

TurboDOS 1.3 8086 NOTICES
Programmer's Guide

CoIZyright Notice Copyright 1984 by Software 2000, Inc. All
rights reserved. No part of this publication
may be reproduced, transmitted, transcribed,
stored in a retrieval system, or translated
into any language or computer language, in
any form or by any means, electronic, mecha-
nical, magnetic, optical, chemical, manual or
otherwise, without the prior written permis-
sion of Software 2000, Inc., 1127 Hetrick
Avenue, Arroyo Grande, California 93420,
U.S.A.

Trademark Notice TurboDOS is a trademark of Software 2000,
Inc., and has been registered in the United
States and in most major countries of the
free world. CP/M, CP/M Plus, Concurrent CP/M
and MP/M are trademarks of Digital Research.

Disclaimer Software 2000, Inc., makes no representations
or warranties with respect to the contents ot
this publication, and specifically disclaims
any implied warranties of merchantability or
fitness for any particular purpose. Software
2000, Inc., shall under no circumstances be

liable for consequential damages or related
expenses, even if it has been notified of the
possibility of such damages.

Software 2000, Inc., reserves the right to
revise this publication from time to time
without obligation to notify any person of
such revision.

[l

l First Edition: january 1984 l

TurboDOS 1.3 8086 ABOUT THIS GUIDE
Programmer's Guide

ABOUT THIS GUIDE

purpose We've designed this 8Q8£ ProqrÁmmer'¶ Guü&
to provide the information you need to know
in order to write application software to run
on 8086-family microcomputers under the
TurboDOS operating system. This document
explains the theory of operation of each

internal facility of TurboDOS. It also
describes in detail each TurboDOS function
that may be called by an application program.

Assumptions In writing this guide, we've assumed that you
are an experienced assembly-language program—
mer writing application programs for the 8086
TurboDOS environment. We've also assumed you
have read the Tl1rr)opn,s = jzsjzLLa Guide, aná
are therefore familiar with the commands and
external features of TurboDOS.

Organization This guide starts with a section that
describes the fundamentals of the TurboDOS
environment, with emphasis on the organiza—
tion of memory and the interface and flow of
control between application programs and the
operating system.

The next two sections explain TurboDOS inter—
rials in more detail. One describes the filesystem, and the other describes serial I/O.

There are two reference sections that explain
each TurboDOS function call in detail. One
section describes CP/M-cowpatible functions
supporteá by TurboDOS, while the other
describes functions unique to TurboDOS.

Appendices describe the TurboDOS 8086 assem-

bler, linker, and debugger. The document
concludes with a summary of function callsr
and an alphabetical index.

TurboDOS 1.3 8086 ABOUT THIS GUIDE
Programner's Guide (Continued)

Related Documents In addition to this guide, you might be
interested in four other related documents:

. T\}rpQDoS = VserLa

. 'Mrhopo8 L,Á Tm.p1eTrLentor'sí

. Tnrbop® L,á = proqraTnmer'5 Gaí9e

. TnrMpo8 L.3, Z&Q Tmp1ementor's gjjjcÍp

You should read the Gaiáe before you
start into this document. It introduces the
external features and facilities of TurboDOS,
and describes each TurboDOS command in de—

tail.
You'll need the = T.mp1ementor'R ifyou are adapting TurboDOS to a new hardware
configuration. It explains the system gene—

ration and OEM distribution procedures, and

also describes how to implement hardware—
dependent driver modules.

You'll need the Z80 guides if you are pro—
granuríing or configuring a TurboDOS system
that uses Z80 microprocessors.

TurboDOS 1.3 8086 TABLE OF CONTENTS

Programner's Guide

FUNDAMENTALS Memory Organization l-1
Execution Models l-2

8080 Model l-2
Small Model l-3
Compact Model l-4

Comand Files l-5
Program Interface l-6

C-Functions l-6
T-Functions l-8
Termination l-8

Command Processing l-9
Command Prompt l-9
Command Format l-9
Tail Parsing l-lO
Command Strings l-lO
Batch Processing l-11
Automatic Loading l-11

Base page Layout l-12
SYstem Start-Up l-15
Summary l-16

FILE SYSTEM Disk Capacity 2-l
Disk Organization 2-2
Directory Formats 2-3
File Organization 2-3
File Operations 2-4
Naming Files 2-6
Special File Names 2-7
File Control Block 2-7
File Attributes 2-9
User Numbers 2-lO
File Sharing 2-lO

File Locks 2-ll
Record Locks 2-12
Compatibility Modes 2-13

FIFO Files 2-15
Buffer Management 2-17
Media Changes 2-18
Error Handling 2-18

TurboDOS 1.3 8086 TABLE OF CONTENTS
Programmer's Guide (Continued)

SERIAL I/O Con8ole I/O 3-l
Basic Console I/O 3-l
Raw Console I/O 3-2
String Console I/O 3-2
Attention Requests 3-3

Com Channel I/O 3-4
printer Output 3-5

Basic Printing 3-5
Control Functions 3-5

C-FUNCTIONS Introduction 4-l
C-Function O: System Reset 4-2
C—Function I: Console Input 4-3
C-Function 2: Console Output 4-4
C-Function 3: Raw Console Input 4-")
C—Function 4: Raw Console Output . . . 4-6
C-Function 5: List Output 4-7
C-Function 6: Direct Console I/O . . . 4-8
C—Function 7: Get I/O Byte 4-lO
C-Function 8: Set I/O Byte 4-ll
C-Function 9: Print String 4-12
C—Function 10: Read Console Buffer . . 4-13
C—Function II: Get Console Status . . . 4-14
C—Function 12: Return version 4-15
C-Function 13: Reset Disk System . . . 4-16
C-Function 14: Select Disk 4-17
C-Function 15: Open File 4-18
C-Function 16: Close File 4-19

C-Function 17: Search for First 4-20
C-Function 18: Search for Next

4-22
C-Function 19: Delete File 4-23
C-Function 20: Read Sequential 4-24
C-Function 21: Write Sequential 4-25
C-Function 22: Make File 4-26
C-Hmction 23: Rename File 4-27
C-Function 24: Return Login Vector . . 4-28
C-Function 25: Return Current Disk . . 4-29

C-Function 26: Set DMA Offset 4-30
C-Function 27: Get ALV Address 4-31
C-Function 28: Write Protect Disk . . . 4-32

C-Function 29: Get Read-Only Vector . . 4-33
C-Function 30: Set File Attributes . . 4-34

TurboOOS 1.3 8086 TABLE OF CONTENTS

Programner's Guide (Continued)

C-FUNCTIONS C-Function 31: Get dfib Address 4-35
(Continued) C-Function 32: Get/Set User Number . . 4-36

C-Function 33: Read Random 4-37
C-Function 34: Write Random 4-38
C-Function 35: Compute File Size . . . 4-39
C-Function 36: Set Random Record . . . 4-40
C-Function 37: Reset Drive 4-41
C-Function 40: Write Random Zero Fill . 4-42
C-Function 42: Lock Record 4-43
C-Punction 43: Unlock Record 4-44
C-Function 46: Get Disk Free Space . . 4-45
C-Function 47: Chain to Progr= 4-46
C-Function 50: Direct BIOS Call 4-47
C-Function 51: Set DMA Base 4-49
C-Function 52: Return DMA Address . . . 4-50
C-Function 53: Al1oc Max Mewory 4-51
C-Function 54: Alloc Abs Max Meutory . . 4-52
C-Function 55: Allocate Memory 4-53
C-Function 56: Alloc Abs Memory 4-54
C-Function 57: Free Memory 4-55
C-Function 58: Free All Memory 4-56
C-Function 59: Program Load 4-57
C-Function 104: Set Date and Time . . . 4-58
C-Function 105: Get Date and Time . . . 4-59
C-Function 107: Return Serial Number . 4-60
C-Function 108: Get/Set Return Code . . 4-61
C-Function 110: Get/Set Delimiter . . . 4-62
C-Function III: Print Block 4-63
C-Function 112: List Block 4-64
C-Function 152: Parse Filename 4-65

T-FUNCTIONS Introduction 5-l
T-Function O: Reset Operating System . 5-2
T-Function l: Create process 5-3
T-Function 2: Delay Process 5-4
T-Function 3: Allocate Memory 5-5
T-Function 4: Deallocate Memory 5-6
T-Punction 5: Send I/P Message 5-7
T-Function 6: Receive I/P Message . . . 5-8
T-Function 7: Set Error Address 5-9
T-Function 8: Set Abort Addres6 5-lO
T-Function 9: Set Date and Time 5-ll

TurboDOS 1.3 8086 TABLE OF CONTENTS
Programner's Guide (Continued)

T-FUNCTIONS T-Function IQ: Get Date and Time . . . 5-12
(Continued) T—Function li: Rebuild Disk Map 5-13

T-Function 12: Return Serial Number . . 5-14
T-punction 13: Set Compatibility . . . 5-15
T-Function 14: Log-On/Log-Off 5-16
T-Function 15: Load File 5-17
T-Function 16: Activate Do-Pile 5-18
T-Function 17: Dis/Enab1e Autoload . . 5-19
T-Punction IB: Send Command Line . . . 5-20
T-Function 19: Return Alloc Info . . . 5-21
T—Function 20: Return Physical Info . . 5-22
T-Function 21: Get/Set Drive Status . . 5-23
T-Function 22: physical Disk Access . . 5-24
T-Function 23: Set Buffer Parameters . 5-26
T-Function 24: Get Buffer Parameters . 5-27
T-Function 25: Lock/Uníock Drive . . . 5-28
T-Function 26: Flush/Free Buffers . . . 5-29

T-Function 27: Get/Set Print Mode . . . 5-30
T-Function 28: Signal End-of-Print . . 5-31
T-Function 29: Get/Set De-Spool Mode . S-32
T-Function 30: Queue a Print File . . . 5-33
T-Function 31: Flush List Buffer . . . 5-34
T-Function 32: Network List Out 5-35
T-Function 33: Reote Console I/O . . . 5-36
T-Function 34: Get Co~ Status 5-37
T-Function 35: Com Channel Input . . . 5-38
T-Function 36: Comi Channel Output . . 5-39
T-Function 37: Set Com Baud Rate . . . 5-40
T-Function 38: Get Co~ Baud Rate . . . 5-41
T-F'unction 39: Set Modem Controls . . . 5-42
T-Function 40: Get Mod@ Status 5-43
T-Function 41: User-Defined Function . 5-44
T-Function 42: Reorg Disk Directory . . 5-45

APPENDICES TASM A8s0bler A-l
TLINK Linker B-l
TBUG Debugger C-l
C-Function Stmmary D-l
T-Function Sununary E-l
Index F-l

TurboDOS 1.3 8086 FUNDAMENTALS

Programmer's Guide

FUNDAMRmLs This section introduces you to the TurboDOS
environment. Emphasis is given to the orga-
nization of memory, and to the interface and

flow of control between application programs
and the operating system. Subsequent sec-
tions describe the file system and other
facilities in detail.

Memory Organization The resident portion of TurboDOS may be
anywhere in the one-megabyte address space
supported by an 8086-family CPU. Usually, itis loaded at location 0040: 0000 hex,
immediately above the lower IK reserved by

the 8086 architecture for interrupt vectors.
Immediately following the TurboDOS resident
is an area of memory reserved for disk
buffers and other dynamic working storage.
The remaining memory space available for use
by commands and application programs is known
as the "Transient Program Area" (TPA).

I I

I l

: Transient :

: Program Area :

I

I I l

l Dynamic Space I

i

! I l

Disk Buffers I 64K
l max

TurboDOS I

0040: 0000 l

0000: 0000 l Tnterrnpt \/ect.or¶ l IK

Under 8086 TurboDOS, several transient pro-
grams may be loaded into the TPA at one time

(although only one may be in execution).

l-l

TurboDOS 1.3 8086 FUNDAMENTALS
progranuner's Guide

Execution Models

Execution Models Transient programs are .Qtored in files ot
type .CMD, preceded by a header record which
defines the segmentation and memory alloca—
tion requirements of the program. Transient
programs may be written as a single group
with intermixed code and data ("8080 Model"),
with separate code and data groups ("Small
Model"), or with up to eight separate groups:
code, data, extra, stack, and up to four
auxilliary groups ("Compact Model").

8080 Model If the .CMD header defines only a code group,
then it is assumed that the code and data
portions of the program are intermixed.
TurboDOS allocates a TPA segment sufficient
to contain the code group. The first 256

bytes of the code group is assumed to be a
Base Page reserved for communications between
the operating system and the program.

l l

: Intermixed :
i Code/Data !

CS:OlOO l 1<--ip
! l

l Base Page I

DS: OOOO l _______I<--cs,ds,es

I 96-Byte Stack Area |<--SP
0 *0 0
: TurboDOS Resident :

40: 0000 l |<--SS

For this "8080 Model", TurboDOS initializes
the es, DS, and ES segment registers to
address the single code group. The ip regis-
ter is set to OxOlOO so that execution starts
immediately following the Base Page. The SS

and SP registers initially point to a 96-byte
stack area provided within TurboDOS.

l-2

TurboDOs 1.3 8086 FUNDAMENTALS
Programner's Guide

Execution Models
(Continued)

Smaíl Model If the .CMD header defines both a code group
and a data group, then it is assumed that the
code and data portions of the program are
separate and independent. In this case,
TurboDOS allocates separate TPA segments for
the code group and the data group. The two
allocated segments are not necessarily con-
tiguous. The Base Page is assumed to occupy
the first 256 bytes of the data group.

l I

l I

: Code :
l I

CS:OOOO l 1<--cs,ip

l l

l I

: Data :
I I

DS:OlOO I

I

I Base Page l

DS:OOOO l |<--DS,ES

l 96-Byte Stack Area |<--SP
W 00 *
: TurboDOS Resident :

40: 0000 l l<--ss

For this "Small Model", TurboDOS initializes
the es register to the base of the code
group, and initializes the DS and ES regis-
ters to address the base of the data group.
The IP register is set to zero. The SS and
SP registers initially point to a 96-byte
stack area provided within TurboDOS.

l-3

TurboDOS 1.3 8086 FUNDAMBNTALS
Programner's Guide

Execution Models
(Continued)

Compact Model If the .CMD header defines a code group, a
data group, and one or more additional groups
(extra, stack, or auxilliary), then TurboDOS
allocates separate TPA segments (not neces-
sarily contiguous) for each of the groups.
The Base Page is assumed to occupy the first256 bytes of the data group.

l l

: Code :

CS: OOOO I 1<--CS,IP

I I

: Data :

DS: OlOO I

I (

I Base Page I

DS:OOOO l 1<--ds

I l

: Extra Data :

ES:OOOO l 1<--es

i

: Stack/Aux Group(s) :
I |<--Base Pg.

l 96-Byte Stack Area |<--SP
0 T¥ 0
: TurboDOS Resident :

40: 0000 l l<--ss

For this "Compact Model", TurboDOS initial—
izes the es and ds registers to the base of
the code and data groups, respectively. ES

is set to the base of the extra group ifpresent, otherwise to the data group. The IP
register is set to zero. The SS and SP
registers initially point to a 96-byte stack
area provided within TurboDOS. The stack and

auxilliary groups may be located via pointers
in the Base Page.

l-4

TurboDOS 1.3 8086 FUNDAMENTALS

programmer's Guide
Command Files

Comand Files a transient command file (type .CMD) always

starts with a 128-byte header record that
defines the segment structure and allocation
requirements of the transient program. The
header record contains from one to eight
"group descriptors", each nine bytes long.
The balance of the 128 bytes is zero-filled.
< 1?Á BVtrs >

I GP1 I GP?,
,,lk

i GPn <---- zeroesí ---: > l

Each 9-byte group descriptor has this format:
I G-Type I G-Size i G-Abs I G-Min l G-Max I

i (PYt'ñ i (wrd) i (wrd) i {word) i (woraí i

The G-Type field designates the group type:
i G-7Ype grmip 'p/pé

l Code Group
l 2 Data Group l

3 Extra Group I

l 4 Stack Group
5 Aux-l Group l

I 6 Aux-2 Group I

7 Aux-3 Group l

l 8 l\iw-4 Grnnp l

The G-Size field specifies the number of
paragraphs of loadable memory-image data to
be read from the .CMD file for this group.

The G-Abs field is ignored by TurboDOS, and
normally set to 0xOOOO.

The G-Min and G-Max fields specify the mini-
mum and maximum number of paragraphs to be
allocated for this group.

Following the header record, the command filecontains the loadable portion of each group
in memory-image format, in the same order as
the group descriptors in the header record.

1"5

TurboDOS 1.3 8086 FUNDAMENTALS
Programmer's Guide

Progr= Interface

Progr= Interface TurboDOS supports 103 different functions
that may be invoked by an application
program. Functions are provided for fil-e
management, memory management, console
input/output, printing and spooling, and
various other TurboDOS facilities. The last
half of this guide is largely devoted to
describing each of these functions in detail.
Functions supported by TurboDOS fall into two
categories: CP/M-compatible functions, and
TurboDOS-unique functions. We will refer to
them as "C-functions" and "T-functions",
respectively. TurboDOS supports 60 C-func-
tions and 43 T-Functions.

C-Functions To invoke a C-function, a program executes an
interrupt instruction INT 224 (or INT OxEO)
with a function number in the CL-register.
TurboDOS supports all CP/M-86 BDOS functions:

O System Reset 20 Read Sequential
I Console Input 21 Write Sequential
2 Console Output 22 Make File
3*Raw Console Input 23 Rename File
4*Raw Console Output 24 Return Login Vector
5 List Output 25 Return Current Disk
6 Direct Console I/O 26 Set DMA Address
7 Get I/O Byte 27*Get ALV Address
8 Set I/O Byte 28 Write protect Disk
9 Print String 29 Get R/O Vector

10 Read Cons. Buffer 30 Set File Attributes
11 Get Console Status 31 Get DPB Address
12 Return Version 32 Get/Set User Number
13 Reset Disk System 33 Read Random
14 Select Disk 34 Write Random
15 Open File 35 Compute File Size
16 Close File 36 Set Random Record
17 Search for First 37 Reset Drive
18 Search for Next (38-39 reserved)
19 Delete File 40*Write Random O-Fill

l-6

TurboDOS 1.3 8086 FUNDAMENTALS

programmer's Guide
Program Interface

(Continued)

C-Functions 50 Direct BIOS Call 55 Allocate Memory
(Continued) 51 Set DMA Base 56 Allocate Abs Memory

52 Get DMA Base 57 Free Memory
53 Alloc Max Memory 58 Free All Plernory
54 Alloc Abs Max Hem 59 Program Load

These TurboDOS C-functions are compatible
with the corresponding functions in CP/M-86

except for the four functions marked with an
asterisk above. In TurboDOS, C-functions 3

and 4 are compatible with MP/R-86 rather than
CP/M-86. C-function 40 is synonymous with
34. C-function 27 (Get ALV Address) performs
no operation in TurboDOS, but this function
affects only the STAT utility of CP/M-86
which is not normally used with TurboDOS.

In addition to BDOS functions O-40 and 50-59
supported by CP/M-86, a number of additional
functions have been implemented in Concurrent
CP/M-86 and MP/M-86. TurboDOS provides
compatible C-functions for certain of these
functions:

42 Lock Record 107 Return Serial No.
43 Unlock Record 108 Get/Set Rtn Code
46 Get Free Space 110 Get/Set Delimiter
47 Chain to Program Ill Print Block

104 Set Date/Time 112 List Block
105 Get Date/Time 152 Parse Filename

However, the following rarely-used functions
are ÁQt implemented, and perform no function
in 8086 TurboDOS:

41 Test and Write 99 Truncate File
44 Set Multi-Sector lOó Set Dir Label
45 Set Error Mode lOl Get Dir Label
48 Flush Buffers 102 Read PW Mode
49 Get/Set SCB 103 Write File XFCB

60 Call RSX 106 Set Default PW

98 Free Blocks 109 Get/Set Cons Mode

l-7

TurboDOS 1.3 8086 FUNDAMENTALS
Progranmer's Guide

Program Interface
(Continued)

T-F'unctions To invoke a T-function, a program executes an
interrupt instruction INT 225 (or INT OxEl)
with a function number in the CL-register. A

different entrypoint interrupt is used to
avoid conflict with C-function numbers.
TurboDOS supports the following T-functions:

O Reset O/S 22 phys Disk Access

l Create Process 23 Set Buffer Parms
2 Delay Process 24 Get Buffer Parms
3 Allocate Memory 25 Lock/Unlock Drive
4 Deallocate Memory 26 Flush/Free Buffers
5 Send Message 27 Get/Set Print Mode
6 Receive Message 28 Sig End-of-Print
7 Set Error Address 29 Get/Set Despl Mode
8 Set Abort Address 30 Queue a Print File
9 Set Date/Tinie 31 Flush List Buffer

10 Get Date/Tirae 32 Network List Out

li Rebuild Disk Map 33 Remote Console I/O
12 Get TurboDOS S/N 34 Get Comm Status
13 Set Coínpat. Flags 35 Comm Input
14 Log-On/Log-Off 36 Comm Output
15 Load File 37 Set Comm Baud Rate
16 Activate Do-File 38 Get Comm Baud Rate

lj Autoloaá On/Off 39 Set Modem Controls
18 Send Command Line 40 Get Modem Status
19 Get Alloc Info 41 User-Defined Func.
20 Get Phys Disk Info 42 Reorg Disk Directory
21 Get/Set Drv Status

Termination A program may terminate by invoking C-func—

tion O (System Reset), or alternatively by
executing a far-return instruction "RETF"
(provided the original values of the SS and

SP registers are intact). Both methods are
entirely equivalent, and cause TurboDOS to
terminate the program in TPA and prompt for
the next command. A program may also teríni—

nate by invoking C-function 47 (Chain to
Program), which allows the program to specify
the next command to be executed after the
program terminates.

l-8

TurboDOS 1.3 8086 FUNDAMENTALS

Programmer's Guide
Comand Processíng

Command Processing a TurboDOS command always identifies a pro-
gram file residing on disk, and causes that
program to be loaded into memory (TPA) and
executed. TurboDOS has no "built-in" com-
mands.

TurboDOS comes with more than 30 standard
command programs (described in detail in the

.
You can expand the vocabulary

of commands simply by storing additional
programs on disk. Programs are usually kept
in .CFÍD files.

Command Prompt TurboDOS displays a command prompt on the
console whenever it is ready to accept a

command. The command prompt is composed of
the current user number, the current drive
letter, and the } prompt symbol.

Command Format Each TurboDOS command consists of the file
name of the program to be executed, possibly
followed by an optional command tail of up to
126 characters. A command inay be entered in
upper- or lower-case letters, but is conver-
ted to upper-case by TurboDOS.

The program name may have an explicit file
type, but usually doesn't (TurboDOS assumes
.CMD). It níay also have an explicit drive
specification (like "B: ") if the program is
not on the current drive. You will get an
error message if the program file cannot be
found on disk, or if the available TPA is not
big enough to hold the program.

A special kind of command is used to change

the current drive. It consists of a drive
specification (like "B:") with no program
name.

l-9

TurboDOS 1.3 8086 FUNDAMENTALS
Programmer's Guide

Co=and processing
(Continued)

Tail Parsing The format of a command tail is determined by
the particular program involved. TurboDOS

passes the command tail to the program by
saving the length of the tail (in characters)
at location DS: 0080 of the Base Page, and

saving the text of the tail (up to 126 char-
acters) starting at location DS: 008l.
TurboDOS also stores a null (zero byte)
immediately following the last character of
the command tail. The tail includes allcharacters following the program name, inclu—
ding leading spaces. If no tail is given in
the command, the length stored at DS:0080 is
zero.

If the command tail consists of one or two
filenames of the form:

{d:}filename{.typ}

then TurboDOS parses each into File Control
Block (FCB) format. The first parsed FCB is
saved at location DS:005C of the Base Page,
and the second parsed FCB is saved at loca—
tion DS:006C. Parsing is done following the
procedure described for C-function 152 (Parse

Filename).

Command Strings TurboDOS also accepts strings of commands
separated by the character \ (backslant).
TurboDOS executes each command in sequence,
and re-displays each but the first as it is
executed. A command string may not exceed
the size of the command buffer, which is
normally big enough to accoinodate two lines
of text.

l-10

TurboDOS 1.3 8086 FUNDAMENTALS

Programmer's Guide
Cowmnd Processíng

(Continued)

Batch Processing TurboDOS supports a batch processing mode in
which execution is controlled by a pre-
defined sequence of commands stored in a "do-
file" on disk. A do-file is a text file(usually type .DO), each line of which con-
tains a valid TurboDOS command or command
string. A do-file may be activated with a do
command, or by invoking T-function 16 (Acti-
vate Do-File). A do-file may contain any
number of embedded DO commands, and nesting
is supported to any reasonable depth.

Automatic Loading TurboDOS provides a facility for loading any
program or executing any command sequence
automatically at initial start-up (cold
start) or whenever a program terminates (warm

start). Autoload at cold-start takes place
only if a file named COLDSTRT.AUT is present
on the start-up disk. Autoload at warm-start
takes place only if a file named WRMxSTRT.AUT
(where X=8 for UP8S, 6 for Upl6s, and B for
the background batch) is present on the cur-
rent disk. The AUTOLOAD command is the usual
way to create these .AUT files.
Alternatively, a program (.CMD file) may be
autoloaded by renaming it as COLDSTRT.AUT or
WRM6STRT.AUT. In this case, however, the
autoloaded program must not rely on the
contents of the Base Page FCB (at DS: 005C)
and buffer (at DS:0080), because they will be

left uninitialized after the autoload.

