
USER INTERFACE
GUIDELINES

Object- Oriented Software

NemTEpTM
USER INTERFACE
GUIDELINES

NeXTSTEP Developer's Library
NeXT Computer, Inc.

A ... "
Addison-Wesley Publishing Company
Reading, Massachusetts' Menlo Park, California' New York' Don Mills, Ontario
Wokingham, England' Amsterdam' Bonn' Sydney' Singapore' Tokyo' Madrid
San Juan' Paris' Seoul' Milan' Mexico City' Taipei

Release 3

NeXT and the publishers have tried to make the information contained in this manual as accurate and
reliable as possible, but assume no responsibility for errors or omissions. They disclaim any warranty
of any kind, whether express or implied, as to any matter whatsoever relating to this manual, including
without limitation the merchantability or fitness for any particular purpose. In no event shall NeXT or
the publishers be liable for any indirect, special, incidental, or consequential damages arising out of
purchase or use of this manual or the information contained herein. NeXT will from time to time revise
the software described in this manual and reserves the right to make such changes without obligation to
notify the purchaser.

NeXTSTEP User Interface Guidelines Copyright © 1990-1992 by NeXT Computer, Inc.
All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior written permission of the publisher or copyright owner. Printed in the United States of
America. Published simultaneously in Canada.

NeXTSTEP 3.0 Copyright © 1988-1992 by NeXT Computer, Inc. All rights reserved. Certain portions of the
software are copyrighted by third parties. U.S. Pat. No. 4,982,343. Other Patents Pending.

NeXT, the NeXT logo, NeXTSTEp, Application Kit, Digital Librarian, Digital Webster, Interface Builder, and
Workspace Manager are trademarks of NeXT Computer, Inc. UNIX is a registered trademark of UNIX
Systems Laboratories, Inc. All other trademarks mentioned belong to their respective owners.

Restricted Rights Legend: Use, duplication, or disclosure by the Government is subject to restrictions as
set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS
252.227-7013 [or, if applicable, similar clauses at FAR 52.227-19 or NASA FAR Supp. 52.227-86).

This manual describes NeXTSTEP Release 3.

Written by NeXT Publications.

This manual was designed, written, and produced on NeXT computers. Proofs were printed on a NeXT
400 dpi Laser Printer and NeXT Color Printer. Final pages were transferred directly from a NeXT optical
disk to film using NeXT computers and an electronic imagesetter.

34 5 6 78 9 lD-CR5-96959493
Third printing, November 1993

ISBN 0-201-63250-0

Contents

xi Introduction

1 Chapter 1: A Visual Guide to the User Interface
3 An Application's Windows
3 Standard Windows
4 Panels
5 Menus
6 Miniwindows
6 Application Icons
7 Controls
8 Buttons
9 Text Fields
9 Sliders
10 Color Wells
10 Scrollers
11 Browsers and Selection Lists

13 Chapter 2: Design Philosophy
14 Basic Principles
14 Consistency
14 User Control
15 Modes
15 Acting for the User
15 Naturalness
16 Using the Mouse
17 Action Paradigms
17 Direct Manipulation
18 Targeted Action
19 Modal Tool
20 Extensions
20 Testing User Interfaces

21 Chapter 3: User Actions: The Keyboard and Mouse
22 How the Keyboard and Mouse Work
22 The Keyboard
22 Modifier Keys
23 Keyboard Alternatives
24 The Mouse
25 Clicking
25 Multiple-Clicking
26 Dragging
26 Pressing
26 Mouse Responsiveness
26 Left and Right Orientation
27 Selection
27 Dragging to Select
28 . Clicking to Select
28 Multiple-Clicking to Select
28 Extending the Selection
29 Continuous Extension
30 Discontinuous Extension
31 How the Arrow Keys Affect a Text Selection

32 Implementing Special Keys
32 Special Character Keys
33 Handling Arrow Characters
33 Special Command-Key Combinations
34 Choosing Keyboard Alternatives
34 Reserved Keyboard Alternatives
35 Required Keyboard Alternatives
36 Recommended Keyboard Alternatives
36 Creating Application-Specific Keyboard Alternatives
37 Choosing the Character
37 Using the Alternate Key
38 Determining the Action that Is Performed
39 Implementing Mouse Actions
39 Reacting to Clicking
40 The First Click in a Window
40 When Dragging Shouldn't Imply Clicking
41 When to Use Multiple-Clicking
42 Dragging from a Multiple-Click
42 How to Use Dragging
43 Moving an Object
43 Defining a Range
44 Sliding from Object to Object
44 When to Use Pressing
45 U sing Modifier Keys with the Mouse
46 Managing the Cursor
46 Changing the Cursor
47 Hiding the Cursor
47 Implementing Selection
48 When Discontinuous Selection Isn't Implemented
48 The Range that Dragging Should Select
49 Implementing the Modified Arrow Keys
49 Control-Arrow Combinations
49 Shift-Arrow Combinations
50 Alternate-Arrow Combinations
50 Other Arrow Key Combinations

51 Chapter 4: The Window Interface to Applications
52 How Windows Work
53 Window Order'
54 Window Behavior

. 55 Reordering
56 Moving
56 Resizing
57 Closing
58 Miniaturizing
58 Hiding and Retrieving Windows
59 Application and Window Status
60 The Active Application
60 Application Activation
61 Application Deactivation
62 The Key Window
63 The Main Window
65 How Windows Become the Key Window and Main Window
65 In the Active Application
65 When an Application Is Activated
66 The Results of Clicking in a Window
67 Implementing Windows
67 Designing Windows
67 Placing Windows
69 Implementing Standard Windows
69 Choosing a Title
70 Using the Resize Bar
70 Using the Miniaturize Button
71 Using the Close Button
72 Implementing Window and Application Status
72 Choosing the Key Window
73 Activating an Application
74 Avoiding Activation when Dragging

75 Chapter 5: Panels
76 How Panels Work
76 Ordinary Panels
77 Attention Panels
78 Implementing Ordinary Panels
78 Window Considerations
78 Using the Resize Bar
78 Using the Miniaturize Button
78 Using the Close Button
79 Becoming the Key Window
80 Relinquishing Key-Window Status
80 Exceptions to Ordinary Panel Behavior
80 Persisting Panels
81 Floating Panels
81 Panels with Variable Contents
82 Multiform Panels
83 Inspector Panels
84 Implementing Attention Panels
84 Naming an Attention Panel
85 The Default Option in an Attention Panel
85 Dismissing an Attention Panel
86 Naming Buttons in an Attention Panel
87 Optional Explanations in an Attention Panel
88 Standard Panels
91 Implementing the Close Panel
92 Implementing the Find Panel
93 U sing the Help Panel
95 Implementing the Info Panel
95 U sing the Link Inspector Panel
96 U sing the Open Panel
96 Implementing the Preferences Panel
97 Implementing the Quit Panel
98 Using the Save Panel

99 Chapter 6: Menus
100 How Menus Work
100 The Main Menu
101 Bringing the Main Menu to the Cursor
102 Submenus
103 Keeping a Submenu Attached
103 Tearing Off an Attached Submenu
104 Removing a Submenu from the Screen
105 Commands
106 Implementing Menus
106 Designing the Menu Hierarchy
107 Choosing Command Names
107 Commands that Perform Actions
108 Commands that Bring Up Panels
109 Commands that Bring Up Submenus
109 Commands that Bring Up Standard Windows
109 Sample Command Names
110 Disabling Invalid Commands
110 Graphical Devices in Menu Commands
111 Standard Menus and Commands
111 The Main Menu
114 Adding to the Main Menu
115 The Info Menu
116 The Document Menu
117 Performing an Implicit New Command
118 Uneditable Documents
118 The Edit Menu
120 The Paste As Menu
120 Checking Spelling
121 The Link Menu
123 The Find Menu
124 The Format Menu
125 The Font Menu
128 The Text Menu
129 The Windows Menu
130 The Services Menu
131 Providing Services
132 Adding a Tools Menu

133 Chapter 7: Controls
135 Buttons
135 How Buttons Work
136 Buttons that Bring Up Lists
136 Pop-Up Lists
137 Pull-Down Lists
137 Implementing Buttons
137 Choosing the Button's Result
138 Choosing the Button's Image or Label
140 Changing the Button's Appearance during a Click
141 Implementing Pop-Up and Pull-Down Lists
142 Implementing Link Buttons
142 Implementing Stop Buttons
143 Text Fields
145 Sliders
146 Color Wells
147 Scrollers
148 How Scrollers Work
148 The Knob and Bar
149 The Scroll Buttons
150 Automatic Scrolling
150 Fine-Tuning Mode
150 Implementing Scrollers
152 Browsers and Selection Lists
153 Choosing the Appropriate Control
153 Controls that Start Actions
154 Controls that Show State
154 Displaying a Single Option
154 Displaying a Group with an Unrestricted Relationship
155 Displaying a Group with a One-of-Many Relationship

157 Chapter 8: The Interface to the File System
158 How the File System Is Organized
158 Home Folders
159 NeXT Folders
160 Local and Personal Folders
160 Net
161 Paths
162 File Name Extensions
162 File Packages
162 Using Paths
163 U sing File N arne Extensions
164 U sing File Packages
164 Creating Unrequested Files and Folders
165 Displaying File Names

167 Suggested Reading

169 Glossary

179 Index

Introduction

This manual discusses the NeXTSTEpn. user interface from the programmer's point of
view. It's meant to serve as a bridge between your experience as a user of NeXTSTEP and
your experience writing applications for other users.

• It explains the user interface and introduces some of its rationale so that it will be easier
for you to design your application.

• It gives guidelines that all applications should follow. When the interface to your
application is consistent with other NeXTSTEP applications, users will find it more
familiar, quicker to learn, and easier to use.

A version of this manual is available on-line through Digital LibrarianT
'" (which is described

in the User's Guide). Digital Librarian also contains Release Notes that provide
last-minute information about the latest release of the software.

How This Manual is Organized

Much of the functionality and appearance of the NeXTSTEP user interface is built into the
Window Server and Application Kif You won't need to program the complete interface
for your application; windows, buttons, scrollers, and other graphic objects are provided for
you. For this reason, discussions with detailed guidelines are divided into two major parts:

• The first part discusses the functionality that's built in.
• The second part describes what you have to do.

Some chapters also have a third part that lists standard objects (which you might or might
not have to implement) that you can use in your application. For example, Chapter 5,
"Panels," lists all the standard panels, such as the Info panel, Print panel, and Quit panel.

Introduction xi

When thinking about putting a panel in your application, you should make sure to use a
standard panel if it's appropriate.

The first two chapters of this book offer an overview of the NeXTSTEP user interface.
Chapter 1, "A Visual Guide to the User Interface," shows what the standard objects in the
user interface look like. Chapter 2, "Design Philosophy," discusses the guiding principles
behind the user interface. You need a good understanding of these principles to be able to
develop NeXTSTEP applications that have a great user interface.

The next two chapters give guidelines for the most basic aspects of communicating with the
user. Chapter 3, "User Actions: The Keyboard and Mouse," discusses how to interpret
mouse and keyboard actions. Chapter 4, "The Window Interface to Applications,"
discusses how windows (which contain the bulk of the information you present to the user)
should work.

The next three chapters give detailed guidelines for implementing standard NeXTSTEP
objects: panels, menus, and controls. Chapter 5, "Panels," gives guidelines about
implementing panels, in general, and then goes into detail about what you have to do to
implement standard panels. Chapter 6, "Menus," does the same for menus. Chapter 7,
"Controls," discusses each control in tum, describing how it works and what you must do
to implement it. It then summarizes what controls you should use under which
circumstances.

Finally, the last chapter, "The Interface to the File System," gives details about how your
application should treat files and folders.

Conventions

Note: Paragraphs like this contain incidental information that may be of interest to curious
readers but can safely be skipped.

Important: Paragraphs like this contain important information.

Warning: Paragraphs like this are extremely important to read.

xii Introduction

Gray boxes like this contain information that you don't need to understand the guidelines
discussed nearby, but that mightbe useful when you start to implement them. .

1

= =

A Visual Guide to the
User Interface

=

A user interface is more than the wayan application looks on-screen. It's all the ways the
application communicates with the user, and the user with the application. Beeps and other
sounds are part of the user interface, as is the speed with which the application reacts to a
mouse click. Still, the appearance of an application is a large part of its user interface. This
chapter concentrates on how things look. How things act is covered in detail elsewhere.

The appearance of the NeXT STEP user interface is influenced by the following goals:

• A look and feel that's consistent across applications
• A simple, elegant appearance that uses shading to give a three-dimensional effect
• A color scheme based on black, white, and gray
• The mouse as the primary input device

A Visual Guide to the User Interface 1

cursor

panel

menu

miniwindows

standard windows

With the Image, display of the Fae window, you canacce" existing system
images, as illustrated earlier in this project, oryeu can create images from
data In elther m (Tag Image Fae Fonnat) or EPS (Encapsulated
PostScript) file format Once you lmportthe lmage, tt can be assigned to
Button objects In your application. I'lgure 0-9 ,how"ome examples of
buttons that display icon"

FIgure 1-9. Icons and Button,

To see how this works, click the Images suitcase In the FOe window to
display a variety of Icon, used In the Application Kit The title. under the
Icons are displayed In gray to Indicate that the.e Icons can't be deleted nor
een their names be edited However, you tan copy snd paste mlY icon that
appear, In thI, window.

application icons

~
(J
o
"0
r::::
o
~
.2
c..
Co
ct1

Thefigure above shows a typical NeXTSTEP screen (the workspace). In it, two
applications have standard windows visible. (One of them also has a menu and a panel
visible.) Other applications are running but have no visible presence besides an application
icon and perhaps a miniaturized window (a miniwindow).

Although many applications can run at once, only one is the active application-the
application that accepts all user input such as typing and mouse clicks. The user can
tell which application is active by checking the menu displayed in the upper left of the
screen; this menu always belongs to the active application. In the figure above, Edit is
the active application.

2 Chapter 1: A Visual Guide to the User Interface

An Application's Windows

Applications present their functionality to the user in three kinds of windows: standard
windows, panels, and menus. Two other kinds of windows also appear on-screen:
application icons and miniwindows.

All the user's typing goes to the current key window, which is one of the active application's
standard windows or panels. The user can tell which is the key window by seeing which
one has the black title bar. In the previous figure, the Find panel is the key window.

Standard Windows

The parts of a standard window are labeled in the figure below. Not all standard windows
need every part-for example, the first window displayed by the Workspace Manager'" has
no close button, so that beginning users won't accidentally close the one window they need
to use the Workspace Manager.

miniaturize button title bar close button

:[!!J - - - caJculatorAPIl.rtfd"'::' Ime E3

Adding an Icon

With the Images display of the File window, you can access existing system
images, as illustrated earlier in this project, or you can create images from
data in either TIFF (Tag Image File Format) or EPS (Encapsulated
PostScript) file format. Once you import the image, it can be assigned to
Button objects in your application. Figure 0-9 shows some examples of
buttons that display icons.

Figure 1-9. Icons and Buttons

To see how this works, click the Images suitcase in the File window to
display a variety of icons used in the Application Kit. The titles under the
icons are displayed in gray to indicate that these icons can't be deleted nor
can their names be edited. However, you can copy and paste any icon that
appears in this window.

content area

More information on standard windows, as well as windows in general, is in Chapter 4,
"The Window Interface to Applications."

An Application s Windows 3

Panels

Although panels can look just like standard windows, they have a different role: They help
perform secondary functionality, supporting the work done in standard windows. Often,
they let the user manage the contents of standard windows in specific ways. For example,
in a text editor, a standard window holds the document being edited, and panels appear as
necessary to get information-for printing, saving, searching, and so on.

Font Panel

I Helvetica Medium 18.0 pt. .J
v."" '.'.' .•... , .••••••.•..••.••. :." '''f'''' .•.• ,," " •.•.. " . .•.

;~M~k~ji.i~Wftij~· 6~.!§=-~ .. · Ii~ ~_...,.,.....,III 18 I~

The Font panel shown above is an ordinary panel. Ordinary panels let the user work in
other windows and panels of the application while the panel is displayed.

Sometimes, however, a panel requires the user's immediate attention-for example, when
the user must confirm a possibly destructive command. In this case, an attention panel is
used. While an attention panel is displayed, the user can't do anything else in the
application (although the user can work in other applications). Because attention panels
work so differently from ordinary panels, they look different, as shown below.

large-font title next to the icon

111111l1li111111111111111111111111- empty title bar

application icon at upper left

4 Chapter 1: A Visual Guide to the User Interface

menu command

Some panels, such as those shown in this section, have been standardized and are used in
many applications. Using standard panels in your application helps the user be more
productive, since the user has less to learn. Chapter 5, "Panels," gives more information
about the standard panels and about creating application-specific panels.

Menus

Menus give the user access to the full breadth of an application's functionality. A user
should be able to get a good idea of what an application does by looking at its menu
commands. As shown below, the application's menu commands are grouped into a main
menu and its submenus.

main menu submenu

.---f-- indicates that the command
brings up a panel

indicates the keyboard
alternative for the command

indicates that the command
brings up a menu

A keyboard alternative is a combination of keys that can be used instead of the mouse for
choosing a command. To choose a command from the keyboard, the user holds down the
Command key while typing the character shown in the menu command. For example, to
quit, the user can either click the Quit menu command or hold down the Command key and
press q.

The main menu and many submenus are standard-in almost any application, they should
have many of the same commands in the same order. Chapter 6, "Menus," describes the
standard menus and commands, and gives guidelines on creating application-specific
menus and commands.

An Application s Windows 5

Miniwindows

When the user clicks a window's miniaturize button (the left button in the title bar), the
window shrinks down to become a miniwindow. To get the full-size window again, the user
double-clicks the mini window

Application Icons

Every running application is represented on-screen by an icon. This icon lets the user
choose the application to work in. To choose an application, the user simply double-clicks
its icon.

An application icon can be either freestanding or docked. Docked icons line up along the
right edge of the screen. They stay on-screen even when the applications they represent
aren't running; this makes it easy to start up commonly used applications (by
double-clicking the docked icon). A freestanding icon stays on-screen only as long as the
application is running. Users can customize their environment by dragging application
icons into and out of the application dock.

freestanding icons

.~""""',..-I- running

starting up

6 Chapter 1: A Visual Guide to the User Interface

Controls

The Workspace Manager adds three small dots-similar to an ellipsis-in the lower left
corner of a docked icon when the application the icon represents isn't running. The three
dots disappear when the application is started up. While it's starting up, the icon is
highlighted in white, as shown above.

Controls are devices that let users give information to or choose an action in an application.
Controls are usually presented to users in panels or menus, although standard windows can
also contain controls. The following figure shows some of the controls used in NeXTSTEP.
(Although menu commands are controls, they're used only in menus, so they're illustrated
in the "Menus" section, earlier).

[: C're ~te ~ I
a button

QiC
H

1J
a text field a slider a color well

a scroller

a selection list

a browser

The following sections describe each of the N eXTSTEP controls in more detail. If
necessary, you can also create your own controls. Chapter 7, "Controls," has more
information.

Controls 7

Buttons

Buttons are the primary controls for starting an action or setting a state. Users manipulate
buttons by moving the mouse so that the cursor is over the button, and then clicking­
pressing and releasing the mouse button.

Buttons can be very basic-with just a word or picture on a rectangular, raised-looking
button-or they can be more complex. The following figure shows some simple buttons
that are typical of those used to start actions.

t:;,.,.,.;"~'·,·· .~~ [I;~~il 1YE!n~
indicates that pressing
Return has the same effect
as pushing the button

g;,'.'.,":""'.~-."-"";;,".-.',,-.,',.,'.-,',~::-:.,,", .. ,-.',,-.. ,-,:.','.'.' ,.-,','.:':,-'. \ ," ,- ,,' /~
~ , ,) , ,-: <"

.. " .

l"',Find,'

Another kind of button that initiates actions is one that controls a pull-down list. A
pull-down list is a combination of a button and a menulike list. The button itself doesn't
cause an action (other than displaying the list), but it lets the user choose a list item that
causes an action. For example:

Action yo

sifri'[BacK~:'<'

