

TurboDOS 1.3 8086 NOTICES
Implementor's Guide

Copyright Notice Copyright 1984 by Software 2000, Inc. Allrights reserved. No part of this publication
way be reproduced, transmitted, transcribed,
stored in a retrieval system, or translated
into any language or computer language, in
any form or by any means, electronic, mecha-
nical, magnetic, optical, chemical, manual or
otherwise, without the prior written permis-
sion of Software 2000, Inc., 1127 Hetrick
Avenue, Arroyo Grande, California 93420,
U.S.A.

Trademark Notice TurboDOS is a trademark of Software 2000,
Inc., and has been registered in the United
States and in most major countries of the
free world. CP/M, CP/X Plus, Concurrent CP/M
and MP/M are trademarks of Digital Research.

Disclaimer Software 2000, Inc., makes no representatior.s
or warranties with respect to the contents of
this publication, and specifically disclaims
any implied warranties of merchantability or
fitness for any particular purpose. Software
2000, Inc., shall under no circumstances be

liable for consequential damages or related
expenses, even if it has been notified of the
possibility of such damages.

Software 2000, Inc., reserves the right to
revise this publication from time to time
without obligation to notify any person of
such revision.

""ll First Edition: january 1984 I

--I

TurboDOS 1.3 8086 ABOUT THIS GUIDE
Implementor's Guide

ABOUT THIS GUIDE

Purpose We've designed this 89££ Tmp1ementor's

to provide the information you need to know
in order to generate various TurboDOS config-
urations for 8086-family microcomputers, and

to write the driver modules for various peri-
pheral devices. This document describes the
modular architecture and internal programming
conventions of TurboDOS, and explains the
procedures for system generation, serializa-
tion, and distribution. It also provides
detailed interface specifications for hard-
ware-dependent driver modules.

Assumptions In writing this guide, we've assumed that you
are an OEM, dealer, or sophisticated TurboDOS

user, knowledgable in 8086-faniily microcompu-

ter hardware and assembly-language program-
ming. We've also assumed you have read both

the Tjge.r"S GJÚÁ£ and the proqra.Tnmer',q

GUsie, and are therefore familiar with the
commands, external features, and internal
functions of 8086 TurboDOS.

Organization This guide starts with a section that de-
scribes the architecture of TurboDOS. Itexplains the function of each internal module

of the operating system, and how these
modules may be combined to create the various
configurations of TurboDOS.

The next section explains the system genera-
tion procedure in detail, and describes each
TurboDOS parameter which can be modified
during system generation.

The third section of this guide explains the
TurboDOS distribution procedure, including
licensing, serialization, and support.

TurboDOS 1.3 8086 ABOUT THIS GUIDE
Implementor's Guide (Continued)

Organization The fourth section is devoted to an in-depth
(Continued) discussion of internal programming conven-

tions, aimed at the programmer writingdrivers or resident processes for TurboDOS.

The fifth section presents formal interface
specifications for implementing hardware-
dependent driver modules.

This guide concludes with a large appendix
containing assembler source listings of
actual driver modules. The sample drivers
cover a wide range of peripheral devices, and
provide an excellent starting point for
programmers involved in driver development.

Related Documents In addition to this guide, you might be
interested in four cther related documents:

. T\lrr)opo8 l3 9sexLa Gaiáe

. T1lrhopos LA 9QM P.roqraInTne.r's

. Tllrbopo,q]= %89 ProqrÁTnmer's

. T!lrpopos m MQ Tlnp1e1nentor's

You should read the first two volumes before
start into this document. The
introduces the external features and facili-
ties of TurboDOS, and describes each TurboDOS
command. The EQU prc)q.rammer's ex-plains the internal workings of TurboDOS, and
describes each operating system function in
detail.

You'll need the Z80 guides if you are pro-
gramming or configuring a TurboDOS system
that uses Z80 microprocessors.

TurboDOS 1.3 8086 TABLE OF CONTENTS

Implementor's Guide

ARCHITECTURE Module Hierarchy l-lProcess Level l-lKernel Level l-2
Driver Level l-2
TurboljOS Loader l-2
l·1odule Flow Diagram l-3

Process Modules l-4
Kernel Modules l-5
Driver Modules l-8
Standard Packages l-8

Package Contents Table l-9
Supplementary Modules l-lO

Memory Required l-11
Otber Languages l-12

SYSTEM GENERATION Introduction 2-l
TLINK Comnand 2-Z
Patch Points 2-7
Network Operation 2-19

Network l·iodel 2-19
Network Tables 2-19
Message Forwarding 2-22

DISTRIBUTION TurboDOS Licensing 3-l
Legal Protection 3-l
User Obligations 3-2
Dealer Obligations 3-2
Distributor Obligations 3-3
Serialization 3-4
Technical Support 3-5

SERIAL Command 3-6
PACKAGE Conmand 3-8
Distribution Procedure . , 3-ID

TurboDOS 1.3 8086 TABLE OF CONTENTS

Implementor's Guide (Continued)

CODING CONVENTIONS Undefined External References 4-l
Memory Allocation 4-2

List Processing
4—3

Task Dispatching 4-4
Interrupt Service 4-6
Poll Routines

4—7

Mutual Exclusion
4—8

Sample Driver Using Interrupts 4-9
Sample Driver Using Polling 4-lO
Inter-Process Messages 4—ll
Console Routines

4—12

Sign-On Message 4-12
Resident Process 4-13
User-Defined Function 4-14

DRIVER INTERFACE General Notes 5-l
Initialization 5-2
Memory Table 5-2
Console Driver 5-3
Printer Driver 5-5
Disk Driver 5-6
Network Driver 5-9
Comn Driver 5-12
Clock Driver 5-13

Bootstrap 5-lS

APPENDICES OTOASM Command A-l
North Star Driver Patch Points B-l

TurboDOS 1.3 8086 ARCHITECTURE
Implementor's Guide

ARCHITECTURE This section introduces you to the internal
architecture of the TurboDOS operating sys-
tem. TurboDoS is highly modular, consisting
of more than forty separate functional
modules distributed in relocatable form.
These modules are "building blocks" that you
can combine in various ways to produce a
family oE compatible operating systems. This
section describes the modules in detail, and
describes how to combine them in various
configurations.

Possible TurboDOS configurations include:

. single-user without spooling

. single-user with spooling

. network server

. simple network user (no local disks)

. complex network user (with local disks)

Numerous subtle variations are possible in
each of these categories.

Module Hierarchy The diagram on page l-3 illustrates how the
functional modules of TurboDoS interact. as
the diagram shows, the architecture of Turbo-
DOS can be viewed as a three-level hierarchy.

process Levw. Tríe highest level of the hierarchy is the
process

.
TurboDOS can support many

concurrent processes at this level. There is
one active process that supports the local
user who is executing comnands and programs
in the local TPA. There are also processes
to support users running on other computers
and making requests of the local computer
over the network. There are processes to
handle background printing (de-spooling) on
local printers. Finally, there is a process
that periodically causes disk buffers to be
written out to disk.

1"1

TurboljOS 1.3 8086 ARCHITECTURE
Implementor's Guide

Module Hierarchy
(Continued)

Kernel Level The ir.terruediate level of the hierarchy is
the K&kilsÜ 1mzizl. The kernel supports the
103 C-functions and T-functions, and controls
the sharing of computer resources such as
processor time, memory, peripheral devices,
and disk files. Processes make requests of
the kernel through the entrypoint module
OSNTRY, which decodes each C-function and T—

function by number and invokes the appro—
priate kernel module.

Driver Level The lowest level of the hierarchy is the
SiLíjL£K Ámze)l, and contains all the device—
dependent drivers necessary to interfaceTurboDOS to the particular haráware being
used. Drivers must be provided for all peri—
pherals, including console, printers, disks,
communications channels, and network inter—
face. A driver is also required for the
real-time clock (or other periodic interrupt
source).

TurboDOS is designed to interface with almost
any kind of peripheral hardware. It operates
most efficiently with interrupt-driven, DMA-
type interfaces, but can also work fine using
polled and programíed-l/O devices.

TurboDOS Loader The TurboDOS loader OSLOAD.COM is a program
containing an abbreviated version of the
kernel and drivers. Its purpose is to load
the full TurboljOS operating system from a
disk file (OSSERVER.SYS) into memory at each
system cold-start.

1"2

TurboDOS 1.3 8086 ARCHITECTURE
Implementor ' s Guide

Module Hierarchy
(Continued)

T|?rhorK)q Koclnle Hierarc¢ -" " -" " l

l I

I pespooj Ticl [jAr jÑet S\w. B1lfÍiers I

DSPOOL LCLUSR NETSVC FLUSHR I

I l LCLNSG NETTBL I !

I Process Level I LCLTBL l I I

I l CMDINT l l I

l l AUTLOD l I I

TInA(ier l SGLUSR l l I

! OSLOAD Í AUTLOG l l l

l LDRNSG ! BIOS l l l

I I I SUBMIT l I i

l I I

l I

l PecMe l

l Kernel Level OSNTRY l

I I I l I l l l

l =líQjE!L Nnnfi1e File Ñf't. Peq cl Qck 8iipport. l

! MEMMGR NONFIL FILMGR NETMGR RTCMGR DSPCHR I

I i CPFISUP FILSUP NETREQ l DSPSGL l

l l l FILCOK NSGFMT l CCMSUB I

I I I FILLOK NETTBL ! l

l I ! FFOMGR l I l

l l l DRVLOK ! j l

l I I I l l I

l I I l l l I

l l i l l l I ! l

I I c.nn1Tn ch PrirM'r cc)nRo1e Rpcc)rd l l Tnitia1 I

I I COMMGR LSTMGR CONÍ¢!GR BUFMGR l l SYSNIT l

I l I LSTTBL CONTBL DSKMGR l ! I I

l I l SPOOLR DOMGR DSKTBL I l I l

I I l SPLMSG INPLN ! ! l l (

l l { l I l I I i I

l Driver Level ! I l I I l l

l l i l l l l I i I

I ! con.m ch Printer Cc)n¶o1e Di sk Net]Ñork, cl ncP Tnitiií1. I

l I CO6ÍDRV LSTDRA CONDRA DSKDRA CKTDRA RTCDRV HDWNIT l

{ É=QJEJL LSTDRB or DSKDRB CKTDRB or I

I MEMTBL etc. CONREM etc. etc. RTCNUL l

|_
I

l-3

TurboDOS 1.3 8086 ARCHITECTURE
Implementor's Guide

Process Modules

Process Modules l tqoa1!1e Funct.icm___ ___l
!

I LCLUSR Responsible for supporting local l

l user's TPA activities.I l

l LCLMSG Contains all O/S error messages. l

l (

i LCLTBL Local user option table.
I l

! CMDINT Command interpreter, processes i

l commands from local user. l

I

l AUTLOD Autoload toutine which processes l

! COLDSTRT.AUT and WARMSTRT.AUT if l

l present. l

I

l SGLUSR Routine to flush/free disk buf- I

i fers at each console input. Use I

l for single-user configurations l

instead of FLUSHR. I

I l

] AUTLOG Automatic log-on routine. Used I

l when full log-on security is not !

I desired. See AUTUSR patch point. I

I l

l BIOS Supports C-function 50 (Direct l

l BIOS Call). I

I I

l SUBMIT Routine to emulate CP/M proces- I

I sing of $$$.SUB files. I

I l

l NETSVC Services network requests from I

i other processors on the network. I

l

I NETTBL Tables to áefine local network)

I topology, used by NETSVC+NETREQ. I

I l

I DSPOOL Processes background printing. l

I

! FLUSHR periodically flushes disk buf- !

I fers. Use for network server l

configuration instead of SGLUSR. l

I l

l-4

TurboDOS 1.3 8086 ARCHITECTURE
Implementor's Guide

Kernel Modules

Kernel Modules l HQdll1.e l Fnmfion l

I

I OSNTRY Kernel entrypoint module which !

l decodes each C-function and
l T-function by number and invokes I

I the appropriate kernel module. I

l

! FILMGR File manager responsible for l

l requests involving local files. I

l l

I FILSUP File support routines used by I

I FILMGR.
I i

I FILCOM Processes common file-oriented I

I requests that are never sent
over the network. l

l I

I FILLOK File- and record-level interlock I

routines called by FILMGR.

l FFCMGR FIFO management routines called i

I by FILLOK.
I

l DRVLOK Drive interlock routines. l

l

I BUFMGR Buffer manager called by FIL!4GR. I

I Maintains pool of disk buffers l

l used to speed local file access. I

I

I DSKI4GR Disk manager responsible for
I physical access to local disks, l

! called by BUFMGR. l

I

l DSKTBL Table defining drives A-P as I

l local or remote disk drives. l

I l

I NONFIL Responsible for functions that i

l are not file-oriented. I

l

I CPMSUP Processes C-functions 7, 8, 24, I

l 28, 29, 31, 37 and 107 which are i

l rarely used. May be omitted. I

l I

l-5

TurboDOS 1.3 8086 ARCHITECTURE
Implementor's Guide

Kernel Modules
(Continued)

Kernel Modules I l'IcÁule !
-_

Fl7nction

___(Continued) I l

l CONMGR Responsible for console I/O. !

I I

I CONTBL Links CONFIGR to console driver. l

l

I DOMGR Responsible for do-files.
I

I INPLN Console input line editor used I

I by CMDINT and C-functiorí 10.
I

l LSTblGR Responsible for printer output. I

i

: LSTTBL Table defining printers A-P and I

I queues A-P as local or remote. l

i I

I SPOOLR Print spooler which diverts I

l print output to a spool file !

wher, spooling is activated.
i Also handles direct printing to l

I remote printers. I

I COMMGR Responsible for communications l

I channel functions. l

l I

I NETREQ Responsible for issuing network I

request messages for all func- I

l tions not processed locally. l

l

\ FISGFMT Network message format table I

l used by NETREQ. I

i NETMGR Network message routing routine I

l used by NETSVC and NETREQ. I

l !

