ASCIl CODES

0S-65D

DISK OPERATING SYSTEM

BASIC

DOS

N

EXTENDED ASSEMBLER

'MONITOR

CODE CHAR CODE CHAR CODE CHAR
00 NUL 2B + %6 v
01 SOH 2C s 57 w
02 STX 2D 58 X
23 ETX 2E . 59 Y
04 EOT 2F / 5A z
05 ENQ 30 0 58 [
06 ACK 31 1 5C \
07 BEL 32 2 5D]
08 BS 33 3 5E A
Q9 HT 34 4 5F —
0A LF 35 5 60
2B VT 36 6 61 a
oC FF 37 7 62 b
oD CR 38 8 63 c
0E SO 39 9 64 d
oF si 3A : 65 e
10 DLE 3B ; 66 f
11 DC1 3C < 67 g
12 DC2 3D = 68 h
13 DC3 3E > 69 i
14 DC4 3F ? 6A j
15 NAK 40 @ 6B [
16 SYN 41 A 6C |
17 ETB 42 B 6D m
18 CAN 43 C 6E n
19 EM 44 D 6F o
1A SUB 45 E 70 p
iB ESC 46 F 71 q
1C FS 47 -G 72 r
1D GS 48 H 73 s
1E RS 49 | 74 B
1F us 4A J 75 u’
20 SP 4B K 76 v
21 ! 4C L 77 w
22 " 4D M 78 X
23 # 4E N 79 y
24 $ 4F (o] TA z
25 % 50 P 7B {
26 & 51 Q 7C]
27 ' 52 R 7D :
28 (53 S 7E e
29) 54 T 7F DEL
2A * 55 U

BASIC
(0K)
BA
EXIT or RE BA
DISK!"“EM"" DISKI*“AS”
1BA Dus 'BA
(*)
EX
M As
or RE EM or RE AS
EXTENDED IRE AS
MONITOR RSSEMBLE

()

(0)

IRE EM
Transfer of Control Commands

DOS and BASIC

QUICK
REFERENCE

TO START YOUR COMPUTER

Check to make sure no diskettes are in the disk
drives!! Lock the SHIFT LOCK or ALL CAPS key.

1. Turn on.the computer, disk drives and terminals
-switches are generally located on the back of the
device cabinet.

2. Place an 0S-65D disk in drive A (the drive whose red

light is on or the top drive in dual drive cabinets).
Close the disk drive door.

3. Depress the BREAK key on C1P and C4P systems

(and hold for a few seconds). Depress the whlte reset
button on C8P and serial systems.

4. When the “H/DIM?” (“DIC/W/M?" on C1P systems) 4

message appears, respond by typing “D”. In a few |
seconds a'menu should appear on the screen.

" 5. To enter the BASIC immediate mode, respond

UNLOCK to this menu in OS-65D V3.2; select option 9
~ in 0S-65D V3.3.

65D BASIC

The entries are organized alphabetically according
to Keywords used. Each entry consists of the general
syntax, examples where appropriate, and a brief
description.

The following notation is used:

[n] see page n of the 0S-65D Tutorial and
Reference Manual

{n} see page n of the OSI BASIC Reference Manual

*) cannot be used in the immediate (direct) mode;
must be used with a program statement number.

(**) can only be used in the immediate (direct) mode;
must not be used within a program.

2 not available under 0S-65D V3.3.

3) available only under OS-65D V3.3.

ae anumeric constant or arithmetic expression (see {3})

re a logical constant or relational expression (see {4})

se a string constant or expression (see {4})

dos a 65D Disk Operating System (DOS) command.

e a constant or expression.
\ a variable
c a constant

nv anumeric variable

iv an integer variable

SV a string variable

niv a numeric variable or integer variable

rae a relational expression or arithmtic expression
FILE a disk file name

loc a memory location address

sn a program statement number

dev an 0S-65D device number. [54]

ABS ABS(ae)
A function. Returns the absolute value of
its argument. {19}
AND re AND re
IF X<15 AND X > =0 THEN 100
A bitwise Boolean AND operator . re
AND re will be TRUE only when both of
i the operands have the value TRUE. {4}
ASC ASC(se)
ASG(X$) ASC(“BIG")
A function. Returns the ASCH value in
decimal of the first character in the
argument {20}
ATN ATN(ae) (-1< ae< 1)
’ ATN(0.431)
A function. Returns the arctangent of
the argument {20} (2) [188]
CHR$ CHR$(ae) (0 <ae< 255)
CHR$(66)
A function. Returns the character whose
decimal ASCII value is the greatest
integer less than or equal to the
argument. {21}.
CLEAR CLEAR
Clears the program variable table and
restores the data pointer (*) {17}
CLOSE DISK CLOSE, dev (dev =6 or dev =7)
Closes a disk file that has been
previously opened. {28}, [15]
CONT CONT
Restarts a program whose execution has
been interrupted by a STOP or END
statement or a CTRL-C. {15} (**) ~
COSs COS(ae)
A function. Returns the cosine of the
argument. {20}

DATA

DEF FN

DIM

DISK!

