ND Relocating Loader

ND-60.066.04

This manual is in loose leaf form for ease of updating. Old pages may be
removed and new pages easily inserted if the manual is revised.

The loose leaf form also allows you to place the manual in a ring binder (A) for
greater protection and convenience of use. Ring binders with 4 rings corre-
sponding to the holes in the manual may be ordered in two widths, 30 mm and
40 mm. Use the order form below.

The manual may also be placed in a plastic cover (B). This cover is more suitable
for manuals of less than 100 pages than for large manuals. Plastic covers may
also be ordered below.

N e i /\N‘o |

[

NCRSK DATA AS NQRSK CATA AS

=ik

utn

Hy

) {

P4
B
it

1 PNl

A Ring Binder B Plastic Cover

U__.

Please send your order to the local ND office or (in Norway) to:

Norsk Data A.S
Graphic Center
P.0O. Box 25, Bogerud
0621 Oslo 6, Norway

ORDER FORM

| would like to order

....... Ring Binders, 30 mm, at nkr 20,- per binder

....... Ring Binders, 40 mm, at nkr 25,- per binder

....... Plastic Covers at nkr 10,- per cover

VT 11 1= SO PRSPPI PPN OUVRPP RIS S P RS PPN

COMPEMY +oeeeeeeeeeeeeseesesseaeetesseseeea s b et ea e st e meen e b er e s oeesseseam e st e b e b s b eE e e bt
GO S S oottt e et ae ettt

NOTICE

The information in this document is subject to change without notice. Norsk Data
A.S assumes no responsibility for any errors that may appear in this document.
Norsk Data A.S assumes no responsibility for the use or reliability of its software
on equipment that is not furnished or supported by Norsk Data A.S.

The information described in this document is protected by copyright. 1t may not
be photocopied, reproduced or translated without the prior consent of Norsk

Data A.S.

Copyright @ 1983 by Norsk Data A.S

PRINTING RECORD

Printing Notes

04/77 Version 01
01/82 Version 02
07/82 Version 03
02/83 Version 04

ND Relocating Loader
Publ.'No. ND-60.066.04

00 004
00
00

Norsk Data A.S
Graphic Center

P.O. Box 25, Bogerud
0621 Oslo 6, Norway

Py

iv

Manuals can be updated in two ways, new versions and revisions. New versions
consist of a complete new manual which replaces the old manual. New versions
incorporate all revisions since the previous version. Revisions consist of one
or more single pages to be merged into the manual by the user, each revised
page being listed on the new printing record sent out with the revision. The
old printing record should be replaced by the new one.

New versions and revisions are announced in the Customer Support Information
(CSl) and can be ordered as described below.

The reader’s comments form at the back of this manua! can be used both to
report errors in the manual and to give an evaluation of the manual. Both
detailed and general comments are welcome.

These forms and comments should be sent to:

Documentation Department
Norsk Data A.S

P.O. Box 25, Bogerud

0621 Oslo 6, Norway

Requests for documentation should be sent to the local ND office or {in Norway)
to:

Graphic Center
Norsk Data A.S
P.0. Box 25, Bogerud
0621 Oslo 6, Norway

Preface:
THE PRODUCT

This manual describes the ND Relocating Loader running under SINTRAN
III. It now incorporates the BRF Editor (formerly ND-60.085).

ND 10/ND 100 Relocating Loader ND-60.066
The binary relocating loader is used to read BRF output from the MAC
assembler and from the ND compilers (Fortran, COBOL, PLANC, BASIC,
PASCAL etc.) into memory and make them executable.

THE READER

This manual is written for programmers using the ND Relocating Loader.
For real-time programs see:

Real-time Loader ND-060.051

PREREQUISITE KNOWLEDGE

No previous knowledge of the ND Relocating Loader is assumed in this
manual. However, some basic knowledge of both the SINTRAN commands and
the principles of compilation is recommended.

THE MANUAL

This manual describes the basic Loader commands in chapter 1. Chapters
2 and 3 cover Binary Relocatable Format and the BRF Editor
respectively.

RELATED MANUALS

SINTRAN III Reference Manual ND-60.128
MAC Users Guide ND-60.096
Real-time Loader ND-60.051

ND-60.066.04

vii

TABLE OF CONTENTS

Section

2.2
2.3
2.4
2.5
2.6
2.7
2.8

2.9

FUNCTION OF THE NRL « ¢ ¢ o o o o o o o &

LOADING &+ ¢ o« « o ¢ o ¢ o o o o o o o @

Commands for Loading and Executing a BRF-Program

Load-Address Control Commands
Commands Affecting the Symbol-Table .
Saving and Dumping of Binary Programs
Auxiliary Memory Examination Commands
Image-file Loading . « « « o« ¢ + ¢ o
Prog-file Loading . « « ¢« « ¢ o o o «

OVERLAY SEGMENTATION OF PROGRAMS
The Multi-level Overlay System
Designing an Overlay Structure
Overlay Handler Subroutines
Loader Commands for an Overlay System

THE OPEN COMMAND . « &+ ¢ &« « o ¢ o o o »

TWO-BANK PROGRAMS . . « « ¢ « « o ¢ « &

Two-bank Systems versus One-bank Systems

Two-bank Loading . « « ¢« ¢ ¢ ¢ o o o

BINARY RELOCATABLE FORMAT . « . « « « o &
STRUCTURE OF BRF . « « « ¢ ¢ + o o « &
RELOCATION OF INTERNAL ADDRESSES
PROGRAM UNITS &« ¢ o ¢ o o o o o o o &
SEPARATE COMPILING/ASSEMBLING
LINKING OF PROGRAM UNITS . . « « « + « &
COMMON BLOCKS '« « ¢ & o o o o o o o o &
CHECKSUM . . & ¢ ¢ o s o s o s o o o o =
FIX~-UP FACILITY ¢ « + ¢ o« ¢ o o o o o =

DESCRIPTION OF THE BRF-CONTROL NUMBERS .

THE BRF EDITOR +« ¢ « o o o o o o o o ¢ o @
Symbol Handling - Basie . . ¢« « ¢ + o &

Commands for Updating . . . « « « « « &

ND-60.066.04

Page

—

= 2OV IO0W =

-—

12
12
L
15
16
19
20
20
21
25
26
29
30
31
33
34
35
35

36

39
39

40

viii

Section Page

3.3 Additional Symbol CommandsS . « « « ¢ o ¢ « o o o s o o o 4o

3.4 Other FUNCLIONS . v v ¢ o o o o o o o o a o o o o o o o & 41

APPENDIX A, LOADER COMMAND SUMMARY 43

APPENDTIX

A LOADER COMMAND SUMMARY . ¢ ¢ ¢« ¢ ¢ o s s o o o & « o & 43
APPENDIX B, THE LOADER ERROR MESSAGES 54
B THE LLOADER ERROR MESSAGES « . ¢ ¢ ¢ ¢ &+ o & & o o« o o & 53
APPENDIX C, INDEX 59
C INDEX L . L . L] . L] . . L] L] . . . L . L] L * L] L4 59

ND-60.066.04

Relocating Loader 1

1 FUNCTION OF THE NRL

The Nord Relocating loader is a subsystem which is able to convert the
output from the language processors (compilers, assemblers) into
executable programs running under SINTRAN III. The object files
created by the language subsytems are in binary relocatable format
(described in detail in chapter 2), otherwise known as BRF. The NRL
relocates this output and changes its format so that it can be loaded
to actual addresses, the property of relocatability being lost in the
process. The NRL maintains a symbol table in which all intermodule
references, symbols, and labels appear together with their defined
addresses. All of these are resolved by the NRL before execution of
the program can proceed.

1.1 LOADING

In this manual the term loading means "to fetch relocatable program
units and link them together to form an executable program".

When loading the NRL can operate in four different modes where:

1) The BRF code is loaded directly into a current address space
for immediate execution. This is known as basic loading.

2) The address space on a file contains a memory image which
cannot be executed directly, but must be converted to one of
the other forms. This is called image-file loading.

3) A file of type :PROG is ready for execution using the
@RECOVER command. This is referred to as prog-file loading.

4) The program is too large for an address space. Overlay mode
will be used to enable different parts of the program to have
the same address. This mode is called overlay loading.

The relocating loader is recovered from the operating system by
typing:

NRL
When an asterisk (%) is printed on the terminal, the loader 1is ready

to accept commands from the user.

NOTE ON THE FORMAT OF NRL COMMANDS:

ND-60.066.04

2 Relocating Loader
FUNCTION OF THE NRL

All NRL commands may be abbreviated provided that no ambiguity
results. Parameter delimiters are: space, comma, or carriage return.
Missing parameters will be asked for but default values may be
specified by giving two commas or carriage return. The character
"control L" (octal 14) given in a command or parameter line, will
cancel the command. The 1line editing characters "control Q" for
deleting the current line and "control A" for deleting one character
on the current line, are available in the NRL. Alphabetical characters
may be upper or lower case.

The appearance of square brackets ([]) in the command formats denotes
the presence of an optional parameter. In the command descriptions,
the terms "octal address" or "octal address/value" must be entered as
an unsigned octal number of six digits or less. No trailing B 1is
allowed and the maximum value 177777. All commands may be abbreviated
so long as they remain unique in the normal SINTRAN manner.

ND-60.066.04

Relocating Loader 3
FUNCTION OF THE NRL

1.1.1 Commands for Loading and Executing a BRF-Program

Loader input is obtained from one or more files or library files. The
loading is initiated by the command:

#,0AD <file name>[<file named>...]

Each of the files specified will be 1loaded until end-of-file 1is
detected, then control is transferred to the loader command processor
(which types a *) which is then ready to accept another command.

