65D TUT ORIAL and
FERENCE MANUAL

A Step by t D lntr;’"uctlon tothe

ATTENTTION

This set contains six disks: The five
disk Tutorial Set and one blank disk.
The tutorial disks have blue labels

and the blank disk has a brown label.

TABLE OF CONTENT

INTRODUCTION

CHAPTER
- CHAPTER

CHAPTER

CHAPTER

CHAPTER

 I. Entering the BASIC Mode
J. Using Data Files
K. Storing Data Files . .

L. Conclusions

.

l1: Tutorial Disk 1

2: Tutorial Disk 2

A. The

B. Entering a BASIC Program

BASIC Immediate Mode . . .

3: Tutorial Disk 3

4 Tutorigl Disk 4%

A. Sequential and Random Files .
B. The PRINT and INPUT Statements
C. The OPEN and CLOSE Statements
D. A Sequential File Example . .
E. The GET and PUT Statements . .
F. A Random File Example . . .

G. An Example Using Two Data Flles

5: Tutorial Disk 5

A. Introduction
B. The Workspace
C. Floppy Diskette Formats
D. The Menu
E. The Directory
F. Copying Diskettes
G. Creating, Deleting and

(i)
(ii)
(iii)
H. The
(i)
(ii)
(iii)

* e e
* e e o e @
o« o o e

Deleting a File
Creating a File
Renaming a File

PUT, LOAD and RUN Commands
The PUT Command
The LOAD Command . .
The RUN Command . .-

.
. .
.
.

e ¢ o o o o

e e o & o

o o e ¢ e @

.

. . . . [.

.

[T S)

* e e e e

Renaming Fil

.
-
.
.
.
.
es
.

-

* 8 e & s e 0+ @

" e s 0

¢ & 3 ¢ o e e

Page #

12

12
12
15
15
17
18
21

24
24
24
25
25

26
29

31
32
34
36
36
37
38
39
40
43
By

CHAPTER

CHAPTER

CHAPTER

. C. Buffer Creator . . .

TABLE 0F CONTENTS

6: Overview of 0S-65D
A. Introduction . .« . .« « + « .+ .
B. Memory Allocation
C. KXernel Commands

D. Transfer of Control .
E. Input/Ouput Distribution . . .
F. Disk Usage . « « « « « « « « =

(i) Tracks . v « o o o « s « &
(ii) Sectors
(iii) Fundamental Disk Commands
(iv) Source Files . . . « + o =«

(v) Data File Handling

G. Kernel Command Summary
H. Utility Programs

7: New Features in 0S-65D V3.3 .

A. Cursor and INPUT prompt . . .

B. Keyboard Encoder and Video Display .

C. Enhanced BASIC e .

(i) Upper and Lower Case Interchangeablllty

(ii) The BASIC Line Editor . .

(iii) The TRAP Command
(iv) New PRINT Commands

(a) Number Formatting . .

(b) Cursor Location . . .

. . .

(¢) General Screen Formattlng .

(d) Printer Control . . .
(v) Data File Handling
D. BASIC Functions Not Present in

8: Extended 65D Utilities

A. Resequencer
B. Repacker o . .

D. General String Orlented Sort

E. BASIC Disassembler

F. Data File Copier

G. Program Listings
(i) Resequencer (RSBQ) . . .
(ii) Repacker (REPACK)

(iii) Buffer Creator (BUFFER) .

- . .

V3.3

(iv) Generalized String Oriented Sort

(v) BASIC Disassembler (DISASM)

(vi) Data File Copier (DATRAN)

(GSOSR%) 118

(Cont'd)"

Page #
45

45
y7
50
51
54
56
56
57
58
59
62

6L
66

66
68
69
63
70
71
72
73
74
75
86
92
98

101

102
106
109
111
112
113
113
114
116
117

121
12y

TABLE 0F CONTENTS (Cont'd)

Page #

APPENDIX 1: Utility Program Descriptions and Listings . 125

0SE5D3 & v v 4 v e e e e e e e e e e .. 127
BEXEC* & v v v v v v e e e e e e e e .. 131
COPIER '+ + v + v v v @ « v v« w v« « . . 7138
CHANGE '+ + v v 4 v 4 4 v v e e e e v v v v 181
CREATE + « « + & v v v o 4 v v e e v v v . 152
DELETE « + « = + & o o o o o e« v w v v o 157
DIR s -1
RANLST & « « « = « « o 4 o« o o o« « v « . . 166
RENAME . . v + & v & v o v « o « « w « . . 189
SECDIR v v v v 4 4 e e e e e e e e e e e . 172
SEQLST '« + & + & o« v & o o « w « e e o« . . 175
- TRACE & & v & v o & o o 4 o 4« e v v o . 178
ZERO T - Vi
ASAMPL . . v v v 4 v 4 4 e 4 e e v e . . . 185
ATNENB « v + v « = o o v o & « v o« o« « . . 188
COLORS v v v v o v & o e 4 e e e e e v v v 101
MODEM &« v + v 4 o & v 4 o 4 o o 4« . . 194
COMPAR v v v v 4 v 4 e e e e e e e v e v v 199

APPENDIX 2: DOS Command Summary . . « « « « s o« o+ « « - 202
APPENDIX 3: 0S-65D BASIC Command Summary 204
APPENDIX 4: Editor Command Summary . ,f. O 4
APPENDIX 5: Error Message Codes . . . }i. s e < « « s . 213
APPENDIX 6: °'POKE and PEEK List;. ... e « <« <« o 215
APPENDIX 7: ASCII Character Codes . . . « .« « «u . i . 220
APPENDIX 8: V3.3 PRINT Command Summary -221
APPENDIX 9: Extended Utilities Command Summary 22k
APPENDIX-10: G L O S SARY &+ 5°0 . Ce . .. 226

INDEX 4 v v o v v v v o v o v o e v e o v v v w W« 230

Introduction

This manual consists of two parts. Part one (chapters 1
through 5) is a tutorial introduction to the wide range of
features and utilities afforded the user by Ohio Scientific's 0S-
65D operating system. Because it is a tutorial, part one should
be studied thoroughly, following the proper sequence of chapters.
The reader who jumps ahead before mastering the early chapters
risks possible confusion. |

Each chapter of the tutorial makes use of one of the five
Tutorial Disks that accompany this manual. The early Tutorial
Disks have been specially designed to make it possible for the
reader to write and use relatively sophisticated programs, that
process disk data files, without first 1learning all of the
complicated details of file manipulation. Hence, mastery of some
of the more difficult technicalities of the operating system can
be delayed until their necessity is properly motivated.

Part two of this manual (beginning with chapter 6) provides
complete information on all of the versions of 0S-65D, including
the new Version 3.3. This material is intended to be a natural
continuation for the beginner who has worked through the part one
tutorial. It can also be used as a stand-alone reference for the
experienced user who is familiar with 0S-65D version 3.2.

- It is assumed that all users of this manual have a working
(not detailed!) knowledge of the computer language BASIC. If you
do not have this background, please acquire a copy of 0SI's BASIC
and the Personal Computer (standard with some 0SI computers) and
read Chapter 2. Any other standard text on introductory BASIC
will also suffice. Tutorial Disk 1 should prove to be a useful
tool to anyone learning BASIC for the first time or practicing
some old skills.

If you are familiar with BASIC on another computer system,
it is suggested that you read through the 0SI BASIC Reference
Manual for detailed examples of 0SI BASIC. This 1s part of the
system documentation for nearly all 0SI computers.

A brief description of the five Tutorial Disks:

Disk 1 This contains a collection of interactive programs. It
is designed to be an easy-to-use, entertaining and
informative introduction to the system.

Disk 2 The user is introduced to the BASIC workspace, enters a
sample program, and learns how to correct typing errors.

Disk 3 This disk contains eight pre-created files for BASIC
programs. The user learns how to store and retrieve BASIC
programs from the disk. File names are introduced.

i

"Disk 4 This disk comes with three files for BASIC programs and
four data files. Sample programs illustrate sequential
file usage, random file usage, and combinations of the
two. The concept of a "buffer" is introduced.

Disk 5 This disk is a full 0S-65D V3.3 system disk. The
directory is introduced. Full file <create, delete and
rename utilities are examined. Disk copying on single and
dual drive machines 1is explained. The 65D operating
system is discussed.

As the above descriptions indicate, the disks are numbered
in order of increasing sophistication. Each disk is used with the
correspondingly numbered chapter in the tutorial.

Users who are thoroughly familiar with 0S-65D V3.2 may want
to proceed directly to Chapter 7 for an overview of the many new
features of version 3.3.

IMPORTANT NOTE TO USERS OF SERIAL SYSTEMS (C-2,C-3 SYSTEMS)

Four of the "games" programs contained on Tutorial Disk 1
are operable only on video systems (Clp, C4P, C8P systems). If
'you select any of these programs on a serial system they will
"hang-up" the computer, forcing you to reboot. The Hangman,
Biorhythm and Loan Interest programs will, however, run properly
on a serial system.

Certain new features of the 0S-65D V3.3 operating system do
not work on serial systems. Generally, commands that refer to
color, screen size, or windowing are not operable. A complete
list of the non-working commands is provided in '~ Chapter 7 (see
page 140).

If your system includes a Hazeltine 1424 terminal, be sure
that switch 6 is set to the ESC position (on).

IMPORTANT NOTE TO USERS OF C1P SYSTEMS

Your computer system must have a minimum of 24K of memory to
properly run the 0S-65D Tutorial Disks. A Cl1P with only 20K of
memory will not boot up with Tutorial Disk 5 because its menu
program (BEXEC*) will not fit into the 28K workspace.

It is, however, possible to use other Tutorial Disks with
a 20K ClP. For example, Tutorial Disks 3 and 4 could be used
to boot the system so that the C1P user could use the editor
and other new features of 0S-65D V3.3.

ii

TO START YOUR COMPUTER

Turn on the computer, disk drives and terminals - switches
are generally located on the back of the device cabinet.

Place an 0S-65D disk in drive A (the drive whose red light
is on or the top drive in dual drive cabinets). Close the
disk drive door.

Depress the BREAK key on C1lP and Cu4P systems (and hold for
a few seconds). Depress the white reset button on C8P and
serial systems.

When the "H/D/M?" ("D/C/W/M?" on ClP systems) message appears,
respond by typing "D" and <RETURN>. In a few seconds a menu
should appear on the screen.

To enter the BASIC immediate mode, respond UNLOCK to this menu
in 0S-65D V3.2; select option 9 in 0S-65D V3.3.

iii

Chapter 1

Tutorial Disk One

This disk contains seven programs which can be run by a user
with no programming knowledge.

The procedure for using Tutorial Disk 1 follows.

A) After the computer, disk drive(s), and monitor have been
connected and turned on (according to the instructions
in your user's manual) depress <BREAK> (or the white
reset button on your computer) and keep it depressed for
about two seconds or until ‘'H/D/M! ('D/C/W/M' on C1P
systems) appears at the top of the screen. Then insert
Tutorial Disk 1 into the disk drive, (label up and toward
the user) and close the door of the drive. If you have a
system with more than one drive, insert the disk into
drive A.The red light on drive A will be 1lit after

. depressing <BREAK> on minifloppy systems; if you have
dual disk drives in a single cabinet, drive A is the top
drive.

B) Make sure the SHIFT-LOCK (or ALL-CAPS) key is depressed.
C) Depress D (for disk).

After a short delay, the menu below will appear on the
Screen.

0S-65D Tutorial disk one

1> Space War

2> Hangman

3> Biorhythm

4> Torpedo

5> Breakout

6> Loan Interest Calculation
7> Life

Depress the number of your selection ?

When the menu is on the screen, make a selection and type
its number (1-7). Selections 1,2,4 and 5 are one and two player
games. Selections 3 and 6 prompt the user for certain information
and then display a report. Finally, selection 7 1is a graphics
demonstration program. It is not available on ClP systems.

As was mentioned in the introduction, selections 1,4 and 5
will run only on video systems (Cl1lP, C4P and C8P). Selection 7
also runs only on video systems; it is particularly impressive on
color video systems. Selections 2, 3 and 6 will run on all oOSI
computer systems, including serial systems. The following is a
brief description of each of these games.

1> Space wars is a two player game of skill where the ground
forces battle the starship Enterprise 1in an intergalactic
battle.

2> Hangman is a word guessing game. Using the positions of
letters that you have correctly selected as clues, you must
guess the computer's word before you are "hanged".

3> Biorhythm will plot vyour emotional, physical and
intellectual cycles for a 3¢g-day period. It will display high,
low and "critical" days. The program uses the popular (and
controversial) Biorhythm theory for its calculations.

4> Torpedo is a one player game where you are a commander,
and must destroy all enemy boats that enter your waters.

5> Breakout is a one player game where you try to keep the
ball moving around the screen and knock out as many blocks as
you can to score points.

6> Loan Interest Calculation will display a repayment

schedule and total interest charges for any loan. You select
the principal amount, interest rate, time period, and either
the number of payments or amount of each payment.

7> Life is an animated version of the classic simulation of
population growth and decay. The small squares in the display
are "born" when they have the optimal number of "neighbors".
Too few or too many neighbors causes a square to die and
disappear from the display. The entire population will
eventually reach a stable state or be completely wiped out.
Life was invented by mathematician George Conway. It has been
extensively discussed in Scientific American.

When one of these programs is selected, the computer first
displays a discussion or directions. Take as long as you wish to
read the display and then respond to the computer's prompt for
input from the user by making an appropriate entry on the
keyboard. In the case of programs 2, 3 and 6, it will be
necessary to press the RETURN or CR key after typing certain
kinds of information in order to complete the entry. For the
other programs, the RETURN or CR key is never used. You should be
certain that the SHIFT-LOCK (or ALL-CAPS) key is down while using
the programs on Tutorial Disk 1.

The user may break out of any one of programs 1, 2, 4, 5 or
7 by depressing <ESC> (escape key). It may be necessary to hold
<ESC> down for a second or two before the computer responds. When
it does it will return to the menu. When any of the programs has
finished running (without interruption through the use of <ESC>),
the computer asks if the user wants to run it again. Simply
Pressing the Y key (for yes) or the N key (for no) will rerun the
Program or return to the menu.

The user may end the use of this disk at any time by
depressing <BREAK> (or the white reset button) and removing the
disk from the disk drive. Any disk in a disk drive should always
be removed before turning off the disk drive.

2

Chapter 2

Tutorial Disk Two

Tutorial Disk 2 allows the user to enter his own BASIC
commands or BASIC programs. There 1is, however, no means for
saving a program when using this disk. If the user wants to
enter a program and save it on the disk, he should use Tutorial
Disk 3. We will use the following terminology:

boot-up: The process of initializing the computer and
loading software from the disk that permits
the user to enter BASIC commands or lines of a
program, Boot-up is accomplished by
depressing <BREAK> on the keyboard (ClP and
C4P systems) or the white reset button on the
computer (C8P and serial systems) until the
'H/D/M?' ('D/C/W/M?' on ClP systems) message
appears on the screen. Respond by typing D
(for disk) with the SHIFT-LOCK (ALL CAPS) key

down. .
workspace: The part of memory in which the user's program
is stored. This is RAM or random access
memory.
prompt: The symbol or message that is displayed when

the computer is waiting for a command to be
entered from the keyboard. 1If the computer is
waiting for a BASIC command or program entry
then the "0K" prompt is displayed. 1If a BASIC
program is running (e.g., the game programs on
Tutorial Disk 1) and an INPUT statement is
encountered then the "?" prompt is displayed.
Other prompts will be discussed in conjunction
with other disks.

When Tutorial Disk 2 is booted-up, the workspace is cleared
of all previous material and the computer displays the OK prompt.
When other disks are booted-up, the workspace may not be cleared.
At this point the user may enter BASIC commands either without a
line number for immediate execution or with a line number to be
stored in the workspace as part of the user's program. (The
former method is called the BASIC Immediate Mode.) We will give a
brief discussion about BASIC in the following sections. For a
more in-depth discussion about BASIC see Dwyer and Critchfield's
book BASIC and The Personal Computer or the 0SI BASIC Reference
Manual.

A) The BASIC Immediate Mode

. When the user enters (types) a BASIC command and the typed
line does not begin with a 1line number, then the command is

executed immediately. When the OK prompt is displayed each 1line

3

that 1is entered from the keyboard must be terminated by
depressing <RETURN> (KCR>). Most BASIC commands can be entered
in the immediate mode, that 1is, without a 1line number. The
exceptions are DEF, INPUT, READ, and DATA. Commands like GOTO
that must reference a line number can be entered in the immediate
mode only if there is a program in the workspace to reference.

One way to use the computer in the immediate mode is as a
calculator. This usually involves the BASIC "PRINT" command
which causes the computer to display a result. In OSI's
Microsoft BASIC, a question mark (?) can be used as an
abbreviation for the PRINT command.

Some of the arithmetic symbols used by 0SI's BASIC are:

+ add

- subtract
* multiply
/ divide

(or SHIFT-N) exponentiation
SQR square root
SIN sine of a number

For example, if the OK prompt is on the screen and the user
enters the command

? SQR (2) or PRINT SQR (2)
(followed by <RETURN>)

then the display will be:

OK
? SQR (2)
1.41421356

OK

That is, the computer will display (or PRINT) the square root of
2. (NOTE: A typing error can be corrected by pressing <RUB-0OUT>
or <SHIFT-0>.) If the user enters the command

? 3*(61.809-12.929)

then the computer will display the result of that calculation, as
follows:

OK
146 .64 '
OK

(Note, the zeros have a slash through them (g) to differentiate
them from the fifteenth letter of the alphabet.)

The user can cause values to be stored in memory. For example,
if the user enters

PI=3.14159
‘and then

? PI*(472)

then the display will be:

OK
PI=3.14159

OK
? PI*(472)
50.26544

OK

That is, the computer will print the area of the circle of radius
4. The wvalue stored at PI will be available for later
calculations. So, for example, if the wuser now enters the
command

? PI*(17.372)

then the display would be:

OK
? PI*(17.372)
940.246472

OK

More than one command can be entered at one time, provided the
commands are separated by colons. For example, the value of the
formula

X"4 - 4*X"3 + 3*X + 9
for X=7

can be displayed as follows:

OK
X=7: 2 X4 - 4*X"3 + 3*X + 9
1859 :

OK

(Remember that the """ symbol is typed by pressing <SHIFT-N> on
some keyboards.)

The FOR-NEXT pair can be used in the immediate mode, but it must
be on one line, For example, a table of square roots could be

5

obtained as shown below:

OK
FOR X=1 TO 10: ?X,SQR(X): NEXT X
1 1

2 1.41421356
3 1.73295981
4 2

5 2.23606798
6 2.44948974
7 2.64575131
8 2.82842713
9 3

19 3.16227766
OK

The PEEK and POKE commands are frequently used in the immediate
mode. For example, the command

POKE 56832,0

will cause the C4P and C8P monitor screen displays to go into the
32x32 mode (32 lines of 32 characters) with color and sound
generators turned off. Entering the command

POKE 56832,1

will return the display to its original 32x64 mode (32 lines of
64 characters) with sound and color turned off. See your user's
manual for more information on memory location 56832.

B) Entering a BASIC Program

When the OK prompt is on the screen the user may enter lines
of BASIC code to be stored in the workspace for later execution.
Each such line must begin with a line number. Remember, there is
no provision on Tutorial Disk 2 for storing programs. If the
user wants to store a program on a disk then Tutorial Disk 3 may
be used. As a short example, the user might type in:

19 PRINT"TEST PROGRAM"

20 PRINT

39 INPUT AS

49 PRINT LEN(AS)

S@ IF AS = "DONE" THEN STOP
60 GOTO 20

If you make a mistake (before you depress <RETURN>) use the
SHIFT-0, SHIFT-"underline" (next to the @ key), or RUB-QUT key to
delete the previous character. (Different keys implement the
delete function on different systems).

