
Reverse-Engineering Robby Roto: A 1980s Embedded System
Masquerading as an Arcade Game

Stephen A. Edwards
Columbia University

January, 2005

Abstract

Robby Roto was an arcade game produced by
Bally/Midway in 1981. Although not especially popular
at the time, it does have the distinction of being one of
the few commercial arcade games whose code is now in
the public domain (the rights reverted to the author Jay
[now Jamie] Fenton1, who released it in 1999). Although
primitive by today’s standards, it is representative of many
early arcade games and illustrates a realistic, commercial
embedded system.

The description presented here has been synthesized
from many sources, including disassembled ROM im-
ages; source code from MAME2, the multiple arcade ma-
chine emulator by Nicola Salmoria and many others; ser-
vice manuals; and documentation on the Bally Astrocade
home video game system3, which contains many of the
same custom chips.

Like many arcade games, Robby was one of a family
built with similar hardware. Specifically, it shares its gen-
eral design with Seawolf II (1978), Space Zap (1980), Ex-
tra Bases (1980), Wizard of Wor (1980), Gorf (1981), Pro-
fessor Pac-Man (1983), and most interestingly, the Bally
Astrocade home video game system (1978). All use the
same microprocessor, a Zilog Z80, and the same custom
graphics and sound chips, which were designed in part by
Dave Nutting. For more history of these games and many
others, see Herman [2] and Kent [3].

1www.fentonia.com
2www.mame.net
3See www.ballyalley.com.

1 System Architecture

Like most videogame systems4, Robby is a bus-based mi-
croprocessor system with support for video, sound, and
some simple input devices. Built around a Z80 running
at 1.7897725 MHz (derived from a 14.31818 MHz crys-
tal, which is 4× the NTSC colorburst frequency, an arti-
fact of its legacy as a home videogame. Robby drives an
NTSC-speed RGB monitor directly; composite video is
never generated), it contains the usual RAMs (both static
and dynamic), ROMs, and memory-mapped I/O devices,
including a video controller with bit-mapped graphics and
a pair of sound synthesizers.

Figure 1 shows the overall system block diagram,
which is built around two busses. The Z80 communi-
cates through a sixteen-bit address bus and separate bidi-
rectional eight-bit data bus, which are connected directly
to the ROM and SRAM. A simple bus bridge multiplexes
data and address onto a single bus, which connects to the
custom address, data, and sound I/O chips. This was done
to reduce pin count on these custom chips.

Physically, the system is built on backplane contain-
ing six boards: the CPU and custom address and data
chips, a memory board holding the ROMs (10 4K × 8)
and SRAMs (four 2K × 8 8416s), a “game” board hold-
ing the two sound I/O chips and other digital I/O, a “pat-
tern board” containing a blit controller, and two boards
containing the DRAM chips (16 4K × 1 TMS4027s per
board). One of the SRAM chips is powered by a NiCad

4Early games were built completely from discrete components and
did not incorporate a microprocessor. Sega’s Monaco GP (1980) was
one of the last.

1



Z80

ROM
40K

SRAM
6K

NV
SRAM

2K

blitter

Bus
Bridge
(Mux)

Custom
Address

Custom
Data Video

Sound
I/O

Switches
Audio Left

Sound
I/O Audio Right

DRAM
16K

Figure 1: System Block Diagram

rechargable battery so its contents (mainly high scores)
are retained when the game is powered off.

The custom address and data chips are responsible for
the video display. 16K of DRAM is used to hold a frame
buffer. As is typical in all processor-driven video con-
trollers, both the processor and video circuitry need access
to video memory. The address and data chips arbitrate
such accesses, giving priority to the video circuity, which
never makes two back-to-back accesses, so it is only ever
necessary to stall the Z80 for a single memory cycle.

2 The Video System

Somewhat unusual for video games of the time because
of its large memory requirements, Robby (and those in
its family) used a frame buffer. More typical games of the
time, such as Pac-Man, combined a character-based back-
ground with sprite foregrounds. See Collins’s survey [1]
of similar systems.

The hardware uses two bits per pixel (i.e., four pix-
els per byte), each of which selects four colors from a
palette of 256. It supports two resolutions: 160×102,

for home machines (which reduces the framebuffer mem-
ory requirements to a modest 4K), and 320×204, used by
Robby. Oddly, pixel colors are set by eight separate eight-
bit color registers: four for pixels on the left half of the
screen, the other four for the right. The choice of column
dividing left and right is under software control. Finally,
the color in the overscan area (i.e., outside the 320×204
raster but before any blanking) is controlled by another
two bits.

