Dear PDS User:

I regret being unable to include a personal note. However, there are a few
points whould could not be covered in the documentation.

First, I want you to be happy with the PDS software package. If you have any
difficulty, however slight, with either the documentation or the programs, please
contact me. I prefer to interact by telephone, but as time allows I will corres-
pond by mail.

Should program errors arise they will be repaired for free. I ask only that you
return your original diskette with cardboard backing and a return manila
envelope with sufficient return postage.

Many of the best features of PDS were suggested by users, and your comments
and suggestions on the documentation or the programs are welcome. Let's
keep in touch.

Sincerely,

O

Allen Ashley .
395 Sierra Madre Villa
Pasadena, CA 91107

(213) 793-5748

P.S. LONGLABL is a version of MAKRO which allows up to 10-character
labels. L ONGLINK is the corresponding linkage editor.

Scrolling program output: The two PDS assemblers and the G command
of EDIT allow the output to be scrolled. Pressing the space bar will
freeze the display; any other key will resume scroll. This feature
relies upon the non-standard Control/C detect routine in the DOS. The
programs call the Control/C routine and expect the key pressed, if any,
to return in the accumulator. If a blank is returned, the programs call
character-in to wait for another key to be pressed before resuming
operation.

AsseMBLY LANGUAGE DEVELOPMENT SYSTEM
FOR

NORTH STAR MINIDISK

NORTH STAR HORIZON

INCLUDING:

RELOCATING MACRO ASSEMBLER
INTERACTIVE ASSEMBLER/EDITOR
STRING-ORIENTED TEXT EDITOR
TRACE DEBUG/DISASSEMBLER
LINKAGE EDITOR/LOADER
RELOCATING LOADER

FEATURING:

FuLL Z80 CAPABILITY
OPERATIONAL oN 780 or 3080
INTEL MNEMONICS
AUTOMATIC FILE HANDLING

READY TO RUN ON DISKETTE
COMPLETE DOCUMENTATION

FULL USER SUPPORT Copyright 1978

A.M. Ashley

395 Sierra Madre Villa
ﬁ!géf $99 Pasadena, CA 91107

(213) 793-5748

OTHER SOFTWARE AVAILABLE:

HDS

HYBRID DEVELOPMENT SYSTEM -~ 340

The HDS Hybrid Development System is available for all North Star systems. A hybrid program is
one in which portions are performed by assembly language and portmns are performed by BASIC,
Such programs may be attractive because:

1. Critical program segments may be coded in assembly language to achieve higher speed.
2, Proprietary program segments may better be protected when coded in assembly language.

3. Hybrid programs offer nearly the same execution speed as assembly code while retaining
the ease of BASIC program deveiopment.

4. Certain operations are much more easily performed at the assembler level.
5. Hybrid programs can use internal BASIC routinesg for ease of program development.

HDS includes an interactive assembler/editor located at 49H to be co-resident with BASIC, together
with modifications to North Star BASIC which facilitate communication between BASIC and assembly
routines. The modifications to BASIC give access to the addresses of BASIC variables and extend
the CALL function of BASIC to allow an unlimited parameter list. Access to the address of a BASIC
variable is gained by enclosing the variable in square brackets. Thus Al refers to the value of var-
iable Al while [A1] refers to the location of Al, Now assembly routines can use BASIC variables or
strings and return results back to BASIC,

A roadmap to BASIC is inciuded coataining a list of BASIC utility entry points and their calling se-
quence, Examples are provided to:

1. Load an assembly language routine from

BASIC using the sequence: P$ = "FILE": Z9 = CALL (ADDR, LOCV, [PS])
2, Find the total of 2 BASIC array A(N) as: 29 = CALL (ADDR, (A(1)], (8], ©
3. Find the minimum in 2 BASIC array as: Z9 = CALL (ADDR, (B], (A(1)], ™

HDS requires at least 24K memory starting at dH. Modifications are available for staadard (8-digit)
North Star BASIC Release 4.0 and 5.0, Modifications for other versioas of North Star BASIC are
available by arrangement. As always, full user support is provided by mail or phone. Dealer dis-
counts are available.

SOURCE MODULES

To facilitate the development of assembly language application programs, and to encourage the use
and sale of PDS, a number of assembly language program modules are available. These source
modules are provided to facilitate your development efforts, and no restriction is imposed on their
use. Interface requirements are clearly documented,

MODULE FUNCTION REQUIRE MENTS PRICE
ALPHSORT High speed alphabetic sort None $ 20
NUMRSORT High speed numeric sort None 20
FPPACK BCD floating point arithmetic None 20
FOURIER Fast Fourier transform FPPACK 20
MINV Matrix inversion FPPACK 20
MATPRD Matrix product FPPACK 10
RATPOL Rational function and utilities. FPPACK : . 15
SQRT Square root FPPACK 3
TRIGS Sine, Cosine, TAN, A’I‘ANY FPPACK, RATPOL 20
LOGEXP Exponential, logarithm, ¥ FPPACK, RATPOL 20
FPIOP Floating point 1/0 None 15
FORMAT Formatted floating point output None 10
NFILES North Star disk handler None 13
ENTIRE PACKAGE: 3100 A LA CARTE: ADD 35 PER ORDER FOR DISK

REGENT , EZ-80

Disk Disasgembler ($25): Generates a source file Assemblv Language Tutorial ($25): FOR the

on disk from object program stored in memory. novice programmer. Teaches Z-80 instruction
NOT for the casual or novice programmer. . set and operations by executing assembly lang-
(NORTH STAR ONLY.) uage commands individually. Registers aad

flags aredisplaved for eachinstruction executed.
(NORTH STAR ONLY.)

All programs are available from vour local computer store or directly from
Allen Ashley, 395 Sierra Madre Villa, Pasadena, CA 21107 (213)793-3743

CONTENTS

PDS OVERVIEW AND INTERFACE PROCEDURES

Interfacing PDS........ b e e e et e
Bringing up PDS ... ittt ittt i et
Relocating Loaders KWIK and KWIKABS.............
Relocatable DEBUG. i enneeneoennnnns
EDIT Disk FilesS.uiieeeine e iiinnoeeneenennnnas
ASMB Memory Files..iiiiiiieitieeinneeeacnneannens
MAKRO Execution........... Cee et e es ettt
Special Note to Z80 Owners......ceveeeeeneennass
Sample ASMB Operation.......coeeieeierenenneennns
Memory SizZe. ..ttt ienrictieasonononsnans

ASMB EDITOR/ASSEMBLER

Introduction. ..o cve it ittt ittt ettt ennonns
ASMB Organization.......ietiiinrieeecrennnnnnsas
Executive Commands......vvveeerisnoennsansonsonas
Command List
Command Format
oo I 1 P
Automatic Line Numbering
Assembler Operation.............. ittt e e
Source Line Format
Assembler Constants
Register MNnemonicCS..ceetiereeneoeosasacnsonsnnsns
Assembly Language...uvueierenececoansovononnnens
8 Bit Load
Accumulator Load/Store
8 Bit Immediate
16 Bit Load/Store
Exchange, Block Transfer, and Search
8 Bit Arithmetic and Logical
General Purpose Arithmetic and CPU Control
16 Bit Arithmetic Group
Rotate and Shift Group
Bit Manipulation
Input/Qutput Group
Jump Group
Call and Return Group
Pseudo OperationsS. ... e eir e enaseaeseenncenons
Assembler Errors/Diagnostics......cccvviennn. ..
Existing Source Files......oviiiiiieinnnnn S

3. MAKRO ASSEMBLER

J8 4 I o e ¥ o A I o 3-2

Makro Input/OUtpuUL. vttt ittt it eneenaenss 3-3
Source Line Format :

Assembler Operation.....v. i ienenenenennnes 3-4

Special Operands
Assembler Constants

Register Mnemonics.....u i iien i iineneennnnn 3-5

Assembly Language.o iieiiienennneneenanns 3-6

Pseudo Operations.....cvv e yiiieneeennennnnnnnnnn 3-14
Relocation Pseudo Operatxons

Assembler Errors/Diagnostics......vevieeneennn.. 3-19

MAKRO Conditional Assembly.....viireneennnnnnns 3-20

MAKRO Macro Capability.... vt iiinienenennnn 3-23

Introduction to Macros

Macro Processing

MAKRO Idiosyncracies

Procedural and Syntactical Rules

USTNg MaCroS: e i cn et nninseeoennensennnsonnnns 3-28
Repetition Control. ..., e 3-30
MAKRO Block Structured Assembly....vivevuuvneenns 3-32
Assembly Time InpuUt.. ..ottt ittt et eeeneannnn 3-32
Communication Between Macros........ovviviieennennnnnnnnn. 3-33
e Tog 8 I PR 3-34

Assembly Time Source - LINK
Object Time - Relocatable Code
Loader Directives

Object File Format

Source Code Restrictions
Symbol Table

PDS Relocating Loaders......coiiiiiiienenensnnnn 3-41
MAKRO Expression Evaluation.......coveivevnennns 3-42
INTEL Source Compatability.......co.oviiviiinnes 3-44
Sample Linkage Operation.......... ettt 3-45
4. EDIT TEXT EDITOR
Introduction.......... et e ettt e 4-2
EDIT Organization.e oo e oo ieennseonenonnneeneas 4-3
EDIT EX@CULTIVE: ettt etereeeeeneeoecasscannonnsens 4-4

Command Format
Nesting Commands
Special Characters
Text Pointers .
Exacutive Commands ..ot veiesoeeoescoosnensenes 4-8
Command List
Special Character Commands
Command Strings and Block Commands............ L.4-11
Command String SyntaxX...... .. 4-12

ii

4. EDIT TEXT EDITOR (Cont.)

Error MeSSageS et vt ittt ittt ittt e e e 4-13
Sample EDIT Operation.t e i ittt ennneenns 4-14
Sample Block 0Operations. ... eenenenennnn 4-15
Conditional Command Execution.......... e 4-16
Text Rearrangement. ieeee i eeerennennas 4-19
Use EDIT to Save TypPing.....ui it ientieenneeennran 4-20
Memory Organization..oyt ennneeenns 4-21
12 15 T - 2 4-22

5. DEBUG PROGRAM DEVELOPMENT AID

g
&=

Introduction. .. ittt i i i e 5-2

DEBUG Organization........cuoiiiiiiiiniineiennnenan 5-3

Executive Commands.ttt iennnenennees 5-4
Single Step Executive

Using DEBUG. ..ottt it i ittt s et aeannacannan 5-11

: Suggestions

HIGHLIGHTS CERTAIN TEXTUAL ITEMS WHICH MAY CAUSE
DIFFICULTY IF OVERLOOKED.

PROGRAM DEVELOPMENT SYSTEM

PDS is an exceptionally powerful assembly language development system for 8080 or Z80
microcomputers with at least one disk drive. PDS includes a unified assembler/editor,

a macro assembler with a relocating linking loader, a string-oriented text editor, and

a trace debugger/disassembler.

The assemblers favor the INTEL instruction mnemonics, treating the 280 superset as a
logical and syntactical extension. The debug module features breakpoint or single-
step execution of programs, with trace display of all register contents, flag status,
a memory window, and the mnemonics of the instruction just executed and the next

instruction to be executed.

The power of PDS derives from the interactive environment afforded by the assembler/
editor and the debug package. Program modules can be modified, assembled and checked

in seconds under the tight control of trace execution.

While the many features of PDS will satisfy the demands of the most sophisticated
programmer, PDS affords an exceptional educational environment for beginning assembly
language programmers. The interactive combination of the ASMB editor/assembler and

the DEBUG trace program allow the user to witness operation of his program first hand.

To facilitate dévelopment of applications programs with PDS, source modules are avail-
able for floating point arithmetic, floating point input/output, trigonometric functioms,
numerical and alphabetic sorting, matrix inversion, fast Fourier transform, and a full
function expression evaluator.

For further information, please contact:

Allen Ashley
395 Sierra Madre Villa
Pasadena, CA 91107

(213) 793-5748

Macro

Relocating

Trace Debug
Interactive Assembler
Z-80 Assembly

8080 QOperational
INTEL Mnemonics
String Editor

Linkage Edit

Disassembler

O
9
w

> X XX > X X)X

COMPARE!

PRO TECH
TOL CROMEMCO _ALS-8 cP/M INTEL
X
X X
X X
X X X
A X
X X X
X
X

NO OTHER READILY AVAILABLE
PROGRAM DEVELOPMENT SYSTEM
OFFERS AS MANY FEATURES AS

PDS

$99

1-2

PDS

The components of PDS are structured to provide the most complete, well-rounded
program development system available for microcomputer use.

PDS includes:

ASMB Assembler/Editor
MAKRO Macro Assembler
EDIT Text Editor
DEBUG Debug Monitor/Disassembler
LINKED Linkage Editor
KWIK Relocating Loader
MAKRO and ASMB assemble the complete instruction set of the Z-80 and feature

mnemonics which are a logical and syntactical extension of the widely familiar
8080 assembly language. ‘

Each of the components of PDS is written in the 8080 instruction subset and the
entire system is thus operational on either Z-80 or 8080 machines.

PDS is an ideal program development system for those owning a Z-80 machine or
those 8080 owners anticipating a future expansion to the more powerful Z-80
processor.

APPROXIMATE MEMORY REQUIREMENTS

PROGRAM DECIMAL

ASMB 6K

MAKRO 7.5K

EDIT 2K

DEBUG 3.5K (RAM at §)

Minimum operating system: 16K RAM and one disk drive. DEBUG, LINKED and KWIK
are furnished in relocatable form to satisfy the requirements of individual systéms.

The sizes of disk files for relocatable modules do not reflect the memory required
for execution of those modules. Such files, containing relocation and loading
information in addition to program data, greatly exceed the memory space required
for execution. As an example, the relocatable disk file DEBUG occupies some 55
sectors of the disk, but less than 4K of memory when loaded.