If you notice a typing error in a 1line that has already been
typed, then type the line again with the same line number. The
new version will replace the o0ld. Typing a line number followed
immediately by the depression of the <RETURN> “key, will delete

6

the line with that number. To display the program as it
currently is in memory, type the command

LIST
At times you may want to list only part of a program. You may

use the LIST command followed by a line number or numbers.
Examples are:

LIST 20 list just line 24

LIST 20-49 list lines 29 through 49 inclusive

LIST -49 list from the first line through line 44
LIST 20- list from line 20 to the end of the program

The program, when correctly entered will:

1) print the title "TEST PROGRAM"

2) ask for information to be typed in at the keyboard

3) count and display the number of characters that
were entered

4) stop if DONE was entered, otherwise go back to’
step 2 and repeat the process., -

To run this program type the command
RUN

The computer should display
TEST PROGRAM

and then -

?

which is a prompt, indicating that the computer is waiting for
information from the keyboard and a carriage return (depression
of the <RETURN> key). Anything may be typed at this point except
<BREAK>. If, at any point, an error message 1is displayed, then
the program was not typed in correctly, and the programmer should
LIST it, correct any errors and then RUN the program again. If
the program has no errors and is running, it may be stopped by-
responding with DONE to the ? prompt.

Chapter 3

Tutorial Disk Three

Tutorial Disk 3 is similar to Tutorial Disk 2 in that the
user can enter commands in the immediate mode (Chapter 2) and
type in BASIC programs. However, Tutorial Disk 3 also allows for
storing programs on disk. ' -

For purposes of disk storage, a BASIC program or collection
of data records is called a file. Thus we may refer to a program
file or data file. Data files are discussed in detail in Chapter
4‘

When the programmer wishes to store a program on disk there
must already be a place (file) on the disk to store it. Tutorial
Disk 3 contains eight precreated files that are ready for
immediate storage of programs. The techniques for creating and
manipulating disk files are discussed in detail in Chapter 5.
When a program file is brought from disk into the workspace, we
say the file is loaded from the disk. When this happens, the
file on disk remains unchanged while being copied into memory.

The computer reads the disk. When you read a book the
information remains on the pages of the book. Likewise, when the
computer reads the disk that file remains on disk. After the

file has been loaded into the workspace, the programmer may then
LIST it, RUN it or make changes and then save the updated version
on disk, either in place of the o0ld versions or in another file
so that both versions are on disk simultaneously.

When Tutorial Disk 3 is booted-up, the computer displays the
following menu and waits for the user to type a menu number (as
with Tutorial Disk 1 except now you must also depress <RETURN>).

1 > LOAD program called "PROG1"
2 > LOAD program called "PROG2"
3 > LOAD program called ‘PROG3"
4 > LOAD program called "PROG4"
5 > LOAD program called "PROGS"
6 > LOAD program called "PROG6"
7 > LOAD program called "PROG7"
8 > LOAD program called "PROGS"
9 > Rename a progrém file

Type the number of your selection and depress <RETURN>

The menu gives a list of the eight precreated files and, in
addition, offers a ninth option for renaming files. If the
programmer enters 1 through 8 then the computer will 1load the’
specified program into the workspace, ready to LIST, RUN or
modify. 1Initially, each file contains a short £filler program.
To replace a filler program with one which you have written, use
the following procedure:

1) Select one of the eight files by typing the number
corresponding to your choice, then press <RETURN>.

2) Type
NEW<KRETURN>

to clear the workspace and erase the filler program
from the workspace (the copy of the program on disk
is unchanged).

3) Enter your program as in section B of Chapter 2.
4) Type
DISK!"PUT PROG1"<RETURN> °

If you have already used option 9 to rename PROG1
then you should use the new name instead of PROGI.
You can save your program in any file that is listed
in the menu by using its name in place of PROGI.

Below is a complete example. The example program, when RUN,
displays all 255 graphics characters on the screen. For more
information on graphics see your user's manual. The first 1line
scrolls the screen display upward, clearing the screen so that
the output of this program can be viewed without interference
from the previous screen display. The second line changes the
Screen display to the 32x32 mode on a C4P or C8P computer so that
the displayed characters will be larger. When the program has
stopped running the screen will remain in 32x32 mode. To return
to the standard 32x64 mode the programmer can type

POKE 56832,1

The listing at the top of the next page is exactly as it would

appear on the screen, including the OK prompts. Everything
except the OK prompts was entered by the programmer. Use
<RUB-OUT> to correct any typing errors (see Chapter 2). It 1is

assumed that the computer has been booted-up and the user has
selected option 1.

OK
NEW

OK
99 FOR S=1 TO 25:PRINT:NEXT
190 POKE 56832,8
200 C=0
398 FOR L=0 TO 15
400 FOR P=@g TO 39 STEP 2
500 POKE 5376@+64*L+P,C
600 C=C+1
788 NEXT P
808 NEXT L

DISK!"PUT PROG1"

OK

Now that the program is saved on disk, you may want to run
the program by typing RUN.

To run the program on a ClP system, the following changes
are necessary:

3060 FOR L= TO 7
499 FOR P=g TO 31
500 POKE 53586+64*L+P+7,C

The program cannot be modified to run on serial systems because
it uses the memory-mapped screen display features of the O0SI
video systems.

When the menu is on the screen, the user can change the name
of any of the eight files by selecting option .9. When this
option is selected, the computer will ask for the old file name
(that is the name before any change is made) and then ask for the
new name. The names can be up to six characters 1long, and the
first character must be a letter. Examples:

Valid names Invalid names
PROG1 "1PROG
TESTIT TEST IT
SAMPLE *FILE

Only the name of the file will be changed; the program stored in
the file will not be affected. When the user stores his own
program in one of the eight files it may be desirable to give it
a more descriptive name. This is, however, completely optional.

Any file that exists on a disk has a specific length, given
as a number of tracks. One disk track can hold slightly more
than 2000 bytes of data or 2¢@¢ characters of a BASIC program
(3000 bytes of data or characters on eight inch disks). Each of
the precreated files on Tutorial Disk 3 has a length of three

19

tracks. Hence, a longer program cannot be stored on Tutorial
Disk 3. The creation of files of user-specified 1lengths is
discussed in Chapter 5.

The programmer can easily determine the length, 1in tracks,
of the program currently in the workspace. The procedure is:

1) Following the OK prompt, type
EXIT<RETURN>

The computer will respond with the length of the
program and then display an A* prompt. The A* prompt
means that the computer is no longer in the BASIC mode
but in the Disk Operating System (DOS) mode. This is
discussed further in Chapter Six.

2) To return to BASIC from DOS type:
A*RETURN BASIC<KRETURN> or A*RE BA<RETURN>

The program that is RUN upon boot-up is called MENU. The name
MENU was used for simplicity. Later you will find that the
program called BEXEC* is the program RUN on boot-up for most
diskettes. MENU is the program that prints the menu and
processes your selection. The line

RUN" MENU<KRETURN>
may be put into any program or executed in the immediate mode.
When this command is executed, the program MENU will be 1loaded

into the workspace (hence erasing any other program in the
workspace) and the menu will be displayed.

11

Chapter 4

Tutorial Disk Four

Tutorial Disk 4 contains three filler programs which will be
used to set up the workspace for the three programs PROG1l, PROG2,
and PROG3. 1Included in this chapter are three sample programs to
be entered in these program files, replacing the filler
programs. This disk also has four .empty files for storing data
files DATAl, DATA2, DATA3 and DATA4. In addition, it has the
rename capability discussed in Chapter 3 and a program that will
erase data files. ,

A data file is composed of units called records. A record
contains one or more individual data items. As an analogy, one
might consider a filing cabinet as a data file and a folder in
the cabinet as a record which is filled with data items. A
typical data item would be a number or string of characters such
as a name. ’

A data item does not move directly from its memory
(workspace) location to disk, but is moved first to an
intermediate location called a buffer. A buffer is a block of
memory (workspace) that has been set aside to handle the
shuffling of data between the workspace and the disk. A
Programmer should think of moving data to and from the disk as a
two-stage process: 1In order to move data to the disk, it must
first be moved to the buffer and then to the disk. In order to
move data from the disk to the workspace, it must first be moved
to the buffer and_ then to the workspace. 1In 0S-65D there are two
buffers available, referred to as buffer$6 and buffer7 (also
referred to occasionally as device#6 and device$#7). This chapter
provides an introduction to the use of these buffers. Additional
details will be provided in Chapter Five, Section J, and in
Chapter Six. :

A, Sequential and Random Files

There are two types of data files: sequential access files
and random access files, A sequential data file is a file in
which information is stored sequentially, one item right after
another, from the beginning to the end of the file. Sequential
files would be used to store a large numeric array, or to store
information that can be searched sequentially such as names and
Phone numbers. The program you will enter as PROGl1 will access
the file DATAl sequentially.

In many applications sequential files become impractical.
For instance, in an inventory application, one would like to be
able to quickly access an inventory item for reference or change.
This requires the use of a random data file. Random data files
differ from sequential files in. that groups. of entries are
combined into records. These records can be randomly
(non-sequentially) accessed. For instance, a random data file
could have a hundred records. A Program could quickly access any
one of these records by record number. For example, the contents

12

of record 58 could be accessed and then the contents of record 72

could be accessed without looking at any of the 14 records in
between.

As we shall see later, buffer#6 must be used to implement
random files. Either buffer46 or buffer$47 (or both) can be used
with sequential files.

Because random files permit more sophisticated access
methods than do sequential files, random files have a more
complicated structure. Each record in a random file has a block
of the computer's memory reserved for 1it. Unless intentionally
changed, the length of this block is 128 bytes. The record will
take up this much room in the buffer and on the disk regardless
of how much of the record has actually been used to store
meaningful (to the user) information. When the records of a
random file have this characteristic, they are called fixed
length records. 0S-65D does not provide special features that

permit implementation of random files with variable length
records,

A floppy disk is divided 1into concentric circles called
tracks on which the information is -stored. A 5" disk has 49
tracks and an 8" disk has 77 tracks. A track on an 8" disk has
50% more storage capacity than a track on a 5" disk. When a
random file is stored on disk the number of records stored on
each track of the disk is fixed in accordance with the record
length. For 128 byte records, 16 records will fit on each track
of a 5" disk and 24 records will fit on each track of an 8" disk.
Additional details on diskette formats will be covered in Chapter
Five, Section C, and in Chapter Six.

Procedures for changing the record block length and
therefore the number of records per track will be discussed later
in this chapter. You must observe the record block 1length
carefully. If you write more characters into a record than its
length allows, you will be writing over, and hence destroying,
material in the next record.

B. The PRINT# and INPUT# Statements

The PRINT# and INPUT# statements move data between the
workspace and the buffers. They function in the same manner as
the usual PRINT and INPUT commands in BASIC with the exception
that they must refer to a specific buffer (either 6 or 7).

The INPUT# statement reads data from a disk file into the
workspace. It has the general form:

INPUT#buffer number,string and/or numeric variable list
For example,
INPUT#6,BS$,K

Elements in the wvariable 1list are separated (delineated) by
commas. This INPUT acts on data from a file as if the data were

13

typed in at the keyboard.

In the above example, B$ is a string variable and K 1is a
numeric variable. The INPUT statement treats these two types of
variables somewhat differently. When reading numeric values,
embedded spaces are ignored. When a non-space character is
found, it is assumed to be part of a number. The number
terminates on a colon, comma, or carriage return.

When scanning for string items, leading blanks are ignored.
When a character which is not a leading blank 1is found, it is
assumed to be part of a string item. If this first character is
a double quote (") the item is taken to be a quoted string, and
all characters between the first and second double quotes are
returned literally as the characters in the string value. This
means that a quoted string in a file may contain any characters
except double quotes. If the first character of a string is not a
double quote, then it is assumed to be an unquoted string
constant, The string returned will terminate on a comma,
carriage return, or colon.

The PRINT# statement writes data to a file. It has the
" general form:

PRINT# buffer number,expression list

. The expression list can consist of string variables, numeric
-~ variables, and quoted strings, separated by semicolons. For
»example,

PRINT#6,AS;" ,";N

A$ 1s a string variable, "," is a quoted string and N is a
numeric variable, and each item is separated by a semicolon.

Note the "," element in the example. Because of the way the
INPUT statement scans the record, specific delimiters (a comma or
carriage return as described earlier) must be placed between data
items. When leading blanks are not significant and there are no
colons or commas in the strings to be written to the file, it is
sufficient with the PRINT statement to insert commas between the
strings. For example:

PRINT#6,X$;",";¥S;",";ZS

When leading blanks are significant or there are commas
and/or colons in the strings to be written to the file, the
output strings need to be surrounded by double quotes. The CHRS
function can be used to generate the double quote character from
its ASCII. value as in this example:

Q$=CHRS (34)
PRINT#6,05;X$;Q8;",";08;Y$;:0$

If a record is written as a long list, commas need to be
inserted between each item. Sometimes it is simpler to write each
item with a separate PRINT statement. A FOR-NEXT loop is used to

14

do this in the following example:
FOR I=1 TO 1@0:PRINT#6,AS$(I) :NEXT

Execution of the PRINT statement for each item causes the data to
be followed by a carriage return character. There 1is another
advantage to writing each item with a separate PRINT Statement.
The BASIC input buffer is 71 characters 1long. Consequently,
longer lists are truncated on input.

C. The OPEN and CLOSE Statements

For the most part, the transfer of data between buffers and
diskettes takes place automatically. Because there are just two
buffers and potentially many data files, the programmer must make
an association between a particular buffer and a particular data
file. This association is made by the OPEN statement and
dissolved by the CLOSE statement.

Before a program can read or write data to a disk file it
must first OPEN the file. The general form of the OPEN Statement
is

DISK OPEN, buffer number,"file name"
For example:

DISK OPEN,6,"DATAL"
This OPEN statement associates the buffer we refer to as $#6, with
the file DATAl, reads the first track of the file into buffer#s,
and sets the memory pointers (the counters which point to the
current record) to the start of this buffer (to the first record
of the file).

A file that has been OPENed needs to be CLOSEd. The general
form of the CLOSE statement is

DISK CLOSE, buffer number
For example:

DISK CLOSE,é6
The CLOSE statement finishes the connection between the buffer
and the file name given in the OPEN for that file. It allows the
buffer to be used again in another OPEN statement with another
data file. To read from a file that has just been written, CLOSE
and re-OPEN the file. This sets the data pointer back to the

beginning of the file. A CLOSE for a sequential file writes the
data that is still resident in the buffer to the disk.

D. A Sequential File Example (Using Tutorial Disk 4)

Boot-up Tutorial disk four and select option 1 to 1load
PROG1. PROGl (as well as PROG2 and PROG3) has been created with a

15

buffer area. Several methods for verifying this will be discussed
in later chapters. Next, type NEW <RETURN> to clear the filler
Program. These first two steps will put a single buffer (#6) in
front of your workspace. Now that you have your buffer and a
Clear workspace enter the following program and store it as
PROGl. The procedure should be as follows (Serial system users
should omit lines 2@ and 4¢; see the Note, end of Chapter 7):

OK
NEW

OK

12 REM SEQUENTIAL FILE DEMONSTRATION
20 PRINT! (28) :REM CLEAR SCREEN

36 INPUT"Enter data or List data? (E/L)";C$
49 PRINT! (28) :REM CLEAR SCREEN

5¢ IF C$="E" THEN 1090

60 1IF Cs$="L" THEN 200

196 REM ROUTINE FOR ENTERING DATA

185 DISK OPEN,6,"DATA1"

119 FOR I=1 TO 3

129 INPUT"Enter a name";N$

130 INPUT"Enter the telephone number";T$
140 PRINT#6,NS$:PRINT#6,TS

150 NEXT I

168 DISK CLOSE,6

17¢ PRINT"DATA STORED"

180 GOTO 30

204 REM ROUTINE FOR LISTING DATA

219 DISK OPEN,6,"DATALl"

229 FOR I=1 TO 3

230 INPUT#6,NS,TS

240 PRINT NS,TS

250 NEXT I

260 DISK CLOSE,6

279 GOTO 3¢

DISK!"PUT PROG1"
OK

After storing the program in PROGl, you should run the
program and correct any errors that are found and save the final
copy in PROGl. Note that the first thing the program does is to
clear the screen. The screen clear command, PRINT! (28), on 1lines
20 and 40 is one of the new 0S-65D V3.3 features that are
documented in Chapter 7. It does not function on serial systems,

After the first screen clear the program prompts you for a
choice between entering or listing. The first time through, you
should enter "E". The program will then ask for a name. After
entering a person's name, the program will ask you for a
telephone number. Next, you will again be asked to enter a name
and so on for three pairs of names and numbers.

Note that the numbers are being stored as string variables.
This will allow you to include a space or dash between the first
three and last four digits of the telephone number. Note also

16

that line 140 contains two separate print statements. This has
the effect of placing a carriage return character between the
name and number entries. This will be important in Chapter 7 when
an extension of this example program is discussed. For the
present, however, line 149 could be replaced by:

140 PRINT#6,NS; TS
This would work equally as well.

When the three pairs of names and numbers have been entered,
the message

DATA STORED

will be displayed and you will be returned to the enter or 1list
options. At this point six string variables have been stored in
the data file DATAl (through the use of buffer#é).

Now enter "L". The computer will load the contents of DATAl
into buffer$6, pick up pairs of string variables with the INPUT
Statement in line 23¢9, and display these pairs on the screen.
When this is completed, the enter or list message will again be
displayed.

To exit the program, simply press the RETURN key in response
to the enter or list message instead of entering "E" or "L". The
OK prompt will appear. Now run the menu by entering the command:

RUN"MENU"

Since you are now back to the menu, you could now use option 5 to
clear data file DATA]L.

In Chapter 7 a sample program is presented which can be
written by simply adding to the sequential file demonstration
program just discussed. Therefore, you may want to save this
program in PROG1l for future reference.

E. The GET and PUT Statements (for random files)

The advantage of a random file is that any record may be
read or written at any time. This is accomplished by executing
the DISK GET command before a PRINT or INPUT statement. As will
be explained later, the DISK PUT command may be used after each
PRINT statement but this is not necessary with 0S-65D v3.3.

The GET and PUT commands have the form:

DISK GET, n
DISK PUT

where n is a record number.

When a GET operation is performed, the file pointer 1is set
to the record number specified by the DISK GET command. Record

17

numbers begin with @g. For standard sized records--128 bytes per
record and 16 (24 on 8" inch systems) records per track--no disk
transfer operation is involved if the record number is 15 (23 on
8" systems) or smaller. Since the entire first track of a data
file is transferred to buffergé by the DISK OPEN,6,"filename"
command, the data file pointer simply goes to the proper memory
location in the buffer. If, however, the record number is 16 (24
on 8" systems) or larger, a new track must be loaded into the
buffer and then the pointer can be set.

Once the pointer has been set to the proper record, a PRINT
Statement or INPUT ststement should follow. A PRINT#6 sStatement
following the GET command will store information in the buffergé
memory locations corresponding to the selected record. Note that
the record number itself does not exist in the buffer in direct
retrievable form. If the record number will be needed later, it
should be stored in the record along with the other record
contents, :

The DISK PUT command transfers the buffer contents onto the
disk. If a program processing random files is to be run on the
earlier 0S-65D V3.2 Disk Operating System, then the DISK PUT
command must follow each PRINT statement or series of PRINT
Statements. For 0S-65D V3.3, however, this is not necessary. 1In
other words, if new information has been PRINTed into the buffer
prior to the execution of a GET command which involves a record
on a different disk track from the one currently in the buffer,
then the DISK GET command will automatically store the buffer
contents onto the disk before bringing in the new track. (This is
one of the new features of v3.3.)

