
Developer's Seminar

NeXT Developer's Seminar

Developer's Seminar

Agenda

· Welcome

· Object-Oriented Programming

· Object-Oriented Design

· Hands-On Lab

· Lunch

· The Interface Builder

· The Application Kit

· Hands-On Lab

· Question & Answer Session

Page 2 or 97

Developer's Seminar

Page 3 or 97

Goals

· Provide you with working knowledge and. hands­
on experience with the NeXT platform .

.. Introduce you to the strengths of the NeXT
development software environment.

· Provide an opportunity for the local NeXT
developers to meet and share ideas.

· Encourage further education through Developer
Training in California.

Developer's Seminar

Page 4 of 97

References

Object-Oriented Programming: An Evolutionary
Approach, Cox, Brad I., Addison-Wesley
Publishing, 1987.

NeXT Preliminary 1.0 System Reference Manual,
NeXT, Inc., 1990.

NeXT Software Development Course Materials,
NeXT, Inc., 1989.

Developer's Seminar

Object-Oriented Programming

Page 5 of 97

Developer's Seminar

Page 6 of 97

What is Object-Oriented Programming?

· A code packaging technique

It packages functionality so that it can be reused.

· Programs built around objects

O.bjects are a data structure and a group of
procedures bundled together.

· Three key features:

Encapsulation

Inheritance

Messaging

Developer's Seminar

Why is it important?

· Reduced development time .

· Reduced maintenance costs

· Package functionality so that it can be reused

Page 1 of 91

Developer's Seminar

Page 8 or 97

Definitions

· Object

Private data and a set of operations that can access
that data.

· Methods

The 'procedures' which perform the requested
operations. Methods are private to an object.

· Instance Variables

The data acted on by the methods. Instance
variables are private to an object.

Developer's Seminar

Page90r97

Definitions

· Encapsulation

Encapsulation provides a shell (object) which
contains the object's private data (instance
variables) and a set of functions (methods) it can
perform.

· Messages

An object can ask another object to perform one of
its methods (procedures) via a message.

Messages contain a reference to the object which is
to be called, the name of the method to be executed,
and any arguments, if required.

Developer's Seminar

Page 100f91

Definitions

· Class Definition

Th.e prototype for a kind of object. It declares the
instance variables and defines a set of methods that
all objects in that class can use.

e lasses are defined in two parts:

- a file that declares the interface to the new class
(H.h" extension).

- a file that actually defines the class and contains
the code that implements it (H.m" extension)

Class names begin with uppercase letters.

Developer's Seminar

Page II of 97

Definitions

· Class (Factory) Object

Knows how to build new objects belonging to the
class.

· Instances of the class

The individual occurrence of an object created by
the Factory Object. These are the objects that do the
work in your program.

Object names begin with lowercase letters.

· Selector

The name of the method in a message.

Developer's Seminar

Page 12 or91

Definitions

· Inheritance

Allows an object to inherit features from a broader
definition (superclass).

Object

...... -----I . .Resp()nder .. ·~--....

· .• ·.···.··.·:· .. :.· •.. · •. m •.. ·.·.·.·.:.··.·· .• ··.·.·· ..•.. : ••. : : ···.·.····.···.:::ll··· •• ·•• •. ·• .• •····•·· i · ... :' · ·.:.i : ··············,n· O"W" •.. :';;'/:::, ":: .. :'.: '" .. "

Developer's Seminar

Page 13 of 91

Definitions

· . Inheritance (continued)

Every class (except Object) has a superclass one
step nearer the root, and any class can be
superclass for any number of subclasses one step
farther from the root.

Each class inherits both instance variables and
methods from its superclass.

When a class object creates a new instance~ the new
object contains instance variables defined for its
superclass, its superclass' superclass, ... to the root
Object class.

Developer's Seminar

Page 14 of 97

....----------.<~--

Definitions

· Inheritance (continued)

When a class object creates a new instance, the new
object contains methods definedfor its superclass,
its superclass' superclass, ... to the root Object class.

Class objects inherit only methods from their
superclass because class objects do not have
instance variables.

A class may add additional instance variables and
methods as well as over-ride (re-define) methods
defined in its superclass."'

Developer's Seminar

Page 15 of 97

Definitions

· Dynamic Binding

A method and a receiving object are united when the
program is running, not before. In traditional
programming, the binding is done at compile time.

Dynamic binding allows an object to send another
object messages without knowing the class of the
receiver until runtime.

This also allow you to modify the user interface
without recompiling the application.

Developer's Seminar

Page 16or97

Definitions

· Self & Super

Self and Super refer to the object receiving a
message.

Self references the current instance.

Super references the parent of the current
instance. Used to invoke a method which has been
over-ridden in a subclass.

Developer's Seminar

Example

· A Class Hierarchy

animal

mammal

" ""

J/torse"\"""

....... :' :" "::"':":: .. - .: : : .. : .. :.

/~e{j~l~":t~ii

Page 11 of 91

Developer's Seminar

Page 18 of 97

Example

· Message Expression

[receiver message];

sends message to receiver. The name of the
message is the selector.

[myMatrix display];

tells the myMatrix object to perform its display
method (draw the matrix and its cells in a window).

[myMatrix moveTo:30.0 :50.0];

tells myMatrix to change its location within the
window to coordinates (30.0,50.0). The selector is
MoveTo: and the arguments are (30.0,50.0).

Developer's Seminar

Page 190r97

Example

· Function Call vs. Message

An object only has access to the methods that it can
perform. Each object sent a display message
could display itself in a unique way. This -is
called polymorphism.

A method has access to all the receiving object's
instance variables; they don't need to be passed as
arguments.

Developer's Seminar

Page 20 of 97

Example

· Creating the instance of a class (an object)

id myMatrix;

myMatrix = [Matrix new];

Tells the Matrix class (factory) object to create a
new Matrix instance and assign it to the
myMatrix variable.

Ev.ery class object has a method that allows it to
produce new objects.

Objects are of type ide

Developer's Seminar

Page 21 of91

Example

· Creating the instance of a class (an object)·

id myClass;

myClass = [Matrix class];

The class name can stand for the class object only
as a message receiver. Otherwise, it must ask the
class object to reveal its id by sending a class
message).

Matrix *anObject

anObject = [Matrix new];

The class name can also be used as a type for
. instances of the class.

Developer's Seminar

Page 22 or97

r----------=---------------~~

Example

· Inheriting Instance Variables

View *myView;

myView = [Matrix new];

myView is statically typed to be a View and has
been assigned a Matrix instance.

· Inheriting Methods

A new class defined in a program can use all of the
methods defined for all the classes above it in the
hierarchy.

This one of the major benefits of object-oriented
• programming.