Inl

TurboDOS 1.3 8086 FUNDAMENTALS
Programmer's Guide

Base page Layout

Base page Layout The Base Page is the 256-byte memory region
from DS: OOOO to DS: OOFF. The Base Page is
initialized by TurboDOS whenever a transient
program is loaded, and is used for comunica—
tion between TurboDOS and the transient pro—

gram The organization of the Base Page is
shown below:

I Mx Meir I 'pm':criptinn. l

i l

l 0000-0002 Length of code group in !

j bytes. Stored as a 24-bit I

I number, least-significant l

I byte first. I

l

I 0003-0004 Base paragraph address of l

I code group. l

l [

! 0005 8080 Model flag, set to l I

; if 8080 Model, O otherwise. t

l l

I 0006-0008 Length of data group in l

I bytes, 24 bits, LSB first. I

l I

l 0009-0OOA Base paragraph address of !

l data group. I

I l

I OOOB (Unused, reserved.) [

l l

I 00OC-OOOE Length of extra group in I

l bytes, 24 bits, LSB first. I

[

l 00OF-0OlO Base paragraph address of i

l extra group. l

l [

] DOll (Unused, reserved.) l

I

i 0012-0014 Length of stack group in I

l bytes, 24 bits, LSB first. I

l

I 0015-0016 Base paragraph address of i

l stack group. l

l !

l-12

TurboDOS 1.3 8086 FUNDAMENTALS

Programmer's Guide
Base page Layout

(Continued)

Base Page Layout ; HeY Mdr " Pe5cription I

(Continued) l

I 0017 (Unused, reserved.) l

I I

l 0018-0O1A Length of aux-l group in l

l bytes, 24 bits, LSB first. l

i I

l 0O1B-OOlC Base paragraph address of I

I aux-l group. I

I I

I OOID (Unused, reserved.) l

l l

I OO1E-0020 Length of aux-2 group in l

I bytes, 24 bits, LSB first. !

l

I 0021-0022 Base paragraph address of I

I aux-2 group. I

l l

I 0023 (Unused, reserved.) l

l l

I 0024-0026 Length of aux-3 group in l

l bytes, 24 bits, LSB first. l

l I

l 0027-0028 Base paragraph address of I

aux-3 group. l

I

l 0029 (Unused, reserved.) I

I

I 002A-002C Length of aux-4 group in l

j bytes, 24 bits, LSB first. I

I

l 002D-002E Base paragraph address of I

aux-4 group.
I

l 002F-005B (Unused, reserved.) I

! 005C-006B Default FCB part l. The I

l first filename argument in I

a command tail is parsed I

I into this 16-byte area. l

l I

I

l-13

TurboDOS 1.3 8086 FUNDAMENTALS
Programner's Guide

Base Page Layout
(Continued)

Base Page Layout I HeY Aádr ! -____.__-.-.wscxXtje—_ __!
(Continued) I (

l 006C-007B Default FCB part 2. The l

i second filename argument in I

a command tail is parsed
I into this l6-byte area, and [

l must be moved to another I

location before making use I

of the default FCB. l

I I

l 007C Default FCB current record. I

l I

l 007D-Q07F Default FCB random record. I

l l

l 0080-(JOFF Default l28-byte buffer. l

! This area receives the com- I

I mand tail length in 0080H, l

: and the conunand tail text i

l (up to 126 characters plus I

! a null terminator) in loca— i

I tions 0081H-OOFFR. {

I l

l-14

TurboDOS 1.3 8086 FUNDAKENTALS
programmer's Guide

Syst= Start-Up

system Start-Up To get TurboDOS started, it is necessary to
read a copy of the operating system from disk
into memory, a process known as "cold start".
The exact cold-start procedure depends on the
particular hardware involved.

Most TurboDOS implementations use this three-
step cold-start procedure:

I. When the computer is turned on or reset,
it executes the TurboDOS bootstrap front

read-only memory (ROM). (In some imple-
mentations, the bootstrap may be loaded

from reserved tracks on disk.) The

bootstrap scans all disk drives from A

to P, searching the directory of each
ready drive for a file named OSLOAD.COM

which contains the TurboDOS loader.
When this file is found, the bootstrap
loads it into the TPA and executes it.

2. The TurboDOS loader scans all disk
drives from A to P, searching for a filenamed OSSERVER.SYS which contains the
server operating system. When this file
is found, the loader proceeds to load
the operating system into memory, then
transfers control to it. The drive from
which the OSSERVER.SYS file was loaded
becomes the "system disk".

3. The server downloads a user bootstrap
routine into each user processor. The

server then locates a file nameá OSUSER

.SYS on the system disk which contains
the user operating system, and downloads

it into each user processor.

During network operation, it is helpful ifthe system disk is always on-line. If a

fixed disk is available, it should be used as
the system disk.

l-15

TurboDOS 1.3 8086 FUNDAMENTALS

Programmer's Guide

Summry

Sumtary This section has introduced the fundamentals
of the TurboDOS environment. You have
learned how memory is organized, how programs
may be segmented into various execution
models, and how .CMD files are formatted.
You understand the TurboDOS program inter-face, including C-functions, T-functions, and
direct BIOS calls. You know how TurboDOS
parses and processes commands, command
strings, and do-files, and how it communi-
cates with programs via the Base Page.

Next{ we examine the TurboDOS file system in
consíderable detail.

l-16

TurboDOS 1.3 8086 FILE SYSTEM

Programmer's Guide

FILE SYSTEM This section describes the TurboDOS filesystem in detail. It covers the structure of
disks and files, the facilities provided to
manage files, and the procedures for calling
these facilities from application programs.

Disk Capacity The TurboDOS file system can support up to
sixteen logical drives per processor, identi-
fied by the letters A through P. Drives may
be local to the processor, or may be attached
to another processor and accessed by means of
networking.

TurboDOS accomodates any combination of
drives from mini-floppies to large hard disks
in excess of a gigabyte. Allocation block
size may be chosen individually for each
drive, and affects maximum drive capacity as
follows:
I l\11nc, Blnck SWe I Max,. Prive cApÁcitY I

! l

IK 256 Kilobytes l

l 2K 128 Megabytes l

l 4K 256 Megabytes !

l 8K 512 Megabytes l

16K 1,024 Megabytes
l l

Because these limits are so big, it is almost
never necessary to partition a physical drive
into smaller logical drives under TurboDOS.
However, such partitioning is sometimes done
for user convenience when using large fixed
disks.

For maximum capacity and performance, floppy
disks used with TurboDOS are generally for-
matted with large sector sizes (512 or 1024

bytes), no interleave, and no reserved
tracks. However, TurboDOS also accomodates
standard CP/M floppy disk formats.

2-l

TurboDOS 1.3 8086 FILE SYSTEM
programmer's Guide

Disk Organization

Disk Organization Each disk is organized into five areas:
I I

l File Storage I

0 P0 e 0 V
0 *V e 0 0
V 0* 0 0 €
i File Storage l

l l

I Directory I

I I

! Allocation Map I

I I

I Volume Label I

I l

i Reserved Tracks
l

Reserved tracks are required by certain hard-
ware configurations to support cold-start,
but are not otherwise used by TurboDOS. The
volume label permits a name to be given to
each disk. The allocation map contains one

bit for each allocation block on the disk,
and is used by TurboDOS to keep track of
which disk blocks are occupied and which are
free. The directory is a table of contents
which identifies all files stored on the
disk. The remainder of the disk (most of it)
is available for file storage.
CP/M does not maintain a volume label or
allocation map on the disks it creates. When

a CP/M disk is first accessed by TurboDOS,
the first few CP/M directory entries are
automatically relocated to the end of the
directory in order to make room for the label
and map. When a TurboDOS disk is accessed by
CP/M, the label and map appear to be ordinary
deleted directory entries. Thus, disks can
be moved freely between CP/M and TurboDOS

in spite of the differences in organization.

2-2

TurboDOS 1.3 8086 FILE SYSTEM
Programner's Guide

Directory Formats

Directory Formats TurboDOS supports two alternative directory
formats: linear and hashed. A flag bit in
the directory label indicates which format is
in use on a particular disk.

The standard linear format is compatible wítb
CP/M, and is searched sequentially. Conse-
quently, look-up speed deteriorates wíth
increasing directory size, and can get pain-
fully slow on large disks with many files.
The optional hashed directory format uses a

hashing algorithm to make look-up in large
directories much faster. A hashed directory
may be used on any disk, but is especially
suited for use on hard disks with many files.
Hashed directories are = inedia-compatible
with CP/M, but may be converted to linear
format whenever exporting to CP/L'I is needed.

Whether the directory is linear or hashed,
searches involving "wild cards" have to be
done linearly. such wild-card searches are
typically slower if the directory is hashed.

File Organization A file contains a sequence of l28-byte
records, and may be up to 134 megabytes
(1,048,576 records) long. The records of a

file may be read and written sequentially or
randomly (by relative record number). A file
may be extended by writing beyond the end of
file. TurboDOS automatically allocates disk
space when a file is extended, and deallo-
cates it when a file is deleted.

Text files are written as a sequence of ASCII
characters with a carriage-return (OxOD) and

line-feed (OxOA) at the end of each text
line. Text lines are variable length and may
span records. The end of a text file is
marked by the ASCII character SUB (OXIA).

2-3

TurboDOS 1.3 8086 file sYsTm
Programmer's Guide

File Operations

File Operations About half of the 60 C-functions supported by
TurboDOS are connected with the file system.
These functions support the operations needed
to manipulate files, directories, and disks.

The following functions provide the basic
facilities for sequential file access:

I C-Fem I Fnn'M"n Nam
l l

I 15 Open File I

l 16 Close File
l 20 Read Sequential I

l 21 Write Sequential
I 22 Make File I

I I

These additional functions are necessary to
support random access and file sharing:
! c-pm I F!lnctic)n ÑÁñE I

I i

I 33 Read Random I

i 34 Write Random
l 35 Compute File Size l

l 36 Set Random Record
I 42 Lock Record I

I 43 Unlock Record I

I I

Directory functions include:
I C-Fen [Fl1nctinn Nam
l

l 17 Search fcx First l

i 18 Search for Next
l 19 Delete File l

l 23 Rename File
I 30 Set File Attributes
) l

2-4

TurboDOS 1.3 8086 FILE SYSTEM

Programmer's Guide
File Operations

(Continued)

File Operations Drive-oriented functions are:
(Continued)

I c-Fen I Fl1.ncti(7n Name I

l l

I 14 Select Disk }

l 24 Return Login Vector I

I 25 Return Current Disk I

i 28 Write Protect Disk i

i 29 Get R/O Vector l

l 31 Get DPB Address l

{ 37 Reset Drive I

l 46 Get Free Space I

l I

Finally, some other functions connected with
the file system include:
l C-Fen l Fl1n.ctinn Niwm l

l l

{ 13 Reset Disk System l

I 26 Set DNA Address l

I 32 Set/Get User Number l

I 47 Chain to Program !

l 51 Set DMA Base l

i 52 Get dma Address l

I 59 Program Load l

l 152 Parse Filename I

l l

Each of these file system C-functions is
described in detail later in this document.

2-5

TurboDOS 1.3 8086 FILE SYSTEM

Programmer's Guide

N=ing Files

Naming Files TurboDOS keeps track of files by name, main-
taining a directory of files on each disk. A

file is identified uniquely by four fields:
. drive letter (A-P)

. user number (0-31)

. file name (up to 8 characters)

. file type (up to 3 characters)

The drive letter specifies the disk on which
the file is located. If no drive letter is
given, the current drive is assumed by
default.

The user number specifies one of 32 logical
file libraries on each disk. These libraries
allow files to be conveniently segregated by

user or application. Generally, user O is
reserved for global files and user 31 is
reserved for log-on security, leaving l-30
for general use.

The name and type fields are composed of
ASCII characters. The file name may have up
to eight characters, and the file type may
have up to three. Shorter names and types
are padded on the right with spaces.

It is suggested that file names and filetypes be composed from the upper-case letters
A-Z and the digits U-9. Actually, any ASCII
characters may be used including lower-case
letters, punctuation, and even non-printing
control characters. However, such names may
not be parsed correctly in commands nor dis-
played correctly in directories.

The question mark ? is a special wild-card
character which may be used in file names and
types to match any character in the corre-
sponding position during directory searches.

2"6

TurboDOS 1.3 8086 file SYSTEM
programner's Guide

Special File Names

Special File Names TurboDOS gives special meaning to two
reserved file names. "$.DIR" refers to the
directory area of a disk, while "$.DSK"

refers to the entire contents of the physical
disk volume (up to the waximuiíí file size of
134 megabytes). These special files may be
dumped, patched, or accessed like any ordin-
ary file. However, access is restricted to
privileged log-ons only.

File Control Block File-oriented C-functions and T-functions are
always called with the address of a File
Control Block (FCB) in the DX-register. The
FCB is a data structure 33 bytes long (36

bytes for random access operations) organized
as follows:
l offsmt " Field Pe¶r.ription l

l !

I O drive drive code (0-16): I

i O -> current drive I

i l -> drive A I

l 2 -> drive B l

I °P
l 16 -> drive P l

l I

I l—8 name file name in ASCII, I

padded on right with I

l spaces, high-order bit I

of each byte reserved i

l for attributes £l-f8 i

l I

l 9-ll type file type in ASCII, I

l padded on right with l

I spaces, high-order bit l

l of each byte reserved I

I for attributes tl-t3 I

l

l 12 extent least significant five I

l bits of extent number l

l l

2-7

TurboDOS 1.3 8086 FILE SYSTEM

Programmer's Guide
File Control Block

(Continued)

File Control Block I C)ffAet. I Fie1á I Ppqcripf.ir)n I

(Continued) l l

I 13 specl flag byte (Do Not Use) I

I I

l 14 spec2 most significant eight)

I bits of extent number I

l l

l 15 record number of records in !

l count current extent (0-128) i

l !

l 16-31 map allocation map of cur- l

l rent extent l

i l

i 32 current current record number l

I record (0-127) in current ex- l

! tent l

I l

l 33-35 random 20-bit record number l

I record (byte 33 is least sig- l

l nificant) for random- I

l access operations I

l l

In general, the application program must

initialize FCB bytes O-12 before opening,
making, or searching for a file. It must
also zero FCB byte 32 before reading or writ-
ing a file sequentially from the beginning.

When a file is opened, TurboDOS fills FCB
bytes O-31 with information from the direc-
tory. Thereafter, the application program
should not modify FCB bytes 0-31. When the
file is closed, TurboDOS updates the direc-
tory with information from the FCB. A direc-
tory entry has the same structure as the
first 32 bytes of an FCB. In a directory
entry, however, byte O contains the user
number O-31 to which the file belongs, or the
value OxE5 if the áirectory entry is not in
use. Also, byte 13 may contain the exact
byte count of the last record in the file.

2-8

TurboDOs 1.3 8086 file SYSTEM
Programmer's Guide

File Attributes

File Attributes File attributes are stored in the high-order
bits of the FCB name field bytes fl-f8 and
type field bytes tl-t3, and are used to con-
trol how a file may be accessed:

———l A.t.triMte I PefiñithW l
i l
i fl FIFO file attribute
l ii2-f4 undefined file attributes l
I f5-f8 interface attributes I
I ti read-only file attribute I

I t2 global file attribute l
l t3 archived attribute

I

The file attribute bits fl-f4 and tl-t3 arerecorded in the directory, and may be set or
cleared by means of C-function 30 (Set File
Attributes). For a newly-created file, allattribute bits are initialized to zero. When
a file is opened, its attributes are copied
into the FCB. File attributes may also be
interrogated by means of C-functions 17 and
18 (Search for First/Next).

The read-only attribute (ti) prevents a filefrom being written, deleted or renamed. The
global attribute (t2) enables a file saved
under user O to be accessed from any user
number (it has no effect for files saved
under non-zero user numbers). The archived
attribute (t3) is used for incremental filebackup, and is automatically cleared by
TurboDOS whenever a file is written orrenamed. The FIFO attribute (fl) causes a

file to be accessed using a special "first-in
first-out" access method (described later).
Attributes f2-f4 are undefined, and available
to the user. Interface attribute bits f5-f8
cannot be used as file attributes; they
specify options for certain C-functions.

2-9

TurboDOS 1.3 8086 FILE SYSTEM
Programner's Guide

User Numbers

User Numbers TurboDOS provides 32 file libraries on each
disk corresponding to user numbers 0-31.
Generally, user O is reserved for global
files and user 31 is reserved for log-on
security, leaving l-30 for general use.

The current user number is established ini—

tially at log-on. For a non-privileged log—
on, the user number remains unchanged until-
log-off. This restricts file access to the
corresponding file library (plus global files
under user O). For a privileged log-on, the
user number níay be changed without restric-
tion by means of C-function 32 (Set/Get User
Number).

The current user number is treated as a pre—
fix to file names, thereby allowing each disk
directory to contain up to 32 libraries.
Most directory functions (make, rename,
delete, search, etc.) are restricted to the
library corresponding to the current user
number. However, files in the user O library
which have the global file attribute may be
opened from any user number. This permits
commands, programs, and other coxunon files to
be shared by all users.

File Sharing In a multi-user TurboDOS system, it is pos—

sible for multiple users to access the sanie

file at the same time. This can happen ifthe users are logged-on to the same user
number, or accessing the same global file.TurboDOS supports interlocks to regulate such

file sharing at the file or record level.

TurboDOS file sharing facilities are compa—

tibie with MP/M, but provide significant
extensions to alleviate the most serious
deficiencies in MP/M file sharing.

2-lO

TurboDOS 1.3 8086 FILE SYSTEM

Programmer's Guide
File Sharing

(Continued)

File Locks File-level interlocks are supported by means
of four distinct modes of opening a file.The open mode is determined by FCB interface
attributes f5-f6 when the file is opened or
created. The four open modes are called
exclusive, shared, read-only, and permissive.
A file opened in eX.c.1|lsi\/e mode is available
to the opening process exclusively until itis closed, and may not be opened by any other
process. A file cannot be opened in exclu-
sive mode if the file is currently opened (in
any mode) by another process.
A file may be opened in sharM mode by any
number of processes simultaneously. All
processes are allowed to read, write and

extend the file. Record lock and unlock
functions are honored only for file opened in
shared mode.

A file may be opened in rmd-onlv mode by any
number of processes simultaneously. All
processes are allowed to read the file, but
not to write or extend it.
A file may be opened in permi¶si\/e mode by
any number of processes simultaneously. All
processes are allowed to read the file. If
any process writes or extends the file, then
that process gains an exclusive write-lock on
the file, preventing any other process froin
writing to the file. The exclusive write-
lock is released when the locking process
closes the file.
In shared and permissive modes, if a process
extends a file by adding new records at the
end, these records become immediately acces-
sible to other processes that also have the
file open.

2-ll

TurboDOS 1.3 8086 FILE SYSTEM

Prograuuner's Guide
File Sharing

(Continued)

———

Record Locks Record-level interlocks are controlled by

means of explicit locking and unlocking
requests wade by the application program.
This allows concurrent update by multiple
processes.
Record locks are by no means automatic, and

require explicit cooperative participation by

all updating programs. C-functions 42 (Lock
Record) and 43 (Unlock Record) are honored
only for files opened in the shared mode.
Each program must lock a record before read-
ing it, and must unlock the record after
updating it.
If a program attempts to lock a record that
is already locked by another process, the
Lock Record function returns an error code
and the program must try again until it is
successful. Alternatively, the program can
ask TurboDOS to suspend program execution
automatically until the lock request can be

satisfied.

To extend a shared file in a concurrent
update environment, the extending program
should first acquire a lock on record N+l
(where N is the last record in the file).
The program may then safely write record N+l,
and finally unlock N+l.

2"12

TurboDOS 1.3 8086 FILE SYSTEM

Programmer's Guide
File Sharing

(Continued)

Compatibility Modes The file sharing facilities of TurboDOS are
designed to provide compatibility with MP/M,

yet at the saíne time to alleviate the most
serious limitations of MP/M file sharing.
TurboDOS may be instructed to adhere strictly
to MP/í4 file-sharing rules, or alternatively
to relax some of these rules. to this end,
TurboDOS provides a byte of "compatibility
flags" with the following bit assignments:

l f3jt F,Gq NAme AfEectS l

l I

l 7 permissive default open mode l

I 6 suspend lock conflict action i

l 5 global-write writing global files I

l 4 mixed-mode mixed file open modes l

l 3 logical record lock validity l

I 2-O (not defined) i

I I

For each compatibility flag, a zero-bit de-
notes strict adherence to the MP/M rule,
while a one-bit signifies a relaxation of
that rule. The initial setting of the com-
patibility flags may be established during
TurboDOS system generation by assigning the
desired value to the symbolic location
COMPAT. A program may modify its compati-
bility flags by calling T-function 13 (Set
Compatibility Flags), but the flags automati-
cally revert to their initial setting when
the program terminates.

If the permi|s,Fij.\/e flag (bit 7) is set, the
default file open mode is permissive, rather
than exclusive (as in MP/M). Specifically,
the open mode is determined when a file is
opened or created by FCB interface attributes
f5-f6, as shown in the following table:

2-13

TurboDOS 1.3 8086 FILE SYSTEM

Programner's Guide
File Sharing

(Continued)

Compatibility Modes permi.ssive f1aq = I) pernais¶i.¶'e f1Aq = 1

(Continued) l fG f5 nppn Tí1ode I I f6 f5 opRn irmAe I

l l l l

I O O exclusive I I O O permissive I

l O l shared l l O l shared l

l I O read-only l l l O read-only i

l l i permissive l { 1 l exclusive I

l l I l

If the stispend flag (bit 6) is set, then an
attempt to lock a record that is already
locked by someone else causes the process to
be susgenáecí until its lock request can be
satisfied. Otherwise, an attempt to lock or
write to a record that is already locked by
someone else results in an immediate error
return code (as in MP/M).

If the q1ol)A1-writ.e flag (bit 5) is set, then
a program running under a non-zero user
number may both read and write global files.
Otherwise, access to global files is strictly
read-only (as in MP/M).

If the miY.ea-N.ode flag (bit 4) is set, then
one process may open a file in shared mode
while another has it open in read-only mode
(or vice-versa). Otherwise, the shared and
read-only rrtodes are mutually exclusive (as in
MP/bi).

If the 1oqica] flag (bit 3) is set, then the
FCB random record field for C-functions 42
and 43 (Lock/Unlock Record) is interpreted
as an arbitrary 24-bit logical record number
which is not validated and does not cause

file positioning. Otherwise, the FCB random
record field for C-functions 42 and 43 is
interpreted as the relative number of a 128-

byte record, and causes the file to be posi-
tioned to that record (as in MP/M).

2"14

TurboDOS 1.3 8086 FILE SYSTEM
Progranuner's Guide

FIFO Fijes

FIFO Files To facilitate communications between proces-
ses, processors and users, TurboDOS supports
a special kind of file called a FIFO (first-
in, first-out) similar in concept to a Unix
pipe. FIFOS are opened, closed, read and

written exactly like ordinary sequential
files. However, a record written to a FIFO

is always appended to the end, and a record
read from a FIFO is always taken from the
beginning and removed from the FIFO.

A FIFO is differentiated from other files by
the presence of the FIFO attribute (fl) in
the directory. Record zero of a FIFO is a
header record used by TurboDOS to keep track
of the FIFO, and is organized as follows:
l Offset. I CQñteñts I

i l

l O type (0=RAM, -l=disk) I

I l mode (0=error code, -l=suspend) I

l 2-3 maximum size (records) l

I 4-5 current size (records) i

l 6-7 number of last record read l

l 8-9 number of last record written I

I 10-127 (not used, reserved) l

j l

The header specifies whether the body of the
FIFO is RAM- or disk-resident, and the maxi-
mum number of records it niay contain. RAH-
resident FIFOs provide high-speed but limited
capacity (up to 127 records, usually much

less). Disk-resident FIFOs provide large
capacity (up to 65,535 records) but slower
speed. The FIFO command may be used to
create a FIFO and initialize its header.

2"15

TurboDOS 1.3 8086 FILE SYSTEM

Prograimer's Guide
FIFO Files

(Continued)

FIFO Files Normally, reading from an empty FIFO returns
(Continued) an end-of-file code (A=l), and writing to a

full FIFO returns a disk-full code (A=2).
However, if the mode byte in the FIFO header

is set to -l (suspend), then reading from an
empty FIFO or writing to a full FIFO causes
the process to be suspended until the FIFO
becomes non-empty or non-full.

The header or disk-resident body of a FIFO
may be accessed directly using C-functions 33

and 34 (Read/Write Random), thereby bypassing
the normal first-in first-out protocol. An
attempt to make (C-function 22) an existing
FIFO is treated as an open (C-function 15),
while an attempt to delete (C-function 19) a

FIFO is ignored. The only way to get rid of
a FIFO is first to clear the FIFO attribute,
then delete it.

2-16

TurboDOS 1.3 8086 FILE SYSTEM
Programmer's Guide

Buffer Management

Buffer Management The TurboDOS buffer manager performs multi-
level buffering of physical disk input/out-
put, using least-recently-used (LRU) buffer
assignment and other sophisticated optimiza-
tions. Buffering provides a manyfold reduc-
tion in the number of physical disk accesses
during both sequential and random file opera-
tions.

The number and/or size of disk buffers may be
changed by means of T-function 23 (Set Buffer
Parameters), and interrogated by T-function
24 (Get Buffer Parameters). The number of
buffers must be at least two, and the buffer
size must be at least as large as the physi-
cal sector size of the disks being used. For
optimum performance, the number of buffers
should be as large as possible consistent
with the TPA size required.

The buffer manager maintains its buffers on
two lists: the "in—use" list and the "free"
list. Whenever the file manager requests a
disk access, the buffer manager Eirst checks
the in-use list to see if the requested disk
sector is already in a buffer. Most of the
time it is, and no physical disk access is
required. If not, the buffer manager at-
tempts to acquire a new buffer from the free
list. Iii the free list is empty, the least-
recently-used buffer (at the end of the in-
use list) is written out to disk if neces-
sary, and then reused to receive the newly
requested disk sector.

2-17

TurboDOS 1.3 8086 FILE SYSTEM

Programmer's Guide
Media Changes

Media Changes Before a removable disk volume is changed, itis crucial that any buffers relating to that
disk are written out if necessary, and re-
turned to the free list. In single-user
configurations of TurboDOS, this is done
automatically whenever the system pauses for
console input. In multi-user configurations,
buffers must be explicitly flushed and freed
by calling T-function 26 (Flush/Free Buffers)
prior to changing disks. This is most corn-
monly done by executing the CHANGE command,
but should also be coded into applications
that require inedia changes during operation.
For safety, TurboDOS also flushes buffers
automatically during any lull in system acti-
vity, and frees them automatically whenever a

disk drive becomes not-ready.

Error Handling In the event of an unrecoverable disk error,
TurboDOS normally displays a diagnostic mes-
sage in one of these formats:
I l

l Read Error, Drive A, Track O, Sector 2 I

l [Retry, Ignore, Abort] l

I I

l Write Error, Drive B, Track 5, Sector 16 l

l [Retry, Ignore, Abort]
l I

l Not Ready Error, Drive C [Retry, Abort] l

l

i Spooler Error [Ignore, Abort]
l I

and waits for the user to choose the desired
recovery option by keying in the appropriate
letter (R, I or A).

2-18

TurboDOS 1.3 8086 FILE SYSTEM

Programmer's Guide
Error Handlíng

(Continued)

Error Handling An application program may elect to intercept
(Continued) and process such errors, however, by callíng

T-function 7 (Set Error Address). In this
case, TurboDOS does not display its usual
diagnostic messages. Normal error processing
resumes automatically when the application
program terminates.

NOTE: Because the buffer manager optimizes
disk write operations by deferring them as
long as possible, write errors niay be repor-
ted later than expected and possibly even tg
a different user than expected.

2_19

TurboDOS 1.3 8086 FILE SYSTEM
Progranuner's Guide

Error Handlíng
(Continued)

Error Handling An application program may elect to intercept
(Continued) and process such errors, however, by calling

T-function 7 (set Error Address). In this
case, TurboDOS does not display its usual
diagnostic messages. Normal error processing
resumes automatically when the application
program terminates.