I RTCMGR Real-time clock manager respon- I

I sible for maintaining system
! date and time.
I I

i DSPCHR Multi-task dispatcher which con- l

trols sharing of the local pro- l

cessor among multiple processes. I

l l

l-6

TurboDOS 1.3 8086 ARCHITECTURE
Implementor's Guide

Kernel Modules
(Continued)

Kernel Modules |^=Lmj__-—_—---ÁEjAn: Qtj¢- __
l

(Continued) !

l DSPSGL Null áispatcher used as alterna- I

I tive to DSPCHR when only one l

i process is required (OSLOAD.CHD I

l and single-user w/o spooling). I

l l

I MEFIÍ4GR Memory manager responsible for !

dynamic allocation of memory, l

l and for supporting TPA alloca- l

I tion C-functions (53-58). I

I I

I COMSUB Common subroutines used in all I

configurations. l

i SYSNIT System initialization routine I

I executed at system cold-start. l

! !

i RTCNUL Null real-time clock driver, I

l used in configurations where !

I there is no periodic interrupt i

source. l

I CONREM Remote console driver for net- !

l work server to support SERVER {

! command. I

I I

I PATCH 128 bytes of zeroes, may be in- l

i cluded to provide patch area. I

! I

l-7

TurboDOS 1.3 8086 ARCHITECTURE
Implementor's Guide

Driver Modules

Driver Modules l PlMtí1e J_.__-__ Fllnction l

i l

l CONDR_ Console I/O driver. I

l I

I LSTDR_ Printer output driver(s). I

I I

! DSKDR_ Disk driver(s). i

l

l CKTDR_ Network circuit driver(s). I

l !

l COMDRV Corrununications channel driver. l

l I

I RTCDRV Real-time clock driver. I

I l

l MEMTBL Table defining the size and }

l structure of main memory (RAM). I

l l

i HDWNIT Cold-start initialization for I

l all hardware-dependent drivers. l

Standard Packages To simplify the system generation process,
the most commonly-used combinations of Turbo-
DOS nodules are pre-packaged into the follow-
ing standard configurations:
l PA.ckaqe [Pfscri.pti.on. l

l l

I STDLOADR cold-start loader !

] STDSINGL single-user without spooling I

l STDSPOOL single-user with spooling l

l STIMASTR network server }

l STDSLAVE simple user w/O local disks l

l STDSLAVX complex user with local disks i

l !

The contents of each standard package is
detailed in the table on the facing page.
Most TurboDOS requirements can be satisfied
by linking the appropriate standard package

together with a few additional kernel modules

plus the requisite driver modules.

l-8

TurboDOS 1.3 8086 ARCHITECTURE
Implementor ' s Guide

Standard Packages
(Continued)

l HMn1e i K I T,OAPR l ,q TNGT4 I SPooh l ?4.A,qTR I SLAVE I 8LAVX i

l LCLUSR l.l -
LCLUSR LCLUSR LCLUSR LCLUSR LCLUSR i

I LCLÉ'ISG .3 -
LCLMSG LCLFÍSG I,CLMSG LCLMSG LCLHSG !

I LCLTBL .O
- LCLTBL LCLTBL LCLTBL LCLTBL LCLTBL l

i CMDINT l .5 - CMDINT CMDINT CMDINT CMDINT CMDINT l

Í AUTLOD .2 -
AUTLOD AUTLOD AUTLOD AUTLOD AUTLOD l

! SGLUSR .l -
SGLUSR SGLUSR - -

SGLUSR i

I AUTL(JG .O
-

AUTLOG AUTLOG AUTLOG AUTLOG AUTLOG I

I BIOS .3 - BIOS EIOS BIOS BIOS BIOS I

I NETSVC 1.5 - - -
NETSVC

- -
I

l DSPOOL l .O
- -

DSPOOL I)SPC)OL
-

DSPOOL I

i FLUSHR .2 - - - FLUSHR - -
l

l OSLOAD l .l OSLOAD - - - - -
I

l LDRMSG .l LDRMSG
- - - - -

l

l OSNTRY .5 OSNTRY OSNTRY OSNTRY OSNTRY OSNTRY OSNTRY i

l FILMGR 2 .3 FILMGR FILMGR FILMGR FILMGR - FILMGR I

I FILSUP 2 .9 FILSUP FILSUP FILSUP FILSUP - FILSUP l

l FILCOM .3 FILCOM FILCOÉI FILCOM FILCOM FILCOM FILCOM I

l FILLOK l .8 - - - FILLOK - -
l

I FFOMGR l .l - - -
FFOMGR

- -
I

l DRVLOK .l - - -
DRVLOK

- -
i

I BUFMGR l .l BUFMGR BUFMGR BUFMGR BUFMGR
-

BUFMGR ;

! DSKMGP .6 DSKMGR DSKMGR DSKMGR DSKMGR - DSKMGR I

I DSKTBL .O DSKTBL DSKTBL DSKTBL DSKTBL DSKTBL DSKTBL l

I NONFIL .2 NONFIL NONFIL NONFIL NONFIL NONFIL NONFIL l

i CONMGR .4 CONMGR CONI'IGR CONMGR CONMGR CONMGR CONMG R I

I CONTBL .O CONTBL CONTBL CONTBL CONTBL CONTBL CONTBL I

l PGMLOD .9 -
PGPÍLOD PGMLOD PGMLOD PGMLOD PGMLOD I

! DOMGR .3 -
DCMGR DOMGR DOMGR DOMGR DOMGR I

I INPLN .2 - IF'PLN INPLN INPLN INPLN INPLN !

I LSTMGR .3 -
LSTMGR LSTMGR LSTMGR LSTMGR LSTMGR l

I LSTTBL .l - LSTTBL LSTTBL LSTTBL LSTTBL LSTTBL l

l SPOOLR .6 - -
SPOOLR SPOOLR SPOOLR SPOOLR I

l SPLMSG .l - -
SPLMSG SPLMSG SPLMSG SPLMSG l

l COMMGR .1 -
COMMGR COMMGR COMMGR COMMGR COMMGR I

I NETREQ l .6 - - - - NETREQ NETREQ i

l MSGFMT .l - - - -
MSGFMT MSGFMT I

I NETMGR .6 - - -
NETHGR NETMGR NETMGR l

l NETTBL .O
- - - NETTBL NETTBL NETTBL I

I RTCMGR .l -
RTCMG R RTCMGR RTCMGR

-
RTCMGR I

I DSPCHR .7 - -
DSPCHR DSPCHR DSPCHR DS PCHR l

l DSPSGL .2 DSPSGL DSPSGL
- - -

l MEMMGR l .O
-

MEMMGR MEMMGR MEMMGR MEMMGR MEMMGR {

I COMSUB .2 COMSUB COMSUB COMSUB COMSUB COMSUB COMSUB l

l ,SYÁÑTT .I - $ñt8NTT SY,SÑTT 8Y¶NTT ,¶Y8NTT ,SYSNTT I

TurboDOS 1.3 8086 ARCHITECTURE
Implementor ' s Guide

l-9

Standard packages
(Continued)

Standard Packages To supplement the rrtodüles contained in the"e
(Continued) standard packages, the following kernel mod-

ules may have to be added:

|-mgn=A---_-_-—-_wher£-Eeqijire¿ l

l !

I NETREQ+ In network servers (FIASTE) which l

I MSGFNT Íñúst make request" of other pro- j

I cessors. i

: NETSVC In network users (SLAVE/SLAVX) I

which must service requests from l

other processors. l

I l

I CPMSUP In all systems which require l

l C-functions 7, 8, 24, 28, 29, !

i 31, 37 and 107 to be supported I

l (SINGL/SPOOL/WSTR/SLAVE/SLAVX). l

I i

I CONREM In network servers (MASTR) that i

l have no console device attached, I

l to allow use of SERVER command l

I (in lieu of console driver). !

l I

i RTCNUL In all configurations which have I

i no RTC driver (including LOADR). l

l

l PATCH In all configurations which re- l

l quire an additional patch area. I

1"10

TurboDOS 1.3 8086 ARCHITECTURE
Implementor's Guide

Memory Requíred

Memory Required To estimate the memory required by a particu-
lar TurboDClS configuration, you need to take
into account the combined size of all func-
tional modules, driver modules, disk buffers,
and other dynamic storage.

Drivers typically require IK to 4K, and can
be even larger if the hardware is especially
complex. Disk buffer space should be as
large as possible for optirnum performance,
especially in a network server. About 4K of
disk buffer space is reasonable for a single-
user system, although less can be used in a

pinch. Other dynamic storage doesn't usually
exceed IK in single-user systems, 2K in net-
work servers.
The following table gives typical memory
requirements for standard TurboDOS configura-
tions:
I T,MPR 8T.NGT, SPOOL piRsTR sTiAvE ,ST,AV.X

-
I

l !

i O/S IOK 14K 16K 22K Ilk 19K I

I Drivers 2K 2K 2K 3K 3K 2K I

l Buffers 4K 4K 4K 16K -
4K I

i DynaInic_lK _IK _IK —3K _2K _2K l

I Total 17K 21K 23K 44K 16K 27K l

I

l

l-ll

TurboDOS 1.3 8086 ARCHITECTURE
Implementor's Guide

Other Languages

Other Languages To facilitate translation into languages
other than English, TurboDOS has been
implemented with all textual messages
segregated into separate modules. All such
message modules are available in source form
to TurboDOS licensees upon request.

The following modules contain all TurboDOS
operating system messages:

! P©dtíle j CQñtÁ.iñs l

i

! LCLMSG E'lost operating system messages. I

I SPLMSG Spooler error messages. l

l LDRMSG Loader messages for OSLOAD.CMD. l

l

In addition, a separate message module is
available flor each TurboDOS command.

l-12

TurboDOS 1.3 8086 SYSTEM GENERATION
Implementor's Guide

SYSTEM GENERATION This section explains the TurboDOS system
generation procedure in detail. It describes
how to use TLINK to link a desired set of
TurboDOS níodules together, and details the
numerous system patch points which may be
modified during system generation. Step-by-
step procedures and examples are provided.

Introduction The functional modules of TurboDOS are dis-
tributed in relocatable object form (.O
files). Hardware-dependent driver modules
are furnished in the same fashion. The
TurboDOS TLINK command is a specialized
linker used to bind the desired combination
of modules together into an executable
version of TurboDOS. TLINK also includes a

symbolic patch facility used to modify a

variety of operating system parameters.

To generate a complete TurboDOS system, you
typically must use TLINK several times. At
minimum, you have to generate a server opera-
ting "ystem OSSERVER.SYS. For a networking
system you also have to generate a user oper-
ating system OSUSER.SYS. Complex networks
may require generation of several different
user or server configurations. Finally, you
may have to use TLINK to generate a cold-
start bootstrap routine for the start-up PROM

or boot track.

At cold-start, the bootstrap routine loads
the loader program OSLOAD.COM into the TPA of
the server computer and executes it. OSLOAD

loads the server operating system from the
file OSSERVER.SYS into memory. The server
operating system then down-loads the user
operating system from the file OSSLAVE.SYS
over the network into each user computer.

2-l

TurboDOS 1.3 8086 SYSTEM GENERATION
Implementor's Guide

TLINK Comníand

TLINK Command The TLIFK command is a specialized linker
used for 8086 TurboDOS system generation, and
may also be used as a general-purpose linker
for object rnoc'ules produced by the TurboDG£
asseMiLer TASFI.

Syntax
I TLINK inputfn {outputfn} {-options}

I

Explanation The TLINK command links a specified collec-
tion of relocatable object modules together
into a single executable file. The "inputfn"
argument identifies the two input files used
by TLIP'K: a configuration file "inputfn.GEN"
and a parameter file "inputfn.PAR". The
"outputfn" argument specifies the name of the

executable output file to be created (normal-

ly type .CMD or .SYS). If "outputfn" is
oñúitted from the command, then "inputfn" is
also used as the name of the executable out-
put file, and shoiíLd include an explicit file
type (.CMD or .SYS).

If the .GEN file is found, it must contain
the list of object modules (.O files) to be
linked together. If the configuration file
is not found, then TLINK operates in an
interactive raode. You are prompted by an
asterisk * to enter a series of directivec
froni the console. The syntax of each direc-
tive (or each line of the .GEb' file) is:

l

I objfile {,objfile}... {;cominent}

L--—---——-——

The object files are assumed to have type .O

unle"s a type is given explicitly. A null
directive (or the end of the .GEN file) ter-
minates the prompting sequence and causes
processing to proceed.

2-2

TurboDOS 1.3 8086 SYSTEM GENERATION
Implementor's Guide

TLINK Command
(Continued)

Explanation After obtaining the list of modules from the
(Continued) file or console, "LINK links all of the

m-odules together, a two-pass process that
displays the name of each module as it is
encountered. When the linking phase is com-
plete, TLINK looks for a parameter file"inputfn.PAR" and processes it if pre": ent
(described below). Finally, the executable
file (.CMD or .SYS) is written out to disk.

NOTE: Each module of the TurboDOS operating
system is magnetically serialized with a

unique serial number. The serial number

consists of two components: an "origin
number" which identifies the issuing TurboDOS
licensee, and a "unit number" which uniquely
identifies each copy of TurboDOS issued by

that licensee. When used for TurboDOS
operating system generation, TLINK verifies
that all modules to be linked are serialized
consistently, and serializes the executable
file accordingly.

Options Options are always preceded by a "-" prefix,
and may appear before, between, or after the
file names. Several options may be concate-
nated after a single "-" prefix.
l option-l .__ ExplanHimn l

l l

l -8 Force 8080 model (single group) I

l -B No 128-byte base page I

l -C List to console, not to printer l

I -D Force data group G-Max to 64K I

l -H No .CMD header (implies -8, -B) !