Buttons that set a state, as opposed to initiating an action, tend to be a little more complex
than action buttons. Typical state buttons are shown in the figure below.

~~~,~li~b!~"~n~I!:ll 
a switch 

standard radio buttons 

8 Chapter 1: A Visual Guide to the User Interface 



A pop-up list, like a pull-down list, is a combination of a button and a list. A pop-up list's 
button doesn't actually set a state, but it brings up a menulike list from which the user can 
choose an option that sets the state. Unlike a pull-down list, the title of a pop-up list's button 
changes to display the list item that was chosen (such as from Inches to Centimeters). 

Text Fields 

1IIInChe~~~ 
'centimeter?" n 
Points· 

r~:ts~ 
lli . centlmeters~1-lJ 

'Points 

'Picas 

Text fields let the user enter data by typing. When the user presses Return or clicks a button 
associated with the text field, the application acts on the data. 

Sliders 

A slider sets a value between some minimum and maximum. The user can change the value 
by dragging the slider's knob. 

Controls 9 



Color Wells 

A color well lets the user set the color of an object or the color to use for drawing. Color 
wells are often used in groups-for example, so the user can choose one color for the 
outline of an object and another color for its interior fill. One of the ways the user can 
change the color in a color well is by dragging in a color from another well. 

Scrollers 

Scrollers let the user control which part of a document or other data is displayed within a 
rectangular area. The user changes which part is displayed by dragging the scroller's knob 
or pressing its arrow buttons. The figure above shows two scrollers, a vertical scroller and 
a horizontal scroller. 

10 Chapter i: A Visual Guide to the User Interface 



Browsers and Selection Lists 

) Advertisements [> i< .. A·n·nuai'Repo-iC······,:: 
i.: Budget " 

Marketing ,~ 

;:.,:,:.,' 

.... ,. . 

Local 
National 

,~ 

,~ . 

. .... , 

~~_;_. _;_.~. ___ l . 
browser 

,----- Guess ----,--,----,-

\ . 

;; , 

;\ 

.... ... ... .... . .. ',.. :.:: ~'~ 

. 
selection list 

A browser shows text data that's organized in a hierarchy, such as files and folders. A 
selection list is like a browser, but it has only a single level. The user moves down the 
browser's hierarchy by clicking items that have a [). after them. In both browsers and 
selection lists, the user can select items by clicking them. 

Controls 11 





2 

= 

Design Philosophy 

A user interface must meet the needs of both novice and experienced users: 

• For the novice or infrequent user, it must be simple and easy both to learn and 
to remember. It shouldn't require any relearning after an extended absence from 
the computer. 

• For the more experienced user, it must be fast and efficient. Nothing in the user interface 
should get in the way or divert the user's attention from the task at hand. 

The challenge is to accommodate both these goals in ways that don't conflict-to combine 
simplicity with efficiency. 

A graphical (window-based) user interface is well suited to this task. Because graphical 
objects can be endowed with recognizable features of real objects, users can borrow on their 
everyday experience when they approach the computer. Graphical buttons work like you'd 
expect real buttons to work, windows behave much like separate tablets or sheets of paper, 
sliders and other graphical objects act like their physical counterparts off-screen. The 
computer becomes less an entirely new world with its own rules, and more an extension of 
the more familiar world away from the computer screen. 

This not only makes the user interface easier to learn and remember, it also permits 
operations to be simpler and more straightforward. Picking an option is as easy as flicking 
a switch. Resizing a window is as direct and simple as pulling on a tab. The same attributes 
of the user interface that provide simplicity for novice users can also result in efficiency for 
more expert users. 

Design Philosophy 13 



Basic Principles 

The NeXTSTEP user interface is designed with certain basic principles in mind. Four are 
especially important: 

• The interface should be consistent across all applications. 
• The user is in charge of the workspace and its windows. 
• The interface should feel natural to the user. 
• The mouse (not the keyboard) is the primary instrument for user input. 

Each of these principles is discussed in more detail in the sections that follow. 

Consistency 

When all applications have the same basic user interface, every application benefits. 
Consistency makes each application easier to learn, thus increasing the likelihood of its 
acceptance and use. 

Just as drivers become accustomed to a set of conventions on public highways, so users tend 
to learn and rely on a set of conventions for their interaction with a computer. Although 
different applications are designed to accomplish different tasks, they all share, to one 
degree or another, a set of common operations-selecting, editing, scrolling, setting 
options, making choices from a menu, managing windows, and so on. Reliable conventions 
are possible only when these operations are the same for all applications. 

The conventions permit users (like drivers) to develop a. set of habits, and to act almost 
instinctively in familiar situations. Instead of being faced with special rules for each 
application (which would be like each town defining its own rules of the road), users can 
carry knowledge of how one application works on to the next application. 

User Control 

The workspace and the tools for working in it (the keyboard and mouse) belong to the user, 
not to anyone application. Users should always be free to choose which application and 
which window they will work in, and to rearrange windows in the workspace to suit their 
own tastes and needs. 

When working in an application, the user should be afforded the widest possible freedom 
of action. It's inappropriate for an application to arbitrarily restrict what the user can do. 
If an action makes sense, it should be allowed. 

14 Chapter 2: Design Philosophy 



Modes 

In particular, applications should avoid setting up arbitrary modes, periods when only 
certain actions are permitted. Modes often make programming tasks easier, but they usurp 
the users' prerogative of deciding what will be done. They can thus feel annoying and 
unreasonable to users who aren't concerned with implementation details. 

On occasion, however, modes are a reasonable approach to solving a problem. Because 
they let the same action have different results in different contexts, they can be used to 
extend functionality. When permitted, a mode should be freely chosen, provide an easy 
way out, be visually apparent, and keep the user in control. In the NeXTSTEP user 
interface, modes are used in only three situations: 

• In the modal tool paradigm, discussed under "Action Paradigms" later in this chapter 
• In attention panels, discussed in Chapter 5, "Panels" 
• In "spring-loaded" modes that last only while the user holds a key or mouse button down 

Acting for the User 

Even though the user is in control, sometimes it's appropriate for an application to act on 
the user's behalf without waiting for the user's instructions. For example, if a user will 
always select an item after bringing up a panel, perhaps the panel should already have an 
item that's selected. 

The purpose of acting on behalf of the user is to simplify the task at hand-to make a user 
action possibly unnecessary. Therefore, the end result of the application's action must be 
the same as if the user had performed the action. For example, if the panel's display 
changes whenever the user selects an item, then the display must also change when the 
application selects an item. Actions made on the user's behalf should be simple and 
convenient. Otherwise, they can be annoying or confusing, weakening the user's sense of 
control over the system. 

If there's any doubt as to whether an application should act on the user's behalf, then it 
probably shouldn't. It's better for the application to do too little than too much. 

Naturalness 

The great advantage of a graphical user interface is that it can feel natural to the user. The 
screen becomes a visual metaphor for the real world, and the objects it displays can be 
manipulated in ways that reflect the ways familiar objects in the real world are manipulated. 

Basic Principles 15 



This is what's meant when a user interface is said to be "intuitive"-it behaves as we expect 
based on our experience with real objects in the real world. 

The similarity of graphical to real objects is at a fundamental rather than a superficial level. 
Graphical objects don't need to resemble physical objects in every detail. But they do need 
to behave in ways that our experience with real objects would lead us to expect. 

For example, objects in the real world stay where we put them; they don't disappear and 
reappear again, unless someone causes them to do so. The user should expect no less from 
graphical objects. Similarly, although a graphical dial or switch doesn't have to duplicate 
all the attributes of a real dial or switch, it should be immediately recognizable by the user 
and should be used for the sorts of operations that real dials and switches are used for. 

Each application should try to maximize the intuitiveness of its user interface. Its choice 
of graphical objects should be appropriate to the tasks at hand, and users should feel at 
home with the operations they're asked to perform. The more natural and intuitive the user 
interface, the more successful an application can be. 

Using the Mouse 

All aspects of the user interface are represented by graphical objects displayed on-screen, 
and all graphical objects are operated mainly by the mouse, not the keyboard. The 
keyboard is principally used for entering text. The mouse is the more appropriate 
instrument for a graphical interface. 

Nevertheless, it's often a good idea to provide keyboard alternatives to mouse actions (see 
"Keyboard Alternatives" in Chapter 3, "User Actions: The Keyboard and Mouse"). They 
can be efficient shortcuts for experienced users. Keyboard alternatives are always optional, 
however. Visual representations on the screen never are. A keyboard operation without a 
corresponding mouse-oriented operation on-screen isn't appropriate. 

One of the goals of the user interface is to extend to mouse operations the same naturalness 
and consistency that the keyboard provides for experienced typists. This is possible only if 
mouse operations follow established paradigms that users can come to rely on. The next 
section defines the paradigms used in the NeXTSTEP user interface. 

16 Chapter 2: Design Philosophy 



Action Paradigms 

Graphical user interfaces such as NeXTSTEP work best when there are well-defined 
paradigms for using the mouse. The paradigms must be broad enough to encompassactions 
for the widest possible variety of applications, yet precise and limited enough so that users 
are always aware of what actions are possible and appropriate. 

The NeXTSTEP user interface supports these three paradigms of mouse action: 

• Direct manipulation 
• Targeted action 
• Modal tool 

Direct Manipulation 

Most objects respond directly to manipulation with the mouse-a button is highlighted 
when pressed, a window comes forward when clicked, the knob of a slider moves when 
dragged. Direct manipulation is the most intuitive of the action paradigms and the one best 
suited for modifying the position and size of graphical objects. Windows, for example, are 
reordered, resized, and moved only through direct manipulation. 

By directly manipulating icons that represent documents, applications, mail messages, or 
other objects stored in the computer's memory, users can manipulate the objects the icons 
represent. For example, dragging an icon to a new location can change the position of a file 
in the file system's hierarchy. 

Even objects that use the targeted-action or modal-tool paradigm must respond to direct 
manipulation. For example, although buttons and menu commands can't be resized or 
moved, they nevertheless respond to direct manipulation as a way of giving feedback to the 
user. The response-mainly highlighting-shows that the user's action has successfully 
invoked one of the other paradigms. 

Action Paradigms 17 



Targeted Action 

Controls-buttons, scrollers, and the like-are vehicles for the user to give instructions to 
an application. By manipulating a control object, the user controls what the application 
does. Clicking a close button, for example, not only causes the button to become 
highlighted, it also removes the window from the screen. The button is simply a control 
device-like a light switch or a steering wheel-that lets the user carry out a certain action. 

All controls have one thing in common: They act on a target. Some control objects (such 
as the Quit menu command) act on an entire application. Others (such as the close button 
in a window's title bar) act on a window. Still others (such as the Cut menu command) act 
on a subset of a window's contents (such as text) that the user has selected. 

Sometimes the user must explicitly select the target, and sometimes not. When the user 
selects the target, it's usually editable graphics or text. However the target can also be 
another type of object, such as a window (the target of the Close Window menu command) 
or a file icon (the target of the Workspace Manager Destroy command). 

When the user needs to explicitly select a target-no matter whether it's a window or a line 
of text-the user always selects the target before choosing the control. For example, a user 
might select a range of text in a file, then choose the Cut command from the Edit menu to 
remove it. 

Targeted action with explicit selection is the normal paradigm for controlling or operating 
on objects. It has the advantage that a sequence of different actions can apply to the same 
target. For example, selected text can be changed first to a different font, then to a different 
point size, and then perhaps copied to the pasteboard. Another advantage is that a single 
control can act on a number of different user-selected targets, making it extremely efficient 
and powerful. The Cut command, for example, can delete text, as well as graphics, icons, 
and' other objects. 

In situations where direct manipulation is the most natural way to do an operation, it's 
preferable to targeted action. However, since direct manipulation isn't sufficient for many 
operations, targeted action is the most commonly used paradigm. For example, although 
direct manipulation is an easy, natural way to resize a window (by dragging), it normally 
isn't easy or natural to set the size of text by dragging the letters to a new height. 

18 Chapter 2: Design Philosophy 



Modal Tool 

In the modal-tool paradigm, users can change the meaning of subsequent mouse actions by 
selecting an appropriate tool, often displayed in a palette with several other tools. Each tool 
controls a certain set of operations that are enabled only after it's chosen. For example, a 
graphics editor might provide one tool for drawing circles and ovals, another for rectangles, 
and still another for simple lines. Depending on which tool is chosen, mouse actions 
(clicking and dragging) will produce very different visual results. The cursor assumes a 
different shape for each tool, so that it's apparent which one has been selected, and the tool 
itself remains highlighted. 

Each tool sets up a mode-a period of time when the user's actions are interpreted in a 
special way. A mode limits the user's freedom of action to a subset of all possible actions, 
and for that reason is usually undesirable. But in the modal tool paradigm, the mode is 
mitigated by a number of factors: 

• The mode isn't hidden. The altered shape of the cursor and highlighted state of the tool 
make it apparent which actions are appropriate. 

• The mode isn't unexpected. It's the result of a direct user choice, not the by-product of 
some other action. 

• The way out of the mode (usually clicking in another tool) is apparent and easy. It's 
available to the user at any time. 

• The mode mimics the way things are done in the real world. Artists and workers choose 
an appropriate tool (whether it's a brush, a hammer, a pen, or a telephone) for the 
particular task at hand, finish the task, and choose the next tool. 

The modal-tool paradigm is appropriate when a particular type of operation is likely to be 
repeated for some length of time (for example, drawing lines). It's not appropriate if the 
user would be put in the position of constantly choosing a new tool before each action. 

Below is a typical palette of modal tools, along with the cursor that shows that a mode is 
in effect. 

Tools ·I.&j 

~ .QS;~ ~ 

IA lU1.j:Q 

Action Paradigms 19 



Extensions 

Users will come to count on a basic set of familiar operations throughout the user interface. 
It's each application's responsibility to make the action paradigms it uses apparent to the 
user-controls should look like controls (like objects that fit into the targeted-action 
paradigm), palettes of tools should be self-evident, and so on. 

An application should also make certain that its paradigms fit the action. It wouldn't be 
appropriate, for example, to force users to choose a "moving tool" or a control just to move 
an object. Graphical objects should move, as real objects do, through direct manipulation. 

Properly used, the paradigms described above can accommodate a wide variety of 
applications. Yet over time, as programmers develop innovative software, new and 
unanticipated operations might require extending the user interface. 

An extension should be a last resort. All possible solutions within the standard user 
interface described in this chapter should be exhausted first. Added functionality must be 
carefully weighed against the ill effects of eroding interapplication consistency for the user. 
Any extension should be clearly different to the user from existing paradigms. 

If an extension is required, it should be designed to grow naturally out of the standard user 
interface; and must adhere to the general principles discussed above. 

Testing User Interfaces 

The success of an application's interface depends on real users. There's no substitute for 
having users try out the interface-even before there's any functionality behind it-to see 
whether it makes sense to them and lets them accomplish what they want. Some books with 
information on user testing are listed in the "Suggested Reading" section at the end of 
this book. 

20 Chapter 2: Design Philosophy 



3 

===========-==--_ ... - _._. ===========~===:::;;;;--:;,:.;:'-= -!-.-=-.~.~--.. 

User Actions: The Keyboard 
and Mouse 

Users give instructions to the computer through their actions on the mouse (or a comparable 
pointing device) and keyboard. 

In general, the keyboard is needed only to enter text. The mouse is used for all other 
operations, such as using controls and making selections. However, for the user's 
convenience, many operations can also be accomplished using the keyboard. The keyboard 
is also the only way to access certain computerwide functionality, such as turning the power 
on and off. 

User Actions: The Keyboard and Mouse 21 



How the Keyboard and Mouse Work 

This section describes how the keyboard and mouse are used in NeXTSTEP. It also 
describes how the user can make selections using the mouse and keyboard. 

The Keyboard 

system control keys 

modifier keys arrow keys numeric keypad 

A NeXTSTEP keyboard resembles a conventional typewriter, with the usual keys in their 
traditional locations. However, the keyboard also has many keys that aren't found on 
typewriters, including the Command, Alternate, Control, and Help keys and a set of keys 
arranged in a calculator-style numeric keypad. The behavior of each key is documented 
in the User's Guide. Behavior that plays an important role in the user interface is 
discussed below. 

Modifier Keys 

The keyboard's Shift, Command, Alternate, Control, and Help keys are modifier keys: They 
change the effect of a keyboard or mouse action. For example, Shift-3 yields #, and 
Command-c issues a Copy command. Unlike character keys, modifier keys by themselves 
don't generate characters. 

To use a modifier key, the user must hold the key down and, while keeping it down, press 
the key (or perform the mouse action) to be modified. More than one modifier key may be 
used at a time-for example, Command-Shift-C. 

22 Chapter 3: User Actions: The Keyboard and Mouse 



The modifier keys and their effects when used with other keys are presented below. 

• The Shift key modifies keystrokes to produce the uppercase character on letter keys and 
the upper character on two-character keys. 

• The Alternate key modifies keystrokes to produce an alternate character to the one that 
appears on the key. In general, these are special characters that are used relatively 
infrequently. To find out which alternate characters are generated by which keys, see the 
User's Guide. 

• The Control key modifies keystrokes to produce standard ASCII control characters. 
Some control characters are generated by single character keys-for example, Tab is 
Control-i, Return is Control-m, and backspace (Shift-Delete) is the same as Control-h. 

• The Command key provides a way of choosing commands with the keyboard rather than 
the mouse. As an alternative to clicking a menu command with the mouse, the user can 
press the Command key in conjunction with the character displayed in the menu next to 
that command. For example, Command-c chooses the Copy command. 

• The Help key doesn't modify keystrokes. It's used only to modify mouse actions, as 
described in "Using Modifier Keys with the Mouse" in this chapter. 

Keyboard Alternatives 

A graphical user interface is easy for most people to learn and remember. Objects have a 
familiar look on the screen and behave in a way that's reminiscent of the real-world objects 
they emulate. However, many users find it faster and easier to operate graphical objects 
using the keyboard rather than the mouse. For this reason, it's often appropriate to provide 
keyboard alternatives to the mouse, at least for common operations. 

Programming Note: The Keyboard 

For most applications, keyboard input is handled automatically. Text entry and display 
are handled by the Application Kit Text object, and keyboard alternatives are 
automatically converted into clicks on their associated control. All you have to do is 
choose the keyboard alternatives (as discussed later in this chapter) and specify them in 
Interface Builder"'. 

You'll need to handle keyboard input if your application doesn't use the Text object for its 
text entry. 

How the Keyboard and Mouse Work 23 



Keyboard alternatives consist of a single keystroke, modified by the Command key (and 
possibly another modifier key). The Command key is required so that keystrokes that make 
something happen (give commands) are clearly separated from those that enter data (cause 
typing to appear). 

Keyboard alternatives are most often used for menu commands, although they're permitted 
in a panel's buttons and pull-down lists, as well. 

Although keyboard alternatives are tied to a graphic representation, they don't require the 
representation to be on-screen. Keyboard alternatives for menu commands and panel 
buttons work even if the menu or panel is hidden. 

The Mouse 

The mouse controls the movement of the cursor on-screen. Typically, the user moves the 
cursor over an object in the workspace and presses a mouse button to make something 
happen. With the mouse, the user can edit documents, rearrange windows, and operate any 
control. The mouse is the essential tool of a graphical interface. 

Users can manipulate the mouse injust two ways: 

• Move it to position the cursor. The standard arrow cursor "points to" the object touched 
by its tip. (The cursor is also said to be positioned "over" the object at its tip.) 

• Press and release the mouse buttons. The NeXTTM mouse has two buttons, one on the 
right and one on the left. Initially, both buttons work alike, but they can be differentiated 
by the Preferences application (see "Left and Right Orientation" later in this chapter). 

From these two simple actions, a few basic mouse operations are derived: 

• Clicking 
• Multiple-clicking 
• Dragging 
• Pressing 

24 Chapter 3: User Actions: The Keyboard and Mouse 



Clicking 

The user clicks an object by positioning the cursor over it, then pressing and releasing a 
mouse button. Usually the mouse isn't moved during a click, and the mouse button is 
quickly released after it's pressed. However, timing generally isn't important. What's 
important is what object the cursor is over when the mouse button is pressed and released. 

Clicking is used to pick an object or a location on the screen. If the object is a window, the 
click brings it to the front and may select it to receive characters from the keyboard. If the 
object is a menu command, button, or other control, the click performs the control's action. 
In text, a click selects the insertion point (the place where the user's typing will be entered). 
In a graphics editor, it may select the location for a Paste command. 

Multiple-Clicking 

The user double-clicks an object by positioning the cursor over it, then quickly pressing and 
releasing a mouse button twice in succession. The mouse button must be pressed the 
second time within a short interval of the first, or the action will count as two successive 
clicks rather than a double-click. In addition, the cursor can't move significantly during the 
interval. This is to guarantee that the double-click remains focused on a single location 
on-screen. 

With the Preferences application, users can set the maximum length of the time interval 
between clicks to suit their individual needs. 

The user triple-clicks an object by rapidly pressing and releasing a mouse button three times 
in succession. The time interval between successive clicks and the distance the cursor can 
move between the first and the last click are subject to the same constraints that apply to a 
double-click. 

Programming Note: The Mouse 

All the controls provided by the Application Kit automatically turn the mouse actions they 
recognize (such as clicks) into the result specified by the programmer (such as bringing 
up a pane!). The Text object also automatically receives and reacts to mouse actions such 
as clicks, double-clicks, triple-clicks, and dragging actions. 

If you implement a custom control or a custom content area, you'll probably have to write 
code to handle the mouse actions that the control or area responds to. 

How the Keyboard and Mouse Work 25 



Dragging 

The user drags by pressing a mouse button and moving the mouse (and cursor) while the 
button is down. 

In general, every dragging action implies a click. Dragging a window, for example, also 
brings it to the front, as if it had been clicked. However, sometimes it's appropriate to 
separate an object's response to dragging from its response to clicking. See "When 
Dragging Shouldn't Imply Clicking," later in this chapter, for infonnation on when 
dragging should not imply a click. 

Pressing 

The user presses an object on-screen by positioning the cursor over it, pressing a mouse 
button, and holding the button down for a period of time. Although pressing implies 
clicking (since the mouse button must be released sometime), an object is said to be pressed 
rather than clicked if releasing the mouse button too soon would cut the action short. 

Control objects that respond to pressing act immediately when the mouse button is pressed. 
They don't wait for the button to go up. 

Mouse Responsiveness 

The cursor moves on-screen when the us.er moves the mouse, but the ratio of the two 
movements isn't one-to-one. Rapid mouse movements move the cursor farther than slow 
ones. Users can set the mouse scaling, how responsive the cursor is to mouse movements 
at different speeds, with the Preferences application. 

Left and Right Orientation 

To start, the two buttons of the mouse work identically: Either button can be used for the 
ordinary operations of clicking, dragging, and pressing. 

The two buttons can be differentiated with the Preferences application. Users can 
enable one of the buttons, either the right or the left, for the special function of bringing the 
main menu to the cursor. (See "Bringing the Main Menu to the Cursor" in Chapter 6, 
"Menus," for details.) Thereafter, the enabled button has only that function, and it can't be 
used for ordinary mouse operations. This leaves the other button as the one that will be 
primarily used. 

26 Chapter 3: User Actions: The Keyboard and Mouse 



Selection 

Users select graphical objects by clicking and dragging with the mouse. A variety of 
objects can be selected, including: 

• Windows 
• Tools in a palette 
• Cells in a matrix or fields in a form 
• Icons in a file viewer 
• Items in a list (of files or mail messages, for example) 
• Characters in editable text 
• Graphical elements of editable artwork 

Selecting an object simply picks it out and distinguishes it from others of the same type. It 
doesn't change the object in any way. Most selections pick out targets for subsequent 
actions in the targeted-action paradigm. 

If users are allowed to insert new material into a display, they can select not only objects 
already displayed, but also locations for the insertions. For example, it's possible to select 
either characters that have already been typed into a text field or the point where new typing 
should appear. 

This section concentrates on how selections are made in editable material, but the rules 
often carry over to other types of selection as well. 

Dragging to Select 

Dragging selects everything in the range defined by the anchor point (where the cursor was 
located when the mouse button was pressed) and the end point (the cursor's location when 
the mouse button is released). 

What "everything in the range" means depends on the type of material selected, as 
described in "The Range that Dragging Should Select," later in this chapter. 

Programming Note: Selection 

The Text object and browser implementation in the Application Kit both provide almost 
all the selection mechanisms described in "Selection." (The exception: The Text object 
doesn't implement discontinuous selection.) However, if you define your own selectable 
data, you'll have to implement selection yourself. 

How the Keyboard and Mouse Work 27 



Clicking to Select 

If the anchor point and end point are substantially the same-as they are for a click-the 
user's action may sometimes select the item under the cursor and sometimes simply select 
that location. In a graphics editor, for example, a click can select an existing figure or a 
location to insert a new one. 

In text, a click always selects a location-an insertion point-where characters can be 
entered from the keyboard. The insertion point is normally marked by a blinking vertical 
bar located between characters. If the user clicks on top of a character, the insertion point 
is adjusted to the nearest character boundary. Clicking in a margin, or in an empty area 
away from any text, puts the insertion point next to the nearest character in series. 

Multiple-Clicking to Select 

Although a single click selects only an insertion point in text, multiple-clicking selects 
characters already inserted. A multiple-click always selects a linguistically meaningful 
unit. Normally, double-clicking selects a word, and triple-clicking selects a paragraph (all 
the text between return characters). 

If the user drags from a multiple-click, additional units of the same type are selected. 
For example, double-clicking a word selects the word; dragging from the double-click 
then selects every other word that's even partially within the range defined by the anchor 
and end points. 

Extending the Selection 

Normally, as soon as users commit themselves to a new selection by pressing a mouse 
button (to begin clicking or dragging), the current selection is canceled in favor of the new 
one. However, when the Alternate or Shift key is held down, the current selection is 
extended, not canceled. 

28 Chapter 3: User Actions: The Keyboard and Mouse 



Continuous Extension 

Clicking and dragging with the Alternate key down results in a new selection that's a 
continuation of the previous one. The new selection includes the previous selection and 
everything lying between it and the location of the cursor when the user releases the mouse 
button. The Alternate key is thus an alternative to dragging as a way of selecting a range­
the user can click to establish an anchor point, hold down the Alternate key, and click again 
to determine the end point. 

If the previous selection is already a range, Alternate-clicking and Alternate-dragging move 
the edge of selection that's closest to the cursor when the mouse button goes down to the 
cursor's location when the mouse button goes up. The Alternate key thus also provides a 
way of adjusting the boundaries of the previous selection. Alternate-clicking outside a 
selected range extends the range to the point of the click. Alternate-clicking inside a 
selected range repositions the closest edge of the selection to the point of the click. 

initial selection 

Green 
Indigo 
Mauve 
Orange 
Red 
Violet yeifow· .. -w .. ·,~Irt-

alternate-clicking 
on Violet 

alte rnate-ci icki ng 
on Orange 

If the current selection is the result of a multiple-click, the Alternate key extends it just 
as dragging would. Double-clicking a word, holding the Alternate key down, and clicking 
another word elsewhere in the text extends the selection to include both words and all 
those between. 

How the Keyboard and Mouse Work 29 



Discontinuous Extension 

The Shift key lets users add to, or subtract from, the current selection. Additions don't have 
to be continuations of the current selection, so discontinuous selections can result. 

Note: Discontinuous selection is common for editable graphics, icons, and items arranged 
in a list. It usually isn't implemented for normal text. 

To add to the selection, the user clicks and drags as usual while holding the Shift key down. 
New material is selected, but the previous selection also remains. This is illustrated in the 
middle column of the following figure. 

initial selection shift-dragging from 
Mauve to Violet 

Blue 
Brown· 
Green 
Indigo 
Mauve 

shift-dragging from 
Brown to OranQe 

To subtract from the selection, the user holds the Shift key down while clicking or dragging 
over the current selection. Shift-clicking and Shift-dragging deselect material that's 
already been selected. While keeping the Shift key down, the user can first select material, 
then deselect it, then select it again. 

Shift-dragging either selects or deselects; it never does both. Which it does depends on the 
item under the cursor when the mouse button goes down: 

• If the item isn't currently part of the selection, Shift-dragging serves to select it and 
everything the user drags over. It won't deselect material that happens already to 
be selected. 

• If the item is currently selected, Shift-dragging deselects it and any other selected 
material that's dragged over. It won't add unselected material to the selection. 

30 Chapter 3: User Actions: The Keyboard and Mouse 



How the Arrow Keys Affect a Text Selection 

In text, the keyboard's arrow keys are used to position the insertion point or, when 
modified by the Alternate key, alter the selection. But unlike the mouse, which can 
select anywhere within a document, the arrow keys operate only relative to the current 
selection. The descriptions below assume that the current selection, before the user touches 
an arrow key, is a range of text. The simpler case where the current selection is not a range 
but an insertion point is not directly addressed, but can easily be derived from the 
descriptions given. 

Note: The arrow keys have nothing to do with the cursor, which is controlled only by the 
user's mouse movements. 

When used alone (without a modifier key), the left arrow key positions the insertion point 
one character before the beginning of the current selection. The right arrow key puts the 
insertion point one character beyond the end of the current selection. These keys move the 
insertion point to the previous or next line if necessary. 

The up arrow key puts the insertion point one line above the beginning of the current 
selection, and the down arrow key puts it one line below the end of the current selection. 
As the up and down arrow keys move it from line to line, the insertion point maintains the 
same approximate distance from the left margin. It falls at the end of any line that's shorter 
than that distance, but comes back out to the original distance when a line that's long 
enough is encountered. 

More information on handling the arrow keys is in "Implementing Special Keys" in this 
chapter. Modified arrow keys-for example, Alternate-arrow-are discussed in 
"Implementing the Modified Arrow Keys," later in this chapter. 

How the Keyboard and Mouse Work 31 



Implementing Special Keys 

This section describes how your application should handle certain special keys and key 
combinations, including keyboard alternatives. 

Special Character Keys 

Several special character keys, listed below, generate characters that typically perform a 
function-the character causes the application to make something happen. Exactly what 
happens depends on the application. Some typical functions are mentioned here. 

• The Return key moves the insertion point or prompt to the beginning of the next line, 
much like the carriage return of a typewriter. When data is entered in a text field or form, 
Return informs the application that the data is ready for processing. 

• The Enter key, like Return, signals that data is ready for processing. It need not move 
an insertion point or prompt to the beginning of the next line. (Enter can also be 
generated with Command-Return.) 

• The Delete key removes the preceding character in text or deletes the current selection. 
Shift-Delete generates the backspace character, which moves the insertion point back 
one character. In most applications, backspace performs the same functions as Delete. 

• The Tab key moves forward to the next tab stop, or to the next text field in sequence. 
Shift-Tab moves backward to the previous tab stop or text field. 

• The arrow keys move the symbol that's used in some contexts to track where the user 
is writing or entering data-for example, the insertion point in a document processor. 
The arrow keys' behavior is described in "How the Arrow Keys Affect a Text Selection," 
earlier in this chapter, and in "Implementing the Modified Arrow Keys," later in 
this chapter. 

For UNIX® compatibility, the Esc key is used to complete file names (as described in the 
following section). It should not be used any other way in the user interface. 

32 Chapter 3: User Actions: The Keyboard and Mouse 



Handling Arrow Characters 

Because the arrow keys generate the same character codes as the Symbol font's arrow 
characters, text objects should check which key generated the character. The arrow keys 
never produce visible arrow characters. However, when a nonarrow key (perhaps modified 
by the Alternate key) produces an arrow character code, it should produce visible arrow 
characters, and not result in arrow key functionality. 

For example, Alternate-F should produce a visible left arrow symbol, as shown in the 
User's Guide, instead of moving the insertion point left one character. 

Special Command-Key Combinations 

A handful of Command-key combinations produce special effects. Some playa particular 
role in the user interface. Others, in effect, give commands to the computer itself, rather 
than to just one application. They can't be used for other functions than those listed below. 

• Command-. (period) should let users abort the current operation in the active 
application. Although the Application Kit has code to support Command-., it isn't 
automatic. An application must ask for this functionality 

• Command-space should be used for file name completion. In contexts where it's 
appropriate for the user to type a file name (such as in an Open panel), Command-space 
displays as many characters as match all possible file names in the directory. If the user 
first types enough characters to identify a particular file and then presses the space bar 
with the Command key down, the remaining characters of the file name are filled in. (In 
many applications, the Esc key also performs file name completion.) 

• On keyboards that have no Caps Lock key, Command-Shift is the equivalent of Caps 
Lock (but only if the Shift key is released before another key is pressed). 

• Command-Return is the same as Enter. 

• Command-volume down turns the speaker off and on. (Volume down is a system control 
key on NeXT keyboards.) 

Implementing Special Keys 33 



• Command-Left Alternate--, produced by holding the Command key and the leftmost 
Alternate key and pressing the - key, generates an NMI (nonmaskable interrupt) on 
systems that have only one Command key. An NMI brings up the NMI mini-monitor 
window. 

• Command-Command-- generates an NMI on systems that have two Command keys. 

• Command--, produced with just the right Command key for keyboards that have two 
Command keys, displays a panel that gives the user the option of restarting the 
computer, turning the power off, or canceling the command. 

• Command-Alternate-*, produced by pressing the Command and Alternate keys at the 
lower left of the keyboard in conjunction with the * key on the numeric keypad, 
performs a reset to reboot the machine. The reset is immediate: No panel or monitor 
gives the user the option of canceling the instruction. 

Note: These Command-key combinations aren't keyboard alternatives, since they don't 
correspond to anyon-screen object. 

Choosing Keyboard Alternatives 

Initially, until the user specifies a different preference, applications should follow the 
guidelines for keyboard alternatives described in this section. Users can use the 
Preferences application to alter the keyboard alternatives for every application at once. 
You're also encouraged to let the user choose and change keyboard alternatives using your 
application's Preferences panel. 

The guidelines place keyboard alternatives into three groups-reserved, required, and 
recommended. These groups are listed in the tables that follow along with the commands 
they perform and the menus where the commands are located. (See "Standard Menus and 
Commands" in Chapter 6 for more information on the listed commands and menus.) 

Reserved Keyboard Alternatives 

Reserved keyboard alternatives must be used for the commands that follow, and cannot be 
used for any others. If your application implements the functionality that a command 
represents, it must provide both the command and the keyboard alternative. 

34 Chapter 3: User Actions: The Keyboard and Mouse 



For example, if your application opens files, it must have an Open command with 
Command-o as the keyboard alternative. If your application doesn't allow the user to 
open files, it won't have an Open command and must not use Command-o as a keyboard 
alternative. 

Keyboard Alternative Command 

Command-? Help 
Command-a Select All 
Command-c Copy 
Command-h Hide 
Command-n New 
Command-o Open 
Command-p Print 
Command-q Quit 
Command-s Save 
Command-v Paste 
Command-w Close Window 
Command-x Cut 
Command-z Undo 

Required Keyboard Alternatives 

Menu 

Info menu 
Edit menu 
Edit menu 
main menu 
Document menu 
Document menu 
main menu 
main menu 
Document menu 
Edit menu 
Windows menu 
Edit menu 
Edit menu 

These keyboard alternatives must be used if the application implements the command. For 
example, if your application has a Find panel, you must provide Command-f as a way of 
bringing the panel up. 

However, if an application doesn't implement the particular functionality of an item (if it 
doesn't have a Find panel, for example), it can use the keyboard alternative (Command-f) 
for something else. Nevertheless, to preserve interapplication consistency, it's strongly 
recommended that you first try to use characters that don't overlap with those on this list. 

Keyboard Alternative Command Menu 

Command-= Define in Webster Services menu 
Command-; Check Spelling Edit menu 
Command-b Bold (Unbold) Font menu 
Command-d Find Previous Find menu 
Command-e Enter Selection Find menu 
Command-f Find Panel Find menu 
Command-g Find Next Find menu 
Command-i Italic (Unitalic) Font menu 
Command-t Font Panel Font menu 
Command-C Colors varies 

Implementing Special Keys 35 



Recommended Keyboard Alternatives 

These keyboard alternatives must be used for a command if the command has a keyboard 
alternative. If not, the key can be used for some other command. For example, if the Copy 
Ruler command has no keyboard alternative, Command-l can be used as a keyboard 
alternative for another command. 

Keyboard Alternative Command Menu 

Command-l Copy Ruler Text menu 
Command-2 Paste Ruler Text menu 
Command-3 Copy Font Font menu 
Command-4 Paste Font Font menu 
Command-j Jump to Selection Find menu 
Command-m Miniaturize Window Windows menu 
Command-r Show Ruler Text menu 
Command-P Page Layout Format menu 
Command-S Save As Document menu 
Command-V Paste and Link Link 

Creating Application-Specific Keyboard Alternatives 

The NeXTSTEP user interface is visual, so all operations-all menu commands and 
scrolling operations, for example-have a graphical representation on-screen and can be 
performed using the mouse. Keyboard alternatives are just that: alternatives. They should 
never be used for operations that can't be performed using the mouse. 

The main consideration in deciding which operations should have keyboard alternatives is 
frequency of use. It's better to assign a keyboard alternative to a frequently used command 
than to one that's used less often. Infrequently used commands-such as the Info Panel 
command-should never be assigned keyboard alternatives. 

Keyboard alternatives are allowed only for the commands in a menu, the buttons in a panel, 
or the items in a pull-down list. The characters used as keyboard alternatives must be 
displayed to the user in the menu, panel, or list. Menus put them on the commands 
themselves, and pull-down lists follow this example. A panel can present the keyboard 
alternatives for its buttons in any way that's appropriate to the design of the panel. 

It's usually a good idea to assign keyboard alternatives to command~ that are needed while 
working on the keyboard (for example, the commands in the Find menu). The keyboard 
alternative frees users from having to switch their attention from the keyboard to the mouse 
and back again. 

36 Chapter 3: User Actions: The Keyboard and Mouse 



You can also use keyboard alternatives to enable proficient users to work with one hand on 
the keyboard and the other on the mouse. For example, Command-x, Command-c, and 
Command-v allow users to select with the mouse while carrying out cut, copy, and paste 
operations from the keyboard. These keyboard alternatives free users from having to move 
the cursor out of the region where they're working just to click a command. 

If keyboard alternatives are assigned to any in a set of parallel commands for formatting or 
viewing data (for example, commands that sort a list of items in various ways), the 
command that restores the default should also be assigned a keyboard alternative. The 
keyboard can then take the user to an alternative format and back to the default, rather than 
just half way. 

Note: You don't need to assign a keyboard alternative to every command. Remember 
that users can create their own global keyboard alternatives by using the Preferences 
application. 

Choosing the Character 

Any character except period (.) and space can be used in a keyboard alternative. If the 
character is a letter, it can be either uppercase or lowercase, although lowercase characters 
are preferred because they don't require the user to press two modifier keys (Shift and 
Command) at once. 

When choosing the character for a keyboard alternative, try to make it mnemonic. If 
possible, it should be the first letter of the command it performs. If it's closely related to a 
command that already has a keyboard alternative, then you might want to choose a 
character physically near the existing one. 

For example, the Find command's keyboard alternative is Command-f, taken from the first 
letter of the command. The Find command has two related commands: Find Next and Find 
Previous. The Find Next command's keyboard alternative (Command-g) was chosen 
because it's just to the right of the Find command's keyboard alternative. Similarly, the 
Find Previous command's keyboard alternative (Command-d) is just to the left. 

Using the Alternate Key· 

If necessary, your application can use the Alternate key with the Command key for 
keyboard alternatives. Using the Alternate key is not desirable. You should first exhaust 
all reasonable possibilities using the Command key alone or in combination with the Shift 
key before resorting to the Alternate key. 

Implementing Special Keys 37 



But, when necessary, a keyboard alternative requiring the Alternate key can be used. It 
should be displayed in italic. 

The character displayed in italic is the one that would be typed if the Command and 
Alternate keys were not held down, not the character that's produced when the Alternate 
key is held down. 

Note: Recognizing keyboard alternatives produced with the Alternate key is difficult to 
implement, and the meaning of italic characters in menus isn't explained in the NeXTSTEP 
user documentation. If you nevertheless choose to implement keyboard alternatives with 
the Alternate key, make sure that the documentation for your application explains the 
meaning of the italicized character. 

Determining the Action that Is Performed 

A keyboard alternative should almost always accomplish exactly the same thing as the 
mouse action. Even slight variations between a mouse action and its keyboard alternative 
run counter to the principle that every keyboard operation must match a corresponding 
mouse operation. However, in some cases it's acceptable to have a keyboard alternative do 
just a bit more than the mouse operation. These cases are rare and often go unnoticed by 
users because the difference is both subtle and intuitive. The keyboard alternative simply 
does what the user wants, while also doing one or both of the following: 

• Reducing the number of clicks or keystrokes the user needs to perform 
• Eliminating the need to switch from the keyboard to the mouse and back again 

For example, the Edit application has a Find panel that's brought up by the Find Panel menu 
command or its Command-fkeyboard alternative. Usually, the panel stays up until the user 
explicitly closes it, since it can be used many times in a row. However, a user who is 
concentrating on entering text often wants to find a word in a document but then doesn't 
want to use the Find panel for a while. 

Edit accounts for both kinds of use by automatically closing the panel if the user is not 
likely to use the Find panel immediately. It assumes that this is the case if the user doesn't 
use the .mouse to conduct the search (instead, using Command-f to bring up the panel, and 
starting the search by pressing Return). Edit's behavior lets users find a word using a 
minimum number of actions, and relieves them of having to switch to the mouse to bring 
the document window back in front of the Find panel. 

38 Chapter 3: User Actions: The Keyboard and Mouse 



In general, you should start with all keyboard alternatives the same as their associated 
mouse action. In the rare case when a keyboard alternative should be different from its 
associated mouse action, the need becomes clear through everyday use. 

Implementing Mouse Actions 

This section describes how to implement clicking and dragging for custom controls, 
application-specific document areas, and other custom objects. You shouldn't need the 
information in this section if you use only the standard Application Kit objects. 

Reacting to Clicking 

When the user clicks an object on-screen, the object should provide immediate graphic 
feedback to the user when the mouse button goes down. However, depending on the 
intent of the click, the object may wait for the mouse button to go back up before doing 
anything more: 

• If the click is intended to initiate a targeted action or choose a tool, then in general the 
object should act when the mouse button goes up. This gives users an opportunity to 
change their minds. If they move the cursor away from the object before releasing the 
button, the action is canceled. Suppose, for example, that a user presses the mouse 