When an INPUT#6 statement follows a GET command, the
contents of the record specified by the GET command is
transferred from buffer$6 to the variables in the INPUT
Statement.

More than one INPUT or PRINT statement may access the same
record. For example, both A$ and BS are written in record 1 by

DISK GET,1
PRINT#6 ,AS
PRINT46 ,BS$

DISK PUT

F. A Random File Example (using Tutorial Disk 4)

Boot-up Tutorial Disk 4 and select option 2 to load PROG2 in
the same way you did in the first example. Then type NEW
<RETURN> to clear the filler program. As in the first example,
these first two steps are done to acquire a single buffer (6)
in front of your workspace. But this time buffer$s will be
used for random file accessing instead of sequential file
accessing (shown in the first example). Now that you have your
buffer and a clear workspace enter the following program and

18

store it as PROG2. The procedure should be as follows (Serial
system users should omit lines 20 and 40; see the note at the end
of Chapter 7.):

OK
NEW

OK

19 REM RANDOM FILE DEMONSTRATION

20 PRINT! (28)

39 INPUT"Enter record or List record? (E/L)";CS
49 PRINT! (28)

50 1IF C$S="E" THEN 100

60 IF C$="L" THEN 340

190 REM ROUTINE FOR ENTERING DATA

119 DISK OPEN,6,"DATA2"

1290 FOR R=1 TO 3

139 PRINT"For record number";R;

1490 INPUT"enter item name':I$

15¢ INPUT"Enter number of items";N$

166 DISK GET,R

170 PRINT#6,R;",";IS;",";NS

189 DISK PUT

198 NEXT R

200 DISK CLOSE,6

213 PRINT"DATA STORED"

229 GOTO 30

300 REM ROUTINE FOR LISTING RECORDS

3190 INPUT"Enter number of record to be listed";R
320 DISK OPEN,6,"DATA2"

339 DISK GET,R

340 INPUT#6,RN,IS$,NS

358 PRINT RN,IS$,NS

360 INPUT"List another record? (Y/N)";AS
376 IF AS="Y" THEN 310

388 DISK CLOSE,®6

396 GOTO 39

DISK!"PUT PROG2"

OK

After storing the program in PROG2, you can run the program
and correct any errors that are found and then save the final
copy in PROG2. This program will first clear the screen then
prompt you for a choice of entering or listing. The £first time
through, you should enter "E". The program will then
automatically begin with record number 1 and ask you to enter the
name of an item. (A program like this could be used for inventory
record-keeping.) Next you will be asked to enter how many of the
item you have. The program will then store this information
. (including the record number) in buffer$#6 with the line 17@ PRINT

statement and on the disk with the line 18¢ DISK PUT statement.

You will be asked to enter item names and the number of
items three times after which the DISK CLOSE,6 command will be
executed and you again will be given the option of entering or

19

listing.

After you have stored three records of information, respond
to the option message by entering "L". You then can choose record
l, 2 or 3 to be listed. Any other choice will result in an ERR#D
error message for line 34¢ because the program tries to pick up
information which is not there. (Note: in Chapter 7 you will be
shown how to make profitable use of this type of error detection
with the new V3.3 TRAP command.)

After you have listed a record, you will be given the choice
of listing another record or going back to the enter or 1list
option. To exit the program, simply press the RETURN key in
response to the enter or list message instead of entering "E" or
"L". The OK prompt will appear. Then run the menu by entering:

RUN" MENU"

At this point you could use option 5 in the menu to clear data
file DATA2.

After you have become familiar with the program as shown,
you may wish to modify it to allow more than three records to be
stored. This can be done easily by replacing 1line 128 with an
INPUT statement which asks for a record number to be stored in
the variable R. Then line 194 will need to be replaced with
statements which give you the choice of returning to line 12¢ for
an additional record or closing the file. If you make this
modification, you will be able to store and retrieve records ¢
through 31 (@ through 47 on 8" systems) in any order. This 1limit
of 32 (48 on 8" systems) records 1is imposed because only two
tracks on Tutorial Disk 4 have been reserved for data file DATA2.
In fact, each data file on Tutorial Disk 4 takes up two tracks.

This limitation can be overcome in two ways. First, the size
of the data file can be increased. Methods for doing this will be
discussed in Chapter 5. The second way is to decrease the size of
each record. Suppose 64 bytes (one byte can store one character)
is sufficient to store all of the information, including record
number, associated with one record. Then using the standard
128-byte record size is wasteful. If 64-byte records were
specified, DATA2 could hold twice as many records.

To change the standard record size, and therefore the number
of records per track, you can use the POKEs specified 1in the
table at the top of the next page.

BYTES RECORDS VALUE FOR VALUE FOR
PER RECORD PER TRACK POKE 12076 POKE 12@42
5" DISK| 8" DISK 5" DISK| 8" DISK
256 8 12 8 8 12
128 16 24 7 16 24
64 32 48 6 32 48
32 64 96 5 64 96
16 128 192 4 128 192
8 255 255 3 255 255

The two POKEs must be done only after the statement that opens
the file. For example,

DISK OPEN,6,"filename"
POKE 12¢42,32
POKE 12076,6

will change the record size to 64 bytes and the records per track
to 32 on 5" systems and 48 on 8" systems. Remember that the
record size must be carefully observed. If you try to write more
characters into a record than its size allows, you will be
writing over material in the next record!

As a final 1illustration of 0S-65D V3.3 file handling
efficiency, you may remove line 18¢. As mentioned earlier, the
DISK PUT command is not needed in V3.3 (but it is in v3.2). Even
when many records are being randomly accessed the DISK GET
command alone will keep track of disk transfers and correctly
update each track.

In Chapter 7, a sample program will be given which can be
written by adding to this random file demonstration program.
Therefore, you may wish to save this program in PROG2 for future
reference.

G. An Example using Two Data Files

Two data files may be used simultaneously by opening one on
buffer #6 and one on buffer §7. Remember that the first buffer
(#6) can support both random and sequential file accessing, and
the second buffer (47) can support only sequential file
accessing. The INPUT and PRINT statements can now be used with
either buffer, interchangeably. More than two data files can be
used in a program by simply closing and reopening files assigned
to one or both'of these buffers.

Boot-up Tutorial Disk 4 and select option 3 to load PROG3 in
the same way you did in the previous example. Then type NEW
<RETURN> to clear the filler program. These first two steps are
done this time to acquire two buffers (#6 and #7) in front of
your workspace. Now that you have your buffers and a clear
workspace enter the following program and store it as PROG3.

21

The procedure should be as follows: (Serial system wusers should
omit lines 20 and 249.)

OK
NEW

OK

19 REM DEMONSTRATION OF USE OF TWO DATA FILES
11 REM ONE SEQUENTIAL, ONE RANDOM

20 PRINT! (28)

39 DISK OPEN,6,"DATA3"

49 DISK OPEN,7,"DATA4"

50 K=1

64 FOR I=1 TO 5:REM ENTER CATEGORIES

70 INPUT "Enter a category";Cs

88 IF C$="NO" THEN 244

99 S=K

190 IF C$="END" THEN 210:REM NO MORE CATEGORIES
119 FOR J=1 TO 6:REM ENTER ITEMS FOR THIS CATEGORY
12¢ INPUT "Enter item name";IT$ (J) :
130 IF ITS(J)="END" THEN 190

149 DISK GET,K

150 PRINT#6,ITS(J)

168 DISK PUT

178 K=K+1

189 NEXT J

19¢ PRINT$#7,CS$;",";S;",";K-1

200 NEXT I

219 PRINT#7,C$;",";S;",";K-1

22@ DISK CLOSE,7

230 DISK OPEN,7,"DATA4"

249 PRINT! (28)

259 FOR I=1 TO 5

268 INPUT#7,A$,S(I),E(I)

279 IF AS="END" THEN 309

280 PRINT I,AS

290 NEXT I

360 INPUT "Enter the number of the category®;N
314 IF N>I-1 OR N<1 THEN 3890

320 FOR J=S(N) TO E(N)

339 DISK GET,J

340 INPUT#6,B$

358 PRINT BS

360 NEXT J

378 PRINT: PRINT: GOTO 300

380 DISK CLOSE,7

399 DISK CLOSE,é6

490 END

DISK!"PUT PROG3"
OK

This third example program creates a fundamental type of
data structure. There are two data files, one containing
CATEGORIES and the other containing ITEMS. The data 1is created
by entering a category followed by items in that category. For
example, the data file might be a master grocery list. A sample

22

category might be "FRUIT" with items "APPLES", "PEARS",
"ORANGES", etc. The categories are stored sequentially in DATA4
and the items in the random access file DATA3. The last item in
each category and the last category entered must be "END". The
first time the program is run the categories and items must be
entered. Thereafter, respond to the first appearance of "Enter a
category?" by NO. A menu will then be displayed listing each of
the categories. When a category is chosen the 1items 1in that
category are displayed. This occurs because the beginning and
ending record numbers of the items in a category are stored along
with the name of the category.

The program has been written to accommodate five categories
of six items each because of the size of the file DATA3 (on 5"
Systems only 32 standard size records can be stored in DATA3).
The items are stored in the random file one after the other as
the first portion of the program is executed. No provision is
made for adding or subtracting items from the categories without
re-running the entire first portion of the program.

To exit the program either enter a category number outside
the range or simply press <RETURN> without entering a number.

As with the previous examples, the data files can be erased
by returning to the Tutorial Disk 4 menu and choosing option s,
Note: This example will not be referred to in Chapter 7; hence,
it is not necessary to save it for future reference.

23

Chapter 5
Tutorial Disk Five

A. Introduction

Tutorial Disks 1 through 4 are designed to introduce you to
the use of the 0S-65D operating system. Tutorial Disk 5 is
intended to be used as the "system disk" or working disk with
version 3.3 of 0S-65D. This chapter describes the use of this
disk.

When Tutorial Disks 3 and 4 are booted up, the menu displays
a listing of the names of the files provided for storing programs
and data files. Each 0S-65D diskette maintains a special
directory file which-stores the names and locations of all the
files present on the diskette. On Disk 3, when you select one of
the menu options 1 through 8, the computer searches through this
directory file for the location of the file requested before it
loads the program.

On Disks 3 and 4 you were not concerned with where programs
were actually stored on the diskette. There were files present
which you could use as needed to store your programs. Although
this approach simplifies your initial use of the 0S-65D system,
it does not make efficient use of the storage capacity of the
floppy diskettes. Tutorial Disk 5 provides several features which
allow you to make more efficient use of the space available on
your diskettes. Before we proceed with a discussion of these
features, we need to briefly consider the concept of a workspace
and the organization of floppy diskettes.

B. The Workspace

When you use the 0S-65D vVersion 3.3 disk operating system
with your Ohio Scientific computer, approximately 14K (1 K = 1824
bytes or characters) of memory are occupied by the operating
system. The remainder of your computer's memory is available as a
workspace. This workspace is the region available to you when you
load and run programs.

The most common way to enter a program into the workspace is
to enter it through the keyboard. Recall that this was the
procedure you used in Chapters 3 and 4 when vyou entered and
tested several sample programs.

It is important to realize that any program stored in the
workspace is lost each time the computer is turned off or the
break key (or reset button) is depressed. Since some programs
involve hundreds of lines of code it is obviously desirable to
have some method of permanently storing programs. There are two

24

common forms of external storage used with microcomputers:
cassettes and floppy diskettes. Although cassette based systems
are relatively inexpensive, storing and retrieving programs from
Cassettes tends to be slow and inconvenient. 0S-65D is a diskette
based operating system which allows fast and convenient storage
and retrieval of programs. In the following section we will
briefly describe the organization of a floppy diskette.

C. Floppy Diskette Formats
Floppy diskettes are divided into concentric circles called

tracks. Each track can be further divided into smaller parts
called sectors.

Diskette Size Tracks per diskette Track Range
8" diskette 77 g - 76
minifloppy 49 g - 39

Storage capacity is often described in terms of pages with
each page consisting of 256 bytes or characters. Each track of an
8" diskette has a capacity of 12 pages. On the smaller minifloppy
each track has a capacity of 8 pages. Thus, using the preceding
table, we see that an 8" diskette can store over 200,000
characters (approximately 3¢g@¢@ characters per track) and a
minifloppy diskette can store over 80,000 characters
(approximately 2000 characters per track).

Not all of the diskette is available to store user programs.
As we shall see in Appendix 1, part of the diskette is occupied
by the operating system and utility programs. 1In particular,
track @ is used to store information which must be present when
the system is booted up.

Under the 0sS-65D disk operating system, all program files
are stored on consecutive tracks and occupy a whole number of
tracks (e.g., you cannot have a program file which occupies 1-1/2
tracks).

The 0S-65D operating system provides two commands for
storing and retrieving programs from diskette: the DISK!"PUT and
the DISK!"LOAD commands. You have already used the DISK!"PUT
command on Disks 3 and 4 to store programs in named files. A
complete description of these two commands is given in section H
of this chapter. It is possible to load and store programs by
track number. The command DISK!"PUT 27" will, for example, store
the program currently in the workspace beginning at track 27 and
continuing for as many tracks as are necessary to hold the
Ccomplete program. The major disadvantage of using track numbers
is that it requires the user to remember exactly what is on each
track.

D. The Menu
Boot up your system using Tutorial Disk 5. The following

25

menu will be displayed on the screen.

0S-65D Tutorial disk five

Directory

Create a new file

Change a file name

Delete file name from diskette
Create blank data diskette

Create data diskette with files
Create buffer space for data files
Single or dual disk drive copier
Enter 0S-65D system.

WO 001U Wiy =
VVVVVYVYVVYV

Type the number of your selection and depress RETURN?

The 0S-65D operating system maintains a directory which
keeps a record of the names and track locations of all files on
each diskette. The first option in this menu, which is discussed
in the next section, displays a listing of this directory. -

The next menu option discussed will be option 8 which allows
diskettes to be copied on either single or dual disk drive
Systems. You will be shown how to use this option to make a copy
of Tutorial Disk 5 for everyday use. The original copy of disk 5
provided with version 3.3 of 0S-65D is write-protected to protect
its contents from accidental alteration. Options 2, 3 and 4 in
the menu make it possible to delete files, change the names of
existing files or add new files to the disk. As an application
of these options you will be shown how to create a streamlined
version of disk 5 with room for user written programs.

Option 9 terminates the menu and places the computer in the
BASIC mode. This allows the user to enter his own programs.
Finally, options 5, 6 and 7 are designed to simplify the use of
data files, .

E. The Directory

Option 1 provides a listing of all files currently present
on the diskette together with their track locations. Boot up and
enter 1 (followed by <CR> of course) in response to the menu
prompt. You will be prompted by the message:

Directory utility
Directory of which drive?

Type A,B,C or D and depress RETURN <A>?

The letters A/B/C/D denote different disk drives. If your
computer has a single disk drive, it is called drive A. on a
dual disk drive system, the top drive is designated as drive A
and the bottom drive is designated as drive B. Drives C and D are
applicable only for dual-sided dual disk drive systems. The <a>
in the last prompt line means drive A will be selected by default

26

if you press <CR> without specifying A, B, C or D. If you enter
B, C or D the appropriate disk drive will be selected for the
directory listing. 1If you have a single disk drive system, vyou
can simply respond to all such questions by press <CR>. If vyou
select a drive that does not exist on your system (e.g., drive B
on a single disk drive system), an error message will be printed
and the program will terminate. You will then have to type
RUN"BEXEC*" to return to the menu. (Note: although it need not
concern you at this time, the DOS Kernel prompt will be changed
to the incorrectly selected drive; see Chapter 6 for details.)

If you want the output to appear on the console screen, just
depress <CR> (note that <No> specifies the default response to be
No). Otherwise, enter "Y" for output to the printer.

The following is the listing that will result with the 5"
and 8" 0S-65D diskette number 5. The ouput 1is essentially the
same except for the track numbers.

5" Disk 8" Disk

-— Directory -- -- Directory --
File name Track range File name Track range
0S65D3 g - 13 0S65D3 g - 8
BEXEC* 14 - 16 BEXEC* 9 - 11
COPIER 17 - 18 COPIER 13 - 14
CHANGE 19 - 29 CHANGE 15 - 15
CREATE 21 - 22 CREATE 16 - 17
DELETE 23 - 23 DELETE 18 - 18
DIR 24 - 24 DIR 19 - 19
RANLST 25 - 26 RANLST 20 - 21
RENAME 27 - 27 RENAME 22 - 22
SECDIR 28 - 28 SECDIR 23 - 23
SEQLST 29 - 390 SEQLST 24 - 25
TRACE 31 - 31 TRACE 26 - 26
ZERO 32 - 33 ZERO 27 - 28
ASAMPL 34 - 34 ASAMPL 29 - 29
ATNENB 35 - 35 ATNENB 39 - 30
COLORS 36 - 36 COLORS 31 - 31
MODEM 37 - 38 MODEM - 32 - 32
COMPAR 39 - 39 COMPAR 33 - 33

46 Entries free out of 64 46 Entries free out of 64
Depress RETURN to continue? Depress RETURN to continue?

There are several named files currently 1listed in the
directory. The file 0S65D3 contains the operating system and the
BASIC interpreter. The file BEXEC* contains a sophisticated
utility program which is automatically loaded into the workspace
and run each time the computer is booted up. It is this program
which generated the initial menu and this directory listing. The

27

display of the directory will remain on ‘the screen until vyou
depress <CR>, at which time the BEXEC* program will again display
the menu on the screen. In order to enter a new program it is
necessary to use option 9 to terminate execution of BEXEC*.
Another file in this directory listing is COPIER. This is also
part of the operating system and should not be altered in any
way. According to this directory listing, the minifloppy has
no tracks free and the 8 inch disk has track 12 and - tracks 34
through 76 free. These tracks can be used to store any new
programs and data files you create. Appendix 1 contains a
complete description of all the program files 1listed in this
directory.

Option 1 can be used to display directory 1listings for
0S-65D diskettes other than Tutorial Disk 5 itself. As an
example, the following procedure can be used to~ obtain a
directory listing for Tutorial Disk 3.

Select option 1 (the directory option) from the menu on
Tutorial Disk 5 (if you just displayed a directory it will be
necessary to press <CR> to return to the menu). When the prompt
lines:

Directory utility
Directory of which drive?

Type A,B,C or D and depress RETURN <A>?

are displayed, replace Tutorial Disk 5 by Tutorial Disk 3 and
then enter A or simply <CR>. After vyou specify whether the
listing should appear on the printer, the directory 1listing on
the top of the next page will be generated.

WARNING: You will want to continue using Tutorial Disk 5, so
replace Tutorial Disk 3 by Tutorial Disk 5 before you depress
<CR> to terminate the display of the directory listing.

5" Disk 8" Disk

-~ Directory -- -- Directory --
File name Track range File name Track range
0S65D3 g - 13 0S65D3 g - 8
MENU 14 - 15 MENU 9 - 19
PROG1 16 - 18 PROG1 16 - 18
PROG2 19 - 21 PROG2 19 - 21
PROG3 22 - 24 PROG3 22 - 24
PROG4 25 - 27 PROG4 25 - 27
PROGS 28 - 30 PROGS 28 - 390
PROG6 31 - 33 PROG6 31 - 33
PROG7 34 - 36 PROG7 34 - 36
PROGS8 37 - 39 PROGS8 37 - 39

54 Entries free out of 64 54 Entries free out of 64

If you have used the rename capability on disk number 3, the
new names you assigned the files will appear in the above listing
instead of the names PROGl1 - PROG8. Recall that each of the
entries PROGl - PROG8 are files which have been precreated for
you to store programs.

If you will look back at the directory listing for Tutorial
Disk 5, you will note that there are currently no files present
to store wuser written programs. Before you begin writing
programs using Tutorial Disk 5, you need to make a new copy of
Disk 5 with room for user written files.

