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Introduction 

This manual describes the concepts that you should understand when creating applications 
that incorporate sound, music, signal processing, or that access the DSP. It's part of a 
collection of manuals called the NeXT'fM Developer's Library; the illustration on the first 
page of this manual shows the complete set of manuals in this Library. 

A version ofthis manual is stored on-line in the NeXT Digital Library (which is described 
in the user's manual NeXT Applications). The Digital Library also contains Release Notes, 
which provide last-minute information about the latest release of the software. 

Conventions 

Syntax Notation 

Where this manual shows the syntax of a function, command, or other programming 
element, the use of bold, italic, square brackets, and ellipsis has special significance, as 
described here. 

Bold denotes words or characters that are to be taken literally (typed as they appear). Italic 
ut;ilotes wuids that represent 50illCthilig else or can be vuried. 

print expression 

means that you follow the word print with an expression. 

Square brackets [] mean that the enclosed syntax is optional, except when they're bold [], 
in which case they're to be taken literally. The exceptions are few and will be clear from 
the context. For example, 

pointer [filename] 

means that you type a pointer with or without a file name after it, but 

[receiver message] 

means that you specify a receiver and a message enclosed in square brackets. 
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Ellipsis ( ... ) indicates that the previous syntax element may be repeated. For example: 

Syntax 

pointer .. , 

pointer [, pointer] ... 

pointer [filename ... J 

pointer [,filename] ... 

Notes and Warnings 

Allows 

One or more pointers 

One or more pointers separated by commas 

A pointer optionally followed by one or more file names 

A pointer optionally followed by a comma and one or more 
file names separated by commas 

Note: Paragraphs like this contain incidental information that may be of interest to curious 
readers but can safely be skipped. 

Warning: Paragraphs like this are extremely important to read. 
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Chapter 1 
System Overview 

As illustrated in Figure 1-1, there are four levels of software between a NeXT application 
and the hardware that executes it: 

• 
• 
• 
• 

The NeXT Interface Builder™ 
Objective-C language software "kits" 
The NeXT Window Server and specialized C libraries 
The Mach operating system 

Figure 1-1. System Overview 

Interface Builder is a powerful tool that lets you graphically design your application's user 
interface. It also makes it easy for you to establish connections between user-interface 
objects and your own code (for example, the code to execute when a button on the screen 
is clicked). 
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NeXT application programs are written in the Objective-C language, an extension to C that 
adds object-oriented concepts to the language. The software kits define a number of 
classes, or object templates, that you can use in your own applications. The software kits 
currently provided by NeXT are: 

An Application Kit that every application uses to implement the NeXT window-based 
user interface 

Sound Kir for adding sounds to your application 

Music Kit™ for music composition, synthesis, and performance 

The NeXT Window Server is a low-level background process used by the Application Kit 
to manage windows and to send user events, such as mouse and keyboard actions, back to 
an application. Included in the Window Server is a Display PostScript® interpreter that's 
used for all drawing of text and graphics on the screen or printed page. The Display 
PostScript system was jointly developed by NeXT and Adobe Systems Incorporated as an 
enhancement of Adobe's PostScript page description language. 

The Sound and Music Kits use the DSP56001 digital signal processor (the DSP) as a sound 
synthesizer. Objects in these kits communicate with the DSP by calling functions in the 
DSP system library. In addition to establishing and managing a channel of communication 
between your application and the DSP, the functions in the DSP system library also provide 
diagnostic capabilities and data conversion routines. 

The functions in the array processing library use the DSP as an array processor, allowing 
your application to process multidimensional data with great speed and efficiency. Any 
application can include and use the array processing library. 

Mach is a multitasking operating system developed at Carnegie Mellon University. It acts 
as an interface between the upper levels of software and the three Motorola microprocessors 
provided with NeXT computers: the MC68040 central processor, the MC68882 
floating-point coprocessor, and the DSP56001 digital signal processor. 

The rest of this chapter further describes the Sound and Music Kits, and the array 
processing library. Interface Builder, the Application Kit, the Window Server, and Mach 
are described in the companion NeXTstep® Reference and NeXT Operating System 
Software manuals. 
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Sound and Music Overview 

NeXT computers provide a powerful system for creating and manipulating sound and 
music. The software for this system is divided into two kits: the Sound Kit and the Music 
Kit. The kit that you need depends on the demands of your application: 

• The Sound Kit lets you incorporate prerecorded sound effects into your application and 
provides easy access to the microphone input so you can record your own sounds. The 
objects in the Sound Kit let you examine and manipulate sound data with microscopic 
precision. 

The Music Kit provides tools for composing, storing, and performing music. It lets you 
communicate with external synthesizers as well as create your own software 
instruments. Like the Sound Kit, the Music Kit provides objects that create and 
manipulate sounds with exquisite detail; but more important, the Music Kit helps you 
organize and arrange groups of sounds so you can design a performance. 

The Sound Kit 

A small number of system beep-type sound recordings, stored in files on the disk (called 
sound files), are provided by NeXT. Through the Sound Kit, you can easily access these 
files and incorporate the sounds into your application. It's also extremely easy to record 
new sounds into a NeXT computer. With a single message to the Sound Kit's Sound object, 
you can simply record your own sound effect through the microphone on the front of the 
MegaPixel Display (you can also plug a microphone into the jack on the back of the 
display). Sound playback is just as simple: Another message and the sound is played on 
the internal speaker and sent to the stereo output jacks at the back of the display. 

When you record a sound using the Sound object, a series of audio "snapshots" or samples 
is created. By storing sound as samples, you can analyze and manipulate your sound data 
with an almost unlimited degree of precision. The SoundView class lets you see your 
sounds by displaying the samples in a window. 

While the Sound Kit is designed primarily for use on sampled data, you can also use it to 
send instructions to the DSP. The speed of the DSP makes it an ideal sound synthesizer and, 
in general, DSP instructions take up much less space than sampled data. The Sound object 
manages the details of playing sounds for you, so you needn't be aware of whether a 
particular Sound contains samples or DSP instructions. 
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The Music Kit 

The Music Kit provides a number of ways to compose and perform music. By attaching an 
external synthesizer keyboard to a serial port, you can playa NeXT computer as a musical 
instrument. Alternatively, you can compose music to be played by the computer by creating 
music data in a text editor or by creating an algorithm that generates it automatically. These 
approaches can be combined in performance. For instance, a musician can use an external 
keyboard to trigger precomposed events, allowing the computer to create sounds and 
gestures that are impossible on a traditional instrument, but at moments specified by the 
performer. 

The Music Kit helps you construct applications that create, organize, process, and render 
music data. The Objective-C language classes provided by the Kit fall into three categories: 

• Data representation 
• Synthesis 
• Performance 

Data Representation 

The data representation classes, illustrated in Figure 1-2, are used to encapsulate and 
organize music data. 

Figure 1-2. Music Data Representation Classes 

Notes, Parts, and Scores form the core of music representation. Of paramount importance 
is the Note class: A Note object represents a musical note as a list of attributes, such as 
frequency, amplitude, and duration. Music applications use Note objects as a common 
currency: They're the basic package of musical information upon which the other objects 
act. Part and Score objects, as their names suggest, provide a means for organizing Note 
objects. The other data classes, Envelope, WaveTable (and its progeny), and 
TuningSystem, are designed to help define Note object attributes: 

• Envelopes represent time-varying functions that can be used to continuously control the 
values of a Note's attributes (such as its amplitude and frequency). 

1-6 Chapter 1: System Overview 



• A WaveTable contains timbral information that's used during music synthesis on the 
DSP. 

A TuningSystem is a mapping of pitch names to specific frequencies, allowing an easy 
representation of alternate tunings. 

The Music Kit defines an ASCII file format called score file that represents the music data 
objects as editable text in files on a disk. A.few C-like programming constructs, such as 
variables and arithmetic operators, can be used in a scorefile to help create and fine-tune 
music data. You can also store music data as a Standard MIDI File. 

Synthesis 

Synthesizing music is potentially the most technically involved of the three Music Kit 
areas. At the easiest level, you can use and manipulate the software instruments, called 
SynthPatches, that are provided by the Music Kit. A SynthPatch subclass corresponds, 
roughly, to a voice preset on a MIDI synthesizer. However, the Music Kit SynthPatches are 
generally less confined than most MIDI presets: An enormously wide variety of sounds can 
be produced by the SynthPatches supplied by the Music Kit simply by varying the attributes 
of the Notes that they receive. 

At a lower lever, you can design your own SynthPatch subclasses by interconnecting DSP 
synthesis modules that the Music Kit provides as objects called UnitGenerators. Finally, at 
the lowest level, you can design UnitGenerators yourself by writing DSP56000 assembly 
language macros and using the dspwrap tool to turn the macros into subclasses of 
UnitGenerator. This last level falls below the boundary of the Music Kit and is described 
in Chapter 7, "Programming the DSP." The principal Music Kit synthesis classes are shown 
in Figure 1-3. 

Object 

SynthPatch 

UnitGenerator 

Figure 1-3. Synthesis Classes 

The SynthInstrument class isn't strictly part of the synthesis machinery. However, it 
provides an easy way to allocate and control SynthPatch objects. 
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An additional class, not shown in the illustration above, is Orchestra. An Orchestra 
represents an entire DSP; the standard configuration includes a single DSP, thus most 
applications will create but a single Orchestra object. It's through an Orchestra that all 
synthesis resources, such as UnitGenerators and SynthPatches, are allocated. 

Performance 

During a Music Kit performance, Note objects are acquired, scheduled, and rendered (or 
realized). These functions are embodied by objects of the Performer, Conductor, and 
Instrument classes: 

• Performer objects acquire Notes. 

• Through messages scheduled with a Conductor object, a Performer forwards each Note 
it acquires to one or more Instruments. The Conductor thus controls the tempo of the 
performance. 

An Instrument receives Notes that are sent to it by a Performer and realizes them in 
some manner, typically by synthesizing them on the DSP or by sending them to an 
external MIDI instrument. Other types of realization include writing Notes to a 
scorefile or adding them to a Part. 

Performer and Instrument are abstract classes; each subclass specifies a particular means of 
Note acquisition or realization. The Music Kit provides a number of Performer and 
Instrument subclasses. 

Figure 1-4 shows the primary classes that are used to design a Music Kit performance. 

Performer 

Figure 1-4. Performance Classes 
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In addition to the Performer, Conductor, and Instrument classes described above, five other 
classes are included in Figure 1-4: NoteSender, NoteReceiver, NoteFilter, 
SynthInstrument, and Midi. 

NoteSender and NoteReceiver objects are part of the implementation of Performer and 
Instrument: They're the ports through which Notes are sent by Performers and received 
by Instruments. 

A NoteFilter is a Performer/Instrument hybrid; while it inherits from Instrument, it also 
implements Performer protocol. Thus, it can receive Notes like an Instrument and then 
send them on to other Instruments, like a Performer. NoteFilters are interposed 
between Performers and Instruments and act as Note-processing modules. 

SynthInstrument is a subclass ofInstrument that causes Notes to be realized on the 
DSP. 

A Midi object represents an external MIDI synthesizer that's attached to a NeXT 
computer through one of the serial ports. It can receive as well as send MIDI signals 
from and to the synthesizer it represents. While it inherits neither from Performer nor 
Instrument, it implements their protocols and contains NoteSenders and 
NoteReceivers. 

A number of other Performer and Instrument subclasses are provided by the Music Kit. 
During a Music Kit performance, performance objects can be dynamically connected and 
reconnected. This allows you to mix and match Note sources with any means of realization. 
For example, the MIDI signals sent from an external MIDI synthesizer are automatically 
converted to Note objects by a Midi object. The Notes can then be sent to a 
SynthInstrument for realization on the DSP, or written to a scorefile by a Scorefile Writer 
Instrument. 
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Components of Sound and Music 

Figure 1-5 shows the components for creating, playing, and storing music and sound with 
the hardware and software of a NeXT computer. 

microphone in speaker and line out MIDI 

Figure 1-5. Music and Sound Components 

1-10 Chapter 1,' System Overview 



Chapter 2 
Sound 

2-3 Design Philosophy 

2-4 Sound Hardware 
2-4 Voice-Quality Input 
2-5 High-Quality Sound Output 

2-5 Basic Sound Concepts 
2-5 What is Sound? 
2-6 Frequency 
2-7 Amplitude 
2-7 How the Computer Represents Sound 
2-8 Sampling Rate 
2-8 Quantization 
2-8 Storing Sampled Data 
2-9 SNDSoundStruct: How a NeXT Computer Represents Sound 
2-9 SNDSoundStruct Fields 
2-9 magic 
2-9 dataLocation 
2-10 dataSize, dataFormat, samplingRate, and channelCount 
2-10 info 
2-10 Format Codes 
2-12 Fragmented Sound Data 
2-12 Sound C Functions 

2-12 The Sound Kit 
2-13 The Sound Class 
2-13 Locating and Storing Sounds 
2-13 Soundfiles 
2-15 The Mach-O Sound Segment 
2-15 The Pasteboard 
2-16 The Named Sound List 
2-17 Recording and Playing 
2-18 Action Methods 
2-18 The Delegate 
2-19 Editing 
2-19 Delete 
2-20 Copy and Paste 
2-20 Replace 
2-21 Utility Methods 
2-21 Other Editing Methods 
2-21 Fragmentation 

2-1 



2-22 The SoundView Class 
2-22 Creating and Displaying a SoundView 
2-23 SoundView Dimensions 
2-23 Display Modes 
2-24 The SoundView Selection 

2-2 



Chapter 2 
Sound 

This chapter describes the hardware and software provided by NeXT computers for 
recording, manipulating, playing back, and displaying sounds. The chapter is divided into 
three parts: 

• The NeXT sound hardware 
A brief tutorial on sound and how it's represented on a NeXT computer 

• The Sound Kit 

Design Philosophy 

NeXT computers provide a sound recording and playback system with powerful tools to aid 
in analyzing and manipulating acoustical data. Designed to satisfy the needs of the research 
scientist, this system is nevertheless extremely easy to use. 

At the heart of the NeXT sound facilities are the Objective-C language classes provided by 
the Sound Kit. The Sound Kit manages the details of operating system communication, 
data access, and data buffering that are necessary for recording and playing sounds. 

A number of system beep-type sounds are provided in files on the disk. You can easily 
incorporate these sounds into your application; the playback of an effect can be made to 
correspond to user actions or application events, such as the completion of a background 
process. 

The sound software gives you full access to the data that makes up a sound. With some 
simple programming you can manipulate this data. For instance, you can alter the pitch of 
a sound or affect its playback speed. A sound can be played backwards, looped end to end, 
or chopped into pieces and reassembled in a different order. You can digitally splice and 
mix together any number of different sounds: A dog bark can be spliced into the middle of 
a doorbell; a clarinet tone can turn into a snore. 

The digital hardware for sound recording and playback is ideal for research fields such as 
speech recognition, speech synthesis, and data compression. To ensure high-fidelity sound 
playback, NeXT computers use the same digital playback hardware found in commercial 
compact disc (CD) players. 
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Sound Hardware 

Before you can process a sound, you must first get it into your NeXT computer. A 
microphone is provided on the front of the display, as well as a microphone jack on the back 
of the display that accepts a high-impedance microphone signal. The Sound Kit recording 
methods, described later in this chapter, automatically record and store sounds introduced 
through the microphone or the microphone jack. 

For sound playback, the computer contains a speaker built into the display as well as stereo 
headphone and stereo line-out jacks. The keyboard volume and mute keys affect the 
built-in speaker and the headphone jack; the line-out jacks are provided to allow you to 
connect your NeXT computer to your own stereo for greater playback fidelity. 

NeXT computers provide equipment to convert analog signals to digital and digital signals 
to analog. The following sections describe the NeXT digital sound hardware. 

Voice-Quality Input 

The microphone and microphone jack are connected to an analog-to-digital converter 
(ADC), known as the CODEC ("COder-DECoder"). The CODEC converter uses an 8-bit 
mu-law encoded quantization and a sampling rate of 8012.8 Hz. This is generally 
considered to be fast and accurate enough for telephone-quality speech input. The samples 
from this converter can be stored on the disk or they can be forwarded to the DAC, 
described below, to reproduce the sound. 

The CODEC's mu-law encoding allows a 12-bit dynamic range to be stored in eight bits. 
In other words, an 8-bit sound with mu-law encoding will yield the same amplitude 
resolution as an unencoded 12-bit sound. With this compression algorithm, the CODEC 
saves storage space. For example, one second of 8-bit mu-law audio takes 8012 bytes of 
storage. By comparison, one second of CD-quality sound occupies 88200 bytes, or about 
11 times more storage space. 

While 8-bit mu-law encoding provides only moderate fidelity, the CODEC is sufficient and 
useful in a number of sound application areas. For instance, all the elements necessary to 
implement voice mail-sending spoken mail messages through the network-are present. 
In such an application, compact data storage is more desirable than high fidelity. 

The CODEC is available as a standard UNIX® device. It does have a special constraint in 
that once conversion starts, a new byte will come from the device every 124.8 
microseconds. The program reading the CODEC must be prompt in absorbing this data or 
it will be lost. The operating system does some buffering of CODEC input data, but it's by 
no means unlimited. In most applications, the Sound Kit management of input data is 
sufficient. 
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High-Quality Sound Output 

The high-quality stereo digital-to-analog converter (DAC) operates at 44100 samples per 
second (in each channel) with a 16-bit quantization, the same as in CD players. 

A 1 kHz maximum-amplitude sinusoid played through the DAC will generate a 2-volt RMS 
signal at the audio output. The converter has full de-glitching and anti-aliasing filters built 
in, so no external hardware is necessary for basic operation. 

Like the CODEC, the DAC is available as a standard UNIX device. It's somewhat different 
from most devices in that it requires a great deal of data (176400 bytes per second at the 
high sampling rate). Any interruption in sending this data causes an interruption in the 
sound that will result in a pop in the audio output. Utilities are provided that ensure 
continuous data flow when sending sound data directly from the disk to the DAC. 

Basic Sound Concepts 

You don't need to know anything about sound or acoustics to use the NeXT sound facilities 
for simple recording and playback. However, to access and manipulate sound data 
intelligently, you should be familiar with a few basic terms and concepts. This section 
presents a brief tutorial on the basic concepts of sound and its digital representation, 
followed by an in-depth examination of SNDSoundStruct, the structure that's used by the 
NeXT sound software to represent sound. 

What is Sound? 

Sound is a physical phenomenon produced by the vibration of matter. The matter can be 
almost anything: a violin string or a block of wood, for example. As the matter vibrates, 
pressure variations are created in the air surrounding it. This alternation of high and low 
pressure is propagated through the air in a wave-like motion. When the wave reaches our 
ears, we hear a sound. 

Figure 2-1 graphs the oscillation of a pressure wave over time. 
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Figure 2-10 Air Pressure Wave 

The pattern of the pressure oscillation is called a waveform. Notice that the waveform in 
Figure 2-1 repeats the same shape at regular intervals; the gray area shows one complete 
shape. This portion of the waveform is called a period. A waveform with a clearly defined 
period occurring at regular intervals is called a periodic waveform. 

Since they occur naturally, sound waveforms are never as perfectly smooth nor as uniformly 
periodic as the waveform shown in Figure 2-1. However, sounds that display a 
recognizable periodicity tend to be more musical than those that are nonperiodic. Here are 
some sources of periodic and nonperiodic sounds: 

Periodic 

Musical instruments other than unpitched percussion 
Vowel sounds 
Bird songs 
Whistling wind 

Nonperiodic 

Unpitched percussion instruments 
Consonants, such as "t," "f," and "s" 
Coughs and sneezes 
Rushing water 

Frequency 

The frequency of a sound-the number of times the pressure rises and falls, or oscillates, in 
a second-is measured in hertz (Hz). A frequency of 100 Hz means 100 oscillations per 
second. A convenient abbreviation, kHz for kilohertz, is used to indicate thousands of 
oscillations per second: 1 kHz equals 1000 Hz. 

The frequency range of normal human hearing extends from around 20 Hz up to about 
20kHz. 
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The frequency axis is logarithmic, not linear: To traverse the audio range from low to high 
by equal-sounding steps, each successive frequency increment must be greater than the last. 
For example, the frequency difference between the lowest note on a piano and the note an 
octave above it is about 27 Hz. Compare this to the piano's top octave, where the frequency 
difference is over 2000 Hz. Yet, subjectively, the two intervals sound the same. 

Amplitude 

A sound also has an amplitude, a property subjectively heard as loudness. The amplitude 
of a sound is the measure of the displacement of air pressure from its mean, or quiescent 
state. The greater the amplitude, the louder the sound. 

How the Computer Represents Sound 

The smooth, continuous curve of a sound waveform isn't directly represented in a 
computer. A computer measures the amplitude of the waveform at regular time intervals to 
produce a series of numbers. Each of these measurements is called a sample. Figure 2-2 
illustrates one period of a digitally sampled waveform. 
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Figure 2-2. Sampled Waveform 
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Each vertical bar in Figure 2-2 represents a single sample. The height of a bar indicates the 
value of that sample. 

The mechanism that converts an audio signal into digital samples is called an 
analog-to-digital converter, or ADC. To convert a digital signal back to analog, you need 
a digital-to-analog converter, or DAC (pronounced "dack"). 
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Sampling Rate 

The rate at which a waveform is sampled is called the sampling rate. Like frequencies, 
sampling rates are measured in hertz. The CD standard sampling rate of 44100 Hz means 
that the waveform is sampled 44100 times per second. This may seem a bit excessive, 
considering that we can't hear frequencies above 20 kHz; however, the highest frequency 
that a digitally sampled signal can represent is equal to half the sampling rate. So a 
sampling rate of 44100 Hz can only represent frequencies up to 22050 Hz, a boundary 
much closer to that of human hearing. 

Quantization 

Just as a waveform is sampled at discrete times, the value ofthe sample is also discrete. The 
quantization of a sample value depends on the number of bits used in measuring the height 
of the waveform. An 8-bit quantization yields 256 possible values; 16-bit CD-quality 
quantization results in over 65000 values. As an extreme example, Figure 2-3 shows the 
waveform used in the previous example sampled with a 3-bit quantization. This results in 
only eight possible values: .75, .5, .25,0, -.25, -.5, -.75, and -1. 
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Figure 2-3. Three-Bit Quantization 
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As you can see, the shape of the waveform becomes less discernible with a coarser 
quantization. The coarser the quantization, the "buzzier" the sound. 

Storing Sampled Data 

An increased sampling rate and refined quantization improves the fidelity of a digitally 
sampled waveform; however, the sound will also take up more storage space. Five seconds 
of sound sampled at 44.1 kHz with a 16-bit quantization uses more than 400,000 bytes of 
storage-a minute will consume more than five megabytes. A number of data compression 
schemes have been devised to decrease storage while sacrificing some fidelity. 
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SNDSoundStruct: How a NeXT Computer Represents Sound 

The NeXT sound software defines the SNDSoundStruct structure to represent sound. This 
structure defines the soundfile and Mach-O sound segment formats and the sound 
pasteboard type. It's also used to describe sounds in Interface Builder. In addition, each 
instance of the Sound Kit's Sound class encapsulates a SNDSoundStruct and provides 
methods to access and modify its attributes. 

Basic sound operations, such as playing, recording, and cut-and-paste editing, are most 
easily performed by a Sound object. In many cases, the Sound Kit obviates the need for 
in-depth understanding of the SNDSoundStruct architecture. For example, if you simply 
want to incorporate sound effects into an application, or to provide a simple graphic sound 
editor (such as the one in the Mail application), you needn't be aware of the details of the 
SNDSoundStruct. However, if you want to closely examine or manipulate sound data you 
should be familiar with this structure. 

The SNDSoundStruct contains a header, information that describes the attributes of a 
sound, followed by the data (usually samples) that represents the sound. The structure is 
defined (in sound/soundstruct.h) as: 

typedef struct { 

int magic 
int dataLocation; 
int dataSize; 
int dataFormat; 
int samplingRate; 
int channelCount; 
char info[4]; 

SNDSoundStruct; 

SNDSoundStruct Fields 

magic 

/* 
/* 
/* 
/* 
/* 
/* 
/* 

magic number SND MAGIC */ 
offset or pointer to the data */ 

number of bytes of data */ 
the data format code */ 
the sampling rate */ 
the number of channels */ 
optional text information */ 

magic is a magic number that's used to identify the structure as a SNDSoundStruct. Keep 
in mind that the structure also defines the soundfile and Mach-O sound segment formats, so 
the magic number is also used to identify these entities as containing a sound. 

dataLocation 

It was mentioned above that the SNDSoundStruct contains a header followed by sound 
data. In reality, the structure only contains the header; the data itself is external to, although 
usually contiguous with, the structure. (Nonetheless, it's often useful to speak of the 
SNDSoundStruct as the header and the data.) dataLocation is used to point to the data. 
Usually, this value is an offset (in bytes) from the beginning ofthe SNDSoundStruct to the 
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first byte of sound data. The data, in this case, immediately follows the structure, so 
dataLocation can also be thought of as the size ofthe structure's header. The other use of 
dataLocation, as an address that locates data that isn't contiguous with the structure, is 
described in "Format Codes," below. 

dataSize, dataFormat, samplingRate, and channelCount 

These fields describe the sound data. 

dataSize is its size in bytes (not including the size of the SNDSoundStruct). 

dataFormat is a code that identifies the type of sound. For sampled sounds, this is the 
quantization format. However, the data can also be instructions for synthesizing a sound on 
the DSP. The codes are listed and explained in "Format Codes," below. 

samplingRate is the sampling rate (if the data is samples). Three sampling rates, 
represented as integer constants, are supported by the hardware: 

Constant 

SND_RATE_CODEC 
SND_RATE_LOW 
SND_RATE_HIGH 

Sampling Rate (Hz) 

8012.821 (CODEC input) 
22050.0 (low sampling rate output) 
44100.0 (high sampling rate output) 

channel Count is the number of channels of sampled sound. 

info 

info is a NULL-terminated string that you can supply to provide a textual description of the 
sound. The size of the info field is set when the structure is created and thereafter can't be 
enlarged. It's at least four bytes long (even if it's unused). 

Format Codes 

A sound's format is represented as a positive 32-bit integer. NeXT reserves the integers 0 
through 255; you can define your own format and represent it with an integer greater than 
255. Most of the formats defined by NeXT describe the amplitude quantization of sampled 
sound data: 
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Code 

SND_FORMAT_MULAW _8 
SND_FORMAT _LINEAR_8 
SND _FORMAT _LINEAR_I 6 
SND_FORMAT_EMPHASIZED 
SND_FORMAT_COMPRESSED 
SND _FORMAT_COMPRESSED_EMPHASIZED 
SND _FORMAT _LINEAR_24 
SND _FORMAT_LINEAR_32 
SND _FORMAT_FLOAT 
SND _FORMAT_DOUBLE 
SND_FORMAT_DSP _DATA_8 
SND_FORMAT_DSP _DATA_I 6 
SND _FORMAT_DSP _DATA_24 
SND _FORMAT _DSP _DATA_32 
SND _FORMAT _DSP _CORE 
SND _FORMAT _DSP _COMMANDS 
SND_FORMAT_DISPLAY 
SND _FORMAT_INDIRECT 
SND _FORMAT_UNSPECIFIED 

Format 

8-bit mu-Iaw samples 
8-bit linear samples 
16-bit linear samples 
16-bit linear with emphasis 
16-bit linear with compression 
A combination of the two above 
24-bit linear samples 
32-bit linear samples 
floating-point samples 
double-precision float samples 
8-bit fixed-point samples 
16-bit fixed-point samples 
24-bit fixed-point samples 
32-bit fixed-point samples 
DSP program 
Music Kit DSP commands 
non-audio display data 
fragmented sampled data 
unspecified format 

All but the last five formats identify different sizes and types of sampled data. The others 
deserve special note: 

SND _FORMAT _DSP _CORE format contains data that represents a loadable DSP core 
program. Sounds in this format are required by the SNDBootDSPO and 
SNDRunDSPO functions. You create a SND_FORMAT_DSP _CORE sound by 
reading a DSP load file (extension ".lod") with the SNDReadDSPfileO function. 

SND_FORMAT_DSP _COMMANDS is used to distinguish sounds that contain DSP 
commands created by the Music Kit. Sounds in this format can only be created through 
the Music Kit's Orchestra class, but can be played back through the 
SNDStartPlayingO function. 

• SND_FORMAT_DISPLAY format is used by the Sound Kit's SoundView class. Such 
sounds can't be played. 

• SND_FORMAT_INDIRECT indicates data that has become fragmented, as described 
in a separate section, below. 

• SND_FORMAT_UNSPECIFIED is used for unrecognized formats. 
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Fragmented Sound Data 

Sound data is usually stored in a contiguous block of memory. However, when sampled 
sound data is edited (such that a portion of the sound is deleted or a portion inserted), the 
data may become discontiguous, or fragmented. Each fragment of data is given its own 
SNDSoundStruct header; thus, each fragment becomes a separate SNDSoundStruct 
structure. The addresses of these new structures are collected into a contiguous, 
NULL-terminated block; the dataLocation field of the original SNDSoundStruct is set to 
the address of this block, while the original format, sampling rate, and channel count are 
copied into the new SNDSoundStructs. 

Fragmentation serves one purpose: It avoids the high cost of moving data when the sound 
is edited. Playback of a fragmented sound is transparent-you never need to know whether 
the sound is fragmented before playing it. However, playback of a heavily fragmented 
sound is less efficient than that of a contiguous sound. The SNDCompactSamplesO C 
function can be used to compact fragmented sound data. 

Sampled sound data is naturally unfragmented. A sound that's freshly recorded or retrieved 
from a soundfile, the Mach-O segment, or the pasteboard won't be fragmented. Keep in 
mind that only sampled data can become fragmented. 

Sound C Functions 

A number of C functions are provided that let you record, manipulate, and play sounds. 
These C functions operate on SNDSoundStructs and demand a familiarity with the 
structure. It's expected that most sound operations will be performed through the Sound 
Kit, where knowledge of the SNDSoundStruct isn't necessary. Nonetheless, the C 
functions are provided for generality and to allow sound manipulation without the Sound 
Kit. The functions are fully described in Reference. 

The Sound Kit 

The NeXT Sound Kit lets you access the sound hardware with a minimum of effort. 
Recording and playback of sound are particularly easy; the software manages data 
buffering, communication with the UNIX devices, synchronization with the operating 
system, and other such necessities. It's designed to accommodate both casual use of sound 
effects as well as detailed examination and manipulation of sound data. 

The Sound Kit consists of three classes: Sound, SoundView, and SoundMeter. 
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The Sound Class 

The Sound class provides a number of methods that let you access, modify, and perform 
sound data. The methods fall into four categories: 

• Locating and storing sounds 
• Recording and playback 
• Editing 
• Sound data manipulation 

While a Sound object uses the SNDSoundStruct structure to represent its sound, you only 
need to be familiar with this structure if you're directly manipulating sound data. 

Locating and Storing Sounds 

Each Sound object represents a single sound. The Sound class provides four ways to install 
a sound in a Sound object. You can: 

• Record a sound using the CODEC microphone input. 
• Read sound data from a soundfile or Mach-O sound segment. 
• Retrieve a sound from the pasteboard. 

Sound recording (and playback) is described in the next section. Described here are the 
methods that let you read sounds from a soundfile or Mach-O segment and retrieve them 
from the pasteboard. As a shortcut to finding sounds, the Sound class provides a global 
naming mechanism that lets you identify and locate sounds by name. 

Also described here are methods that let you store your sound by writing it to a soundfile 
or placing it on the pasteboard. 