DISK CLOSE
DISK FIND
DISK GET
DISK OPEN
DISP PUT

EDIT

END

EXIT

EXP

FIND

FN
FOR

FRE

GET

DATA ¢, c, ¢, ...

DATA 1.7, “BIG”, 173,-812
Establishes a list of constants to be
input by the program via the READ
statement {6}

DEF FNnv(nv) = ae

DEF FNA(X) = X*7+3
Defines a single variable function for
future use within the program segment
{233 ()
DIM v(ae, ae,...),...

DIM A(20), B$(6,7)
Declares the variables specified to be
subscripted. {18}

DISK! “dos”

DISK! “IO 5,6”

DISK! “LOAD FILE”
Permits 65D DOS commands to be used
within a BASIC program. [202]

see CLOSE
See FIND
See GET
See OPEN
See PUT

EDIT sn

EDIT 100

Returns line sn for editing. The short
form is !sn. (**)[71] (3)

END .
Terminates program execution {13}
EXIT
Transfers control to the DOS mode {28}
(53]
EXP(ae) ae< 88.029619

EXP(41.662)
A function. Returns e = 2.71828...raised
to the power equal to the value of the
argument. {19}

DISK FIND, se

DISK FIND, “BIG”
Beginning at current file pointer
location, the data file is searched for the
specified string, the pointer is set to the
end of the fieid in which it is found. An
unsuccessful search results in a #D
error. [96] (3)
See DEF FN
FORnv = ae TO ae
FOR nv = ae TO ae STEP ae

FOR X = 15 TO 45 STEP 5
Opens program loop. End of the loop is
indicated by the statement NEXT or
NEXT niv. STEP is used to define an
increment other than 1 for niv for each
iteration of the loop. In the example, the
loop is executed 7 times {12}
FRE(X) X is a dummy variable
A function. Returns the number of bytes
of memory in the workspace that are
unused. Save the program before using
FRE. {17}
DISK GET, niv

DISK GET, 15
Brings the record numbered niv from the
disk to buffer #6 and sets the /0 ’
pointers to the beginning of the record
{28} [17]

GOSsuB

GOTO

INPUT

INPUT#

INT

LEFTS$

LEN

LET

LIST

LIST#

LOG

GOSUB sn

GOSUB 1000
Program control is transferred to state-
ment number sn. When the statement
RETURN is encountered, control goes
back to the statement following sn {23}

GOTO sn

GOTO 1000
Program control is transferred to state-
ment number sn. {11}

IF rae GOTO sn

IF rae THEN sn

If the value of rae is TRUE (arithmetic
expressions are considered to be TRUE
if they have a value other than 0)
program control is transferred to
statement sn.

IF rae THEN S (S is a program state-
ment)

If the value of rae is TRUE, statement S
is executed {11}

INPUT V, V, ..

INPUT X, Y, A$

Prompts for keyboard input to the
specified variables {6} {*}

INPUT#dev, V, V, ...

INPUT #6, A, B, Q%
Input is from device number dev to the
specified variables. {9} [13] (*)

INT (ae)

INT (16.8)
A function. Returns the greatest integer
less than or equal to the argument {19}

LEFT$(se, ae) ae>0
LEFT$(“ABCDE", 3)

A function. Truncates ae to an integer

and returns that leftmost number o

characters from string se. In the

example, “ABC” is returned. {21}

LEN(se)

LEN(AS$)
A function. Returns the length of the
string se {21}

LETV = e

LET A$ = “BIG”
Assignment statement. Keyword LET is
optional. {6}

LIST
LIST sn-sn

LIST 100-200

LIST - 1000

LIST 200
Lists the program in the workspace
between the two specified statement
numbers. If the first (second) statement
number is omitted, the default is the
beginning (end) of the program. {15}

LIST#dev

LIST#4
Same as LIST, but the listing is sent to
device number dev. {9, 15} [54]

LOG(ae) ae>0
LOG14.8

A function. Returns the natural logarithm
(log to the base e) of the argument. {19}

MID$

NEW

NEXT
NOT

NULL

ON

OPEN
OR
PEEK
POKE
POS

PRINT

PRINT#

PRINT!