1-3

ASMB: An editor/assembler combination for the rapid development of small to medium size
assembly language programs, ASMB includes all the features necessary for the creatiom,
modification ardd disk storage of assembly language source files for 280 or 8080 computers.
ASMB is a very fast assembler which, together with the co-resident editor, is structured
for a very rapid assemble/execute/modify cycle. The instruction set of ASMB is designed
to be a logical and syntactical extension of the widely familiar INTEL instruction set
for the 8080. Users already familiar with 8080 assembly language will readily acquire
the extended instruction set of the Z80 processor.

MAKRO: an extraordinary assembler featuring full macro and conditional assembly capa-
bility, MAKRO incorporates the power of a relocating assembler and a linkage editor/
loader. Program modules developed with the ASMB assembler can be collected into a
source library for the MAKRO assembler. The considerably enhanced power of the MAKRO/
EDIT combination, together with the overall reduced memory requirements of MAKRO,

make the two assemblers perfect companions.

EDIT: A very powerful text editor featuring a full spectrum of text manipulation
operations including string search, substitution, insertion, deletion, and block move
or delete. An elaborate command interpreter allows the definition of command string

" macros. Segments of an input text file can be drawn from disk into memory, modified,
and written back to an output disk file. Large, heavily-commented source files which
exceed available memory can be developed and modified easily with the EDIT text editor.

DEBUG: An incomparable software devélopment tool featuring single-step execution of
Z80 or 8080 programs with complete display of all register contents, flag status, and
trace display (in mnemonic form) of the instruction just executed and the next instruc-
tion to be executed. The single~step breakpoint can be located anywhere in the user's
program.

DEBUG, together with the fast ASMB editor/assembler combination, provides an interactive
environment for the development of assembly language programs. There is no more powerful
development system: program modules can be assembled, checked, and modified in seconds.
Programs operating under the trace mode of DEBUG are held tightly under control --

errors can be caught before they blow the program. The degree of program intimacy
afforded by DEBUG greatly exceeds that of BASIC.

DEBUG includes a disassembler for translating 8080 or Z80 object code into the MAKRO/
ASMB instruction mnemonics. DEBUG also includes string search and change, memory
display in ASCII or hexadecimal, memory f£ill by byte or block, and block move or compare
functidns. DEBUG uses RST3 and requires RAM at low memory.

LINKED: Linkage editor, linking locader. LINKED searches library files of previously
assembled modules to include those necessary to complete the assembly. Commonly used
routines need only be developed once.

KWI!(: Relocating loader creates an executable memory image for programs not requiring
a linkage edit.

1-4

INTERFACING PDS TO NORTH STAR DOS

The components of PDS utilize the standard entry points to the North Star
Disk Operating System:

DOS + @DH Character out

DOS + 1PH Character in

D0S + 16H Control/C

DOS + 28H Warm start entry 2ATR

File names communicated to PDS are terminated by a carriage return. The
file name may be suffixed by an optional unit number. The unit number, if
present, must be separated from the file name by a comma. File names not
suffixed by a unit number default to drive 1. '

Components of PDS which generate disk output request an output file name.

The output file must be found in the directory. PDS will examine the size of
the output file. A zero-length output file is treated as a new file and PDS
will update the directory entry to reflect the completed disk operations.

If a required file is not found in the directory, PDS issues a '?' prompt
and awaits re-entry of the file name. PDS will automatically size the
output file if the user creates (under the DOS) an output file of length 9
before entering the program. As an example:

CR OFILE 2
GO MAKRO

Respond to the output file query with OFILE. PDS will update the directory
entry. ’

It is generally not possible for PDS to predict the required output file size
before disk operations commence. If the user elects to direct disk output to
an existing file, he must ensure that the file size is sufficient to contain

the output. PDS will cease disk operations with a 'NO ROOM' message when the
existing output file is full.

1-5ns

BRINGING UP PDS

Write protect the PDS diskette before attempting to use it.

Make a working copy of the PDS diskette using the RD and WR commands
of the DOS.

Store the original PDS diskette as a master backup copy.
Read the entire PDS documentation.
Several components of PDS are furnished in relocatable form to be
placed at a convenient location in memory. The general procedure for
making a working copy of these modules is:
a.* Execute the relocating loader KWIKABS (see next page).
b. Identify the module to be loaded and the load address.
¢c. At complietion of relocation; create a disk file and save
the memory image of the relocated module. Set the file
type = 1.
d. The relocatable module may be deleted to save disk space.
The original version is always available on the master
back-up diskette.
Practice using each of the components of PDS.

Suggestions and comments on the PDS documentation or programs are
welcome.

PDS diskettes furnished for double density disk systems are written
in single density and must be converted to double density before use.

Consult the North Star documentation for instructions on effecting this

conversion.

1-6ns

RELOCATING LOADERS KWIK AND KWIKABS

The KWIK loader is furnished in relocatable form on disk file KWIK and in absolute
form on disk file KWIKABS. Entry to the absolute module is at DOS + A@PH.* These
two forms are furnished to allow the user to bootstrap the loader to any convenient
memory location. The bootstrap procedure utilizes KWIKABS to relocate KWIK to the
desired execution address. The procedure is as follows:

GO KWIKABS Enter

INPUT FILE File query

KWIK

LOAD ADDRESS

XXyY Desired RAM location

At completion, KWIKABS returns control to the warm start entry. The user should
then save the memory image just Created:

CR UKWIK 4
TY UKWIK 1 xxyy ,
SF UKWIK xxyy xxyy is the previously defined RAM location.

The KWIK loader is subsequently accessed by GO UKWIK. (See MAKRO for discussion of
KWIK.) The KWIK loader supports an optional offset address. Response to the load
address query may take one of two forms: hexad or hexad,offset. The offset value
is added to the execution address to determine the memory load address. Thus, code
to be executed at EPPOH, with an offset of 3PPPH, is placed into memory at

EQPD + 3000 = 1POPH.

LINKAGE EDITOR

The Tinkage editor is furnished in relocatable form as disk file LINKED. Either
KWIKABS or the previously generated UKWIK loader can be used to generate an
executable module of LINKED. The procedure is as follows:

GO KWIKABS

INPUT File query

LINKED

LOAD ADDRESS

XXyy Desired RAM address

At completion:

CR ULINK 6
SF ULINK xxyy
TY ULINK 1 xxyy

The Tinkage editor is then accessed by
GO ULINK

Library files are expected to reside on the drive containing the object file and may
contain names of no more than five characters (10 for LINGLINK). If the file is not
found a "?" prompt is issued, allowing the file name and drive to be re-entered. The
North Star version of LINKED does not generate an object disk file. A RAM area after
LINKED must be reserved for loader tables. '

*0PPH in double density version.

1-7ns

RELOCATABLE DEBUG

DEBUG is furnished in relocatable form to be positioned at a convenient
- memory location. The relocation may be performed with KWIKABS or the
user-developed loader UKWIK. Relocation of DEBUG is performed via the
following sequence:

GO UKWIK

INPUT FILE File query

DEBUG

LOAD ADDRESS

XXyy Desired RAM address

At completion:
CR UDEBUG 16
TY UDEBUG 1 xxyy -
SF UDEBUG xxyy
Subsequent access to DEBUG is made via

GO UDEBUG

1-8ns

EDIT DISK FILES

EDIT relies upon the NORTH STAR disk operating :system for the creation
of disk space, the transfer of file contents to and from memory, and the
console character input/output operations,

Upon initial entry, EDIT requests the name of the input text file -- the file
to be modified. To create a new file, the user should respond to the INPUT
query with the @. EDIT is thus cautioned to ignore any commands to read from
disk. At any time the user may open a new input disk file (closing any
existing input file).

Text material is transferred to memory in blocks of one sector (256 characters).
The user may transfer as many sectors to memory as available space will allow.
EDIT will not allow memory overflow. At termination, EDIT transfers to the
output file any information still residing in the input file. The user may
truncate the input file, however, by opening a new input file and responding
to the INPUT query with @.

The output file is the repository for the processed textual material. Text
is transferred to the output file in one-sector blocks. The name of the
output file is given to EDIT in response to the OUTPUT query. If the file
name is not found in the file directory, EDIT issues a '?' prompt. A new
output file may be defined by re-entering EDIT at start + 2DH.

‘ASMB MEMORY FILES

The ASMB editor/assembler resides in memory immediately after the DOS. In
the standard configuration, the memory region from 280PH up to S@@PH* is
reserved for the D0S, ASMB, and assembler tables. Neither source nor object
files can be Tocated within this region without damage to the programs.

* B3PPH in double density version.

1-9ns

MAKRO EXECUTION

MAKRO requests a pass option before the assembly. The pass parameter nnn
controls generation of the OBJECT file and assembly listing. The three
lTeast significant bits independently control assembler options.
Bit P controls the extent of the assembly. If Bit 9§ = 0, the
assembler skips pass 2, and neither-an object file nor
pass 2 diagnostics are available. This option is used to
make a quick check of the source file.

Bit 1 controls the assembly listing. If Bit 1 = 0, only assembly
diagnostics are generated.

Bit 2 controls the generation of the object file. If Bit 2 = @,
no object file is created.

Bit 3 controls the output device.
Assembly is normally performed with one of the pass options:
1 or At No object file, pass 1 and 2 diagnostics only.
5or E: 0Object file, pass 1 and 2 diagnostics only.
7 or G: Object file, full assembly listing.
? or 0: Object file, full listing to output device 1.
NOTE: A dummy output file must be defined even for cases in which no object
code is to be written to disk.

Pressing Control-C when entering file names to MAKRO returns control to the DOS.

1-10ns

SPECIAL NOTE TC Z-30 OWNERS

The entire PDS package was written to be fully operational on machines
using either the 8080 or Z-80 processor. As a result, one byte must be
changed in DEBUG to display the additional Z-80 registers.

After generating an executable image of DEBUG at memory location xxyy (as
discussed previously) the user must modify one program byte to display the
Z-80 index registers.

Change memory location: xxyy + 229H
From: 26
To: 28

DEBUG can be used to effect this change. After completing the relocation,
but before saving the relocated file, perform the necessary modification.

1-11ns

SAMPLE ASMB

=50 RSME
FEpEe CEVWELCOFMENT
F STEZTS5300

SWETEM

TEZT 5300 5300

SE1laLAREEL IMS M

LD &

OFER R

EMD
F-

CEEls LASEL ITHE H

nluhik DA E

T CFH F

sl e EMD

A FOER

Foma 23 SIER RS
Fomey as St
Fapz BT [l i
Faaz A1
syl TRELE

lLAEEL Faad

lod

FILE

THYE WRITTEM
LI

o= 4 14 2
MARERD 14 =2 1 ZHEG
EDIT 4 14 1 A8

EMD 1ea =] =

SAYE 174a 1 &

RZME =T Z5 1 ZRE8
LEBILG e i

EWIEAES 127 = 1 ZH9E
FIIE 148 13)

LIMEEL 155 42 a

OPERATION

Create memory file

> typed after line number, but not echoed

Auto 1line mede
< typed after carriage return
Print formatted listing

Assemble file

LABEL IN=
(RIS
REH
EMD

H
=
=

Write source to disk

Disk operation complieted

Source file

1-12ns

Assembly listing

MEMORY SIZE

MAKRO and EDIT search memory to determine the highest available contiguous
RAM address. In systems for which this is undesirable, the user may patch

these programs to set a Timit on the available memory.

MAKRO

MAKRO searches for memory top in a Toop near the entry point. The code is:

2A49 MVI A,DAAH
MTLP: INR H
MOV M,A
CMP M
2A4E JZ MTLP
DCX H
2A52 SHLD MTOP

The 3 bytes at 2A4E should be changed to
21 xx yy {(LXI H,MTOP)

where xx yy is the byte-reversed RAM limit.

EDIT

EDIT calls a subroutine to determine available memory.

2A13 LXI H,1B1BH
SHLD THERE
2A19 CALL MEMTOP (2BCC)

The loop at MEMTOP is:

2BCC LXI H,TEXT
2BD1 MVI A,PAAH
2BD1l MTLP: INR H
MOV M,A
_ CMP M
2BD4 JZ MTLP
DCX H
2BDC SHLD MTOP

The 3 bytes at 2BD4 should be changed to
21 xx yy)
as done in the MAKRO patch.

NOTE: Entry point to double density version is 2D0QH.

1-13ns

The call is:

Addresses for the memory size patches to MAKRO and EDIT are given for the
standard DOS at 2PPPH. DEBUG should be used to disassemble the code at the
given locations before making any changes. Minor program modifications may
alter the loop positions slightly.

The corrected>versions of MAKRO and EDIT should be saved on disk.

SCROLLING PROGRAM QUTPUT

The two PDS assemblers and the G command of EDIT allow the output to be
scrolled. Pressing the space bar will freeze the display; any other key
will resume scroll.

This feature relies upon the non-standard Control-C detect routine in the
DOS. The programs call the Control-C routine and expect the key pressed,
if any, to return in the accumulator. If a blank is returned, the programs
call character-in to wait for another key to be pressed before resuming
operation.

1-14ns

ASMB

A disk-based assembler/editor
for the development of small to
medium size assembly language
programs.

The combination ASMB/DEBUG provides
an interactive environment for
assembly language program development.

Copyright 1978

Allen Ashley
395 Sierra Madre Villa
Pasadena, CA 91107

(213) 793-5748

2-1

INTRODUCTION

ASMB is a powerful disk-based editor/assembler system for program devel-
opment on a Z80 microcomputer. Structurally and operationally similar to
the program development packages SP-1 and ESP-1, ASMB offers more exten-
sive editing and assembling features while extending the instruction
assembly to the entire Z80 instruction set.