NOTE: Because the buffer manager optimizes
disk write operations by deferring them as
long as possible, write errors may be repor-
ted later than expected and possibly even tg
a different user than expected.

2"19

TurboDOS 1.3 8086 SERIAL INPUT/OUTPUT
Programmer's Guide

SERIAL I/O This section describes the TurboDOS facili-
ties that deal with serial input/output (I/O)
in connection with consoles, printers, and
communications channels.

Console I/O TurboDOS provides ten C-functions that permit
programs to interact with the user console
device. Three kinds of console input/output
are supported in TurboDOS: basic I/O, raw
I/O, and string I/C.

Basic Console I/O Three C-functions provide basic console I/O
on a single-character basis:
l c-Fcn I F!lnctinn Niíme

l l Console Input l

! 2 Console Output I

I li Get Console Status I

i I

The Console Input function waits for a char-
acter to be keyed in, echoes the character to
the console screen to provide visual confir-
mation, and returns the character to the
calling program.

The Console Output function displays a char-
acter on the console screen. It expands hori-
zontal tab characters into spaces, based upon
tab stops at every eighth column.

The Get Console Status function checks to see
whether or not a console input character is
available, and returns a Boolean result.

3-l

TurboDOS 1.3 8086 SERIAL INPUT/OUTPUT
Programmer's Guide

Console t/O
(Continued)

Raw Console I/Q Three additional C-functions provide raw
console I/O:
\ c.-f'cn Fiíncticm Nátííe " I

!

3 Raw Console Input l

l 4 Raw Console Output I

I 6 Direct Console T/O [

The Raw Console Input function is similar to
the basic Console Input function, except that
input characters are not echoed to the
screen. Likewise, the Raw Console Output
function is like the basic Console Output
function, except that horizontal tabs are not
expanded.

The Direct Console I/O function combines the
functions of Raw Console Input, Raw Console

Output, and Console Status. It is supported

only for compatibility with CP/M.

String Console I/O The remaining console I/O functions provide
input and output of character strings:
I C-Fen I FunctiQñ ÑálPé l

l I

l 9 Print String l

l 10 Read Console Buffer I

i líO Get/Set Delimiter l

I Ill Print Block I

l

The Print String function outputs a string of
characters to the console. The string may be
of any length, and is terminated by a re-
served delimiter. The delimiter is normally
the dollar-sign $ character, but may be
changed by means of the Get/Set Delimiter
function.

3-2

TurboDOS 1.3 8086 SERIAL INPUT/OUTPUT
Programmer's Guide

Console 1/0
(Continued)

String Console I/O The Print Block function is similar to Print
(Continued) String, except that the string length is

passed explicitly so that no delimiter is
needed. Both Print String and Print Block
expand horizontal tabs.

The Read Console Buffer function reads an
entire line of edited input from the console.
Characters are accepted from the console and
stored in successive memory locations until a

carriage-return terminates the line. Input
characters are echoed to console output (but,
unlike CP/M, tabs are not expanded). Rudi-
mentary editing is supported: backspace or
delete characters erase the last typed char-
acter, while CTRL-U or CTRL-X erase the
entire line.

Attention Requests The execution of a program or do-file may be
suspended at any time by typing a reserved
"attention" character on the console key-
board. In most installations, this is either
CTRL-S or BREAK. TurboDOS will "beep" to
acknowledge that it has received the atten-
tion request.

After an attention request, the interrupted
program or do-file will remain suspended

until one of the follcwing attention respon-
ses is typed:

CTRL-Q (resume) simply restarts execution at
the point of interruption.

CTRL-C (abort) cancels execution of the in-
terrupted program or do-file, causes any
nested commands and do-files to be disregar-
ded, and returns to the command prompt. An
application program may elect to intercept
such abort requests, however, by calling T-
function 8 (Set Abort Address).

3-3

TurboDOS 1.3 8086 SERIAL INPUT/OUTPUT
Programmer's Guide

Console I/O
(Continued)

Attention Requests CTRL-P (echo-print) restarts execution and
(Continued) causes all subsequent console output also to

be echoed to the printer. A second atten-
tion/echo sequence turns off echoing of con-
sole output to the printer.

CTRL-L (end-print) restarts execution after
signalling the end of the current print job.

Co~ Channel I/O In order to allow communications-oriented
applications programs to be written in a

hardware-independent fashion, TurboDOS sup-
ports a standard communications channel in-
terface consisting of seven T-functions:
l T-Fcñ Fl?nctinn Name I

I l

l 34 Get Comm Channel Status l

I 35 Comm Channel Input
l 36 Comm Channel Output I

I 37 Set Comm Channel Baud Rate l

l 38 Get Comm Channel Baud Rate
I 39 Set Comm Channel Modem Controls l

l 40 Get Comm Channel Modem Status l

l

These functions support multiple channels of
communications. T-functions 34-36 provide
basic single-character comm channel I/O (ana-
logous to raw console I/O). T-functions 37-
38 allow programs to sense or set the comm
channel baud rate to any standard speed froin
50 to 19,200 baud. T-functions 39-40 allow
programs to set modem control signals {RTS,
DTR) and to sense modem status signals (CTS,
DSR, DCD, RI).

3-4

TurboDOS 1.3 8086 SERIAL INPUT/OUTPUT

Progrmmer's Guide
Printer Output

——-
Printer Output TurboDOS provides the basic printing func-

tions of CP/M, plus an elaborate concurrent
printing facility which offers several modes

of print spooling and flexible print routing
among multiple printers and print queues.
The spooling and routing facilities are com-
pletely transparent to application programs.

Basic Printing Two C-functions provide the basic means for
programs to generate printer output:
I C-Fcn ! Fl1nctinn ÑÁñW

l l

l 5 List Output I

l 112 List Block
l

The List Output function outputs a single
character to be printed, while the List Block
function outputs a character string of speci-
fied length. In contrast to console I/O,
these print output functions do not expand

tabs.

Control Functions Four T-functions provide control over the
print spooling, de-spooling, and queuing
mechanisms of TurboDOS:

l T-Fm Fl]nct.ion Nam" I

l

l 27 Get/Set Print Mode
l 28 Signal End-of-Print
l 29 Get/Set De-Spool Mode
l 30 Queue a Print File l

The Get/Set Print Mode function controls
print routing. Print output may be routed
direct to a specified printer, spooled to a

specified drive and print queue, displayed on
the console, or simply discarded.

3-5

TurboDOS 1.3 8086 SERIAL INPUT/OUTPUT
Programmer's Guide

Printer Output
{Continued)

Control Functions The Signal End-of-Print function allows a

(Continued) program to terminate a print job explicitly.
In the absence of this function, a print job
ends automatically at the conclusion of the
program, upon receipt of an end-print atten-
tion request from the console, or when a

reserved end-of-print character (if defined)
appears in the print output stream.

The Get/Set De-Spool Mode function controls
background printing (de-spooling). A printer
may be assigned to de-spool from a specified
queue, or may be placed in an off-line
status. Any print job in process may be
stopped, resumed, restarted from the begin-
ning, or terminated altogether.

The Queue a Print File function permits a

program to queue a print file (or any text
file, for that matter) for background print-
ing. The file may be placed on any specified
print queue, and may be saved or deleted
automatically after printing.

3"6

TurboDOS 1.3 8086 C-FUNCTIONS
Programner's Guide

C-FUNCTIONS This section describes the 60 CP/M-coinpatible
functions ("C-functions") supporteá by Turbo-
DOS. The C-functions are presented in numer-
ical order, with calling parameters, return
value, and a detailed explanation for each.

To invoke a C-function, a program executes an
interrupt instruction INT 224 (or INT OXEO)

with a function number in register CL. Byte-
length arguments are passed in register DL,
and word-length arguments in register DX. In
the case of a memory location argument, the
segment base is passed in DS and the offset
in DX.

C-functions return byte-length values in
register AL (duplicated in BL), or word-
length values in register BX (duplicated in
AX). A few functions return memory location
values in ES (base) and BX (offset).

If a C-function call is made with register CL

set to an unsupported function number, Turbo-
DOS returns immediately with registers BX and
AX zeroed.

C-function calls generally destroy registers
AX-BX-CX-DX-SI-DI-BP-ES but preserve SP—IP
and CS-DS-SS.

4-l

TurboDOS 1.3 8086 C-FUNCTIONS
Programmer's Guide

C-Function O

SYSt@ Reset

C-Function O System Reset

Entry Arguments ! fjeq l pf5criptiQn l

l CL = O l

Explanation The System Reset function terminates the
calling progrant ("warm-start"). Program ter-
mination also may be accomplished by execu-
ting a far return instruction RETF (provided
the original values of registers SS and SP
have been preserved) and has exactly the same
effect.

In a multi-user TurboDOs system, program
termination closes any open files, releases
any locked records or devices, and ends any
active print job.

4-2

TurboDOS 1.3 8086 C-FUNCTIONS
Programmer's Guide

C-Function lConsole Input

C-Function l Console Input

Entry Arguments I Req ! Pe¶cri.ption I

I I

l CL = l I

l

Returned Value l Rpq l Ppqcription !

I AL = input character l

Explanation The Console Input function obtains the next
character from the console keyboard, and
returns it in register AL. If no character
is available, the calling program is suspen-
ded until a character is typed.

Graphic characters and certain control char-
acters (carriage-return, line-feed, and back-
space) are echoed to the console screen.
Horizontal tabs are expanded into multiple
spaces, based upon tab stops at every eighth
column.

4-3

TurboDOS 1.3 8086 C-FUNCTIONS
Programmer's Guide

C-Function 2
Console Output

C-Function 2 Console Output

Entry Arguments l Req i "" —ÁjQescjáptÁsiR" --_" :""1 t
l CL = 2 l
I DL = output character

Explanation The Console Output function displays the
character passed in register DL on the con—

sole screen. Horizontal tabs are expanded
into multiple spaces, based upon tab stops at
every eighth column.

4_4

TurboDOS 1.3 8086 C-FUNCTIONS
programmer's Guide

.C—Functton 3

Raw Console Input

C-Function 3 Raw Console Input

Entry Arguments |^gA------——-----~mRtjQn-——-- i

l I

l CL = 3 !

Returned Value I Ré9 -_j2mcriptimn l

!

l AL = input character I

Explanation The Raw Console Input function obtains the
next character from the console keyboard, and

returns it in register AL. If no character
is available, the calling program is suspen-
ded until a character is typed. Input char-
acters are not echoed to the console screen.

This function is compatible with MP/M-86.

(In CP/M-86, this function is Input from
Reader Device. In Concurrent CP/M, this
function is Auxiliary Input.)

4-5

TurboDOS 1.3 8086 C-FUNCTIONS
Programmer's Guide

C—Function 4

Raw Con8ole Output

C-Function 4 Raw Console Output

Entry Arguments l Req I Peqhcriptinn
l

l CL = 4 I
l DL = output character l
I l

Explanation The Raw Console Output function displays the
character passed in register DL on the con-
sole screen. Horizontal tabs are not expan-
ded.

This function is compatible with MP/M-86.
(In CP/M-86, this function is Output to Punch
Device. In Concurrent CP/M, this function is
Auxiliary Output.)

4-6

TurboDOS 1.3 8086 C-FUNCTIONS
programer's Guide

C-Function 5

List Output

C-Function 5 List Output

Entry Arguments ! Rpq peRcript.ion !

l i

! CL = 5 i

I DL = output character l

l

Explanation The List Output function sends the character
passed in register DL to be printed according
to the current print routing. Horizontal
tabs are not expanded.

4-7

TurboDOS 1.3 8086 C-FUNCTIONS
Programoer's Guide

C-Function 6
Direct Console I/O

C—Function 6 Direct Console I/O

Entry Arguments] Req I PeFlcri.ptiQjL- I

l !

I CL = 6 l

l DL = -l (for combined status/input) l

I -2 (for status) l

-3 (for raw input) I

I output character (for raw output) l

Returned Value l Rm i pescKimQn--——
l l

[AL = input character or status
t

-
t

Explanation The Direct Console I/O function performs one
of four possible sub-functions, depending
upon the argument passed in register DL.

If DL = -1 (OxFF), then any available console
input character is returned in register AL,
without echo to the screen. If no character
is available, the function returns AL = O.

If DL = -2 (OXFE), then this function returns
console status (A = O if no console input is
available, or AL = -l otherwise). Equivalent
to C-function li (Get Console Status).

If DL = -3 (OxFD), then this function obtains
the next console input character and returns

it in register AL, without echo to the
screen. If no character is available, the
calling program is suspended until a charac-
ter is typed. Equivalent to C-function 3

(Raw Console Input).

For other values of DL, this function dis-
plays the character on the console screen.
Horizontal tabs are not expanded. Equivalent
to C-function 4 (Raw Console Output).

4-8

TurbooOS 1.3 8086 c-FUNc!rroNs
Programmer's Guide

C-Function 6

Direct Console I/O
(Continued)

C-Function 6 Note that the 8086 TurboDOS implementation of
(Continued) this function is compatible with MP/M-86,

Concurrent CP/M, CP/M-80, and 280 TurboDOS.

It differs somewhat from the implementation
in CP/M-86, however.

4-9

TúrboDOS 1.3 8086 C-FUNCTIONS
Programmer's guide

C—Function 7
Get I/O Byte

C-Function 7 Get I/O Byte

Entry Arguments l Req I Pesícriptinn I

I l

I CL = 7 l

l l

Returned Value l R¢w l peqcrj.pt.ion !

l I

l AL = contents of I/O byte j

I l

Explanation This function simply returns the value of the
memory location identified by the public name
IOBYTE# (used in some implementations to
control serial I/O device assignment).

NOTE: This function is supported and IOBYTE#

is defined only if the optional module CPMSUP

is included during TurboDOS system genera-
tion.

4~10

TurboDOS 1.3 8086 C-FUNCTIONS
Programner's Guide

C-Function 8

Set I/O Byte

C-Function 8 Set I/O Byte
———.Entry Arguments l Req I PHqcriptinn

I l

I CL = 7 l

l DL = new value of I/O byte l

l

Explanation This function simply sets the value of the
memory location identified by the public name
IOBYTE# (used in some implementations to
control serial I/O device assignment).

NOTE: This function is supported and IOBYTE#
is defined only if the optional module CPMSUP

is included during TurboDOS system genera-
tion.

4-ll

TurboDOS 1.3 8086 C-FUNCTIONS
Programer's Guide

C-Function 9
Print String

C-Function 9 Print String

Entry Arguments l Req i ____A!=KÁRtiQn
[

I CL = 9 i
I DS:DX = string address I
l

Explanation The Print String function displays a string
of characters on the console screen. The
string may be of any length, and is termina—
ted by a reserved delimiter. The delimiter
is normally the dollar-sign $ character, but
may be changed by means of C-function lió(Get/Set Output Delimiter). Horizontal tabs
are expanded into multiple spaces, based upon
tab stops at every eighth column.

4-12

TurboDOS 1.3 8086 c-FUNc!rroNs
programmer's Guide

.C-Funct1on 10
Read Console Buffer

C-Function 10 Read Console Buffer

Entry Arguments I Req l ._-—-___De=ú&uQD i

I l

l CL = 10 l

l DS: DX = buffer address I

Éxplanation The Read Console Buffer function reads an
entire line of edited input from the console.
The input buffer whose address is passed in
registers DS:DX has the following structure:

i""Óífaet _J_pirection I pf¶cript.ion. l

I

i O passed max input size (N) I

l l returned actual input (O-N) i

] 2 to N+l returned input characters I

l

The first byte of the buffer must be preset
to the maximum number of characters allowed
in the input line.
Console input is accepted until terminated by

a carriage-return. Input errors may be cor-
rected by typing BACKSPACE or DELETE to erase
one character at a time, or CTRL-U or CTRL-X

to erase the entire line. Characters in
excess of the maximum are not accepted, and

diagnosed with a "beep". Input characters
are echoed to the console screen. Unlike
CP/M, this function does not expand tabs in
TurboDOS.

Upon return, the second byte of the buffer
contains the actual number of input charac-
ters in the buffer. The input line is
returned starting at the third byte of the
buffer. The terminating carriage-return is
neither stored in the buffer nor included in
the count. Unused buffer positions following
the last input character are uninitialized.

4"13

TurboDOS 1.3 8086 C-FUNCTIONS
Programmer's Guide

C—Function IIget Console Status

C-Hmction II Get Console Status

Entry Arguments i Rfq l Pescriptinn l

l l

l CL = li l

I I

Returned value I Req l Dffícript.inn l

I

l AL = -l if console input is available l

O if console input is not available I

l l

Explanation The Get Console Status function checks to see
whether or not a console input character is
available. If console input is available, it
returns AL = -l, otherwise it returns AL = O.

#

4~14

TurboDOS 1.3 8086 C-FUNCTIONS
Programmer's Guide

C-Function 12
Return Versíon

C-Function 12 Return Version

Entry Arguments I Req l
_

pesícriptinn
l CL = 12 I

Returned Values I Req Pmcription
l

I BH = OXOO (meaning: CP/M, not MP/M) I

I BL = Ox3l (meaning: BDOS version 3.1) I

I l

Explanation The Return Version function provides informa-
tion on the latest compatible version of
CP/M. (The BDOS version number returned in
register BL may be changed by patching the
symbol CPMVER during system generation.)

0

4-15

TurboljOS 1.3 8086 C-FUNCTIONS
Programmer's Guide

C—Function 13
Reset Disk System

C-Function 13 Reset Disk System

—--Entry Arguments i Req
._________ peíaíaíá _._ _._!

I !
I CL = 13 I

Explanation In TurboDOS, the only effect of the Reset
Disk System function is to reset the current
DMA offset to OxO080. (See C-function 26,
Set DMA Offset.)

4-16

TurboDOS 1.3 8086 C-FUNCTIONS
Programmer's Guide

C-Function 14
Select Disk

C-Function 14 Select Disk

Entry Arguments I Req l -=gTjptiQR-____ i
!

I CL = 14 I
I DL = selected disk drive: I
l O for drive A l
l l for drive B l

' i
I 15 for drive P I

Explanation The Select Disk function causes the disk
drive specified in register DL to be selected
as the current (default) disk drive. The
current drive is used in subsequent fileoperations whenever the FCB drive field is
set to zero.

4-17

TurboDOS 1.3 8086 C-FUNCTIONS
Programmer's Guide

C—Function 15
Open File

C-Function 15 Open File

Entry Arguments l Req I Peqcriptinn.
I CL = 15 l

I DS:DX = FCB address I

Returned Value l Req I pf!s3criptic)n
I I

l AL = O if successful
l -l if file not found l

(l

Explanation The Open File function opens the file speci-
fied by the FCB drive, name, type, and extent
fields (bytes O through 12). Normally, the
extent field (byte 12) should be set to zero.
The specified file must exist under the cur-
rent user number or must be a global fileunder user O.

The open mode is determined by compatibility
flag bit 7 (permissive) and by the FCB inter-
face attributes f5 and f6, as shown in the
following table:

pprÍni$F'i\/e f1rW = Q permissive f1,Áq = 1

l ffi f.5 l npé)1 moae I I f6 f.5 l ppen mo¢ie I

I l I

I O O exclusive I I O O permissive l

I O l shared l I O l shared i

l I O read-only l I l O read-only l

l 1 l permissive l l l l exclusive i

l l l

If the FCB current record field (byte 32) is
set to -l, this function returns the byte
count of the last record of the file in the
current record field. The calling program
should zero the current record field before
doing sequential reads or writes.

4-18

TurboDOS 1.3 8086 C-FUNCTIONS
Programmer's Guide

C-Function 16
Close Fíle

C-Function 16 Close File
.—————.

Entry Arguments l Rpq I pe,'íc.ript.ic'n l

I l

I CL = 16 l

i DS:DX = FCB address
I I

Returned Value i Req l Pmícript.ic'n I

I l

l AL = O if successful
-1 if file not found I

l

Explanation The Close File function closes a file pre-
viously opened by an Open File (15) or Make
File (22) C-function. The directory is up-
dated if necessary to reflect any new blocks
allocated to the file, and any locked records
are unlocked.

If FCB interface attribute f5 is set, this
function performs a "partial close" operation
which updates the directory but leaves the
file open.

4-19

TurboDOS 1.3 8086 C-FUNCTIONS

'
Guide

C-Function 17
Search for First

C—Function 17 Search for First
Entry Arguments) Req) pescript.iDn l

l

I CL = 17 l

i DS:DX = FCB address l

! l

Returned Value l Ré¶ I Descripr.jon I

l l

I AL = entry number (0-3) if successful
-l if file not found I

I I

Explanation The Search for First function scans the
directory for the first entry which matches

the FCB drive, name, type, and extent fields
(bytes O through 12) and the current user

number. An ASCII question mark (Ox3F) in any
FCB byte l through 12 is treated as a wild-
card which matches any character in the cor-
responding byte position of the directory
entry.

If the search is successful, this function
returns a directory record (containing four
32-byte directory entries) at the current DMA

address, and a value in register AL (0-3)
that indicates which of the four entries was
found to niatch the FC!3. If the search is not
successful, the function returns -l (OxFF) in
register AL.

If the Search for First function succeeds in
finding an entry which matches the given FCB,
then C-function 18 (Search for Next) may be
called repeatedly to locate all remaining
matches in the directory.

4-20

TurboDOS 1.3 8086 C-FUNCTIONS
Programmer's Guide

C-Function 17
Search for First

(Continued)

Explanation A special situation occurs if the FCB dríve
(Continued) field (byte O) is set to a question mark

(Ox3F). In this case, the remainder of the
FCB is ignored, the directory of the current
drive is searched, and the Search for First
function returns the very first directory
entry (usually the volume label). The Search
for Next function will then return each suc-
cessive directory entry in sequence, regard-
less of user number. Even deleted entries
are returned in this case.

4-21

TurboDOS 1.3 8086 C-FUNCTIONS
Programmer's Guide

C-Function 18
Search for Next

C-Function IB Search for Next

Entry Arguments l Req I Pesícription .!

! I

I CL = 18 l

I I

Returned Value l Peq l pe5cription l

i l

I AL = entry number (0-3) if successful l

-l if file not found I

I l

Explanation The Search for Next function continues the
search initiated by C-function 17 (Search for
First). If the search is successful, this
function returns a directory record (contain-
ing four 32-byte directory entries) at the
current DNA address, and with a value in
register AL (0-3) that indicates which of the
four entries was found to match the FCB. If
the search is not successful, the function
returns -l (OxFF) in register AL.

4-22

TurboDOS 1.3 8086 C-FUNCTIONS
prograiumer's Guide

C-Function 19
Delete F:ile

C-Function 19 Delete File

Entry Arguments l Req I Peqcriptinn l

l l

I CL = 19
I DS:DX = FCB address I

Returned Value I Réw pfscript.ic)n l

I l

l AL = O if successful i

I -l if no file was deleted
I

Explanation The Delete File function deletes the filespecified by the FCB drive, name, and type
fields (bytes C through li) and the current
user number. ASCII question marks (Ox3F) may
be used as wild-cards anywhere in the FCB
name and type fields, in which case this
function deletes all matching files.
A program may delete a file that it has open,
in which case a close is performed implicitly
before the file is deleted. However, a pro-
gram is not permitted to delete a file that
another process has open, nor a file that has
the read-only or FIFO attributes.

If FCB interface attribute f5 is set, this
function performs no operation and returns
AL=O to indicate successful completion.
(This is for compatibility with M/PM and

Concurrent CP/M, where the f5 attribute
causes only XFCBS to be deleted.)

4-23

TurboDOS 1.3 8086 C-FUNCTIONS
Programmer's Guide

C-Function 20
Read Sequential

C-Function 20 Read Sequential

Entry Arguments l R.eq l Pesicription _______i
l l

l CL = 20 i

i DS:DX = FCB address l

I _[

Returned Value i-Wg_j___.
___ Pescri.ption. l

I

I AL = O if successful l

l l if at end-of-file :

l 128 if FCB current record invalid I

l

Explanation The Read Sequential function reads the next
l28-byte record from a file into memory at
the current DMA address. The given FCB must
have been previously opened by an Open (15)
or Make (22) C-function, and the FCB current
record field (byte 32) initialized to zero.

This function uses the FCB extent and current
record fields to áeterinine the record to be
read, then increments the current record
field in preparation for the next sequential
operation. If the current record field over-
flows, the next extent is opened and the
current record field is reset to zero.

4-24

TurboDOS 1.3 8086 C-FUNCTIONS
programmer's Guide

C-Function 21
write Sequentíal

C-Function 21 Write Sequential

Entry Arguments l Req l -—-----PescMptk_ —-——---I
I I

i CL = 21 I

l DS:DX = FCB address I

l l

Returned Value I iíézL— — pem.riptic'n I

I l

l AL = O if successful i

I l if file too large (>134 Mb) l

I 2 if disk full or file read-only l

I 8 if attempt to write locked record I

l 128 if FCB current record invalid l

l -1 if no directory space I

l

Explanation The Write Sequential function writes the next
128-byte record of a file from the current
IJMA address in memory. The given FCB must
have been previously opened by an Open (15)

or E'-ake (22) C-function, and the PCB current
record field (byte 32) initialized to zero.

This function uses the FCB extent and current
record fields to determine the record to be

write, then increments the current record
field in preparation for the next sequential
operation. If the current record field over-
flows, the next extent is opened (or created
if it does not exist) and the current record
field is reset to zero.

4-25

TurboDOS 1.3 8086 C-FUNCTIONS
programmer's Guide

C-Function 22
Make File

C-Function 22 Make File

Entry Arguments ! Req I Peqcri.pt.iQn [

I l

I CL = 22 l

j DS:DX = FCB address I

l

Returned Value I Req l Prscript.iQñ l

I l

I AL = O if successful l

l -l if directory full, file exists, I

l or FCB invalid l

I .l

Explanation The Make File function creates a new (empty)

file specified by the FCB drive, name, type,
and extent fields (bytes O through 12). Nor-
mally, the extent field (byte 12) should be

set to zero. The directory entry for the new

file is placed under the current user number.

All file attributes are initialized to zero.
A request to make a file that already exists
is denied.

The newly-created file is left in an open
state. If the FCB interface attribute f5 is
set, then the file is left open in shared
mode. Otherwise, the file is left open in
either exclusive or permissive mode, depend-

ing on compatibility flag bit 7 (permissive).

The calling program should zero the FCB cur-
rent record field (byte 32) before doing
sequential reads or writes on the file.

4-26

TurbooOS 1.3 8086 C-FUNCTIONS
Programmer's Guide

C-Hinction 23
Rename Fije

—C-Function 23 Ren=e File

Entry Arguments l Req l pescri.pt-ic)n l

l l

l CL = 23 I

I DS:DX = FCB address I

I

-
I

Returned Value l R.f!q .Pescripticn l

! I

l AL = O if successful l

l -l if file not found, file in-use, l

l or file name invalid l

l I

Explanation The Rename File function renames the filespecified by the FCB drive, name, and type
fields (bytes O through li) and the current
user number. The file is given the new name
and type specified in bytes 17 through 27 of
the FCB. Wild-card characters (ASCII ques-
tion marks) are not allowed in either the old
or new name. All remaining bytes of the FCB

are disregarded by this function.