F. Copying Diskettes

When option 8 in the menu of Tutorial Disk 5 1is selected,
the program named COPIER is loaded and run (this program is
listed in the directory for Tutorial Disk 5 printed above), The
Program COPIER is capable of copying diskettes on systems with
single or multiple disk drives. As an exercise in the use of the
copy option it is recommended that you copy the contents of
Tutorial Disk 5 onto the blank diskette (the one with the brown
label) provided with your 65D Tutorial Set. In the following
sections this copy of disk 5 will be used to illustrate the other
options in the menu.

When option 8 (the copy option) is selected from the menu,
two lines will be displayed on the screen:

- Diskette copier -
Copy from which drive (A/B/C/D) ? _

You should respond with the letter designating the drive in
which you will place the diskette you wish to copy FROM. Usually

29

the disk to be copied is placed in drive A, so normally you will
respond by entering A. Obviously, if you have a single drive

System, you must respond by entering A, There 1is no assumed
default in this situation. TIf you press <CR> without entering a
letter, the computer will repeat its question. The next 1line

displayed by the program COPIER is
Copy to which drive (A/B/C/D) ? _

You should respond with the letter designating the drive in
which you will place the diskette you wish to copy TO. If vyou
have a single drive system, again respond by entering A. TIf you
have a multiple drive system, selecting a different drive for the
TO disk (e.g., B) than for the FROM disk will speed up the copy
process, but this is not absolutely necessary. You will next be
asked:

What is the last track to be copied (Inclusive) <@g-39> ? _

In this case you want to copy the entire diskette so vyou
should enter the response 39 (76 on 8" systems). If you were to
respond 15, then only the first 15 tracks would be copied. The
final question before the Copy process begins is:

Are you ready to start copying (¥/N) ? _

Before answering this question, you should place the
diskettes you wish to copy FROM and TO in the appropriate drives,
check your previous responses and then enter Y for yes if
everything is correct. 1If you are using only one disk drive for
the copy process, do not insert the diskettes yet. You will be
prompted to insert and remove them at the appropriate times. If
you have made any errors in any of your earlier responses, you
Should answer N and the initial prompt will be redisplayed.

Although we are using a blank diskette in this example, it
is possible to copy onto a diskette which has been previously
used. The diskette is initialized as part of the copy process.

As the copy process progresses the messages "Reading
--","Initializing --" will be displayed on the screen. A
Sequence of track numbers will also be displayed which shows the
Progression of the copy process through the tracks. When the copy
Process is completed, the message:

Please, put the tutorial disk in drive A and depress <RETURN>
will appear on the screen. After you replace the tutorial disk
and press <CR>, the program BEXEC* from Tutorial Disk 5 will be
reloaded and run and the menu will reappear on the screen.
G. Creating, Deleting and Renaming Files

The menu on Disk 5 provides options which allow the user to
add file names to or delete file names from the directory.

Another option allows the user to change the names assigned to
files in the directory. These three options are discussed in this

30

section. You should use the copy of Tutorial Disk 5 with the
brown label which you Jjust made to experiment with these
features. Your original copy of Tutorial Disk 5 is write
protected to specifically guard against the type of changes you
are about to make.

The order in which the create, delete and rename options are
discussed in this section 1is a matter of convenience. As
observed earlier, all of the tracks on the minifloppy version of
Tutorial Disk 5 are currently in use. So before you <can create
any new files, you probably need to know how to delete some of
the old ones. :

(i) Deleting a file

Deleting a file removes a file name from the directory.
“Option 4 in the menu for Tutorial Disk 5 allows you to delete
files from the directory.

We will illustrate the delete option by deleting several
files from the directory of Tutorial Disk 5. Before you proceed,
make sure that your copy of Tutorial Disk 5 with the brown 1label
is in drive A. All of the files 1listed in the directory for
Tutorial Disk 5 except for the first three, 0S65D3, BEXEC*, and
COPIER, can be safely deleted without affecting the operation of
the menu. The delete optlon in the menu does not use the program
in the file DELETE. There is a delete capability built into the
BEXEC* itself. The file DELETE contains an independent utility
program which can be used to delete files from the directory.
For users familiar with version 3.2 of 0S-65D, recall that the
BEXEC* in version 3.2 did not itself have a delete capability.
Files could only be deleted under 3.2 by the use of the DELETE
program. The programs in the files CREATE, DELETE, DIR and
RENAME are discussed in detail in Appendix 1. They are holdovers
from version 3.2 of 0S-65D whose functions have been incorporated
into the BEXEC* in version 3.3. These (redundant) programs are
on the version 3.3 disk primarily for the convenience of
experienced version 3.2 programmers.

The following series of steps will remove the file named
CHANGE from the directory. Select the delete option by entering
4 when the menu asks which option you wish to select. The
following prompt lines will appear on the screen:

Delete utility
Delete a file on which drive?

Type A,B,C or D and depress RETURN <A>?

Since our disk is in drive A we can either enter A or simply
press <CR> in which case it will assume A as a default. If you
wish to delete a file name from the directory of a diskette in a
different disk drive, simply enter the appropriate 1letter in
place of A. Next you will be asked:

31

Type in the name of the file that you want to delete
and depress RETURN (1-6 characters)?

Respond by entering the name CHANGE. If you make a typing
error, a message will probably be displayed saying that whatever
name you typed was not found and requesting that you press RETURN
to continue. 1If you type the name correctly there will be a
brief delay after which the menu will be redisplayed. When the
menu is redisplayed, select option 1 to verify that the file
name CHANGE is no longer present in the directory.

If you change your mind after selecting the delete option,
you can return to the menu without deleting a file by pressing
<CR> when asked for the name of the file you wish to delete.

As an exercise in the use of the delete option, delete the
remainder of the files in the directory that are 1listed after
the file COPIER. When you are done the directory listing should
only include 0S65D3, BEXEC* and COPIER. The resulting stripped
version of Tutorial Disk 5 is extremely useful for development
purposes. All of the options in the menu can still be used (note
the delete option still worked long after the file DELETE was
gone) and tracks 19-39 (tracks 15-76 on 8" systems) are now
available to store user written programs. In the following this
stripped version of Tutorial Disk 5 will be referred to as the
development diskette.

(ii) Creating a File

Creating a new file places a new file name in the directory
and reserves space on the diskette for a program or data to be
Stored under the new file name. Option 2 in the menu allows you
to create new files. We will describe how to add a new file
named PROGl to the directory of the development diskette.

Boot up with the development diskette and select option 2 by
entering 2. The screen will clear and the following question
will appear:

Create utility
Create a file on which drive?

Type A,B,C or D and depress RETURN <A>?

Enter the response A or simply press <CR>. In general you should
enter the letter corresponding to the drive containing the
diskette upon which you wish to create a new file. After a short
wait you will be asked to enter a name for the new file:

Type in the name of the file you want to create and
depress RETURN (1-6 characters)?

32

Enter the name PROGl1 (a file name can be up to six
characters in length and must begin with a letter). The computer
will check to verify that the name entered is not already present
in the directory. If you press <CR> without entering a file name,
you will be returned to the menu.

Since we have removed all files after COPIER from the
directory on our development diskette, we know that tracks 19-39
are open. The following sequence of responses will place our
file on tracks 19-23 (15-76 on 8" systems).

Type in the number of tracks in this file
and depress RETURN (1 to 27)? <1>

Response: 5 <CR>

(The directory will now be searched. The first block of 5
tracks available will be used. If no block of 5 consecutive
tracks were available then a message would be printed indicating
"no room".)

Do you want to initialize
these tracks (Yes or No) <Yes>?

Response: <CR> or YES <CR>
How many pages per track (1 to 8) <8>?
Response: <CR> or 8 <CR>

(Note: the preceding assumes a minifloppy system. On an 8"
system the track numbers will be different and the default pages
per track will be 12, rather than 8.)

When you have successfully created this file, select option
1 to display an updated directory listing. Your 1listing should
appear as before with the additional entry for the file PROGl1 on
tracks 19-24. Press <CR> to return to the menu.

If you make an error when using the create option such as
duplicating a file name which is already 1in the directory, an
appropriate error message will be displayed on the screen and you
will be asked to press <CR> to return to the menu.

The file PROG1 which you have just created 1is, of course,
an empty file. There is currently no program stored in it. In
later sections we will discuss the commands used to 1load and
Store programs from and to diskette.

The major difference between Disks 3 and 4, and Disk 5 is
that with Disk 5 you are free to create files on an as-needed
basis--assigning any name you wish and, more important, making
them whatever size you wish. Using Disk 3 is a little like buying
Clothes for all members of a family at a store which only stocks
one size. Even though the clothing may fit the "average" person,
most people will find the clothes either too small or too big.
When you use Disk 3, the files provided for program storage will

33

usually either be too big (in which case some diskette storage is
wasted) or two small (in which case your program will not fit
into the space provided). :

It is generally a good idea to maintain a scratch file on
all development diskettes which is large enough to accommodate
any program which you are likely to enter into the computer. This
may save you the embarrassment of typing a long program into the
computer only to discover you do not have any place to store it.

Generally, the more memory your computer has, the larger the
scratch file needs to be. The size of the program which can be
entered into the computer is determined by the size of the
workspace. The following table indicates the approximate size of
the workspace and the maximum number of diskette tracks required
for a file for the standard configuration of several Ohio
Scentific computers.

Model Standard Memory Workspace Diskette Max imum
Size Size Type # of Tracks
ClPMF 20K 6K Mini 3
C4PMF 24K 12K Mini 6
C4PDF 48K 34K 8" 12

C8PDF 32K 18K 8" 6

As you gain experience with the use of your computer, you
will begin to develop a sense of how large a scratch file vyou
should maintain. A scratch file with a capacity of 19 - 15K is
large enough for most programs.

The S5-track file PROG1 which we have just created has a
capacity of 19K for minifloppy systems and 15K for 8" systems.
Next we shall use the rename option of the menu to change the
name of the file PROGl to SCRTCH. It would of course have been
easier to have just created the file with the name SCRTCH but
that approach would.have eliminated this chance to use option 3
in the menu,

(iii) Renaming a File

Option 3 in the menu for Disk 5 allows you to change the
names of files in the directory. As mentioned above, we will
illustrate this capability by changing the name of the file PROG1
we have just created to SCRTCH.

Select option 3 from the menu by entering 3. vYou will then
be asked:

Rename utility
Rename a file on which drive?

Type A,B,C or D and depress RETURN <A>?

34

Enter A or just press <CR>. In general vyou should enter the
letter corresponding to the drive containing the disk on which
you wish to change the name of a file. Then you will be asked:

Type in the name of the file that you want to rename
and depress RETURN (1-6 characters)?

Answer PROGl. If you change your mind after selecting
option 3 you can return to the menu by pressing <CR> without
entering a file name. After a brief wait the following message
will appear asking you to enter the new file name:

Type in the name that will replace "PROGl1 " in the directory
and depress RETURN (1-6 characters)? :

Enter the new file name SCRTCH. If you enter everything
correctly the menu will be redisplayed. If you make a mistake
typing in the old file name, an error message may be displayed
since it probably will not be able to find the name you entered
in the directory. If this happens try again. When you have
changed the file name from PROG1l to SCRTCH successfully, select
option 1 again to display an updated directory listing and verify
your change.

In the next section we will discuss the commands used to

transfer programs back and forth between the workspace and the
diskette.

35

H. The PUT, LOAD and RUN commands

We will discuss three commands in this section. They are the
PUT, LOAD and RUN commands. IMPORTANT: These commands cannot be
used successfully until option 9 (to be discussed fully 1in the
next section) or option 7 (to be discussed in section J) has been
selected and the system has responded with the prompt:

OK

This indicates that the system is in the immediate mode for
pProgramming in BASIC. PUT, LOAD, and RUN are not valid responses
to the menu; they can be used only in the immediate mode of

- BASIC.

(i) The PUT Command

The PUT command is used to transfer a program from workspace
to diskette. This command can be used in two forms

DISK!"PUT <filename>" or simply DISK!"PU <filename>
and
DISK!"PUT <track number>" or simply DISK!"PU <track number>

Each of these commands is designed to store onto the disk
the program currenty stored in the workspace. When the PUT
command is used with a file name, the computer first searches
through the directory to determine the tracks assigned to the
file name and then begins to write the program out to these
tracks (checking to make sure that it does not write beyond the
end of the file). When the PUT command is wused with a track
number, the computer begins to write the program out to diskette
beginning with the specified track using as many tracks as
necessary to hold the program.

As an example, suppose the workspace contains a BASIC
program which you wish to store in the file named SCRTCH 1located
on tracks 19-23 which you created on the development diskette.
The original copy of Tutorial Disk 5 is shipped write-protected
so the DISK!"PUT commands cannot be used with it. As long as the
program will £fit within the five .tracks in the file, the
"following commands all have the same effect
DISK!"PUT SCRTCH"

DISK!"PU SCRTCH
DISK!"PUT 19"
DISK!"PU 19

36

If the program is too 1long to fit on the five tracks
allocated to the file SCRTCH, then the first two of these
commands will result in the error message:

ERR#D

The last two commands will successfully store the program (using
as many tracks as necessary). Although this might initially seem
desirable, you should realize that there could very well be
another file named TOOBAD stored on tracks 24-27 containing a
program. If the DISK!"PUT 19" command used more than 5 tracks,
the program originally stored in the file TOOBAD would be
overwritten and therefore lost.

When the PUT, LOAD and RUN commands are used with track
numbers rather than file names, the computer does not consult the
directory at all. Because of problems of the type outlined above,
it is recommended that whenever possible you utilize named files
and use your PUT, LOAD and RUN commands with file names. If you
create a sufficiently large scratch file, you should never find
yourself in the situation of not having a named file large enough
to hold the program in the workspace. As a further precaution,
you may want to keep a written record of what is stored on each
track of your development diskette.

(ii) The LOAD Command
The LOAD command is used to transfer a program file from a

diskette into the workspace. This command can be used in two
forms

DISK!"LOAD <filename)>" or simply DISK!"LO <filename>
and
DISK!"LOAD <track number>" or simply DISK!"LO <track number>

Each of these commands 1loads a program stored on the
diskette into the workspace. When the LOAD command is used with a
file name, the computer must search through the directory to
determine the track location of the file.

As an example, if a file named PROG2 is 1located on tracks
16-18 and contains the program you wish to 1load any of the
following commands will load the program into the workspace:
DISK!"LOAD PROG2"

DISK!"LO PROG2
DISK!"LOAD 16"
DISK!"LO 16

Note that when a program is loaded by track number, it is only
necessary to specify the starting track of the program.

37

Recall that when a file is first created by placing its name
in the directory it is an empty file. The LOAD command should not
be used on an empty file or an error will occur. The next
chapter includes a table listing the common input/output errors
that can occur with disk files. Attempting to load from an empty
file or track will yield an error. Attempting to load a file name
which is not present in the directory (this is usually due to a
typing error) will result in a #C error.

The following example shows how to use the DISK!"LOAD
command to examine a program stored on diskette. Since there are
few programs left on the development diskette, reboot with your
original copy of Tutorial Disk 5. The directory listing for this
disk listed a file named COLORS. You can examine the program
COLORS as follows:

1) Select option 9 in the menu

2) When the OK prompt is displayed, enter
the command DISK!"LOAD COLORS"

3) Now enter the command LIST

The LOAD command brought the program COLORS 1into the
workspace from the diskette. The LIST command causes the contents
of the workspace to be listed.

Now reboot with your development diskette, select option 9,
and try the LOAD command with the file SCRTCH which you created
in the previous section. Unless you have stored a program in the
file, you should experience an error message,

On disks 3 and 4 the LOAD command was automatically
generated by the BEXEC*. For example, selecting option number 1
on disk 3 was tantamount to issuing the command DISK!"LOAD
PROG1".

(iii) The RUN Command

The RUN command can be used in any of the following forms:
RUN
RUN"<filename>"

RUN"<track number>"

When the RUN command is used without a file name or a track
number, it executes whatever program is currently present in the
workspace. Thus, one way of executing a program stored on
diskette is to issue the command
DISK!"LOAD <filename>" or DISK!"LOAD <track number>"

followed by the command

38

RUN

The first command will 1load the desired file into the
workspace and the second command will execute it.

The other two forms of the RUN command combine both of the
above steps. The command RUN"PROG1" automatically 1loads the
Program stored in the file PROG1 into the workspace and then runs
it.

I. Entering the BASIC Mode

With Disk 5, the program BEXEC* controls the operation of
the computer until the user selects option 9 or 7. When option 9
is selected, the computer enters the BASIC mode. The control of
the program BEXEC* is terminated and you must type NEW to clear
the workspace. The screen displays the following message:

The system is now open for modification

OK

You can now enter, list, or run BASIC programs. The commands
discussed previously can be used to LOAD and RUN programs from
diskette or you can enter a program directly through the keyboard
+as described in chapters 3 and 4 and store them on diskette using
the PUT command.

As a simple example, choose option 9 from the menu and then
enter NEW. Try the commands RUN and LIST. vYou will find that
nothing happens because you have cleared the workspace with the
command NEW. Now load the program BEXEC* back into the workspace
using the command DISK!"LOAD BEXEC*. If you wish you can examine
this program using the LIST command. Since the program BEXEC* is
now present in the workspace, it can be executed by entering the
command RUN. If you try this you will £find that the menu is
redisplayed. (You could have accomplished the same thing by just
entering the command RUN"BEXEC*".)

You should now type in a short sample program. Be sure to
enter NEW before doing so. If you fail to enter NEW, BEXEC* will
remain in the workspace and the statements of your sample program
will simply mix with and/or replace statements of BEXEC*,
resulting in a long program that is probably meaningless. A few
sample programs can be found in Chapters 3 and 4 of this manual
or in your user's manual. Once you have entered a program and are
satisfied that it is working correctly, temporarily save it in
the scratch file by using the command DISK!"PUT SCRTCH" .

Next we would like to create a file to permanently store
‘your program. The scratch file is probably much 1larger than
necessary. The following sequence outlines the necessary steps:

Step 1. Determine how many tracks are needed to store your
program. (The procedure is described in Chapter 3

39

as well as below.)

After you have temporarily stored your pProgram in the file
SCRTCH, issue the command EXIT. The computer will Print a message
telling you how many tracks are required to store the program in
the workspace. Make a note of this number and type RE BA to
return to the BASIC mode. If you enter the command LIST after the
OK prompt is displayed you will observe that your program is
still present in the workspace.

Step 2. Create a new file of the required size

Return to the menu either by rebooting or by entering the
command RUN"BEXEC*" and select option 2. This process has, of
course, loaded BEXEC*, wiping out the copy of your program which
was in the workspace (a matter of no concern to you now because
you have saved a copy of your program in the file SCRTCH) . Using
the procedure described in section G of this chapter, create a
new file with the appropriate number of tracks and with whatever
name you desire.

Step 3. Store your program in the new file

Return to the BASIC mode with option 9 and load your program
back into the workspace from the scratch file by entering the
command DISK!"LOAD SCRTCH". Your program can now be stored in the
new file by entering the command DISK!"PUT <filename>" where
<filename> is whatever name you assigned to the new file.

The scratch file now contains an extra copy of the program.
The next time a program is stored in the scratch file it will
write over this particular program, but the copy we placed in the
new file will still be present.

J. Using Data Files

Disk data files provide a convenient means for permanently
Storing large amounts of data in a form which can be easily
accessed by the computer. Disk data files also provide a means
of storing the output from one program in a form which can be
used as input to another program. Many business applications
involve updating data sets on a monthly basis. 1In these types of
applications it is not feasible to expect all of the data to be
entered through the keyboard each time the program is run.
Similarly, it would not be feasible to include the data in DATA
Statements within the program.