Soundfiles 

Soundfiles are files on a disk that contain sound data. By convention, soundfile names are 
given a" .snd" extension. To read a soundfile into a Sound object, simply create the object 
and send it the readSoundfile: message: 

#import <sound/sound.h>; /* you must import this file */ 

id aSound = [[Sound alloc] init]; /* create a Sound object */ 

int = [aSound readSoundfile:"KneeSqueak.snd"]; /* read a file */ 
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The data in the named sound-file is read into the Sound object. The given file name is a 
complete UNIX pathname and must include the extension; in the example, the soundfile is 
searched for in the current working directory. Like many of the Sound methods, 
readSoundtile: returns an error code; the complete list of errors codes is given in the 
description of the SNDSoundErrorO C function in Reference. Success is indicated by the 
code SND_ERR_NONE. 

These two operations, initializing a Sound object and reading a soundfile, are combined in 
the initFromSoundfile: method: 

id aSound = [[Sound alloe] initFromSoundfile:"KneeSqueak.snd"]; 

The method returns nil if the soundfile isn't found or if it can't be read. You can read a new 
soundfile into an existing Sound object at any time; the object's old sound is discarded. 

NeXT provides a number of short sound effects (useful as system beeps) that are stored in 
the directory INextLibrary/Sounds. These are: 

Basso.snd 
Bonk.snd 
Frog.snd 
Funk.snd 
Pop.snd 
SystemBeep.snd 
Tink.snd 

You can audition a soundfile by running the sndplay program from a Terminal or Shell 
window. For example: 

sndplay /NextLibrary/Sounds/Frog.snd 

Writing a soundfile from the data in a sound object is done by invoking the writeSoundfile: 
method: 

[mySound writeSoundfile:"FleaSigh.snd"]; 

Even if the Sound object contains fragmented data, the data in the soundfile will be 
compact. However, the Sound object's data will remain fragmented. 
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The Mach-O Sound Segment 

Reading a sound from the Mach-O sound segment is much like reading a soundfile: Like 
soundfiles, Mach-O sounds have a ".snd" extension. To read a Mach-O sound, you invoke 
the initFromMachO: method: 

id mySound = [[Sound alloc] initFromMachO:"SonicBoom.snd"]; 

The Mach-O sound segment of your application is searched for the named sound. If it isn't 
found, the method returns nil. 

You can install a sound (from a soundfile) into the Mach-O segment by supplying the 
-segcreate option when loading your application. For example: 

cc ... -segcreate SND SonicBoom.snd SonicBoom.snd 

_ SND is the name of the Mach-O sound segment. The first instance of SonicBoom.snd 
names the section of the Mach-O segment into which the soundfile is loaded. This is 
followed by the name ofthe soundfile (which must already exist). If you add a soundfile to 
your application through the Projects window in Interface Builder, the sound will 
automatically be included in the make script. Compiling a soundfile into your application 
lets you transport the application without regard for the original location of the file in the 
file system. 

The Pasteboard 

Placing a Sound object on the pasteboard lets you copy its data between running 
applications. To place a Sound on the pasteboard, invoke the writeToPasteboard method: 

[mySound writeToPasteboard]; 

The object's data is compacted (if it's fragmented) and copied. The copy is then placed on 
the pasteboard. 

To read data from the pasteboard into a Sound, invoke the initFromPasteboard: method: 

id mySound = [[Sound alloc] initFromPasteboard]; 

The sound data currently on the pasteboard is copied into the receiver of the message. Since 
the pasteboard can contain only one sound at a time, the method doesn't require an 
argument to further identify the sound. If there isn't a sound on the pasteboard, 
initFromPasteboard returns nil. 
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The Named Sound List 

The Sound class maintains an application-wide list of named Sound objects called the 
named Sound list. The addName:Sound: class method lets you name a Sound object and 
add it to the named Sound list: 

/* Add a Sound to the named Sound list. */ 

id namedSound = [Sound addName:"PopTop" sound:mySound]; 

/* Check for failure. */ 

if (namedSound == nil) 

The names in the named Sound list are unique; if you try to add a Sound by a name that's 
already in use, the effort is denied and nil is returned. 

You can also name a Sound and place it on the named Sound list by sending setName: to 
the object: 

id namedSound = [mySound setName:"RedRover"]; 

setName: can be used to change the name of a Sound that's already on the named Sound 
list. 

The name method retrieves a Sound object's name, whether given in a setName: message 
or through the addName:sound: method. 

Named Sounds are visible to your entire application. To retrieve a named Sound and load 
a copy of its data into a new Sound object, invoke the findSoundFor: method: 

id newRedButton = [Sound findSoundFor:"RedButton"]; 

IffindSoundFor: fails to find the Sound in the named Sound list, it gives its argument (the 
Sound name) a" .snd" suffix and looks for a named section in the Mach-O sound segment. 
If it's not found in the Mach-O segment, a soundfile (again, with the ".snd" extension) is 
searched for in these directories (in order): 

1. -!Library/Sounds/ 
2. !LocalLibrary/Sounds/ 
3. !NextLibrary/Sounds/ 

('" represents the user's home directory.) 

A Sound found through findSoundFor: is automatically added to the named Sound list. 

To remove a named Sound from the named Sound list, invoke removeSoundForName:, 
passing the name of the object that you want to remove. Removing a named Sound neither 
frees the Sound nor changes the object's notion of its name (which it stores as an instance 
variable). 
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Identifying and locating Sounds through the named Sound list is generally the most 
efficient way to access sound data. The data in a named Sound is shared by all the objects 
that retrieve it. 

Recording and Playing 

To record a sound into a Sound object, simply create the object and send it the record 
message: 

id mySound = [[Sound alloc] init]; 

int errorCode = [mySound record]; 

Currently, the record method always records from the CODEC microphone input. The 
method returns immediately while the recording is performed by a background thread. 

The value returned by record indicates the success or failure of the attempt to begin 
recording; SND_ERR_NONE indicates success. 

The recording continues until the Sound object receives the stop message or until the Sound 
object can accommodate no more data. By default, the receiver of the record message is 
always set to accommodate ten minutes of 8 kHz mu-Iaw sound (the type of sound data sent 
from the CODEC). You can set the size of the Sound object, prior to recording, to specify 
a different recording length. This is done through the 
setDataSize:dataFormat:samplingRate:channeICount:infoSize: method. 

To playa sound, send the play message to the Sound object: 

int errorCode = [mySound play]; 

Like recording, playback is performed by a background thread and the play method returns 
an error code. Playback continues until the entire sound is played or until the Sound object 
that initiated the playback receives the stop message. 

A single Sound object can only perform one recording or playback operation at a time, thus 
the function of the stop method is never ambiguous: If the Sound is playing, stop stops the 
playback; if it's recording, it stops the recording. 

You can temporarily suspend a playback or recording by sending the pause message to a 
Sound object. Like stop, the pause message halts whatever activity the Sound is currently 
engaged in; however, unlike stop, the Sound doesn't forget where it was. This allows the 
resume message to cause the Sound to continue its activity from the place at which it was 
paused. 

The record, play, pause, resume, and stop methods (and the analogous action methods 
described in the next section) should only be used if you have a running Application object. 
To create a-command-line program (similar to sndrecord or sndplay), you can use methods 
to create Sound objects and read sound data, but you should use the C functions 
SNDStartRecordingO, SNDStartPlayingO, and SNDStopO to perform the Sound. 
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Action Methods 

The Sound class methods record:, play:, pause:, resume:, and stop: are designed to be 
used as part of the target/action mechanism described in the NeXTstep Concepts manual. 
Briefly, this mechanism lets you assign a selected message (the action) and an object id (the 
target) to a Control object such that when the user acts on the Control, the action message 
is sent to the target object. In the following example, the three methods are assigned as 
action messages to three different Control objects-in this case, Buttons. The same Sound 
object is assigned as the Buttons' target: 

/* Create a Sound object ... */ 

id mySound = [[Sound alloc] init]; 

/* and three Buttons. */ 

id recordButton = [[Button alloc] init], 

playButton [[Button alloc] init], 

stopButton = [[Button alloc] init]; 

/* Set the action messages. */ 

[recordButton setAction:@selector(record:)]; 
[playButton setAction:@selector(play:)]; 

[stopButton setAction:@selector(stop:)]; 

/* Set the targets. */ 

[recordButton setTarget:mySound]; 

[playButton setTarget:mySound]; 

[stopButton setTarget:mySound]; 

In response to the user's clicking the different Buttons, the Sound object starts recording, 
starts playing, or stops one of these operations. 

The Delegate 

A Sound can have a delegate object. A Sound's delegate receives, asynchronously, the 
following messages as the Sound records or plays: 

• willPlay: is sent just before the Sound begins playing. 
• didPlay: is sent when the Sound finishes playing. 
• willRecord: is sent just before recording. 
• didRecord: is sent after recording. 
• hadError: is sent if playback or recording generates an error. 

To set a Sound's delegate object, invoke the setDelegate: method: 

[mySound setDelegate:SoundDelegate]; 

A message is sent to the delegate only if the delegate implements the method that the 
message invokes. 

2-18 Chapter 2: Sound 



Editing 

The Sound class defines methods that support cut, copy, and paste operations for sampled 
sound data: 

• copySamples:at:count: replaces the Sound's data with a copy of a portion of the data 
in its first argument, which must also be a Sound object. 

insertSamples:at: inserts a copy of the first argument's sound data into the receiving 
Sound object. 

• deleteSamplesAt:count: deletes a portion of the Sound's data. 

These methods all return SNDSoundErrorO type error codes (recall that 
SND_ERROR_NONE indicates success). 

Note: The operations described here are also implemented in a more convenient form in 
the SoundView class; for example, replacing a portion of a Sound object with a portion of 
another Sound object requires all three methods listed above. By operating on a 
user-defined selection and using the pasteboard, the SoundView implements this operation 
in a single paste: method. The SoundView methods are less general than those in Sound, 
but if you want to include a simple graphic sound editor in your application, you should use 
the Sound View methods rather than these. 

Delete 

Deleting a portion of a Sound's data is direct; you simply invoke deleteSamplesAt:count:. 
For example: 

/* Delete the beginning of mySound. */ 

int eCode = [mySound deleteSamplesAt:O count:l000]; 

The first 1000 samples are deleted from the receiver of the message. The first argument 
specifies the beginning of the deletion in samples from the beginning of the data (counting 
from sample 0); the second argument is the number of samples to delete. 
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Copy and Paste 

Copying a portion of one Sound and pasting it into another-or into itself, for that matter­
requires the use of both copySamples:at:count and insertSamples:at:. In the following 
example, the beginning of my Sound is repeated: 

/* Create a stutter at the beginning of mySound. */ 

id tmpSound [[Sound alloc] init]; 

int errorCode = [tmpSound copySamples:mySound at:O count:lOOO]; 

if (errorCode == SND_ERROR_NONEl 

errorCode = [mySound insertSamples:tmpSound at:O]; 

[tmpSound free]; 

First, the data in tmpSound is completely replaced by a copy of the first 1000 samples in 
mySound. Note that the copySamples:at:count method doesn't remove any data from its 
first argument, it simply copies the specified range of samples from the first argument into 
the receiver. Next, tmpSound is prepended to mySound, creating a repetition of the first 
1000 samples in mySound. The insertSamples: method inserts a copy of the argument 
into the receiver. Thus, the argument can be freed after inserting. 

The two Sound objects involved in the insertSamples:at: method (the receiver and the first 
argument) must be compatible: They must have the same format, sampling rate, and 
channel count. If possible, the data that's inserted into the receiver of insertSamples:at: is 
automatically converted to be compatible with the data already in the receiver (see the 
description of the SNDConvertSoundO C function in Reference for a list of the 
conversions that are supported). An error code indicating that the insertion failed is 
returned if the two Sounds aren't compatible or if the inserted data can't be converted. 

Replace 

Replacing is like copying and pasting, except that a region of the pasted-into Sound is 
destroyed to accommodate the new data. In the following example, the beginning of 
one Sound is replaced with a copy of the beginning of twoSound: 

/* Replace the beginning of one Sound with that of twoSound. */ 

int tmpCode = [tmpSound copySamples:twoSound at:O count:lOOO]; 

int inCode; 

if (tmpCode == SND_ERROR_NONEl { 

int oneCode = [oneSound deleteSamplesAt:O count:1000]; 

if (oneCode == SND_ERROR_NONEl 

inCode = [oneSound insertSamples:tmpSound at:O]; } 

[tmpSound free]; 

/* Check inCode before performing further manipulations. */ 
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Utility Methods 

The editing methods described above only work on Sounds that contain sampled data. The 
isEditable method is provided to quickly determine whether a Sound object can be edited. 
The method returns YES if the object can be edited, NO if it can't. 

The compatible With: method takes a Sound object as its argument and returns YES if the 
argument and the receiver are compatible. (The method also returns YES if one of the 
objects is empty; in other words, it's OK to insert samples into an empty object.) This 
method is useful prior to invoking the insertSound:at: method. 

Another handy method is sampleCount, which returns the number of sample frames 
contained in the receiver. A sample frame is a channel-independent count of the samples 
in a Sound. For example, sending sampleCount to a two-channel Sound that contains three 
seconds worth of data returns the same value as sending it to a one-channel Sound that also 
contains three seconds of data (given that the two Sounds have the same sampling rate), 
even though the two-channel Sound actually contains twice as much data. 

Other Editing Methods 

The Sound class defines three more editing methods: 

• copy returns a new Sound object that's a copy of the receiver. 

• copySound: takes a Sound object as an argument and replaces the data in the receiver 
with the data in its argument. Since the entire range of data in the receiver is replaced, 
it needn't be editable, nor must the two Sounds be compatible. 

• deleteSamples can only be sent to an editable Sound. It deletes the receiver's sound 
data. 

Fragmentation 

A Sound's data is normally contiguous in memory. However, when you edit a Sound 
object, its data can become fragmented, or discontiguous. Fragmentation is explained in 
the description of the SNDSoundStruct, earlier in this chapter. Briefly, fragmentation lets 
you edit Sounds without incurring the cost of moving large sections of data in memory. 
However, fragmented Sounds can be less efficient to play. The needs Compacting and 
compactSamples methods are provided to determine if a Sound is fragmented and to 
compact it. Note that compacting a large Sound that has been mercilessly fragmented can 
take a noticeably long time. 
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The SoundView Class 

The SoundView class provides a mechanism for displaying the sound data contained in a 
Sound object. While SoundView inherits from the Application Kit's View class, it 
implements a number of methods that are also defined in Sound, such as play:, record:, 
and stop:. In addition, it implements editing methods such as cut:, copy:, and paste:. 

SoundViews are designed to be used within a ScrollView. While you can create a 
SoundView without placing it in a ScrollView, its utility-particularly as it's used to display 
a large Sound-is limited. 

Creating and Displaying a SoundView 

To display a sound, you create a new SoundView with a particular frame, give it a Sound 
object to display (through setSound:), and then send the display message to the 
SoundView: 

/* Create a new SoundView object. */ 

id mySoundView = [[SoundView alloc] initFrame:&svRect); 

/* Set its Sound object. */ 

[mySoundView setSound:mySound]; 

/* Display the Sound object's sound data. */ 

[mySoundView display]; 

In the example, svRect is a previously defined NXRect. If autodisplaying is turned on (as 
set through View's setAutodisplay: method), you needn't send the display message; 
simply setting the Sound will cause the SoundView to be displayed. 

For most complete sounds, the length of the Sound's data in samples is greater than the 
horizontal length of the SoundView in display units. The SoundView employs a reduction 
factor to determine the ratio of samples to display units and plots the minimum and 
maximum amplitude values of the samples within that ratio. For example, a reduction 
factor of 10.0 means that the minimum and maximum values among the first ten samples 
are plotted in the first display unit, the minimum and maximum values of the next ten 
samples are displayed in the second display unit and so on. You can set the reduction factor 
through the setReductionFactor: method. 

Changing the reduction factor changes the time scale of the object. As you increase the 
reduction factor, more "sound-per-inch" is displayed. Of course, since more samples are 
used in computing the average amplitude, the resolution in a SoundView with a heightened 
reduction factor is degraded. Conversely, reducing the reduction factor displays fewer 
samples per display unit but with an improved resolution. You should be aware that 
changing the reduction factor on a large sound can take a noticeably long time. 
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SoundView Dimensions 

In a SoundView, time runs from left to right; amplitude is represented on the y-axis, with 
0.0 amplitude in the (vertical) center. When you set a SoundView's Sound, the amplitude 
data that's displayed is automatically scaled to fit within the given height of the SoundView. 

The manner in which a SoundView's horizontal dimension is computed depends on the 
object's autoscale flag. If auto scaling is turned off, the length of a SoundView's frame is 
resized to fit the length of the Sound object's data while maintaining a constant reduction 
factor. In other words, a SoundView that's displaying a Sound that contains 10000 samples 
will be twice as long as one with a Sound that contains 5000 samples, given the same 
reduction factor in either SoundView. 

Whenever the displayed data changes, due to editing or recording, the SoundView is resized 
to fit the length of the new data. This is particularly useful in a SoundView that's inside a 
ScrollView: The Scroll View determines the portion of data that's actually displayed, while 
the SoundView maintains a constant time scale. Changing the reduction factor with 
autoscaling turned off causes the SoundView to zoom in or out on the displayed data. 

You can enable auto scaling by sending the message 

/* Enable autoscale. */ 

[mySoundView setAutoscale:YES]; 

With autoscale enabled, the SoundView's frame size is maintained regardless of the length 
of the SoundView's Sound data. Instead, the reduction factor is recomputed so the length 
of the data will fit within the frame. When auto scaling is on, invoking 
setReductionFactor: has no effect. 

Display Modes 

A SoundView can display a sound as a continuous waveform, such as you would see on an 
oscilloscope, or as an outline of its maximum and minimum amplitudes. You set a 
SoundView's display mode by sending it the setDisplayMode: message with one of the 
following Sound Kit constants as an argument: 

Constant 

SK_DISPLAY_WAVE 
SK_DISPLAY _MINMAX 

Waveform display is the default. 

Meaning 

Waveform display 
Amplitude outline display 
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The Sound View Selection 

The SoundView class provides a selection mechanism. You can selectively enable the 
selection mechanism for each SoundView object by sending the setEnabled: YES message. 
When you drag in an enabled SoundView display, the selected region is highlighted. The 
method getSelection:size: returns, by reference, the number of the first sample and the 
number of samples in the selection. 
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Chapter 3 
Representing Music Data 

This chapter describes the classes, methods, and C Functions that the Music Kit defines to 
represent music data. 
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The Note Class 

Whether you are composing music, designing a performance scheme, or building software 
instruments, you need a thorough understanding of the Note class. The Note class provides 
a means for describing musical sounds; aN ote object is a repository of musical information 
that's passed to and acted on by other Music Kit objects. 

A Note contains three categories of information: 

• A collection of parameters. Parameters describe the attributes of a musical sound, such 
as its frequency (pitch) and amplitude (loudness). A Note can contain any number of 
parameters, including none. 

• A single note type that expresses the basic character of the Note object, whether it 
defines an entire musical note, or just its beginning, middle, or end. 

An integer identifier called a note tag. Note tags are used to associate a series of Notes. 
For example, two separate Note objects that define the beginning and the end of a 
musical note must have the same note tag value. 

The three categories of Note information are examined in detail in the following sections. 

Parameters 

Parameters are the pith of a Note object. They're used to enumerate and describe the 
quantifiable aspects of a musical sound. The most important rule of parameters is that they 
don't do anything; in order for a parameter to have an effect, another object (or your 
application) must retrieve and apply it in some way. For example, the subclasses of 
SynthPatch provided by the Music Kit are designed to look for particular sets of parameters 
when synthesizing a Note. Some common parameters, such as those for frequency and 
amplitude, are looked for by all these classes. 

A parameter consists of a unique integer tag, a unique print name (a string), and a value. 
The tag and name are used to identify the parameter: 

• The parameter's tag identifies it within an application. 
• The print name identifies the parameter in a scorefile. 

Thus, the tag and the name are simply two ways of identifying the same parameter. To 
create a new parameter, you pass a print name (that you make up yourself) to the parName: 
class method. The method returns a unique tag for the parameter: 

/* Create a new parameter tag (an int). */ 

int myPar = [Note parName:"myPar"]; 
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The name of the variable that represents the tag needn't be the same as the string name, 
although in the interest of clarity this is regarded as good form. The parName: method can 
also be used to retrieve the tag of a parameter that's already been created: parName: 
creates a new tag for each unique argument that's passed to it; subsequent invocations with 
the same argument will return the already-created tag. 

Since the Music Kit SynthPatches look for particular parameters during synthesis, it 
follows that the Music Kit must also supply some number of parameter tags. These are 
listed and described in Appendix B, "Music Tables," in the Sound, Music, and Signal 
Processing: Reference manual. 

Music Kit parameter tags are represented by integer constants such as MK _freq (for 
frequency) and MK_amp (for amplitude). The print names are formed by dropping the 
"MK_" prefix. Thus, MK Jreq is represented in a scorefile as "freq" and MK _amp is 
"amp". 

By definition, the parameter tags supplied by the Music Kit are sufficient for all uses of its 
SynthPatches and Midi. If you create your own SynthPatch subclass, you can create 
additional parameter tags to fully describe its functionality, but you should use as many of 
the Music Kit parameter tags as are applicable. For example, it's assumed that all 
SynthPatch subclasses will have a settable frequency; rather than create your own 
frequency parameter tag, you should use MK_freq. This promotes portability between 
SynthPatches. 

Lest the emphasis on synthesis be misconstrued, keep in mind that a parameter's purpose 
is not restricted to that arena. Parameters can be used in any way that your application sees 
fit; for example, a graphic notation program could use parameters to describe how a Note 
object is displayed on the screen. However, you should also keep in mind that a parameter 
is significant only if some other object or your application looks for and uses it. 

Parameter Values 

The method you use to set a parameter's value depends on the data type of the value. The 
Note class provides six value-setting methods. The first three of these are: 

• setPar:toDouble: sets the parameter value as a double. 
• setPar:toInt: sets the value as an into 
• setPar:toString: sets the value as a pointer to a string. 

The other three methods will be examined later. 
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The argument to the setPar: keyword is a parameter tag; the second argument is the value 
that you're setting. For example, to set the value of the bearing parameter (stereophonic 
location of a DSP synthesized sound) to 45.0 degrees (hard right), you could send any of 
the following messages: 

/* Of course, you have to create the Note first. */ 

id aNote = [[Note alloc] init]; 

/* Set the bearing. */ 

[aNote setPar:MK_bearing toDouble:45.0]; 

/* or */ 

[aNote setPar:MK_bearing toInt:45]; 

/* or */ 

[aNote setPar:MK_bearing toString:"45"]; 

You generally set bearing as a double-all the Music Kit SynthPatches apply bearing, as 
well as most other number-valued parameters, as a value of that type. However, retrieval 
methods are provided that perform type conversion for you. For example, the message 

/* Retrieve the bearing parameter value as a double. */ 

double theBearing = [aNote ParAsDouble:MK_bearing]; 

returns the double 45.0 regardless of which of the three methods you used to set the value. 
The retrieval methods include: 

• parAsDouble: returns the value as a double. 
• par AsInt: returns the value as an int. 
• par AsString: returns a pointer (a char *) to a copy of the value. 
• parAsStringNoCopy: returns a pointer to the value itself. 

Note: You shouldn't alter the string returned by parAsStringNoCopy:. It's owned by the 
Note object. 

If the parameter hasn't been set, the retrieval methods return values as follows: 

• parAsDouble: returns MK_NODVAL. 
• par AsInt: returns MAXINT. 
• The string retrieval methods return an empty string. 

Unfortunately, you can't use MK_NODVAL in a simple'comparison predicate. To check 
for this return value, you must call the in-line function MKIsNoDVaIO; the function returns 
o if its argument is MK_NODVAL and nonzero if not: 

/* Retrieve the value of the amplitude parameter. */ 

double amp = [aNote parAsDouble:MK_amp]; 

/* Test for the parameter's existence. */ 

if (!MKIsNoDVal (amp) ) 

... /* do something with the parameter */ 
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For most uses of parameters-in particular, if you're designing a SynthPatch subclass-it's 
important to know whether the parameter was actually set before applying its value. You 
can compare the retrieved values with the values shown above to check whether the 
parameter had actually been set, or you can test the BOOL value returned by the 
isParPresent: method: 

/* Only retrieve bearing if its value was set. */ 

if ([aNote parlsPresent:MK_bearing]) 

double theBearing = [aNote parAsDouble:MK_bearing]; 

Choosing a Value 

To properly set a parameter's value, you need to know the range of values that are 
meaningful to the object that applies it. The Music Kit parameter lists given in Appendix 
B supply this information. If you're creating an application (or writing a scorefile) in order 
to synthesize Notes on the DSP or on an external MIDI synthesizer, you should consult 
these lists to make sure you're setting the Notes' parameters to reasonable and musically 
useful values. 

Three of the most commonly used parameters, those for pitch, begin time, and duration, are 
special. See the section "Basic Parameters," later in this chapter, for a discussion of 
alternative ways to set and retrieve the values of these parameters. 

Object-Valued Parameters 

Some parameters take objects as their values. The methods for setting an object-valued 
parameter are: 

• setPar:toEnvelope: sets the value as an Envelope object. 
• setPar:toWaveTable: sets the value as a WaveTable object. 
• setPar:toObject: sets the value as a non-Music Kit object. 

Envelopes and Wave Tables are described later in this chapter. The setPar:toObject: 
method is provided so you can set a parameter to an instance of one of your own classes. 
The class that you define should implement the following methods so its instances can be 
written to and read from a scorefile: 

• writeASCIIStream: provides instructions for writing the object as ASCII text. In a 
scorefile, the text that represents an object-this includes Envelopes and WaveTables­
is enclosed in square brackets (m. The ASCII representation of an object must not 
include a close bracket. The method's argument is the NXStream to which the text is 
written. 
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• readASCIIStream: provides instructions for creating an object from its ASCII 
representation. When the method is called, the argument (an NXStream) is pointing to 
the first character after the open bracket. You should leave the argument pointing to the 
close bracket. In other words, you should read in whatever you wrote out. 

Both of these methods are called automatically when you read a scorefile into your 
application (scorefile-reading methods are described later in this chapter). 

You can retrieve an object-valued parameter through the following methods: 

• par AsEnvelope: returns an Envelope object. 
• parAsWaveTable: returns a WaveTable object. 
• parAsObject: returns a non-Music Kit object. 

Unlike the value retrieval methods shown in the previous section, these methods return nil 
ifthe parameter's value isn't the correct type. 

Basic Parameters 

A handful of attributes are common to all musical notes: pitch, loudness, begin time, and 
duration. Special methods and values are used to set the parameters that represent these 
attributes, as explained in the following sections. 

Frequency and Pitch 

Frequency and pitch are two terms that refer to the most fundamental aspect of a musical 
sound: its register or tonal height. Frequency is the exact measurement of the periodicity 
of an acoustical waveform expressed in hertz. Pitch, on the other hand, is an inexact 
representation expressed in musical names such as F sharp, A flat, or G natural. 

When the DSP synthesizes a musical note, it produces a tone at a specified frequency. 
However, musicians think in terms of pitch. To bridge the gap between frequency and pitch, 
the Music Kit defines sets of pitch variables and key numbers that represent particular 
frequencies. 
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Pitch Variables 

A pitch variable takes the following form: 

pitchLetter[sharpOrFlat] octave 

• pitchLetter is a lowercase letter from a to g. As in standard music notation, the Music 
Kit's pitch variables are organized within an octave such that c is the lowest pitch and 
b is the highest. 

• The optional sharpOrFlat is s for sharp and ffor flat. They raise or lower by a semitone 
the pitch indicated by pitchLetter. 

• octave is 00 or an integer from 0 to 9. The octave component of the pitch name variable 
places the pitch class within a particular octave, where 00 is the lowest octave and 9 is 
the highest. Octaves are numbered such that c4 is middle C. 

Some examples of pitch variables are: 

Pitch Variable 

ef4 
gs3 
fOO 

Pitch 

E flat above middle C 
G sharp below middle C 
F natural in the fifth octave below middle C 

bs8 B sharp five octaves above middle C (the same as c9) 

Notice that the natural sign isn't represented in the pitch variables. If neither the sharp nor 
the flat sign is present, the pitch is automatically natural. In addition, key signatures aren't 
represented; the accidentals that define a key must be present in each pitch that they affect. 

Correspondence Between Pitch Variables and Frequencies 

Each pitch variable represents a predefined frequency. By default, the frequencies that 
correspond to the pitch variables define a twelve-tone equal-tempered tuning system, with 
a4 equal to 440.0 Hz: 

• Twelve-tone means that there are twelve discrete tones within an octave. 

• Equal-tempered means that the frequency ratio between any pair of successive tones is 
always the same. 

This is the tuning system used to tune modern fixed-pitch instruments, most notably the 
piano. The complete table of pitch variables and the corresponding default frequencies is 
given in Appendix B of Reference. 
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Key Numbers 

Another way to specify the pitch is to use a key number. Key numbers are integers that 
correspond to the keys of a MIDI keyboard. As a MIDI standard, 60 is the key number for 
the middle C of the keyboard. The Music Kit provides constants to represent key numbers. 
The form of these constants is like that of the pitch variables, but with the letter k appended; 
for example: 

Pitch Variable 

ef4 
gs3 
fOO 
bs8 

Key Number 

ef4k 
gs3k 
fOOk 
bs8k 

Key numbers are provided primarily to accommodate MIDI instruments. If you record a 
MIDI performance (using a Midi object), the pitch specifications will all be represented as 
key numbers. When you realize Notes on a MIDI synthesizer, the actual frequency 
represented by a particular key number is controlled by the synthesizer itself. The standard 
of "60 equals middle C" simply means that key number 60 creates a tone at whatever 
frequency the synthesizer'S middle C key is tuned to produce. 

Specifying Pitch in a Note 

You can specify the pitch of Note objects as a frequency or pitch variable (a double), or as 
a key number (an int). These are represented by the parameter tags MK_freq and 
MK keyNum. Regardless of how it's synthesized (on the DSP or on a MIDI instrument), 
the appropriate value is converted from whichever parameter is present. 

To set a Note's pitch, you use the methods described earlier: 

/* You must import this file when using pitch variables. */ 

#import <musickit/pitches.h> 

/* Set the Note's pitch to middle C as a frequency. */ 
[aNote setPar:MK_freq toDouble:26l.625]; 

/* The same using a pitch variable. */ 
[aNote setPar:MK_freq toDouble:c4]; 

/* And as a key number. */ 

[aNote setPar:MK_keyNum toDouble:c4k]; 

The conversion between frequencies or pitch variables and key numbers allows you to 
create Note objects that can be played on both the DSP and on a MIDI instrument using the 
same pitch parameter. 

3-10 Chapter 3: Representing Music Data 



Retrieving Pitch from a Note 

Special methods are provided to retrieve pitch: 

freq: returns a double value as a frequency. 
keyNum: returns an iot as a key number. 

If the MK _ freq parameter isn't present but MK _key N urn is, the freq: method returns a 
frequency value converted from the MK _ keyNum parameter. Similarly, keyNum: returns 
a key number value converted from MK Jreq in the absence of MK _ keyNum. 

The Music Kit SynthPatches use freq: to retrieve pitch information; Midi uses keyNum:. 

Keep in mind that either retrieval method converts a value from the opposite parameter only 
if its own parameter isn't set. In addition, you can set MK _freq and MK _ keyNum 
independently of each other: Setting one doesn't reset the other. 

Since frequencies are continuous and key numbers are discrete, the correspondence 
between them isn't exact; conversion from frequency to key number sometimes requires 
approximation. The pitch table in Appendix B of Reference gives the frequency range that 
corresponds to particular key numbers (in the default tuning system). 

Loudness 

The perceived loudness of a musical note depends on a number of factors, the most 
important being the amplitude of the waveform and its spectral energy, or brightness. All 
the Music Kit SynthPatches use the amplitude parameter, MK _amp; most also use 
MK _bright, the brightness parameter. 