MID$(se, ae, ae) first ae >0, second
ae =0

MID$(“ABCDEFG", 2, 3)
A function. In the example, A string of
length 3 starting at position 2 is
returned; i.e. “BCD". If the second ae is
omitted, the string returned goes to the
end of se. {21}

NEW
Clears the workspace to prepare for
creation of a new program {15}

see FOR

NOT re

NOT (A>5)
A bitwise Boolean NOT operator.
Reverses the truth value of the operand
re. {3}

NULL iv 0 <ivss8
Inserts iv zeros at the beginning of each
line as it is stored on tape. {27} {2}

ON ae GOTO sn, sn,...
ON ae GOSUB sn, sn,...

ON X +7 GOTO 100, 200
Depending upon the value of ae
(truncated to an integer) program control
passes to the ae-th statement in the list
of statement numbers {12, 24}

DISK OPEN, dev, “FILE” (dev = 6 or7)
Opens the disk file FILE for sequential
(dev=6 or 7) or random access (dev=6
only) {28} [15]

re OR re

IF A>50R A<2 THEN 100
A bitwise Boolean OR operator. re OR re
is FALSE only when both of the
operands are FALSE. {3}

PEEK(loc)
A function. Returns the value stored in
memory location loc {25} .

POKE loc, ae ae is an integer.
POKE 11686, 17

The value ae is stored in memory

location loc {25})

POS(X) X is a dummy variable.

A function. In or following a PRINT state-
ment, returns the current position
(between @ and 132) of the cursor {9}

PRINT ¢, e,...

PRINT A, B$; C$ ’
Outputs the values stored in the list of
expressions. The keyword PRINT can be
replaced by a question mark. {7}

PRINT#dev, e, e,...

Same as PRINT, but output is directed to
device number dev instead of the screen.
{7} 13][54]

PRINT!(HOC), e, e,... (HOC =Hazeltine
Operation code-see [223))

PRINT!(28) X$, A, B, C

Depending on the value of HOC, certain

screen characteristics and cursor

positons are selected before beginning

output of expression values; emulates

‘certain Hazeltine terminal capabilities.

[223] (3) .

PRINT CHR$ see CHRS

PRINT&

PRINT&(X, Y), ¢, e,... SPC
PRINT&(10, 20) A, B$

Moves the screen cursor to screen
position (X, Y) (8, @ = upper left corner)
before beginning output of expression
values. ldentical to:

PRINT!(17,X,Y), e, e,... [79] (3)

SQR

PRINT USING PRINT USING se ae, ae

PUT

READ

REM

RESTORE

RETURN
RIGHT$

RND

RUN

SGN

SIN

STEP
STOP

PRINT USING “####.##” 6.87304
Used to format numeric output; se must
be a string expression made up of a
decimal point and/or #'s. In the example
the output format specified results in
printing 6.87 (with three ieading blanks)
(731 (3)

DISK PUT
Follows a previous DISK GET; places the
current record back to the disk. {28} [17]

READ V, V, V...

READ A, BS, C
Inputs constants that are specified by
DATA statements in the same program
into the specified variables {6} (*)

REM any remark

REM THIS IS A TEST PROGRAM
Used for program documentation. Every-
thing appearing after REM is ignored on
execution of that tine {16}

RESTORE

Resets the pointer in a program’s DATA
list to the first item. {7}

See GOSUB

RIGHT$(se, ae) - ae>0
RIGHT$(“ABCDEF",2)

A function. Truncates ae to an integer

and returns that number of rightmost

characters. In the example, “EF” is

returned. {21}

RND(ae)

RND(-16)
A function. Returns a number between 0
and 1. Can be used repeatedly to VAL
generate a sequence of pseudo-random
values. If ae> @, the argument is a
dummy argument. If ae=0, RND -
returns the previous value again. If ae <@,
ae functions as a “seed” and RND starts
a new sequence. The sequence repeats
after a certain period determined by the
seed. {19}
RUN
Starts execution of the program in the
workspace at the first statement.
RUN sn
Starts execution of the program in the
workspace at statement number sn.
RUN “FILE”
Leads the program from disk file
FILE and starts execution.
RUN “TT” (TT = a disk track number)
Loads the program from the disk file
beginning at track TT and starts
execution. {15}
SGN(ae)
A function. Returns +1if ae >0, @ if
ae = 0,-1ifae< 0 {19}
SIN(ae)
A function. Returns the value of the sine
of the argument ae. {20}

STR$

TAB

TAN

THEN
TO
TRAP

USR

WAIT

SPC(ae)

PRINT “A”; SPC(5); “B"”
A function. Used to print ae spaces in a
PRINT sequence {9}

SQR(ae) ae<0
A function. Returns the square root of
the argument ae. {20}

See FOR
STOP
Halts execution of a program and prints
a BREAK message indicating the state-
?]‘%r;t number of the STOP statement
STR$(ae)

STR$(6.71)
A function. Returns the value of the
argument ae as a string. {21}
TAB(ae) ae is an integer