Although a diskette may contain several data files, the
0S-65D operating system only allows two data files to be open
(i.e., in use) at any given time. The reason for this is that
the 05-65D operating system designates exactly two special buffer
areas, known as buffer$#6 and buffer$7, for disk input/output and
one of these two buffers must be assigned to each open disk data
file. Recall that these buffers were first introduced in Chapter
4, but at that time you did not have to worry about how they were
implemented.

40

(Note: buffer#6 and buffer#7 are frequently referred to as
device#6 and device#7 in other 0SI manuals.)

These buffers play a crucial role 1in the input/output
Processes with disk files. Each of these buffers is capable of
storing the contents of one complete track of a data file. When
a data file is opened, the first track of the data file is copied
into the buffer. The INPUT$§ and PRINT# program statements
introduced in Chapter 4 do their actual input and output from and
to this buffer area, rather than directly from and to the disk.

The following table shows the memory locations of these
buffer areas under version 3.3 of 0S-65D.

Minifloppy system. 8" system
Bufferge6 $3A7E-$427D $3A7E-$467D
Buffers7 $427E-$4A7D | $467E-$527D

The DISK!"LOAD command described in section H of this
chapter 1loads the contents of the specified file into memory
beginning at $3A7E (the beginning of workspace). Thus, in
general, part of the program itself will be 1loaded into the
regions designated for buffer$6 and buffer#7. This presents no
Problems as long as the program does not attempt to open and use
any disk data files. If a program does use disk data files and
special arrangements have not been made when the Program was
originally created, it is possible for part of the program to be
destroyed when a data file is opened and the first track is read
into the appropriate buffer region.

The possible clash between the data file buffer and the
program can be avoided by ensuring that none of the program ends
up in the buffer areas. 1If your program will use one disk file
you must ensure that none of the program 1is loaded into the
memory region assigned to buffer$6. If your program will use two
disk files concurrently, then you must ensure that none of your
program is loaded into the memory region assigned to either
buffer$6 or buffer#7.

In Chapter 4 you did not have to worry about establishing
space for the buffers because you were using pre-created files
for which this had been done already. In the absence of
pre-created files, option 7 in the menu of Tutorial Disk 5
provides a convenient method for setting workspace parameters to
ensure that a program which uses disk data files does not
encroach on the buffer areas. :

If you plan to write a program which does not use disk
data files at all, select option 7 and respond § to the question:

Buffer set utility

Type in the number of file buffers you need
and depress RETURN (@,1, or 2) <@g>?

41

The message:

No file buffers are resident
Type in your program and save it on your diskette.

OK

will appear indicating that the computer is in the BASIC mode
waiting for you to enter a program. As you enter your program,
it will be stored in memory beginning at $3A7E, the start of
workspace. (Note: Another way to set up an empty workspace with
no buffers resident is to select option 9 from the menu and then
type the command NEW.)

If you plan to write a program which uses a single disk data
file, select option 7 and respond 1 to the question:

Buffer set utility

Type in the number of file buffers you need
and depress RETURN (@,1, or 2) <@g>?

The message:

A single buffer is now resident
Type in your program and save it on your diskette.

OK

will appear indicating that the computer is in the BASIC mode
waiting for you to enter a program. Since one buffer has been
specified, as you enter your program it will be stored in memory
beginning at $427E ($467E on 8" systems), leaving the region
occupied by buffer#6 open for use by the disk file.

If you plan to write a program which will use two disk data
files, select option 7 and respond 2 to the question:

Buffer set utility

Type in the number of file buffers you need
and depress RETURN (6,1, or 2) <@>?

The message:

Two buffers are now resident
Type in your program and save it on your diskette.

OK

will appear indicating that the computer is in the BASIC mode
waiting for you to enter a program. This time since two buffers
have been specified, as you enter your program it will be stored
in memory beginning at $4A7E ($527E on 8" systems) leaving the
region occupied by buffer#6 and buffer#7 open for use by the disk
files.

An alternative method for setting aside data file buffer
areas is provided by the special wutility program BUFFER. This
method is more general than option 7 described above because it
permits the creation of buffer areas of any size (not just single
tracks). Experienced programmers will find this useful for both
data file use and other purposes. The BUFFER program is contained
on Tutorial Disk Two. Its use is fully documented in Chapter 8.
The utility program CHANGE, discuseed in detail in Appendix 1,
provides yet another method for setting aside room in the
workspace for data buffers.

Once the proper buffer areas have been established the DISK
OPEN, DISK CLOSE, DISK GET, and DISK PUT commands can be used to
actually process data files. The use -of these commands has
already been explained in Chapter 4.

K. Storing Data Files

Options 5 and 6 on the Tutorial Disk 5 menu allow you to
create a diskette dedicated to storing data files. When either
option 5 or 6 is selected, the following sequence of prompt lines
is displayed:)

Data disk create utility
Be sure the tutorial disk is in drive A
Depress RETURN to continue ?

Remove your tutorial diskette from drive A and
replace it with your blank diskette.

Depress RETURN to continue ?
Your diskette is now ready for data files.

Remove your blank diskette from drive A and
replace it with your tutorial diskette.

Depress RETURN to continue ?

Both option 5 and option 6 initialize the data diskette.
Option 5 leaves the directory empty except for a necessary entry
DIRECT for the directory file. Option 6 creates five empty files
named USER@1 through USER@5 which are five tracks long and c¢an be

43

used as data files or program files. If you try Option 6, RUN the
directory to verify the existence of these five files.

Both programs and data can be stored on diskettes Ccreated by
options 5 and 6 but boot-up is not possible because there is no
System saved on these diskettes. Therefore, you must boot-up with
any diskette containing a system (e.g., Tutorial Disk 5) and then
switch diskettes to locad and save programs or data.

L. Conclusions

This completes the tutorial introduction to 0S-65D. The
following chapters provide reference material for all of the
standard and optional features of the various versions of 0S-65D.
Chapter 6 is an overview of the 0S-65D "kernel"--the 1layer of
software that interfaces the actual machine operations and the
usual user level of operation that has been discussed in the
pPrevious five chapters.

Chapter 7 provides a detailed look at the new features _that
distinguish 0S-65D V3.3 from earlier versions. The style of this
chapter 1is very similar to the earlier tutorial chapters.
Although there is no special Tutorial Disk keyed to this chapter,
the presentation builds upon example pPrograms that were
introduced in Chapter 4 and that the user was advised to store on
Tutorial Disk 4 for future reference.

Chapter 8 contains a description of the six programs that
comprise the 0S-65D Extended Utilities Package. These programs
are stored on Tutorial Disk Two. Included are special programs
that make it possible to:

1. Create, delete and check for the presence of
program beffers;

2. Repack programs by removing REM statements and/or

blank spaces;

Resequence programs in a variety of ways;

Sort data files; '

Copy data files;

Disassemble machine language programs.

A W
o .

L] L]

The overview of 0S-65D concludes with Appendix 1 which
includes detailed descriptions, including listings, of all of the
utility programs contained on a standard 08-65D system diskette.

44

Chapter 6

Overview of 0S-65D

Introduction
The operating system is the software that controls all
the hardware and software components of the computer. The

hardware that is controlled includes:

“the terminal (for serial systems)

‘the keyboard and monitor (for video systems)
‘the disk drives

‘RAM memory allocation

‘the printer

The software that is controlled includes:

‘the I/0 drivers

‘the BASIC interpreter

“the Assembler/Editor

‘the Extended Monitor
‘utilities written in BASIC

Disk storage of programs and data is a major element in
using the computer and much of the operating system's functions
are devoted to disk I/0. For this reason, the operating system

of a computer may be called a "Disk Operating System" or DOS.

The operating system must interface users who prefer to
communicate in clear language to hardware which needs explicit
commands in numerical and symbolic form. To bridge this gap
and still retain flexibility, the operating system was built in

-a hierarchal form with four layers:

1. I/0 drivers and distributor
2. 0S Kernel

3. BEXEC*

m

. Utilities

45

The I/0 drivers and 0S Kernel are written in machine language.
The 0S Kernel is, however, a self-standing operating system
with its own commands directly usable by the computer operator.
BEXEC* and the utilities are written in BASIC. BEXEC* is the
principal interface between the user and the computer. When
the computer is turned on and booted up with an 0S-65D disk,
the BEXEC* program is in final control, displaying a menu and

awaiting the user's commands.

BASIC was the language chosen for these programs for
several reasons. It encourages use of clear language instruc-
tions.and explanations. It has the powerful test and branch
instructions needed for control implementation and it is widely
understood by end users who may want to modify some features of

the operating system to meet local needs.

For most users, the most visible parts of the operating
system will be BEXEC* and the DISK!"cmd" commands in BASIC.
But the Kernel is the power behind the throne, so this chapter
is organized around the features present in the Kernel and
how they are used to control various systems in the computer.
In many cases we will refer the reader to other 0SI manuals

for details.

If you are a new user of OSI computers, you should refer
to the earlier Tutorial chapters and the appropriate Introductory
Manual for a description of start up procedures using a 0S-65D

disk. The manuals are:

e

ClP and C1P MF Introductory Manual

C4P MF. Introductory Manual

C4P DT Introductory Manual

C8P DF Introductory Manual

Professional Computers Set Up and Operations Manual

The above manuals may describe a menu from BEXEC* that is some-
what different from that displayed by your computer. If so,
refer to the supplementary documentation for your version of

0S-65D.

Memory Allocation

The software used on an 0SI computer may be divided into
three general categories: System routines (including I/0 drivers),
Transient Language Processors (BASIC, Assembler, etc.), and
Application programs (both user written and utilities for 0SI).
Each category is stored in a specific place, so a memory map
helps clarify the possible cooperation and conflict in and be-
tween the various categories.

HEX ADDRESS
(5" V3.3 SYSTEM)

TOP OF MEMORY
WORK SPACE
_|3A7E
3A7D
SYSTEM SOFTWARE
2309
22FF
TRANSTENT PROCESSOR
200
SYSTEM STACK L
and PAGE ZERO
)]

Figure 1: Idealized Memory Map

b7

This .map is called "Idealized" because various details (such
as the addresses at which boundaries occur) will differ de-
pending on the model of computer and version of software used.
Figure 2 gives a more detailed memory map for the various

cases.

Let us study the Idealized map. Once loaded, the Systems
software will remain essentially intact. The other two major
areas, Transient Processors and Workspace, are more often

changed.

The most common resident in the Transient Processor memory
is the BASIC inferpreter which must be present if BEXEC* or
indeed any program written in BASIC is to be run. Another
important resident (replacing BASIC) may be the Assembler/Editor
and the Extended Monitor, which fit simultaneously intoc the
Transient Processor memory, with control being given to one or
the other. (The Assembler/Editor and Extended Monitor are not
furnished with some versions of 0S-65D, in which case they may

be purchased together from OSI as an optional package).

The workspace may be utilized in several ways. Most
commonly, one writes source code in BASIC or assembly language
which goes into a source file starting at the lowest address
in workspace and expanding upward. In the case of assembler
source code one may compile it into machine language code,
placed at some higher point in workspace. Refer to the

Assembler/Editor and Extended Monitor Reference Manual for

48

HEX
Top of Memory

527E

4LATE
497E
467E

427E

3D7E

3A7E

327E
317E

2E79

2A4B

265C

2300

2090
190

Figure 2: SYSTEM MEMORY MAPS

5" v3.2 g" v3.3 5" v3.3 8"

DECIMAL

- _Qgging}:tfiligiggg__ﬁgfﬁer Creator or Resequencer

i B L 14

Maximum of 5 pages for V3.3 editor or

Top of Memory

- - ’ :

o~ o
o~ pa— ot
_ 21118
Buffer #7
(if used)
19979
— —— e —— -] -
1T e ——— Buffer #7 — i:gig
- (if used) TTTETETT N
?gfizeg Buffer #6 17922
N o =TT B (if used) u
Buffer #6
%gfj:eﬁ; (if used) 15742
‘ T T T T T - 14974
Buffer #6
Buffer #6 (if used)
(if used)
*‘11 Extensions, - 12679
- b PAGE #/1 Swapper, =
Directory, Workspace File Header Infoimation 11897
0S-65D DOS Kernel
. . 14827
1§ L] L]
0S-65D Diskette Drivers
. 9829
$ $ }
0S-65D I/0 Routines
, , . 8969
Transient Processor Area for
BASIC or Assembler or
Other Language Processor
\ . . 512
i 6502 STACK ' 256
N 6502 PAGE ZERO

(Dark Line Indicates Normal Start of Workspace)

49

DECIMAL

details on how to save the machine language code to disk and

to read it back in at the start of workspace for execution.

If your BASIC program will use data files, then you need
to create one or two data buffers (called buffer #6 and
buffer #7) between workspace and the memory holding the
operating system, offsetting the start of workspace to a
higher address. You can accomplish the creation of these
buffers and other changes in the workspace allocations with
the help of the CHANGE utility. Likewise, the highest por-
tion of workspace memory may be given to a buffer for in-
direct files (see the BASIC Reference Manual). Certain
transient utilities, if loaded, are located in the highest
memory above workspace. These include the V3.3 Editor and

the Resequencer and Buffer Creator programs (see Chapter 8).

Kernel Commands

The Kernel commands can be divided into three groups:

Control: passes control to various language processors
such as BASIC or Assembler.

I/0 Distributor: sets flags to enable/disable peripheral
equipment. Defines addresses of the "memory"
I/0 driver.

Disk: Reads and writes to disks.

The next three sections will discuss these major areas of
activity for the Kernel and the specific commands used to
accomplish its tasks. But first the general format for all

Kernel commands must be specified.

50

General Command Format:

~ Commands may be up to 17 characters long.

- Words in commands may be abbreviated to two
characters because all other characters beyond
two and up to the blank are ignored. TFor ex-
ample, "RESTART BASIC" can be written "RE BA".

- File names must start with a character "A"
through "Z" and can be no more than six
characters long.

- Arguments in the command must be punctuated
as shown, must not contain spaces and must
have a digit everywhere a letter symbol is
shown. The digits are decimal by TT (track
number) and S (sector number). The digits

are hexadecimal for N,M (in addresses or I/O
device masks) and P (number of pages).

The Kernel commands may be called from BASIC using the
format DISK!"emd" and from the Assembler/Editor or Extended
Monitor by using the format !emd. In each case, cmd stands
for a Kernel command obeying the format laid out in the
previous paragraph. Any command that doesn't obey these

syntax rules will fail and an error message will be issued:
ERR #7
This means "SYNTAX ERROR IN COMMAND LINE".

Transfer of Control

Figure 3 diagrams the paths for passing control from one
software system to another. Notice that the Kernel is a central
position in this diagram, the more so since some of the paths
that seem to bypass the Kernel, say'between the Assembler/Editor
and the Extended Monitor, actually are using commands "borrowed"

from the Kernel. Any command preceded by a "!" mark (except

51

BOOTUP

(H/D/M ?)
D M
Y
ROM
MONITOR
LANGUAGE
PROGRAMS
BEXEC™ RE MO 2547G (note 3)
UNLOCK (V3.2)
OPTION 9 (V3.3) a
EXIT 0S KERNEL
® .
(prompt is "A*")
-
EM (note 1)
RE BA (note 4) : RE AS (note U4) EX
BA (notes 1 & 2) EX AS (note 1)
R
Y !RE EM Y
ot
BASTC @——— | ASSEMBLER/ EXTENDED
" | 'BA mITORH 1" MONITOB
(prompt is "OK™) (notes 1 & 2) (prompt is) 4*RE = (prompt is ":")

N

PROGRAMS

USER
BASIC

PROGRAMS

Figure 3 Transfer of Control

52

MACHINE
LANGUAGE
PROGRAMS

those found in a PRINT! command) is actually a Kernel command
issued from another program. One returns to the Kernel from
any other language by the EXIT command (which can be shortened
to EX if you are not in BASIC). One leaves the Kernel and re-
starts a language processor (if it is resident in memory) by the
command RE XX where XX is BA, AS, EM or MO for BASIC, Assembler/
Editor, Extended Monitor or Monitor in ROM, respectively. "RE"
stands for "RESTART". Note that the Kernel is always resident
when the operating system has been loaded, but the transient
language processors and/or BEXEC* may need to be loaded from
disk. The following notes pertain to Figure 3. They should be
carefully read as they concern initialization of BASIC and

recovery after pushing the BREAK key.

Note 1: T@ese4commands will load the specified language processor from
disk. The resident language processor will be overwritten.

Note 2: After BASIC is read from disk through the 0S Kernel
command BA (or !BA) the BASIC commands NEW and LIST
are disabled. Execute BEXEC* to unlock these commands.
(Remember, loading and executing BEXEC* will destroy
any other source code you have in the work area. Put
any useful source programs on disk before loading
BEXEC*.

Note 3: You can enter the ROM monitor from the Kernel and then
return to the Kernel by loading the address $2547 in
the monitor address display and depressing G (for "GOM).
But you cannot warm start the computer after depressing
the BREAK key by the path M to the monitor then $2547G
to the Kernel because the act of BREAK leaves some
memory locations needed by the operating system with
indeterminent contents. The only possible entry to
the operating system after BREAK is the cold start
made by choosing "D" from the "H/D/M?" menu. This
initializes the system and loads and runs BEXEC* which
means the contents of the workspace present at the
time the BREAK key was depressed are overwritten.

Note 4: These commands can be used only if the specified language

processor is resident. For example, if you EXIT from
BASIC, the command RE AS will not work; AS must be used.

53

E. Input/Output Distributor
The computer's major I/0 devices are enabled/disabled by
a distribution system. This system is described in your system
manual (e.g., Appendix Q of the C4P or C8P Users Manual). The

devices are:

RASIC
Flag Setting De;ice Device
Bit | Hex | POKE e Input Qutput
- S0) 9 Null Null
p 21 1 1 Serial Port Serial Port
1 92 2 2 Keyboard on 548 Board Video on 548 Board
2 pu) 3 UART on 430 Board UART on 438 Board
3 78 8 y Null Parallel Port-on CA-9 Board
4 19 16 5 Memory Memory
5 20 32 6 Disk Buffer #6 Disk Buffer #6
6 ug Y4 7 Disk Buffer #7 Disk Buffer #7
7 8p | 128 8 Serial Ports on CA-10X Board | Serial Ports on CA-18X Board

There are two ways of referring to a given device by numbers. BASIC
refers to them by the BASIC device numbers 1 to 9 in such commands as

PRINT #6, etc.

The machine keeps track of the enable status of each device by

flags:

I/0 Distributor Input Flag $2321 (8983 decimal)
Output Flag $2322 (8994)

Each device is assigned one bit in the flag as listed in the table
above. The first three columns contain the same flag information in
three different formats: the bif position number in the Distribution
Flag, the resulting value of the flag byte expressed in hex notation
and finally, the same expressed in decimal notation (suitable for
POKEing from BASIC). More than one bit may be set in a flag at the

same time. For example, one could enable output to the serial port

54

and to disk buffer #6 simultaneously by setting bits # and 5 in

the output flag. It then would appear as:

p819 9A1 in binary
' $21 in hex and
33 in decimal.

Notice the value 33 is obtained by adding the individual flag
values:

$01 + $28 = $21 hex or
1+ 32 = 33 decimal.

This flag setting could be accomplished by:

I0 ,21 (in the DOS mode)
or

POKE 8994,33

: DISK!I"IO ’21" (in the BASIC mode)

Description of I/0 Devices

We identify each device by its BASIC reference number:

9. The Nulf Device: The null device permits writing programs

without having to worry about the characteristics of physical

devices. You may read or write to the null device with no
effect occurring unless the program expects "handshaking"

signals, in which case the computer may hang. For example:
INPUT #9,A$ will cause a hang.

1. The Serial Port: This port is configured in various ways on

the different models of computers. It may drive a serial
printer, a terminal, a tape cassette, or modem.