Amplitude 

Amplitude is fairly straightforward: The value of the amplitude parameter determines the 
strength of the signal produced by the DSP. The value of MK _amp is retrieved as a 
double. Its value must be between 0.0 and 1.0, where 0.0 is inaudibly soft and 1.0 is a fully 
saturated signal. Perceived amplitude increases logarithmically: Successive Notes with 
incrementally increasing amplitude values are perceived to get louder by successively 
smaller amounts. For instance, the difference in loudness between amplitudes of 0.1 and 
0.2 sounds much greater than the difference between 0.8 and 0.9. 
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Amplitude is set and retrieved through the normal methods; for example: 

/* Set the amplitude of a Note. */ 

[aNote setPar:MK_amp toDouble:O.2]; 

/* Retrieve amplitude. */ 

double myAmp = [aNote parAsDouble:MK_amp]; 

/* Set the amplitude of a Note. */ 

[aNote setPar:MK_amp toDouble:MKdB(-15.0)]; 

The range ofthe decibel scale extends from negative infinity (inaudible) to 0.0 (maximally 
loud). Decibel scaling creates a linear correspondence between increasing value and 
perceived loudness: The perceived increase in loudness from -20.0 to -15.0 is the same as 
that from -15.0 to -10.0 (as well as from -10.0 to -5.0 and from -5.0 to 0.0). 

Brightness 

Brightness can be thought of as a tone control. The greater the value of MK _bright, the 
brighter the synthesized sound. As you decrease brightness, the sound becomes darker. 
MK _bright is used differently by the various SynthPatch subclasses; usually it's used to 
modify the values of other timbre-related parameters. Some SynthPatches, such as those 
that perform WaveTable synthesis, don't use MK _bright at all. 

Brightness values are usually set and retrieved through setPar:toDouble: and 
par AsDouble: (the Music Kit SynthPatches always retrieve the value of MK _bright as a 
double). The range of valid brightness values is, in general, 0.0 to 1.0; you can actually set 
MK _bright to a value in excess of 1.0, although this may cause distortion in some 
SynthPatches. Specifying brightness in decibels is possible, but the scale tends to have less 
meaning here than it does for amplitude. 

Begin Time and Duration 

The begin time, or time tag, and duration parameters of a Note are set through the methods 
setTimeTag: and setDur:. Both methods take a double argument that's measured in beats. 
By default, a beat is one second long; however, you can change the size of a beat through 
methods defined in the Conductor class. 

The retrieval methods timeTag and dur return a Note's time tag and duration. Because of 
the specialized methods for setting and retrieving these parameters, they don't have 
parameter tags to represent them, nor do they have print names. Their representation in a 
scorefile is explained in Reference. 

For some applications, setting a Note's time tag isn't necessary; for instance, you can design 
a Performer object that creates Notes and performs them immediately. However, in many 
musical applications-in particular, for any application that adds Notes to a Part-time tags 
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are indispensable. For convenience, the newSetTimeTag: method lets you create a new 
Note and set the time tag value at the same time: 

/* Create a new Note and set the time tag value to 3.5 beats. */ 
id myNote = [Note newSetTimeTag:3.5]; 

A newly created Note otherwise has a time tag value of 1.0. Time tags are typically 
measured from the beginning of a performance (the Performer class provides methods that 
let you add a begin time offset). The Note in the example would thus be played after three 
and a half beats of a performance. 

Duration is also in beats and indicates, ostensibly, the longevity of a Note during synthesis: 
When the duration has expired, the Note doesn't stop short; instead, its Envelope objects (if 
any) start to wind down. The actual length of the Note is its duration value plus the amount 
of time it takes for its amplitude Envelope to finish. This is described in detail in the section 
"The Envelope Class," later in this chapter. 

Many Notes don't have a duration value. For example, some Note objects initiate a 
synthesized tone that plays until a subsequent Note object, also lacking a duration, 
specifically turns it off. The necessity or superfluity of the duration value is described in 
the following sections. 

Note Type and Note Tag 

A Note's note type describes its musical function with regard to the life of a synthesized 
sound. There are five note types. Briefly they are: 

• NoteDur represents an entire musical note. 
• NoteOn establishes the beginning of a note. 

NoteOff establishes the end of a note. 
• NoteUpdate modifies a sounding note. 
• Mute makes no sound. 

Each of the five types is represented by an MKToken constant: 

• MK_noteDur 
• MK_noteOn 

MK_noteOff 
• MK_noteUpdate 
• MK_mute 

Every Note has exactly one note type; the default is MK _mute. You set the note type with 
setNoteType: and retrieve it with noteType. 

There are two styles for creating a complete musical note, either with a single noteDur or 
with a noteOn/noteOff pair. 
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Note tags are integers that are used to identify Note objects that are part of the same phrase; 
in particular, matching note tags are used to create noteOn/noteOff pairs and to associate 
noteUpdates with other Notes. The actual integer value of a note tag has no significance. 
The range of note tag values extends from 0 to 231 _1. 

You set a Note's note tag through setNoteTag: and retrieve it with noteTag. The C function 
MKNoteTagO is provided to create note tag values that are guaranteed to be unique across 
your entire application-you should never create note tag values except through this 
function. 

The following example, in which a noteOff is paired with a noteOn, demonstrates how to 
create and administer note tags: 

/* Create a noteOn and a noteOff and set their time tags. */ 

id aNoteOn = [[Note allocl initWithTimeTag:l.0]; 

id aNoteOff = [[Note allocl initWithTimeTag:3.5]; 

[aNoteOn setNoteType:MK_noteOn]; 

[aNoteOff setNoteType:MK_noteOff]; 

/* Create a new note tag for the noteOn. */ 

[aNoteOn setNoteTag:MKNoteTag()]; 

/* Set the noteOff note tag to that of the noteOn. */ 

[aNoteOff setNoteTag: [myNoteOn noteTag]l; 

The following sections further examine each note type and discuss note tags as they apply 
to each type. 

NoteDur 

The information in a noteDur defines an entire musical note. A noteDur is distinguished by 
having a duration ("Dur" stands for duration). Of the five note types, only noteDur can have 
a duration value-invoking setDur: automatically sets a Note's duration to MK_noteDur. 

You can associate any number of noteUpdates with a noteDur, thereby changing the 
attributes of the musical note while it's sounding. In order to associate a noteUpdate to a 
noteDur, they must be given the same note tag, as described above. NoteUpdates are 
described in a subsequent section. 

N oteOn and N oteOff 

The other way to define a complete musical note is to use a noteOn/noteOff pair. A note On 
starts a musical note and a subsequent noteOff terminates it. Each noteOn/noteOff pair 
must share a unique note tag. 
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If the same note tag is given to successive noteOns that aren't articulated by intervening 
noteOffs, the second and subsequent noteOns retrigger the Note's Envelopes when it's 
synthesized on the DSP. 

A noteOff triggers the release portion of a Note's Envelope. Any parameters that it contains 
are applied to that portion of the Note, however brief. See the "The Envelope Class" 
section, later in this chapter. 

NoteUpdate 

NoteUpdates are used to alter the parameters of a musical note that's already underway. A 
note Update is associated with another Note by virtue of matching note tags. In the 
following example, a noteUpdate is used to change the pitch of a musical note represented 
by a noteDur: 

id myNoteDur, myNoteUpdate; 

/* Create a Note with a time tag and set its pitch, and duration. */ 

myNoteDur = [[Note alloc] initWithTimeTag:l.O]; 

[myNoteDur setPar:MK_freq toDouble:c4]; 

[myNoteDur setDur:3.0]; 

/* Create a noteUpdate with a time tag and set its pitch. */ 

myNoteUpdate = [[Note alloc] initWithTimeTag:2.5]; 

[myNoteUpdate setNoteType:MK_noteUpdate]; 

[myNoteUpdate setPar:MK_freq toDouble:d4]; 

/* Set the note tags to the same value. */ 

[myNoteDur setNoteTag:MKNoteTag()]; 

[myNoteUpdate setNoteTag: [myNoteDur noteTag]]; 

The effect of the two Notes is a single, two-beat-Iong musical note that changes pitch after 
one-and-a-half beats. 

Only the parameters that are explicitly present in the noteUpdate are applied to the 
sounding note: If a particular parameter is present in the original Note but is absent in an 
associated noteUpdate, the value of the original parameter is retained. 

A note Update with no note tag affects all the currently sounding Notes that are being 
realized through the same SynthInstrument object. 

Mute 

A mute is normally ignored by SynthPatch and Midi objects, so it can't be used to represent 
a sound-making event. Mutes are useful for representing structural breakpoints such as bar 
lines. If you send the setNoteTag: message to a mute, its note type is changed to 
MK_noteUpdate. 
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The Envelope Class 

An envelope is a function that varies over time. Envelopes are extremely important to 
synthesized music because they allow continuous control of the attributes of a sound. For 
example, with an envelope you can specify how quickly a musical note speaks and how 
long it takes to die away. Without envelopes, a synthesized tone would snap on, maintain 
a steady amplitude for its entire duration, and then snap off. ("Snap" can be taken literally: 
Both the arrival and the departure of the sound would be accompanied by an audible click.) 

An envelope is depicted as a continuous line on an xy coordinate system, where time moves 
forward from left to right on the x-axis, and the envelope's value at a particular time is given 
as y. Figure 3-2 shows some typical envelope shapes. The top two envelopes, with their 
characteristic initial rise and ultimate fall, are typical of those used to control amplitude. 
The bottom one, applied to frequency, would introduce some warble at the beginning and 
end of a note. 

time--. 

time--. 

time--. 

Figure 3-2. Typical Envelopes 
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Instances of the Music Kit's Envelope class are used to represent envelope functions. An 
Envelope object contains a series of x,y coordinates, or breakpoints, that mark a change in 
an envelope's direction or trajectory. Figure 3-3 superimposes breakpoints on the 
previously illustrated envelope shapes (an open circle denotes the location of a breakpoint). 

time--.. 

time--.. 

time--.. 

Figure 3-3. Breakpoint Envelopes 

An Envelope object can have any number of breakpoints, allowing you to create arbitrarily 
complex functions. 

You can use an Envelope object to control virtually any attribute of a sound synthesized on 
the DSP. While Envelope control is indispensable for amplitude, it can also be used to good 
effect for frequency and timbre-related attributes associated with particular synthesis 
techniques. 
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Besides providing continuous control of a sound's attributes, an Envelope can also be used 
to retrieve discrete values of y for given values of x. The retrieved values can then be used, 
for example, to set the same parameter in a series of Notes, allowing you to control the 
parameter's evolution over an entire musical phrase. 

The following sections examine the methods that define Envelope objects and demonstrate 
how to use them in DSP synthesis and for discrete-value retrieval. 

Defining an Envelope 

The (x,y) value pairs that define an Envelope's shape are set through the 
setPointCount:xArray:y Array: method. The first argument is the number of breakpoints 
in the Envelope; the other two arguments are arrays of x values and y values: 

/* Create an Envelope object. */ 

id anEnvelope = [[Envelope alloc] init]; 

/* Create and instantiate arrays for the x and y values. */ 

double xVals[] {O.O, 1.0, 4.0, 5.0}; 

double yVals[] = {O.O, 1.0, 1.0, O.O}; 

/* Define the Envelope with data. */ 

[anEnvelope setPointCount:4 xArray:xVals yArray:yVals]; 

The elements in the x and y arrays are paired in the order given. Thus, the first breakpoint 
in an Envelope is created from the first element in the x array and the first element in the y 
array, the second breakpoint is created from the second elements of either array, and so on. 
Figure 3-4 illustrates the Envelope object defined in the example. The x and y values for 
each breakpoint are shown in parentheses. 

1.0 
(1.0, 1.0) (4.0,1.0) 

0.75 

0.5 

0.25 

(5.0,0.0) 

0.0 1.0 2.0 3.0 4.0 5.0 6.0 

Figure 3-4. Simple Envelope 

The way the x and y values are interpreted depends on the way the Envelope is used. In 
general, an Envelope is scaled by other values, allowing the same Envelope object to be 
stretched and squeezed to fit a number of different contexts. 
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Envelopes and the nsp 

The most important use of an Envelope is to provide continuous control over a musical 
attribute of a Note that's synthesized on the DSP. To do this, you supply the Envelope object 
as a parameter to the Note. For example, an Envelope used to control amplitude is set as a 
Note's MK_ampEnv parameter: 

/* Create a Note and an Envelope. */ 

id aNote = [[Note alloc] init]; 
id anEnvelope = [[Envelope alloc] init]; 

/* Create x and y value arrays and define the Envelope. */ 

double xVals = {O.O, 1.0, 4.0, S.O}; 

double yVals = {O.O, 1.0, 1.0, O.O}; 

[anEnvelope pointCount:4 xArray:xVals yArray:yVals]; 

/* Set the Envelope to control aNote's amplitude. */ 

[aNote setPar:MK_ampEnv toEnvelope:anEnvelope]; 

The Envelope defined here is the same as the one illustrated in Figure 3-4, above. When 
aNote is synthesized its amplitude follows the curve shown in the illustration. It rises from 
zero, maintains a steady state, and then falls back to zero. 

As with any parameter, an Envelope-valued parameter is only meaningful if it's looked for 
and used by the SynthPatch object that synthesizes the Note. Appendix B lists and 
describes the Envelope parameters used by the Music Kit SynthPatch subclasses. 

In addition, the Music Kit SynthPatches are designed such that Envelopes are only 
significant in a noteOn or a noteDur. Setting an Envelope parameter in a noteOff or a 
noteUpdate has no immediate effect, although it's used if the phrase is rearticulated and the 
rearticulating Note (by definition, a noteOn or noteDur) doesn't specify the Envelope 
parameter itself. 

Scale and Offset 

Associated with each Envelope parameter provided by the Music Kit are two related 
parameters that interpret the Envelope's y values. The names of these parameters are 
formed as MK attributeO and MK attributel: 

• MK _ attributeO is the value of the Envelope when y is 0.0. 

• MK_attributel is the value of the Envelope when y is 1.0. As a convenience, the 
parameter MK _attribute is defined as a synonym for MK _attribute 1. 
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The parameters that interpret the amplitude Envelope, for example, are MK _ ampO and 
MK_amp1 (which is synonymous with MK_amp). Since amplitude should always rise 
from and fall back to 0.0 (to avoid clicks), you'll probably never need to set the value of 
MK_ampO-if the parameter isn't set, its value defaults to 0.0. The amplitude Envelope 
is normally interpreted by setting the value of MK_amp (only): 

/* Set the amplitude Envelope (as previously defined). */ 

[aNote setPar:MK_ampEnv toEnvelope:anEnvelope]; 

/* The value of MK_amp sets the value when y is 1.0. */ 

[aNote setPar:MK_amp toDouble:0.15]; 

During synthesis, aNote's amplitude is scaled according to the value of MK _amp, as 
depicted in Figure 3-5 (notice that the breakpoint values themselves don't change, only 
their interpretations are affected). 

0.15 
(1.0, 1.0) (4.0,1.0) 

(5.0,0.0) 

0.0 1.0 2.0 3.0 4.0 5.0 6.0 

Figure 3-5. Scaled Amplitude Envelope 

Technically, the interpretation of a particular value of y is calculated according to the 
following formula: 

interpretedValue = (scale* y) + offset 

where scale is calculated as MK _attribute 1-MK _ attributeO and offset is simply the value 
of MK attributeO. 
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The Stick point 

When a SynthPatch receives a noteOn or noteDur, it starts processing the Note's Envelopes, 
reading their breakpoints one by one. The y values are scaled and offset as described above; 
the x values are taken as seconds (with modifications described in the next section). If the 
Note's duration (in seconds) is greater than the duration of the Envelope-in other words, 
if the Envelope runs out of breakpoints before the DSP is done synthesizing the Note-then 
the final y value is maintained for the balance of the Note. 

To accommodate Notes of different lengths, the Envelope object lets you define one of its 
breakpoints as a stick point. When the SynthPatch reads an Envelope's stickpoint, it "sticks" 
until a noteOff arrives (or the declared duration of a noteDur elapses). The Envelope shown 
in the previous example, with its flat middle section, can easily be redefined using a 
stickpoint, as follows: 

/* Instantiate arrays for x and y. */ 

double xVals {O.O, 1.0, 2.0}; 

double yVals = {O. 0, 1. 0, O.O}; 

/* Define the Envelope and set the MK_amp constant. */ 

[anEnvelope pointCount:3 xArray:xVals yArray:yVals]; 

[aNote setPar:MK_amp toDouble:0.15]; 

/* Set the Envelope's stickpoint. */ 

[anEnvelope setStickpoint:l]; 

The argument to setStickpoint: is a zero-based index into the Envelope's breakpoints. ill 
the example, anEnvelope's second breakpoint is declared to be the stickpoint. Figure 3-6 
shows how the stickpoint allows the same Envelope to be applied to Notes (or Note phrases) 
with different durations. The stickpoint is shown as a solid circle; the sustained portion of 
the Envelope is indicated as a dashed line. The tempo in the illustration is assumed to be 
60.0. 
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Figure 3-6. Envelope with 5tickpoint 

6.0 
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(2.0,0.0) 

6.0 

Notice that the duration between the end of the stickpoint segment and the following 
breakpoint is always the same (one second, as defined by the Envelope itself), regardless of 
the length of the Note. 
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Attack and Release 

An Envelope object is divided into three parts: attack, sustain, and release. The stickpoint 
defines the sustain; the attack is the portion that comes before the stickpoint and the release 
is the portion that comes after it. An Envelope can have any number of breakpoints in its 
attack and release segments. 

You can specify the absolute duration of the attack portion of an Envelope by setting the 
value of the MK _ attributeAtt parameter; the release is set through MK _ attribute ReI. For 
example, the amplitude attack and release parameters are MK _ ampAtt and MK _ ampRel, 
respectively. The values of these parameters are taken as the number of seconds (given as 
doubles) to spend in either segment, as illustrated in Figure 3-7. The x values of the 
breakpoints in the two segments are scaled within the given durations to maintain their 
defined proportions. 

~ attack ------.+__ release-----.. 
duration duration 

Figure 3-7. Attack and Release 

Note: Since they're set as seconds (not beats), the attack and release times aren't affected 
by tempo. 

Figure 3-8 shows the same (amplitude) Envelope used in the previous examples with 
various attack and release values. 
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Figure 3-8. Envelope with Attack and Release 

Figure 3-9 shows what happens when a noteOff arrives (or a noteDur expires) during the 
attack portion of the Envelope-in other words, before the stickpoint is reached. For this 
illustration, both MK _ ampAtt and MK _ amp Rei are assumed to have values of 1.0. 
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noteOff arrives after 0.5 beats 
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noteOff arrives after 0.9 beats 

Figure 3-9. Early note Off 

When the noteOff arrives, the Envelope heads for the first breakpoint in the release (the first 
breakpoint after the stickpoint) from wherever it happens to be at the time. The release 
takes its full duration (as defined in the Envelope itself, or by MK _ ampRel, if present) 
regardless of whether the noteOff arrives before or after the stickpoint is reached. 
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Modeling a Note without Sustain 

Not every instrument can create a sustained tone; the amplitude envelope of a piano tone, 
for example, is characterized by a sharp rise and fall followed by a gradual but steady decay 
to quiescence. This is depicted in Figure 3-10. 

time~ 

Figure 3-10. Piano Envelope 

To simulate this sort of envelope shape, yet still accommodate Notes of any length, the 
Envelope object definition would look something like this: 

double xVals 
double yVals 

{O.O, 0.05, 0.2, 0.5, 8.0, 8.15}; 

{O,O, 1.0, 0.5, 0.3, 0.0, O.O}; 

[anEnvelope setPointCount:6 xArray:xVals yArray:yVals]; 

/* Set the stickpoint to breakpoint 4, xy:(8.0, 0.0). */ 
[anEnvelope setStickpoint:4]; 

The Envelope is depicted in Figure 3-11. 
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0.0 0.5 1.0 7.0 8.0 (8.15, 0.0) 

Figure 3-11. Simulated Piano Envelope 

Notice that the Envelope's stickpoint is, curiously enough, set to a breakpoint that has a y 
value of 0.0. Equally curious is the release portion of the Envelope: a flat piece of 
seemingly useless real estate. However, consider the result of the two possible scenarios: 
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The noteOff arrives after the stickpoint is reached. In this case, the synthesized sound 
has already decayed to an amplitude of 0.0. When the noteOff arrives, the release 
portion is indeed executed, but since the amplitude is already at 0.0, the release portion 
doesn't produce an audible effect. 

The note Off arrives before the stickpoint is reached. The release portion is triggered, 
causing the amplitude to decay to 0.0 in 0.15 seconds. 

Attack and release durations on a nonsustaining instrument are generally invariant, so you 
would rarely set the MK_ampAtt and MK_ampRel parameter. 

Portamento 

The Music Kit provides an additional parameter, MK _portamento, with which you can 
further manipulate your Envelopes' attack times. Like the MK_attributeAtt parameters, 
MK _portamento takes a double value that's measured in seconds, but rather than affect 
the entire attack portion, it sets the duration between the first two breakpoints only. Also, 
as used by the SynthPatches provided by the Music kit, MK _portamento affects all the 
Envelopes in a Note-there aren't individual portamento parameters for amplitUde, 
frequency, and so on. In a Note that contains a portamento value and one or more attack 
scalers, the attacks of the individual Envelopes are scaled before the value of 
MK _portamento is applied. 

MK _portamento is provided so you can easily and quickly control, to some degree, the 
rearticulation of a Note's Envelopes. As such, it's only significant in a Note that 
rearticulates a phrase-it's ignored in a noteDur with no note tag, and has no immediate 
effect in a noteOn or a noteDur with a previously inactive note tag (although, in the latter 
case, the value of MK _portamento is stored in anticipation of subsequent rearticulations). 

You should keep in mind that portamento is optional. It can be quite useful if you're 
modelling an instrument that has different attack characteristics depending on whether a 
Note is the beginning of a new phrase or part of a legato passage. For example, in some 
instruments, such as a hom, the attack of an initial musical note-in amplitude, frequency, 
and timbre-is more drawn out than in the subsequent notes of a phrase. To simulate such 
an instrument, it's convenient to use MK _portamento to affect all the Envelopes at once. 

Smoothing 

The previous examples have shown the lines that connect an Envelope's breakpoints as 
straight segments. In reality, as synthesized by the DSP, these segments follow an 
asymptotic curve. In an asymptotic curve, the target is never fully reached-the curve rises 
(or falls) in successively smaller steps as it approaches the target. However, there's a point 
in the curve where the target is perceived to have been attained. This point is controlled by 
the smoothing value. 
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By default, smoothing is 1.0, a value that's used to mean that the point at which the target 
is perceived to have been reached is equal to the difference between the x values in 
successive breakpoints; in other words, it takes the entire time between breakpoints to reach 
the target y value. Other values are, similarly, the ratio of curve duration to overall duration 
between a pair of breakpoints. For example, a smoothing of 0.5 means it takes half the time 
between a pair of breakpoints to (perceptually) complete the curve between the 
breakpoints' y values. A smoothing value in excess of 1.0 falls short of the target altogether 
(it takes longer than the allotted time to reach the target). 

You can set the smoothing value for each breakpoint by defining the Envelope through an 
alternative method: 

setPointCount:xArray:orSamplingPeriod:yArray: 
smoothingArray:orDefaultSmoothing: 

Smoothing is set as either an array of values (one for each breakpoint) passed to as the 
argument to the smoothingArray: keyword, or as a default value passed as the argument 
to the orDefaultSmoothing: keyword. The default smoothing is used only if the argument 
to smoothingArray: is NULL. 

Smoothing is, admittedly, a somewhat elusive concept, best explained by illustration. 
Figure 3-12 shows the shape of an Envelope that uses various smoothing values between 
successive breakpoints. The values in parentheses are the x, y, and smoothing values for 
each breakpoint. 

1.0 
(1.0, 1.0, 1.0) 
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0.5 
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(0.0, 0.0,-) (4.0, 0.0, 0.5) 
&-----~----~~----~~---o~-

0.0 1.0 2.0 3.0 4.0 

Figure 3-12. Envelope with Smoothing 

Notice that the smoothing value is omitted from the first breakpoint. While a smoothing 
value must be supplied as the first element in the smoothing array (if you use the 
smoothingArray: keyword), this value is actually ignored when the Envelope is 
synthesized. This is because a breakpoint's smoothing value applies to the curve leading 
into it-the curve from the previous breakpoint to the current one. Since there isn't a 
previous breakpoint before the first one, the smoothing value for breakpoint 0 is thrown 
away. 

Returning to the illustration, the smoothing value for the second breakpoint is 1.0; thus the 
curve leading from the first breakpoint into the second breakpoint takes up the entire 
duration between the two points. The smoothing value for the third break point is 0.2; the 
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curve leading into the third breakpoint reaches the target y value with time to spare. The 
fourth breakpoint has a smoothing of 0.0. This means that it takes no time to reach the 
target; the Envelope immediately leaps to the target y value. (Note that a smoothing of 0.0 
is the only way to ensure that the asymptotic curve will, in truth, reach its target.) The final 
breakpoint smoothing value is 0.5. Accordingly, the curve reaches the target halfway 
between breakpoints. 

While smoothing control is provided for completeness, most musical applications will be 
satisfied with the default smoothing provided by the setPointCount:xArray:y Array: 
method. 

Sampling Period 

You may have noticed that the Envelope definition method that brought you smoothing also 
introduced an alternate way to set an Envelope's x values. Rather than define x values in 
an array, you can also set them as a default increment by passing a (double) value to the 
method's orSamplingPeriod: keyword. Again, the default argument is used only if the 
array argument (in this case, the argument to xArray:) is NULL. 

If you use a sampling period, the first x value is always 0.0. Successive x values are integer 
multiples of the sampling period value. 

Discrete Value Lookup 

The other way to use an Envelope is to retrieve a discrete value of y for a given x. This is 
performed in a single method, lookupYForX:, which takes a double argument that 
specifies an x value and returns the y value that corresponds to it. lithe x value doesn't lie 
directly on a breakpoint, a linear interpolation between the y values of the surrounding 
breakpoints is performed to determine the appropriate value. For example, consider a 
simple, two-breakpoint Envelope defined as follows: 

double xVals 
double yVals 
id anEnvelope 

{o.o, 1.0}; 

{O.O, 2.0}; 
[[Envelope alloc] init]; 

[anEnvelope setPointCount:2 xArray:xVals yArray:yVals]; 

The message 

double interpY = [anEnvelope lookupYForX:O.5]; 

returns 1.0. The computation is illustrated in Figure 3-13. 
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Figure 3-13. Linear Interpolation 

With discrete-value lookup, the Envelope's stickpoint and smoothing values are ignored. 
Also, using an Envelope in this way doesn't require its presence in a Note object; thus, the 
parameters that help shape an Envelope used for nsp synthesis, such as MK _amp, 
MK _ ampAtt, and MK _ ampRel, aren't applied to discrete-value lookup. 

If you request a discrete y value for an x that's out of bounds, the lookupYForX: method 
returns the y value of the breakpoint at the exceeded boundary. For example (using the 
same Envelope), the message 

/* Specify an x for which there is no y. */ 

double interpY = [anEnvelope lookupYForX:l.5]; 

returns 2.0, as it also would for any argument greater than 1.0. Similarly, any argument 
that's less than 0.0 would return (from this Envelope) 0.0. 

Envelopes in Scorefile Format 

When you write a Score to a score:file, either through a message to the Score object or by 
using a Score:fileWriter in a performance, the Envelope objects that appear in the Notes in 
the Score are written out as a series of breakpoints in parentheses. The Envelope's 
stickpoint, if any, is indicated by the presence of a vertical bar following the so-designated 
breakpoint. The entire Envelope representation is enclosed by square brackets. For 
example: 

[(0.0, 0.0, 1.0) (0.3, 1.0, 1.0) I (0.5, 0.0, 1.0)] 

The three values inside the parentheses are, in order, the breakpoint's x, y, and smoothing 
values. The smoothing value is always written out-keep in mind that smoothing defaults 
to 1.0. In this example, the second point is the stickpoint. 

If you give the Envelope a name before you write the score:file, the Envelope is only written 
in this long form once; subsequent references (in the score:file) are made to the Envelope 
object by its name. To name an Envelope, call the MKNameObjectO C function: 

MKNameObject("envl", anEnvelope); 
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It's a good idea to name your Envelope objects. This saves space in the scorefile and also 
makes processing the file during a performance more efficient. 

A named Envelope appears in a scorefile statement as: 

BEGIN; 

noteOn ... ampEnv:envelope envl=[ (0.0, 0.0, 1.0) ... 1 ... 

(The noteOn type is used here only as an example.) envelope is a keyword that declares 
the following name (envl in the example) to represent an Envelope. 

If you write your own scorefile, you should be aware of the following: 

• The x, y, and smoothing values can be expressions. Because of this, the three values 
must be separated by commas. 

• The smoothing value is sticky; it applies to the breakpoint in which it appears and to all 
subsequent breakpoints in that Envelope declaration (until another smoothing value is 
encountered). 

• If you don't specify a smoothing value, it defaults to 1.0. 

• You should declare and set all your Envelope objects as envelope variables in the 
header of the scorefile. This makes reading the file more efficient. 

For more on the scorefile format and ScoreFile language, see Reference. 

The Wave Table Class 

WaveTable objects are used exclusively in DSP synthesis to describe and create musical 
timbres. While Wave Table synthesis has limitations, it's a particularly easy and direct way 
to create a library of sounds. However, to intelligently define a Wave Table, you need to be 
familiar with a few basic concepts of musical acoustics. The section "What is Sound?" in 
Chapter 2 introduces some of these fundamentals; the cogent points from Chapter 2 are 
summarized and new concepts that pertain to WaveTables are introduced in the next 
section. 

Summary of Musical Acoustics 

When matter vibrates, a pressure disturbance is created in the surrounding air. The pressure 
disturbance travels as a wave to your ears and you hear a sound. A sound, particularly if 
it's a musical sound, can be characterized by its waveform, the shape of the air pressure's 
rise and fall. Waveforms created by musical instruments are generally periodic; this means 
that the pressure rises and falls in a cyclical pattern. 
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A periodic waveform has two basic characteristics, frequency and amplitude: 

• The number of pattern repetitions, or periods, within a given amount of time determines 
a sound's frequency (pitch). Frequency is measured in hertz (abbreviated Hz), or cycles 
per second. For example, a musical sound with a period that repeats itself 440 times a 
second produces a tone at 440 Hz (A above middle C). 

• The amplitude of a sound wave is the amount of energy in the air pressure disturbance. 
Amplitude is heard as loudness-the greater the energy, the louder the sound. (There 
are other factors that contribute to the loudness of a sound, but amplitude is generally 
the most important.) A number of different methods are used to measure loudness; of 
greatest use for musical purposes is to describe the loudness of a sound (or, as we shall 
see, a component of a sound) in comparison with another sound (or sound component). 

A special waveform is the sine wave: Sine waves are important to musical acoustics in that 
they define the basic component used to describe musical sounds: Any periodic waveform 
can be broken down into one or more sine waves. The sine waves that make up a musical 
sound have frequencies that are (usually) integer multiples of a basic frequency called the 
fundamental. For example, if you pluck the B string on a guitar, it produces a fundamental 
frequency of approximately 494 Hz. However, the sound that's produced contains sine 
waves with frequencies that are integer multiples of 494: 

494 * 1 = 494 
494 * 2 = 988 
494 * 3 = 1482 
494 * 4 = 1976 
and so on 

Sine wave components, or partials, that are related to each other as integer multiples of a 
fundamental frequency are said to make up a harmonic series. A musical sound can also 
have partials that are inharmonically related to the fundamental; for example, the shimmer 
and pungency of a bell's tone is created by the abundance of inharmonic partials. However, 
as explained later, a WaveTable object is best suited to represent timbres that are created 
from a harmonic series. 

The partials in a sound have amplitudes that are measured in relation to each other. For the 
guitar, the amplitude of each successive sine wave is generally less than that of the previous 
partial. 

