/O

MS-DOS System Calls

;print another character
;carriage return

;line feed

;to offset Ist char. of line
;restore #-of-lines counter
;print another line

ENTRY RETURN
AH 06H FUNCTION 06H AL If DL =225
before call

DL 225 = Return
character that was
typed

Zero clear if no charac-
ter is typed

Return zero set if
character is typed

Not 225 = Display this
character

Zero not set: No
character was ready

Zero set: AL =0 if
character was typed

Function 06H receives input from and sends output to the APC console directly. The
processing depends on the value in DL when the function is called.

e DL is FFH (255) — Ifa character has been typed at the keyboard, it is returned
in AL and the Zero flagis 0; if a character has not been typed, the Zero flagis 1.

e DL is not FFH — The character in DL is displayed.

This function does not check for CTRL-C.

2-29

MS-DOS System Calls

Macro Definition:

dir_console_io macro switch
mov dl,switch
mov ah,06H
int 21H
endm

Example:

The following program sets the system clock to 0 and continuously displays the time.
When any character is typed, the display stops changing. When any character is typed
again, the clock is reset to 0 and the display starts again.

time db “00:00:00.00”,13,10,“$” ;see Function 09H
;for explanation of $
ten ~db 10
func_06H: set_time 0,0,0,0 ;see Function 2DH
read_clock: get_time ;see Function 2CH
convert ch,ten,time ;see end of chapter
convert clten,time[3] ;see end of chapter
convert dh,ten,time[6] ;see end of chapter
convert dlten,time[9] ;see end of chapter
display time ;see Function 09H
dir_console_io FFH ;THIS FUNCTION
jne stop ;yes, stop timer
jmp read_clock ;no, keep timer
;running ,
stop: read_kbd ‘ ;see Function 08H
jmp func_06H ;start over

2-30

MS-DOS System Calls

DIRECT CONSOLE INPUT

~ RETURN
ENTRY ey
AH 07H FUNCTION 07H AL Character from
keyboard

Function 07H waits for a character to be typed, then returns it in AL. This function
does not echo the character on the APC screen or check for CTRL-C. For a keyboard
input function that echoes, see Function 01H. For one that checks for CTRL-C, see
Function O8H.

Macro Definition:

dir_console_input macro
mov ah,07H
int 21H
endm

Example:

The following program prompts for a password (eight characters maximum) and
places the characters into a string without echoing them.

password db 8 dup(?)
prompt db “Password: $” ;see Function 09H for
:explanation of §

func_07H: display prompt ;see Function 09H

mov ¢x,8 ;maximum length of password

Xor bx,bx ;50 BL can be used as index
get_pass: dir_console_input ;THIS FUNCTION

cmp al,0DH ;was it a CR?

je continue ;yes, all done

mov password[bx],al ;no, put character in string

inc bx ;bump index

loop get_pass ;get another character
continue: . ;BX has length of password+1

2-31

MS-DOS System Calls

2-32

READ KEYBOARD

ENTRY

RETURN

AH 08H

FUNCTION 08H

AL Character from
keyboard

Function 08H waits for a character to be typed, thenreturns it in AL. If CTRL-Cis is
pressed, Interrupt 23H is executed. This function does not echo the character on the
APC screen. For a keyboard input function that echoes the character, see Function
O1H. For one that does not check for CTRL-C, see Function 07H.

Macro Definition:

read_kbd macro
mov
ah,O8H
int 21H
endm
Example:

The following program prompts for a password (eight characters maximum) and
places the characters into a string without echoing them.

password db 8 dup(?)
prompt db “Password: $”
func_08H: display prompt

mov cx,8

xor bx,bx
get__pass: read_kbd

cmp al,0DH

je continue

mov passwordfbx],al

inc bx

loop get_pass
continue:

:see Function 09H
;for explanation of $

;see Function 09H

;maximum length of password
:BL can be an index

;THIS FUNCTION

;was it a CR?

;yes, all done

;no, put char. in string

;bump index

;get another character

;BX has length of password+1

MS-DOS System Calls

DISPLAY STRING
ENTRY RETURN
B ey

AH 09H FUNCTION 09H

DS:DX String to be
displayed

Function 09H displays a character string. DX must contain the offset (from the
segment address in DS) of a string that ends with “$.” The string is displayed (the $ is
not displayed).

Macro Definition:

display macro string
mov dx,offset string
mov ah,09H
int 21H
endm

Example:
The following program displays the hexadecimal code of the key that is typed.

table db “0123456789ABCDEF”

sixteen db 16 _
result db “-00H",13,10,“8” ;see text for
:explanation of $
func_09H: read_kbd_and_echo ;see Function 01H
convert alsixteen,result{3] ;see end of chapter
display result ;THIS FUNCTION
jmp func_09H :do it again

2-33

MS-DOS System Calls

2-34

BUFFERED KEYBOARD INPUT

ENTRY RETURN
——-————’

AH 0AH FUNCTION 0AH

DS:DX Input buffer

Function 0AH allows for buffering of keyboard input. DX must contain the offset
(from the segment address in DS) of an input buffer. The information in this buffer is
the following:

Byte Contents

1 Maximum number of characters in buffer, including the CR (you must
set this value).

2 Actual number of characters typed, not counting the CR (the function
sets this value).

3-n Buffer. Must be at least as long as the number in byte I.

Function 0AH waits for characters to be typed. Characters are read from the keyboard
and placed in the buffer beginning at the third byte until you press RETURN. If the
buffer fills to one less than the maximum, additional characters typed are ignored and
ASCI 7(BEL) s sent to the APC screen until you press RETURN. The string can be
edited as it is being entered. If you press CTRL-C, Interrupt 23H is issued.

The second byte of the buffer is set to the number of characters entered (not counting
the RETURN).

Macro Definition:
get_string macro limit,string

mov dx,offset string
mov string,limit
mov ah,0AH

int 21H

endm

Example:

The following program gets a 16-byte (maximum) string from the keyboard and fills a

24-line by 80-character screen with it.

buffer
max_length
chars_entered
string
strings_per_line

crif

func_0AH:

display_screen:

display_line:

label byte

db ?

db ?

db 17 dup (?)
dw 0

db 13,10,“$”

get_string 17,buffer
xor bx,bx

mov bl,chars entered
mov buffer [bx+2],“$”
mov al,50H

cbw

div chars_entered

xor ah,ah
mov strings_per_line.ax
mov c¢x,24

push c¢x
mov cx,strings_per_line
display string

loop display_line
display crif

pop cx

loop display..screen

:maximum length
:number of chars.
;16 chars + CR
;how many strings
Ait on line

;THIS FUNCTION
;50 byte can be
:used as index

;get string length
:see Function 09H
;columns per line

;times string fits
;on line

;clear remainder
;save col. counter
;TOW counter
;save it

;get col. counter
:see Function 09H

;see Function 09H
;get line counter
:display 1 more line

MS-DOS System Calls

2-35

MS-DOS System Calls

2-36

CHECK KEYBOARD STATUS

ENTRY RETURN

B ————

AH O0BH FUNCTION 0BH AL 225 (FFH) =
Characters in
type-ahead
buffer

0 = No characters in
type-ahead buffer

Function 0BH checks whether there are characters in the type-ahead buffer. If so, AL
returns FFH (255); if not, AL returns 0. If CTRL-C is in the buffer, Interrupt 23H is
executed.

Macro Definition:

check_kbd_status macro
mov ah,0BH
int 21H
endm

Example:
The following program continuously displays the time until you press any key.

time db “00:00:00.00”,13,10,“8”

ten db 10

func_OBH: get_time ;see Function 2CH
convert ch,ten,time ;see end of chapter
convert clten,time[3] ;see end of chapter
convert dh,ten,time[6] ;see end of chapter
convert dl,ten,time[9] ;see end of chapter
display time ;see Function 09H
check_kbd_status - ;THIS FUNCTION
cmp al, FFH ;has a key been typed?
je all_done ;yes, go home
jmp func_0BH ;no, keep displaying

;time

MS-DOS System Calls

FLUSH BUFFER, READ KEYBOARD

ENTRY RETURN
y
AH 0CH FUNCTION 0CH AL 0 = Type-ahead
buffer was
flushed; no other
AL 1,6,7,8 or 10 = processing was
The corresponding) performed

function is called
Any other value =
no further
processing

Function OCH empties the keyboard type-ahead buffer. Further processing depends
on the value in AL when the function is called.

® 1,6,7,8, or 10 — The corresponding MS-DOS function is executed.
® Any other value — No further processing; AL returns 0.

Macro Definition:
flush_and_read_kbd macro switch

mov al,switch
mov ah,0CH
int 21H
endm

Example:

The following program both displays and prints characters as they are typed. If you
press RETURN, the program sends Carriage Return-Line Feed to both the APC
screen and the printer.

func_OCH: flush_and_read_kbd 1 ;THIS FUNCTION
print._char al :see Function 05H
cmp al ODH ;is it a CR?
jne func_OCH ;no, print it
print_char 10 ;see Function 05H
display_char 10 ;see Function 02H
jmp func_OCH ;get another character

2-37

MS-DOS System Calls

2-38

DISK RESET

ENTRY

AH ODH

FUNCTION 0DH

RETURN

Function 0DH ensures that the internal buffer cache matches the specified disks in the
drives. This function writes out dirty buffers (buffers that have been modified), and
marks all buffers in the internal cache as free.

Function 0DH flushes all file buffers. It does not update directory entries. You must
close files that have changed to update their directory entries (see Function 10H, Close
File). This function need not be called before a disk change if all files that changed were
closed. It is generally used to force a known state of the system. CTRL-C interrupt
handlers should call this function.

Macro Definition:
disk_reset macro

mov
int
endm
Example:
mov ah,0DH
int 21H

ah,0DH

;There are no errors returned by this call.

MS-DOS System Calls

SELECT DISK

ENTRY RETURN

B ea——

AH OEH FUNCTION OEH AL Number of
logical drives

DL Drive number
(0= A,1=B,
and so on)

Function OEH allows for selecting a default disk drive. The drive specified in DL (0A,
1B, and so on) is selected as the default disk. The number of drives is returned in AL.

Macro Definition:

select_disk macro disk
mov dl.disk[-64]
mov ah,OEH

int 21H
endm
Example:
The following program selects the drive not currently selected in a two-drive system.
func_OEH: current_disk ;see Function 19H
cmp al,00H ;drive A selected?
je select_b ;yes, select B
select_disk “A” ;THIS FUNCTION
jmp continue
select_b: select_disk “B” ;THIS FUNCTION
continue:

2-39

MS-DOS System Calls

2-40

OPEN FILE

ENTRY
—

AH OFH FUNCTION OFH

DS:DX Unopened
FCB

Function OFH opens a specified file. DX must contain the offset (from the segment
address in DS) of an unopened File Control Block (FCB). The disk directory is

searched for the named file.

If a directory entry for the file is found, AL returns 0 and the FCB is filled as follows:

RETURN

AL 0 = Directory
entry found
255 (FFH) =
No directory
entry found

e Ifthe drive code was 0 (default disk), it is changed to the actual disk used (1A,

2B, and so on). This lets you change the default disk without interfering with

subsequent operations on this file.

e The Current Block field (offset 0CH) is set to zero.

e The Record Size (offset OEH) is set to the system default of 128.

e The File Size (offset 10H), Date of Last Write (offset 14H), and Time of Last
Write (offset 16H) are set from the directory entry.

Before performing a sequential disk operation on the file, you must set the Current
Record field (offset 20H). Before performing a random disk operation on thefile, you
must set the Relative Record field (offset 21 H). If the default record size (128 bytes) is

not correct, set it to the correct length.

If a directory entry for the file is not found, AL returns FFH (255).

Macro Definition:
open macro fcb

mov dx,offset fcb
mov ah,OFH

int 21H

endm

MS-DOS System Calls

Example:

The following program prints the file named TEXTFILE.ASC that is on the diskette
in drive B. If a partial record is in the buffer at end-of-file, the routine that prints the
partial record prints characters until it encounters an end-of-file mark (ASCII 26, or
CTRL-Z).

fcb db 2“TEXTFILEASC”

db 25dup (?)

buffer db 128 dup (7)
func_OFH: set_dta buffer :see Function 1AH
open fcb ;THIS FUNCTION
read_line: read_seq fcb ;see Function 14H
cmp al,02H ;end of file?
je all_done ;yes, go home
cmp al,00H :more to come?
jg check_more ;no, check for partial
;record
mov ¢x,128 ;yes, print the buffer
xor si,si ;setindex to 0
print_it: print_char buffer [si] ;see Function O5SH
inc si ;bump index
loop print_it ;print next character
jmp read line ;read another record
check_more: cmp al,03H ;part. record to print?
jne all_done ;no
mov ¢Xx,128 ;yes, print it
xor si,si ;set index to 0
find_eof: cmp buffer [si],26 ;end-of-file mark?
je all_done ;yes
print_char buffer [si] ;see Function O5H
inc si ;bump index to next
;character
loop find_eof
all_done: close fcb ;see Function 10H

2-41

MS-DOS System Calls

CLOSE FILE
ENTRY RETURN
__—> .
AH 10H FUNCTION 10H AL 0 = Directory
entry found
225 (FFH) =
DS:DX Opened FCB No directory

entry found

Function 10H closes a specified file. DX must contain the offset (to the segment
address in DS) of an opened FCB. The disk directory is searched for the file named in
the FCB. Thus, Function 10H must be called after a file is changed to update the
directory entry.

If a directory entry for the file is found, the location of the file is compared with the
corresponding entries in the FCB. The directory entry is updated, if necessary, to
match the FCB, and AL returns 0.

If a directory entry for the file is not found, AL returns FFH (255).

Macro Definition:
close macro fcb

mov dx,offset fcb
mov ah,10H
int 21H
endm
Example:

The following program checks the first byte of the file named MODI1.BAS indrive B
to see if it is FFH, and prints a message if it is.

message db “Not saved in ASCII format”,13,10,“8”

fcb db 2,“MODI BAS”
db 25dup (M)

buffer db 128 dup (7)

func_10H: 'set_dta buffer ;see Function 1AH
open fcb :see Function OFH

2-42

read_seq fcb :see Function 14H

cmp buffer, FFH ;1s first byte FFH?

jne all_done :no

display message ;see Function 09H
all_done: close fcb {THIS FUNCTION

SEARCH FOR FIRST ENTRY

ENTRY RETURN
....._.._.._.__._>
AH 11H FUNCTION 11H AL 0 = Directory
entry found
FFH (225) =
DS:DX Unopened No directory
FCB entry found

Function 11H searches for the first entry in a disk directory for a filename. DX must
contain the offset (from the segment address in DS) of an unopened FCB. The disk
directory is then searched for the first matching name. The name can have the ? wild
card character to match any character. To search for hidden or system files, DX must
point to the first byte of the Extended FCB prefix.

If a directory entry for the filename in the FCB is found, AL returns 0 and an opened
FCB of the same type (normal or extended) is created at the Disk Transfer Address.

If a directory entry for the filename in the FCB is not found, AL returns FFH (255).

Macro Definition:
search_first macro fcb

mov dx,offset fcb
mov ah,11H

int 21H

endm

Example:

The following program verifies the existence of a file named REPORT.ASM on the
diskette in drive B.

MS-DOS System Callis

2-43

MS-DOS System Calls

2-44

yes db “FILE EXISTS.$”

no db “FILE DOES NOT EXIST$”

fcb db 2,“REPORT ASM”
db 25 dup (7))

buffer db 128 dup (7)

func_11H: set_dta buffer ;see Function 1AH
search_first fcb :THIS FUNCTION
cmp alLFFH ;directory entry found?
je not_there ;no
display yes ;see Function 09H
jmp continue

not_there: display no ;see Function 09H

continue: display crlf ;see Function 09H

SEARCH FOR NEXT ENTRY

ENTRY > RETURN
AH 12H FUNCTION 12H AL 0 = Directory
entry found
FFH (225) =
DS:DX Unopened No directory
FCB entry found

Function 12H is used after Function 11H (Search for First Entry) to find additional
directory entries that match a filename that contains wild card characters. DX must
contain the offset (from the segment address in DS) of an FCB previously specified in a
call to Function 11H. The disk directory is searched for the next matching name. The
name can have the ? wild card character to match any character. To search for hidden
or system files, DX must point to the first byte of the extended FCB prefix.

If a directory entry for the filename in the FCB is found, AL returns 0 and an opened
FCB of the same type (normal or extended) is created at the Disk Transfer Address.

If a directory entry for the filename in the FCB is not found, AL returns FFH (255).

MS-DOS System Calls

Macro Definition:

search_next macro fcb

mov dx,offset fcb
mov ah,12H
int 21H
endm
Example:
The following program displays the number of files on the diskette in drive B.
message db “No files”,10,13,“$”
files db 0
ten db 10
fcb db 2,47
db 25dup (D
buffer db 128 dup (?)
func_12H: set_dta buffer :see Function 1AH
search_first fcb ;see Function 11H
cmp al,FFH ;directory entry found?
je all_done ;no, no files on disk
inc files ;yes, increment file
scounter
search_dir: search_next fcb ;THIS FUNCTION
cmp al,FFH ;directory entry found?
je done :no
inc files ;yes, increment file
;counter
jmp search_dir ;check again
done: convert files,ten,message ;see end of chapter
all_done: display message ;see Function 09H

2-45

MS-DOS System Calls

2-46

DELETE FILE

ENTRY RETURN
——————
AH 13H FUNCTION 13H AL 0 = Directory
entry found
DS:DX Unopened FFH (225) =
FCB No directory

entry found

Function 13H searches a disk directory for a specified entry to delete it if found. DX
must contain the offset (from the segment address in DS) of an unopened FCB. The
directory is searched for a matching filename. The filename in the FCB can contain the
? wild card character to match any character.

If a matching directory entry is found, it is deleted from the directory. If the ? wild card
character is used in the filename, all matching directory entries are deleted. AL
returns 0.

If no matching directory entry is found, AL returns FFH (255).

Macro Definition:

delete macro fcb
mov dx,offset fcb
mov ah,13H
int 21H
endm
Example:

The following program deletes each file on the diskette in drive B that was last written
before December 31, 1982.

year dw 1982
month db 12
day db 31
files db 0
ten db 10

message db “NO FILES DELETED.”,13,10,“%”
;see Function 09H for

;explanation of $
fcb db 2.4

db 25dup (9

MS-DOS System Calls

buffer db 128 dup (7)
func_13H: set_dta buffer ;see Function 1AH
search_first fcb ;see Function [1H
cmp al,FFH ;directory entry found?
je all_done ;no, no files on disk
compare: convert_date buffer ;see end of chapter
cmp cx,year ;next several lines
18 next ;check date in directory
cmp dl,month ;entry against date
18 next ;above & check next file
cmp dh,day ;if date in directory
jge next sentry isn’t earlier.
delete buffer ;7 THIS FUNCTION
inc files ;bump deleted-files
;counter
next: search_next fcb ;see Function 12H
cmp al,00H ;directory entry found?
je compare ;yes, check date
cmp files,0 ;any files deleted?
je all_done ;no, display NO FILES
;message.
convert files,ten,message ;see end of chapter
all_done: display message ;see Function 09H
SEQUENTIAL READ
ENTRY > RETURN
AH 14H FUNCTION 14H AL 0 = Read
completed
successfully
| = EOF
DS:DX Opened 2 = DTA too
FCB small
3 = EOF, partial
record

2-47

MS-DOS System Calls

Function 14H reads the next record in a sequence of records. DX must contain the
offset (from the segment address in DS) of an opened FCB. The record pointed to by
the current block (offset 0CH) and Current Record (offset 20H) fields is loaded at the
Disk Transfer Address, then the Current Block and Current Record fields are
incremented.

The record size is set to the value at offset OEH in the FCB.

AL returns a code that describes the processing result.

Code Meaning
0 Read completed successfully.
End-of-file, no data in the record.
2 Not enough room at the Disk Transfer Address to read one record;
read canceled.
3 End-of-file; a partial record was read and padded to the record

length with zeros.

Macro Definition:

read_seq macro fcb
mov dx,offset fcb
mov ah,14H
int 21H
endm
Example:

The following program displays the file named TEXTFILE.ASC that is on the
diskette in drive B; its function is similar to the MS-DOS TYPE command. If a partial
record is in the buffer at end of file, the routine that displays the partial record displays
characters until it encounters an end-of- file mark (ASCII 26, or CTRL-Z).

fcb db 2 “TEXTFILEASC”
db 25dup (7
buffer db 128 dup (7),“$”
func_14H: set_dta buffer :see Function |AH
open fcb :see Function OFH
read_line: read_seq fc :THIS FUNCTION

2-48

cmp al,02H

je all_done
cmp al,02H

g check_more

display buffer
jmp read_line
check_more: cmp al,03H

jne all_done
Xxor sisi

find_eof: cmp buffer [si],26
je all_done
display_char buffer [si]
inc si

jmp find_eof
all_done: close fcb

SEQUENTIAL WRITE

ENTRY

MS-DOS System Calls

;end-of-file?

;yes

;end-of-file with partial
;record?

\yes

;see Function 09H

;get another record
;partial record in buffer?
;no, go home

;set index to 0

;is character EOF?

:yes, no more to display
:see Function 02H
;bump index to next
:character

:check next character
:see Function 10H

: RETURN ;

AH 15H .{ FUNCTION I5H AL 00H = Write
completed
successfully
01H = Disk full

DS:DX Opened 02H = DTA too

FCB small

Function 15H writes the next record in a sequence of records. DX must contain the
offset (from the segment address in DS) of an opened FCB. The record pointed to by
Current Block (offset 0CH) and Current Record (offset 20H) fields is written from the
Disk Transfer Address, then the current block and current record fields are

incremented.

The record size is set to the value at offset OEH in the FCB. If the Record Size is less
than a sector, the data at the Disk Transfer Address is written to a buffer. The buffer is
written to disk when it contains a full sector of data, or the file is closed, or a Reset Disk

system call (Function 0DH) is issued.