Developer's Seminar

Example

· The Car Class

Methods Values of Instance Variables
6

whatMake: II Ford, Chevy, vw, Audi, Cadillac ...

whatModel: II Taurus, Jetta, Fleetwood, Sprint, ...

whatYear: II 1900, 1901, 1902, ... , 1990

numberOfDoors: II 2, 3, 4, 5, .. .

sizeEngine: II in cubic centimeters

Page 23 of 91

Developer's Seminar

Page 24 of97

Example

· The Car Class

Now let's send some messages to define myCar ...

id myCar;

myCar = [Car new];

[myCar setWhatMake:VW];

[myCar setWhatModel:Jetta];

[myCar setNumberOfDoors:4];

[myCar setSizeEngine:1800];

[myCar setWhatYear:1985];

Developer's Seminar

Page 25 of 91

Example

· The Car Class

.. . and learn something about yourCar ...

make = [yourCar whatMake];

model = [yourCar whatModel];

year = [yourCar whatYear];

doors = [yourCar numberOfDoors];

engine = [yourCar sizeEnqine];

Developer's Seminar

Page 26 of 97

· Definitions

encapsulation

class

inheritance

message

selector

dynamic binding .

object

method

instance variables

Summary

Developer's Seminar

Page 27 of 97

Summary

· Syntax

id -> the type of an object.

[receiver message] -> the way objects
communicate with each another.

The receiver can be a variable or expression that
evaluates to an object, a class name (indicating the
class object), self, or super (indicating an
alternative searchfor the method implementation).

Developer's Seminar

Page 2R of 91

Summary

· Syntax (continued)

#import -> imports a header file. Used instead of
#include because it won't include a heaf!er file
more than once.

H+" _> precedes declarations of class methods.

H_" _> preceded declarations of instance methods.

H:" _> arguments are declared after colons.

Developer's Seminar

Object-Oriented Design·

Page 29 or91

Developer's Seminar

Page 300£97

Object-Oriented Design

· An application is composed of a collection of
interacting objects

· To build an object-oriented program, you need to
answer 3 types of questions

What objects?

What do the objects need to do?

How do they interact?

· The process

Structure the application as a collection of objects.

Define each new class of object~

Connect the objects together.

Developer's Seminar

Page 31 of97

Object-Oriented Design

· When should you define a new class?

When it is easier to think about the problem as a
"thing" .

When there already is a class available to which you
need to add instance variables or methods to meet
your needs.

Something which has useful generic behavior, but
which you also are likely to want to customize for
specific situations.

Developer's Seminar

Page 32 or97

Object-Oriented Design

· When shouldn't you define a new class?

. When you have a problem which is hard to visualize
or describe as a "thing".

When you have a data structure which isn't typically
modified.

When a previously defined class will suit your needs
simply by setting the values of instance variables.

Developer's Seminar

Page 33 of 97

Object-Oriented Design

· Defining a new class

Find a class which already implements similar
funtionality and subclass it by:

adding new instance variables.

over-riding existing methods.

adding new methods.

Add new instance variables when:

an object needs additional variables in which to
store its state.

an object needs to store additional pointers to
other objects so it can then send them messages.

Developer's Seminar

Page 34 of 97

Object-Oriented Design

· Defining a new class (continued)

Over-ride an existing method when:

you want your object to respond differently than
its parent to the same message.

Add new methods when:

you want the object to respond to new messages.

you want other objects to be able to access or
set the new instance variables which may have
been added.

Developer's Seminar

Page 35 or97

Object-Oriented Design

· Messages

An object sends a message when:

it needs to access or set the instance variable of
another object.

it wants an object to perform some action.

its state has changed and it wants to notify
another object.

Developer's Seminar

Page 36 of 97

Object-Oriented Design

· Messages (continued)

An object typically can send messages to:

self.

super.

an instance variable which is also an object
(otherwise know as an outlet).

the object which sent it the message to which it
is responding, assuming the id of the sender
was passed as part of the message.

Developer's Seminar

Page 37 or97

Object-Oriented Design

· Messages (continued)

What message gets sent?

a message is usually specified by the
programmer at compile time.

however, it can be a message specified by an
instance variable which is defined to be a
reference to a message.

Developer's Seminar

Page 38 of 97

Object-Oriented Design

· Connections

Objects are typically connected via their instance
variables:

at runtime, the appropriate instance variable in
one object is set to point to another object.

these instance variables are subsequently used
when the object needs to send the other a
message.

objects may be connected to any number of
objects.

Developer's Seminar

Page 39 of 97

Object-Oriented Design

· Connections (continued)

The messages sent between connected objects are:

either predefined at compile time or,

contained in other instance variables.

Developer's Seminar

Page 40 of 91

Object-Oriented Design

· Connections (continued)

There are 3 types of connections:

the target and the message are specified at
compile time.

the target is contained in an instance variable,
but the messages it is sent are specified at
compile time.

both the target and the message are contained
in instance variables which may be modified at
any time at the request of another object.

Developer's Seminar

Page 41 or91

Object-Oriented· Design

.. At Runtime

Objects used in the program must be initialized:

either by sending a message to the Factory
object belonging to the object's class or,

by using the "archiving" mechanism to load in
a previously stored instance of the object.

· An object's instance variables are set as needed to
reflect the state of other characteristics of the
objects.

Developer's Seminar

Page 42 or 91

Object-Oriented Design

· At Runtime (continued)

Connections with other objects are established:

typically by setting the appropriate instance
variables.

· Additional messages are sent as the program
proceeds.

Developer's Seminar

Object-Oriented Design

· Structure of Typical NeXTStep Application

A8t~ication
~ect

I
Window

Objects

I
View

Objects

I
I I

Control View

Objects Objects

I I
Cell View
Objects Objects

I I I .. kit custom ~ ---- objects objects
.......

Page 43 of 91

Developer's Seminar

Hands-On Lab

Page44of97

Developer's Seminar

The Interface Builder

Page 45 or 97

Developer's Seminar

Page 46 of91

What is the Interface Builder?

· A tool for creating user interfaces

Allows you to create an interface using on-screen
graphics objects and test your interface.

· Provides support for the code beneath those
interfaces

The Interface Builder will actually generate stubs of
code for the interface and the connections between
objects.

Developer's Seminar

Page 47 of 97

Interface Builder

· Application Kit

A library of user-interface objects that you can
select from for your application.

Allows you to graphically build the user-interface
for your application.

AppKit objects include such items as buttons,
sliders, window, panels, switches, etc.

In general, your application will include a number
of AppKit objects and one or more subclasses of
Object (containing the logic of your application)
and View (drawing code unique to your application).

Developer's Seminar

Page 48 or 91

Interface Builder

· Changing instance variable values

Once an object is added to your application, IB
allows you to change the values of many instance
variables directly.

For example, changing the size of a button on the
screen changes the values of one of the Button
object's instance variables.

Instance variables for objects not easily changed
graphically can be changed using the Inspector
Window.

Developer's Seminar

Page 49 or97

.-------------------~~~--~-~~-~

Interface Builder

· Making Connections

Interface Builder lets you interconnect objects so
they can communicate with one another.

Connections are made through an objects outlets.

An outlet is an instance variable of type id that
allows an object to send messages to another object
in the application.

When your application begins execution, outlet
variables are automatically initialized to the ids of
the objects you specified within Interface Builder.

Developer's Seminar .

Page 500f91

Interface Builder

· The Interface File

The interface you develop is saved in an interface
builder file (".nib" extension).