The fundamental (the partial at the fundamental frequency) needn't have the greatest 
amplitUde of all the partials, nor must successive partials decrease in amplitude. Some 
instruments, such as the bassoon, have very little energy at the fundamental. Nonetheless, 
your ears decode the information in a harmonic series such that there is rarely confusion 
about the frequency of the fundamental; in other words, we almost always hear the 
fundamental as the frequency that's the least common denominator of the partials that make 
up the sound. 
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Constructing a Wave Table 

A Wave Table object represents one complete period of a musical waveform. There are two 
ways to create a WaveTable, as embodied by WaveTable's subclasses, Partials and Samples: 

With a Partials object, you can define a WaveTable by specifying the individual partials 
that make up the waveform. 

• A Samples object represents a waveform as a series of sound samples. It uses a Sound 
object (defined by the Sound Kit) as its data. 

The Partials Class 

You define a Partials object by supplying the frequency, amplitude, and phase information 
for a series of partials. This is done through the method 
setPartiaICount:freqRatios:ampRatios:phases:orDefauItPhase:. The first argument is 
the number of partials; the next three arguments are arrays of double data that specify the 
frequency ratios, amplitude ratios, and initial phases of the partials, respectively. You can 
also set the phase as a constant by passing a double as the argument to the orDefaultPhase: 
keyword. In this case, you must pass NULL as the argument to phases:. 

In the following example, a waveform is created from a series of partials that are integer 
multiples of a fundamental frequency; the partials decrease in amplitude as they increase in 
frequency. 

/* Create the Partials object. */ 

id aPartials = [Partials new]; 

double freqs[] = {1.O,2.0,3.0,4.0,5.0,6.0}; 

double amps[] = {1.O,O.5,O.25,O.12,O.06,O.03}; 

/* Fill the object with data. */ 

[aPartials setPartialCount:6 

freqRatios:freqs 

ampRatios:amps 

phases:NULL 

orDefaultPhase:O.O]; 

Note: Phase is generally unimportant in creating musical timbres, although it can 
drastically affect a waveform that's used as a low-frequency control signal, such as vibrato. 

The frequencies in a Partials object are specified as ratios, or multiples, of a fundamental 
frequency (the fundamental is represented by a frequency ratio of 1.0). The actual 
(fundamental) frequency of the waveform created from a Partials depends on the how the 
object is used by the SynthPatch that synthesizes it. In general, the waveform is 
"transposed" to produce the frequency specified in a Note's frequency parameter, 
MK_freq. Similarly, the amplitude of each partial is relative to the value of another 
parameter, usually MK_amp. 
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The Samples Class 

The Samples class lets you create a WaveTable through association with a Sound object (an 
instance of the Sound Kit's Sound class). This is done by invoking the Samples' setSound: 
method: 

/* You must import the Sound Kit's header file. */ 

#import <soundkit/soundkit.h> 

/* Create a Samples object and a Sound object. */ 

id aSamples = [Samples new]; 

id aSound = [Sound new]; 

/* Fill the Sound with data. */ 

/* Associate the Sound with the Samples. */ 

[aSamples setSound:aSound]; 

A copy of the Sound object is created and stored in the Samples object when setSound: is 
invoked, so it's important that you fill the Sound with data before invoking the method. 
Chapter 2 describes ways to create Sound data. 

You can also associate a Samples with a Sound by reading a soundfile, through the 
readSoundfile: method. The Samples object creates a Sound object and then reads the 
soundfile by sending newFromSoundfile: to the Sound. The argument is a UNIX 
pathname that must include the soundfile-identifying ".snd" extension. 

A Samples' Sound object must contain one channel of 16-bit linear, sampled data. The 
length of the data (the number of samples) must be a power of two. 

Setting a Wave Table in a Note 

To hear the timbre represented by a WaveTable object, you set the Wave Table as a 
parameter of a Note and then play the Note using a SynthPatch that recognizes the 
parameter. Most of the Music Kit SynthPatches recognize the MK _waveform parameter: 

/* Create a Note. */ 

id aNote [Note new]; 

/* Set its MK waveform value. */ 
[aNote setPar:MK_waveform toWaveTable:aPartials]; 

In this example, the value of MK _waveform is set to the previously defined Partials object, 
aPartials. The manner in which the Partials object is used during synthesis depends on the 
SynthPatch to which the Note is sent. 

3-34 Chapter 3: Representing Music Data 



Grouping Notes 

The Part and Score classes are designed to group Note objects. As their names imply, a Part 
represents a series of Notes that are realized on the same Instrument; a Score represents all 
or part of a composition and consists of some number of Parts. For storage, a Score can be 
written to the disk as a scorefile or a midifile. 

The first part of this section explains the methods used to add Notes to Parts, Parts to Scores, 
and to write a Score as a file. The second part, "Retrieving Scores, Parts, and Notes," 
presents methods and techniques for retrieving, querying, and further manipulating Parts, 
Scores, and the Notes they contain. Finally, the special Notes called Part info and Score 
info are described. 

Constructing a Score 

Adding a Note to a Part 

A Part is a time tag sorted collection of Note objects. A Part can contain any number of 
Notes. While the Notes within a Part are sorted by time tag value, every Note in the Part 
needn't have a unique time tag; a Part can represent simultaneous (and otherwise 
overlapping) Notes. However, a single Note can only belong to one Part at a time. 

There are three methods for adding a Note to a Part: 

• addToPart:, a Note method 
• addNote:, a Part method 
• addNoteCopy:, also a Part method 

The first two are functionally equivalent, allowing you to add a Note to a Part by messaging 
either object: 

[myNote addToPart:myPart); 

/* is the same as */ 

[myPart addNote:myNote); 

Since a Note object can only belong to one Part at a time, when you add a Note to a Part, 
it's first removed from the Part that it's currently a member of, if any. Both addNote: and 
addToPart: return the id of the Note's old Part (the Part from which the Note was 
removed). 

addNoteCopy: creates (and returns) a new Note object as a copy of its argument and adds 
the copy to the receiver. The argument Note itself isn't removed from its Part. The method 
creates the Note copy by invoking Note's copy method. 

You can continue to modify a Note (setting its parameter values, note type, time tag, and so 
on) after it has been added to a Part object. A Part sorts its Notes automatically, so you can 
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add them in any order-you don't have to add them by order of their time tag values. If you 
change the time tag of a Note after you add it to a Part, the Note is automatically 
repositioned in the Part. 

Methods for adding a collection of Notes to a Part-for instance, adding the contents of one 
Part to another Part-are described below, in the section "Adding and Removing Groups of 
Notes." 

Naming a Part 

A Part object has a print name that's used when writing it to a scorefile (or, more accurately, 
when the Score to which the Part belongs is written to a scorefile). The MKNameObjectO 
function is used to name a Part; like all Music Kit names, a Part's name is case-sensitive 
and consists of a letter followed by a string of alphanumeric characters: 

MKNameObject("Solo", aPart); 

To retrieve a Part's name, call the C function MKGetObjectNameO: 

char *aName = MKGetObjectName(aPart); 

Adding a Part to a Score 

To add a Part to a Score, invoke one of these methods: 

• addToScore:, a Part method 
• addPart:, a Score method 

A Score can contain any number of Parts; a Part can belong to only one Score at a time. 
Both of the Part -adding methods first remove the Part from its present Score, if any. 

Just as you can modify a Note after it has been added to a Part, you can continue to modify 
a Part (by adding and removing Notes, for example) after it has been added to a Score. 

Writing a Score to a File 

You write a scorefile by sending one of the following messages to a Score object: 

• writeScorefile: takes a file name (char *) argument. 
• writeScorefileStream: takes a stream pointer (NXStream *) argument. 
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The first of these opens and closes the file for you. Every time you send the writeScorefile: 
message, the named file is overwritten. By convention, scorefiles are given a ".score" 
extension. 

writeScorefileStream: expects a stream pointer that's already open for writing. The 
method leaves the stream open after it returns, allowing you to write additional, 
application-specific information to the end of the file. It's left to your application to close 
the stream. 

Rather than write an entire Score to a file, you can specify a particular section by sending 
the writeScorefile:firstTimeTag:lastTimeTag:timeShift: message (a similar method, 
with an initial keyword of writeScorefileStream:, is provided for writing a section of a 
Score to a stream). For example: 

[myScore writeScorefile:"Adagio.score" firstTimeTag:3.5 

lastTimeTag:lO.2 timeShift:O.O] 

Here, only those Notes with time tag values between 3.5 and 10.2, inclusive, are written to 
the file. As a convenience, you can use the constant MK_ENDOFTIME as the 
lastTimeTag: argument to write from some position in the Score to its end: 

[myScore writeScorefile:mySfile firstTimeTag:3.5 
lastTimeTag:MK_ENDOFTIME timeShift:O.O] 

To write from the beginning of the Score, you specify 0.0 as the firstTimeTag: argument. 
The timeShift: takes a value that specifies the number of beats by which the Notes are 
time-shifted as they're represented in the file. Only the file representation is affected by this 
value; in other words, the Notes themselves aren't time-shifted (their time tags aren't 
affected). 

For each of the scorefile-writing methods, there is an analogous method that writes a 
Standard MIDI file. 

Retrieving Scores, Parts, and Notes 

Reading a File 

You can fill a Score with information simply by reading a scorefile (or MIDI file; for 
brevity, scorefiles are used exclusively in the examples). The methods provided for reading 
a scorefile are analogous to those for writing: 

• readScorefile: takes a file name argument. 
• readScorefileStream: takes an NXStream pointer argument. 

When you read a scorefile into a Score object, Part and Note objects are automatically 
created to accommodate the information in the file. 
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You can specify a section of the scorefile and a time shift on that section by adding the 
firstTimeTag:lastTimeTag:timeShift: keywords. For example: 

[myScore readScorefile:"Adagio.score" 

firstTimeTag:6.5 lastTimeTag:MK_ENDOFTIME timeShift:-6.5] 

Notes represented in the file that have time tag values greater than or equal to 6.5 are read 
into the Score. Within the Score, each Note's time tag is shifted ahead in time (toward the 
chronological beginning of a Part) by 6.5 beats. 

Finding a Part in a Score 

The complete set of a Score's Parts, regardless of how the Score was created, can be 
retrieved through Score's part method. The method returns the Parts in a List. The Score 
method partCount gives the number of Parts that it contains. 

Retrieving a Note from a Part 

There are a number of ways to retrieve a Note from a Part. One way is to access the Note 
by its time tag value through one of the following Part methods: 

• The atTime: method returns the first Note object with the specified time tag value. 

atOrAfterTime: returns the first Note with a time tag greater than or equal to the 
argument. 

Both methods take a double argument and they both return nil if they can't find an 
appropriate Note. The following example illustrates the difference between the two 
methods: 

/* Create a Part, two Notes, and an id 

id aPart [Part new] , 

aNote [Note newSetTimeTag:2.0], 

bNote [Note newSetTimeTag:3.0], 

returnNote; 

/* Add the Notes to the Part. */ 

[aPart addNote:bNote]; 

[aPart addNote:aNote]; 

for return values. */ 

/* Retrieve the Note at time 1.5. (Returns nil; no such Note.) */ 

returnNote = [aPart atTime:l.5]; 

/* Retrieve the Note at or after 1.5. (Returns aNote.) */ 

returnNote = [aPart atOrAfterTime:l.5]; 
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You can also retrieve a Note by its ordinal position within its Part by sending the message 
nth: to the Part object. It takes an integer argument n and returns the nth Note, zero-based, 
in the Part. Using the same Part object from the previous example, the message 

[aPart nth:l] 

returns bNote, the second Note in the Part. Recall that within a Part, Notes are ordered by 
their time tag values; the order of Notes with equivalent time tags reflects the order in 
which they were added to the Part. 

The time tag and the ordinal methods of retrieving Notes are combined in the methods 
atTime:nth: and atOrAfterTime:nth:. The first ofthese methods returns the nth Note 
with the specified time tag; through this method you can retrieve a particular Note in a 
chord. The atOrAfterTime:nth: method returns the nth Note with a time tag equal to or 
greater than the first argument. 

The next: method also retrieves Notes based on ordinal position: It returns the Note that 
immediately follows the Note given as the argument. next: can be used to access each Note 
in a Part in turn: 

/* Initially set aNote to the first Note in the Part. */ 
id aNote = [aPart nth:O]; 

/* Access each Note in the Part and change it to MK mute. */ 

while (aNote = [aPart next:aNote]) 
[aNote setNoteType:MK_mute]; 

next: returns nil if there is no next Note, or if the argument isn't a member of the Part. A 
more efficient way of accessing each Note in a Part is to create a List of the Notes in a Part 
and step down the List. The previous example can be rewritten as follows: 

/* Create a Sequence over the Part's Notes. */ 

id notes = [aPart notes]; 
int noteCount = [aPart noteCount]; 
int i; 
/* Access each Note in the Sequence and change its note type. */ 
for (i=O; i<noteCount; i++) 

[[notes objectAt:i] setNoteType:MK_mute]; 

Removing a Note from a Part 

The Part class defines two methods for removing individual Notes from a Part object: 

• removeNote: removes the Note object specified in the argument. 

removeNotes: removes all Notes common to the receiver and the List specified in the 
argument. 
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You can also remove a Note from its Part by sending the removeFromPart: message to the 
Note object. The Part object from which the Note was removed is returned. 

Adding and Removing Groups of Notes 

The Part class defines methods that allow you to add and remove Notes as a collection. 
There are two methods for adding a collection of Notes: 

addNotes:timeShift: 
addNoteCopies:timeShift: 

The first argument is a List of Notes. The second argument is an optional value in beats (a 
double) that's used to offset each Note's time tag. The addNotes:timeShift: method 
removes each Note in the collection from the Part that it's currently a member of before 
adding it to the receiver. The addNoteCopies:timeShift: method adds copies of each Note 
in the List. 

To remove a List of Notes, you can invoke the method removeNotes:, which takes a List 
of Notes and removes each one from the receiver. 

Finally, you can remove all the Notes from a Part through the empty method. 
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Chapter 4 
Music Synthesis 

There are four levels of Music Kit classes involved in synthesizing music on the DSP: 

• At the top level is the SynthInstrument class; an inheritor from Instrument, it provides 
an interface between the Music Kit performance mechanism and DSP synthesis. A 
SynthInstrument distributes Notes that it receives during a performance to individual 
SynthPatch objects that control the actual synthesis. 

• SynthPatch, an abstract class, embodies the principles of music synthesis. Each 
subclass of SynthPatch represents a particular synthesis strategy; each SynthPatch 
object synthesizes one Note at a time, using the strategy defined by its class. 

• The UnitGenerator class is also abstract; each of its subclasses represents a signal 
processing function that runs on the DSP. These are the basic building blocks of music 
synthesis that a SynthPatch subclass configures to define its synthesis strategy. At the 
same level as UnitGenerator is the SynthData class. Instances of SynthData represent 
portions of DSP memory that hold synthesis data such as wavetables and delay 
memory. In addition, SynthData objects are used to transmit data between 
UnitGenerator objects. 

• The Orchestra represents the DSP itself. It manages the allocation of DSP resources 
and controls communication between the DSP and the host. Requests for use of the 
DSP are always made through messages to the Orchestra; this includes requests made 
by a SynthInstrument for more SynthPatches, and those of a SynthPatch for 
UnitGenerators and SynthData objects. 

The SynthInstrument class is described in the next chapter, "Music Performance." The rest 
of this chapter is devoted to the other classes listed above. 

The Orchestra Class 

The Orchestra class manages DSP resources used in music synthesis. Each instance of 
Orchestra represents a single DSP; in the basic NeXT configuration, there's only one DSP 
so you create only one Orchestra object. 

The methods defined by the Orchestra class let you manage a DSP by allocating portions 
of its memory for specific synthesis modules and by setting its processing characteristics. 
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You can allocate entire SynthPatches or individual UnitGenerator and SynthData objects 
through Orchestra methods. Primary among these are: 

• allocSynthPatch: allocates an instance of the given SynthPatch subclass. 
• allocUnitGenerator: does the same for a UnitGenerator subclass. 
• allocSynthData:length: allocates a portion of DSP memory of a given length. 

Keep in mind, however, that similar methods defined in other classes-specifically, the 
SynthPatch allocation methods defined in SynthInstrument, and the UnitGenerator and 
SynthData allocation methods defined in SynthPatch-are built upon and designed to usurp 
the allocation methods defined by Orchestra. You only to need to allocate synthesis objects 
directly if you want to assemble sound-making modules at a low level. 

Sharing Allocations 

To avoid creating duplicate synthesis modules on the DSP, each instance of Orchestra 
maintains a shared object table. Objects on the table are SynthPatches, SynthDatas, and 
UnitGenerators; each is indexed by some other object that represents the shared object. For 
example, the OscgafUG UnitGenerator (a family of oscillators) lets you specify its 
waveform-generating wave table as a Partials object (you can also set it as a Samples object; 
for the purposes of this example we only consider the Partials case). When its wave table 
is set through the setTable:length: method, the oscillator allocates a SynthData object from 
the Orchestra to represent the DSP memory that will hold the waveform data computed 
from the Partials. It also places the SynthData on the shared object table using the Partials 
as an index by sending the message 

[Orchestra installSharedSynthData:theSynthData for:thePartials]; 

If another oscillator's wave table is set as the same Partials object, the already allocated 
SynthData can be returned by sending the message 

id aSynthData = [Orchestra sharedObjectFor:thePartials]; 

The method installSharedObject:for: is provided for installing SynthPatches and 
U nitGenerators. 

Orchestra's Device Status 

Before you can do anything with an Orchestra-particularly, before you can allocate 
synthesis objects-you must create and open it. As usual, creation is done through the alloc 
and init methods; to open an Orchestra, you send it the open message. This provides a 
channel of communication with the DSP that the Orchestra represents. The DSP can be 
opened by only one application at a time, so you should always check the value returned by 
open; the method returns nil if the DSP couldn't be opened. 
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Once you've allocated the objects that you want, either through the methods described 
above or through those defined by Synthlnstrument and SynthPatch, you can start the 
synthesis by sending the run message to the Orchestra. The stop method halts synthesis 
and close breaks communication with the DSP. These methods change the Orchestra's 
status, which is always one of the following MKDeviceStatus values: 

Status 

MK_devOpen 
MK_devRunning 
MK_devStopped 
MK_devClosed 

Meaning 

The Orchestra is open but not running. 
The Orchestra is open and running. 
The Orchestra has been running but is now stopped. 
The Orchestra is closed. 

You can query an Orchestra's status through the deviceStatus method. 

Orchestra Output 

When the Orchestra is running it produces a stream of samples that, by default, are sent to 
the stereo digital to analog converter (DAC), which converts the samples into an audio 
signal. Instead, you can tell the Orchestra to write the samples to a soundfile by invoking 
the method setOutputSoundfile: (you must set the soundfile before sending run to the 
Orchestra). 

The Music Kit SynthPatch Subclasses 

Pluck 

The Music Kit provides a number of SynthPatch subclasses, instances of which you can use 
in your application. SynthPatch objects are "data-driven"; during a performance, they're 
sent Note objects (through methods described in the next section) from which they pluck 
the parameters of interest. Thus, in order to use a SynthPatch, you must know not only what 
sort of synthesis it embodies, but which parameters it expects to see in the Notes it receives. 
A table of the Music Kit parameters organized by SynthPatch synthesis technique is given 
in Appendix B, "Music Tables." Below, the Music Kit SynthPatch subclasses are listed and 
briefly described. 

Pluck employs physical modelling to synthesize the sound of a plucked string. The 
real-world mechanics of a plectrum plucking a string are replaced on the DSP by a burst of 
noise filling a length of delay memory. The delay memory is looped and filtered, causing 
the initial noise burst to gradually become more harmonic as the spectral energy subsides 
towards the fundamental, emulating the strike-and-fade characteristics of a real plucked 
string. 
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Wavetable Synthesis 

Wavetable synthesis is a technique in which a length of memory is filled with one or more 
periods of a waveform; the memory is then looped during playback to produce a continuous 
signal. While wavetable synthesis is extremely easy to use-no messy formulas are needed 
to create a musical timbre-it's somewhat limited to the extent that you don't have control 
over the individual elements that create the timbre (which you do with techniques such as 
frequency modulation). 

The Music Kit's wavetable synthesis SynthPatches use single-period wavetables; they are: 

SynthPatch 

Wavel 
Wavelv 
Waveli 
Wavelvi 
DBWavelv 
DBWavelvi 
DBWave2vi 

Description 

One wavetable 
One wavetable with vibrato 
One wavetable with frequency interpolation 
One wavetable with vibrato and interpolation 
One database wavetable with vibrato 
One database wavetable with vibrato and interpolation 
Two database wavetables with vibrato and interpolation 

The database wavetable SynthPatches access the Music Kit's Wave Table Database, a 
library of predefined timbres. These are listed in the "Music Tables" appendix. 

Frequency Modulation 

In frequency modulation (fm) synthesis, the output of one oscillator controls the frequency 
of another oscillator. If the frequency of the controlling oscillator (or "modulator") is 
subaudio, the tone produced by the controlled oscillator (or "carrier") will exhibit vibrato. 
However, as the modulator's frequency is increased, the carrier's vibrato also increases until 
the individual undulation become indistinguishable and sidebands, or reflections of the 
modulator's frequency around the carrier's frequency, appear. If the oscillators are 
producing sine waves with identical or harmonically-related frequencies, the sidebands 
produce a harmonic series. As the oscillators' waveforms become more complex, the 
sidebands become more numerous, but they may still produce a harmonic series. However, 
if the oscillators' frequencies aren't harmonically related, the result can be a clangorous 
mess (which is good if you're trying to make bell sounds, one of the more popular and 
occasionally unavoidable results of fm synthesis). 

SynthPatch 

Fml 
Fmli 
Fmlv 
Fmlvi 
Fm2cvi 
Fm2cnvi 
Fm2pvi 
Fm2pnvi 
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Description 

Simple (one-modulator) fm 
Simple fm with frequency interpolation 
Simple fm with vibrato 
Simple fm with interpolation and vibrato 
Cascade fm 
Cascade fm with random modulation (noise) on the modulators 
Parallel fm 
Parallel fm with noise 



Building a SynthPatch 

The SynthPatch class is abstract; each subclass of SynthPatch describes a unique strategy 
for creating a musical sound. It does this by implementing methods that provide two things: 

• A patch specification. A patch is a configuration of DSP synthesis elements. 

• A scheme for playing the patch. This consists of defining the conditions in which the 
patch is turned on and off and how Note parameters are used to control it while it's 
running. 

Designing a patch is actually quite simple: The Music Kit provides an object-oriented 
interface to the DSP, thus protecting the SynthPatch designer from the rigors of 
programming directly in DSP56000 assembly code. While concern for efficiency makes 
some knowledge ofDSP memory organization necessary, SynthPatch design makes greater 
demands of your imagination in creating new sound-making schemes than of your ability 
to examine and grasp the small print of signal processing. 

The Music Kit defines a number of conventions for controlling a patch. Most of these 
conventions are manifested as methods that are declared as subclass responsibilities by the 
SynthPatch class. Other conventions are given as general guidelines that should be 
followed to maintain consistency with the SynthPatch subclasses provided by the Music 
Kit. 

A Simple SynthPatch 

This section describes, by example, the basic steps for creating a SynthPatch subclass. The 
example SynthPatch produces a single sine wave (with a settable frequency, amplitude, and 
bearing) for each Note it receives. The design is broken into two parts: designing the patch 
specification, and playing the patch. While the methodology shown for playing the patch 
introduces a number of SynthPatch design conventions, it lacks some important features 
that enhance musical flexibility. These features are shown in the more complex SynthPatch 
design demonstrated in the section "A Better SynthPatch," later in this chapter. 

Designing the Patch Specification 

Every SynthPatch contains a recipe for creating a patch. The ingredients of the patch are 
UnitGenerator and SynthData objects (collectively referred to as synthElements): 

• Each UnitGenerator subclass represents a specific signal processing function. The 
Music Kit supplies a number of UnitGenerator subclasses that perform functions such 
as creating and combining signals, filtering, and adding the finished product to the 
output sample stream. 
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• SynthData objects represent data. These objects can be used for downloading 
information to the DSP; for example, a WaveTable is represented on the DSP as a 
SynthData. Another important use of a SynthData is to provide a location through 
which one UnitGenerator can send data to another UnitGenerator. This type of 
SynthData object is called a patchpoint. 

The list of synthElement specifications and instructions for connecting these elements to 
each other are encapsulated in a PatchTemplate object. Every SynthPatch subclass creates 
at least one PatchTemplate-most create only one. A PatchTemplate is created and 
returned by the SynthPatch class method patchTemplateFor:, a subclass responsibility. In 
the following example, a single sine wave SynthPatch is declared and its 
patchTemplateFor: method is implemented: 

/* The following files must be imported. */ 

#import <musickit/musickit.h> 

#import <musickit/unitgenerators.h> 

#import <objc/List.h> 

/* We call our simple SynthPatch 'Simplicity'. */ 

@implementation Simplicity 

/* A static integer is created for each synthElement. */ 

static int osc, /* sine wave UnitGenerator */ 

stereoOut, /* sound output UnitGenerator */ 

outPatchpoint; /* SynthData */ 

+ patchTemplateFor:aNote 

/* The argument is ignored in this implementation. */ 
{ 

/* 
* Step 1: Create an instance of the PatchTemplate class. This 

* method is automatically invoked each time the SynthPatch 

* receives a Note. However, the PatchTemplate should only be 

* created the first time this method is invoked. If the object 

* has already been created, it's immediately returned. 

*/ 
static id theTemplate = nil; 

if (theTemplate) 

return theTemplate; 

theTemplate = [PatchTemplate new]; 

/* 
* Step 2: Add synthElement specifications to the PatchTernplate. 

* The first two are UnitGenerators; the last is a SynthData 

* that's used as a patchpoint. 

*/ 
osc = [theTernplate addUnitGenerator: [OscgUGxy class]]; 

stereoOut = [theTernplate addUnitGenerator: [Out2surnUGx class]]; 

outPatchpoint = [theTernplate addPatchpoint:MK_xPatch]; 
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/* Step 3: Specify the connections between synthElements. */ 

[theTemplate to:osc sel:@selector(setOutput:) arg:outPatchpoint]; 

/* Always return the PatchTemplate. */ 
return theTemplate; 

After creating the PatchTemplate instance (step 1 in the example), synthElement 
specifications are added to it (step 2) using methods defined by the PatchTemplate 
class. There are three basic methods to do this (a fourth method will be discussed later): 

addU nitGenerator: 
addSynthData:length: 
addPatchpoint: 

Each of these methods returns an integer value that's used as an index to the added 
synthElement. Subsequent references to the synthElements are always made through these 
indices. Since all instances of a particular SynthPatch subclass use the same set of indices, 
the variables that store the values returned by these methods must be declared statically and 
be made global to the entire class. 

Finally, instructions for connecting the synthElements are specified by invoking 
PatchTemplate's to:sel:arg: method (step 3). The arguments to this method are the 
receiver, selector, and argument, respectively, of a message that will be sent when a 
SynthPatch instance is created. Simplicity specifies a single connection: 

[theTemplate to:osc sel:@selector(setOutput:) 
arg:outPatchpoint] 

When an instance of Simplicity is created and played, the output of the UnitGenerator 
indexed by osc will be set to the SynthData indexed by outPatchpoint. 

Simplicity's SynthElements Examined 

To understand the synthElements used in the example, you need to be familiar with a simple 
detail of DSP memory organization. DSP memory is divided into three sections, x, y, and 
p. x and y memory are used for data; p memory is used for program code. Thus, SynthData 
objects represent data in either x or y memory, while UnitGenerators represent DSP 
functions that always reside in p memory. This is illustrated in Figure 4-1. 
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p: x: y: 

Figure 4-1. DSP Memory Division 

The Music Kit further divides DSP memory into logical segments, represented as integer 
constants. In designing a SynthPatch, you only need to be concerned with four of these 
segments: 

MK _ xPatch is used for patchpoints in x memory. 
MK_yPatch is for patchpoints in y memory. 
MK _ xData is for non-patchpoint SynthData objects in x memory. 
MK _yData is for non-patchpoint SynthData objects in y memory. 

A SynthData object is specified by its segment. For example, Simplicity's patch contains 
a single SynthData (a patchpoint) that resides in x memory, as set in the message 

/* Add an x segment patchpoint. */ 

[theTemplate addPatchpoint:MK_xPatch] 

UnitGenerators also refer to x and y memory in order to properly read and write data. 
Recall the first UnitGenerator added to Simplicity's patch: 

[theTemplate addUnitGenerator: [OscgUGxy class]] 

The "x" and "y" in the class name OscgUGxy refer to x and y memory spaces, respectively. 
OscgUGxy is a simple UnitGenerator that has a single input for reading data and a single 
output for writing data. The order of these data spigots, or memory arguments, is given in 
the UnitGenerator name as output followed by input. Thus, OscgUGxy's writes data to x 
memory (output) and reads it from y memory (input). The Music Kit provides a class for 
each memory permutation: OscgUGyy, OscgUGyx, OscgUGxy, and OscgUGxx. These 
are called leaf classes of the master class OscgUG. Aside from the differing memory 
references, the leaf classes are exactly the same. Every UnitGenerator function provided 
by the Music Kit is similarly organized into a master class and a complete set of leaf classes. 

Note: When describing a subclass of UnitGenerator, it's convenient to refer to the master 
class rather than a specific leaf class. Furthermore, the "UG" (which stands for 
"UnitGenerator") is often dropped from the master class name. 
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The Oscg family of Unit Generators provides a general oscillator function (the "g" in Oscg 
stands for "general"). An oscillator is a module that creates a signal by cycling over a table 
of values, called a lookup table, that represents a single period of a waveform. In a general 
oscillator, the lookup table isn't part of the UnitGenerator. You can supply the oscillator 
with a lookup table by using a WaveTable object (this will be demonstrated in a subsequent 
example). Alternatively, the oscillator can use the built-in sineROM, a read-only section of 
y memory that contains a single period of a sine wave. Simplicity's OscgUGxy does the 
latter: It reads the sineRom, therefore its input must read from y memory. In the example, 
the connection between the sineROM and OscgUGxy is made by default-it needn't be 
specified through the to:sel:arg: method. 

One of the conventions of designing a patch is to balance, as much as possible, the use of x 
and y memory. Since Simplicity's oscillator must read from y memory in order to read the 
sineROM, its output is set to x memory. So of the four Oscg leaf classes, OscgUGxy is 
chosen. 

The other UnitGenerator in Simplicity's patch, Out2sumUGx, is a special UnitGenerator 
that adds a stream of (two-channel) sample data to the stereo output sample stream. The 
single memory argument (the "x" in Out2sumUGx) is the UnitGenerator's input. 
Simplicity uses the Out2sumUGx leaf class so the UnitGenerator can read the MK_xPatch 
patchpoint that's written to by OscgUGxy. Figure 4-2 shows a diagram of the complete 
patch, superimposed on the DSP memory layout. 

p: x: y: 

Figure 4-2. Simplicity's Patch 

Notice that Figure 4-2 shows a connection between the patchpoint and the input of 
Out2Sum, a connection that isn't specified in Simplicity's PatchTemplate. By convention, 
the connection to the output UnitGenerator is implemented in a method that's invoked when 
the SynthPatch receives a noteOn. This method, called noteOnSelf:, is examined iii the 
next section. 
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Note: The illustration in Figure 4-2 introduces schematic conventions that will be used 
throughout this section: 

• UnitGenerators are drawn as half-circles (oscillators) or as inverted triangles 
(everything else). 

• A UnitGenerator's inputs are at the top of the icon, its outputs are on the bottom. 

• Patchpoints are drawn as diamonds. Other SynthData objects, including the predefined 
SynthData that represents the DSP sineROM, are rectangles. 

• Data written to a SynthData arrives at the left side of the icon. Data is read from the 
right. 