ASMB includes all the features necessary for the creation, modification
and storage of assembly language programs. Departing from the cumbersome
ZILOG assembly language, ASMB features instructions mnemonics similar to
the more widely familiar INTEL set. Indeed, mnemonics for the 8080 subset
of the Z80 instruction set are identical to the standard INTEL format.
Users familiar with INTEL assembly Tanguage will appreciate the treatment
of the Z80 instruction superset as a logical and syntactical extension of
the INTEL instructions.

The ASMB program development system is an ideal companion to the more
powerful MAKRO assembler. Small program modules are more easily and rapidly
developed with the unified assembler/editor than the two-stage process of
MAKRO/EDIT. The fully tested program modules can be converted to MAKRO
source form by a single EDIT command. These source modules can then be
saved as a source library for MAKRO.

ASMB is itself written entirely in the 8080 instruction subset, and is
therefore operational on either 8080 or Z80 machines. ASMB can thus serve
as a two-way cross assembler, assembling 808C source programs on a Z80
machine, or Z80 object programs on an 8080 machine. The versatility and
power of ASMB make it an ideal program development system for either those
presently owning a Z80 machine or those anticipating a future expansion of
their present 8080 machine to the more powerful Z80 processor.

An example of ASMB use is given in Section 1.

2-2

ASMB ORGANIZATION

The ASMB program development system consists of a combination text
editor, assembler, and system executive for the creation and modification of
780 assembly language programs.

The system executive is responsible for handling all input/output operations,
invoking the editor or assembler, and dealing with the disposition of source
and object files in central memory. ’

The text editor is responsible for the creation and modification of source
programs within the memory file area. The text editor is line-oriented in
that editing consists of entering or deleting source 1ines identified by
ascending line numbers. The editor features automatic 1ine numbering, line
renumbering, moderately free-form source input, well-formatted source output,
and a unique mini-editor for the modification of source code lines.

The assembler performs a two-pass translation of source to object code. The
assembler includes the powerful feature of conditional assembly. Instruction
mnemonics are logically and syntactically identical to the INTEL assembly
language. The assembler is file-oriented with up to six source files simul-
taneously residing in memory. Optional symbol communication between files
enables a moderate block structure development.

The concept and structure of ASMB were strongly influenced by Software
Package #1. Assembly language source programs are maintained in source
files under control of the system executive. Source files are created and
deleted by commands to the system executive. Source code is entered into the
source files under control of the editor, and the assembler can be directed
to translate the source file to object code anywhere in memory.

2-3

!

N

EXECUTIVE COMMANDS

COMMAND FORMAT

Executive commands consist of a single letter identifier, together with an optional
modifier character, and one or two hexadecimal parameters. The command character(s)
must be separated from any numerical parameters by a single blank. Numerical para-
meters are likewise separated by a blank.

In the following, hexadecimal parameters are indicated by the sequence nnnn or
mmmm while an optional character modifier is indicated by a Tower-case c. Unless
otherwise noted, the modifier ¢ is a device control character (f§-7) which will be
present in the accumulator for all subsequent console I/0.

A1l command lines are terminated by a carriage return.

COMMAND LIST

F /NAME/ Generic file control command. The file control command

enables the user to create or destroy source files. Each source
file is identified by a file NAME of up to five characters. The
file name must be delimited by slashes. The opening slash must
be separated by a blank from the command characters. The hexa-
decimal parameter nnnn and the modifier character are optional.
o There is no relation between memory file NAME and any disk file.

F /NAME/nnnn Opens a source file NAME, starting at memory location nnnn,
making NAME the active file. Any previously active files
are maintained.

(Generic command;
specific examples
below)

F /OTHER/ - Recall previously active file, OTHER, making it the current]y
active file. Note the hexadec1ma1 parameter is absent.

F /ERASE/D Delete file named ERASE, freeing memory space for a new source

‘ file.

F Display the currently active file parameters, f11e name,
starting and ending memory locations.

FS Display the file parameters of all memory files.

W Write the currently active source file to disk. The executive

will respond with the query FILE. The user must then type the
disk file to receive the source. -

R : Read source code from disk into the currently active memory
file. The executive responds with the FILE query.
Chn Append a disk file to the currently active memory file,

renumbering all source code lines by the increment n.
Improperly formed disk operations, disk read errors, or
insufficient disk file capacity result in the DISK ERROR
diagnostic.

2-4

D nnnn mmmm Delete lines numbered nnnn up to and including mmmm
from the source file. If mmmm is omitted only nnnn

is deleted.
B (BYE) Return to disk operating system.
I - Initialize the system, clearing all source files. The
e ’ ;

initialization is automatically performed upon initial
entry. No lines of source code can be entered until a
new source file has been defined.

Pc nnnn Print a formatted 1isting of the current source file,
starting at line number nnnn.

Lc nnnn Print an unformatted listing, suppressing line numbers,
of the current source file,

The optional modifying character, ¢, can be an ASCII

digit in the range # - 7. The numerical value of this

modifier will be present in the accumulator for all sub-
. sequent I/0, or until redefined by the user. The

value is initialized to zero.

G nnnn Execute at location nnnn. A user program may return to
the system executive by a simple return statement.

U Execute at Tocation DP@@. - This command is reserved for
entry to the DEBUG control system

A°nnnn mmmm Assemble the current source file using implied origin

h (ORG) nnnn and place resulting object code into memory
starting at location mmmn. The second parameter is
optional; if absent, the object code is placed into
memory at nnnn.

AS . ”EEE;— Mark existing symbol table for future global reference.
o (Save symbol table resulting from last assembly.) This
command must follow an assembly: a symbol table must have
been generated.

AE nnnn mmmm Assemble, as above, displaying only source code lines
containing an assemb?er diagnostic.

AK Release (kill) the global symbol table.

AT Print symbol table resulting from previous assembly.

2-5

E nnnn Enter the mini-editor to edit the currently active
- source file beginning at line nnnn.

The mini-editor enables the user to scroll through the
source file, changing source lines on the fly.

Upon entry, the mini-editor displays source line nnnn or
the first source 1ine if nnnn is omitted. The mini-editor
then awaits keyboard input. Depressing any key except
ESCAPE (1BH) advances the file pointer to display the

next successive line. The escape key allows the user to
re-enter the source line starting at character position
two. (At the label field, no line number is required.)
The user-entered 1ine, terminated by carriage return, then
overlays the old line. The mini-editor cannot insert new
source lines into the file. Return to system executive
via Control C.

E /STRNG/ Enter the mini-editor to edit the currently active source
file beginning at the first occurrence of character string
STRNG. The string may be at most five characters long and
may contain no blanks. The string search is operable for
the P and L commands as well.

N nn Renumber source lines, starting at nn and inerementing by
nn. The value nn is a decimal parameter.

There is space in the ASMB .command table for five additional user commands. Available
space starts after the 55 0@ D@ byte string. New commands must be entered in the format

Command character,byte-reversed branch address
For each such command entered, the command count must be increased.
Search for the byte string 06 @QE 3E Pl and increase the byte PE for each new command
entered. A hex parameter, if present, is passed to the user routine in the DE registers.

A second hex parameter can be passed in the BC registers. The user routine can re-enter
ASMB via a RET instruction.

2-6

EDITOR

Source lines are entered into the currently active source file under control of
the file editor. The system executive recognizes a source line by a four-
digit decimal line number, which must precede every line in the source file.
Modifications to the source file consist of one or more whole lines. Lines

may be deleted by the D control command. Lines may be modified by retyping

the Tine number and entering the new source line. The editor adjusts the
source file to accommodate 1ine length without any wasted file space. Character
deletion is accomplished by the underline (5F) key.

Source program lines consist of a four-digit 1ine number followed by a
terminating blank. The first character of the source line may contain
identifiers '*' or ';'. These identifiers proclaim the entire line to be a
comment. The label field of the source line must be separated by exactly

one blank from the line number. Identifying labels can be from one to five
characters long and may contain no special characters. The operation field
must be separated from the label field by one or more blanks. The operand
field, if present, must be separated from the operation by a single blank.

Two blanks following the last operand separate the comment field, which should
start with a semicolon. Source lines may be up to 72 characters in length.

The user can invoke automatic line numbering for lines entered into the source

file. In the automatic mode, line numbers are incremented by one from the

starting value. Automatic line numbering is initiated by entering the starting

line number followed by > (greater than). Subsequent entries begin in character
position two. The automatic mode is exited by typing < (less than) following

the carriage return for the last source line. Failure to properly exit the e
automatic mode can result in erroneous source lines. Lengthy insertions can eEgd
be made into an existing source file by renumbering the file before entering

the automatic mode.

The mini-editor allows text lines in the source file to be modified. When under
control of the mini-editor, typing the Escape key switches from the scroll mode to
the modify mode. Editing of the source line begins at the first character of the
label field. Characters typed in under the modify mode are used to build the new
source line. The old source line can be used as a model for generating the new
source line: characters can be retrieved from the old line and placed in the new
1ine. In the modify mode, the following control characters are recognized:

CONTROL-A Fetch the next character from the old line and place it in the
new line.

CONTROL-Z Delete the next character from the old line.
CONTROL-Q Back up one character in both the old and new lines.
CONTROL-G Transfer the remainder of the old line to the new line.

CONTROL-S Reads a character from the console, and transfers all characters
from the old line up to, but not including, the input character.

CONTROL-Y An insert toggle. Between successive toggles, input characters are
inserted into the new line.

Any other characters typed in under the modify mode are entgred into the new
line, overriding the corresponding character from the old line.

2-7

ASSEMBLER OPERATION

The assembler operates upon the currently active source file only. The source
file consists of a sequence of source lines composed of the four fields: label,
operation, operand, and comment.

The Tabel field, if present, must start in the second character position after
the line number. Entries present in the Tabel field are maintained in a symbol
table. These entries are assigned a value equal to the program counter at the
time of assembly, except that for the SET and EQU pseudo operations the variable
defined by the label field is assigned the value of the operand field. The
variables defined by the label field can be used in the operand field of other
instructions either as data constants or locations.

The operation field, separated from the label field by one or more blanks or a
colon, cannot appear before the third character following the 1ine number.
Entries in the operation field must consist of either a valid Z80 instruction
or one of the several pseudo-operations.

The operand field, separated by a blank from the operation field, consists of

an arithmetic expression containing one or more program variables, constants,

or the special character $ connected by the operators + or -. Evaluation

of the operand field is Timited to a left to right scan of the expression, using
16 bit integer arithmetic. Operations requiring multiple operands (e.g., MOV A,B
or BIT 3,IX,4) expect the operands to be separated by a comma.

The special operand § refers to the program counter at the start of the
instruction heing assembled.* The program variable § can be used as any otner
program variable except that its value changes constantly throughout assembly.
The Tocation counter § allows the user to employ program relative computations.

Assembler constants may be either decimal or hexadecimal character strings.
Valid hexadecimal constants must begin with a decimal digit, possibly 9§, and
be terminated by the suffix H.

* NOTE: Some assemblers interpret $ as the start of the next instruction.

2-8

A1l of the 780 registers have been assigned predefined mnemonics.
assignments agree with those given by I[NTEL and ZILOG.

REGISTER MNEMONICS

The predefined register set is defined as:

Registef
A

== MM T m O O

SP
PSW
IX
IY
RF
v

Definition

Accumulator
8 or 16 bit
8 bit

8 or 16 bit
8 bit

8 or 16 bit

8 bit

Memory Indirect {HL)
Stack Pointer
Program Status Word
16 bit Index

16 bit Index
Refresh Register
Interrupt Vector -

These register assignments may not be redefined.

Value

none -,
none *
none

none x

These

ASSEMBLY LANGUAGE

As a consequence of favoring the INTEL mnemonic set over that of ZILOG,
the Z80 instruction superset has been invented. One consideration in the
definition of instruction mnemonics is standard assembly 1anguage convention,
In the instruction mnemonics which follow
pp gqq refers to an arbitrary 16 bit datum;
yy refers to an arbitrary 8 bit datum;
refers to a Z80 displacement except for relative jumps;
refers to an 8 bit register (A, B, C, D, E, H, L, M)
RP refers. to a 16 bit register pair (B, D, H, SP)
QP refers to a 16 bit register pair (PSW, B, D, H)

MNEMONIC ZIL.0G REMARKS
8 BIT LOAD
MOV R,R LD R,R Register to register (to, from)
MoV R,IX,d LD R, (IX+d) Register indirect RAVD
gmov R, IV.d LD R, (IV+d) "
| MOV IX,d,R LD (IX+d),R Memory indirect (RZM)
iMOV IY,d,R LD (IY+d),R .
‘MOV A, IV LD A,I Fetch interrupt vector
i | MOV A,RF LD AR Fetch refresh register
‘MOV IV,A LD I,A Load interrupt vector
MOV RF,A LD R,A Load refresh register
ACCUMULATOR LOAD/STORE
LDA ppqq LD A,(nn) Accumulator direct
LDAX B LD A, (BC) Accumulator extended
LDAX D LD A, (DE)
STA pp aq LD {(nn),A v Accumulator direct
STAX B LD (BC),A Accumulator extended
STAX D , LD (DE),A
8 BIT LOAD IMMEDIATE
MVI R,vy ‘ LD R,n Register immediate
MVI IX,d,yy LD (IX+d),n Memory indirect immediate
MVT 1IY.,d,yy LD (IY+d),n ‘

2-10

MNEMONIC 1106 REMARKS
16 BIT LOAD/STORE ~ RP =8, D, H, SP QP = PSW, B, 0, H
LXI RP,pp qq LD RP,nn Extended immediate
LXT IX,pp qq LD IX,nn
LXI IY,pp qq LD IY,nn
LHLD pp aq LD HL,(nn) Extended indirect load
LBCD pp aq LD BC,(nn)
LDED pp aq LD DE,(nn)
LIXD pp qq LD IX,(nn)
LIYD pp aq LD 1IY,(nn)
LSPD pp qq LD SP,(nn)
SHLD pp qq LD (nn),HL Extended indirect store
SBCD pp qq LD (nn),BC
SDED pp qq LD (nn),DE
SIXD pp qq LD (nn),IX
SIYD pp qq LD (nn),IY
SSPD pp qgq LD (nn),SP
SPHL LD SP,HL Set stack pointer
SPIX LD SP,IX
SPIY LD SP,IY
PUSH QP PUSH QP To stack
PUSH IX PUSH IX
PUSH 1Y PUSH IY
POP QP POP QP From stack
POP IX POP IX
POP 1Y POP 1Y
EXCHANGE, BLOCK TRANSFER, AND SEARCH
XCHG EX DE,HL Exchange
T"EX EX AF,AF'
: EXX EXX
i XTHL EX (SP),HL
XTIX EX (SP),IX
| XTIY EX (sp),IY
LDI LDI Transfer
LDIR LDIR
LDOD LOD
|LDDR LDDR
CPD CPD Search
CPDR CPDR
CPII CPI
CPIR

CPIR

2-11

MNEMONIC

~

ILOG

—————
e—

8 BIT ARITHMETIC AND LOGICAL

REMARKS

ADD R ADD R Add register

ADI vy ADD A,vyy Add immediate

ADD IX,d ADD (IX+d) Add indirect

ADD 1Y,d ADD (IY+d)

ADC R ADC R Register with carry

X,d ADC (IX+d . .