To obtain the entry-point addresses of the loaded program, we use the
command:

*ENTRIES-DEFINED [<file name>])

which will give a printout of the entry-names along with their octal
addresses in memory. If no file/device name is specified, the printout
will appear on the users terminal. Also, referenced (not defined)
entry-points may be requested by the command:

¥ENTRIES-UNDEFINED [<file name>]

The octal addresses which appear on this map denote the last reference
address.

If a program has been loaded and some references still remain, a run-
time library system file should be loaded as well. If any of these
routines are necessary for the execution they will be selected by the
loader and connected with their corresponding references. The names of
these libraries are provided with the respective ND compiler and
library products. There is a facility for loading libraries
automatically at the end of a load operation (see the AUTOMATIC
command below).

®AUTOMATIC
{library file 1>

<library file n>

The specified library files will be loaded when the RUN, DUMP and BPUN
commands are used, if undefined references exist in the loader table.
The loading from the libraries will terminate when all references are
defined or when the library files have been scanned twice. If this
results in the necessary definitions, the specified command will be
performed, otherwise an error message will be written.

ND-60.066.04

4 Relocating Loader
FUNCTION OF THE NRL

Example:

*AUTO
FTNLIBR
USER-LIBRARY

*
The command lines are terminated by a dot (.).

The pre-automatic mode buffer is not cleared by the RESET comand, and
thus the 1loader may be initiated and dumped for later recovery with
the automatic sequence intact. The buffer may be cleared by typing:

*AUTO

The example below shows a procedure for generating a subsystem having
the automatic sequence initiated with the user's library files.

@PLACE-BINARY NRL-1935I:BPUN
€Go 0

RELOCATING LOADER LDR-1935I
*AUTOMATIC
USER-LIB

FTNLIBR

—*EE
€DUMP "NRL-1935I",0,1
e

There should be no undefined entry-points remaining and the program
may be started with the command:

*RUN

When the program has been executed, control is transferred to the
operating system (as indicated by the @ prompt).

To leave the loader and return to the operating system the user
writes:

*EXIT

The loader can be reentered by using the system command:

ND-60 . 066 [0’4

Relocating Loader
FUNCTION OF THE NRL

B8CONTINUE

ND-60.066.04

6 Relocating Loader
FUNCTION OF THE NRL

1.1.2 Load-Address Control Commands

In order to 1load the program at an address which differs from the
current value, use the command:

%¥SET-LOAD-ADDRESS <octal address>

Subsequent loading will then be performed from the address specified.
Note that during basic loading, the loader itself occupies the lower
part of the address space. The load address in this case must not be
set lower than the upper address of the loader (which can be found
from the ENTRIES-DEFINED command if it is issued as the first
command) .

The absolute upper limit may be redefined with:

*UPPER-LIMIT <octal address>

but care should be taken that no overlapping occurs when manipulating
load-addresses.

ND-60.066.04

Relocating Loader 7
FUNCTION OF THE NRL

1.1.3 Commands Affecting the Symbol-Table

The symbol table contains a 1list of symbols and their defined
addresses. Whenever a defintion for a symbol is found in the input,
the value of the current load address is the value of the symbol.
Whenever a reference is found in the input to a name in the symbol
table, the corresponding value is placed in the referenced position.
If the referenced symbol has not yet been defined, it is stored in the
symbol table awaiting resolution by a later definition. Symbols may be
up to seven characters long.

Symbolic table entries may be created, renamed or deleted by the user.
An entry is created by:

¥DEFINE <symbol name><octal value/address>

Symbol names may be renamed by:

¥RENAME <old symbol name><new symbol name>

An entry is deleted from the synbol table by:

*KILL <symbol name>

The associated address/value of an entry may be examined by typing:
#*VALUE <symbol name>

The loader then prints the octal number on the terminal.

The associated address/value of an entry may be entered into a memory
location by the command:

*REFERENCE <symbol>[<octal address>]

It doesn't matter if the referenced entry is present in the table or
not, as the correct address will be filled in when the symbol value is
defined.

If the message:

LOADER TABLE OVERFLOW

is given it means that there is no more room for entries. The table-
length may be expanded through the command:

ND-60.066.04

8 Relocating Loader
FUNCTION OF THE NRL

¥SIZE <number of entries (octal)>

However, the old table contents are lost. This means that the 1load
procedure must be repeated from the beginning using an appropriate
table length. This command should be issued before any command that
affects the symbol table or before any loading is performed, since it
redefines the table and the current load address.

All table contents are removed by typing:

*RESET

However, all entries present may be protected from later removal
(through RESET) by tvping:

*FIX

The RESET will then merely remove all symbols entered after the time
at which the table was fixed.

The current location when the FIX command is issued, becomes the lower
bound address on the next RESET.

The user is advised not to fix the table when there are undefined
references.

Fixed entries are not listed when using the commands:

ENTRIES-DEFINED and ENTRIES-UNDEFINED.

ND-60.066.04

Relocating Loader 9
FUNCTION OF THE NRL

1.1.4 Saving and Dumping of Binary Programs

The 1loaded program may be saved in binary form in two ways. Firstly
by:

¥DUMP <destination file name>[<start address><restart address>]

This command saves the 1loaded program on the specifed file. The
program may be retrieved with the RECOVER command. It then starts at
the specified start address. The restart address indicates where the
program should be started with the CONTINUE command. The dump limits
may be set by the BOUNDARIES command. Default boundaries range from
the 1lowest to the highest address accessed by the loader since the
last recovery. The main entry will act as default start and restart
addresses. The default file type is :PROG.

Secondly, using the command:

¥BPUN <destination file name><{start address><bootstrap address>

the program area (default or specified by the BOUNDARIES command) will
be dumped in absolute binary form on the destination file preceded by
an octal coded bootstrap. The main start entry of the program may be
specified in symbolic or octal form. The bootstrap address (octal
number) specifes where the bootstrap program (44 octal locations) will
be located if the program is loaded into a stand-alone NORD-10/ND-100.
Default destination type: BPUN. Default boundaries range from the

lowest to the highest address accessed by the loader since the last
recovery.

The SINTRAN command PLACE-BINARY can be used to place a BPUN file into
the user's address space.

When a dump area other than the default area is preferred, it may be

specified by:

¥BOUNDARIES <lower address><upper address>

1.1.5 Auxiliary Memory Examination Commands

#QCTAL-DUMP <lower address><upper address>{<file name>]

The contents of the locations between the lower and upper addresses
will be dumped on the specified file, with eight consecutive locations
to a line. Each word will be written as a six-digit octal number. If
no file name is specified the contents are dumped to the terminal.

ND-60.066.04

10 Relocating Loader
FUNCTION OF THE NRL

¥ASCII-DUMP <lower address><upper address>[<file name>]

The contents of the locations between the lower and upper addresses
will be dumped on the specified file, eight consecutive locations (16
characters) to a line. Non-printable characters appear as a space. If
no file name is specified the characters are dumped to the terminal.

¥DEPOSIT <octal addressd>[<new contents>]

¥DEPOSIT <symbol name> [,<+octal displacement>] [,<new contents>]

The new contents (octal value) are put into the octal address
specified, or into the address of the symbol name, plus or minus the
displacement. If the last parameter is missing, the old contents are
displayed as two ASCII characters and as an octal number; they may be
changed by typing the new contents on the same line. By typing CR the
next location will be displayed automatically. The termination
character is point (.).

ND-600066004

Relocating Loader 11
FUNCTION OF THE NRL

1.1.6 Image-file Loading

Programs may be loaded directly onto a memory image file instead of
into main memory. The loader is put into this special mode by the
command:

¥*IMAGE-FILE <file name>

where the file name denotes the memory image file having IMAG as its
default type.

The IMAGE-FILE must be the first‘command to be given after the loader
recovery. \

The DUMP and BPUN commands apply to memory images as well as to pure
memory-loaded systems. SET-LOAD-ADDRESS may now set any address
starting at zero.

Image-loaded programs may only be executed by applying the RECOVER or

PLACE-BINARY SINTRAN III commands. Hence the DUMP or BPUN NRL commands
must be used before exit from NRL.

1.1.7 Prog-file Loading

Programs may be loaded onto a file in absolute binary form instead of
into main memory. The loader is put into this special mode with the
command:

#PROG-FILE <file name>

where file name is the name of the file onto which the program is
loaded. The default file type is PROG. PROG-FILE should be the first
command given after the loader recovery, while the last command to be
given must be EXIT. Programs loaded in this way may only be executed
after the application of the SINTRAN III RECOVER command. The DUMP and
BPUN commands cannot be used in this mode.

ND-60.066.04

12 Relocating Loader
FUNCTION OF THE NRL

1.2 OVERLAY SEGMENTATION OF PROGRAMS

The NRL supports two different overlay systems. One system is tree-
structured, and it can be one or more levels deep. The other system
consists of a root segment (or link) and one overlay level.

1.2.1 The Multi-level Overlay System

In order to use the NORD-10/ND-100's overlay capability, the user must
have a good understanding of the way in which his program operates and
of the relationship between the modules within it. He should organize
his overlay structure (described below) so as to retain in memory the
1inks that contain the more-commonly used modules, and place the
infrequently-used modules in links which can overlay one another. For
example, a specialized error-recovery procedure would need to be in
memory only when the specialized error occurred. Each link should be a
collection of functionally-related modules and be as self-contained as
possible, calling other 1links as infrequently as possible. 1In
particular, references to links which would cause the overlaying of
existing links should be minimal.