TAB(10)
A function. Used in a PRINT statement
to move the print position for the next
character to position ae + 1 on the print
line. {8}
TAN(ae)
A function. Returns the tangent of the
argument. {20}

See IF
See FOR

TRAP sn
If an error is encountered in a program
after this statement, then control
transfers to statement sn.
TRAP 0 disables error trapping. [71] (3)
USR(ae)
Y = USR(X)
Transfers control to a machine language
routine at a location determined .
previously by appropriate POKES. ae
may be an input parameter (and USR(ae)
an output parameter) or ae may be a
dummy parameter. {34}
VAL(se)

VAL(*6.317)
A function. It is the opposite of STRS;
returns the numeric value of the string
expression se if se represents a number.
Otherwise, @ is returned.
WAIT loc, J 0sJ<255
Halts program execution, Reads the
contents of location loc and AND’s the
result (bitwise) until a nonzero result is
obtained, then resumes program
execution.
WAIT loc, J, K O0<J, K255
Halts program execution, reads the
contents of location loc, exclusive OR’s
that value (bitwise) with K, and then
AND’s the result with J until a nonzero
result is obtained; then resumes
execution {25} {2}

SPECIAL V3.3 COMMANDS

Screen Display Commands:

(ESC) 1 Clears screen; homes cursor to upper left;
produces “wide character” display
(0312;;32 on C4P and C8P machines; 24x24 on

(ESC) 2 Clear screen; homes cursor; produces
“narrow character” display

((;;32x64 on C4P and C8P machines; 12x48 on
1P)

(ESC) 3 Homes cursor to upper left

(ESC) 4 Clears to end of screen (memory of work-
space is not altered)

(ESC) 5 Moves cursor up one line
(ESC) 6 Moves cursor down one line
(ESC) 7 Inserts line (lower lines scroll down)

(ESC) 8 Clears line (memory of workspace is not
altered)

(ESC) 9 Turns color off
(ESC) 10 Turns color on

PRINT Statement Commands
(These commands must be used in PRINT statements)

4(20)
121)

(22, w, h)

Single Step
CHR$(8)
CHR$(16)
1(12)

1(11)
CHR$(10)
Multistep

CHR$(13)
CHR$(14)

Anywhere
117, %, y)
&(x,)
Home
1(18)

1(26)

Line
1(15)
1(19)
Screen
1(24)

1(28)

Display Size
Selects “wide character” display (32 x 32 on
C4P and C8P, 12 x 14 on C1P), clears
screen and homes cursor to upper left
screen corner.
Selects “narrow character” display (32 x 64 on
C4P and C8P, 12 x 48 on C1P), clears
screen; and homes cursor to upper left
screen corner.
Selects print window w characters wide
and h characters high. Upper left window
corner is at current cursor position; screen
is not cleared.

Cursor Control

Back one space.
Forward one space.
Up one space.
Down one space.
Down one space.

Back to front of line.
Forward to next eight space tab set
(seven space for left-most field).

Relocate to x, y (@ @ is uppef left corner).
Relocate to x, y (00 is upper left corner).

Relocate to 0, 0 (upper left corner).

Insert
Inserts line at cursor position; lower lines
scroll down.

Clear

Clears from cursor to end of line.
Clears entire line (lower lines move up).

Clears from cursor to end (lower right)
of window

Clears entire screen and homes cursor in
window.

Color

Color Select

1(1)
1(25)

431, n)

Selects color @ as cell background.
Selects normal black/white display mode
(i.e., black background, white character).
Selects color n as cell background.

Color Change
12, n, m) Changes all displayed cells of background

color m to background color n.

Clears all displayed cells of background
color n (i.e., cell background is changed to
black and character is replaced with a
blank).

Cursor Sensing

1(5) Sends information for current cursor
position x, y, to string variable in following
INPUT statement. Information is in the
form of two characters for which (x + 65)
is the ASCIi code. Line feed follows the
INPUT statement used with !(5).

1(33) Sends character at cursor position to
string variable in following INPUT state-
ment. Line feed follows the INPUT
statement used with 1(33).

1(29, n)

Printer Control

\67,FL) Initialize Epson Printer Drivers; set form
length. .
1(80) Send Video Screen to Epson Printer

** Note to Users of Serial Systems **

0S-65D V3.3 is only partially compatible with serial
systems. If you are using a Hazeltine 1420 terminal, be
sure switch 6 is set to the ESC position. Certain features
that refer to color, screen size, or windowing are not
operable on serial systems. Specifically,

1) The commands that use the ESC key are not
operable.

2) The destructive backspace key is < DEL>
instead of <SHIFT/O> or <RUB OUT > and the
line delete is <@> instead of <SHIFT/P>.

3) The PRINT command !(26) inserts a line but not
at the cursor position. The line always starts at
the left margin.