A program may rename a file that it has open,
in which case a close is performed implicitly
before the file is renamed. However, a pro-
gram is not permitted to rename a file that
another process has open, nor a file that has
the read-only attribute.

4-27

TurboDOS 1.3 8086 C-FUNCTIONS
Programmer's Guide

C-Function 24
Return Login Vector

C-Function 24 Return Login Vector

Entry Arguments l Ré¶ i

__--
ÁmsAjm9n-_----—----—)

I

! CL = 24 i

L I

Returned Value l Req I PeAcription {

l I

I BX = login vector
I I

Explanation The Return Login Vector function tests the
ready status of all disk drives. It returns
a l6-bit vector in register BX containing a
one-bit for each drive that is ready for
access, and a zero-bit for each drive that is
not ready or not defined. The least '4gnifi-
cant bit corresponds to drive a, and the most
significant bit to drive p.

NOTE: This function is supported only if the
optional module CPMSUP is included during
TurboooS system generation.

4-28

TurboDOS 1.3 8086 C-FUNCTIONS
Programmer's Guide

C-Function 25
Return Current Disk

C-Function 25 Return Current Disk

Entry Arguments I R.ew l Pescri.ptim_--- —II !

l CL = 25 !

Returned Value I Peq I Pe5criptic)n
l l

! AL = current disk drive: l

I O for drive A i

l l for drive B I

I : !

! 15 for drive P l

l I

Explanation The Return Current Disk function returns the
identity of the current (default) disk drive
in register AL.

4-29

TurboDOS 1.3 8086 C-FUNCTIONS
Programmer's Guide

C-Function 26
Set DKA OEfset

C-Function 26 Set ima Offset

Entry Arguments I Rfq l Pe.script.inn I

l l

l CL = 26 I

I DX = DMA offset address)

I l

Explanation The Set DELA Offset function causes the offset
address specified in register DX to be used
as the record buffer address for subsequent

file read and write operations. The DMA

offset is relative to the current DMA base
(see C-function 51).

Whenever a program is loaded into the TPA,
the DNA base is initialized to the data seg-
ment base of the program. The DMA offset is
initialized to OXO080, the address of the
default record buffer in the Base Page. C-
function 13 (Reset Disk System) also sets the
DMA offset to OxO080.

4-30

TurbooOS 1.3 8086 C-FUNCTIONS
Programmer's Guide

C-Function 27
Get ALV Address

C-Function 27 Get ALV Address

Entry Arguments i Be'q I peqcrjption _______l
l !

l CL = 27 I

l

Returned Value I Req Peekcriptinn l

I !

I BX = O l

I

Explanation This function performs no operation in Turbo-
DOS. (Under CP/M, it returns the address of
the memory-resident allocation vector for the
current disk.)

4-31

TurboDOS 1.3 8086 C-FUNCTIONS
Programmer's Guide

C-Function 28
Write Protect Disk

C-Function 28 Write Protect Msk

Entry Arguments l Rf!q l

.--_____ pmcriptÍon ____-__.|
I l

l CL = 28 I

Explanation The Write Protect Disk function marks the
current (default) disk drive as read-only,
preventing any program from writing to the
disk. C-function 37 (Reset Drive) must be
used to enable writes to the disk once agaim,

Unlike CP/M, TurboDOS does not re-enable
writing after warm-start, C-function O (Sys—
tem Reset), or C-function 13 (Reset Disk
System). Consequently, write-protection of a
disk drive is not nearly so temporary as itis in CP/M.

NOTE: This function is supported only if the
optional module CPMSUP is included during
TurboDoS system generation.

4-32

TurboDOS 1.3 8086 C-FUNCTIONS
Programner's Guide

C-Function 29
Get Read-Only Vector

C-Function 29 Get Read-Only Vector

Entry Arguments I Peq I

_._p£§§szLjRLi9n

I l

I CL = 29 I

I

Returned Value i Req l Pescriptic'n
-__ __Il

I BX = read-only vector l

Explanation The Get Read-Only Vector function returns a
l6-bit vector in register BX containing a
one-bit for each disk drive that is write-
protected, and a zero-bit for each drive that
is not. The least significant bit corres-
ponds to drive A, and the most significant
bit to drive P.

NOTE: This function is supported only if the
optional module CPFISUP is included duríng
TurboDOS system generation.

4-33

TurboDOS 1.3 8086 C-FUNCTIONS
Programmer's Guide

C-Function 30
Set File Attributes

C-Function 30 Set File Attributes

Entry Arguments l Req l PeFlcriptiRn I

l I

l CL = 30 I

l DS:DX = PCB address [

I l

Returned Value I Reg ! pescripticm I

I

I AL = O if successful I

l -l if file not found or in-use [

l

Explanation The Set File Attributes function searches the
directory for the file specified by the FCB

drive, name, and type fields (bytes O through
li) and the current user number, and updates
the file attributes in the directory from
those in the FCB. (File attributes are
stored in the high-order bit of FCB bytes l-4
and 9-11.)

In addition, if FCB interface attribute f6 is
set, this function updates the last record
byte count of the file. The count is ob-
tained from the current record field (byte
32) of the FCB, and stored in the specl field
(byte 13) of each directory entry.

A program inay set attributes on a file that
it has open, in which case a close is per-
formed implicitly before the attributes are
set. However, a program is not permitted to
set attributes on a file that another process
has open.

4-34

TurboDOS 1.3 8086 C-FUNCTIONS
Programner's Guide

C-Function 31
Get DPB Address

C-Function 31 Get DPB Address

Entry Arguments I Req l pmícriptinn
-__ _!l l

I CL = 31 I

I l

Returned Value I Req l Pe$criptinn I

I l

l ES: BX = DPB address I

I I

Explanation The Get DPB Address function causes TurboDOS
to construct a Cp/M-style Disk Parameter
Block (DPB) for the current drive, and to
return its memory address in ES:BX.

NOTE: This function is supported only if the
optional module CPMSUP is included during
TurboDOS system generation.

4_35

TurboDOS 1.3 8086 C-FUNCTIONS
Programmer's Guide

C—Function 32
Get/Set User Number

C-Function 32 Get/Set User Ntwíber

Entry Arguments l Re'q l _-___-—Rs§suÁpkí9D--. —-—---—l
l l

I CL = 32 I

] DL = -1 to get user number l

I O-31 to set user number I

Returned Value LAegA---------—__~—p=uRtí9D_____ _._l
i !

I AL = user number O-31 (if get) I

l I

Explanation The Get/Set User Number function can be used
either to set or to return the current user
number. If the value -l (OxFF) is passed in
register DL, this function returns the cur-
rent user number in register AL. If some
other value is passed in register DL and ifthe caller is a privileged log-on, this func-
tion sets the current user number to the
specified value (modulo 32). A request to
set the current user number from a non-privi-
leged log-on is ignored.

4-36

TurboDOS 1.3 8086 C-FUNCTIONS
Programmer's Guide

C-Function 33
Read Random

C-Function 33 Read Random

Entry Arguments l Req l

pesArjpjiRD ------ __|

l)

l CL = 33 l

! DS:DX = FCB address I

Returned Value I fleq I

__ -_^§=jptíQD__--. !

l !

I AL = O if successful I

l I if reading unwritten data !

l 3 if error changing extents l

4 if reading unwritten extent I

I 6 if random record number invalid I

l I

Explanation The Read Random function reads a l28-byte
record from a file into memory at the current
DMA address. The particular record to be
read is specified by a 20-bit random record
number obtained from FCB random recorá field
(bytes 33 through 35). The given FCB must
have been previously opened by an Open (15)
or Make (22) C-function.

This function sets the FCB extent and current
record fields to correspond with the record
that was read. Unlike C-function 20 (Read
Sequential), however, it does not increment
the current record field after reading.
Thus, if the Read Random function is follcwed
by a Read Sequential or Write Sequential, the
same record is re-accessed.

4-37

TurboDOS 1.3 8086 C-FUNCTIONS
Programmer's Guide

C—Function 34
Write Random

C-Function 34 Write Random

Entry Arguments I feq I pescriptiQn i

l I

l CL = 34 l

l DS:DX = FCB address t

I l

Returned Value I RHq ppscriptic)n. l

I I

I al = O if successful l

2 if disk full or write-protected I

l 3 if error changing extents l

I 5 if no directory space l

I 6 if random record number invalid 1

l 8 if writing locked record
l I

Explanation The Write Random function writes a l28-byte
record to a file from the current DMA address
in memory. The particular record to be writ-
ten is specified by a 20-bit random record
number obtained from FCB random record field
(bytes 33 through 35). The given FCB must
have been previously opened by an Open (IS)
or Make (22) C-function.

This function sets the FCB extent and current
record fields to correspond with the record
that was written. Unlike C-function 21
(Write Sequential), however, it does not
increment the current record field after
writing. Thus, if the Write Random function
is followed by a Read Sequential or Write
Sequential, the same record is re-accessed.

4-38

TurboDOS 1.3 8086 C-FUNCTIONS
Programmer's Guide

C-Function 35
Compute pile Síze

C-Function 35 Compute File Size

Entry Arguments l Req I pesicription l

I

I CL = 35 I

i DS:DX = FCB address I

l

Returned Value I Req I pescri.pr.ion I

l l

I AL = O if successful I

-l if file not found i

l

Explanation The Compute File size function searches the
directory for the file specified by the FCB

drive, name, and type fields (bytes O through
li). If the file is found, this function
sets the FCB random record field (bytes 33
through 35) to a value one greater than the
record number of the last record in the file.
Thus, a succeeding Write Random function (34)

will append an additional record at the end
of the file.
In TurboDOS, the Compute File Size function
returns the correct result whether the fileis open or closed.

4-39

TurboDOS 1.3 8086 C-FUNCTIONS
programmer's Guide

C-Function 36
Set Random Record

C-Function 36 Set Random Record

-——Entry Arguments I Req _____.___._ReBcrÍpt.jon
l l
! CL = 36
I DS: DX = FCB address
l

Explanation The Set Random Record function returns the
current file position of an open file in the
random record field (bytes 33-35) of the FCB.
(The file position is determined from the
values of the FCB extent, spec2, and current
record fields.) Since the Read Sequential
(20) and Write Sequential (21) functions do
not update the random record field of the
FCB, this function is useful when switching
from sequential to random access.

4-40

TurboDOS 1.3 8086 C-FUNCTIONS
Programiner's Guide

C-Function 37
Reset Dríve

C-Function 37 Reset Drive

Entry Arguments l Ñ'N I -_____R£S£F»=D——— -I
! I

I CL = 37 I

I DX = reset vector }

Explanation The Reset Drive function write-enables the
disk drives specified by the l6-bit reset
vector passed in register DX. The reset
vector contains a one-bit for each disic drive
that is to be write-enabled, and a zero-bit
for each drive that is not. The least signi-
ficant bit corresponds to drive A, and the
most significant bit to drive P.

NOTE: This function is supported only if the
optional module CPMSUP is included during
TurboDOS system generation.

4-41

TurboDOS 1.3 8086 C-FUNCTIONS
Programmer's Guide

C-Function 40
Write Random O-Fill

C-Function 40 Write Random with Zero Fill
Entry Arguments ! Req ! pH,scripEion l

l I

i CL = 40
I DS:DX = FCB address I

l

Returned Value l Rpq pesr.ri.ptim l

I I

l AL = O if successful
l 2 if disk full or write-protected I

l 3 if error changing extents I

i 5 if no directory space !

l 6 if random record number invalid l

I 8 if writing locked record l

I l

Explanation The Write Random with Zero Fill function is
implemented in TurboDOS as a synonym for
Write Random (C-function 34).

4-42

TurboDOS 1.3 8086 C-FUNCTIONS
Programmer's Guide

C-Function 42
Lock Record

—-
C-Function 42 Lock Record

Entry Arguments l R« l pescri.pt.jQrl l

I CL = 42 l

I DS:DX = FCB address l

I l

——————
Returned Value I ím l ppscription l

l I

l AL = O if successful l

I l if positioning to unwritten data l

3 if error changing extents l

l 4 if positioning to missing extent l

l 6 if random record number invalid I

8 if locked by another process l

j l

Explanation The Lock Record function attempts to obtain a

lock on the record specified by a 20-bit
random record number obtained from FCB random
record fielá (bytes 33 through 35). The

given FCB must have been previously opened in
shared mode. If the file is not open in
shared mode, this function performs no opera-
tion and returns a successful result.

The file is positioned to the specified
record, unless compatibility flag bit 3

(logical) is set. If the specified record is
already locked by another process, this func-
tion either suspends or returns an error
(A=8) depending upon the setting of compati-
bility flag bit 6 (suspend).

If the FCB random record field is set to the
24-bit value OxFFFFFF, then this function
attempts to obtain an all-inclusive lock (on

all recorás of the file at once). In this
case, no positioning is performed.

4-43

TurboDOS 1.3 8086 C-FUNCTIONS
Programmer's Guide

C-Function 43
Unlock Record

C-Function 43 Unlock Record

Entry Arguments I RHq ! pe$crjptj.Qn i

I I

I CL = 43 l

I DS:DX = FCB address l

Returned Value l Req ! pescripticxí ___
l

l l

I AL = O if successful I

l l if positioning to unwritten data l

l 3 if error changing extents l

I 4 if positioning to missing extent l

l 6 if random record number invalid i

Explanation The Unlock Record function unlocks the record
specified by a 20-bit random record number
obtained from FCB random record field (byten
33 through 35). Attempting to unlock a
record which was not previously locked does

not return an error. The given FCB must have
been previously opened in shared mode. Ifthe file is not open in shared mode, this
function performs no operation and returns a
successful result.

The file is positioned to the specified
record, unlecs compatibility flag bit 3
(logical) is set.

If the FCB random record field is set to the
24-bit value OxFFFFFF, then this function
releases any all-inclusive lock on the file,
but does not affect any individual record
locks. In this case, no positioning is per—
formed.

4-44

TurboDOS 1.3 8086 C-FUNCTIONS
programmer's Guide

C-Function 46
Get Disk Free Space

C-Function 46 Get Disk Free Space

Entry Arguments ; Bra ! Peqcriptic)n I

! l

l CL = 46 l

I DL = disk drive: l

I O for drive A l

I l for drive b l

I : I

I 15 for drive P I

l l

Returned Value }_Bm—^-----——————Rescupti.Qn l

i l

l AL = O l

Explanation The Get Disk Free Space function determines
the amount of free space en the specified
disk drive. It returns a 24-bit binary value
(the number of free 128-byte records) as a

three byte quantity stored at the current DNA
address, least significant byte first.

4—45

TurboDOS 1.3 8086 C-FUNCTIONS
Programner's Guide

C-Function 47
Chain to Progran

C-Function 47 Chain to Program

Entry Arguments l Req l Pescri.pticm l

l

l CL = 47 l

l DL = O to revert to orig. current disk I

I -1 to retain present current disk I

l I

Explanation The Chain to Program function provides a
means of chaining from one program to
another. The calling program must place a
valid TurboDOs command line, terminated by a

null byte, in the Base Page record buffer
starting at location OxO080. This function
terminates the calling program, and then
executes the command line.

If DL = O, the current disk reverts to what

it was when the calling program was origi—
nally loaded into the TPA (the normal warm-
start procedure). If DL = -l, however, the
current disk at the time of call is retained.

4-46

TurboDOS 1.3 8086 C-FUNCTIONS
programner's Guide

C—Function 50
Direct BIOS Call

C-Function 50 Direct BIOS Call

Entry Arguments l Req l pescrjptjQD_-—_——— l

I l

! CL = 50 l

l DS:DX = BIOS Parameter Block address l

Returned Value LBemL—-.-—-— Pescri.ptinn
l I

l BX = BIOS return value I

Explanation The Direct BIOS Call function simulates a

direct call to a CP/M BIOS routine. This
function is called with the address of a BIOS
Parameter Block in DS: DX. The BIOS Parameter
Block is five bytes long, and has the
following structure:
l c)ffrspt Pe¶criptinn l

l

l O BIOS function number l

l l-2 Cx-register entry value I

{ 3-4 DX-register entry value l

I

Under TurboDOS, such BIOS functions calls are
emulated by converting them to an equivalent
C-function call. Consequently, there is no
performance advantage in using the Direct
BIOS Call function, and its use is not en-
couraged.

The table on the next page describes the
various simulated BIOS functions which may be
invoked via the Direct BIOS Call function.

4_47

TurboDOS 1.3 8086 C-FUNCTIONS
Programmer's Guide

C-Function 50
Direct BIOS Call

(Continued)

Explanation I BIOS I l Equiv I

(Continued) I PCñ# I pHscript.ion ___.___J_CrECñA
l

l O Cold start -
l

I l Warm <tart O i

i 2 Console status to AL 11 l

l 3 Raw console input to AL 3 i

l 4 Raw console output from CL 4 I

I 5 List output from CL 5 l

l 6 Raw console output from CL 4 l

I 7 Raw console input to AL 3 l

l 8 Set track to zero -
l

l 9 Select disk drive from CL 14 l

i 10 Set track number from CX -
[

l li Set sector number from CX -
I

l 12 Set DMA offset from CX 26 l

l 13 Read disk sector ($.DSK) 33 !

l 14 Write disk sector ($.DSK) 34 l

I 15 List status to AL (always -l) -
l

i 16 Sector translate CX into BX -
l

I 17 Set DNA base from CX 51 l

l 18 MEMTBL offset to BX -
I

i 19 Get IOBYTE to AL 7 t

i 20 Set IOBYTE from CL 8 1

4-48

TurboDOS 1.3 8086 C-FUNCTIONS
Programmer's Guide

C-Function 51
Set DKA Base

C-Function 51 Set DMA Base

Entry Arguments ! Req ! Pe5cri.pt.i.nn I

l l

I CL = 51 I

i DX = dma base (paragraph address) l

l I

Explanation The Set DMA Base function causes the para-
graph address specified in register DX to be
used in conjunction with the current DMA

offset as the record buffer address for sub-
sequent read and write operations. (See C—

function 26, Set DMA Offset.)

Whenever a program is loaded into the TPA,
the DMA base is initialized to the initialdata segment base.

4-49

TurboDOS 1.3 8086 C-FUNCTIONS
Programmer's Guide

C-Function 52
Return DMA Addre8s

C-Function 52 Return IMA Address

Entry Arguments i Req I Pe8criptic)n l

l

I CL = 52 l

l I

Returned Value I R?q l pe'ícriptjRn [

[

l BX = current DMA offset l

I ES = current DELA base [

I

Explanation The Return DMA Address function returns the
current DMA base (paragraph address) in ES

and the current DMA offset (byte address) in
BX.

4-50

TurboDOS 1.3 8086 C-FUNCTIONS
Programmer's Guide

C-Function 53
Alloc Max Memory

C-Function 53 Allocate Maximum Memory

Entry Arguments 1_Reg-l pfscription l

[

l CL = 53 l

l DS: DX = MCB address I

Returned Value I R.eq l pe5cri.pti.nn —l
I [

l AL = O if successful I

I -1 if no memory was available l

Explanation The location of a Memory Control Block (MCB)

is passed in DS: DX. The MCB is five bytes
long and has the following structure:
i ñff"mt. I pe¶cription l

l l

I 0-l MCB-Base (paragraph address) i

l 2-3 MCB-Length (in paragraphs)
l 4 MCB-Ext (byte value) l

The Allocate F!aximum Memory function allo—
cates the largest available memory region of
size less than or equal to the number of
paragraphs specified by MCB-Length. If suc-
cessful, the base address and length of the
allocated region are returned in MCB-Base and
MCB-Length, and I'ÍCB-EXt is set to l.

4-51

TurbooOS 1.3 8086 C-FUNCTIONS
Programmer's Guide

C-Hmction 54
Alloc Abs Max Memory

C-Function 54 Allocate Absolute G'i""""' Memory

Entry Arguments I Pf!q ! pe!scriptiQn l

i CL = 54 l

l DS: DX = MCB address I

l I

Returned Value I Peq pe¶crjpt.ion
!

l AL = O if successful I

l -l if no memory was available l

I l

Éxplanation The location of a Memory Control Block (ÉICB)

is passed in DS: DX. The MCB is five bytes
long and has the following structure:
! Offsft. l R!=rjpki9R__-.____ l

I !

I 0-l MCB-Base (paragraph address)
i 2-3 MCB-Length (in paragraphs)
l 4 MCB-Ext (byte value) l

l l

The Allocate Absolute Maximum Memory function
is not supported by TurboDOS, and always
returns AL = -l.

4-52

TurboDOS 1.3 8086 C-FUNCTIONS
programmer's Guide

C-Function 55
Allocate Meínory

C-Function 55 Allocate Memory

Entry Arguments l Req I
._ -_je§cjúmptí9lL-__-___-_]

I l

I CL = 55]

I DS:DX = MCB address I

! l

Returned Value LRem.j----—— PescjáRLiQn.- _--I I

! AL = O if successful l

-l if memory was not available I

I l

Explanation The location of a Memory Control Block (MCB)

is passed in DS: DX. The MCB is five bytes
long and has the following structure:
|_QfEset l Pe8c[iptiQn l

l I

i 0-l MCB-Base (paragraph address)
I 2-3 MCB-Length (in paragraphs) i

l 4 MCB-Ext (byte value) l

l l

The Allocate Memory function attempts to
allocate a memory region of the size speci—
fled by MCB-Length. If successful, the base
address of the allocated region is returned
in MCB-Base.

4-53

TurboDOS 1.3 8086 C-FUNCTIONS
Programmer's Guide

C-Function 56
Alloc Abs Memory'

C-Function 56 Allocate Absolute Memory

Entry Arguments l jyq l Pe'script.ic'n l

1

I CL = 56 l

I DS:DX = MCB address

Returned Value I R« Peqcriptic'n
I l

l AL = O if successful l

-l if meníory was not available
l [

Explanation The location of a Memory Control Block (MCB)

is passed in DS: DX. The P!CB is five bytes
long and has the following structure:
I Offset I Peqcriptinn

I

l 0-l MCB-Base (paragraph address)
! 2-3 MCB-Length (in paragraphs) l

l 4 MCB-Ext (byte value) I

l

The Allocate Absolute Memory function is not
supported by TurboDOS, and always returns AL
= "1.

4-54

TurboDOS 1.3 8086 C-FUNCTIONS
Programmer's Guide

C—Function 57
Free Memory

C-Function 57 Free Memory

Entry Arguments l Req l Peqcription l

l

l CL = 57 I

{ DS:DX = MCB address l

Returned Value I f.pq l

_
pefícripti.Qn I

l l

l AL = O if successful I

I -l if invalid request l

!

Explanation The location of a Memory Control Block (MCB)

is passed in DS: DX. The MCB is five bytes
long and has the following structure:
l TFseTi" ppscript.jon I

I

I 0-l MCB-Base (paragraph address) i

I 2-3 MCB-Length (in paragraphs) l

l 4 MCB-EXt (byte value) I

i

The Free Memory function is used to deallo-
cate memory regions previously allocated by
the calling program. If MCB-Ext is passed as

-l, then all memory allocated by the calling
program and its descendants is deallocated.
If MCB-Ext is passed as O, then just the
region defined by MCB-Base and MCB-Length is
deallocated. In the latter case, either the
starting address or the ending address (or
both) of the specified region must be equal
to that of a region previouly allocated by
the calling program.

4-55

1

TurboDOS 1.3 8086 C-FUNCTIONS
Prograimer's Guide

C-Function 58
Free All Memory

C—Function 58 Free All Memory

Entry Arguments I Req l Pe,scription --_-—_|
l I

I CL = 58 I

l l

Explanation The Free All Memory function deallocates all
previously allocated memory regions, regard—
less of who allocated them.

TurboDOS automatically performs this function
at each program termination (warm-start), so

it is almost never necessary for a program to
call this function explicitly.

4-56

TurboDOS 1.3 8086 C-FUNCTIONS
Programner's Guide

C-Function 59
program Load

C-Function 59 Program Load

Entry Arguments l Ñ'N l

_ _-__-_l2¢§efjpjj9D i

l l

i CL = 59 i

l DS: DX = FCB address l

l l

Returned Value 1_Bm-j--- PescriptiQñ l

l I

! BX = Base Page paragraph address l

l or OxFFFF if unsuccessful !

Explanation The program Load function loads the .CHD filespecified by the FCB into the TPA. Memory
regions are automatically allocated for each
segment group as specified by the .CMD header
record, and code or data is loaded as re-
quired into the allocated regions from the
body cf the .CMD file.
Note that this function does not affect the
current DMA base or offset addresses.

4"57

TurboDOS 1.3 8086 C-FUNCTIONS
Programmer's Guide

C-Function 104
Set Date and Time

C-Function 104 Set Date and Time

Entry Arguments I Peq l peacri.ptjon
I CL = 104 I

l DS: DX = date/time packet address I

! !

Explanation The Set Date and Time function sets the
system date and time. The address of a four-
byte date/tiwe packet is passed in DS: DX.
The date/time packet has the following struc-
ture:
l Offset ! Pesícriptic}n !

i l

I 0-l Date, represented as a 16-bit i

l julian date with zero correspon- I

! dign to 31 December 1977. I

l

l 2 Hours, represented as two binary l

! coded decimal (BCD) digits
I I

l 3 Minutes, represented as two bi- l

I nary coded decimal (BCD) digits I

l l

Seconds are set to zero.

4-58

TurboDOS 1.3 8086 C-FUNCTIONS
Programmer's Guide

C-Function 105
Get Date and Tíme

C-Function 105 Get Date and Time

Entry Arguments I Brq l pe¶crjpt.inn !

I l

l CL = 105
l DS:DX = date/tiníe packet address I

Returned Value 1_Rm-L-- pescri.ption I

l l

l AL = seconds (two BCD digits) l

Explanation The Get Date and Time function returns the
system date and time in a four-byte date/time
packet whose address is passed in DS:DX. The
date/tiine packet has the following structure:
I ñff'íef I pe5r.ription l

i I

i 0-l Date, represented as a 16-bit I

julian date with zero correspon- I

! ding to 31 December 1977. l

!

I 2 Hours, represented as two binary I

l coded decimal (BCD) digits {

I

I 3 Minutes, represented as two bi- I

I nary coded decimal (BCD) digits I

l

Seconds are returned in register AL, repre-
sented as two binary coded decimal (BCD)

digits.

4-59

TurboDOS

1.3

8086

C-FUNCTIONS

Progranmer's

Guide

C-Function

107

Return

Serial

Number

C-Function

107

Return

Serial

Number

Entry

Arguments

l
Req

I
__.________DescKXmD---——

!

l

I
CL

=

107

l
DS:DX

=

address

of

6-byte

S/N

field

l

Explanation

The

Return

Serial

Number

function

returns

the

CP/M

serial

number

in

the

6-byte

field

whose

address

is

passed

in

DS:DX.