I -L Listing only, no output file l

I -M List link inap I

I -R List inter-module references l

l -S List sorted symbol table l

l -U List unsorted symbol table l

I -X Diagnose undefined references l

2-3

TurboDOS 1.3 8086 SYSTEM GENERATION
Implementor's Guide

TLINK Command
(Continued)

Parameter File TLIF'K includes a synibolic patch facility that
may be used during TurboDOS system generation
to override various operating system para-
meters and to effect necessary software cor-
rections. Symbolic patches must be stored in
a .PAR file which may be built using any text
editor. The syntax of each .PAR file entry
is:
l l

i location = value {,va1ue}... {;cominent} l

I I

where the "value" arguments are to be stored
in consecutive memory locations starting with
the address specified by "location".

The "location" argument may be the name of a

public symbol, an integer constant, or an
expression composed of names and integer
constants connected by + or - operators.
Integer constants must begin with a digit to
distinguish them from names. Constants of
the form "Oxdddd" are taken to be hexadeci-
mal. Constants of the form "Oddáddd" are
taken to be octal. Constants that start with
a nonzero digit are taken to be decimal. The
"location" expression must be followed by an
equal-sign = character.

The "value" arguments may be expressions (as
defined above) or quoted ASCII strings, and
must be separated by commas. A "value" ex-
pression is stored as a 16-bit word if its
value exceeds 255 or if it is enclosed in
parentheses; otherwise, it is stored as an 8-

bit byte. A quoted ASCII string must be
enclosed by quotes "...", and is stored as a
sequence of B-bit bytes. Within a quoted
string, ASCII control characters may be spe-
cified by using backslant escape sequences
(as described in the section on TASM).

2-4

TurboDOS 1.3 8086 SYSTEM GENERATION
Implementor's Guide

TLINK Command
(Continued)

Error Eessages l l

I Serial number violation I

I Not enough memory I

l No object files specified I

l Can't open object file l

i Unexpected EOF in object file l

I Bad token in object file: <type> l

I Can't create output file I

l Can't write output file l

! Loád address out-of-bounds i

l Duplicate transfer address l

i Duplicate def: <name> l

j Undefined nante: <narne> l

I Too many externals in module i

l Name table overflow l

I I

2-5

TurboDOS 1.3 8086 SYSTEM GENERATION
Implementor's Guide

Patch Points

Patch Points The following table describes 42 public syra-
bols ir, TurboDOS which you may wish to modify
using the symbolic patch facility of TLINK.
(Other patch points may exist in hardware-
áependent drivers, but they are beyond the
scope of thi," docunient.)

i SvmPo1 J____-p9faWt_va1wm_—_--j tqQaAlml
l l

l ABTCHR = OX03 ;CTRL-C CONTBL l

l !

I Abort character (after attention). I

i l

I l

l ATNBEL = CX07 ;CTRL-G CCINTBL l

l l

i Attention-received warning character. l

l l

l ATNCHR = Qxl3 ;CTRL-S CONTBL i

l l

l Attention character. May be patched to l

I another character if the default value of l

l CTRL-S is needed Ey application programs. l

i A common choice is zero (NUL), which al- l

l lows the conscAe BREAK key to be used as l

l an attention key. l

l I

i I

l AUTUSR = OXEE AUTLOG l

I l

! Automatic log-on user number. Default i

I value of QxFF reqvires that user log-on l

{ via LCRON command. If automatic log-on l

l desired at cold-start, patch AUTUSR to I

! the desired user number (0-31), and set l

: the sign-bit if a privileged log-on is !

l desired. Generally patched to Ox80 in l

l single-user systerts to cause automatic l

l privileged log-on to user zero. I

I)

2-6

TurboDOS 1.3 8086 SYSTEM GENERATION
Implementor's Guide

Patch Points
(Continued)

Patch Points l Svm>o1. l __-__Refají]t_y,alg§--_--. l l·1oall1e I

(Continued) l !

l BFLDLY = (300) FLUSHR I

I

I Buffer flush delay determines how often]

! disk buffers are written to disk, stated I

l in system "ticks". Default value (300 I

i decimal) causes buffers to be flushed
l about every five seconás (assuming 60 I

! ticks per second). I

I

l I

I BUFSIZ = 3 BUFMGR !

l j

I Default disk buffer <ize (0=128, 1=256, i

i 2=512, 3=IK,..., 7=16K). Default value l

I specifies IK disk buffers. l

i I

! CKTAST = (OX0OOO),(CKTDRA), NETTBL I

I (OX0IOO),(CKTDRE), l

I (OX0200),(CKTDRC),
i (OX0300),(CKTDRD)
l l

! Circuit assigrment table defines network i

l to,pology. Contains NP1BCKT two-word en- l

I tries, one for each network circuit to I

! which this processer is attached. The I

! first word of each entry specifies the i

l network address by which this processor I

l is known on a particular circuit, and the l

! second word specifies the entrypoint ad- I

I dress of the circuit driver responsible !

I for that circuit. (Possibly several cir- I

' ! cults inay be handled by the saíne driver.) i

I

I CLBLEN = 157 CMDINT l

I I

i Command line buffer length defines long- I

l est permissible command line. The de- l

l fault value permits two BO-char lines. I

I I

2-7

TurboDOS 1.3 8086 SYSTEM GENERATION
Implementor's Guide

Patch Points
(Continued)

Patch points LsyIÁb9j_j-_-_-D£faRLkna=-_ I mAyj&-|
(Continued) l

I CLPCHR = "}" CMDINT I

I l

l Command line prompt character. l

l l

) l

I CLSCHR = "\" CMDINT I

l

! Command line separator character. l

i

! l

l COLDFN = 0,"COLDSTRT","AUT" AUTLOD !

l l

) File name and drive for cold-start auto- l

l load processing (in FCB format). 1

! I

I COMPAT = O FILCOM l

I !

l Default cmnpatibility flags which define l

I rules to be used for file-sharing. Patch l

I to OXF8 to relax most MP/M restrictions. I

l l

l CONAST = 0,(CONDRA) CONTBL l

: I

l Console assignment table defines how con- I

I sole I/O is handled. First byte passed l

I to console driver, and commonly defines l

l the channel number (e.g., serial port) to I

I be used for the console. Following word I

l specifies the entrypoint address of the !

I console driver to he used. l

l I

I CPWJER = Ox3l NONFIL l

l l

l CP/í4 BDOS version number returned by I

I C-function 12 in L-register. I

2-8

TurboDOS 1.3 8086 SYSTEM GENERATION
Implementor's Guide

Patch Poínts
(Continued)

Patch Points LsjuülQl l

___- PefAll]t VaÍl},e ! Molil11e I

(Continued) I

I DEFDID = (O) NETTBL I

!

! Default network destination ID, used for l

! routing all network requests that are not I

! related to a particular disk drive, queue I

I or printer. In a user, DEFDID should be l

! set to the network address of the server. I

I I

I DSKAST = O,(DSKDRA),1,(DSKDRB), DSKTBL l

l OXFF,(0),OXFF,(O),... I

I I

l Disk assignment table, an array of 16

I three-byte entries (one for each drive
! letter A-P) that defines which drives are I

I local, remote, and invalid. l

i j

! For a local drive, the first byte must I

I not have the sign-bit set. That byte is l

! passed to the disk driver, and is common- i

I ly used to differentiate between multiple i

l drives connected to a single controller. I

I The following word specifies the entry- l

l point address of the disk driver to be I

" l used. l

I

I For a remote drive, the first byte must l

l have the sign-bit set. The low-order I

I bits of that byte specify the drive let- !

! ter to be accessed on the remote proces- I

l sor. The following word specifies the I

! network address of the remote processor. l

I For an invalid drive, the first byte must I

! be QxFF, and the following word should be I

l (O).
I

2-9

TurboDOS 1.3 8086 SYSTEM GENERATION
Implementor's Guide

Patch Points
(Continued)

Patch Points] ,sYTnbo]. l

_. pefmj.E-y^]=----—i_tiuRjmi
(Continued) l !

: DSKAST (Continued) DSKTBL l

I NOTE: In user configurations STDSLAVE i

! and STDSLAVX, the default values are: l

l i

l DSKAST = Ox80,(0),Ox8l,(0), I

I Ox82,(0),Ox83,(0),
l ...,CX8E,(O),OX8F,(O) I

l l

l l

l DSPPAT = 1,1,1,...,1 LSTTBL l

I I

I De-spool printer assignruent table, an ar- !

l ray of 16 bytes (one for each printer
l letter A-P) that defines the initial l

I queue to which each printer i-s assigned. I

i Values l through 16 correspond to queues l

l A-P, and O means that the printer is off- I

I line. The default value assigns alll printers to queue A. l

I

] ECOCHR = OxlO ;CTRL-P CONTBL I

I Echo-print character (after attention). I

i

l l

I EOPCHR = O LSTTBL l

i !

I End-of-print character. Play be patched I

""""""""'"" l to any non—null character, in which case i

.
! the presence of that character in the

1 l print output stream will automatically
"' I signal an end-of-print-job condition. !

I The value zero diszables this feature. l

l l

lj-

2-lO

TurboDOS 1.3 8086 SYSTEM GENERATION
Implementor's Guide

Patch Points
(Continued)

patch Points l 1sYmpo1- j_____M=l.t_ygjw----_--Ll49guim|
(Continued) I l

I FWDTBL = (0XFFFF),(OXFFFF), NETTBL l

l (OxFFFF),(0xFFFF),OxFF l

I

I Network forwarding table, an array of l

i two-byte entries that define any explicit I

l message forwarding route" to be used by l

l this processor. The first byte of each I

l entry specifies a "foreign" circuit num- l

l ber N, and the second byte a "domestic" !

l circuit number C. Any messages destineá i

I for circuit N will be routed via circuit l

I C. This table is variable-length, termi- l

l nated by Oxff, and defaults to empty. l

! [

I LDCOLD = OXFF AUTLOD I

l j

I Cold-start autoload enable flag. Patch I

) to zero if you want to áisable the cold- l

l start autoloaá feature (COLDSTRT.AUT). l

l I

l LDWARM = OXFF AUTLOD :

) I

l Warm-start autoload enable flag. Patch !

l to zero if you want to disable the warm— l

! start autoload feature (WARI'¶STRT.AUT). I

i I

! l

l LOADFN = 0,"OSMASTER","SYS" O,"LOAD l

i l

! Default file name and drive (in FCB for— I

l rnat) loaded by OSLOAD.COM. Drive field I

) (FCB byte O) may be patched to an expli- l

l cit drive value to inhibit scanning. l

l I

2-ll

TurboDOS 1.3 8086 SYSTEM GENERATION
Implementor's Guide

patch Points
(Continued)

Patch Points l SYWPo] I DMajílmyA]R£-—----l l'íoQí1e I

(Continued) (l

I LOGUSR = 31 FILCOM l

l l

l User number for logged-off state. l

l l

l l

l NNBCKT = l NETTBL I

l l

l Number of network circuits to which this i

i processor is connected. I

|_________-__ I

l I

i NMBEBS = O NETMGR I

l

l Number of message buffers pre-allocated I

l at cold-start. t·lessage buffers are allo- I

! cated dynamically as needed, but this may I

l cause fragmentation which prevents you l

I from changing the size of the disk buffer l

l pool with the BUFFERS command. If this is I

l important, patching NMBMBS to a suitable l

l positive value will eliminate the problem l

l (twice the number of network nodes is a i

l good starting value to try). l

L___- !

l I

l NMBRPS = O NETMGR l

I

l Number of reµly packets pre-allocated at l

l cold-start. Reply packets are allocated l

I dynamically as needed, but this may cause)

I fragmentation which prevents you from l

I changing the size of the disk buffer pool l

i with the BUFFERS cormand. If this is l

l important, patching NMBRPS to a suitable I

I positive value will eliminate the problem I

I (the number of network nodes is a good l

l starting value to try). I

2-12

TurboDOS 1.3 8086 SYSTEM GENERATION
Implementor's Guide

Patch points
(Continued)

Patch Points l ,%inho1 Pefnult Walñe ___j_-W9Uml
(Continued) l l

I NMBSVC = 2 NETSVC l

I I

I Number of network server processes to be l

l activated. (The number of network nodes I

l is a good starting value to try.) l

I l

l NEIBUFS = 4 BUFMGR l

i l

I Default number of disk buffers allocated l

I at cold-start. Must be at least 2. For I

! optimum performance, allocate as many I

! buffers as possible (consistent with TPA l

l and other memory requirements). !

I !

l l

l OSPUJEN = (128) ;2K bytes MEMMGR l

l l

I Length (in paragraphs) of the memory area I

1 to be allocateá immediately above the l

I TurboDOS operating system resident for I

l disk buffers and other dynamic working I

] storage. The default value (128 para- l

l graphs or 2K bytes) is appropriate for a l

l simple user with no disk buffers. For l

I other configurations, patch OSMLEN to a l

l value large enough to accomodate the disk I

! buffer pool plus at least 2K bytes of l

l miscellaneous dynamic space. Divide the l

I total byte-length of the space required l

l by 16 to give the value of CISMLEN in l

l paragraphs. !

I !

i !

l PRTCBR = OXOC ;CTRL-L CONTBL !

l)

l End-print character (after attention). l

l This is a console attention-response, not l

l to be confused with EOPCHR. I

I I

2_13

TurboDOS 1.3 8086 SYSTEM GENERATION
Implementor's Guide

Patch Points
(Continued)

Patch Points l sYNboIA_____=glt--yalu£----.-_L.l'tmY1£_!
(Continued) i l

! PRTF1OD = l LCLTBL l

I l

I Initial print rüode for local user. The]

l default value of l specifies spooling.
! Patch to O for direct, or 2 for console. i

I

I I

l PTRAST = 0,(LSTDRA),OXFF,(O), LSTTBL !

l 0xFF,(O),OxFF,(O),...
I

l Printer assignnaent table, an array of 16 l

l three-byte entries (one for each printer I

I letter A-P) that defines which printers I

l are local, reniote, and invalid. l

l

i For a local printer, the first byte must l

! not have the sign-bit set. That byte is l

l passed to the disk printerr, and is com- I

] monly defines the channel nuraber Ñ.Ckv l

: serial port) to be used for the printer. l

I The following word specifies the entry- l

! point address of the printer driver.
{ l

) For a remote printer, the first byte must I

i have the sign-bit set. The low-order i

i bits of that byte specify the printer !