The .nib file contains all of the class information
and all specifications for the AppKit objects in your
program.

Classes are created and objects are initialized by
the AppKit using information in this file.

Developer's Seminar

Page 51 of97

Interface Builder

· The Interface File (continued)

The .nih file also contains information about how
outlets should be initialized, about action messages
and their targets, sound and icon data, and a
reference to an owner object.

An application can have more than one .nib file, but
only one can be the main .nib file.

When your application is compiled, information
from the .nih file is copied into the Mach-O format
executable.

Developer's Seminar

Page 52 of91

Interface Builder

· The Project

Each application is part of a project.

The project directory contains all the files that are
part of the application.

Contains a projectfile ("called IB.proj") that
organizes all of the pieces of the application. (e.g.,
*.hfiles, *.mfiles, Makefile, ...)

Contains an interface file (".nib").

Updated every time you make a change to the
application.

Developer's Seminar

Page 53 of91

Interface Builder

· The Project (continued)

Interface Builder uses the project file to create the
files needed during compilation ...

Makefile -> created by the Interface Builder.

Main file -> contains the main () function.

An icon header file (" .iconheader" extension)
contains information about icons associated
with the application and its files.

Developer's Seminar

Interface Builder

· The Process

1. Create Interface

2. Create Project

3. Compile

4. Run

5. Revise if necessary

Page 54 of 97

Developer's Seminar

The Application Kit

Page 55 of 97

Developer's Seminar

Page 56of97

...--------------------------------------

Overview

· The AppKit

The NeXT interface is event-driven.

The Application Kit provides the main event loop
and automatically dispatches events to the
appropriate object.

The Application Kit provides a rich set of objects for
getting user input and a uniform way of interacting
with those objects.

Developer's Seminar

Page 51of91

Overview

· Events

Events are things like mouseUp, mouseDown,
mouseDragged, etc.

Events are dispatched as messages.

Usually, an object responds to the event, then
notifies another object that the event occurred.

Two types of messages get sent depending on the
object that receives the initial message (action and
notification) .

Developer's Seminar

Page 58 of 97

Overview

· The Process

1. Window Server sends mouse"keyboard and
machine events to the Application object.

2. Within the application, the AppKit dispatches
event messages to the appropriate object.

3. The object responds.

Developer's Seminar

Page 590f97

The AppKit

· The Process: a closer look

Window Server sends all events to the Application
object.

the Application object handles machine events
directly. (power-off, etc.)

if a window event, the Application object sends
a window event message to the appropriate
window. (close-window)

otherwise, sends an event message to the
appropriate window for dispatch.

Developer's Seminar

Page 60 of 97

The AppKit

· The Process: a closer look

The window dispatches mouse event messages to. the
appropriate view in the Window.

mouseDown: to deepest view underneath
mouse

mouse Up: or mouseDragged: to view
which initially received mo.useDown : .

mouseEntered: or mouseExited: to the
object which "owns" the appropriate tracking
rectangle.

keyboard and mouseMoved: event messages
are dispatched to the window's
"jirstResponder" .

Developer's Seminar .

Page 61 of97

The AppKit

· How objects respond

Do nothing but pass event message on to its
"nextResponder" .

by default, nextResponder is the object's .
supervlew.

this is the default behavior of views.

Perform object-specific action.

e.g., Text objects display characters
corresponding to keystrokes.

Developer's Seminar

Page 62 of 91

The AppKit

· How objects respond (continued)

Begin a modal loop

e.g., a Button object highlights on mouseDown
and enters a modal loop waiting for mouse Up.

Respond to the event and send a message to
another object notifying it of the event.

two notification schemes are used here: Target­
Action and Delegation-Notification.

1. Target-Action is used by Controls.

2. Delegation-Notification is used by Window,
Applications, and Text.

Develop'er's Seminar

Page 63 of 97

The AppKit

· Target-Action

The receiving object gets a message and handles the
event.

e.g., Button Object highlights and waitsfor
mouseUp.

e.g., Form Object allows the user to edit afield
until user hits return.

When handling is complete, the object notifies a
target object by invoking an action method owned
by the target

Action messages are always of the form:

[target messageName:sourceObjectld]

Developer's Seminar

Page 64 of 97

The AppKit

· Target-Action (continued)

If necessary, the target interrogates source objects
for additional information

use state to get state of button.

use stringValue to get the text in last
selected field of a form.

use floatValue to get the current value of a
slider.

Receiving objects translate event messages into
action messages.

Developer's Seminar

Page 65 or97

The AppKit

· Target-Action (continued)

These objects all send action messages to their
specified targets ...

Developer's Seminar

Page 66 of97

· Examples of Action Messages

Application

hide:

unhide:

terminate:

stop:

The AppKit

Developer's Seminar

Page 67 of97

The AppKit

· Examples of Action Messages (continued)

Button

performClick:

Control and Cell

takelntValueFrom:

takeStringValueFrom:

takeFloatValueFrom:

takeDoubleValueFrom:

Developer's Seminar

Page 68 of 97

The AppKit

· Examples of Action Messages (continued)

Text

cut:

copy:

paste:

clear:

View

printPSCode:

Developer's Seminar

Page 690r97

The AppKit

· Examples of Action Messages (continued).

Window

miniaturize:

deminiaturize:

orderFront:

orderBack:

orderOut:

performClose:

perfo~iniaturize:

p,erformResize:

printPSCode:

Developer's Seminar

Page 70 of 97

The AppKit

· Examples of Action Messages (continued)

You can invoke any of these methods by sending a
message to the appropriate object, passing the
sender's id as the single argument.

[mylnfoPanelorderFront:self];

You will often use these messages in conjunction
with Inteiface Builder.

Developer's Seminar

Page 71 of 97

The AppKit

· Examples of Action Messages (continued)

When a user drags a slider and changes its value, a
message changeSlider: might be sent to the
target object. The argument to the message will be
the id of the slider. (i.e., self)

The receiving target object will understand the
changeSlider: message because it is defined in
its class.

-changeSlider:sender

{

}

sliderValue = [sender floatValue];

return self;

Developer's Seminar

Page 72 of97

The AppKit

· Examples of Action Messages (continued)

The target object uses the sender argument to get
more information about the action (e.g., the value of
the slider).

Target-Action connections are set up so that when
the user select the actions, the appropriate message
will be sent to the target objects.

Developer's Seminar

Page 73 of97

The AppKit

· Delegation-N otitication

An AppKit object may send messages to another
object, called its delegate, notifying it that the
sender's state has either changed or is about to
change.

A delegate can choose to

ignore the notification.

do additional processing in response to· the
notification.

depending on the notifi~ation, block the change
that resulted in the sender sending the
notification.

Developer's Seminar

Page 74 of97

The AppKit

· Delegation-Notification (continued)

Delegation may be used to avoid subclassing
standard kit objects such as Application, Text, and
Window.

By implementing custom behavior in an object's
delegate, it is possible to utilize a standard kit
object, yet provide custom behavior in response
to events or changes in state.