button while the cursor points to the Cut command in the Edit menu. The command is 
highlighted, but nothing is cut until the mouse button is released. If the user moves the 
cursor outside the menu before releasing the mouse button, the command won't be 
carried out. 

• If the click is intended to manipulate the object itself, the object should react 
immediately when the mouse button goes down. For example, when a window is 
clicked, it comes to the front of the screen without waiting for the mouse button to go 
up. Similarly, when editing text, the user is committed to a new selection as soon as the 
mouse button is pressed. 

Note: You can implement multiple-clicks so that they act when the mouse button is 
pressed the second (or third) time, instead of waiting for the mouse button to go back up (as 
is usual for a single click). This implementation can help improve the perceived speed of 
your application. 

Implementing Mouse Actions 39 



The First Click in a Window 

Clicking can be used not only to operate an object, but also simply to bring a window 
forward. When the user clicks in a window that isn't already in front, a question arises 
concerning intent: Did the user intend the click just to bring the window forward, or was it 
also intended to do some work within the window? This question is addressed by the 
following guidelines: 

• If the user chooses a particular control-for example, by clicking a button or clicking in 
a scroller-the click should not only bring the window forward, but should also operate 
the control. Since controls are small, it's reasonable to assume that the user chose to 
click the control, not just the window. 

• If the click is just generally within the content area of the window, the click will bring 
the window forward but shouldn't have any result within the window. Specifically, it 
shouldn't alter the current selection. 

However, if the user chooses to double-click within the content area of the window, the 
normal double-click action should be performed. Double-clicking on a word should select 
the word whether the window is in front or not. 

When Dragging Shouldn't Imply Clicking 

In general, the main action associated with an object should be initiated on the basis of a 
single click, and dragging should perform a click. However, sometimes it's inconvenient 
for dragging to result in the object's action. There are three possible solutions to this 
problem: 

• Require that a modifier key be pressed when dragging the object 
• Implement the object so that dragging it doesn't perform a click 
• Have a click do nothing, and have a double-click perform the object's action 

For the second solution to work (having dragging not perform a click), all of the following 
must be true: 

• The user gets clear visual feedback as to whether the object is reacting to a click or to 
dragging, and it's difficult for the user to do the wrong thing. For example, if the user 
starts to drag the object but then decides to put it back, the action should not be treated 
as a click. 

• The single click's action matches similar uses of a single click elsewhere in the interface. 

40 Chapter 3: User Actions: The Keyboard and Mouse 



• The action initiated by the click doesn't have consequences that the user might want 
to avoid and that can't easily be stopped or reversed. (This condition is imposed 
because of the increased possibility that the user might erroneously click while 
intending to drag.) 

For example, the main action associated with a docked application icon is the activation of 
the application, but the user can also move the icon by dragging it. Because the user doesn't 
always want to activate the application when moving its icon, it isn't practical to have both 
dragging and a single click activate the application. 

The first solution listed above (requiring a modifier key when dragging) isn't appropriate in 
this case. Moving an icon is a basic, obvious operation, and unmodified dragging is the 
natural way to accomplish it. 

The second solution (having dragging not perform a click) also doesn't work, mainly 
because the action (activating an application) has consequences that the user might want to 
avoid (such as creating windows that cover the user's work) and that can't be reversed until 
the application is fully started up. Also, having a single click perform the action doesn't 
match the behavior of application icons in the File Viewer. In the File Viewer, a single click 
merely selects the application's file. It isn't started up until the user double-clicks it. 

So the only acceptable solution for docked application icons is for double-clicking to start 
up the application, while single-clicking does nothing. 

An example of where dragging doesn't imply a single click is in the File Viewer shelf. 
When the user clicks the icon of a folder on the shelf, the File Viewer changes to show the 
folder's path. However, when the user drags the icon off the shelf, the File Viewer does not 
perform the click's action-it doesn't change the current path. One of the reasons this 
solution works is that the shelf differentiates clicking from dragging by having a threshold 
for dragging. Until the user drags the icon a certain amount, it doesn't move. Once the user 
has committed to dragging the icon, it can't be clicked. The icon also looks very different 
when it's clicked (it's highlighted) from when it's dragged (it moves, and a dimmed copy 
is visible in its old location). 

When to Use Multiple-Clicking 

You should use double-clicking only for actions that logically extend the action of a single 
click, and triple-clicking only for actions that extend a double-click. There are two reasons 
for this rule, one philosophical, the other programmatic: 

• Complex mouse actions are best remembered and understood when they appear to grow 
naturally out of simpler actions. 

Implementing Mouse Actions 41 



• Every double-click includes a single click (the first click in the sequence), and every 
triple-click includes a double-click. At the time an application receives one click, it 
can't know that any others are on their way. So it must first act on the single click, then 
the double-click, then the triple-click. 

For example, double-clicking an icon in a Workspace Manager window picks out that icon 
just as a single click would. It then goes on to open the application associated with the icon. 
A single click in text selects an insertion point, a double-click extends the selection to a 
word, and a triple-click extends it further to a full line, sentence, or paragraph. 

Quadruple clicks (and above) become increasingly difficult for users to produce or 
understand. They're neither used nor recommended in the NeXTSTEP user interface. 
Triple-clicks should be used only sparingly. 

Dragging from a Multiple-Click 

The act of pressing a mouse button to initiate dragging can be part (the last part) of a 
double-click or triple-click. If the user doesn't immediately release the mouse button and 
begins dragging at the end of a multiple-click, the dragging action can be assigned a 
meaning that's related to the meaning of the multiple-click. 

For example, double-clicking selects a word in editable text, and dragging from a 
double-click selects additional words within a range of text. If triple-clicking selects a line, 
dragging from a triple-click will select additional lines within the range. 

How to Use Dragging 

Dragging is used in a variety of situations, principally these three: 

• To move an object, such as a window or the knob of a scroller 

• To define a range, usually to select the objects falling within the range 

• To slide from one object to another, in order to extend an action initiated in the first 
object to the second object 

42 Chapter 3: User Actions: The Keyboard and Mouse 



anchor point 

Moving an Object 

The user can drag a movable object by positioning the cursor over it, pressing the mouse 
button, and moving the mouse while the button is down. The object should move so that it 
remains aligned with the cursor on-screen. If the object is constrained within a particular 
area or track-as is a scroller knob, for example-it should remain as closely aligned with 
the cursor as possible. 

The Application Kit contains support for moving objects between and within applications. 
It even changes the cursor to indicate whether the object is being moved, copied, or linked. 
See "Managing the Cursor," later in this chapter, for more information on changing 
the cursor. 

Defining a Range 

The user can also drag over an area or through a series of items (such as text characters) to 
define a range. The position of the cursor when the mouse button is pressed is the anchor 
point. Its position when the mouse button is released is the end point. The difference 
between the anchor point and end point determines the area or objects inside the range. 

Dragging to define a range is mostly used to make a selection (such as a string of text 
characters or a group of icons) for the targeted-action paradigm. 

When the user drags to define a rectangular range (as in a drawing program), applications 
often drag out-or "rubberband" -a rectangle to show the area covered between the anchor 
point and end point. See "The Range that Dragging Should Select," later in this chapter, 
for more information on dragging to define a rectangular range. 

."" ........ 

"=~. 
end point 

Implementing Mouse Actions 43 



Sliding from Object to Object 

Sometimes, a group of closely related objects reacts to dragging as if the user clicked one 
of the objects. No matter which object in the group was under the cursor when the mouse 
button was pressed, the object under the cursor when the mouse button is released is the one 
that's chosen. (Normally, when an object isn't in a group, it's chosen only when the mouse 
button is both pressed and released while the cursor is over the object.) 

For example, a user can choose a menu command by pressing the mouse button as the 
cursor points to one command and releasing it as it points to another. Users can similarly 
drag from one tool to another tool when they're displayed together in a palette, or from 
button to button in a set of radio buttons. 

The grouped objects don't all have to be of the same type. For example, a user can drag 
from a button that controls a pop-up list through the list to make a selection, or from a menu 
command that controls a submenu into the submenu. 

If the user can drag from one object to another in a group of objects, then this fact should 
be apparent from the way the objects are displayed. Usually, such objects are displayed in 
a single row or column, as close to each other as possible. For example, graphical radio 
buttons should be right up next to each other, to distinguish them from ordinary buttons. 
(Graphical radio buttons are discussed in detail in Chapter 7, "Controls.") 

When to Use Pressing 

For the most part, pressing is an alternative to repeated clicking. It should be used wherever 
a control action can be repeated with incremental effect. For example, clicking a scroll 
button scrolls one line of text, clicking the button again scrolls another line, and so on. 
Pressing the scroll button scrolls lines repeatedly for a continuous action until the mouse 
button is released. 

Pressing is also used to initiate the action of sliding from one object to another. If a button 
controls a pop-up list, the user presses the button and drags through the list to choose one 
of its options. After pressing a menu command to bring up a submenu, the user can drag 
into the submenu. 

44 Chapter 3: User Actions: The Keyboard and Mouse 



Using Modifier Keys with the Mouse 

Applications can choose to assign a different meaning to mouse actions that occur when the 
user is holding down a modifier key. Modified mouse actions should implement only 
optional or advanced features of the user interface (because they're harder to remember and 
require more coordination to produce). They typically extend or alter the effect of the 
unmodified mouse action. For example: 

• Dragging a file icon from one directory window to another moves or copies the file to 
the new directory, depending on whether the directories are on the same disk or a 
different disk. Command-dragging moves the file always. Alternate-dragging copies 
the file always. Control-dragging is similar to copying, but the new "copy" of the file is 
simply a link to the old copy. The user can see what's going to happen because the 
cursor changes (to CO, for exainple, when Alternate-dragging). 

• Clicking a scroll button scrolls a line of text. Alternate-clicking scrolls a larger amount. 

• Dragging a window by its title bar moves the window, brings it to the front, and activates 
its application. Alternate-dragging moves the window and brings it to the front, but 
doesn't activate its application. 

• Clicking selects a new insertion point in text. Alternate-clicking extends the selection . 
to include everything between the current insertion point and the point of the click. If 
an application implements discontinuous selection, Shift-clicking selects a new 
insertion point without dropping the old selection. If discontinuous selection isn't 
implemented, Shift-clicking acts like Alternate-clicking. 

• Clicking selects an icon in a directory window. Shift-clicking adds new icons to the 
current selection. 

Note: Caps Lock doesn't work for Shift-clicking or Shift-dragging-the Shift key must be 
held down manually. This way, users won't find themselves Shift-clicking by mistake when 
they intend only to click. 

The Control key (with no other modifier keys) is often used for mouse actions that create 
or act on links. If your application's documents can receive linked information, then you 
need to implement the Control-double-click accelerator, as described in the discussion of 
the Link Inspector panel in Chapter 5, "Panels." 

Implementing Mouse Actions 45 



Some modifier keys should be used only in limited circumstances: 

• The Help key should be used only for Help-clicking, which brings up help on the 
clicked object. 

• The combination of Alternate and Control should be used only as a substitute for the 
Help key. (This is necessary because some keyboards don't have a Help key.) 

Applications should avoid distinguishing between the left and right key of the Shift, 
Alternate, and Command pairs. Users don't expect such a distinction except for certain 
computerwide, potentially destructive operations, such as resetting the computer's 
processor. Also, there's no hardware-independent way to differentiate the left and right 
modifier keys. 

Managing the Cursor 

Cursor handling is largely handled by the Application Kit. However, your application 
might need to hide the cursor or change its appearance. 

Changing the Cursor ~ I 

An application can change the cursor from the standard arrow (shown above) to a'ny other 
image of an equal size (16 pixels by 16 pixels). When doing so, it must specify what point 
in the cursor acts like the tip of the arrow. That point, the cursor's hot spot, should be 
apparent to the user from the shape of the image. For example, if the cursor is an X, the hot 
spot would be where the two lines cross. 

For some types of applications, a shape other than an arrow might be more convenient. For 
example, an I-beam cursor (shown above) is handier for positioning between characters. Its 
hot spot is in the center of the beam. 

It's often a good idea to change the shape of the cursor to indicate that the user has entered 
a mode. In applications that use the modal-tool paradigm, the cursor should change to 
indicate which tool has been selected. For example, the cursor might look like a pencil 
while thin lines are being drawn in a graphics application, or like a wide brush when 
painting in broad strokes. 

If mouse actions are valid only in a certain area, the cursor should revert to its normal shape 
when it leaves the area. It's best not to change the cursor too often, however. To avoid 
confusing the user, stick with the standard arrow wherever reasonable. 

46 Chapter 3: User Actions: The Keyboard and Mouse 



Hiding the Cursor 

A visible cursor is essential for mouse actions, but it can get in the way when the user is 
concentrating on using the keyboard. Therefore, the Text object automatically hides the 
cursor-making it disappear from the screen-when the user begins entering text. A 
hidden cursor returns to the screen as soon as the user moves the mouse, signaling a shift 
in attention away from the keyboard back to the mouse. 

The cursor should also be hidden whenever the user selects an insertion point or a range of 
text. (This is not currently implemented by the Text object, so each application should do 
this for itself.) A new selection is a good indication that the user is ready to begin typing 
again. Hiding the cursor when the user selects a new insertion point avoids confusion 
between the I-beam cursor and the vertical bar representing the insertion point. Unless it's 
hidden, the I-beam can obscure the vertical bar. Again, the cursor reappears as soon as the 
user moves the mouse. 

Implementing Selection 

If your application has editable text or allows selection of multiple custom objects, you 
need to read this section. In particl\lar, even if your application uses the Text object for its 
editable text areas, you still need to implement the modifier-arrow combinations described 
in "Implementing the Modified Arro~ Keys." 

When implementing selection, make sure that your application never moves the selection 
out of the user's view. If necessary, the display must scroll to make the new selection 
visible. Of course, the user can choose to move the selection out of view, using a scroller. 
But as soon as the user makes a new selection, such as by pressing an arrow key, the 
selection should scroll back into view. 

Programming Note: Hiding the Cursor 

To temporarily hide the cursor, use the single-operator function PSobscurecursorO. 

Implementing Selection 47 



When Discontinuous Selection Isn't Implemented 

Sometimes an application implements selection for an area but doesn't implement 
discontinuous selection. In this case, the application should make the Shift key act like the 
Alternate key during selection, so that both keys cause continuous selection. 

For example, discontinuous selection is not implemented in the Application Kit Text 
object, so both Shift-clicking and Alternate-clicking extend the selection continuously. 
This saves the user from making errors due to pressing the wrong key when trying to extend 
the selection. 

The Range that Dragging Should Select 

When the user drags a rectangle for the purpose of selection, what is selected depends on 
the type of material. In serially arranged material-such as characters in connected text­
the selection includes the entire series between the anchor and end points. For material 
consisting of objects that can be independently arranged-such as icons or the graphic 
elements that make up a picture-the selection generally includes everything that's even 
partially within the rectangle defined by the anchor and end points. The highlighted 
material below shows the difference between selection in text and graphics. 

ras wh en warm) wet cl i mat ic cal 0 0 0 0 0 0 
3 died, fhey accumUlmedonth~ 
e ·cycles of decay) new grlJr..llth 0 0 0 0 
: to build up. Enormous press 

i8J/andgraduaJlymany 9fth~ 0 0 0 0 
du~ed .. .!rrti~~~ were 

~ carbon that was preset in the 0 0 0 0 ~ 0 
Selecting text Selecting graphics 

48 Chapter 3: User Actions: The Keyboard and Mouse 



Implementing the Modified Arrow Keys 

Applications that allow text selection are encouraged to implement the modifier-arrow 
combinations described in this section. Modifier keys alter the basic behavior of the arrow 
keys, but retain the basic orientation of each of the four keys. Before reading this section, 
you should understand the existing behavior of the unmodified arrow keys, described in 
"How the Arrow Keys Affect a Text Selection" earlier in this chapter. 

Control-Arrow Combinations 

Modified by the Control key, the arrow keys move the insertion point to the edge of the 
current display. The left arrow key puts the insertion point before the first visible character 
on the line where the current selection begins, and the right arrow key puts it after the last 
visible character on the line where the current selection ends. 

The up arrow key positions the insertion point in the first visible line of the display, directly 
above the beginning of the current selection. The down arrow key puts the insertion point 
in the last visible line, directly below the end of the current selection. 

When the insertion point is already at the edge of the currently visible display, the 
Control-arrow combination that would otherwise move it to that edge first scrolls the 
display (by the amount of a page scroll), then moves the insertion point to the edge of the 
new display. Once the insertion point reaches the beginning of a line, the right arrow key 
won't move it further (for example, to another line). The left arrow key won't move it once 
it reaches the end of a line. 

Shift-Arrow Combinations 

Modified by the Shift key, the left arrow key positions the insertion point to the left of the 
current selection at the beginning of a word. The right arrow key positions it to the right of 
the current selection at the end of a word. Thus both keys move the insertion point from 
word to word. 

The up arrow key puts the insertion point at the beginning of the word one line directly 
above the beginning of the current selection. The down arrow key puts it at the end of the 
word one line directly below the end of the current selection. As the up and down arrow 
keys move the insertion point from line to line; they choose words that lie directly above or 
below the original starting point. (In other words, the location of the insertion point can be 
calculated by the same rules that determine the edge of the selection when the user 
double-clicks and drags directly upward or directly downward.) 

Implementing Selection 49 



Alternate-Arrow Combinations 

Modified by the Alternate key, the arrow keys extend the current selection by one character 
or one line at a time. Users choose which edge of the selection to modify by the arrow key 
they press first. 

When pressed first, the left arrow key moves the beginning of the current selection one 
character to the left (toward the beginning of the document). Subsequently, the left and 
right arrow keys both act on this same edge of the selection, moving it one character to the 
left or right. When pressed first, the right arrow key moves the end of the current selection 
one character to the right (toward the end of the document). Subsequently, the left and right 
arrow keys both act on the end of the seh~ction. 

When pressed first, the up arrow key moves the beginning of the current selection up one 
line. Subsequently, the up and down arrow keys both move this same edge of the selection 
up and down a line. When pressed first, the down arrow key moves the end of the current 
selection down one line. Subsequently, the up and down arrow keys both move the end of 
the selection. 

Other Arrow Key Combinations 

More than one modifier key can be used in combination with an arrow key, with additive 
results. Thus, Shift-Alternate-right arrow extends the selection to the end of a word, and 
Control-Shift-up arrow places the insertion point at the beginning of a word in the first 
visible line of the display. However, Alternate and Control can't be used together because 
that combination is reserved by the system as a substitute for the Help key. 

50 Chapter 3: User Actions: The Keyboard and Mouse 



The Window Interface 
to Applications 

The NeXTSTEP user interface is window-based. Each window is placed on the screen by 
a particular application, and each application typically owns a variety of different windows. 
The screen shown below has several kinds of windows belonging to several applications. 

menu standard windows 

ordinary panel -t-:--i==~;;~~~~~;;~ 
Flnd.jUU 

Replacewith:l 

[

Replace All S~ope 
(Entlre~!le 
('Selection 

miniwindows 

IlMr Print 

attention panel 

suitcase in the File window to 

t:~;:~;~;~~~~~::;K;i~t ~T~hc;~ti:~tleS under the H~ can't be deleted nor 

pop-up list application icons 

The Window Interface to Applications 51 



This chapter discusses windows in general-standard windows, panels, menus, pop-up and 
pull-down lists, miniwindows, and application icons-before going on to discuss standard 
windows in particular. For more information on panels and menus, see Chapter 5, "Panels," 
and Chapter 6, "Menus," respectively. For more information on pop-up and pull-down 
lists, see Chapter 7, "Controls." Miniwindows and application icons are described in 
Chapter 1, "A Visual Guide to the User Interface." 

How Windows Work 

Every window has a content area, where the application is free to draw (although the 
Application Kit draws default miniwindows and application icons for you). Standard 
windows, panels, and menus also have a title bar above the content area, and a border 
surrounding both the content area and title bar. 

The title bar is the center of control for the window. It holds the window's title, if it has 
one, and may contain buttons that can be used to dismiss it from the screen. If a window 
has a title bar, users move the window by dragging it by its title bar. 

Panels and standard windows can also have a resize bar at the bottom, below the content 
area but within the border. By dragging any of the regions of the resize bar, the user can 
alter the size and shape of the window. The resize bar is the only window control located 
outside the title bar. 

The parts of a window are illustrated below. 

title bar title 

L---------------....L.....t- title bar buttons 

--+- content area 

border 

t:::::::::E============5EJ~ resize bar 

52 Chapter 4: The Window Interface to Applications 



Window Order 

Windows on-screen are ordered from front to back. Like sheets of paper loosely stacked 
together, windows in front can overlap, or even completely cover, those behind them. Each 
window has a unique position in the order. When two windows are placed side-by-side, 
one is still technically in front of the other. 

If any window could be in front of any other window, then small but important windows­
like menus and docked icons-might get lost behind larger ones. Windows that require 
user action, like attention panels and pop-up lists, might disappear behind another window 
and go unnoticed. To prevent this, all the windows on-screen are organized into tiers. 

When two windows belong to the same tier, either one can be in front. When two windows 
belong to different tiers, however, the one in the higher tier will always be above the other. 
on-screen windows are divided into these seven tiers: 

• Windows that appear in a spring-loaded mode-pop-up lists, pull-down lists, and menus 
that come to the cursor-are assigned the frontmost tier. (Having menus come to the 
cursor is an option that the user can enable with the Preferences application. It's 
described in "Bringing the Main Menu to the Cursor" in Chapter 6.) Spring-loaded 
windows remain on-screen only while the user holds a mouse button down, so they only 
momentarily obscure other windows. Putting them in the first tier guarantees that they 
won't appear in back of another window. 

• Attention panels are assigned to the second tier. Like spring-loaded windows, they're 
only temporarily on-screen. But unlike spring-loaded windows, the user must do 
something to dismiss them, rather than continue an action to keep them visible. Keeping 
an attention panel in front, where it can't be covered by other windows, confronts the 
user with it until it's dismissed and thus encourages prompt user action. 

• The main menu is assigned the next tier back. In the absence of an attention panel or 
spring-loaded window, the usual case, it's the frontmost window on-screen. 

Writing Note: The Meaning of Window 

In documentation for users, the term windowgenerally refers only to standard windows, 
though panels and menus are acknowledged to be windows of a special type. 
Miniwindows, lists, and icons are referred to only by their specific names; they should 
not be included within the generic term window as this would imply common behavior 
that's lacking. 

How Windows Work 53 



• Other menus are assigned to a tier just below the main menu. They can cover each other, 
but not the main menu. 

• Docked application icons occupy the fifth tier. They can be covered by lists, attention 
panels, and menus, but not by the ordinary windows of your application. 

• Floating panels are in the sixth tier. Floating panels are defined and discussed in 
Chapter 5. 

• All other windows are grouped in the seventh-the last and largest-tier. Most of the 
windows seen on-screen are in this tier. They can cover each other, but can't come in 
front of the dock, menus, attention panels, or spring-loaded windows. 

This seven-tier system keeps attention panels, menus, and docked application icons in view, 
and thus readily available to the user; it prevents them from being inadvertently lost in a 
large pile of windows. Although attention panels, menus, and docked application icons can 
cover other windows, the user can get them out of the way when needed. Menus can be 
moved to the side or closed, and the dock can be slid mostly off-screen. Attention panels 
should be attended to and dismissed. 

To get the user's attention, when a window is first placed on-screen it comes up at the front 
of its tier. 

Note: Even when a window is totally obscured by other windows, it's still considered to 
be on-screen; it retains its ranking in the order and can be exposed by moving the windows 
in front to the side. 

Window Behavior 

Windows respond to user actions in the following ways: 

• Any window can be brought to the front of the screen, relative to other windows in 
its tier. 

• Any window with a title bar can be moved to a new location on the screen, as can any 
miniwindow or application icon. 

• Any window with a resize bar can be resized. 

• A window with the appropriate buttons in its title bar can be closed or miniaturized. 

54 Chapter 4: The Window Interface to Applications 



A window's title bar can display two buttons: 

Miniaturize button 

Close button 

Clicking this replaces the window with its mini window 
counterpart. The miniwindow represents the window 
on-screen and gives the user access to it. Double-clicking the 
miniwindow causes it to disappear and the window that was 
miniaturized to reappear. 

Clicking this removes the window from the screen. 

When the user clicks a button in the title bar, the action of the button is performed. The 
click doesn't count as "clicking in a window" for the purpose of bringing the window to the 
front, making it the key window, or activating an application (the key window and active 
application are discussed in "Application and Window Status" in this chapter). 

Title bar buttons are illustrated below. The window in front has both buttons as they 
normally appear. The miniaturize button is on the left and the close button is on the right. 
The window in back shows a broken close button. The close button should be broken when 
the user would lose work by closing the window-for example, when the window displays 
a document that the user has edited but not saved. More information on the miniaturize and 
close buttons is in "Implementing Windows" in this chapter. 

miniaturize button {Cr~""": Back Window ff! close button 
~~--------------------------------~ 

miniaturize button -+----t!:c1... Front Window f5( close button 

~----------------------------------~ 

Reordering 

Clicking in a window brings it to the front of its tier, provided that the click isn't in a title 
bar button. The window is reordered immediately as the mouse button is pressed. If the 
user is dragging the window to a new location, this lets the window assume its reordered 
position before being moved. 

Another way the user can reorder windows is to press the Command key while pressing the 
up-arrow or down-arrow key. Command-up arrow moves the backmost panel (if it's in the 
lowest tier) or standard window to the front of the tier. Command-down arrow moves the 
frontmost one to the back. 

How Windows Work 55 



Moving 

The user can drag any window by its title bar (if it has one). The action of pressing and 
releasing the mouse button to drag the window also counts as a click and brings the window 
to the front of its tier. 

Resizing 

learn \'lam\ vb learned \'lamd, 'lamt\; learning 
[ME lemen, fro OE leomian; akin to OHG lemen to learn, OE last footprint, L 
lira furrow, track] 

vt 
(bef.12c) 
la (1): to gain knowledge or understanding of or skill in by srudy, instruction, 

or experience (learn a trade) 

(2): ~mr.wRIZE (learn the lines ofaplay) 

b: to come to be able (learn to dance) 

c: to come to realize (learned that honesty paid) 
2a substand: TEACH 

bobs: to infonn of something 
3: to come to know: HEAR (we just learned that he was ill) 

If a window has a resize bar, the user can change the size of the window by dragging the 
resize bar. An outline of the window edge follows the cursor, as shown in the figure above. 
When the user releases the mouse button, the window resizes to the outline. 

56 Chapter 4: The Window Interface to Applications 



Closing 

The close button removes a window from the screen. What this means depends on the type 
of window: 

Menus and panels 

Standard windows 

A menu that's closed is removed from the screen, but the user 
retains a way to retrieve it quickly through a command in 
another menu. Panels that are closed are retrievable in the 
same way. (See Chapter 6 for more information on menus.) 

When a panel that was closed is returned to the screen, it 
assumes its former size and location, and it retains its former 
state. From the user's point of view, and programmatically, 
it's the same panel that was closed. 

Closing a standard window usually removes it from the 
application as well as from the screen. From the user's point 
of view, the same window can't necessarily be made visible 
again. The application might create a new window with the 
same title and a similar display, but there might be differences. 
The selection might not be preserved, and the new window 
won't necessarily be located in the same place or have the 
same shape as the old one, especially if the user had moved or 
resized the window that was closed. 

Programming Note: Windows and the Application Kit 

Everything that this section, IIHow Windows Work," discusses is automatically handled 
by the Application Kit Window class and its subclasses. For example, when the user 
closes the key window, a new one is automatically chosen. The few decisions you must 
make are discussed later under IIlmplementing Windows." 

How Willdows Work 57 



Miniaturizing 

Miniaturizing a window removes it from the screen without destroying it or its contents. 
From the user's point of view, the window is transformed into a miniwindow. 
Double-clicking the mini window reverses the miniaturization. 

Most standard windows and some panels have a miniaturize button. Windows that have a 
miniaturize button can be miniaturized using either the button or the standard Miniaturize 
Window menu command. A group of windows representing a single document can be 
miniaturized into a single miniwindow, as described under "The Document Menu" in 
Chapter 6. 

Users can't work in a miniaturized window, but programs can continue to alter the 
window's display. For example, if you begin compiling a program in a Terminal window, 
and then miniaturize the window, you'll see any error messages written by the compiler 
when you return the window to the screen. ' 

Miniaturizing differs from closing in a number of ways: 

• Miniaturizing preserves the window as it was last seen on-screen. A window that's 
closed can't necessarily be retrieved in the same state. 

• Miniaturizing a window leaves behind a mini window so that it can be brought back to 
the screen. Closing a window doesn't provide the user with a way of getting it back. 

• Miniaturizing a window that displays a file won't close the file or change the way it's 
displayed. Closing a window usually closes the file it displays. 

Hiding and Retrieving Windows 

The Hide menu command lets the user clear the screen of all the windows belonging to an 
application. This opens up the workspace so that it's easier to work in another application. 

When an application is hidden, only its application icon remains on-screen. When the user 
double-clicks the icon, the hidden windows reappear on-screen. Users can resume working 
in the application, picking up again at exactly the point where they left off. 

Double-clicking an application icon has one other effect: It activates the application (as 
discussed in the next section), and so may cause the menus and panels of another 
application to disappear, while those of the newly activated application reappear. 

58 Chapter 4: The Window Interface to Applications 



Double-clicking the icon for a running application activates it and brings its windows to the 
front, even if the application wasn't hidden. (The user can also bring covered windows 
forward using commands in the Windows menu, as described in Chapter 6.) The 
application's menus also return to the screen. 

If the user holds down the' Command key while double-clicking an application icon, the 
application is activated as usual, but in addition all other applications are hidden. 

Note: A window that's completely obscured by other windows is "covered," but not 
"hidden" in the sense used here. A covered window can be made visible by moving the 
windows in front of it to the side. A hidden window can't be-it's completely removed 
from the workspace. 

Application and Window Status 

Since more than one application can run at a time, the screen is likely to display windows 
for a variety of different applications. The Workspace Manager is one application that will 
often have a window on-screen. Some users will also run Mail and a spreadsheet, or 
perhaps a word processor and Digital Webster'" (a dictionary and thesaurus application), at 
the same time as other applications. 

The user must be able to pick a particular application, and a particular window in that 
application, to work in. The application that the user is currently working in is known as 
the active application; the windows that are the current focus of user attention in the active 
application are the key window and the main window. The key window and main window 
are usually one and the same. The two terms identify different functional roles that can be 
assumed by the same window: 

• The key window is the window that receives characters from the keyboard. 

• The main window is the window containing the selected target for controls. 

These three concepts-the active application, key window, and main window-refer not to 
inherent properties of applications and windows, but to their status at a particular point in 
time. They're discussed more fully in the three sections that follow. 

How Windows Work 59 



The Active Application 

Out of all running applications, at most one is selected to be the active application (the 
principal application the user is working in). An application must be activated-made to 
be the active application-before the user can type in its windows or use its menus. 

The active application differs from other running applications in four ways: 

• It's the only application with visible menus. When an application is deactivated, its 
menus are hidden from view. When it's reactivated, they're restored to the screen. 

• It's the application that owns most, if not all, of the panels that are visible on-screen. In 
general, panels behave like menus: They hide when the application isn't active and 
return to the screen when the application is reactivated. In exceptional cases, however, 
you may choose to leave a panel on-screen even when the application isn't active. (See 
Chapter 5 for guidelines on when it's appropriate to allow a panel to persist.) 

• It's the application that receives the user's keyboard actions. Typing and keyboard 
alternatives can affect only the active application. When there's no active application, 
the user's keystrokes have no effect. 

• It's the application that contains the key window and main window (if there is a current 
key window or main window), and its windows are likely to be in front of the windows 
of other applications. 

Application Activation 

In general, the task of selecting the active application is left to the user. With one exception, 
an application never becomes active unless the user does something to activate it. The 
user's action can be direct, such as starting up the application or clicking in one of its 
windows, or indirect, such as having one application send a message to another application. 

The exception is that when the user hides or terminates an application, the system guesses 
which application should be activated next (based on which applications have on-screen 
windows, as described below). This method saves the user from always having to click to 
choose the new active application. 

An application is activated when: 

• The user starts it up, unless the user activates another application while the first one is 
starting up. 

60 Chapter 4: The Window Interface to Applications 



• The user double-clicks a miniwindow belonging to the application, or double-clicks the 
application's freestanding or docked icon. Double-clicking a docked icon starts up the 
application if it's not already running. 

• The user clicks within one of the windows belonging to the application, provided the 
window isn't a miniwindow or application icon. 

• It receives a message from another application, if the message asks it to do something 
that may require interaction with the user. A message from the Workspace Manager 
asking the receiver to open a file is one such message. A message sent to Digital Webster 
asking it to define a word is another. (See "Activating an Application" later in this 
chapter for details.) 

• It has the frontmost panel or standard window on-screen after the current application is 
hidden or terminated. 

Application Deactivation 

There can be only one active application per workspace (that is, one per Window Server) 
at a time. Whenever the user chooses a new active application, the previous one is 
automatically deactivated. The Application Kit and Workspace Manager take care of 
this task. 

The active application is also deactivated when: 

• The user hides its windows (by using the Hide command). 
• The user terminates it (by choosing the Quit command). 

In either case, if another application has panels or standard windows on-screen, then the 
Workspace Manager activates the application with the frontmost panel or window. If 
no other applications have panels or standard windows on-screen, then no application 
becomes active. 

In addition, an application should deactivate itself just before sending a message to another 
application, if the intent of the message is to have the other application become active. (See 
"Activating an Application" later in this chapter for details.) 

Note: A deactivated but running application can still do work. It's "deactivated" only in 
the sense that it no longer is the active application, so the user can't interact with it without 
activating it again. 

How Windows Work 61 



The Key Window 

Users expect to see their actions on the keyboard and mouse take effect not only in a 
particular application, but also in a particular window of that application. Each user action 
is associated with a window by the Window Server and Application Kit. Before acting, the 
user needs to know which window will be affected-there should be no surprises. 

Since the mouse controls a cursor, it's quite easy for the user to determine which window a 
mouse action is associated with. It's whatever window the cursor is over. But the keyboard 
doesn't have a cursor, so there's no natural way to determine where typing will appear. 

The window associated with keyboard actions, the one where typing will appear, is known 
as the key window. To mark the key window for users, the Application Kit highlights its 
title bar (by turning it black). 

Key window highlighting is illustrated below. 

You can think of the highlighting as a kind of cursor for the keyboard. It shifts from 
window to window as the key window changes. Key-window status also moves from 
application to application as the active application changes. Only one window on the 
screen is marked at a time, and it must be in the active application. There's just one key 
window per machine and keyboard. Even a system that has two screens, but only one 
keyboard, has at most one key window. 

Note: A window doesn't have to become the key window to receive, and act on, keyboard 
alternatives. It does, however, have to be in the active application. 

62 Chapter 4: The Window Interface to Applications 



Since the key window belongs to the active application, its black title bar has the secondary 
effect of helping to show which application is currently active. The key window is the most 
prominently marked window in the active application, making it "key" in a second sense: 
It's the main focus of the user's attention on the screen. 

The Main Window 

The main window is the standard window where the user is currently working. It's the focus 
of user actions carried out in panels and menus. The Find panel, for example, requires the 
user to supply information by typing it. Since the panel is the destination of the user's 
keystrokes, it's marked as the key window. But the panel is just an instrument through 
which users can do work in another window-the main window. 

Whenever a standard window becomes the key window, it also becomes the main window. 
When key-window status shifts from a standard window to a panel, main-window status 
remains with the standard window. 

So that users can pick out the main window when it's not the key window, the Application 
Kit highlights its title bar in dark gray. If the main window is also the key window, it has 
only the black highlighting of the key window. The following figure illustrates the main 
window when it's marked as the key window and when it's not. 

A menu command might affect either the key window or the main window, depending on 
the command. For example, the Paste command can be used to enter text in a Find panel. 
But the Save command saves the document displayed in the main window, and the Bold 
command turns the current selection in the main window bold. For this reason, user actions 
in a panel or menu are associated with both the key window and the main window: 

• An action is first associated with the key window. 

• If the key window is a panel and it can't handle the action, the action is next associated 
with the main window. 

Note that this order of precedence is reflected in the way windows are highlighted: The 
key window is always marked, but the main window is marked only when it's not the 
key window. 

How Windows Work 63 



The main window is always in the same application as the key window, the active 
application. It follows the key window as the user's actions shift the focus from window to 
window and from application to application. 

Panel 

Type here: I 

.. 

This is still the main window, but the Panells now the key 
window. 

64 Chapter 4: The Window Interface to Applications 

~ 
~ 



How Windows Become the Key Window and Main Window 

Whenever possible, the user, rather than the application, selects the key window and main 
window. This section describes how this happens and the part that the Application Kit 
plays. Later in this chapter, "Choosing the Key Window" describes when and how an 
application needs to choose its own key window. 

In the Active Application 

. In the active application, the user can select a new key window by clicking in it. If the 
window is a standard window, it's also made the main window. If it's a panel that accepts 
keystrokes, it's highlighted as the new key window, but the former main window retains its 
status and is highlighted in dark gray. The user can't select a main window without also 
making it the key window. 

The Application Kit chooses a new key window (or main window) for the active application 
whenever the user closes or miniaturizes the window currently having that status. Even if 
the application has no more windows on-screen, and thus no new key window can be 
chosen, the application still remains active: It's up to the user to decide whether to continue 
working in it. 

When an Application Is Activated 

When an application is activated, one of its windows is made the key window and one 
(usually the same one) is made the main window. Again, whenever possible, the user 
makes the selection: 

• If the user activates the application by clicking in a window that accepts keystrokes, it 
becomes the key window. If the window is a standard window, it's also made the main 
window. 

• If the user activates the application by double-clicking a miniwindow, the window it 
represents again appears on-screen and becomes the key window and main window. 

If an application is activated without the user directly selecting a new key window, the 
user's previous selections are honored. For example, if the user reactivates an application 
by double-clicking its icon, the previous key window and main window are restored. 

How Windows Work 65 



Note: When a new application is activated, its key window may be highlighted before the 
former key window (in the deactivated application) loses its highlighting. This is a 
consequence of a multitasking environment. Users can begin working in one process (the 
new active application) before their instructions to another process (the previous active 
application) have been completed. Although the former key window may retain its 
highlighting for a short time, it's no longer the key window; all keyboard actions are 
associated with the new active application. 

The Results of Clicking in a Window 

Clicking in a window has two separate, but related, results: 

• The window usually becomes the key window (and usually also the main window), and 
its application is activated. Standard windows always become the key window when 
clicked, but panels might not, as described in Chapter 5. 

• The window comes to the front of its tier. 

The first is a change in the window's status, the second in its position on-screen. 

Both results are required to make the window available to the user to work in. The window 
needs to be reordered in front of other windows so that its contents aren't covered. It also 
must become the key window for the user to be able to type in it and for it to receive menu 
commands. For a window to become the key window, its application must be activated. 

In NeXTSTEP, however, these two results of a mouse click, while logically related, are 
not inseparable. If the click is in the window's title bar and is modified by the Alternate 
key, it brings the window to the front, but doesn't make it the key window or activate 
its application. Alternate-clicking in the title bar thus lets users rearrange and reorder 
windows on the screen without changing the current key window, main window, or 
active application. 

66 Chapter 4: The Window Interface to Applications 



Implementing Windows 

The section gives a few guidelines for designing and placing various kinds of windows. 

Designing Windows 

The only windows that have a fixed size are miniwindows and icons. The initial size of all 
other windows is determined by the application. Generally, standard windows are larger 
than panels and panels are larger than menus, but there are no fixed rules. 

When designing a panel or standard window, you should keep a substantial proportion of it 
free of objects that respond to the first click. It shouldn't be difficult for the user to find a 
place to click within the window to select it. 

You should try to limit of the number of panels and standard windows that the user needs 
to use your application. Having too many windows results in a cluttered screen that can 
confuse the user. Even two windows can be too many if users can't tell which window 
they're supposed to work in. And a cluttered screen can frustrate the user's attempts to 
work in two or more applications at once. 

Placing Windows 

One of the principles of the NeXTSTEP user interface is that users are in control of their 
own workspace. Part of this control is the freedom to rearrange windows to suit the users' 
own tastes and needs. However, if a window that's been dismissed and then brought up 
again doesn't appear in its previous location, the user's work of rearranging windows is 
thrown away. The user might have to move the window back to its previous location every 
time the window is brought up. 