Under

TurboDOS,

this

function

always

returns

six

zero

bytes.

NOTE:

This

function

is

supported

only

if

the

optional

r.odule

CPMSUP

is

included

duriríg

TurboDOS

system

generation.

4-60

TurboDOS 1.3 8086 C-FUNCTIONS
Programuíer's Guide

C-Function 108
Get/Set Return Code

C-Function 108 Get/Set Program Return Code

Entry Arguments I Req l PeAcri.pt.iorL-________
i

I CL = 108
I DX = OxFFFF (if get)
I program return code (if set)
l I

Returned Value I M9 ! -—----_—D£script.iop l

l I

l BX = program return code (if get) I

Explanation The Get/Set Program Return Code function
provides a means for one program to pass a

16-bit value to another program. For ex—

ample, this function can be used to advantage
in connection with C-function 47 (Chain to
Program).

If register DX is set to OxFFFF, then this
function interrogates the program return code
and returns it in register BX. Otherwise,
this function sets the program return code to
the value passed in register DX.

4-61

TurboDOS 1.3 8086 C-FUNCTIONS
Prograwmer's Guide

C—Function líO
Get/Set Delimiter

C-Function líO Get/Set Program Output Delimiter

Entry Arguments i_-8eg-j -.--—--jes£Kj¿RtiQn
_

l

l 1

I CL = 110 l

l dx = Oxffff (if get), or I

! DL = output delimiter (if set) l

l I

Returned Value L-É£9-JÁ-------__ pescri.ption
l

! AL = output delimiter (if get) l

Explanation The Get/Set Output Delimiter function can be
used to set or interrogate the output delimi-
ter used by C-function 9 (Print String).
Whenever a program is loaded into the TPA,
the output delimiter is initialized to the
dollar sign $ character.

If register DX is set to OxFFFF, then this
function interrogates the current output
delimiter and returns it in register AL.
Otherwise, this function sets the output
delimiter to the value passed in register DL.

4-62

TurboDOS 1.3 8086 C-FUNCTIONS
Programmer's Guide

C-Function IllPrint Block

C-Function Ill Print Block

Entry Arguments I Req l pefícrjpt.iQn l

l l

l CL = Ill I

I DS: DX = CCB address I

Explanation The Print Block function displays a string
of characters on the console screen. The
string may be of any length, and is defineá
by a Character Control Block (CCB) whose
address is passed in DS: DX. The CCB is four
bytes long, and has the following structure:
l OffipSet pf!scription I

l l

l 0-l starting DS-offset of string !

l 2-3 byte-length of string l

L .
l

Horizontal tabs are expanded into multiple
spaces, based upon tab stops at every eighth
column.

4-63

TurboDOS 1.3 8086 C-FUNCTIONS
programmer's Guide

C—Function 112

List Block

C-Function 112 List Block

Entry Arguments LMsmL —--——_———_——-.I

i CL = 112 !

l DS: DX = CCB address I

l I

Explanation The List Block function sends a string of
characters to be printed according to the
current print routing. The string may be of
any length, and is defined by a Character
Control Block (CCB) whose address is passed
in DS: ljX. The CCB is four bytes long, and
has the following structure:

LA££set--j____ -.Pe8criptic}n -———__.-l
! !

l 0-l starting DS-offset of string l

I 2-3 byte-length of string l

I

Horizontal tabs are not expanded.

4-64

TurboDOS 1.3 8086 C-FUNCTIONS
programmer's Guide

C-Function 152
parse Filename

C-Function 152 parse FiIen=e

Entry Arguments l Prq l -_._______pe=rjpti9D_ __- _-
l

! !

I CL = 152 l

l DS:DX = PFCB address I

l l

Returned Value |-Reg-.j Re§cKjptj9n__.-__- l

I I

! BX = O if successful and end of line l

l Oxffff if error while parsing I

i delimiter offset otherwise l

Explanation The Parse Filename function parses an ASCII

file specification of the form:

{d:}filename{.typ}

into FCB format. The FCB drive, name, and

type fields (bytes O through li) are
initialized according to the parsed filespecification. Bytes 12 through 15 of the
PCB are zeroed.

This function is called with the address of a

Parse Filename Control Block (PFCB) in DS:DX.
The PFCB is four bytes long, and has the
following structure:
l nffRpt i Pe5criptiorl

____)

l l

l 0-l DS-offset of ASCII input string]

i 2-3 DS-offset of destination FCB I

This function parses the first filespecification it finds in the input string.
Leading spaces are ignored. Parsing ctops
upon encountering a space, comma, semicolon,
equal-sign, or any ASCII control character.

4-65

TurboDOS 1.3 8086 C-FUNCTIONS
Programmer's Guide

,""?
_

,T
.

/ñ
\- it "t,

, fU
'/"/'tp

,~ ,\ ,
·' '.- fir- i.- L-

I. 1~{.^-
i k, : i"..~: m

S l. C L .F -" '- ' L ! ;'" ((" úi.p» tcü > L,
\, L"

S t'"

t"((T C· 'j")"' ?' 5" ;' E
'y C

i AN-'
/ --

Lcü I:
, ,

L,
,.- ,

S
n m

"

"7 ¿j

:
) "

,,
(G; V

'h '"' , '-L i.
,,

" .(
],"

:<, J^ l) 6 l
" "

'·,
.

' """ ¿" 'l
L ,

I

(Intentionally left blank.)

j7 i, - ij 't ! Lj'j / "/) .)] ',' 4 " '""
,

(

C " ,.· ' t " S .r í

S
e r C), L L

ft ij i i! "7' t$^

tí C.u Í

. E

4-66

TurboDOS 1.3 8086 T-FUNCTIONS
Programner's Guide

T-FUNCTIONS This section describes the 43 TurboDCS-unique

functions ("T-functions") which supplement
the C-functions described in the previous
section. The T-functions are presented in
numerical order, with calling parameters,
return values, and a detailed explanation for
each.

To invoke a T-function, a program executes
the interrupt instruction INT OxEl with a
function number in register CL. Arguments
are passed and values returned in registers,
as described below for each T-function.

If a T-function call is made with register CL
' set to an unsupported function number, Turbo—

DOS returns immediately with register AX set
to zero.

T-function calls generally destroy registers
AX-BX-CX-DX-SI-DI-BP-ES, but preserve SP-IP
and CS-DS-SS.

.

\,

r· q—-e 4 > '-

A f
. ·, I-

5-l

TurboDOS 1.3 8086 T-FUNCTIONS
Programmer's Guide

T-F'unction O

Reset Operating Sys.

T-Function O Reset Operating System

Entry Arguments I Rpq l

__D=cxiRtiQR_____-- __!

I I

I CL = O I

l I

Explanation The Reset Operating System function unlocks
all locked records, closes all open files,
unlocks all locked drives, and terminates any
network sessions involving the calling
process.
TurboDOS automatically performs this function
at each program termination (warm-start), so

it is almost never necessary for a program to
call this function explicitly.

5-2

TurboDOS 1.3 8086 T-FUNCTIONS
Programmer's Guide

T-Punction lCreate Process

T—Function I Create Process

Entry Arguments l Req i ___-___-_-ne=jm9I)
l

l CL = l I

l DX = entrypoint offset I

I BX = workspace offset I

l !

Returned Value !LmLj———_-- -IZmac-ríptim------ -—I
l I

i AL = O if successful !

I -l if insufficient memory

Explanation The Create Process function creates a new
process which starts execution at the entry-
point offset passed in register DX. The new
process is assigned a TurboDOS work area
whose offset appears to the new process in
register SI, and a 64-word stack area whose
offset appears in register SP. If the
process requires a re-entrant work area
(usually allocated dynamically using T-
function 3), its offset should be passed in
register BX and will appear to the new
process in register DI.

If this function is called with register DX

set to zero, it causes the calling process to
terminate.

NOTE: This function is intended to be invoked
only by resident processes within TurboDOS.

It deals with 16-bit offset values that are
relative to the operating system base.
Consequently, it should never be invoked from
a transient program.

5-3

TurboDOS 1.3 8086 T-FUNCTIONS
Programmer's Guide

T-F'unction 2

Delay Process

T-F'unction 2 Delay Process

Entry Arguments l Peq ! _____Dmmcri,pt.ion l

I

I CL = 2 !
! DX = tick count

I

Explanation The Delay Process function causes the calling
process to be suspended for the period of
tiníe specified by the tick count passed in
register DX. A system "tick" is an implemen-
tation-dependent time interval, usually 1/50

or 1/60 of a second. The actual delay may
vary from the requested tick count by plus or
minus one tick.

If the specified tick count is zero, then the
calling program is suspended only long enough
to allow any other ready processes to run (a
so-called "courtesy" dispatch).

5-4

TurboDOS 1.3 8086 T-FUNCTIONS
Prograumer's Guide

T-Function 3

Allocate Memory

T-Punction 3 Allocate Memory

Entry Arguments I Req I Ppqcription l

l i

I CL = 3 l

I DX = byte-length of requested segment I

! I

Returned Values I RC9 I pescripücm l

I I

l AL = O if successful l

I -l if insufficient memory l

! BX = segment offset (if successful) I

i l

Explanation The Allocate Memory function allocates a

contiguous memory segment of the byte-length
requested in register DX. If successful, the
starting offset of the allocated segment is
returned in register BX.

NOTE: This function is intended to be invoked
only by resident processes within TurbooOS.

It deals with 16-bit offset values that are
relative to the operating system base. Con-
sequently, it should never be invoked from a

transient program. If a memory segment is
allocated by a process and not deallocated
before the process terminates, then the space
is lost permanently.

5-5

TurboDOS 1.3 8086 T-FUNCTIONS
Programmer's Guide

T—Function 4

Deallocate Memory

T-Punction 4 Deallocate Memory

Entry Arguments l Req ! _________=scKjptiQn--__ -___:
I !
I CL = 4

i DX = segment offset l
i

Explanation The Deallocate Memory function returns a

previously-allocated memory segment to the
pool of available memory space.

NOTE: This function is intended to be invoked
only by recident processes within TurboDOS.

It deals with l6-bit offset values that are
relative to the operating system base. Con-
sequently, it should never be invoked from a

transient program. The offset passed in DX

inust be a segment starting offset returned by
a prior call to C-function 3 (Allocate Memo-
ry), otherwise a system crash may occur.

5-6

TurboDOS 1.3 8086 T-FUNCTIONS
programmer's Guide

T-F'unction 5

Send I/P Message

T-Punction 5 Send Interprocess Message

Entry Arguments I Peq !

_ _____
pesctiptím-_—---—--- l

I I

I CL = 5 l

l DX = message node offset !

I BX = message offset l

! I

Explanation The Send Interprocess Message function pro-
vides a ineans to send messages froni one pro-
cess to another. Register DX specifies the
offset of a lO-byte message node which must
be initialized as follows:

i

I MSGNOD: WORD O ;semaphore count :

I WORD MSGNOD+2 ;semaphore head I

WORD MSGNOD+2 ; " "

I WORD MSGNOD+4 ;msg chain head l

l WORD MSGNOD+4 ; " " " l

l I

Register BX specifies the offset of the
message to be sent, which must be prefixed by
a 4-byte linkage as follows:
l I

! MESSAG: WORD O ;message linkage l

WORD O ; " " I

l BYTE ... ;message text
! BYTE

... ;(any length) i

NOTE: This function is intended to be invoked
only by resident processes within TurbooOS.

It deals with l6-bit offset values that are
relative to the operating system base. Con-
sequently, it should never be invoked from a

transient program.

5-7

TurboDOS 1.3 8086 T-FUNCTIONS
Programmer's Guide

T-Function 6

Receive I/P Message

T-punction 6 Receive Interprocess Message

Entry Arguments |_R!2g-i__
_— Pescription

I

I CL = 6

! DX = message node offset I

I

Returned Value 1-Eeg--[---——- .-Reacripki9R
--

—-—l
I

I BX = message offset I

l

Explanation The Receive Interprocess Message function
provides a means to receive messages sent by
another process using C-function 5 (Send
Interprocess Message). Register DX specifies
the offset of a lO-byte message node which
must be initialized as follows:

l

I MSGNOD: WORD O ;semaphore count I

! WORD MSGNOD+2 ;semaphore head I

I WORD MSGNOD+2 ; " " i

l WORD MSGNOD+4 ;insg chain head I

I WORD MSGNOD+4 ; " " " l

If no message is available from the specified
message node, the calling process is suspen-
ded until a message arrives. This function
returns in BX the offset of the received
message prefixed by a 4-byte linkage.

NOTE: This function is intended to be invoked
only by resident processes within TurboDOS.

It deals with 16-bit offset values that are
relative to the operating system base. Con-
sequently, it should never be invoked from a

transient program.

5-8

TurboDOS 1.3 8086 T-FUNCTIONS
progranímer's Guide

T-Punction 7

Set Error Address

T-Punction 7 Set Error Address

Entry Arguments l Req l ppRcriptjon I

I I

I CL = 7 l

i DX = error intercept routine offset, or I

I O to restore default error handling l

I BX = error intercept routine base l

l

Explanation The Set Error Address function enables a

program to establish its own error intercept
routine to intercept and process unrecover-
able disk errors. The address of the inter-
cept routine is passed in BX (base) and DX

(offset). Normal TurboDOS error diagnosis is
supressed.

The error intercept routine must jáQt call any
TurboDOS functions, and must return via a
RETF instruction with register AL set to the
desired error recovery alternative:
I ATl-rl2q l RF'cc)\TprY Act.inn
I l

i O retry operation l

l +1 ignore error
l -l abort program l

I

If the Set Error Address function is called
with dx set to zero, normal TurboDOS error
diagnosis is restored. This also happens
automatically when the program terminates.

5-9

TurboDOS 1.3 8086 T-FUNCTIONS
programmer's Guide

T—Function 8

Set Abort Address

T-Function 8 Set Abort Address

Entry Arguments ! R.eq !
-. .____I)e=jLjpki9n I

! l

l CL = 8 l

i DX = abort intercept routine offset, or l

! O to restore default abort handling l

l BX = abort intercept routine base l

l !

Explanation The Set Abort Address function enables a

program to establish its own abort intercept
routine to intercept and process user-reques-
ted aborts {in response to attention-requests
or disk errors). The address of the inter-
cept routine is passed in BX (base) and DX

(offset).

The abort intercept routine may exit via a

RETF instruction to resume execution of the
program at the point of interruption. Alter-
natively, it may proceed with any desired
wrap-up processing and then terminate the
program (via C-function O).

If the set Abort Address function is called
with dx set to zero, normal TurboDOS abort
handling restored. This also happens automa-

tically when the program terminates.

5-lO

TurboDOS 1.3 8086 T-FUNCTIONS
Programmer's Guide

T-Function 9

Set Date and Tine

T-Punction 9 Set Date and Time

Entry Arguments I Req ! P=ríRLiQ|--_-_____|I I

I CL = 9 l
l BX = julian date (O is 31 December 1947) !
l DH = hours (0-23, binary integer) j
! DL = minutes (0-59, binary integer) l
I CH = seconds (0-59, binary integer) l
I l

Explanation The Set Date and Time function sets the sys-tem date and time. The julian date passed in
register BX is the number of days since the
base date of 31 December 1947. Dates prior
to the base date are represented by negative
values.

The system date and time may also be set by
means of C-function 104 (Set Date and Time),
but the format of arguments is considerably
different.

5-ll

TurboDOS 1.3 8086 T-FUNCTIONS
Programmer's Guide

T—F'unction 10
Get Date and Time

T-F'unction 10 Get Date and Time

Entry Arguments IÁ9-J——- ——De=jú4gzki9n—-—--__———|
I i

i CL = lü i

I l

Returned Values LAegA--———-———-Fe=LipMQD. —______l
I i

I BX = julian date (O is 31 December 1947) i

l DH = hours (0-23, binary integer) l

! DL = minutes (0-59, binary integer)
l CE = seconds (0-59, binary integer) I

! CL = system tick count I

I !

Explanation The Get Date and TiITle function returns the
system date and time. The julian date re-
turned in register BX is the number of days
since the base date of 31 December 1947.
Dates prior to the base date are represented
by negative values.
The system tick count returned in register CL

is incremented every system tick. It counts
from zero to 255, then wraps around to zero.
A system tick is an implementation-dependent
time interval, usually 1/50 or 1/60 of a

second.

The system date and time may also be interro-
gated by means of C-function lOS (Get Date
and Time), but the format of returned values
is considerably different.

5-12

TurboDOS 1.3 8086 T-FUNCTIONS
Programmer's Guide

T-Punction liRebtiild Disk Map

T-F'unction li Rebuild Disk Map

Entry Arguments I Regí) Dp¶cript.jon I

I I

I CL = li I

l dl = disk drive: l

I O for drive A l

I l for drive B l

l : l

l 15 for drive P

l

Returned Value I Flm l pF'script.ion I

I l

l AL = O if successful I

l -l if disk write-protected I

or has files open l

l i

Explanation The Rebuild Disk Map function regenerates the
allocation map on the disk drive specified in
register DL. The principal purpose of this
function is to support the FIXMAP command.

S-13

TurboDOS 1.3 8086 T-FUNCTIONS
programmer's Guide

. T-Function 12
Return Serial Number

T-Punction 12 Return Serial Number

Entry Arguments Úé9jj— pRampki,Qn I

I l

I CL = 12
I

Returned values LAegjj——---—---»ejswiRjá9| I

I I

l BX = TurboDOS origin number
l DX = TurboDOS unit number l

I CH = (J if non-privileged log-on !

l Ox80 if privileged log-on I

l CL = Oxl4 (TurboDOS version 1.3) l

i l

Explanation The Return Serial Number function returns the
origin and unit numbers with which this par-
ticular copy of TurboDOS was serialized, and
may be used in application programs to help
prevent unauthorized use.

This function also returns the TurboDOS ver-
sion number, and a flag which ináicates
whether or not the current log-on is privi—
leged.

5-14

TurboDOS 1.3 8086 T-FUNCTIONS
Programmer's Guide

T-Function 13
Set Compatibilíty

T-Punction 13 Set Compatibility Flags

Entry Arguments ! Req l
_

Descrip[iQD___ " " l

I

! CL = 13 i

I DL = compatibility flags: l

bit 7 = permissive flag l

l bit 6 = suspend flag l

bit 5 = global-write flag
l bit 4 = mixed-mode flag I

I bit 3 = logical flag
(bits 2-O not defined) I

l I

Explanation The Set Compatibility Flags function enables
a program to modify the rules by which filesharing is done. The meaning of each compa-

tibility flag is described in section 2.

When the program terminates, the compatibili-
ty flags revert automatically to the default
values assigned to the public symbol COMPAT

at system generation.

5-15

TurboDOS 1.3 8086 T-FUNCTIONS
Programmer's Guide

T—Function 14
Log-On/Log-Off

T-Function 14 Log-On/Log-Off

Entry Arguments l Req i Description l

I

l CL = 14 I

i dx = GxFFFF (if log-off) !

l DL = user number O-31 (if log-on)
l with bit 7 set for privileged
l DH = current disk drive (if log-on): I

I -I for no change
l O for drive A l

l l for drive B I

0l
·

15 for drive P I

l I

Returned Value LÉ: Q9-j--—
—-_— De=jjmsul-— —

l

l

l AL = O if successful l

l -l if request invalid l

l I

Explanation The Log-On/Log-Off function is provided to
support log-on security via the LOGON and
LCGOFF commands. To log-on, this function is
called with the desired user number in regis-
ter DL (with bit 7 set if a privileged log-on
is desired), and with the desired current
drive in register DH (or -l for no change in
current drive). To log-off, the function is
called with dx set to OXFFFF.

After a log-off, another log-on request is
not honored until a warm-start or C-function
O (System Reset) has occurred.

NOTE: When this function is called from a

resident system process, the argument in DH

is ignored.

5-16

TurboDOS 1.3 8086 T-FUNCTIONS
Programmer's Guide

T-Punction 15
Load pile

—T-Function 15 Load File

Entry Arguments I Req l

Pescripti(jn I

I

I CL = 15
l DS:DX = FCB address I

Returned Value I Beet I pescriptim l

I

I AL = O if successful l

1 if not enough memory to load file l

I -l if file not found
l

Explanation The Load File function loads the file speci-
fied by the FCB drive, name, and type fields
(bytes O through li) into memory starting at
the current DMA address. The file need not
have been opened. If the top of the TPA is
reached before the end-of-file is encoun-
tered, the loading stops and an error is
returned.

Note that this function does not allocate TPA
space or interpret a .CMD header. Use C-
function 59 (Program Load) to load programs
and overlays stored in .CMD format.

7

TurboDOS 1.3 8086 T-FUNCTIONS
Programmer's Guide

T-Function 16
Activate Do-File

T-Punction 16 Activate Do-File

Entry Arguments j|-j— D£=j¿E?ti9B-_._______ I

! I

I CL = 16 l

l DS:DX = FCB address (to activate)
l DX = O (to cancel) l

) i

Returned Value L=gA =£§c-úp±í9n- I

l l

I AL = O if successful i

l -l if file not found l

I I

Explanation The Activate Do-File function causes the file
specified by the FCB drive, name, and type
fields (bytes O through li) to be activated
as a do-file. The file need not have been
opened. Any currently-active do-file and/or
command line is stacked (to be reactivated
when the new do-file has been processed to
completion). The principal purpose of this
function is to support the DO command.

This function may also be called with dx set
to zero to cancel all active and stacked do-

files.

5-18

TurboDOS 1.3 8086 T-FUNCTIONS
Programmer's Guide

T—Punction 17
Dis/Enable Autoíoad

T-Function 17 Disab1e/Enab1e Autoload

Entry Arguments L=gA——-——--—=scAipkim----—-——-- I

I CL = 17 I

i DL = O to disable autoload l

l -l to enable autoload I

I l

Explanation The Disable/Enable Autoload function may be
used to disable the warm-start autoload fea-
ture of TurboDOS, or to re-enable the feature
after it has been disabled.

TurboDOS automatically disables the warm-
start autoload feature whenever it fails to
find the file WARMSTRT.AUT on the current
disk during a warm-start. Creating such a

file on disk (or changing the current disk to
one that contains such a file) will not
result in autoloading unless the autoload
feature is explicitly re-enabled by means of
this function.

5-19

TurboDOS 1.3 8086 T-FUNCTIONS
Programíaer's Guide

T—punction 18
Send Command Line

T-Function 18 Send Command Line

Entry Arguments l R« i Descript.icm I

! l

l CL = 18 l

l DS:DX = buffer address (to send) I

! DX = O (to cancel) !

] l

Explanation The Send Command Line function allows a pro-
gram to specify the next command line to be
processed by TurboDOS after the program ter-
minates. The buffer address is passed in
DS: DX. The first byte of the buffer must
contain the command line byte-length, and the
command line text must occupy the second and

succeeding bytes of the buffer. Any
currently-active comnand line is stacked, and
the new command line is activated.

This function may also be called with DX set
to zero to cancel all active and stacked
command lines.

5-20

TurboDOS 1.3 8086 T-FUNCTIONS
Programmer's Guide

T—Function 19

Return Alloc Info

T-Punction 19 Return Disk Allocation Information

Entry Arguments I RC9 l pescriptic}n l

I

l CL = 19 l

! dl = disk drive: l

! O for drive A I

I l for drive B I

I "0
l 15 for drive P l

I

Returned Values l Rrq l Pmwript.iQñ I

l

l AL = block size:
l 3 for IK blocks l

4 for 2K blocks I

I "P
7 for 16K blocks

I plus: bit 7 set if fixed disk !

l bit 6 set if EXM=0 forced l

I CL = number of blocks in the directory l

I DX = number of blocks presently unused l

l BX = total number of blocks on the disk l

Explanation The Return Disk Allocation Information func-
tion returns various parameters concerning
the logical organization of the specified
disk drive.

5-21

TurboDOS 1.3 8086 T-FUNCTIONS
Programmer's guide

T-F'unction 20
Return Physical Info

T-Function 20 Return Physical Disk Information

Entry Arguments ! Rc9 l

_ Pescripti9n l

I l

! CL = 20 I

I dl = disk drive:]

! O for drive A

I l for drive B l

: l

! 15 for drive P I

l l

Returned Values L-Rmj p=-rj9tí9D l

l l

I AL = physical sector size: I

O for l28-byte sectors l

l l for 256-byte sectors l

i 2 for 5l2-byte sectors !

3 for IK sectors l

l : 1

] 7 for 16K sectors I

l CX = number of reserved (boot) tracks l

l DX = total number of tracks on the disk l

l BX = number of sectors per track l

i I

Explanation The Return Physical Disk Information function
returns various parameters concerning the
format and physical organization of the
specified disk drive.

5-22

TurboDOS 1.3 8086 T-FUNCTIONS
Programmer's Guide

T-Function 21

Get/Set Drive Status

T-Function 21 Get/Set Drive Status

Entry Arguments I Req
_

___R=c.ript.ion _
I

l l

l CL = 21 l

I dl = disk drive:
I O for drive A l

l l for drive B i

I : l

l 15 for drive P I

l DH = O to set the drive read/write l

I I to set the drive read-only I

I -l to return the drive status l

I l

Returned Values l RF!q l. _-___ _-p£smRtj9n-_-.—_ _
!

I l

l al = O if successful l

l -l if attempt to set drive status I

l while files are open I

l bl = O if drive is not ready l

i -l if drive is ready I

l BH = O if drive is read/write I

l -l if drive is read-only !

l l

Explanation The Get/Set Drive Status function may be used

to interrogate the ready and write-protect
status of the drive specified by register DL.
This function may also be used to change the
write-protect status of the drive. The code
passed in register DH controls which of these
operations is performed, as indicated above.

5-23

TurboDOS 1.3 8086 T-FUNCTIONS
Programmer's Guide

T-Function 22
physical Disk Access

T-F'unction 22 physical Disk Access

Entry Arguments l Rc9 i _____-_-_R£acnRtíQn-_— ___ll I

l CL = 22 I

I DS:DX = PDR packet address !

l I

Returned Value)_Beml-_—-——____>sm=R-—-—.)

l AL = O if read/write successful, or !

I drive not ready l

: —l if read/write unsuccessful, or I

l drive is ready

Explanation The Physical Disk Access function provides
direct access to the physical disk drivers.
The principal purpose of this function is to
support the BOOT, BACKUP, FORMAT, and VERIFY
commands. It is honored for privileged log-
ons only, and may be used only for disk
drives local to the calling processor.
DS:DX contains the address of a IfS-byte phy-

sical disk request (PDR) packet with the
following structure:
I Offset ! PefícriRtion I

l I

I O disk operation code (0-4) l

l l disk drive (0-15) I

I 2-3 physical track number (base O) I

I 4-5 physical sector number (base O) I

l 6-7 number of sectors to read/write I

I 8-9 number of bytes to read/write I

I lO-ll DMA offset for read/write l

l 12-13 DF4A base (para) for read/write I

! 14-15 disk specification table address l

I

The physical operation performed depends upon
the disk operation code in the PDR packet.