A tree-like structure, called an overlay structure, can be used to
illustrate the dependencies among the overlay 1links. In a tree
structure, each 1link has only one immediate ancestor but it may have
more than one immediate descendent. The link containing the parts of
the program which are always required and which must, therefore,
always be in memory during execution, is called the root 1link. Since
the root link receives control at the start of execution, it does not
have an ancestor. The remaining links branch away from the root 1link
and are structured according to their interdependencies.

Links which do not have to be in memory at the same time are termed
independent links. For example, two modules which do not reference
each other or pass data directly to each other, are independent links.
When such a link is no longer required in memory, it can be overlaid
by another when it is brought in. On the other hand, a dependent link
must have the link upon which it depends in memory at the same time
and cannot therefore overlay it. Every link is dependent on the root
link.

As an illustration, assume the user to have a FORTRAN program which
consists of a main program, MAIN, and six subroutines, SUB1, SUB2,
SUB3, SUBY4, SUB5, and SUB6. The subroutines are related as follows:

1) SUB1 and SUB6 are called directly from the main program and
are independent of each other.

2) SUB2 and SUB5 are called directly from SUB1 and are
independent of each other.

3) SUB3 and SUB4 are called directly from SUB2 and are also
independent of each other.

ND-60.066.04

Relocating Loader 13
FUNCTION OF THE NRL

After analyzing these relationships, the user can draw the following
tree structure to illustrate the subroutine dependencies:

MAIN co.oo.o.-coo{ I"OOt link

independent
SUB1 SuUB6 " overlays
(first level)

independent
SUB2 SUB5 fccrcrcrctct*Y overlays
(second level)

independent
SUB3 SUB” ® 6800 0000000000000y Ovef'lays
(third level)

By studying the dependencies in the diagram, the user can see that
when a specific link is executed, all links between it and the root
link must be in memory.

For example, SUB4 depends on SUB1 and SUB2 so that these two links
must be in memory for the execution of SUBL4. This chain of 1links is
referred to as "the path of the link currently being executed". The
action of bringing these links into memory is termed "path loading"
and the chain of links branching away from the root 1link is known as
"the extended path". In the previous example therefore, the path of
SUB4 is MAIN, SUB1, and SUB2. There are three extended paths of SUB1:

1) SUB2, SUB3
2) SUB2, SUBY4

3) SUB5

Links may communicate with other links if they lie on a common path or
extended path. The communication is through references to global
symbols. References from the current 1link to a global symbol in
another 1link on the path are called backward references, while
references from the current link to a global symbol in another link on
the extended path are called forward references. Since all links from
the current link back to the root link must be in memory, a backward

ND-60.066.04

14 Relocating Loader
FUNCTION OF THE NRL

reference does not cause any links to be brought into memory. However,

with a forward reference, the referenced link may not be in memory and
must therefore be fetched, possibly overlaying a link already there.

1.2.2 Designing an Overlay Structure

The first step to be taken when designing an overlay structure is to
draw a tree-like diagram showing the functional relationships among
the modules within the program. The tree begins with the root 1link
containing the main program and which remains in memory throughout
execution. The remainder of the program is contained 1in the overlay
links that support the root link.

Links that are functionally related lie on the same path. Links that
can overlay each other are at the same level on different paths but,
in this case, are not functionally related.

The wuser should remember several points when drawing his overlay
structure:

1) References that will cause overlaying of existing 1links
should be minimized.

2) Independent 1links cannot reference each other; communication
is by way of a common link.

3) As a general rule, calls should be forward references, while
returns should be backward references.

4) If data is modified during execution, the modification is
destroyed once the 1link 1is overlaid. If therefore, data
required by another link is modified, then the data must be
returned to this other link before the one containing the
changed data is overlaid.

5) When a link is to be overlaid , there should be no addresses
or references to it remaining.

6) Modules or data areas used by several links should be
explicitly 1loaded into a 1link that is common to all links
using these modules or data areas. For example, a COMMON data
area should be 1in a link immediately before the first link
which references it. Moreover, COMMON should be positioned in
such a way that it never gets re-initialized after the first
call,

Tree-structured overlay systems can be one or more levels deep. The
amount of memory required is at 1least the amount needed for the
longest path. The 1length of the 1longest path is not the minimum
requirement however, since special tables must be included when a
program is divided into links.

The root 1link and the COMMON area defined within it reside in memory
throughout the entire execution, while the overlays and the COMMON
area defined only within them, reside on a random read-only file. This
file is specified with the PROG-FILE command.

ND-60.066.04

Relocating Loader 15
FUNCTION OF THE NRL

1.2.3 Overlay Handler Subroutines

The following subroutines are available to the user program and must
be called when designing a multi-level overlay structure.

CALL OVLINIT

The initialization routine is used to open the overlay file and must
be called before any of the overlays can be loaded.

CALL OVERLAY (<name>[,<par 1>,... ,<par n>])

where <name> is the name of the subprogram to be given control on an

overlay; it is written as a hollerith constant having a length of
seven characters. <{par 1> to <par n> are the actual parameters to the
subroutine.

The specified overlay will always be loaded into memory, and control
will be transferred to the start address of the routine <name>.

CALL OVRECAL (<name>[,<par 1>,... ,<par n>1)

For the above subroutine the parameters have the same meaning as for

OVERLAY. The specified overlay will only be loaded if it is mnot
already in memory. Thus successive calls to the same overlay will
cause it to be loaded on the first call or if it has been overlaid
since the last call. Control will be transferred to the start address
of the routine <name>.

Calls to the three subroutines have been shown in FORTRAN format. For
COBOL users the CALL statements would appear as follows:

CALL "OVLINIT"

CALL "OVERLAY" [USING <name> [<par 1>,...,<par n>]]

CALL "OVRECAL" [USING <name> [<par 1>,...,<par n>]]

where '"name" is a literal of length seven characters, the name of the
routine being left justified within it.

ND-60.066.04

16 Relocating Loader
FUNCTION OF THE NRL

1.2.4 Loader Commands for an Overlay System

The following loader commands must be used when creating an overlay
system.

¥PROG-FILE <file name>

The BRF information will be loaded into the specified file instead of
directly into main memory.

*OVERLAY-GENERATION [<no. of overlay entries>]

This command specifies that a multi-level overlay system is to be
generated. <no. of overlay entries> is the maximum number of overlay
entries specified in the OVERLAY-ENTRY commands. The default is 128.

For two-bank loading (see section 1.4.2) the command SET-MODE DATA
must be issued before the OV-GEN command in order to place the run-
time table in the correct bank.

Note: The rcot 1link must be completed by loading the appropriate
language library.

*OVERLAY-ENTRY [(<level>)] <entry name 1>[,... ,<entry name n>]

This command specifies that the next overlay link is to be generated.
<level> is the overlay level, it has a default value of 1. <entry name
1> to <entry name n> give the names of the subprograms called by the
OVERLAY and/or OVRECAL routines from the previous level. The root link
is level 0.

NOTE: The level number must be in parentheses.

*EXIT

This command dumps the root 1link, the COMMON area, and the last
overlay 1link, onto the file specified in the PROG-FILE command. The
execution of the overlay system must be started by the RECOVER
command.

EXAMPLE:

@FTN
NORD 10/ND-100 FORTRAN COMPILER FTN-2090I
$COM MAIN, 1,MAIN

1% PROGRAM MAIN

2% WRITE (1,%) 'START MAIN'
3% CALL OVLINIT

% CALL OVERLAY (THSUB1 , 1)

ND-60.066.04

Relocating Loader
FUNCTION OF THE N

5%
6 #
7*

7 LINES COMPILED
CPU-TIME USED IS
$COM SUB1,1,SUB1

1%

o

3%

Iy

5%

5 LINES COMPILED
CPU-TIME USED IS
$COM SUB2,1,SUB2

1%

2%

3*

%

5%

6%

T

7 LINES COMPILED
CPU-TIME USED IS
$COM SUB3, 1,SUB3

1%

o

3

3 LINES COMPILED .

CPU-TIME USED IS
$COM SUB4,1,SUBY
1%
2%
3%

3 LINES COMPILED
CPU-TIME USED IS
$COM SUB5, 1,SUB5

1%

o

3

3 LINES COMPILED
CPU-TIME USED IS

$COM SUB6,1,SUB6
1*

o%
3*

3 LINES COMPILED

RL
CALL OVERLAY (T7HSUB6 ,6)
WRITE (1,%) ‘'END MAIN'
END

. OCTAL SIZE= 137

0.2 SEC.
SUBROUTINE SUB1(N)
WRITE (1,%) 'SUBROUTINE' ,N,
CALL OVERLAY (T7HSUB2 ,2)
CALL OVERLAY (7HSUB5 y5)
END

. OCTAL SIZE= 124

0.2 SEC.
SUBROUTINE SUB2(N)
WRITE (1,%) 'SUBROUTINE' ,N,
CALL OVRECALL (7HSUB3 ,N+1)
CALL OVRECALL (THSUB3 ,N+1)
CALL OVRECALL (7HSUB4 ,N+2)
CALL OVRECALL (7HSUB4 ,N+2)
END

. OCTAL SIZE= 161

0.3 SEC.
SUBROUTINE SUB3 (N)
WRITE (1,%) 'SUBROUTINE' ,N,
END
OCTAL SIZE= 56

0.1 SEC.
SUBROUTINE SUBY4(N)
WRITE (1,%) 'SUBROUTINE' ,N,
END

. OCTAL SIZE= 56

0.1 SEC.
SUBROUTINE SUBS(N)
WRITE (1,%) 'SUBROUTINE' ,N,
END

. OCTAL SIZE= 56

0.1 SEC.
SUBROUTINE SUB6(N)
WRITE (1,%) 'SUBROUTINE' ,N,
END

. OCTAL SIZE= 56

ND-60.066.04

' CALLED'

' CALLED!