To avoid making the user rearrange windows unnecessarily, each panel and non-document 
standard window should remember its own location. The next time the window is brought 
up, it should appear in the location it last appeared in. For example, suppose the user brings 
up a Find panel, moves it to a new position, and then closes it. The next time the user brings 
up the Find panel, it should come up in the new position-even if the user has quit and 
restarted the application in the meantime. 

Implementing Windows 67 



Whether document windows should also remember their position depends on the 
application. For example, Digital Librarian document windows don't remember their 
positions because users typically open many documents at once, and thus need the 
application's help in positioning the windows. However, an application such as a drawing 
program that's typically used for editing one file at a time should probably let the user 
determine each document window's default location. 

The first time a window comes up, its position is determined by the application. To ensure 
a consistent user interface, all applications should follow these guidelines for initial 
locations of windows: 

• When an application starts up, its main menu should appear in the upper left corner of 
the screen, unless the user has specified a different location for it. 

• Standard windows should come up to the right of the main menu, allowing enough room 
for submenus that might later be attached to the main menu. Some applications also 
allow room for panels to come up to the left of the standard window and below the 
main menu. 

• Attention panels should come up centered in the upper part of the screen, where they 
won't be overlooked. 

• No part of any window (other than miniwindows and icons) should be placed off-screen, 
unless the user has put it there. 

Programming Note: Saving Window Positions 

Three methods exist to help panels and non-document standard windows remember 
their window position. Calling the setFrameAutosaveName: method once per window 
makes the window save its position in the defaults system whenever necessary. The next 
time the window comes up, it automatically appears at the last-saved position. A less 
automated way of remembering the window position is to call saveFrameUsingName: 
every time you wish to save the position, and call setFrameUsingName: to set the 
window's position when it's being brought up. 

The methods discussed above aren't appropriate for document windows, since there's no 
easy way to guarantee unique names for documents. If your application saves the 
positions of its document windows, you should use the saveFrameToString: method to 
save a representation of the window's position into the document itself. When opening 
the document, you should position its window using setFrameFromString:. 

68 Chapter 4: The Window Interface to Applications 



Implementing Standard Windows 

Standard windows are the most widely used type of window and the principal type for all 
applications. If an application lets the user edit files, each file should be displayed in a 
separate standard window. If the application is a game, the game board should be in a 
standard window, and if the application is a simple accessory like a clock, the clock face 
should occupy a small standard window of its own. 

Every standard window has a title bar; most also have window controls-a resize bar, close 
button, and miniaturize button. This section discusses choosing the window's title ,and 
everything that you need to implement when the window controls are present. It also 
describes cases when it's acceptable to omit the window controls. 

Choosing a Title 

If a window displays a document that can be saved, the title bar of the window should 
display the name of the document, followed by an em dash and the path of the folder where 
the document is located. The em dash is set off by two spaces on each side. For example: 

job Records - /Netlmachine/home/records 

The title bar is not usually a good place to show status, such as what the application is 
currently doing. It's usually clearer to display this status in the window or in a panel. Status 
within a window is often displayed in small, dark gray text (as in the Workspace Manager 
File Viewer). 

Programming Note: Implementing Titles of Document Windows 

You should use the setlitleAsFilename: method of the Window class to set the title of a 
document window. For example, to produce the window title 

jobRecords - /Net/machine/home/records 

you should send a setlitleAsFilename: message with the argument 
II/Net/machine/home/records/jobRecords" . 

Implementing Standard Windows 69 



Using the Resize Bar 

Most standard windows-especially those with scrollable contents-should have a resize 
bar. It gives users control of their environment by letting them choose how much screen 
space to devote to the contents of th~ window. 

If a window has a resize bar, you should be careful that the window remains as useful and 
attractive as possible, no matter how small or large it becomes. Each window can constrain 
its shape so that it doesn't become too big or too small, or so that it grows and shrinks in 
unit amounts. For example, the Workspace Manager File Viewer grows and shrinks only 
by the width of its browser columns, which eliminates the possibility of showing only a 
partial column. 

Using the Miniaturize Button [CJ 

Except when an application is useless without a particular standard window, each standard 
window should have a miniaturize button. When a window is miniaturized, it should 
remain miniaturized until the user explicitly unminiaturizes it. 

Because a miniaturized window isn't likely to be foremost in the user's thoughts, the 
application should never alter a miniaturized window without the user's knowledge. 
However, it's fine for an application to continue doing some work in a miniaturized 
window, as long as the user requested that the work be done. For example, the Terminal 
application completes commands that the user entered in a Terminal window. But it's 
unacceptable, for example, to change the font in a miniaturized window unless the user 
specified a font change for all windows. 

The miniaturize button has a counterpart command in the Windows menu that miniaturizes 
the key window. You can also provide a command in the Document menu that miniaturizes 
several related windows into a single mini window. See "The Windows Menu" and "The 
Document Menu" in Chapter 6 for information on how these commands work. 

70 Chapter 4: The Window Interface to Applications 



Using the Close Button ~ 

Most standard windows have a close button. However, sometimes the close button isn't 
necessary. For example, the Digital Webster application is useless if its only standard 
window isn't visible, so the window has no close button. 

Your application should break the close button ~ whenever the user would lose work by 
closing the window. From the user's point of view, a broken close button means that the 
application won't let the user lose work by accidentally closing the window. If the user tries 
to close a window that has a broken close button or tries to quit its application, the 
application should bring up a Close or Quit panel, respectively. (See Chapter 5 for more 
information on these standard panels.) 

Note: If an application uses multiple windows to display a single file, then all the windows' 
close buttons should break when unsaved work is in any window. However, the application 
shouldn't bring up a Close panel until the user closes the last window for the file. 

An example of breaking the close button is in the Mail application. Mail breaks a Send 
window's close button as soon as the user types in the message area of the window. If the 
user then tries to close the window (either directly or by quitting the application), Mail puts 
up an attention panel that makes the user either confirm that the window should be closed 
or cancel the close. 

If an application does no work that can be saved, but merely shows data that can change, 
then it can break the close button to show that the window isn't up-to-date. The application 
should also provide a way for the user to force the window to update. Workspace Manager 
uses the close button this way. 

Like the miniaturize button, the close button has a matching command in the Windows 
menu. The command has a keyboard alternative, Command-w (for "window"). (See "The 
Windows Menu" in Chapter 6 for details.) 

Implementing Standard Windows 71 



Implementing Window and Application Status 

Most aspects of window and application status are handled automatically. However, you 
still must choose the first key window and decide which windows can become key 
windows. (For information on when to make a panel the key window, see Chapter 5.) The 
application should also activate itself in the appropriate way, as discussed below. 

Choosing the Key Window 

In general, all the standard windows in your application should be permitted to become the 
key window, even if they don't respond to keyboard actions. Giving key-window status to 
a window focuses attention on it and prevents the user from typing in any other window. If 
the key window doesn't do anything with the user's typing, it should beep as it receives the 
keystrokes to indicate to the user that typing isn't appropriate. 

When an application is activated on startup, it should designate one of its windows to be the 
initial key (and main) window. If the application opens a document file for the user, the 
window that displays the document should be the key window. 

72 Chapter 4: The Window Interface to Applications 



Activating an Application 

Usually, an application doesn't have to explicitly activate or deactivate itself. When your 
application exchanges messages with the Workspace Manager, uses services, or provides 
services, application activation and deactivation are handled by the system. For example, 
when the user chooses the Mail Selection service from Edit's Services menu, the Edit 
application is deactivated. Mail is then activated on condition that no other application is 
currently active. Since the Edit has been deactivated, this condition will be met, unless the 
user has activated another application in the meantime. All this happens automatically. 

The only time an application should need to explicitly activate or deactivate itself is when 
it communicates with another application without using the services system or the 
Workspace Manager. This might happen when two applications work together closely by 
sending messages directly to each other. If the intent of a message is to activate the 
receiving application, then the sender of the message should deactivate itself just before 
sending the message, and the receiver should conditionally activate itself when it receives 
the message. If the intent of a message is not to activate the other application, then neither 
application should activate or deactivate itself. In general, a message should conditionally 
activate the receiving application if the user might need to work in it-even if only to 
operate a scroller. 

Important: Applications should avoid activating themselves unconditionally. 
Unconditional activation violates the principle of user control, since it ignores the user's 
desire to turn to something else. 

Programming Note: Activating and Deactivating an Application 

As described in the section "Activating an Application," most applications don't need to 
explicitly activate or deactivate themselves. However, when necessary, an application can 
conditionally activate itself with the following code: 

[NXApp activateSelf:NO]; 

An application can deactivate itself as follows: 

[NXApp deactivateSelf]; 

Implementing Window and Application Status 73 



Avoiding Activation when Dragging 

When a user drags an object such as a color or file between two applications, both the area 
that originally contains the object (the source) and the area that the object is being dragged 
to (the destination) need to be visible. Sometimes the user needs to move the windows of 
one or both applications to make this true. Once the user starts to drag the object, it can be 
inconvenient for the applications' windows to change their ordering, since that can cause 
the destination to be covered. But if the source's application isn't active when the user starts 
dragging, the standard response would be to activate it, which would bring the application's 
windows forward and perhaps cover the destination. 

To avoid covering the destination, an exception to the standard activation behavior is 
necessary: When a user drags an object from one application to another, the source's 
application should not become active as a result of the dragging operation. However, the 
source's application should activate as usual when the user clicks anywhere in the source's 
window or begins a drag anywhere in the window except the source area. 

Avoiding activation when dragging objects is fairly simple to implement. First,each 
View that contains draggable objects shouldoverride acceptsFirstMouse so that it 
returns YES. This enables the View to receive events whether or not its window is the 
key window. Next, the View should override the shouldDelayWindowOrderingForEvent: 
method so that it returns YES when the passed mouse-down event occurred over a 
draggable object. (The shouldDelayWindowOrderingForEvent: message is sent just 
before the mouseDown: message for the event.) 

That's all you have to do if you use the dragging system. The dragging system 
automatically calls the preventWindowOrdering method (which prevents the 
window's application from being activated) if the object is dragged. Unless the 
preventWiridowOrdering method is called, the window's application is activated, 
as usual. 

74 Chapter 4: The Window Interface to Applications 



5 Panels 

Panels support the work done in the principal windows of an application. Like menus, most 
panels are vehicles through which the user can give instructions to the application. But 
unlike menus, they aren't restricted to a single column of commands: A panel can provide 
the user with a variety of different control objects-buttons, sliders, text fields, and more­
arranged as best suits its purpose. The Font, Find, Page Layout, and Open panels are all 
examples. Such panels can be viewed as generalized and more versatile menus. 

Some panels playa different role, however. Instead of letting the user give instructions to 
the application, they give information to the user. Help panels, the Info panel, and attention 
panels that display warnings are examples. 

What unites all panels-whether they convey instructions from the user to the application 
or information from the application to the user-is that they play conventional, supporting 
roles. Unlike windows, none of them is a site for the user's main work in the application. 
In a panel, the dialog between the application and the user is highly structured in both form 
and content. 

This chapter first describes the basic attributes of ordinary panels, and then describes how 
attention panels are different. The last section gives guidelines on creating your own panels 
and using the ones supplied by the Application Kit. 

Panels 75 



How Panels Work 

Because panels are a type of window, many of their characteristics are discussed in 
Chapter 4, "The Window Interface to Applications." Only the unique characteristics of 
panels are discussed in this section. 

Ordinary Panels 

Ordinary panels-those that aren't attention panels-look and act very much like standard 
windows. They're typically in the same tier as standard windows, so they compete with 
them for screen space. They have title bars just like standard windows, although panels 
don't usually have miniaturize buttons. However, ordinary panels differ from windows in 
a number of ways: 

• They can never be the main window. 

• They shouldn't become the key window unless they accept characters from the 
keyboard. 

• They generally aren't visible unless they belong to the active application-they rarely 
persist on-screen once the application has been deactivated. 

In addition, some ordinary panels are in a tier above standard windows, as discussed later 
in "Floating Panels." 

76 Chapter 5: Panels 

Programming Note: Creating Panels 

The Application Kit contains several ready-made ordinary and attention panels that you 
can use, as well as functions that let you easily create basic attention panels. You can also 
create custom panels-either ordinary panels or more complex attention panels. If you 
create a custom attention panel, you are responsible for making sure that the panel looks 
like an attention panel. (Similarly, custom ordinary panels should look like ordinary 
panels, and not like attention panels.) 



application icon 

Attention Panels 

An attention panel demands attention from users by denying them the ability to work in any 
other window of the active application. Until it's explicitly dismissed, the panel limits what 
the user can do within the application to just rearranging windows. Nothing else-title bar 
buttons, text entry, miniwindows, or controls in other panels-will work. The only menu 
commands that work are those that can affect the panel itself-for example, Cut, Copy, and 
Paste, if the panel includes a text field. 

It's possible to activate another application while an attention panel is on-screen, but when 
the user returns to the previous application, the mode created by the attention panel is still 
in effect. 

An attention panel differs from ordinary panels in the following ways: 

• It has an empty title bar. 

• It's closed by one or more buttons in its content area, not by a button in the title bar. 

• It stays on-screen-even when the application isn't active-until dismissed by the user. 

• It's the key window whenever the application is active. 

• It's isolated in a tier above everything on the screen except spring-loaded windows such 
as pop-up lists. 

Attention panels come up centered in the upper part of the screen, so the user can't overlook 
them. (The user can move them out of the way, though.) 

Because an attention panel sets an exclusive mode for itself, in effect disabling the rest of 
the application, it must be unmistakable and immediately apparent to the user. Some of the 
features that distinguish attention panels from other windows are illustrated below. 

bold, larger than usual type 

a way to cancel 

empty title bar 

default choice in the 
lower right corner 

Attention panels are dismissed from the screen as soon as the user takes the required action, 
which can be as simple as typing Return. When dismissed, the panel's mode ends. 

How Panels Work 77 



Implementing Ordinary Panels 

Ordinary panels can be used in many ways, so you have many choices when implementing 
them. This chapter discusses the conventions for ordinary panels that are different from 
those for standard windows. 

Window Considerations 

Although ordinary panels are similar to standard windows, conventions for title bar buttons 
and key-window status differ slightly from those for standard windows. For more detailed 
information on the title bar buttons and on key windows, see "Implementing Windows" in 
Chapter 4. 

Using the Resize Bar 

If resizing the panel might be useful, then it should have a resize bar. Like a standard 
window, a panel should constrain its shape if necessary to prevent the panel from becoming 
a size that's too large or too small. 

Using the Miniaturize Button 

A panel can have a miniaturize button, but it's rare that one would be needed. Like menus, 
panels can be closed and returned to the screen through a menu command. A miniaturize 
button is redundant unless a mini win dow would, for some reason, be more convenient for 
the user than the command, or unless the panel persists on-screen when the application isn't 
active (see "Persisting Panels," later in this chapter). 

Using the Close Button 

Every ordinary panel should have a close button so the user can dismiss the panel when it's 
not needed. The close button is never broken, since panels don't contain the main work of 
the application. 

78 Chapter 5: Panels 



Becoming the Key Window 

An ordinary panel should become the key window only if it accepts keystrokes (typing) or 
if it's used independently of any other windows. For example, the Find panel becomes the 
key window so that the user can type in the word to be found. But the tools palette in a 
graphics application should never become the key window because it's operated only by the 
mouse and it's always used in conjunction with a document window. On the other hand, 
the standard Info panel should become the key window because it contains information 
that's independent of the application's other windows. In other words, it's the center of the 
user's attention and thus should be the key window. 

A panel that accepts keystrokes can delay becoming the key window until the user indicates 
a readiness to begin typing (such as by clicking in a text field), provided that both of the 
following are true: 

• Text entry is not essential to using the panel. 
• Users typically don't enter text when using it. 

This is likely to be the case if most of the control devices in the panel are not text fields 
(they are buttons, selection lists, and so on) and if the choices that can be made by entering 
text can also be made in an alternative way (for example, by selecting items from a list). 
The Font panel is an example. This kind of panel should not show any selection until the 
user indicates a readiness to begin typing. 

Programming Note: Avoiding Key-Window Status 

Panels that need to avoid becoming the key window until the user indicates a readiness 
to begin typing can use the setBecomeKeyOnlylfNeeded: method of the Panel class to 
do so. 

However, panels that should never become key-a tools palette, for example-must use 
a different way to avoid becoming the key window. Each panel must remove key-down 
andkey-up events from itsevent mask. 

Implementing Ordinary Panels 79 



Relinquishing Key-Window Status 

A panel should remain the key window only as long as necessary. If user actions within the 
panel affect the main window, key-window status should be returned to the main window 
as soon as those actions are completed. 

For example, when the user clicks the Set button (or types Return) in a Font panel to change 
the font of the current selection in the main window, the panel gives up key-window status 
(if it had it). In all likelihood, the user is finished with the Font panel (at least until the 
selection has changed) and is ready to resume working in the main window. Under these 
circumstances, the user should be free to begin working in the main window immediately, 
without being forced to click in it just to make it the key window. 

Exceptions to Ordinary Panel Behavior 

In general, ordinary panels are unobtrusive. They're in the lowest tier on-screen, and they 
disappear when their application is deactivated. Sometimes, though, an ordinary panel 
needs to be more prominent, as described in the following sections. 

Persisting Panels 

By default, an ordinary panel is removed from the screen when its application is 
deactivated. The user sees only panels related to the active application. This prevents 
confusion-such as might arise when similar Find panels for two different applications are 
on-screen at once. 

An application can override this default behavior and allow a panel to remain on-screen 
after the application has been deactivated, but only if the panel contains information 
that would be pertinent to the user's activities in another application. This should be a 
rare occurrence. 

An example is the Workspace Manager Info panel, which contains system-level 
information such as the amount of memory in the computer. Because the user might want 
to copy this information down-for example, into a mail message-this panel persists even 
when the Workspace Manager is deactivated. 

80 Chapter 5: Panels 



Floating Panels 

Ordinary panels are normally in the same tier as standard windows. Sometimes, though, 
it's useful to have a panel float above all other standard windows and ordinary panels. For 
example, a small panel containing a palette of drawing tools is most useful if it floats above 
the application's other windows. An example of a palette is below. 

Tools :2SJ 

" Q9 .~ ~ 
A ." ) Q 

A panel should be allowed to float above standard windows only if it passes all four of the 
following tests: 

• It's oriented to the mouse rather than the keyboard. Thus a panel that can become the 
key window should not be made a floating panel, unless it becomes the key window only 
when the user is ready to type (see "Becoming the Key Window" earlier in this chapter). 

• It's important that the panel remain visible while the user works in the application's 
standard windows. This test is passed if the user must frequently move the cursor 
from a standard window to the panel and back again (as for a tool palette) or the panel 
gives information relevant to the user's actions in the standard window (as in some 
inspector panels). 

• It's small enough not to obscure much of what's behind it. 

• It doesn't persist (remain on-screen) when the application is deactivated. 

Thus, panels float for some of the same reasons that menus do. 

Panels with Variable Contents 

Two types of ordinary panels-multiform panels and inspector panels-are used in 
many applications to show specialized information in a limited amount of space. Both 
multiform and inspector panels can be used for many different purposes, even within the 
same application. 

Implementing Ordinary Panels 81 



Multiform Panels 

A multiform panel is a panel that has a pop-up list or set of graphical radio buttons at the 
top that lets the user choose which form the panel takes. For example, the following panel 
lets the user choose anyone of seven different forms. 

a.pplications viiI! be 
~-~-~---!Iaunched at startup 

tirne 

;r'R~;,1~tt":1 

::Shelf :~I 

Multiform panels conserve screen space by combining many related panels into a single 
panel. Since all their contents aren't visible all the time, multiform panels shouldn't be used 
for an application's most basic functionality. 

82 Chapter 5: Panels 



Inspector Panels 

An inspector panel is any panel that displays information about the object that's currently 
selected. Inspectors usually let the user set properties of the object, as well. The Font panel 
(described in "Standard Panels" later in this chapter) is an inspector panel. It displays 
information about the font of the current selection. The Workspace Manager Inspector 
panel (shown below) lets the user see and set information about the currently selected file 
or folder. Inspectors are often multiform panels, with each form displaying a different kind 
of information about an object. 

l~ NeXTlogo.eps 
~r 

, , 

Path: Ime ' 

Implementing Ordinary Panels 83 



Implementing Attention Panels 

Attention panels are appropriate in only a limited number of situations. Because they create 
a mode that severely limits the user's freedom of, action, their use should be restricted as 
much as possible. A panel can be made an attention panel when: 

• It gives the user information about the current context. Such panels usually warn of an 
error, of a potentially dangerous or unexpected result of the user's current course of 
action, or of a condition that makes it impossible to carry out a requested action. But 
they may also simply supply information the user will need to proceed intelligently with 
the application. 

• It interrupts an action to give the user an opportunity to take corrective steps-as, for 
example, the panel that interrupts the Quit command to let users save altered files before 
the application terminates. 

• It clarifies or completes a user action-as, for example, the panel that completes the 
Save As and Save To menu commands. (In this case, the menu command must have 
three dots after its name-for example, "Save As ... ". This is discussed under 
"Commands that Bring Up Panels," in Chapter 6, "Menus.") 

Attention panels that interrupt or complete an action must have a Cancel button. The 
Cancel button gives the user the option of canceling the action, in which case it should be as 
if the user had never initiated the action in the first place. Panels that inform or warn should, 
if possible, let the user choose what to do in response to the information they convey. 

Naming an Attention Panel 

Attention panels that come up as the result of a command or a commandlike user action 
should be named after the action that brings them to the screen. For example, the panel that 
appears as the result of choosing a Save, Save As, Save To, or Save All command should 
be named Save. The panel that comes up when the user wants to close an edited but unsaved 
document should be named Close, whether it's invoked from the close button or through 
the Close or Close Window commands. The panel's name appears just to the right of the 
application icon, as shown in the following figure. 

84 Chapter 5: Panels 



Save changes to MyApp? 

The Default Option in an Attention Panel 

When a user action brings up an attention panel with a variety of choices, the default button, 
the one in the lower right comer of the panel, should allow the user to easily carry through 
with the action. It should not contradict what the user set out to do. Specifically, it should 
not be the Cancel button. 

The default button should not perform any additional action not implied by the user request 
that brought up the panel. In general, it should be the safest of the alternatives (for example, 
Open Copy rather than Open Anyway when the user tries to open a document that 
someone's already opened). 

The default button in an attention panel should normally be operable by pressing the Return 
key on the keyboard (when the panel is the key window). If so, it should be marked by the 
Return symbol~. However, if the button has dangerous side effects, it's acceptable to 
require that the user press the button. 

Dismissing an Attention Panel 

Each action that can dismiss an attention panel is represented by a separate button inside its 
content area. In contras"t, an ordinary panel is closed only by its close button (or the Close 
Window command), never by a button in the content- area. 

The buttons that dismiss an attention panel should be located along the right and lower 
edges of the panel, with the default button in the lower right comer. No button except for 
the default button should be operable by the Return key. 

Implementing Attention Panels 85 



Naming Buttons in an Attention Panel 

When naming buttons in an attention panel, you should label each one clearly with a verb 
or verb phrase describing the action it performs. The user shouldn't have to read the text 
of the attention panel to be able to choose the right button. Thus, generic labels (like Yes 
and No) aren't appropriate, as they tend to cause user errors. Avoid using OK unless it's the 
only button in the attention panel. 

Good names for attention panel buttons include: 

86 Chapter 5: Panels 

Cancel 
Close Anyway 
Don't Close 
Don't Save 
Explain 
Open 
Open Copy 
Open Anyway 
Quit Anyway 
Replace 
Revert 
Review Unsaved 
Save 
Save All 
Set 



Optional Explanations in an Attention Panel 

An Explain button can offer users a way of getting more information before dismissing the 
panel. A typical example is shown below. 

1~1 Error 

You cannot delete all the cells in a table. 

r ----------------------------- --- - -

liF;1 Error 

You cannot delete all the cells in a table. 

A table must contain at least one cell. If you want to 
delete the table itself, then select the table and press 
the Delete key. 

Implementing Attention Panels 87 



Standard Panels 

Some panels show up in many different applications. For example, every application must 
have an Info panel, which gives certain kinds of general information about the application. 
Text processing applications also have a Font panel, which lets the user set the font of the 
text selection. . 

This section describes all the standard panels. Some of them you have to create from 
scratch, using the guidelines in this section. Others are provided by the Application Kit. If 
a standard panel exists for functionality in your application, you should use it rather than 
designing your own. 

You can customize Application Kit panels, if necessary, by adding controls and information 
to what the Application Kit provides. For example, the Open panel on the left, below, has 
a check box added to it. Compare it to the normal Open panel on the right. 

88 Chapter 5: Panels 

Programming Note: Customizing Application Kit Panels 

To customize panels that are implemented by the Application Kit, you should first 
construct a View containing the information and controls you want to add. You can then 
add the View by sending it to the panel in a setAccessoryView: message. 



The following table lists and describes the standard panels. After the table are sections 
describing how to implement each panel that isn't completely implemented by the 
Application Kit. 

Panel 

Close 

Colors 

Find 

Font 

Help 

Info 

Description 

An attention panel that should come up when the user tries to close 
a document that has unsaved changes. See "Implementing the Close 
Panel," later in this chapter, for more information. 

An ordinary panel that's provided by the Application Kit. It lets 
the user preview and specify colors in any of the following 
modes: color wheel, grayscale, red-green-blue (RGB), 
cyan-magenta-yellow-black (CMYK), hue-saturation-brightness 
(HSB), custom palette (which loads an image from which the user 
can choose colors), and custom color lists . 

. A Colors panel sometimes works with color wells. See "Color 
Wells" in Chapter 7, "Controls," for information on color wells. See 
"The Font Menu" in Chapter 6 for information on the command that 
brings up the Colors panel. 

An ordinary panel that lets the user enter a string for an application 
to search for. See "Implementing the Find Panel," later in this 
chapter, for more information on this panel. 

An ordinary panel that's provided by the Application Kit. It lets the 
user preview fonts and change the font of the currently selected text. 
See "The Font Menu" in Chapter 6 for more information on the 
interface to fonts. 

An ordinary panel that's provided by the Application Kit. You 
should use this panel to display anyon-line help provided by your 
application. This panel displays information that can contain text, 
graphics, and link buttons (which lead to other information). See 
"U sing the Help Panel," later in this chapter, for information on 
creating help. 

An ordinary panel that displays information about the application. 
See "Implementing the Info Panel," later in this chapter, for more 
information on this panel. 

( continued) 

Standard Panels 89 



Panel 

Link Inspector 

Open 

Page Layout 

Preferences 

Print 

Quit 

90 Chapter 5: Panels 

Description 

An ordinary panel that's provided by the Application Kit. It lets the 
user get and set attributes of the selected linked information. If your 
application's documents can receive linked information, then it 
should have this panel. See "Using the Link Inspector Panel," later 
in this chapter, for more information. "The Link Menu" in Chapter 6 
has more information about links. 

An attention panel provided by the Application Kit. It lets the user 
specify the name of a file to open. See "Using the Open Panel," later 
in this chapter, for more information. The Document menu's Open 
command brings up this panel, as described in Chapter 6. 

An Application Kit panel that queries the user for information that's 
needed for displaying the document on-screen, as well as for 
printing. It's brought up by a command in the Format menu, as 
described in "The Format Menu" in Chapter 6. This panel can be 
replaced by one more appropriate to your application, especially if 
your application has extensive page layout capabilities. 

An ordinary panel that allows the user to determine details of how 
the application looks and works. See the section, "Implementing the 
Preferences Panel," later in this chapter, for more information. 

An attention panel that's provided by the Application Kit. This 
panel comes up every time the user prints a document or other data. 
After specifying the information needed for printing, the user can do 
any of the following: send the output to a printer; save the output to 
a PostScript file, instead of printing it; send the output to a fax 
modem, instead of a printer; preview on-screen what will be printed; 
cancel any of the above actions, even after they've started. The main 
menu's Print command brings up this panel, as described under "The 
Main Menu" in Chapter 6. 

An attention panel that should come up when the user tries to quit an 
application that has unsaved or uncompleted work. See 
"Implementing the Quit Panel," later in this chapter, for more 
information. 

( continued) 



Panel 

Save 

Spelling 

Description 

An attention panel that's provided by the Application Kit. It queries 
the user for the name of a file to save to. See "Using the Save Panel," 
later in this chapter, for more information. See "The Document 
Menu" in Chapter 6 for information on when the Save panel is used. 

An ordinary panel provided by the Application Kit to help the user 
check the spelling of text. See "Checking Spelling" in Chapter 6 for 
more information. 

Implementing the Close Panel 

When the user closes a document that has been edited but not saved, the application must 
bring up a Close panel giving the user an opportunity to cancel the operation, save the 
document before closing, or confirm that it should be closed without saving. This attention 
panel should have at least these three buttons: 

Cancel Don't Save Save 

Save is the default option because many users don't think of closing a document and saving 
the most recent changes to it as separate operations-for many, closing implies saving. 

If closing a document or window has consequences other than that unsaved changes would 
be lost, the application must still bring up a Close panel informing the user. For example, 
when the user closes a terminal emulation window, the application should notify the user 
that closing the window will cause the running command to be terminated. If the panel 
can't offer the user any way of avoiding the side effects, it should have these buttons: 

Cancel Close Anyway 

Note: Do not bring up a Close panel unless work is about to be lost. 

Standard Panels 91 



Implementing the Find Panel 

This ordinary panel should have at least a text field to enter the search string and a button 
to find the next instance of the string. It's also good to have a button for finding the previous 
instance of the string. 

Note: Although we recommend that buttons have verbs as titles, it isn't appropriate in the 
panel above, for two reasons. First, changing the titles to Find Previous and Find Next 
hides the real difference between the buttons; it's easy to miss the second word in a button. 
Second, since Find is already mentioned in the panel twice (and no other verb is), it's 
redundant to put Find in the button titles. See "Choosing the Button's Image or Label" in 
Chapter 7 for more information on naming buttons. 

Many Find panels have more controls than the one shown above, such as the following: 

• A check box that lets the user choose whether capitalization matters (by default, it 
shouldn't) 

• A check box to choose whether partial words should be considered matches (by default, 
they should) 

• A Replace With text field (and related buttons-see Edit for an example) so that the user 
can replace the selected string 

• Radio buttons that determine the scope of global searches or replacements (by default, 
the scope should be global rather than just the selected region) 

• Options for finding objects other than strings (such as paragraph characteristics) 

Although the Find panel usually stays up until the user explicitly closes it, it's common to 
dismiss the panel early in one case. This case is described in "Determining the Action that 
Is Performed" in Chapter 3, "User Actions: The Keyboard and Mouse." 

The Find Panel menu command brings up this panel. The Find Next and Find Previous 
commands correspond to its two buttons. (See "The Find Menu" in Chapter 6.) 

92 Chapter 5: Panels 



Using the Help Panel 

The Application Kit Help panel is part of the NeXTSTEP help system. Some of the 
information displayed by this panel is already provided by the help system. For example, 
every application has available to it ready-made help on using the NeXTSTEP user 
interface. Besides help on basic tasks, such as using menus and scrollers, the help system 
has skeletal help that's automatically displayed when the user Help-clicks in menus and 
panels that are implemented by the Application Kit. For example, when the user 
Help-clicks in the Print panel, some basic information on using the panel appears in the 
Help panel. 

To use the Help panel, you need to add information about the objects in your application 
and the tasks associated with them. You should also override the standard help for 
Application Kit panels and commands with new files containing links to more task-oriented 
help. Once you've added the information, you should modify the provided index and table 
of contents so that they refer to the information. 

Programming Note: Implementing On-Line Help 

The Help panel is one part of NeXTSTEP support for on-line help. Other support includes: 

• A question mark cursor that appears when the user presses the Help key (or on 
keyboards without a Help key, when both the Alternate and Control keys are pressed) 

• An easy way to connect interface objects with help text, so that when the user 
Help-clicks an object, information about the object automatically appears in the Help 
panel 

• Built-in help for basic tasks (such as using menus and operating scrollers) 

To add help to an application, you first add a help folder using Project Builder. This help 
folder includes template files for the Help panel's index and table of contents. You can 
create and modify these and other help files, along with the help links in them, with 
developer-mode Edit. Both Interface Builder and the Application Kit have support for 
associating help with the user interface objects in your application. 

For more information on implementing on-line help, see the NXHelpPanel discussion in 
the NeXTSTEP General Reference. 

Standard Panels 93 



If your application uses the Help panel, it should also support Help-clicking of its objects. 
(Otherwise, when the user Help-clicks an object, the Help panel will come up but will likely 
show inappropriate help.) Help-clicking an object results in the panel automatically 
displaying the most specific help available. For example, when the user Help-clicks a 
button, the help system first looks to see whether the button has help associated with it; if 
so, the Help panel displays it. If not, the help system looks for more general help, such as 
that associated with the window or even the application that the button is in. 

94 Chapter 5: Panels 

Writing Note: Creating On-Line Help 

You're encouraged to reuse the contents of the help in NeXT applications such as Edit, 
Mail, and Workspace Manager. After copying the contents from one ofthese applications' 
Help panels, you can paste the contents into a file in your application's- help folder. You 
should then modify the help text and update the help links it contains so that the help suits 
your application. For example, Edit has help on working with documents, text, graphics, 
and color, as well as on printing and faxing. With a few changes, much of this help is 
appropriate for other document-based applications. 

You're also encouraged to use the design of NeXT's help. Help in NeXT applications 
is task-oriented, with Help-clicking serving as a way of discovering the tasks an object 
is used for. At the end of every help file is a list of related tasks, with links to the help 
for each task. The objects that have associated help are generally menu commands, 
standard windows, panels, and a few important buttons such as those in Mail's 
Compose window. If supplying this level of help isn't practical, then you should at least 
ensure that Help-clicking any object results in help on a relevant subject, even if the help 
is very general. 



Implementing the Info Panel 

I .. .. It~fo _. ~ 

Structured Version 
)C"XF!" c!(Q ... illI by BerttendStrlet 

NeXT Text Editor 
by Bryan Yememoto 
Release 3.0 (,/72) 
Copyright 1992 by NeXT Computer, Inc. 

Each application must have an Info panel. This ordinary panel should display a small 
amount of basic information about the application: 

• The name of the application 
• The application icon 
• Copyright information 
• The current version of the application 
• The names of the authors (optional) 

The Info panel should not offer help for using the application or give an extensive amount 
of other information about it (such as its history or purpose). 

Interface Builder provides a sample Info panel that you can use in your application. 
See "The Info Menu" in Chapter 6 for information on the command that brings up the 
Info panel. 

Using the Link Inspector Panel 

When using this Application Kit panel, you should provide an accelerator for the panel's 
Open Source button: Double-clicking an item of linked information while pressing the 
Control key should have the same result as selecting the item and choosing the Open Source 
button. 

Standard Panels 95 



Using the Open Panel 

If your application can open only certain types of files, then it should show only those files 
in this Application Kit panel. 

The Open panel should come up showing the folder of the most recent main window (since 
the application started up). If the application has had no main window since it started up, 
then the Open panel should show the user's home folder. 

Implementing the Preferences Panel 

Most applications have a Preferences panel, an ordinary panel that allows the user to 
determine details of how the application looks and works. A user typically uses this panel 
only a few times. It should not be necessary to bring up the Preferences panel during 
normal use of the application. 

Preferences typically include such things as: 

• The default font size 
• The format for displaying data 
• Whether to make backup files 
• The default size of windows 
• Options that increase the power of the application 
• The application's keyboard alternatives 

Do not use the Preferences panel for anything the user might want to set from time to 
time during a session. Also, the contents of the Preferences panel should be valid 
applicationwide: They shouldn't change depending on which window or data is selected. 

96 Chapter 5: Panels 



All preferences should carry over from session to session; most will also affect the way the 
application works during the current session. All of an application's options must be 
settable in some way from within the application. For example, it isn't acceptable to have 
options that are settable only by using the dwrite command. 

Preferences panels are often implemented as multiform panels to reduce their size and to 
organize their options. The Preferences panel is brought up by the Preferences command in 
the Info menu. See Chapter 6 for information on the Info menu. 

Implementing the Quit Panel 

When the user tries to quit an application that has unsaved or uncompleted work, the 
application should bring up a Quit panel. For example, if the user has edited a document 
and not saved the changes, or if the application is still computing (for example, a command 
is executing in a UNIX shell), a Quit panel should appear. In both cases, one or more of 
the application's windows should have a broken close button, as described in "Using the 
Close Button" in Chapter 4. 

The Quit panel should be an attention panel that has the following buttons: 

• A Cancel button (only when the panel is brought up as the result of choosing the 
application's Quit command) 

• A Quit Anyway button 

• A Review Unsaved button (only for document-oriented applications) that cycles through 
unsaved documents, letting users decide which ones to save before quitting. 

The buttons are arranged as follows: 

Cancel Quit Anyway Review Unsaved 

An application could also add a Save All button that saves every unsaved document, exactly 
as the Save All command does. 

Important: Because applications can't cancellogouts and poweroffs, the Quit panel 
shouldn't have a Cancel button when it's brought up as the result of a logout or poweroff: 

Quit Anyway Review Unsaved 

Review Unsaved is the default button. It brings up a Review Unsaved panel for each 
unsaved document. This panel is essentially the same as the Close panel described above, 
though with a different name to reflect the different manner in which it's invoked. 

Standard Panels 97 



The Cancel button in the Review Unsaved panel cancels the review process and returns the 
user to the Quit panel. Once the user has finished cycling through all the documents 
(without clicking Cancel), the application should quit. 

Note: Do not bring up a Quit panel unless work is about to be lost. 

Using the Save Panel 

This Application Kit panel should come up showing the folder of the document being saved 
(the document in the main window). A document's folder is reflected in its window's title 
bar. For example, if the title bar shows 

UNTITLED-1 - INet/machine/home 

then the Save panel should come up showing lNetimachinelhome. 

98 Chapter 5: Panels 



6 

= 

Menus 

Menus provide users a point of entry for all the functionality of an application, its obscure 
and common features alike. Because of this special role, they behave in a special way: 

• All the visible menus for an application disappear when the user starts working in 
another application. They reappear when the user returns to the application. (Menus 
that weren't previously on-screen don't reappear.) 

• Menus are segregated into two of the frontmost tiers of on-screen windows. They 
appear to float above everything else on-screen except attention panels and 
spring-loaded windows such as pop-up lists. 

• Menus can't be miniaturized. They don't need to be, since they're small and can be 
easily retrieved after they've been closed. 

• Menus are hierarchically arranged. Choosing a command in one menu can produce 
another menu with its own list of commands. 

The first three of these points were discussed earlier in this manual. (See "The Active 
Application," "Window Order," and "Miniaturizing" in Chapter 4, "The Window Interface 
to Applications.") 

Applications should make use of the menu system's hierarchy to arrange commands 
in distinct, functionally identifiable menus. A well-defined set of hierarchical menus 
aids users both in finding the commands they need and in understanding the structure of 
the application. 

Menus 99 



How Menus Work 

main menu submenu 
v 

My App Services 

menu command - : Info t- lDetine in Webster shows that the command 
iDocumenf r-:: lMaH· ~ - brings up a submenu 
!Eell!' r--:. fbpetlin \\iOrkspabe -=-:..- a disabled command 

ff-lide" h ..... · -------- shows the keyboard 
I-i-!Q-U-It-~q~ alternative for the command 

The main purpose of menus is to provide commands for the user to choose. To choose a 
menu command, the user presses the mouse button as the cursor points anywhere within the 
content area df the menu and releases it as the cursor points to the desired command. This 
can be as simple as clicking the command, or the user can drag through the menu, from 
command to command. Each command that comes under the cursor while the mouse 
button is down is highlighted. 

Instead of using the mouse, the user can often use a keyboard alternative to choose a 
command. A keyboard alternative is a combination of a character and the Command key. 
For example, holding down the Command key and pressing the p key is the standard 
keyboard alternative for the Print command. Keyboard alternatives are discussed in detail 
in Chapter 3, "User Actions: The Keyboard and Mouse." 

The Main Menu 

Every NeXTSTEP application has at least one menu, its main menu. If an application has 
just a main menu, it holds all the commands for the application. If the application has more 
than one menu, all but the main menu are submenus of another menu. Through the 
hierarchical arrangement of submenus, the main menu gives the user access to all the menus 
of the application. 

Because the main menu is at the top of the menu hierarchy, it lacks a close button and 
always remains on-screen when its application is active. 

By default, when an application first starts up, its main menu appears in the upper left 
corner of the screen. Users can change this default location by dragging the main menu to 