,Qgg %Y,d ADC EIY+d§ Memory indirect with carry

ACT vy ADC n Immediate with carry

SUB R SuB ?) Subtract Register

SUB IX,d SUB (IX+d , . s
SUB IY.d SUB (TY+d) Subtract memory indirect

SBB R SBC ?) Register with carry
SBB IX,d SBC (IX+d C .

SBB IY.d SBC (Ide) Memory indirect with carry

ANA R AND ?) Logical and register .

ANA IX,d AND (IX+d s

ANA IY.d AND (IX+d) Memory indirect

gRA R OR ?) Logical OR register
RA IX,d OR (IX+d s

ORA 1Y.d OR (IY+d) Memorj indirect

XRA R XOR ?) Exclusive OR register

XRA IX,d XOR (IX+d N

XRA TY.d XOR (IV+d) Memory indirect

CMP R cP ? | Register compare

CMP IX,d CP (IX+d c s

CMP 1Y.d P (1Y+d) Memory indirect

INR R INC R Register increment

INR IX,d INC (IX+d)

INR 1IY,d INC (IY+d)

DCR R DEC R Register decrement

DCR IX,d DEC (IX+d)

DCR IY,d DEC (IY+d) _ v

ANI yy AND yy Accumulator immediate
XRI yy XOR yy

CPI yy CP yy

ORI yy OR yy

SUT yy SUB yy

SBI yy SBC A,yy

2-12

MNEMONIC

ZIL0G

REMARKS

GENERAL PURPOSE ARITHMETIC AND CPU CONTROL

DAA DAA Decimal adjust accumulator
CMA CPL Complement accumulator logical

- NEG NEG Negate accumulator
CMC CCF Complement carry flag
STC SCF Set carry flag
NOP NOP No operation
HLT HALT HALT CPU
DI DI Disable interrupts
ET . EI Enable interrupts
M IM 9 Set interrupt mode
M1 M1 '
M2 IM 2

16 BIT ARITHMETIC GROUP RP = B, D, H, SP

DAD RP ADD HL,RP 16 bit add

“CAD RP ADC HL,RP 16 bit add with carry
SBC RP SBC HL,RP 16 bit subtract with carry
DAD IX,RP ADD IX,RP 16 bit add register pair to IX (RP # H or IY)
DAD IY,RP ADD IY,RP 16 bit add register pair to IY (RP # H or IX)
INX RP INC RP 16 bit increment
INX IX INC IX
INX TY INC IY
DCX RP DEC RP 16 bit decrement
DCX IX DEC IX
ECX 1Y DEC 1Y

2-13

MNEMONIC

ROTATE AND SHIFT GROUP

~

ILOG

m——
—————

REMARKS

R=8B,C, D, E, H, L, M, IX+d, [Y+d

RLC RLCA Accumulator Teft circular

RAL RLA Left circular through carry
RRC RRCA Accumulator right circular
RAR. RRA Right circular through carry
SLC R RLC R Register left circular

§LC M RLC (HL) Memory 1éft circular

SLC IX,d RLC (IX+d) Left circular memory indirect
SLC IY,d RLC (IY+d)

RL R ~RL R Régister lTeft through carry
SRC R RRC R Register right circular

RR R RR R Register right through carry
SLAR SLA R Left 1inear bit P =29

SRA R SRA R Right linear bit 7 = extended
SRL R SRL R Right Tinear bit 7 = 9

RLD RLD Left decimal

RRD ‘ Right decimal

RRD

2-14

MNEMONIC ZILOG REMARKS
BIT MANIPULATION = bit number P < b <7
BIT b,R BIT b,R Zero flag = bit b of register R
BIT b,M BIT b, (HL)
BIT b,IX,d BIT b, (IX+d)
?IT b,IY,d BIT b, (IY+d)
STB b,R SET b,R Set (1) bit b of register or
STB b,M SET b, (HL) memory
STB b, IX,d SET b, (IX+d)
STB b,IY,d SET b, (IY+d)
RES b,R RES b,R Reset (p) bit b of register or
RES b,M RES b, (HL) memory
RES b, IX,d RES b, (IX+d)
RES b,IY,d RES b, (IY+d)

INPUT/OUTPUT GROUP

P = port number

R = register

INP IN A, (P) Input to accumulator

CINR IN R,(C) Register R from port (C) (R#M)
INI INI Input and increment

INIR INIR Repeated input and increment

IND IND Input and decrement |

INDR INDR Repeated input and decrement

QUT P ouT (P),A Qutput accumulator

COUT R OuT (C),R Register R to port (C) (R#M)
ouTl OUTI Qutput and increment |

QUTIR QUTIR Repeated output and increment
0uTD ouUTD Output and decrement

OQUTDR Repeated output and decrement

QUTDR

2-15

~

MNEMONIC 1LOG ‘ REMARKS N

e ——
B

(54

JUMP_GROUP V = location (16 bit) - dest = destination (+128 bytes displacement)

MP PV Jump

INC v 3P NC.V No carry

JQ v JP C,V Carry

JNZ V JP NZ,V Not zero

Jz v JP Z,V Zero

PO V Jp PO,V Parity odd

JPE JP PE,V Parity even

JPV JP P,V Positive

MV P M,V Negative

JR dest JR d Jump relative

JRC dest JR C,d Carry

JRNC dest JR NC,d No carry

JRZ dest R Z,d Zero

JRNZ destk JR NZ,d ’ Not zero

PCHL JP (HL) Branch to 1§cation in HL

PCIX JP (IX) Branch to IX

PCIY ’JP (1Y) Branch to IY .

DINZ dest DJNZ,d Decrement and jump relative if
: not zero

MNEMONIC ZIL0G REMARKS
CALL AND RETURN GROUP V = address
CALL V CALL V Subroutine transfer
CNC V CALL NC,V No carry
ccv CALL C,V Carry
CNZ Vv CALL NZ,V Not zero
CZ Vv CALL Z,V Zero
CPE V CALL PE,V Parity even
CPO V. CALL PO,V Parity odd
CPV CALL P,V Positive
MV CALL M,V Negative
RET RET Return
RNC RET NC No carry
RC RET ¢ Carry
RNZ RET NZ Not‘zero
RZ RET Z Zero
RPE RET PE Parity even
RPO RET PO Parity odd
RP RET P Positive
RM - RET M Negative
?EETI RETI Return from interrupt
‘lejN RETN Return from non-maskable interrupt
§ST n RST n Restart

2-17

ASSEMBLER

- ORG. expr

PSEUDO OPERATIONS

PSEUDO OPERATIONS expr = arithmetic expression

Define program counter to nnnn

DS expr

Reserve n bytes of storage

OW expr

16 bit datum definition

DB éxpr

8 bit datum or ASCII character string definition.
The operand may be an ASCII character string
enclosed in single quotation marks. :
Examples:

DB 5,6,7
DB 'ASCII STRING',@DH,PAH

EQU.

The operand defined by the label field is set
equal to the expression defined by the operand
field. This operation is performed in pass one
of the assembler and the variable definition is
fixed by the first such definition encountered.

SET .

The operand defined by the label is set equal to

the expression defined by the operand field. This
operation is performed in both pass 1 and pass 2

and the replacement is effected upon every encounter.

IF expr

expr is evaluated. If the result is zero the scanner
skips to the next ENDIF, END, or end of file before
resuming assembiy. If the expression evaluates to
any non-zero value, assembly proceeds. Operation is
performed in both passes.

ENDIF -

Identifies the end of a conditional assembly block.

END

Terminates assembly.

USE operand

Allows program assembly to proceed with multiple
location counters. The operation is.skipped if

the operand has not previously been defined; '
however, the definition can appear after the
reference, to be used by pass 2. The USE operation
is best explained by example.

AORG SET DA@DPH
BORG SET (B@QOH
USE AORG; SET code origin to AORG

g code at PAPPPOH g

USE BORG; SET value of AQRG to PC
SET PC to BORG

g code at {BPOOH ;

2-18

USE AORG; Resume code at end of previous
block which started at A220.

s

USE BORG; Resume code at END of block
which started at BZ90.

2-19

ASSEMBLER ERRORS/DIAGNOSTICS

Assembler error and diagnostic messages consist of single character identifiers
which flag some irregularity discovered either during pass 1 or pass 2 of the
assembly. The single character precedes the line number of the formatted
assembly Tisting.

P

<

O o > X O W

Phase error: the value of the label has changed between the two
assembly passes.

Label error: Tlabel contains illegal or too many characters, e.g., LB#L:
Undefined program variable.

Value error: the evaluated operand is not consistent with the operat1on
e.g., MVI A, 199PH (not a valid 8 bit operand).

Syntax error e.g., MOV A+B
Opcode error, e.g. DCS B
Missing label field.
Argument error.

Register error.

Duplicate label error.

EXISTING SOURCE FILES

ASMB is compatible with programs generated under SP#1 or its many descendents,

SCS 1,2, ESP-1, ALS-8, etc. These related source programs can be included
in the ASMB d1sk system by the following procedure:

1. Load ASMB and create a memory file at a convenient memory Tlocation.

2. Exit from ASMB and load the existing source file into memory
starting at the memory location defined in step 1.

3. Re-enter ASMB and examine the file with the P command.
4. Delete and re-enter the last 1ine of the source code.
5. Save the memory file on disk via the W command.

6. EDIT will re-format the source file for MAKRO via the N command.

‘While all such files are compatible with ASMB, EDIT may be unable to effect

the reformat. A failure may arise if EDIT does not encounter the ASMB
end-of-file Pl (catastrophic).

2-20

MAKRO

An extraordinary disk-based macro assembler

for the development of large programs on
Z80 or 8080 machines.

Copyright 1978

Allen Ashley
395 Sierra Madre Villa
Pasadena, California 91107

(313) 793-5748

3-1

[NTRODUCTION

MAKRO is a powerful disk-based macro assembler for the development of large
programs whose source files may exceed available memory. Both the source and
object files of MAKRO reside on disk, freeing all available memory for macro
storage and the construction of symbol tables. MAKRO is an extraordinarily
powerful development tool incorporating many features not commonly available.
The assembler is a working tool which has evolved under the demands generated
by its use.

Program development with MAKRO is a two-step process: the source file is
created, modified and saved on disk using the text editor EDIT; MAKRO
reads the source file and creates the corresponding object file.

MAKRO assembles all Z80 and 8080 instructions. Departing from the cumbersome
ZILOG assembly language, MAKRO features instruction mnemonics which are
logically and syntactically similar to the more widely familiar INTEL instruc-
tion set. Mnemonics for the 8080 subset of the Z80 instruction set are
identical to those defined by INTEL, and users already familiar with INTEL
assembly language will readily acquire the additional Z8) commands.

MAKRO is written entirely in the 8080 instruction set and is fully operational
on either 8080 or Z80 machines. MAKRO can therefore serve as a two-way cross-
assembler -- assembling 8080 programs on a Z80 machine or Z80 programs on an
8080 machine. The versatility and power of MAKRO make it an ideal development
tool for those owning a Z80 machine or anticipating a future expansion of their
8080 machine to the more powerful Z80 processor.

3.2

MAKRO INPUT/QUTPUT

MAKRO is a two-pass assembler, reading the source file first to construct
a symbol table, then generating the object file on the second pass.

Source code for MAKRO consists of the four fields: Label, Operation, Operand,
and Comments.

(1) A line starting with a semi-colon is interpreted as a comment.

(2) Entries in the label field must be terminated by a colon.. The
label identifier starts with the first non-blank character and
ends with the colon. The colon requirement applies to SET and
EQU operations, and macro definitions.

(3) If a label is present, the operation field begins with the first
non-blank character after the colon.

(4) If no colon (hence no label) is detected, the operation field
begins with the first non-blank character.

(5) A comment field must be preceded by a semi-colon. Trailing
comments preceded by a double semi-colon ;; are tabbed to the
right of the operand field. Comments are not allowed on source
lines containing a macro call.

(6) Source lines must be terminated by carriage return/line feed.

The MAKRO user must identify the origin of the object code by an ORG operation
at the start of his source code. Failure to do so will result in the code
being assembled at location 9. :

The list output of MAKRO displays the program counter, object code, and a
well-formatted source display. Horizontal tab sets align the label, operation
and operand fields for all source lines. An alphabetized symhol table is
presented at the conclusion of pass 2 of the assembly.