' CALLED'

' CALLED'

' CALLED'

' CALLED'

18 Relocating Loader
FUNCTION OF THE NRL

CPU-TIME USED IS 0.1 SEC.

$EX

@NRL

RELOCATING LOADER LDR-1935H

#PROG-FILE MAIN

*OVERLAY-GENERATION 7

¥L,OAD MAIN,FTNLIBR

FREE: 013561-177777

¥OVERLAY-ENTRY (1) SUB1

*1,0AD SUB1

OVERLAY 1 LEVEL 1 COMPLETED. AREA: 013361-013703
SUB1=013561

¥OVERLAY-ENTRY (2) SUB2

%#[OAD SUB2

OVERLAY 2 LEVEL 2 COMPLETED. AREA: 013704-014063
SUB2=013704

#QVERLAY-ENTRY (3) SUB3

¥L,OAD SUB3

OVERLAY 3 LEVEL 3 COMPLETED. AREA: 014064-014140
SUB3=014064

*OVERLAY-ENTRY (3) SUBA4

#,0AD SUBU

OVERLAY 4 LEVEL 3 COMPLETED. AREA: 014064-014140
SUBL=014064

¥OVERLAY-ENTRY (2) SUB5

*[,0AD SUB5

OVERLAY 5 LEVEL 2 COMPLETED. AREA: 013704-013760
SUB5=013704

*OVERLAY-ENTRY (1) SUB6

*#[,OAD SUB6

OVERLAY 6 LEVEL 1 COMPLETED. AREA: 013561-013635
SUB6=013561

*EXIT

6MAIN

START MAIN

SUBROUTINE 1 CALLED
SUBROUTINE 2 CALLED
SUBROUTINE 3 CALLED
SUBROUTINE 3 CALLED
SUBROUTINE 4 CALLED
SUBROUTINE 4 CALLED
SUBROUTINE 5 CALLED
SUBROUTINE 6 CALLED
END MAIN

ND-60.066.04

Relocating Loader 19
FUNCTION OF THE NRL

1.3 THE OPEN COMMAND

The loader OPEN command (used only with FORTRAN) provides the user
with the ability to open a file and connect it to a chosen unit number
when the OPEN statement is omitted from his program. This command has
the form:

¥OPEN <file name><decimal unit no.><access>

where

file name is a 1 to 16 character file or device name
acceptable to the SINTRAN III file system.
The default file type is SYMB.

decimal unit no. is a number in the range 1-99 chosen by the user
and which may appear in his I/0 statements.

access is one of the following:
SEQUENTIAL
DIRECT

SPECIAL (ND FORTRAN only)

and this determines the access method for the connection of the file.
The default is SEQUENTIAL. The first two should be used if the file is
to be accessed through FORTRAN READ/WRITE statements. SPECIAL should
be wused when the FORTRAN monitor calls RFILE, WFILE or MAGIP are
employed. In ND FORTRAN the following values are also acceptable:

W Sequential output (WRITE statements)

R Sequential input (READ statements)

WX Random input or output (for RFILE/WFILE
use)

RX Random input (for RFILE use)

RW Sequential input or output

(READ/WRITE statements)

WA Sequential output appending to an
existing file (WRITE statements)

WC Random input or output to contiguous
files (for RFILE/WFILE use)

RC Random input from contiguous files

(for RFILE use)

Note: This command may only be applied after the FORTRAN library
has been loaded.

ND-60.066.04

20 Relocating Loader
FUNCTION OF THE NRL

1.4 TWO-BANK PROGRAMS

To overcome address space constraints in the ND-100, a two-bank system
can be utilised where the compiler (PLANC, COBOL, FORTRAN-77) 1is
capable of generating separate output for the code and for the data
part. For each program, the address space is limited to 64K. A two-
bank program uses a seperate address space for code and data, thus it
may have 64K words of code and 64K words of data.

1.4.1 Two-bank Systems versus One-bank Systems

Since the ND-100 is capable of addressing data through an alternative
page table, programs may in principle consist of 64K code and 64K
data. Programs where code and data are separated in this way are
called "two-bank" programs, whereas '"normal" programs (i.e., those
whose code and data share a single address space of 6UK) are called
"one-bank" programs.

Two-bank object programs may be generated by an option in the various
compilers and can be loaded by NRL. The following should be noted:

- Two-bank programs must be linked with the two-bank version of
the appropriate run-time/library systen. The naming
conventions are: language name - 1BANK/2BANK, e.g. PLANC-
1BANK, FORTRAN-2BANK, COBOL-2BANK etc.

- Care must be taken when linking assembly or NPL routines with
two-bank systems.

- The code parts of two-bank systems are in prineciple
completely read-only.

- Overlay tree structures are still available, and both code
and data parts are brought in when a link is required.

ND-60.066.04

Relocating Loader 21
FUNCTION OF THE NRL

1.4.2 Two-bank Loading

Two BRF control numbers, PMO and DMO, are used to put the loader into
program or data mode. IMAGE-FILE or PROG-FILE should be wused when
building two-bank program systems, and they must be linked together
with the two-bank, run-time versions.

Progams compiled in two-bank mode are by default loaded into two 64K
banks, but may optionally be loaded into one 64K address space. In the
former case, the program system executes with all data access via the
alternate page table. In the latter case, execution is the same as for
programs compiled in the default one-bank mode except that the wuser
has explicit control for indicating where the code (read-only) and the
data (modifiable) is to be placed in memory. This control is obtained
with the command:

#SET-DATA-LOAD-ADDRESS <address>

The data, which would normally be loaded into the 64k data bank, will
now be placed at the specified address and upwards from it. (The one-
bank version of the run-time system must be used.)

All loader commands (SET-LOAD-ADDRESS, DEPOSIT etc.) will apply to
either the code or the data bank so long as the loader is first put
into the appropriate mode using the command:

¥SET-MODE <mode>

where <mode> is either PROG (the initial setting) or DATA. The current
mode will be printed on the terminal if no argument is supplied to the
command. SET-MODE DATA must be issued before the OV-GEN command for
two-bank overlaid programs.

Note: One-bank and two-bank programs may not be mixed. The BPUN
command does not apply to two-bank systems.

The following applies until +the two-bank RECOVER command 1is
implemented in the operating system:

Recovery of a two-bank system starts by reading the data bank contents
from the PROG-file into the alternate memory bank, and so for this
reason, the name as specified in the PROG-FILE or DUMP command, is
stored in the program file. If the file is to reside in user SYSTEM,
or will always be accessed by the user who dumps it, then no user name
is required. Otherwise the user name should be specified so that the
correct file can be found by RECOVER to load the data bank.

Where the extent of the code plus data is less than 64K, a copy of the
data may be kept beyond the code part so as to avoid access to the
PROG-file. The data is instead initialized by moving it from one bank
to the other. The command:

*DATA-BANK-COPY

ND-60.066.04

22 Relocating Loader
FUNCTION OF THE NRL

duplicates the data area in the PROG segment above the code. (Segments
in the RT-system are described in the SINTRAN III Real-Time Guide (ND-
60.133) and in the latest version of the RT-Loader (ND-60.051)). This
command should be given before the command DUMP or EXIT.

ND-60.066.04

Relocating Loader
FUNCTION OF THE NRL

ND~-60.066.04

23

24

ND-60.066.04

Relocating Loader

Relocating Loader 25
BINARY RELOCATABLE FORMAT

2 BINARY RELOCATABLE FORMAT

The output from the language processors (compilers,assemblers) is in
the form of relocatable modules which means that they have not Dbeen
assigned a fixed position in memory. This is possible since the code
is in binary relocatable format (BRF) in which information about
intermodule references such as procedure calls, references to global
data etc., will have been coded in symbolic form. The symbols, usually
called 1labels, are alphanumeric names assigned by the compiler to an
instruction or to a data item. Relocatability is maintained wuntil
these labels are transformed into machine addresses by the Nord
Relocating Loader.

ND-60.066.04

26 Relocating Loader
BINARY RELOCATABLE FORMAT

2.1 STRUCTURE OF BRF

BRF code is organized in eight-bit bytes and is not bound to any
particular data medium (magnetic tape, disc, etc.). The information
contained in the object program may be classified as:

- Control information which is held in a control byte and is
interpreted as a loader command.

- Programmed information which is held in two bytes containing
a sixteen-bit word and is termed a P-group.

- Symbolic information which 1is held in four (six in
FORTRAN,COBOL, etc.) bytes termed an S-group containing a
symbol of one to seven six-bit characters.

For further information see the MAC USERS GUIDE.

A BRF group is defined to be:

{control byte>

or <control byte><P-group><P-group>
or <control byted><S-group>
or {control byte><S-group><P-group>

BRF is a sequence of BRF-groups.

A program is a set of instructions and data which, when it is
interpreted, will perform an algorithm. A program may be in various
forms. It may be written in FORTRAN, assembly code, machine code, etc.
By means of special programs (i.e., compilers, assemblers, loaders and
so forth) the progam may be changed from one form to another.
Conceptually, however, we will regard the program to be of the same
type before and after the tansformation. We say that a program is
written in relocatable format or, more briefly, that the progam is
relocatable, if it does not have to occupy a specific memory position

Thus a FORTRAN program and an assembly progam (with only symbolic
addresses) are relocatable programs, while a program in binary form is
generally not relocatable. See the three following programs:

Example 1 Example 2 Example 3
Program PER Program PER Program PER

written in
assembly code

PER, JMP I *41

written in
binary form
(placed in
location 10)

125001

written in
binary form
(placed in
location 20)

125001

ND-60.066.04

Relocating Loader 27
BINARY RELOCATABLE FORMAT

OLE L 24
157 157 157
751 751 751
OLE, WAIT 151000 151000

The binary-form program in example 2 is bound to location 10 and
cannot be moved to location 20 without changes. As we see, the machine
code is not in relocatable format, since there is no information about
which words contain addresses (internal addresses) that have to be
modified depending on the placement of the program. In BRF, this
information is placed in the control byte. The program PER will, in
BRF, look like the figure below.