Video memory appears twice in the Z80’s memory
space: once as normal memory that may be read and
written as usual, and once as write-only “magic RAM”
that invokes simple pixel processing operations accord-
ing to a global mode register. Writing a byte in this area
of memory can automatically be expanded from one to
two bits-per-pixel, shifted between zero and three pixels
to the right, mirrored left-to-right, rotated to modify four
pixels vertically instead of horizontally, and made to per-
form logical OR or XOR operations instead of a simple
overwrite. Expansion is done first, then either rotation
or shifting (they are mutually exclusive), flopping, and
finally OR or XOR (also mutually exclusive). The sys-
tem also includes a collision detection mechanism that
tracks whether any non-zero pixel is overwritten during
these operations. This “magic RAM” mechanism offloads
many awkward bit manipulation operations from the pro-
cessor to increase performance, an effective substitute for
the sprite graphics used by other systems of the time.

The video display is the only source of interrupts in the
system. It can generate two types: a light pen interrupt
that goes unused in the Robby game (another artifact of its
home arcade system origins), and a scan-line interrupt that
can be triggered at any scan line under program control.

Robby, as well as other commercial games in its fam-
ily, includes a “pattern board” that implements a blit con-
troller in discrete logic. Controlled through seven write
ports, it performs fast memory-to-memory copies suited
for the framebuffer (i.e., it can copy a contiguous block of
memory to a rectangular region in the framebuffer).

3 The Sound System

Robby contains two identical custom sound chips, one
per channel for stereo sound, that also provide support for
scanning a key matrix. Robby only uses one chip to de-

2



0000

ROM Read (16K)/
Magic RAM Write

3FFF
4000

Video RAM (16K)

7FFF
8000

ROM (24K)

DFFF
E000
NVRAM (2K)
E7FF
E800

SRAM (6K)

FFFF

Figure 2: Memory map

code nineteen one-bit inputs (joysticks, coin sensors, etc.)
and eight dipswitches.

The synthesizer in each sound chip contains a collec-
tion of numerical oscillators capable of producing three
independent tones plus a noise source. A “master oscilla-
tor” square wave is generated from either a programmable
noise source or a programmble low-frequency oscillator
that produces a vibrato effect. This signal is then fed to
three tone generators (programmable dividers) with vol-
ume controls that drive drive three four-bit DACs. The
output of these three DACs are summed along with the
output of the noise generator to produce the final ana-
log audio signal that is passed through an amplifier to a
speaker.

00 COL0R Color 0 right
00 COL0R Color 0 right
01 COL1R Color 1 right
02 COL2R Color 2 right
03 COL3R Color 3 right
04 COL0L Color 0 left
05 COL1L Color 1 left
06 COL2L Color 2 left
07 COL3L Color 3 left
7–3 Hue
2–0 Intensity (luminance) value

08 CONCM Resolution
7–1 Unused
0 1 = 320×204, 0 = 160×102

09 HORCB Left/right boundary
7–6 Background (overscan) color
5–0 First byte (low-res) or word (high-res) that

uses right palette colors. 20 decimal is center
of the screen.

0A VERBL Vertical blank
7–0 Line number at which vertical blanking should

begin. 203 or less for high-res.

0B COLBX Color block output port
7–0 Write-through to one of the eight color regis-

ters in sequence. Intended for the Z80 OTIR
instruction, writes go to registers 7–6–5–4–3–
2–1–0–7–6· · ·

0C MAGIC Magic control
7 Unused
6 Flop: Mirror the pixels by interpreting the the

most-significant bits of the byte as being the
rightmost pixel instead of the leftmost.

5 XOR transfer: Perform the logical XOR of
each pixel as it is written.

4 OR transfer: Perform the logical OR each
each pixel as it is written.

3 Expand each written bit into a pixel. Colors
are selected by write port 19.

2 Rotate: Write the given pixels vertically in-
stead of horizontally.

1–0 Shift amount: Number of pixels to shift the
written pixels to the right on screen.

Table 1: Video I/O write ports (1/2)

3



0D INFBK Interrupt vector
7–0 Least significant eight bits of interrupt vector.

Together with the processor’s Interrupt page
register (I), this controls the address where
control is sent when the video system gener-
ates an interrupt. The lowest four bits of this
register are treated as being zero for a light pen
interrupt, allowing it to invoke a different in-
terrupt handler.

0E INMOD Interrupt mode
7–4 Unused
3 Scanline interrupt enable
2 Scanline interrupt mode: 0=interrupt until ac-

knowledged, 1=interrupt will be dropped after
one instruction.

1 Light pen interrupt enable
0 Light pen interrupt mode: same as for scanline

interrupt mode

0F INLIN Interrupt line
7–0 Scanline at whose end to generate an interrupt.