2-49

MS-DOS System Calls

AL returns a code that describes the processing result.
Code Meaning

0 Transfer completed successfully.
Disk full; write canceled.

2 Not enough room at the Disk Transfer Address to write one record;
write canceled.

Macro Definition:

write_seq macro fcb
mov dx,offset fcb
mov ah,15H
int 21H
endm
Example:

The following program creates a file named DIR.TMP on the diskette in drive B,
which contains the disk number and filename from each directory entry on the
diskette. (Disk numbers are assigned as 0 = A, 1 = B, and so on.)

record_size equ 14 ;offset of Record Size
;field in FCB

fcbl db 2,“DIR TMP”
db 25 dup ()

fcb2 db 2,“1MMMM MM«
db 25 dup (7)

buffer db 128 dup (7)

func_15H: set_dta buffer :see Function 1AH
search_first fcb2 ;see Function 11H
cmp al,FFH ;directory entry found?
je all_done ;no, no files on disk
create fcbl ;see Function 16H
mov fcbl [record_size],12

;set record size to 12

2-50

write_it: write._seq fcbl ;THIS FUNCTION
search_next fcb2 ;see Function 12H
cmp al, FFH ;directory entry found?
je all_done ;no, go home
jmp write_it ;yes, write the record
all_done: close fcbl ;:see Function 10H

CREATE FILE

ENTRY RETURN

FUNCTION 16H AL 00H = Empty
directory found
FFH (225) = No
empty directory

found

AH 16H

DS:DX Unopened
FCB

Function 16H searches a disk directory for an empty entry or an entry for a specified
filename. DX must contain the offset (from the segment address in DS) of an
unopened FCB. The directory is then searched for the specified entry.

If an empty directory entry is found, it is initialized to a zero-length file, the Open File
system call (Function O0FH) is called, and AL returns 0. You can create a hidden file by
using an extended FCB with the attribute byte (offset FCB - 1) set to 2.

If an entry is found for the specified filename, all data in the file is released, making a
zero-length file, and the Open File system call (Function OFH) is issued for the
filename. In other words, if you try to create a file that already exists, the existing file is
erased, and a new, empty file is created.

If an empty directory entry is not found and there is no entry for the specified filename,
AL returns FFH (255).

Macro Definition:

create macro fcb
mov dx,offset fcb
mov ah,l16H
int 21H
endm

MS-DOS System Calls

2-51

MS-DOS System Calls

Example:

The following program creates a file named DIR. TMP on the diskette in drive B,
which contains the disk number and filename from each directory entry on the
diskette. (Disk numbers are assigned as 0 = A, Im = B, and so on.)

record_size equ 14
fcbl db 2,“DIR TMP”
db 25 dup (7)
fcb2 db 2,41
db 25 dup ()
buffer db 128 dup ()
func_16H: set._dta buffer
' search_first fcb2
cmp al,FFH
found? je all_done
create fcbl
mov fcbl[record_size],12
write_it: write_seq fcbl
search_next fcb2
cmp al, FFH
found? je all_done
jmp write_it
all_done: close fcbl

RENAME FILE
ENTRY

AH 17H

DS:DX Modified
FCB

2-52

FUNCTION 17H "

;offset of Record Size
;field of FCB

;see Function 1AH
;see Function 11H
;directory entry

;no, no files on disk
;THIS FUNCTION

;set record size to 12
;see Function 15SH
;:see Function 12H
;directory entry

;no, go home

;yes, write the record
;see Function 10H

RETURN

AL OOH =
Directory entry
found
FFH (225) = No
directory entry
found or destina-
tion already
exists

Function 17H renames the filename in a disk directory entry. DX must contain the
offset (from the segment address in DS) of an FCB with the drive number and filename
filled in, followed by a second filename at offset 11 H. The disk directory is searched for
an entry that matches the first filename, which can contain the ? wild card character.

If a matching directory entry is found, the filename in the directory entry is changed to
match the second filename in the modified FCB (the two filenames cannot be the same
name). If the ? wild card character is used in the second filename, the corresponding
characters in the filename of the directory entry are not changed. AL returns 0.

If a matching directory entry is not found or an entry is found for the second filename,
AL returns FFH (255).

Macro Definition:

rename macro fcb,newname
mov dx,offset fcb
mov ah,17H
int 21H
endm

Example:

The following program prompts for the name of a file and a new name, then renames
the file.

fcb db 37 dup (?)

prompt| db “Filename: $”

prompt2 db “New name: $”

reply db 17 dup(?)

crlf db 13,10,“8”

func_17H: display prompt]| ;see Function 09H
get_string 15,reply ;see Function 0AH
display crlf ;see Function 09H
parse reply[2].fcb :see Function 29H
display prompt2 :see Function 09H
get_string 15,reply ;see Function 0AH
display crlf ;see Function 09H
parse reply[2].fcb=16] ;see Function 29H
rename fcb :THIS FUNCTION

MS-DOS System Calls

2-53

MS-DOS System Calls

2-54

CURRENT DISK

ENTRY RETURN
B
AH 19H FUNCTION I19H AL Currently
: selected drive (0
= A, 1=B, and
SO on)

Function 19H searches for the currently selected (default) drive. AL returns the drive
letter (0 = A, | = B, and so on).

Macro Definition:
current_disk macro

mov ah,19H
int 21H
endm

Example:
The following program displays the default diskette drive in a two-drive system.

message db “Current disk is $” ;see Function 09H
;for explanation of $

crif db 13,10,“%”

func_19H: display message ;see Function 09H
current_disk :THIS FUNCTION
cmp al,00H ;1s it disk A?
jne disk_b ;no, it’s disk B:
display._char “A” ;see Function 02H
jmp all_done

disk_b: display char “B” ;see Function 02H

all_done: display crlf ;see Function 09H

MS-DOS System Calls

SET DISK TRANSFER ADDRESS

ENTRY RETURN
.._—_.._._»

AH 1AH FUNCTION IAH

DS:DX Disk Transfer
Address

Function 2AH sets the Disk Transfer Address. DX must contain the offset (from the
segment address in DS) of the Disk Transfer Address. Disk transfers cannot wrap
around from the end of the segment to the beginning, nor can they overflow into
another segment.

NOTE

If you do not set the Disk Transfer Address,
MS-DOS defaults to offset 80H in the Program
Segment Prefix.

Macro Definition:
set_dta macro buffer

mov dx,offset buffer
mov ah,1AH

int 21H

endm

Example:

The following program prompts for a letter, converts the letter to its alphabetic
sequence (A = 1, B=2, and so on), then reads and displays the corresponding record
from a file named ALPHABET.DAT on the diskette in drive B. The file contains 26
records. Each record is 28 bytes long.

record_size equ 14 :offset of Record Size
;field of FCB

relative_record equ 33 ;offset of Relative Record
;field of FCB

2-55

MS-DOS System Calls

fcb db 2, “ALPHABETDAT”
db 25 dup (?)
buffer db 34 dup(?),“$”
prompt db “Enter letter: $”
crlf db 13,10,“%”
func_1AH: set_dta buffer ;THIS FUNCTION
open fcb ;see Function OFH
mov fcb[record_size],28 ;set record size
get_char: display prompt ;see Function 09H
read_kbd_and_echo ;see Function 01H
cmp al,0DH ;just a CR?
je all_done ;yes, go home
sub al,41H ;convert ASCII
;code to record #
mov fcb[relative_record],al ;set relative record
display crlf ;:see Function 09H
read_ran fcb ;see Function 21H
display buffer ;see Function 09H
display crif :see Function 09H
jmp get_char ;get another character
all_done: close fcb ;see Function 10H
RANDOM READ
ENTRY RETURN
AH 21H FUNCTION 21H AL 00H = Read
completed
successfully
0lH = EOF
DS:DX Opened 02H = DTA too
FCB small
03H = EOF,

2-56

partial record

MS-DOS System Calls

Function 21H reads the record at a specified address. DX must contain the offset
(from the segment address in DS) of an opened FCB. The Current Block (offset 0CH)
and Current Record (offset 20H) fields are set to agree with the Relative Record field
(offset 21H), then the record addressed by these fields is loaded at the Disk Transfer
Address.

AL returns a code that describes the processing result.

Code Meaning
0 Read completed successfully.
1 End-of-file; no data in the record.
2 Not enough room at the Disk Transfer Address to read one record;
read canceled.
3 End-of-file; a partial record was read and padded to the record

length with zeros.

Macro Definition:

read_ran macro fcb
mov dx,offset fcb
mov ah,21H
int 21H
endm
Example:

The following program prompts for a letter, converts the letter to its alphabetic
sequence (A = 1, B=2, and so on), then reads and displays the corresponding record
from a file named ALPHABET.DAT on the diskette in drive B. The file contains 26
records. Each record is 28 bytes long.

record_size equ 14 ;offset of Record Size
:field of FCB

relative_record equ 33 ;offset of Relative Record
;field of FCB

fcb db 2“ALPHABETDAT
db 25 dup ()
buffer db 34 dup(?),“$”

2-57

MS-DOS System Calls

prompt db “Enter letter: $”
crif db 13,10,“$”
func_21H: set_dta buffer ;see Function |1AH
open fcb ;see Function OFH
mov feb[record size],28 ;set record size
get_char: display prompt ;see Function 09H
read_kbd_and_echo ;see Function 01H
cmp al,ODH ' ;just a CR?
je all done ;yes, go home
sub al,41H ;convert ASCII code
sto record #
mov fcb [relative_record],al ;set relative
;record
display crif ;see Function 09H
read_ran fcb ;THIS FUNCTION
display buffer ;see Function 09H
display crlf ;see Function 09H
jmp get_char ;get another char.
all_done: close fcb ;see Function 10H
RANDOM WRITE
ENTRY RETURN
e
AH 22H FUNCTION 22H AL 00H = Write
completed
successfully
01H = Disk full
DS:DX Opened . ’ 02H = DTA too
FCB small

Function 22H writes a specified record. DX must contain the offset from the segment
address in DS of an opened FCB. The Current Block (offset 0CH) and Current Record
(offset 20H) fields are set to agree with the Relative Record field (offset 21 H), then the
record addressed by these fields is written from the Disk Transfer Address. If the
record size is smaller than a sector (512 bytes), the records are buffered until a sector is
ready to write.

2-58

MS-DOS System Calls

AL returns a code that describes the processing result.

Code Meaning
0 Write completed successfuily.
] Disk is full.
2 Not enough room at the Disk Transfer Address to write one record;

write canceled.

Macro Definition:

write_ran macro fcb
mov dx,offset fcb
mov ah,22H
int 21H
endm
Example:

The following program prompts for a letter, converts the letter to its alphabetic
sequence (A = |, B=2, and so on), then reads and displays the corresponding record
from a file named ALPHABET.DAT on the diskette in drive B. After displaying the
record, it prompts the user to enter a changed record. If you type a new record, it is
written to the file; if you just press RETURN, the record is not replaced. The file
contains 26 records. Each record is 28 bytes long.

record_size equ 14 ;offset of Record Size
:field of FCB

relative_record equ 33 ;offset of Relative Record
;field of FCB

fcb db 2“ALPHABETDAT”
, db 25dup ()
buffer db 26 dup(?),13,10,“8”
prompt| db “Enter letter: $”
prompt2 db “New record (RETURN for no change): $”
crif db 13,10,“$”
reply db 28 dup (32)

blanks db 26 dup (32)

2-59

MS-DOS System Calls

func_22H: set_dta buffer :see Function 1AH
open fcb ;see Function OFH
mov fcb[record size],32 ;set record size
get_char: display promptl ;see Function 09H
read_kbd_and_echo ;see Function 01H
cmp al,0ODH ;just a CR?
je all_done ;yes, go home
sub al,41H ;convert ASCII
:code to record #
mov fcb[relative_record],al
;set relative record
display crif ;see Function 09H
read_ran fcb ;THIS FUNCTION
display buffer ;see Function 09H
display crif ;see Function 09H
display prompt2 ;see Function 09H
get_string 27,reply ;see Function 0OAH
display crlf ;see Function 09H
cmp reply[1],0 ;was anything typed
;besides CR?
je get_char ;no
;get another char.
Xor bx,bx ;to load a byte
mov bl,reply[1] ;use reply length as
;counter
move_string blanks,buffer,26 :see chapter end
move_string reply[2],buffer,bx ;see chapter end
write_ran fcb ;THIS FUNCTION
jmp get_char ;get another character
all_done: close fcb ;see Function 10H
FILE SIZE
ENTRY RETURN
AH 23H FUNCTION 23H AL O0OH =
Directory
entry

FFH (225) = No
directory entry
found

DS:DX Opened
FCB

2-60

MS-DOS System Calls

Function 23H searches for the size of a specified file. DX must contain the offset (from
the segment address in DS) of an unopened FCB. You must set the Record Size field
(offset OEH) to the proper value before calling this function. The disk directory is
searched for the first matching entry.

If a matching directory entry is found, the Relative Record field (offset 21 H) is set to
the number of records in the file, calculated from the total file size in the directory entry
(offset 1ICH) and the Record Size field of the FCB (offset OEH). AL returns 00.

If no matching directory is found, AL returns FFH (255).

NOTE

If the value of the Record Size field of the FCB
(offset OEH) doesn’t match the actual number of
characters in a record, this function does not
return the correct file size. If the default record
size (128) is not correct, you must set the Record
Size field to the correct value before using this
function.

Macro Definition:

file_size macro fcb
mov dx,offset fcb
mov ah,23H
int 21H
endm
Example:

The following program prompts for the name of a file, opens the file to fill in the
Record Size field of the FCB, issues a File Size system call, and displays the file size and
- number of records in hexadecimal.

fcb db 37 dup (?)
prompt db “File name: $”

msgl db “Record length: ”,13,10,“$”
msg2 db “Records: ”,13,10,“$”

crlf db 13,1048

reply db 17 dup(?)

sixteen db 16

2-61

MS-DOS System Calls

func_23H: display prompt ;see Function 09H
get_string 17,reply ;see Function 0AH
cmp reply[1].0 ;just a CR?
jne get_length :no, keep going
jmp all done ;yes, go home
get_length: display crif ;see Function 09H
parse reply[2].fcb ;see Function 29H
open fcb ;see Function OFH
file_size fcb ;THIS FUNCTION
mov si,33 ;offset to Relative
;Record field
mov di.9 ;reply in msg..2
convert._.it: cmp feb[si],0 ;digit to convert?
je show_it ;NO, prepare message
convert fcb[si],sixteen,msg_2 [di]
in¢ si ;bump n-o-r index
inc di :bump message index
jmp convert it ;check for a digit
show_it: convert fcb [14].sixteen,msg_1[15]
display msg_| :see Function 09H
display msg_2 ;see Function 09H
jmp func_23H ;get a filename
all_done: close fcb ;see Function 10H

SET RELATIVE RECORD

ENTRY
AH 24H

DS:DX Opened
FCB

FUNCTION 24H

RETURN

Function 24H sets the relative record address for a random read and write operation.
DX must contain the offset (from the segment address in DS) of an opened FCB. The
Relative Record field (offset 21H) is set to the same file address as the Current Block
(offset 0CH) and Current Record (offset 20H) fields.

2-62

MS-DOS System Calls

Macro Definition:

set_relative_record macro fcb
mov dx,offset fcb
mov ah,24H
int 21H
endm
Example:

The following program copies a file using the Random Block Read and Random
Block Write system calls (Functions 27H and 28H). It speeds the copy by setting the
record length equal to the file size and the record count to 1, and using a buffer of 32K
bytes. It positions the file pointer by setting the Current Record field (offset 20H) to 1
and using Set Relative Record to make the Relative Record field (offset 21 H) point to
the same record as the combination of the Current Block (offset 0CH) and Current
Record (offset 20H) fields.

current_record equ 32 ;offset of Current Record
;field of FCB

file_size equ 16 ;offset of File Size
:field of FCB

fcb db 37dup(?)

filename db 17 dup(?)

promptl db “File to copy: $” ;see Function 09H for
prompt2 db “Name of copy: $” ;explanation of $

crif db 13,10,“$”

file_length dw ?

buffer db 32767 dup(?)

func_24H: set_dta buffer ;see Function 1AH
display prompt1 ;see Function 09H
get_string 15 filename :see Function 0AH
display crif ;see Function 09H
parse filename[2],fcb ;see Function 29H
open fcb :see Function OFH
mov fcb[current_record],0 ;set Current Record

;field

set_relative_record fcb ;THIS FUNCTION
mov ax,word ptr fcb[file size] ;get file size

MS-DOS System Calls

mov file_length,ax ;save it for
:ran_block_write
ran_block_read fcb,1,ax ;see Function 27H
display prompt2 ;see Function 09H
get_string 15,filename . ;see Function 0AH
display crif ;see Function 09H
parse filename[2].fcb ;see Function 29H
create fcb ;see Function 16H
mov fcb[current record],0 ;set Current Record
;field
set_relative_record fcb ;THIS FUNCTION
mov ax,file_length ;get original file
;length
ran_block_write fcb,1,ax ;see Function 28H
close fcb ;see Function 10H
SET VECTOR
ENTRY ETURN
> RETUR
AH 25H FUNCTION 25H

AL Interrupt number

DS:DX Interrupt-
handling
routine

Function 25H should be used to set a particular interrupt vector. The operating system
can then manage the interrupts on a per-process basis.

DX must contain the offset (to the segment address in DS) of an interrupt-handling

routine. AL must contain the number of the interrupt handled by the routine. The
address in the vector table for the specified interrupt is set to DS:DX.

2-64

Macro Definition:
set_vector macro interrupt,seg_addroff_addr

mov al,interrupt
push ds
mov ax,seg_addr
mov ds,ax
mov dx,off_addr
mov ah,25H
int 21H
pop ds
endm

Example:

Ids dx,intvector

mov ah,25H

mov al,intnumber

int 21H

;There are no errors returned

RANDOM BLOCK READ

ENTRY

B ——
AH 27H FUNCTION 27H

DS:DX Opened
FCB

CX Number of blocks
to read

RETURN

AL 00H = Read
completed
successfully
01H = EOF
02H = End of
segment
03H = EOF

CX Number of
blocks read

MS-DOS System Calls

Function 27H reads a specified block of records. DX must contain the offset (to the
segment address in DS) of an opened FCB. CX must contain the number of records to
read. If it contains 0, the function returns without reading any records (no operation).
The specified number of records — calculated from the Record Size field (offset 0OEH)
— is read starting at the record specified by the Relative Record field (offset 21H). The

records are placed at the Disk Transfer Address.

2-65

MS-DOS System Calls

2-66

AL returns a code that describes the processing result.

Code

0
1
2

Meaning

Read completed successfully.

End-of-file; no data in the record.

Not enough room at the Disk Transfer Address to read one record; read
canceled.

End-of-file; a partial record was read and padded to the record length
with zeros.

CX returns the number of records read. The Current Block (offset 0CH), Current
Record (offset 20H), and Relative Record (offset 21 H) fields are set to address the next

record.

Macro Definition:
ran_block_read macro fcb,count,rec_size

Example:

mov dx,offset fcb

mov cx,count

mov word ptr fcb[14],rec_size
mov ah,27H

int 21H

endm

The following program copies a file using the Random Block Read system call. It
speeds the copy by specifying a record count of 1 and a record length equal to the file
size, and using a buffer of 32K bytes. The file is read as a single record. (Compare to the
sample program for Function 28H, which specifies a record length of | and a record
count equal to the file size.)

current_record equ 32 ;offset of Current Record field

file_size

fcb

filename
prompt|
prompt2

equ 16 offset of File Size field

db 37 dup(?)

db 17 dup(?)

db “Fileto copy: $” ;see Function 09H for
db “Name of copy: $” explanation of $

crif
file_length
buffer

func_27H:

db 13,10,%%”
dw ?
db 32767 dup(?)

set_dta buffer
display prompt|
get_string 15.filename
display crif

parse filename[2].fcb
open fcb
mov fcb[current_record],0

set_relative_record fcb

mov ax, word ptr fcb|file_size]
mov file_length,ax
ran_block_read fcb,1,ax
display prompt2

get_string 15.filename
display crif

parse filename[2],fcb
create fcb
mov feb[current record].0

set_relative_record fcb
mov ax, file_length

ran_block_write fcb,1.ax
close fcb

;see Function 1AH
:see Function 09H
;see Function 0AH
;see Function 09H
:see Function 29H
:see Function OFH
:set Current
:Record field

:see Function 24H

.get file size

:save it for
:ran_block_write
;THIS FUNCTION
:see Function 09H
:see Function 0OAH
:see Function 09H
:see Function 29H
;see Function 16H
;set Current Record
:field

:see Function 24H
.get original file
isize

:see Function 28H
:see Function 10H

MS-DOS System Calls

2-67

MS-DUS System Calls

2-68

RANDOM BLOCK WRITE

ENTRY RETURN
Y o

AH 28H FUNCTION 28H AL O0H = Write
completed
successfully
01H = Disk full

DS:DX Opened : 02H = End of

FCB segment

Number of blocks to CX Number

write (0 = set File Size of blocks

field) written

Function 28H writes a specified block of records. DX must contain the offset (to the
segment address in DS) of an opened FCB. CX must contain either the number of
records to write or 0. The specified number of records (calculated from the Record Size
field, offset 0OEH) is written from the Disk Transfer Address. The records are written to
the file starting at the record specified in the Relative Record field (offset 21 H) of the
FCB. If CX is 0, no records are written, but the File Size field of the directory entry
(offset 1CH) is set to the number of records specified by the Relative Record field of
the FCB (offset 21 H). Allocation units are allocated or released, as required.

AL returns a code that describes the processing result.