2. The Keyboard and Video on the 548 Board: The standard input

and output of video systems.

3. The UART on the 438 Board: This is a serial port on some
older systems.

4. The Parallel Port: This is a centronics type parallel port
on the CA-9 board..

5. The Memory: Memory can also be treated as an I/0 device.

There are two pointers which specify the current location
in memory for input or output respectively as device 5:

55

Input pointer $238A (9098 decimal) lo byte
238B (9099 decimal) hi byte

Output pointer $2391 (9145 decimal) 1lo byte
2392 (9186 decimal) hi byte

To use device 5 as an input, set the contents of the input
pointer to the first address desired. Then after each input

of a byte, the pointer will be automatically incremented.

For output, the output pointer should be treated similarly:
initialized and then automatic incrementation will occur as
data is read out. The pointers may be conveniently initialized
by using the Kernel command:

MEM NNNN,MMMM NNNN
MMMM

input pointer in hex
output pointer in hex.

6. The Data Buffer #6: This buffer can be created by using
One of several utility programs. See Chapters 4, 5 and 8 for details.

7. The Data Buffer #7: See above.

8. The CA-18X Serial Ports: See literature supplied with this
device.

F. Disk Usage
(i) Tracks

A brand new blank disk has no information in magnetic
form on it. The first step in using such a disk is to for-
mat it by executing the INIT command. The result is a disk
with "tracks": rings of magnetic code. The tracks are
numbered from # to 39 on 5" disks and # to 76 on 8" disks.
Each track begins with a track header containing information

about the track.

Track number zero has a unique header which is read
by a routine in ROM called by choosing "D" from the menu

"H/D/M?". This track header starts one millisecond after

56

detection of the index hole in the disk. The header
has three bytes:
Load address hi byte

Load address lo byte
number of pages on track zero.

The remaining tracks also have the one millisecond delay

and then have a 4 byte header:

$u3

$57 . .
track number as two digits in BCD (Binary Coded Decimal)
$58

Sectors

For bookkeeping pufposes, tracks are divided into one
Oor more sectors. Each sector has a 3 byte header and a 2
byte trailer and in between has an integer number of pages

of data (1 page = 256 bytes):

header: $76
sector number in binary
sector length (pages) in binary

trailer: 347
. 853

On a 5" disk, the maximum number of pages per track is 8,
so you could have one sector with eight pages of data in

it (plus 5 bytes for header and trailer). If you have

more than one sector on a track, you can store at most
seven pages of data, because the extra bytes required for
sector headers and trailers "eat into" the last page of
data. On an 8" disk, you can have one sector with 12 pages,
or several sectors whose page lengths add up to 11 or less

pages.

57

iii.

Fundamental Disk Commands

The Kernel contains nine commands which implement

disk I/0 using the track and sector formats just described.

(There are other commands for disk I/0 of scurce and data

files using named and unnamed files. These will be de-

scribed in part (iv) and (v) of this section. The funda-

mental commands are:

SELECT X
HOME

INIT

INIT TT

DIR TT

D3

Select disk drive X where X=A, B, C or D

Move the current drive's head to track 8
and reset track count to zero

Initialize whole disk. Erases all
information on the disk '

Initializes track TT. (Each T is a
digit # to 9.)

Prints sector directory for track TT.
Gives each sector number and its length
in pages

Used on 8" systems to disable error 9.
Required to read some files from V1.5
and V2.8 of 0S-65D

SAVE TT,S=NNNN/P Reads P pages starting at NNNN in

Note:

memory and writes them to sector S
of track TT

This command finds track TT and on it the sector
with number S-1. Then it writes P pages on the
disk, calling it sector S. If there was already
a sector S written on track TT, it will be over-
written. If this previous sector S was shorter
than P pages, then SAVE will continue writing on
into sector S+1. No error message will be issued
to warn you of this.

CALL NNNN=TT,S Load contents of track TT, sector S

into memory starting at NNNN. Does
not write track or sector headers or
trailers into memory

EXAM NNNN=TT Examines track TT by loading the entire

contents, including headers and trailers
into memory starting at NNNN

58

iv.

EXAM is a diagnostic tool, allowing examination of
headers, etc., as well as the contents of a track,
so NNNN is often chosen as video memory. Warning:
Occasionally some extra characters will appear be-
fore the track and/or sector headers. These
characters are often $FF and are not really on

the disk. They are due to disk I/0 hardware

being not yet in sync as the read starts. This

is a property of the EXAM command that is not
shared by the other read/write commands, and re-
sults from a different use of timing loops by

the EXAM command. The headers and the data in

the file are properly read.

Source Files

When you write a BASIC or assembly language program,
the resulting lines of text are called "source code". For
source code in assembly language, the assembler will
translate the source program into "object code" which is
in a form to directly instruct the microprocessor. Al-
though source code can be saved to a disk by using the
commands presented in the previous section, these files
are so common that some special commands are provided in

the Kernel for loading and saving them.

Source code is stored starting at the beginning of

workspace, immediately following a 5 byte header:

source file header: start address (lo byte)
start address (hi byte)
end address (lo byte)
end address (hi byte)
number of tracks required

For example, if the source file used neither buffer #6 nor
buffer #7 and the system was a 5" V3.2 system, then the
source file header would be in locations $3279 through

$327D, then the actual source file would start in $327E.
(see figure 2)

59

The format for saving source files on disk is a
special case of the general "sectors" format given in
the previous section. No choice is allowed in the
number of sectors or their length. Each track has one
sector that is eight pages long (12 pages for 8" disks).
Some number of whole tracks is used to save each source
code file. The simplest case saves by track number using

these commands:

PUT TT puts source file on disk, starting at track TT
LOAD TT 1loads source file from TT into workspace

XQT TT loads source file from TT into workspace and
transfers control to its first byte, treated
as machine language object code

In each case, the smallest number of whole tracks that will
hold the source file will be used. This information is
obtained from byte 5 of the source code header and printed
for you if you enter the Kernel from BASIC (using the EXIT
command) or from the Assembler/Editor (using the EX command).
You mﬁst be careful to choose TT at a spot where sufficient
unused tracks exist on the disk, as PU TT will overwrite
anything that is there, giving no error messages if named
or unnamed files are present. (A major reason for doing
file handling from such utilities as CREATE is to provide

protection of named files through checking the DIRECTORY.)

The Kernel can use file names when referring to source

code files:

60

PUT FILNAM puts source code file from workspace onto
disk under the name FILNAM

LOAD FILNAM 1loads file FILNAM to workspace

XQT FILNAM loads FILNAM as object code to workspace
and passes control to it

Again, an integer number of whole tracks on the disk are
loaded by PU FILNAM to workspace. The use of a file name
to designate the tracks to be loaded to memory or put on
disk is a convenience and provides some safeguards. Two

error messages involve named files specifically:

ERROR #C: CAN'T FIND THAT NAME IN DIRECTORY

ERROR #D: READ/WRITE ATTEMPTED PAST END OF NAMED FILE!

Foresight is required, however. The file must be CREATE4
before it is used the first time. It is recommended that
a large file (perhaps called SCRACH) be kept on a disk to
receive source files when you have forgotten to create a

file beforehand.

Files can be created using one of the CREATE utilities
provided in 0S-65D. The utility puts the file name in a
DIRECTORY kept on track 12 (track 8 for 8" disk), and

reserves a specified number of tracks for it.

Sectors 1 and 2 on track 12 hold the directory. Each

entry requires 8 bytes in this format:

file name (six characters)
first track of file (in BCD)
last track of file (in BCD)

61

The DIRECTORY can hold more entries (64 for a 5" disk)
than the disk can hold files (38 maximum for a 5" disk,

at one track per file and excluding tracks # and 12).

The CREATE utility in V3.2 initializes the tracks
(thereby erasing them) but the create choice (no. 2) in
the V3.3 menu allows you to leave the tracks as-is, so
you can name a file you earlier saved by track number

using the PU TT command.
Data File Handling

There is one further type of file read and write .
supported by 0S-65D. It handles data files. It is not
a part of the Kernel, but rather is in BASIC. We mention

it here for completeness. The two commands

DISK OPEN,BN,"FILNAM" BN=6 or 7

DISK CLOSE, BN

are used with data buffers #6 and #7. These buffers must
be created beforehand by carving some territory out of
workspace using one of the CHANGE utilities. These
commands, along with PRINT #BN,exp and

INPUT #BN,exp

service sequential files. Two more commands

DISK GET,RN and (RN=record number)
DISK PUT

allow use of random files.

62

Data files are outlined in the BASIC Reference Manual
and extensively discussed, with examples, in Chapters Uu

and 5 of this manual.

G. Kernel Command Summary

To enter Kernel:

Command
From BASIC EXIT
From Assembler/Editor EX
From Extended Monitor EX
From Monitor in ROM 2547G

To leave Kernel:

Restart Disk Read and Start®
To BASIC RE BA BA
To Assembler/Editor RE AS AS
To Extended Monitor RE EM EM
To Monitor in ROM RE MO -
To Machine Language GO NNNN

(*Must be used carefully; see notes 1 and 2 on page 53)

Input/Output Distributor Commands

IO NN,MM NN = mask for Input device flag
MM = mask for Output device flag

IO NN ;

I0 ,MM

MEM NNNN,MMMM Memory (device #5, flag #8010808)

NNNN = input pointer, MMMM = output pointer

Disk Commands

SELECT X Select disk drives A, B, C, D

HOME Moves current drive's head to track #
INIT Initializes whole disk

INIT TT Initializes track TT

DIR TT Sectors and length (pages) of track TT
D3 Disable error #g9 (8" disks)

SAVE TT,S=NNNN/P Save to track TT, sector S, P pages from NNNN
CALL NNNN=TT,S Load to NNNN, sector S of track TT

EXAM NNNN=TT Dump to NNNN all of track TT including headers

LO TT Load file starting at track TT to workspace

PU TT Put file in workspace on disk starting at
track TT

XQ TT Load object file starting at track TT to
workspace, execute

LO FILNAM Load file FILNAM to workspace

PU FILNAM Put file FILNAM on disk

XQ FILNAM Load object code FILNAM to workspace, execute

83

Error Messages from the Kernel

1 - CAN'T READ SECTOR (PARITY ERROR).
2 - CAN'T WRITE SECTOR (REREAD ERROR).
3 - TRACK ZERO IS WRITE PROTECTED AGAINST THAT OPERATION.
4 - DISKETTE IS WRITE PROTECTED.
5 - SEEK ERROR (TRACK HEADER DOESN'T MATCH TRACK).
6 - DRIVE NOT READY.
7 - SYNTAX ERROR IN COMMAND LINE.
8 - BAD TRACK NUMBER.
9 - CAN'T FIND TRACK HEADER WITHIN ONE REV OF DISKETTE.
- CAN'T FIND SECTOR BEFORE ONE REQUESTED.

A

B - BAD SECTOR LENGTH VALUE.

C - CAN'T FIND THAT NAME IN DIRECTORY.
D

- READ/WRITE ATTEMPTED PAST END OF NAMED FILE!

Utility Programs

A variety of different utility programs are available to the
0S-65D user. Appendix I contains detailed descriptions and listings
for all of the utility programs that appear on a standard 0S-65
diskette. Many of these utilities have been discussed previously
in Chapter 5. Recall that Tutorial Disk 5 (the V3.3 system disk)
incorporates a variety of utility program functions into its

BEXEC* program.

A powerful BASIC program line editor is standardin 0S-65D V3.3
Its use is described in the next chapter, which also describes

the other special features of V3.3.

64

Finally, a collection of utilities called the 0S-65D
Extended Utilities is discussed in Chapter 8. These programs
can be used to make changes in program files (create buffers,
resequence, remove blank spaces and REM statements). There are
also utilities for sorting and copying data files and disassembling
machine code programs. The Extended Utilities are stored on

Tutorial Disk 2.

65

Chapter 7

New Features in 0S-65D V3.3

This chapter presents the new features of V3.3 that extend
V3.2. The previous chapter is an outline of features common to
the current versions of 0S-65D and should be read first by persons

not yet familiar with 0S-65D.

Although there are many new features in 0S-65D V3.3, it is
upward and downward compatible with V3.2 for BASIC programs and
data files which do not incorporate the special commands unique
to V3.3. Even though the workspace in V3.3 has been moved to
$3A7E from $327E in V3.2, the V3.3 operating system automatically
makes the necessary adjustments whenever a file is loaded or saved.
The only problems that may arise involve machine language prograﬁs.
If a machine language program is to be fransferred, the code will
not be loaded to the same addresses in workspace with V3.3 as it

was with V3.2. Thus, relocation is required.

A. Cursor and INPUT prompt \
When the system is booted up with V3.3, the appearance
of a flashing square cursor on the screen announces that you

are in V3.3. Earlier versions of 0S-65D used a non-flashing

underline for the cursor.

Both the form of the cursor and the flashing feature are

controllable by POKE commands. The command
POKE 13426,nn

where nn 1is fhe decimal value for one of the standard OSI

66

graphics characters will change the cursor into that character.
In particular, POKEing 32 into 13826 will replace the cursor
with a blank and thereby eliminate it. Memory location 13743
controls the cursor flashing. This feature can be turned on

or off by using one of the two commands listed below:

POKE 13743,44 Disables flashing

POKE 13743,32 Enables flashing

When an INPUT statement is used in a program the "?"
prompt indicates that the computer is waiting for input. If

you wish to change this prompt, the command
POKE 2797 ,nn

can be used. As was the case for the cursor, nn is a decimal
number corresponding to one of the graphics characters. The

question mark is specified by nn = 63.

Keyboard Encoder and Video Display

A new routine has been written for input from the keyboard
and output to the video display. Keyboard and video on a memory
mapped video system now emulate a Hazeltine 1428 video terminal.
The 0SI polled keyboard acts like a normal typewriter when used
with V3.3. The SHIFT LOCK key acts as a "caps only" key. That
is, the SHIFT LOCK key may be raised and the keyboard used as a
normal typewriter keyboard. Depressing REPEAT and any other
key causes repetition of the key functions. Depressing RUB OUT
erases the last character typed in and moves the Cursor one space
to the left. Simultaneously depressing RUB OUT and REPEAT erases

rapidly to the left.

67

The operative codes of the I/0 driver have been altered
to allow better control of the screen features of 0SI computers.
There are codes to control character size, print window size,
cursor position, screen clearing, color formatting, screen
information transfer to workspace memory, and output to a
printer. These codes can be placed in the PRINT statements

of BASIC programs and will be described fully later.

In addition to program control of the computer output,
some direct keyboard control of the screen display is now
possible. By holding down the ESC key and depressing one of
the number keys, the display can be .altered. The changes

which are produced are listed below:

(ESC) 1 Clears screen; homes cursor to upper left;
produces "wide character" display

(32x32 on C4P and C8P machines; 24x24 on CI1P)

(ESC) 2 Clear screen; homes cursor; produces "narrow
character”" display

(32x64 on C4P and C8P machines; 12x48 on C1P)
(ESC) 3 Homes cursor to upper left

(ESC) 4 Clears to end of screen (memory of workspace
is not altered)

(ESC) 5 Moves cursor up one line

(ESC) 6 Moves cursor down one line

(ESC) 7 Inserts line (lower lines scroll down)

(ESC) 8 Clears line (memory of workspace is not altered)
(ESC) 9 Turné color off

(ESC) 14 Turns color on#*

(NOTE: These commands do not work on serial systems; see the
"Note to Serial System Users" at the end of this chapter.)

68

*The color control is for text sent to the screen by way
of the keybocard for PRINT statements. It does not affect
graphics characters placed on the screen by way of POKE commands.
Furthermore, before the color feature can be turned on for the
first time after turning on your computer, the wide character
or narrow screen format must be specified. This can be done
either by depressing ESC and 1 or 2, or by entering one of the
two screen formatting PRINT commands by way of immediate mode
or a program. These PRINT commands will be described later.

IMPORTANT: These keyboard commands rearrange the screen
display but have no effect on a BASIC program in workspace.
In particular, clearing a listed program line with (ESC) 8
does not remove it from the BASIC program! ©Note that (ESC) 1
and (ESC) 2 are convenient screen clear commands from the"

keyboard.

At the end of this chapter is an overlay which may be cut
out and placed along the top row of keys on the keyboard for

your reference.

Enhanced BASIC
A number of changes have been made in BASIC to improve
its flexibility and ease of use. These include upper and lower
case interchangeability, line editing, a TRAP command, numerous
new PRINT commands for screen formatting and printer control,
and new file handling features.
i) Upper and lower case interchangeability
First, it is important to point out that V3.3 does
not distinguish between upper and lower éase text. Programs
may be entered and edited in lower case. Variable names
and all commands may be in lower case. String comparison
commands will not distinguish between lower and upper case.

For example, the statement

69

ii)

IF Y$ = "Y" THEN 129

will be evaluated true if ¥Y$ = "y" or "Y".

The BASIC line editor

Version 3.3 contains a line editor which functions
both for a line being typed in the immediate mode and
for lines of a written'program. You can edit the current
line of text or you can call up by number ahy line from a
stored BASIC program for editing. The cursor can be moved
to any point in the line using the cursor control éommands
listed at the end of this section. A character can be
inserted at the location of the cursor (to the&ieft of the
character flashing alternately with the cursor) by simply
typing the character. RUB OUT will erase the éharacter
under the cursor and close the line from the right. RUB

OUT with REPEAT "eats up" the line quickly.

If you decide you do not want to keep thefédited
form of the program line, you can escape from the altered
line with the (SHIFT)P command, leaving thé original line
in workspace. Depressing RETURN writes the entire edited

line into workspace, no matter where the cursor was located.

As stated earlier, the above features are applicable
to any line you are typing in the immediate or program
writing mode of BASIC. If you wish to recall for editing
line number nn of a BASIC program in workspace, enter
EDITnn or !nn. The line will be displayed on the screen

with the cursor at the right end. After editing the line

70

and storing it (by depressing RETURN), you can call the
same line back for re-editing by simply entering !!. Or
you can call the next line in the program by entering !
(without a line number). A complete list of editing
commands is given below:

(CTRL)H Moves cursor one space to the left
(non-destructively)

(CTRL)P Moves cursor one space to the right
(non-destructively)

(CTRL)F Moves cursor to the front of the line
(CTRL)R Moves cursor to the rear of the line
(CTRL)I Moves the cursor (non-destructively)
forward to the next tab position
(i.e., positions 1, 8, 15, 22, 29,
36, 43, 58, 57, B4, 71)

(CTRL)T Retypes the line currently being edited
(in its present edited form)

(SHIFT)P Clears screen of line currently being
edited leaving the line in workspace
as it was before calling it to be edited

(RUBOUT) Deletes the character flashing with the
cursor. Line closes up from the right.

EDITnn or !nn Calls line number nn for editing
EDIT or ! Calls next line in program for editing

EDIT! or !! Recalls last edited line for re-editing

iii) The TRAP command
An entirely new feature has been added to BASIC in V3.3.
This feature, called TRAP, works much like "ON ERROR GOTO"
in some other BASIC interpreters. As the name suggests,
TRAP allows a BASIC program to retain control when an error
in BASIC or DOS (Disk Operating System) occurs. To enable

the TRAP feature, the command "TRAPnn" is used where nn is

71

iv)

a BASIC program statement number. If an error is
encountered after the TRAP mode is enabled, the program
will jump to the specified line number nn. This feature
allows your program to make decisions on the basis of
errors encountered while continuing to run. The TRAP

mode is disabled by the command TRAPH.

New PRINT commands

Many new PRINT commands have been added to V3.3
BASIC which allow you to easily manipulate the screen
display. The format of a displayed number can be specified.
With one command, the cursor can be moved to any location
on the screen (the "print at" feature). A wide character
or narrow character screen format can be chosen. A display
window on the screen can be specified. Single stepping of
the cursor up and down as well as right and left is now
possible. Line inserting and selective clearing of the
screen can be done easily. Color manipulation with PRINT
commands makes color displays easy to program. Cursor
location and a character at the cursor location can be

determined and used later in the program.