) letter to be accessed on the remote Fro- l

) cessor. The following word specifie,ch the :

i network address of the remote proce"ser. I

l i

I For an invalid priríter, the first byte ;

l must be OxFF, and the following word !

l should be (C). l

l

! NCtí'E: In user configurations STDSLAVE j

) ar.d STDSLAVX, the cIefault values are: l

!

I PTRAST = Ox80,(0),Ox8l,(0), l

l OX82,(0),OX83,(0), i

l ...,OX8E,(O),OX8F,(O) I

I l

2-14

TurboDOS 1.3 8086 SYSTEM GENERATION
Implementor's Guide

patch Poínts
(Continued)

Patch Points l SvmPol. i _-_-_p4aalt_-yjáíue ______LkiMüjml
(Continued) I l

I QUEAST = O,(Q),0XFF,(O), LSTTBL !

I OXFF,(0),OXFF,(O),... l

I

I Queue ascignment table, an array of 16 l

l three-byte entries (one for each queue
l letter A-P) that clefiries which queues are I

I local, remote, and invalid.
I

I For a local queue, all three bytes rriust !

I be set to zero. I

l

l For a reñíote queue, the first byte must I

l have the sign-bit "et. The low-order
l bits of that byte specify the queue let— I

I ter to be accessed on the remote proces— l

! sor. The following word specifies the
! network address of the remote processor. i

l l

I For an invalid queue, the first byte rüust i

I be OXFF, and the following word should be i

l (O). !

l

I NOTE: In user configurations STDSLAVE l

l and STDSLAVX, the default values are: I

l

I QUEAST = OX80,(0),OX81,(0), I

I OX82,(0),OX83,(0),
l ...,OX8E,(O),OX8F,(O) I

l

I QUEPTR = l LCLTBL I

I

I Initial queue or printer assignment. If l

l PRTI4OD = l (spooling), QUEPTR specifies a !

j queue assignment. If PRTFIOD = O (direct) I

! QUEPTR specifies a printer assignment. I

! In both cases, values l through 16 corre- I

I spond to letters A-P, and zero means do I

I not queue cr prir.t off-line. l

I

2-15

TutboDOS 1.3 8086 SYSTEM GENERATION
Implementor's Guide

Patch Points
(Continued)

Patch Points i ,SYTiÍbo1- l "b"eTauíí7bíue"""" I P%dule l

(Continued) I [

l RESCHR = Oxll ;CTRL-Q CONTBL I

;

I Resume character (after attention). i

I

l I

I SCANDN = O OSLOAD l

I l

l Scan cZirection flag for OSLOAD. Patch to l

I OxFF to .qcan P-tO-A (instead of A-to-P). !

l [

l SLVFN = "CSSLAVE ","SYS" NETSVC I

! i

i Name and type of file (in FCB format) to I

l be down-loaded into user processors. I

L_______ !

l I

I SPLDRV = OXFF LCLTBL I

I

l Initial spool drive. Default value OFF i

I indicates spool to system disk (disk from i

l which TurboDOS was loaded at cold-start). }

l Patch to O through F to specify a partí- l

l cular drive A-P. I

l

I SRHDRV = O CÍ4DINT l

I

l Search drive for command files. Patch to I

l value l through 16 to search drive A-P I

I if coriunand is not found on current
I (default) drive. patch to Oxff to search I

l system disk (disk frorri which TurboDOS was l

l loaded at cold-start). Default value O l

l diqables this feature altogether. l

I

2-16

TurboDOS 1.3 8086 SYSTEM GENERATION
Implementor' s Guide

Patch Poínts
(Continued)

Patch Points ! svmm i

__
F-e£acíjLt UíLue____j_ Mochil e l

(Continued) I I

I SUBFN = 0,"$$$ ", "SUB" SUBMIT I

(l

l Submit file name searched for by optional !

l CP/PI submit-f lle emulator. l

I

l WAPNFN = O
,

"WARMSTRT"
, "AUT" AUTLOD l

I I

I File name and drive for warm-start auto- I

i load processing (in FCB format) .
I

l

2-17

TurboDOS 1.3 8086 SYSTEM GENERATION
Implementor's Guide

Network Operation

Network Operation TurboDOS accomodates a w1Ae variety of net—
work topologies, ranginc from the siníplest
point-to-point 'Yxver/user networks to the
most complex star, ring, and hierarchical
structures.

Network Model A TurboDOS network is defined to consist of
up to 255 cjrc!}its, with up to 255 nsz9m
(ptocemsors) on each circuit. Each node has

a unique 16-bit netwQrk Address consisting of
an B-bit circuit number plus an B-bit node
number (on that circuit).
Any processor may be connected to several
circuits, if desired. A proces'"or connecteCl
to multiple circuits has multiple network
addresses, one for each circuit. such a
processor even niay be set up to perform raes—

sage forwaráing from one circuit to another,
permitting dialogue between network nodeE
that do not share a commori circuit between
them (more on this later).

Network Tables The actual network topology is defined by a
series of tables in each processor. The
tables are set up during system generation,
and define the network as "seen" from the
viewpoint of each processor. The tables are:
l SYWPoI ! -.D=grjptj9p- -—--—_!
l I

I NKBCKT A byte value that Clefines the I

l r.umber of network circuits to I

l which this processor is connec- i

l ted. l

i I

2-18

TurboDOS 1.3 8086 SYSTEM GENERATION
Implementor' s Guide

Netvork Operation
(Continued)

Ketwork Tables l SV»oi. |_
__- -_ _-_ I)£Esrjptj&jlL - - — ---- -- -. —

i

(Continued) l

i CKTAST The circuit assiccnmer-t table I

l containing NMBCKT entries defin- i

! ing the network address by which l

I this processor is known on each !

i circuit, and specifying the net- !

! work circUt driver respon".ible l

l for each handling each circuit. l

l l

I DSKAST The disk assigmíient table that i

i specifies for all drive letters I

i A-P which are local, remote, and l

invalid. This table specifies I

I a network address for each re- I

note drive, and a disk driver I

I for each local drive.
' I

! PTRAST The printer assignment table l

that specifies for all printer !

! letters A-P which are local, re- I

l raote, and invalid. This table i

specifies a network address for I

each rew.ote prir.ter, and a prin- I

ter árit"er for each local prim— I

te r .
l

l I

! QUEAST The queue assignment table that I

l specifies for all queue letters i

l a-p which are local, remote, and I

invalid. This table specifies a I

l network acldres," for each reroote I

queue .
l i

I DEFDID The áefault network destination l

! ID, used for routing all network I

I requests that are not related to I

l a specific disk drive, printer, I

i or queue.
I

2_1 9

TurboDOS 1.3 8086 SYSTEM GENERATION
Implementor's Guide

Network Operation
(Continued)

Network Tables l SYwPol] Deszcrjjp-tí9rL____ ___-l
(Continued) i l

I FWDTBL The raessage forwarding table l
I that specifies any additional
! circuits (not directly connected i

to this processor) which may be I

accessed via explicit iuessage l

forwarding, and how messages l

l destined for such circuits are !

I to be routed.
I

These tables are pre-defined with default
values to make set-up of simple server/user
networks very easy. For complex multi-circuit networks, the set-up is somewhat more
complicated (as might be expected).

Refer to the preceding PáÉCjí points sub-
section for details of the organization and
defaults for these network tables.

2-20

TurboDOS 1.3 8086 SYSTEM GENERATION
Implementor's Guide

Network Operation
(Continued)

Message Forwarding The network architecture of TurboDOS suFpQrts
two kinds of message forwarding: "implicit"
and "explicit". To understand the distinc-
tion, consider the case of a network with
three processors (PI, P2, and P3) connected
by two circuits (Cl and C2) as follows:
l i I l l i

i pi j------cl------j p2 |------c2-----| p3 i

1_| 1_| 1_|
A program running in PI makes an access to
drive D. Suppose the disk as"ignment tables
in the three processors are set up in the
followincj fashion:

. Pl's DSKAST defines its drive D as a

remote reference to P2'S drive B.

. P2's DSKAST defines its drive B as a

remote reference to P3's drive A.

. P3'S DSKAST defines its drive A as a

local device attached directly to P3.

In this case, pl's access to its drive D

actually winds up implicitly accessing P3'S
drive A. This is implimit forwarding.

Alternatively, suppose Pl's DSKAST defines
its drive D as a remote reference to P3'S
drive A, and that Pl's FWDTBL provides that
messages destined for circuit C2 may be
routed via Cl. In this case, PI sends a

request to P3 on circuit Cl. P2 receives the
request, recognizes that it should be forwar-
ded, and retransmits the request to P3 via
circuit C2. Thus, PI accesses P3'S drive A
with the assistance of P2, but this time PI
is not aware of P2'S role in the transaction.
This is eYp1icit forwarding.

2-21

TurboDOS 1.3 8086 DISTRIBUTION
Implementor's Guide

DISTRIBUTION This section explains the TurboDOS distribu-
tion procedure in detail. It covers TurboDOS
licensing requirements, and the obligations
of licensed distributors, dealers, and end-

users. It descri-bes how to riiake uµ and
serialize TurboDOS distribution disics.

Although this section is of concern primarily
to licensed TurboDOS distributors, we've
included it here so that dealers and end-
users can gain a better perspective on the
overall distribution process.

TurboDOS Licensing TL}rboDOS is a proprietary software µrociuct of
Software 2000, Inc. As such, it is protected
by law against unauthorized use and reproduc-
tion. Authorization to use and/or reproduce
TurboDQS is granted only by written license
agreement.

Legal Prgtection TurboDOS progranís and documentation are copy-
righted, which means it is against the law to
make copies without express written authori-
zation from Software 2000 to do so.

The word "TurboDOS" is a trademark owned by
Software 2000 and registered in Class g (com-

puter software) and Class 16 (documentation)
with the trademark offices of the Uniteá
States and níOat of the developed countries of
the free world. TPÁS means it is against the
law to make use of the TurboDOS trademark
without express written authorization from
Software 2000.

Software 2000 has licensed certain companies

to diú'tribute TurboDOS. Such distributors
are authorized to use the TurboDOS trademark,
and to reproduce, distribute, and sub-license
TurboDOS programs and docuraentation to deal-
ers and end-users.

3-l

TurboDOS 1.3 8086 DISTRIBUTION
Implementor's Guide

TurboDOS Licensing
(Continued)

User Obligations TurboDOS may be used only after the user has
paid the required license fee, signed a copy
of the TurboDOS end-user license agreement,
and returned the signed agreement to the
issuing TurboDoS distributor. Then, TurboDOS
ínay be used only in strict conformance with
the terms of the license.

Each end-user license allows TurboDOS to be
used on one specific computer "ystem identi—
fled by níake, model, and serial number. The
end-user license may not be transferred from
one computer system to another, and expressly
forbids copying programs and documentation
except as required for backup purposes only.
A separate license fee must be paid and a
separate license signed for each computer
system on which TurboDOS is used. Network
slave computers that cannot operate stand—
alone (because, for example, they have no
local disk) do not have to be licensed sepa-
rately fronü the network server. However,
networked computers that are also capable of
stand-alone operation under TurboDOS must
each be licensed separately (whether or not
they are actually used stand-alone).

Dealer ObligatioRs A dealer must sign a TurboDOS dealer agree-
ment and return the signed agreement to the
issuing distributor. Then, the dealer is
permitted to purchase pre-serialized copies
of TurboDOS programs and documentation from
the distributor, and to resell them to end—

users. Dealers may not make copies of
TurboDOS programs or documentation for any
purpose whatever.

Before delivering each copy of TurboDOS, the
dealer must see to it that the end-user signs
the TurboDOS end-user license agreement and

returns it to the issuing distributor.

3"2

TurboDQS 1.3 8086 DISTRIBUTION
Implementor's Guide

TurboDQS Licensing
(Continued)

Distributor Each licensed TurboDOS distributor is provi-
Obligations áed a master copy of TurboDOS relocatable

modules and command programs on diskette. A

distributor is allowed to reproduce and
distribute copies of TurboDOS to dealers and
end-users, but only in connection with
certain specifically authorized hardware
(usually manufactured or sold by the distri-
butor). The distributor is required to
serialize each copy of TurboDOS with a unique
sequential magnetic serial number, and to
register each serial number promptly with
Software 2000. (Serialization is described
in more detail below.)

Each distributor is also provided with a

master copy of TurboDOS documentation, either
in camera-ready hardcopy or in ASCII files on
disk. The distributor is responsible for
reproducing the documentation and furnishing
it with each copy of TurboDOS it issues.
A distributor must require each dealer to
sign and return a TurboDOS dealer agreement
before issuing copies ot TurboDOS to the
dealer for resale. A distributor must
require each end-user to sign and return a

TurboDOS end-user license agreement before
issuing a copy of TurboDOS directly to the
end-user.

3_3

TurboDOS 1.3 8086 DISTRIBUTION
Implementor's Guide

TurboDOS Licensing
(Continued)

Serialization Each copy of TurboDO" is magneticaíly serial—
ized with a unique serial nuraber. Such
serialization helps ensure that reproduction
and distribution of TurboDGS is done in
strict accordance with the required licensing
and registration procedures, and facilitates
tracing of unlicensed copies of the "oftware.

Each relocatable module of TurboDOS distribu—
ted to a dealer or end-user has a magnetic
serial number composed of two parts:

. an ori.qin nl?mher that identifies the
issuing distributor, and

. a sequential íuük ngAíheK that uniquely
identifies each copy of TurboDOS issued
by that distributor.