It's often convenient to represent a patch without including the patchpoints and without 
superimposing the schematic on the DSP memory diagram. Figure 4-3 shows Simplicity's 
patch in an abbreviated form. A SynthData's memory space is indicated by an x or y inside 
the icon. The spaces from which and to which a UnitGenerator reads and writes data is 
similarly indicated just to the right of each input and output. 

Figure 4-3. Conventional Patch Diagram 

Playing the Patch 

Keep in mind that a SynthPatch object is ordinarily created and controlled by an instance 
of Synthlnstrument. During a Music Kit performance, the Synthlnstrument distributes the 
Notes it receives to the various SynthPatch objects that it controls through the methods 
noteOn:, noteUpdate:, and note Off: (the Synthlnstrument treats a noteDur as a noteOn 
and manufactures a noteOff to balance it; also, the Synthlnstrument normally suppresses 
mutes). The design of a SynthPatch subclass must include a methodology to control the 
patch in response to these messages. This is done by implementing the following methods: 

• noteOnSelf: 
• noteUpdateSelf: 
• noteOffSelf: 
• noteEndSelf 
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As their names imply, the first three of these methods are invoked automatically when the 
SynthPatch receives a noteOn:, noteUpdate:, or noteOff: message, respectively. 
noteEndSelfis automatically invoked when the Note is completely finished and is provided 
to accommodate the release portion of the SynthPatch's Envelopes. 

Note: While these four methods aren't subclass responsibilities, the default 
implementations provided by the SynthPatch class do nothing. Thus, if you don't provide 
an implementation of, for example, noteUpdateSelf:, your SynthPatch won't respond to 
note Updates. 

The noteOnSelf: Method 

Simplicity, our example SynthPatch, implements noteOnSelf: as follows: 

- noteOnSelf:aNote 

/* Step 1: Read the parameters in the Note and apply them to the 
patch. */ 

[self applyParameters:aNote]; 

/* 

* Step 2: Turn on the patch by connecting the Out2sumUGx object 
* to the patchpoint and sending the run message to all the 
* synthElements. 
*/ 

[[self synthElementAt:stereoOut] 
setInput: [self synthElementAt:outPatchpoint]]; 

[synthElements makeObjectsPerform:@selector(run)]; 

return self; 

The first of the two steps, applying the Note parameters to the patch, is performed in the 
apply Parameters: method. The implementation of this method is described in a later 
section. 

The second step, turning on the patch, distinguishes the noteOnSelf: method from the 
others. The first message in step 2 sets the input of stereoOut (the Out2Sum 
UnitGenerator) to the patchpoint outPatchpoint (recall that this connection was purposely 
left unspecified in the PatchTemplate). The final message sends run to each of the 
SynthPatch's synthElements. This causes the UnitGenerators to begin operating. 

Note: While it isn't necessary to send run to the patch's patchpoint, it's convenient to send 
it to all synthElements as shown in the example. SynthData implements run to do nothing, 
so there's no harm in sending this message to a patchpoint. 
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The extremely important step of actually creating and connecting the objects that make up 
Simplicity's patch is performed automatically. As described in the next chapter, part of a 
SynthInstrument's duties when it receives a Note is to allocate an appropriate SynthPatch 
object to synthesize the Note. It does this by sending patchTemplateFor: to its SynthPatch 
subclass with the received Note as the argument. As we have seen, this method returns a 
PatchTemplate object. It then allocates a SynthPatch according to the specifications in the 
PatchTemplate and forwards the Note to the SynthPatch through the noteOn: method. 
Thus, by the time the SynthPatch receives the noteOnSelf: message (which is sent by 
noteOn:) the patch has already been created. 

A SynthPatch contains a List of the objects that make up its patch in its synthElements 
instance variable. In the example above, a use of this instance variable is given as the 
receiver of the message that causes the UnitGenerators to start running: 

[synthElements makeObjectsPerform:@selector(run)]; 

You can retrieve a particular object from the synthElements List by invoking the 
synthElementAt: method, passing the index of the synthElement as the argument. This is 
demonstrated in the example above in the line 

[[self synthElementAt:stereoOut] 

setlnput: [self synthElementAt:outPatchpoint]]; 

synthElementAt:stereoOut returns an instance of the object indexed by stereoOut. In 
other words, it returns an instance of the Out2sumUGx class, as specified in Simplicity's 
patchTemplateFor: method. Similarly, synthElementAt:outPatchpoint returns 
Simplicity's patchpoint. 

Finally, the return value of noteOnSelf: is significant: If the method returns nil, the 
argument Note isn't synthesized. Simplicity's implementation always returns self so all 
noteOns that it receives are synthesized. 

The noteUpdateSelf: Method 

Simplicity's implementation of noteUpdateSelf: is straightforward; it simply applies its 
argument's parameters to the patch: 

- noteUpdateSelf:aNote 

[self applyParameters:aNote]; 

return self; 

The value returned by noteUpdateSelf: is ignored. 
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The noteOffSelf: and noteEndSelf Methods 

noteOffSelf: and noteEndSelf work together to wind down and deactivate a SynthPatch. 
As mentioned earlier, noteOffSelf: is automatically sent when a noteOff is forwarded to the 
SynthPatch through the note Off: method. When a noteOff arrives, the SynthPatch doesn't 
stop; rather, the noteOff is taken as a signal to begin the release portions of any Envelopes 
that are part of the patch. The value returned by noteOffSelf: is taken as the amount of 
time, in seconds, to wait before invoking noteEnd; this value is usually the release time of 
the SynthPatch's amplitude envelope. Since Simplicity doesn't have any Envelopes, its 
implementation of noteOffSelf: always returns 0.0 (an example of a SynthPatch that uses 
Envelopes is given later): 

- (double)noteOffSelf:aNote 

[self applyParameters:aNote]; 

/* No Envelopes, so no release time is needed. */ 

return 0.0; 

Even though a noteOff is the beginning of the end of a SynthPatch's activity, the Note may 
contain some parameters; these parameters are applied just as in the other methods, by 
invoking apply Parameters:. 

After waiting the prescribed amount of time, the noteEnd message is sent. noteEnd 
invokes noteEndSelf, a method that deactivates the SynthPatch: 

- noteEndSelf 

/* Deactivate the SynthPatch by idling the output. */ 

[[self synthElementAt:stereoOut] idle]; 

return self; 

The idle method is implemented by all subclasses of Unit Generator. In its implementation 
of idle, Out2sum connects its input to a predefined patchpoint that always contains zero 
data (the data in the patchpoint consists wholly of zeroes). This effectively turns off the 
patch. Notice that the SynthPatch isn't freed, nor is its patch (as specified in the 
Patch Template ) dismantled. An important convention of SynthPatch design is to perform 
the minimum amount of work necessary when deactivating the object. This makes both the 
deactivation itself and a subsequent reactivation (when another note On arrives) as efficient 
as possible. 

It should be noted that noteEnd (and, thus, noteEndSelf) is also invoked when the 
SynthPatch is created, thereby ensuring that the patch is silent until the first Note is 
received. This also explains why the final connection to Out2sum isn't specified in the 
PatchTemplate-if it was so specified, the connection would be made only to be 
immediately severed upon reception of the noteEnd message (the patch is created before 
noteEnd is sent). 
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Applying Parameters 

The final step in our SynthPatch design is to supply it with parameter values. As mentioned 
earlier, Simplicity has three settable attributes: frequency, amplitude, and bearing. 
Simplicity implements the method applyParameters: to read the appropriate parameters 
from its argument Note and apply their values to the patch: 

- applyParameters:aNote 

/* Retrieve and store the parameters. */ 

double myFreq = [aNote freq); 

double myAmp = [aNote parAsDouble:MK_amp); 

double myBearing = [aNote parAsDouble:MK_bearing); 

/* Apply frequency if present. 

if ( !MKIsNoDVal(myFreq) ) 

[ [self synthElementAt:osc) 

/* Apply amplitude if present. 

if ( !MKIsNoDVal(myAmp) ) 

[ [self synthElementAt:osc) 

/* Apply bearing if present. */ 

if ( !MKIsNoDVal(myBearing) ) 

*/ 

setFreq:myFreq) ; 

*/ 

setAmp:myAmp); 

[[self synthElementAt:stereoOut) setBearing:myBearing); 

First, the parameters are retrieved from the argument Note. Notice that the freq method is 
used to retrieve frequency; recall from the description of the Note class that this method 
returns the value ofMKJreq or, in MK_freq's absence, a value converted from 
MK_keyNum. 

To apply a parameter value to the patch, you send a message to the UnitGenerator that 
controls that aspect of the patch. The Oscg UnitGenerator controls frequency and 
amplitude, so setFreq: and setAmp: are sent to the patch's OscgUGxy object. Out2sum 
controls bearing, so it receives setBearing:. These methods are defined in the 
UnitGenerators' master classes. 

The complete source code for Simplicity is provided as an example SynthPatch in the files 
Simplicity.m and Simplicity.h in the directory 

!NextDeveloper/Examples!MusicKit/exampsynthpatch 
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A Better SynthPatch 

Build a better SynthPatch and the world will beat a path to your door. This section improves 
the SynthPatch design shown in the previous sections. Of greatest significance is the 
envelope control that's added to both frequency and amplitude. The patch specification is 
accordingly more complex than in Simplicity. In addition, a number of conventions are 
introduced in the methods that play the patch, not only to accommodate envelope control 
but, more important, to make the SynthPatch more efficient and more adaptable to the 
caprice of musical performance. 

The SynthPatch designed here is called Envy. Like Simplicity, it produces a single sine 
wave with a settable frequency, amplitude, and bearing. 

Designing the Patch 

The following example shows the implementation of Envy's patchTempiateFor: method: 

/* Statically declare the synthElement indices. */ 

static int ampAsymp, /* amplitude envelope UG */ 

freqAsymp, /* frequency envelope UG */ 

osc, /* oscillator UG */ 

stereoOut, /* output UG */ 

ampPp, /* amplitude patchpoint */ 

freqPp, /* frequency patchpoint */ 

outPp; /* output patchpoint */ 

+ patchTemplateFor:aNote 

/* Step 1: Create (or return) the PatchTemplate. */ 

static id theTemplate nil; 

if (theTemplate) 

return theTemplate; 

theTemplate = [PatchTemplate new]; 

/* Step 2: Add the SynthElement specifications. */ 

ampAsymp = [theTemplate addUnitGenerator: [AsympUGx class]]; 

freqAsymp = [theTemplate addUnitGenerator: [AsympUGy class]]; 

osc = [theTemplate addUnitGenerator: [OscgafiUGxxyy class]]; 

stereoOut = [theTemplate addUnitGenerator: [Out2sumUGx class]]; 
ampPp = [theTemplate addPatchpoint:MK_xPatch]; 

freqPp = [theTemplate addPatchpoint:MK yPatch]; 

outpp = ampPp; 
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/* Step 3: Specify the connections. */ 
[theTemplate to:ampAsymp sel:@selector(setOutput:) arg:ampPp]; 

[theTemplate to:freqAsymp sel:@selector(setOutput:) arg:freqPp]; 

[theTemplate to:osc sel:@selector(setAmpInput:) arg:ampPp]; 

[theTemplate to:osc sel:@selector(setIncInput:) arg:freqPp]; 
[theTemplate to:osc sel:@selector(setOutput:) arg:outPp]; 

/* Return the PatchTemplate. */ 

return theTemplate; 

The three-step design outline is the same as in Simplicity: The PatchTemplate is created, 
the synthElement specifications are added to the PatchTemplate, and the connections 
between SynthElements are specified. However, two new UnitGenerator families, Oscgafi 
and Asymp, are introduced. These are examined in the next sections; briefly, Oscgafi is a 
general oscillator that allows another UnitGenerator to its amplitude and frequency. Asymp 
is an envelope handler; it's used to apply Envelope objects to the patch. The patch is 
illustrated in Figure 4-4. 

Figure 4-4. Envy's Patch 

Returning to the code example, notice that ampPp and outPp are given the same value: 

ampPp [theTemplate addPatchpoint:MK_xPatch]; 

outpp ampPp; 

When the patch is created, these two synthElement indices will refer to the same object. In 
other words, the patchpoint that's used in the connection between ampAsymp and osc is 
reused in the connection between osc and stereo Out. Reusing patchpoints makes the patch 
smaller and more efficient. However, you can only reuse patchpoints if the patch's 
UnitGenerators are executed in a predictable order. Consider how Envy's UnitGenerators 
use the shared patchpoint: 
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1. ampAsymp writes to ampPp. 
2. osc reads from ampPp and writes to outPp. 
3. stereoOut reads from outPp. 

For the shared patchpoint scheme to work, the UnitGenerators must be executed in the order 
given---chaos would reign should stereo Out read from outPp before osc writes to it. The 
order in which a SynthPatch's UnitGenerators are executed is the order in which their 
specifications are added to the PatchTemplate. Thus, Envy's UnitGenerators are executed 
in the following order: 

1. ampAsymp 
2. freqAsymp 
3. osc 
4. stereoOut 

Since ampAsymp is executed before osc, and osc before stereoOut, the patchpoint 
between ampAsymp and osc can be reused as the patchpoint between osc and stereoOut. 

Note: For some patches, the order in which the UnitGenerators are executed doesn't 
matter. You can add UnitGenerators and declare their execution to be unordered by using 
the addUnitGenerator:ordered: method, passing NO as the second argument (the 
addUnitGenerator: is actually a shorthand; it invokes addUnitGenerator:ordered: with 
YES as the second argument). While you can't share patchpoints in a patch that uses 
unordered UnitGenerators, allocating the patch is somewhat more efficient. 

Oscgaji 

The Oscgafi UnitGenerator is the most flexible oscillator provided by the Music Kit. In 
addition to allowing envelope control of amplitude and frequency, it also performs an 
interpolation, minimizing the noise that's sometimes introduced when reading the lookup 
table. The components of the UnitGenerator's name summarize these features: 

Component Meaning 

Osc Oscillator 
g General 
a Amplitude control 
f Frequency control 
i Interpolation 

Oscgafi has four memory arguments, in this order: 

1. output 
2. amplitude control input 
3. frequency control input 
4. lookup table input 
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The permutations of a UnitGenerator with four memory arguments results in 16 leaf 
classes. Envy uses the xxyy version (OscgafiUGxxyy), so the memory arguments 
correspond to memory space as follows: 

Argument Space 

output x 
amplitude control x 
frequency control y 
lookup table y 

A notable difference between Oscg and Oscgafi is that in the latter, frequency and 
amplitude aren't set directly through messages to the oscillator. To control these attributes, 
you affect the UnitGenerators that are connected to Oscgafi's inputs. The Music Kit 
provides a C function, called MKUpdateAsympO that does this for you. This function is 
described later as it's used to apply parameter values to Envy's patch. 

In addition, Oscgafi's frequency input is actually an increment input-the oscillator's 
frequency is defined by the increment, or step size, that it uses when reading its lookup 
table. This explains why osc is connected to the freqPp patchpoint through the 
setInclnput: method: 

[theTemplate to:osc sel:@selector(setlnclnput:) arg:freqPp]; 

Oscgafi's incAtFreq: method is provided to translate frequencies into increments. This, 
too, will be used when applying parameter values. 

Asymp 

The Asymp UnitGenerator is an envelope handler; it translates the data in an Envelope 
object and loads it onto the DSP. An Envelope object is associated with an Asymp through 
the MKUpdateAsympO function. 

Envy uses two Asymps, one to control the frequency of Oscgafi and the other to control its 
amplitude. The leaf classes are chosen to match the memory arguments in Oscgafi: The 
Asymp leaf class that controls amplitude is AsympUGx; for frequency, it's AsympUGy. 
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Playing the Patch 

A number of new conventions for playing and controlling a SynthPatch are introduced in 
the following sections. In particular, the conventions regarding preemption, rearticulation, 
and "sticky" parameters are demonstrated. 

Declaring the Parameters 

A convention of SynthPatch design (one that wasn't followed in the implementation of 
Simplicity) is to create an instance variable for each parameter the SynthPatch responds to. 
The variables are used to maintain the state of the object's patch. 

Because of the introduction of envelope control into the patch, Envy responds to several 
more parameters than did Simplicity. These are shown as they are declared as instance 
variables in the SynthPatch's interface file (Envy.h): 

@interface Envy:SynthPatch 

/* Amplitude parameters. */ 
id ampEnv; /* the Envelope object for amplitude */ 
double ampl, /* amplitude at y=l */ 

ampO, /* amplitude at y=O */ 
ampAtt, /* ampEnv attack duration in seconds */ 
ampRel; /* ampEnv release duration in seconds*/ 

/* Frequency parameters. */ 

id freqEnv; 
double freql, 

freqO, 

/* the Envelope object for frequency */ 
/* frequency at y=l */ 
/* frequency at y=O */ 

freqAtt, /* freqEnv attack duration in seconds*/ 
freqRel; /* freqEnv release duration in seconds */ 

/* Other parameters. */ 
double portamento; /* transition time in seconds */ 
double bearing; /* stereo location */ 
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A set of defaults for the parameter instance variables should also be included in a 
SynthPatch design. Envy implements a method called setDefaults to provide this: 

- setDefaults 

ampEnv = nil; 
ampO = o .0; 
amp1 = MK_DEFAULTAMP; 1* 0.1 *1 
ampAtt = MK_NODVAL; 1* parameter not present 
ampRel = MK_NODVAL; 1* parameter not present 

freqEnv = nil; 
freqO = 0.0; 
freq1 = MK_DEFAULTFREQ; 1* 440.0 *1 
freqAtt = MK_NODVAL; 1* parameter not present 
freqRel = MK_NODVAL; 1* parameter not present 

portamento = MK_DEFAULTPORTAMENTO; 1* 0.1 *1 
bearing = MK_DEFAULTBEARING; 1* 0.0 (center) *1 

return self; 

*1 
*1 

*1 
*1 

By convention, a SynthPatch's parameter instance variables should be set to their default 
values before the SynthPatch begins a new phrase. This is done by invoking setDefaults 
from the noteEndSelf method. Keep in mind that noteEnd, which invokes noteEndSelf, 
is invoked when a new SynthPatch is created, so setDefaults: will be invoked before the 
first Note arrives as well as after the end of each phrase. 

However, one other condition must be considered-that of the preempted SynthPatch­
which, by definition, isn't sent the noteEnd message. The SynthPatch class defines a 
method preemptFor: that you can redefine in your subclass to reset the parameter instance 
variables to their default values and to provide any other special behavior for a preempted 
SynthPatch. The method is invoked just before the SynthPatch receives, in a noteOn: 
message, the Note for which it was preempted (the argument to preemptFor: is this same 
Note). Envy implements preemptFor: to preempt the amplitude Envelope and invoke 
setDefaults:. It ignores the argument: 

- preemptFor:aNote 
{ 

[[self synthElementAt:ampAsymp) preemptEnvelope); 
[self setDefaults); 
return self; 
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The noteOnSelj: and noteUpdateSelf: Methods 

These two methods follow the same form as those in Simplicity: 

- noteOnSelf:aNote 

/* Apply the parameters to the patch. */ 

[self applyParameters:aNote]; 

/* Make the final connection to the output sample stream.*/ 

[[self synthElementAt:stereoOut] setInput:outPp]; 

/* Tell the UnitGenerators to begin running. */ 

[synthElements makeObjectsPerform:@selector(run)]; 

return self; 

- noteUpdateSelf:aNote 

/* Apply the parameters to the patch. */ 

[self applyParameters:aNote]; 

return self; 

Once again, both methods invoke applyParameters: to apply the Note's parameters to the 
patch. In addition, noteOnSelf: completes the connection between Oscgafi and Out2sum, 
and it tells the UnitGenerators to run by sending run to each of the synthElements. 

The noteOffSelj: and noteEndSelj Methods 

Recall that the value returned by noteOffSelf: is taken as the amount of time to wait (in 
seconds) before noteEnd is invoked. Typically, this value is the release time of the 
SynthPatch's amplitude Envelope: 

- (double)noteOffSelf:aNote 

/* Apply the parameters. */ 
[self applyParameters: aNote]; 

/* Signal the release portion of the frequency Envelope. */ 

[[self synthElementAt:freqAsymp] finish]; 

/* Same for amplitude, but also return the release duration. */ 

return [[self synthElementAt:ampAsymp] finish]; 

An Asymp responds to the finish message by signaling the release portion of its Envelope; 
the method returns the duration of the release. 
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As in Simplicity, noteEndSelf sends idle to the Out2sum object to remove it from the 
output sample stream. It also aborts the frequency Envelope (we're assured that the 
amplitude Envelope has finished since its demise is what causes this method to be invoked) 
and then invokes the setDefaults method, as dictated in "Declaring the Parameters," above. 

- noteEndSelf 

/* Remove the patch's Out2sum from the output sample stream. */ 

[[self synthElementAt:stereoOut] idle]; 

/* Abort the frequency Envelope. */ 

[[self synthElementAt:freqAsymp] abortEnvelope]; 

/* Set the instance variables to their default values. */ 

[self setDefaults]; 

return self; 

Phrase Status 

The manner in which a Note's parameters are applied to a patch can depend on the 
performance context in which the SynthPatch receives the Note. This context, called 
phrase status, is represented as an MKPhraseStatus constant and is automatically set when 
the SynthPatch receives a phrase event message (such as noteOn: and noteUpdate:). 
There are seven phrase states: 

MK_phraseOn means that the received Note is a noteOn and the SynthPatch has been 
freshly allocated to synthesize the Note. This status indicates the beginning of a new 
phrase. 

• MK _phraseRearticulate indicates a noteOn that rearticulates an existing phrase. 

• MK _phraseOnPreempt is also used for noteOns, but it indicates that the SynthPatch 
has been preempted to synthesize the Note. Like MK _phraseOn, this status means 
that a new phrase is beginning. 

• MK _phraseUpdate means that the Note is a noteUpdate and the SynthPatch is in the 
attack or stickpoint portions of its Envelopes (the SynthPatch's synthStatus is 
MK Junning). 

MK _phrase Off indicates a noteOff. 

MK _phraseOffUpdate is for a note Update that arrives during the release portion of 
the Envelopes (synthStatus is MK_finishing). 

MK _phraseEnd is used to indicate the end of a phrase. 
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A SynthPatch's phrase status, which is retrieved by sending phraseStatus to the 
SynthPatch, is provided solely as a convenience to SynthPatch designers and is only valid 
within the implementations of the noteOnSelf:, noteUpdateSelf:, noteOffSelf:, and 
noteEndSelf methods. Sent to a SynthPatch from outside these methods, phraseStatus 
returns MK _ noPhraseActivity. 

You can use phrase status in the design of your SynthPatch in a test that leads to specialized 
behavior. For example, you may want to apply certain note Update parameters differently, 
depending on whether the phrase status is MK _phraseUpdate or MK _phraseOffUpdate. 
Two conventional uses of phrase status-as an argument to the MKUpdateAsympO 
function and to determine if a Note is the beginning of a new phrase-are demonstrated in 
the next section. 

Applying Parameters 

The way that Envy applies a Note's parameters is more sophisticated than the manner 
employed by Simplicity. A convention ignored in the design of Simplicity holds that a 
note On that rearticulates a phrase should inherit, if necessary, the values of the parameters 
in the phrase so far. For example, if a rearticulating noteOn doesn't contain an amplitude 
Envelope, it uses the one set in the previous noteOn. The implementation of Envy 
accommodates this by storing its parameter values as instance variables: It can supply a 
"missing" parameter by using the value stored in the appropriate variable. 

Determining the correct value for amplitude and frequency is more complicated in the 
implementation of Envy than in that of Simplicity. Because of its use of Envelope objects, 
Envy's amplitude and frequency depend on the values of a number of related parameters. 
The Music Kit provides a C function called MKUpdateAsympO that helps to untangle this 
web. The function takes, as arguments, all the objects and parameter values associated with 
a particular Envelope and applies them in a predictable manner to the attribute that the 
Envelope controls. 

MKUpdateAsympO takes eight arguments: 

1. An Asymp object 
2. An Envelope object 
3. The Envelope's value when y = 0.0 
4. The Envelope's value when y = 1.0 
5. The Envelope's attack time 
6. The Envelope's release time 
7. The portamento value 
8. The current phrase status 

The function's behavior is described in the Volume 2, Chapter 3. Briefly, it applies an 
Envelope (argument 2) to an Asymp (argument 1) after properly scaling the Envelope's 
value range (arguments 3 and 4) and setting its attack and release times (arguments 5 and 
6). Portamento (argument 7) is used only if the phrase status (argument 8) is 
MK _phraseRearticulate. 
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Envy's implementation of the apply Parameters: method demonstrates the conventional 
way to apply parameters to a patch that includes Envelopes: 

- applyParameters:aNote 

/* Retrieve and 

id myAmpEnv 

double myAmpO 

double myAmpl 

double myAmpAtt 

double myAmpRel 

store the parameters. */ 

id myFreqEnv 

double myFreqO 

double myFreql 

double myFreqAtt 

double myFreqRel 

double myPortamento 
double myBearing 

[aNote parAsEnvelope:MK_ampEnv]; 

[aNote parAsDouble:MK_ampO]; 

[aNote parAsDouble:MK_ampl]; 

[aNote parAsDouble:MK_ampAtt]; 
[aNote parAsDouble:MK_ampAtt]; 

[aNote parAsEnvelope:MK_freqEnv]; 

[aNote parAsDouble:MK_freqO]; 

[aNote freq]; 

[aNote parAsDouble:MK_freqAtt]; 

[aNote parAsDouble:MK_freqRel]; 

[aNote parAsDouble:MK_portamento]; 
[aNote parAsDouble:MK_bearing]; 

/* Store the phrase status. */ 

MKPhraseStatus phraseStatus = [self phraseStatus]; 

/* Is aNote a noteOn? */ 

BaaL isNoteOn [aNote noteType] == MK_noteOn; 

/* Is aNote the beginning of a new phrase? */ 
BaaL isNewPhrase = (phraseStatus == MK-phraseOn) I I 

(phraseStatus == MK-phraseOnPreempt) ; 

/* Used in the parameter checks. */ 

BaaL shouldApplyAmp = NO; 

BOOL shouldApplyFreq = NO; 

BaaL shouldApplyBearing = NO; 

/* The same portamento is used in both frequency and amplitude. */ 

if ( !MKIsNoDVal(myPortamento) ) { 
portamento = myPortamento; 

shouldApplyAmp = YES; 

shouldApplyFreq = YES; } 

/* Check the amplitude parameters and set the instance 
variables. */ 

if (myAmpEnv != nil) { 

ampEnv = myAmpEnv; 

shouldApplyAmp = YES; 

if (!MKIsNoDVal(myAmpO)) { 

ampO = myAIDpO; 

shouldApplyAmp = YES; } 

if (!MKIsNoDVal(myAmpl)) { 

ampl = myAmpl; 

shouldApplyAmp = YES; } 
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if (!MKIsNoDVal(myAmpAtt)) 

ampAtt = myAmpAtt; 

shouldApplyAmp = YES; } 

if (!MKIsNoDVal(myAmpRel)) 

ampRel = myAmpRel; 

shouldApplyAmp = YES; } 

/* Apply the amplitude parameters. */ 
if (shouldApplyAmp I I isNoteOn) 

MKUpdateAsymp([self synthElementAt:ampAsymp], 

ampEnv, ampO, ampl, ampAtt, ampRel, 

portamento, phraseStatus); 

/* Check the frequency parameters and set the instance 

variables. */ 
if (myFreqEnv != nil) 

freqEnv = myFreqEnv; 

shouldApplyFreq = YES; 

if (!MKIsNoDVal(myFreqO)) 

freqO = myFreqO; 

shouldApplyFreq = YES; } 

if (!MKIsNoDVal(myFreql)) 

freql = myFreql; 

shouldApplyFreq = YES; } 

if (!MKIsNoDVal(myFreqAtt)) 

freqAtt = myFreqAtt; 

shouldApplyFreq = YES; } 

if (!MKIsNoDVal(myFreqRel)) 

freqRel = myFreqRel; 

shouldApplyFreq = YES; } 

/* Apply the frequency parameters. */ 
if (shouldApplyFreq I I isNoteOn) 

MKUpdateAsymp([self synthElementAt:freqAsymp], freqEnv, 

[[self synthElementAt:osc] incAtFreq:freqO], 

[[self synthElementAt:osc] incAtFreq:freql], 

freqAtt, freqRel, portamento, phraseStatus); 

/* Check and set the bearing. */ 

if (!MKIsNoDVal(myBearing)) 

bearing = myBearing; 

shouldApplyBearing = YES; 

if (shouldApplyBearing I I isNewPhrase) 

[[self synthElementAT:stereoOut] setBearing:bearing]; 

return self; 
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As in Simplicity's implementation of applyParameters:, the value of each parameter is 
stored and then checked to determine whether the parameter is actually present in the 
argument Note. In addition, this implementation updates the values of the instance 
variables to those of the parameters that are present. 

Each parameter that affects amplitude is checked in its own conditional statement. If the 
parameter is present, the shouldApply Amp variable is set to YES, indicating that the 
amplitude Envelope needs to be updated. Finally, the value of shouldApply Amp is 
logically or'd with the value of isNoteOn, which is YES if aNote is a noteOn. Thus, the 
MKUpdateAsympO call for amplitude is made if any of the tested parameters are present, 
and it's always made if aNote is a noteOn. 

The conditionals for applying the frequency parameters are the same as those for amplitude. 
Notice, however, that the freqO and freql values aren't passed directly to 
MKUpdateAsympO. Instead, they're used to retrieve increment values from osc through 
its incAtFreq: method. As mentioned earlier, Oscgafi's frequency value isn't setas a 
frequency in hertz, but rather as an increment into its lookup table. 

Finally, the bearing parameter is tested, its instance variable is set, and the parameter is 
applied to the patch. Notice that bearing is automatically applied if aNote is the beginning 
of a new phrase. Unlike amplitude and frequency, bearing isn't controlled by an Envelope, 
so it doesn't need to be automatically applied if the Note is simply a rearticulation of an 
existing phrase. 

Adding a WaveTable 

Envy, although otherwise entertaining, is of limited timbral interest-it can only produce a 
sine wave. Replacing Envy's sine wave with a WaveTable is quite simple; its patch isn't 
affected, nor are the implementations of the note On Self: type methods. The only real 
change is in the implementation of applyParameters:. 

First, however, you must provide an instance variable and default value for 
MK_waveform-the parameter that identifies SynthPatch's WaveTable object: 

@interface Envy:SynthPatch 
{ 

id waveform; 

- setDefaults 

waveform = nil; 
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The applyParameters: method is rewritten to attend to the new parameter: 

- applyParameters:aNote 

/* Create local variables for the new parameter. */ 

id my Wave form = [aNote parAsWaveTable:MK_waveform]; 

BOOL shouldApplyWave = NO; 

/* Test the parameters. */ 

if (my Wave form != nil) { 

waveform = my Wave form; 

shouldApplyWave = YES; 

if (shouldApplyWave I I isNewPhrase) 

[[self synthElementAt:osc] setTable:waveform length:O 

defaultToSineROM:isNewPhrase]; 

The setTable:length:defaultToSineROM: method sets the oscillator's lookup table to the 
specified Wave Table object. Passing 0 as the length of the table causes the Music Kit to 
compute a default value. The argument to defaultToSineROM: is a BOOL value that 
determines whether the sineROM should be used if memory for the WaveTable can't be 
allocated. In this implementation, the argument is YES only if aNote is the beginning of a 
new phrase. For all other phrase states, the previously set WaveTable is used if a new one 
can't be allocated. 

WaveTables are shared among SynthPatches-if two SynthPatches declare the same 
WaveTable object (with the same length), the WaveTable is allocated once and the 
SynthPatches read from the same memory. This feature is provided automatically by all the 
Oscg-type oscillators. 