Code Meaning

0 Write completed successfully.
1 Disk full. No records written.

2 Not enough room at the Disk Transfer Address to read one record;
read canceled.

CX returns the number of records written. The current block (offset 0CH), Current
Record (offset 20H), and Relative Record (offset 21 H) fields are set to address the next
record.

MS-DOS System Calls

Macro Definition:
ran_block_write macro fcb,count,rec_size

mov dx,offset fcb

mov cx,count

mov word ptr fcb[14],rec_size
mov ah,28H

int 21H

endm

Example:

The following program copies a file using the Random Block Read and Random
Block Write system calls. It speeds the copy by specifying a record count equal to the
file size and a record length of 1, and using a buffer of 32K bytes. The file is copied
quickly with one disk access each to read and write. (Compare to the sample program
for Function 27H, which specifies a record count of 1 and a record length equal to file
size.)

current_record equ 32 ;offset of Current Record field

file_size equ 16 ;offset of File Size field

fcb db 37dup(?

filename db 17 dup(?)

promptl db “File to copy: $” ;see Function 09H for

prompt2 db “Name of copy: $” ;explanation of $

crif db 13,10,“%”

nume._recs dw ?

buffer db 32767 dup(?)

func_28H: set_dta buffer ;see Function 1AH
display prompt| ;see Function 09H
get_string 15,filename ;see Function 0AH
display crlf ;see Function 09H
parse filename[2],fcb ;see Function 29H
open fcb ;see Function OFH
mov fcb [current record],0

;set Current Record
;field

2-69

MS-DOS System Calls

set_relative_record fcb ;see Function 24H
mov ax, word ptr fcb[file_size]

;get file size
mov nume_recs,ax ;save it for

~ ;ran_block_write

ran_block_read fcb,num_recs,1 ;:THIS FUNCTION
display prompt2 ;see Function 09H
get_string 15.filename A ;see Function 0AH
display crif :see Function 09H
parse filename [2],fcb ;see Function 29H
create fcb ‘ ;see Function 16H
mov fcb[current record],0 ;set Current

;Record field
set_relative_record fcb :see Function 24H
mov ax, file_length ;get size of original
ran_block_write fcb,num_recs, 1 :see Function 28H
close fcb :see Function 10H

PARSE FILE NAME

ENTRY ETURN
> RETU
AH 29H FUNCTION 29H AL 00H = No
wild characters
AL Controls parsing k | 01H =Wild card
characters used
DS:DI String to parse FFH (225) =

Drive letter

DS:SI First byte
past string
that was
parsed

ES:DI Unopened
FCB

Function 29H parses a command line (string) for the filename. SI must contain the
offset (to the segment address in DS) of a string (command line) to parse. DI must

2-70

contain the offset (to the segment address in ES) of an unopened FCB. The string is
parsed for a filename of the form d:filename.ext. If one is found, a corresponding
unopened FCB is created at ES:DI.

Bits 0-3 of AL control the parsing and processing. Bits 4-7 are ignored.

Bit Value Meaning
0 0 All parsing stops if a file separator is encountered.
| Leading separators are ignored.
1 0 The drive number in the FCB is set to 0 (default drive) if the
string does not contain a drive number.
1 The drive number in the FCB is not changed if the string
does not contain a drive number.
2 | The filename in the FCB is not changed if the string does not
contain a filename.
0 The filename in the FCB is set to 8 blanks if the string does
not contain a filename.
3 1 The extension in the FCB is not changed if the string does
not contain an extension.
0 The extension in the FCB is set to 3 blanks if the string does

not contain an extension.

If the filename or extension includes an asterisk (*), all remaining characters in the
name or extension are set to question mark (?).

The following are legal filename separators:
i . 1+ / 7 [] space tab
Filenames in a string are ended by filename terminators. Filename terminators can be
any of the filename separators or any control character. A filename cannot contain a
filename terminator. If one is encountered, parsing stops.
If the string contains a valid filename,
e AL returns | if the filename or extension contains a wild card character (* or ?);

AL returns O if neither the filename nor extension contains a wild card
character.

MS-DOS System Calls

/

1

MS-DOS System Calls

e DS:SI point to the first character following the string that was parsed.
e ES:DI point to the first byte of the unopened FCB.

If the drive letter is invalid, AL returns FFH (255). If the string does not contain a valid
filename, ES:DI+1 points to a blank (ASCII 32).

Macro Definition:

parse macro string,fcb
mov si,offset string
mov di,offset fcb
push es
push ds
pop es
mov al,OFH ;bits 0, 1, 2, 3 on
mov ah,29H
int 21H
pop es
endm

Example:

The following program verifies the existence of the file named in reply to the prompt.

fcb db 37dup(
prompt db “Filename: $”
reply db 17 dup(?)

yes db “FILE EXISTS”,13,10,“$”

no db “FILE DOES NOT EXIST”,13,10,“8”

func_29H: display prompt ;see
get_string 15,reply :see Function 0AH
parse reply[2].fcb ;THIS FUNCTION
search_first fcb ;see Function 11H
cmp al,FFH ;dir. entry found?
je not_there ;:no
display yes ;see Function 09H
jmp continue

not_there: display no

continue: .

2-72

MS-DOS System Calls

GET DATE
ENTRY RETURN
—
AH 2AH FUNCTION 2AH CX Year (1980-2099)

DX Month (1-12)
DL Day (1-31)

Function 2AH returns the current date set in the operating system as binary numbers
in CX and DX.

Macro Definition:

get_date macro
mov ah,2AH
int 21H
endm

Example:

The following program gets the date, increments the day, increments the month or
year, if necessary, and sets the new date.

month db 31,28,31,30,31,30,31,31,30,31,30,31
func_2AH: get_date ;see above
inc dl ;increment day
xor bx,bx :s0 BL can be used as index
mov bl,dh ;move month to index register
dec bx ;month table starts with 0
cmp dl,month{bx] ;past end of month?
jle month_ok ;no, set the new date
mov dl.1 ;yes, set day to 1
inc dh ;and increment month
cmp dh,12 ;past end of year?
page jle month_ok ;no, set the new date
mov dh,1 ;yes, set the month to 1
inc cX ;increment year
month_ok: set_date cx,dh,dl :THIS FUNCTION

MS-DOS System Calls

2-74

SET DATE
ENTRY > RETURN
AH 2BH FUNCTION 2BH Al OOH = Date
was valid
CS Year (1980-2099) FFH (225) =

Date was invalid
DH Month (1-12)

DL Day (1-31)

Function 2BH sets the system date. Registers CX and DX must contain a valid date in
binary.

If the date is valid, the date is set and AL returns 0. If the date is not valid, the function ’
is canceled and AL returns FFH (255).

Macro Definition:

set_date macro year,month,day
mov cx,year
mov dh,month
mov dl,day
mov ah,2BH
int 21H
endm
Example:

The following program gets the date, increments the day, increments the month or
year, if necessary, and sets the new date.

month db 31,28.31,30,31,30,31,31,30,31,30,31

func_2BH: get_date ‘ :see Function 2AH
inc dl :increment day
Xxor bx,bx : ;50 BL can be used as index
mov bl,dh ;move month to index register
dec bx ;month table starts with 0
cmp dl,month[bx] ;past end of month?
jle month_ok :no, set the new date

MS-DOS System Calls

mov dl1 ;yes, set day to |
inc dh ;and increment month
cmp dh,12 ;past end of year?
jle month_ok ;no, set the new date
mov dh,1 ;yes, set the month to 1
inc cX ;increment year
month_ok: set_date cx,dh,dl ;THIS FUNCTION
GET TIME
ENTRY RETURN
— —
AH 2CH FUNCTION 2CH CH Hour (0-23)

CL Minutes (0-59)
DH Seconds (0-59)

DL Hundredths of a
second (0-99)

Function 2CH returns the current time set in the operating system as binary numbers
in CX and DX.

Macro Definition:

get_time macro
mov ah,2CH

int 21H
endm
Example:
The following program continuously displays the time until any key is pressed.
time db “00:00:00.00”,13,10,“8”
ten db 10
func_2CH: get_time ;THIS FUNCTION
convert ch,ten,time ;see end of chapter
convert clten,time[3] ;see end of chapter

2-75

MS-DOS System Calls

convert dh,ten,time[6] :see end of chapter

convert dl.ten,time[9] ;see end of chapter
display time ;see Function 09H
check_kbd_status ;see Function 0BH
cmp al,FFH ;has a key been pressed?
je all_done ;yes, terminate
jmp func_2CH ;no, display time
SET TIME
ENTRY ' RETURN
—
AH 2DH FUNCTION 2DH AL O0H = Time
was valid
CH Hours (0-23) FFH (225) =
Time was
CL Minutes (0-59) invalid

DH Seconds (0-59)

DL Hundredths of a
second (0-99)

Function 2DH sets the system time. Registers CX and DX must contain a valid time in
binary. ’

If the time is valid, the time is set and AL returns 0. If the time is not valid. the function
is canceled and AL returns FFH (255).

Macro Definition:

set_time macro hour,minutes,seconds,hundredths
mov ch.hour
mov cl.minutes
mov dh,seconds
mov dl,hundredths
mov ah,2DH
int 21H
endm

2-76

MS-DOS System Calls

Example:

The following program sets the system clock to 0 and continuously displays the time.
When a character is typed, the display freezes. When another character is typed, the
clock is reset to 0 and the display starts again.

time db “00:00:00.00”,13,10,“%”

ten db 10

func_2DH: set_time 0,0,0,0 ;THIS FUNCTION

read_clock: get._time :see Function 2CH
convert ch.ten,time :see end of chapter
convert cl.ten.time[3] :see end of chapter
convert dh.ten,time[6] .see end of chapter
convert dl.ten.time[9] :see end of chapter
display time :see Function 09H
dir_console_io FFH :see Function 06H
cmp al,00H :was a char. typed?
jne stop .yes, stop the timer
jmp read_clock :no keep timer on

stop: read_kbd :see Function 08H
jmp func_2DH :keep displaying time

SET/RESET VERIFY FLAG

ENTRY RETURN
—
AH 2EH FUNCTION 2EH
AL 00H = Do not
verify
01H = Verify

Function 2EH sets and resets the verify flag for a write. AL must be either 1 (verify
after each disk write) or 0 (write without verifying). MS-DOS checks this flag each
time it writes to a disk.

The flag is normally off. You may wish to turn it on when writing critical data to disk.
Because disk errors are rare and verification slows writing, you will probably want to
leave it off at other times.

2-77

MS-DOS System Calls

Macro Definition:

verify macro switch
mov al,switch
mov ah,2EH
int 21H
endm

Example:

The following program copies the contents of a single-sided diskette in drive A to the
diskette in drive B, verifying each write. It uses a buffer of 32K bytes.

on equ 1
off equ 0
prompt db “Source in A, target in B”,13,10
db “Any key to start. $”
start dw 0
buffer db 64 dup (512 dup(?)) ;64 sectors
func_2DH: display prompt ;see Function 09H
read_kbd :see Function O8H
verify on :THIS FUNCTION
mov cx,5 ;copy 64 sectors
;5 times
copy: push cx :save counter
abs_disk_read 0,buffer,64,start
;see Interrupt 25H
abs_disk_write 1,buffer,64,start
;see Interrupt 26H
add start,64 ;do next 64 sectors
pop cx ;restore counter
loop copy ;do it again
verify off : ;THIS FUNCTION
disk_read 0,buffer,64.start ;see Interrupt 25H
abs_disk_write 1,buffer,64,start
;see Interrupt 26H
add start,64 ;do next 64 sectors

2-78

pop cx
loop copy
verify off

GET DISK TRANSFER ADDRESS

ENTRY

AH 2FH FUNCTION 2FH

Function 2FH returns the DMA transfer address.

Error returns:
None.

Example:

mov ah,2FH
int 21H
:es:bx has current DMA transfer address

GET DOS VERSION NUMBER

ENTRY

AH 30H FUNCTION 30H

MS-DOS System Calls

.restore counter
:do it again

RETURN

ES:BX Points to
Disk
Transfer
Address

RETURN

AL Major version
number

AH Minor version
number

Function 30H returns the MS-DOS version number. On return, AL:AH will be the
two-part version designation; that is, for MS-DOS 1.28, AL would be 1 and AH would
be 28. For pre-1.28 DOS, AL = 0. Note that version 1.1 is the same as 1.10, not the

same as 1.01.

2-79

MS-DOS System Calls

Error returns:

None.
Example:

mov ~ ah,30H
int 21H

; al 1s the major version number
; ah is the minor version number
; bh is the OEM number

; bl:cx is the (24 bit) user number

KEEP PROCESS

ENTRY RETURN
..___—__»

AH 31H FUNCTION 31H

AL Exit code

DX Memory size
in paragraphs

Function 31H terminates the current process and attempts to set the initial allocation
block to a specific size in paragraphs. It will not free up any other allocation blocks
belonging to that process.

The exit code passed in AX is retrievable by the parent via Function 4DH.

Error returns:

None.

Example:

mov al, exitcode
mov dx, parasize
mov ah, 31H

int 21H

2-80

CTRL-CHECK

ENTRY

AH 33H FUNCTION 33H

AL Function 00H =
Request current
state
Ol'H = Set state

DL (if setting)
00H = Off
0IH = On

MS-DOS System Calls

RETURN
DL 00H = Off,
0IH = On

MS-DOS ordinarily checks for a CTRL-C on the controlling device only when doing
function call operations 01 H-OCH to that device. Function 33H allows you to expand
this checking to include any system call. For example, with the CTRL-C trapping off,
all disk 1/O will proceed without interruption. With CTRL-C trapping on, the
CTRL-C interrupt is given at the system call that initiates the disk operation.

Error return:

AL = FFE The function passed in AL was not in the range 0:1.

Example:

mov dl,val
mov ah,33H
mov al.func
int 21H

; If al was 0, then dl has the current value
;of the CTRL-C check

GET INTERRUPT VECTOR

ENTRY

—_——
AH 35H FUNCTION 35H

AL Interrupt number

RETURN
ES:BX Pointer to

interrupt
routine

2-81

MS-DOS System Calls

Function 35H returns the interrupt vector associated with an interrupt.

Error returns:

None.

Example:

mov ah,35H
mov al,interrupt
int 21H
; €s:bx now has long pointer to interrupt routine

GET DISK FREE SPACE

ENTRY > RETURN 3
AH 36H FUNCTION 36H BX Available
clusters
DL Drive (0 = default, DX Clusters per
1 =A, and drive
SO on)

AX FFFF if drive
number is
invalid; other-
wise, sectors per
cluster

This function returns free space on disk along with additional information about the
disk.

Error return:
AX = FFFF The drive number given in DL was invalid.

Example:

mov ah,36H

mov di,Drive :0 = default, A =1
int 21H

; bx = Number of free allocation units on drive
; dx = Total number of allocation units on drive
: ¢x = Bytes per sector

; ax = Sectors per allocation unit
2-82

MS-DOS System Calls

RETURN COUNTRY-DEPENDENT INFORMATION

ENTRY RETURN
D

ot
AH 38H FUNCTION 38H Carry set: AX =2
file not found
DS:DX Pointer to 32- Carry not set:
byte memory DS:SX filled with
area country data

AL Function code; in
MS-DOS 2.0,
must be 0

Function 38H returns country-dependent information. The value passed in AL is
either 0 (for current country) or other country code. Country codes are typically the
international telephone prefix code for the country.

[f DX =-1. then the call sets the current country (as returned by the AL =0 call) to the
country code in AL. If the country code is not found, the current country is not
changed.

NOTE

Applications must assume 32 bytes of informa-
tion. This means the buffer pointed to by
DS:DX must be able to accommodate 32 bytes.

This function returns, in the block of memory pointed to by DS:DX, the following
information, which is pertinent to international applications,

WORD
Date/time format

5 BYTE ASCIZ string
Currency symbol

2 BYTE ASCIZ string
Thousands separator

2 BYTE ASCIZ string
Decimal separator

2-83

MS-DOS System Calls

2 BYTE ASCIZ string
Date separator

2 BYTE ASCIZ string
Time separator

I BYTE
Bit field

I BYTE
Currency Places

I BYTE
Time format

DWORD
Case Mapping call

2 BYTE ASCIZ string
Data List separator

The format of most of these entries is ASCIZ (a NUL terminated ASClI string), but a
fixed size is allocated for each field for easy indexing into the table.

The date/time format has the following values:

Value Format
0 USA standard h:m:s m/d/y
1 Europe standard h:m:sd/m/y
2 Japan standard y/m/d h:m:s

The bit field contains eight bit values. Any bit not currently defined must be assumed
to have a random value.

Bit 0=0 If currency symbol precedes the currency amount.

=1 If currency symbol comes after the currency amount.

2-84

Bit 1 =10 If the currency symbol immediately precedes the currency amount.
=1 If there is a space between the currency symbol and the amount.

The time format has the following values:

Value Format
0 12 hour time
1 24 hour time.

The Currency Places field indicates the number of places that appear after the decimal
point on currency amounts.

The Case Mapping call is a FAR procedure that will perform country specific
lower-to-uppercase mapping on character values from 80H to FFH. It is called with
the character to be mapped in AL. It returns the correct uppercase code for that
character, if any, in AL. AL and the FLAGS are the only registers altered. It is
allowable to pass this routine codes below -80H: however, nothing is done to charac-
ters in this range. When there is no mapping, AL is not altered.

Error return:

AX
2 = File not found. The country passed in AL was not found (no table for specified
country).
Example:
1ds dx, blk
mov ah, 38H
mov al, Country_code
int 21H

:AX Country code of country returned

MS-DOS System Calls

2-85

MS-DOS System Calls

CREATE SUB-DIRECTORY

ENTRY RETURN
e
AH 39H FUNCTION 39H Carry set:
AX 3 = Path not
found
DS:DX Pointer to 5 = Access
path-name denied

Carry not set: No
error

Given a pointer to an ASCIZ name, Function 39H creates a new directory entry at the
end.

Error returns:
AX

3 =Path not found. The path specified was invalid or not found.
5 = Access denied. The directory could not be created (no room in parent directory),
the directory/file already existed or a device name was specified.

Example:

1ds dx, name
mov ah, 39H
int 21H

2-86

MS-DOS System Calls

REMOVE A DIRECTORY ENTRY

ENTRY RETURN
s
AH 3AH FUNCTION 3AH Carry set:
AX 3 = Path not
found
DX Pointer to S5 = Access
pathname denied
16 = Current
directory

Carry not set: No
error

Function 3AH is given an ASCIZ name of a directory. That directory is removed from
its parent directory.

Error returns:
AX

3 = Path not found. The path specified was invalid or not found.

5 = Access denied. The path specified was not empty, not a directory, the root
directory, or contained invalid information.

16 = Current directory. The path specified was the current directory on a drive.

Example:

Ids dx, name
mov ah, 3AH
int 21H

2-87

MS-DOS System Calls

2-88

CHANGE THE CURRENT DIRECTORY

ENTRY

AH 3BH

DS:DX Pointer to
pathname

FUNCTION 3BH

RETURN
Carry set: AX =
Path not found

Carry not set: No
error

Function 3BH is given the ASCIZ name of the directory which is to become the
current directory. If any member of the specified pathname does not exist, then the
current directory is unchanged. Otherwise, the current directory is set to the string.

Error return:
AX

3 = Path not found. The path specified in DS:DX either indicated a file or the path

was invalid.

Example:

Ids dx, name
mov ah, 3BH
int 21H

CREATE A FILE
ENTRY
AH 3CH
DS:DX Pointer to
pathname

CX File attribute

FUNCTION 3CH

RETURN

Carry set:

AX 5 = Access
denied
3 = Path not
found
4 = Too many
open files

Carry not set: AX is

handle number

MS-DOS System Calls

Function 3CH creates a new file or truncates an old file to zero length in preparation
for writing. If the file did not exist, then the file is created in the appropriate directory
and the file is given the attribute found in CX. The file handle returned has been
opened for read/write access.

Error returns:

AX

5 = Access denied. The attributes specified in CX contained one that could not be
created (directory, volume ID), a file already existed with a more inclusive set of
attributes, or a directory existed with the same name.

3 = Path not found. The path specified was invalid.

4 = Too many open files. The file was created with the specified attributes, but there
were no free handles available for the process, or the internal system tables were
full.

Example:

Ids dx, name
mov ah, 3CH
mov c¢X, attribute
int 21H
; ax now has the handle

OPEN A FILE
ENTRY RETURN
e i
AH 3DH FUNCTION 3DH Carry set:
AX 12 = Invalid
access
AL Access: 2 = File not
0 = File opened found
for reading 5 = Access
1 = File opened denied
for writing 4 = Too many
2 = File opened open files
for both reading
and writing Carry not set: AX is

handle number

2-89

MS-DOS System Calls

Function 3DH associates a 16-bit file handle with a file.

The following values are allowed:

Access Function
0 File is opened for reading
1 File is opened for writing
2 File is opened for both reading and writing.

DS:DX point to an ASCIZ name of the file to be opened.

The read/ write pointer is set at the first byte of the file and the record size of the file is
one byte. The returned file handle must be used for subsequent I/O to the file.

Error returns:
AX

12 = Invalid access. The access specified in AL was not in the range 0:2.
2 = File not found. The path specified was invalid or not found.
5 = Access denied. You attempted to open a directory or volume-id, or open a
read-only file for writing.
4 =Too many open files. There were no free handles available in the current process,
or the internal system tables were full.

Example:

1ds dx, name

mov ah, 3DH

mov al, access

int 21H
; ax has error or file handle
; If successful open

290

MS-DOS System Calls

CLOSE A FILE HANDLE

ENTRY RETURN

e

AH 3EH FUNCTION 3EH Carry set: AX 6 =
Invalid handle

BX File handle Carry not set: No
error

If BX is passed a file handle (like that returned by Functions 3DH. 3CH, or 45H),
Function 3EH closes the associated file. Internal buffers are flushed.

Error return:
AX

6 = Invalid handle. The handle passed in BX was not currently open.