MAKRO utilizes all available memory after the load address. Program constants
and assembler symbol tables reside in memory immediately after MAKRO. Macro
text is stored at highest available memory The region between is used for
macro processing operations. '

3-3

ASSEMBLER OPERATION

Entries present in the label field are maintained in a symbol table. These
entries are assigned a value egual to the program counter at the time of
assembly, excent that for the SET and EQU pseudo-operations, the variable
defined by the label field is assigned the value of the operand field.
Entries cresated in the symbol table by the macro definition refer to

the storage location assigned to the text of the macro body. The variables
defined by the Tabel field can be used in the operand field of other instruc-
tions either as data constants or locations.

The operation field is separated from the label field by the colon. If no
label field is present, the operation field may begin anywhere on the line.
Entries in the gperation field must consist of either a valid Z80 instruction,
one of the several pseudo-operations, or a previously defined macro.

The operand field, separated by a blank from the operation field, consists of
an arithmetic expression containing one or more program variables, censtants,
or the special characters S, @ or %, connected by valid operators. Evaluation
of the operand field is performed using 16-bit integer arithmetic. Operations
requiring multiple operands (e.g., MOV A,B or BIT 3,IX,4) expect the operands
to be separated by a comma. Parameters passed in a macro call are separated
by commas and terminated by a carriage return.

The special operand S refers to the program counter at the start of the instruc-
tion being assembled. (NOTE: some assemblers interpret $§ as the start of the
next instruction.) The program variable $ can be used as any other program
variable except that its value changes constantly throughout assembly. The
location counter S allows the user to employ program-relative computations.

MAKRO recognizes two other special operands. The @, when used as an operand,
refers to the repetition counter index. The %, as an operand, refers to the
number of actual parameters in the current macro caill.

Assembler constants may be decimal, hexadecimal, octal, or binary. Valid
hexadecimal constants must begin with a decimal digit, possibly @, and be
terminated by the suffix 'H.' Binary constants are terminated by '8" and
may contain only the digits @ and 1. Octal constants are terminated by 'O’
and may contain only the digits 2 - 7.

After completion of an assembly, MAKRQO may not be re-entered.

REGISTER MMEMONICS

A11 of the Z80 registers have been assigned predefined mnemonics. These
assignments agree with those given by INTEL and ZILOG.

The predefined register set is defined as:

Register Definition Value

A Accumulator 7
8 8 or 16 bit i
o 8 bit 1
D 8 or 16 bit 2
E 8 bit 3
H 8 or 16 bit 4
L 8 bit 5
M Memory Indirect (HL) 6

SP Stack Pointer 6

PSW Program Status Word 6

IX 16 bit Index none
IY 16 bit Index ‘ none
RF Refresh Register none
v Interrupt Vector none

These register assignments may not be redefined.

3-5

ASSEMBLY LANGUAGE

As a consequence of favoring the INTEL mnemonic set over that of ZILOG,
the Z80 instruction superset has been invented. One consideration in the
definition of instruction mnemonics is standard assembly language convention.
In the instruction mnemonics which follow

pp qq refers to an arbitrary 16 bit datum;

vy refers to an arbitrary 8 bit datum;

~refers to a 780 displacement except for relative jumps;
refers to an 8 bit register (A, B, C, D, E, H, L, M)
RP refers to a 16 bit register pair (B, D, H, SP)
QP refers to a 16 bit register pair (PSW, B, D, H)

MMEMONIC Z21L0G REMARKS
8 BIT LOAD
MOV R.R LD R,R , Register to register (to, from)
MOV R,IX,d LD R, (IX+d) Register indirect REM
MOV R,IY,d LD R,{IY+d) ! ‘ (RAM)
MOV IX,d,R LD (IX+d),R Memory indirect (R#EM)
MOV IY,d,R LD (IY+d),R
MOV A, 1V LD A,I Fetch interrupt vector
MOV A,RF LD A,R Fetch refresh register
MOV _IV,A LD I,A Load interrupt vector
MOV RF,A LD R,A Load refresh register
ACCUMULATOR LOAD/STORE
LDA ppag LD A, (nn) Accumulator direct
LDAX B LD A,(BC) Accumulator extended
LDAX D ___LDA,(DE) :
STA pp qq LD (nn),A Accumulator direct
STAX B LD (BC),A Accumulator extended
STAX D LD (DE).A
8 BIT LOAD IMMEDIATE
MVI R.yy LD R,n ' Register immediate
MVT IX.d,yy LD (IX+d),n Memory indirect immediate
MVI IY.,d,yy LD (IY+d),n

3-6

MNEMONIC ZI11.0G REMARKS

16 BIT LOAD/STORE ~RP =B, D, H, SP QP = PSW, B, D, H
LXI RP,pp qq LD RP,nn Extended immediate
LXT IX,pp qq LD IX,nn
LXT IY,pp qq LD IY,nn
LHLD pp qq LD HL,(nn) Extended indirect load
LBCD pp qq LD BC,(nn)
LDED pp qq LD DE,(nn)
LIXD pp qq LD IX,(nn)
LIYD pp qq LD IY,(nn)
LSPD pp qq LD SP,(nn)
SHLD pp qq LD (nn),HL Extended indirect store
SBCD pp qq LD (nn),BC
SDED pp qq LD (nn),DE
SIXD pp qq LD (nn),IX
STYD pp qq LD (nn),IY
SSPD pp aq LD (nn),SP
SPHL LD SP,HL Set stack pointer
SPIX LD SP,IX
SPIY LD SP,IY
PUSH QP PUSH QP To stack
PUSH IX PUSH IX
PUSH 1Y PUSH 1Y
POP QP POP QP From stack
POP IX POP IX
POP 1Y POP IY

EXCHANGE, BLOCK TRANSFER, AND SEARCH
XCHG EX DE,HL Exchange
EX EX AF,AF' ’
EXX EXX
XTHL EX (SP),HL
XTIX EX (SP),IX
XT1Y EX (SP),IY
LDI LDI Transfer
LDIR LDIR
LDD LDD
LDOR LDDR
CPD CPD Search
CPDR CPDR
CPII CPI
CPIR CPIR

3-7

MNEMONIC

~N

ILOG

e ity
—————

8 BIT ARITHMETIC AND LOGICAL

REMARKS

ADD R ADD R _ Add register

ADI vy ADD A,vyy Add immediate

ADD IX,d ADD (IX+d) Add indirect

ADD 1IY,d ADD (IY+d)

ADC R ADC R Register with carry
ﬁgg %é’g ﬁgg E%é:gg Memory indirect with carry
ACI vy ADCn Immediate with carry
SUB R SUB R Subtract Register

' ggg §$’g ggg §%§133 Subtract memory indirect

SBB R SBC R Register with carry
ggg %5’3 ggg E%é:gg Memory indirect with carry
ANA R AND ?) Logical and register
ANA IX,d AND (IX+d N

ANA IY.d AND (1X+d) Memory indirect

ORA R OR R Logical OR register

R s + s e
8Rﬁ %i,g 82 §%§+3g Memory indirect

XRA R XOR R Exclusive OR register
XRA IX,d X + C g

YRA %Y,d ng §%§+g% Memory indirect

CMP R CP R Register compare

MP IX, P + .

gMP %ﬁ’g gp E%$+gg Memory indirect

INR R INC R Register increment
INR IX,d INC (IX+d)

INR IY,d INC (IY+d)

DCR R ~DEC R Register decrement
DCR IX,d DEC (IX+d)

DCR IY,d DEC (IY+d)

ANI yy AND yy Accumulator immediate
XRI yy XOR yy

CPT yy CP vy

ORI yy OR yy

SUT yy SUB yy

SBI vy SBC A,vy

MNEMONIC

~

ILOG

REMARKS

GENERAL PURPOSE ARITHMETIC AND CPU CONTROL

DAA DAA Decimal adjust accumulator
CMA CPL Complement accumulator logical
NEG NEG Negate accumulator
CMC CCF Complement carry flag
STC SCF Set carry flag
NOP NOP No operation
HLT HALT HALT CPU
DI DI Disable interrupts
El EI Enable interrupts
IMD IMD Set interkupt mode
M1 M1)
IM 2 IM 2
16 BIT ARITHMETIC GROUP Rp = B, D, H, SP
DAD RP ADD HL,RP 16 bit add
CAD RP ADC HL,RP 16 bit add with carry
SBC RP SBC HL,RP 16 bit subtract with carry
DAD IX,RP ADD IX,RP 16 bit add register pair to IX (RP # H or IY)
DAD IY,RP ADD IY,RP 16 bit add register pair to IY (RP # H or IX)
INX RP INC RP 16 bit increment
INX IX INC IX
INX IY INC IV
DCX RP DEC RP 16 bit decrement
DCX IX DEC IX
OCX IY DEC 1Y

3-9

MHEMONIC

ROTATE AND SHIFT GROUP

ZILOG REMARKS

—————

R=8,C, D, E, H, L, M, IX+d, IY+d

RLC RLCA - Accumulator left circular

RAL RLA Left circular through carry
RRC RRCA Acﬁumulator right circular
RAR RRA Right circular through carry
SLC R RLC R Register left circular

SLC M RLC (HL) Memory left circular

SLC IX,d RLC (IX+d) Left circular memory indirect
SLC IY,d RLC (IY+d)

RL R RL R Register left through carry
SRC R RRC R Register right circular

RR R RR R Register right through carry
SLA R SLA R Left linear bit P =29

SRA R SRA R Right linear bit 7 = extended
SRL R SRL R Right linear bit 7 =9

RLD RLD Leff decimal

RRD RRD Right decimal

3-10 -

MNEMONIC ZIL0G REMARKS
BIT MANIPULATION = bit number P < b <7
BIT b,R BIT b,R Zero flag = bit b of register R
BIT b,M BIT b, (HL)
BIT b,IX,d BIT b, (IX+d)
BIT b,IY,d BIT b, (IY+d)
STB b,R SET b,R Set (1) bit b of register or
STB b,M SET b, (HL) memory
STB b, IX,d SET b, (IX+d)
STB b,1IY.d SET b, (IY+d)
RES b,R RES b,R Reset (P) bit b of register or
RES b,M RES b, (HL) memory
RES b, IX,d RES b, (IX+d)
RES b,IY,d RES b, (IY+d)

INPUT/QUTPUT GROUP

P = port number

R = register

IN P IN A, (P) Input to accumulator

CIN R IN R,(C) Register R from port (C) (R#M)
INI INT Input and increment

INiR INIR Repeated input and increment

IND IND Input and decrement

INDR INDR Repeated input and decrement

QUT P ouT (P),A Qutput accumulator

COUT R ouT (C),R Register R to port (C) (R#M)
OUTI OuTI | Qutput and increment |
QUTIR QUTIR Repeated output and increment
ouTD ouTD Qutput and decrement |

QUTDR QUTDR Repeated dutput and decrement

3-11

~

MNEMONIC [L0OG ‘ REMARKS N

Lidi

JUMP GROUP Y = location (16 bit) dest= destination (:128 bytes displacement)

JMP V ' JPV Jump

JNC v JP NC,V No carry

JC Vv JP C,V Carry

JNZ V JP NZ,V Not zero

Jz v JP Z,V Zero

JPO V JP PO,V Parity odd

JPE v JP PE,V Parity even

JP v JP P,V Positive

JM v> JP M,V Negative

JR dest JR d Jump relative

JRC dest JR C,d Carry

JRNC dest JR NC,d No carry

JRZ dest JR Z,d Zero .

JRNZ dest JR NZ,d Not zero

PCHL JP (HL) Branch to Tocation in HL

PCIX JP (IX) Branch to IX

PCLY JP (1Y) Branch to Y

DJINZ dest DJNZ,d Decrement and jump re]ative’if
not zero

3-12

MNEMONIC ZILOG REMARKS
CALL AND RETURN GROUP V = address
CALL V CALL V Subroutine transfer
CNC V CALL NC,V No carry
ccv CALL C,V Carry
CNZ V CALL NZ,V Not zero
czv CALL Z,V Zero
CPE V CALL PE,V Parity even
CPO V CALL PO,V Parity odd
cP v CALL P,V Positive
CM v CALL M,V Negative
RET RET Return
RNC RET NC No carry
RC RET C Carry
RNZ RET NZ Not zero
RZ RET Z Zero
RPE RET PE Parity even
RPO RET PO Parity odd
RP RET P Positive
RM RET M Negative
 RETI RETI Return from interrupt
RETN RETN Return from non-maskab?e interrupt
RST n | RST n Restart |

3-13

ASSEMBLER

ORG expr

PSEUDO OPERATIONS

PSEUDO _QPERATIONS expr = arithmetic expression

Define program counter to nnnn.

DS eXpr

Reserve n bytes of storagé. The first and last bytes of the
reserved storage area are modified. . An unmodified reserved
area can be created by ORG $+SIZE.

DW expr

16-bit datum definition.

DB expr

8-bit data or ASCII character string definition. The operand
may be an ASCII character string enclosed in single quotation
marks. Examples:

DB 5,MDH, 'FILE'
DB 'ASCIT STRING',@DH

EQU

The operand defined by the label field is set equal to the
expression defined by the operand field. This operation is
performed in pass 1 of the assembler and the variable definition
is fixed by the last such definition encountered in pass 1.

SET

The operand defined by the label is set equal to the expression
defined by the operand field. This operation is performed in
both pass 1 and pass 2 and the replacement is effected upon
every encounter,

IF expr

expr is evaluated. If the result is zero the scanner skips to
the next ENDIF, END, or end-of-file before resuming assembly.
If the expression evaluates to any non-zero value, assembly
proceeds. Operation is performed in both passes. Read IF as
"SKIP IF ZERO."

NIF expr

expr is evaluated. If the result is not zero the scanner skips
to the next ENDIF, END, or end-of-file before resuming assembly.
Equivalent to NOT IF. Read NIF as "“SKIP IF NOT ZERO."

ENDIF

Identifies the end of a conditional assembly block.

END expr

Terminates assembly. expr is an optional execution address to

which the hex loader will branch after completion of the load.