5-24

TurboDOS 1.3 8086 T-FUNCTIONS
Programmer's Guide

T-Function 22
Physical Disk Access

(Continued)

Explanation If the PDR opcode is O, the specified number
(Continued) of physical sectors (or bytes) are read from

the specified drive, track, and sector into
the specified DMA address.

If the PDR opcode is l, the specified number
of physical sectors (or bytes) are written to
the specified drive, track, and sector from
the specified DMA address.

If the PDR opcode is 2, the type of the
specified disk is determined, and an ll-byte
disk specification table (DST) is returned at
the specified dma address, structured as
follows:
I Qffsíet. I pe'ícript.ic)n. I

l

i O block size (3=IK,4=2K,...,7=16K) i

l l-2 total number of blocks on disk l

l 3 number of directory blocks
l 4 sector size (0=128,...,7=16K)
l 5-6 number of sectors per track l

l 7-8 number of tracks on the disk
I 9-lO number of reserved (boot) tracks I

If the PDR opcode is 3, the ready status of
the specified drive is returned in register
al (O if not ready, -l if ready).

If the PDR opcode is 4, the specified track
of the specified drive is formatted, using
hardware-dependent formatting information
provided at the specified DMA address.

NOTE: Opcodes O (read) and l (write) require
that the PDR packet contain the address of a

valid DST for the specified disk. Therefore,
opcode 2 (return DST) should be invoked first
to obtain the DST.

5-25

TurboDOS 1.3 8086 T-FUNCTIONS
Programmer's Guide

T-E'unction 23
Set Buffer Parameter

T—F'unction 23 Set Buffer Parameters

Entry Arguments Á-ÉR9JJ- p£&cxiptj9n l

! I

I CL = 23 I

j DH = number of buffers (minimum 2) l

l DL = buffer size: I

l O for 128-byte buffers I

l for 256-byte buffers I

l 2 for 512-byte buffers l

i 3 for IK buffers l

l : l

! 7 for 16K buffers !

I l

Explanation The Set Buffer Parameters function enables
the number and size of disk buffers to be
changed. The principal purpose of this func-
tion is to support the BUFFERS command.

The specified number of buffers rnust be at
least 2. If the specified number of buffers
cannot be allocated due to insufficient
memory, then TurboDOS allocates as many as it
can. The specified buffer size must be as
least as large as the largest physical disk
sector size being used.

If this function is called from a slave pro-
cessor without local disk storage, then the
function is passed over the network to be
processed in the master.

5-26

TurboDOS 1.3 8086 T-FUNCTIONS
Programner's Guide

T—Function 24
Get Buffer Parameter

———

T-F'unction 24 Get Buffer Parameters

Entry Arguments I Recí I --DesRripki9D______ __l
I I

I CL = 24 I

I l

Returned Values I Rpq l Pe¶crip±iQIí

I BH = number of buffers I

l BL = buffer size:
! O for l28-byte buffers
! l for 256-byte buffers
! 2 for 512-byte buffers !

l 3 for IK buffers I

I : l

l 7 for 16K buffers l

I

Explanation The Get Buffer Parameters function enables
the number and size of disk buffers to be
interrogated. The principal purpose of this
function is to support the BUFFERS command.

If this function is called from a slave pro-
cessor without local disk storage, then the
function is passed over the network to be
processed in the master.

5-27

TurboDOS 1.3 8086 T-PUNCTIONS
Programmer's Guide

T-Function 25
Lock/Unlock Drive

T-Function 25 Lock/Unlock Drive

Entry Arguments I Reg I --Pescriptimn I

l l

I CL = 25 l

! DL = disk drive: i

I O for drive A l

i l for drive B I

! : I

l 15 for drive P I

l DH = O to unlock drive l

l -l to lock drive l

Returned Value I RC9 I -_P2sgripkigD-- —
I

l }

l AL = O if successful l

l -l if drive in-use or already !

l locked by another process l

Explanation The Lock/Unlock Drive function enables a

program to secure a lock on a specified disk
drive. This function is used by many Turbo-
DOS commands such as BACKUP, CHANGE, FIXDIR,
FIXMAP, FORMAT, and VERIFY to ensure that
they cannot compromise the processing of
other users.

5-28

TurboDOS 1.3 8086 T-FUNCTIONS
Programmer's Guide

T-Function 26
Flush/Free Buffers

T-Function 26 Fíush/Free Buffers

Entry Arguments l Req L__._______, pescript.ion
I l

l CL = 26 I

I dl = disk drive: l

O for drive A I

I l for drive B l

O0
i 15 for drive P

I DH = subfunction flags: l

l bit 7 set to free buffers uncon- l

l ditionally l

bit 6 set to free buffers after l

l disk error abort l

I bit 5 set to continue after disk l

error abort I

bit 4 set to return after disk
error abort l

Explanation The Flush/Free Buffers function causes all
written-to disk buffers for the specified
disk drive to be written out (flushed) to the
disk. This function may cause disk buffers
for the specified drive to be freed, condi-
tionally or unconditionally, according to the
subfunction flags passed in register DH.

It is suggested that this function be used

prior to media changes and physical disk
access (T-function 22).

5-29

TurboDOS 1.3 8086 T-FUNCTIONS
Programmer's Guide

T-Punction 27
Get/Set Print Mode

T-Function 27 Get/Set print Mode

Entry Arguments l Peq I

_-.R£ac^Wi9n I

I l

l CL = 27 I

l DL = print mode:
I O to print direct l

I l to print spooled I

l 2 to print to the console !

l -l to leave print mode unchanged !

I OH = printer assignment (if mode = O) l

l queue assignment (if mode = l) I

I -l to leave assignment unchanged l

l CH = spool drive: l

I O for drive A l

Í l for drive B i

l : !

l 15 for drive P I

! -I to leave spool drive unchanged !

I

Returned Values L-B=A——---.-——-ne&QLipki9n l

l l

l If B = D = E = -l on entry, returns with: !

! AL = current spool drive i

l BH = current printer or queue assignment !

j BL = current print mode l

I I

Explanation The Get/Set Print Mode function is used to
set or interrogate print routing, and is
provided to support the PRINT command.

Printer and queue assignments are coded thus:
I for A, 2 for B,

...,
16 for P. Assignment

to queue zero causes print files to be leftunqueued. Assignment to printer zero causes
print output to be discarded. Setting the
assignment, mode, or spool drive implies an
immediate end-of-print-job condition. Ifregisters CH, DH, and DL are all set to -l,this function simply interrogates and returns
the current assignment, mode, and drive.

S-30

TurboDOS 1.3 8086 T-FUNCTIONS
Programmer's Guide

T-Function 28
Signal End-of-Prínt

T-Function 28 Signal End-of-Print

Entry Arguments I Re'q I

—---- __Pe=riRtí9D----.-__ ___i
I I

I CL = 28 I

" l

Explanation The "ignal End-of-Print function causes an
end-of-print condition. If spooling is in
effect, the current print file is closed and

(if appropriate) enqueued for background
printing.
An end-of-print condition may also occur as
the result of a warm-start, attention re-quest, or end-of-print character.

5-31

TurboDOS 1.3 8086 T-FUNCTIONS
programmer's Guide

T-Punction 29
Get/Set Despool Mode

T-Function 29 Get/Set De-spool Mode

Entry Arguments LAegA-.-—---.---- Ix?scnpti9IL—_ _!
I CL = 29 l

I CH = printer:
I O for printer A

l for printer B

I "P
! 15 for printer P I

I dl = de-spool mode:
l O to process print job l

l l to suspend print job
l 2 to begin print job over
I 3 to terminate print job
l -l to leave mode unchanged
l DH = de-spool queue assignment:

O to set printer off-line
l for queue A

I 2 for queue B

l "0
! 16 for queue P

! -l to leave queue unchanged
l

Returned Values L£mA =CXÁELtiQD !

I I

l al = O if successful
I -l if invalid request
I l

l If D = E = -l on entry, returns with:
l BH = current queue assignment (0-16) l

I BL = current de-spool mode (O or l) l

!

Explanation The Get/Set De-Spool Mode function is used to
control background printing, and is provided
to support the PRINTER command. If registers
DH and DL are both set to -l, this function
simply interrogates and returns the current
queue assignment and de-spool mode for the
specified printer.

5-32

TurboDOS 1.3 8086 T-FUNCEIONS
Programmer's Guide

T-Function 30
Queue a Print File

T-Function 30 Queue a Print File

Entry Arguments ----.——-—-
I

l

I CL = 30 i

l DS:DX = FCB address
I BH = print queue: l

! O for queue A

I l for queue B l

l "0
I 15 for queue P I

l BL = user number (0-31), plus
bit 7 set to delete after printing I

l

Returned Value LAé9iñ
-_._._ DesicriptKn

! i

i al = O if successful l

I -l if invalid request
l l

Explanation The Queue a Print File function enqueues a

text file on a specified print queue for
background printing. The file to be enqueued

is identified by the FCB drive, name and type
fields (bytes O through li), together with
the user number passed in register BL.

The drive specified by the FCB must be acces-
sible by the processor in which the specified
queue resides, otherwise the request is
invalid. To check this, the function may be
called with register BL set to -l, in which
case the FCB drive and requested queue are
checked for validity but no file is queued.

5-33

TúrboDOS 1.3 8086 T-FUNCTIONS
Prograuuner's Guide

T-Function 31
Flush List Buffer

T-Function 31 Flush List Buffer

Entry Arguments l Req i pefícriptic)n .l
i I

l CL = 31 !

I I

Explanation The Flush List Buffer function is used by
TurboDOS during direct printing over the
network to force any remaining buffered char-
acters to be printed. There should be no
need for an application program to call this
function.

5-34

TurboDOS 1.3 8086 T-FUNCTIONS
Programmer's Guide

T—Punction 32
Network List Out

T-Function 32 Network List Out

Entry Arguments I Peq l ppRcripr.ion I

i

I CL = 32 I

I DL = output character l

!

Explanation The Network List Out function is used by
TurboDOS during direct printing over the
network. There should be no need for an
application program to call this function.

5-35

TurboDOS 1.3 8086 T-FUNCTIONS
Progranmer's Guide

T-Function 33
Remote Console I/O

T—Function 33 Remote Console I/O

Entry Arguments l Rpq i PpqFcriptiQn
I I

! CL = 33 I

] DL = console input character, or l

O if no console input available I

j DH = O to detach remote console i

I -l to attach remote console l

I

Returned Value l Req Pesícript.ion l

I al = O if CONREM not present
l l if successful
i -l if executing in master l

! I

Explanation The Remote Console I/O function works in
conjunction with the CONREM console driver to
support the MASTER command. It passes one
byte of console input in register DL (ifavailable), and returns a count byte and up
to 127 bytes of console output at the current
DMA address. There should be no need for an
application program to call this function.

S-36

TurboDOS 1.3 8086 T-FUNCTTONS
programmer's Guide

T-Function 34
Get Como Status

T-Punction 34 Get Comm Channel Status

Entry Arguments l Peq l ppscript,inn !

I

l CL = 34
l DH = channel number, plus l

! bit 7 set if remote channel
I l

Returned Value : Req I pe3criptjon l

I I

l AL = O if input character not available I

I -1 if input character is available l

I

Explanation The Get Comm Channel Status function checks

to see whether or not an input character is
available on the specified comm channel. If
a character is available, it returns A = -l.Otherwise, it returns A = O.

5-37

TurboDOS 1.3 8086 T-FUNCTIONS
programmer's Guide

T-F'unction 35
Comm Channel Input

T-Function 35 Comn Channel Input

Entry Arguments I Req I _._Pe¶cri"pEi"on" """"" I

! CL = 35
l DH = channel number, plus
l bit 7 set if remote channel

Returned Value I Peq l Pescriptinn
l l
I AL = input character
I

Explanation The Comm Channel Input function obtains the
next input character from the specified comm

channel, and returns in in register AL. If no
character is available, the calling program
is suspended until a character is received.

5-38

TurboDOS 1.3 8086 T-FUNCTIONS

Programner's Guide
T-Function 36

Comm Channel Output

T-Function 36 Coium Channel Output

Entry Arguments l Rpq pe¶crip'Eic)n I

l

l CL = 36 !

l DH = channel number, plus I

l bit 7 set if remote channel I

I DL = output character l

l

Explanation The Comm Channel Output function outputs the
character passed in register DL on the speei-
fled comm channel.

5-39

TurboDOS 1.3 8086 T-FUNCTIONS
Programmer's Guide

T—Function 37
Set Comm Baud Rate

T-Function 37 Set Comn Baud Rate

Entry Arguments l Rpq i Pescript.ipn I

I

I CL = 37 l

I DH = channel number, plus l

l bit 7 set if remote channel
! DL = baud rate code (bits 3-0):
! O for 50 baud 8 for 1800 baud l

l for 75 baud 9 for 2000 baud I

l 2 for 110 baud 10 for 2400 baud I

l 3 for 134.5 baud li for 3600 baud I

I 4 for 150 baud 12 for 4800 baud I

5 for 300 baud 13 for 7200 baud I

I 6 for 600 baud 14 for 9600 baud l

I 7 for 1200 baud 15 for 19200 baud I

plus bit 7 set for att'n detection l

bit 6 set for CTS handshaking I

bit 5 set for input disabled I

Explanation The Set Comm Baud Rate function sets the baud

rate and options passed in register dl on the
specified comm channel.

5-40

TurboDOS 1.3 8086 T-FUNCTIONS
programmer's Guide

T-Function 38
get Com Baud Rate

T-F'unction 38 Get Comm Baud Rate

Entry Arguments l f?r'q Pe'¶criptic)n
I

l CL = 38 I

I DH = channel number, plus I

l bit 7 set if remote channel l

l I

Returned Value l Ré'q ! Pesícriptinn
l l

I AL = baud rate code (bits 3-0): I

O for 50 baud 8 for 1800 baud !

l 1 for 75 baud 9 for 2000 baud I

l 2 for 110 baud 10 for 2400 baud I

l 3 for 134.5 baud li for 3600 baud l

4 for 150 baud 12 for 4800 baud I

I 5 for 300 baud 13 for 7200 baud l

I 6 for 600 baud 14 for 9600 baud I

l 7 for 1200 baud 15 for 19200 baud !

l plus bit 7 set for att'n detection l

l bit 6 set for CTS handshaking I

I bit 5 set for input disabled l

l !

Explanation The Set Comm Baud Rate function interrogates
the baud rate and options for the specified
comm channel, and returns this information in
register AL.

5-41

TurboDOS 1.3 8086 T-FUNCTIONS
Programner's Guide

T-Function 39
Set Modem Controls

T-Function 39 Set Modem Controls

Entry Arguments I Ré9 I OescÁ,pt,i,Qñ I

l I

I CL = 39 I

! DH = channel number, plus l

I bit 7 set if remote channel l

l DL = modem control vector: l

l bit 7 set for request-to-send !

I bit 6 set for data-terminal-ready I

l bits 5-O unassigned l

l I

Explanation The Set Modern Controls function sets the
modem control signals in accordance with the

vector passed in register DL on the specified
conm channel.

5-42

TurboDOS 1.3 8086 T-FUNCTIONS
Programmer's Guide

T-Function 40
Get Modem Status

T-Punction 40 Get Modem Status

Entry Arguments l Req l pe5cripr.ion l

i I

l CL = 40

l DH = channel number, plus I

I bit 7 set if remote channel I

l !

Returned Value I Req I Pefír.ription
l l

I AL = modem status vector: I

l bit 7 set for clear-to-send)

I bit 6 set for data-set-ready l

! bit 5 set for data-carrier-detect I

! bit 4 set for ring-indicator I

I bits 3-O unassigned l

l l

Explanation The Set Modem Status function interrogates
the modem status signals for the specified
comm channel, and returns this information as
a vector in register AL.

5-43

TurboDOS 1.3 8086 T-FUNCTIONS
Programmer's Guide

T-Punction 41
User-Defined Fcn

T-Funct: Íon 41 User-Defined Function

Entry Arguments I Req l Pescription i

I

l CL = 41 I

I CH = network routing: I

i O if always processed locally l

} Id hex if routed per drive d I

2p hex if routed per printer p I

I 3q hex if routed per queue q I

l -l if routed to default net addr i

I DX = user-defined argument passed I

! BX = user-defined argument passed l

I l

Returned Values i Req l PefícriptiQn
l l

I AX = user-defined value returned I

l CX = user-defined value returned I

l DX = user-defined value returned l

I BX = user-defined value returned l

I I

Explanation The User-Defined Function provides a means
for adding user-defined extensions to the
operating system taking full advantage of the
TurboDOS networking facilities. On entry,
register CH defines how the request is to be
routed over the network. Registers DX and BX

plus the 128-byte record at the current DMA

address are all passed (over the network ifnecessary) to a user-defined module with the
public entrypoint symbol USRFCN. Upon entry
to the USRFCN routine, register CX contains
the DS-offset of the 128-byte record that was
passed. The USRFCN routine may return infor-
mation to the caller in any of the registers
AL-BX-CX-DX and in the l28-byte record.

5-44

TurboDOS 1.3 8086 T-FUNCTIONS
Programmer's Guide

T-Function 42
Reorg Disk Directory

T-Function 42 Reorganize Disk Directory

Entry Arguments i Res I Pe¶cript.ion l

l l

l CL = 42 j

l dl = disk drive: I

I O for drive A l

l l for drive B I

I : l

l 15 for drive P l

I I

Returned Value I Req l Pe¶cri|)tinn I

I I

I AL = O if successful I

l -l if disk write-protected !

I or has files open l

l

Explanation The Reorganize Disk Directory function reorg-
anizes the directory on the disk drive speci-
fied in register DL. If the hashed-directory
flag bit in the volume label has been
changed, this function will convert a hashed
directory into linear format (or vice versa).
The principal purpose of this function is to
support the FIXDIR command.

NOTE: In certain cases, this function may
take a very long time to complete (possibly
hours), and cannot be interrupted once in-
voked.

5-45

TurboDOS 1.3 8086 TASM ASSEMBLER
Programmer's Guide

TASM ASSEMBLER The TASM assembler is a two-pass relocatable
assembler for 8086-family microprocessors,
intended for use in conjunction with the
TurboDOS linker (TLINK).

Operating The assembler is invoked with the following
Instructions command:

I

l TAS2'Í sourcefn {objectfn} {-options} !

i

The "sourcefn" argument identifies an ASCII

text file containing one or more as"enbly
language source modules. If "sourcefn" does
not contain an explicit type, the default
type .A is assumed.

The "objectfn" argument specifies the name of
the object file to be created by TASM in the
relocatable format required by TLINK. If"objectfn" does not contain an explicit type,
the default type .O is used. If "objectfn"
is omitted from the command altogether, the
object file is given the same name as the
source file except that type .O is used.

Options are always preceded by a "-" prefix,
and may appear before, between, or after the
file names. Several options may be concate-
nated after a single "-" prefix.
! optiQn l

____.
__mp1aDmíQn- ___I

I

I -C List to console, not to printer !

I -E Allow archaic equates "=", "=: " I

I -L Listing only, no object file I

I -S produce sorted symbol table I

I -U Produce unsorted symbol table
I -X List only source lines in error l

I -1 Allow 80186 instructions !

I l

A-l

TurboDOS 1.3 8086 TASM ASSEMBLER
Programmer's Guide

Lexical Conventions

Lexical Conventions

Names A name is composed of upper case letters A-Z,
lower case letters a-z, digits O-9, and the
underscore " " character. The first charac—
ter of a name may not be a digit. Upper and
lower case letters are treated as different
characters. Names may be of any length, but
only the first eight characters are signifi-
cant.

Keywords The size specifiers BYTE and WORD, and the
machine registers AL, BL, CL, DL, AH, BH, CH,
DH, AX, BX, CX, DX, SP, BP, SI, DI, CS, DS,
SS, and ES are reserved as keywords, and may
not be used otherwise. Keywords may be
spelled in upper or lower case.

Location Counter The special symbol period "." represents the
location counter value at the start of the
current instruction, and may be used in ex-
pressions wherever a name would be appro-
priate. For example:

I """ l

l JMP
. ;an infinite loop l

l l

Numeric Constants Only integer constants up to a significance
of 16 bits are permitted. A sequence of
digits is normally interpreted as an unsigned

decimal constant. However, a sequence of
digits with a leading O is taken to be an
octal constant (in which the digits 8 and 9

are invalid). A sequence of digits preceded
by Ox (or OX) is taken to be a hexadecimal
constant. Hexadecimal digits include the
digits O-9 and the letters A-F (which may be
upper or lower case).

A_2

TurboDOS 1.3 8086 TASM ASSEMBLER
Programmer's Guide

Lexical Conventions
(Continued)

Character Constants A character constant is a single ASCII char-
acter enclosed in apostrophes, as in 'x'.The value of a character constant is the
numerical value of the character expressed in
seven-bit ASCII code. Certain non-graphic
characters, the apostrophe and the backslant
may be represented in character constants
according to the following table of escape
sequences:

l AM.TT chÁrÁct.Hr l Reprp5entAtion _.|
I I

I line feed \n
l horizontal tab \t l

I back space \b l

l carriage return \r I

I form feed \f l

I apostrophe \' l

l backslant \\ l

l null character \0 l

l any octal code \ddd l

I I

The escape sequence \ddd consists of the
backslant followed by l, 2 or 3 octal digits
that specify the ASCII code value of the
desired character.

Strings A string is a sequence of characters surroun-
ded by quotes, as in "string". In a string,
the quote character may be represented by the
escape sequence \" and all of the escape
sequences described for character constants
may be used as well. No implicit string
terminator is implied; if a null-terminated
string is desired, it must be written as
"string\0".

AH

TurboDOS 1.3 8086 TASK ASSEMBLER
Programrter's Guide

Lexical Conventions
(Continued)

White Space White space (spaces and tabs) may be used
freely between tokens, but not within names,
keywords or constants. White space is re—
quired to separate adjacent names, keywords
or constants that are not separated by punc—
tuation (for instance, between an instruction
and its operands).

Blank lines are always ignored, and may be
used freely anywhere.

Corrunents Comments are introduced 13y a semicolon ";"
and continue until the erA of the line.

A_4

TurboDOS 1.3 8086 TASM ASSEMBLER
Programmer's Guide

Expressíons

Expressions An expression is a sequence of names, con-
stants, operators and parentheses that can be
evaluated to yield a value. The order of
evaluation is determined by the precedence
and associativity of operators, unless expli-
citly overridden with parentheses.

Unary Operators The following unary prefix operators are
permitted in expressions:
l nperatc)r l Fx.p1@rlÁt.ion I

l I

I
- two's complement (negate)

l " one's complement I

I ! logical not l

i !

The unary operators have higher precedence
than any binary operator, and are evaluated
right-to-left. (For example, -"O yields l,while "-O yields -l.)
The logical not operator "!" yields a result
of l (true) if its operand is false (zero),
and a result of O (false) if its operand is
true (nonzero).

A-5

TurboDOS 1.3 8086 TASM ASSEMBLER

Programmer's Guide
Expressions
(Continued)

Binary Operators The following binary infix operators are
permitted in expressions:
I operatQr I

-_ ,Expjapation ,
.__l

! I

l * multiply
l / divide
I % modulus
l + add l

!
- subtract l

i >> shift right
I << shift left]

l < logical less-than
> logical greater-than l

logical equal-to i

& bitwise and !

l " bitwise exclusive-or
l l bitwise inclusive-or

&& logical and I

: II logical or l

l I

Logical operators yield a result of l (true)
or O (false). The logical connectives && and

li treat their operands as true (if nonzero)
or false (if zero).

The precedence of binary operators is shown
below, with each line representing a lower
precedence than the line above it:
l l

l highest * / % I

: + -
]

l : >> << I

l :
.

< > ==
l : & " I I

l lowest && li I

Binary operators of equal precedence are
evaluated left-to-right. (For example, 5-4+3
yields 4.)

A-6

TurboDOS 1.3 8086 TASM ASSEMBLER
Programmer's Guide

Éxpressions
(Continued)

Relocatable All operators other than add (+) and subtract
Expressions (-) require absolute (non-relocatable) oper-

ands and yield an absolute result.

The addition operator (+) may be used to add
a relocatable operand to an absolute operand,
yielding a relocatable result with the same
relocation base as the relocatable operand.

The subtraction operator (-) may be used to
subtract an absolute operand from a reloca-
table operand, yielding a relocatable result
with the same relocation base as the reloca-
table operand. Further, the subtraction
operator may be used to take the difference
between two relocatable operands with the
same relocation base, yielding an absolute
result.

External A name may be declared to the assembler as
Expressions external (defined in some other module) by

appending the suffix "#" at the end of each

reference to the name. Such an external name
reference is a relocatable value. The rules
for addition and subtraction of relocatable
values apply to externals as well:
I

I BUFFER#-1 ;valiá: rel-abs I

i BUFFER#+Ox1O ;valid: rel+abs I

! BEG#+LEN# ;invalid: rel+rel l

l END#-BEG# ;inva1id: rel-rel I

I

The last case above is invalid because each

different external name is treated by the
assembler as a different relocation base.

A-7

TurboDOS 1.3 8086 TASM ASSEMBLER

Programmer's Guide
Statements

Statements An assembler etatement consists of the
following elements in the specified order:
l i

I l. a label I

I 2. one or more instruction prefixes l

I 3. an instruction or assignment l

I 4. one or more operands l

l 5. a comment !

l !

All of these elements are optional, although
items 2 and 4 must be omitted if item 3 isomitted. A label must be followed by a colon

"·" or an assignment operator. MultipleP

operands must be separated by commas. A

comment must be introduced by a semicolon.

Labels A statement may start with a label, which
consists of a name followed by a colon ":", a

double-colon "::", or an assignment operator.
A double-colon indicates that the label is
public (may be referenced by other modules).
The label is normally given the current value
of the location counter (exception: the label
on an assignment or EQU statement).

If a label has two leading underscore charac-
ters, such as "_LP: ", it is considered to be
a local label with scope limited by the pre-
ceding and following non-local labels. This
allows the same local label to be re-used
many times within a module without ambiguity
or conflict.

A_8

TurboDOS 1.3 8086 TASM ASSEMBLER
programner's Guide

Statements
(Continued)

Assignments A name may be assigned any desired value by
using a double-equals "==" as an assignment

operator:
i

l TRUE == l l

i CR == BYTE OXOD I

i VAR == WORD -4[BP] l

l -____I
or (equivalently) by using the EQU pseudo-
instruction with a label:
I I

I TRUE: EQU l l

I CR: EQU BYTE OXOD I

I VAR: EQU WORD -4[BP]
I

The defining expression (at the right of the
assignment or EQU) may be absolute, reloca-
table or external, but may not contain any
forward references. Note that the name is
assigned the size (BYTE or WORD) and address-
ing mode (indexed or immediate) as well as
the value and relocation characteristics of
the defining expression. So, for example:

I

I TABLE == BYTE -8[BP] l

l l

l mv TABLE[SI],=0 i

l mv BYTE -8[BP+SI],=O !

l I

The two NOV instructions in the above example
are identical.