4) The following PRINT commands should not be

d:
}ﬁ)e 1(21) 29,0 1(20)
:(g,n,m) :ggjw'” :Egg)n) %g(?)iFL)
1(20) 1(28)) i

V3.3 EDITOR COMMANDS

(CTRL)H Moves cursor one space to the left
(non-destructively)

Moves cursor one space to the right
(non-destructively)

(CTRL)P

(CTRL)F Moves cursor to the front of the line
(CTRL)R Moves cursor to the rear of the line
(CTRL)I Moves the cursor (non-destructively)
forward to the next tab position
(i.e., positions 1, 8, 15, 22, 29, 36, 43, 50
57, 64, 71)
(CTRL)T Retypes the line currently being edited

(in its present edited form)

(SHIFT)P Ciears screen of line currently being edited
leaving the line in workspace as it was
before calling it to be edited

(RUBOUT) Deletes the character flashing with the
cursor. Line closes up from the right.

EDITnn or !nn Calls line number nn for editing
EDIT or ! Calls next line in program for editing
EDIT! or ! Recalls last edited line for re-editing

INDIRECT FILES

To merge two BASIC programs

using indirect files:

1) determine the starting page
number N of the indirect file,

2)load one program into
workspace,

3) move this program to
indirect file,

4) load the second program into
the workspace,

5) move the first program back
from the indirect file to the
workspace.

If each of the programs has a line
with the same number the line in the
first program will be the one that
appears in the merged program.

STARTING PAGE NUMBER
OF INDIRECT FiLE

The starting page number N of an
indirect file can usually be set at 128
in OS-65D. If the program is quite
large this value may not work. The
indirect file must fit into memory
above the program in the workspace.
A value for N is given by:

the

the

N = highest page in
memory—pages unused in
memory

the highest page in memory can be
obtained by:
?PEEK(133)
and the number of pages unused in
memory can be obtained by
‘7INT(FF!E(X)/256) or
if FRE(X) is negative, by:
2INT((65536 + FHE(X))I256)
The starting page of
workspace is approximately
page 5@ (317E) for OS-65D V3.2 on
an 8 inch disk.
page 51(327E) for 0S-65D V3.2 on a
5 inch disk. i
page 59 (3A7E) for V3.3 systems
(see p. 49 of 65D Reference Mariual)
The number of pages used by the
program is:
highest page — starting page —
pages left.
1f the number of pages used exceeds
the number of pages left there is not
enough memory available to put this
. program in an indirect file.

FROM WORKSPACE TO
INDIRECT FILE
To move a program from the
workspace to an indirect file:

1) enable the indirect file function
with the following POKES, where N is
the starting page number.

POKE 9554,N

the

2) LIST the program between
square brackets as follows: With the
program in the workspace. type

LIST[<RETURN >
{wait for listing to end)
< SHIFT/IM> < @ > < RETURN>
If the keyboard is a poiled keyboard
use these commands instead:
LIST <SHIFT/K> <RETURN>
(wait for listing to end)
<SHIFTM > < @ > < RETURN >
The first bracket [. <SHIFT/K >
will not appear on the video screen.
The second bracket appears twice as

If the end of the listing appears
garbled the indirect tile was not
placed high enough in memory and
the end of the program in the
workspace has been overwritten.

FROM INDIRECT FILE TO
WORKSPACE

To move a program from an

indirect file to the workspace:

1) enter the appropriate POKEs,
where N is the starting page number
of the indirect file

POKE 9368.N
2) enter the command:
<CTRL/X> <RETURN >

A listing of the program in the
indirect file will appear ending with
the bracket closure “J}". On some
systems there will be a harmless
error message before or after the
listing. To see the contents of the
yorkspace enter the command LIST.

MOVING PROGRAMS
BETWEEN INCOMPATIBLE
DISKS

To transfer a program between
incompatible disks:

1) determine the starting page
number N of the indirect file,

2)boot up BASIC and load the
program into the workspace,

3) move the program to the indirect
file using the POKEs for the system
on this disk,

4) boot up BASIC on the other disk;
clear the workspace with NEW,

5) move the program from the
indirect file to the workspace using
the POKEs for the system on this new

dis

6) 'PUT the program on the new
disk.
(for additional details. see chapter 12
of the BASIC Reference Manual)

UTILITY PROGRAMS

A brief description of the utility program supplied with the 0S-65D
system (operating system restrictions are in parenthesis).

ASAMPL

ATNENB
(V3.3 only)

BEXEC*
BUFFER

- Sample Assembly language program
- Enables or disables arc tangent and print extensions

- Program which is run upon boot-up; displays menu.