a new position. Another way to change the default location for all applications (except 
those whose main menus have already been moved) is with the Preferences application. 

100 Chapter 6: Menus 



Bringing the Main Menu to the Cursor 

If the user enables one of the mouse buttons (with the Preferences application), it can be 
used to gain quick access to the main menu. When the user presses the enabled mouse 
button (except when the cursor is over an application icon), a copy of the main menu for 
the active application appears under the cursor. The copy stays on-screen until the mouse 
butten is released. 

Wit 
ima 
dat; 
Pos 
But 
but1 

Fig 

To begin, the cursor lies directly over the main menu's title bar. The user can drag down 
into the menu (and into its submenus) to choose a command. When the mouse button is 
released, the copy and any submenus disappear. 

See "Left and Right Orientation" in Chapter 3, "User Actions: The Keyboard and Mouse," 
for more information on enabling mouse buttons. 

How Menus Work 101 



Submenus 

The main menu is the only menu in an application that isn't a submenu. Every other 
menu is a submenu of another menu, which is its supermenu in the application's hierarchy 
of menus. 

Each submenu is associated with a particular command in its supermenu. The submenu 
becomes visible and attaches to its supermenu when the user chooses the command that it's 
associated with. 

The user can drag from a controlling command into a submenu to choose one of the 
submenu's commands. As long as the mouse button is held down, the submenu remains 
visible and the controlling command stays highlighted. But once the mouse button goes up 
and the command has been executed, the submenu disappears. 

102 Chapter 6: Menus 

Programming Note: Menus and the Application Kit 

The Application Kit takes care of everything discussed in this section, IIHow Menus 
Work." Specifically, it provides the following functionality: 

• All aspects of displaying and hiding menus and menu commands (although you must 
specify when a command should be disabled), including tearing off submenus 

• Letting you associate menu commands with menus 

• Making sure the keyboard alternative works 

• Detecting when the user chooses a menu command and reacting appropriately (such 
as by highlighting and bringing up a panel) 

Much of this functionality can also be accessed through Interface Builder. For example, 
to associate an application-specific command with a menu, the programmer can simply 
drag a menu command from the Palettes window into the menu. You can then change 
the name of the command, give it a keyboard alternative if necessary, and associate an 
action with the command. 



Keeping a Submenu Attached 

The easiest way to attach a submenu is simply to click its controlling command, but the user 
can also drag to the controlling command and release the mouse button while the cursor is 
still above it. The controlling command for an attached submenu stays highlighted to 
indicate that the submenu is attached. 

A supermenu and its attached submenu act like a single window. User actions that move 
or close the supermenu also move and close the submenu; an attached submenu has no close 
button of its own. A submenu attached to the main menu is assigned to the same window 
tier as the main menu. 

An attached submenu can also have its own attached submenu. This is illustrated below. 
The Librarian menu is attached to Services, and Services is attached to the main menu. 
Moving the main menu serves to move all three. 

Tearing Off an Attached Submenu 

The user can tear off an attached submenu by dragging it away from its supermenu. 
Moving it free of its supermenu gives it an independent life on-screen. As a sign of its 
independence, it gets, for the first time, its own close button. The close button identifies the 
menu as a tom-off submenu. (Any submenus that were attached to the tom-off submenu 
move with it and remain attached.) 

main menu 

detached menu 

How Menus Work 103 



The idea is for users to bring up a submenu, then tear it off and move it to a desired location 
if they want it to stay on-screen. Once a submenu has been tom away from its supermenu, 
it stays where the user puts it. To reattach the submenu, the user must close it and then 
choose its controlling command. 

If the user presses the mouse button while the cursor is over the command that controls the 
tom-off submenu, a copy of the submenu temporarily appears next to its supermenu. 

temporarily 
attached menu . 

Removing a Submenu from the Screen 

Assuming its application is active, an attached submenu can be removed from the screen in 
three ways: 

• By again choosing its controlling command. Choosing the Librarian command in 
the detached Services menu in the previous figure causes the Librarian submenu to 
disappear. 

• By choosing any other command in the supermenu. 

• By removing its supermenu from the screen. For example, when a tom-off supermenu 
is closed, its attached submenu disappears from the screen. 

A tom-off submenu is removed from the screen by clicking its close button. 

104 Chapter 6: Menus 



Commands 

A menu can display several different kinds of commands, all of which use the 
targeted-action paradigm. Some commands require the user to select the target-Copy, 
Paste, and Miniaturize Window, for example. Others-such as Hide, Quit, and Info-don't 
require a selection: The target is built into the program. 

When a command is chosen-whether it's clicked or activated by a keyboard alternative­
it's highlighted. Keyboard alternatives can also operate commands in off-screen menus. 
When they do, the menu's controlling command (or, if the supermenu isn't visible, the 
supermenu's controlling command) is highlighted. This ensures users of immediate, visual 
feedback that the keyboard alternative has in fact invoked the command. 

Some commands control submenus. The action of the command is simply to attach the 
submenu to the menu. These commands are marked by the submenu symbol [~'. 

Many commands cause panels or standard windows to appear on-screen: 

• Some bring up a standard window-the New command in the Document menu, for 
example, or the Console command in the Workspace Manager Tools menu. 

• Some put an attention panel on-screen to help clarify or complete the command. For 
example, the Save As command produces a panel that asks the user to type in the file 
name the user wants to use for the document. 

• Others bring up a panel that can stand on its own, independent of the command that 
produced it. Sometimes the panel simply imparts information to the user-a Help panel, 
for example. But usually it acts as a control panel where the user can give instructions 
.to the application-the Font and Find panels, for example. Such panels are similar to 
submenus in that they open a range of options to the user. 

If a menu command controls a submenu, it remains highlighted as long as the submenu is 
attached. If it controls an attention panel, it remains highlighted until the panel is dismissed 
from the screen. Commands don't stay highlighted if they bring up a panel that isn't an 
attention panel. 

The programmer can disable a command, as described later in this chapter in "Disabling 
Invalid Commands." Disabled commands have dark gray text (instead of the usual black) 
on the usual light gray background. They're completely inoperative and don't highlight in 
response to user actions. 

How Menus Work 105 



Implementing Menus 

The Application Kit provides much of the user interface to menus, leaving you the task of 
determining application-specific characteristics such as: 

• The menu hierarchy 
• The names of menu commands 
• When each menu command is valid 
• Keyboard alternatives 

This section describes standards for the menu hierarchy and for naming menu commands. 
When a command isn't valid, it should be disabled, as described later in this chapter. 
Chapter 3 lists all the standard and recommended keyboard alternatives. 

Designing the Menu Hierarchy 

When designing your application's menu hierarchy, you should start with the standard 
menus described later in this chapter-in particular, the main menu. Having standard 
menus, as much as possible, is one of the easiest and best ways to ensure consistency 
between applications. 

Since menus need to be easily accessible to the user, you should try to keep your 
application's menu hierarchy as shallow as possible. In general, a menu should be located 
no more than two steps away from the main menu. It's even better to have menus no more 
than one step away, as long as they don't grow too long or confusing as a result. 

A menu should never have fewer than two commands unless it grows and shrinks 
dynamically and happens to shrink to fewer than two. If an application has a menu with 
only one item in it, that item should be bumped up one level and replace the command that 
brings up the menu. (A specific example of this is discussed later in this chapter under "The 
Info Menu.") 

106 Chapter 6: Menus 



A menu can have as many submenus as it has commands, although only one at a time can 
be attached to the menu. A menu should appear only once in the menu hierarchy-it should 
not be the submenu of two menus. 

Choosing Command Names 

Command names should be short, consisting of a single word if possible, a short phrase if 
not. Avoid abbreviations in commands, especially those that aren't standardized or widely 
used. Applications in the same language should follow the same capitalization rules. For 
English, commands are capitalized as they would be in a title-the first and last words 
begin with uppercase letters, as well as major words in between. 

Each command name should be unique. No two comnlands, even if they're in different 
menus, should have the same name. 

Commands that Perform Actions 

Wherever possible, the first word of an action command should be a verb, so the command 
reads like a short imperative sentence for the action it performs. Examples include Hide, 
Open, Save As, and Revert to Saved. 

Some menu commands have different results, depending on the application's state. The 
name of such a command should change so that it always describes what the command will 
do. The clearest way to do this is to change the command's verb. Some examples of good 
names follow: 

First State 

Show Ruler 
Show Grid 
Use Grid 
Bold 

Second State 

Hide Ruler 
Hide Grid 
Ignore Grid 
Unbold 

Notes 

Don't use Grid On and Grid Off. 
Bold is treated like a verb in this command. 

Avoid using two menu commands instead of changing the menu command's name. For 
example, you shouldn't have a Show Ruler command followed by a Hide Ruler command, 
where one of the commands is always disabled. 

Implementing Menus 107 



Commands that Bring Up Panels 

With one exception, a command that always brings up a panel must have three dots 
immediately following its name (for example, "Preferences ... "). The exception happens 
when the panel is a warning panel-such as one that comes up when the user tries to revert 
to a saved version of a document. Because the user could complete the action if the warning 
panel weren't there, it's inaccurate to imply that the command brings up a useful panel. 
Also, users who are new to an application sometimes tend to look at all of its panels (by 
choosing menu commands with " ... "). You don't want to encourage users to choose 
commands that are so dangerous that they require warning panels. For example, the 
Workspace Manager Log Out command doesn't have three dots, even though it always 
brings up a warning panel. 

Do not put three dots after commands that only bring up a standard window (like the 
New Viewer command in the Workspace Manager, or the New command in the standard 
Document menu). 

Note: Use three periods (not the ellipsis character) to produce the three dots. 

If the purpose of a command is to perform an action, and the panel comes up only to help 
complete the action, then the command should be named for the action, not for the panel. 
(The panel is then given a name that reflects the command name.) In this case, use the 
guidelines for naming described earlier in "Commands that Perform Actions." For 
example, the standard Save, Save As, and Save To commands are action commands that 
happen to bring up a panel (which is called the Save panel). 

If the purpose of the command is to bring up the panel, then the command is named after 
the panel. This usually results in a noun phrase as a name, instead of the verb phrase that's 
usually used for action commands. For example, the Preferences command brings up the 
Preferences panel, and the Spelling command brings up the Spelling panel. 

A command that brings up a panel shouldn't usually have Panel in its name, since the three 
dots already indicate that it brings up a panel. However, you can add Panel if the 
command's name would otherwise be identical to another command's name. For example, 
when the command that brings up the Info panel is in the Info menu, the command is named 
Info ~anel. When an application has no Info menu, the command is named just Info. 

108 Chapter 6: Menus 



Commands that Bring Up Submenus 

Commands that bring up submenus usually begin with nouns, but verbs or adjectives are 
acceptable if they're clearer. Every submenu command in a menu should have a name that's 
clearly different from every other command in the menu, so that the user can guess what 
each submenu contains by its name. For example, it's a bad idea to have under the main 
menu both a Tools menu and a Utilities menu, since most users won't be able to remember 
which is which. 

If a command brings up a menu of actions, it might be appropriate to have the command 
name the "target" of the actions. The Document menu uses this scheme: the Open 
command can be read as Open Document, the New command can be read as New 
Document, and so on. 

Commands that Bring Up Standard Windows 

A command that brings up a standard window should either start with New (as in the 
standard New command described under "The Document Menu," below) or match the title 
of the window. For example, the Workspace Manager has a New Viewer command under 
its View menu. 

Sample Command Names 

Some sample commands follow: 

Cut 
Font 
Font PaneL .. 
Hide 
Info Panel... 
New 
Preferences ... 
Save As ... 
Select All 
Show Graphics 

(performs an action) 
(attaches the Font menu) 
(brings up the Font panel) 
(performs an action) 
(brings up the Info panel; used only when Info is already used) 
(brings up a new document in a standard window) 
(brings up the Preferences panel) 
(an action command that happens to bring up a panel) 
(performs an action) 
(switches to Hide Graphics when graphics are already visible) 

Implementing Menus 109 



Disabling Invalid Commands 

When a menu command won't work, it should either be disabled or bring up an explanatory 
panel. For example, when a text editor has no documents open, it should disable its Save 
and Close commands, as shown below. 

When a disabled command is chosen using a keyboard alternative, a beep occurs. This 
helps the user know that the command isn't valid, even if the command isn't visible. 

If an invalid command brings up an explanatory panel, the panel should explain why the 
command is inappropriate and offer assistance. The panel must provide more information 
than just that the command won't work, since that information can more directly be 
conveyed by disabling the command. 

Graphical Devices in Menu Commands 

The area to the right of a command can be used only to display a keyboard alternative or a 
submenu symbol. (Commands that control submenus can't have keyboard alternatives.) 
No other graphical devices are permitted in this area. 

In addition, menu commands should not use arbitrary graphical devices, such as check 
marks, to show state. There's almost always a more appropriate way to display current state 
in our interface-for example, by using buttons or check boxes in a panel or by designing 
objects that can be directly manipulated (such as those in the Edit application's ruler). 

110 Chapter 6: Menus 

Programming Note: Tools for Creating Menus 

Project Builder creates your application's main menu. You can add commands and 
menus using Interface Builder. Some standard commands provided by Interface Builder 
have actions or submenus already associated with them. For example, by dragging the 
Windows command from the Palettes window of Interface Builder into your application's 
main menu, you give your application the full functionality described in I'The Windows 
Menu," later in this chapter. 



Standard Menus and Commands 

There's a great deal to be gained if commands shared by most applications are arranged 
similarly in similar menus. This section gives the standard arrangement of menus and 
commands for NeXTSTEP applications. 

Note: This chapter shows the U.S. English command names. For each language, the 
standard command names should be consistent. For example, Quit is Quitter in every 
French application. 

The Main Menu 

Every application should layout its main menu as described in this section. 

Programming Note: Implementing Commands 

Many menu commands are standard, as described in this section, "Standard Menus and 
Commands." Many of these standard commands and much of their behavior are 
supplied by the Application Kit, Project Builder, and Interface Builder. The Application Kit 
even automatically changes the names of some commands, such as changing Bold to 
Unbold, and disables some commands when they're invalid, such as Heavier. (Both 
commands are in the Font menu, which is described later in this chapter.) However, you 
should double-check that each menu command works correctly. 

Standard Menus and Commands 111 



The title of the main menu should be the name of the application, shortened somehow if the 
name is too long. For example, the main menu of Interface Builder is named IB because 
naming it Interface Builder would needlessly waste screen space. 

112 Chapter 6: Menus 

Command 

Info 

Document 

Edit 

Format 

Action 

Attaches the Info menu, which contains commands that give general 
information about the application, as well as let the user set general 
preferences about how the application works. Info is the first command 
in the main menu in part because it can be read in conjunction with the 
application name in the title bar (for example, Info about Edit, Info about 
Draw, and so on). See "The Info Menu," later in this chapter. 

Attaches the Document menu, which has commands that affect a 
document as a whole-opening, saving, and closing, for example. This 
menu is named differently in different applications, so it's important that 
the command be in a prominent, well-defined location (second). See 
"The Document Menu," later in this chapter. 

Attaches the Edit menu, which contains commands affecting the current 
selection. Every application that can have editable documents or 
selectable text must have this menu. See "The Edit Menu," later in 
this chapter. 

Attaches the Format menu, which contains commands affecting the 
layout of documents, including the font and paragraph format of text and 
the arrangement of graphic images. See "The Format Menu," later in 
this chapter. 

(continued) 



Command Action 

Windows Attaches the Windows menu, which contains commands affecting the 
windows that belong to the application. See "The Windows Menu," later 
in this chapter. 

Print... Brings up the Print panel, which permits the user to print or fax a 
. document. You can omit the Print command if your application doesn't 
print. In general, the Print command is assumed to print the document 
in the main window. If a panel can be printed (for example, one that 
contains a registration form), then to avoid confusion the panel might 
contain its own Print button. 

Services Attaches the Services menu. This menu lets the user choose services 
provided by the system or by other applications. See "The Services 

. Menu," later in this chapter. 

Hide Hides all the windows of the application. See "Hiding and Retrieving 
Windows" in Chapter 4. 

Quit Terminates the application. If quitting the application might cause 
the user to lose work, then the application should bring up a Quit 
panel. Otherwise, the application should not require confirmation of 
a Quit command. 

The Info, Services, Hide, and Quit commands should be in the main menu of every 
application. The other commands described above should be included when appropriate. 

Standard Menus and Commands 113 



Adding to the Main Menu 

The main menu works best when it's short (so that commands are easy to find) and narrow 
(so that it doesn't take up much screen space). Applications should generally have no more 
than 11 or 12 commands in the main menu. 

The main menu is also, for the most part, a menu of menus. Commands that are added to 
the main menu should typically be ones that bring up submenus. 

When designing your application's user interface, you can move a command that the 
guidelines place in a submenu up one level to the main menu, provided that: 

• The main menu is short enough to accommodate another command. 

• The command provides functionality that's considered central, even crucial, to the 
application. For example, a text editor might bring the Font command up to the main 
menu from the Format menu, but a spreadsheet would not. 

Like any other command that's added to the main menu, a command that's raised from a 
submenu should generally control another submenu. 

When a command is promoted to the main menu, it should, for continuity, be located 
immediately after the command for the submenu it would otherwise be in. For example, 
if the Font command is raised from the Format menu, it follows the Format command. 
If the Find command is promoted from the Edit menu, it follows the Edit command, as 
shown below. 

114 Chapter 6: Menus 



The Info Menu 

The Info menu contains commands that let the user get and set information about the 
application, as a whole. A License command is an example of the kind of command that 
could be added to this menu. 

Command 

Info Panel... 

Show Menus 

Preferences ... 

Help ... 

Action 

Brings up a panel that displays a small amount of basic information 
about the application. This standard panel is described in Chapter 5, 
"Panels." 

Displays and tiles all the application's menus. There's currently no 
support for this command in the Application Kit. You can 
implement it or not as you see fit. 

Brings up the application's Preferences panel, which permits the 
user to customize the application. This standard panel is described 
in Chapter 5. 

Brings up a panel with helpful information on how to use the 
application. If you implement this command, you should use the 
standard Help panel, which is described in Chapter 5. If you don't 
implement this command, then when the user Help-clicks an object 
in your application, the system brings up a panel informing the user 
that the application doesn't use the NeXT STEP help system. 

If an application doesn't support any of the commands in the Info menu except Info Panel, 
it should omit the menu and make the Info command bring up the panel instead. (The 
command would then be followed by three dots.) 

Standard Menus and Commands 115 



The Document Menu 

This menu contains commands that affect a document as a whole. Commands affecting 
selected contents of a document are mainly in the Edit menu. Applications that don't open 
or save documents of some kind and don't have a New command don't have this menu. 

The title of this menu (the second command in the main menu) should indicate the kind 
of thing that the Open command opens and the Save command saves. It might be 
Document, Project, File, Model (for spreadsheets), Game (for games), or Shell (for a 
terminal emulator). Never call this menu Window, since a Windows menu is standard in 
most applications. 

116 Chapter 6: Menus 

Command 

Open ... 

New 

Save 

Save As ... 

Action 

Brings up the Open panel so the user can open a file. Opening a file 
also opens a window (or windows) to display it in. 

Opens a new, unnamed file and a window to display it in. This new 
document should be in the same folder as would be displayed in the 
Open panel. (See the section "Using the Open Panel" in Chapter 5.) 

Saves any changes in the document displayed in the current main 
window to a file (writes them to the disk). If the document has never 
been saved to disk, this command should have the same effect as the 
Save As command. 

Saves the document displayed in the main window, as changed, by 
writing it to a new file with a name supplied by the user. The 
document displayed in the main window corresponds to the new file, 
and the window's title is changed accordingly. This command 
places a Save panel on-screen that asks the user to type in a file name 
or cancel the command. 

(continued) 



Command 

Save To ... 

Save All 

Revert to Saved 

Close 

Action 

Saves the document displayed in the main window, as changed, by 
writing it to a new file with a name supplied by the user. In this 
respect, Save To is identical to the Save As command. However, 
Save To doesn't replace the window's current file with the new one. 
You can choose whether to implement Save As or Save To or both in 
your application. 

Saves every document that's open in the application. This is a 
shortcut for performing the Save command on every open document. 

Replaces the current version of the document displayed in the main 
window with the version saved on disk. This undoes any changes 
made to the document since it was last saved. 

Closes the document in the main window, and all the windows used 
to display that document. In other words, it's completely parallel to 
the Open command. See "The Windows Menu," later in this chapter, 
for information on a related command, Close Window. 

If an application uses more than one window to display a document, it could add a 
Miniaturize command to miniaturize all the windows associated with the currently selected 
document (the document of the key window) into a single miniwindow. A standard 
command already exists (Miniaturize Window in the Windows menu) to miniaturize a 
single window. 

Performing an Implicit New Command 

If the user starts up an application by double-clicking an application icon rather than a 
document icon, the application should, if appropriate, provide the user with a new 
document to work in (performing an implicit New command). This is much friendlier to a 
new user than simply putting a menu on-screen. Users should be permitted to disable this 
behavior through a preference. 

It's almost always appropriate for general-purpose applications to perform an implicit New 
command. However, it's not appropriate if the application can't produce a new document 
without user input. It's also not appropriate if producing a new document has side effects, 
such as modifying the file system by creating a new folder or adding a file that might persist 
even if the user decided not to save the new document. 

When an application is started up automatically at login or from another application, it 
should not perform an implicit New command. 

Stol1dord Mmus ol1d Commol1ds 117 



If the user opens another document without touching the new one that was provided at 
startup, the application could automatically close the new one. But this is not a requirement 
of the user interface. 

Uneditable Documents 

If a document is opened that the application won't allow the user to save (even with a Save 
As command), it should not permit the user to edit the document on-screen. Waiting until 
the user is ready to save changes is too late. 

The Edit Menu 

Edit 

1 Check Spelling 
[seled A Ii . a 

The Edit menu contains commands that alter the selection in the current key window (or in 
the main window if the key window doesn't respond to the command). Each command 
should be dimmed when it can't operate on the current selection. 

118 Chapter 6: Menus 

Command 

Cut 

Copy 

Paste 

Action 

Deletes the current selection and copies it to the pasteboard. 

Copies the current selection to the pasteboard without deleting it. 

Replaces the current selection with the contents of the pasteboard. 

( continued) 



Command 

Paste As 

Link 

Delete 

Undo 

Find 

Spelling ... 

Check Spelling 

Select All 

Action 

Attaches a submenu that permits the user to paste the current 
contents of the pasteboard into the document in a specified data type. 
The submenu lists the possible data types, as discussed in "The Paste 
As Menu," later in this chapter. 

Attaches the Link menu, which contains commands for 
manipulating linked information. See "The Link Menu," later in 
this chapter. 

Deletes the current selection without copying it to the pasteboard 
(thus leaving the contents of the pasteboard intact). The Delete key 
has the same effect. 

Undoes the last editing change. This usually means all changes 
since the user last made a selection, including the selection of an 
insertion point. 

Attaches the Find menu, which contains commands related to the 
Find panel. See "The Find Menu," later in this chapter. 

Brings up the Spelling panel. 

Finds the next misspelled word without bringing up the Spelling 
panel. 

Makes the entire contents of the file the current selection. 

Applications that permit the user to edit text or graphics should support at least the Cut, 
Copy, Paste, and Select All commands. It's strongly recommended that you also implement 
the Undo command. 

Programming Note: The Edit Menu 

To get this menu, you can just drag it in from the Palettes window of Interface Builder. It's 
already hooked up to the Text object, which automatically provides all the menu's 
functionality except for Find, Paste As, Link, and Undo. 

Standard Menus and Commands 119 



The Paste As Menu 

The Paste As menu is rarely needed because applications can take care of pasteboard data 
types without user intervention. However, sometimes it's useful for the user to be able to 
specify the format in which data is pasted. For example, the user of a page layout program 
might want to choose whether text is pasted as ASCII or Rich Text Format (RTF), or 
whether graphics are pasted as EPS or TIFF. 

This menu should include only the types appropriate for its application. As usual, the 
programmer should disable invalid menu commands. For example, when the pasteboard 
contains only text data, any graphics formats should be disabled. 

Checking Spelling 

The Spelling and Check Spelling commands in the Edit menu are intended to provide a 
uniform interface for checking spelling that in many ways parallels the interface for Find. 
(Find is discussed under "The Find Menu," below.) These commands for checking spelling 
are supported by the Application Kit's Text object; custom objects will need custom code 
for checking spelling. 

The Spelling command brings up the Spelling panel, which is described in Chapter 5. The 
Check Spelling command is equivalent to the button on the panel that searches for and 
selects the next misspelled word in the main window. It permits the user to find the next 
misspelled word without bringing up the panel. If the application can't find the next 
misspelled word until the user takes some action within the Spelling panel (for example, 
loads a dictionary), Check Spelling brings up the panel. (This is parallel behavior to Save 
bringing up a panel when the user must first supply a file name, or Find Next bringing up 
the Find panel if the user needs to enter a text string to search for.) 

If an application has spelling options that can't be accommodated in a panel, Spelling and 
Check Spelling should be replaced by a Spelling command that brings up a submenu. That 
menu might then have Spelling Panel and Check Spelling commands. 

120 Chapter 6: Menus 



The Link Menu 

The Link menu provides a standard interface for receiving and supplying linked 
information. Linked information is copied information, such as a graphic image, that can 
be automatically updated when the original information is modified. See the User's Guide 
for more information on working with links. 

Command 

Paste and Link 

Paste Link Button 

Publish Selection 

Show Links 

Link Inspector 

Action 

If the last Copy operation was performed in an application that can 
supply linked information, this command pastes the contents of the 
pasteboard and links it to the original information. 

If the last Copy operation was performed in an application that can 
supply links, this command pastes a button <) that, when clicked, 
opens the document that contains the original information. Link 
buttons are discussed in Chapter 7, "Controls." 

Creates a link file. When the link file is dragged into documents 
that can receive linked information, the end result is as if a Paste 
and Link command had been done. This command places a 
panel on-screen that asks the user to type in a file name or cancel 
the command. 

Highlights or unhighlights all linked information in the current 
document. The name of this command must alternate between Show 
Links and Hide Links, depending on the state of the document. 

Brings up the Link Inspector panel, which is discussed in Chapter 5. 

Standard Menus and Commands 121 



An application that can receive linked information (one that implements one or both of the 
Paste and Link and Paste Link Button commands) should also implement Show Links and 
Link Inspector. 

When the user chooses the Show Links command, the application should highlight all the 
, linked information in the main window, as shown in the following figure. In the window 
shown below, the picture at the lower left is the only visible linked information, so it's the 
only picture that's highlighted with a chain pattern. 

I . - ,.-' --- - ,--' -----. -_.'- --. --.-------- -- - - .--- -"" -- - --.- - "-, --- -- --- ,- .--- .-
1[iJ BP Logos.draw .- -/projects/Logo Studies ~ 

122 Chapter 6: Menus 

m;~ Blue Planet Prududions 

_~BLUE 
Rk~PLANET 

Programming Note: Implementing Links 

The Application Kit supports links with its NXDataLinkManager and NXDataLink classes. 
See the NeXTSTEP General Reference (available through Digital Librarian) for detailed 
information on how to make your application receive and supply links, 



The Find Menu 

Applications that display large amounts of text are encouraged to include a Find menu like 
the one illustrated above. Other applications might also find this menu useful, but because 
it's designed most specifically for text, a variation of it might better meet their needs. 

Command 

Find Panel. .. 

Find Next 

Find Previous 

Enter Selection 

Action 

Brings up the Find panel, makes it the key window, and selects 
everything in the text field labeled Find so that the user can easily 
enter new text. If the panel is already on-screen, the command 
brings it to the front, makes it the key window, and selects the 
Find field. 

Searches forwards for the next occurrence of the string in the panel's 
Find field. 

Searches backwards for the previous occurrence of the string in the 
panel's Find field. 

Enters the current selection into the panel's Find field so that Find 
Next and Find Previous can search for it. 

Jump to Selection Scrolls to display the beginning of the current selection. 

Find Next and Find Previous begin searching at the current selection. If the search is 
successful, the text that's found is selected and becomes the starting point for the 
subsequent search. Neither command requires the Find panel to be on-screen. However, if 
the panel's Find field is empty, Find Next and Find Previous both bring up the Find panel, 
make it the key window, and select its Find field. This is exactly what the Find Panel 
command does. These other commands do it as a convenience to the user, who has 
indicated an intention to do a search. 

The Find panel is further described in Chapter 5. 

Standard Menus and Commands 123 



The Format Menu 

Command 

Font 

Text 

Page Layout. .. 

Action 

Brings up the Font menu, which has commands to alter the font of 
the current selection. (See "The Font Menu," later in this chapter.) 

Attaches the Text menu, which lets the user choose the format of the 
selected blocks of text. (See "The Text Menu," later in this chapter.) 

Brings up the Page Layout panel, which lets users determine how 
documents are to be printed and displayed on the screen. 

The Format menu should hold the principal formatting commands needed by users of the 
application. For applications that deal mainly in numbers, they may be commands that 
format the text display of floating-point numbers or the graphical display of numeric data. 
For text processors, they may include the commands that would otherwise go into the Text 
menu, plus others. 

If an application promotes the Font command to the main menu and has no other commands 
to add to the Format menu, the Format menu would become little more than a container for 
the Text menu. In this circumstance, the commands that would otherwise go in the Text 
menu should be placed directly in the Format menu. A separate Text menu is needed only 
when there's reason to isolate these commands from other formatting commands or to 
shorten what would otherwise be an excessively long "Format menu. 

When commands from the Text menu are placed in the Format menu, they should 
follow the Page Layout command, so that the Copy Ruler and Paste Ruler commands 
end the menu. 

124 Chapter 6: Menus 



The Font Menu 

Applications that support text entry and editing should provide a Font menu and Font panel. 
The Font panel is described in Chapter 5. It contains controls that let users set and preview 
fonts. The Font menu has a command to bring up the panel, and commands to make 
common adjustments to a font. 

Each command alters one aspect of the font, such as its size or style, while leaving other 
aspects intact. The Font menu and Font panel target currently selected text. The 
Preferences panel should be used to alter the default font. 

Command 

Font Panel... 

Bold 

Italic 

Action 

Brings up the Font panel. 

Makes the current selection bold, if it's not bold already, and makes 
it unbold if it is. The name of the command must alternate between 
Bold and Unbold depending on the selection. 

Makes the current selection italic or oblique, if it isn't already, and 
makes it unitalic if it is. The name of the command must alternate 
between Italic and Unitalic depending on the selection. 

( continued) 

Standard Menus and Commands 125 



126 Chapter 6: Menus 

Command 

Underline 

Larger 

Smaller 

Heavier 

Lighter 

Superscript 

Subscript 

Unscript 

Copy Font 

Paste Font 

Action 

Underlines the current selection, if it isn't already underlined, and 
removes the underlining if it is. When the current selection is already 
underlined, the command name must change to Ununderline. 

Makes the current selection one point larger. 

Makes the current selection one point smaller. 

Uses a heavier typeface to display the current selection. 

Uses a lighter typeface to display the current selection. 

Moves the currently selected text up an appropriate amount for a 
superscript. Choosing the command again moves the text that 
much higher. 

Moves the currently selected text down an appropriate amount for 
a subscript. Choosing the command again moves the text that 
much lower. 

Returns the selected superscripted or subscripted text to the normal 
baseline of the text. 

Copies from the current selection all the text attributes listed in this 
menu, including font family, font size, bold, italic, underlining, 
superscript, and subscript. 

Alters the current selection so that it has all the font attributes 
previously copied with the Copy Font command. 

Programming Note: The Font Menu 

By dragging this menu in from Interface Builders Palettes window, you getthis menu and 
its functionality from the Text object with almost no additional work. Still, you should 
make sure that every command works, dims, and changes it name as it should. 



Note: If the current selection is an insertion point, all the commands in the Font menu 
affect the next set of characters inserted, rather than any existing text, unless the text area 
can contain only one font. If an area of text can have only one font, then the Font menu and 
panel change the font of all the text in the area. 

The only required commands in the Font menu are Font Panel, Copy Font, and Paste Font, 
although frequently used commands like Bold and Italic should almost always be present. 
Applications that are not text intensive may decide to omit some of the less frequently used 
commands, such as Heavier and Lighter. 

Each command leaves the other font attributes intact. For example, Bold will change 
11-point Times Roman to 11-point Times Bold and 24-point Courier Oblique to 24-point 
Courier Bold Oblique. 

If there's more than one font in the selection, Larger and Smaller change each to be one 
point larger or smaller than its current size. The other commands make only the change 
that's appropriate for the first character in the selection. For example, if the first character 
in a multifont selection is italic, the Unitalic command will remove the italic trait from all 
the text in the selection, but won't change any text that isn't italic. If the first character isn't 
italic, the same command (but now called Italic) will italicize the entire selection, but won't 
alter any text that's already italic. 

The Colors command, which brings up the Colors panel, often appears in the Font menu. 
However, it can appear elsewhere; each application should place the Colors command in a 
menu that indicates the kind of objects the Colors panel can affect. In Mail and Edit, colors 
can be applied only to characters (and not to their background), so the Colors command is 
in the Font menu. 

Standard Afenus and Commands 127 



The Text Menu 

The Text menu is a collection of formatting commands that affect text. All the Text menu 
commands are supported by the Application Kit's Text object. These commands can be 
isolated into a Text submenu, as shown here, or be included directly in the Format menu. 
If you have other formatting commands that are more important to your application, those 
commands, rather than these, should go in the Format menu. 

Command 

Align Left 

Center 

Align Right 

Justify 

Show Ruler 

Copy Ruler 

Paste Ruler 

Action 

Aligns the text at the left margin, leaving a ragged right margin. 

Centers the text between the left and right margins. 

Aligns the text at the right margin, leaving a ragged left margin. 

Aligns the text at both the left and right margins. 

Displays a ruler in the text area, if the ruler isn't currently visible. 
Otherwise, this command hides the ruler. The name must alternate 
between Show Ruler and Hide Ruler, depending on the state of the 
text area. The ruler is a scale containing controls that affect the 
format of a paragraph (such as margins and tabs). 

Copies the ruler settings in the first paragraph of the selected text. 

Alters the paragraphs containing the text selection to have the 
settings most recently copied with the Copy Ruler command. 

An application that has many other text-related commands, such as a word processor, can 
arrange all its text-formatting commands within the Format menu, as best fits its needs. 
(See also the discussion of the Format menu earlier.) However, for consistency, all 
applications should, as far as possible, retain the command names shown above for the Text 
menu, no matter how the commands are arranged. 

128 Chapter 6: Menus 



The Windows Menu 

The Windows menu contains commands affecting the windows that belong to the 
application. You can replace this menu with one more suitable for your application. For 
example, an application that has multiple windows per document might have its own tools 
to organize the windows. 

Command Action 

Arrange in Front Stacks and offsets all the application's document windows 
(those that can become the main window and are created using 
Open and New commands) at the front of the screen. While this 
command is recommended, it isn't mandatory. 

Miniaturize Window Miniaturizes the key window (if it has a miniaturize button). 
The affected window need not be a document window. 

Close Window Closes the key window (if it has a close button). If the window 
is the last one (or only one) open displaying a document, it also 
closes the document, just as the Close command would. 
(See "The Document Menu," earlier, for a description of the 
Close command.) 

The commands in this menu bring windows to the front of the screen and, in the case of the 
last two commands, remove them. Other kinds of commands, even if they affect windows 
in some way, should be located elsewhere in the menu hierarchy. 

You can replace Arrange in Front with an Arrange command that brings up a panel or menu 
giving the user more choices concerning which windows to arrange and how they should 
be tiled or stacked. 

Programming Note: The Windows Menu 

This menu and all of its functionality are provided for you. All you have to do is drag the 
Windows command into your main menu from the Palettes window of Interface Builder. 

Standard Menus and Commands 129 



The commands inserted below Arrange in Front list document windows. Each command 
brings one window to the front and, if possible, makes it the key window. The Application 
Kit creates this list and dynamically adds a command for each document window when it's 
opened. An example of these dynamically created commands is below. Because the 
Application Kit creates the command names from the title bar of each window, improperly 
titled windows can lead to the Windows menu becoming confusing or too wide. Window 
titles are discussed in "Choosing a Title" in Chapter 4. 

r Arrange in Front 
If::'· Ap·oem..:..· . .:JinProgress 
r ..... .... '.' 
IX A Poem -..., 

.. ... 

IMiniaturize Window m 

w 

The Services Menu 

Services 

! Define in Webster 
,Grab' 1:: 

rHeaier\hewer r~ 

!"Librarian t-

rMaii ~~. 
~..... .... ..' .... .. " ....... " ... . 
; Open in Workspace 
iProJed ., .. t:. 
ITerrrlit1al' '.. . ., .... , .. i; 

This required menu contains commands that invoke services provided by the system or by 
other applications. All the commands in the menu are placed there by the Application Kit 
from information furnished by service providers (so there's no need to specify where 
commands should be added). 

130 Chapter 6: Menus 



Providing Services 

Applications can specify how commands that request their services should be worded. The 
following guidelines apply: 

• Each command should begin with a verb and should name the application that will 
respond to the request. If the name of the application can be interpreted as a verb, it can 
be the first word of a command phrase (for example, Chart Selection for an application 
named Chart). Otherwise, the verb that begins the command should be followed by a 
preposition and the name of the responding application (Open from Workspace, 
Define in Webster). 

• If an application responds to more than one service request, it can arrange the commands 
in a submenu under the application's name. Commands in the submenu don't have to 
name the application, but should, like all other commands, begin with a verb. 

However, if the application name is commonly interpreted as a verb, the submenu 
commands can consist of words that would meaningfully follow the application name in 
a phrase, much as the commands in the Paste As menu. For example: 

Service requests conditionally activate the other application, but only if user input might be 
required. For example, Digital Webster is likely to require the user to scroll the display, but 
the Workspace Manager doesn't need the user's help to get a file opened. The application 
that opens the file will become active, but the Workspace Manager won't. 

Programming Note: The Services Menu 

To take advantage of services provided by other applications, you should first drag the 
Services menu from the Palettes window of Interface Builder. Then, if you use the Text 
object in your application, your application automatically gets many services. Your 
application can get more kinds of services if you write a few lines of code. 

To put its services into other applications, your application advertises its services in a 
section of its executable file or in its file package. (File packages are special folders that 
look and behave like files.) These services are automatically included in the menus of any 
applications that can accept them. 

Standard Menus and Commands 131 



Adding a Tools Menu 

Since it's easiest for users to find a command if it's arranged in a submenu with other 
functionally related commands, commands that bring up panels and special, nondocument 
windows should be located throughout the menu hierarchy as appropriate. For example, 
the Font Panel command is in the Font menu, the Open command is in the Document menu, 
and Page Layout is in the Format menu. 

However, if a window or panel is an independent tool that encapsulates a functional domain 
all its own, it may be difficult to group it with other commands. Examples are the palettes 
in a graphics program, the Inspector in Interface Builder, and the Console in the Workspace 
Manager. If your application has two or more such commands, you should consider 
collecting them together in a Tools menu. An example from the Workspace Manager is 
illustrated below. 

However, the Tools menu should not be considered a default location for commands that 
bring up windows or panels. If a window or panel isn't perceived to be a tool, its command 
should go elsewhere. If a command can be functionally grouped, it should be. 

132 Chapter 6: Menus 



7! Controls 

Controls are graphical objects that users manipulate with the keyboard and mouse to give 
instructions to an application. They're patterned after familiar control devices from 
everyday life-switches, knobs, forms, gauges, and the like-and perform analogous 
functions. Like the dials and levers on a machine, graphical control objects let the user 
"operate" an application. 

Every control responds visually to direct manipulation by the user-a dial turns, a button 
pushes in or highlights, the knob of a slider slides. Controls go beyond this direct response, 
however, to cause the application to do something. They, in effect, translate the user's direct 
manipulation into an instruction for the application. A button sets a state or initiates a 
program action, a slider sets a value, and so on. 

Which keyboard and mouse actions a control responds to and how it reacts visually are part 
of the definition of the control; they're discussed in this chapter. What the control causes 
an application to do is part of the definition of the application; it depends solely on how the 
application uses the control. In this respect, graphical controls are no different from control 
devices in the real world. For example, identical mass-produced switches can be installed 
on a variety of different machines. The manufacturer of the switch provides it with a user 
interface; the installer gives it specific meaning for a specific machine. 

COlltrols 133 



The NeXTSTEP user interface has several standard controls: 

• Buttons 
• Menu commands 
• Text fields 
• Sliders 
• Color wells 
• Scrollers 
• Browsers and selection lists 

Because they're widely used, each of these controls is described in some detail in its own 
section. Menu commands were described in Chapter 6, "Menus." The other controls are 
described in the sections below. 

You can also design your own controls-the Application Kit makes this relatively 
easy-but they should adhere to these basic design principles: 

• Every control must provide immediate feedback to let the user know that an action has 
"taken." Just as users can look at a dial on a stove to see whether it has been turned, a 
graphical control must alter its appearance in response to user actions. It shouldn't 
depend on a reaction elsewhere in the application to give the user feedback. 

• Every control should have a distinctive appearance and behavior. Don't design controls 
that look so similar to the canonical controls that users will confuse one with the other. 

• The behavior of a control should be apparent from its appearance. After a bit of 
familiarity with NeXTSTEP, users should be able to easily recognize a control object 
and know almost instinctively how to operate it. 

134 Chapter 7: Controls 



Buttons 

Buttons are the primary controls for setting a state or initiating an application action. 
They're used for the controls in title bars (the miniaturize and close buttons), for Cancel and 
the other choices that dismiss attention panels, and in most other situations where a basic 
control device is called for. 

Buttons can assume a variety of different shapes and sizes, some of them standard. The 
figure below shows the standard types of buttons. 

r~-~-···An·i·m~ii;;-n--·-'-~l 

i. ONcn" I 
i.' QSlow . 
i' (,Mediumj 

t :. ~'F::::::: ... ~S=t ===== j 
standard radio buttons 