Additional PRINT statements will produce auto-
pPaging on your printer and in the case of memory mapped
video systems (but not serial systems) transfer the

screen display to the printed page.

These new control features open up to you a whole

new world of progfamming ease and flexibility.

72

0f course, the PRINT commands available in earlier
versions of 0S-65D are still present (see the 0SI BASIC
Reference Manual for a description of these). As was
the case with the original commands (which include
TAB(X), SPC(X), POS(X), and #M where M is a device
number), several commands can be strung together in one
PRINT statement. Examples of these combinations will be

given as the commands are explained.

(a) Number Formatting

It is now possible to choose the format (number
of digits and location of decimal point) for a number
to be printed. The command is exemplified by PRINT
USING "#.#". The character # represents a digit to be
printed. A maximum of 11 '#' characters can be used
if no decimal point is included. The maximum is 18
if a decimal point is included. No more than one
decimal point can be used. Only a single format may

be given with each PRINT USING statement. Example:
PRINT USING "###.##" 97.321, -1, 106088

will show on the screen:
97.32 -1.08 %¥% &%
The "#%%% #%" output indicates that the number was

too large to fit the specified format.

The 'USING' designation may be combined with
the '€' and '!' extensions described below, but

must appear only once immediately after the word

73

(b)

PRINT and then will apply to the printing of all

numerical values in that statement.

Cursor Location ("print at™)

The statement 'PRINT §(X,Y)'" is the "print at"
feature in V3.3 BASIC. It positions the cursor at
X,Y on the screen. If a window smaller than the
whole screen has been defined, the cursor goes to
position %,y in the window. (Window definition
will be explained later.) The origin of the X,Y
coordinate system is the upper left corner of the
screen or window. The X axis is horizontal and the
Y axis is vertical, positive downward. After the
cursor has been moved, the next character printed

will be at the x,y position of the cursor.

WARNING: If a PRINT statement does not end
with a semicolon, then a carriage return and line
feed (CRLF) will automatically be performed, The
CRLF action moves the cursor one line down and to
the far left of the_scréen (or window). Usually
you will not want this to happen because the next
character printed would then appear at the left
instead of the location x,y which you specified.
Consequently, you should get in the habit of

ending PRINT statements with a ";".

74

(c)

SECOND WARNING: Another condition can cause a
surprise CRLF. If many "PRINT S;" (S is a set of
expressions and/or commands) statements are used in
succession, the line buffer (132 characters long) may
fill up and a CRLF will be performed. The line buffer
can be emptied either by a PRINT statement not ending
in a semicolon or a comma (the comma specifies next zone
on the same line) or by putting the expression CHR$(13);
at the end of a PRINT statement. The first means of
emptying the line buffer will produce a CRLF. The
second technique will perform bnly a carriage return
(cursor moved to the front of the line). In either

case, you may need to reposition the cursor.

General Screen Formatting

The video screen display can be controlled using
any one or a combination of 25 commands as a part of
a PRINT statement. Nineteen of the commands have the
general form of PRINT!(XXX) where XXX is a set of one,
two or three numbers or variables. TFive of the commands
have the form PRINT CHRS$(nn) where nn is a decimal
ASCII code. The one exception to these two forms is

the PRINT &(X,Y) command described previously.

Of these 25 commands, three select the display
size, 10 control the cursor location, one inserts a
line, four clear part or all of the screen, five
control coler, and two will pick up information from

the screen.

75

Display size PRINT commands

0f the three display size PRINT commands, two
affect the entire screen and one sets a window. For
total screen display, you can choose between a narrow
character or wide character display. The narrow char-
acter display is a 32 line by 64 character format on
the C4P and C8P while being 12 lines by 48 characters
on the ClP. The wide character display is a 32x32
format on the C4P and C8P while being 24x24 on the
ClP. Changing from one format to the other will clear
the screen. For either format, a window can be set
within which subsequent displays will be confined.
Printing and clearing can be done within the window
without affecting a displéy outside the window. How-
ever, the display outsideéthe window cannot be selec-

tively changed or cleared through use of PRINT commands.

The screen formatting PRINT commands are listed

below:

PRINT! (28) Selects "wide letter" display
(32x32 on Cu4P and C8P, 12x24% on C1P),
clears the screen, and homes the cursor
to upper left screen corner.

PRINT! (21) Selects "narrow letter" display

(32x64 on CUP and C8P, 2uxu48 on C1P),
clears the screen, and homes the cursor
to upper left screen corner.

PRINT!(22,w,h) Selects print window w characters wide
and h characters high. Upper left
window corner is at current cursor
position; screen is not cleared.

76

The ability to define a window makes for versatile
formatting of text-on-text or text-on-graphics. How-
ever, there are certain conditions which must be kept
in mind. There can be only one window defined at any
given time. Once the window is defined, the cursor
must remain within it, and so new text can only be
written within the window. Text or graphics that were
outside the window when it was formed will remain dis-
played. One may add text or change the graphics on
the screen outside the window only by use of direct
POKEs to the screen memory. The window may be redefined
but only to a smaller window which must be entirely
enclosed within the original window. Finally, one can
escape the confines of the window only be executing
either of the commands PRINT! (28) or PRINT!(21) which
will clear the screen and return the display to full

screen size.

The !(22,w,h) window setting command is commonly
used in the same PRINT statement with the £(X,Y) cursor
positioning command which is used to determine the
upper left corner of the window. If, however, the
window setting command is in a separate PRINT statement,
a ";" must follow the cursor positioning command. That
is ,

149 PRINT €(5,5)!1(22,28,18);
and

199 PRINT €(5,5);
114 PRINT !(22,28,18);

77

will have the same effect in setting a 18 line by 28
character window whose upper left corner is on the
sixth line down and the sixth space from the left of
the screen (x,y begin at #,8). Note that a ";" is
used after the window setting command in order to
leave the cursor in the upper left corner of the

window.

Cursor location PRINT commands

Of the 18 cursor control PRINT commands, five
will single-step the cursor to a new location, two
will multistep the cursor, two allow the program to
designate any location within the window, and one
homes the cursor (returns it to the uppef left corner
of the window). The single step commands will move
the cursor up and down as well as left and right. The
The multistep commands translate the cursor only
horizontally. In no case will characters on the screen
be cleared when the cursor is moved by one Qf these

commands.

The following is a list of the cursor control

PRINT commands:

Single Step

PRINT CHRS$(18) Back one space
PRINT CHR$(16) Forward one space
PRINT! (12) Up one space
PRINT! (11) Down one space
PRINT CHR$(18) Down one space

78

Multistep

PRINT CHRS$(13) Back to front of line
(carriage return)

PRINT CHRS$(14) TForward to next eight space tab set
(seven space for left-most field)

Anywhere

PRINT!(17,X,Y) Relocate to X,Y
(6,0 at upper left corner)
PRINT €(X,Y) Relocate to X,Y
(8,8 at upper left corner)
Home

PRINT! (18) Relocates to 8,0
(upper left corner)

Note that PRINT!(11) and PRINT CHR$(18) are identical
commands and that PRINT!(17,X,Y) and RPINT &(X,Y) are
also identical commands.

As indicated earlier, the commands listed above
can be used together in one PRINT statement as well as

in separate statements. For example, the statement
PRINT! (12)CHRS(16);

will move the cursor up one space then forward one
space. Again, the ";" at the end of the statement

prevents a CRLF from occurring.

Insert and clear PRINT commands

One PRINT command allows you to insert a line‘on
the screen with a subsequent automatic moving down of
the lower lines. The line will be inserted at the Y
position of the cursor and begin at the location of

the cursor.

79

The line insert command is listed below:

PRINT!(26) Inserts line at cursor position;
lower lines scroll down

Four commands allow clearing of characters on the
screen. It is important to remember that only the
screen is affected by these commands. Workspace memory
locations are not altered. Two of the commands affect
only the line where the cursor is located when the
command is executed, one clears a portion of the screen,

and one clears the entire screen.
The clear PRINT commands are listed below:

Line

PRINT!(15) Clears from cursor to end of line
PRINT!(19) Clears entire line
(lower lines move up)

Screen

PRINT!(24) Clears from cursor to end (lower right)
of window

PRINT!(28) Clears entire screen and homes cursor
-in window

Note that the first three commands leave the cursor
where it is (provided that the command is ended with
a "3") while the last one returns the cursor to its
home position. The home position is the upper left
corner of the screen if the entire screen is being
used, or is the upper left corner of the defined
window. Note also that the first three commands
affect only the window display region. Text display-
ed outside the window will not be cleared. However,
PRINT!(28) clears the entire screen.

Color formatting PRINT commands

Sixteen different colors may be displayed by C1P,

C4P and C8P computers. Each color is identified by a

80

L bit number (the color value) which (in decimal form)

identifies the color in BASIC programs. The colors

are:
Color Decimal Value
Yellow i}
Inverted Yellow 1
Red 2
Inverted Red 3
Green b
Inverted Green 5
Olive Green 6
Inverted Olive Green 7
Blue 8
Inverted Blue 9
Purple 19
Inverted Purple 11
Sky Blue 12
Inverted Sky Blue . 13
Black 14
Inverted Black (white) 15

Notice that the colors are named in pairs. Bit
zero of the binary form of the color value is one if
a color has the word "inverted" in its name. This
pairing of colors in an important concept in character
display and in use of the color formatting PRINT com-

mands.

Each character is made up of dots (pixels) in an
8x8 dot matrix "cell". The dots which prodgce the
character are in one of the 16 colors, called the
foreground color, while the rest of the dots in the
cell are in another color, called the background color.
You cannot pick the foreground and background colors
independently from the list of 16 colors. The fore-

ground color and the background color must be inverses

81l

of each other. When a color number is chosen, the
background appears in the color corresponding to
that number while the foreground appears in the
inverse color. TFor example, of color 2 is specified,
the background will be red while the foreground will
be in the color called invepted red. If color 3 is
specified, the background will be inverted red while
the foreground will be red. If you have a color
monitor, run the program COLORS on Tutorial Disk 5

to observe these color combinations.

Theré are two types of color commands. One type
specifies what color will be used henceforth as back-
ground color for characters displayed on the screen
through the use of subsequent PRINT statements or
keyboard entry (but not POKEs). Three commands are
of this type. The other type affects all previouély
printed text of a specific color by either changing
the color or clearing all text of that specific color.
Two cémmands are of this type. These are powerful
tools for generating and updating displays that can
catch the attention of the viewer and transmit in a

flash, through color coding, important information.

The five color formatting PRINT commands

follow:

82

Color select

PRINT! (1)

PRINT! (25)

PRINT! (31,n)

Color change

PRINT!(2,n,m)

PRINT!(29,n)

Selects color # as the cell

background

Selects the normal black/white

display mode

(i.e., black selected as the cell
background)

Selects color n as the cell back-

ground

Changes cell color. All cells on

the screen of background color m

are changed to background color n.
Clears cells of background color n.
All cells on the screen of background
color n are changed to black back-
ground and the character is replaced
with a blank

WARNING: The color formatting PRINT commands will

not function until a screen format has been specified.

A program which uses color formatting must begin with

PRINT!(21) or PRINT!(28) in order to run properly

right after your computer has been turned on.

Cursor sensing PRINT commands

0S-65D V3.3 allows you to determine the position

of the cursor while a program is running then use

that information as a part of the program. Further-

more, you can pick up the character on which the

cursor is located

string variable.

The commands

tion follows.

83

and store that character as a

which allow this type of manipula-

PRINT! (5) Sends information for current cursor
position X,Y to string variable in
following INPUT statement. Information
is in the form of two characters for
which (X+65), (Y+65) is the ASCII code.
Line feed follows the INPUT statement
used with PRINT!(5)

PRINT!(33) Sends character at cursor position to
string variable in following INPUT
statement. Line feed follows the
INPUT statement used with PRINT!(33)

The cursor position sensing is done by way of ASCII

characters which are recognized by the BASIC interpreter.

Consequently, the ASC(X$) function is needed to obtain
the numerical values of X and Y. For example, the
program shown below will determine the position of the

cursor after it has printed a line of text.,

REM CURSOR PCSITION

PRINT!(28)!(17,18,18);:REM CLEAR SCREEN AND POSITION CURSOR
PRINT"CURSOR POSITION SENSING TEST.";

PRINT! (5):REM PICK UP CURSOR POSITION INFORMATION

INPUT P$:REM STORE INFORMATION IN P$

PRINT:PRINT"ASCII CHARACTERS FOR X+65 AND Y+65 ARE ";P$
X = ASC(P$) - 65:REM CONVERT ASCII CHARACTER TO X VALUE
PRINT:PRINT"THE VALUE OF X AT END OF TEXT LINE IS";X

Y$ = RIGHTS$(PS,1)

Y = ASC(Y$) - 65:REM CONVERT ASCII CHARACTER TO Y VALUE
PRINT"THE VALUE OF Y FOR THE TEXT LINE IS";Y

END :

As written, the program will store "hK" in P$ and
translate these letters into an X position of 39 and a
Y position of 18. If you were to change the 18,18 in
line 20, and/or change the message of line 38, a dif-
ferent pair of characters would be stored in P$ and a

different set of X,Y values would be determined.

8L

10
20
30
49
50
60
78
80

109
118

WARNING: There is a limitation to the use of
PRINT!(S5). The X values of 26, 38, and 58 through
63 cannot be picked up. This is because this PRINT
command does not recognize the ASCII characters
corresponding to these values plus 65. An alternate
technique which works for all X and Y values is the
PEEKing of address 13823 for X and 13424 for Y.

That is, replacing lines 4f through 78 with
48 X=PEEK(13823)

and -lines 18 and 189 with
99 Y=PEEK(13@24)

will result in the same values of X and Y being

determined.

A similar limitation holds for the character
pick up command. Certain characters will not be
recognized by CHR$, PRINT!, and other BASIC commands
and functions. ASCII codes 8 through 6, 8 through 12,
14 through 31, 93, 94, 95, 125, 126, and 127 will not
be properly recognized. For those characters thaf
are reéognized properly, the following program is

useful:

REM CHARACTER PICK-UP

PRINT!(28)&(10,10);:REM CLEAR SCREEN AND POSITION CURSOR
PRINT"ABCDEFGHIJKLMNOPQRSTUVWXYZ"

PRINT:INPUT"ENTER A NUMBER 1 THROUGH 26" ;N
PRINT!(17,9+N,10);:REM SET CURSOR ON LETTER CHOSEN BY N
FOR T = 1 TO 5@880:NEXT:REM DELAY TO OBSERVE CURSOR LOCATION
PRINT!(33):REM PICK UP LETTER

INPUT CH$:REM STORE LETTER IN CHS

PRINTS(8,5)3

PRINT"THE LETTER PICKED UP IS ";CHS

END

85

Note that the above program uses PRINTE&(X,Y)
instead of PRINT!(17,X,Y). As stated earlier, these

commands are completely interchangeable.

(d) Printer Control
The 0S-65D printer drivers will now perform
auto-paging by recognizing a "top-of-form" command.
To initialize this feature, execute this command in

the immediate mode (printer on):
PRINT#M,! (67 ,FL)

where M is the printer device number (1 for serial
printers) and FL is the form length (number of lines
per page). For a form 11 inches long and a printer
set at six lines per inch, FL=66. Immediately upon
receiving the top of form command, the printer will
advance the appropriate number of "between form"
lines (defined below) and stop. Then position your
form in the printer so the top of the.form is under
the print head. You are now ready to use the systemf
As you run your programs, the system will count lines
and automatically advance to the next page when the
bottom of the form is reached. The number of lines
it inserts between the bottom of one page and the top
of the next (the "between form" lines) is FL/18,
truncated to an integer. So in our example where
FL=66, there are six lines between pages (three line .

top and bottom margins on each page).

86

Normally, of course, a printout will end in
the middle of a page. To begin a new printout at

the top of a page, use the command
PRINT#M,CHRS$ (12)

This command sends enough line feeds to position

the printer at the top of the next page.

If you have a memory mapped video system (not
serial with a video terminal) and an Epson MX-88
printer, you can send text and 16 medium resolution
(64x128) graphics characters to the printer. The
BASIC command is PRINT#1,!(88). This command will
print what is on the screen (or in the window) and
will put a black boarder around it. However, only
standard text and 16 medium resolution graphics
characters are recognized by the printer. The
standard text iﬁcludes the keyboard characters and
0SI character graphics 33 through 126. The 16 graphics
characters are numbers 32, 154, 157, 165, 166, 167,
168, and 178 from the 0SI graphics character set and
their inverses. An inverse is formed by POKEing the
corresponding color cell with an inverse color number.
For black and white displays, the inverse color num-
ber to use is 15. Note that color does not need to
be turned on for the character inverse to be formed.

A sample program which will print the 16 graphics

characters on an Epson MX-8f printer follows:

87

10
20
49
59
60
70
80

108
119
129
200
214

REM EXAMPLE OF GRAPHICS CHARACTERS PRINTING
PRINT!(28):REM CLEAR SCREEN

PRINTE(#,18)"TEST OF PRINTER AND GRAPHICS"&(d4,14);

GS = 54272:REM START OF GRAPHIC CHARACTER PRINT

IS = 54274 + 4096:REM START OF INVERSE CHARACTER PRINT
FOR G = @ TO 28 STEP 4

READ GC:REM READ CHARACTER NUMBER FROM DATA

POKE GS+G,GC:REM DISPLAY CHARACTER

POKE IS+G,15:POKE GS+G+2,GC:REM DISPLAY CHARACTER INVERSE
NEXT

PRINT"TEST IS COMPLETED

PRINT#1,!(8@):REM SEND SCREEN TO PRINTER
DATA32,154,157,165,166,167,168,178

END .

When the print routine does not recognize a
character on the screen, the following translation
between screen character and printed character is
made. If the corresponding color cell does not have
the inverse bit (bitf) set (i.e., if the color num-
ber is even) then a blank is printed. If the
corresponding color cell does have the inverse
bit set (i.e., if the color number is odd) then a

solid black square is printed.

Now that the full range of new PRINT commands
has been described, the examination of a few programs
will help to illustrate their use. The programs
shown below combine many of tﬁe commands in one
PRINT statement as well as illustrate the ease and

flexibility of programming with the PRINT commands.

The first program listed below is designed to
run on a color monitor, but will be illustrative of

programming capabilities on a black and white monitor.

88

This program can be terminated only by using CTRL-C.
(Note: Serial system users should consult the NOTE

at the end of this chapter.)

REM ##%#* "PRINT AT" DEMO. #*#%%*
PRINT!(28)!(21):REM CLEAR SCREEN:ENABLE COLOR
M$ = "HELLO, I'M HERE NOW!"

Y = RND(1)*#23:REM GENERATE Y POSITION

X = RND(1)*42:REM GENERATE X POSITION

C = INT(RND(1)*15):REM GENERATE COLOR NUMBER

POKE 2073,96:POKE 138#26,32:REM DISABLE CTRL C:BLANK CURSOR

PRINTE&(X,Y)!(31,CIMSCHRS(13)!1(18);

FOR T = 1 TO 3@PBH:NEXT:REM TIME DELAY

POKE 138#26,171:POKE 2873,173:REM REST. CURS.:ENABLE CTRL C
GOTO 39

Note that the program above illustrates the "print at"
capability of V3.3. It also shows the ease with which
color can be included. An additional feature of this
program is the removal of the cursor (by replacing

the square with a blank cell) while the program runs.
If, however, a program in which the cursor hés been
removed is interrupted before the cursor is replaced,
the cursor will remain invisible. Consequently,

CTRL-C is disabled while the cursor is blanked out.