- Check the size of program buffers; add and delte
buffers. (V3.3 only -

Disk 2)

Decimal
Top of Memory

21118

{19070

18814
18046

| 17022

15742
14974

12926

I 12670

11897

18827

9826

512
256

CHANGE - Permits adjustment of the following:
- Terminal width for BASIC.
- The highest page of memory available which is
what BASIC and ASM use when loaded.
- The adjustment of the workspace limits for BASIC.
The result is an empty workspace to the user
specifications.
COLORS - Color adjustment program.
COMPAR - Utility for comparing diskettes. (V3.3 only)
COPIER - Utility for copying diskettes. (V3.3 only)
CREATE - Enter a file name into the directory and zero out the
created file on disk.
DATRAN - copy data files. (V3.3 only - Disk 2)
DELETE - Remove a file name from directory.
DIR - Print unsorted disk directory.
DISASM - Generate an assembly language listing for machine
code program. (V3.3 only - Disk 2)
GSOSRT - S%n data files, including MDMS master files. (V3.3 only
- Disk 2)
MODEM - Sets up a machine code modem routine for use with a
standard RS-232 modem. (V3.3 only).
RANLST - General random access file list utility.
RENAME - Rename a fite name in directory.
REPACK - Remove REM statements and blank spaces from BASIC
program. (V3.3 only - Disk 2)
RSEQ - Change the numbering of statements in a BASIC pro-
gram. (V3.3 only - Disk 2)
SECDIR - Print a sector map directory of disk.
SEQLST - General sequential file list utility.
TRAGCE - Enable or disable statement number trace feature.
ZERO - Initialize contents of a data file to zeros.
) SYSTEM MEMORY MAPS
HEX va2 5" V32 8" vaa s v33 8"
Top of Memory Maximum of 5 pages for V3 3 editor or
| _Omig!\a!_ Utilities. Bufter Creator o Resequencer
230 T [N S
Buffer #7
e N R {if used)
497 { peo—-——-- r
e - T
Butter #7
427 --—---=-+ dusedh [T Butfer #6
Bufter #7 e Butter #6 (f used)
307 (if used) ’_ _________ (il used) |
IATE Tommmm— o
Butfer #6 Buffer #6
f usedi (it used)
005
317 PAGE B/1 Swapper.
Directory. Workspace File Header information
2679
0S-65D DOS Kernel
2A4B
0S-650 Diskette Drivers.
265¢ +
05-650 1/0 Routines
2380
Transient Processor Area for
BASIC or Assembier or
Other Language Processor
200
160 6502 STACK
0 6582 PAGE ZERO

HEX

{Dark Line Indrcates Normal Start of Workspace)

[4
DECIMAL

POKE AND PEEK LIST

As systems develop, different locations are committed to
hold parameters. Many of these parameters have been
mentioned in the text material. These parameters are collected
here, along with some other useful parameters which may be
needed by an advanced programmer. Users of the video systems
and systems that include certain options and accessories (e.g.,
Home Security, Remote Control, High Resolution Graphics, etc.)
may need to POKE or PEEK other parameter locations.These
locations are fully documented in the appropriate User’s
Manuals. CAUTION: Care must be taken when POKEing any of
these locations to avoid system errors.

LOCATION CONTENTS
DECIMAL HEX (DEC) COMMENTS

23 17 132 Terminal width (number of printer
characters per line). The default value is
132. Note, this is not to be confused
with the video display width (64
characters).

24 18 112 Determines the number of (14 character)
output fields in a terminal output line
when outputting BASIC variables
separated by commas. As long as the
contents of this location exceeds the
current terminal output position, the
terminal output line will continue with a
tab to the start of the next output field.

120- 78— 127 Lo-Hi byte address of the beginnin
121 79 50 of BASIC work space (note 127 = $7F,
5¢ = $32).

Normal contents of Location 121 is 58
on V.3.3 and 49 on Serial Systems.

741 2E5 18 Control location for “LIST.” Enable with
a 76, disable with a 10.
750 2EE 18 Control location for “NEW.” Enable with
a 78, disable with a 10.
1797 705 32 Controls line number listing of BASIC
programs, enable with a 32, disable with
a 44,
L2973 819 173 “CONTROL C” termination of BASIC
g{rsograms. Enable with 173, disable with
2200 898 Track 0 °
(Load address.)
2888 B48 27 A 27 present here allows any null input

{carriage return only) to force into
immediate jumping out of the program.
Disable this with a 8. Location 8722
must also be set to @.

2893 B4D 55 Alternate “break on nuil input”
enable/disable location. (see 2894)
2894 B4E 8 A nuil input will produce a “REDO

FROM START” message when 2893 and
2894 are POKEd with 28 and 11
respectively.

2972 BSC 58 Normally a comma is a string input

termination. This may be disabled with a
13 (see 2976).

2976 BA@ 44 A colon is also a string input terminator,
this is disabled with a 13 (see 2972, 9976)

8708 2294 41 Output flag for peripheral devices.