During system generation, the TLINK conunand
verifies that all modules making up a Turbo—
DOS configuration are serialized consistent—

ly, and magnetically serializes the resulting
executable version of TurboDOS accordingly.

The relocatable r.odules on the waster disk
furnished to each licensed TurboDOR distribu—
tor are partially serialized with an origin
number only. Each distributor is provided a
serialization program (SERIAL.CMD) that must
be used to add a unique sequential unit nun.—

ber to each copy of TurboDOS issued by the
distributor. The TLINK coriímand will not
accept partially-serialized modules that have

not been serialized with a unit number. Con—

versely, the SERIAL comníand will not re—

serialize modules that have already been

fully serialized.

3-4

,

TurboDOS 1.3 8086 DISTRIBUTION
Implementor's Guide

TurboDOS Íjicensing
(Continued)

Technícaí Support Software 2000 maintains telephone arid telex
"hot-lines" to provide TurboDCi," techrÁcal
assistance te: its distributors. These are
unlisteC numbers providing direct access to
the authors of the TurboDOS operating systerrt,
and are furnished only to license¿ TurboDOS
distributors. t'le encourage distributors to
take advantage of this service whenever tech-
nical questions or problems arise ir. using or
configuring TurboDOS.

It is the responsibility of each licensed
distributor to provide technical support to
its dealers and end-user customers. Software
2000 :CSúíñQt assist dealers or end-users
directly. Where exceptional circumstances
seem to require direct contact between Soft-
ware 2000 technical personnel and a dealer er
end-user, this must be handled strictly by
prior arrangement between Software 2000 and
the distributor.

3"5

TurboDOS 1.3 8086 DISTRIBUTION
Implementor's Guide

SERIAL Command

SERIAL Comaand The SERIAL command enables TurboDOS distribu-
tors to magnetically serialize relocatable
modules of TurboDOS for dic.tribution.

Syntax l l

j SERIAL srcefile destfile ;Unnn {options} l

i SERIAL ;Unnn {options}
! l

Explanation Thé SERIAL comnand works exactly like the
COPY coííimand, and accepts exactly the same
arguments and options. However, SERIAL has

the additional function of magnetically
serializing relocatable modules as they are
copied. SERIAL serializes files of type .REL
(Z80 modules) and type .O (8086 modules).
Other files are copied without any change.

The unit number Íñüst be specified on the
command line as ;Unnn, where "nnn" represents
a decimal unit number in the range 0-65535.
Unit numbers must be assigned sequentially,
starting with l. Unit number O is reserved
by convention for in-house use by the distri—
butor.

SERIAL produces fully-serialized modules that
are encoded with the distributor's origin
number and the specified unit number. TLINK
does not accept TurboDQS modules unless they
have been fully serialized in this fashion.

Options LQpkion-j—- Exp1a.RAti.on
l i

I SERIAL accepts all COPY options, plus: i

l

I ;Unnn Relocatable modules (type .REL l

I or .O) are magnetically serial- l

I ized with unit number nnn, which l

I must be a decimal integer in the I

! range O to 65535. This "option" I

l is mandatory for serial. I

l I

3-6

TurboDOS 1.3 8086 DIsTRIBUr1oN
Implementor's Guide

SERIAL Command
(Continued)

Example l l

l 0A}8ERT.AIb *,0 B: :U?89N l

! OA:AUTLOD .O copieá to OB:AUTLOD .O i

l OA: AUTLCG .O copied to CB:AUTLCG .O I

*D
I OA: SYSNIT .O copieG to OB:SYSNIT .O I

l DA}
l

Error Fiessages i

I SERIAL incorporates all COPY error mes- I

l sages, plus: I

!

I Unit number not specified
i Origin number violation I

I File is already serialized I

! Unexpected EOF in .C) or .REL fileI I

3-7

TurboDOS 1.3 8086 DISTRIBUTION
Implementor 's Guide

PACKAGE Conmand

PACKAGE Command The PACKAGE command lets you combine any
collection of relocatable object modules ir.tcj
a single concatenated .C file.

Syntax l l
! PACKAGE srcef lle {destf lle}

Explanation PACKAGE ír.ay be used to construct custom
packages of TurboDOS modules, make additions
or changes to the supplied STDXxxxx packages,
pre-package collections of driver modules,
and so forth.

The "srcefile" argument specifies the name of
arí input file "srcefile.PkG" that lists the
rüodules to be packaged. The "destfile" argu—
went specifies the name of the concatenated
.O file to be created. If "destfile" isorriitted, then the "srcefile" argument is also
used as the name of the output .C) file.
If the .PKG file is found, it must contain
the list of relocatable object modules (.O
files) to be linked together. It" the .PKG

file i" not found, then the PACKAGE corrlR!anei

operates in an interactive niode. You areprompted by an asterisk * tci enter a series
of directives from the console. The syntax
of each directive is:

[

! objectfn { ,obj ectfn} . . .
{ ;comment } l

l__________
__._._--__

l

A null directive terminates the prompting
sequence and causes processing to proceed.

After obtair: ing the list of riíodules froin the
file or console, PACKAGE concatenates all of
the modules together (áisplaying the name of
each module as it is encountered) and writes
the result to the output file.

3-8

TurbooOS 1.3 8086 DISTRIBUTION
Implementor's Guide

PACKAGE Command
(Continued)

Example
! OÁWMRAGÉ STPT,OAPR

I * ; STDLOADR.PKG etandard loader package l

l * OSLOAD,LDRMSG,OSNTRY,FILMGR,FILSUP l

l * FILCObÍ,BUFMGR,DSKMGR,DSKTBL,NONFIL l

! * CONI'1GR,CONTBL, DSPSGL, COMSUB I

l OSLOAD LDRMSG OSNTRY FILMGR FILSUP etc .
!

! QA}

I

Error Messages !

! File name missing f rora command l

l Invalid input file name l

I Unexpected EOF in input file l

! Disk is fullI Can't ríiake output file !

j Can't open input file i

l No input files I

I

3-9

TurboDOS 1.3 8086 DISTRIBUTION
Implementor's Guide

Distrib. Procedure

Distribution Here is the procedure to be followed by dis-
Procedure tributots when creating each copy of TurboOOS

to be issued to a dealer or end-user:

].. Assign a unique sequential unit number for
this copy of TurboDOS, and register itimmediately by filling out a serial number

registration card (or agreed-to substi-
tute) and mailing to Software 2000, Inc.

2. Format a new disk, and label it with the
following information clearly legible:

. trademark TurboDOSTM

. version number (1.3x)

. origin and unit numbers (oo/uuuu)

. statutory copyright notice:
Copyright 198x by Software 2000, Inc.
All rights reserved.

3. Use the SERIAL command to copy and serial-
ize the appropriate files from your dis-
tribution master disk to the new disk.
Use the tables on the following page to
guide you in determining what files to put
on the new disk.

IMPORTANT NOTE: Be absolutely certain
that the new disk does jjQt contain any
unserialized modules or SERIAL.CMD!

4. Using the new serialized disk, use the
TLINK command to generate an executable
loader and operating system. Follow the
system generation procedure described in
the previous section.

5. In addition to the serialized disk, you
should issue copies of TurboDOS documenta-
tion and a start-up PROM (if applicable).

3-lO

TurboDOS 1.3 8086 DISTRIBUTION
Implementor's Guide

Distrib. Procedure
(Continued)

Distribution The following table may be used for guidance
Procedure in preparing TurboDOS disks for distribution.
(Continued) In addition to the files shown, you need to

include hardware-dependent driver modules and

utility programs as appropriate.
l single-user : single-user i multi-user !

! Y//O

,------I

I STDLOADR.O STDLOADR.O STDLOADR.O I

i STDSINGL.C STDSINGL.C) STDSINGL.O I

l
- STDSPOOL.O STDSPOOL.O I

I
- -

STDMASTR.O I

l
- - STDSLAVE.O I

l
- - STDSLAVX.O I

l I

I CPMSUP .O CPMSUP .O CPMSUP .O I

I RTCNUL .O RTCNUL .O RTCNUL .O I

l PATCH .O PATCH .O PATCH .O {

l SUBMIT .O SUBKIT .O SUBMIT .O I

I OSBOOT .O OSBOOT .O OSBOOT .O I

I
- -

NETREQ .O l

I
- -

MSGFMT .O l

- -
NETSVC .O l

l
- -

CONREM .O I

l I

I AUTOLOAD.CMD AUTOLOAD.CMD AUTOLOAD.CMD l

l BACKUP .CMD BACKUP .CMD BACKUP .CMD I

l
- -

BATCH .CMD I

I BOOT .CMD BOOT .CMD BOOT .CMD I

l BUFFERS .CMD BUFFERS .CMD BUFFERS .CMD l

- -
CHANGE .CMD I

! COPY .CMD COPY .CMD COPY .CMD I

I DATE .CMD DATE .CMD DATE .CMD l

i DELETE .CMD DELETE .CMD DELETE .CMD I

l DIR .CMD DIR .CMD DIR .CMD l

I DO .CMD DO .CMD DO .CMD l

I DRIVE .CMD DRIVE .CMD DRIVE .CMD l

l DUMP .CMD DUMP .CMD DUMP .CPID l

l ERASEDIR.CMD ERASEDIR.CMD ERASEDIR.CMD I

l
- - FIFO .CMD l

l FIXDIR .CMD FIXDIR .CMD FIXDIR .CMD l

l

3-ll

TurboDOS 1.3 8086 DISTRIBUTION
Implementor' s Guide

Distrib. procedure
(Continued)

Distribution l single-user ! sincle-user l multi-user l

Procedure i LW/SL-&ÉQ9jW —L wjtlj-spQol?r-j- aetw or k i nq l

(Continued) l]

: FIXMAP .CHD FIXMAP .
CHI) FIXMAP .CÍ4D l

i FORMAT
.

CHI) FORI4AT .CI4D FORMAT .CMD)

I LABEL .CMD LABEL .
CÍ4D LABEL .CÍ-ID I

l
- -

LQGOFF .CMD I

l
- -

LGGON
.

CMD l

I
- -

SERVER
.

CMD l

I OTOASPI .CMD OTOASN
.

CEll) OTOASF1
.

CMD i

) PRINT .
CHI) PRINT' .CEll) PRINT .CMD I

i
- PRINTER .

CFID PRINTER .
CÉÍD l

l
-

QUEUE .CMD QUEUE .CMD I

l READPC .CMIJ READPC .CMD READPC .CXD i

i
- - RECEIVE .

CMD I

I RENAME
.

CMD RENAME .CMD RENAME .CMD I

!
- - SEND .CÉ4D I

! RET
.

CMD SET
.

CHD SET .CMD I

! SHOW .CMIJ AHOW .CMD SHOW .CMD l

l TASFÍ .CMD TASE!
.

CFÍD TASI9 .CMD I

I TBUG
.

CMD TBUG .CHD TBUG .CMD :

l TLINK .CPID TLINK .CHI) TLINK .
CMD l

I TPC .CMD TPC .CMD TPC
.

CMD I

l TYPE .CMD TYPE .CUD TYPE .CMD !

I USER .CMD USER .CMD USER .CMD I

l VERIFY .CHE VERIFY .
CPID vERIFy .

CEil) l

i

3-12

TurboDOS 1.3 8086 CODING CONVENTIONS
Implementor's Guide

CODING CONVENTIONS This sectiorí is devoted to in-depth discüs: -
sion of TurboDOS internal coding conventions,
aimed at the systems proqramner writing hard-
ware-dependent drivers or resident processes.
All coding examples and driver 1istinCs in
this document níake use cf the TurboDOS 8086-
family assembler TASM.

Undefined External To allow various TurboDO," modules to be in-
References cluded or omitted at will, TLINK auto-

matically resolves all undefined external
references to the default names "UndCode"
(for code references) and "UndData" (for data
referer,ces). The common subroutine module
CCMSUB contains the following:
I I

I LDC Data# ;data segment l

! UndData: : ;undefined data l

I WORD 0,0)

I l

l LOC Code# ;code segment l

I UndCode: : ;undefineá code I

l XOR AL,AL ;zero AL & flags I

I RET ;return i

Thus, it is always safe to load or call an
external name, whether or not it is present
at TLINK time. It is bad form to store into
an undefined external r: ame, however!

44

TurboDOS 1.3 8086 CODING CONVENTIONS
Implementor's Guide

Memory Allocation

Memory Allocation A common r.emory nanageníent module Í4EMPIGR

provides dynamic allocation and deallocation
of memory space required for disk and message
buffers, print queues, file and record locks,
do-file nesting, and so forth. TurboDOS

reserves a region of memory for such dynamic
workspace, located irnrr'.ediately above the
TurboDOS resident. The length of this area
(in paragraphs) is determined by the patch-
able parameter OSÍ4LEN. l·iemory segments are
allocated downward from the top of the
reserved region. Deallocated segments are
concatenated with any neighbors and threadeci
on a free-meIrlory list. A best-fit algorithm
is used to reduce memory fragmentation.

Allocation and deallocation requests are
coded in this manner:

l l

! ;code to allocate a memory segment
l íaov bx,=36 ;BX=segment size l

CALL AIAOC# ;allocate segment l

TEST AL,AL ;alloc successful? I

l JNZ ERROR ;nz -> not enuf meín l

! PUSH BX ;else, BX=&seClment I

**
l ;code to deallocate a memory segment I

I POP BX ;BX=&segInent l

I CALL DEALOC# ;deallocate segment I

l

ALLOC# prefixes each allocated segment with a
word containina the segment length, so that
DEALOC# can tell how much memory is to be
deallocated. ALLOC# does not zero the newly-
allocated segment.