3-14

ASSEMBLER P PERAT expr = arithmetic expression

USE operand Allows program assembly to proceed with multiple Tocation count-
ers. The operation is skipped if the operand has not previously
been defined; however, the definition can appear after the
reference, to be used by pass 2. The USE operation is best
explained by example:

AORG: SET QAQPOH
BORG: SET PB@POH

USE AORG; SET code origin to AORG
U CODE AT DAGOPH 1
USE BORG; SET value of AQRG to PC

SET PC to BORG
{ CODE AT @B@OQH]

USE AQRG; Resume code "at end of previous
block which started at A@99.

[CODE 1]

USE BORG; Resume code at END of block which
started at Bpo@.

The USE instruction can be used to insert program data at the
end of instruction code:

AFTR: SET LAST; Not known on pass 1.
ORG Start; Somewhere.

L CopE 1

RESUM: SET §; Remember where we are,
USE AFTR

STRING: DB 'CHARACTERS'
USE RESUM; Resume in-=1ine coding.

{ copE 1]

USE AFTR

[MORE DATA]

USE RESUM; Continue

LAST: SET $
END

MACRO Signifies macro definition.

3-15

:

PSEUDO OPERATTONS expr = arithmetic expression

MACND - Signifies end of macro definition

LOCAL Signifies the start of an assembly block. All labels generated
within a local block are confined to that block.
Signifies the end of an assembly block, global assembly resumes.

LOCND

LOCAL/LOCND assembly blocks allow temporary macro definitions.

GOTO label

Directs assembler to skip forward to label before resuming
assembly. If label is reached via a GOTO branch, the symbol will
not be entered into the symbol table. If label is reached via

a normal assembly sequence it is treated as an ordinary statement
label. GOTO is used in conjunction with conditional assembly to
effect complex assembly sequences. GOTO allows forward refer-
ences only. An invalid label terminates the assembly pass.

IFGZ expr;label If expr evaluates to zero, the assembler branches forward to

label; otherwise assembly continues.

IFGNZ expr;label If expr evaluates to non-zero, the assembler branches forward

to label; otherwise assembly continues. Labels reached by
IFGZ and IFGNZ branches are not entered into the symbol table.
Note that label must be separated by a semi-colon from the end
of expr.

REPT expr Repeat block. The value of expr determines the number of times
the repeat block is executed.

REPND Defines the end of a repeat block. The portion of source code
bracketed by REPT/REPND is assembled repeatedly.

USR expr | Assembly-time branch to user routine, MAKRO branches to the

address given by the value of expr. The user routine may
utilize all registers. MAKRO may be re-entered by a return RET.
Upon entry to the user routine, the zero flag is set for pass 1
of the assembly, and the DE registers contain the address,
within MAKRQ, at which assembly must resume. This pseudo-
operation provides the means for controlling output.

IFEQ STR1,STR2;LABEL Branch to LABEL if character string STR1 is identical

to STR2.

[FNE STRl,STRZ;LABEL Branch to LABEL if character string STR1 is not identical

to STR2.

3-16

ASSEMBLER - PSEUDC QPERATIONS expr = arithmetic expression
[FNEG expr;LABEL Branch to LABEL 17 expr results in a negative value.

[FDEF SYMBL;DEFND 8ranch to DEFND if SYMBL has been entered in the symbol table.

LIST Turns on full assembly 1isting, restoring any pass options.

NOLST Turns off full assembly listing, retaining diagnostic and error
messages.

COMPS STR1,STR2;LABEL Branch to LABEL if character string 2 is greater than

character string 1.

LINK FILENAME Merges disk file FILENAME into the current assembly. The LINK

pseudo-operation enables the assembly to include previously devel-
oped program modules.

INPUT

MAKRO allows the user to define program variables at assembly time.
The INPUT pseudo-operation accepts an expression from the console
input, evaluates .that expression, and assigns the computed value to
the variable defined by the Tabel field.

XPAND

‘Display macro expansion (default case).

NOEXP

Suppress macro expansion.

APUSH expr

Places the value of expr on the internal assembly stack.

LABEL :APOP

Similar to SET pseudo-op except that value of LABEL is recovered
from assembly stack. APUSH and APQOP are primarily used within nested
control macros as in FOR/NEXT Toops. Such nesting requires that the
starting address of FOR loops be recovered in reverse sequence by the
following NEXT macros.

PAGE

Causes page eject (via form feed).

TITLE 'PAGE HEADING' Causes corresponding heading to appear on subsequent

pages of the assembly listing. If the TITLE field is empty, MAKRO
will prompt the user during pass 2 for the page heading. The prompt
option 1is exercised by terminating the TITLE pseudo-op with a car-
riage return.

SETQ expr

Sets internal label-generating assembly variable to value of expr.
A question mark appearing in the label field is expanded as the
character string representing the hex value defined by SETQ. This
operation was implemented to allow communication between macros.

3-17

RELOCATION PSEUDO-

QPERATIONS

The relocating assembler, MAKRO version AMA.2, additionally recognizes'

the following pseudo-

LABEL:ENTRY

LABEL:EXTRN

FILE:LIBRY

LABEL :ABSNT expr

operations or directives to the loader LINKED

Loader directive which defines LABEL for reference
in another (independent) assembly.

Loader directive which defines LABEL as a point
created in another assembly, which must be found
by the linkage editor.

Loader directive which defines FILE as an object

library within which one or more external refarences
may be found.

Loader directive which defines LABEL as a fixed location
to be used as an external reference in another assembly.
The ABSNT directive operates as an assembly EQUate which
can be changed at load time.

3-18

ASSEMBLER ERRORS/DIAGMOSTICS

Assembler error and diagnostic messages consist of single character identifiers
which flag some irregularity discovered during either pass 1 or pass 2 of the

assembly.

O v B =2 O W

Phase error: the value of the label has changed between the
two assembly passes.

Label error: missing operation field or invalid destination label.
Undefined program variable.

Value error: the evaluated operand is not consistent with the
operation, e.g., MVI A, 1p0PH (not a valid 8-bit operand).

Syntax error, e.g., MOV A+B
Opcode error, e.g., DCS B
Missing label field.
Argument error.

Register error,

Duplicate label.

3-19

-~

MAKRO CONDITIONAL ASSEMBLY

The conditional assembly features of MAKRO include

COMPS String comparison

IFEQ Character string equality
[FNE Character string inequality
IFNEG Branch on negative

IFDEF Branch if defined symbol

IF Skip if zero

NIF Skip if not zero

ENDIF Termination of conditional block
IFGZ Branch to label if zero

IFGNZ Branch to label if not zero

GOTO Unconditional branch

These pseudo-operations enable the programmer to direct the assembly by per-
forming assembly time computations. In the simplest application, conditional
assembly allows a program to be written with a number of options, such as
various input/output modes, with the desired array of options selected by
program switches. A single source code module can thus be used for a
variety of applications. More powerful application of conditional opera-
tions directs the assembly according to results generated during the

assembly process. An example of this application is given in the discussion
of macro processing.

The conditional assembly operations effect their branching upon the results
of evaluating an arithmetic expression. The expression begins with the first
non-blank character after the operation field and ends with a carriage

return or semi-colon. The label directed branches IFGZ and IFGNZ include a
destination field following the expression. A semi-colon must separate

the destination from the expression. The destination field is terminated

by a blank or carriage return. Branching is performed in a forward direction

only, the assembler skipping over source code until the destination label or
end-of-file is detected.

Treatment of the destination label in label-directed branches requires
discussion. The general form is

Branch expr; There
else here

[copE]
There:

If the branch condition is not satisfied, assembly proceeds in sequence with
else, in which case the destination label (There) may be reached in the
course of assembly. In this, the fall-through case, the destination label is
treated as an ordinary statement label and is entered into the symbol table.
However, if the branch condition is satisfied, the label is reached via a
skip, and normal assembly proceeds with the first character following the
colon at the destination. The destination label is not seen by the assembler.

3-20

The IF/ENDIF and NIF/ENDIF assembly blocks bracket portions of code which are
conditionally assembled or disregarded. The IF block is disregarded if the

corresponding expression evaluates to zero. The NIF block is disregarded if
the expression evaluates to not-zero. Mnemonically, these conditions refer

to the skip rather than the assembly.

Nested IF/NIF blocks cannot genera11y be assembled correctly. Consider
blocks nested as

a IF exprl

b IF expr2

¢ ENDIF hopefully for the inner
[CODE] some code in here

d ENDIF hopefully for the outer’

Assembly proceeds as follows:

exprl is evaluated, the assembler skipping to the first ENDIF (c) if exprl

is zero. If exprl is not zero, expr2 is evaluated, the assembler reaching
the ENDIF (c) regardless of the results. It is seen that CODE is assembled
regardless of the contents of either expression. The second ENDIF (d) is
superfluous, and is ignored. There may be applications of such behavior, but
the operation seems more likely to be a source of confusion. Complicated
conditional branching is more easily and clearly generated by the label-
directed operations.

A cautionary flag must be raised regarding conditional assembly. Phase
changes of assembly variables (change in value between the two assembly
passes) can result in a totally invalid assembly. If such phase changes
cause the course of the assembler through the source code to differ for

pass 1 and pass 2, the resulting assembly is almost certain to fail. You
must remember that any and all branches performed in pass 1 must be repeated
in pass 2.

The character string tests, IFNE and IFEQ, perform a character-by-character
test of the first two parameter strings, conditionally effecting the branch
upon the outcome of the comparison. The forms of these operations are:

IFEQ STR1,STRZ;LABEL
IFNE STR1,STRZ;LABEL

String 1 begins with the first non-blank character after the operation code
and extends to the character preceding the comma. String 2 includes the
character following the comma through that preceding the semi-colon.

Remember that the destination field must be preceded by a semi-colon and
that the destination label vanishes if the branch is true.

3-21

[FNEG expr;LABEL

expr is evaluated. If the result is negative (15-bit signed arithmetic) the
assembler branches to LABEL. IFNEG, IFGZ and IFGNZ can be combined to effect
any computational branch.

IFDEF SYMBOL;LABEL

The symbol table is searched for symbol. If the entry is found, assembly skips
to LABEL. IFDEF is used to provide automatic type declaration.

COMPS STR1,STR2;LABEL

A character-by-character comparison is made between STR1 and STR2. If STR2
is greater than STRl, assembly branches to LABEL. The COMPS pseudo-op is
used to test parameter type in a macro call.

3-22

MAKRO MACRO CAPABILITY

INTRODUCTION TO MACROS

A macro can be considered an assembly lanquage super-instruction with which
the user can invoke many elementary assembly language statements with a
single macro call. Users familiar with FORTRAN utilize a macro in the
FORTRAN statement function. BASIC programs using the DEF FN operation
capitalize upon an economical feature similar to a macro. The PL/1 pre-
processing pass . is a macro phase.

Assembly Tanguage programming is distinguished from such high level lang-
uages on the basis of the translation from the programmer-oriented language
to the machine-oriented object code. This translation is performed on an
approximately one-to-one basis for assembly language programs -- one
machine instruction for each assembly language instruction. Programs
written in a high level language enjoy greater leverage in that a high
Tevel language statement may result in the generation of many elementary
machine code instructions.

A macro assembler can be regarded as bridging the gap between rudimentary
assembly and high level language programming. Indeed, several high level
languages have been implemented upon an underlying macro structure. A
high level language implemented by macros can furnish the efficiency of
assembly language and the ease of high level programming. Via macros, the
user can design his own open-ended high level language.

MACRQO PROCESSING

Interpretation of a macro involves the three steps:
o macro definition
e macro call
& macro expansion

The macro definition is the means by which the programmer informs the
assembler of the instruction sequence to be effected. Briefly, in the
macro definition the programmer informs the assembler that "when I say
this, I mean that." The macro definition associates a name (label) with
the sequence of instructions. Subsequent to the definition, the macro
name is used as an entry in the op-code field to invoke the entire instruc-
tion sequence. In order to provide more power and flexibility to the
macro, beyond that which can be furnished by a text editor, the macro
definition allows certain parameters (dummy) to be included in the defini-
tion. These dummy parameters appear in the operand field of the macro
definition. The assembler recognizes the dummy parameters when they

3-23

appear in the sequence of instructions comprising the body of the macro.

The macro definition thus consists of the following:

NAME: MACRO dummy parameter 1ist
[MACRO BODY]
MACND signals end of definition.

The macro call consists of the macro name appearing in the operation (op-
code) field of a subsequent instruction. Actual parameters, appearing in
the operand field of the macro call, replace the dummy parameters of the
macro definition.

In the macro expansion phase, the instruction sequence representing the-
body of the macro is delivered to the assembler. Dummy parameters appear-
ing in the macro body are replaced, in sequence, by the actual parameters
included in the call. With the single macro call, the user has invoked

an entire instruction sequence.

MAKRO deals with the macro definition during pass 1 of the assembly.

Source text, comprising the macro body, is transferred to a temporary
buffer following the symbol table. The source text is scanned for occur-
rences of the dummy parameters which are replaced by the parameter sequence
number. The compressed macro text is then stored uppermost in memory.

Macro expansion must be performed for both passes of the assembly. After
recognizing a macro call, the body of the macro is expanded into the
buffer area, with actual parameters replacing the parameter sequence
values. Assembler input is directed to the expanded text (away from the
mass storage device). Input from the mass storage device is resumed when
the body of the macro is exhausted.