Example:

mov bx, handle
mov ah, 3EH
nt 21H

READ FROM FILE/DEVICE

ENTRY RETURN
-
AH 3FH FUNCTION 3FH Carry set:
AX Number of
bytes read
DS:DX Pointer 6 = Invalid
to buffer handle
5 = Error set
CX Bytes to read Carry not set;: AX =
number of bytes
BX File handle read

Function 3FH transfers count bytes from a file into a buffer location. It is not
guaranteed that all count bytes will be read. For example, reading from the keyboard
will read at most one line of text. If the returned value is zero, then the program has
tried to read from the end of file.

291

MS-DOS System Calls

2-92

All'1/0O is done using normalized pointers; no segment wraparound will occur.

Error returns:
AX

6 = Invalid handle. The handle passed in BX was not currently open.
5 = Access denied. The handle passed in BX was opened in a mode that did not allow

reading.
Example:
lds dx, buf

mov cx, count
mov bx, handle
mov ah, 3FH
int 21H
; ax has number of bytes read

WRITE TO A FILE/DEVICE

ENTRY RETURN
ol
AH 40H FUNCTION 40H Carry set:
AX Number of

bytes written

DS:DX Pointer to 6 = Invalid
buffer handle
5 = Access
BX File handle Carry not set: A =
Number of bytes
written

Function 40H transfers count bytes from a buffer into a file. It should be regarded as
an error if the number of bytes written is not the same as the number requested.

The write system call with a count of zero (CX = 0) will truncate the file at the current
position.

All 1/0 is done using normalized pointers. No segment wraparound will occur.

Error returns:
AX

MS-DOS System Calls

6 = Invalid handle. The handle passed in BX was not currently open.
5 = Access denied. The handle was not opened in a mode that allowed writing.

Example:

lds dx, buf
mov cx, count
mov bx. handle
mov ah, 40H
int 21H

:ax has number of bytes written

DELETE A DIRECTORY ENTRY

ENTRY

AH 41H

DS:DX Pointer to
pathname

FUNCTION 41H

RETUKN

Carry set:

AX 2 = File not
found
5 = Access
denied

Carry not set: No
error

Function 41H removes the directory entry associated with a filename. If the file is
currently open on another handle, then no removal will take place.

Error returns:
AX

2 =File not found. The path specifie‘d was invalid or not found.
5 = Access denied. The path specified was a directory or read-only.

Example:

lds dx, name
mov ah, 41H
int 21H

2-93

MS-DOS System Calls

2-94

MOVE FILE POINTER

ENTRY - RETURN
AH 42H FUNCTION 42H Carry set:
AX 6 = Invalid
handle
CX:DX Distance to I = Invalid
move in function
bytes

Carry not set:
AL Method of moving DX:AX = New

pointer location
BX File handle

Function 42H moves the read/write pointer according to one of the following
methods.

Method Function
0 The pointer is moved to offset bytes from the beginning of the file.
1 The pointer is moved to the current location plus offset.
2 The pointer is moved to the end of file plus offset.

Offset should be regarded as a 32-bit integer with CX occupying the most significant 16
bits.

Error returns:
AX

6 = Invalid handle. The handle passed in BX was not currently open.
1 = Invalid function. The function passed in AL was not in the range 0:2.

Example:

mov dx, offsetlow
mov cx, offsethigh
mov al, method
mov bx, handle
mov ah, 42H
int 21H
; dx:ax has the new location of the pointer

MS-DOS System Calls

CHANGE ATTRIBUTES

ENTRY RETURN
AH 43H FUNCTION 43H Carry set:
AX 3 = Path not
found
DS:DX Pointer to 5 = Access
pathname denied
1 = Invalid
CS (if AL =01) function
AL Function 01 = set Carry not set: CX
to CX; 00 = return attributes
in CX (if AL = 00)

Given an ASCIZ name, Function 43H will set/get the attributes of the file to those
given in CX.

A function code is passed in AL,

AL Function
0 Return the attributes of the file in CX.
1 Set the attributes of the file to those in CX.

Error returns:

AX
3=" Path not found. The path specified was invalid.
5= Access denied. The attributes specified in CX contained one that could not be
changed (directory, volume ID).
1= Invalid function. The function passed in AL was not in the range 0:1.
Example:
1ds dx, name
mov cx, attribute
mov al, func
int ah, 43H
int 21H

MS-DOS System Calls

1/0 CONTROL FOR DEVICES

ENTRY

AH 44H FUNCTION 44H

BX Handle

BL Drive for calls

AL = 4,5 (0 = default,
[= A, and so on)

DS:DX Data for
buffer

CX Bytes to read or
write

AL Function code

RETURN

Carry set:

AX 6 = Invalid
handle

I = Invalid function

13 = Invalid date

5 = Access denied

Carry not set:

AL if 2, 3, 4, 5 then
AX = Count
transferred

if 6, 7 then 00 =
Not ready;

FF = ready

Function 44H sets or gets device information associated with an open handle, or

sends/ receives a control string to a device handle or device.

The following values are allowed for the function:

Request Function
0 Get device information (returned in DX).
1 Set device information (as determined by DX).
2 Read CX number of bytes into DS:DX from device control channel.
3 Write CX number of bytes from DS:DX to device control channel.
4 Same as 2 only drive number in BL (0 = default, A=1,B=2,..)
5 Same as 3 only drive number in BL (0 = default, A=1,B=2,..)
6 Get input status.
7 Get output status.

Function 44H can be used to get information about device channels. Calls can be made
onregular files, but only calls 0, 6 and 7 are defined in that case (AL =0, 6, 7). All other

calls return an invalid function error.

296

Calls AL =0and AL =1

The bits of DX are defined as follows for calls ALOand AL!. Note that the upper
byte MUST be zero on a set call.

1S114¢13 12 11 10 9 8|76]|514]|3}12]|1]0
R|C IMEJR|{S|IT]T1]1}]1
E|T SIO|IA|IP|S|S]|S]|S
SIR Reserved DIFIWIE|C|IN]|C]|C
L E| CILIU|O} 1

v LIKJL}|T|N

ISDEV =1 if this channel is a device
= 0 if this channel is a disk file (Bits 8-15
=0 in this case)

If ISDEV =1
EOF =0 if End Of File on input
RAW = | if this device is in Raw mode
=0 if this device is cooked
ISCLK = 1if this device is the clock device
ISNUL =1 if this device is the null device
ISCOT =1 if this device is the console output
ISCIN =1 if this device is the console input
SPECL =1 if this device is special
CTRL =0 if this device cannot do control strings via calls
AL =2and AL =3
CTRL = 1 if this device can process control strings via calls

AL =2and AL=3
NOTE that this bit cannot be set.
If ISDEV =0
EOF =0 if channel has been written
Bits 0-5 are the block device number for the channel
(0 = A, 1 =B, and so on)

Bits 15,8-13.4 are reserved and should not be altered.

Calls AL = 0 through AL =5

These four calls allow arbitrary control strings to be sent or received from a device.
The call syntax is the same as the read and write calls, except for 4 and 5, which
take a drive number in BL instead of a handle in BX.

MS-DOS System Calls

2-97

MS-DOS System Calls

An invalid function error is returned if the CTRL bit (see above) is 0.
An access denied is returned by calls AL = 4, 5 if the drive number is invalid.

Calls AL=6and AL=7

These two calls allow you to check if a file handle is ready for input or output.
These calls are intended for checking the status of handles open to a device, but
they can also be used to check the status of a handle open to a disk file. The statuses
are defined as follows:

Input:

Always ready (AL = FF) until EOF reached, then always not ready
(AL = 0) unless current position changed via LSEEK.

Output:
Always ready (even if disk is full).

CAUTION

The status is defined at the time the system is
called. On future versions, by the time control is
returned to the user from the system, the status
returned may not correctly reflect the true cur-
rent state of the device or file.

Error returns:
AX

6 = Invalid handle. The handle passed in BX was not currently open.

| = Invalid function. The function passed in AL was not in the range 0:7.
13 = Invalid data.

5 = Access denied (calls AL4 through AL7).

Example:

mov bx, Handle
(or mov bl, drive for calls AL = 4,5
0 = default,A = 1...)
mov dx, Data
(or 1ds dx, buf and

2-98

MS-DOS System Calls

mov cx, count for calls AL = 2,3.4,5)
mov ah, 44H

mov al, func

nt 21H

; For calls AL = 2,3,4,5 AX is the number of bytes

; transferred (same as READ and WRITE).

; For calls AL = 6, 7 AL is status returned, AL =0 if
; status is not ready, AL = OFFH otherwise.

DUPLICATE A FILE HANDLE

ENTRY RETURN
—_—
AH 45H FUNCTION 45H Carry set:
AX 6 = Invalid
handle
BX File handle 4 = Too many
open files

Carry not set: AX =
new file handle

Function 45H takes an already opened file handle and returns a new handle that refers
to the same file at the same position.

FError returns:
AX

6 = Invalid handle. The handle passed in BX was not currently open.
4 = Too many open files. There were no free handles available in the current process
or the internal system tables were full.

Example:

mov bx, fh
mov ah, 45H
int 21H

: ax has the returned handle

2-99

MS-DOS System Calls

FORCE A DUPLICATE OF A FILE HANDLE

ENTRY RETURN
: o
AH 46H FUNCTION 46H Carry set:
AX 6 = Invalid
handle
BX Existing file 4 = Too many open
handle files
CX New file handle Carry not set:
No error

Function 46H takes an already opened file handle and returns a new one that refers to
the same file at the same position.

Error returns:
AX

6 = Invalid handle. The handle passed in BX was not currently open.
4 =Too many open files. There were no free handles available in the current process
or the internal system tables were full.

Example:

mov bx, fth
mov ¢X, newfh
mov ah, 46H
int 21H

RETURN TEXT OF CURRENT DIRECTORY

ENTRY RETURN
»
AH 47H FUNCTION 47H Carry set:
AX 15 = Invalid
drive

DS:SI Pointer to 64-

byte memory Carry not set:

area No error

DL Drive number
2-100

MS-DOS System Calls

Function 47H returns the current directory for a particular drive. The directory is
root-relative and does not contain the drive specifier.

The drive codes passed in DL are 0 = default, | = A.2=B. and so on.

Error return:
AX

15 = Invalid drive. The drive specified in DL was invalid.

Example:

mov ah.47H
1ds si.area
mov dldrive
int 21H

; ds:si is a pointer to 64 byte area that
; contains drive current directory.

ALLOCATE MEMORY"

ENTRY ‘ RETURN
' o
AH 48H FUNCTION 48H Carry set:
AX 8 = Not enough
memory
BX Size of memory to 7 = Arena
be allocated ' trashed

BX Maximum size
that could
be allocated

Carry not set: AX =
Pointer to allocated
memory

Function 48H returns a pointer to a free block of memory that has the requested size in
paragraphs.

2-101

-MS-DOS System Calls

Error returns:
AX

8 = Not enough memory. The largest available free block is smaller than that
requested or there is no free block.

7 = Arena trashed. The internal consistency of the memory arena has been
destroyed. This is due to a user program changing memory that does not belong
to 1t.

Example:
mov bx,size
mov ah,48H
int 21H
; ax:0 is pointer to allocated memory
; if alloc fails, bx is the largest block available

FREE ALLOCATED MEMORY

ENTRY RETURN
AH 49H FUNCTION 49H Carry set:
AX 9 = Invalid
block
ES Segment address of 7 = Arena
memory area to trashed
be freed

Function 49H returns a piece of memory to the system pool that was allocated by the
Allocate Memory function.

Error returns:
AX

9 =Invalid block. The block passed in ES is not one allocated via Function 48H.

7 = Arena trashed. The internal consistency of the memory arena has been
destroyed. This is due to a user program changing memory that does not belong
to it.

2-102

MS-DOS System Calls

Example:

mov es,block
mov ah,49H
int 21H

MODIFY ALLOCATED MEMORY BLOCKS

ENTRY RETURN
——
AH 4AH FUNCTION 4AH Carry set:
AX 9 = Invald
block
ES Segment address of 7 = Arena
8 = Not enough
BX Requested memory memory
area size

BX Maximum size
possible

Carry not set: No
error

Function 4AH will attempt to grow/shrink an allocated block of memory.

Error returns:
AX

9 = Invalid block. The block passed in ES is not one allocated via this function.

7 = Arena trashed. The internal consistency of the memory arena has been
destroyed. This is due to a user program changing memory that does not belong
to it.

8 = Not enough memory. There was not enough free memory after the specified
block to satisfy the grow request.

2-103

MS-DOS System Calls

2-104

Example:

mov es,block
mov bx,newsize
mov ah,4AH
int 21H

; if setblock fails for growing, BX will have the
; maximum size possible

LOAD AND EXECUTE A PROGRAM

ENTRY

AH 4BH FUNCTION 4BH

DS:DX Pointer to
pathname

ES:BX Pointer to
parameter block

AL 00 = Load and
execute program
03 = Load program

RETURN
Carry set:

function

10 = Bad
environment

11 = Bad format
8 = Not enough
2 = File not
found

Carry not set:
No error

Function 4BH allows a program to load another program into memory and begin
execution of it (through a default).

DS:DX point to the ASCIZ name of the file to be loaded. ES:BX point to a parameter
block for the load.

The following function codes are passed in AL.

AL

0

Function

Load and execute the program. A program header is established for the
program and the terminate and CTRL-C addresses are set to the instruction

after the EXEC system call.

MS-DOS System Calls

NOTE

When control is returned, via a CTRL-C or
terminate from the program being EXECed, all
registers are altered including the stack. This is
because control is returned from the EXECed
program, not the system. To regain your stack,
store an SS:SP value in a data location reach-
able from your CS.

3 Load (do not create) the program header and do not begin execution. This is
useful in loading program overlays.

For AL = 0, the parameter block has the following format.

WORD segment address of environment.

DWORD pointer to command line at 8OH

DWORD pointer to default FCB to be passed at
SCH

DWORD pointer to default FCB to be passed at
6CH

For AL = 3, the parameter block format is as follows.

WORD segment address where file will be
loaded.

WORD relocation factor to be applied to the
image.

Note that all open files of a process are duplicated in the child process after an EXEC.
This is extremely powerful. The parent process has control over the meanings of stdin,
stdout, stderr, stdaux and stdprn. The parent could, for example, write a series of
records to a file, open the file as standard input, open a listing file as standard output
and then EXEC a sort program that takes its input from stdin and writes to stdout.

Also inherited (or passed from the parent) is an “environment.” This is a block of text
strings (less than 32K bytes total) that convey various configuration parameters. The
format of the environment is as follows.

2-105

MS-DOS System Calls

2-106

(paragraph boundary)

BY 1.E ASCIZ string 1

BYTE ASCIZ string 2

BYTE ASCIZ string n

BYTE of zero

Typically the environment strings have the format:
parameter = value

For example, COMMAND.COM always passes its execution search path as:
PATH = A:BIN;B:BASIC LIB

A zero value for the environment address causes the child process to inherit the
parent’s environment unchanged.

Note that on a successful return from EXEC, all registers, except for CS:IP, are
changed.

Error returns:
AX

1 =Invalid function. The function passed in AL was not 0, 1, or 3.
10 = Bad environment. The environment was larger than 32Kb.
11 = Bad format. The file pointed to by DS:DX was an EXE format file and contained
information that was internally inconsistent.
8 = Not enough memory. There was not enough memory for the process to be
created.
2 =File not found. The path specified was invalid or not found.

MS-DOS System Calls

Example:

Ids dx, name
les bx, blk
mov ah, 4BH
mov al, func
int 21H

TERMINATE A PROCESS
ENTRY RETURN
>

4H 4CH FUNCTION 4CH

AL Return code

Function 4CH terminates the current process and transfers control to the invoking
process. In addition, a return code may be sent. All files open at the time are closed.

Error returns:
None.

Example:

mov al, code
mov ah, 4CH
int 21H

RETRIEVE THE RETURN CODE OF A CHILD
ENTRY ‘ RETURN
- | U

>

AH 4DH FUNCTION 4DH AX Exit code

Function 4DH returns the Exit code specified by a child process. It returns this Exit
code only once. The low byte of this code is that sent by the Exit routine. The high byte
is one of the following: :

2-107

MS-DOS System Calls

2-108

Code

WN—=O

Error returns:

None.

Example:

mov ah, 4DH
int 21H

Function

Terminate/abort

CTRL-C

Hard error

Terminate and stay resident

; ax has the exit code

FIND MATCH FILE

ENTRY > RETURN
AH 4EH FUNCTION 4EH Carry set:
AX 2 = File not
found
DS:DX Pointer to 18 = No
pathname more files

CX Search attributes

Carry not set: No
error

Function 4EH takes a pathname with wild card characters in the last component
(passed in DS:DX) and a set of attributes (passed in CX), then attempts to find all files
that match the pathname and have a subset of the required attributes. A datablock at
the current DMA is written that contains information in the following form:

find_buf_attr DB?
find_buf_time DW?
find_buf_date DW?

find_buf_size_1 Dw?
find_buf_size_h DW?

find_buf_pname DB 13

find_buf ENDS

; attribute found

; time

; date

; low(size)

; high(size) :
DUP (7); packed name

To obtain the subsequent matches of the pathname, see the description of
Function 4FH.

Error returns:
AX

2 =File not found. The path specified in DS:DX was an invalid path.
18 = No more files. There were no files matching this specification.

Example:

mov ah, 4EH

1ds dx, pathname

mov CX, attr

int 2]H

; dma address has datablock

STEP THROUGH A DIRECTORY MATCHING FILES

ENTRY - RETURN
AH 4FH FUNCTION 4FH Carry set: AX = 18,
no more files

Carry not set: No
error

Function 4FH finds the next matching entry in a directory. The current DM A address
must point at a block returned by Function 4EH (see Function 4EH).

Error return:
AX

18 = No more files. There are no more files matching this pattern.

Example:

; dma points at area returned by Function 4FH
mov ah, 4FH
int 21H

; next entry is at dma

MS-DOS System Calls

2-109

MS-DOS System Calls

RETURN CURRENT SETTING OF VERIFY AFTER WRITE FLAG

ENTRY

RETURN

AH 54H FUNCTION 54H

AL Current verify
flag value

Function 54H returns the current value of the verify flag in AL.

Error returns:
None.

Example:
mov ah,54H
int 21H
; al is the current verify flag value
MOVE A DIRECTORY ENTRY

ENTRY

._>
AH 56H FUNCTION 56H

DS:DX Pointer to
pathname
of existing
file

ES:DI Pointer to
new pathname

RETURN

Carry set:

AX 2 = File not
found
17 = Not same
device
5 = Access
denied

Carry not set:
No error

Function 56H attempts to rename a file into another path. The paths must be on the

same device.

2-110

Error returns:
AX

MS-DOS System Calls

2 =File not found. The file name specifed by DS:DX was not found.
17 =Not same device. The source and destination are on different drives.
5 = Access denied. The path specified in DS:DX was a directory or the file specified
by ES:DI exists or the destination directory entry could not be created.

Example:

1ds dx, source
les di, dest
mov ah, S56H
int 21H

GET/SET DATE/TIME OF A FILE

ENTRY

AH 57H

FUNCTION 57H

AL 00 = get date and
time
01 = set date
and time

BX File Handle

CS If AL =0, time to
be set

DX If AL = 01, date
to be set

RETURN

Carry set:

AX 1 = Invalid
function
6 = Invalid
handle

Carry not set:
No error

CX:BX set if
function 0

Function 57H returns or sets the last-write time for a handle. These times are not

recorded until the file is closed.

2-111

MS-DOS System Calls

2-112

One of the following function codes is passed in AL.

AL Function

0 Return the time/date of the handle in CX:DX
1 Set the time/date of the handle to CX:DX

Error returns:
AX

1 = Invalid function. The function passed in AL was not in the range 0:1.
6 = Invalid handle. The handle passed in BX was not currently open.

Example:

mov ah, S7TH
mov al, func
mov - bx, handle -
; if al = 1 then then next two are mandatory
mov cX, time
mov dx, date
int 21H
; if al 0 then cx/dx has the last write time/date
; for the handle.