4-2

TurboDOS 1.3 8086 CODING CONVENTIONS
Implementor 's Guide

List Processing

List processing TurboDOS I!",air!taiRs its GyRaIaic structures as
threaded lists with bidirectional linkages.
This technicue pertiits a node to be added or
deleted anywhere in a iiÁt without searching.
The list head and each list node have a two-
w"orc"t linkage (forward and backward pointers) .

List nianipulaticn is coded in this ntanner:

I !

l LDC Data # ;data segment l

l ;list head (linkage initialized empty) i

l LSTHED: WORD LSTHEF ;forward pointer I

I WORD LSTHED ;backward pointer I

l l

I ;list node (linkage nct. initialized) l

l LSTNOD: WORD C ;forward pointer I

i WORD O ;backward pointer I

! RES 128 ;contents of node l

I l

I LDC Code# ;prog"rara segment I

i ;code to add node to end of list l

! HOV BX, &LSTHED ;BX=&head I

I MOV DX, &LSTNC)D ;DX=&ñocje l

i CALL LNKEND# ;link to list end I

I i

! ;code to unlink node from list l

l bíOV BX,&LSTNOD ;BX=&ríode l

l CALL UNLINK# ;unlink node
l I

l ;code to add node to beoinning of list)

l MOV BX,&LSTHED ;BX=Oíead l

i btOV DX,&LSTNOD ;DX=&node l

l CALL LNKBEG# ;link to list beg. l

I !

4-3

TurboDOS 1.3 8086 CODING CONVENTIONS
Implementor's Guide

Task Dispatching

Task Dispatching TurboDOS incorporates a Elexibje, efficient
níechanistn for dispatching the 8086-fawily CPU

among various competing processes. In coding
drivers for TurboDOS, you must take extrerne
care t-c: use the dispatcher correctly in order
to attain r.aximuni system µerforiuance.

The cíispatcher allcws one process to f/ait for
some event (for example, data-available ol"
seek-complete) wbile allowing other processes
to use the processor. For each such event,
you iaust define a three-word structure called
a "seKlaFhore".

A serííaµhore consists of a count-word follcrweci
by a twc-worcl iiÉt head. The count-word is
üséc': by the dispatcher to keep track of the
status of the event, while the iiÉt head
anchors a threaded list of processes waiting
for the event to occur.

Two primitive operations operate on a serna—

phore: waiting for the event to occur
(WAIT#), and signalling that the event has
occurred (SIGNAL#). They are coded in this
following manner:

l l

I ;this semaphore represents some event I

i EVENT: WORD O ;semaphore count l

l WORD EVENT+2 ;semaphore f-ptr I

l WORD EVENT+2 ;semaphore b-ptr l

I I

] ;wait for the event to occur
l MOV BX,&EVENT ;BX=&semaphore I

: CALL WAIT# ;wait for event I

l l

l ;signal that event has occurred l

I MOV BX,&EVENT ;Bx=&seInpahore I

l CALL SIGNAL# ;signal event l

l l

4-4

TurboDOS 1.3 8086 CODING coNvENTroNs
Implementor's Guide

Task Dispatching
(Continued)

Task Dispatching Whenever a process waits on a semaphore,
(Continued) WAIT# decrements the semaphore's count-word.

Thus, a negative count -N signifies thatthere are N processes waiting for the event
to occur. Whenever an event is "ignalled,SIGNAL# increments the semaphore count-word
and awakens the process that has been waiting
longest.

If an event is signalled but no process iswaiting for it, then SIGNAL# increments the
count-word to a positive value. Thus, a

positive count N signifies that there have
been N occurrences of the event for which no
process was waiting. In this case, the next
N calls to WAIT# on that semaphore willreturn immediately without waiting.

Sometimes it is necessary for a process to
wait for a specific time interval (for exam-
ple, a motor-start delay or carriage-return
delay) rather than for a specific event.
TurboDOS provides a delay facility (DELAY#)
that permits other processes to use the CPU

while one process is waiting for such a timed
delay. Delay intervals are specified as some
number of "ticks". A tick is an implementa-
tion-defined interval, usually 1/50 or 1/60
of a second. Delays are coded thus:
I

I ;delay for one-tenth of a second l

I MOV BX,=6 ;BX=delay in ticks I
: CALL DELAY# ;delay process I

I I

Accuracy of delays is usually plus-or-minus
one tick. A delay of zero ticks may be
specified to relinquish the processor to
other processes on a "courtesy" basis.

All driver delays should be accomplished via
WAIT# or DELAY#, ILe=L by spinning in a loop.

4-5

TurboDOS 1.3 8086 CODING CONVENTIONS
Implementor's Guide

Interrupt Service

Interrupt Service Dispatching is especially efficient when used
with interrupt-driven devices. Usually, the
interrupt service routine just calls SIGNAL#

to signal the interrupt-associated event.

Most interrupt service routines should exit
via the usual IRET instruction. However,
some periodic interrupt (usually a 50 or 60

hertz clock interrupt) should have an inter—
rupt service routine that exits by jumping to
the dispatcher entrypoint ISRXIT# to provide
periodic time-slicing of processes. To avoid
excessive dispatcher overhead, don't use
ISRXIT# more than about 60 times per second.

Before calling any TurboDOS support routine
(such as SIGNAL#) or referencing any OS—

relative data, an interrupt service routine
must call the subroutine GETSDS# to set up
register DS.

A simple interrupt service routine might be
coded like this:
i I

I DEVISR: push AX ;save registers l

PUSH BX ; " " l

PUSH CX · " "
T

PUSH DX ; " "
l PUSH DS · " " t

T
I CALL GETSDS# ;get system DS i

I MOV BX,&EVENT ;BX=&semaphore l

l CALL SIGNAL# ;signal event l

l MOV DX,&EOIR ;DX=&end-of-int i

l MOV AX,=INTN ;AX=interrupt# l

l OUT DX,AX ;reset interrupt [

POP DS ;restore registers l

I POP DX · " " I

l POP CX
:

" " l

l POP BX : " " l

I POP AX ; " " l

l IRET ;return from int. I

l

4-6

TurbooOS 1.3 8086 CODING CONVENTIONS
Implementor's Guide

poll Routínes

Poll Routines Devices incapable of interrupting the CPU

have to be polled by the driver. The dis-
patcher maintains a threaded list of poll
routines, and executes them every dispatch.
The function of each poll routine is to check
the status of its device, and to signal the

occurrence of some event (for example, data-
available) when it occurs. The routine
LNKPOL# links a poll routine onto the poll
list, and UNLINK# removes it.
A poll routine must be coded so that it will
not signal the occurrence of a particular
event more than once. The best way to assure
this is for the poll routine to unlink itself
from the poll list as soon as it has signal-
led the event. An example:
I !

l EVENT: WORD O ;semaphore l

! WORD EVENT+2 I

I WORD EVENT+2 l

l

I ;driver waits for event
I MOV DX,&POLNOD ;DX=&poll node l

l CALL LNKPOL# ;activate poll rtn l

I CALL POLRTN ;optional pretest I

l MOV BX,&EVENT ;BX=&semaphore I

l CALL WAIT# ;wait for event I

0*
l l

l ;poll routine signals event when detected I

l POLNOD: WORD O ;poll rtn linkage l

WORD O · " " "¥
I POLRTN: IN AL,=STAT ;AL=device status I

l TEST AL,=MASK ;did event occur? (

JZ _X ;if not, exit i

l MOV BX,&EVENT ;BX=&semaphore I

i CALL SIGNAL# ;signal event
I MOV BX,&POLNOD ;BX=&poll node !

I CALL UNLINK# ;un1ink poll rtn l

l _X: RET ;all done

TurboDOS 1.3 8086 CODING CONVENTIONS
Implementor's Guide

Mutual Exclusion

Mutual Exclusion TurboDOS is fully re-entrant at the process
and kernel levels. However, most driver
modules are not coded re-entrantly (since
most peripheral devices can only do one thing
at a time). Consequently, most drivers must
make use of a mutual-exclusion interlock to
prevent TurboDOS from invoking them re-ent-
rantly.

This is very easy to accomplish using the
basic semaphore mechanism of the dispatcher.
It is only necessary to define a semaphore
with its count-word initialized to l (instead
of O). Mutual exclusion may then be accom-
plished by calling WAIT# upon entry and
SIGNAL# upon exit. An example:

I ;mutual-exclusion semaphore I

I MXSPH: WORD l ;count-word=l! I

WORD MXSPH+2 I

WORD MXSPH+2 I

l

I DRIVER: MOV BX,&MXSPH ;BX=&semaphore I

CALL WAIT# ;wait if in-use l

:
I

l I

! : I

i MOV BX,&MXSPH ;BX=&serrlaphore I

I CALL srgNAL# ;unlock mut-excl l

i RET ;done
l

4-8

TurboDOS 1.3 8086 CODING CONVENTIONS
Implementor's Guide

Sample Driver
Using Interrupts

S=ple Driver Here is a simple device driver for an inter-
Using Interrupts rupt-driven serial input device. It illus-

trates coding techniques discussed so far:
l I

l MXSPH: WORD l ;PIX semaphore l

I WORD MXSPH+2 l

l WORD MXSPH+2 l

} RDASPH: WORD O ;RDA semaphore l

I WORD RDASPH+2 l

l WORD RDASPH+2 l

l CHRSAV: BYTE O ;saved input char l

i !

i ;device driver main code l

) INPDRV: :MOV BX,&MXSPH ;BX=&MXsemapfiore l

! CALL WAIT# ;lock MX l

) STI ;need ints enabled l

MOV BX,&RDASPH ;BX=&semaphore l

l CALL WAIT# ;wait data avail l

l push CHRSAV ;stack input char l

l mv BX,&MXSPH ;BX=&MXsemaphore l

l CALL SIGNAL# ;unlock MX I

l POP AX ;return AL=char l

I RET ;done I

l I

I ;interrupt service routine l

I INPISR: :PUSH AX ;save registers l

i PUSH BX · " " l
f

l PUSH CX ; " " I

i PUSH DX ; " " l

l PUSH DS ; " " I

I CALL GETSDS# ;get system OS l

l IN AL,=INPUT ;get input char I

l MOV CHRSAV,AL ;save for driver l

l MOV BX,&RDASPH ;BX=&semaphore l

I CALL SIGNAL# ;signal data avail l

l POP OS ;restore registers l

I POP DX ; " "
l POP CX · " " l

f
l POP BX ; " " l

I POP AX ; " " !

l IRET ;return from int. !

l l

4-9

TurboDOS 1.3 8086 CODING CONVENTIONS
Implementor's Guide

Sample Driver
Using Polling

Sample Driver Here is a simple device driver for non-inter-
Using Polling rupting serial input device. It illustrates

how polling is used:

l l

i MXSPH: WORD l ;MX semaphore l

l WORD MXSPH+2 l

l WORD MXSPH+2 i

l RDASPH: WORD O ;RDA semaphore l

l WORD RDASPH+2 l

l WORD RDASPH+2 I

l CHRSAV: BYTE O ;saved input char l

I l

! ;device driver main code l

l INPDRV: :MOV BX,&MXSPH ;BX=&MXsemapfiore l

I CALL WAIT# ;lock MX !

l MOV DX,&POLNOD ;DX=&pollnode i

l CALL LNKPOL# ;actívate poll rtn l

I CALL POLRTN ;optional pretest l

l MOV BX,&RDASPH ;BX=&semaphore l

l CALL WAIT# ;wait data avail j

l PUSH CHRSAV ;stack input char i

I MOV BX,&MXSPH ;BX=&MXsemaph l

l CALL SIGNAL# ;unlock MX l

l POP AX ;return AL=char l

l RET ;done I

)

i ;device poll routine with linkage l

l POLNOD: WORD O ;poll rtn linkage f

l WORD O I

l POLRTN: IN AL,=STAT ;get device status l

l TEST AL,=MASK ;data available? I

l JZ

_
x ;if not, exit l

l IN AL,=DATA ;get input char I

l MOV CHRSAV,AL ;save for driver l

l MOV BX,&RDASPH ;BX=&semaphore l

l CALL SIGNAL# ;signal data avail l

l MOV BX,&POLNOD ;BX=&pollnode I

l CALL UNLINK# ;unlink poll rtn l

I _X: RET ;done l

! l

4-lO

TurboDOS 1.3 8086 CODING CONVENTIONS
Implementor's Guide

Inter-Process
Messages

Inter-Process To pass messages from cne process to another,
Messages a five-word structure called a "message node"

is used. A message node consists of a three-
word semaphore followed by a two-word message

list head. Routines are provided for sending
messages to a message node (SNDMSG#), and

receiving messages from a message node
(RCVMSG#). Typically, the sending process
allocates a memory segment in which to build
the message, and the receiving process deal-
locates the segment after reading the mes-
sage. The first two words of each message
must be reserved for a list-processing link-
age. Coding is done in this manner:

—
l {

l ;níessage node l

I MSGNOD: WORD O ;semaphore part l

l WORD MSGNOD+2 ; " " l

l WORD MSGNOD+2 ; " " l

l WORD MSGNOD+6 ;inessage list head I

l WORD MSGNOD+6 ; " " " l

I I

I ;one process allocates/builds/sends msg l

i MOV BX,=12+4 ;BX=message size+4 l

l CALL ALLOC# ;allocate segment l

l PUSH BX ;save &segment l

I : ;build msg in seg l

l POP DX ;DX=&segment l

I MOV BX,&MSGNOD ;BX=&lnsgnode l

I CALL SNDMSG# ;send message l

l i

I ;other process reads/deallocates message !