~~~=~J 
a button controlling

a pop-up list .

f-----~--····· .. ····--··-...... -·- · .. _-_· .. ··· .. ··1
! r ~~kgt'Ound.~ - I
liLiiljoloj oj Ii
\ <"" • "~
1....-.-_.-. .. _____ ... _ _"'

graphical radio buttons

I
~··,· __ ·w_" ... · .. : .. ~ .. --.. --·I
·;~'A~t{~~··~··': '~I.

a button controlling
a pull-down list

miscellaneous action buttons

How Buttons Work

<)

a link button

a switch

The Application Kit provides two basic kinds of buttons: one-state (or action) buttons and
two-state buttons. Action buttons perform a single task, such as scrolling a document
forward or starting a search. A two-state button sets a single characteristic on or off, such
as whether to restrict a search to whole words. Standard two-state buttons include switches
and radio buttons. Some buttons also bring up lists, as described in the following section.

Buttons 135

All buttons respond to a click. Some also respond to being pressed. A button that responds
to being pressed sends an instruction to the application as soon as the user pushes the mouse
button down. Typically, it repeats the instruction at regular intervals-as long as the mouse
button is held down and the cursor is kept over the button on-screen-for a continuous,
iterative action. Users can drag away from the button and back again to stop and restart the
action. A button that responds only to being clicked sends its instruction to the application
when the user releases the mouse button, provided the cursor is over the button on-screen.

Whether it responds to being clicked or to being pressed, a button changes its appearance
as soon as the mouse button goes down. It retains its altered appearance while it's under
the cursor and the mouse button remains down. When the user releases the mouse button,
the button on-screen keeps its altered appearance long enough for its instruction to be
carried out. Usually this is momentary (though it need not be), so users generally notice
the button changing as soon as the click is over.

Buttons that Bring Up Lists

The Application Kit has support for two kinds of button-list combinations: pop-up lists and
pull-down lists. A pop-up or pull-down list is a window that comes to the screen when the
user presses a button. The user can drag through the list to choose an option or action. The
list stays on-screen only as long as the user keeps the mouse button down. Although pop-up
lists and pull-down lists look similar, they have very different roles in the user interface.

Pop-Up Lists

Pop-up lists are used in lieu of a series of radio buttons. They save screen space and prevent
overcrowding in panels. Each list is controlled by a button that can be recognized by a
special symbollQ, as shown below. The label on the button that precedes the symbol
indicates the .current selection from the list. When the user makes a new selection, the
button label changes.

Inlnc~e~
L ;iCentimeiers d

Pofriis
Picas

Pressing the button pops the list up so that the item matching the button label appears on
top of the button. The list remains up only while the user holds the mouse button down.
When the user releases the mouse button after dragging to a different item in the list, the
label on the button changes to that item.

136 Chapter 7: Controls

Pull-Down Lists

Pull-down lists are similar to pop-up lists, but they're used to perform actions, rather than
to set a state. In this respect, pull-down lists are somewhat like menus.

Visually, pull-down lists differ from pop-up lists in that the controlling button's label never
changes, and it's marked by a different symbol v.

Action ... v rActi~I~;-----~

Send Back I Send Back

Discard I Discard ...

, Keep k I Keep' k

Implementing Buttons

When implementing any kind of button, you must make the following decisions:

• The end result of clicking the button
• The image or label (or both) on the button
• How the button's appearance changes during a click

Of course, before using a button, you should be sure that it's the best control for the job.
"Choosing the Appropriate Control," at the end of this chapter, discusses which controls
can be used for which types of functionality.

Choosing the Button's Result

A one-state (action) button shouldn't change the action it performs. Although it's
sometimes tempting to alter the action with the application's state-to switch between
Erase and Restore, for example-it's best to provide a different button for each action and
disable those that aren't operable. This lets the user safely click in the accustomed place
without having to consider which state the application is in. However, it's acceptable for
buttons that perform time-consuming actions to have a stop state, as described in
"Implementing Stop Buttons," later in this chapter.

One-state buttons are generally labeled with a verb or verb phrase (such as Find), but
occasionally they have only a graphic image (such as the arrowhead in a scroll bar button).
Labeling conventions are discussed in "Choosing the Button's Image or Label," below.

Buttons 137

Two-state buttons should never perfonn actions, although the characteristic they affect
might result in some visible change. For example, an inspector for a graph might have a set
of radio buttons that control the graph's type (line, bar, and so on). Clicking one of the
buttons resets the graph's type, which in tum results in the graph being redrawn. However,
it wouldn't be acceptable for the radio button to, for example, create a second graph of the
new type.

Ideally, as soon as the user clicks a two-state button, the visible consequences (if any)
should be shown immediately. However, that's not always practical, as when changing the
characteristic takes a long time or isn't easy to reverse. For example, if changing the type
of a graph takes a long time, then the application might wait for the user to click a Redraw
Graph button before redrawing the graph.