A-9

TurboDOS 1.3 8086 TASM ASSEKBLER
Programmer's Guide

Statements
(Continued)

Assignments TO make an assignment public, use the assign-
(Continued) ment operator "==:", or use a double-colon

label with the EQU pseudo-instruction:
I i

l LENGTH ==: 66 ;LENGTH is public !

l WIDTH: : EQU 132 ;WIDTH is public !

l I

NOTE: Invoking TASM with the "-E" option
causes the assembler to accept the archaic
assignment operators "=" and "=:" as synonyms
for "==" and "==: ". These archaic forms are
not recommended, however, because of syntac-
tic ambiguities with the use of "=" as the
imnediate-addressing operator.

Prompted An assignment statement with a string operand
Assignments causes the assembler to display the given

string as a prompt (followed by a colon and a

space) and to accept a new operand from the

console (or do-file) when the statement is
encountered during the assembler's pass one:

[l

i DEBUG == "Debug code? (0=no, l=yes)" l

! BUFSIZ ==: "Number of buffers (1-16)" l

l DRIVE: EQU "Drive letter ('A'...'P')" i

I VERS:: EQU "Enter version number" I

l I

In response to such a prompt, the assembler

will accept any valid expression that would
be legal in a non-prompted assignment. Ifthe expression entered is not valid, the
assembler asks that it be re-entered.

A_lO

TurboDOS 1.3 8086 TASM ASSEMBLER
Programmer's Guide

Statements
(Continued)

Instruction A machine instruction may be preceded by a

Prefixes segment-override prefix (CS, DS, SS or ES), a

repeat prefix (REP, REPE, REPZ, REPNE or
REPNZ), the prefix LOCK, or a combination of
these. For example:

l l

l REP MOVS BYTE ;repeat until CX=O I

I LOCK es HOV BX,RTN ;RTN in CS-segment l

I l

Alternatively, each prefix may appear as a
separate statement:

I

l LOCK ;lock prefix l

I es ;seg-override I

(MOV BX,RTN ;prefixed instr. l

Note that segment-override prefixes must
always be given explicitly, as the assembler
never generates them implicitly.

Instructions The instruction part of a statement may be
either a symbolic machine instruction or a
pseudo-instruction. Instructions and pseudo-
instructions may be spelled in upper or lower
case.

A-ll

TurboDOS 1.3 8086 TASM ASSEMBLER
Programmer's Guide

Statements
(Continued)

Addressing Modes Expressions are presumed to represent direct
memory aGáresses unless immediate or indexed
addressing is explicitly indicated. The
equals-sign "=" may be used as a prefix to
indicate that an immediate value is intended:
I i

l ¥,OV Ax,=OxlO0O ;loads value OxlOOO)

! MOV Ax,OxlO0O ;loads word at DS: lOOO i

l I

Iii an address is intended to be used as an
inunediate operand, the ampersand "&" prefix
rnay be used to indicate "address of":
i I

i MOV AX,&BL7FFER ;load¢ addt of BUFFER l

i MOV AX,BUFFER ;loads word at BUFFER I

! I

Actually, the effect of the immediate-ad-
dressing prefixes "=" and "&" is identical
except that the "&" prefix discards any size-
attribute which the prefixed expression may
have, while the "=" prefix does not.

An indexing expression enclosed in brackets
"[...I" may be used to indicate that an
indexed addressing mode is intended:
I l

I MOV AXJBX] ;addr=(BX) l

! MOV AX,[BX+SI] ;addr=(BX)+{SI) l

l MOV AX,-4[BP] ;addr=(BP)-4 l

l MOV AX,BUFFER[BX] ;addr=BUFFER+(BX) l

! l

A"12

TurboDOS 1.3 8086 TASM ASSEMBLER
Programmer's Guide

Statements
(Continued)

Operand Size l'lany 8086-faníily data manipulation instruc-
tions can operate on either bytes or words.
For most such instructions, the assembler can
determine implicitly whether to generate a

byte or word instrution:
i

I MOV AX,=0 ;word (AX is word-lenath) l

l MOV AL,=0 ;byte (AL is byte-length) I

I PUSH VALUE ;word (can't PUSH a byte) l

I I

However, it is necessary to specify the oper-
and length explicitly with the keyword BYTE

or WORD if the assembler cannot otherwise
determine it:
I l

I MOV BYTE -4[BP],=O ;byte !

l MOV WORD -4[BP],=O ;word I

! MOV -4[BP],WORD =0 ;saníe as above l

l MOV -4[BP],=WORD O ;ditto I

i MOV DL,WORD -4[BP] ;invalid l

I I

The last example is invalid because the size
attributes of the source (WORD) and destina-
tion (BYTE) operands clash.

A-13

TurboDOS 1.3 8086 TASM ASSEMBLER

Programmer's Guide
Pseudo-lnstructions

Pseudo—lnstructions

t·1odule The pseudo-instruction MODULE defines the
Identification module identification that appears at the top

of each TASM listing page and in the in the
TLINK module map. The module identification
must be enclosed in quotes:
l I

! MODULE "MAINPRCG" ;module ident l

and is truncated to 8 characters if a longer
identification is specified.

Linker Control The pseudo-instruction TLINK specifies one or
more TLINK option letters enclosed in quotes:
I l

I TLINK "HX" ;force TLINK -H and -X opt i

l i

and causes those options to be in effect
whenever the module is processed by TLINK.

Location Counter The pseudo-instruction LOC (or ORG) sets the
assembler's location counter to the value of
its operand. The operand may be any valid
absolute, relocatable or external expression,
but it must not include forward references:
l l

l LOC OxlOO ;absolute I

LOC Code# ;external
I .l

If the operand is absolute, the assembler
will assign absolute addresses to the code
and data statements which follow, starting
with the given absolute address.

A-14

TurboDOS 1.3 8086 TASM ASSEMBLER
Programner's Guide

Pseudo-lnstructions
(Continued)

Location Counter If the operand is relocatable (generally an
(Continued) external name reference), the assembler will

assign relocatable addresses relative to the
relocation base of the operand. A relocation
base may be any external name, but the fol-
lowing special names are recognized by TLINK:

! l

I LOC Code# ;code segment I

I LOC Data# ;data segment I

I LOC Extra# ;extra segment I

! LOC stack# ;stack segment l

) -l

Note the initial upper-case letter followed
by lower-case letters {remember, case is
significant in TASK names).

The pseudo-instruction RELOC (or REORG)

restores the location counter to the value ithad just prior to the preceding LDC (or ORG):

l

I LOC Code# ;code segment l

i START: MOV BX,TABLE l

l MOV CX,=TABLEN l

I _L: CALL SUBRTN l

i INC BX

l LOOP _L i

! RETF

I l

i LOC Data# ;data segment I

l TABLE: BYTE 3,5,7,11,13,17
l TABLEN == .-TABLE l

l

l RELOC ;code seg again i

! SUBRTN: ...I RET

I l

Note above the "RELOC" statement could be
replaced by a second "LOC Code#" (entirely
equivalent).

A-15

TurboDOS 1.3 8086 TASM ASSEMBLER

Programmer's Guide
Pseudo—lnstructions

(Continued)

Data Definition The pseudo-instruction BYTE (or DB) generates
one or more byte-length data values:
I I

l BYTDAT: BYTE ZZZ, 4*X, WORD ALPHA l

! BYTE "Hello\r\n\0"
! l

The label {if present) is given the BYTE
size-attribute. A string operand generates
one byte for each character in the string.
An operand with an explicit size-attribute
WORD generates a word of data. Ail other
operands generate a byte of data.

The pseudc-instruction WORD (or DW) generates
one or more word-length data values:
I l

I WRDDAT: WORD ALPHA, 234*BETA, BYTE 5 l

! WORD "What's the good word\0" i

[______.

The label (if present) is given the WORD

size-attribute. A string operand generates
one byte for each character in the string.
An operand with an explicit size-attribute
BYTE generates a byte of data. All other
operands generate a word of data.

The pseudo-instruction RES (or RS) causes a

specified number of bytes or words to be
reserved without initialization:

!

i BLOCK: RES OxlOO ;reserve 256 Eytes l

] BBLOCK: RES BYTE 64 ;reserve 64 bytes i

] WBLOCK: RES WORD 64 ;reserve 64 words l

] l

A-16

TurboDOs 1.3 8086 TASM ASSEMBLER
Programmer's Guide

Pseudo-lnstructions
(Continued)

Data Definition If the operand of a labelled RES statement
(Continued) has an explicit size-attribute (BYTE or

WORD), then the label is aiven the same size-
attribute. If the operand has an explicit
WORD size-attribute, then the statement
reserves the specified number of words;
otherwise, it reserves the specified number
of bytes.

The pseudo-instruction ALIGN causes the next
generated item to be word-aligned (that is,
assigned an even-numbered address):

I

i ALIGN I

! WRDDAT: WCRD GAMMA ;word-aligned l

I BYTE OMEGA

I ALIGN l

I RES WORD 48 ;word-aligned I

l STACK == .
i

ALIGN is most frequently used before WORD or
RES statements.

End of Module The pseudo-instruction END terminates a

module, and may have an optional operand that
specifies a program starting address:
I I

MODULE "ALPHA" i

i START: ...
l

l
. ..END START l

An assembler source file may contain multiple
modules. Each module is terminated with an
END stateinent. The END statement following
the last module in the file is optional (but
recommended).

A-17

TurboDOS 1.3 8086 TASM ASSEMBLER

Programner's Guide
Pre-proc. Directives

Pre-processor Pre-processor directives differ from state-
Mrectives merits in that (l) they always start with a

number-sign "#" prefix, (2) they may not have
a label, and (3) they do not appear in the
asserribler listing.

Listing Control The #NOLIST directive prevents succeeding
statements from appearing in the assembler
listing. The #LIST directive re-enables
listing after a #NOLIST.

The #RELIST directive restores the listing
mode that was in effect just prior to the
last #LIST or #NOLIST directive. Nesting is
not permitted.

Listing Format The #PAGE directive may take three forms:

l #PAGE width,length ;set width+length I

I #PAGE width ;set width only !

! #PAGE ;start a new page l

I l

The first two forms change the page width and
length used for the assembler listing from
their default values of 80 columns/line and
66 lines/page. The last form (with no oper-
ands) forces the start of a new listing page.

The following directives:
I

l #TITLE "Title of this module" !

I #SUBTTL "Sub-title of this module" l

! l

cause the specified strings to be used as a

title or subtitle at the top of each page of
the assembler listing.

A-18

TurboDOS 1.3 8086 TASM ASSEMBLER
Progranrmer's Guide

pre-Proc. Directives
(Continued)

File Inclusion A directive of the form:
I

l #INCLUDE "filename" l

I I

causes the entire contents of the specified
source file to be included at that point in
the source program. The file name must be
enclosed in quotes. If no file type is
specified, the default type .A is assumed.

If no drive is specified, then the drive of
the original "srcefile" argument from the
TASM command line is assumed. #INCLUDE
directives may be nested.

Conditional Conditional assembly is achieved by using the
Assembly following directives:

l #IF expression I

I

..0I #ELSE I

0 0 0
I #ENDIF I

¡

The #1F-expression must yield an absolute
value and must not contain forward referen-
ces. If the expression evaluates to true
(nonzero), any lines between the #ELSE and

the #ENDIF are ignored by the assembler. If
the expression evaluates to false (zero), any
lines between the #IF and the #ELSE (or the
#ENDIF if there is no #ELSE) are ignored.
#IF-#ELSE4ÉENDIF sequences may be nested.

A-19

TurboDOS 1.3 8086 TASM ASSEIQBLER

Programmer's Guide

Pre-Proc. Directives
(Continued)

Repetition The directives:

I
l #REPEAT expression l
i

···
l

! #ENDREP l

l

cause any lines between the #REPEAT and
#ENDREP directives to be repeated the number
of times specified by the #REpEAT-express: ion.
The expression must not contain forward ref—
erences, and must evaluate to an absolute
positive value between l and 32,767. Other-
wise, the #REPEAT directive is diagnosed and
a repeat-factor of one is assumed by the
assembler. #REPEAT-#ENDREP inay be nested.

Macro Definition TASK does not support macros (yet).

A-20

TurboDOS 1.3 8086 tasm ASSEMBLER
Programmer's Guide

Machine Instructíons
(Continued)

Machine This section lists all machine instructions
Instructions known to the assembler, together with the

types of operands they require. Instructions
marked m'" are 80186 instructions, and are
diagnosed by the assembler unless the "-l"option is specified.
I Tnstr,, l operíírÁs l F"p1anation l

I

} aaa ascii adj add l

I aad ascii adj div I

i aam ascii adj mult l

! aas ascii adj subtr I

I ADC reg,reg/mem add with carry I

: reg/mem,reg l

I reg/meni,=immed I

l ADD reg,reg/merrt add I

I reg/mem,reg I

] reg/ment,=immed I

I AND reg,reg/mem and logical
I reg/mem,reg
I reg/mem,=imined l

I BOUND* reg,mem bounds check l

! CALL label call near l

l CALLF label,para call far I

I CALLFI reg/mem call far indir !

l CALLI reg/meni call near indir I

I CALLIF reg/mem call far indir l

I CBW convert byte/wd l

I CLC clear carry I

! CLD clear direction I

l CLI clear interrupt l

l Cf4C complemnt carry l

I CMP reg,reg/mem compare l

l reg/mem,reg
I reg/mem,=immed l

l CMPS BYTE/WORD compare string I

I CWD convert wd/dblw I

l daa decimal adj add l

l DAS decimal adj sub !

l DEC reg/mein decrement I

l DIV req/inem divide !

I l

A-21

h

TurbooOS 1.3 8086 TASM ASSEMBLER
Programmer's Guide

Machine Instructions
(Continued)

Machine LÁÁSJXj_J_-__ operÁnds I Rxplmmtion l

Instructions
(Continued) I ENTER* =frame,=nest enter procedure I

I ESC const,reg/mem escape
I ULT halt
i IDIV reg/mem integer divide !

I INIUL reg/mem integer inultply !

: reg,=inuned*
reg,reg/mem,=immed* I

l IN accujn,const input l

accum,DX
l INS* BYTE/WORD,DX input string !

i INC reg/mem increment
i INT const interrupt
l INTO interrupt o'flo !

! IRET interrupt ret'n I

I JA label jump if above)

i JAE label jump if abv/eq :

l JB label jump if below l

! JBE label jump if blo/eq l

! JC label jump if carry I

I JCXZ label jump if CX=O i

I JE label jump if equal I

l JG label jump if greater !

l JGE label jump if grtr/eq I

i JL label jump if less
I JLE label jump if less/eq l

I JMP label jurnp near
l JMPF label,para jump far l

I JMPFI reg/mem jump far indir I

I JMPI req/mem jump near indir !

I JMPIF reg/meni jump far indir l

! JMPS label jump short
I JNA label jump not above I

! JNAE label jump not abv/eq i

i JNB label jump not below I

I JNBE label jump not blo/eq i

! JNC label jump not carry i

I JNE label jump not equal !

l JNG label jump not greatr I

I JNGE label jump not gtr/eq j

i

A-22

TurboDOS 1.3 8086 TASM ASS~LER
Programmer's Guide

Machine Instructíons
(Continued)

Machine i Tnsr.r, I operÁncís l Explnmtim _1

Instructions l I

(Continued) l JNL label jump not less I

I JNLE label jump not les/eq l

I JNO label jump not o'flo I

i JNP label jump not parity l

I JNS label jump not sign l

I JNZ label jump not zero l

l JO label jump if o'flo I

l JP label jump if parity l

I JPE label jump if pty evn l

l JPO label jump if pty odd !

l JS label jump if sign
l JZ label jump if zero l

l LAHF load AH=flags l

l LDS reg,reg/mem load ptr W/DS l

l LEA reg,reg/mem load efctv addr l

i LEAVE* leave procedure !

l LES reg,reg/mem load ptr W/ES l

l LOCK lock prefix I

I LODS BYTE/WORD load string l

I LOOP label loop
l LOOPE label loop while eq !

I LOOPNE label loop while neq i

l LOOPNZ label loop while nonz l

I LOOPZ label loop while zero l

l MOV reg,reg/mem move
! reg/mem,reg l

l reg/mem,=imíed
! sec',reg/mem I

l reg/mem,seg)

l MOVS BYTE/WORD move string l

l MUL reg/mem multiply I

I NEG reg/mem negate l

i NOP no operation I

] NOT reg/mem logical not l

l OR reg,reg/mem logical or I

! reg/mem,reg I

l reg/mem,=immed l

l OUT const,accum output l

l DX,accum l

i OUTS* DX,BYTE/WORD output string l

} I

A-23

TurboDOS 1.3 8086 TASM ASSEMBLER
Programmer's Guide

Machine Instructions
(Continued)

Machine l Tnss.r ,,
!

__
9pm,arisís-

-_
_J

_ -
Extü,anati on

_
!

Instructions ! l

(Continued) I POP reg/rrtem pop l

I seq l

l POPA* pop allI POPE pop flags
l PUSH reg/mem push

seg !

=immed* i

l PUSHA* push all I

I PUSHF push flags l

i RCL reg/mem,=l rotate cy left I

I reg/rnem, CL l

reg/mem,=inuned*
l RCR reg/rnem, =1 rotate cy right I

l reg/mem, CL l

l reg/mem, =inimed*
l REP repeat i

I REPE repeat while eq l

l REPNE repeat while ne l

! REPNZ repeat while nz !

l REPZ repeat while z I

l RET return near
const

I RETF return far l

const I

I ROL reg/mem, =1 rotate left I

reg/nnem,CL I

r eg/mem, =iínmcd*
i ROR reg/rnern, =1 rotate right
l reg/mem,CL l

reg/mem,=immed* i

l SAHF store AH=>flags l

i SAL reg/mem,=l shift ar left I

I reg/mem, CL !

reg/rnem,=irruned*
I SAR reg/mem, =1 shift ar right }

! reg/mem,CL l

I reg/rríení,=immed* :

l SBB reg,reg/mem subtract borrow I

reg/meni,reg l

l reg/mem,=iinrned I

A-24

TurboDOS 1.3 8086 TASM ASSEMBLER
Programmer's Guide

Machine Instructíons
(Continued)

Machine L=aÉr^A—-jwLa[lam-)-_nx==i9n-_l
Instructions I I

(Continued) l SCAS BYTE/WORD scan string l

l SHL reg/mein,=l shift left !

reg/meni,CL I

l reg/mem,=immed* l

I SHR reg/mem,=1 shift richt
l reg/mein,CL

reg/mem,=iírtmed* I

i STC set carry I

l STD set direction !

l STI set interrupt l

I STOS BYTE/WORD store string l

I SUB reg,reg/mem subtract I

I reg/mem,reg [

I reg/írtem,=imuned l

l TEST reg,reg/mem test l

] reg/mem,reg I

I reg/mem,=inuned l

l WAIT wait I

I XCHG reg,reg/mem exchange l

l reg/meín,reg I

l XLAT translate I

i XOR req,reg/mem exclusive or I

I reg/metn,reg I

I reg/mern,=immed l

I

A-25

TurboDOS 1.3 8086 TLINK LINKER
Programmer's Guide

TLINK LINKER TLINK is a specialized linker used for 8086
TurboDOS system generation, and may also be
used as a general-purpose linker for object
modules produced by the TASM assembler.
TLINK links a specified collection of object
modules together into a single executable
file.

Operation The linker is invoked with the following
command:

I l

l TLINK inputfn {outputfn} {-options} I

The "inputfn" argument identifies the two
input files used by the linker: a configura-
tion file "inputfn.GEN" and a parameter file"inputfn.PAR". The "outputfn" argument
specifies the name of the executable output
file to be created (normally type .CMD or
.SYS). If "outputfn" is omitted from the
command, then "inputfn" is also used as the
name of the executable output file, and
should include an explicit file type (.CMD or
.SYS).

If the .GEN file is found, it must contain
the list of object modules (.O files) to be
linked together. If the configuration file
is not found, then TLINK operates in an
interactive mode. You are prompted by an
asterisk * to enter a series of directives
from the console. The syntax of each direc-
tive (or each line of the .GEN file) is:
l I

I objfile {,objfile}... {;comnient} l

I l

E>4

TurboDOS 1.3 8086 TLINK LINKER
Programmer's Guide

Operation
(Continued)

Operation The object files are assumed to have type .O
(Continued) unless a type is civen explicitly. A null

directive (or the end of the .GEN file) ter-
minates the prompting sequence and causes
processing to proceed.

After obtaining the list of modules from the
file or console, TLINK links all of the
modules togetber, a two-pass proces"t that
displays the name of each module as it is
encountered. When the linking phase is com-
plete, TLINK looks for a parameter file"inputfn.PAR" and processes it if present
(described below). Finally, the executable
file (.CMD or .SYS) is written out to disk.

NOTE: Each module of the TurboDOS operating
system is magnetically serialized with a
unique serial number. The serial number

consists of two components: an "oriqin
number" which identifies the issuing TurboDOS
licensee, and a "unit number" which uniquely
identifies each copy of TurboDOS issued by

that licensee. When used for TurboDOS
operating system generation, TLINK verifies
that all modules to be linked are serialized
consistently, and serializes the executable
file accordingly.

B-2

TurboDOS 1.3 8086 TLINK LINKER
Prograruter's Guide

optíons

Options Options are always preceded by a "-" prefix,
and may appear before, between, or after the

file names. Several options may be concate-
nated after a single "-" prefix.

LAmQn-j——---- -ml=#~—---_--.__| i

l -8 Force 8080 model (single group) i

l -B No l28-byte base page I

I -C List to console, not to printer !

l -D Force data group G-Flax to 64K l

l -H No .CMD header (implies -8, -B) i

I -L Listing only, no output file I

l -M List link map l

] -R List inter-module references l

I -S List sorted symbol table l

l -U List unsorted symbol table I

I -X Diagnose undefined references I

l l

Parameter File TLINK includes a symbolic patch facility that
may be used during TurboDOS system generation
to override various operating system para-
meters and to effect necessary software cor-
rections. Symbolic patches must be stored in
a .PAR file which may be built using any text
editor. The syntax of each .PAR file entry
is:
! I

I location = value {,value}... {;comment} l

l l

where the "value" arguments are to be stored
in consecutive memory locations starting with
the address specified by "location".

B-3

TurboDOS 1.3 8086 tlink LINKER
Programmer's Guide

Options

parameter File The "location" argument may be the name of a

(Continued) public symbol, an integer constant, or an
expression composed of names and integer
constants connected by + or - operators.
Integer constants must begin with a digit to
distinguish them from names. Constants of
the form "Oxdddd" are taken to be hexadeci-
mal. Constants of the form "Oáddddd" are
taken to be octal. Constants that start with
a nonzero digit are taken to be decimal. The
"location" expression must be followed by an
equal-sign = character.

The "value" arguments may be expressions (as
defined above) or quoted ASCII strings, and
must be separated by commas, A "value" ex-
pression is stored as a 16-bit word if its
value exceeds 255 or if it is enclosed in
parentheses; otherwise, it is stored as an 8-

bit byte. A quoted ASCII string must be
enclosed by quotes "...", and is stored as a

sequence of B-bit bytes. Within a quoted
strino, ASCII control characters may be spe-
cified by using backslant escape sequences
(as described in the section on TASM).

Error Messages I l

i Serial number violation l

I Not enough memory
l No object files specified I

I Can't open object file I

! Unexpected EOF in object file l

l Bad token in object file: <type> l

I Can't create output file !

l Can't write output file l

! Load address out-of-bounds I

I Duplicate transfer address l

i Duplicate def: <name> l

I Undefined name: <name>
I Too many externals in module I

l Name table overflow !

.I

B-4

TurboDOS 1.3 8086 TBUG DEBUGGER

Programaer's Guide

TBUG DEBUGGER TBUG is an interactive debuging facility that
provides various facilities under 8086 Turbo-
DOS useful to programmers who have the need

to debug or patch programs.

Operation The debugger is invoked with one of the fol-
lowing commands:

I l

I TBUG l

i TBUG filename I

I TBUG "filename commandtail" I

l I

The first form simply invokes the debugger.
The second form also causes the specified
program file to be loaded into memory (see
the L-directive below); the named file must
have a .CMD header. The third form loads the
specified program and parses the given
command tail (see the Z-directive below); in
this form the enclosing quotes are required.
TBUG operates in an interactive mode. You

are prompted by an asterisk * to enter a
series of directives from the console. The
Q-directive (Quit) terminates TBUG.

Following is a summary of TBUG directives:
l l

l A
- display memory in ASCII

l C

- calculate hexadecimal sum/difference i

! D

- display memory in hexadecimal l

l E - examine/alter memory contents
! F

- fill memory block with constant value i

l G
- start execution, set breakpoints !

l ei - display "help" menu of directives l

I I - input from specified input port i

i L - load program from .CMD file l

! M

- move a memory block l

I

C-l

TurboDOS 1.3 8086 TBUG DEBUGGER

Programmer's Guide

Operation
(Continued)

Operation
(Continued) I O

- output to specified output port
i P - put ASCII text into memory I

I Q
- quit TBUG and return to TurboDOS

! S - save program to .CMD file l

! T - trace in single-instruction mode
i U

- un-assemble code into TASM mnemonics l

i V
- verify if two memory blocks are equal l

! W - breakpoint on specified OS calls
I X

- examine/modify machine registers
i Z - parse command line into base page l

I

Directive Syntax Each TBUG directive starts with a letterwhich specifies the action to be taken, and
ends with a carriage return. The directive
letter may be followed by one or more argu-
ments (addresses, address ranges, values,
file names, etc.) separated by commas or
spaces.

Memory Addresses Most TBUG directives require one or more
memory addresses as arguments. Addresses may
be entered in three alternative formats:
I

l BBBB: OOOO base paragraph + offset I

l RR:OOOO segment register + offset I

l OOOO offset only l

! l

The first format consists of a hexadecimal
segment base paragraph address BBBB plus a

hexadecimal offset byte address OOOO. In the
second format, the segment base is specified
by naming one of the 8086-family segment
registers es, DS, ES or SS. In the third
format, the segment base is not specified;
TBUG assumes the base is es for the G, T and
U directives, and DS for other directives.

C-2

TurboDOS 1.3 8086 TBIJG DEBUGGER

programmer's Guide
Directive Syntax

(Continued)

Address Ranges Some TBUG directives accept a memory address
range as an argument. Address ranges ínay be
entered in two alternative formats:
I l

l startaddr,endaddr l

l startaddr,Llength !

l I

The first format specifies the range as a

starting address and ending address, sepa-
rated by a comma (or a space). The starting
address may contain a segment base prefix
(paragraph address or segment register name),
but the ending address must not (it is as-
sumed to have the same segment base as the
starting address).