3-24

MAKRO IDIOSYNCRACIES

The treatment of macros by MAKRO differs somewhat from conventional tech-
nique. The differences, however, stem from careful consideration, and
MAKRO processing is considerably more powerful than alternative methods.
The primary departure from convention arises in the treatment of macro
parameters. MAKRO delays the binding of parameter values until object
code is generated (all parameters are call by name, not value). Dummy
parameters appearing in the macro definition are treated as character
strings which are recognized in the macro body regardless of their context.
Thus, in the definition

MAX1: MACRO String 1, String 2
[BODY]
MACND

any occurrence of String 1 in the macro body is regarded as a reference to
the first dummy parameter. For example

MAX1: MACRO THIS,THAT

DB 'THIS' sTHIS or THAT
OW THAT

LXI H,THIS

MACND

is treated as reference to the dummy parameters as

pg '1’ 31 or 2
DW 2
LXI H,1

in which the digits represent the parameter sequence.
Actual parameters, in the macro call, are likewise treated without regard

to context in the expansion phase. Character strings representing actual
parameters directly replace the dummy sequence values. Thus the call

MAX1 ALFA,BETA
generates

DB 'ALFA’ ;ALFA or BETA
OW BETA
LXI H,ALFA

The revised and expanded body is then delivered to the assembler for inter-
pretation.

3-25

PROCEDURAL AND SYNTACTICAL RULES

Dummy parameters must be at least two characters in length. All characters,
including blanks, in both actual and dummy parameter strings, are considered
significant.

Dummy and actual parameter strings begin with the first non-blank character
in the operand field. Parameter strings are separated by a comma.

A1l labels generated within the macro body assume global status. The special
character # appearing in the macro body is regarded as a reference to a four-
digit hex number which is unique for each macro expansion. Labels generated
for which global status is undesirable should be suffixed with the # character.

Thus, within the macro expansion,

LABEL: assumes global status
L#: is local to the current expansion

As a consequence of pass 1 treatement of the definition, a macro cannot be
globally redefined.

No macro definition may appear within the body of another macro expansion.

Macro expansions may be nested up to ten deep, i.e., up to ten macro calls
can be simultaneously active. (Refer to REPEAT BLOCK discussion).

Scanning for a macro call precedes the search through the op-code table.
Thus a macro can be used to redefine a machine operation. For example, to
trace jump operations the JMP instruction may be replaced by a macro as

JMP: MACRO ADDRESS
PUSH PSW
MVI A,'J'
CALL CHOUT
CALL CHIN p
POP PSW
DB QC3H
DW ADDRESS
MACND

which causes the program to display 'J' and await keyboard input before
effecting any JMP.

The number of actual parameters ordinarily agrees with the number of dummy
parameters. Excess actual parameters are ignored. Insufficient actual para-
meters default to the null parameter.

The parameter separation character (default ',') in macro calls can be redefined
at the time of macro definition. If the formal parameter list begins with a
comma (,) the character immediately following is taken to be the parameter
separation character for subsequent calls of that macro. The first formal
parameter begins with the character following the separation character. This
option is provided to allow syntactically more attractive macro usage.

3-26

10.

11.

12.

13.

The macro definition must precede any reference.

A null actual parameter, represented by two consecutive commas in the
parameter string of the macro call, results in a null replacement string
in the macro expansion. The first actual parameter is considered null if
the calling parameter string begins with a comma.

The MACND pseudo-instruction may not be preceded by a label field.
MAKRO actual parameters, or portions thereof, enclosed in square brackets (],
are treated as literal blocks and expanded without regard to any delimiters

contained therein. Each such expansion strips off a matching pair of square
brackets. The brackets must be balanced.

3-27

USING MACROS

Macro calls are typically used to alleviate tiresome sequences of instruc-
tions, such as in table generation or monitor function references. Thus

CHOUT: MACRO
CALL QUTCH
MACND

or

STATUS: MACRO PORT,STBIT
S#: IN PORT

ANI STBIT

JZ S#

MACND

illustrate the least imaginative exploitation of macro power. Computer
literature is filled with awesome examples of the heights which can be
reached by sophisticated macro use. See P.J. Brown, MACRQO PROCESSORS,
in which it is revealed that SNOBOL 4 is implemented by macros.

The following illustration of a high level language (BASIC) is presented
in order to suggest more penetrating application of the macro:
TYPE DECLARATION

WORD: MACRC LABEL,VALUE
LABEL: DW VALUE
MACND

STRING: MACRO LABEL,DATA
LABEL: DB 'DATA'

NLABEL:EQU $+1-LABEL If you want string length
MACND |

LOOPVR: MACRQ LOOP Loop index variable

' . Loop. start

LOOPNM: DS 2 : Rep counter

MACND .

PROGRAM LOOPING

FOR: MACRQO LOOP,REPS
LXI H,REPS

SHLD LOOPNM
LOOPST:SET §

MACND

NEXT: MACRO LOOQP
LHLD LOOPNM

DCX H

SHLD LOOPNM

MOV A,H

ORA L

JNZ LOOPST
MACND

3-28

ARTTHMETIC OPERATIONS

ADDITION: MACRO LEFTARG,RTARG,ANSWER
- LXI B,LEFTARG

LXI D,RTARG

LXT H,ANSWER

CALL FPADD

MACND

Macro expansion in conjunction with conditional assembly offers an especially
powerful assembly combination. To illustrate, refer to the previously defined
ADDITION macro. Now assume that we wished to address the destination (ANSWER)
either directly as shown, or indirectly (LHLD instead of LXI). Further,

assume that we wish to avoid the generation of the instruction entirely if

the destination location is unchanged from a previous operation. Reflect

upon the following complex:

ADDITION: MACRO LARG,RARG,ANS,FLAG

LXI B,LARG

LXI D,RARG

NIF HCON-ANS Check for valid H
GOTO ADDND

ENDIF

IF 1-FLAG Flag is § for indirect
GOTO INDIR -

ENDIF

LXI H,ANS Direct

GOTC ADDND

INDIR:LHLD ANS Indirect

GOTO ADDND Gobble Tabel
ADDND: CALL FPADD

HCON: SET ANS

MACND

This macro was designed to illustrate many of the novel features of MAKRO.
Some economy of code could have been effected by use of IFGZ and IFGNZ
pseudo-operations. Note that no labels are generated by a call to this
macro since the destinations INDIR and ADDND are invariably reached by a
GOTO branch. Quite clearly the macro could be expanded to treat the left
and right arguments as well. Complex macro usage -greatly reduces the chance
of coding error, since without macro expansion the chance of correctly
entering a number of such sequences is minimal. A set of such complex
macros need only be developed once and then merged into the current file.
MAKRO, in conjunction with your macro file, becomes your high level language.

3-29

REPETITION CONTROL

MAKRO allows assembly time repetition (looping). A block of assembly code
may be replicated up to 255 times by enclosing the block in REPT/REPND
brackets. The form of the repeat biock is

REPT expr
[CODE]
REPND

in which expr is evaluated, truncated to an 8-bit value, and used as a loop
repetition factor. Repeat blocks may be nested, and may occur within a
macro expansion. MAKRO maintains a control stack of length 80 bytes. The
maximum depth of nesting is determined by the stack limit.

An active repeat block consumes 10 bytes of the control stack, and an active
macro expansion consumes 8 bytes. Repeat blocks and macro expansions may

be nested in any way so long as the total stack depth does not exceed 80
bytes.

In order to provide some flexibility to the repeat block, MAKRO recognizes
two special operands:

@ is a repeat loop index, counting up from zero, marking progression
of the repeat block.

% is a count of the number of active parameters in the most recent
macro expansion.

MAKRO also allows looping over the actual parameters in a macro expansion.
Such Tooping is governed by three special characters appearing in the macro
body: _

N Control-N Parameter flag (Press Control and N simultaneously)
+S Control-S Start of macro loop
+Q Control-Q End of macro loop

The start and end of the macro Toop must be bracketed by *S/+Q; the loop is
then repeated over all the actual parameters occurring in the macro call.
Within such a loop, the elements of the parameter sequence are referenced by
two +N's in seguence.

To illustrate the macro loop, assume we have a series of ASCII strings we
wish to print, and that the sequence and number of these strings to be
printed must vary within our program. Define the macro print all:

PNALL: MACRO

+S Start loop over all actual parameters
LXI H,+NAN

CALL PRINT

+Q End the loop

MACND

Now we use this macro as
PNALL S1,S82,S3
PNALL S6,S81,59,52,57

The loop control automatically handles the counting and parameter refer-
encing.

3-31

MAKRO BLOCK STRUCTURED ASSEMBLY

The LOCAL/LOCND pseudo-operations allow the user to bracket portions of the
assembly, treating such portions as isolated units. Macro definitions,
addresses, equates, and sets generated within such blocks may not be accessed
from outside the block. Consider such blocks as FORTRAN subroutines or
procedures in PL/1 or ALGOL. The insulation of such blocks from one another
is nearly complete; the blocks may not contain references to elements
outside the block (exception coming).

The treatment of such blocks is effected by limiting the scope of the symbol
table. DOuring pass 1 of the assembly, LOCAL restricts access to the symbol
table to only those entries following. LOCND, on pass 1, resets global
access to the symbol table. On pass 2, LOCND causes all entries generated
between the two bracketing LOCAL/LOCND operations to be deleted from the
symbol table.

Now the exception promised earlier: An attempt is made during pass 2 to
satisfy a reference to an undefined element by searching symbol table entries
after the block. Local symbols must remain in the symbol table until the
procedural block completes pass 2, and these symbols may be accessed in an
attempt to resolve an undefined element, global or local.

ASSEMBLY TIME INPUT

The INPUT pseudo-operation allows the user to define program variables at
assembly time. Critical program variables, such as the assembly origin
or I/0 port numbers, may be entered as input variables, with their value
determined by console input during pass 1 of the assembly.

As an example, assume that we have developed a program requiring input
from a serial port; however, neither the port number or status mask can
be standardized. We may therefore write the source program with these
variables defined by input:

IPORT: INPUT
IMASK: INPUT

and the status check portion of the program would be

READY:IN IPORT
ANI IMASK
JZ READY

The INPUT pseudo-operation is performed in pass 1 of the assembly. MAKRO
displays the source line and awaits console input. The user may enter any
valid expression which is terminated by a carriage return.

3-32

COMMUNICATION BETWEEN MACROS

The operations APUSH/APOP and SETQ allow communication between related macros.
The function of these operations is exemplified by a conceptual DOIF macro.

As the name implies, the DOIF macro is to generate execution time instructions
to selectively execute the following block of code. For cosmetic considerations,
this macro will utilize '.' as the parameter separation character.
DOIF ,.ARG1.RELATION.ARG2
The macro is invoked as:
DOIF X.GT.Y

The macro must translate into a logical test of RELATION between the operands
ARGl and ARGZ2, and JUMP ahead if RELATION is false. While a backward refer-
ence can be effected by the SET pseudo-op, forward references cannot. (Why?)
The forward reference is implemented within the DOIF macro as

APUSH @#H
JUMP IF FALSE TO D#

in which the # is uniquely expanded.

A subsequent IFEND macro generates the required label as

QVAL :APOP
SETQ QVAL
D?:

Test your understanding of the above by defining an ELSE macro to be inserted
optionally between the DCIF and IFEND macros.

3-33

RELOCATION

MAKRO offers two different methods of achieving relocation: at assembly time
via the LINK operation, or at load time via relocatable code.

A relocating assembler monitors object code generated by the assembler, and
flags portions of that code whose values depend upon the execution address
of the program. Object code generated by a relocating assembler is not
ready for execution, requiring address modification by another program --
the loader.

A special type of loader -- a linking loader -- will allow program modules
to reference previously developed modules (externals). The linking loader
performs a library search to find and include all the necessary program
modules. The output of the linking loader is an absolute, executable
program.

Such techniques are necessary on multi-user machines in which several
programs may be executing simultaneously and the execution address of any
program is dictated by available memory space. On a micro-computer, the
practical advantage of relocation and linkage is that large programs may
be developed in small discrete modules which can be created and checked
out independently. Commonly used modules, such as floating point routines,
need be developed only once.

There are, however, drawbacks to the relocating assembly/link loader:

1. A linking loader and link edit phase is required.

2. Restrictions are placed upon the structure of the source code
to enable relocation. These restrictions vary from a minor
nuisance to considerable pain, and occasionally force inefficiency
into the resulting code.

3. Certain operations (masking) and certain quantities (8-bit
values) cannot easily be handled by a relocating assembler.

MAKRO provides the features of a relocating assembler and linking loader via
the LINK pseudo-operation, with no restriction placed upon the source code.
The LINK operation is performed at assembly time, producing an executable
object module, with no need for the linkage/edit or address modification
phase. With MAKRO, the user need not restrict his source code to relocatable
form, since all MAKRO source is relocatable by the LINK operation.

Relocation and linking are typically performed at the object code level,
after assembly has been completed. The MAKRO LINK operation is performed
at the source code level. The LINK pseudo-operation extends the assembly
to include the named source file(s).

3-34

Suppose a main program is being developed which will require library
modules FPPACK (a floating point package) and FPOUT (an input/output
package). The main program should then include

LINK FPPACK
LINK FPOUT

Assembly proceeds through the main program and continues through the 1ink
modules in the order given. The LIMK pseudo-operation may appear anywhere
in the source code, and LINK modules may themselves contain the LINK oper-
ation.

The LINK command, without a file name, acts as the INPUT pseudo-operation.

The source line is displayed, prompting the definition of the link file at
assembly time. Macro library files may be terminated by such a LINK com-
mand to chain the assembly to the current source file. In this case the macro
library file should be specified as the input file.

The LINK file name must be terminated with a carriage return.

3-35

RELOCATION

The LINKED and KWIK Loaders

MAKRO version AMA.Z generates a relocatable object module for source code
conforming to certain addressing restrictions. The relocatable object
module is loaded into memory, for execution, by:

LINKED linkage editor/relocating loader
KWIK relocating loader

Either of these loaders will perform all necessary address modification to
relocate the object module for execution anywhere in memory, provided that
address constants satisfy the restrictions given below, In addition to
relocation, the LINKED linkage editor will perform a library search to
include previously assembled object modules required for execution.