MACRO DEFINITIONS FOR MS-DOS SYSTEM CALL EXAMPLES

The following printout summarizes the Macro definitions used in the examples given
for the MS-DOS system calls.

xlist

.

o 3k ok ok ok ok ok sk ok ok sk ok ok ok skook ok sk ck ok
;

; Interrupts
Skkckckck ook sk kkokokokokkokkk
kd

ABS_DISK_READ
abs_disk_read macro disk.,buffer,num_sectors.first_sector
mov al,disk
mov bx,offset buffer

mov cx.num_sectors
mov dx.first_sector
int 37

popf

endm |

MS-DOS System Calls

sinterrupt 37

ABS_DISK WRITE

abs_disk_write macro disk,buffer,num_sectors.first_sector

mov al disk

mov bx,offset buffer

mov cX,num_sectors

mov dx.first_sector
int 38 :interrupt 38
popf

endm

stay_resident macro last_instruc

mov dx,offset last_instruc
inc dx

int 39

endm

)

« 3% 3k 3k ok ok ok ok ok 3k ok ok ok ok sk ok ok ok ok ok
M

: Functions
« 3 ok ok ok sk ok ok ok ok ok o ke sk sk ok ok ki ok ok

;ead_kbd_and_.echo macro

mov ah.l
int 33
endm

display_char macro character

mov dl.character
mov ah,2
int 33
endm
aux_input macro .
mov ah.3
int 33
endm

STAY_RESIDENT

:interrupt 39

:READ_KBD_AND_ECHO
:function |

:DISPLAY_CHAR

:function 2

:AUXLINPUT
function 3

2-113

MS-DOS System Calls

aux_output macro ;AUX_OUTPUT
;;page
print_char macro character PRINT_CHAR
mov dl,character
mov ah.5 sfunction 5
int 33
endm
dir_console_input macro switch :DIR_CONSOLE_IO
mov dl,switch
mov ah,6 ;function 6
int 33
endm
dir_console_input macro :DIR_CONSOLE_INPUT
mov ah,7 :function 7
int 33
endm ;
read_kbd macro :READ_KBD
mov ah,8 :function 8
int 33
endm ;
display macro string :DISPLAY
mov dx,offset string ;function 9
mov ah9
int 33
endm
get_string macro limit,string ;GET STRING
mov string,limit
mov dx,offset string
mov ah,10 function 10
int 33
endm
check_kbd_status macro ;CHECK_KBD_STATUS
mov ah,l11 :function 11
int 33

endm

2-114

}‘lush_and_read_kbd macro switch

mov
mov
int
endm

reset_disk_macro
mov
nt
endm

;;page
select_disk macro

mov
mov
int
endm

open macro
mov
mov
int
endm

close macro
mov
mov
nt
endm

search_first macro
mov
mov
int
endm

al,switch
ah,12
33

:RESET DISK
ah,13
33

disk

dl.disk;-65;
ah,14
33

fcb

dx,offset fcb
ah,15

33

fcb

dx,offset fcb
ah,16

33

fcb

dx,offset fcb
ah,17

33

:FLUSH_AND_READ_KBD

function 12

function 13

:SELECT_DISK

:function 14

;OPEN

:function 15

;CLOSE

:function 16

:SEARCH_FIRST

:Function 17

MS-DOS System Calls

2-115

MS-DOS System Calls

search_next macro
mov
mov
int
endm

;

delete macro
mov
int
endm

read_seq macro
mov
mov
int
endm

5

write_seq macro
mov
mov
int
endm

5

create macro
mov
mov
int
endm

L]

rename macro
mov
mov
int
endm

;

current_disk macro
mov
nt
endm

2-116

fcb

dx,offset {ch
ah,17

33

fcb
ah,18
33

fcb

dx,offset fcb
ah,20

33

fcb

dx,offset fcb
ah,21

33

fcb

dx,offset fcb
ah,22

33

fcb,newname
dx,offset fcb
ah,23

33

ah,25
33

;SSEARCH_NEXT

:function 17

:DELETE
:function 19

:READ_SEQ

:function 20

;WRITE_SEQ

:function 21

;:CREATE

:function 22

;RENAME

;function 23

;CURRENT_DISK

:function 25

set_dta macro
mov
mov
int
endm

alloc_table macro
mov
int
endm

read_ran macro
mov
mov
int
endm

5

write_ran macro
mov
mov
int
endm

file_size macro
mov
mov
int
endm

set_relative_record
mov
mov
int
endm
;-page

buffer

dx,offset buffer
ah,26

33

ah,27
33

fcb

dx.offset fcb
ah,33

33

fcb

dx,offset fcb
ah,34

33

fcb

dx,offset fcb
ah,35

33

macro fcb
dx,offset fcb
ah,36

33

set_vector macro interrupt,seg_addr,off_addr

push
mov
mov
mov

ds
ax,seg_addr
ds,ax
dx,off_addr

SET_DTA

:function 26

:ALLOC_TABLE
:function 27

;:READ_RAN

:function 33

:WRITE_RAN

:function 34

:FILE_SIZE

:function 35

;SET_RELATIVE_RECORD

:function 36

SSET_VECTOR

MS-DOS System Calls

2-117

MS-DOS System Calls

2-118

mov
mov
int
endm

al,interrupt
ah,37
33

create_prog _seg macro seg_addr

mov
mov
int
endm

dx,seg_addr
ah,38
33

5
ran_block_read macro fcb,count,rec_size

mov
mov
mov
mov
int
endm

dx,offset fcb

cx,count

word ptr fcb[14],rec_size
ah,39

33

5
ran_block_write macro fcb, count, rec_size

mov
mov
mov
mov
int
endm

macro
mov
mov
push
push
pop
mov
mov
int
pop
endm

parse

dx,offset fcb

cx,count

word ptr fcb[14],rec_size
ah,40

33

filename,fcb
si,offset filename
di,offset fcb

es

ds

es

al,l15

ah41

33

es

:function 37

;CREATE_PROG_SEG

:function 38

;RAN_BLOCK_READ

:function 39

:RAN_BLOCK_WRITE

:function 40

:PARSE

:function 41

get_date

;;page
set_date

L)

get_time

s

set_time

verify

macro
mov
int
endm

macro
mov
mov
mov
mov
int
endm

macro
mov
int
endm

macro
mov
mov
mov
mov
mov
int
endm

macro
mov
mov
int
endm

:GET DATE
ah.42 :function 42
33

year,month,day SET_DATE
cx.year

dh,month

dl.day .
ah43 function 43
33

GET_TIME
ah.44 :function 44
33

SET_TIME
hour.minutes,seconds,hundredths
ch,hour
cl,minutes
dh,seconds
dl,hundredths
ah.45 :function 45
33

switch ;VERIFY
al,switch

ah,46 :function 46
33

-
= 3% 3K 3K 3k ok ok ok ok ok ok sk ok ok sk sk sk ok ok
5

; General

« 3 3k ok sk ok 3k ok ok ok Skoke ok ok ok sk okosk sk ok
.

move_string macro source,destination,num_bytes

; MOVE_STRING

MS-DOS System Calls

2-119

MS-DOS System Calls

push
mov
mov
assume
mov
mov
mov
rep movs
assume
pop
endm
convert macro
local
jmp
table db
start: mov
xor
xor
div
mov
mov
mov
mov
mov
mov
endm
;;page
convert_to_binary

local

jmp
ten db
start: mov
xor
mov
xor
mov
sub
cmp

calc:

2-120

es
ax.,ds

cs,ax

es:data

si,0ffset source
di,offset destination
cx,num_bytes
es:destination,source
es:nothing

es

value,base,destination
table,start

start
“0123456789ABCDEF”
al,value

ah,ah

bx.bx

base

bl,al

al,cs:table[bx]
destination,al

bl,ah

al,cs:table[bx]
destination[1],al

macro string,number,value

ten, start,calc,mult,no_mult
start

10

value,0

cX,CX

cl,number

ax,ax

al,string [si]

al, 48

cx,2

;CONVERT

;CONVERT_TO_BINARY

jl
push
dec
mult: mul
loop
pop
no_mult: add
inc
loop
endm

convert_date macro

mov
mov
shr
mov
and
xor
mov
shr
add
endm

)

no_mult
cX

cX
cs:ten
mult

cX
value,ax
s

calc

dir_entry
dx,word ptr dir_entry[25]

cl.5
dl.cl

dh.dir_entry [25]

dh,lth
cX,CX

cl.dir_entry[26]

cl,]
¢x,1980

AN EXTENDED EXAMPLE OF MS-DOS SYSTEM CALLS
The following program provides more examples of system calls.

title DISK DUMP
7€ro

disk_B
sectors_per_read
cr

blank

period

tilde

INCLUDE B:CALLS.EQU

equ
equ
equ
equ
equ
equ
equ

;ubttl DATA SEGMENT

page +
data

13
32
46
126

segment

MS-DOS System Calls

2-121

MS-DOS System Calls

1-122

input_buffer
output_buffer

start_prompt
sectors_prompt
continue_prompt
header
end_string

crlf

table

ten

sixteen
start_sector
sector_num label
sector_number
sectors_to_dump
sectors_read

i)uffer label
max_length
current_length
digits
data t

subttl STACK SEGMENT
page +

stack

stack_top
stack

subttl MACROS
page +

9

db
db
db
db
db
db
db
db

db
db

db
db

dw
byte
dw
dw
dw

byte
db
db
db

ends

segment
dw
label
ends

9 dup(512 dup(?)

77 dup(“ ™)

0DH,0AH,“$”

“Start at sector: $”
“Number of sectors: $”
“RETURN to continue $”
“Relative sector $”
0DH,0AH,0AH,07H,“ALL
DONES$”

:DELETE THIS
ODH,0AH “$”
“0123456789ABCDEFS$”

10
16

1
0

sectors_per_read
0

5 dup(?)

stack
100 dup(?)
word

INCLUDE B:CALLS.MAC

:BLANK LINE

blank line

print_it:

macro
local
push
call
mov
display
loop
pop
endm

subttl ADDRESSABILITY

page +
code

start:
mov
mov
mov
mov

1}

subttl PROCEDURES

page +

PROCEDURES

: READ_DISK
read_disk

mov

get_sector:

segment
assume
mov
ds.ax
ax,stack
ss,ax

sp,offset stack_top

jmp

proc;
cmp
jle

bx,offset input_buffer

mov
mov
mov
cmp
jle
mov
push
int

number
print_it

cX

clear_line
cx,number
output_buffer
print_it

cX

cs:code,ds:data,ss:stack

ax,data

main_procedure

sectors_to_dump,zero
done

dx.start_sector
al.disk_b

cx, sectors_per_read
¢x, sectors_to._dump
get._sector

cX, sectors_to_dump
cX

disk_read

MS-DOS System Calls

2-123

MS-DOS System Calls

)-124

xor
done:
read_disk
;CLEAR LINE

clear_line

move_blank:

clear_line

'PUT_BLANK
put_blank

put_blank

setup

convert_to_binary digits,

popf
pop
sub
add
mov
si,si
ret
endp

proc;
push
mov
xor
mov
inc
loop
pop
ret
endp

proc;
mov
inc
ret
endp

proc;
display
get_string
display

current_length,start_sector

mov

ax,start_sector
mov

display
get_string

convert_to_binary digits,

cX
sectors_to_dump,cx
start_sector,cx
sectors_read,cx

cX
cx,77

bx,bx
output_buffer[bx],”’
bx

move_blank

cxX

output_buffer [di],” "
di

start_prompt
4 buffer
crlf

sector_number,ax
sectors_prompt
4. buffer

setup

;CON VERT_LINE
convert_line

convert_it:

display_ascii:

printable:

non_printable:

convert_line

display_screen

°

;1 WANT length header
dec
;minus 1 in cx

current_length,sectors_to_dump

ret
endp

proc;

push

mov

mov

convert
output_buffer [di]
inc

add

call
loop
sub
mov
add
mov
cmp
i
cmp
i
mov
mov
inc
inc
ioop
pop
ret
endp

proc;
push
call

mov

CcX

cxX
di.9

cx,16

input_buffer [si],sixteen,

si
di,2

put_blank

convert_it

si,16

cx,16

di4

output_buffer [di],period
input_buffer [si],blank
non_printable
input_bufferfsi].tilde
non_printable
dlLinput_buffer [si]
output_buffer [di].dl
si

di

display_ascii

cX

cx
clear_line

cx,17

MS-DOS System Calls

2-125

MS-DOS Sysiem Calls

Xor di,di
move_header: mov al.header [di]

mov output_buffer [di],al

inc di

loop move_header ;FIX THIS!

convert sector_num] 1},sixteen,

output_buffer[di]

add di,2

convert sector_num,sixteen,

output_buffer [di]

display
blank_line 2
mov

dump_it: call clear_line

call convert_line

display output_buffer

loop dump_it

blank_line 3

display continue_prompt

get_char_no_echo

display crif

pop cx

ret display_screen endp

)

. END PROCEDURES
subttl MAIN PROCEDURE

page +
main_procedure: call setup
check_done: cmp sectors_to.dump,zero
jng all_done
call read_disk
mov cx,sectors_read
display it: call display_screen
call display_screen
inc sector_number
loop display_it
jmp check_done

2-126

MS-DOS System Calls

all_done: display end_string
get_char_no_echo
ends

code ends
end start

2-127

Chapter 3

The Extended 1/0
System Functions

Calls to extended 1/O System functions from user programs are issued directly to
10.SYS. bypassing MSDOS.SYS.

Entry to these functions is accomplished through the software interrupt 220H.
Extended function calls use registers for passing function codes and parameters.

e Register CL holds the function code.
® Registers DX, DS, and AX contain additional parameters as necessary.

All registers are automatically saved upon entry and restored upon exit from the
extended function call.

GET TIME AND DATE

v RETURN
ENTRY >
CL 00H EXT FUNC 00H Buffer Time and
date

DS:DX Data Buffer
Address

Extended Function 00H returns the system time and date. Registers DS and DX hold
the address of the 1/ O data buffer in which the data is to be stored. The system fills the
data buffer at the indicated address in the following format.

The Extended I/ O System Functions

Year
Month Day of Week*
Day
Hour
Minute
Second
Lommm 1 byte >

*Month and Day of Week are each half byte-values.

Year=00-99 BDC Day=1-31 BCD
Month=1-12 Hex Hour=0-23 BCD
Day of Week=1-7 Hex Minute=0-59 BCD
(1=Sun. 2=Mon., Second=0-59 BCD
and so on)

The Get Time and Date extended function performs the same operations as the Get
Time and Get Date function requests (Functions 2CH and 2AH).

SET TIME AND DATE
‘RY RETURN
ENT >
CL 01H EXT FUNC O01H

DS:DX Data Buffer
Address

Extended Function 00OH sets the system time and date. The buffer addressed by
registers DS and DX must contain the time and date. The I/ O data buffer format is the
same as that used by Extended Function 00H, Get Time and Date.

The Set Time and Date extended function performs the same operations as the Set
Time and Set Date function requests (Functions 2DH and 2BH).

The Extended I/ O System Functions

PLAY MUSIC

NTRY RETURN
E >

CL 02H EXT FUNC 02H

AX Buffer length
DS:DX Data buffer
address

Extended Function 02H plays music on the APC. The 1/O buffer addressed by
registers DS and DX consists of melody data. Register AX is set to the 1/O buffer
length in bytes.

Melody data consists of two types of information: control commands and scale data.

Control commands set the loudness and speed. Scale data refer to notes, duration, and
accent.

Control Data
Control data is written in the following format:
[M[n]][T[n]]

Table 3-1 lists the acceptable values for n. Both the loudness and speed commands are

optional, as indicated by the square brackets. The values are effective until new ones
are specified.

Table 3-1 Melody Data Control Commands

COMMAND FUNCTION
Mn Loudness
n = 1| piano
2 medium (default)
3 forte
Tn Speed
n=1 1.00sec for quarter note
2 0.87 sec (default)
3 0.56 sec
4 (.38 sec

The Extended I/ O System Functions

Scale Data

Scale data sets the note values, duration, and accent. The allowable values for these
variables are defined in Tables 3-2 and 3-3.

Table 3-2 Note Values

NOTE FUNCTION

-C
-C#
-D
-D#
-E
-F
-F# low octave
-G
-G#
-A
-A#
-B
C
C#
D
D#
E
F middle octave
G
G#
A
A#
B
+C
+C#
+D high octave
+D#
+E

N rest

The Extended I/ O System Functions

Table 3-3 Duration Values

DURATION | FUNCTION (FOR REST NOTE)
0 ? whole
1 d dotted 1/2 =
2 1/2 -
3 d.dotted 1/4 &
4 J1/4 &
5 Pdotted 1/8 7.
6 D18 7
7 Ndotted 1/16 3,
8 3 1/16 3
9 < 1/32 -
al 7

The format of the scale data command is as follows:
[S] note [duration]
The accent command is indicated by the value S in the scale data command. Both

accent and duration are optional. The accent applies only to the note value it precedes.
The duration is effective until the next duration is specified.

3-5

The Extended I/ O System Functions

Complete Melody Data Format
The complete melody data format, then, is

[control data] [scale data] ...

The control data is effective until the next control data is specified.

An example of melody data follows.

M2 TI +A3 SGHl SES-A#0 T3-F4 S-D#2...

N TR 7 X 7

control scale control scale
data data data data
SOUND BEEP
ENTRY RETUR
> URN
CL 03H - EXT FUNC 03H

AX Buffer length

DS:DX Data buffer
address

Extended Function 03H sounds the beep tone on the APC. The /O buffer addressed
by registers DS and DX contains beep data. Register AX is set to the I/ O buffer length

in bytes.

Beep data consists of control commands and parameters. Control commands set the
loudness and type of sound. The parameters control frequency and tone period.

Control Commands

The Extended I{/ O System Functions

Control commands are written in the following format.

GE

The loudness parameter, n, is optional. Table 3-4 lists the values for n. Control data is
effective until the next control data is specified. B and P are mutually exclusive
commands; they cannot be specified together.

Table 3-4 Short Sound Control Commands

COMMAND FUNCTION
Bn B = Rectangular wave sound (beep)
Pn P = Piano sound

n = Loudness
! piano
2 medium (default)
3 forte

The parameter format is a frequency value followed, optionally, by

specifying the tone period.

H
7 Cm
K

a number

3-7

The Extended I/ O System Functions

Beep Sound Parameters

The beep sound parameters and their corresponding values are defined in Table
3-5.

Table 3-5 Beep Sound Parameters

PARAMETER VALUE MEANING

Frequency H 710 Hz

1 1202 Hz

J 2038 Hz

K 3406 Hz
Tone period 1 20 msec (min)
n 2 2x10 msec

3 3x10 msec

N Nx10 msec

65535 65535x10 msec

Complete Beep Command Format
The complete format of the beep command is
[control data] [sound parameter]...

Both parts of the command are optional. An example of a command follows.

P2 K8 Bl H3...
NV

3-8

The Extended I] O System Functions

REPORT CURSOR POSITION ENTRY

ENTRY RETURN

.._..._.——.—»

CL 04H EXT FUNC 04H Buffer Cursor
position

DS:DX Data buffer
address

Extended Function 04H gets the current active position on the console screen.
Registers DS and DX point to the address of the 1/O buffer in which the data is to be
stored. The system returns the column and line numbers of the current position
prefixed by the escape (ESC) code in the following format:

E
SI[|PI};}Pc|R
C

l«— § bytes ————>
All characters are returned as ASCII code values. P1 is the line number (01-25). Pc is
the column number (01-80).
AUTO POWER OFF

ENTRY - RETURN N
EXT FUNC 05H

CL O5H

Extended Function 0SH turns off the power of the APC. When this function is called,
the system waits approximately five seconds before turning off the power. To turn the
system back on, turn the APC power switch off, then turn it back on.

The Extended I/ O System Functions

3-10

INITIALIZE KEYBOARD FIFO BUFFER

RET
ENTRY . URN i

EXT FUNC 06H

CL 06H

Extended Function O6H initializes the keyboard FIFO buffer. This function does not
pass any parameters.

DIRECT CRT1/0

ENTRY > RETURN
B e o
CL 07H EXT FUNC 07H
DS:DX Display
Request
Block address

Extended Function 07H allows the assembly language programmer to perform high
speed block level 1/0 operations to the console through the DMA. Five different
operations may be performed through this function. They are identified by the
command number passed in the Display Request Block. The Extended Function 07H
commands are listed in Table 3-6.

Table 3-6 Direct CRT 1/0 Function Commands

CMD# FUNCTION
0 Display video memory format data on CRT
| Display string data on CRT
2 Report cursor position by binary value
3 Roll down screen
4 Roll up screen

Figure 3-1 shows how the DMA transfer function works. The Display Request Block
contains the addresses of display data in video memory format, and attribute data.
This data is transferred to the Display Data Area and the Attribute Data Area,
respectively, in video memory.

VIDEO MEMORY

 DISPLAY
DATA
AREA

S S

ATTRIBUTE
DATA
AREA

Figure 3-1

DMA Transfer

Display Request Block

DISPLAY REQUEST BLOCK

The Extended I/ O System Functions

CMDe
LA CA
NOL
—
AN
/1~ -
~
N B
N
~
N o
AN
N e o e - - 00 l 4|J 00 l 42]
\’\\ DMA TRANSFER DISPLAY DATA
' N (VIDEO MIMORY FORMAT)
\\
N
~N
Nt e e o e e e o ——— —

A

= ...

|

ATTRIBUTE DATA

The Display Request Block used in the Direct CRT I/ O function contains control data
for the DM A exchange. It includes the command number, cursor position from which
the data is to be displayed, the number of characters to display, and the address of the
data buffer. Registers DS and DX are set to the address of the Display Request Block
prior to issuing the function call. The format of the Display Request Block is shown

below.

3-11

The Extended I/ O System Functions

. CMD#

LA CA

NOC

display data offset

........... { 2 words (word boundary)

buffer
address base .)

attribute data offset

........... { 2 words (word boundary)

buffer
address base .

Figure 3-2 Display Request Block
The data fields in the Display Request Block are the following:

CMD#: 0 - 4 (Command Number)

LA.CA: Display/ cursor position
LA (Line address) = 0-24 binary, 1 byte
CA (Column address) = 0-79 binary, 1 byte

NOC: Number of characters to be displayed
0-2000 binary, 1 word

Display data Starting address of display data buffer

address: (offset, base address; 2 words)
Attribute Starting address of attribute data buffer
data address: (offset, base address; 2 words)

In the video memory, each display character consists of display data (two bytes) and
attribute data (one byte). The first byte of the display data identifies whether the next
code is the normal character code or the auxiliary character code, as shown in the

following illustration.

3-12

The Extended 1/ O System Functions

DISPILAY CHARACTER DISPLAY DATA

ATTRIBUTE DATA
(1 byte)

SECOND BYTE
00-FFH

With CMD#0, both normal and auxiliary character codes may be used in the video
memory format. With CMD#1, only normal character codes may be used.
Video Memory Format

Video memory format is the format of the Display Data Area in the video memory.
Each display data item consists of two bytes.

FIRST BYTE
(2 BYTES) 00H=NORMAL
89H=AUXILIARY

| display i display i display | -
data 1 data 2 data 3
first r second first : second first : second
byte I byte byte I byte byte | byte

first byte = 00H (normal character code)
89H (auxiliary character code)

second byte = 00H - FFH (normal or auxiliary character code)

String Data Format

Inthe string data format for CMD#1, each display data item is one byte long, and only
normal character codes are available.