However, whether or not a two-state button's associated characteristic changes
immediately, the button's appearance always changes immediately, as described in
"Changing the Button's Appearance during a Click," later in this chapter.

Buttons with more than two states aren't recommended: It's very difficult to convey their
result to the user.

Choosing the Button's Image or Label

A button's label should say, in a succinct shorthand, what action it causes the application to
take. Even when a button purports to label a state (such as AM or PM), users are apt to
think of it not as the current state, but as the state that will be set if the button is clicked. In
other words, they're liable to interpret it as an action. An On button, for example, is more
likely to be interpreted to mean "Press this to tum something on" than "This is now on."

It's best, therefore, to use images and highlighting to show the current state, and reserve the
button's label as a brief statement of what the button does. Buttons that do label a state,
such as a button that switches between AM and PM, should be used only where what they
label is clearly visible. For example, AMIPM buttons can be used alongside a digital
representation of the time, but they can't stand alone. These and other two-state buttons are
shown in the figure in the following section.

Note: Make sure that the button clearly looks like either an action button or a two-state
button. It's confusing to the user to see a two-state button that doesn't clearly have two
states, or an action button that doesn't look like it perfonns an action.

You should always dim the label of a button (using gray text) whenever pushing the button
will have no effect. A dimmed button is completely disabled-pushing it shouldn't cause
it to highlight, push in, or change in any other way.

138 Chapter 7: Controls

Button labels should be capitalized like menu commands: The first and last words begin
with uppercase letters and the words between are capitalized as they would be in a title.
Like menu commands, buttons that always bring up a panel (unless it's a warning panel)
should have three dots (...) at the end of the label.

When an action button can be chosen using the Return key, the button should contain the
Return symbol to the right of its label, as shown below at the left. However, when pressing
Return won't choose the button-for example, when the button's window isn't the key
window-the Return symbol should disappear from the button (as shown at the right,
below). Removing the Return symbol helps avoid user confusion over whether pressing
Return will work.

1--- ---- -------------

I~ Nonexistent path Nonexistent path

The path /me/Mise does not exist, create it? The path /me/Mise does not exist, create it?

,; 'Cancel I: Cr~ate ~ I Cancel 1:[· Create " I

Programming Note: Making the Return Symbol Disappear

All Application Kit panels automatically remove the Return symbol when the panel isn't
the key window. Attention panels created with NXRunAlertPanel() and its related
functions also remove the Return symbol automatically.

For other panels, you need to explicitly remove and add the Return symbol for the
appropriate button. You can do so in your implementation of the windowDidResignKey:
and windowDid8ecomeKey: delegate methods of the Window class.

Buttons 139

Changing the Button's Appearance during a Click

A button's appearance during a click (or while it's pressed) should change in one of the
following ways:

• It can highlight.
• It can both highlight and appear to be pushed in.
• It can change the image it displays.

Note: Highlighting can be done either automatically by the Application Kit or by changing
the image to a custom, "highlighted" image.

Buttons normally both push in and highlight. However, for aesthetic reasons, buttons that
are right next to each other (such as scroll buttons and graphical radio buttons) shouldn't
push in. This is because buttons that have no space around their bezeled edges look less
three-dimensional than normal.

Note: Although it's possible to have a button only push in (without highlighting), this isn't
recommended because it's hard to see.

The recommended changes for action (one-state) buttons are illustrated in the following
figure. The scroll button in the bottom row doesn't push in, since it's very small and is right
up against another scroll button.

before
clicking

during
click

after
clicking

The possibilities for two-state buttons are illustrated in the following figure.

before
clicking

140 Chapter 7: Controls

during
first click

after during after
first click second click second click

'.2JBOld fEjBOld ;OBOld

;r"""-'I<+, '''0', '~'~O

:~ . PM

Note: In the figure showing two-state buttons, the button in the bottom row is a graphical
radio button. It doesn't push in because it's right next to the other radio buttons in its group
(although they aren't shown in this figure).

The figure of two-state buttons also illustrates some of the principles that determine how a
button looks during a click:

• A button must change its appearance during a click, as soon as the mouse button
goes down.

• The appearance of a button during a click should reflect what's about to happen. Buttons
that display a state should reflect the new state both during and after the click.

Implementing Pop-Up and Pull-Down Lists

You must provide a title for each pop-up list. Usually this is done by putting a titled box
around the pop-up list's button. The figure below shows a typical example, using a box with
the title Units.

r ... ·!", .. ·.·:.·-...• ·.:·.·~' .. •.· •.. -~.u.· '~.· .. it .. S -.. ··~ •. ·.~.'.··· .. ·.··.··~l.~ .. , .• j ..
~:C~nti~::.~!~

Picas

Because the label on a pull-down list's button doesn't change, pull-down lists don't need a
titled box around them.

When using a pop-up or pull-down list, be careful that the open list doesn't blend in with
the objects near it. If an item in the list pops up next to a label, for example, users might
interpret them in combination. Take care, too, that the open list doesn't obscure any objects
that help users understand its content.

Programming Note: Lists that Bring Up Attention Panels

When an item in a pop-up or pull-down list opens an attention panel, the list by default
stays up until the panel is dismissed. Because lists are in a higher window tier than
attention panels, they can obscure attention panels. To avoid this, you should dismiss the
list before bringing up the attention panel. One way of doing this is to have the list item
call the perform:with:afterDelay:canceIPrevious: method to schedule the execution of a
method 1 millisecond in the future. This method should then bring up the attention panel.

Buttons 141

Implementing Link Buttons

Link buttons are different from most buttons because they're usually created by the user,
instead of built into the application. Because link buttons often appear in custom content
areas-areas that can be unique to each application that implements link buttons-link
buttons require a little more support from the application than do other kinds of buttons.
When implementing link buttons, you should be careful that they act in the following way:

• Clicking a link button highlights it briefly and brings up the document containing
the information that the link refers to. An unmodified click should never select the
link button.

• Shift-clicking a link button selects it.

• If the user presses the mouse button while the cursor is over the link button and then
drags away without releasing the mouse button, the button should lose its highlight.
However, if the user then drags back over the link button while still keeping the mouse
button down, the link button should become highlighted again.

Implementing Stop Buttons

If an action might take a while, then the user should be able to cancel it by holding the
Command key while pressing the period (.) key (as described in Chapter 3, "User Actions:
The Keyboard and Mouse"). In addition, sometimes it's convenient for buttons that
perform a time-consuming action to have a stop state, to make it more obvious to users that
they can interrupt the action.

If you implement a button with a stop state, the button's appearance should change as
shown below.

before
clicking

during
first click

after
first click

during
second click

(if any)

after action
is finished

or canceled

The button's action should be started when the user completes the first click (by releasing
the mouse button). Similarly, the button's action should be stopped when the user finishes
clicking the stop button.

142 Chapter 7: Controls

Text Fields

A text field is a slot where the user can type in a single line of data-such as a file name, a
part number, or an address. The text is editable and selectable. The data is entered only
when the user types Return or clicks a button that's associated with the field. If the user
enters more text than will fit in the field, the entry automatically scrolls so that the insertion
point stays visible.

A text field should have a white background and be surrounded by a bezeled border that
makes it appear inset from the surface of the screen. When the text field is temporarily
disabled, the text becomes gray (just like the label of a button), but the background color
doesn't change.

If a text field is not usually edited or selected but can be-as is, for example, the name
associated with a file icon in the Workspace Manager File Viewer-the text should have a
gray background with no bezeled border. When the user selects the text, the text field's
background should turn white, and the selected text's background should be light gray.

Text fields can be titled and arranged in groups to produce an on-screen form, such as the
one illustrated below.

,- :~:e:-1L-. ,-":;-,.,-,, '-~7-:::-'-CC:-:-::---:C:--;----,-, -.. =-~ll
L __ ", -'-;:-_, _, , __ '", " " " ,",

City: I _ J,J
State: L~~-~~~-==---=~!I

Zip Code: I. . _ _ ____ J j
L.:.<o~~ .. ,,.,~"-_ ,...~"'" ~":....:~,.o, .. ~:~'~,:,::<:..~:::.:,:.::;:~;;;~~~;.,:.,~:.:.,";:,:,:~:;;,:.:...::.,:::.~~~~,"",<w-,,_~,~,,--",~:;':'.,;-':" J

When there's more than one text field in a window, the Tab key can move the selection-the
point where typing will appear-from one field to another:

Tab

Shift-Tab

Moves from one text field to the next one in the series. For example, in
the form illustrated above, Tab would cause the current selection to jump
from the Name field to the Street field to the City field, and so on.

Moves from one text field to the previous one in the series.

When the user presses the Return key after typing in a text field, the field usually makes
something happen. Data might be entered and processed, a search might begin for text that
matches the string in the field, or a document might be saved to a file name the user typed.
Exactly what happens is up to the application.

Text Fields 143

To let users know what to expect, it's recommended that you include a button in the display to
act as the equivalent of Return. The button's label is an explicit reminder of what Return will
do. From the user's point of view, Return is simply a shortcut for the action of the button.

The Print panel below has an example of using a button for the Return key's action. The
user can start printing the document either by pressing the Print button or by pressing
Return while editing any of the three text fields. If the user presses Return, the Print button
pushes in and highlights as if it were pressed.

Name: pubsnp
Note: Publications
Progress:

::g';1 PGraffs_Printer NeXT 400 dpi Level II Printer

~ PostMan NeXT 400 dpi Laser Printer

. 11 pubsnp NeXT 400 dpi Laser Printer

!I~~~~XSP:i~t:r' N:XT 400 dpi Levell! Printe~

r~~'r '1"'" ""'.'. ..Pages' .. ' " "':"""'1
I~: ()AI! C' FromO; TOC:]:·
. ·1'~.ss~tte~W';~11140~~::,O'~liO~'tTJ

:{··sa~~···I·iprevlevrIJ;·:F~ ... ·······1 t c~~~~il i(P~i~t'~1

For the user's convenience, if the action associated with Return is repeatable, Return may
select all the text in the same field so the user can easily replace it.

When a text field is part of a form, Return might not perform any particular action of its
own. Instead, it will do just what Tab does-move the selection to the next field. Action
on a button or other control is required to enter data typed into the form.

Generally, text fields accept unrestricted data, but sometimes an entry won't be acceptable
if it's the wrong data type-if, for example, the user types in a floating-point number when
an integer is called for. Typical examples of restricted data include the following:

• Unsigned or signed integers
• Unsigned or signed floating-point numbers
• Dates

144 Chapter 7: Controls

Sliders

If the user's entry isn't acceptable, all of the text in the field should be selected and
highlighted. The user can make any necessary corrections and try again.

A slider is a device that sets a value. As illustrated below, it consists of a vertical or
horizontal bar and a knob that moves on the bar.

bar

knob

The position of the knob in the slider indicates its current value. Users can move the knob,
and thus alter the value, by positioning the cursor anywhere over the bar (even the part of
the bar that's covered by the knob) and pressing the mouse button. The knob immediately
jumps to the location of the cursor. The user can release the mouse button to fix the knob
in its new location, or begin dragging the knob along the bar.

A slider can set values on a continuous scale (between some maximum and minimum) or
values at discrete intervals. If the latter, the knob jumps to the position of the nearest
permitted value when the user releases the mouse button. When the user presses the
Alternate key and drags the slider's knob, the slider should set values at precise, discrete
increments that are smaller than the usual increment for unmodified dragging.

The user should always be able to detect a direct effect of manipulating the slider's
knob-this is usually done in a text field or label next to the slider (as shown in the
following figure).

Programming Note: Implementing Alternate-Dragging for Sliders

Your application should specify the increment amount to be used for Alternate-dragging.
Otherwise, Alternate-dragging has the same effect as unmodified dragging.

Sliders 145

Color Wells

Color wells are controls that let the user choose a color. They're powerful but inherently
indirect, so you should use them only when necessary. Color wells let the user choose many
colors from the Colors panel simultaneously, one for each possible aspect of an object's
color. For example, in the figure above, an object can have two colors-its fill color and
the color of its outline.

Note: The Colors panel is an Application Kit panel discussed in Chapter 5, "Panels." The
Colors panel is brought up by the Colors command; it also appears whenever the user
selects a color well's border.

One alternative to using a color well, when the group of acceptable colors is small, is to use
graphical radio buttons (as pictured in the "Buttons" section earlier in this chapter).
Another alternative, when a wide range of colors is needed, is to use the Colors panel alone.
The user can change an object's color by selecting it and then choosing the new color in the
Colors panel. You can also use a new, customized control if it's more appropriate in
appearance and functionality than a color well.

To choose a color for a color well, the user drags a color either from the Colors panel or
from another color well. Another way to set the color is to select the border of the color
well. The well's color then changes every time a new color is chosen in the Colors panel.
Because the user might not realize a border is selected, this scheme can be confusing. You
should be careful to deselect the border whenever the user isn't likely to want to change the
color. For example, you should make sure'that color wells are deselected when their
window is miniaturized.

When an object is selected, each visible color well should change its color to reflect the
object's associated color. For example, if a white box with a red border is selected, then the
Fill well shown in the previous figure should contain white, and the Line well should
contain red. Once the user changes the color in a well, that change should be reflected in
the selected object. For example, dragging a swatch of green from the Colors panel into the
Line well should immediately make the outline of the selected box green.

Whether or not a color well's border is selected should have no effect on whether the well
affects the object that's currently selected.

146 Chapter 7: Controls

Scrollers

Scrollers are used to control what's displayed within a window or panel, or within a
rectangular subsection of a window or panel. When the material to be displayed is larger
than the opening available to display it, the user must scroll unseen portions into the
opening in order to view them. The figure below shows, diagrammatically, a scrollable
document, the area available to view it, and the scrollers that can move the opening around
on the surface of the document.

Ca

Chapter 1:
Setting Up the Computer

• Tl.·: (J"i!J': j vihic.h ccnuirt..;;: I:!L.>: (IX tN'I) di::;k .J.:rrH:; and. t!:'Le P.t(":':;:;(!1b,)l:tJ, 1!~4t.;CN":~
cc'r."'IpUtit'.:: "bt::tlu"

• Tht MezaPixdDispby, which dispbys IlxU ,:\gDphi.;, ."" it;hi~h,,,,,oL";')rc
bbcK·Hld·whill Hletn

• A ko/boaM, tin erclllircz inromution and con ,r.,11;,., .h, ';0"'lI"~1""~ ptq,;ol
fu~ctions, such as lluninz til! compUlll on a off

Settinz up til! NeXT Corrquln is easy-so easy ilL" ;t""",;11 1:.h:'7''''

10 do it AUyou luve 10 do, attn unpacki"Z 1he C r::put'"
3tbch a ftw cables and pluZ it in,

This ch;plll shows you whoe 10 put til! CompLIl ,no. h)w,;:. k'c,j,
"StutinZ and Endircz a WOlkSession,"shows yo r.OWt:l

wi1h it

1h.€ H £ ::T C')~T'F!J!£ t i;:; ~1{'xr;.'FI!'.:t \!i1'..h ;'j ! i('I~lrlJ~,l e'u~cN
.)z i'.~ g:t:.:ILJ.n.,J" Dc· not tr} .. ti) d.~D.:at 'f!-.f. ,)f

Scrollers 147

How Scrollers Work

As illustrated below, a scroller has just three parts, a bar, a knob, and an optional set of
scroll buttons. This figure shows a vertical scroller, which scrolls information up and down.
A horizontal scroller scrolls from side to side.

If the material to be displayed is provided with scrollers, but happens, perhaps temporarily,
to fit within the opening, then the knob and scroll buttons disappear, so the scroller looks
like a plain gray strip. The strip indicates that the material will be scrollable, should it grow
larger than the opening.

The Knob and Bar

The bar of a scroller represents the entire scrollable area. The knob represents the part of
the area that's visible. The placement of the knob in the bar shows which part is currently
visible in the opening. On a vertical scroIler, the height of the knob relative to the height
of the bar indicates how much of the material, from top to bottom, is visible. On a
horizontal scroIler, the width of the knob indicates how much of the material is visible from
side to side. The knob shrinks as the user adds to the material, and grows as material is
deleted. However, the knob never shrinks to be smaller than a square.

Users scroll the display by moving the knob in the bar. The knob can be moved in
four ways:

• By dragging it to a new location. The display is adjusted as the knob moves.

• By clicking in the bar (outside the knob). The knob jumps to the location of the click,
and the display is adjusted accordingly. If the user doesn't immediately release the
mouse button after pressing it, the knob can be dragged to a new location .. This permits
users, in a single mouse action, to select the general part of a document they want to view
(by clicking in the bar) and then to adjust the display (by dragging the knob).

148 Chapter 7: Controls

• By clicking or pressing the scroll buttons. The arrows on the scroll buttons point in the
direction the knob will move.

• By extending a selection outside the opening where it's displayed. This automatically
scrolls unseen portions of the selection into view.

The Scroll Buttons

The scroll buttons permit more precise scrolling than direct manipulation of the knob.
When clicked, a vertical scroll button scrolls a single line of text. When pressed, it
repeatedly scrolls one line after another. Horizontal scroll buttons work in a similar way,
scrolling a small fixed amount in a horizontal direction.

The two scroll buttons on the same scroller form a related pair. When the user drags from
one to the other without releasing the mouse button, each button acts as if it had been
pressed. It's not possible to slide from the scroll buttons on one scroller to those on the
other scroller, however.

When the Alternate key is held down, the scroll buttons scroll one viewful at a time.
Generally, when scrolling down a document, the bottom line (or two) is redisplayed at the
top of the opening each time the display changes. When scrolling toward the beginning of
a document, the top line (or two) is redisplayed at the bottom. This provides users with a
bit of overlapping context and reassures them that nothing was skipped over when the
display changed.

Sometimes scroll buttons appear alone, without the rest of the scroller. Since the knob and
bar aren't present to indicate when it's impossible to scroll further in one direction or the
other, the arrow on a scroll button must be dimmed when the button won't work.

Programming Note: Scrolling

Using Interface Builder, it's easy to put scrollers around an area. The Application Kit
handles all scrolling behavior, including Alternate-clicking to scroll a large amount and
Alternate-dragging to scroll a tiny amount. All you might want to do is adjust the amount
that a click scrolls (even for graphics, it should be a distance comparable to a single line
of text) and optimize drawing performance so that scrolling is as fast as possible.

Scrollers 149

Automatic Scrolling

When the user begins a selection in the visible part of a document then drags outside the
opening, the document will scroll continuously to bring more of the selection into view,
until the user releases the mouse button. The farther the user drags outside the opening, the
greater each repeated change in the display. It's as if the application tries repeatedly to
bring the point under the cursor into view.

As the document scrolls, the scroller knob is adjusted to reflect the current position of
the display.

Fine-Tuning Mode

If a document is large, small movements of the knob may correspond to sweeping changes
in the display. This makes it difficult for users to adjust the display with precision when
dragging the knob.

To make fine adjustments possible even for large documents, scrollers have a fine-tuning
mode. When the user holds down the Alternate key and drags the knob, the knob and
display move only slightly in response to large movements of the mouse. In this mode, the
knob moves in the direction it's dragged, but doesn't stay with the cursor. It continues to
reflect the position of the document being displayed.

Once the Alternate key is released, any subsequent dragging action will cause the knob to
jump to the position of the cursor.

Implementing Scrollers

If the material to be displayed is taller than the opening available to view it, it should have
a vertical scroller. If it's wider than the opening, it should have a horizontal scroller.

Writing Note: The User's View of Scrolling

By moving the knob in the bar, users metaphorically move an opening around on the
surface of a document so that they can see the portions they desire. Visually, of course,
it's the document that appears to move, not the opening. This means that the knob and
the display move in opposite directions. To avoid confusion, the user interface and the
application's documentation should concentrate on the metaphor of adjusting the portion
of the document that's visible, rather than adjusting the document to make it visible.

150 Chapter 7: Controls

The scroll buttons for both vertical and horizontal scrollers should occupy the lower left
comer, where the two scrollers meet. Keeping all the scroll buttons in the same region
makes it easy for users to move from one set to the other.

Controls that determine how a scrollable document is viewed can be placed within the area
normally occupied by the scrollers (beneath and to the left of the document). Other sorts
of controls should not be placed within this area.

The Apps Folder

This folder, Apps, appears in your homefolder to mark the location where
personal applications should be placed.

When the Workspace Manager starts up, it surveys thefile system, searching for
appli cati ons. It looks in the following pI aces, in the following order.

1. The application dock
2. TheApps folder in your home folder
3. The/LocalApps folder
4. ThelNextApps folder
S. ThelNextDeveloper/Apps folder
6. ThelNextAdmin folder
7. ThelNextDeveloperlDenns folder

"t. &:

Among the controls that can be placed in the scroller area are these:

• An editable text field to display the current page number can be located to the far right
of the horizontal scroller (as shown above).

• A pop-up list that lets the user scale the display can be located in the area of the
horizontal scroller (as shown above).

• A pop-up list used to control the viewing mode for the display (for example, preview
versus drawing mode in a graphics application) can be similarly situated to the zoom
pop-up list in the area of the vertical scroller.

• Page scroll buttons that scroll from page to page or by viewfuls can be grouped next to
the line scroll buttons in the lower left comer where the vertical and horizontal scrollers
meet. Since there is no Application Kit support for page scroll buttons, but there might
be in the future, a precise arrangement is not currently specified. (Typical page scroll
buttons are shown above.)

Scrollers 151

Browsers and Selection Lists

.
selection list

.
browser

Browsers and selection lists are similar-they both let the user select one or more names in
a list. A browser shows text data that's organized in a hierarchy, such as:

• Files and folders
• Cities, counties, and states
• The managerial structure of a company

Selection lists look something like a single-level browser. They usually have scrollers, but
they don't have to.

See "Selection" in Chapter 3 for information on how users should select items in a browser
or scrolling list. In addition to selecting by clicking, a browser or selection list may have
an associated text field, which lets the user select by typing. The Save panel, for example,
has a text field that helps the user select files in the panel's browser.

If double-clicking an item within a selection list or browser does anything, it should
perform the same action as pressing the Return key (that is, the same action as the button
marked with the Return symbol).

152 Chapter 7: Controls

Choosing the Appropriate Conto-oD

For some situations, it's clear what control is appropriate:

• Scrollers are used only when material is displayed in an area that might be too small.

• Sliders are used when there's a need to graphically set a value that's in a bounded range
(of colors, numbers, or sound levels, for example).

• Text fields are used whenever it's impossible or impractical to provide a list of all
possible values.

• Color wells are used only with the Colors panel, and only where complex color
characteristics are needed.

• Browsers are used only for data that's organized in a hierarchy.

Buttons and selection lists are flexible, though. They can be used in many ways. The
following sections describe how to decide which type of button to use, and when to use a
selection list.

ControDs that Start Actions

Actions should usually be started by either a menu command or a button. If necessary, you
can even duplicate a menu command in a button. Even though text fields can start actions
as the result of pressing Return, they should always have a button nearby that appears to be
clicked when Return is pressed.

Sometimes an action is relatively unimportant, and having a button for it takes up too much
screen space. If the action isn't appropriate for a menu command for some reason, then
another choice is to make it an item in a pull-down list.

The following figure shows how the same action (printing) might appear as a menu
command, button, and pull-down list item. (It normally appears as a menu command.)

Windows r-·

Print... p

Services reo

Options ~ v
" . '--:--
Print...

• Mail...

Choosing the Appropriate COlltrol 153

Controls that Show State

Pop-up lists, selection lists, and two-state buttons are used to show state. (Menu commands
should never be used to show state.) Sometimes a single control shows the state of a single
option. Often, though, options are grouped. Such a group should have either a
one-of-many relationship, where exactly one option is always selected, or an unrestricted
relationship, where any number of options (or none at all) might be selected.

Note: A third relationship is currently possible only in selection lists: a relationship in
which either no choice or one choice can be selected.

Controls that show state should be used strictly to show and set state, not to initiate actions.
For example, although double-clicking an item in a selection list might cause an action to
happen, the double-click is really a shortcut for selecting the item and then clicking a
button. If setting state has visible consequences, such as causing the format of a document
to change, then the consequences should merely be immediate feedback that the state has
changed, and not a full action such as creating another document with the new format.

Displaying a Single Option

Often options are grouped together. Sometimes, however, a single option stands alone. In
this case, a switch is the preferred control. Another possibility is a graphical two-state
button, as long as it's very clear that the button has two states.

Use Voice Alerts

Displaying a Group with an Unrestricted Relationship

To show a group of choices with an unrestricted relationship, as opposed to a one-of-many
relationship, you should use one of the following:

• A group of switches
• A group of graphical two-state buttons that don't look like graphical radio buttons
• A selection list

switches

154 Chapter 7: Controls

two state buttons
with space between them

a selection list

Switches and graphical two-state buttons are preferred, since selection lists are less
attractive and don't give clues as to how many selections can be made at once. (If you use
two-state buttons, be careful that they don't look like graphical radio buttons.) When space
is tight or the list of choices can grow or shrink, a selection list might be more appropriate.

Displaying a Group with a One-of-Many Relationship

Several kinds of controls can be used to show a one-of-many relationship-that is, to let the
user choose one and only one setting out of a list of possible choices:

• A group of radio buttons (standard or graphical)
• A pop-up list
• A selection list

The figure below shows these controls as if they were being used to set the background
color of a text field. Because this use is inherently graphical and there are only a few valid
choices, graphical radio buttons are the best choice, followed by standard radio buttons. A
pop-up list is marginally acceptable for this use, and a selection list is the least appropriate
choice.

r,-['C B~kQ~~~!~,~;~,l r!:"-c'~,B,~,ac,,,7 .qJ;;;, ~~d-~,',',l, r["'-"~~~~,-'~j~~~~d, ~J-l
'I' ; ril F~r[jl 0 1'1 r; :jBlack :1 Ijjwhlte'''''' ~ ,

, " I .CDarkGray ~ i..... ,,', , .. ".,'
"",' •..•• " .• '." ""', ,"" j I . ,,--'--~-'----'

L;....... - ~ "', C; Li ht G ra '
graphical radio buttons I '" ".' , g., '. ,Y, " a but~on : ,0 White ,,' controlling a

L~_ .. __ ... _._,. ___ , pop-up list
standard radio buttons

r··~-·--·'-'-·'" _." - .• " .. -,
! Bac round 1
! ;J Dark Gray III
I ~.~ Light Gray i,
I i!l White--'-J
L,.:.::.: •. _:.:.:::..~::.::::...:;n
a selection list

In general, you should use radio buttons (standard or graphical) for one-of-many
relationships unless there's a reason to use another type of control. If radio buttons aren't
appropriate, then usually a pop-up list is appropriate. A selection list is the last choice,
since it isn't as obvious to the user that exactly one item must be selected at all times.

The following considerations might help you decide which control to use:

• If the control will be used frequently, consider using radio buttons (standard or
graphical), since they're easier to operate and more accessible to the user.

• If text doesn't adequately describe the choices, consider using a group of graphical radio
buttons.

• If space is limited or the window or panel looks too complex, consider using a
pop-up list.

Choosing the Appropriate Control 155

• If the list of choices can grow or shrink, consider using a pop-up list or a selection list.

• If the list of choices can grow larger than the screen, use a selection list with a scroller.

• If the user needs to see more than one of the choices on-screen to understand them, avoid
using a pop-up list.

• If the control will usually appear at the edge of the screen, you might want to avoid a
pop-up list. The reason: A pop-up list usually pops up so that the current selection is
under the cursor. But if the list is long and near the edge of the screen, it shifts so that
the entire list can appear on-screen, which may change the selection under the cursor.
Users might therefore unwittingly make a new selection while intending only to see
what's in the list. When considering a pop-up list, think about whether it's important to
avoid this behavior.

• If many ordinary, text-based buttons are in the panel, a pop-up list might fit in better
graphically.

156 Chapter 7: Controls

The I nterface to the File System

One of the goals of the NeXTSTEP user interface is to provide a simple, graphical interface
to the UNIX operating system. This is largely the responsibility of the Workspace
Manager, the application that's brought to the screen after the user logs in. More
specifically, the Workspace Manager provides a graphical interface to the file system. It's
a substitute for a UNIX command interpreter (or shell) that locates files, displays folder
contents, associates files with applications and icons, starts up applications, and keeps track
of the user's home folder and working environment. It lets users manage files by
manipulating their iconic representations.

For command-line interaction with the operating system, users can put up a window that
emulates a VT-I 00 terminal and runs a standard shell. This window is provided by the
Terminal application, which can be started up from the Workspace Manager.

Terminal is documented in the NeXTSTEP Development Tools and Techniques manual.
The Workspace Manager is documented in the User's Guide.

The Interface to the File System 157

How the File System Is Organized

The NeXTSTEP file system is arranged very much like a traditional UNIX file system.
However, by default, when users view the file system in the Workspace Manager, they
won't see many of the traditional UNIX folders. Instead, they'll see only a small number
of folders that organize the tools and information they most need. Under the root (f) folder,
they'll find the following folders:

LocalAdmin
LocalApps
LocalDeveloper
LocalLibrary
me
Net
NextAdmin
NextApps
NextDeveloper
N extLibrary
user

Home Folders

In the list above, the folder labeled user stands for the user's home folder. The hom~ folders
of other users may also be visible. As is traditional, home folders bear the name of the
user-the name that the user logs in under. By default, the user's name is me, and the home
folder is fme.

If a machine is connected to a file server over a network, users' home folders are likely to
be located somewhere on the file server. The figure above simply illustrates the default
location for a home folder and where it would be located if it were on the startup disk.
Home folders on remote machines are accessed through the Net folder described below.

When typing in a file name, users can specify their home folder as For example, f Apps
refers to the Apps folder that's in the home folder of the current user.

158 Chapter 8: The Interface to the File System

NeXT Fo~derrs

Four of the top-level folders begin with a "Next" prefix-NextApps, NextAdmin,
NextDeveloper, and NextLibrary. They contain documents, resources, and applications
that are bundled with the computer.

The NextApps folder contains supported applications for NeXTSTEP users. In it are
general-interest applications like Edit, Preferences, Mail, and PrintManager.

The NextAdmin folder also contains supported applications, but ones that will be used
mainly by system administrators and network managers. They're not for general users like
those in NextApps.

The main purpose of the NextDeveloper folder is to provide applications and files that are
necessary for developing NeXTSTEP applications. Some of the folders that can appear in
NextDeveloper include:

Apps

Demos

Examples

Holds applications used by developers. This folder might not exist on
all systems. Debuggers, profiling tools, language-specific editors, and
other window-based programming tools belong here. Like all other
applications in the four "Next" folders, these applications can be run
from the Workspace Manager. Command-line debuggers and profiling
tools are in standard UNIX folders such as Ibin and lusrlbin.

Contains programs that demonstrate the capabilities of NeXTSTEP.
These aren't full applications and aren't supported by NeXT.
However, they include games and utilities that users, not just
developers, might find interesting.

Contains source code for example programs. This folder might not
exist on all systems. Its folders contain source code that you can study
and compile.

The NextLibrary folder contains resource files organized into several folders. Some of the
files and folders aren't on every system. Typical folders include
/NextLibrary/Documentation, which holds NeXTSTEP technical documentation, and
/NextLibrary/Fonts, which holds the PostScript fonts available to all applications.

How the File System Is Organized 159

Local and Personal Folders

The four folders with a "Next" prefix can be matched by four identical folders with a
"Local" prefix. Internally, these four folders should be organized like their "Next"
counterparts. But instead of containing files supplied by NeXT, they should hold
information and applications provided for all users at a local site. Any user who logs in to
a machine, or boots from it over a network, has access to its "Local" folders. If you add a
new font for all users of your network, for example, it would reside in
lLoealLibrarylFonts.