Creating a UnitGenerator Subclass 

Each UnitGenerator subclass is an object-oriented interface to a DSP macro, called a unit 
generator, that's written in DSP56001 assembly language. The Objective-C code in the 
subclass is generated automatically from a DSP macro by the dspwrap program. To build 
your own UnitGenerator subclass that you can use in SynthPatch design, you run dspwrap 
on a DSP56001 assembly language macro that you've created. In addition, you can modify 
and wrap the DSP macros that NeXT provides as source code in the directory 
/usrllib/ dsp/ugsrc. 

The design of DSP assembly language macros is outside the scope of the present 
discussion. The following sections show how to use dspwrap and how to further modify 
the UnitGenerators that it creates. 
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Using dspwrap 

The dspwrap program is used to create array processing C functions as well as 
UnitGenerator subclasses. To indicate that you want to create the latter, you call the 
program with the -ug switch followed by the name of the file that contains the assembly 
code macro (you must include the" .asm" extension when specifying the file). For example, 
the invocation 

dspwrap -ug unoisehp.asm 

creates a master UnitGenerator class called UnoisehpUG as well as the appropriate leaf 
classes. These are embodied in the following files, which are automatically generated by 
dspwrap: 

UnoisehpUG.m is the implementation file of the master class. 
• UnoisehpUG.h is the master class interface file. 

UnoisehpUGx.m and UnoisehpUGy.m are leaf class implementations. 
• UnoisehpUGx.h and UnoisehpUGy.h are the leaf interface files. 
• unoisehpUGInclude.m is imported by the master class. 

The number of leaf classes that are created depends on the number of address-valued 
memory arguments, described below, in the macro: A different leaf class is created for each 
combination of x and y DSP memory spaces. The unoisehp macro, which implements a 
high-pass random number generator, has only one such argument-its output-so two leaf 
classes are generated, one for either memory space. 

Some other files, such as documentation and DSP assembler and linker files, are also 
created. These can be moved, deleted, or disregarded as you see fit. For the present 
purposes, only the files listed above are important. 

Modifying the Class 

There are two basic reasons to modify a UnitGenerator class that's generated by dspwrap: 

To set the values of the DSP memory arguments that are passed to the macro 
To define the class's response to some common messages 

Of the files generated by dspwrap, you should modify only those that define the master 
class. In other words, continuing with the Unoisehp example, only UnoisehpUG.m and 
UnoisehpUG.h should be edited. The entire implementation file of the UnoisehpUG 
master class as generated by dspwrap is shown below: 
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#import <musickit/musickit.h> 
#import "UnoisehpUG.h" 

@implementation UnoisehpUG:UnitGenerator 
{ } 

/* DSP memory arguments. */ 

enum args { aout, seed}; 

#import "unoisehpUGlnclude.m" 

Setting the Arguments 

The two enum variables shown above, aout and seed, are DSP memory arguments. A 
memory argument represents a location on the DSP from which the unit generator that's 
executing can read information sent to it by the Music Kit. There are two types of memory 
arguments: 

• Address-valued arguments administer the location in DSP memory from which, or to 
which, the executing unit generator reads or writes data. 

• Datum-valued arguments take a value that's used as part of the unit generator's 
computation. 

In the example, aout variable is an address-valued argument that represents the 
UnitGenerator's output patchpoint. We create a Unoisehp method named setOutput: that 
sets this argument: 

-setOutput:outputPatchPoint 
{ 

return [self setAddressArg:aout to:outputPatchPoint); 

The setAddressArg:to: method is defined by UnitGenerator to set an address-valued DSP 
memory argument. 

The other enum variable, seed, is a datum-valued memory argument. It's set through 
UnitGenerator's setDatumArg:to: method, as demonstrated in our implementation of 
Unoisehp's setSeed: method: 

-setSeed: (int)aSeed 

return [self setDatumArg:seed to:aSeedl; 
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Defining the Class's Response 

During a performance, a UnitGenerator can expect to receive the following messages: 

• run tells the receiver to begin doing whatever it does. 
finish winds down the receiver before coming to a halt. 

• idle provides instructions for halting the receiver's activity. 

Invocations of these methods were shown in the implementations of the Simplicity and 
Envy SynthPatches. Remember that finish returns the amount of time the UnitGenerator 
needs to complete its mission-the amount of time to wait before idle should be sent. The 
default implementations of these methods can be sufficient. For further tuning, you should 
implement, in your master class, the methods runSelf, finishSelf, and idleS elf-methods 
that are automatically invoked when the corresponding performance messages are received. 

You almost always provide an implementation of idleS elf to ensure that your 
UnitGenerator is brought to a halt in a manner befitting its activity. The Unoisehp 
implementation of this method sets its output to the DSP's sink, a location that, by 
convention, is never read: 

-idleSelf 

/* Set the output (aout) to sink. */ 

[self setAddressArgToSink:aout]; 

return self; 
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Chapter 5 
Music Performance 

This chapter describes the classes and functions that you use to create a musical 
performance with the Music Kit. The material presented here falls roughly into three 
sections: realizing music data, Music Kit scheduling, and guidelines for building an 
efficient application. To fully appreciate this chapter, you should be familiar with the 
material in the preceding two chapters, Chapter 3, "Representing Music Data," and Chapter 
4, "Music Synthesis." 

Design Philosophy 

The primary task in a musical performance is to take a representation of music and render 
it in an appropriate fashion. Traditionally, this task is met by a performer wielding an 
instrument. Similarly, the Music Kit has its Performer and Instrument objects: A 
Performer obtains a Note object, either by reading it from a database such as a Part or 
scorefi1e or by improvising the Note itself. The Performer then relays the Note to an 
Instrument that provides the machinery for rendering, or realizing, the Note. 

Of Instrument and Performer, the former is the more crucial to a Music Kit performance. 
Realization is the whole point of a performance, thus Instruments are ubiquitous. 
Performers provide a convenient means for acquiring or generating Notes but they're not 
essential to a performance application; in fact, some applications can't use Performers but, 
instead, must manufacture Notes themselves and send them directly to Instruments. In any 
case, the means by which a Note is acquired is separated from its means of realization and 
the mechanism for connecting an agent of acquisition to that of realization is extremely 
general. Specifically, any Performer (or your application) can be connected to any-and 
any number of-Instruments. These connections can be created and severed dynamically, 
allowing you to create a kaleidoscopic network of Note sources and destinations. 

With Performer and Instrument, the Conductor class completes the triumvirate of 
preeminent performance classes. A Conductor object acts as a time keeper as it determines 
the tempo of the performance and starts and stops groups of Performers. Essentially, a 
Conductor is a timed-message sending object that dispatches Objective-C messages at 
distinct times (in this regard, it's similar to the timed entry mechanism of Display 
PostScript, but with a more sophisticated interface). For example, it's through a Conductor 
that a Performer schedules the messages that relay Notes to an Instrument. 

Asking a computer to perform music often pushes it to its computational limits. Because 
of the demands of music performance, the Music Kit provides hooks into the operating 
system that allow you to create applications that can run with heightened priority. While 
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this can sometimes be a dangerous game-it isn't easy stopping a highly charged fugue that 
has jumped the rails-well-debugged and fine-tuned applications will find great benefit in 
these enhancements. 

Performance Outline 

A Music Kit performance can be divided into three phases: 

Preparation: You must determine the sources and destinations of the Notes that you 
wish to perform and establish other characteristics of the performance. 

Commencement: This is always accomplished by sending startPerformance to the 
Conductor class. 

Termination: This is achieved by sending finishPerformance to the Conductor class. 

This sequence of activities can be repeated any number of times while an application is 
running. While a single application can have but a single performance in progress at any 
particular time, that single performance can do any number of things. For example, if you 
want to capture MIDI input as a scorefile while playing along to a Part that's synthesized 
on the DSP, you perform both tasks in a single performance-you don't have to set up 
separate environments. Obviously, the two endeavors involve different classes of objects, 
but when the Conductor class receives the startPerformance message, everybody starts 
wheezing. 

Much of the work that goes into a performance is involved in setting it up; in fact, many of 
the methods that are defined by the classes that are involved in a performance can only be 
invoked before the performance starts (or between performances). As you design your own 
application, you should consult the class descriptions in Chapter 2 of Reference to check 
for the conditions under which a method may be invoked. 

The following sections examine the three primary classes involved in a performance: 
Instrument, Performer, and Conductor. 

The Instrument Class 

Instruments are the agents through which Note objects are realized. Since realization is the 
ultimate destiny of a Note object, the Instrument class is the ultimate focus of a Music Kit 
performance: Every performance involves at least one Instrument. 

At the heart of an Instrument is its realizeNote:fromNoteReceiver: method. The 
Instrument class itself is abstract and doesn't implement this method; it's the responsibility 
of each Instrument subclass to provide an implementation of 
realizeNote:fromNoteReceiver: to establish the manner in which instances of the subclass 
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realize Notes. The Music Kit includes a number of Instrument subclasses (and 
pseudo-Instruments) that realize Notes by synthesizing them on the DSP or an external 
MIDI synthesizer, and that store Notes by adding them to a Part or Score or by writing them 
to a file. 

One of the principals of Instrument design is that an Instrument doesn't create the Notes 
that it realizes. Instead, it realizes Notes that are sent to it by another object or by your 
application. The machinery by which an Instrument receives Notes is well defined by the 
Music Kit; unlike that for Note-realization, you don't reinvent the Note-reception 
mechanism for each Instrument subclass. 

The following sections examine the Instrument class according to its two tasks: receiving 
and realizing Notes. The latter topic centers upon descriptions of the Instrument subclasses 
included in the Music Kit, followed by an example of Instrument subclass design. 

Receiving Notes 

An Instrument receives Notes through the same method that defines their realization, 
realizeNote:fromNoteReceiver:. However, you don't send Notes to an Instrument by 
invoking this method directly; instead, you send the Notes to one of the Instrument's 
NoteReceiver objects which, in tum, invokes realizeNote:fromNoteReceiver: for you. 

NoteReceiver is an auxiliary class that acts as a "Note port" for an Instrument. This is 
manifested as the three features that a NoteReceiver brings to an Instrument: 

• It provides methods through which an Instrument receives Notes (in other words, 
methods that invoke Instrument's realizeNote:fromNoteReceiver:). 

• It lets you control the stream of Notes into an Instrument by allowing you to toggle its 
ability to forward Notes to an Instrument. 

• It acts as a jack into which you can plug a Performer object's NoteSender. This 
connects the Performer that owns the NoteSender to the Instrument that owns the 
NoteReceiver, such that the Notes generated by the Performer are automatically 
delivered to and realized on the connected Instrument. The methods by which you 
marry a NoteReceiver to a NoteSender are described later in the section on Performers 
and NoteSenders. 

Creating and adding NoteReceivers is usually part of the design ofthe Instrument subclass, 
although some subclasses require you to create and add NoteReceivers yourself. In either 
case, the method by which a NoteReceiver is added to an Instrument is the same: 
Instrument's addNoteReceiver:. While an Instrument can own more than one 
NoteReceiver, a single NoteReceiver can belong to only one Instrument: An invocation of 
addNoteReceiver: removes the argument (the NoteReceiver) from its current owner. 
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The receiveNote: Method 

The fundamental method through which a NoteReceiver itself receives Notes-and thereby 
forwards them to its owning Instrument-is called receiveNote:. However, before you can 
send receiveNote: to a NoteReceiver, you must be able to locate the object. If you created 
and added NoteReceivers to an Instrument yourself, finding these objects shouldn't pose a 
problem-you made them, you should know where they are. But keep in mind that many 
Instruments create and add NoteReceivers for you. Any Instrument's NoteReceivers can 
be retrieved as a List object by sending the noteReceivers message to the Instrument; 
members of this List can then be sent the receiveNote: message. As a convenience, the first 
NoteReceiver in this List can be retrieved through the noteReceiver method. This is 
particularly handy for Instruments that define only one NoteReceiver, or in situations where 
you don't care which NoteReceiver you send the Note to. In the following example, an 
instance of SynthInstrument is created and a Note is sent to its NoteReceiver. 
SynthInstrument is a subclass ofInstrument that realizes Notes by synthesizing them on the 
DSP; it creates a single NoteReceiver as part of its init method: 

/* Create a Synthlnstrument and send it a Note (assumed to exist). */ 
aSynthlns [[Synthlnstrument alloc] init]i 

[Conductor lockPerformance]i 
[[aSynthlns noteReceiver] receiveNote:aNote]i 

[Conductor unlockPerformance]i 

You'll note the presence of the Conductor class methods lockPerformance and 
unlockPerformance; invocations of these two methods should bracket all invocations of 
receiveNote: (with some exceptions, as noted in the sections on Conductors and 
Performers, later in this chapter). Briefly, these methods ensure that your cast of characters 
are in synch and primed for timely Note realization. A fuller explanation of 
lockPerformance and unlockPerformance is given in "Locking the Performance," later in 
this chapter. 

You can create and add any number of NoteReceivers to the Instruments that you allocate, 
even if these Instruments create NoteReceivers themselves. However, with some 
exceptions-notably that described in the next section-there isn't much reason to do so: 
One NoteReceiver is as good as the next. Any number of Note-producing agents-whether 
Performers or different mechanisms in your application--can all send receiveNote: to the 
same NoteReceiver. In general, adding a gaggle of NoteReceivers to an Instrument doesn't 
make the Instrument more interesting, it simply makes it bigger. 
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Squelching a NoteReceiver 

You can throttle a NoteReceiver's ability to invoke realizeNote:fromNoteReceiver: by 
sending it the squelch message. To release this clench, you invoke unsquelch. Through 
this simple feature, you can easily and quickly mute an Instrument. 

While a NoteReceiver is squelched, the receiveNote: method ceases to function: It 
immediately returns nil without forwarding the argument Note to the NoteReceiver's owner 
(unsquelched, receiveNote: returns self). Realization of the Note isn't merely deferred, it's 
abandoned for good. You can determine whether a NoteReceiver is squelched by sending 
it the isSquelched message: If the message returns YES, the object is squelched. 

The squelch feature, in certain applications, argues for the use of multiple NoteReceivers 
for a single Instrument. For example, you can create an application in which Notes are 
generated from MIDI input and read from a Part object at the same time. If you feed these 
two Note sources to the same Instrument, you may want to create and add two distinct 
NoteReceivers, one for either source, so you can independently squelch the two streams of 
Notes. 

Performance Status 

An Instrument is considered to be in performance from the time that you send receiveNote: 
to any of its un squelched NoteReceivers until the performance is over-in other words, 
until the Conductor class receives the finishPerformance message. You can query an 
Instrument's performance status by sending it the inPerformance message, where a return 
of YES signifies that the object is currently in performance. 

The performance status of an Instrument is significant because some Instrument methods 
aren't effective while the Instrument is in performance. This can be a particularly devilish 
source of confusion since the state of an Instrument's performance doesn't require a 
performance, in the larger sense, to be in progress. Specifically, if you send receiveNote: 
to an Instrument's NoteReceiver before the Conductor class receives startPerformance, 
the Instrument will, nonetheless, be considered to be performing (and thus the 
aforementioned performance-status dependent methods will have no effect). 
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Realizing Notes 

There are very few rules when it comes to realizing Notes: You can implement 
realizeNote:fromNoteReceiver: to realize a Note in almost any arbitrary manner. As 
mentioned earlier, the Music Kit includes Instruments that synthesize and store Notes as 
their forms of realization. For many performance applications, the Instruments provided 
by the Music Kit are sufficient. The following sections describe these subclasses. 

Synthlnstrument 

A SynthInstrument is by far the most complicated Instrument; it realizes Notes by causing 
them to be synthesized on the DSP. It operates on three basic principles: 

• Every instance of SynthInstrument is associated with a single subclass of SynthPatch. 

• Before or during a performance, a SynthInstrument object allocates (through requests 
to the Orchestra) and manages instances of its SynthPatch subclass. These SynthPatch 
objects are used to synthesize the Notes that the SynthInstrument receives through its 
NoteReceiver. 

Following these principles, the primary decisions you need to make regarding a 
SynthInstrument are which SynthPatch subclass to assign it and which of two schemes it 
should use to allocate instances of the SynthPatch subclass. 

Setting the SynthPatch Subclass 

You set a SynthInstrument's SynthPatch subclass by invoking the setSynthPatchClass: 
method. As the method's argument you specify one of the SynthPatch classes included in 
the Music Kit, or one of your own. If you have a multiple-DSP system, the SynthInstrument 
will allocate its SynthPatch objects on the first DSP that has sufficient available resources. 
You can restrict allocation to a specific DSP by invoking setSynthPatchClass:orchestra:, 
passing an Orchestra object as the second argument. 

Note: If you use a SynthPatch class included in the Music Kit, you must import the file 
musickit/synthpatches/ClassName.h, where ClassName is the name of the class you wish 
to use. Alternatively, the file musickit/synthpatches/synthpatches.h will import all the 
Music Kit SynthPatch interface files. 

The setSynthPatchClass: method (and the ... orchestra: version) checks its (first) 
argument to ensure that it's a class that inherits from SynthPatch, returning nil if it 
doesn't. It also returns nil (and doesn't set the class) if the SynthInstrument is already 
involved in a performance. 
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Allocation Mode 

SynthInstrument defines two allocation modes: 

• In automatic allocation mode the SynthInstrument allocates SynthPatch objects as it 
receives Notes, tagging each SynthPatch with the note tag ofthe Note for which it was 
allocated. As it receives subsequent Notes, the SynthInstrument compares each Note's 
note tag to those of the SynthPatches it has already allocated. If it finds a match, the 
Note is sent to that SynthPatch. If it doesn't match, the SynthInstrument allocates a 
new SynthPatch. 

• In manual allocation mode the SynthPatch objects are allocated all at once, before 
Notes begin to arrive. The number of SynthPatches to allocate is set through the 
method setSynthPatchCount:. The number of SynthPatches that are actually 
allocated may be less than the number requested, depending on the availability of DSP 
resources at the time that the message is sent. The method returns the number of 
SynthPatches that were actually allocated. 

By default, a SynthInstrument is in automatic allocation mode. Simply sending 
setSynthPatchCount: places it in manual mode. To set it back to automatic mode, you 
send it the autoAlloc message. A SynthInstrument can't switch modes while it's 
performing. 

You can query a SynthInstrument's allocation mode by invoking allocMode, a method that 
returns one of the following integer constants: 

Constant 

MK_AUTOALLOC 
MK_MANUALALLOC 

Changing the SynthPatch Count 

Mode 

Automatic allocation 
Manual allocation 

You can change the number of manually allocated SynthPatches at any time-even during 
a performance-simply by resending the setSynthPatchCount: message. (If the object is 
performing, it must have been placed in manual mode before the performance began.) 
Notice, however, that the argument is always taken as the total number of SynthPatches that 
are allocated to the SynthInstrument-it doesn't represent the number of new objects to 
allocate. For example, in the following sequence of messages, a total of four SynthPatches 
are allocated. 

/* Allocate three SynthPatches. */ 

[aSynthlns setSynthPatchCount:3]; 

/* Allocate one more. */ 

[aSynthlns setSynthPatchCount:4]; 
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The synthPatchCount method returns the number of manually allocated SynthPatches. 
Thus, the previous example can be rewritten as 

/* Allocate three SynthPatches. */ 

[aSynthlns setSynthPatchCount:3]; 

/* Allocate one more. */ 

[aSynthlns setSynthPatchCount: [aSynthlns synthPatchCount]+l]; 

If the SynthInstrument is in automatic mode, synthPatchCount returns o. 

Deallocating SynthPatch objects is also possible: 

/* Allocate three SynthPatches. */ 

[aSynthlns setSynthPatchCount:3]; 

/* Deallocate two of them. */ 

[aSynthlns setSynthPatchCount: [aSynthlns synthPatchCount]-2]; 

If the argument signifies a deallocation, the SynthInstrument's idle SynthPatches, if any, are 
deallocated first; the balance are deallocated as they become inactive. 

The PatchTemplate 

Some SynthPatches come in a variety of configurations. For example, the Fm! vi 
SynthPatch (frequency modulation with optional vibrato) is configured differently 
depending on whether the Note it's synthesizing specifies vibrato. It does this to be as 
efficient as possible-excluding vibrato from Fm! vi's configuration means that it uses less 
of the Orchestra's resources. 

A SynthPatch represents each of its configurations as a different PatchTemplate object. 
When you set a SynthInstrument to manual allocation mode, you can specify the number 
of SynthPatches with a particular PatchTemplate by invoking the 
setSynthPatchCount:forPatchTemplate: method. The second argument is the id of the 
PatchTemplate that you want. This is returned by sending the patchTemplateFor: 
message to the SynthInstrument's SynthPatch class, with a Note object as the argument. 
This is best explained by example: 

/* Create a Synthlnstrument. */ 

id aSynthlns = [[Synthlnstrument init] alloc]; 

/* Create a variable to store the PatchTemplate. */ 

id noVibTemplate; 

/* Create a dummy Note. */ 

id aNote [[Note init] alloc]; 
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/* Set its vibrato amplitudes to 0.0. */ 
[aNote setPar:MK_svibAmp toDouble:O.O); 

[aNote setPar:MK_rvibAmp toDouble:O.O); 

/* Retrieve the PatchTemplate senza vibrato. */ 
noVibTemplate = [[aSynthIns synthPatchClass) 

patchTemplateFor:aNote); 

/* Allocate three vibratoless SynthPatches. */ 

[aSynthIns setSynthPatchCount:3 
forPatchTemplate:noVibTemplate); 

If the Patch Template isn't specified, the SynthPatches are created using the default 
PatchTemplate. Each subclass of SynthPatch designates one of its PatchTemplates as the 
default for that class; by convention, the most extravagant PatchTemplate is provided as the 
default. Thus, the default Fml vi PatchTemplate includes vibrato. In the example, the 
Fml vi PatchTemplate without vibrato is retrieved by passing (as the second argument to 
patchTemplateFor:) a Note that explicitly sets the vibrato parameters to 0.0. 

Within the same SynthInstrument, you can manually allocate SynthPatches that use 
different PatchTemplates. The following extension of the previous example demonstrates 
this: 

/* Allocate one vibratoless SynthPatch. */ 

[aSynthlns setSynthPatchCount:l 

forPatchTemplate:noVibTemplate); 

/* And two with vibrato. */ 
[aSynthlns setSynthPatchCount:2); 

setSynthPatchCount: always uses the default PatchTemplate (which, as mentioned earlier, 
includes vibrato for Fml vi). When the SynthInstrument in the example receives a Note that 
initiates a new phrase, it automatically forwards the Note to the proper SynthPatch: If the 
Note contains vibrato parameters with zero values (similar to the dummy Note used in the 
previous example), it's forwarded to the SynthPatch that excludes vibrato; otherwise, it's 
sent to one of the other two SynthPatches. 

The SynthInstrument keeps a count of the number of SynthPatches it has manually 
allocated for each PatchTemplate. The count for a particular PatchTemplate is returned by 
the method synthPatchCountForPatchTemplate:. The synthPatchCount method, used 
in an example in the previous section, returns the count for the default PatchTemplate. 

If the SynthPatch is in automatic mode, you don't need to specify which PatchTemplate to 
use. The SynthInstrument automatically creates a SynthPatch with the correct 
PatchTemplate to accommodate the parameters in the Notes it receives. 
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Talking to the SynthPatches 

A SynthInstrument's primary task is to forward Notes to its SynthPatches. The SynthPatch 
class defines three methods that are designed to be invoked by a SynthInstrument for this 
purpose: 

• noteOn: is used to forward a noteOn type Note. 
• noteUpdate: forwards noteUpdates. 
• noteOff:, likely enough, forwards noteOffs. 

The Note itself is passed as the argument to the method. Invocation of these methods is 
automatic; when a SynthInstrument receives a Note during a performance, it automatically 
invokes the appropriate method. 

Notice that noteDurs and mutes aren't included in this scheme. A noteDur is split into a 
noteOn/noteOff pair. If the noteDur doesn't have a noteTag, a unique noteTag is created 
and given to the two new Notes. Mutes are simply ignored. 

Besides forwarding Notes, the noteOn: and noteOff: methods also set a SynthPatch's 
synthesis status. This describes the object's current synthesis state as one of the following 
MKSynthStatus constants: 

Constant 

MK_id1e 
MK_rnnning 
MK_finishing 

Meaning 

The SynthPatch is currently inactive. 
The SynthPatch is synthesizing the body of a musical note. 
The SynthPatch is in the release portions of its Envelopes. 

The noteOn: message sets the synthesis status to MK_running; noteOff: sets it to 
MK_finishing. In either of these states, the SynthPatch is considered to be active. The 
status is set to MK_idle when the release portion of the SynthPatch's amplitude Envelope 
(in other words, the object set as the value of the MK_ampEnv parameter of the Note that 
the SynthPatch is realizing) is complete. None of the other Envelopes are taken into 
consideration when determining if the SynthPatch is idle: It's assumed that the amplitude 
Envelope will ultimately fall to an amplitude of 0.0, thus whatever course the other 
Envelopes take after that point is for nought since the SynthPatch will no longer be making 
any noise. 

The Update State 

The SynthInstrument class gives special consideration to a noteUpdate that doesn't have a 
note tag: 

• The noteUpdate is forwarded to all the active SynthPatches (within the 
SynthInstrument that received the Note). 

• The Note's parameters are stored in the SynthInstrument's update state. 
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Every SynthInstrument has an update state. When a SynthInstrument begins a new phrase, 
the parameters in the update state are merged into the Note that initiated the phrase (always 
a noteOn, whether by nature or due to a noteDur split). The update state parameters never 
overwrite the value of a parameter already present in a noteOn-in the case of a parameter 
collision, the noteOn's parameter takes precedence. Conversely, a noteOn's parameters 
never affect the update state, it can only be changed by another noteUpdate with no note tag. 

As a demonstration of these principles, consider the following scorefile excerpt: 

/* Score file body excerpt. */ 

t 0.0; 

part1 (noteUpdate) amp:.25; 

t 1. 0; 
part1 (noteOn 1) freq:c4; 

t 2.0; 

part1 (noteOff 1); 

t 3.0; 

/* amplitude is .25 */ 

part1 (noteOn 2) freq:d4 amp:.75; /* amplitude is .75 */ 
t 4.0; 

part1 (noteOff 2); 

t 5.0; 

part1 (noteOn 3) freq:e4; 

t 6.0; 

part1 (noteUpdate) amp:.5; 

t 7.0; 

part1 (noteUpdate 3) amp:.25; 
t 8.0; 

part1 (noteOff 3); 

t 9.0; 

part1 (noteOn 4) freq: f4; 

t 10.0; 

part1 (noteOff 4); 

/* amplitude is, once again, .25 */ 

/* amplitude is .5 */ 

The initial note tag-less noteUpdate sets the amplitude parameter in the SynthInstrument's 
update state; notice that the update state is set even though the SynthInstrument doesn't 
have any active SynthPatches. Of the four subsequent noteOns, the first, third, and fourth 
don't have amplitude parameters so they inherit the one in the update state. The second 
noteOn has its own amplitude; it ignores the parameter in the update state. 

While the third musical note is sounding, two more noteUpdates arrive. The first has no 
note tag, so it affects both the active SynthPatch and the update state. The second 
noteUpdate's note tag matches that ofthe active SynthPatch; it's forwarded to the 
SynthPatch but doesn't affect the update state. 
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Preempting a SynthPatch 

While the DSP makes a great synthesizer, its resources are by no means unlimited. It's 
possible to ask it to synthesize, at the same time, more Notes than it can accommodate. The 
number of Notes that can be synthesized at one time depends on a number of factors, the 
most significant being the sampling rate and the requirements of the SynthPatches that are 
being used. There sometimes comes a time in the life of a SynthInstrument when it tries to 
allocate just one more SynthPatch and finds that the well is empty. 

When a SynthInstrument can't get the resources to synthesize a new Note, it tries to 
preempt an active SynthPatch rather than lose the Note. The following steps are taken to 
determine which SynthPatch to preempt: 

1. The preempted SynthPatch should have sufficient resources to synthesize the Note, thus 
the SynthInstrument first looks for a SynthPatch that uses the same PatchTemplate 
that's needed to synthesize the new Note. 

2. If there's more than one such SynthPatch, the one that first received a note Off: 
message, if any, is preempted. In other words, the preemption scheme first looks for a 
SynthPatch whose synthesis status is MK_finishing. 

3. If there aren't any finishing SynthPatches, the oldest SynthPatch is chosen. 

4. If a SynthPatch with the appropriate PatchTemplate isn't available, the 
SynthInstrument tries other SynthPatches until one is found that has sufficient 
resources to synthesize the new Note. 

A SynthInstrument object can only preempt its own SynthPatches-it can't steal one from 
another SynthInstrument. The search for a preemptible SynthPatch is sometimes 
unsuccessful; for example, if there are no more resources to build a new SynthPatch, the 
new Note can't be synthesized. 

Providing Your Own Preemption Scheme 

The determination of which SynthPatch to preempt is performed in the 
preemptSynthPatchFor:patches: method: The method's return value is taken as the 
SynthPatch to preempt. If you want to provide your own system for preempting 
SynthPatches, you have to create your own subclass of SynthInstrument in which to 
reimplement this method. 

The method is automatically invoked when the SynthInstrument has to preempt a 
SynthPatch. The two arguments are: 

• The newly arrived Note 
• The first in a list of candidate SynthPatches 

Notice that the second argument is a single SynthPatch object. To get to the next object in 
the list, you send next to the SynthPatch at hand. 
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Midi 

The Midi class isn't a true Instrument-it inherits from Object. However, it creates 
NoteReceivers and implements realizeNote:fromNoteReceiver: and so can be used as an 
Instrument. 

A Midi object creates 17 NoteReceivers, one for the Basic Channel and one each for the 16 
Voice Channels. You can retrieve the NoteReceiver that corresponds to a particular channel 
through the channelNoteReceiver: message, passing the channel number that you want: 0 
retrieves the NoteReceiver for System and Channel Mode Messages; 1-16 retrieves the 
NoteReceiver for the corresponding Voice Channel. You create a Midi object to correspond 
to a serial port, specified as "midiO" or "midi! ," in the allocFromZone:onDevice: method. 

When it receives a Note, the Midi object translates it into a series of MIDI messages, based 
on the Note's note type and parameters that it contains. It then sends the messages out the 
serial port. 

A Midi object has a device status that's much like the device status of the Orchestra object, 
as described in Chapter 4. Before you can send Notes to a Midi object (more accurately, 
before the object will do anything with these Notes), you must open and run it, through the 
open and run methods. 

PartRecorder and Score Recorder 

PartRecorder is a fairly straightforward Instrument: The Notes that it receives through its 
single NoteReceiver are copied and added to the Part with which it's associated. The 
NoteReceiver is created automatically; the Part must be set by your application, through the 
setPart: method. 

A PartRecorder sets a Note's time tag to the current time as it receives the Note; the measure 
of the current time is either in beats or seconds, depending on the value of its "time unit." 
You can set the time unit through the setTimeUnit: method, passing either MK_second or 
MK_beat as the argument. Other than the manipulation of the time tag, the Note is 
unchanged by the PartRecorder. 

ScoreRecorder isn't actually an Instrument; it's used to correspond to Score just as a 
PartRecorder corresponds to a Part. A ScoreRecorder actually creates and controls some 
number of PartRecorders, one for each Part in its Score. 
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Scorefile Writer 

A ScorefileWriter object realizes Notes by writing them to a scorefile. It's the one 
Instrument defined by the Music Kit that requires you to create and add NoteReceivers from 
your application. Each NoteReceiver that you add corresponds to a Part that will be 
represented in the scorefile that's written. Typically, you name the NoteReceivers that you 
create; these names are used to identify the corresponding Part-representations in the 
scorefile: 

/* Create a ScorefileWriter and add to it 3 NoteReceivers. */ 

id aSFWriter = [[ScorefileWriter alloc] init]; 

id fordReceiver = [[NoteReceiver alloc] init]; 

id pageReceiver = [[NoteReceiver alloc] init]; 

id quicklyReceiver = [[NoteReceiver alloc] init]; 

/* Name the NoteReceivers. */ 

MKNameObject("Ford", fordReceiver); 

MKNameObject("Page", pageReceiver); 

MKNameObject("Quickly", quicklyReceiver); 

/* Add the NoteReceivers. */ 

[aSFWriter addNoteReceiver:fordReceiver]; 

[aSFWriter addNoteReceiver:pageReceiver]; 

[aSFWriter addNoteReceiver:quicklyReceiver]; 

/* Set the ScorefileWriter's file by name. */ 

[aSFWriter setFile: "Falstaff.score"]; 

Creating an Instrument Subclass 

While there are no strict rules governing realization, intelligent Instrument design should 
follow these guidelines: 

• An Instrument should realize Notes as it receives them. It's possible to design an 
Instrument that, for instance, reschedules its Notes to be realized later, but for the sake 
of generality, an Instrument should act immediately upon the Notes it receives. 