The second format specifies the range as a

starting address and a length (in hexadecimal
bytes). The length must be prefixed with the
letter "L" to indicate that it is a length
rather than an ending address.

Directives

A-Directive The A-directive displays the contents of a

block of memory in ASCII. The directive
formats are:
I I

! A l

I A address I

l A range I

l

The first format displays 128 bytes of memory
starting from the last address previously
displayed. The second format displays 128
bytes of memory starting from the given ad-
dress. The third format displays the given
address range.

C-3

TurboDOS 1.3 8086 TBUG DEBUGGER

programmer's Guide
Directives

(Continued)

C-Directive The C-directive displays the sum and dif-
ference of two hexadecimal arguments. The

directive format is:

I C valuel value2
l

in response to which TBUG displays the
hexadecimal sum and difference of the two
arguments.

D-Directive The D-directive displays the contents of a

block of memory in hexadecimal. The

directive formats are:
l I

l D l

! D address
I D range

I

I !

The first format displays 128 bytes of memory

starting from the last address previously
displayed. The second format displays 128

bytes of memory starting from the given ad-

dress. The third format displays the given
address range.

E-Directive The E-directive is used to examine and modify
the contents of memory. The directive format
is:
I I

I E address !

I I

TBUG displays the hexadecimal byte at the
given address followed by an equals sign =

and awaits keyboard input.

C-4

TurboDOS 1.3 8086 TBUG DEBUGGER

programmer's Guide
Directives

(Continued)

E-Directive If a hexadecimal value is entered, it is
(Continued) stored at that memory location. If an equals

sign = is entered, the memory location is
left unchanged. In either case, TBUG
continues to display successive memory
addresses and values until a null response
(RETURN only) is entered.

P-Directive The F-directive fills a block of memory with
zeroes, or with a specified hexadecimal byte
value. The directive formats are:
l i

I F range I

I F range value !

I I

The first form fills every location in the
given address range with zero. The second
form fills every location in the range with
the given byte value.

G-Directive The G-directive starts executing the loaded
program, and optionally sets one or more
breakpoint addresses. The directive formats
are:

I

l G i

I G =address i

I G breakpoint... l

l G =address breakpoint... l

l I

The first format transfers to the starting
address corresponding to the current values
of the es and IP registers. The second for-
mat transfers to the given starting address,
setting the es and IP registers accordingly.

C-5

TurboDOS 1.3 8086 TBUG DEBUGGER

programmer's Guide
Directives

(Continued)

G-Directive The last two formats are similar to the first
(Continued) two, except that up to ten breakpoint addres-

ses are specified. If the program encounters
any of the breakpoints, execution is inter-
rupted just prior to the instruction at the
breakpoint address, the address is displayed,
all outstanding breakpoints are cancelled,
and TBUG prompts for another directive.

H-Directive The H-directive displays a help menu that
lists all TBUG directives, each with its
argument format and a brief description.

I-Directive The I-directive inputs a byte from an input
port. The directive format is:
I I

I port
!

i

-_
—l

where "port" is a hexadecimal input port
address. a byte is input from the specified
port and displayed in hexadecimal.

L-Directive The L-directive loads a program into memory
from disk. The directive format is:

] L filename {cornmandtail}
I

-__.________
I

If "filename" does not specify an explicit
type, the default type .CMD is assumed. In

any case, the file must start with a .CMD
header. TBUG áiscards any previously loaded

program, loads the specified .CMD file into
memory, and initializes the base page, seg-
ment registers and IP register. If a command

tail is present, it is parsed and processed

as described under "Z-Directive" below.

C-6

TurboDOS 1.3 8086 TBUG DEBUGGER

Programmer's Guide

Directíves
(Continued)

M-Directive The M-directive moves a block of memory to
another location. The directive format is:
l

! M range address I
I

---__ ---_1
The block of memory specified by "range" is
moved to the starting address specified by
"address".

O-Directive The O-directive outputs a specified byte
value to a specified output port. The
directive format is:
i """"" "l
I O port value l

l

where "port" is a hexadecimal output port
address and "value" is a hexadecimal byte
value. The given value is output to the
given port.

P-Directive The P-directive permits ASCII text to be
entered from the console into memory. The
directive format is:
I

I P address I
l

In response to this directive, TBUG accepts
console input and stores each ASCII character
into a successive memory location, starting
at the given address. Entering an EOT
character (CTRL-D) terminates the directive.

Q-Directive The Q-directive is used to quit TBUG and
return to TurboDOS.

C-7

TurboDOS 1.3 8086 TBUG DEBUGGER

programmer's Guide
Directives

(Continued)

S-Directive The S-directive saves the currently loaded
program onto disk. The directive format is:
i l

l S filename l

I I

If "filename" does not specify an explicit
type, the default type .CMD is assumed. The
currently loaded program is saved on disk in
.CMD format under the specified file name.

Note that whenever TBUG loads a program into
memory, it retains information about the
segment structure of the loaded program. The

S-directive uses this information to
determine the program segment structure to be
written to disk.

T-Directive The T-directive traces program execution in
single-instruction mode. The directive
formats are:
l l

! T]

I T =address l

I T length !

l T =address length I

i I

The first format traces the instruction
corresponding to the current values of the CS

and IP registers. The second format traces
the instruction at the given starting
address, setting the CS and IP registers
accordingly. The last two formats are
similar to the first two, except that
"length" specifies the hexadecimal number of
instructions to be traced.

C-8

TurboDOS 1.3 8086 TBUG DEBUGGER

Progranuner's Guide
Directives

(Continued)

U-Directive The U-directive displays the contents of
memory "un-assembled" into TASM mnemonics.
The directive formats are:
I l

l U I

l U =address
I U length I

I U =address length !

I l

The first format displays the next 16 machine
instructions, starting from the last address
previously displayed. The second format
displays the next 16 machine instructions,
starting from the specified address. The

last two formats are similar to the firsttwo, except that "length" specifies the
hexadecimal number of instructions to be
displayed.

V-Directive The V-directive verifies whether or not two
blocks of memory are identical. The
directive format is:
I

l V range address l

l l

The block of memory specified by "range" is
compared to the block of equal length start-
ing at "address". Any discrepancies are
diagnosed.

C-9

TurboDOS 1.3 8086 TBUG DEBUGGER

programmer's Guide
Directives

(Continued)

W-Directive The W-directive executes the loaded program
in monitored mode, breaking on specified C-
and T-function calls. The format is:
l l

l W fcn... i

I

where up to ten "fcn" arguments may be

specified to trap specific TurboDOS function
calls. Each "fcn" argument may take one of
the following fornís:

nn (trap C-function nn hex) l

i Tnn (trap T-function nn hex) I

i * (trap all C-functions) I

I T* (trap all T-functions) !

Program execution starts at the location
specified by the current es and IP register
values, and continues until one of the
trapped functions is invoked by the program.
Program termination is always trapped.

X-Directive The X-directive is used to display and alter
the contents of machine reaisters. The

directive formats are:
l

" l

l X

X regnaíne
I

.I

The fist format displays the contents of all
machine registers. The second format dis-
plays the contents of the specified register,
and permits it to be altered by entering a

hexadecimal value. Only word-length register
names are accepted: ax, BX, CX, DX, SI, DI,
BP, SP, IP, es, DS, ES and SS.

C-lO

TurboDOS 1.3 8086 TBUG DEBUGGER

programoer's Guide
Directíves

(Continued)

Z-Directive The Z-directive sets up the default FCB and
default record buffer in the base page of the
currently loaded program according to the
given command-tail parameters. The command
format is:

l Z command-tail I

The command tail length and text are moved to
the base page record buffer, and up to two
filenames are parsed from the command tailand placed into the base page FCB.

C-ll

TurboDOS 1.3 8086 C-FUNCTION SUMMARY

Programmer's Guide

l cj,= c-F!Ínct.ion NiÍme I Arqt1mpnt."f Pn'ísM l \/n1l1es pptl1rne"c1 !

I j

I O System Reset - -
1

I l Console Input - AL = char I

l 2 Console Output DL = char -
I

l 3 Raw Console Input - AL = char
I 4 Raw Console Output DL = char -

l

l 5 List Output DL = char -
I

l 6 Direct Console I/O DL = -l (inp/sta) AL = O/char

dl = -2 (status) al = 0/-1
DL = -3 (input) AL = char I

I DL = char (output) -
I

l 7 Get I/O Byte - AL = I/O byte I

l 8 Set I/O Byte DL = I/O byte -
l

l 9 Print String DS:DX = &string -
[

l 10 Read Console Buffer DS: DX = &büffer -
l

I li Get Console Status - AL = 0/-1
i 12 Return Version -

BH = O I

BL = 31H [

l 13 Reset Disk System - -
[

l 14 Select Disk dl = drive (0=A) -
I

l 15 Open File DS:DX = &FCB AL = (-l if err) I

j 16 Close File DS:DX = &FCB AL = (-I if err) [

I 17 Search for First DS:DX = &FCB al = (-l if err) I

l 18 Search for Next - AL = (-l if err) [

i 19 Delete File DS: DX = &FCB AL = (-l if err) i

l 20 Read Sequential DS: DX = &FCB AL = (NZ if err) !

l 21 write Sequential DS: DX = &FCB AL = (NZ if err) I

l 22 Make File DS:DX = &FCB AL = (-l if err) I

l 23 Rename File DS: DX = &FCB AL = (-l if err) I

I 24 Return Login Vector -
BX = vector i

l 25 Return Current Disk -
AL = drive (0=A) [

l 26 Set DMA Address DS:DX = &DMA -
l

l 27 Get ALV Address (not supported) BX = O I

l 28 Write Protect Disk - -
I

l 29 Get R/O Vector -
BX = vector [

I 30 set File Attributes DS:DX = &FCB AL = (-l if err) I

I 31 Get DPB Address -
BX = &DPB l

l 32 Get/Set User Number DL = -l AL = user number l

DL = user number -
[

! 33 Read Random DS:DX = &FCB AL = (NZ if err) I

l 34 Write Random DS:DX = &FCB AL = (NZ if err) !

I I

D—l

TurboDOS 1.3 8086 C-FUNCTION SUMMARY

Prograiumer's Guide (Continued)

I cj,= i c-F!lncr.inn NAme Arql1ments passM \TA1!}e'5 petmrnM l

l

I 35 Compute File Size DS:DX = &FCB AL = (-I if err) I

l 36 Set Random Record DS: DX = &FCB

l 37 Reset Drive DX = vector -
l

l 40 Write Random O-Fill DS: DX = &FCB AL = (NZ if err) l

I 42 Lock Record DS:DX = &FCB AL = (NZ if err) l

I 43 Unlock Record DS: DX = &FCB AL = (NZ if err) I

l 46 Get Disk Free Space DL = drive (0=A) AL = O I

l 47 Chain to Program (Cmd at OxO080) -
I

l 50 Direct BIOS Call DS: DX = &BIOS Desc AX = BX = return I

I 51 Set DMA Base DX = DMA base para -
I

I 52 Get DMA Address - ES:BX = DMA addr I

I 53 Alloc Max Memory DS: DX = &MCB AL = (-I if err) I

I 54 Alloc Abs Max Mem DS:DX = &MCB AL = (-l if err) I

I 55 Allocate Memory DS: DX = &MCB AL = (-l if err) [

I 56 Alloc Abs Memory DS:DX = &MCB AL = (-I if err) l

l 57 Free Memory DS:DX = &MCB AL = (-l if err) l

l 58 Free All Memory - -
I

l 59 Program Load DS: DX = &FCB BX = BP para/-l l

l 104 Set Date and Time DS: DX = &DTP

-I 105 Get Date and Time DS: DX = &DTP AL = seconds/BCD 1

l 107 Return Serial Nbr DS: DX = &SN -
I

I 108 Get/Set Return Code DX = OXFFFF BX = retcode
l DX = retcode -

I

I 110 Get/Set Delimiter DX = OXFFFF AL = delimiter i

l DL = delimiter -
l

I Ill Print Block DS:DX = &CCB
-

l

l 112 List Block DS:DX = &CCB

-
I

I 152 Parse Filename DS: DX = &PFCB BX = O if EOL l

I -l if error l

else Ulelim [

I

D-2

TurboDOS 1.3 8086 T-FUNCTION SUMMARY

progranmer's Guide

I CJp= I T-F1}nction NAme .Arq\lments PÁ,s5ed i VÁiW"S pft1lrnecl !

i I

I O Reset O/S - -
I

I l Create Process DX = &eñtrypoint AL = 0/-1 i

I BX = &workspace I

l 2 Delay Process DX = tick count -
l

i 3 Allocate Memory dx = length AL = 0/-1 i

l BX = &memory l

l 4 Deallocate Memory DX = &meInory -
I

l 5 Send I/P Message DX = &msgnode -
l

! bx = mnessage l

i 6 Receive I/P Message DX = &iñsgnode BX = &message I

i 7 Set Error Address BX: DX = &eixorcode -l 8 Set Abort Address BX: DX = &abortcode -
!

l 9 Set Date and Time BX = julian date -
l

l DH = hours !

I DL = minutes
l CH = seconds I

! 10 Get Date and Time -
BX = julian Date l

I DH = hours l

l DL = minutes I

l CH = seconds l

l CL = tick count l

l li Rebuild Disk Map DL = drive (A=0) AL = 0/-1 I

I 12 Return Serial Nbr -
BX = origin # I

l DX = unit # l

l CH = OX80 (priv) l

l CL = OX13 vers'n I

l 13 Set Compatability dl = compatflags -l 14 Log-On/Log-Off DX = OFFFFH (off) AL = 0/-1 I

l DH = -l/drive (on) l

l DL = user nbr (on) !

l 15 Load File DS: DX = &FCB AL = 0/1/-1 l

I 16 Activate Do-File DS: DX = &FCB AL = 0/-1 l

I 17 Dis/Enable Autoloaá DL = O (disable) -l DL = l (enable) I

I 18 Send Conunand Line DSLDX = &büffer -l 19 Get Alloc Inflo dl = drive (0=A) AL = block size !

l CL = dir blocks I

l DX = free blocks l

I BX = tot. blocks l

{ l

E-l

TurboDOS 1.3 8086 T-FUNCTION SUMMARY

Programmer's Guide (Continued)

! cTr l T-FuñctÍon NÁTfIe l Arql1ments PAssed ! \/Á1!1e,s RrtnrnM_l
I

i 20 Get Physical Info DL = drive (0=A) AL = sector size l

I CX = res. tracks I

j DX = tot. tracks I

l BX = sectors/trk I

i 21 Get/Set Drv Status DL = drive (0=A) AL = 0/-1 I

i DH = O (set R/W)
l DH = l (set R/O) I

I dh = -1 (get) BL = -l if ready l

! BH = -l if R/O I

I 22 Phys. Disk Access DS:DX = &PDR AL = 0/-1 I

i 23 Set Buffer Params DH = # of buffers -
I

I DL = buffer size l

i 24 Get Buffer Params - AL = mem. size l

l BH = # buffers l

l BL = buffer size I

! 25 Lock/Unlock Drive DL = drive (0=A) AL = 0/-1 !

] DH = O (unlock) l

I DH = -l (lock) !

! 26 Flush/Pree Buffers DL = drive (0=A) -
l

l DH = subfunctions l

l 27 Get/Set Print Mode DL = print mode AL = spool drive l

DH = printer/queue BH = prntr/queue I

i CH = spool drive BL = print mode I

l 28 Signal End-of-Print - -
l

I 29 Get/Set Despool Mod DL = despool mode AL = 0/-1 l

I DH = queue assgnnit I

I CH = printer
l 30 Queue a Print File DS: DX = &FCB AL = 0/-1 l

I BH = print queue
I BL = user#/delete 1

i 31 Flush List Buffer - -
I

l 32 Network List Out DL = char -
I

l 33 Remote Console I/O DL = Cl/char AL = 0/1/-1 I

I DH = -1 to attach l

I 34 Get Comm Status DH = channel/rmt AL = 0/-1 l

I 35 Comm Channel Input DH = channel/rmt AL = char l

l 36 Comin Channel Output DH = channel/rmt -
l

! DL = char l

l I

E-2

TurboDOS 1.3 8086 T-FUNCTION SUMMARY

Programmer's Guide (Continued)

! ct[= T-F}1nct.ion NAlT)e I Ara1]ments PrVíSM \/A1i1?s Ppt11rnec1 l

l]

l 37 Set Comm Baud Rate DH = channel/rmt -
!

I DL = baudrate l

l 38 Get Coímn Baud Rate DH = channel/rmt AL = baudrate I

I 39 Set Modem Controls OH = channel/rmt -
i

l DL = vector I

l 40 get Modení Status DH = channel/rmt AL = vector i

I 41 User-Defined Fcn CH = net routing AX...DX userdef l

I BX & DX userdef l

l 42 Reorg jjisk Dir DL = drive (0=A) AL = 0/-1 l

l l

E-3

TurboDOS 1.3 8086 INDEX
Prograimer's Guide

INDEX

$.DIR, 2-7 C-function
$.DSK, 2-7 calling sequence, 4-l
8080 model, l-2 definition, l-6

summary of, E-l
abort intercept, 3-3, 5-lO capacity of disks, 2-l
activate do-file (Tl6), 5-18 chain to prog (C47), 4-46, 4-61

all-inclusive lock, 4-43, 4-44 CHANGE command, 5-28
allocate changing media, 2-18, 5-29

abs max memory (C54), 4-52 character control block, 4-63
abs memory (C56), 4-54 close file (Cl6), 4-19
max memory (C53), 4-51 code group, l-2, l-5
memory (C55), 4-53 cold-start, l-ll, l-15
memory (T3), 5-5 COLDSTRT.AUT, l-llallocati.on block size, 2-l comm channel

allocation map, 2-2, 5-13 get baud rate (T38), 5-41
allocation of memory, l-2 get modem status (T40), 5-43
archived file attribute, 2-9 get comm status (T34), 5-37
ASCII files, 2-3 I/O, 3-4
assembler (TASM), A-l input (T35), S-38
attention requests, 3-3 output (T36), 5-39
attributes set baud rate (T37), 5-40

file, 2-9, 4-34 set modern contrls (T39), 5-42
interface, 2-9, 4-18, 4-19 command

autoload, l-ll, 5-19 file, l-2, l-5, 4-57

file header, l-2, l-5, 4-57
BACKUP command, 5-25, 5-28 format, l-9
base page, l-2, l-12 parsing, l-lO
basic console I/O, 3-l processing, l-9
basic print output, 3-5 prompt, l-9
batch processing, l-ll sending, S-20
baud rate, 5-40 strings, l-10
BDOS tail, l-9

functions, l-6 compact model, l-2, l-4
version, 4-15 compatibility modes, 2-13, 5-15

BIOS parameter block, 4-47 compute file size (C35), 4-39
block size, 2-l Concurrent CP/M, l-7
BOOT command, 5-25 CONREM driver, 5-36
BREAK, 3-3
buffer management, 2-17, S-26
BUFFERS comnand, l-2, 5-26

F-l

TurboDOS 1.3 8086 INDEX
Programner's Guide (Continued)

console emulator (TPC), D-l
I/O, 3-l end-of-print, 5-31
input (Cl), 4-3 error handling, 2-18
output (C2), 4-4 error intercept routine, 5-9

CP/l'·Z-86, l-6, l-7 exclusive open mode, 2-ll
CP/M compatibility, l-6, 4-15 execution models, l-2
CPMSUP module, 4-10, 4-11, 4-28, extra group, l-2, l-5

4-32, 4-33, 4-41, 4-60
create process (TI), 5-3 FCB organization, 2-7
CTRL-C, 3-3 FIFO file attribute, 2-9
CTRL-L, 3-4 FIFO files, 2-15
CTRL-P, 3-4 file
CTRL-Q, 3-3 attributes, 2-9, 4-34
CTRL-S, 3-3 command, l-2, l-5, 4-57

current drive, l-9 control block format, 2-J

libraries, 2-lO
data group, l-2, l-5 locks, 2-ll
deallocate memory (T4), 5-6 names, 2-6, 2-7
debugger (TBUG), C-l operations, 2-4
default FCB, l-13 organization, 2-3
default record buffer, l-14 sharing, 2-lO
delay process (T2), 5-4 special ($.DIR/$.DSK), 2-7
delete file (Cl9), 4-23 system, 2-l
delimiter, 4-12, 4-62 type, 2-7
despool mode, 5-32 FIXDIR command, 5-28, 5-45
direct BIOS call (C50), 4-47 FIXMAP command, 5-13, 5-28
direct console I/O (C6), 4-8 floppy disks, 2-l
directory, 2-2 flush list buffer (T3l), 5-34

directory formats, 2-3 flush/free buffers (T26), 5-29
dis/enable autoload (T17), 5-19 FORMAT command, 5-25, 5-28
disk free all memory (C58), 4-56

capacity, 2-l free memory (C57), 4-55
directory, 2-2
organization, 2-2
parameter block, 4-35
specification table, 5-25
system disk, l-15

DMA address, 4-16, 4-30

do-file, l-ll, 5-18
drive letter, 2-6, 2-7

F-2

TurboDOS 1.3 8086 INDEX
Progranuner's Guide (Continued)

get locks
ALV address (C27), 4-31 file, 2-ll
buffer params (T24), 5-27 record, 2-12
corm baud rate (T38), 5-41 log-on/log-off (Tl4), S-16
comm status (T34), 5-37 logical compatibility, 2-14
console status (Cll), 4-14
date and time (Cl05), 4-59 make file (C22), 4-26
date and time (TlO), 5-12 map, 2-2, 5-13
disk free space (C46), 4-45 media changes, 2-18, 5-29
DPB address (C31), 4-35 memory
I/O byte (Cl), 4-lO allocation, l-2
modem status (T40), 5-43 control block, 4-51, 4-52,
R/O vector (C29), 4-33 4-53, 4-54, 4-55

get/set organization, l-ldespool mode (T29), 5-32 message node, 5-7, 5-8
delimiter (CliO), 4-12, 4-62 mixed-mode compatibility, 2-14
drive status (T21), 5-23 model

print mode (T27), 5-30 8080, l-2
pgm return code (Cl08), 4-61 compact, l-2, l-4
user number (C32), 4-36 small, l-2, l-3

global files, 2-9, 2-10, 2-14 modem controls, 5-42
group descriptor, l-5 modem status, 5-43

MP/É-86, l-7, 2-13
hard disks, 2-l MS-DOS emulator (TPC), D-l
hashed directory format, 2-3
header (CMD file), l-2, l-5 naming files, 2-6

network list out (T32), 5-35
intercepting errors, 5-9 non-privileged, 2-10, 4-36
intercepting aborts, 5-lO
interface attributes, 4-18 open file (Cl5), 4-18
interrupt vectors, l-l open modes, 2-11, 4-18

operating system
label on volume, 2-2 server (OSSERVER.SYS), l-15
linear directory format, 2-3 user (OSUSER.SYS), l-15
linker (TLINK), B-l organization
list block (Cl12), 4-64 ASCII files, 2-3

list output (C5), 4-7 disk, 2-2
load file (Tl5), 5-17 file, 2-3

loader (OSLOAD.CMD), l-15 file control block, 2-7
lock record (C42), 4-43 memory, 1-l
lock/unlock drive (T25), 5-28 output delimiter, 4-12, 4-62

F-3

TurboDOS 1.3 8086 INDEX
Programmer's Guide (Continued)

parse file name (Cl52), 4-65 return
parsing command tail, l-lO alloc info {Tl9), 5-21

partial close, 4-19 current disk (C25), 4-29
PC-DOS emulator (TPC), D-l DMA address (C52), 4-50
PDR packet, 5-24 login vector (C24), 4-28
permissive open mode, 2-ll phys info (T20), S-22
permis,",ive compatibility, 2-13 serial nr (Cl07), 4-60
physical disk access (T22), serial nr (Tl2), 5-14

5-24, 5-29 verMon (Cl2), 4-15
physical disk request, S-24 read-only r.ernory (ROl'!), l-15
print block (Clll), 4-63
print mode, 5-30 search for first (Cl7), 4-20

print string (C9), 4-12 search for next (Cl8), 4-22
PRINTER command, 5-32 segmentation, l-2
printer control, 3-5 select disk (Cl4), 4-17
printer output, 3-5 send command line (Tl8), 5-20
privileged log-on, 2-10, 4-36 send I/P message (T5), 5-7
program interface, l-6 serial I/O, 3-l
program load (C59), 4-57 SERVER comnand, 5-36
program termination, l-8, 4-2 server operating system, l-lS

set
queue a print file (T30), 5-33 abort address (TB), 5-lO
QUEUE command, 5-33 buffer parms (T23), 5-26

comm baud rate (T37), S-40
raw console I/O, 3-2 compatibility (Tl3), 5-15
raw console input (C3), 4-5 date and time (Cl04), 4-58
raw console output (C4), 4-6 date arid time (T9), 5-ll
read console buffer (ClO), 4-13 DMA base (C51), 4-49
read random (C33), 4-37 DMA offset (C26), 4-16,
read sequential (C20), 4-24 4-30, 4-49
read-only file attribute, 2-9 error address (T7), 5-9
read-only open niode, 2-ll file attributes (C30), 4-34
rebuild disk map (Tll), S-13 I/O byte (CB), 4-ll
receive I/P message (T6), 5-8 modem controls (T39), 5-42
record locks, 2-12 random record (C36), 4-40
remote console I/O (T33), 5-36 shared open mode, 2-ll
rename file (C23), 4-27 sharing files, 2-lO

reorg directory (T42), 5-45 signal end-of-print (T28), 5-31
reserved tracks, 1-15, 2-2 small model, l-2, l-3
reset disk system (Cl3), 4-16 special file names, 2-7
reset drive (C37), 4-41 stack area, l-2
reset 0/° (TO), 5-2 stack group, l-2, l-5

stacked command lines, S-20
stacked do-files, 5-18

F-4

TurboDOS 1.3 8086 INDEX
Programmer's Guide (Continued)

string console I/O, 3-2 unlock recorC (C43), 4-44
suspend compatibility, 2-14 user number, 2-6, 2-10, 4-36
system reset (CO), 4-2 user operating system, l-15
system start-up, l-15 user-defined fcn (T41), 5-44

USRFCN routine, 5-44
T-function

calling sequence, 5-l VERIFY command, 5-25, 5-28

definition, l-6, l-8 volume label, 2-2
summary, F-l

tail parsing, l-10 warm-start, l-ll, 4-2
TASM assembler, A-l WARMSTRT.AUT, l-ll, 5-19
TBUG debugger, C-l wild-cards, 2-3, 2-6, 4-20,
terminating programs, l-8, 4-2 4-23, 4-27
text files, 2-3 write protect disk (C28), 4-32
TLINK linker, B-l write random (C34), 4-38
transient program area (TPA), write random w/zero-fill (C40),

l-l, l-9, 5-17 4-42
TPC emulator, D-l write sequential (C21), 4-25

F-5