Application, Text & Window all send pre-defined
notification messages for changes in state for
which custom behavior is likely to be desired.

Developer's Seminar

Page 75 or97

The AppKit

· Delegation-Notification (continued)

Delegation-notification is similar to target-action ...

an object can have only 1 delegate at a time.

a notification message is sent in response to
some event or change.

Delegation-notification is different from target­
action ...

notification messages are pre-defined by the
sender.

an object may send a different notification
message depending on what has occurred.

if no delegate is set, no notification is sent.

Developer's Seminar

Page 16 of 91

The AppKit

· Delegation-Notification (continued)

These objects have predefined notification messages
for changes in state for which custom behavior may
be desired ...

Developer's Seminar

Page 17 or97

· Examples of Notification Messages

Application

appDidlnit:

appDidAwake:

appDidBecomeActive:

appDidResignActive:

appDidHide:

appDidUnhide:

The AppKit

Developer's Seminar

Page 78 of 97

The AppKit

· Examples of Notification Messages (continued)

Window

windowWillClose:

windowWillResize:toSize:

windowDidResize:

windowDidMove:

windowDidExpose:

windowDidBecomeKey:

windowDidResignKey:

windowDidBecomeMain:

windowDidMiniaturize:

Developer's Seminar

Page 79 of97

The AppKit

· Examples of Notification Messages (continued)

Window (continued)

windowDidDeminiaturize:

Text

textWillChange:

textWillResize:

textWillEnd:

textDidResize:oldBounds:lnvalid:

textDidChange:

textDidEnd:endChar:

text:isEmpty:

Developer's Seminar

Page80of91

The AppKit

· Examples of Notification Messages (continued)

Notificaiion messages are only sent if ..

the delegate has been sent the following ...

[my Window setDelegate:myDelegateObject]

and the delegate has implemented a method of
the same name.

A delegate only needs to implement methods for
those notification messages to which it cares to
respond.

Developer's Seminar

Page 81 of97

The AppKit

· Examples of Notification Messages (continued)

Purpose: be notified when a user closes a window.

Redefine, or over-ride the
windowDidClose: method (without
subclassing window).

When the message is sent to the object, the
delegate's method (redefinition) is invoked in
place of the object's method.

Send a setDelegate: message to the
window with the delegate object's ide

When the user closes the window, the delegate's
method will be called.

Developer's Seminar

Page 82 of 97

The AppKit

· Outlets

An outlet is an interface object that the controlling
object needs to access.

A controlling object ...

. An interface object ...

A message... [myText setStringValue: "Hello"] ;

The result ...

------------------~ E1

Developer's Seminar

Page 83 of 97

The AppKit

· Outlets (continued)

To the controlling object, the outlet is simply an
instance variable 0/ type id (object pointer).

Initially, all instance variables (including ones that
are outlets) have invalid and uninitialized values.

All outlets are initialized when the ".nib" is
"loaded", i.e., when the specification/or the
program's interface is loaded into memory. This is
usually done in the "_main.m" file with a
loadNibSection: : message (defined in the
Application class).

Developer's Seminar

Page 84 of97

The AppKit

· Outlets (continued)

All outlets are initialized when the II .nib" file is
loaded.

This is done by sending initialization messages to
the controlling object.

if your interface has one Button and two
TextFields, then one instance of the Button class
and two instances of the TextField class are
created (by sending new messages to the
classes).

Developer's Seminar

Page 85 0[97

The AppKit

· Initializing Outlets

If outlet myText is to be initialized, the Interface
Builder automatically creates:

an instance variable myText for the new class
(type id).

an instance method called setMyText: to
initialize myText.

-setMyText:anObject

{

}

myText = anObject;

return self;

Developer's Seminar

Page R6or97

. The AppKit

· Initializing Outlets (continued)

The first letter of the outlet name is converted to
uppercase in the outlet initialization method.

e.g., myText becomes setMyText

Developer's Seminar

Page 87 of97

The AppKit

· Connecting to Outlets

After an interface object has been created, a
connection between the controlling object and the
newly created objects must be established.

The outlet initialization method establishes this
connection when the H .nib" is loaded.

id tmp;

tmp = [TextField new];

[controlObj setMyText:tmp];

The system will send the appropriate initialization
messages. There is NO need to invoke these methods
yourself.

Developer's Seminar

Page 88 of97

. The AppKit

· Outlet Initialization (continued)

Initialization code specific to an instance variable
that is an outlet should be placed in the outlet
initialization method.

-setMyText:anObject{

myText = anObject;

/* your initialization code */

[myText setFloatingPointFor.mat:No

left: 4 right: 2] ;

[myText setFloatValue:2·.56];

return self; }

Developer's Seminar

Page R9 of 97

The AppKit

· Outlet Initialization (continued)

The instance variable myText has no value (and
should not be used) prior to the execution of the
assignment statement (in the first line above).

Developer's Seminar

Pagc90or97

The AppKit

· Using Outlets

After the initialization of an outlet, the controlling .
object can use it by referring to the instance
variable.

[myText setFloatValue:2.45];

By doing so, messages are actually being sent to the
interface object placed on the application's window.

Developer's Seminar

Page 91 or97

The AppKit

· First Responder

An object that receives mouse and keyboard input
(typically a text object}.

Each window has its own first responder.

The AppKit provides methods for setting responder
and managing first responder status.

The first responder must have a Responder as
ancestor class.

If first responder does take action, the events are
passed up a "responder chain".

Developer's Seminar

Page 92 of 97

The AppKit

· First Responder (continued)

The object that is selected to be the focus of future
events for a Window is the first responder. Each
Window has its own first reponder, which it returns
when asked:

id handler;

handler = [my Window firstResponder:];

The first responder is typically a View object in the
Window's hierarchy, but it can be any Responder.

Developer's Seminar

Page 93 of 97

The AppKit

· SpeakerlListener

AppKit object classes that provide a way to send
messages between objects in different applications,
possibly on different machines.

Every application has default Listener and Speaker,
and their ports are automatically createdfor
communication.

Speakers and Listeners agree in advance to the set
of messages they can exchange.

You specify the set of messages.

msgwrap will generate the subclasses of
Listener and Speaker for you.

Developer's Seminar

Page 94 of97

The AppKit

· Speaker/Listener: Messaging Webster

Assume the Define button is connected to this
method, and the WordField variable refers to a
TextField.

-define: sender
{

int speakerResult, websterResult;
port_t websterPort;

1* look up the public port/or Webster's Listener on local host *1

websterPort = NXPortFromName ("Webster", NULL);

if (websterPort == PORT_NULL) {
£printf(stderr, "Port was not found.\n");

return self;
}

Developer's Seminar

•

Page 95 or97

The AppKit

SpeakerlListener: Messaging Webster

1* connect the port to the Application's Speaker *1

[[NXApp appSpeaker] setSendPort: websterPort];

1* Webster uses the openFile:ok: method as public interface */

}

speakerResult = [[NXApp appSpeaker]

openFile: [theWordField stringValue]

ok: &websterResult];

if (speakerResult !=O) {

frpintf(stderr, "message failed.\n");

}

return self;

Developer's Seminar

Hands-On Lab

Page 96 of97

Developer's Seminar

Summary of Objective-C Syntax

Page en of 91

PREliMINARY

Appendix A:
Summary of Objective-C Syntax
This appendix presents a fonnal grammar for the Objective-C extensions to the C
language. It adds to the grammar for ANSI standard C found in Appendix A of The C
Programming LAnguage (second edition, 1988) by Brian W. Kernighan and Dennis M.
Ritchie, published by Prentice Hall, and should be read in conjunction with that book.