Attribute Data Format

The attribute data items occur in one-to-one correspondence with the display data
items. That is, there is one attribute data item for each display data item. Each attribute
data item is one byte in length, with each of the eight low-order bits set to 0 or 1 to
indicate no color or a color value. The colors are assigned to bits as follows.

3-13

The Extended I/ O System Functions

3-14

QlwmwnX
N
wh
o
W
N
rClowwn

oW
<
— O

Under line

Over line
Vertical line
Blink

Reverse
Red/Highlight *
Blue

Green

* - Highlight is available for monochrome monitor only.
Colors may be used individually or in combination to generate secondary colors. For

example, the following attribute data byte displays data with blink and purple color
attributes.

01101000 (68H)

Blink

Red
Blue Purple

Direct CRT I/0 Command Descriptions
CMD# 0 - DISPLAY VIDEO MEMORY FORMAT DATA ON CRT
This function displays the data, starting from the positions specified by LA and CA for

the length in NOC, on the CRT. The display data must be formatted in the video
memory format.

The Extended I{ O System Functions

The contents of the display request block for this command follow.

LA Range is 0-24, binary. Values greater than 24 are
converted to 24.

CA Range is0-79, binary. Values greater than 79 are
converted to 79.

NOC If the number of data items to be displayed

exceeds the display area on the CRT, the
overflow data is ignored. If NOC is 0, the cursor
is positioned at LA and CA, and no other action is

taken.
Display data The starting address should be located at
address an even memory address (DMA controller’s

restriction). If the base address is 0, no display
data is transferred.

Attribute If the base address is 0, attribute data is not
data address transferred.

If the base addresses of both display data and attribute data are 0, the effect is the same
as setting NOC to 0. The cursor is positioned at LA,CA and no data is transferred.

After data is transferred, the cursor is positioned at the next cursor position. If the
cursor is positioned on the last screen position (25,80) when the call is issued, the
command is executed, the screen rolls up one line, and the cursor is positioned on the
first field of the bottom line.

CMD# 1 - DISPLAY STRING DATA ON CRT

This command, like CMD# 0, displays the data addressed by LA and CA for the
length in NOC on the CRT. The display data must be in string data format with each
item consisting of one byte of normal character code data.

The contents of the Display Request Block are the same for this command as for
CMD# 0, except that CMD# is 1.

CMD# 2 - REPORT CURSOR POSITION

This command returns the current cursor position in fields LA and CA in the Display
Request Block. The function uses only the Display Request Block fields listed below.
The contents of the remainder of the area are ignored.

3-15

The Extended I/ O System Functions

LA Line address (0-24, binary)
CA Column address (0-79, binary)

CMD# 3 - ROLL DOWN SCREEN
This command enables the programmer to roll down a maximum of 25 lines on the
screen. The function uses only the LA field in the Display Request Block. The contents
of the remainder of the area are ignored.

LA Number of lines to roll down (1-25, binary)

The following illustrates the roll down operation.

LA Number of lines to roll down (1-25, binary)

VIDEO MEMORY

) OLD

CMD# 4 - ROLL UP SCREEN

This command enables the programmer to roll up a specified number of lines on the
screen. The function uses only the LA field in the Display Request Block. The contents
of the remainder of the area are ignored.

ROLL DOWN

DISPLAYED SCREEN

NEW

LA Number of lines to roll up. If the number of lines to roll up exceeds the
number of lines that have been written, the next line is erased.

The following illustrates the roll up operation.

The Extended I/ O System Functions

VIDEO MEMORY

ow & _ -
ROLL UP
%/ /777711]
27
y
50 A _____ rst{
CRT NEW A\
WRITE CMOS
- ENTRY RET
> URN
CL 08H EXT FUNC 08H

DS:DX Data buffer
address

Extended 08 H writes up to 512 bytes to CMOS RAM (battery back-up memory). The
data to be written is stored in an 1/O buffer addressed by registers DS and DS. The
format of the buffer is as follows.

READ CMOS
ENTRY RETURN
-
CL 09H EXT FUNC 09H Data buffer

DS:DX Data buffer
address

Extended Function 09H reads data in CMOS RAM (battery back-up memory) into
the buffer addressed by registers DS and DX. The system fills the data buffer in the
format defined in Function 08H, Write CMOS.

3-17

The Extended I/ O System Functions

INITIALIZE RS-232C

ENTRY " RETURN
—_— 3 —_——
CL OAH EXT FUNC 0AH

DS:DX Baud rate and
mode

The Initialize RS-232C function is used in asynchronous mode only to set the baud
rate (DH) and mode (DL). (In synchronous mode, an external clock determines the
baud rate.) The register values are set as follows.

DH = Baud Rate

0= 150 BPS
1= 200 BPS
2= 300 BPS
3= 600 BPS
4 = 1200 BPS
5= 2400 BPS
6 = 4800 BPS
7= 9600 BPS
8 = 19200 BPS

DL = Asynchronous mode byte for PD8251

An illustration of the control information, including baud rate, for data transmission
follows.

NOTE
When communication software is operating, the

system timer is off and the keyboard repeat
feature does not operate.

Chapter 4

The APC Escape Sequence
Functions

When a program calls an APC escape sequence function, it uses the following function
requests:

o Function request 02H (Console Output)
¢ Function request 06H (Direct Console I/O).

ESCAPE SEQUENCE FORMAT

Escape sequences consist of three fields: a sequence introducer that identifies the
instruction as an escape sequence, one or more parameters, and a final character. For
example, the format of the escape sequence to move the cursor up is

ESC [PnA
The basic elements of all APC escape sequences are the same.

® The Control Sequence Introducer (CSI) signals an escape sequence command
to the system. For the APC, the CSI is the ESC character (1BH).

The ESC is usually, but not always, followed by a square bracket ([).

® A parameter is a string of zero or more decimal characters that represent a
single value. Leading zeroes are ignored. The decimal characters have a range
of 0 (30H) to 9 (39H). Two types of parameters are used in escape sequences:
numeric and selective parameters.

Numeric parameters represent numbers. Unless otherwise specified, any
numeric value may be used. Numeric parameters are designated Pn in this
document.

4-]

The A PC Escape Sequ’eﬁ‘ée Functions

Selective parameters, designated in this document by Ps, select a subfunction
from a specified list of subfunctions.

You must replace Pn and Ps as well as certain command-specific parameters
with the appropriate values in the command.

A parameter string is a list of parameters, separated by semicolons (3BH).

A default is a function-dependent value that is assumed when no value is
explicitly specified for a parameter.

e The Final Character is a character whose bit combination terminates an
escape or control sequence. There is a different character for each escape
sequence. In the example above, “A” is the Final Character. The Final
Character must be entered exactly as it appears in the command format. Be
careful to use uppercase or lowercase correctly.

For example, the following escape sequence sets character attributes.

ESC[Ps:...; Psm
To select the attributes “over line” (3), “under line” (4), and “blink” (5), you would enter
the values that correspond to the following sequence. All the character attributes for
display are listed in Table 4-1.

ESC [3:4;5m

Note that lowercase m is used in this command as the final character.

The escape sequence is represented below in both decimal and hexadecimal values.

delimiter delimiter

ESC IB 5B 32 3B 33 3B 34 ‘6D
L L e % A
Selective } Selective
Parameters : Parameters
I
Parameter Parametcr
String] String
CSI Final CSi Finat
Character Character

The APC Escape Sequence Functions

CURSOR UP
ESC[PnA Default value: 1

This sequence moves the active position up without altering the column position. The
number of lines moved is determined by the parameter. A parameter value of 0 or 1
moves the active position up one line. A parameter value of n moves the active position
up n lines. If an attempt is made to move the cursor above the first character of the first
display line, the cursor stops at the top margin.

CURSOR DOWN
ESC[PnB Default value: |

This sequence moves the active position down without altering the column position.
The number of lines moved is determined by the parameter. A parameter value of 0 or
1 moves the active position down one line. A parameter value of n moves the active
position down n lines. If an attempt is made to move the cursor below the bottom
margin, the screen rolls up the required number of lines.

CURSOR FORWARD
ESC[PnC Default value: 1

This sequence moves the active position to the right. The distance moved is determined
by the parameter. A parameter value of 0 or | moves the active position one position to
the right. A parameter value of n moves the active position n positions to the right. If
an attempt is made to move the cursor to the right of the right margin, the cursor
moves to the first column of the next line. If this would take the cursor below the
bottom margin, the screen rolls up one line and the cursor is positioned on the first
character of the bottom line.

CURSOR BACKWARD
ESC[PnD Default value: |

This sequence moves the active position to the left. The distance moved is determined
by the parameter. A parameter value of 0 or 1 moves the active position one position to
the left. A parameter value of n moves the active position n positions to the left. If an
attempt is made to move the cursor to the left of the left margin, the cursor moves to
the last column in the previous row. If this would place the cursor above the home
position, the cursor does not move.

The APC Escape Sequence Functions

CURSOR POSITION

ESC[P1;PcH or
ESC[P1;Pcf

Default value: |

This sequence moves the cursor position to the position specified by the parameters.

P1=Line number. A parameter value of 0 or I moves the active cursor position to
the first line in the display. A parameter value of n moves the active position to the
nth line in the display. If n>25, the system treats n as 25.

Pc=Column number. A parameter value of 0 or I moves the active cursor position
to the first column in the display. A parameter value of n moves the active position
to the nth column. If n>80, the system treats n as 80.

SELECT CHARACTER ATTRIBUTES

ESC[Ps;...;Psm

This escape sequence sets character attributes. Once the sequence is executed, all
characters transmitted afterwards are rendered according to its parameters until the
escape sequence is used again.

Parameter

NN B LN —

8-15
16 30
17 31
18 34
19 35
20 32
2133
2236
2337

Meaning

Attributes off (default: green color, color monitor)
Attributes off (default: green color)
Vertical line

Over line

Under line

Blink

Not used

Reverse

Not used

Secret

Red color/Highlight*

Blue color

Purple color

Green color (default) Color Parameters
Yellow color

Light blue color

- White color

*Only the Highlight attribute is available for the monochrome CRT.

The APC FEscape Sequence Functions

NOTE

The color and secret parameters are mutually
exclusive. If neither color nor secret is specified,
the green color default is used.

The attributes off parameter (Ps=0 or 1) cannot
be specified with other parameters. If it is, it is
ignored.

ERASE WITHIN DISPLAY
ESC[PsJ Default value: 0

This sequence erases some or all of the characters in the display according to the
specified parameter.

Parameter Meaning
0 Erase from the active position to the énd of the screen.
Erase from the start of the screen to the active position.
2 Erase all of the display. All lines are erased, and the cursor does
not move.

ERASE WITHIN LINE
ESC[PsK Default value: 0

Erases some or all characters in the active line according to the specified parameter.

Parameter Meaning
0 Erase from the active position to the end of the line.
1 Erase from the start of the screen to the active position.
2 Erase all of the line.

AUXILIARY CHARACTER SET
ESC(I

This function is used to access the auxiliary character codes (20H - FDH) created by
the Auxiliary Character Generator program (CHR external command). The one
character immediately following the command is treated as the auxiliary character
code. In Direct Console I/ O (Function Request 06H) the available auxiliary character
codes have a range of 00H to FFH.

4-5

The APC Escape Sequence Functions

NOTE

The character immediately following ESCis the
open parentheses character, (, not the square
bracket.

For more information on the Auxiliary Character Generator program, refer to the
MS-DOS System Programmer’s Guide.

SET A MODE
ESC[Psh

This sets the mode specified by the parameter. Only the values listed below may be .
used; all others are ignored.

Parameter Meaning
1 Disable system status display
2 Disable key click
5 Disable cursor display
7 Disable keyboard input

RESET A MODE
ESC][Psl

This escape sequence resets the mode specified by the parameter. Only the values listed
below may be used; all others are ignored. The final character is the lowercase letter 1,
not the number one.

Parameter Meaning
1 Enable system status display
2 Enable key click
5 Enable cursor display
7 Enable keyboard input
DEVICE STATUS REPORT |
ESC[6n

The APC Escape Sequence Functions

The console driver will output a Cursor Position Report (CPR) sequence on
receipt of a Device Status Report sequence (DSR).

CURSOR POSITION REPORT
ESC[P;PoR

The Cursor Position Report (CPR) sequence reports the current cursor position via
standard input (console driver). The first parameter specifies the current line and the
second parameter specifies the current column.

SAVE CURSOR POSITION
ESC[s

The Save Cursor Position (SCP) sequence saves current cursor position. This cursor
position can be restored with the Restore Cursor Position (RCP) sequence.

RESTORE CURSOR POSITION
ESClu

The Restore Cursor Position (RCP) restores the cursor position to the value it had
when the console driver received the SCP sequence.

Note that the Device Status Report escape sequence performs the same task as the
Report Cursor Position escape sequence.

ADM-3A MODE CURSOR POSITION ESCAPE SEQUENCE
ESC=1Ic

This escape sequence function is compatible with that used by the Lear Siegler
ADM-3A terminal.

This sequence moves the cursor position to the position specified by the parameters.

1 = Line number. The line number is a binary value in the range 20H (first line)
-38H (25th line).If 1=38H, the system treats | as 38H. If 1 >20H, the system
treats 1 as 20H. '

¢ = Column number. The column number is a binary value in the range. 20H (first
column)-6FH (80th column).If c=6FH, the system treats c as 6FH. If c >20H.
the system treats ¢ as 20H.

Chapter 5

MS-DOS Graphics
Supplement

The MS-DOS Graphics Supplement provides a powerful interface between the APC
graphics hardware and applications running under MS-DOS. The supplement
consists of a Pascal unit called Graf_Draw. Procedures perform tasks such as drawing
lines, circles, rectangles and arcs, displaying graphics texts, polygon filling, pattern
generation, and character font generation.

To use the supplement, the following minimal APC system configuration must be
available:

e one or more diskette drive(s)
® 256K bytes or more of RAM
e an APC monochrome or color graphics board.

The following graphics application files are supplied on the MS-DOS system diskette:

FNTCOMP.EXE The Character Font Compiler, which allows user-designed
character fonts to be created and stored for later use by
applications programs.

PATCOMP.EXE The Area Fill Pattern Compiler, which allows user-defincd
patterns to be used in filling polygon areas. The patterns
can be stored for later use by applications programs.

PRC0.0BJ, Two object modules containing the graphics proce-

GRIMPL.OBJ dures used by application programs. These modules are
combined by LINK.EXE with user applications to produce
an executable program.

5-1

MS-DOS Graphics Supplement

GRINTE.PAS

GPTEST.PAS

KEYBRD.ASM

GPTEST.EXE

FONTOLTXT

FONTO!L.FNT

PATO00.PAT

PATOL.TXT
PATOl.PTN
PAT02.TXT
PAT02.PTN
PAT03.TXT
PATO03.PTN
PAT04.TXT
PAT04.PTN

File containing the Pascal constant, type, variable, and
external procedure declarations for the Graf_Draw unit. It
must be copied, using the Include compiler directive, into a
Pascal source file that uses the Graf_Draw unit. (See
GPTEST.PAS for an example of this Include.)

The validation suite for the supplement. This file contains
the Pascal source code, which can be used as an example of
the way the procedures of the Graf_Draw unit work. .

Assembly language module used by the GPTEST program
to gain direct access to the APC keyboard.

The executable file for the validation suite. It can be exe-
cuted as a demonstration of the Graf_Draw unit.
GPTEST.EXE can also be used to verify proper function-
ing of the graphics hardware.

The source file for the standard character font. This file is
also an example of the input format for the font compiler. It
defines characters of 16 pixels by 16 pixels.

The file, written by the Font Compiler, that contains the
“object” code for the standard character font. This file is
used at run time when the application requests that charac-
ter data be displayed.

A source file processed by the Pattern Compiler to produce
a pattern data file that can be used to fill areas on the
graphics display. The file is also an example of the pattern
source file format. It defines a 16 x 16 pixel blue grid
pattern.

A source file for a 16 x 16 pixel blue and green grid.
The data file for the above pattern.

A source file for an 8 x 8 pixel red triangle pattern.
The data file for the above pattern.

A source file for a 11 x 11 pixel green triangle pattern.
The data file for the above pattern.

A source file for a 10 x 10 pixel blue triangle' pattern.
The data file for the above pattern.

MS-DOS Graphics Supplement

EXECUTING THE GRAPHICS TEST

GPTEST.PAS demonstrates the capabilities of the Graphics Supplement and verifies
that the graphics hardware of the APC is working properly.

To begin, insert the MS-DOS system diskette, containing the file GPTEST.PAS, the
font data file FONTOI1.FNT, and the pattern data files (PAT00.PTN, PATOL.PTN,
and so on), into drive A. Enter GPTEST to start the test.

When the test program begins, it will prompt for three entries:

e The first entry is for the background color. Enter the index of the color you
want to be used as a background throughout the test. Use black (color) for best
results with this test program. Note that you will enter the number of the color,
not the name, for this prompt.

e The second entry is for the pattern to use for the area fill operations. Enter a
number, 0 to 4, to select the .PTN data file containing the fill pattern you want.
Entering 0 selects PAT00.PTN, 1 selects PATOI.PTN, and so on. Note that
patterns containing colors other than green will not display on a monochrome
graphics APC. Therefore, for a monochrome system, it is suggested that
pattern number | or 3 be selected.

o The final entry is the number of the font (. FNT) file containing the character
display font to be used for the text portion. Enter 1 to select the .FNT file
FONTO1.FNT.

At this point the graphics test begins execution. There are several subtests within the
GPTEST program . Before each one, you will be asked whether or not you want to run
the subtest. For example, before the first subtest, you will be asked “Test Cursor
(Y/N/esc) 7 Type Y to execute the cursor subtest or N to skip to the next subtest.
Press ESC to exit GPTEST and return to the system prompt.

Several times within each subtest, a display will appear for some function or
combination of functions, and will remain on the screen until you press RETURN.
This gives you time to inspect the results of each function. At these times the prompt
“type return to continue” will appear in the lower left corner of the screen.

This prompt may be difficult to see during some displays and with certain nonblack
background colors. If the display seems to be inactive for more than about ten seconds,
chances are that the “type return to continue” prompt is displayed but invisible because
of the colors displayed on top of it. Pressing RETURN will allow the test to continue.

MS-DOS Graphics Supplement

Many of the displays of the GPTEST program contain colors that will not display on
monochrome APCs. For this reason, many of the functions will appear to do nothing.
Only displays (and portions of displays) that use green will be seen on a monochrome
APC.

USING THE GRAF_DRAW UNIT

To gain access to the Graph_Draw unit, a Pascal application program must do the
following;

e Use the $Include compiler directive to copy the GRINTE.PAS file into the
application. This provides the interface declarations of the Graf_Draw unit:
SINCLUDE ‘GRINTE.PAS’

e Include the Uses statement to gain access to the Graf_Draw procedures:
USES GRAF_DRAW;

The application source program may make use, only once, of the Core Record
and Graf_Draw procedures described in the following section.

Before execution, you must link the actual object code for the Graf_Draw
procedures and data areas with the object code resulting from the compilation
of the application program. To do this, execute LINK.EXE (the MS-LINK
Linker Utility™) with GRIMPL.OBJ and PRC0.OBJ, which are supplied as
modules to be linked to the module (or modules) containing the application
program. For example, when linking the GPTEST.EXE, the following LINK
input file could be used.

gptest prcO grimpl keybrd/m/ 1

gptest
gptest

)

Figure 5-1 is a flow diagram of the graphics application development process.

GRINITE. PAS

— INCLUDE —»{ ($INCLUDE ‘GRINITE. PAS’) }— COMPILE = WUSER. 08J

PROGRAM USER;

USES GRAF DRAW;

USER PROGRAM SOURCE FILE

CRIMPL 0OBJ

MS-DOS Graphics Supplement

LINK

PRCO. 0BJ

p—-J

Figure 5-1 Graphics Application Development Process

THE GRAF_DRAW UNIT

The Graf_Draw unit is composed of 28 procedures written in Pascal. This program
works through a segment of code called GRINTE.PAS that acts as an interface
between Graf_Draw and applications programs. This interface segment defines values
for the next operation and a record, called the Core Record. The Core Record contains
variables describing the current state of the graphics system.

THE INTERFACE UNIT

The Interface unit, GRINTE.PAS, contains the following code. Among the values
designated in this program segment are constants, for example, the display screen size
and variables, such as the font type used by the application program. Variables are
defined in the Core Record (see the Core_Record variable).