Three MAKRO pseudo-operations provide loader directives for the LINKED loader:

ENTRY Pefines the label field of the instruction to be
~an entry point when this module 1is referenced
elsewhere, ‘

EXTRN Defines the Tabel field to be a requisite module to

complete an executable load.

LIBRY Defines the label field to be a library containing
certain of the requisite external modules.

If none of these three directives is present in the assembly, the object
module may be loaded by an INTEL hex loader for execution at the absolute
address given by the assembly or by the KWIK 1loader for relocation. In

the absence of the loader directives, object code generated by MAKRO con-
forms to INTEL hex standards, except that relocation information is passed
in the two bytes following the load address. These bytes (7 and 8 following
the colon) are ignored by the INTEL hex loader.

The object code produced by MAKRO consists of four types of records:

Byte Number Contents
1. DATA RECORD
1 l:l
2,3 byte count
4,5 load address (high)
6,7 load address (Tow)
8,9 relocation information
10 to n-1 data bytes
n checksum

3-36

Byte Number Contents
2. LIBRARY DIRECTIVE

1 7AH
2-n Library file name (ASCII)
3. ENTRY DIRECTIVE
1 PBAH
2,6 entry name (ASCII)
7,8 entry point, relative to start
4. EXTERNAL DIRECTIVE
1 PFAH
2,6 external name (ASCII)
7,8 tail address of linked list
5. ABSOLUTE ENTRY
1 @BBH
2,6 entry name
7,8 entry value

ENTRY DIRECTIVE

MAKRO allows commonly used program modules to be assembled and stored in an object
library. Entry points to these modules are defined by the ENTRY directive, which
are output along with the object code. These object modules may be referenced in
2 later assembly by the ENTRY point name. The form of the ENTRY directive is:

LABEL :ENTRY
which is similar to
LABEL:EQU §

except that the ENTRY pseudo-operation generates loader information during pass 1
of the assembly.

ABSOLUTE ENTRY DIRECTIVE

The ABSNT directive functions as ENTRY except that the value of the entry is defined
by the operand field (as in EQU) and is not subject to relocation by the loader.
Example:

DOS:EQU 2PPMH
CHARIN: ABSNT DOS+1gH

EXTERNAL DIRECTIVE

The EXTRN directive allows the current assembly to reference an ENTRY point defined
by a previous assembly. The form of the directive is:

LABEL :EXTRN

which defines LABEL as a routine not present in the current assembly, but which may
be found in an object library on a disk file. Having defined LABEL as an external,
it may be referenced as any other program variable, except that it may not be used

in.an expression. Thus '

CALL LABEL is valid, while
CALL LABEL+3 is forbidden

3-37

LIBRARY DTRECTIVE

The library directive, LIBRY, identifies the disk file in which LINKED may
seek to satisfy subsequent external directives. One or more external
directives follow the library directive. For example, a disk file FPPACK may
contain a floating point package with entry points FPADD, FPSUB, FPMUL and
FPDIV. A source program requiring these floating point routines as externals
would declare FPPACK via a LIBRY directive, and itemize the required entry
points:

FPPACK:LIBRY
FPADD: EXTRM
FPSUB:EXTRN
FPMUL: EXTRN
FPDIV:EXTRN

Entry points, library files, and externals must have unique names. Within
the library files the required external references must be defined as
entry points.

Library files are included in the order in which they are encountered; the
entire object module is included.

The LINKED load map defines the execution address of each entry point. Unsatis-
fied externals are displayed. At completion of the load, the next available
memory address is displayed. A checksum error is signified by '?'. Duplicate
ENTRY and unsatisfied EXTRN modules are identified by '0D' and 'U' errors respec-
tively. Library files not found on the designated unit are displayed, and the
user may then redefine the file and unit.

3-38

SOURCE CODE RESTRICTIONS

1. Labels defined by an EXTRN directive may not be used in an arithmetic
expression.

2. Relocatable quantities may only be used in an arithmetic expression
containing the operators + and -.

3. Relocatability is limited to 16-bit quantities. The relocatability of
such quantities is determined by the form of the expression defining
the quantity. Absolute quantities are assigned a relocation value

of 9.

Thus
CONST:EQU 5

defines CONST as an absolute with relocation value . Program relative
values are assigned a relocation value of 1. Thus

HERE:LXI H,HERE

assigns a relocation value of 1 to the Tabel HERE, and flags the LXI
instruction as requiring address modification.

4. Arithmetic expressions containing absolute and relocatable quantities
derive their relocation value from the result of the expression. The
rules of relocation arithmetic are:

a.

b.

The sum of an absolute and relocatable quantity is relocatable.

The difference of two relocatable quantities is absolute.

Any chain expression, containing absolute and relocatable quantities
connected by + or -, must evaluate to either # or 1 in relocatability.
Mentally substitute 1 for program relative quantities, and 9 for
absolutes, and evaluate the expression. MAKRO does not check the
resulting exprassion for validity. This restriction does not mean
that masking or other such address computations may not be used.

MAKRO will treat the results of such operations as absolute, and

it is the programmer's responsibility to ensure that the resulting
object code is valid.

5. Secondary load modules, those containing the ENTRY directive, must be
assembled at ORIGIN P.

6. Load modules should neither begin nor end with the DS pseudo operation.

3-39

SYMBOL TABLE

The symbol table displays the value of all program variables together
with the relocation flag. The symbol table is printed with five entries
per line, each entry consisting of the variable name, variable value,
and relocation flag. The legend for these flags is:
@ absolute value-
1 relocatable value
3 external
83 external library

The value shown for an external variable refers to the last address
within the program at which that external was referenced.

3-40

PDS RELOCATING LOADERS

A Toader is the conduit through which the contents of a disk file are trans-
ferred to memory for execution. The most widely available loader for micro-
computer use is the INTEL hex loader for which source code listings are easily
obtainable. Loaders vary widely in the extent to which they operate upon the
data (program) while effecting the transfer from disk to memory.

The INTEL loader, one of the simplest, maintains a checksum to ensure fidelity
of the transfer, but otherwise performs no operation on the data being trans-
ferred. The next higher level of loader sophistication is the relocating
loader. This utilizes relocation information to perform certain modifications
upon the data being transferred to enable the program to execute at an address
other than that for which the program was assembled. The highest level
operation is the linkage editor which can combine one or more incomplete mod-
ules, relocating as required, into a unified, executable proaram. A linkage
editor may not necessarily perform the loading function, in that no executable
image may be left in memory at completion of its task.

PDS spans this spectrum of loader functions by providing two loaders, KWIK
and LINKED, which together with the ubiquitous INTEL loader satisfy all require-
ments.

The function of the PDS loaders is somewhat dependent upon the operating envir-
onment. The KWIK Tloader is the relocation vehicle for object programs created
with the MAKRO assembler version AMA.2. The object file and load address are
identified to KWIK which proceeds to create an executable image at the load
address. The input file to KWIK must satisfy the coding restrictions defined
in the preceding section, and the file may not contain any of the loader
directives. Such files may also be loaded with the INTEL loader for absolute
execution (at the address for which the program was assembled).

The LINKED Toader will perform the relocation function while collecting the
independent modules defined by the loader directives. LINKED combines the
requisite modules into an executable image in memory at the specified load
address and simultaneously creates an INTEL hex compatible object file,

It is anticipated that the INTEL loader, or an equivalent binary loader, will
continue to perform the bulk of the loader functions. The KWIK Tloader is
expected to be used for unique applications requiring an object file to
execute at more than one memory address. TheLINKED linkage editor is expected
to be used in the development of large applications programs in which a number
of component elements have been independently developed.

KWIK and LINKED are furnished in relocatable form and may thus be relocated
to satisfy system regquirements.

3-41

MAKRO EXPRESSION EVALUATION

Arithmetic expressions appearing in the operand field of MAKRO instructions
are evaluated according to standard arithmetic rules. The following table
defines the available arithmetic operations and the operator precedence.

Precedence

Operation Value Definition
(16 Begin parenthetﬁca1 expression
* 12 Multiplication
/ 12 Division
\ 12 Modulo, integer remainder
+ 11 Addition
- 11 Subtraction
& 8 Logical AND

~ or + (5E hex) 7 Logical OR

X 7 Logical EXCLUSIVE OR (XOR)
> 6 Right shift, zero fill
< 6 Left shift, zero fill
" (quote) NOT, logical complement
) 2 End parenthetical expression

Expressions containing these operators are evaluated from left to right,
execution of any operation delayed until all preceding operations of prece-
dence value greater than or equal to the pending operation are performed.

The Togical compliement refers to the operand or parenthetical expression
immediately following.
In the expressions
A>B, A<B
the left operand (A) is shifted in the indicated direction by B bit positions,
with zero bits shifted in.
The modulo operator \ returns the integer remainder after division. Thus
A\B yields
A - [CA/Bl * 8

where the integer part of the bracketed term is taken. The modulo operator
“has precedence equal to *, /. The expression

3-42

22\3 * 5 yields 5 as
(22\3) * 5,

In any expression, the user may insert parentheses to force.the intended
computational sequence. In the previous expression, execution of the
modulo can be delayed by

22\(3*5) = 7

STRING HANDLING PRIMITIVE

Arithmetic operands and the first argument of the IFEQ and IFNE pseudo-
operations may be subject to string segmentation. String segmentation is
invoked if the first character of the operand is a left angte bracket ‘(.
The two characters immediately following the opening bracket are taken as the
start/finish segmentation markers. The string argument is taken as the
remaining characters up to but not including the right angle bracket ')'.

The string handling primitive replaces the entire construct with the charac-
ters, if any, contained between the start/finish segmentation characters.
Thus

(59123456789) yields 678
(()ARRAY(J1)) yields JI
(B(BARRAY(1J)) yields ARRAY

The string primitive is also functional when recognized in the label field and

macro parameter fields. Use of the segmentation primitive can be illustrated
by a conceptual LOAD macro to place the value of the argument on an operand

stgck. The macro must take appropriate action when the argument is an array
eference:

LOAD:MACRO ARG :
IFEQ <()ARG),;SCALAR test for null index
LXI H,{()ARG) else array, get index
LXI D, ((BARG)
DAD D
GOTO QUIT

SCALAR:LXI H,ARG

GOTO QUIT

QUIT: stack operand
MACND

3-43

INTEL SOURCE COMPATIBILITY

Source files created for the INTEL assembler must be modified before
assembly -by MAKRO. The following table defines the systematic editing
required. In the table 'b' refers to a blank.

CHANGE : T0:

bEQUb :EQUb
bSETb :SETb
ENDM MACND
'bANDb &

bORb ~
bSHRb >
bSHLb. <
bMACRO :MACRO
bMODb \
bXORb :
bNOTb " (quote)

Source lines containing multiple labels must be modified to contain only
a single label identifier.

The expanded capability of MAKRO generally precludes the inverse operation.
of converting MAKRO source. '

3-44

SAMPLE LINKAGE OPERATION

The following example should illustrate the use of the linkage editor.

1. Create a source file CALLRS:

CALL EXT1
CALL EXT2
EXTS:LIBRY
EXTT:EXTRN
EXTN:LIBRY
EXT2:EXTRN
END

2. Use MAKRO to assemble this file, creating the object file CALLR.

3. Create a source file EXTSS:

EXT1:ENTRY
LXI H,EXTG
EXTG:ENTRY
LXI H,2
END

4. Assemble this source file, creating object file EXTS.

5. Create a source file EXTNS:

EXT2:ENTRY
LXI B,EXTQ
EXTQ:ENTRY
MVI B,'Q’
END

6. Assemble EXTNS, creating object file EXTN.

7. Exercise your linkage module ULINK, identifying CALLR as the input file, and
any convenient load address.

Note that in Step 1 the code for EXT1 and EXT2 does not reside in the current
source module. The LIBRY directives identify to the linkage editor the disk

file(s) in which the subsequent external references may be found. The module
in Step 1 defined EXT1 and EXT2 as modules which must be resolved during the

load.

In Step 3, the source module EXTSS creates the first external EXT1. Note
that within this module EXT1 is defined as an entry.

In operation, the linkage editor loads the module CALLR, then opens EXTS to
find the location of EXT1. The entire module EXTS is loaded.

Finally the Tinkage editor opens and loads EXTN, resolving references within
CALLR to the entry point EXT2.

3-45

MAKRO ABSOLUTE FILES

‘Object code written to disk by MAKRO is first passed through a format program
which incorporates the checksum and relocation information. The formatter calls
a direct disk write routine which buffers disk output.

MAKRO can be caused to generate absolute object disk files which can be loaded
for execution by the DOS loader by skipping the format routine.

To create this program, load MAKRO without entering the program. Use DEBUG to
- search for the byte string F5 D5 E5, The start of this string marks the
start of the direct disk write. Again use DEBUG to search for the string
D5 C5 E5 F5 which marks the start of the formatting routine. At this second
address, patch in a JMP to the first address. Save the resulting program
as disk file ABSMAKRO.

Certain code restrictions must be followed:

1. The code must flow straight through with a single ORG statement at
the start, and no manipulation of the Tocation counter within the
program.

2. The DS opcode must be replaced by the macro

DS :MACRO COUNT
REPT COUNT

0B

REPND

MACND

3. None of the Toader directives nor any relocation feature can be
used.

3-46

EDIT

A very powerful Text Editor for
the creation, modification and

disk storage of character-oriented
material

Copyright 1978

Allen Ashley
395 Sierra Madre Villa
Pasadena, CA 91107

(213) 793-5748

4-1

INTRODUCTICN

EDIT is a very powerful text editor featuring a full spectrum of text
manipulation operations including string search, substitution, insertion,
deletion and block move or delete. An elaborate command interpreter
allows the definition of command string macros. Segments of an input
text file can be drawn from disk into memory, modified, and written

back to an output disk file. Large, heavily-commented source files
which exceed available memory can be developed and modif