This appendix follows the conventions used in The C Programming LAnguage, with two
exceptions:

• Literal symbols are shown in bold type.

• Brackets enclose optional elements and are in italic type. Literal brackets, like other
literal symbols, are nonitalic and bold.

The Objective-C extensions introduce some new symbols (such as class-interface), but
also make use of symbols (such as function-definition) that are explained in the standard
C grammar. The symbols mentioned but not explained here are as follows:

compound statement
constant
declaration
declaration-list
enum-specifier
expression
function-definition

identifier
parameter-type-list
string
struct-declaration-list
struct-or-union
typedef-name
type-name

Of these, identifier and string are undefmed tenninal symbols. Objective-C adds no
undefmed tenninal symbols of its own.

There are three entry points where ObJective-C modifies the rules defmed for standard C:

• External declarations
• Type specifiers
• Primary expressions

This appendix is therefore divided into these three parts.

Summary of Objective-C Syntax A-J

External Declarations

external-declaration:
/Unction-definition
declaration
class-interface
class-implementation
category-interface
category-implementation

class-inteiface:
@interface class-name I: superclass-name}

I instance-variables}
I inteiface-declaration-list}

@end

class-implementation:
@impiementation class-name I: superclass-name}

I instance-variables]
I implementation-definition-list}

@end

category-inteiface:
@interface class-name (category-name)

I interface-declaration-list}
@end

category-implementation:
@impiementation class-name (category-name)

[implementation-definition-list 1
@end

class-name:
identifier

superclass-name:
identifier

category-name:
identifier

instance-variables:
{ struct-declaration-list }
{ struct-declaration-list @public struct-declaration-list }

A-2 Appendix A: Summary of Objective-C Syntax PRWMINARY

PREliMINARY

interface-declaration-list:
declaration
method-declaration
interface-declaration-list declaration
interface-declaration-list method-declaration

method-declaration:
class-method-declaration
instance-method-declaration

class-method-declaration:
+ {method-type 1 method-selector;

instance-method-declaration:
- {method-type 1 method-selector;

implementation-definition-list:
function-definition
declaration
method-definition
implementation-definition-list junction-definition
implementation-definition-list declaration
implementation-definition-list method-definition

method-definition:
class-method-definition
instance-method-definition

class-method-definition:
+ {method-type 1 method-selector {declaration-list 1 compound-statement

instance-method-definition:
- {method-type 1 method-selector {declaration-list 1 compound-statement

method-selector:
unary-selector
keyword-selector [,-1
keyword-selector {, parameter-type-list 1

unary-selector:
selector

keyword-selector:
keyword-declarator
keyword-selector keyword-declarator

External Declarations A-3

keyword-declarator:
: [method-type 1 identifier
selector : [method-type 1 identifier

selector:
identifier

method-type:
(type-name)

Type Specifiers

type-specifier:
void
char
short
int
long
float
double
signed
unsigned
struct-or-union-specifier
enum-specifier
typedef-name
class-name

struct-or-union-specifier:
struct-or-union [identifier 1 { struct-declaration-list }
struct-or-union [identifier 1 { @defs (class-name) }
struct-or-union identifier

Primary Expressions

primary-expression:
identifier
constant
string
(expression)
self
message-expression
selector-expression
encode-expression

A4 Appendix A: Summary of Objective-C Syntax PREUMINARY

PREUMINARY

message-expression:
[receiver message-selector]

receiver:
expression
class-name
super

message-selector:
selector
keyword-argument-list

keyword-argument-list:
keyword-argument
keyword-argument-list keyword-argument

keyword-argument:
selector : expression
: expression

selector-expression:
@selector (selector-name)

selector-name:
selector
keyword-name-list

keyword-name-list:
keyword-name
keyword-name-list keyword-name

keyword-name:
selector:

encode-expression:
@encode (type-name)

Primary Expressions A-5

Introduction to Interface Builder

Introduction

Traditionally, a programmer's first task in a new environment has been to get some input,
like the words "Hello, World", to appear on an output device, like the screen or on paper.
This gives one a sense of the friendliness of the environment, the type of tools used, the
power of those tools and should ideally provide an enticement to continue using the
environment.

In using languages like C and Pascal this exercise typically produces five or ten line
programs. On the other hand, the complexity of a graphic user interface environment
presents a major barrier to doing anything interesting in five or ten lines of code.

Enter Interface Builder. Interface Builder is a tool for creating user interfaces that also
provides support for the programming code that underpins those interfaces. This exercise
will give you some friendly exposure to this tool.

Interface Builder

Launching Interface Builder: To start the Interface Builder application, either double
click its icon in the dock (it has a screwdriver above two screw heads) or select the
NextApps directory in the Workspace Manager's Browser, select Interface Builder and
double click on the icon in the icon well. The program's icon will highlight while it is
launching.

Examining the objects on the screen: Take a look at what you geL When Interface
Builder opens you will see two new objects on the screen.

• Interface Builder's Main Menu (labelled 18) is in the upper left comer of the screen.

• To the right there is a window called Palettes.

Creating a new application: Under the File menu choose New Application. Several
things happen.

• In the center of the screen is your new window, which is empty.

• Beside it is your menu.

There is also another window which looks like an icon view in the Workspace Manager's
Browser. This is the File window. This contains icons that represent the files that will
make up your new application.

Notice that the close box on this window indicates that the file has not been saved.

See if you can identify which files belong to the various screen objects. Are there some
objects in the FIle window that don't have a corresponding screen object'? Are there any
screen objects that don't have a corresponding file icon?

What happens when you click the close box of MyWindow? Can you find a way in the
File window to bring the screen object back in to view?

Creating a new directory and saving your work: You know by the partial X that your
interface file is not yet saved. Click on the File menu and choose Save.

You will be greeted with a Save panel, a mini-browser that shows the files on the disk.

Notice the Save panel comes up open to your home directory with a default fIlename of
Untltled.nib. The fIle extension for Interface Builder files is .nlb (which stands for
NeXT Interface Builder). This file will contain the objects that you specify for your
interface (objects like windows and menus).

You need to create a new directory for your interface file. You can do this as you save.
In the text field of the Save panel, type a new· directory name followed by a name for your
interface file:

Projectl/MyFile

Click OK You will be infonned (by the Bad Path panel) that the path does not exist and
asked if you want to create it. You do indeed. Click on Create to create the new
directory and save your file in it.

Note that the close box on the file window changes to reflect the fact that the file has been
saved and its title bar reflects the file name and path you've chosen. This indication can
be useful when you have multiple interface files open in Interface Builder.