Const Graf_Version = '0.4;

Type Cur_Attribute = (Cur Disable,

Cur_Enable,
Cur_Visible,
Cur_Invisible,

Cursor disable
Cursor enable
Cursor visible
Cursor invisible

USER. EXE

USER PROGRAM
EXECUTABLE FILE

5-5

MS-DOS Graphics Supplement

Cur_Small, Cursor small
Cur_Full; Cursor full
Switch_Types = (Off, On);
Overlay_Type = (Xor Mode, Replace contents
Replace); Merge contents
Display_Type = (Fast, No filling
Fill); Fill all polygons
Int_Type = (Plain, Solid rectangle
Patterned); User pattern
Edge Type = (Solid Line, Solid border
Interior); Invisible border
Directions = (Left, Left direction or position
Right, Right direction or position
Up, Up direction
Down, Down direction
Top, Top position
Center, Center (horz/vert) position
Bottom; Bottom position
Font_Type = -1..99;
Pat_Type = -1..99;
Color_Index = 0..15;
Point = Integer
Point_Array = Array 1..128 Of Point;
Sorcery = Integer;
Core_Record = Record ,
X_Min, Left edge of screen
X_Max, Right edge of screen
Y_Min, Top edge of screen
Y_Max, Bottom edge of screen
X_Org, X-origin of fill pattern
Y_Org, Y-origin of fill pattern
X_CP X-current position
Y_CP :Point; Y-current position
Line_Index, Line color
Fill_Index, Filled object color

Text_Index,
Background

Line_Style
Display_Mode
Overlay_Mode
Polygon_Interior
Polygon_Edge

Font_Number
Font_Cols
Font_Rows

Char_Spacing
Top_Bottom
Left_Right,
Char_Path
DX_Charup,
DY_Charup
Char_Height,
Char_Width

Pat_Number
Pat_Cols,
Pat Rows
File_Prefix

Var Core : Core_Record;
Procedure Move_Abs (X_Position,

Text color
:Color_Index

:Integer;
:Display_Type
:Overlay_Type
:Int_Type
:Edge._Type
:Font_Type;
:Point,

:Real

:Directions;
:Integer;
:Integer
:Pat_Type

:Point;

:String 1

Y_Position : Point);

Procedure Move_Cursor (X_Position,

Y_Position : Point)

Procedure Move_Rel (Delta_X,
Delta_Y : Point);

Procedure Set_Cursor (Attrib : Cur_Attribute);

Procedure Size_Cursor (Size : Integer);

Procedure Set_Fill_Pattern (Pattern_Num : Pat_Type);
Procedure Box_Abs (X_Corner, Y_Corner : Point);

MS-DOS Graphics Supplement

Background color

Line Pattern

Fast/ Fill

Replace/ Xor pixel
Plain/Patterned
Solid_Line/ Interior

Current font numbers
Columns per char
Rows per char

Character pitch
Above/below text
Left/right of text
Write direction
Char rotation X
Char rotation Y
Rows to display
Columns to display

User pattern number
Columns in pattern
Rows in pattern

Prefix for font text

5-7

MS-DOS Graphics Supplement

Procedure Box_Rel (Width, Height : Point);
Procedure Write_Block_Pixels (Data : Sorcery; Rows, Columns : Integer);

Procedure Read_Block_Pixels (Data : Sorcery; Rows, Columns : Integer);

Procedure Set_Charup (DX_Charup,
DY Charup : Integer);

Procedure Set_Font (Font_Num : Font Type);
Procedure Text (The_String : String);

Procedure Set_Line_Style (Dot_1,
Dot_2,
Dot_3,
Dot_4,
Dot_5,
Dot_6,
Dot_7,
Dot..8 : Switch_Type);

Procedure Line_Abs (X_End,
Y_End : Point);
Procedure Line_Rel (X_Length,
Y_Length : Point);

Procedure PLine Abs (Var X_End,
Y_End : Point Array;
Count : Integer);

Procedure PLine Rel (Var X_Length,
Y Length : Point Array;
Count : Integer);

Procedure Circle Abs (X_of_Edge, Y_of_Edge : Point);
Procedure Circle_Rel (Radius : Point);

Procedure Define_Color (Index,

Red,

Green,

Blue,

Blink,

Hard_Copy : Integer);
Function Inq._Value (Option : Integer) : Integer;

Procedure Plane_Enable (Planes : Integer);

5-8

Procedure Plane_Visible (Planes : Integer);
Procedure Set_Palette (Pal_Name : String);

Procedure Set_Value (Opcode,
Value : Integer);

Procedure Erase;
Procedure Erase_Alpha;:
Procedure Flood;

Procedure Arc_Rel (Radius : Integer:
Start_Angle.
End_Angle : Real:
X_Start,
Y _Start,
X_End.
Y_End : Integer

Procedure Arc_Abs (Var Radius : Integer:
Var Start_Angle.
End_Angle : Real:
X_Start.
Y _Start,
X_End.
Y_End: Integer:;

MS-DOS Graphics Supplement

Table 5-1 lists the names, initial values. and a brief description of the Core Record

fields.

MS-DOS Graphics Supplement

Table 5-1 Core Record Fields

VARIABLE INITIAL VALUE DESCRIPTION
X_Min 0 * Left edge of the screen
X_Max 639 * Right edge of the screen
Y_Min 0 * Top of the screen
Y_Max 479 * Bottom of the screen
X_Org. ** X-origin of fill pattern
Y_Org, ** Y-origin of fill pattern
X_CP 0 X current position
Y_CP 0 Y current position
Line_Index 7 (white) Color of line
Fill_Index 7 (white) Color of filled object
Text_Index 7 (white) Color of text
Background 0 (black) Color of background
Line_Style ? Line pattern
Display_Mode Fast (no fill) Switch for filling: Fast/ Fill
Overlay_Mode Replace Switch for Replace/Xor Pixels
Polygon_Interior Plain Fill type: Plain/Patterned
Polygon_Edge ? Filled object border Solid

Line/Interior
Font_Number -1 (undefined) ** Current font number
Font_Cols ? ** Width of font
Font_Rows ? ** Height of font
Char_Spacing ? Spacing between characters
Char_Path ? Direction of character string
DX_Charup ? Character rotation in the X
direction
DY_Charup ? Character rotation in the Y
direction
Char_Height ? Height of text characters
Char_Width ? Width of characters
Pat_Number -1 (undefined) ** Current fill pattern
Pat_Cols ? ** Width of current pattern
Pat_Rows ? ** Height of current pattern
File_Prefix ? Volume where .FNT and .PTN files

are located

MS-DOS Graphics Supplement

NOTES:

The single asterisk (*) denotes variables set once
by the system. ' :

The double asterisks (**) indicate variables that
are automatically set by procedure calls.

You should not attempt to set the values of the Core Record (CORE.) variables
flagged by * and ** in programs. If you do, the results are unpredictable.

TERMS THAT DESCRIBE SCREEN DISPLAYS

The following terms describe elements of the APC graphics display. These terms are
used in explanations of the Graf_Draw procedures, FNTCOMP.EXE, and
PATCOMP.EXE.

Color

Ccp

The APC can display eight colors. These colors are fixed and cannot be altered. The
term “index” is used as a synonym for “color” in many places in this text. A color index
is a pointer into a color table that determines which color is to be used for drawing
lines, shapes, displaying text, and so on. In reality, since the color scheme is fixed, there
is no need to keep such tables around. Therefore, the color tables are conceptual only,
and the index is the color.

The color indexes are as follows:

0 - Black 4 - Blue

| - Red 5 - Magenta
2 - Green 6 - Turquoise
3 - Yellow 7 - White

The system’s current position (CP). The point within the graphic coordinate space
where the next output operation will take place. The CP is kept in memory in the X CP
and Y_CP CORE. variables.

In this manual, the CP is occasionally indicated by an ordered pair of X and Y
coordinates, such as (100, 200).

Some of the Graf_Draw procedures have an effect on the value ot the CP,
others do not. This effect is indicated in this discussion by the following
expression:

CP - (New_X_Value, New_Y_Value);

5-11

MS-DOS Graphics Supplement

5-12

Cursor A software controlled graphics cursor. It shows on the screen as a hairline

Pixel

Plane

cross with equal vertical and horizontal bar sizes. The cursor can be any size,
up to that of the full screen. The default cursor size is 15 pixels.

The elementary display unit. Each pixel is a dot (approximately 1/10 inch)
on the APC screen. It is individually controlled by attributes stored for it in
the graphics display memory. The APC has a 640 x 480 pixel display. The
attributes for each pixel are stored in a four-bit field, where the high order bit
is always 0 and the remaining three bits give the color associated with the
pixel.

The display screen may be visualized as three superimposed bit planes, one
for each of the primary colors: red, green and blue. The color for an
individual pixel is therefore determined by a three-bit value, depicting a color
value or index.

GRAF_DRAW UNIT PROCEDURES

The Graf_Draw unit procedures are described in the following pages. For each
procedure, you are given

e the complete procedure declaration with its parameters
® a description of what the procedure does
e a sample call with an explanation of the associated effect.

PROCEDURE MOVE_ABS

Declaration:
Procedure Move_Abs(X_Position, Y_Position : Point);

Description:

This procedure sets the CP to the new position given by the values in X_Position and
Y_Position.

Effect on CP:
CP -- (X_Position, Y_Position);

Example:
MOVE_ABS (50,100);
This example sets CORE.X_CP to 50 and CORE.Y_CP to 100.

MS-DOS Graphics Supplement

PROCEDURE MOVE_REL

Declaration: ‘
Procedure Move_Rel(Delta_X, Deita_Y : Point);

Description:

This procedure changes the value of the current position of the variables. The
parameters Delta_X and Delta_Y are added algebraically to the values of CORE.X_CP
and CORE.Y_CP respectively.

Effect on CP:
CP — (X_CP+Delta_Y);

Example:
MOVE_REL (10,20);

This example moves the current position of X to CORE.X_CP + 10 and of Y to
CORE.Y_CP + 20.

PROCEDURE SET_CURSOR

Declaration:
Procedure Set_Cursor (Attrib : Cur_Attribute);

Description:

The various attributes for the graphics cursor are set via this procedure. Cursor
attributes and their effects are as follows.’ :

Cur_Disable The cursor is disabled. All further
cursor commands will be ignored.

Cur_Enable The cursor is enabled. Subsequent
cursor commands will be honored.

Cur_Visible If the cursor is enabled, it will be made
visible.

5-13

MS-DOS Graphics Supplement

Cur_Invisible If the cursor is enabled, it will be made
invisible. While invisible, all other cur-
sor commands can still be used but the
effects will not be apparent until the
cursor is made visible again.

Cur_Small The cursor is set to a default size of 15
pixels.

Cur_Full , The cursor is set to the size of the
screen.

Effect on CP:
None.

Example:
SET_CUR (Cur_Invisible);

This example turns the cursor invisible so that it may be moved around the screen or
have its size changed before it is made visible again.

PROCEDURE SIZE_CURSOR

Declaration:
Procedure Size_Cursor (Size : Integer);

Description:

This procedure sets the size of the graphics-cursor. The size is given in pixels and can be
changed only if the cursor is enabled.

Effect on CP:
None.

Example:
SIZE_CURSOR (30);

This example results in the graphics cursor being drawn with lines that are 30 pixels
long.

MS-DOS Graphics Supplement

PROCEDURE SET_FILL

Declaration:
Procedure Set_Fill_Pattern (Pattern_Num : Pat Type);

Description:

When drawing boxes, circles, and other shapes, you may use user-defined patterns to
fill these areas. This procedure is used to select one of the defined patterns.

The value of the parameter must correspond to a disk file generated by the Pattern
Compiler (see the section THE PATTERN COMPILER for details). The file contain-
ing the pattern must be named PAT* . PTN where * is a number between 0 an 99.

The variables CORE.Pat_Number, CORE.Pat_Rows and CORE.Pat._Cols are set by
this procedure.

Effect on CP:
None.

Example:
SET_FILL_PATTERN (3);

This example causes the system to read the file PAT03.PTN if it is present. All future
pattern fills will use this pattern.

PROCEDURE BOX_ABS

Declaration:
Procedure Box_Abs (X_Corner : Point);

Description:

This procedure draws a rectangular box starting at the CP. The box is drawn parallel
to the X and Y axes. One corner is located at the CP, and the opposite corner at the
point given by X_and Y_Corner.

If CORE.Display_Mode = Fast, the box will be drawn as a rectangular outline. If it is
Fill, the box will be drawn as a rectangular solid.

If CORE.Polygon_Edge = Solid Line and CORE.Display_Mode = Fill, the box will
be drawn as a solid rectangle with a border. If it is Interior, no border will be drawn.

5-15

MS-DOS Graphics Supplement

5-16

If CORE.Polygon_Interior = Plain and CORE.Display. Mode = Fill, the box will be
drawn as a solid-colored rectangle. If CORE. Polygon_Interior is Patterned, then the
box will be drawn using the current pattern.

If CORE.Overlay_Mode = Replace, each pixel on the screen will be overwritten by
the corresponding pixel of the box. If it is XOR, then a Boolean XOR is performed for

the screen and the box and the result is displayed.
CORE.Line_Index specifies the color in which the border of the box is drawn.
CORE.Fill_Index specifies the color to be used for a solid fill.

Effect on CP:
The CP retains the value it had before the box was drawn.

Example:

CORE.Line_Index := I;
CORE.Fill_Index := 4;
CORE.Displaymode := Fill;
CORE.Polygon_Interior := Plain;
CORE.Polygon_Edge_ := Solid Line
CORE.Overlay_Mode := Replace;

Box_Abs(90,70);

This example draws a box with a border color of 1 and fills it with a solid color of 4.
The box starts at the CP and has its opposite corner at (90,70).

PROCEDURE BOX_REL

Declaration:
Procedure Box Rel (Width, Height : Point);

Description:

This procedure is similar to BOX_ABS. The only difference is that the point defining
the corner of the box opposite to the anchor point is given as a relative displacement
from the CP. Therefore, width is an offset from the current X position and height isan
offset from the current Y position.

MS-DOS Graphics Supplement

Effect on CP:
See BOX_ABS.

Example:
Refer to BOX_ABS.

PROCEDURE WRITE_BLOCK_PIXELS

Declaration: .
Procedure_Write_Block_Pixels (Data : Sorcery; Rows, Columns : Integer);

Description:

This procedure writes a rectangular array of pixels from a user-defined area to the
screen starting at the CP. The parameters Rows and Columns define the size of the
pixel array to be transferred from memory. The order of display is from left to right
and bottom to top.

The memory array resides in an area pointed to by the Data parameter. This parameter
is of the Sorcery type and needs to be set prior to the procedure call.

CORE . Overlay_Mode has an effect on this function if it is set to XOR.

Effect on CP:
None.

Example:

Var Screen_Seg : Packed array [0..3000) of Booléan;
Data : Integer;
begin
move left(Screen_Seg, Data,2); (*Move the address of the
screen into Data¥*)

Move Abs (100,100);
Write block Pixel (Data, 20,20);
end;

This example will write the pixels from Screen._Seg to the screen starting at (100, 100).
The rectangular screen area that is affected by this code is 20 pixels on each side.

5-17

MS-DOS Graphics Supplement

5-18

PROCEDURE READ_BLOCK_PIXELS

Declaration:
Procedure Read_Block_Pixels (Date : Sorcery; Rows, Columns : Integer);

Description:

This procedure does just the opposite of WRITE_BLOCK_PIXELS. It writes a
rectangular array of pixels starting at the CP from the screen to a user-defined area.
The parameters mean the same thing, except that Data is now the destination for the
screen area defined by the current position and the parameters, Rows and Columns.

Effect on CP:
None.

Example:
Refer to WRITE_BLOCK_PIXELS.

PROCEDURE SET_CHARUP

Declaration:
Procedure Set_Charup (DX_Charup, DY_Charup : Integer);

Description:

This procedure establishes the rotation angle for each character output via subsequent
TEXT calls. It does not specify the direction for the character path (given by the
contents of CORE.Char_Path).

The rotation angle is determined by a normalized Cartesian vector system and is
governed by the following variables:

DX_Charup DY_Charup Character Rotation
0 1 Right side up
0 -1 Upside down
1 0 Rotated to the right
-1 0 Rotated to the left

If DX_Charup and DY_Charup have values other than (-1,0,1), the system automati-
cally normalizes the vector based on the larger of the two values.

MS-DOS Graphics Supplement

Effect on CP:
None.

Example:
SET_CHARUP(-1,0);

This example causes all characters output by subsequent TEXT calls to appear rotated
to the left.

PROCEDURE SET_FONT

Declaration:
Procedure Set_Font (Font_Num : Font_Type);

Description:

This procedure selects a user-defined text font for use in the TEXT procedure. The file
containing the pattern must be named FONT* . FNT, where “*” is a number between 0
and 99. The variables CORE . Font_Number, CORE . Font_Rows, and CORE .
Font_Cols are set by this procedure.

Effect on CP:
None.

Example:
SET_FONT (3);

This example causes the system to read the file FONTO03. FNT if itis present. All future
calls to the TEXT procedure will use this font.

PROCEDURE TEXT

Declaration:
Procedure Text (The_String : string);

Description:

This procedure writes a string of text to the screen using a user-defined font. The size of
the characters, their orientation the spacing between them, and their paths can be
defined. The parameter is a standard Pascal string to be displayed.

MS-DOS Graphics Supplement

5-20

CORE. Char. Widthand CORE . Char_Height define the size of the characters to be
printed, rounded to the nearest multiples.

CORE . Char_Path defines the direction in which the text string is to be written (Left,
Right, Up or Down).

CORE . DX_Charup and CORE . DY_Charup define the rotation at which the
characters are written. These variables can be set with the SET_CHARUP procedure.

CORE .Char_Spacing defines the distance between characters. This is a real number
and is used to represent a unit of the character size. The number can be a fraction (for
example, .5 to move characters one-half a character space apart), or it can be a
negative number to move the characters closer together.

CORE .Left_Right and CORE . Top_Bottom are used to position the text relative to
the current position (X_CP,Y_CP). CORE .Left_Right is used to position the string so
that the “left” edge, “right” edge or “center” of the string is located on the X component
of the current position. CORE . Top__Bottom is used to position the string so the top
edge, bottom edge, or center is located on the Y component of the current position.

CORE .Text._Index specifies the color for the string.

CORE Font_Number is set by the procedure SET_FONT and is the number of the
current text font.

Effect on CP:
None. .

Example:

CORE .Text_Index : |;

CORE .Char_Width : 12;

CORE .Char_Height : 30;

SET_FONT (J)

TEXT (LETS SEE WHAT THIS LOOKS LIKE)

PROCEDURE SET_LINE_STYLE

Declaration: .

Procedure Set_Line_Style (Dot_1, Dot_2, Dot_3, Dot_4, Dot_5, Dot_6, Dot_7,
Dot_8 : Switch_Type);

MS-DOS Graphics Supplement

Description:

By this procedure, you define the type of line that will be used to draw lines, circles and
boxes. It can be a solid line, a dashed line, or a ling with dots and dashes. You define
one segment of the line which is composed of eight pixels. Each of the eight pixels can
be turned either “ON” or “OFF.”

Effect on CP:
None.

Example:
SET_LINE_STYLE(ON,ON,ON,OFF,OFF,OFF);

This example creates a line that will have 4 pixels on, then 4 pixels off, then 4 on, then 4
off, and so on.

PROCEDURE LINE_ABS

Declaration:
Procedure Line_Abs (X_End, Y_End : Point);

Description:

This procedure draws a line from the CP to the point defined by X_End and Y_End.
The current position is then updated to the X_End, Y_End position.

If CORE . Overlay_Mode = Replace, each pixel on the screen will be overwritten by
the corresponding pixel of the line. If this variable equals XOR then a Boolean XOR of
the screen and the line will be performed and the result will be displayed.

CORE . Line_Index is the color in which the line will be drawn.

CORE. . Line_Style is set by the SET_LINE_STYLE procedure.

Effect on CP:
CP — (X_END, Y_End);

5-21

MS-DOS Graphics Supplement

5-22

Example:

SET_LINE STYLE(ON,ON,ON,ON,OFF,OFF,OFF,OFF);
CORE .Line_Index := I;

CORE . Overlay_Mode := xor;

MOVE_ABS(100,100);

LINE_ABS(120,120);

PROCEDURE LINE_REL

Declaration:
Procedure Line_Rel (X_Length, Y_Length : Point);

Description:

This procedure is the same as LINE_ABS except that the end point is specified by
relative displacements from the CP.

Effect on CP:
CP — (X_CP+X_Length, Y_CP+Y_Length);

Example:

SET_LINE_STYLE(ON,ON,ON,ON,OFF,OFF,OFF, OFF)
CORE . Line_Index : I;

CORE . Overlay_Mode : XORE,;

MOVE_ABS(100,100);

LINE_REL (21,21);

This example performs the same operation as the onein the example for LINE_ABS.
PROCEDURE PLINE_ABS

Declaration:
Procedure Pline_Abs (Var X_End, Y_End ; Point_Array; Count ; Integer);

Description:

This procedure draws a series of lines from the CP to the first set of points in the two
arrays X_End and Y_End. Then it draws the next line to the second position in the
array and so on for “Count” lines. At the end, the CP is pointing to the end of the last
line. A line of zero length implies a pen-up command, so the next line is interpreted as
cursor movement only with no display. The line after that will be displayed again.

MS-DOS Graphics Supplement

If CORE .Overlay_Mode = Replace, each pixel on the screen will be overwritten by
the corresponding pixel of the line. If it is XOR, then a Boolean XOR of the screen and
the line will be peirformed and the result will be displayed.

CORE .Line_Index is the color in which the line will be drawn.
CORE .Line_Style is set by the procedure SET_LINE_STYLE.

Effect on CP:
CP —(X_End[Count], Y_End[Count]);

Example:

CORE .Line_Index :=I;
X_END[1] := 200;
Y-ENDJ[1] := 100;
X_END[2] := 200;
Y_ENDJ[2] := 200;
X_END[3] := 100;

Y_END[3] := 200;
X_END[4] := 100;
Y.END[4] := 100;

MOVE ABS (100,100);
PLINE_ABS(X_END, Y_END, 4);

The above example will draw a box in color | starting at (100,100) and returning there.
PROCEDURE PLINE_REL

Declaration:
Procedure Pline_Rel (Var X_Length, Y_Length : Point_Array; count : Integer);

Description:

This procedure is the same as PLINR_ABS except that the lines are specified in terms
of relative displacements rather than absolute end point locations. A line of length zero
stiii irnplies a pen-up command.

Effect on CP:
CP — (X_Final, Y_Final);

5-23

MS-DOS Graphics Supplement

Where: (
X_Final = Y_CP+X Length [IHX_Length[2]+
.. X LengthfCOUNT]

Y_Final = Y_CP+Y_Length[2}+ ... +Y_Length [Count]

Example:

CORE .Line Index :=[;
X_LENGTH[1] := 100;

Y_LENGTHJ[1] = 0;

X_LENGTH[?2] := 0;

Y_LENGTH][2] := 100;

X_LENGTH[3] := -100

Y_LENGTH]3] :=0;

X_LENGTH[4] :=0;

Y_LENGTH][4] := -100;

MOVE ABS (100, 100);

PLINE_REL(X_LENGTH, Y_LENGTH, 4);

This example will draw a box in color 1 starting at (100,100) and returning there.
PROCEDURE CIRCLE_ABS

Declaration:
Procedure Circle_Abs (X_of_Edge Y_Of_Edge : Point);

Description:

This procedure draws a circle centered around the CP with its edge passing through the
point defined by X_Of_Edge and Y_Of_Edge. The circle can be drawn as an outline or
as a solid disk. If it is solid, it may be filled with a solid color or a user-defined pattern.