17 1 125001 2 4 1 157 1 781 1 151000 21 100878

Fig. 1. Example of BRF

More specifically, we organize the BRF groups by columns (see examples
2 and 3).

Mnemonics Control Bytes. P-groups

BEG 17 - Control bytes
LF 1 125001

LA 2 5

LF 1 187 = P grOU S

LE 1 751

LF 1 151000

END n 1000573

Fig. 2. Example of BRF

The contents of the control byte will form the control number. Control
number 17 (mnemonic BEG) marks the beginning of the program. In
FORTRAN the 17 (BEG) is followed by 32 (LONGF) which indicates that
all S-goups contain six bytes instead of four. Control number 1 (LF)
means that the corresponding P-group will be loaded unmodified, while
control number 2 (LR) means that the corresponding P-group contains an
address, which is given relative to the beginning of the program.
Control number 21 (END) is followed by a checksum.

ND-60.066.04

28 Relocating Loader
BINARY RELOCATABLE FORMAT

Statement numbers (labels) in FORTRAN and BASIC are represented by S-
groups where the two first and the two last bytes are zero. The third
and fourth byte contain the numerical label value.

ND-60.066.04

Relocating Loader 29
BINARY RELOCATABLE FORMAT

2.2 RELOCATION OF INTERNAL ADDRESSES

Suppose the loader has filled memory up to location 621 and is going
to load the object program shown in Figure 2.

R

621 -

Fig. 3. Memory Image Before Loading

R

621 .

125001

§25 = 820+ 5

157

751

1510Q0

Fig. 4. Memory Image After Loading

When the loader reads control number 17 (BEG), the current location-1,
in this case 620, is taken as the program's first address (the so-
called "program-base"). This program-base is added to those P-groups

which are preceded by the control number 2 (LR). The result is shown
in fig.4.

ND-60.066.04

30 Relocating Loader
BINARY RELOCATABLE FORMAT

2.3 PROGRAM UNITS

A program is composed of one main program and one or more subprograms.
Those subprograms which are part of the system are called library
subprograms and are available for wusers. A common name for main
programs and subprograms is program unit.

The address (or addresses) of a program unit where the execution
begins is called the entry point. If the program unit is a main
program, the entry point is called a start address. A word containing
the address of an entry point (of another program unit) is termed an
external reference.

ND-60.066.04

Relocating Loader 31
BINARY RELOCATABLE FORMAT

2.4 SEPARATE COMPILING/ASSEMBLING

When a compiler compiles a program, each program unit is translated
without any information about other program units. Therefore, the
program units need not be compiled at the same time. This is termed
separate compiling. Thus, the object program consists of one or more
BRF program units. The information necessary to link these together to
an executable program, namely the entry points and the external
references, is symbolic, and is placed in the S-groups. The meaning of
the S-group is determined by the preceding control number in the
following way:

Cantroi- byte- ——' ‘———"Sﬂroup

\ symbol

Control Number ——T

Fig. 5. S-group with Control Number

Control Number Mnemonic Meaning
14 MAIN Symbolic start address
15 LIBR Library subprogram entry point
16 ENTR Symbolic entry point
20 REF Symbolic external reference

The object program units begin with control number 17 (BEG), end with
control number 21 (END) and may contain at least one of the control
numbers 14 (MAIN) or 16 (ENTR). A library subprogram has a LIBR group
at the beginning of the program unit. Only the necessary library
subprogams are loaded when the LIBR symbol has been referenced by a
REF group and is not already defined as a symbolic entry point. If not
needed, the object program is only check~read to the END group,
without losing control of the BRF syntax.

If the loader does not receive any other information, the program
units are loaded consecutively, starting at a system-defined address.

However, the program units may be loaded elsewhere by means of the
control numbers.

10 (SFL) Start (continue) loading at the location in the
P-group.

11 (AFL) Continue at the current location + the relative

ND-60.066.04

32 Relocating Loader
BINARY RELOCATABLE FORMAT

address in the P-groups.

12 (SRL) Continue at the current program base + the
relative address in the P-group.

The main program and the subprograms may be read in an arbitrary
sequence, i.e., if a program unit "A" makes reference to another
program unit "B" it does not matter which of them 1is loaded first. The
(necessary) library subprograms are loaded last. If a library
subprogram A makes reference to another library subprogram B, then A
must appear first.

ND-60.066.04

Relocating Loader 33
BINARY RELOCATABLE FORMAT

2.5 LINKING OF PROGRAM UNITS

The loader has a symbol table where each entry consists of three words
for the symbol (the S-group) and one word (ADR) for the address.

ADR may have different meanings; if a symbol is not in the table, then
formally ADR = 0. If a symbolic entry point has been read, then ADR is
the memory address of the entry point. If only symbolic external
references to a symbol have been read, then the ADR is a pointer to
the last location at which the symbol was referenced. This 1location
contains a pointer to the preceding reference to the same symbol. The
first reference location contains the word 177777 (octal) to mark the
end of this 1list. One bit in the table entry is necessary to
discriminate between the two interpretations of ADR.

The 1link structure of referenced symbols (not defined) may be
visualised as in the figure below.

' -—{ -1 J 1. refersnce

[E—— 1
_.* J 2. reference

Element of referenced symbol
in the losded. tabie.

-
l—'.{; — last reference

Fig. 6. Symbol Reference Link

ND-60.066.04

34 Relocating Loader
BINARY RELOCATABLE FORMAT

2.6 COMMON BLOCKS

The memory area in which the loader puts the program is a continuous
area from a lower address up to the upper bound. The program units
therefore, normally grow upwards. For one-bank programs, COMMON blocks
are allocated from the upper bound downwards. Thus the COMMON block
address is found by subtracting the length from the upper bound and
reducing the upper bound appropriately.

For two-bank programs, COMMON blocks are allocated like all other data
areas, i.e., from the present data load address upwards.

The COMMON block address must be known before the addresses
referencing COMMON are loaded. Therefore the COMMON block address
which uniquely specifies the maximum block length, is defined by the
first program unit using COMMON data. This is the explanation of the
restriction that a COMMON block cannot be expanded by the succeeding
program units.,

Data in COMMON is referenced by indirect addressing. Such addresses
are followed by the control number 27 (ADS) which tells the loader to
add the COMMON block address.

The COMMON block lengths cannot be expanded. The ASF group has the
format:

<ASF><S-group><P-group>

where the S-group contains the name of the COMMON block, and the P-
group contains the block length. Thus, if the COMMON blocks A,B, and C
are declared in the object program in that order, the allocation of
the blocks would be as in the figure below.

PROGRAM BANK DATA BANK
0 0
ROUTINE A e n A)
ROUTINE B DATA A
ROUTINE C ngmxe%n B but not A)
I | DATA B
| ' COMMON
| | (declared in C but not A or B)
{ | DATA C
| |))
| ! f |
|] | |
177777, | | 177777, l

Fig. 7. Two-bank COMMON Blocks

The ADS-group has the format:

<ADS><S~group>

ND-60.066.04

Relocating Loader 35
BINARY RELOCATABLE FORMAT

with the interpretation that the value of the S-group is added to the
previously loaded address (P-group).

2.7 CHECKSUM

In order to detect read errors during loading, a checksum is placed
behind each END control byte. Here, everything from the BEG control
byte to the END control byte is added together, complemented and put
in a P-group. The control bytes are regarded as eight bits, the P-
group as sixteen bits, and the S-group as two or three sixteen bit
numbers. (In fig. 2 all the numbers are given as octal numbers.)

2.8 FIX-UP FACILITY

BRF and the loader are designed to allow single-pass, sequential
compiling as discussed in Section 2.1. This implies that the loader is
able to fix words which have already been loaded. This is done by the
four control numbers U4 (AFF), 5 (ARF), 6 (AFR), 7 (ARR) which all have
two P-groups. The second P-group contains an address, and the first P-
group has contents which will be added to the address. Both the
address and the contents of the first P-group (which may be an
address) may be relocated with the program base, and thus gives four
possibilities.

ND-60.066.04

36 Relocating Loader
BINARY RELOCATABLE FORMAT

2.9 DESCRIPTION OF THE BRF-CONTROL NUMBERS

The 1legal control numbers are sequential numbers starting at zero and
are interpreted as commands to the loader. They are 1listed in the
following table together with their mnemonics and their
interpretation. The terminology needs some explanation.

CLC is the current location counter. It contains the address where the
next word is to be placed. PB is the program base of the current
program unit. CDB is the COMMON data base (COMMON block address). W1
and Wn are the contents of the first to the n'th P-group,
respectively.

If "a" is an address or an address expression, then (a) is the content
of this address. The expression X -> (Y) means that the value of X
will replace the contents of Y.

1Control iMnemonic! No. ! Interpretation !