11!~}j~ •• 'i~""'!l!!l1

Interface Builder requires that you keep all the files for each of your projects in
separate directories.

Creating a project file: Interface Builder also allows you to control the other files that
you use in a programming project (in addition to your interface file). Under the File
menu select Project ••• to create a project file for your applicatiQn. You will first be
greeted by the Inspector panel telling you that '~ere is no project file ... " and that you
should "Click OK to create one". Go ahead and do as you are told. This will put the
panel in the mode for inspecting project files.

Notice that the Project Inspector comes up indicating that the project has a file of the
type .nib-an interface file called MyFile.nlb.

Through this project management tool, Interface Builder keeps track of the various
components that you are using to create an application. Note that there is only one
project per directory.

Creating a new directory, saving your interface in it and then creating a new
project file are three essential steps to creating a new application in Interface
Builder.

You need to do this for each application before you create any other jiles-8o that
those files can be included in your application, tracud by Interface Builder and
kept updated. .

To review, there is an interface file, and its included in your project. This should be no
surprise-you explicitly created and saved the interface file. .

Exploring the difference between Test mode and Build mode: So far you have been in
Interface Builder's Build mode. On the File menu there is a choice called Test Interface.
Choose that item.

A lot will happen-all of Interface Builder's windows will hide and your new
application's windows will be left on the screen. Interface Builder's icon will change to
look like a big switch.

• Try moving and resizing the window.

• Try the Info... choice from your menu and examine the Info panel. .

• Note that the Hide command works, but to unhide, double click on the Interface
Builder's switch icon (as your program doesn't have an icon yeO.

In Test mode you get a simulation of how your application's interface will act
when someone uses it.

In Build mode you change the way your application's interface looks and what it
contains.

To return to Interface Builder's Build mode at any time, double click the switch icon or
click Quit on your application's menu.

Building the Interrace

Locate the Palettes window. It's on the upper right side of the screen.

Adding a place for your text: The white field with a gray bar along its left side is an
object that displays scrolling text. Drag it into your application's window. Your
application will use this to hold and display text.

D
Now that you have an instance of a scrolling text field in your application's window,
resize it by selecting it (clicking it), grabbing a handle (one of the little squares that
appeared around the object when you selected it) and dragging it to a size you prefer.
Note that it stays' within the boundaries of the enclosing window.

Testing the scrolling text: Now, try the Test mode once again. Click in the first line of
the text field. You should see a blinking insertion point. Try typing some text, like
"Hello, W orId".

• You should be able to select text with the mouse or with the Select All option of your
Edit menu.

• The selected text can be cut, copied and pasted.

• Note that anything cut or copied from this application can be pasted into any other
application that deals with text, and vice versa.

When in Test mode, this is how your application will appear to the person using it
Return to Build mode. Note that any entered text has disappeared.

Save your interface file again by choosing the Save command from the File menu.

As you can tell from the Test mode, the text object already knows a lot about basic text
handling. It can wrap text to a view, it can scroll and it can select text via user input. It
also supports text editing via cut, copy and paste. Let's extend the functionality of this
little application by adding a menu item to control font attributes.

Adding the Font Menu: Locate the Palettes window once again. Click on the far right
selector which stands for menus.

This will reveal a menu with some default menu cells. Drag the Font menu cell to your
application's menu.

Btrtt.W',.iJ

Place it just above Hide and release.

Check in the File window of your application. Were any new icons added as a result of
dragging the Font menu item into the interface?

Testing the Font Menu: Now go into Test mode once again and check the font
commands you just added. Note that the changes you make for any character in the
window are reflected throughout the window, not just in the selection, (just like the Edit
applications).

Leave the Test mode. Once more save your interface file.

Modifying the Interface

Inspecting the Inspector: Let's take a look at the Inspector panel while it's ouL This
panel will allow you to change and initialize many attributes of many objects. Just below
it's title bar is a pop-up list that will allow you to choose which mode you are in. The
modes are:

• Attributes---controls colors, styles of objects; their general on screen appearance, ranges
and basic state of interface objects.

• Connections-allows you to connect an object to other objects in two ways:

• Autosizing---controls the behavior of objects that are contained in other objects that
resize (e.g. a text field inside a window that is being resized by the user).

• Miscellaneous-controls size and placement of certain interface objects as well as their
names.

• Class-allows a programmer to describe the outlets and actions of a new class of object,
one that might inherit behavior from another class (like a Window object) and add new
behavior (like closeQuickt).

• Project-allows the management and automatic update of the various files that are the
component parts of an application and of its preferred state.

Note that the Inspector's context is the currently selected object. You change that
context by selecting a new objecl-either clicking it's icon in the Files window or
clicking the object on the screen.

Personalize the Info panel: Let's touch on the Info panel. Double click its icon in the
Files window to bring it on screen so you can edit it.

• By selecting the objects it contains you can modify them directly-or use the Inspector
to change their values or appearance.

• To select text, double click the text you want to change.

• Use Interface Builder's Font menu to modify your text's attributes.

Give yourself credit as the author of this program in your Info panel by selecting an
existing text field (by double clicking) and replacing the resulting selection with your
name. Make any other changes you think appropriate. Experiment & be creative.

Use test mode to observe your changes: Try the test mode once again.

• See how your content and style changes are reflected in the test version of your
program.

• See if the on screen look is what you want.

• Test the interface for function.

• Try resizing the window.

What happened to the field when the window was resized? If this behavior is not what
you'd prefer, can you find a way (using the Inspector) to change how autosizing works?

Exercise the interface, modify it and test it again until you are satisfied.

The cycle of exercise, modify and test is one that you will often use in perfecting a
user interface.

Save all your work using the Save command in the Files menu of Interface Builder.

Creating a Custom Object

What if you have additional functionality requirements for your application? Now that
you have a great user interface, you need to build in your own objects that actually
perform whatever task it is that you are asking of the NeXT.

Keep in mind that whenever custom objects are used the application must be compiled for
testing the functionality of the custom object. User interface objects will perform their
functions, but the custom object will not yet know how to respond.

We are going to add a simple object to our application to find the square root of a number
and display it in a text window on the screen. Drag a new panel from the palette of user
interface objects and arrange it similar to the following image:

Creating a new class and object: FIrSt, we must create a new class of object. Open
the Classes window by double clicking on the classes suitcase in the Interface Builder
Files window.

This brings up the class browser that displays all of the default classes that are available,
and it also allows us to create new classes. Scroll around through the classes. Note that
whenever a triangle appears to the left of a class name that it has been subclassed to form
new classes. What is under the Responder Class? .

Now lets create our own object class. We will make it a very general class, a subclass of
Object. To do this, first select the item that we wish to subclass, namely Object, by
clicking on that entry in the class browser. (It is the far left entry). Next,. select the
Subclass item from the pull down menu on the class window.

This will create a new class called Subclass 1 and your class window should look similar
to the following:

N ow that we have a new class, we need to create an instance of this class, in other words
an object that our application can use. This is referred to as Instantiating an object. Do
this by selecting the Instantiate item from the Operations pull down menu.