8722 2212 27 Nuli input if = @@, normal input if = 27.

8902 22C6 #@ Determines which registers (less 1)
RTMON scans (HC systems only).

8917 22D5 — USR (X) Disk Operation Code:

@-write to Drive A
3-read from Drive A
B-write to Drive B
9-read from Drive B

8954 22FA — Location of JSR to a USR function.
Present to JSR $22D4, i.e., set up for
USR (X) Disk Operation.

8966 23p0 — Has page number of highest RAM
location found on 0S-65D’s cold start
boot in. This is the default high memory
address for the assembler and BASIC.

8993 2321 — /O Distributor INPUT flag
8994 2322 — 1/0 Distributor OUTPUT flag
8995 2323 — Index to current ACIA on 550 board. If

numbered from 1 to 15 the value POKEd
here is a 2 times the ACIA number.

8996 2324 — Location of a random number seed. This
location is constantly incremented
during keyboard polling.

LOCATION

DECIMAL

HEX

CONTENTS

(DEC)

COMMENTS

(Note: Locations 8998 through 9005, 9132.9133, and 9155-9156 are used
for Disk Butter #6 (/0 Flag Bit 5 device) usage parameters.)

8998-
8999

9000-
9001

9082
9003
9004
9005

2326-
2327

2328-
2329

232A
232B
232C
232D

126

126

LO-HI byte address for the start of
Buffer #6 (*contents vary: 58 on all V3.3;
50 on 5" V3.2; 49 on 8" V3.2)

LO-HI byte address for the end of
Buffer #6 (*contents vary: 66 for 5" V3.3,
70 for 8" V3.3; 58 for 5" V3.2; 61 for 8"
V3.2)

First track of Buffer #6 File (BCD)
Last track of Buffer #6 File (BCD)
Current rack in Buffer #6 (BCD)

Buffer #6 Dirty Flag (if contents is non-
zero, then data has been written to the
buffer, but has not yet been transferred
to the disk)

(Note: Locations 9006 through 9013, 9213-9214, 9238-9239 are used for
Disk Buffer #7 (1/O Flag Bit 6 device) usage parameters)

9006-
9007

9008-
9009

9919
9011
9912
9913
9998-

90899

9105-
9106
9132-

9133

9155-
9156

9213-
9214

9238-
9239

9368
9554

9682-
9683

9779

9796
9822
9823

9824

9826
9976
10950

11511

12076
12042

13026
13743

232E-
232F

2330
2331

2332
2333
2334
2335

238A-

2388

2391-
2392

23AC-
23AD

23C3-
23C4

23FD-
23FE

2416-
2417

2498
2552

25D2-
25D3

262A

2644
265D
265F

2660

2662
26F8
2AC6

2CF7

2F2C
2F0A

32E2
35AF

126

126

126

126

171
32

LO-HI Byte address for the start of

Buffer #7 (*contents vary: 58 on 5 3.2;

313 gn 8" V3.2, 66 on 5" V3.3; 70 on 8”
.3)

LO-HI Byte address for the end of
Buffer #7 (*contents vary: 66 on 5" V3.2,
73 on 8" V3.2; 74 on 5” V3.3; 82 on 8”
V3.3)

First track of Buffer #7 File (BCD)

Last track of Buffer #7 File (BCD)
Current rrack in Buffer #7 (BDC)

Butfer #7 Dirty Flag (8 = Clean;

see comment for location 99@5)
Pointer to Memory Storage Input
(Lo and Hi Byte).

Pointer to Memory Storage Output
(Lo and Hi Byte).

LO-HI Byte address of Buffer #6
current input. (* 50 on 5” V3.2; 49 on all
other systems)

LO-HI Byte address of Buffer #6
current output. (*50 on 5" V3.2;

49 on all other systems)

LO-HI Byte address of Buffer #7
current input. {*62 on 5" V3.2;

61 on all other systems)

LO-HI Byte address of Buffer #7
current output. (*62 on 5 V3.2,

61 on all other systems)

Indirect File Input Address (Hi Byte)
(Lo = 09)

Pointer to Indirect File {Hi Byte only) for
output (Lo = 0p)

Next Position for Cursor on video
screen (H! and LO Bytes) V3.2 Video
Systems only)

Display control parameters. Singie
Space = 64; Double Space = 128; (V3.2
Video Systems only)

Entry point to Keyboard Swap Routine
Sector for USR(X) on Disk.

Page Count for USR(X).
Read or Write.

Pointer to memory for USR(X).
(Lo and Hi Bytes) USR(X) will reside in
location pointed to.

Contains track number for USR(X) on
disk (Decimal}

Disable “:” Terminator. See Location
2976 comments.