MOV BX,&MSGNOD ;BX=&iñsgnode I

I CALL RCVMSG# ;receive message !

l PUSH BX ;save &segment l

l : ;process message l

l POP BX ;EjX=&segment I

l CALL DEALOC# ;deallocate seg I

l l

4-ll

TurboDOs 1.3 8086 CODING CONVENTIONS
Implementor's Guide

Console Routines

Console Routines TurboDOS includes several handy console I/O
subroutines which may be called from within
driver modules as illustrated:
I l

I ;raw console I/O routines I

! CALL CONST# ;get status in AL I

l TEST AL,AL ;input char avail? l

I JZ _X ;if not, exit (

I CALL CONIN# ;get input in AL l

I CALL UPRCAS# ;make upper-case l

MOV CL,AL ;char to CL I

l CALL CONOUT# ;output char in CL I

l

! ;inessage output routines l

l ;messaqe must be null-terminated I

l CALL Dl4S# ;output following l

! FISG: BYTE "This is a test message\0" l

l MOV BX,&MSG ;BX=&message l

l CALL DMSBX# ;output msg *BX I

] I

l ;binary-to-decirnal output routine l

i MOV Bx,=3l4l6 ;BX=word value l

l CALL DECOUT# ;displays decimal l

——
sign-On Message You may add your own custom sign-on message

to TurboDOS. Your message will be displayed
at cold-start immediately following the nor-
mal TurboDOS sign-on and copyright notice.

Your sign-on message must be coded as an
ASCII character string terminated with a S

delimiter, and labelleá with the public entry
symbol USRSOM. An example:

l l

] USRSOM: :BYTE OXOD, OXOA l

l BYTE "Implementation by " l

I BYTE "Trigon Computer Corp." l

l BYTE "$" l

4-12

TurboDOS 1.3 8086 CODING CONVENTIONS
Implementor's Guide

Resident Process

Resident Process You can"code a resident process that runs in
the background concurrent with other system

activities, and link it into TurboDOS. The
create-process subroutine CRPRQC# may be
called to create such a process at cold-start
as shown:

l l

l HDWNIT: :MOV BX,=128 ;BX=workspace size l

l CALL ALLOC# ;alloc workspace l

I ;BX=&workspace l

I MOV DX,&MYPROC ;DX=&entrypoint l

l CALL CRPROC# ;create process !

I : l

l I

l MYPROC: INC COUNT[DI] ;increiuent count l

l MQV DX,=60*60 ;ticks/minute i

l MOV CL,=2 ;T-function 2 l

I CALL OTNTRY# ;delay I minute i

l JMP MYPROC ;loop forever l

I l

CRPROC# automatically allocates a TurboDOS
process area (address appears in register SI)
and a stack area (address appears in SP). Ifthe process requires a re-entrant workspace,

it should be allocated with AUiOC# and passed

to CRPROC# in BX (as shown above), and will
appear to the new process in register DI.

The resident process must make all operating
system requests by calling OCNTRY# or OTNTRY#

with a C-function or T-function number in
register CL. It 4 execute INT OxEO or
INT OXDF, nor make direct calls on kernel
routines such as WAIT#, SIGNAL#, DELAY#,
SNDMSG#, RC\7MSG#, ALLOC#, and DEALOC#.

4-13

TurboDOS 1.3 8086 CODING CONVENTIONS
Implementor's Guide

Resident Process
(Continued)

Resident process A resident process is not attached to a con-
(Continued) sole, so any console I/O requests will be

ignored.

You can do file processing within a resident
process, using the normal C-functions open,
close, read, write, and so forth, called via
OCNTRY#. First, however, you must remember

to warm-start with C-function O (OCNTRY#),
and then log-on with T-function 14 (OTNTRY#).

A resident process must always be coded to
preserve the contents of index register SI,
which Turbodos relies upon as a pointer to
its process area. The process may use all
other registers as desired.

User—Defined The User-Defined Function (T-function 41)
Function provides a means of adding your own special

functions to the normal TurboDOS repertoire
of C-functions and T-functions. To do this,
you simply create a function processor sub-

routine with the public entrypoint syinbol
USRFCN.

Whenever a program invokes T-function 41,
TurbooOS transfers control to your USRFCN
routine. On entry, register CX contains the
address of the l28-byte record area passed
from the caller's current DMA address, and
registers BX and dx contain whatever values
the caller loaded into them. Your USRFCN
routine may return data to the caller in the
128-byte record area (address in CX at entry)
and in any of the registers AX-BX-CX-DX.

Architecturally, your USRFCN routine is in-
side the TurboDOS kernel. Consequently, itmay call kernel subroutines directly. Any

calls to C-functions and T-functions must

therefore be made by means of two special
recursive entrypoints: XCNTRY# and XTNTRY#.

4"14

TurboDOS 1.3 8086 DRIVER INTERFACE
Implementor's Guide

DRIVER INTERFACE This section explains how to code hardware-
dependent device driver modules, and presents
formal interface specifications for each

category of driver required by TurboDOS.

Following this section is a large appendix
that contains assembler source listings of
actual driver modules. The sample drivers
cover a wide range of peripheral devices, and
provide an excellent starting point for your
driver development work.

General Notes Drivers modules are coded with standard pub-
lic entrypoint names, aná linked to TurboDOS
using the TLINK command. You may package

your drivers into as rnany or few separate
modules as you like. In general, it is
easier to reconfigure TurboDOS for a variety
of devices if the driver for each device is
packaged as a separate module.

TurboDOS is designed to accomodate multiple
disk, console, printer, and network drivers.
For disk drivers, for instance, the DSKAST is
normally set up to refer to disk driver
entrypoints DSKDRA#, DSKDRB#, DSKDRC#, and so
forth. Each disk driver should be coded with
the public entrypoint DSKDR_. TLINK automa-

tically maps successive definitions of such
names by replacing the trailing _

by A, B, C,

etc. The sanie technique may be used for
console, printer, and network driver entry-
points.

You must code driver routines to preserve CS,
DS, SS, SP, SI and DI registers, but you may
use other registers as desired.

5-l

TurboDOS 1.3 8086 DRIVER INTERFACE
Implementor's Guide

Initialization

Initialization Hardware initialization and interrupt vector
set-up should be performed in an initializa-
tion routine labelled with the public entry
symbol HDWNIT::. TurboDOS calls this routine
during cold-start with interrupts disabled.

Your HDWNIT:: routine mist llQÉ enable inter-
rupts or make calls to WAIT# or DELAJU. In
most cases, HDWNIT:: will contain a series of
calls to individual driver initialization
subroutines contained in other modules.

Memory Table All 8086 TurboDOS systems must include a

table that specifies the size and layout of
main memory. The table must be labelled with
the public symbol PIEMTBL. It must begin with
a byte value that specifies the number of
discontiguous regions of inain memory (up to
eight), followed by two words for each region
which specify the base address and length of
the segment (both in paragraphs). The first
segment in the table must be large enough to
contain the resident portion of 8086 TurboDOS

plus the dynamic workspace (given by OSMLEN).

The following example illustrates the simple
case of a sYstem with 256K of contiguous
memory starting at zero:
) l

l MODULE "MEMTBL" ;inodule ident l

! LOC Data# ;data segment I

l HEMTBL:: ;inemory spec table I

l byte l ;just one region l

j WORD OX40 ;base (paragraph) l

l WORD OX4000-Ox40 ;length (para) l

l END l

I

Note that the first OX40 paragraphs (IK
bytes) are reserved for 8086 interrupt
vectors and must not be included in MEMTBL.

5-2

TurboDOS 1.3 8086 driver INTERFACE
Implementor's Guide

Console Dríver

Console Driver A console driver 'Aíould be labelled with the
public entry symbol CONDR_. A console number
(from CONAST) is passed in register CH. The
driver must perform a console I/O operation
accoráing to the operation code passed in
register DL:

l _RL=. l

——--——___.
Fnñcr.i nn i

l l

I O Return status in al, char in CL !

l l Return input character in AL i

I 2 Output character passed in CL l

l 8 Enter error-message mode l

l 9 Exit error-message mode l

! 10 Conditional output char in CL l

l l

If DL=0, the driver determines if a console
input character is available. If no char-
acter is available, the driver returns AL=0.

If an input character is available, the
driver returns AL=-1 and the input character
in cl, kitt Éüst ttQt "cons|lTrle" the chn.rAct.er.
TurboDOS depends upon this look-ahead capa-

bility to detect attention requests. The

driver must not dispatch (via WAIT# or
DELAY#) when processing a DL=O call.

If DL=1, the driver returns an input char-
acter in AL (waiting if necessary).

If DL=2, the driver displays the output char-
acter passed in CL (waiting if necessary).

If DL=8, the driver prepares to display a

TurboDOS error message; if DL=9, it reverts
to normal. TurboDOS always precedes each

error wessage with an DL=8 call and follows
it with an DL=9 call. This gives the driver
an opportunity to take special action (25th
line, reverse video, etc.) for error
messages. For simple consoles, the driver
should output CR-LF in response to DL=8 or 9.

5"3

TurboDOS 1.3 8086 DRIVER INTERFACE
Implementor's Guide

Console Driver
(Continued)

Console Driver If DL=1O, the áriver determines whether or
(Continued) not it can accept a console output character

without dispatching (via WAIT# or DELAY#).

If so, it outputs the character passed in CL,
and returns AL=-1 to indicate that the char-
acter was accepted. However, if the driver
cannot accept a console output character
without dispatching, it returns AL=O to
indicate that the character was not accepted;
TurboDOS will theR níake an DL=2 call to
output the same character. This special
conditional output call is used by TurboDOS
to optimize console output speed by avoiding
certain dispatch-related overhead whenever
possible.

You should make a special effort to code the
console driver to execute the minimum number
of instructions possible, especially func-
tions O, 2, and l0. Excessive use of subrou-
tine calls, stack operations, and other time-
consuming coding techniques can make the
difference between running the console device

at full rated speed or something less.

5_4

TurboDOS 1.3 8086 DRIVER INTERFACE
Implementor's Guide

Printer Driver

Printer Driver a printer driver should be labelled with the
public entry symbol LSTDR_. A printer number
(from PTRAST) is passed in register CH. The
driver must perform a printer output opera-
tion according to the operation code passed
in register DL:

l DTi= i Fúncticm !

I I

i 2 Print character passed in CL l

l 7 Perform end-of-print-job action I

l I

If DL=2, the driver prints the output charac-
ter passed in CL (waiting if necessary).

If DL=7, the driver takes any appropriate
end-of-print-job action. This is quite
hardware-dependent, and may include slewing
to top-of-form, homing the print head,
dropping the ribbon, and so forth.

5"5

TurboDOS 1.3 8086 DRIVER INTERFACE
Implementor's Guide

Disk Driver

Disk Driver A disk driver should be labelled with the
public entry symbol DSKDR_. The driver per-
forms the physical disk operation specified
by the Physical Disk Request (PDR) packet
whose address is passed by TurboDOS in index
register SI. The structure of the PDR packet

is:
I Qffset I Contpnts I

! l

l ;physical disk request (PDR) packet l

l 0[SI] BYTE OPCODE ;operation code I

l 1[SI] BYTE DRIVE ;drive (base O) I

l 2[SI] WORD TRACK ;track (base O) I

I 4[SI] WORD SECTOR ;sector (base O) I

I 6[SI] WORD SECCNT ;#sectors to rd/wr l

l 8[SI] WORD BYTCNT ;#bytes to rá/wr l

l l0[Sl] WORD D!!IAOFF ;DNA offs to rd/wr l

I 12[SI] WORD DMABAS ;dma base to rá/wr I

i 14[SI] WORD DSTADR ;DST address I

I ;copy of disk specification table (DST) i

! I6[SI] BYTE BLKSIZ ;block size (3-7) !

! 17[SI) WORD NMBLKS ;#blocks on disk l

l 19[SI] BYTE NMBDIR ;#directory blocks I

l 20[SI] BYTE SECSIZ ;sector size (0-7) l

l 21[SI] WORD SECTRK ;sectors per track l

I 23[SI] WORD TRKDSK ;tracks on disk !

i 25[SI} WORD RESTRK ;reserved tracks j

i

___-_
I

The operation to be performed by the driver
is specified in the first byte of the PDR

packet (OPCODE) as follows:
I QPCOPF l F11nct.ion I

l

l O Read sectors from áisk l

i l Write sectors to disk I

l 2 Determine disk type, return DST l

l 3 Determine if drive is ready I

l 4 Format track on disk j

i I

5"6

TurboDOS 1.3 8086 driver interface
Implementor's Guide

Disk Driver
(Continued)

Disk Driver If OPCODE=0, the driver reads SECCNT physical
(Continued) sectors (or equivalently, BYTCNT bytes) into

DMAOFF/DMABAS, starting at TRACK and SECTOR

on DRIVE. The driver returns AL=O if the
operation is successful, or AL=-1 if an
unrecoverable error occurs. TurboDOS may
request multiple consecutive sectors to be
read, but will never request an operation
that extends past the end of the track.

If OPCODE=1, the driver writes SECCNT physi-
cal sectors (or BYTCNT bytes) from
DMAOFF/DMABAS, starting at TRACK and SECTOR

on DRIVE. The driver returns AL=O if the
operation is successful, or AL=-1 if an
unrecoverable error occurs. TurboDOS may
request multiple consecutive sectors to be
written, but will never request an operation
that extends past the end of the track.

If OPCODE=2, the driver must determine the
type of disk mounted in DRIVE, and must
return, in the DSTADR field of the PDR

packet, the address of an ll-byte disk speci-
fication table (DST) structured as follows:
! Offbet l pescriptio.n I

l l

l O block size (3=IK,4=2K,...,7=16K) l

I l-2 total number of blocks on disk l

I 3 number of directory blocks l

I 4 sector size (0=128,...,7=16K) l

l 5-6 number of sectors per track I

l 7-8 number of tracks on the disk l

! 9-lO number of reserved (boot) tracks l

l

The first byte of the DST (BLKSIZ) specifies
the allocation block size in bits 2-O. In
addition, bit 7 is set if the disk is fixed
(non-removable), and bit 6 is set if file
extents are limited to 16K (EXM=0).