An icon for our new object appears in the Files window and it is named
SubclasslInstance.

We now need to define the instance variables and methods for our new object; within
Interface Builder these are called outlets and actions, respectively. These are defined by
selecting the Class item in the Inspector Window.

Click the button below the scrolling windows on the Class Inspector to toggle whether
you will be entering outlets or actions.

Select outlets first and enter the word originalValue in the text field in the Class
Inspector then type RETURN or click the OK button. Enter another outlet named
squareRoot in the same fashion.

Click the button to toggle to actions. Enter the word calcRoot and press RETURN. You
have now defined you new Class!

Connecting your Custom Object: Connecting our custom object is very similar
to connecting other user interface type objects. To connect other objects to action
methods within a custom object, just draw a line from the object Bending the action to
the custom objects icon in the Files window. To connect outlets of the custom object to
other objects, draw a line from the custom object icon to the object receiving the
message.

In this case, control-click on the slider and draw a line to the SubcIasslInstance object
icon, then select the calcRoot: method in the Connections Inspector.

Now control-click on the SubclasslInstance object icon and draw a line to the text
window at the top of your panel and specify a connection to the originalValue outlet in
the Connections Inspector •. Repeat the process for connecting the squareRoot outlet of
SubclasslInstance to the lower text window in the panel.

Generating code for your class: Now that the class is defined, we need to write a line or
two of code to implement its functionality. Fortunately, the Interface Builder will do
most of the work for us and automatically generate the framework of the C code needed.

To generate the code, select the SubClassl class in the Class Window and then choose
the Unparse item from the Class Window's pull down menu. A panel will ask you if
you want to generate SubClassl.h arid SubClassl.m. Click OK and the files will be
created for you. A second panel will appear asking if you want to add this Class to the
project file, once again click OK.

You can now go in and add your custom code. In the Project Inspector window choose
[.hm](class) files under the Type column; this will bring up and entry Subclassl.[hm].
By double clicking on this entry, you will automatically. start the Edit application and
open the 2 files Subclassl.h and Subclassl.m.

Editing the Interface and Implementation Files: The final operation we need
to perfonn is to actually write the code that will implement our custom object Notice
that all of the skeleton code of the object has been generated for us by Interface Builder.
Now this is programming! Using Edit add the following line to the interface file
Subclass l.h: (You may add the Bold text items below using cut and paste)

r Generated by Interface Builder *1

#import <objclObject.h>
#importcappkitlappkilh>

@interface Subclass1 :Object
{

}

id
id

- setOriginaIValue:anObject;
- setSquareRoot:anObject;
- calcRoot:sender;

@end

And now add the following lines to Subclass 1.m:

r Generated by Interface Builder *1

#import "Subclass1.h"

originaiValue;
square Root;

J/ Include the Unix math library for the square root • sqrt • function
#Import cmath.h>

@implementation Subclass1

- setOriginalValue:anObject
{

originalValue = anObject;
return self;

- setSquareRoot:anObject
{

square Root = anObject;
return self;

- calcRoot:sender
{

/I This line places a floating point number taken from the slider (sender)
/I and places It Into the orlglnalValue text window
[origlnalValue setFloatValue:[sender floatValuel]j

1/ This line places the square root ot a floating point number taken from the slider
II (sender) and places It into the squareRoot text window
[square Root setFloatValue:(sqrt([sender tlcatValue))));
return self;

@end

Save both of these files with Edit. You've just completed creating your own custom
object! Now move on to the compilation step to check you work.

Compiling the Program

So, you have an interface and some underlying code. Let's compile it.

From the Files menu choose Make.

Using the Make utility: This command will cause a command line interface application
called Shell to run. A command from the make utility (a system utility program which
controls compiling programs) will be typed for you in the Shell window, once the current
directory is changed to point to the directory that contains your new interface and project
Make will use the interface file you created, the main() routine Interface Builder wrote for
you automatically and the other information you gave the Project Inspector to create an
executable version of the program you have been working on.

Testing the compiled version: Once the make process has completed and there are no
errors (there shouldn't be) test the compiled version of your application. Launch it from
the Workspace Manager's Browser. The newly created application will be called My File
.debug. It will display a generic application icon.

Once more, give the program a thorough testing.

Congratulations on creating your first program. Pat yourself on the back.

Lab 1

Goals: To develop familiarity with general use of the Interface Builder, including use
of Buttons, sounds, images, Inspectors, and Connections.

Getting Started

Make sure your current directory is ImelLabl.

Launch the interface builder. This can be found in lNextAppslInterface­
Builder or in the application dock appearing as a screwdriver and plate.

Select the File entry in the m menu (top left of screen).
Select New Application. This will create an empty window (My Window)
and a default main menu (Untitled).

In the directory browser, select Imellmages.
Select JFK.tiff, and drag this icon into the Icons briefcase appearing in the
object panel of m (lower left of screen). This makes JFK.tiff available to m
for use.

In the directory browser, select Ime/Sounds.
Select JFK.snd and drag this icon into the Sounds briefcase in the object pan­
el of m. This make JFK.snd available to m for use.

Populate your window:

1. Drag a series of radio buttons, vertical sliders, switches, and buttons into
My Window. Experiment with font size, alternate-drag duplication, control­
drag adjustment, sizing My Window, and sizing buttons.

2. Drag a single button from the Controls Palette (top right of screen) to
somewhere near the center of My Window. Now, open the Icons briefcase (by
double clicking) and drag JFK.tifT on top of this button and release (the button
will resize). Reposition the button to the center of My Window and close the
Icons listing (click on the close square). .

3. Open the Sounds briefcase. Drag JFK.snd on top of JFK's image (the
sound will playas verification). Close the Sounds listing.

4. Select Windows->lnspector from m main menu. Now click on JFK but­
ton. In the inspector select attributes from the pull down menu at top.
Change the type of button to On/Oft' (be sure to click O.K.).

5. Build a labeled vertical slider on the left of JFK. Place two titles and change
their value to 100 (at top) and 0 (at bottom).

6. Place two text areas (not fields), at the bottom. Enlarge the font and label
them 'C' and 'F'.

7. Place a button between them, enlarge its font (notice how it resizes) and
change its text from 'button' to 'Convert!'.

Make a connection and Test it.

1. Control-drag a line from the vertical slider on the left to the text item la­
beled 'C' and release. In the Connection Inspector on the right, select the ac­
tion - 'takeFloatValueFrom'. Be sure to mouse on connect. This is telling m
you want to display the current value of the slider in the Text Area.

2. Test your work by selecting File -> Test Interface or by entering the key­
board shortcut - command-r.

3. Quit from the test. and save your work by command-s or FiIe->Save.

4. Quit out of Interface Builder

Lab2

Goals: Use Qass Browser and Project Inspector. Create custom object. Unparse the
m info to create modifiable 'Objective-C' source files (.h and .m). Add appli­
cation level 'C' code to existing interface.

Getting Started:

Make sure your current directory is ImelLab2.