Console terminal number. (*1 on Serial
Systems; 2 on Video Systems)

Page 0/1 Swap Address
Sets record length for data file use

Sets Number of records per track for
data file use.

Selects cursor character (V3.3 only)

Selects Flashing cursor; 44 selects
rion-flashing cursor. (V3.3 oniy}

W N -

DCOm>» © ® NGO O A

ERROR MESSAGE CODES

- Can't Read Sector (Parity Error).
- Can't Write Sector (Reread Error).

- Track Zero is Wnte Protected Against that
Operation. =

- Diskette is Write- Protected ,
~Seek Error (T rack Header Doesn’t Match
- Drive Not Ready.

- Syntax Errorin Command Line.
- Bad Track Number.

- Can't Find Track Header Wuthm One Rev. of
Diskette.

- Can't Find Sector Before One Requested

- Bad.Sector Lerigth Value.

- Can't Find that Name in Dtrectory
- Read/Write Attempted Past End of Named File.

BASIC ERROR MESSAGE CODES

BS
CN

DD

‘FC

LS
‘NF
‘OD

OM

ov
‘RG

“SN
ST
™

“UF
us

/0
"0s

Bad subscript: Matrix outside DIM statement
range, etc.

Continue Errors: Attempt to inappropriately con-

tinue from BREAK or STOP.

Double Dimension: Variab:e dimensioned twice.

Remember, subscripted variables default to
dimension 10.

Function Call Error: Parameter passed to
function out of range.

Illegal Direct: INPUT and DEF statements can-;j

not be used in direct mode.

Long String: String longer than 255 characters:

NEXT without FOR.
Out of Data: More reads than data.

Out of Memory: Program too big or too many
GOSUBs, FOR-NEXT loops or variables.

Overflow: Resuit of calculation too large.
RETURN without GOSUB.
Syntax Error: Typo, etc.

String Temporaries: String expressmn too
complex.

Type Mismatch: String varfﬁ{“mismatched to
numeric variable. M“.:]

Undefined Function.

W
Undefined Statement: Attempt to |ump to’ “non-

existent line number.
Division by Zero.
Out of String Space: Same as OM.

DOS COMMANDS

ASM

BASIC
CALL NNNN=TT,S

D9

DIRTT

EM

EXAM NNNN =TT

GO NNNN

HOME

INIT

INITTT

10 NN,MM

10 ,MM
I0 NN

LOAD FILNAM
LOAD TT

MEM NNNN,MMMM

PUT FILNAM
PUT TT
RET ASM

RET BAS
RET EM

RET MON
SAVE TT,S = NNNN/P

'SELECT X

XQT FILNAM

XQT TT

NOTES:

Load the assembler and extended
monitor. Transfer control to the
assembler.

Load and transfer control to BASIC
Load contents of Track “TT”, sector
“S” to memory location “NNNN”.

Disable error 9. This is required to
read some earlier version files (V1.5,
V2.0). (on 8” systems only)

Print sector map directory of track
“TT”. For each sector, the number of
pages is given.

Load the assembler and extended
monitor. Transfer control to the
extended monitor.

Examine track. Load entire track
contents, including formatting
Informatxon into location “NNNN".

Transfer Control (GO) to location
“NNNN".

Reset track count to zero and HOME
the current drive’s head to track
zero.

INITIALIZE the entire disk. l.e. erase
the entire diskette (except track @
and write new formatting
information on each track.

Same as “INIT”, but only operates
on Track “TT”.

Changes the Input /O distributor
flag to “NN”, and the Output flag to
MM

Changes only the Output flag.
Changes only the input flag.

Loads named source file, “FILNAM”,
into memory.

Loads source file into memory given
starting track number “TT”.

Sets the memory /O device Input
pointer to “NNNN", and the Output
pointer to “MMMM"”,

Saves source file in memory on the
named disk file “FILNAM".

Saves source file in memory on
track “TT" and following tracks.

Restart the assembler.

Restart Basic.

Restart the extended monitor.
Restart the Prom monitor (via
RSTVECTOR).

Save memory from location “NNNN"
on track “TT” sector “S” for “P”
pages.

Select disk drive “X” where “X” can
be; A, B, C, or D. Select enables the
requested drive and homes the head
to track 0.

Load the file, “FILNAM” as if it was
an object file, and transfer control to
location $3A7E

(317E on 8”V3.2; 327E on 5” V3.2)
Load the file beginning on track
“TT” as if it was an object file and
transfer control to location $3A7E
(317E on 8” V3.2; 327E on 5” V3.2)

—Only the first 2 characters are used in recognizing a DOS
command. The rest up to the blank are ignored.

—Commands can be used in the baisc mode in the form
DISK! “DOS” where DOS represents one of the commands

above.

—All memory locations should be in hex.