"Local" folders are created as they're needed. They aren't included on the release disk.

Users can add unprefixed Library and Apps folders in their home folders to hold
information and applications that they alone have access to. Users who develop utilities for
their own use or purchase private copies of a word processor and spreadsheet, for example,
should put them in -/ Apps.

Net

The Net folder gives the user access to file systems that are physically located on remote
machines. The immediate folders under Net name the machines where the file systems are
located. The next level of folders name the root folders of the file systems on those
machines. For example, !Net/willow/mise is where the mise file system located on the
willow computer would be mounted.

Net contains folders only if the user's computer is set up to be connected to other machines
over a network.

All the folders in the root (I) folder, including Net, are physically located on the disk that
the user's machine was booted from. If a user boots from a local hard disk, for example,
NextLibrary and all its folders will be stored on the local disk. Remote folders are
mounted only under Net.

160 Chapter 8: The Interface to the File System

Paths

The Workspace Manager searches for executable files by using a search path, an ordered
set of folders. The default path used by the Workspace Manager lists these six folders:

-IApps
/LocalApps
INextApps
INextDeveloperl Apps
INextAdmin
INextDeve1operlDemos

The Workspace Manager uses this path for three tasks:

• To find the icons it should display for files associated with a particular application.
• To find the application it should start up when the user double-clicks a file.
• To find services offered by applications.

Before using the search path to find which application to start up, the Workspace Manager
first looks in the dock. Each application icon in the dock represents a particular application
residing in a particular folder on disk. By putting an icon in the dock, the user has indicated
a preference for that version of the application over any others.

If an application isn't in the dock, the Workspace Manager looks next in the current
working folder, the folder containing the file the user wants to open. Only after failing to
find the application there does it tum to the path listed above.

In the path, the Workspace Manager looks first in the Apps folder of the current user's home
folder. That's where the user's own applications would be. It next looks in the ILocalApps
folder for sitewide software, then in the lNextApps, /NextDeveloper/Apps, lNextAdmin,
and lNextDeveloperlDemos folders for NeXT-supplied software. This ordering of folders
lets users customize their software to override sitewide software, and lets sitewide software
override software supplied by NeXT.

Users can alter the path shown above for the Workspace Manager by setting a value for the
ApplicationPaths parameter in their defaults database. You might do this, for example, to
add a ILocalAdmin or ILocalDeveloperl Apps folder to the path.

How the File System Is Organized 161

File Name Extensions

NeXTSTEP applications use file name extensions to identify types of files. The extension
consists of the last period in the file name and all characters following it. For example, Mail
uses the" .mbox" file name extension to identify its mailboxes. Typical mailbox names are
Active.mbox and Outgoing.mbox.

The Workspace Manager uses file name extensions not only to identify particular types of
files, but also to associate document files with applications. Every application that defines
its own data file format appends an identifying extension to the names of its document files.

File Packages

Afile package is a folder that the Workspace Manager presents to users as if it were a file.
Because users normally don't look inside a file package (unless they explicitly open it as a
folder), they're not likely to alter or reorganize its contents. "Using File Packages," later in
this chapter, describes when you should use file packages.

Using Paths

If your application needs to look up data that could be in several places on the system, it
should use an ordered path similar to the one used by the Workspace Manager. For
example, if an application requires a particular template file that might be supplied either
by the user or by the system administrator, it should search for it first in a folder under
.... !Library, and then in the same folder under !LocaILibrary.

162 Chapter 8: The Interface to the File System

Using FiDe Name !Extensions

Your application should use its own unique file name extensions to identify (and help the
Workspace Manager identify) its documents. Your extension (after its initial period) can
include only alphabetic and numeric characters and should be at least three characters long.
(NeXT reserves all extensions of under three characters for its own use.) For example,
".example" is an acceptable extension, but ".eg" is not, since it has only two characters after
the period.

To request that an extension be registered and reserved for your use, write to:

NeXT Technical Services
Extension Registry
900 Chesapeake Drive
Redwood City, CA 94063

You can also send your request by electronic mail to ask_next@NeXT.COM or
.. .! next ! ask_next.

The request should include the following information:

• The file name extension you want to register. List a first and a second choice.
• The name of the application the request is for.
• Your name and the name of your company.
• Your postal address and your electronic mail address, if you have one.
• Your telephone number.

You'll be informed when the extension is registered, or if it can't be for any reason. NeXT
Technical Services will make the list of registered extensions available to you so that you
can choose an extension not already assigned.

Registering a file name extension reserves it for your use. If you fail to register an extension
that you intend to use, someone else may register and use it instead.

Using File Name Extet1sions 163

Using File Packages

An application should create a file package when it has a group of files that it needs to keep
together. For example, if your application displays information that's stored in independent
text files, or if it makes use of a private utility program, or if it just loads archived objects
from Interface Builder ".nib" files, you may want to keep these auxiliary files in close
proximity to the application executable file. A file package (with the ".app" file name
extension) is the way to do it.

Similarly, if your application creates documents that are split into more than one file-for
example, if text is in one file and artwork in another-these files can also be grouped in a
file package.

File packages for documents should bear the same extension that's assigned to the
application's document files. For example, if a word processor uses a file package to store
a document that has artwork, then the file package's extension should be the same as if the
document had no artwork and was thus in a single file.

Opening and naming files within a document file package is entirely the application's
responsibility.

Creating Unrequested Files and Folders

Applications sometimes need to create files and folders for a user, other than as the result
of a Save command.

If the files are associated with a particular document, they should be grouped with that
document and placed in a file package.

Otherwise, where the files are located and what they're named depends on whether the user
needs to have direct access to them:

• If the user never needs to get at the files or folders independently of using the application
that creates them, they should be placed in a folder named /.Applnfo. If an application
needs to create many such files, it should put them in its own folder in /.Applnfo. For
example, if an application named My App needs to create many unrequested files, it
should put them in a folder called /.Applnfo/My App. If the /.Applnfo folder doesn't
already exist, the application should create it.

164 Chapter 8: The Illterface to the File System

• If the user might sometimes need to get at the files or folders independently of the
application that creates them (for example, template files), they should be placed under
-/Library. You should name each file or folder so that the user can easily tell which
application put it there.

The guiding principle here is that the user's home folder belongs to the user. An application
shouldn't leave anything there that belongs to it, not to the user. When the application must
create unrequested files and folders, it should put them where the user can find them but
where they aren't likely to get in the user's way.

Note: You should generally use the defaults system instead of files to store small amounts
of data.· The functions supporting the defaults system are described in the NeXTSTEP
General Reference manual.

Displaying File Names

File names are often displayed in a browser, where the user can see the path leading to the
file. However, sometimes it's necessary to use only text for the file's name and path. In this
case, the file's name should usually be displayed followed by two spaces, an em dash, two
more spaces, and then the path. For example:

job Records - INet/machine/home/records

However, when there isn't much space to display the file name-as in a menu command­
the path can be shortened to the minimum necessary to differentiate the file name. The part
of the path that isn't shown should be replaced with three dots.

For example, if one file called jobRecords is listed in limited space, it should be listed as:

jobRecords

If two files called jobRecords are listed in limited space, they might be listed as:

job Records - .. ./records
job Records - .. ./backup

Displaying File Names 165

Suggested Reading

User Interface Concepts

A number of books, papers, and articles describe user interface concepts. A few books are
listed below. Their bibliographies can lead you to other sources.

The Art of Human-Computer Interface Design. Brenda Laurel, editor. Addison-Wesley,
1990.

The Design of Everyday Things. Donald Norman. Doubleday, 1990.

Designing the User Interface: Strategies for Effective Human-Computer Interaction.
Ben Shneiderman. Addison-Wesley, 1987.

Tog on Interface. Bruce Tognazzini. Addison-Wesley, 1992.

Another resource is the Special Interest Group on Computer and Human Interaction
(SIGCHI), a subgroup of the Association for Computing Machinery (ACM). For more
information about ACMlSIGCHI, such as the chapter nearest you, contact them at the
following address:

Association for Computing Machinery
Membership Services Department
1515 Broadway
New York, New York 10036
U.S.A.

Telephone: (212) 626-0500
Fax: (212) 944-1318
Electronic mail: ACMHELP@ACMVM.BITNET

Suggested Reading 167

NeXTSTEP Programming

NeXTSTEP General Reference: Release 3. NeXT Publications. Addison-Wesley, 1992.

NeXTSTEP Programming Inteiface Summary: Release 3. NeXT Publications.
Addison-Wesley, 1992.

The two books above present the programming interface for NeXTSTEP applications.

NeXTSTEP Development Tools and Techniques: Release 3. NeXT Publications.
Addison-Wesley, 1992.

See the back cover of this manual for more titles in the N eXTSTEP Developer's Library.

168 Suggested Reading

Glossary

active application
The application currently associated with keyboard events. Menus are visible on-screen
only for the active application, and only the active application can have the current key
window and main window.

anchor point
When the user drags to define a range, the position of the cursor when the mouse button is
pressed. See also end point.

application
A program with a graphical user interface that the user can run from the workspace, such
as Edit, FaxReader, or Preferences.

application dock
The column holding application icons at the right of the screen.

Application Kir'
The Objective C classes and C functions available for implementing the NeXT
window-based user interface in an application. The Application Kit provides a basic
program structure for applications that draw on the screen and respond to events.

arrow key
One of the four keys with arrows on them, to the left of the numeric keypad on the NeXT
keyboard. They move the insertion point in the indicated direction.

Glossary 169

170 Glossary

auach
To choose a menu command that controls a submenu, causing the submenu to appear
on-screen next to the supermenu (the menu with the controlling command). Moving or
closing a supermenu also moves or closes its attached submenu; choosing the controlling
command a second time detaches and hides the submenu.

attention panel
A panel that demands the user's attention. Until the user acts to dismiss the panel from the
screen, no other action within the application is possible. Attention panels permit the user
to rescind a command (such as Close), ask the user to complete a command (such as Save
As), and give warnings that the user must acknowledge. See also panel and ordinary panel.

background color
In the Application Kit, the color that fills the content area of a window and provides a
background for all the drawing done within the window, or the color that fills a View as a
background for any drawing the View or its subviews do.

bar
The part of a slider or a scroller that holds ~he moveable knob. See also knob.

busy cursor
The cursor image (a spinning disk) that indicates that an application is busy.

character code
The code that identifies a character in a given character set; an index into the character set's
encoding vector.

character keys
The keys that transmit characters to the NeXT computer. This includes not only the usual
letters, numbers, and symbols, but also Return, Enter, Delete, Tab, Esc, and the arrow keys.

character set
The set of characters for a particular font or fonts; either the NeXTSTEP character set (an
extension of ASCII) or Symbol.

class
In the Objective C language, a prototype for a particular kind of object. A class definition
declares instance variables and defines methods for all members of the class. Objects that
have the same types of instance variables and have access to the same methods belong to
the same class. See also class object.

click
To press and release a mouse button while the cursor is positioned over an object on-screen.
Clicking an object may select it or cause it to act in some way. Users can also click to select
a particular location (for the insertion point, for example).

close button
The button that can appear at the far right in a window's title bar. Clicking the button closes
the window (removes it from the workspace).

content area
The area within a window that's available for the application to use. It excludes only the
window's border, title bar, and resize bar.

controls
Graphical objects-such as buttons, sliders, text fields, and scrollers-that the user can
operate to give instructions to an application.

cursor
The small image (usually an arrow) that moves on the screen correspondingly as you move
the mouse.

delegate
In the Application Kit, an object that acts on behalf of another object. Window,
Application, Text, Listener, NXBrowser, NXImage, and other objects can be assigned
delegates.

directory
See folder.

dock
See application dock.

docked icon
An icon in the application dock.

document window
A window that displays the contents of a user-created file.

double-click
To press and release a mouse button twice in succession while the cursor is positioned over
an object on-screen. To count as a double-click rather than as two separate clicks, the
mouse cannot move and the mouse button must be pressed the second time within a short
interval of the first.

Glossary 171

172 Glossary

drag
To move the mouse (and the cursor on screen) while a mouse button is held down.

endpoint
When the user drags to define a range, the position of the cursor when the mouse button is
released. See also anchor point.

event
The direct or indirect report of a user's action on the keyboard or mouse.

event mask
A long integer associated with a window. It controls which types of events will be
associated with the window and passed to the application that owns the window. A 1 in
the bit corresponding to a particular event type means the window will accept that type
of event.

file
A collection of related information stored on a disk, such as a document, report, letter,
or application.

file package
A folder that the Workspace Manager presents as a file, allowing the user to manipulate a
group of files as if they were one file. A file package for an application executable should
have the same name as the executable file, plus a ".app" extension. File packages for
documents should bear the same extension as the one assigned to the application's
document files.

file system
The collection of all the files the user can access through the computer.

floating panel
A panel, such as a palette, that stays in front of standard windows and other panels. See
also tiers.

folder
A place in the file system that contains files and other folders. In documentation for
programmers, folders are usually called directories.

freestanding icon
An application icon standing alone in the workspace. Freestanding icons represent running
applications and can be dragged into the dock. See also docked icon.

highlight
To make something such as a command, text, icon, ottitle bar stand out visually.
Highlighting usually indicates that something has been chosen to perform an action, or
selected to receive an action.

hot spot
The point in the cursor image whose location on the screen is reported as the cursor's
location. The cursor is said to be "over" the location at its hot spot.

insertion point
The point where whatever you type or paste in an application will be inserted. In text, it's
typically marked by a blinking vertical bar.

inspector panel
A panel that displays information about the object that's currently selected.

Interface BuilderTlA

A tool that lets you graphically specify your application's user interface. It sets up the
corresponding objects for you and makes it easy for you to establish connections between
these objects and your own code where needed.

key-down event
An event that occurs when the user generates a character by pressing a key. Holding the
key down generates subsequent key-down events at regular intervals.

key equivalent
In the Application Kit, the character that can be used as the keyboard alternative for a
given object.

key-up event
An event that occurs when the user releases any key except Alternate, Shift, Control,
or Command.

key window
The window in the active application that receives keyboard events. The title bar of the key
window is highlighted in black.

keyboard alternative
A way of using the keyboard, rather than the mouse, to choose a menu command, operate
a button in a panel, or pick an item from a pop-up or pull-down list. While holding a
Command key down, the user types a character associated with the command, button, or
item. See also key equivalent.

Glossary 173

174 Glossary

knob
The part of a slider or scroller that the user can drag. See also bar.

linked information
Copied infonnation, such as a graphic image, that can be automatically updated when the
original information is modified.

main menu
The principal menu in an application, usually identified by the name of the application in
its title bar. The main menu lacks a close button and cannot be made the submenu of
another menu.

main window
The standard window that's affected by actions in a panel and certain menu commands. If
the main window isn't also the key window, its title bar is highlighted in dark gray.

menu
A small window that displays a list of commands. Only menus for the active application
are visible on-screen.

message
In object-oriented programming, the method selector (name) and arguments that are sent to
an object; the message tells the receiving object what to do.

method
In object-oriented programming, a procedure that can be executed by an object.

miniaturize button
The button that can appear at the far left in a window's title bar. Clicking the button
removes the window from the screen and replaces it with its miniwindow counterpart.

miniwindow
A small, icon-sized window that stands in for a window that has been miniaturized.
Double-clicking the mini window reverses the miniaturization, returning the full window to
the screen.

mode
A period of time when the user's actions are interpreted in a special way.

modifier keys
Keys that change the meaning of other keys or of the user's actions with the mouse; the
Shift, Alternate, Command, Control, and Help keys.

mouse-down event
An event that occurs when the user presses a button on the mouse. There's one type of
mouse-down event for the left (or only) mouse button and one for the right button.

mouse-dragged event
An event that occurs when the user moves the mouse while holding down a mouse button.
There's one type of mouse-dragged event for when the mouse is moved with the left (or
only) mouse button down, or with both buttons down, and another type for when it's moved
with the right button down.

mouse-moved event
An event that occurs when the user moves the mouse without holding down a mouse button.

mouse scaling
The responsiveness of the cursor to movements of the mouse. Usually, the faster the mouse
is moved, the farther the cursor travels.

mouse-up event
An event that occurs when the user releases a mouse button. There's one type of mouse-up
event for the left (or only) mouse button and one for the right button.

multiform panel
A panel that has a pop-up list or set of graphical radio buttons at the top that lets the user
choose which form the panel takes.

multitasking
Describes an operating system that allows the concurrent execution of multiple programs.
Mach, the operating system of all NeXT computers, is multitasking.

NeXTSTEpn.
NeXT's application development and user environment, consisting of the Workspace
Manager, various applications such as Project Builder and Interface Builder, various
software kits such as the Application Kit and the Database Kit, and the Window Server.

object
A programming unit that groups together a data structure (instance variables) and the
operations (methods) that can use or affect that data; the central focus of object-oriented
programming.

one-state button
A button that initiates actions, as opposed to one that sets a state. Also known as an action
button. See also two-state button.

Glossary 175

176 Glossary

ordinary panel
Any panel that isn't an attention panel. See also attention panel and panel.

panel
A window that holds objects that control what happens in other windows (such as a Font
panel) or in the application generally (such as a Preferences panel), or a window that
presents information about the application to the user (such as an information panel). See
also attention panel and ordinary panel.

pixel
The smallest unit that can be assigned a color or coverage value for showing images on the
screen or printed page.

pop-up list
A menu-like list of items that appears over (or next to) an on-screen button when the button
is pressed. The user can choose an item by dragging to it and releasing the mouse button.
When the mouse button is released, the pop-up list disappears.

press
To press a mouse button and keep it down for a period of time while the cursor is positioned
over an object on-screen. Pressing an on-screen object (such as a scroll button) may cause
it to take repeated action, or may produce another object (such as a pop-up list) that the user
can drag into.

Project Builder
A tool that lets you create and maintain your application's project and source file hierarchy.
Project Builder provides a user interface for building your application from its source files.,
as well as connections with other NeXT developer applications for interactive debugging.

pull-down list
A menu-like list that appears under an on-screen button when the button is pressed. The
user can drag into the list to choose an action from it. When the mouse button is released,
the pull-down list disappears.

resize bar
The bar, located along the bottom of a window, that the user can grab and drag to resize
the window.

scroll buttons
Any of the buttons that the user can press to scroll a display, such as the buttons in a
scroller. Each scroll button is labeled by a small triangular arrow indicating the direction
of scrolling.

search path
An ordered set of folders used by programs to search for files or folders.

standard windows
The principal windows of an application; the windows where its primary work is done.
All windows are standard windows, except those with specialized functions (menus,
panels, pop-up and pull-down lists, miniwindows, and docked and freestanding icons).

submenu
Any menu that can be brought to the screen through a command in another menu. All
menus except the main menu are submenus of another menu. See also supermenu,
main menu, and attach.

supermenu
A menu containing a command that controls another menu, its submenu.

system control keys
The keys that control the computer's basic functions; the Power, brightness, and volume
keys.

target
In the NeXTSTEP user interface, what the user selects to be acted on by a menu command
or a control within a panel-for example, text that's to be deleted by the Cut command. In
the Application Kit, the object that receives action messages from a Control.

tear off
To drag an attached submenu away from its supermenu. Tearing off a submenu detaches it
from its supermenu and gives it an independent life on-screen. Tom-off menus are the only
menus with close buttons.

tiers
The sections of the screen list. Each tier is occupied by a different type of window, with
spring-loaded windows such as pop-up lists in the frontmost tier, attention panels in the
second tier, menus in the next two tiers, docked icons in the tier below menus, and floating
panels below docked icons. All other windows are in the bottom tier.

triple-click
To press and release a mouse button three times in succession while the cursor is positioned
over an object on-screen. The mouse button must be pressed the second time within a short
interval of the first, and the third time within a short interval of the second.

two-state button
A button that sets a state, as opposed to initiating an action. See also one-state button.

Glossary 177

178 Glossary

Window Server
A process that dispatches user events to applications and renders PostScript code on behalf
of applications.

windows
Page-like rectangular areas where applications can draw on-screen. Windows can be
moved and reordered front to back.

workspace
The screen environment in which the user works on a NeXTSTEP computer.

workspace window
The window that fills the entire workspace on the screen and provides the dark gray
background for other windows.

Index

Align Left command 128
Align Right command 128
Alternate key

as modifier key 23
use with arrow keys 50
using to extend selection 29
using with mouse 45

anchor point 43
application icons 6-7

docked 6
docked, tier of 54
freestanding 6

Application Kit
programming note on menus and 102
programming note on windows and 57
provisions for implementing menus 106

application status, implementing 72-74
applications

acting on user's behalf 15
activating 60
active 2, 60-61
avoiding activation when dragging 74
deactivating 61
programming note on activating and

deactivating 73
programming note on avoiding activation when

dragging 74
window interface to 51-74
and window status 59-66
windows of 3-7

Arrange in Front command 129

arrow characters 33
arrow keys

use of 31,32
use with Alternate key 50
use with Control key 49
use with modifier keys 49-50
use with Shift key 49

attention panels 4, 77. See also panels
default option in 85
dismissing 85
features of 77
implementing 84-87
naming 84-85
naming buttons in 86
optional explanations in 87
tier of 53

Bold command 35,125
browsers 11, 152
buttons 8-9, 135-142. See also radio buttons,

pop-up lists, and pull-down lists
appearance of 8
changing appearance of during a

click 140-141
choosing image or label for 138
choosing results of using 137
close 55
controlling lists 8,9, 136-137
how they work 135-137
implementing 137-142
link, implementing 142

Index 179

buttons (continued)
miniaturize 55
naming in attention panels 86
one-state 137
programming note on Return symbol 139
stop, implementing 142
that set a state 8
two-state 138
types of 135
used as switches 135
using instead of color wells 146

Center command 128
Check Spelling command 35,119
clicking 25

in windows 40
reactions to 39-40
to select 28

clicking in windows, results of 66
close button 55, 71

broken 55
Close command 117
Close panel 89,91
Close Window command 35, 129
color wells 10, 146

choosing colors for 146
Colors command 35
Colors panel 89
colors, choosing for a color well 146
Command key

as modifier key 23
special combinations with 33-34
using with mouse 45

commands 105. See also menus and specific
commands

for checking spelling 120
choosing from menus 100
choosing names for 107-109
disabling invalid 110
naming for bringing up panels 108
naming for bringing up standard windows 109
naming for bringing up submenus 109
naming for performing actions 107
naming in Services menu 131
program note on implementing 111
sample names for 109

180 Index

standard 111-132
using graphical devices in 110
using keyboard alternatives to choose 100

Control key
as modifier key 23
use with arrow keys 49
using with mouse 45

controls 7-11, 133-156
choosing the appropriate 153-156
designing your own 134
displaying a group with aone-of-many

relationships 155-156
displaying a group with an unrestricted

relationship 154-155
displaying a single option with 154
principles of designing 134
that show state 154-156
that start actions 153
types of 134
uses of 133

Copy command 35, 118
Copy Font command 36, 126
Copy Ruler command 36,128
cursor

bringing main menu to 101
changing 46
hiding 47
managing 46-47
programming note on hiding 47

Cut command 35, 118

Delete command 119
Delete key, use of 32
direct manipulation 17
Document menu 112, 116-118
documents, uneditable 118
double-clicking 25

when to act on 40-42
dragging 26

avoiding activation when 74
how to use 42-44
moving objects by 43
over groups of objects 44
range that should be selected by 48
to define a range 43
to select 27

Edit menu 112, 118-119
programming notes on 119

end point. 43
Enter key, use of 32
Enter Selection command 35, 123
Esc key, use of 32
extensions, file name 162

file name extensions 162
file packages 162

using 164
file system

interface to 157-165
organization of 158-162

files
creating unrequested 164
displaying names of 165

Find menu 119, 123
Find Next command 35, 123
Find panel 89,92
Find Panel command 35, 123
Find Previous command 35, 123
folders

creating unrequested 164
home 158
local 160
Net 160
NeXT 159
personal 160
root 160

Fontmenu 124,125-126
programming note on 126

Font panel 89
FontPanelcommand 35,125
Format menu 112, 124

Heavier command 126
Help command 35, 115
Help key

alternative when keyboard has no 46
as modifier key 23
using with mouse 46

Help panel 89, 93
Hide command 35, 113
home folders 158

Info menu 112, 115
Info panel 89, 95
Info Panel command 115
Italic command 35, 125

Jump to Selection command 36, 123
Justify command 128

key window 3,59,62-63,65
keyboard

description of 22
programming note on handling input 23
use of 22-24
user actions with 21-50

keyboard alternatives 5,23
choosing 34-39
choosing characters for 37
creating application-specific 36-39
determining actions performed by 38-39
recommended 36
required 35
reserved 34-35
using the Alternate key in 37

keys, implementing special 32-39

Larger command 126
Lighter command 126
link buttons, implementing 142
Link Inspector command 121
Link Inspector panel 90, 95
Link menu 119,121-122
links, programming note on implementing 122

main menu 100, 111-114
adding to 114
bringing to cursor 101
standard commands in 111-113
tier of 53

main window 59,63-64,65
menus 5,99-132. See also commands and specific

menus
bringing main to cursor 101
closing 57
commands in 105
designing the hierarchy of 106
how they work 100-105

Index 181

menus (continued)
implementing 106-110
programming note on the Application Kit

and 102
role of 5
standard 111-132
tier of 53, 54
uses of 99

miniaturize button 6,55, 70
Miniaturize Window command 36, 129
mini windows 6
modal tool 19
modes

avoiding use of 15
when to use 15, 19

modifier keys 22-23
use with arrow keys 49
using with mouse 44, 46

mouse
implementing actions with 39-46
paradigms for using in user interface 17-19
programming note on handling 25
responsiveness of 26
setting the scaling of 26
use of 24-31
use of buttons 26
use of in user interface 16
user actions with 21-50
using for selection 27-31
using modifier keys with 45-46

multiple-clicking 25
to select 28
when to use 41-42

Net folder 160
New command 35,116

performing an implicit 117-118
NeXT folders 159

Open command 35,116
Open panel 90, 96
ordinary panels 4, 76. See also panels

conventions for 78
exception to behavior 80-81
implementing 78-83

182 Index

Page Layout command 36,124
Page Layout panel 90
panels 4-5, 75-98. See also attention panels and

ordinary panels
closing 57
customizing Application Kit 88
floating 81
floating, tier of 54
how they work 76-77
implementing 78-87
inspector 83
multiform 82
naming commands that bring up 108
persisting 80
programming note on avoiding key-window

status for 79
programming note on creating 76
relinquishing key-window status 80
role of 4
standard 88-98
when to use as key window 79
with variable contents 81-83

Paste and Link command 36, 121
Paste As menu 119, 120
Paste command 35, 118
Paste Font command 36, 126
Paste Link Button command 121
Paste Ruler command 36,128
paths 161

using 162
pop-up lists 136

buttons that control 9
implementing 141
tier of 53

Preferences command 115
Preferences panel 90, 96-97
pressing 26

when to use 44
Print command 35, 113
Print panel 90
Publish Selection command 121
pull-down lists 137

buttons that control 8
implementing 141
tier of 53

Quit command 35, 113
Quit panel 90,97-98

radio buttons
graphical 135
standard 135

resize bar 70
Return key

use of 32
using instead of a button 144

Revert to Saved command 117

Save All command 117
Save As command 36, 116
Save command 35,116
Save panel 91, 98
Save To command 117
screen, typical NeXTSTEP 2
scroll bar 148-149
scroll buttons 149
scroll knob 148-149
scrollers 10, 147-151

fine-tuning mode in 150
how they work 148-150
implementing 150-151
parts of 148
the user's view 150
uses of 147

scrolling
automatically 150
programming note on 149

Select All command 35, 119
selection 27-31

by clicking 28
by dragging 27
by multiple-clicking 28
continuous extension of 29
discontinuous extension of 30
extending the 28-30
implementing 47-50
of a range by dragging 43, 48
when discontinuous not implemented 48

selection lists 11, 152
Services menu 113, 130-131

naming commands in 131
programming note on 131

services, providing 131
Shift key

as modifier key 23
use with arrow keys 49
using to extend selection 30
using with mouse 45

Show Links command 121
Show Menus command 115
Show Ruler command 36, 128
sliders 9, 145

current value of 145
parts of 145
programming note on implementing

Alternate-dragging for 145
Smaller command 126
special character keys 32-34
Spelling command 119
Spelling panel 91, 120
stop buttons, implementing 142
submenus 102-104

keeping attached 103
naming commands that bring up 109
removing from screen 104
tearing off 103

Subscript command 126
Superscript command 126

Tab key, use of 32
targeted action 18
text fields 9, 143-145

moving between 143
uses of 143

Textmenu 124,128
title bar 55
Tools menu 132
triple-clicking 25

Unbold command 35,125
Underline command 126
Undo command 35,119
Unitalic command 35, 125
Unscript command 126
Ununderline command 126
user interface

basic principles of 14-16
consistency of 14

Index 183

user interface (continued)
design philosophy 13-20
direct manipulation paradigm 17
extensions to 20
'goals of 1, 13
modal-tool paradigm 19
naturalness of 15-16
paradigms for using mouse in 17-19
reasons for graphical 13
targeted-action paradigm 18
testing 20
use of mouse in 16
user control of 14
visual guide to 1-11

users
control of user interface 14
when applications should act on behalf of 15

window status
and applications 59-66
implementing 72-74

windows 3-7
behavior of 54-59
choosing the key 72
choosing titles for 69

. clicking in 40
closing 57, 71
closing standard 57
designing 67
hiding 58
how they work 52-66
implementing 67-74
implementing standard 69-71
as interface to applications 51-74
key 62-63
main 63-64
miniaturizing 58, 70
moving 56
naming commands that bring up standard 109
note on meaning of 53
order of 53-54
parts of 52
placing 67-68
programming note on Application Kit and 57
programming note on implementing titles

of 69

184 Index

programming note on saving position of 68
reordering 55
resizing 56, 70
results of clicking in 66
retrieving hidden 58
standard 3
tiers of 53-54
title bar of 55

Windows menu 113, 129-130
programming note on 129

workspace 2
Workspace Manager

as interface to file system 157

NeXTSTEP Programming

NEXTSTEP USER INTERFACE GUIDEUNES:
RELEASE 3

NeXTSTEP is the object-oriented programming environment that speeds the development of all kinds of software-from mission­

critical custom applications for business to advanced research projects for academia. NeXTSTEP offers building blocks that

implement essential behavior in a variety of application areas- including database management, telecommunications and

networking, and high-quality 2D and 3D graphics.

NeXTSTEP User Interface Guidelines provides an overview of the NeXTSTEP user interface, with special attention to the details that

are important to designers of NeXTSTEP applications. It includes:

• The philosophy behind the NeXTSTEP user interface • Instructions for using menus and panels

• Guidelines for interpreting user actions • Help for choosing and implementing controls

• Discussions of the appearance and behavior of windows

The NeXTSTEP Developer's library is essential reading for every NeXTSTEP enthusiast, providing authoritative, in-depth

descriptions of the NeXTSTEP programming environment. Other titles in the NeXTSTEP Developer's library include:

• NeXTSTEP General Reference: Release 3, Volumes 1 and 2 • NeXTSTEP Operating System Software: Release 3

• NeXTSTEP Development Tools and Techniques: Release 3 • NeXTSTEP Programming Interface Summary: Release 3

• NeXTSTEP Object-Oriented Programming and the

Objective C language: Release 3

• NeXTSTEP Network and System Administration: Release 3

NeXT develops and markets the industry-acclaimed NeXTSTEP object-oriented software for industry-standard computer architectures.

NEXTSTEP
Obj ec t Ori e llt e d Soft w ar e

9 780201 632507
ISBN 0-201-63250-0

Addison-Wesley Publishing Company
US $24.95
CANADA $31.95