This number should be twice the desired scan-
line in low-resolution mode, i.e., so that the
value for the bottom of the screen is the same
in either mode.

19 XPAND Expand mode colors
3–2 Color to use for “1” bits when writing to

“magic” RAM with expansion enabled.
1–0 Color to use for “0” bits when writing to

“magic” RAM with expansion enabled.

Table 2: Video I/O write ports (2/2)

10 TONMO Master oscillator frequency
7–0 Master oscillator frequency: 1789/(x+1)kHz

11 TONEA Tone A Frequency
12 TONEB Tone B Frequency
13 TONEC Tone C Frequency
7–0 Tone generator frequency: Fm/2(x + 1),

where Fm is the master oscillator frequency.

14 VIBRA Vibrato
7–6 Vibrato speed: 00=fastest, 11=slowest
5–0 Vibrato depth

15 VOLC Tone C Volume
7–6 Unused
5 Noise generator enable
4 Module master oscillator with noise (0=mod-

ulate with vibrato)
3–0 Tone C volume

16 VOLAB Tone A/B Volume
7–4 Tone B volume
0–3 Tone A volume

17 VOLN Noise Volume
7–4 Noise volume/noise mask: These control both

the volume of the noise generator output and
the mask used to affect the modulation of the
master oscillator.

3–0 Noise mask. These bits are used only to mask
the modulation of the master oscillator.

18 SNDBX Sound block output port
7–0 Write-through to one of the eight sound regis-

ters in sequence. Intended to be used with the
Z80 OTIR instruction, the first write goes to
the noise volume register, the next to the tone
a/b volume register and so forth down to the
master oscillator frequency register and then
the pattern repeats.

50 Second sound controller
...
58 repeats 10–18

Table 3: Sound I/O write ports

5B FIXME

4



78 SRCLO Source address LSB
7–0 Least significant byte of source address

79 SRCHI Source address MSB
7–0 Most significant byte of source address

7A MODE Copy mode
7–6 Unused
5 Flop
4 Flip
3 Flush
2 Constant
1 Expand mode
0 Direction

7B SKIPLO Bytes to skip/destination LSB
7–0 LSB of destination and number of bytes to

skip after each row is copied.

7C DESTHI Destination MSB
7–0 Most significant byte of destination address

7D LENGTH Length of each row
7–0 Length (in bytes) of each row to copy

7E LOOPS Row count and trigger
7–0 Number of rows to copy minus one. Writing

this initiates the transfer.

Table 4: I/O Write ports for the pattern board

08 INTST Intercept status
7 Intercept in pixel 0 during last OR or XOR

write
6 Intercept in pixel 1 during last OR or XOR

write
5 Intercept in pixel 2 during last OR or XOR

write
4 Intercept in pixel 3 during last OR or XOR

write
3 Intercept in pixel 0 in an OR or XOR since last

reset
2 Intercept in pixel 1 in an OR or XOR since last

reset
1 Intercept in pixel 2 in an OR or XOR since last

reset
0 Intercept in pixel 3 in an OR or XOR since last

reset

0E VERAF Vertical address feedback
7–0 Line number at which a light pen interrupt oc-

curred. LSB is always zero in low-resolution
mode.

0F HORAF Horizontal address feedback
7–0 Horizontal position of light pen interrupt.

Pixel number is x−8 in low-res mode, 2(x−8)
in high-res mode.

Table 5: I/O Read Ports for Video

5



10 SW0 Switch bank 0 (Active-low)
7 Unused
6 Start 2 player
5 Start 1 player
4 Tilt
3 Service
2 Coin 3 (unused)
1 Coin 2
0 Coin 1

11 SW1 Switch bank 1 (Active-low)
7–6 Unused
5 Magic (2nd player)
4 Unused
3 Right (2nd player)
2 Left (2nd player)
1 Down (2nd player)
0 Up (2nd player)

12 SW2 Switch bank 2
7–6 Unused
5 Magic
4 Unused
3 Right
2 Left
1 Down
0 Up

13 SW3 Dipswitches
7 Demo sounds
6 Unused
5 Unused
4 Unused
3 1=Upright, 0=Cocktail
2 Free play
1 Reset game options to factory settings
0 Full reset

15 LEDs and Coin Counters? (FIXME)

Table 6: I/O Read Ports for Buttons, etc.

References

[1] Steven Collins. Computer graphics during the 8-bit
computer game era. Technical Report TCD-CS-1998-
15, Trinity College, Dublin, Ireland, September 1998.

[2] Leonard Herman. Phoenix: The Fall & Rise of
Videogames. Rolenta Press, Union, New Jersey, sec-
ond edition, 1997.

[3] Steven L. Kent. The Ultimate History of Video
Games. Prima Publishing, 2001.

6