!Number ! ! of ! !
! (octal) ! 1Words! !
10 ! FEED ! 0 ! Neglect !
! ! ! ! !
11 ! LF ' ! W1->((CLC)),(CLC)+1->(CLC) !
! ! ! ! !
1 2 ! LR 11 ! Wi+(PB)~->((CLC)),(CLC)+1->(CLC) !
! ! ! ! !
1 3 ! LC 1t ! W1+(CDB)->((CLC)),(CLC)+1->(CLC) !
! ! ! ! !
[} ! AFF t 2 1 Wi+(W2)->(W2) !
! ! ! ! !
' 5 ! ARF 1 2 1 Wi+(PB)+(W2)->(W2) !
! ! ! ! !
1 6 ! AFR ! 2 ! W1+(W2+(PB))->(W2+(PB)) !
! ! ! ! !
17 ! ARR ' 2 ! W1+(PB)+(W2+(PB))->(W2+(PB)) !
! ! ! ! !
1 10 ! SFL [! W1->(CLC) !
! ! ! ! !
11 ! AFL [! Wi+(CLC)->(CLC), fill zeros !
! ! ! ! !
! 12 ! SRL 11 ! W1+(PB)->(CLC) !
! ! ! ! !
! 13 ! ! - ! Not Used !
! ! ! ! !
! 14 ! MAIN 1 2(3)! Symbol in S-group will become the main !
! ! ! ! entry !
! ! ! ! !
1 15 ! LIBR ! 2(3)! Conditional loading !
! ! ! ! !
1 16 ! ENTR ! 2(3)! Symbol in the S-group is assigned value !
! ! ! ! of CLC !
! ! ! ! !
117 ! BEG 10 t (CLC)->(PB) First control byte of a unit !
! ! ! ! !

ND-60.066.04

Relocating Loader

BINARY RELOCATABLE FORMAT

20
21

22

23
24
25

26

27

30
31
32
33
3l
35
36
37
40
41
42
43
uy

45

46
47

50

!
!
!
!
!
!
!
H
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
1
!
!
!
!
!
!
!
!
!
!
!
!
!
!

REF

END

INHB

EOF

LNF

RT

ASF

ADS

LONGF

INL

DBL

RLL

CXL

INC

DBC

RLC
CXC

BYL

BYC

NWL

DBG

PMO

!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
H
!
!
!
!
!
!
!
1
!
!
!
!
!
!
!
!
!

2(3)1

1

Gum sum eum s e omm tum sap

Symbol in S-group is referenced in CLC
W1 contains the BRF-checksum

Warns that compilation errors have
occurred

End of loading
W1,W2,...,WW0>=>(CLC), ..., (CLC+WO-1)

W1 contains real-time priority
<symbol><number> Defines common length.
Value of symbol in loader table = common

start address.

<symbol>+(CLC-1)->(CLC-1) Adds common
address

Not used
Flags six bytes S-group
Not used

w2->(W1+(PB))

Wi->(W1+(PB)+i-2) (i = 2 to 3)
Wi->(W1+(PB)+i-2) (i = 2 to 4)
Wi->(W1+(PB)+i-2) (i = 2 to T)
W5->(Wl4 + ADR)

Wi->(WlY + ADR + i-5) (i = 5 to 6)
Wi->(W4 + ADR + i-5) (1 =5 to T)
Wi->(Wl4 + ADR + i-5) (i = 5 to 10)

!
!
!
!
!
!
!
!
1
!
!
!
!
!
!
!
!
!
!
!

Not used !
!
!
!
!
!
!
!
!
!
!
!
1
1
!
!
!
!
!
!
1
!
!
!

W2(bit 0-7)->(W1+(PB))(bit 0-7) if W2 bit!
15=01
!
W2(bit 0-7)->(W1+(PB))(bit 8-15) if W2 !
bit 15=1!
!
W5(bit 0-7)->(W4 + ADR)(bit 0-7) if W5 !
bit 15=0!
W5(bit 0-7)->(W4 + ADR)(bit 8-15) if W5 !
bit 15=1!
1

W1 contains line number. (Not in use.)

!
!
Debug mode on/off !
!
Program bank mode !

ND-60.066.04

37

38 Relocating Loader
BINARY RELOCATABLE FORMAT

51 ! DMO ! Data bank mode

! contains name (3 words) and byte pointer
(2 words). End of table marked by -1.

! 1 1 1 1
! ! 10 ! !
! ! ! ! !
! 52 ! LRP L ! Same as LR but PB of program bank !
! ! ! ! !
! 53 ! LRD 11 ! Same as LR but PB of data bank !
!] ! ! !
1 54 ! DIC ! - 1 Dictionary table follows. Each element !
1 1 ! 1 !
1 ! ! 1 1
| 1 1 1 !

With reference to the control numbers 40,41,42,43, and 45, the W1, W2,
and W3 contain a common block name. At load time the symbol must be
defined; its value is referred to as ADR.

ND-60.066.04

Relocating Loader 39
THE BRF EDITOR

3 THE BRF EDITOR

The BRF Editor is a SINTRAN subsytem for handling files containing BRF
code (output from compilers, the MAC assembler, etec.). The code itself
was described in chapter 2; the files and the information held on them
can be manipulated by the commands described in this chapter. Thus one
can perform such operations as combining files, modifying libraries,
etc. Note the following:

- The first BRF unit number in a file has the unit number of
one. The unit number must be specified in decimal.

- The BRF Editor will check all units for syntax errors and
checksum error.

- The current location counter is the address at which the code
on the BRF file will be placed at load time.

- The default values for "first unit number" and "last unit
number" are the first BRF unit on the file and the 1last BRF
unit on the file respectively. All files used as parameters
(except "output file") have the default type :BRF.

- The units in commands can be identified by any of the names
found in the units MAIN or ENTR codes.)

3.1 Symbol Handling - Basic

The command:

#,IST-ENTRIES <input file> <output file>

will 1ist all ENTRY, MAIN and LIBR symbols found on the input file
onto the output file. The output will appear in the order: BRF unit
number, symbol name, and symbol type (ENTR, MAIN or LIBR).

#APPEND-FILE <source file> <destination file>

The BRF units in the source file will be appended to the destination
file after the last BRF unit in the destination file. The BRF control
number 23 octal (EOF) will be placed at the end of the destination
file.

#APPEND~UNIT <source file> <destination file> <unit>

The BRF units in the source file will be inserted in the destination
file after the unit identified by <unit>.

*FETCH-UNITS <source file)> <destination file> (<first unit>) (Klast
unit>)

The BRF units in the source file, specified by the parameters first

ND-60.066.04

40 Relocating Loader
THE BRF EDITOR

and last unit together with those units occurring between them, will
be appended to the destination file following the last BRF unit which
appears in it.

*DELETE-UNITS <file> (<first unit>) (<last unitd>)
The specified BRF units will be deleted from the file. <first unit>

will be the first unit deleted, then all BRF units following,
including <last unit> will be deleted.

3.2 Commands for Updating

®*EXCHANGE-UNITS <source file> <destination file>

Those BRF units in the destination file which have the same
identification as those in the source file, will be replaced by the
BRF units in the source file.

The various BRF units in the destination file will ahve the same
relative position within the file after the EXCHANGE-UNITS command 1is
given as they had before it.

BRF units in the source file which are not found in the destination
file, will be skipped and a warning message will be issued, after
which the exchanging will continue.

BRF units without symbolic identification cannot be replaced.

#WRITE-EOF-AFTER-UNIT (<unitd>) <destination file>
The control byte 23 octal (EOF) will be inserted after the specified

unit in the destination file. The default value for the unit is zero,
i.e., the EOF byte would be written as the first byte on the file.

3.3 Additional Symbol Commands

*MAKE-LIBRARY-UNITS <file>
A BRF control byte LIBR will be inserted at the beginning of each BRF
unit in the file, assuming that the unit does not already have one.

The first ENTR symbol in a unit will be the LIBR symbol in the unit.
Only one LIBR is inserted in each unit.

#MAKE-LIBRARY-FILE <source file> <destination file>

This command will copy the source file to the destination file and
insert a BRF unit containing a dictionary table of all the BRF units.

ND-60.066.04

Relocating Loader 41
THE BRF EDITOR

The dictionary table is the first BRF unit in the destination file.
Each element in the dictionary table consists of five words, 3 words
for the unit name and 2 words for the byte pointer of the unit.
Selective loading (search for referenced library units) from a file
with a dictionary table will be faster than loading the same file
without a dictionary table.

#RENAME-SYMBOL <old symbol> <new symbol>

This command,together with the CHANGE-FILE command, may be used to
change the names of symbols in a BRF-code file. <old symbol> is the
current name of the symbol while <new symbol> specifies the new one.
The symbols (which may be ENTR, REF, COMMON, MAIN, or LIBR) which have
been redefined are actually changed when the CHANGE-FILE command is
given. To reset any of the specified symbols he CLEAR-TABLES command
should be used.

¥CHANGE-FILE <file>

All the symbols on the file <file> which have been the subject of a
RENAME-SYMBOL command will now be changed.

*CLEAR-TABLES

This command will reset all outstanding RENAME-SYMBOL commands.

3.4 Other Functions

#],IST-BRF <input file> (<first unit>) (<last unit>) (<output file>)

All the BRF information regarding the <first unit> and all the other
units up to and including <last unit> on the <input file> will be
listed on the <output file>. The information given is as follows:

1. BRF control number (octal)
2. Name of the BRF control number

3. All symbolic names (REF, ENTR,
LIBR, MAIN, ASF, ADS etc.)

Note the following:

All "binary" information will be written
as octal numbers and such information
belonging to the BRF control numbers

1 and 24 (octal) will in addition

be "disassembled", i.e., listed as

MAC assembly code.

If the command SET-CLC (described below)
is given, then the value of the current

ND-60.066.04

42 Relocating Loader
THE BRF EDITOR

location counter will be written first on
on each line.