• If an Instrument needs to alter or store a Note, it should create a copy of the Note and 
act upon the copy. 

• An Instrument shouldn't be a source of Notes. The task of generating new Notes 
belongs to a Performer or to your application. The role of an Instrument is to respond, 
not to conceive. This doesn't mean that an Instrument can't create Notes, but it should 
only do so in response to receiving a Note. 

Along with these guidelines, keep in mind that an Instrument should, if possible, create and 
add to itself some number of NoteReceivers, usually in its init method. 
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The Conductor Class 

The Conductor class defines the mechanism that controls the timing of a Music Kit 
performance. This control is divided between the class object and instances of Conductor: 

• The Conductor class itself represents an entire Music Kit performance. The class 
methods perform global operations such as setting characteristics that apply to all 
Conductor instances, and starting and stopping a performance. 

• Each Conductor instance embodies a message request queue, a list of messages that are 
to be sent to particular objects at specific times. Most of the instance methods are 
designed to affect a Conductor's queue in some way. The most commonly invoked of 
these are the methods that enqueue message requests, and those that determine how 
quickly a Conductor processes the requests in its queue (in other words, the 
Conductor's tempo). 

Conductors Created by the Music Kit 

The Music Kit automatically creates two Conductor instances for you, the clockConductor 
and the defaultConductor: 

• As its name implies, the clockConductor acts as a clock: It ticks away at a steady and 
immutable 60.0 beats per minute. Any timing information that's reckoned by the other 
Conductor instances is computed in reference to the clockConductor. 

• Many applications need only a single Conductor instance (in addition to the 
clockConductor); the defaultConductor is created as a convenience to meet this need. 
The defaultConductor is more pliable than the clockConductor in that its tempo can be 
altered and its activities can be temporarily suspended during a performance. 

The clockConductor is retrieved by sending the clockConductor message to the Conductor 
class; similarly, defaultConductor retrieves the defaultConductor. 

The Message Request Queue 

Every instance of Conductor (this includes the clockConductor and defaultConductor) 
maintains a message request queue. This queue consists of a list of structures, each of 
which encapsulates a request for a message to be sent to some object. Every request is given 
a timestamp that indicates when its message should be sent. The requests in a message 
request queue are sorted according to these timestamps. When a performance starts 
(through the startPerformance class method), the Conductor instances begin processing 
their message queues, sending the requested messages at the appropriate times. 
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Note: The structures in the message request queues are of type MKMsgStruct. All the 
fields ofthis structure are private: You can examine them, but you should never alter their 
values directly. Detailed knowledge ofthe MKMsgStruct isn't necessary. The structure is 
defined without further explanation in the file lusr/inciude/musickit/Conductor.h. 

Creating and Scheduling a Message Request 

To enqueue a message request with a Conductor, you invoke the sel:to:atTime:argCount: 
or sel:to:withDelay:argCount: method. The arguments to these methods are similar: 

Keyword 

sel: 
to: 
atTime: or withDelay: 
argCount: 

Argument 

Selector that identifies the method you wish to invoke 
The object that implements the desired method 
The time at which you wish the method to be invoked 
The number of method arguments, followed by the 
arguments themselves, separated by commas 

The difference between the two methods is the manner in which the time argument is 
interpreted. A message request enqueued through the ... atTime: ... method is sent at the 
specified time measured from the beginning of the performance. If you use the 
... withDelay: ... method, the requested message is sent after the specified amount of time 
has elapsed since the sel:to:withDelay:argCount: method itself was invoked (given that a 
performance is in progress). Invoked before a performance begins, the two methods are 
identical. 

Once you've made a message request through one of these methods, you can't rescind the 
action; if you need more control over message requests-for example, if you need to be able 
to reschedule or to remove a request-you should use the following C functions: 

• MKNewMsgRequest(double time, SEL selector, id receiver, int argCount, ... ) creates 
a new MKMsgStruct structure and returns a pointer to it. The arguments are similar, 
although in a different order, to those of the sel:to:atTime:argCount: method. 

• MKScheduleMsgRequest(MKMsgStruct *aMsgStructPtr, id conductor) places the 
structure pointed to by aMsgStructPtr, which was previously created through 
MKNewMsgRequestO, in conductor's message request queue. 

MKRepositionMsgRequest(MKMsgStruct *aMsgStructPtr, double time) 
repositions a message request within a Conductor's queue. The value of the time 
argument is absolute: It indicates the request's new position as the number of beats 
since the beginning of the performance. 

• MKCancelMsgRequest(MKMsgStruct *aMsgStructPtr) removes a message 
request. 
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The Conductor class provides two special message request queues, one that contains 
messages that are sent at the beginning of a performance and another for messages that are 
sent after a performance ends. The class methods beforePerformanceSel:to:argCount: 
and afterPerformanceSel:to:argCount: enqueue message requests in the before- and 
after-performance queues, respectively. 

Controlling a Performance 

As previously mentioned, a Music Kit performance starts when the Conductor class 
receives the startPerformance message. This starts the Conductor's clock ticking (as 
represented by the clockConductor). If you're synthesizing music on the DSP or sending 
messages to an external MIDI synthesizer, you should send the run message to the 
Orchestra class or to your Midi object at virtually the same time that you invoke 
startPerformance: 

/* Start Midi, the DSP, and the performance at the same time. */ 
[aMidi run]; /* assuming aMidi was previously created */ 

[Orchestra run]; 

[Conductor startPerformance]; 

When it receives startPerformance, the Conductor class sends the messages in its 
before-performance queue and then the Conductor instances start processing their 
individual message request queues. As a message is sent, the request that prompted the 
message is removed from its queue. The performance ends when the Conductor class 
receives finishPerformance, at which time the after-performance messages are sent. Any 
message requests that remain in the individual Conductors' message request queues are 
removed. Note, however, that the before-performance queue isn't cleared. If you invoke 
beforePerformanceSel:to:argCount: during a performance, the message request will 
survive a subsequent finishPerformance and will affect the next performance. 

By default, if all the Conductors' queues become empty at the same time (not including the 
before- and after-performance queues), finishPerformance is invoked automatically. This 
is convenient if you're performing a Part or a Score and you want the performance to end 
when all the Notes have been played. However, for many applications, such as those that 
create and perform Notes in response to a user's actions, universally empty queues aren't 
necessarily an indication that the performance is over. To allow a performance to continue 
even if all the queues are empty, send setFinish WhenEmpty:NO to the Conductor class. 

While a performance is in progress, you can pause all Conductor's by sending 
pausePerformance to the Conductor class. A paused performance is resumed through the 
resumePerformance method. Individual Conductor objects can bepaused and resumed 
through the pause and resume methods. 

The Conductor Class 5-19 



Setting the Tempo 

A Conductor's tempo controls the rate with which it processes the requests in its message 
request queue. Two methods are provided for setting a Conductor object's tempo: 

setTempo:, which takes a double argument, sets the tempo in beats-per-minute. 

setBeatSize: also takes a double, but it sets the tempo by defining the duration, in 
seconds, of a single beat. 

Regardless of which method you use to set the tempo, the values returned by the retrieval 
methods tempo and beatSize are computed appropriately, as shown in the following 
example: 

double bSize; 

/* Sets the defaultConductor's tempo. */ 

[[Conductor defaultConductor] setTempo:240.0]; 

/* Return the beat size; bSize will be 60.0/240.0, or 0.25. */ 

bSize = [[Conductor defaultConductor] beatSize]; 

You can change a Conductor's tempo at any time, even during a performance. If your 
application requires multiple simultaneous tempi, you need to create more than one 
Conductor, one for each tempo. A Conductor's tempo is initialized to 60.0 beats per 
minute. 

Locking the Performance 

Every Conductor instance has a notion of the current time, measured in beats. This notion 
is updated by the Conductor class only when a message from one of the request queues is 
sent; all Conductors are updated when any Conductor sends such a message. If your 
application sends a message (or calls a C function) that depends on a Conductor's notion of 
time being current, you must first send lockPerformance to the Conductor class. Every 
invocation of lockPerformance should be balanced by an invocation of 
unlockPerformance. For example, if you send receiveNote: to an Instrument's 
NoteReceiver, you must bracket the message with lockPerformance and 
unlockPerformance. (However, invocations of receiveNote: that are requested through a 
Conductor's messge request queue shouldn't be bracketed by these methods.) 
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Conductors and Notes 

Every Note is associated with a Conductor object. By default, a Note is associated with the 
defaultConductor. You can't change a Note's Conductor directly; only a Performer object 
can do that (as described in the section on Performers). 

The association between a Note and a Conductor is of particular importance if the Note is 
a noteDur that's sent to a SynthInstrument or Midi object. Both of these Instruments split 
a noteDur into a noteOn/noteOff pair. The noteOn is realized immediately and the noteOff 
is scheduled for realization at a later time, as indicated by the original Note's duration value. 
To do this, a request for the noteOff to be sent in a receiveNote: message is enqueued with 
the Note's Conductor. The exact time at which the Note arrives depends, therefore, on this 
Conductor's tempo. 

A Note's Conductor is also important if you send the Note to an Instrument through 
NoteReceiver's receiveNote:atTime: or receiveNote:withDelay: methods. These 
methods cause the NoteReceiver to enqueue a receiveNote: request with the Note's 
C~nductor at the specified time: The former method takes the atTime: argument as an 
absolute measure from the beginning of the performance, while the latter measures the 
withDelay: argument as some number of beats from the time that it's invoked. 

Conductors and Envelopes 

The relationship between an Envelope and a Conductor is as important as it is inflexible: 
The dispatching of an Envelope's breakpoints during DSP synthesis is always done through 
message requests with the clockConductor. You don't have to do anything to obtain this 
behavior, it happens automatically through MKUpdateAsympO, the function that you use 
in the design of a SynthPatch subclass to apply an Envelope to a synthesis patch. 

This association is particularly important not for the particular Conductor with which the 
breakpoints are scheduled, but that they are scheduled at all. Since the clockConductor 
handles breakpoint dispatching, this means that its queue may be filled with breakpoint 
messages without you knowing it. As a result, if you set the performance to finish when the 
queues are empty, the performance won't finish until all the breakpoint messages are sent 
from the clockConductor's queue. This is generally desirable behavior. Where things can 
become confusing is if you pause an entire performance (through Conductor's 
pausePerformance class method) while Envelopes are being handled. Not only will all 
Note handling stop, all Envelopes will freeze as well. This usually isn't pleasant. 

One way to avoid the problem is to pause all your Conductor objects, through the pause 
method, rather than pause the entire performance. 
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The Performer Class 

A Performer object does two things: 

• It generates or otherwise obtains a series of Note objects during a performance. 

• It acts as a cover for Conductor's scheduling mechanism by sequentially and repeatedly 
requesting invocations of its own perform method. 

The Performer class itself is abstract; you create a subclass of Performer to correspond to a 
unique sources of Notes. The Music Kit includes subclasses that read Notes from a Part 
(PartPerformer) or a scorefile (ScorefilePerformer)-the latter actually inherits from the 
FilePerformer class, a subclass of Performer that defines methods for managing files. The 
Music Kit also includes pseudo-Performers that fashion Notes from MIDI input (Midi), and 
that read Notes from a Score (ScorePerformer, which creates a PartPerformer for each Part 
in the Score). Consult Chapter 2 of Reference for further descriptions of these classes. 

Using a Performer object is quite simple; creating your own subclass is a bit more 
complicated and requires a firm understanding of how a Performer goes about its business. 
These two topics are presented below. 

Using a Performer 

To use a Performer, you need to do two things: connect it to an Instrument and tell it to go. 
Every Performer contains some number of NoteSenders, auxiliary objects that are created 
by the Performer to act as Note "spigots." NoteSenders are analogous to an Instrument's 
N oteReceivers. 

To connect a Performer to an Instrument, you retrieve aN oteSender and N oteReceiver from 
either, respectively, and connect these objects through the connect: method, as defined by 
both NoteSender and NoteReceiver. For example, to connect a PartPerformer to a 
SynthInstrument, you would do the following: 

/* aPartPerformer and aSynthIns are assumed to exist. */ 

[[aPartPerformer noteSender] connect: [aSynthIns noteReceiver]]; 

Since both classes define the connect: method, the following is equivalent: 

/* aPartPerformer and aSynthIns are assumed to exist. */ 

[[aSynthIns noteReceiver] connect: [aPartPerformer noteSender]]; 

The note Sender method returns one of a Performer's NoteSenders, just as the 
noteReceiver method retrieves one of an Instrument's NoteReceivers. If you're using a 
Music Kit Performer subclass, you should refer to its description to determine if it creates 
more than one N oteSender. If it creates only one, then the noteSender method is sufficient. 
If it creates more than one, you can retrieve the entire set as a List through the noteS enders 
method and then choose the NoteSender that you want by plucking it from the List. A 
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ScorefilePerformer, for example, creates aN oteSender for each Part that's represented in its 
scorefile. 

Activating a Performer 

To make a Performer run, you send it the activate message. This prepares the object for a 
performance but it doesn't actually start performing Notes until you send 
startPerformance to the Conductor class. If you invoke activate while a performance is 
in progress (in other words, after you send startPerformance), the Performer will 
immediately start running. In addition, the Performer may require subclass-specific 
preparation; for example, you have to set a PartPerformer's Part before you send it the 
activate message. 

While a Performer is running, you can pause and resume its activity through the pause, 
pauseFor:, and resume methods. To completely stop a Performer you invoke deactivate. 
In addition, all Performers are automatically deactivated when the Conductor class receives 
the finishPerformance message. A Performer can be given a delegate object that can be 
designed to respond to the messages performerDidActivate:, performerDidPause:, 
performerDidResume:, and performerDidDeactivate:. These messages are sent by the 
Performer at the obvious junctures in its performance. 

Performers and Conductors 

Every Performer object is associated with a Conductor. If you don't set a Performer's 
Conductor explicitly (through setConductor:), it will be associated with the 
defaultConductor. The rate at which a Performer performs its Notes is controlled by its 
Conductor's tempo. In general, all the Performers you create can be associated with the 
same Conductor. The only case in which a Performer demands its own Conductor is if you 
want the Performer to proceed at a different tempo from its fellow Performers. 

Creating a Performer Subclass 

The design of a Performer subclass must address three tasks: acquiring a Note, sending it 
into a performance, and scheduling the next Note. 

Acquiring Notes 

Each subclass of Performer defines a unique system for acquiring Notes. You can design 
your own Performers that, for example, read Notes from a specialized database or create 
Notes algorithmically. Regardless of how a Performer acquires its Notes, it does so as part 
of the implementation of its perform method. 
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The perform method can be designed to acquire any number of Notes with a single 
invocation. 

Sending Notes 

To send a Note into a performance, a Performer relies on its NoteSender objects. A 
Performer creates and adds some number of N oteSenders to itself, usually as part of its init 
method. NoteSenders are created through the usual sequence of alloc and in it messages; 
they're added to a Performer through Performer's addNoteSender: method. A Performer 
can add any number of NoteSenders to itself, although it's anticipated that most Performers 
will need only one. 

As part of its implementation of the perform method, a Performer passes the Note it has 
acquired as the argument in a sendNote: message, which it sends to its NoteSenders. Each 
NoteSender then relays the Note to the NoteReceivers to which it's connected; each 
NoteReceiver passes the Note to the Instrument that it (the NoteReceiver) belongs to. Thus, 
by sending sendNote: to a NoteSender, a Performer communicates Notes to one or more 
Instruments. If more than one Note is acquired in the perform method, each is sent in a 
separate sendNote: message. 

Note: Methods that are invoked from within the perform method-and this includes the 
sendNote: method-shouldn't be bracketed by lock Performance and 
unlockPerformance. 

Scheduling Notes 

As described above, every time a Performer receives the perform message it acquires a 
Note and then sends it to its NoteSenders. The final obligation of the perform method is 
to schedule its own next invocation. This is done by setting the value of the nextPerform 
instance variable. The value of nextPerform is measured in beats according to the tempo 
of the Conductor and, most important, it's taken as a time delay: If you set nextPerform 
to 3.0, for example, the perform method will be invoked after 3.0 beats. 

To get things started, a Performer's first perform message is automatically scheduled to be 
sent just after the Performer is activated. You can delay this initial invocation by setting the 
nextPerform variable from within the activateSelf method. The default implementation 
of activateS elf does nothing; a subclass can implement it to provide pre-performance 
initialization just such as this. 

An important implication of this scheduling mechanism is that a Performer must be able to 
determine when it wants to perform its next Note at the time that it acquires and performs 
its current Note. 
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Fine-Tuning a Performance Application 

Responsiveness 

The responsiveness of a performance to the user's actions depends on whether the 
Conductor class is clocked or unclocked, and upon the value of the performance's delta 
time. By default, the Conductor class is clocked. This means that the messages in the 
message request queues are sent at the times indicated by their timestamps. When the 
Conductor class is clocked, a running Application object must be present (unless the 
performance is being run in a separate thread, as described below). 

If you don't need interactive control over a performance, you may find it beneficial to set it 
to unclocked by sending setClocked:NO to the Conductor class. In an unclocked 
performance, messages in the message request queues are sent one after another as quickly 
as possible, leaving it to some other device-the DSP or the MIDI device driver-to handle 
the timing of the actual realization. 

Setting the delta time further refines the responsiveness of a performance. Delta time is set 
through the MKSetDeltaTO C function; the argument defines an imposed time lag, in 
seconds, between the Conductor's notion of time and that of the DSP and MIDI device 
drivers. It acts as a timing cushion that can help to maintain rhythmic integrity by granting 
your application a sort of computational head start: As you set the delta time to larger 
values, your application has more time to process Notes before they are realized. However, 
this computational advantage is obtained at the expense of degraded responsiveness. 
Choosing the proper delta time value depends on how responsive your application needs to 
be. For example, if you are driving DSP synthesis from MIDI input, a delta time of as much 
as 10 milliseconds (0.01 seconds) is generally acceptable. If you are adjusting Note 
parameters by moving a Slider with the mouse, a delta time of 100 milliseconds or more 
can be tolerated. Finding the right delta time for your application is largely a matter of 
experimentation. 

Separate-Threaded Performance 

To enhance the efficiency of a performance, you can run it in its own thread. This is done 
by sending useSeparateThread: YES to the Conductor class. Running a performance in 
its own thread separates it from the main event loop, thus allowing music to play with 
greater independence from your application's other computations. However, certain 
restrictions must be adhered to when running a performance in its own thread: 

You can't use ScorefileWriter or ScorefilePerformer objects in the performance. 

• You can't invoke an Orchestra method that changes the Orchestra's status; these are 
open, run, stop, close, and abort. 
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• You can't send messages to instances of classes defined by the Application Kit, or to 
instances of the Sound Kit's SoundView and SoundMeter classes. In addition, you 
can't read or write soundfiles, or play or record sounds through an instance of the Sound 
Kit's Sound class (note, however, that you can use the sound library functions). 

• You can't call DPS client functions. 

• You can't call NXStreams functions. 

• You can't call C functions that rely on standard input and output; these are functions 
such as printfO and scanfO. Because of this, DSP error logging and Music Kit tracing 
can't be used. In addition, if you need to handle Music Kit errors, you must provide 
your own error handler function through MKSetErrorProcO. 

These restrictions apply only to that part of your application that's running in the 
performance thread; specifically, messages sent by a Conductor through its message request 
queue, and method invocations and C function class that are part of the design of a 
Performer or Instrument (or pseudo-Performers such as Midi) must follow these 
restrictions. For example, you can't use an Instrument that sends messages to an 
Application Kit Window object; however, you can send messages to the Window from your 
application's main thread. 

The performance thread can cause a restricted method to be invoked or a restricted function 
to be called by sending a Mach message to a message port. To do this, you must first 
register the port through DPSAddPortO in the main thread. This is demonstrated in the 
Ensemble programming example (/NextDeveloper/Examples/MusicKitlEnsemble). 

An important restriction in a multi-threaded performance is that all messages (or groups of 
messages) to Music Kit objects sent from the main thread should be bracketed with 
lockPerformance and unlockPerformance. 

Performance Priority 

Give your application an unfair advantage through the setTheadPriority: Conductor class 
method. This method sets the Mach-scheduling priority of the performance thread, whether 
or not it's separate. Performance priority values are between 0.0 and 1.0, where 0.0 is 
unheightened (the default) and 1.0 is the maximum priority for a user process. Normally, 
Mach priorities degrade over time; you can subvert this degradation by giving ownership of 
your application to root and setting the application's protection to include the set user ID 
bit. In a Terminal window, you would type the following: 

su root 

chown root yourAppHere 

chmod u + s yourAppHere 
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Performing with the DSP 

You can also shape your performance's capabilities by affecting the Orchestra class, thus 
influencing the manner in which DSP resources are used. 

Sampling Rate 

The DSP can output stereo samples at two rates, 22050 samples per second, or 44100 
samples per second. By default, it runs at the low sampling rate. You can improve a 
performance's response time with regard to DSP synthesis by using the high sampling rate, 
as accomplished by sending the message 

[Orchestra setSamplingRate:44100.0]; 

However, by asking the DSP to run at a higher sampling rate, you rob it of some of its 
power. In general, the DSP can be considered to be twice as "big" at the low sampling rate 
as at the high. In other words, if the DSP is able to synthesize twelve simultaneous voices 
at the low sampling rate using a particular SynthPatch, it may only be able to synthesize six 
such voices at the high sampling rate. 

Sound Buffer Sizes 

While the speed of the DSP makes real-time synthesis approachable, there's always an 
imposed time delay that's equal to the size of the buffer used to collect computed samples 
before they're shovelled to the DAC. To accommodate applications that require the best 
possible response time (the time between the initiation of a sound and its actual broadcast 
from the DAC), a smaller sample output buffer can be requested by sending the 
setFastResponse: YES message to an Orchestra. However, the more frequent attention 
demanded by the smaller buffer will detract from the DSP's synthesis computation and, 
again, fewer simultaneous voices may result. 

Headroom 

The Orchestra doesn't know, at the beginning of a Note, if the DSP can execute a given set 
of UnitGenerators quickly enough to produce a steady supply of output samples for the 
entire duration of the Note. However, it makes an educated estimate and will deny 
allocation requests that it thinks will overload the DSP and cause it to fall out of real time. 
Such a denial may result in a smaller number of simultaneously synthesized voices. 

You can adjust the Orchestra's DSP processing estimate, or headroom, by invoking the 
setHeadroom: Orchestra method. This takes an argument between -1.0 and 1.0; a negative 
headroom allows a more liberal estimate of the DSP resources-resulting in more 
simultaneous voices-but it runs the risk of causing the DSP to fall out of real time. 
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Conversely, a positive headroom is more conservative: You have a greater assurance that 
the DSP won't fall out of real time but the number of simultaneous voices is decreased. The 
default is a somewhat conservative 0.1. 
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Chapter 6 
Array Processing 

An array processor is a digital hardware device capable of performing mathematical 
computations on arrays of data with tremendous efficiency and speed. This chapter outlines 
the design of C programs that use the Motorola DSP56001, or DSP, as an array processor. 
In addition, the C functions provided by the NeXT DSP system and array processing 
libraries are summarized, and instructions for creating your own array processing functions 
(from DSP56001 assembly language macros) are given. 

Digital signal processing is a type of array processing that performs computations on signal 
data. Signals are typically one-dimensional streams produced by measuring the changes in 
physical phenomena, such as sound, over a period of time. The DSP is used as a signal 
processor when, for example, it synthesizes music or converts sound data for playback. 
Real-time signal processing with the DSP is discussed at the end of this chapter. 

Design Philosophy 

Traditionally, array processors have been employed in fields such as weather forecasting 
and other physical modeling pursuits to perform "number crunching" on large amounts of 
data. To attain the speed necessary to process these mountains of data within a tolerable 
time, array processors use parallel hardware and a computational pipeline in which 
numerical operations, data input/output, program fetching, and address updating are all 
done in parallel. Furthermore, an array processor is generally provided as a peripheral 
device with its own private high-speed memory, allowing it to work efficiently and 
exclusively on the task at hand. After initiating a process on an array processor, the host 
processor is free to continue with other chores, unburdened by the array processing 
operations. 

The fundamental difference between array processing and more conventional mathematical 
computing is the explicit use of arrays-rather than individual numbers-as the primitive 
objects upon which the computations are performcd. The speed and parallelism provided 
by an array processor are made possible by the use of arrays: Because array elements are 
stored contiguously, they can be fetched in parallel with numerical computations, and the 
address of the next element can be automatically computed. 

NeXT computers use the Motorola DSP56001 as a general-purpose, fixed-point array 
processor. This state-of-the-art microprocessor can execute up to 12.5 million instructions 
per second and, with a single instruction, can perform a 24- by 24-bit fixed-point multiply, 
a 48- plus 56-bit addition, two 16-bit address updates, and three parallel memory moves. 
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In addition, 8K 24-bit words of zero-wait-state static RAM are available to the DSP for 
private data storage. Thus, the DSP provides the architectural features of an array 
processor. 

Fundamental array processing operations, such as vector add and matrix multiply, are 
provided as C functions in the NeXT array processing library. A key design element is the 
extensibility of this software. It's a simple matter to create your own array processing 
function from a DSP assembly language macro by using the dspwrap utility. Creating your 
own macro requires familiarity with DSP assembly language; to help acquaint you with this 
language, NeXT provides a number of macros in source code form-many of which were 
used to generate the array processing functions-as programming examples. You can write 
and wrap your own DSP macros, or you can combine the macros provided by NeXT to 
create more complex and efficient array processing functions. 

Creating an Array Processing Program 

Programs that access the DSP as an array processor follow a basic five-step design: 

1. Initialize the DSP. 
2. Transfer data from host memory to DSP memory. 
3. Download and perform array processing functions on the data in the DSP. 
4. Transfer the processed data back to host memory. 
5. Free the DSP. 

The DSP is assigned to a single program until it's done processing that program's data. 
Initializing the DSP will assign it (step 1); no other program will be able to use the DSP 
until it's freed (step 5). This means, for example, that you can't launch an application that 
synthesizes music or that depends on the DSP for sound playback conversion while you're 
running your array processing program. 

A program running on the host processor not only sends data to the DSP (step 2), it also 
sends instructions for processing the data (step 3). After the DSP has completed its 
processing, the program must ask for the processed data to be sent back to the host (step 4). 

The following program fragment demonstrates the five main steps involved in an array 
processing program: 
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/* 

* Perform array processing operations on two arrays (a[] and b[]), 

* returning results to a third array (c[]). To compile: 

* cc thisFile.c -larrayproc -ldsp_s -lsys s 

*/ 

#import <dsp/arrayproc.h> 

#define N 200 /* number of elements in each array */ 

#define AADR DSPAPGetLowestAddress() /* address of a in DSP memory */ 

#define BADR (AADR+N) /* address of b in DSP memory */ 

#define CADR (BADR+N) 

#define INC 1 

/* address of c in DSP memory */ 

/* element increment for all arrays */ 

main () 

/* The arrays are declared to contain data of type float. */ 

float aArray[N], bArray[N], cArray[N]; 

/* Place initial values in aArray[] and bArray[]. */ 

/* Step 1, initialize the DSP. */ 

DSPAPInit() ; 

/* Step 2, transfer the data arrays to the DSP. */ 

DSPAPWriteFloatArray(aArray, AADR, INC, N); 

DSPAPWriteFloatArray(bArray, BADR, INC, N); 

/* 

* Step 3, download and perform array processing functions on the 

* data. As an example, the vector plus vector function is used 

* here. 

*/ 
DSPAPvpv(AADR, INC, BADR, INC, CADR, INC, N); 

/* Step 4, return the result to the host. */ 

DSPAPReadFloatArray(cArray, CADR, INC, N); 

/* Step 5, release the DSP. */ 

DSPAPFree () ; 

/* Do something interesting with cArray[]. */ 
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Programming Examples 

The directory INextDeveloper/Examples!DSP/ArrayProcessing contains example array 
processing programs in the following subdirectories: 

Time-reverse a sound file. 
Multiply two matrices. 

apsound 
matrix 
fdfilter Perform convolution in the frequency domain. 

In addition, the subdirectory libap demonstrates how to create your own array processing 
library, and the fuse subdirectory illustrates the "fusing" of several array processing macros 
into a single C function. 

DSP Memory Map 

Figure 6-1 and Figure 6-2 show the layout of DSP memory for array processing. The actual 
addresses delimiting each memory region are in the header file 
dsp/dsp _memory_map _ ap.h. Generally, the array processing monitor occupies the 
lowest and highest addresses in each space. On-chip p memory is nominally reserved for 
the array processing program itself, on-chip x memory is for array processing function 
arguments, and on-chip y memory is available for the user. Note, however, that the array 
processing functions provided by NeXT use only the x memory space for all data arrays. 

p x y 

Figure 6-1. DSP Internal Memory Map 

There are two images of external memory: 

In image 1 (shown below in Figure 6-2), external memory appears as one giant array 
that can be carved arbitrarily into x, y, and p segments. 

In image 2 (not shown), the external x and y memory banks are physically separate, as 
they are on the chip. 
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p x y 

Figure 6-2. DSP External Memory Map (Image 1) 

More information on the physical memory map is provided in Appendix F of Reference. 

Data Formats 

The DSP stores data in a 24-bit, fractional, two's complement, fixed-point number 
representation that's declared on the host as type DSPFix24. A DSPFix24 number with bits 
b , b , ... , b (each bit being 0 or 1) has the value o 1 23 

23 
-b + b / 2 + b / 4 + ... + b / 2 o 1 2 23 

The minimum representable value is -1 (binary 10 ... 0), and the maximum value is 1_2-23, 

which is often referred to as "1 minus epsilon" (binary 01...1). If n denotes a DSPFix24 
number, then -1.0 ::; n < + 1.0. Inside the DSP, numbers are routinely clipped to the interval 
[-1,1) as they're transferred from one ofthe 56-bit accumulators to 24-bit memory. It's left 
to the programmer to ensure that computations in the DSP don't create values outside this 
range (other than temporarily within an accumulator). 

Since a DSPFix24 number n is within the range -1.0 ::; n < + 1.0, a C float number f destined 
for the DSP must also be within -1.0 ::;f < + 1.0. A C int number i must be within the range 
_223 ::; i < 223, or between -8388608 and 8388607. On the host, a DSPFix24 number is 
stored as an int; 24 bits are right-justified in 32 bits and the sign extension isn't required. 
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Complex Array Format 

Array processing functions that use complex data interleave the real and imaginary parts of 
the data. This means that arrays of complex numbers are stored in a single DSP memory 
space as [xCI), y(l), x(2), y(2), ... , x(N), y(N)] , where xCi) is the real part and y(i) is the 
imaginary part of the ith element of the length N complex array. 

The one exception to this is the Fast Fourier Transform function, DSPAPfftr2aO, which 
requires that the real part be stored in x memory and the imaginary part in Y memory. 

DSP System Library 

The DSP system C library, /usrlIib/libdsp_s.a, provides generic data transfer and 
conversion functions that support both array processing and the sound synthesis operations 
of the Music Kit. In addition, it lets you boot the DSP with an arbitrary monitor and 
provides functions for reading and writing the host interface, as described in Chapter 5, 
"Programming the DSP." 