Begin by double clicking on Converter.nib to launch m and load the interface
work already prepared for you.

Now, create a Project folder to keep track of our work. Do this by selecting
File->Project from the m main menu, and respond create when prompted.

Create a Custom Object:

1. In the object directory Oower left of screen), double click on '.classes' brief­
case, this will launch the Class Browser. In the Class Browser scroll left to
find the entry 'Object'. Click on 'Object' (it should be the only entry high­
lighted).

2. Pull down Operations to select 'Subclass'. This will create a new Class
Object named 'SubClassl'. Rename this to 'Converter' by double clicking
on the name under the icon well.

3. Now pull down Operations again and select 'Instantiate'. This creates an
instance of the class Converter (name converterlnstance) which will be used
by m to link up actions and outlets.

4. Double click on the '.h' icon to bring up a Class Inspector (on the right).
Make sure that 'Outlet' is selected in the toggle bar. Type in two outlet names

'inputC' and 'outputF'. Now toggle the bar to select Action.

Add in action named 'convert' (notice m automatically adds the ':').

Make Connections:

1. Control-drag a link from converterlnstance (in object listing in lower left)
to the two text areas and select the appropriate outlet (inputC for 'C' and out­
putF for 'F'). Make sure you connect them after selecting the outlet.

2. Now connect the 'Convert!' button to the converterInstance and select the
action 'convert' (remember to click connect).

3. Connect the 'C' text field to the button 'Convert!' and select the action
'performClick'. This will allow you to enter a number directly into the 'C'
field and invoke conversion with a carriage return.

Generate and modify source files:

1. From the Class Browser operations select Unparse. Reply yes to both
queries. This will generate two files, Converter.h and Converter.m which we
will modify to do the conversion.

2. In the Project inspector, select TYPe '.[hm]'. Now double click on Con­
verter.[hm] to launch Edit.

3. In Converter.h we need to add '#import <appkit/appkit.h> just after the
existing #import line. Do this and save the :file via command-s.

4. In Converter.m we need to 'flesh out' the convert method as it only returns
self now. The code need to do this is provided in ImelLab2/formula. Simply
edit this file (by double clicking) and then mark, copy, and paste the appropri­
ate lines of code to CoDverter.m then save this file.

5. Finally hide Edit with command-h and return to m by mousing on any of

the m windows.
Make and test the app:

1. Select File->Make from the m main menu, and reply 'Yes' to save the in­
terface. This will launch a shell and run make on the makeftle created by m.

2. When this is done, hide m via command-h to clean up the screen, and from
the directory browser double click on 'converter.debug' to launch your appli­
cation. This is done because command-r in m will only test the interface, not
any of your custom code.

3. Quit from the app, relaunch m and quit from it.

Lab3

Goals: Menu modification, Multiple windows, Parse in existing code, and Intro to
PostScript drawing.

Getting Started:

Current directory must be ImeILab3

Launch m by double-clicking on m.proj. This will launch using a pre-de­
fmed project file provided for you.

Create second window and modify main menu:

1. In Palettes listing (upper right of screen), select palette #2 (middle one).
This palette provides two objects for your use: a window and a panel.
Drag the window out anywhere on the screen and release. This will create a
second window for your app.

2. Now select palette #3 (far right). This palette provides cells to be used to
customize your application's menus.
Drag the window cell to your converter menu. Drop it anywhere you like in
the menu (you can move it later if you wish).
Change the title to "Window Two".
Delete New, Save, Save As ... , Save To ... , and Revert to Saved from the sub­
menu (delete by selecting a cell or a group of cells and pressing the delete
key).

3. Control drag from the Open cell to the title bar of your second window and
select action 'makeKeyAndOrderFront'. Connect it. This will allow you to
hide the second window and reopen it.

4. While the second window is selected (mouse anywhere in it), use the In·
spector to modify its attributes. Change it to not be Visible at Launch Time
and change its title to Window Two.

5. Select palette #1 (controls) and drag in a CustomView to the second win­
dow. Size this to fill half the window and leave room at the bottom for a slider

6. Drag in a horizontal slider and size to fit.

7. Drag in a scrollable text area, position to the right of your custom view and
size to fill that right half.

8. Change the maximum value of the slider to 360. Do this by selecting the
slider, then using the attributes inspector to set the maximum value.

Create a Custom View - PieView:

1. Launch the Class Browser.
Find the View class (it is a subclass of Responder).
Subclass the View class and name it 'Pie View'.

2. Parse in the PieView files (provided for you) by selecting from the class
browser,Operations->Parse.

3. Select the CustomView in your second window. Make it a PieView class
by using the CustomView Inspector (on right).

4. Connect the slider to the Pie View (control-drag) and select the action
named 'getSlider'.

5. Add PieView.m to the Project inspector under type '.[hm]'. This tells m
that you need to include these files somewhere in the makefile.

Make your app and Test:

Use the same procedure as in Lab2. (File->make, reply yes to save, hide m,
wait for shell to fmish, and test via converter.debug).

Quit your app, quit m, and hide the shell.

Lab4

Goals: Add font control, Add command key, gain familiarity with IPC and Speakerl
Listener model, and Message Webster to derme words.

Getting Started:

In fmelLab4, launch m via m.proj.

More Menu work:

1. Select menu palette.
Drag Font cell to converter main menu and position where you like.

2. Drag 'SubMenu' to converter main menu, rename it to "Request".
Rename 'Item' to 'Define in Webster'.

3. Double click just to the right of 'Webster' in the menu cell. This will open
a small box, type in the character '='. This has just defmed a keyboard com­
mand equivalent.

Message Webster:

1. Parse in Converter.m via the Class Browser. Reply yes to replace query.
Double click on the '.h' icon to see the new action.

2.Connect the menu sub-item 'Define in Webster' to the converterInstance.
This will invoke the messaging method for Webster.

Misc. Clean up (optional):

1. Select My Window and select Attributes from the Inspector. Change the
name to Converter.

2. Add a Quit panel.
Select palette #2 and drag a panel to your application area.
Drop two Buttons in this panel.
Rename one Button to yes, the other to no. Add a Title which would say some­
thing like Really Quit? Select the quit cell in converter main menu.
Disconnect this item from File's Owner action terminate, and connect it to

the Panel you just added with the action makeKeyAndOrderFront.
Now connect the Yes button to File's Owner (in the object listing at lower left)
and connect the No button to
the Panel object (in the object listing) with the action order Out.

3. Select the InfoPanel object from the Object listing. Change whatever you
like.

lplJl.naecle \tpn-i-k;l\"
[MB pUuM:le, fro MF, fro LL pimuralbtm gable, fro dim. of Lpiluta wing,

battlement]
(14c)
1: an upright arcblteetural member generaD.y ending in a small spire ane

esp.1n Gothic cODsuuction to give weight to a buttress or angle pier
2: a structure or formation NUesting a phmade; specif: a 1081 peak
3: the blghestpolnt of development or achievement: AClID!

2pbmacle w -eled; -cUna \-k(a-)JhJ\
(14c)
1: to surmount with a pbmacle
2: to raise or rear on a piDnade