#SET-CLC (<value>)
This has the effect of writing the value of the current location
counter on each 1line when using the LIST-BRF command. <value>

specifies the first value of the current location counter and must be
given in octal form. Its default value is zero.

*RESET-CLC

This command will discontinue the appearance of the current location
counter when using the LIST-BRF command.

¥RESET

The BRF Editor will be reset.

*HELP

A list of the available commands will be obtained together with their

required parameters.

*EXIT

Control leaves the BRF Editor and returns to the operating system.

ND-60.066.04

Relocating Loader
THE BRF EDITOR

APPENDIX A

LOADER COMMAND SUMMARY

ND-60.066.04

43

ND-60.066.04

Appendix A 45
LOADER COMMAND SUMMARY

The loader is controlled from the terminal by the set of commands

listed below. The command words may be abbreviated and the parameters
(if any) are separated by a space or a comma.

#ASCII-DUMP <lower address><upper address>[<file name>]

The contents of the 1locations betwen the upper and lower addresses
will be dumped on the specified file, eight consecutive locations (16
characters) to a line. Non-printable characters appear as spaces. If
no file name is specified the characters are dumped on the terminal.

¥AUTOMATIC
<library file 1>

<library file n>

The specified library files will be loaded when the RUN, DUMP and BPUN
commands are used, if undefined references exist in the loader table.
The 1loading from the libraries will terminate when all references are
defined or when the library files have been scanned twice. If this
results in the necessary definitions, the specified command will be
performed, otherwise an error message will be written.

Example:
®AUTO

FTNLIBR
USER-LIBRARY

*
The command lines are terminated by a dot (.).

The pre-automatic mode buffer is not cleared by the RESET comand, and
thus the loader may be initiated and dumped for later recovery with
the automatic sequence intact. The buffer may be cleared by typing:

*AUTO

#BOUNDARIES <lower address><upper address>

This command is used to specify the dump area in connection with the
BPUN and DUMP commands.

¥BPUN <destination file name><{start addr><bootstrap addr>

ND-60.066.04

46 Appendix A
LOADER COMMAND SUMMARY

The program area (default or specified by the BOUNDARIES command) will
be dumped in absolute binary form on the destination file preceded by
an octal coded bootstrap. The main start entry of the program may be
specified symbolically or in octal form. The bootstrap address (octal
number) specifies where the bootstrap program (44 octal locations)
will be located if the program is loaded into a stand-alone NORD-
10/ND-100. Default destination type is BPUN. Default boundaries range
from the lowest to the highest address accessed by the loader since
the last recovery.

*DATA-BANK-COPY

This command will duplicate the data area which is beyond the code
part in a PROG segment. The copy so formed may be kept in order to
avoid access to the PROG-file.

¥DEFINE <symbol><octal value>

The symbol will be entered into the loader table. Its value will be
equal to the octal number specified.

Example:

¥DEF XXX 777

*DEPOSIT <octal address> [<new contents>]
#DEPOSIT <symbol name> [,<x octal displacement>] [,<new contents>]

The new contents are put into the octal address specified or into the
address of the symbol name plus or minus the displacement. If the last
parameter is missing the old contents are displayed as two ASCII
characters and as an octal number. They may be changed by typing the
new contents on the same line. By typing CR the next location will be
displayed automatically. The termination character is a dot (.).

*DUMP <destination file name>[<start address><restart address>]

This command saves the loaded program on the specified file. The
program may be retrieved with the RECOVER command, when it commences
at the specified start address. The restart address specifies where
the program should be started with the CONTINUE command. The dump
limits may be set by the BOUNDARIES command. Default boundaries range
from the 1lowest to the highest address accessed by the loader since
the last recovery. The main entry will act as default start and
restart addresses.

*ENTRIES-DEFINED [<file name>]

ND-60.066.04

Appendix A ' 47
LOADER COMMAND SUMMARY

All symbols (defined) present in the loader table will be printed on
the terminal. In addition the current and the upper bound are
displayed with the following format:

FREE: <current location><upper bound>

Default file name is the terminal.

Example:
E-D
XXX = 017777

FREE: 020000-17T77

*ENTRIES-UNDEFINED [<file name>]

This command is similar to ENTRIES-DEFINED. However, only undefined
symbols are printed. The default file name is the terminal.

*EXIT

Control is returned to the operating system.

*FIX

The current contents of the loader table are fixed (will not be
removed by RESET) and the current location will later act as the lower
bound reset address. The fixed entries do not appear in any listing of
the entries.

*HELP

List the available loader commands on the terminal.

%*IMAGE-FILE <file name>

The BRF information will be loaded into the file specified instead of
directly into main memory. The default file type is IMAG.

Example:

IM-FI MIRROR

ND-60.066.04

48 Appendix A
LOADER COMMAND SUMMARY

¥KILL <symbol>

If present, this symbol will be removed from the loader table.

gggmple:

*KILL BUG

*LOAD <file named>[<file name>...]

The file(s) specified will be 1loaded until the end-of-file is
encountered. The default file type is BRF.

Example:

LOAD SUB1, SUB2

%*OCTAL-DUMP <lower address><upper address> [<file name>]

The contents of the locations between the lower and upper addresses
will be dumped on the specified file, eight consecutive locations to a
line. If no file name is specified the contents are dumped at the
terminal.

Example:

#QCTAL-DUMP 0 3

000000: 000000 000000 000000 000000

¥ON-ERROR-EXIT

When this command is given, the loader will give control to the
operating system after the first error message. (This is useful for
MODE and BATCH jobs.)

*OPEN <file name><decimal unit no.><{access>

Note: Tais command may only be applied when the Fortran library is
load=ad,

where

file name is a 1 to 16 character file or device name

ND-60.066.0L4

Appendix A 49
LOADER COMMAND SUMMARY

acceptable to the SINTRAN III file system.
The default file type is SYMB.

decimal unit no. is a number in the range 1-99 chosen by the user
and which may appear in his I/0 statements.

access is one of the following:

SEQUENTIAL

DIRECT

SPECIAL (ND FORTRAN only)
and this determines the access method for the connection of the file.
The default is SEQUENTIAL. The first two should be used if the file is
to be accessed through FORTRAN READ/WRITE statements. SPECIAL should

be used when the FORTRAN monitor calls RFILE, WFILE or MAGTP are
employed. In ND FORTRAN the following values are also acceptable:

W Sequential output (WRITE statements)

R Sequential input (READ statements)

WX Random input or output (for RFILE/WFILE
use)

RX Random input (for RFILE use)

RW Sequential input or output

(READ/WRITE statements)

WA Sequential output appending to an
existing file (WRITE statements)

WwC random input or output to contiguous
files (for RFILE/WFILE use)

RC Random input from contiguous files

(for RFILE use)

Note: This command may only be applied when the FORTRAN library
is loaded.

*OVERLAY-ENTRY [(<level>)] <entry name 1>[,... ,<entry name n>]

This command specifies that the next overlay link is to be generated.
<level> is the overlay level and the default value is 1. <entry name
1> to <entry name n> are the names of the subprograms called with the
OVERLAY and/or OVRECAL routines from the previous level. The root link
is level 0.

*OVERLAY-GENERATION [<no. of overlay entries>]

The above command specifies that a multi-overlay system 1is to be
generated. The parameter is the total number of overlay entries given
in the OVERLAY-ENTRY commands. The default value is 128.

Note: The root link must be completed by loading the FORTRAN Library.

ND-60.066.04

50 Appendix A
LOADER COMMAND SUMMARY

*¥PROG-FILE <file name>

The BRF information will be loaded onto the file specified instead of
directly into main memory. The default file type is PROG.

#REFERENCE <symbol>[<octal address>]

1) If the symbol is not present in the loader table a -1 will be
put into the specified address and this address will be
referenced 1in the table. The specified octal address must be
an unused memory address. If no address is given then the
symbol will be treated as a referenced symbol only. It is
impossible to reference an undefined symbol in 177777
{octal).

2) If the symbol is present but already referenced (undefined)
the address specified will be 1linked into the reference
chain.

3) If the symbol is defined, its value will be put into the
address specified.

An example follows on how to load the routines SUB1 and SUB3 from the
file LIBSUB compiled in library mode:

*E-D

FREE: 013665-177777
*REF SUB1, 13665
*REF_SUB3, 13666
¥SET-LOAD-ADDRESS 13667
*LOAD LIBSUB

¥RENAME <o0ld symbol name><new symbol name>

The o0ld symbol name in the loader table will be replaced by the new
one. The defined or not-defined state and the value are left
unchanged.

¥RESET

The loader variables and tables are initialized (symbols removed).

*RUN

ND-60.066.04

Appendix A 51
LOADER COMMAND SUMMARY

The 1loaded program will be started at its main entry (defined by
control byte 14).

#SET-COMMON-ADDRESS <label>,<address>,<{size>

A common block with the name <label> 1is defined at the specified
address and with the specified size. The user should make sure that
this area is not overlapped by code or data.

*SET-DATA-LOAD-ADDRESS <address>

This command is used for two-bank loading. The data, which would
normally be 1loaded into the 64K data bank, will now be placed at the
specified address and upwards from it. (The one~bank version of the
run-time system must be used.)

¥SET-IO-BUFFERS <no. of 1K buffers>

This command will specify buffer space for the NORD-10 FORTRAN
buffered I/0. The parameter is the number of buffers of 2K bytes (=
2000 octal words) each. The number of buffers is limited to a maximum
of eight. The buffer space is reserved in the user's program area by
the loader. This command is only for FORTRAN programs loaded together
with the NORD-10 FORTRAN Library Run-time System. This command must be
given before the FTN library is loaded.