If CORE .Display_Mode = Fast, the circle will be drawn as an outline. If the variable
= Fill, the circle will be drawn as a solid.

If CORE . Polygon_Edge = Solid Line and CORE .Display_Mode = Fill, the circle
will be drawn as a solid disk with a border. If it is Interior, no border will be drawn.

If CORE .Polygon_Interior = Plain and CORE .Display_Mode = Fill, the circle will

be drawn as a solid-colored disk. Polygon_Interior is Patterned, then the circle will be
drawn using the current pattern.

5-24

MS-DOS Graphics Supplement

If CORE .Overlay_Mode = Replace, each pixel on the screen will be overwritten by
the corresponding pixel of the circle. If the variable is XOR, then a Boolean XOR is
performed with the current contents of the screen before the result is displayed.

CORE .Line_Index specifies the color in which the border of the circle is drawn.
CORE .Fill_Index specifies the color to be used for a solid fill.

Effect on CP:
The CP retains the value it had before the procedure call.

Example:

CORE .Line_Index :=[;

CORE Fill_Index :=4;

CORE .Display_Mode := Fill;
CORE .Polygon_Edge := Solid Line;
CORE .Polygon_Interior := Plain;
CORE .Overlay_Mode := Replace;

CIRCLE_ABS (90,70);

This example draws a circle with a border color of 1 and fills it with a solid color of 4.
The circle’s center is at the current position and its border passes through the point (90,
70).

PROCEDURE CIRCLE_REL

Declaration:
Procedure Circle_Rel (Radius : Point);

Description:

This procedure is similar to the CIRCLE_ABS procedure. The difference is that
CIRCLE_REL draws a circle centered at the CP whose border is drawn “Radius”
pixels away from the center, not through a specific point.

Effect on CP:
The CP retains the value it had before the procedure call.

Example:
Refer to CIRCLE_ABS.

5-25

MS-DOS Graphics Supplement

5-26

PROCEDURE DEFINE_COLOR

Declaration:
Procedure Define_Color (Index, Red, Green, Blue, Blink, Hard_Copy : Integer);

This procedure is not implemented.

PROCEDURE INQ-.COLOR

Declaration:
Procedure Inq_Color(Var Index, Red, Green, Blue, Blink, Hard_Copy:Integer);

Description:

Given the index of a color in Index, DEFINE_COLOR will set the remaining
variables according to that color’s internal composition.

Red, Green, and Blue indicate the amount of each of the primary colors that is used to
make up a particular color among the eight available. The value 0 indicates the absence
of a primary color, and the value 3 indicates 100% usage of a primary color. These are
the only values that are currently used by the APC hardware.

The Blink and Hard_Copy options are not implemented in this version of the Graphics
Supplement.

This procedure will always return the same values for a given color.

Color Index Color RGB Blink Hard_Copy

0 Black 000 0 0
1 Red 300 0 0
2 Green 030 0 0
3 Yellow 330 0 0.
4 Blue 000 0 0
5 Magenta 303 0 0
6 Turquoise 033 0 0
7 White 333 0 0

Effect on CP:
None.

MS-DOS Graphics Supplement

Example:
Index := 2;
INQ_COLOR(Index, Red, Green, Blue, Blink Hard. Copy)

The above example will return the following values:
Color Value

Red
Green
Blue
Blink
Hard_Copy

S OO WO

PROCEDURE INQ_VALUE

Declaration:
Procedure Ing_Value (Option : Integer) : Integer;

Description:

This procedure returns information on the type of monitor that is being used.. The
Option parameter should always be set to 0. Currently, the result of this function is
always 0, indicating an APC with a 640 x 480 pixel monitor. This function will be
enhanced in future releases.

Effect on CP:
None.

Example:
Machine := INQ_VALUE(0);

This example will set the Machine variable to 0.

5-27

MS-DOS Graphics Supplement

5-28

PROCEDURE PLANE_ENABLE

Declaration:
Procedure Plane_Enable (Planes : Integer);

Description:

This procedure sets a binary mask that controls values written to the system’s graphics
memory. The mask is set to the binary equivalent of the value in the Planes parameter.

Initially the mask is -1 (Hex FFF), which lets every color value go out unchanged.
Different values of the mask will ultimately result in the suppression on one or more of
the primary colors from the final pixel color. Before a value is written to graphics
memory, it is first ANDed with the current value of the graphics output mask.

Effect on CP:
None

Example:
PLANE_ENABLE(6);

This example will mask out the low-order bit of every pixel value written to memory.
Therefore, the Blue component will be suppressed.

For additional details, consult the DEFINE_COLOR procedure description and the
section THE PATTERN COMPILER.

PROCEDURE PLANE_VISIBLE

Declaration:
Procedure Plane_Visible (Planes : Integer);

This procedure is not implemented.
PROCEDURE SET_PALETTE

Declaration:
Procedure Set_Palette (Pal_Name : String);

This procedure is not implemented.

MS-DOS Graphics Supplement

PROCEDURE SET_VALUE

Declaration:
Procedure Set_Value (Opcode, Value : Integer);

Description:

This procedure performs internal control functions and directly sets some of the Core
Record variables. It may prove useful in situations where bypassing the procedure
calling overhead is critical to system performance. It is recommended. however, that
you use the standard procedures that accomplish the desired result wherever possible.

The following is a list of acceptable commands.

Opcode Value Operation

0 0 Initializes the graphics hardware and various flags.
This is automatically called at system initialization.

0 10 Disables the software graphics cursor. Use
SET_CURSOR instead.

0 11 Enables the cursor. Use SET_CURSOR instead.

0 12 Makes the cursor visible. Use SET_CURSOR
instead.

0 13 Makes the cursor invisible. Use SET_CURSOR
instead.

0 14 Sets the cursor size to 15 pixels. Use
SET_CURSOR instead.

0 15 Sets cursor to full screen. Use SET_CURSOR
instead.

4 XX Sets (xx) planes enables. Use PLANE_ENABLE
instead.

7 XX Erases screen to (xx) color. Use ERASE instead.

9 XX Sets graphic cursor size to (xx) pixels. Use

SIZE_CURSOR instead.

Effect on CP:
None.

Example:
SET_VALUE (7.3);

5-29

MS-DOS Graphics Supplement

5-30

This example will erase the screen to color 3. The equivalent standard sequence is
CORE.Background :=3;
ERASE;

PROCEDURE ERASE

Declaration:
Procedure Erase;

Description:

This procedure erases the currently enabled planes to the background color. The
background color is specified through the variable CORE .Background Index.

Effect on CP:
None.

Example:
CORE .Background_Index :=1

ERASE;
This example clears the screen and sets it to color 1.
PROCEDURE ERASE_ALPHA

Declaration:
Procedure Erase_Alpha:

Description:

This procedure erases the alphanumeric portion of the display. It leaves all graphics
intact.

Effect on CP:
None.

Example:
ERASE_ALPHA

MS-DOS Graphics Supplement

PROCEDURE FLOOD

Declaration:
Procedure Flood;

Description:

This procedure does an area fill with the color index specified in the CORE .Fill_Index
originating from the CP. The area file operation is as follows:

1. The color at the current position is recorded as the base color.
2. Filling then occurs in all directions until a border is encountered.
3. A border is defined as pixel in any color other than the base color.

At this time the display mode (CORE .Display_Mode) must be set to Fast. Ina future
release, the ability to “flood” with a user-defined pattern will be available.

Effed on CP:
None.

Example:

CORE .Fill_Index = 1;
Move_Abs(30, 20);
Flood;

This example will fill the area around the point (30,20) with red.
PROCEDURE ARC_REL

Declaration:

Procedure Arc_Rel (Radius :Integer;
Start_Angle
End._Angle :Real;
Var X_Start
Y_Start,
X_End
Y_End

5-31

MS-DOS Graphics Supplement

Description:

This procedure draws part of a circle in the following manner:

1.
2.

The center of the circle is defined by the CP.

The radius of the circle to be drawn is passed to the procedure in the
parameter Radius. It is measured in terms of pixels.

Two lines are then drawn of length Radius starting from the CP in the
direction of Start_Angle and End_Angle.

The Start_Angle and End_Angle are measured in radians from the X-axis in
a counterclockwise direction (that is, a line pointing directly up has an angle
measurement of P1/2).

The part of the circle originating at Start_Angle and going in a clockwise
direction to End_Angle is then drawn.

The X and Y coordinates of the point represented by the intersection of the
arc with the line drawn at the angle represented by Start_Angle are returned
to the program in the variables X_Start and Y_Start, respectively.

The X and Y coordinates described by the intersection of the arc with the line
drawn at the angle represented by End_Angle are returned to the program in
the variables X_End and Y_End. '

The following illustrates the ARC_REL procedure.

(X_START, Y_START)

5-32

(X_.END, Y_END)

RADIUS START_ANGLE

END _ANGLE

MS-DOS Graphics Supplement

Currently, the variable CORE . Display._Mode must be set to Fast. In a future release,

it will be possible to fill an arc with a solid color or pattern.

Effect on CP:

None.
Example:
Var
Pl : Real
X_Start , Y_Start
X_End, Y_END : Integer;
Pl = 3.14159;

Move_Abs(75,100);

CORE .Display_Mode: = Fast;

CORE .Line_Index: = 2

Arc_Rel(50,2*PI/3 , PI/6 , X_Start , X_End Y_End);

PROCEDURE ARC_ABS

Declaration:

Procedure Arc_Abs (Var Radius : Integer;
Var Start_Angle,
End Angle : Real;
X_Start,
Y_Start,
X_End,
Y_End : Integer;

Description:

This procedure draws an arc in the same way as ARC_REL with the exception that
X_Start, Y_Start , X_End, and Y_End must be passed as parameters, and Radius,

Start_Angle, and End_Angle are returned by the procedure.

The arc is defined in the following manner:

1. The center of the circle is defined by the CP.

2. A line is drawn from the CP to the point defined by X_Start and Y_Start.
3. The length of this line is then returned to the calling program in the variable

passed as Radius.

5-33

MS-DOS Graphics Supplément

5-34

4. The angle at which the line was drawn (measured in the same way as described
above), is returned in the variable passed to the procedure as Start_Angle.

5. A line is then drawn in ihe direction described by the parameters X_End and
Y_End with a length equal to the length of the first line drawn (the value just
placed in the variable Radius).

6. The arc is drawn at the angle at which this line was drawn starting from the

angle just placed in Start_Angle, and continuing in a clockwise direction to
the angle now described by End_Angle.

Currently, the variable CORE .Display_Mode must be set to Fast. In a future release,
it will be possible to fill an arc with a solid color or pattern.

Effect on CP:
None.

Example:

Move_Abs(320,1000;

CORE .Display_Mode :=Fast;

CORE .Overlay_Mode:=Replace;

CORE .Line_Index:=2;

Arc_Abs(Radius , Start_Angle , End_Angle , 300, 120 , 330, 90);

THE FONT COMPILER

The Font Compiler (FNTCOMP.EXE) accepts a series of text files containing a font
definition and produces an .FNT data file suitable for use with the Graf_Draw unit.

To execute the Font Compiler, enter FNTCOMP. The compiler will prompt for the
name of the first text file of the font definition. This file contains font parameters and
the first part of the font definition.

The next prompt is for the name of the font data file. This should be specified as
“FONTxx.FNT”, where xx is a two-digit font number (for example, 00 or 15). The
compiler will store the compiled font data in the file named.

MS-DOS Graphics Supplement

The Font Compiler then processes the character definitions until the end of the text file
is encountered. It then prompts for the name of a continuation text file. Supply that
file’s name, if there is one. If therc are no continuation files, pressing RETURN causes
the Font Compiler to close the .FNT data file and terminate.

Font Text Files

Font text files are line oriented. The first line of the first text file in a font definition
contains four numbers describing the font.

e The first number is the number of pixels in the horizontal direction.
e The second number is the number of pixels in the vertical direction.

e The third number is the ASCII value of the first character in the font definition
(for example, 32 for space).

e The fourth number is the ASCII value of the last character in the font
definition (for example, 127 for rubout).

The above numbers are separated by one or more spaces. The fourth number is
followed by a carriage return code.

The remainder of the text file (and all of any continuation text files) contains character
definitions, starting with the lowest valued character in the font and continuing
without interruption to the highest valued character in the font.

A character definition consists of a line containing the character to be defined,
enclosed in quotes, followed by several lines that define the way the character will be
formed. Together, these several lines form a picture representing pixels that are on and
off. Each line corresponds to one row of pixels in the character image. There are as
many lines as there are rows in the character image (as specified by the second number
described above, “number of pixels in the vertical direction”). Within a line, “.”s
represent pixels that are turned off, and other characters represent pixels that are
turned on. Two spaces separate each “.” or other character. There will be as many pixel
characters on each line as specified by the first number described above, “number of

5-35

MS-DOS Graphics Supplement

pixels in the horizontal direction.” An example of a character definition of an § by 14
pixel character is

“b”

bb .

oo oo ooToTTgTT "
=2 e gile i

. bb.

Note that there is never any blank line within the font text file.

Fora complete example of a font text file, see the FONTO1.TXT file supplied with the
supplement.

FONT DATA FILES
The format of the .FNT data file is

Word I: Number of pixels in the horizontal direction
Word 2: Number of pixels in the vertical direction
Word 3: Value of the first character in the font
Word 4: Value of the last character in the font

Word 5-7 Array [Word3..Word4] of character images.

Each character image is an array of byte-aligned rows. Each row occupies (Word! + 7)
Div 8 bytes. Each character occupies Word2 * ((Word 1+ 7) Div 8) bytes. There are no
padding bytes between rows. Character definitions are word aligned.

5-36

MS-DOS Graphics Supplement

THE PATTERN COMPILER

The Pattern Compiler (PATCOMP.EXE) accepts a text file containing a fill pattern
definition, and produces a .PTN file suitable for use with the Graf_Draw unit.

To execute the Pattern Compiler, enter PATCOMP. The compiler will prompt for the
name of the text file containing the pattern definition. This file contains pattern
parameters and the pattern definitions.

The next prompt is for the name of the pattern data output file to be produced. This
should be specified as “PATxx.PTN”, where xx is a two-digit pattern number (for
example, 00 or 15). The compiler will store the pattern definition in the file named.

The Pattern Compiler processes the pattern definition until the end of the text file is
encountered. It then closes the pattern data file and terminates.

Pattern text files are line-oriented. The first line of the text file contains two numbers
describing the pattern. The first number is the number of pixels in the horizontal
direction. The second number is the number of pixels in the vertical direction. The
numbers are separated by one or more spaces. A carriage return follows the second
number. The remainder of the text file contains the pattern definition.

A pattern definition consists of several lines containing a drawing consisting of color

identifiers representing the value of each pixel separated by two spaces. The color
identifiers are

D.d, or. for dark (black)

Rorr for red
Gorg for green
Yory for yellow

Borb for blue
Porp for purple
Tort for turquoise
Worw for white

Each line corresponds to a row of the pattern image. There are as many lines and rows
in the pattern as are specified by the numbers on the first line of the pattern text file.

5-37

MS-DOS Graphics Supplement

5-38

And example pattern test file for an 11 by 11 patternis

1111

.bbbbbbbbb .
Yy .bbbbbbb. g
yy .bbbbb.gg
yyy . bbb .ggg
yyyy.b.gggg
YYVYYY .gggegs
yYyyy.r.ggegeg
yyy.rrr.ggg
yy.rrrr . 88
y rrrrr r g
. rrrrrr rr .

The format of the .PTN pattern data files produced by the compiler is

Wordl: number of pixels in the horizontal direction
Word2: number of pixels in the vertical direction
Word 3-7 Array [Wordl..Word2] of pattern rows.

The pattern image is an array of word-aligned rows. Each row consists of an array of
color identifiers each occupy four bits. A row occupies (Word1 + 3) Div4 words. The
pattern occupies Word 2 + ((Wordl + 3) Div 4) words. Note that this format
corresponds to the internal representation of an array under the UCSD Pascal system.
An array declaration for the example pattern might be

Array [1..11] of Packed Array [1..1] of 0..15;

The color token values for the possible colors are as follows:

Value Color

for dark (black)
for red

for green

for yellow

for blue

for purple

for turquoise
for white

NN B W — O

Appendix

The MS-DOS interrupt vectors are as follows:

e CPU interrupt vectors

e Device interrupt vectors

e MS-DOS reserved interrupt vectors
e User interrupt vectors

e APC reserved interrupt vectors.

The interrupt vector table shown in Figure A-l consists of 256 entries. Each entry has
two 16-bit address values (4 bytes), which are loaded into the code segment (CS)
register and the instruction pointer (1P) register as the interrupt routine address when
an interrupt occurs. This means absolute locations OH to 3FFH are the transfer
address storage locations.

The MS-DOS Interrupt Vectors

A-2

Memory Address (H)
3FE

3FC

372
370
36E
36C

102
100
FE

FC

82
80
7€
7C

42

40

OE
ocC
0A
08
06
04
02

00

Figure A-1 MS-DOS Interrupt Vector Table

Table Entry

Cs255

1P255

CP220

1P220

CP219

1P218

Csg4

1P64

CS63

1P63

Cs32

P32

cs31

IP31

Cs16

Cs5

IP5

Csa

P4

Ccs3

1P3

Cs2

P2

cs1

IP1

CS Value-VectorO{CSO)

IP Value-VectorO (IPO)

AI‘

2 Bytes

1

Vector Number

Vector 255

Vector 220

Extended /0
System Interrupt

Vector 219

Vector 64

Vector 63

Vector 32

Vector 31

Vector 16

Vector 5
Vector 4
Vector 3
Vector 2
Vector 1

Vector 0

1

> APC Reserved Interrupt Vectors

Z

> User Interrupt Vectors

.

® MS-DOS Reserved Interrupt Vectors

7\

> (MS-DOS uses vectors 16 to 31
for device interrupts.)

Overflow

Breakpoint

Non-Maskable Interrupt (NMI)

Single Step

Zero Divide

The MS-DOS Interrupt Vectors

CPU INTERRUPT VECTORS

There are two types of CPU interrupt: the software interrupt and the hardware
interrupt. A hardware interrupt is classified as either a non-maskable interrupt (NMI)
or maskable interrupt. Regardless of its type, an interrupt results in the transfer of
control to a new location.

DEVICE INTERRUPT VECTORS

MS-DOS uses vectors 16 to 31 for device interrupts. This means absolute locations 40
to 7F hex are the transfer address storage locations used by 10.SYS. The interrupts are
as follows:

Vector 16 All stop (Not currently used.)
Vector 17 Communication (Not currently used.)
Vector 18 Option (Not currently used.)
Vector 19 Timer

Vector 20 Keyboard

Vector 21 Option (Not currently used.)
Vector 22 Option (Not currently used.)
Vector 23 ODA Printer (Not currently used.)
Vector 24 Option (Not currently used.)
Vector 25 Option ~ (Not currently used.)
Vector 26 CRT (Not currently used.)
Vector 27 FDD (Not currently used.)
Vector 28 Option (Not currently used.)
Vector 29 Option (Not currently used.)
Vector 30 APU (Not currently used.)
Vector 31 Option (Not currently used.)

The MS-DOS Interrupt Vectors

MS-DOS RESERVED INTERRUPT VECTORS

MS-DOS reserves vectors 32 to 63 (absolute locations 80 to FF hex) for the DOS.
These interrupts arc as follows:

Vector 32

Vector 33
Vector 34

Vector 35
Vector 36

Vector 37
Vector 38
Vector 39

Program terminate. This is the normal way to exit a program. This
vector transfers to the logic in the the DOS for restoration of CNTL-C
exit addresses to the values they had on entry to the program.

Function request.

Terminate address. If a program is to execute a second program, it
must use Terminate Address prior to creation of the segment into
which the program will be loaded.

CNTL-C exit address.

Fatal error abort vector. When a fatal error occurs, control will be
transferred with an INT 24H.

Absolute disk read.
Absolute disk write.

Terminate but stay resident. This vector is used by programs that are
to remain resident when COMMAND.COM regains control.

USER INTERRUPT VECTORS

MS-DOS allows you to use vectors 64 to 219. These vector’s values are initialized to
invoke an interrupt fault process in I0.SYS. If you use any of them, you must set its
value. Be sure to reset the vector to the initial value when you have completed your

task.

APC RESERVED INTERRUPT VECTORS

MS-DOS reserves the vectors 220 to 256 (absolute locations 370 to 3FF hex) as the
transfer address storage locations for the APC extended functions. The one interrupt
currently defined is vector 220 for extended function call entry.

— — o— s emran wmmnt — — — Gnt— a—

Please cut along this line.

Advanced . NEC
B Personal Computer NEC Information Systems, Inc.

USER’S COMMENTS FORM

Document: MS™-DOS System Reference Guide

Document No.: 819-000103-2001 Rev. 01

Please suggest improvements to this manual.

Please list any errors in this manual. Specify by page.

From:
Name
Title
Company
Address

Dealer Name

Date:

Seal or tape all edges for mailing-do not use staples.

FOLD HERE

NO POSTAGE
NECE SSARY
IF MAILED)

IN THE
UNITFD STATES

BUSINESS REPLY CARD

FIRST CLASS PERMIT NO. 386 LEXINGTON, MA

POSTAGE WILL BE PAID BY ADDRESSEE

NEC Information Systems, Inc.
Dept: Publications

1414 Mass. Ave.
Boxborough, MA 01719

FOLD HERE
Seal or tape all edges for mailing-do not use stapies.