5-J

TurboDOS 1.3 8086 DRIVER INTERFACE
Implementor's Guide

Disk Driver
(Continued)

Disk Driver The driver returns AL=-1 if the operation is
(Continued) successful, or AL=O if the drive is not ready

or the disk type is unrecognizable. On suc-
cessful return, TurboDOS moves a copy of the
DST into 16[SI] through 26[SI], where it is
available for subsequent operations.

If OPCODE=3, the driver determines whether
DRIVE is ready, and returns AL=-1 if it is
ready or AL=O if not.

If OPCODE=4, the driver formats (initializes)
TRACK on DRIVE, using hardware-dependent
formatting information at DMAOFF/DMABAS (put
there by the FORMAT command). The driver
returns AL=O if successful, or AL=-1 if an
unrecoverable error occurs.

5-8

TurboDOS 1.3 8086 DRIVER INTERFACE

Implementor's Guide
Network Dríver

Network Driver A network circuit driver should be labelled
with the public entry symbol CKTDR_. A mes-
sage buffer address is passed in register DX.
The driver must either send or receive a
network message, according to the operation
code passed in register CL:

l CjÁ= l Function l

l I

l O Receive message into buffer at DX l

I l Send message from buffer at DX I

l -A

If CL=0, the driver receives a network mes-
sage into the message buffer whose address is
passed in dx (waiting if necessary). If a

message is received successfully, the driver
returns AL=0. If an unrecoverable malfunc-
tion of any remote processor is detected, the
driver returns AL=-1 with the network address

of the crashed processor in DX.

If CL=1, the driver sends a network message
from the message buffer whose address is
passed in DX. If the message is sent suc-
cessfully, the driver returns AL=0. If the
message could not be sent because of an unre-
coverable malfunction of the destination
processor, the driver returns AL=-1 with the
network address of the crashed processor in
DX.

The structure of a network message buffer is
shown on the next page. The first four bytes
of the buffer are reserved for a linkage used
by TurboDOS, and should be ignored by the
driver. The ll-byte message header and

variable-length message body should be sent
or received over the circuit. The driver
should only need to look at the first two
header fields (MSGLEN and MSCDID).

5"9

TurboDOS 1.3 8086 DRIVER INTERFACE
Implementor's Guide

Network Driver
(Continued)

Network Driver l l

(Continued) I ; message buffer format l

l WORD ? ;linkage (ignored) l

I WORD ? ; " " l

I ; ll-byte message header I

i BYTE MSGLEN ;rusg length l

I WORD MSGDTD ;destination addr l

i BYTE FISGPID ;process id l

l WORD I'ISGSID ;source addr l

l WORD MSGOID ;originator addr I

l BYTE PISGOPR ;orig'r process id l

l BYTE MSGLVL ;forwaráing level l

! BYTE HSGFCD ;irísg format code I

l ; variable-length body I

I RES 7 ;registers I

RES 38 ;optional FCB data l

RES 128 ;optional record l

l l

The length field MSGLEN represents the number
of bytes in the message, including the header
and body (but excluding the linkage). On a
receive request (CL=0), TurboDOS presets
MSGLEN to the maximum allowable message
length, and expects MSGLEN to contain the
actual message length on return. On a send

request (CL=l), TurboDOS presets MSGLEN to
the actual length of the message to be sent.

In a server/user network, it is often desir-
able for the circuit driver in the server to
periodically "poll" the user processors on
the circuit to detect any user malfunctions
quickly and to effect recovery. If the dri-
ver reports that a user has crashed (by re-
turning AL=-1 and DX=network-address), then
the circuit driver must not accept any fur-
ther messages from that user until TurboDOS
has completed its recovery process.

5-lO

TurboDOS 1.3 8086 DRIVER INTERFACE
Implementor's Guide

Network Dríver
(Continued)

Network Driver TurboDOS signals the driver that such recov-
(Continued) ery is complete by sending a duinrrty message

destined for the user in question with a
length of zero. The driver should not actu-
ally send such a message to the user, but
could initiate whatever action is appropriate
to reset the user and download a new copy of
the user operating system.

A user must request an operating system down-
load by sending a special download request
message to the server (usually done by a

bootstrap routine). The áownload request
message consists of a standard ll-byte header
(with MSGPID, MSGOID and NSGFCD zeroed) fol-
lowed by a l-byte body containing a "download

suffix" character. The server processor
addressed by MSGDID will return a reply mes-
sage whose l28-byte body is the first record
of the download file OSUSER-X.SYS (where "x"
is the specified download suffix).
The user continues to send download request
messages and to receive successive download
records until it receives a short reply mes-
sage (l-byte body) signifying end-of-file.
The single byte passed as the body of the
final short message identifies the system
disk, and should be passed to the system in
register AL.

The entire failure detection, failure recov-
ery, and user downloading procedure is very
hardware-dependent.

5-ll

TurboOOS 1.3 8086 DRIVER INTERFACE
Implementor's Guide

Com Driver

Comm Driver The comm driver supports the TurboDOS commu-
nications extensions (T-functions 34-40), and
may be omitted if these functions are not
used. The driver should be labelled with the
public entry symbol CO!4DRV. A comm channel
number is passed in register CH. The driver
must perform an I/O operation according to
the operation code passed in register DL:

I PL= l F]1ncf.i Qñ
-

l

l l

I O Return input status in AL l

l l Return input character in AL l

l 2 Output character passed in CL l

l 3 Set channel baud rate froín CL

I 4 Retnrn channel baud rate in AL l

l 5 Set modem controls from CL l

l 6 Return modem status in AL
l

If DL=0, the driver determines if an input
character is available. If one is available,
the driver returns AL=-1, otherwise AL=0.

If DL=1, the driver returns an input char-
acter in AL (waiting if necessary).

If DL=2, the driver outputs the character
passed in CL.

If DL=3, the driver sets the channel baud

rate according to the baud-rate code passed

in CL. If DL=4, the driver returns the
channel baud-rate code in AL. See T-func-
tions 37 and 38 in the SQU ProqrÁmlTler's
GUáe for baud-rate code definitions.

If DL=5, the driver sets the modem controls
according to the bit-vector passed in CL. Ifi
DL=6, the driver returns the modem status
vector in AL. See T-functions 39 and 40 in
the £Aá£ proqrAmmer's gjLija£ for bit-vector
definitions.

5-12

TurboDOS 1.3 8086 DRIVER INTERFACE
Implementor's Guide

Clock Dríver

Clock Driver The real-time clock driver does not take the
form of a subroutine called by TurboDOS, as
do the other drivers described in this sec-
tion. Rather, the clock driver generally
consists of an interrupt service routine
which responds to interrupts front a periodic
interrupt source (preferably 50 to 60 times a
second). The interrupt service routine
should call DLYTIC# once per system tick (to
synchronize DELAY# requests). It should also
call RTCSEC# once per second (that is, every
50 to 60 ticks) to update the system time and
date. Finally, it should exit by jumping to
ISRXIT# to provide a periodic dispatcher
time-slice. Excluding initialization code, a

typical clock driver might be coded thus:
l l

l RTCCNT: BYTE 60 ;divide-by-60 cntr l

l RTCISR: PUSH AX ;save registers l

l PUSH BX ; " " l

l PUSH CX " " " i

I PUSH DX
; " " l

l PUSH DS ; " " I

l CALL GETSDS# ;get system DS l

I CALL DLYTIC# ;signal one tick I

l DEC RTCCNT ;decreinent counter I

i JNZ _X ;not 60 ticks yet l

I MOV RTCCNT,=60 ;reset counter I

I CALL RTCSEC# ;signal one second l

l _X: mv DX,&EOIR ;DX=&end-of-int l

i MOV AX,=INTN ;AX=interrupt# !

l OUT DX,AX ;reset interrupt l

l POP DS ;restore registers l

l POP DX · " " I

l POP CX
; " " l

l POP BX · " " l
V

I POP AX ; " " I

I JMP ISRXIT# ;go to dispatcher l

I l

S-13

TurboDOS 1.3 8086 DRIVER INTERFACE
Implementor's Guide

Clock Driver
(Continued)

Clock Driver If the hardware is capable of determining the
(Continued) date and time-of-day at cold-start (by means

of a battery-powered clock, for example), the
clock driver may initialize the following
public symbols in the RTC!4GR module:

! l

l SECS:: byte O ;seconds O-59 l

l MINS: : BYTE O ;minutes Q-59 i

i HOURS: : BYTE C ;hours O-24 l

l jDATE: : WORD Ox8001 ;julian date l

I ;base 31-Dec-47 l

5"14

TurboDOS 1.3 8086 DRIVER INTERFACE
Implementor's Guide

Bootstrap

Bootstrap The bootstrap is usually contained in a ROM

or on a boot track. Its function is to
search ail disk drives for the TurboDOS
loader program OSLOAD.CMD, and to load and

execute it if found. To generate a boot-
strap, use TLINK to combine the standard
bootstrap module OSBOOT.O with your own
hardware-dependent driver. Your driver must
define the following public names: INIT,
SELECT, READ, XFER, CODE, and DATA.

init: : is called once to perform any required
hardware initialization. It returns with
register AX set to the paragraph address of
the load base (where the file CSLOAD.CMD
should be loaded into memory by the boot-
strap). This address should be chosen so
that OSLOAD will not overlay the bootstrap or
the operating system to be loaded.

SELECT: : is called to select the disk drive
passed in AL (0-15). If the selected drive
is not ready or non-existent, it returns
AL=0. Otherwise, it returns AL=-1 and the
address of an ll-byte cíisk specification
table (DST) in register SI (see page 5-7).

READ:: is called to read one physical sector
from the last-selected drive. The track is
passed in CX, the sector in DX, the DMA

offset in BX, and the DMA base in ES. Itmust return AL=O if successful, or AL=-1 if
an unrecoverable error occurred.

XFER: : is transferred to at the end oÍl the
bootstrap process. In most cases, this
routine rnust set register DS to the base
paragraph address of the loader (normally the
load base returned by INIT: : plus 8 to allow
for the .CMD header), set location DS:0080 to
zero (to simulate a null command tail), and
jump to the loader (using a JP!PF to set CS=DS

and IP=0xlOO).

5—15

TurboDOS 1.3 8086 DRIVER INTERFACE
Implementor's Guide

Bootstrap
(Continued)

Bootstrap CODE: : defines the base paragraph (CS value)
(Continued) under which the bootstrap itself is to be

executed. OSBOOT loads this value into
register es before calling INIT::, SELECT: :,READ:: or XFER::.
DATA: : defines the base paragraph (DS value)
of a l28-byte RAM area that OSBOOT way use
for working storage. (It should not be
located where OSLOAD.CI'ID will be loaded!)
OSBOOT loads this value into register DS

before calling INIT: :, SELECT: :, READ: : or
XFER::.

5_16

TurboDOS 1.3 8086 OTOASM Command

Implementor's Guide

OTOASM Comuianá Some TurboDOS implementations require that a

Z80 server processor download 8086-family
user processors. In writing the network
circuit driver for the Z80 server processor,
it is often necessary to embed a download
bootstrap routine written in 8086 code. The

utility program OTOASM.CMD is designed to
simplify this process.
OTOASE converts an 8086 object file (type .O)
produced by TASM into a Z80 source file (type
.ASM) acceptable to either the PASM or M80
assemblers. The output file contains a
sequence of data definition statements (.BYTE
and .WORD, or DB and DW) representing 8086
machine-language.

Syntax I l

l OTOASM filename {-M} I

l l

Explanation The "filename" argument must not have an
explicit type, and specifies the name of both
the input file "filename.O" and the output
file "filename.ASM" to be used. The "-M"
option causes the output to be formatted for
the M80 assembler rather than the PASM assem-
bler.

The input file (type .O) must not contain any
relocatable tokens. Consequently, the 8086

source module (type .A) must define only
absolute location counter values (LOC) and
must make no external references {# suffix).
Public symbols may be defined as long as they
do not have relocatable values.

A-l

TurboDOS 1.3 8086 patch point8
Implementor's Guide

User OS The following User OS Patch Points are
Patch points supported.

Patch
—Rnink Descript.iQn-_--______

CONBR Baud rate patch point in module
CON96. Default = 9600-OxCE.

Baud Rate Code:

bit 7 = l if attention detection
is enabled

bit 6 = l if clear-to-send hand-
shaking enabled

bit 5 = I if output-only (input
disabled)

bits 3-O = baud-rate value 0..15
(see table below)

Notes: The least significant nibble of the
E-register contains a baud rate value as
follows:
O = 50 8 = 1,800

l = 75 9 = 2,000
2 = no 10 = 2,400
3 = 134.5 li = not used
4 = 150 12 = 4,800
5 = 300 13 = 7,200
6 = 600 14 = 9,600
7 = 1,200 15 = 19,200

CTSBR Baud rate patch point, in LSTCTS
module (see list above). Default
= 9600 = OX4E.

EIXBR Baud rate patch point, in LSTETX
module (see list above). Default
= 1200 = OX47.

ETXLEN Block length prior to ETX signal.
Default = Ox6E.

B-l

TurboDOS 1.3 Z80 Patch points
Implementer's Guide (Continued)

r

Patch
Points Description

XONBR Baud rate patch point in LSTXON

module (see list above).

Server OS The following Server OS Patch Points are
Patch Points supported.

Patch
Points Description

NSMTOP Top of physical memory, in
MPEHRM module. Default - QFFFF.

NSFTOP Top of memory above floppy con-

troller, in MPEHRM module.
Default = OFOOO.

Note: MPEHRM releases RAM from NSFTOP to
NSMTOP to the TurboDOS memory pool.

The following are all in the MCDU16 module:

CKTU16 HRZ-UP16 board circuit number.
Default = O.

NMBU16 Number of HRZ-UP16's supported.
Default = (set by CONFIG).

SSTU16 Suffix table for User OS.
Default = "BBBBBBBB"

PATU16 I/O port addresses for
HRZ-UP16s. Defaults =

40, 42, 44, 46, 48, 4A, 4C, 4E.

B-2