The header file dsp/dsp.h provides procedure prototypes (either directly or by including 
other such header files) for the functions in the DSP system library. The DSP system 
functions have the prefix "DSP". 

Data Format Conversion 

Data on the host must be converted to DSPFix24 format before it's transferred to the DSP. 
Similarly, data returned to the host by the DSP is in this format and should be converted to 
a data type, such as float or int, that's useful to your program. 

System functions that transfer data to or from the DSP, such as DSPAPWriteFloatArrayO 
and DSPAPWriteIntArrayO, do the necessary data type conversions for you. However, 
for greater control you can convert and transfer data by calling two separate C functions: 
one that does the conversion and another that performs the transfer. The following example 
shows separate DSP system function calls for data conversion and data transferral: 

/* 
* Program example demonstrating the separation of data conversion 

* from data transferral. 

*/ 

#include <dsp/arrayproc.h> 
#define N 200 

#define AADR DSPAPGetLowestAddress() 

#define BADR (AADR+N) 

#define CADR (BADR+N) 
#define INC 1 
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main () 

/* Arrays for float data. */ 

float aFloat[N], bFloat[N], cFloat[N]; 

/* Analogous arrays for DSPFix24 data. */ 

DSPFix24 aFix[N], bFix[N], cFix[N]; 

/* Place float data in aFloat[] and bFloat[]. */ 

/* Initialize the DSP. */ 

DSPAPInit () ; 

/* Convert data from float to DSPFix24 format. */ 

DSPFloatToFix24Array(aFloat, aFix, N); 

DSPFloatToFix24Array(bFloat, bFix, N); 

/* Transfer DSPFix24 data to the DSP without conversion. */ 

DSPAPWriteFix24Array(aFix, AADR, INC, N); 

DSPAPWriteFix24Array(bFix, BADR, INC, N); 

/* Perform array processing functions on the data. */ 

/* Return result data to the host and put it in c[]. */ 

DSPAPReadFix24Array(cFix, CADR, INC, N); 

/* Convert DSPFix24 to float, if necessary. */ 

DSPFix24ToFloatArray(cFix, cFloat, N); 

/* Free the DSP. */ 

DSPAPFree(); 

/* Do something interesting with cFloat[]. */ 

DSPFloatToFix24ArrayO and DSPFix24ToFloatArrayO are data conversion functions 
that take three arguments: 

• Data is read from an array in host memory given as the first argument. 
• The data is converted and then written to a host array given as the second argument. 
• The third argument is a count of the number of elements in either array. 

Analogous functions are provided to convert to and from type int, and to and from type 
double. Keep in mind that the data conversion functions don't scale the data for you; values 
that aren't within the bounds described in the section "Data Formats" above are clipped. 

Note: int arrays can be cast to type DSPFix24 and written to the DSP without explicit 
conversion; the uppermost byte of each int-which, if properly scaled, should only contain 
the sign extension-is ignored during the transfer. Similarly, if data that's retrieved from 
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the DSP is to be interpreted as nonnegative integers, it isn't necessary to convert from 
DSPFix24 to int. On the other hand, negative integers from the DSP require sign extension 
in the uppermost byte, as provided by DSPFix24ToIntArrayO. 

Data that's converted with a data conversion function can be transferred with the functions 
DSPAPWriteFix24ArrayO and DSPAPReadFix24ArrayO, as shown in the example. 
These are the fastest, lowest level DSP array transfer functions-no data format conversion 
is carried out before or after the transfer. 

The procedure prototypes for the conversion functions are in dsp/DSPConversion.h. 

Note: In addition to the DSPFix24 data type, the DSP also accepts 16-bit and 8-bit 
numbers, but these exist primarily for the Sound Kit. The Sound Kit uses the 16-bit format 
to process sound for CD-quality output and the 8-bit format for the mu-Iaw encoded 
voice-quality sound input. 

Array Processing Library 

The array processing library, /usrlIiblIibarrayproc.a, contains C functions that provide 
many of the elementary array operations needed for array processing (and signal 
processing) applications. In addition, the library provides functions that help communicate 
with and control the DSP in a manner that's best suited for array processing needs. 

The array processing library functions---except those with prefix "DSPAPGet", as 
described below-return an error code that's 0 for success and nonzero for failure. The 
nature of the error is displayed if the DSPEnableErrorFileO function has been called, as 
explained in Chapter 5. 

All the functions in the array processing library have the prefix "DSPAP". 

System Support Functions 

System support functions for array processing provide DSP control, data transfer between 
DSP memory and host memory, and error handling. 

DSP Control Functions 

DSP control functions manage the acquisition of the DSP, providing exclusive access to the 
DSP chip. The most important of these are DSPAPInitO and DSPAPFreeO: 

• DSPAPInitO acquire and initializes the DSP for array processing. 
• DSPAPFreeO releases and resets the DSP. 
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The other DSP control functions, listed in the header file dsp/DSPControl.h, needn't be 
called directly if you're using dspwrap-generated functions. However, you can use them 
to implement advanced features, such as stacking of array processing functions (which are 
all relocatable modules) and overlapping of data transfers and program execution on the 
DSP. 

Data Transfer Functions 

These functions provide array copying between host memory and DSP memory. The 
functions operate on specific data types or configurations and all come in pairs, one for 
sending (writing) an array from the host to the DSP and another for retrieving (reading) data 
from the DSP to the host. They each take four arguments: 

• A pointer to the array on the host 
• The address of the array on the DSP 
• A "skip factor," the DSP address increment used in the transfer 
• The number of array elements to transfer 

The data type of the first argument depends on the array that's being written or read. The 
other three arguments are ints. Keep in mind that the skip factor always applies to the array 
in DSP memory, whether you're reading or writing. For example, if you write an array with 
a skip factor of 3, the first element from the host array is written as the first word in the DSP 
array, the second element from the host is the fourth word on the DSP, the third host element 
is the seventh DSP word, and so on. Similarly, if you read an array with a skip factor of 3, 
the first host element is taken from the first DSP word, the second host element from the 
fourth DSP word, and so on. To write and read contiguous elements, use a skip factor of 1. 

There are seven write/read pairs of transfer functions, representing seven different data 
types or configurations: 

• DSPAPWriteFix24ArrayO and DSPAPReadFix24ArrayO transfer arrays of type 
DSPFix24. These functions are also used to transfer unpacked byte arrays. Array data 
on the host is right-justified in 24 bits on the DSP. 

• DSPAPWriteIntArrayO and DSPAPReadlntArrayO transfer arrays of type int. The 
write function is the same as that for DSPFix24 arrays. The read function, on the other 
hand, is different from the DSPFix24 read function: The 24-bit values received from 
the DSP are sign-extended. 

• DSPAPWritePackedArrayO and DSPAPReadPackedArrayO transfer arrays of data 
packed in type unsigned char. Each successive three bytes of host data is transferred 
to or from a single word on the DSP. 

• DSPAPWriteShortArrayO and DSPAPReadShortArrayO transfer arrays of 16-bit 
data packed in type int. These are used primarily for processing sound data; each 32-bit 
word in the source array provides two successive 16-bit samples in the DSP. The DSP 
receives each 16-bit word right-justified in 24 bits, with no sign extension. 
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• DSPAPWriteByteArrayO and DSPAPReadByteArrayO transfer arrays of 8-bit data 
packed in type unsigned char. These are also used for processing sound data; each 
32-bit word in the source array provides four successive 8-bit samples in the DSP, 
right-justified in 24 bits and with no sign extension. 

• DSPAPWriteFloatArrayO and DSPAPReadFloatArrayO transfer arrays of floats. 
The data is converted to type DSPFix24 before being sent to the DSP, and converted 
back to float when read. Otherwise, these functions are the same as those that read and 
write int data. Host floating-point data must lie between -1.0 and 1.0 in order to be 
accurately represented in DSP fixed point. 

• DSPAPWriteDoubleArrayO and DSPAPReadDoubleArrayO transfer arrays of 
doubles. The data is converted to and from type DSPFix24. Note that double-precision 
offers no advantage relative to single-precision float data; the larger double-precision 
mantissa isn't representable in DSP fixed point. 

Functions Returning Address Limits 

The DSP memory map addresses that pertain to array processing are defined as constants 
in the header file dsp/dsp _memory_map _ ap.h. The following functions return these 
values and are provided so you can avoid compiling in constants that may change in the 
future. None of these functions take arguments. 

DSPAPGetLowestAddressO returns the lowest address available for the user in 
external memory, using image 1 of the memory map. This value is represented by the 
constant DSPAP _XLE_ USR and is always the start of external memory (Ox2000 in the 
present hardware). Note that x, y, and p memory spaces are overlaid in image 1; in 
other words, DSP memory locations x:n, y:n, and p:n refer to the same physical 
memory cell for each n of the DSP external RAM. 

• DSPAPGetHighestAddressO returns the highest address available for the user in 
image 1 of external memory (DSPAP _XHE_USR). 

DSPAPGetLowestAddressXYO returns the lowest address available for the user in 
external memory using image 2 (DSPAP _XLE_USG). This value points to the same 
physical location as DSPAPGetLowestAddressO, but in the address partition where x 
and y memory spaces are physically separated. 

• DSPAPGetHighestXAddressXY 0 returns the highest address available for the user in 
the x partition of external memory, image 2 (DSPAP _XHE_USG). 

• DSPAPGetHighestYAddressXYO returns the highest address available for the user in 
the y partition of external memory, image 2 (DSPAP _ YHE_ USG). 

• DSPAPGetHighestAddressXYO returns the minimum of DSPAP _XHE_USG and 
DSPAP _YHE_USG. 
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• DSPAPLoadAddressO returns the start address of the array processing program in 
DSP on-chip program memory. The start address is equal to DSPAP _PLCUSR (the 
start of internal program memory for the user) plus the size of the preamble program 
that appears before the array processing program. 

Array Processing Functions 

The array processing functions perform manipulations on data residing in the DSP. They're 
generated through dspwrap from DSP56001 assembly language macros: dspwrap 
assembles a binary image from the macro source and wraps a C function around it. When 
the function is called, the binary image at its heart is downloaded to the DSP and executed 
there. 

The source code files for the macros from which the array processing functions were 
generated are provided in the directory /usr/lib/dsp/apsrc. These files are made available 
as programming examples and to allow you to wrap combinations of existing macros into 
new functions. 

Naming Conventions 

The following abbreviation conventions apply to the DSP macro and array processing 
function names. 

Abbreviation Meaning 

c Complex 
v "ector 
m Matrix if operand, minus if operator 
s Scalar 
t Times 
p Plus 
i Immediate 
b Backwards 
br Bit-reversed 
mag Magnitude 
max Maximum 
min Minimum 
lim Limit 
rand Random 
real Real part 
imag Imaginary part 

For example, the macro name vtspv means "vector times scalar plus vector," and surnvrnag 
means "sum vector magnitudes." In addition to these abbreviations, there are two other 
sources of mnemonics: the DSP56001 instruction set itself (for example, veor means 
"vector exclusive or") and the DSP software published by Motorola. Any term not covered 
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by these conventions is spelled out in full; for example, vsquare stands for "vector square," 
which squares each element of a vector. 

The following sections provide one-line summaries of the array processing functions. For 
brevity, each function is given by the name of its underlying DSP macro; in other words, 
without the "DSPAP" prefix. More detailed descriptions of the functions are provided in 
Volume 2, Chapter 3. A list of the calling sequences (only) for the functions appears in 
Volume 2, Appendix B. 

Real Vector and Matrix Operations 

mtm 

vreal 
vimag 

vclear 
vfill 
vfilli 

vmove 
vmoveb 
vmovebr 

vabs 
vnegate 

vpv 
vpvnolim 
vmv 
vtv 
vtvpv 
vtvpvtv 
vtvmvtv 

vps 
vpsi 
vts 
vtsi 
vtsmv 
vtspv 
vtvms 
vtvps 

6-14 Chapter 6: Array Processing 

matrix times matrix 

vector real part extraction 
vector imaginary part extraction 

vector clear 
vector fill with a constant value 
vector fill immediate (fill from argument) 

vector move 
vector move backwards 
vector move bit-reversed 

vector absolute value 
vector negate 

vector plus vector 
vector plus vector, no limiting 
vector minus vector 
vector times vector (pointwise multiply) 
vector multiply plus vector 
vector multiply plus vector multiply 
vector multiply minus vector multiply 

vector plus scalar 
vector plus scalar immediate 
vector times scalar 
vector times scalar immediate (scalar in argument) 
vector times scalar minus vector 
vector times scalar plus vector 
vector times vector minus scalar 
vector times vector plus scalar 



vramp 
vrampl 
vrand 
vreverse 
vsquare 
vswap 

vector ramp 
vector ramp immediate (slope in argument) 
vector random numbers 
vector reverse elements 
vector square 
vector swap 

Complex Vector Operations 

The complex vector operations perform elementary operations on arrays of complex data. 
Complex numbers, each consisting of a real part and an imaginary part, arise naturally in 
the application of spectrum analysis. 

cvcombine 
cvconjugate 
cvfill 
cvfilli 
cvmandelbrot 
cvmcv 
cvmove 
cvnegate 
cvpcv 
cvreal 
cvtcv 
fftr2a 

complex vector combine (two real to complex) 
complex vector conjugate 
complex vector fill with a constant value 
complex vector fill immediate (from argument) 
complex vector Mandelbrot set generator 
complex vector minus complex vector 
complex vector move 
complex vector negate 
complex vector plus complex vector 
complex vector from real (zero imaginary part) 
complex vector times complex vector 
radix 2 FFT (requires xy memory partition) 

Maximum and Minimum Operations 

maxmagv 
minmagv 
maxv 
minv 
vmax 
vmin 

scalar maximum magnitude of vector elements 
scalar minimum magnitude of vector elements 
scalar maximum of vector elements 
scalar minimum of vector elements 
vector maximum of two vectors 
vector minimum of two vectors 

Vector Sum Operations 

sumv 
sumvmag 
sumvnolim 

vector element sum 
vector magnitude sum 
vector element sum, no limiting 
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Vectorized DSP Instruction Operations 

This family of array processing functions lets you apply individual DSP instructions to each 
element (or pair of elements) in an entire vector (or pair of vectors). For example, 
DSPAPvandO, applies the DSP's and instruction to each successive pair of elements from 
the two input vectors. Note that the logical operations and, or, and eor, are bitwise 
operations on successive vector elements-as opposed to word-oriented operations-and 
provide a full word of output information. 

vand 
vor 
veor 
vlsl 
vlsr 
vasl 
vasr 

vector and 
vector or 
vector exclusive or 
vector logical shift left 
vector logical shift right 
vector arithmetic shift left 
vector arithmetic shift right 

Creating New Array Processing Functions 

You can create your own array processing function by writing DSP56001 assembly 
language and processing it with dspwrap. Programming examples that illustrate this 
process are provided in the directory INextDeveloper/Examples!DSPI ArrayProcessing. 
The relevant examples are: 

Iibap Example of creating a custom library of array processing routines 
fuse Example of fusing supplied array processing macros into a single C function 

The basic procedure is to copy an existing array processing macro that's closest to your 
needs (from the directory lusr/lib/dsp/apsrc), modify it to further suit your purposes, run 
dspwrap to generate the C function interface, and link the function into your own array 
processing library. Note that existing array processing macros can be invoked inside your 
new array processing macro. 

The following demonstrates a typical invocation of dspwrap: 

dspwrap -ap -nodoe mymaero.asm 

The -ap command-line argument indicates that the program is being used to generate an 
array processing function. -nodoc suppresses automatic documentation generation. The 
file mymacro.asm contains a DSP macro for which the program creates a C function 
named DSPAPmymacroO. The C function is written to a file named DSPAPmymacro.c. 

Further details about dspwrap are provided in a UNIX manual page. 

6-16 Chapter 6: Array Processing 



Real-Time Digital Signal Processing 

A digital signal is a sequence of numerical measurements of a physical variable, such as 
temperature or air pressure, over time. For example, the DSP is used as a signal processor 
when it synthesizes music or processes recorded sounds. Normally, a signal processing 
system is thought of as operating on continuous streams of signal data in real time. 
However, a signal can be broken into a succession of arrays, allowing it to be processed in 
terms of array processing operations. When implemented using array processing, the 
operations are performed on a succession of these arrays (or vectors), typically out of real 
time. It's possible to perform array-oriented operations on signals and keep up with real 
time, although the output is always delayed by an amount no less than the time it takes to 
process a single array. 

The UnitGenerator class, part of the Music Kit, is designed to support the needs of real-time 
digital signal processing. In contrast to array processing functions, which cause DSP 
macros to execute inside the DSP without host interaction, the UnitGenerator class supports 
real-time communication between the host and the DSP. Parameters of a UnitGenerator can 
be updated after every "tick" of samples of the output signal have been computed. (The 
Music Kit presently uses 16 samples per tick.) Thus, at the expense of more DSP resources 
devoted to real-time communication and buffering, it's possible to configure a network of 
signal processing modules for real-time processing of signals coming in and going out of a 
DSP serial port or through the host interface. 

Similar to array processing functions, UnitGenerator subclasses are built around DSP 
assembly language macros. By combining UnitGenerators into an Orchestra object, you 
can assemble a large amount of DSP code that can be sent to the DSP with a single 
instruction. One Orchestra can perform a series of computations that would otherwise 
require several array processing function calls. 

For more information on the UnitGenerator class, see Chapter 3, "Music." The DSP source 
code for the Music Kit monitor is in /usr/Ub/dsp/smsrc/mkmon8k.asm. It can be adapted 
to accommodate different tick sizes and buffer lengths. 
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Chapter 7 
Programming the DSP 

This chapter explains how to access the DSP from software on a NeXT computer. A brief 
review of the hardware is presented, followed by a description of ways to access the DSP. 
Familiarity with the DSP56001, especially the host interface port, is assumed. 

DSP details, including the D-15 connector pinouts, DSP memory map, and DSP instruction 
summary, can be found in Reference. 

DSP Hardware 

The hardware associated with the DSP includes: 

• The Motorola DSP56001 clocked at 25 MHz 
• 8K 24-bit words of zero-wait-state RAM, private to the DSP 
• Memory-mapped and DMA access (5 megabytes/sec) to the DSP host interface 
• A D-15 connector that provides access to the DSP SSI and SCI serial ports 

Booting the DSP 

The DSP is in the reset state while not in use by some task. When first accessed, it exits the 
reset state awaiting a bootstrap program. You can write a DSP program to be fed to the DSP 
during the bootstrap sequence. This and the following sections describe how to create, load, 
and communicate with your own DSP bootstrap program. 

The DSP bootstrap program must be a single contiguous program segment starting at 
location p:O in on-chip program memory, and it must not exceed 512 words in length (the 
size of on-chip program RAM). Below is an example DSP bootstrap program: 
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boot56k.asm - Example DSP bootstrap program that goes into an 
infinite loop as it reads HRX, right-shifts one place, and 
writes HTX 

org p:O 
reset jmp >rcv_buz 

dup $40-2 
nop 
endm 

output must be a contiguous segment 

org p:$40 ; typical starting address 

rcv buz jclr #0,x:$FFE9,rcv_buz ; wait for data from host 
move x:$FFEB,Al 

LSR A ; right-shift one place 

xmt buz jclr #1,x:$FFE9,xmt_buz ; send shifted word to host 
move Al,x:$FFEB 

jmp rcv buz 

end $40 

DSP Assembly 

To assemble this file (named boot56k.asm) and create the object file boot56k.lod, type 

asm56000 -b -a -1 -os,so boot56k 

in a Terminal window. asm56000 is the Motorola DSP assembler program. The 
command-line arguments used in the example are: 

-b option tells the program to create an object file. 

-a indicates that the object file should be absolute, or nonrelocatable. Absolute files are 
indicated by the extension" .lod". If -a is omitted, a relocatable file (extension" .Ink") 
is created. You can convert a ".Ink" file to a" .lod" file by using the DSP linker program, 
lnk56000. 

-1 produces a listing file (extension ".lst"). The file contains a script of the operations 
performed by the assembler and is useful while debugging. 

• -os,so causes the assembler to put symbol information in the object file. This 
information is used by Bug56™, the DSP symbolic debugger. Bug56 can be found in 
the directory iNextDeveloperiApps. 
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DSP Tools Documentation 

There are three UNIX manual pages documenting the DSP assembler asm56000, linker 
Ink56000, and librarian lib56000. Complete documentation of these tools is also provided 
in the directory INextLibrary/Documentation/Motorola. The Bug56 application has an 
extensive help facility (available in the main menu), and is documented in the directory 
INextLibraryIDocumentationl Ariel. 

Binary DSP Object File Format 

The ".lod" object file written by the assembler is in a machine-independent ASCII format. 
NeXT supports a more efficient binary ".dsp" format. A ".lod" file can be converted to a 
".dsp" file using the program dspimg. For example, 

dspimg boot56k.lod boot56k.dsp 

converts boot56k.lod to ".dsp" format. As a convenience, the extension of the input file 
name defaults to ".lod," and the output file name, when omitted, is derived from the input 
file name, so this example can also appear as 

dspimg boot56k 

Loading the DSP Bootstrap Program 

After you've prepared the bootstrap program boot56k.lod or boot56k.dsp, you can load it 
into the DSP from a C program by calling the DSPBootFileO function. As shown in the 
following example, the function takes the name of the bootstrap program file as its single 
argument. 

/* 
* test boot56k.c - read and load boot56k.dsp (bootstrap file) 

* To compile and link: 

* cc test boot56k.c -ldsp s -lsys s 

*/ 
#include <dsp/dsp.h> /* needed by programs that use the DSP */ 

main() 

DSPBootFile("boot56k.dsp"); /* "boot56k.lod" works, too */ 

/* Communicate with DSP program here */ 

After the call to DSPBootFileO, the DSP remains open and can be accessed via the Mach 
driver or by simple host interface programming, as discussed in the next section. 
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Software Access to the DSP 

There are two basic ways to access the DSP: 

• Reading and writing the host interface registers 
• Sending and receiving Mach messages to and from the sound/DSP driver 

These access modes are described below. 

Host Interface Access 

Reading and writing the eight bytes of the DSP host interface is the simplest and most 
general way to access the DSP. In this access mode, you have complete control over the 
DSP software. There are no programming conventions to obey and no reserved DSP 
resources. The disadvantages are that you must write your own DSP communication 
services, and the DSP can't interrupt the host processor. Lack of interrupt capability 
implies lack of direct memory access (DMA) transfer between the DSP and host memory. 
The Mach driver interface must be used to field DSP device interrupts. 

Host Interface Programming Example 

The following example illustrates communication with the example bootstrap program 
boot56k.asm given above. 

/* To compile and link: cc test_getput.c -ldsp_s -lsys_s */ 

#include <dsp/dsp.h> 

main () { 

int tval,reply; 

DSPBootFile("boot56k"); 

DSPSetHFO(); /* Set HFO */ 

DSPSetHF1(); /* Set HFl */ 

DSPReadICR(&reply); /* 8 bits, right-justified */ 

printf("\n\ticr = Ox%X\n",reply); 

DSPReadISR(&reply); /* 8 bits, right-justified */ 

printf("\tisr = Ox%X\n",reply); 

tval = OxBBCCDD; 

DSPWriteTX(tval); 
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/* Wait for the data to become ready (RXDF on). */ 

while (!DSPDataIsAvailable()); 

while (DSPDataIsAvailable()) { 

DSPReadRX(&reply); /* 24 bits, right-justified */ 

printf("\trx = Ox%X\n",reply); } 

if (reply != tval»l) 

printf("ERROR: rx should be 

DSPClose() ; 

The output of this program should be 

icr = Ox18 

isr = Ox6 

rx = Ox5DE66E 

Ox%X\n",tval»l) ; 

Note: Since IVR isn't used in the DSP host interface, there are no functions for reading 
and writing that register. 

For convenience (and efficiency), whole arrays can be written to the transmit registers using 

DSPWriteTXArray(intArray, numberOfInts) 

and read from the receive registers of the DSP using 

DSPReadRXArray(intArray, numberOfl nts) 

Each word of the transfer is conditioned on TXDE for DSPWriteTXArrayO and on RXDF 
for DSPReadRXArrayO. 

DSP Error Handling 

Most of the DSP system functions (prefix "DSP") return an integer error code, where 0 
indicates success and nonzero indicates failure. These functions also write a string 
describing the error to the file name passed as the single argument to 
DSPEnableErrorFileO. 
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Restrictions on Host Interface Programming 

Certain restrictions apply to the operation of the write/read primitives (which are 
implemented using the Mach driver): 

To write the ICR, you use the functions DSPSetHFIO, DSPSetHFOO, 
DSPClearHFlO, and DSPClearHFOO. 

• To write the CVR, you pass a host command identifier (an integer) to the 
DSPHostCommandO function. The host commands are described in the Motorola 
DSP56001 User's Manual. 

These restrictions are necessary because the DSP driver uses TREQ and HREQ for its own 
purposes. In particular, HREQ causes an interrupt that causes the driver to read all available 
words from the DSP into a kernel buffer. A call to DSPGetRXO actually fetches words 
from this buffer rather than from the DSP directly. 

Host Interface Access Functions 

Functions that support simple host interface programming, such as DSPReadRXO, are 
currently documented in the procedure prototypes defined in the following header files in 
the directory /usr/include/dsp: 

dsp.h is a master header file that pulls in all function prototypes for the DSP library 
(libdsp _s.a). 

DSPError.h contains prototypes for the DSP error handling functions. 

DSPConversion.h prototypes the functions that convert data between type DSPFix24 
and int, float, and double. 

• DSPObject.h prototypes the low-level DSP interface functions. 

DSPObject.h contains many functions that are useful only in conjunction with the array 
processing or Music Kit monitors. The following sections list the functions that are useful 
regardless of the DSP monitor that you use. 

Orienting the Host 

DSPGetDSPCountO returns the number of DSPs in your cube. 

• DSPSetCurrentDSP(int index) and DSPGetCurrentDSPO set and return, 
respectively, the zero-based index of the DSP upon which subsequent DSP functions 
will act. 
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• DSPSetMessagePrioriiy(int priority) and DSPGetMessagePriorityO set and return, 
respectively, the priority of messages sent to the current DSP. There are three priorities, 
represented as the constants DSP _MSG_HIGH, DSP _MSG_MED, and 
DSP _MSG_LOW. 

DSPSetOpenPriority(int priority) and DSPGetOpenPriorityO set and return, 
respectively, the priority with which a subsequent call to DSPOpenNoBootO opens the 
DSP. There are two priorities: 0 is low and 1 is high. With high priority, a process can 
gain access to the DSP even if it has already been opened by another process. This is 
used mostly by the DSP debugger. The original process should be frozen while the new 
process steps in and looks around. 

• DSPEnableHostMsgO and DSPDisableHostMsgO enable and disable, respectively, 
DSP host message protocol. DSPHostMsgIsEnabledO returns the current state of the 
protocol. With this protocol, DSP error messages are sent on the DSP error port. 
Otherwise, all messages arrive on the DSP message port. 

Opening and Closing the DSP 

• DSPlnitO opens the DSP and loads a minimal, generic DSP boot program. This is the 
function that's most commonly called to open the DSP. 

• DSPOpenNoBootO opens the DSP without loading a boot program. 

• DSPOpenNoBootHighPriorityO performs a high-priority open without loading a 
boot program. This is normally used only by the DSP debugger. 

• DSPResetO resets the DSP (which must already be open). A reset DSP is awaiting a 
bootstrap program. 

• DSPBootFile(char *filename) opens (if necessary) and boots the DSP from the given 
program file. 

• DSPBoot(DSPLoadSpec *system) opens (if necessary) and boots the DSP from the 
given program. DSPLoadSpec is defined in /usrllib/include/dsp_structs.h. 

• DSPCloseO and DSPRawCloseO close the DSP; the Raw close doesn't clean up the 
device. 

• DSPCloseSaveStateO and DSPRawCloseSaveStateO are like the previous functions, 
but the state of the open modes are retained and used in a subsequent reopening of the 
DSP. 
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DSP Ownership Information 

• DSPIsOpenO returns nonzero if the DSP is open. 

• DSPGetOwnerStringO returns a pointer to a string that contains information about the 
process that currently owns the DSP. It's in a form exemplified by the following: 

DSP opened in prD 351 by me on Sun Jun 18 17:50:46 1989 

• DSPOpen WhoFileO registers the current owner of the DSP in the DSP log file. This 
is called implicitly by the functions that open the DSP. 

• DSPClose WhoFileO deletes the DSP log file. This is called implicitly by the functions 
that close the DSP. 

Reading and Writing DSPIHost Interface Flags 

• DSPSetHFOO, DSPClearHFOO, and DSPGetHFOO set, clear, and return the state of 
HFO (host flag 0), respectively. 

An analogous set of functions is provided for HFl, and a DSPGet ... function (only) is 
provided for HF2 and HF3. 

Reading and Writing Interface Registers 

• DSPReadICR(int *registerValuePtr) reads the DSP Interrupt Control Register into the 
integer pointed to by the argument (8 bits, right-justified). 

• DSPGetiCRO returns the ICR register. 

An analogous set of functions is provided for the Command Vector Register (CVR) , and the 
Interrupt Status Register (lSR). 

Reading and Writing Commands and Data 

• DSPHostCommand(int cmd) issues the given host command. 

• DSPWriteTX(DSPFix24 word) writes the low-order 24 bits of word into the DSP 
Transmit Byte registers. 
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• DSPWriteTXArray(DSPFix24 *dataPtr, int n) writes n words from dataPtr into the 
DSP Transmit Byte registers. 

• DSPWriteTXArrayB(DSPFix24 *dataPtr, int n) writes the data backwards. 

• DSPReadRX(DSPFix24 *wordPtr) reads the next word from the DSP Receive Byte 
registers into the 24-bit word (right-justified) pointed to by the argument. The function 
waits for the time limit returned by DSPDefaultTimeLimitO to expire before giving 
up (and returning an error code). 

• DSPReadRXArray(DSPFix24 *dataPtr, int n) reads the next n words from the RX 
registers into dataPtr. 

DSPGetRXO returns the RX register. 

Synchronization 

DSPAwaitHC(int msTimeLimit) waits for the HC bit to clear. This happens when the 
next instruction to be executed on the DSP is the first word of the Host Command 
interrupt vector. msTimeLimit is the maximum wait time; 0 means wait forever. 

• DSPAwaitTRDY(int msTimeLimit) waits for the TRDY bit to be set. 

• DSPAwaitData(int msTimeLimit) waits for the DSP to send data to the host. 

DSPDataIsAvaiiableO returns nonzero if data from the DSP is available. 

Ports 

The following functions return aport _ t value; the port _ t data type is defined in 
/usr/include/sys/message.h. The DSP must be open before you call any of these functions. 

DSPGetOwnerPortO returns the port that conveys DSP and sound-out ownership. 

DSPGetHostMessagePortO returns the port that's used to send host messages to the 
DSP. 

• DSPGetDSPMessagePortO returns the port that's used to receive DSP messages sent 
from the DSP to the host. 

• DSPGetErrorPortO returns the port that receives error messages from the DSP. 
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The Simulator 

The Motorola DSP56001 simulator, sim56000, isn't provided by NeXT; it can be obtained 
directly from Motorola. 

• DSPIsSimulatedO returns nonzero if the DSP is being simulated. 

DSPIsSimulatedOnlyO returns nonzero if the DSP simulator output is open while the 
DSP is closed. 

• DSPOpenSimulatorFile(char *filename) opens filename for simulator output. 

• DSPCloseSimulatorFileO closes the simulator output file. 

• DSPStartSimulatorFP(FILE *filePtr) starts the simulator, with outputfilePtr. 

• DSPGetSimulatorFPO returns a pointer to the simulator output file. 

• DSPStopSimulatorO stops the simulator. 
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