EXAMPLE:

*SET-IQO-BUFFERS 3

#SET-LOAD-ADDRESS <octal address>

Subsequent loading will start from the address specified.

#SET-MODE <mode>

This is a command for two-bank loading where <mode> 1is either PROG
(the initial setting) or data. All loader commands (SET-LOAD-ADDRESS,
DEPOSIT etc.) will now apply to either the code or the data according
to the mode specified. If no argument is given the current mode will
be taken.

¥SIZE <octal number>

ND-60.066.04

52 Appendix A
LOADER COMMAND SUMMARY

If the message LODER-TABLE OVERFLOW is given the loader table may be
expanded by this command. The octal number specifies the number of
entries in the table. 0ld table contents are lost. The default size is
300 octal entries. With this command the 1loader will be reset
automatically. The commands PROG-FILE and IMAGE-FILE will change the
default size to 2000 octal entries.

#UPPER-LIMIT <octal address>

The load area upper limit is set to the value specified.

*VALUE <symbol>

If defined, the value of the symbol specified will be printed on the
terminal.

Example:
*VAL NAME
000777

¥X-LOAD <file name1>[<file name2>....]

Exclusive load. Library sequences headed with defined symbols are
skipped while all other units on the specified file(s) will be 1loaded
until end-of-file is encountered. The default type is BRF. This
command is somewhat special and is used for system generation.

Example:

X-LOAD LIBRA

ND-60.066.04

Appendix A
LOADER COMMAND SUMMARY

APPENDIX B

THE LOADER ERROR MESSAGES

ND-60.066.04

53

ND-60.066.04

Appendix B ‘ 55
THE LOADER ERROR MESSAGES

AMBIGUOUS
The last command word has been abbreviated so that ambiguity results.
AT UPPER LIMIT

The current load address has reached the absolute upper limit or the
beginning of the common area.

AUTO-BUFFER FULL
No more space for AUTOMATIC commands.
BRF-CHECKSUM ERROR

The BRF-file contents have been corrupted as a result of hardwaré or
software errors occurring during reading or writing.

COMAND-BUFFER FULL

Too many characters in a loader command. The maximum no. is 64.
COMMON BLOCK EXCEEDS AVAILABLE MEMORY

The specified block is too large.

COMMON BLOCK EXPANDED

The length of an already-defined common block has been declared to be
larger in a subsequently-loaded program.

DOUBLY DEFINED

The symbol being defined (either by loading a file or by the DEFINE
command) has already been assigned a value.

ILLEGAL OVERLAY LEVEL
The overlay level should be 1 or increased by 1.
ILL-BRF CONTROL NO.

ND-60.066.04

56 Appendix B
THE LOADER ERROR MESSAGES

Non-interpretable information has appeared on the BRF file due to
hardware or software errors. -

ILL-FILE NO.

The specified file no. in the OPEN command must be in the range 1-99.
INSUFFICIENT PROGRAM

Error diagnostics have occurred during the compilation process.
LINKED FROM ILLEGAL OVERLAY LEVEL

Forward references should only be made to the next level.
LOADER-TABLE OVERFLOW

The loader symbol table is full.

NO IMAGE-FILE/PROG-FILE SPECIFIED

The command IMAGE-FILE or PROG-FILE must be used when creating Overlay
or Multi-segment systems, or when the routines are compiled with the
compiler commands DEBUG-MODE ON and/or SEPARATE-DATA ON.

NO MAIN ENTRY

The user is trying to start a program having no main module.

OPEN-CONNECT TABLE MISSING

The FORTRAN run-time system library must be loaded prior to this
command. :

OVERLAY SEGMENT-TABLE OVERFLOW

Too many overlay segments. The table size can be expanded by
increasing the maximum number of overlay entries in the command
OVERLAY-GENERATION.

SET-MODE DATA NOT SPECIFIED BEFORE OVERLAY-GENERATION

ND~-60.066.04

Appendix B 57
THE LOADER ERROR MESSAGES

When creating an overlay system of two-bank compiled routines, the
command SET-MODE DATA must be given before the command OVERLAY-
GENERATION.

UNDEFINED REFERENCES ON OVERLAY

A new overlay link is specified before the previous link has benn
completed.

UNDEFINED SYSTEM/LIBRARY ENTRIES ON ROOT SEGMENT

The appropriate language library must be loaded into the root link.

-WARNING~ MIXED ONE/TWO-BANK ROUTINES

It is not allowed to mix routines compiled with the compiler command
SEPARATE-DATA OFF with routines compiled with SEPARATE-DATA ON. There
is an exception in the case of routines written MAC and NPL.

Note: In addition to the messages listed above, some of the file-system
diagnostics may appear on your terminal.

ND-60.066.04

58

ND-60.066.04

Appendix ‘B

Appendix B
THE LOADER ERROR MESSAGES

APPENDTIX

C

INDEX

ND-60.066.04

59

ND-60 . 066 . 0’4

Appendix C

INDEX

access, types of
¥ASCII-DUMP command
¥AUTOMATIC command

basic loading

binary relocatable format

*BOUNDARIES command

¥BPUN command

brackets, square

BRF,
code
control numbers
editor
files
format
group

BRF Editor commands:
®APPEND-FILE
®APPEND-UNIT
#CHANGE-FILE
®CLEAR-TABLES
®*DELETE-UNITS
*EXCHANGE-UNITS
*EXIT
¥*FETCH-UNITS
*HELP
®LIST~BRF
¥ IST-ENTRIES
*RENAME-SYMBOL
¥RESET
*RESET-CLC
#SET-CLC

CALL OVERLAY
CALL OQVLINIT
CALL OVRECALL
checksum
command,
format
COMMON block
compiling,
separate
control byte
current location counter (CLC)

¥DATA-BANK-COPY command
*DEFINE command
¥DEPOSIT c¢ommand

#DUMP command

¥*ENTRIES-DEFINED command
®*ENRTIES-UNDEFINED command
entry point

error messages

#*EXIT command

external reference

file,
BRF

ND-60.066.04

-— -
.

.
- =)

.5,Appendix A
.1,Appendix A

.
ey

4, Appendix
b

— et o \) -
L]

.

NDNHWWMND N
L]
O =

.
—_

L] . e » . L]
EFEPIEPWLITESa NS WW 2 -

WWwWwWwLwwwwwuwwwwww
.

N 2 -
L]

~ NN
L]

.
w W W

N —
.

[AVIRAVEN)V)
e o e

_ 2 e I O = = o -

Appendix
Appendix
Appendix
Appendix

P Y
« o e
o« o 0
ENWN
- e e

1.1.1, Appendix
1.1.1, Appendix
2.3

Appendix B
1.1.1, Appendix
203

A

Appendix A

=

g

61

62

FORTRAN
¥FIX command
FORTRAN files
format of commands

groups,
BRF
P-
S-

#IMAGE-FILE command
image-file loading

¥KTILL command

label

libraries,
automatically called

library subprogram

link,
independent
root

¥,OAD command

load adress

loading,
basic
definition
image-file
multi-segment
overlay
prog-file
two-bank

#0CTAL-DUMP command
one-bank system
¥0PEN command
overlay,
loading
structure

program unit
¥PROG-~FILE command
prog-file loading

¥REFERENCE command
¥RENAME command
relocatable format
*RESET . command
#RUN command

S=-group
segment,

reference to a description of

*SET DATA-LOAD-ADDRESS command
*SET-~-LOAD-ADDRESS command
¥SET-MODE command

#SIZE command

square brackets

start address

symbol,

ND-60.066.04

Appendix C
INDEX

1.4.4

Appendix A

’
03,
, 1.4.4

1.1.6, Appendix A
1.1, 1.1.6

1.1.3, Appendix A

1.2.1
1.2.1
1.1.1, Appendix A
1.1.2

1.
1.
1
1
1
1 1.
1 , .u.

7
1
1.1.5, Appendix A
1.”.1

1.3, Appendix A

.7, Appendix A

.3, Appendix A
3, Appendix A

2.1, 2.4

» Appendix
, Appendix
s Appendix
» Appendix

L2 -

Appendix C

INDEX
definition
table

two-bank,

loading
programs
system

#UPPER-LIMIT command

#*VALUE command

ND-60.066.04

63

2
1, 2.5

1.1, 1.4.1

1.4

1.4.1

1.1.2, Appendix A

1.1.3, Appendix A

L2 22X 2222 X2} SEND Us YOUR COMMENTS!!! LA X LA XSS XX

. Are you frustrated because of unclear information in
this manual? Do you have trouble finding things?
Why don’t you join the Reader’s Club and send us a
note? You will receive a membership card — and
an answer to your comments.

Please let us know if you

¢ find errors

* cannot understand information

* cannot find information

* find needless information
Do you think we could improve the manual by
rearranging the contents? You could also tell
us if you like the manual!

sxrsxsnsvsxs HELP YOURSELF BY HELPING US!! . canrvrnss

Manual name: ND Relocating Loader Manual number: ND-60.066.04

What problems do you have? (use extra pages if needed)

Do you have suggestions for improving this manual ?

Your name: Date:
Company: Position:
Address:

What are you using this manual for ?

NOTE! Send to:

This form is primarily for Norsk Data A.S S
documentation errors. Software and Graphic Center)

system errors should be reported on P.0O. Box 25, Bogerud Norsk Data’s answer will be found

Customer System Reports. 0621 Oslo 6, Norway on reverse side

Answer from Norsk Data

Date

Answered by.

Norsk Data A.S

Documentation Department
P.O. Box 25, Bogerud
0621 Oslo6, Norway