The second program listed below shows the ease
with which displays can be sorted into distinct parts.
It is designed for a black and white monitor. It
illustrates also a use of the character pickup
feature. (Note: Serial systems users should consult

the NOTE at the end of this chapter.)

89

19
20
38
35
ug
58
69
78
89
98

100

119

120

139

1up

156

168

2090

285

219

228

238

389

385

314

328

330

349

359

360

378

508

510

REM NUMBER SORT DEMONSTRATION

POKE 13§26,32:REM BLANK CURSOR
PRINT!(28)!1(20)&(4,8)"UNDER 54"1(31,15)8(20,8)"OVER 56"
PRINTE (0 ,56)"Random Number Sort Demonstration"

READ P$(1),P$(2):REM READ MESSAGES FROM DATA

FOR I =1 TO 18

Y = 18
N = RND(1)*149
IF N <=5 THEN X = 4:C = 14:G0TO 188

X = 28:C = 15

GOSUB 244

PRINT USING"##.##"€(X,Y)!(31,C)N

GOSUB 388 --

NEXT

PRINT!(31,14)!(18):REM SET BLK BKGD, HOME CURSOR
POKE 13926,171:REM REPLACE CURSOR

END

REM SUBRQUTINE TO SELECT Y VALUE

PRINTE (X+3,Y)1(33)

INPUT CHS

IF CH$ = "." THEN Y = Y+1:G0TO 209

RETURN .

REM SUBROUTINE TO FLASH MESSAGE

FORM =1 TO §

IF C = 14 THEN C = 15:D = 1:G0OTO 3up
C 14

D 2

PRINTE(2,28)!(31,C)PS(D)

FOR T = 1 TO 50@:NEXT T

NEXT M

RETURN

DATA"NOTE RANDOM NUMBER SELECTION"
DATA"note random number selection"

90

19

30
49
50
60
70
80
99
1909
110
128
138

Note that the subroutine beginning at line 288
checks to see whether the last decimal point is in
either the left or right (low number or high num-
ber) column of listed numbers. When the decimal
point is found to not be present, the number is
printed. O0f course, the program would run in an
instant if line 128 (the call of the message flash-
ing subroutine) were removed. It is included to
illustrate the ease with which attention getting

displays can be programmed.

Line insert and line clear capabilities are
illustrated in the program below. (Note: Serial
system users should consult the NOTE at the end of

this chapter.)

REM LINE INSERT DEMONSTRATION
PRINT!(28)!(21);:REM CLEAR SCREEN, HOME CURSOR, SET FORMAT

ml$ = "Original line"
m2$ = "of text is here.”
FTOR L = 1 TO 28

PRINTm1$;L;m2$

NEXT

PRINTE(8,21)"Enter line to be inserted (1 - 61 char.)."
INPUT LS

PRINT!(12)!'(19)!1(12)!(19);:REM CLEAR MESSAGE LINES
INPUT"Enter number of line where insert is to go.";N
PRINT!(12)1(19)€(B,N-1)!1(26)LSE(D,21);

END

Lines 38 through 78 produce text on the screen.
Lines 88 through 110 ask you to enter a line of text
and then a location for it to be inserted. But be-
fore the insert location is asked for, the first

message and your entered text are cleared. Line 128

91

v)

clears the message, inserts the text you have
entered, then moves the cursor to the lower left
of the screen so that the OK prompt will appear

there when the program ends.

Data file handling

The BASIC data file handling of V3.3 haé also been
modified. First, execution speed has been improved for
the DISK GET command and the DISK PUT command is no longer
necessary. Second, a DISK FIND command has been added to
allow rapid searching for a string of characters within a

BASIC data file. The syntax for the command is:
DISK FIND, string
Examples of the FIND command are

DISK FIND, "HARRY”
and

DISK FIND, AB$S

The command works most smoothly with sequential data

files. The search begins at the current file pointer lo-
cation. If you wish to place the pointer at the béginning
of the file, you must execute DISK OPEN,n,"filename" prior
to the DISK FIND command. (n is buffer number 6 or 7.)
If the string is located in the data file, the pointer will
be left at the end of the field in which the string was
found. If the string is not found, a disk error #D will
be reported. The TRAP command mentioned earlier is useful
for recovering from the error without exiting the BASIC

program.

92

980
919
920
93¢0
Iug
950
960
978
984

Use of the FIND command with random access files
is possible if the programmer has been careful in filling
interrecord gaps with nulls, spaces or carriage returns.
That is, a 128 byte record which at one point had data
100 bytes long and then was re-written with 50 byte data
will still contain 58 bytes of the old data. The FIND
command may find this old data instead, but the information
returned by way of the following INPUT statement will be
the new data. If spaces are used for padding, they should
precede the data. If carriage returns are used, they
should come after the data. Nulls (character for ASCII

code @A) can be used either before or after the data.

Since the FIND command will usually terminate with
the file pointer set inside a record, a BASIC subroutine
has been included which will calculate the number of the
record in which the FIND command terminated. The sub-

routine is listed below.

REM Record calculation subroutine for DISK FIND
DEF FN dec(bed) = (bed AND 15) + (INT(bed/16)*18)

éb:PEEKclzmuz) * (FN dec(PEEK(9804)) - FN dec(PEEK(9882)))
re=(PEEK(9133)-PEEK(8999))%256 + PEEK(9132)~PEEK(8998)-1
rn=ab + INT(re/2”PEEK(12076))

REM rn is the desired record number
RETURN

On a random access data file, the DISK FIND command
should be followed by GOSUB 948:DISK GET,RN where RN is
the desired record number. Then the DISK GET command can
be used'to set the file pointer to the beginning of the

. pecord that contained the search string.

93

The program on the following page is an example of
the use of the DISK FIND command for a sequential file.
It is intended for use with Tutorial Disk 4 and, if you
saved the sequential file demonstration program given in

Chapter 4, it can be entered by adding to that program.

Boot up your computer with Tutorial Disk 4, then
choose option 1. If the earlier example was saved, you
will now have about half of the DISK FIND demonstration
program in the workspace. Complete the program by changing
line 30 then adding lines 786, 213, 255, and 3490 thfough
53@. 1If you did not save the earlier example, énter NEW
then type in the entire program. When completed, the

program should be saved in PROG1.

Note that the program now includes the TRAP feature
which is used in both the listing routine and the finding
routine. Cafe has been taken to disable the TRAP feature
after each intentional use so that an error #D message
occurring some other place in the program will indicate

an actual error.

When you have stored three sets of names and numbers,
choose the "Find a name" option. Next, enter one of the
names you have stored. The program will find that name,
then pickup the corresponding number (the next item in
the sequential file). The number must be separated from
the name by a carriage return (i.e., entered into the file

by a separate PRINT statement as done in line 148). The

9y

DEMOMETHATION

Find & namse

THERN
L OTHER
tENOTHERM
JUTINE FOR
IFER, &, "DAT
= 1 TG 3Z
i Enter a name';N$
MRFUT"Enter the telephone number"i;TS
INTHS, M FRINTHE, TS -

IGE. S

FRINT"CATA STORED."
r GOTO ZO
v REM RQUTINE FOR LISTING DATA
 DISKE OFEN,&,"DATALY
15 TRAF 400

' FOR I = 1 TGO =
INFUTHS, NS, TS
O FRINT NS, TS
250 NEXT I
255 TRAF O
250 DISK CLOSE, &
270 60TO 0
00 REM ROUTINE FOR FINDIMG DATA
10 INPUT"Enter the name to be found"j;N%
20 DISK OFEM, &, "DATALM

TRAF 200
DISE FIND,N$

TRAF O

INFUT #&5,T$
2&EC PRINT N$,T#
55 INFUT"Continue search (YA M) ";A$
70 IF A% = "Y' THEN ZI0
80 DISK CLOSE.sS
IO c0TO IO
400 REM LIST ROUTINE TRAFP MESSAGE
410 FRIMT"THE DATAS FILE IS EMPTY."
420 TRAF O

0 B0TO =0
=00 REM FIMD ROUTINE TRAFP MESSAGE
SL0 FRINTY"THAT ENTRY WAS NOT FOUMD.“
I20 TRA&R O
SIZ0 G0TO Zo

R 0 T O T O O O T O S e e e S =

t

95

i

PRINT statement on line 368 prints the name you have
entered and the corresponding number. If the name is

not found, the message in line 518 will be displayed.

Note that you can find the name by entering any
sequential segment of the spelling of the name. The
screen display, however, will give the partial spelling,
as you entered it, not the name as it is stored in the
the file. In a sequential file, the pointer cannot back
up to allow retrieval of the item found. This could give
a problem if, for example, two people with the same last
name but different first names were on the list. A search
for the last name would return the telephone number for
the first person with that name on the file but would not
return the first name. A continuation of the search would
give only a second number. If you had temporarily for-
gotten the first name, you could not get the correct
number without starting from the beginning of the se-
quential file and listing the entries up through the two
names. The next example shows how the FIND command can
be used with random files in order to return the entire
record in which the found item resides.

The program shown next can be formed by adding to
the random file demonstration program in Chapter 4. Boot
up your computer with Tutorial Disk 4, then choose option
2 (or simply choose option 2 from the menu if you are al-

ready booted up with disk 4). If the earlier example was

96

DEMOMSTRAT ION

e -t - 0 e ERE R] -
cord, or Find item (ESLSFD

g

Fedobe i

i} i 4‘ i

S IN items" i HE
&0 DI

170 FR

183 DI

G NE
200 DISKE CLOBE.S

210 FPRIMNT"DATA STORED®

220 GATAZO

00 REM ROUTIME FOR LISTIMG RECORES

I10 INPUT"Enter number for record to be listed";R
IZ0G DISK OFEM, &, "DATAZ

IZS TRaAF 700

FE0 DISK GET,.R

42 IMFUTHE,RM, IS, N$

I45 TRAF ©

IS0 PRINT RN, Is,Ns$

J&0 INFUT"List another record (¥Y/M)";A%

70 IF A = "Y' THEN 210

380 DISK CLOSE, &

r GOTO 2O

FEM ROUTINE FOR FINDING ITEMES

INFUT"Enter the item to be found":1I%

520 DISK OFEM, &, "DATAZ"

ST TRAF BOG:DISK FIND, I$: TRAFD

Z40 GOSUR 200

S50 DISKE GET.RN

S&0 INFUTH#S, RiM, IRE, ME

570 PRINT RM, IR, N$

S8G DISKE CLOSE.S

590 G0TO 20

7o REM LIST ROUTINE TRAF MESESABGES

710 IF R < 4 AND R > O THEMN PRINT"FILE IS ERASED.":G0T0O 730
FEOD FRIMT"QMLY RECORDS 1, 2, AND T ARE IN THE FILE."
TID TRAFR O

740 GOTO 0

Q00 REM FIMD ROUTINE TRAF MESSAGE

810 PRINT"THAT ITEM IS NOT IN THE FILE.™

220 TRAF O

830 GOTOZO

00 REM Record calculation subroutine for DISKE FINMD
210 DEF FM dec(bcd! = {bcd AMD 15) + (INT{(bcd/1&3%107
FI0 ab=PEER (1204Z) ¥ (FM dec(FEEK{(2004)) - FN dec{FPEEM (00271
P40 re={(FEEK (2133 -PEER (E999)) ¥25&6& + FEEK (9132) ~-FEEE (89981 -1
FED rn=ab + INT(re /27 PEERK(12074&))

PTG REM rn iz the desired record number

PO RETURN

97

saved, you will ﬁow have nearly half of the random file
DISK FIND demonstration program in workspace. Complete
the program by changing line 3@ then adding lines 78,
325, 345, and 588 through 988. If you did not save the
earlier example, enter NEW then type in the entire pro-
gram. When completed, be .sure to save the program in

PROG2.

Before running the program, choose option 5 from
the Tutorial Disk 4 menu to erase data file DATA2. If
you do not do this, you may get some surprises when using
the FIND option (because of data left in a record froﬁ

previous use).

Now choose option 2 from the menu and run the
demonstration program. After storing data, try finding
an item. You can use all or a sequential portion of the
letters in the item name. The FIND routine will return
the entire record as it is stored in the file. As in
the earier DISK FIND demonstration program, the TRAP

]

feature will return a message if the item is not found.

BASIC Functions not present in 0S-65D V3.3

There are a few BASIC functions in 0S-65D V3.2 that are no
longer present in V3.3. The first two of these functions are
NULL and WAIT. These keywords have been replaced by EDIT and

TRAP. The third function that has been ‘disabled is ATN (arctan).

98

However, since this keyword has not been reused, it is pbssible
to revive this function if it is crucial to your applications.
The cost of reviving ATN is the loss of the PRINT extensions
just described. If you wish to use ATN, run the program

called 'ATNENB' contained on disk 5 of the tutorial set. A
menu will be printed giving you a choice between the ATN func-
tion or the PRINT extensions. After you select which feature
you want, the program will automatically reconfigure your

system to support either ATN or the PRINT extensions.

99

OVERLAY CUTOUT

For Screen Display Commands

Users of Video Systems may find the overlay on
this page helpful for remembering the ESC key
screen display commands. It should be cut out
and placed above the top row of keys so that
the "WIDE CHAR" is .just above the "1" key.

100a

COLOR

COLOR
OFF

E WIDE JINARROwW] HOME J CLEAR t INSERT | DELETE
SC CHAR CHAR J CURSORJ] TO END ‘ LINE LINE

*% Note to Users of Serial Systems *%

0S-65D V3.3 is only partially compatible with serial
systems. If you are using a Hazeltine 1428 terminal, be
sure switch 6 is set to the ESC position. Certain features
that refer to color, screen size, or windowing are not
operable on serial systems. Specifically,

1) The commands that use the ESC key are not
operable.

2) The destructive backspace key is instead
of <SHIFT/0> or <RUB OUT> and the line delete
is <@ instead of <SHIFT/P>.

3) The PRINT command !26) inserts a line but not
at the cursor position. The line always starts
at the left margin.

4) The following PRINT commands should not be used:

(1) Color P select

'(2,n,m) Color change

1(5) Cursor ppsition sensing
1(28) Wide character select
1(21) Narrow character select
1(22,w,1) Window select

1(25) | Color black/white select
1(28) Screen clear

1(29,n) Selective color clear
1(31,n) Color n select

1(33) Character pick up

100

Chapter 8

Extended 65D Utilities.

When Tutorial Disk Two is booted up no menu is displayed.
Instead, the system is unlocked for programming in BASIC's immediate
mode (the "OK" prompt appears). What is not readily apparent is that
this disk also contains a package of powerful 65D utility programs.

With these programs, a 65D user can:

1. Change the numbering of statements within a
program in a variety of ways. This makes it
possible, for example, to add a statement

between two statements that presently are ~
numbered consecutively.

2. Reduce the storage space required by a
program by removing REM statements and/or
blanks.

3. Check the size of buffers present before
a program. Buffers can also be added and
deleted in a very flexible fashion.

4. Sort data files, including MDMS master files.

5. Generate an assembly language listing for
machine code programs.

6. Copy data files.

These utility programs can process program and data files created under
any version of 0S-65D. However, several of the utility programs must
be run on a system booted under 65D V3.2. For this reason, Tutorial
Disk Two boots under 65D V3.2 This means that programming done after
booting the system with Tutorial Disk Two cannot use the new features
of 65D V3.3 that are available when the system is booted with Tutorial

Disks three, four, or five.

101

is:

The directory listing for Tutorial Disk Two, CUP 5" system

—— Directory -——

File name Track range
0Ss5D3 o -8
BEXECX g -9

- REFACEK 10 - 13

—RSER 14 - 1é
DISASM 17 - 20
GSOSRT 21 - 23

— DATRAN 24 - 26

— BUFFER 27 - 29
D-ASM F? - I9

S5 Entries free out of &4

(track ranges for 8" systems will be somewhat different).

Disk Two is write-protected to reduce the possibility of

accidentally destroying these files.

Detailed explanations and examples for the Extended 65D Utility

programs follow. Listings for all of the programs appear at the end of

this chapter.

A.

- Resequencer

The resequencer is stored in the file RSEQ. To use this pro-
gram, boot the system with Tutorial Disk Two and type RUN"RSEQ.
Then type "E" or "ENABLE" in response to the enable/disable
question. This replaces the keyword "NULL" with the word "RSEQ"
and places code to implement the RSEQ command at the top of memory.

RSEQ cannot be run on a system booted under 3.3 because the 3.3

102

Editor uses the top of memory. With RSEQ enabled, any 65D
program can be loaded into the workspace (don't reboot - simply
insert the disk containing the PROGram and type DISK!"LO PROG")

and resequenced in a variety of ways.

The syntax for the RSEQ command is as follows:

NLN = new line number f<=NLN<6LASD
OLN = o0ld line number #<=0LN<64 000
INC = increment between line numbers B<INC<256
RSEQ<CR> - resequence starting with the line
number 18 at the first line and
renumber the lines in increments
of ten.
RSEQ NLN<CR> - resequence using NLN as the first

line number and renumber the lines
that follow by increments of ten.

RSEQ NLN,OLN<CR>

resequence starting at line OLN
with line number NLN and renumber
the lines that follow by increments
of ten.

resequence starting at line OLN with
the line number NLN and renumber the
lines that follow by increments of
INC.

RSEQ NLN,OLN,INC<CR>

RSEQ NLN, ,INC<CR> resequence starting with the first

line as NLN and renumber the lines
that follow by increments of INC.
RSEQ ,,INC<CR> - resequence starting with the first

line and renumber the lines that
follow by increments of INC.

If a non-existent line is referred to, an undefined statement
error will appear with the old line number, the new line number
and the line being resequenced. After the resequence is complete,
the next available line number in the sequence will be output

between square brackets.

103

The resequencer will prevent the buffer creator from being
enabled when it is enabled. The resequencer can be disabled by

running "RSEQ" and typing "D" or "DISABLE" to the enable/disable

question.

Examples: Consider the following program:

19 REX TEST PROGRAM

8 REM

29 FRINTIFRINTUTHIS IS THE TEST FROGRAMY - REM
40 % = @

58 REM:EENM

60 X = H + 1 -

TE OGN ¥ GOTO 489, 208, 300: LET ¥ = 4009

30 PRINT:PRINT:FRINTHX:FRINT"THIS IS THE EhD*
0 END

133 PRINT:PRINT"AT STRTEMENT 403": GOTO €@
269 PRINT:PRINT"ST STATEMENT 280" G30TC 54
I00 PRINT:SRINT"AT STATEMENT Z8@": GOTO 4@

The command RSEQ will resequence the entire program by line
number increments of 18, starting with a line number of 18. The

result is:

18 REM TEST PROGRAM

29 REM

I8 PRINTIFRINT'THIS 15 THE TEST FROGREANM" . REM
43 K =8

58 REM:REM

BE X = + 1

78 OOM % GOTO 44 ? 1iBa 128 LET ¥ = 1068

28 PRINTPRINTPRINTH:PRINT"THIS IS5 THE ENDY
9 END

183 PRINT:PRINT"AT STATEMENT 458": GGTO &8
149 FRINTSPRINTYAT STRTERENT 28GY: OO7T0 o6
128 PRINT.PRINTYAT STRTEMENT Z88". G270 &8

104

Notice that the line numbers referred to in line 78 are
correctly changed. However, statement numbers that appear in

PRINT strings (enclosed in quotes) do not change.

The command RSEQ 588 also resequences the entire program
with increments of 18, but starts with a line number of 588 for

the first line. The result is:

88 REM TEST PROGEAM

518 REM

S28 PRINT:PRINT"THIS IS THE TEST PROGRAM":REM
28X =8
S48 REM: R
S5 =K+1

S8 ON X GOTO S99, 608, 618: LET ¥ = 1984

970 PRINT:PRINT:PRINTX:PRINT"THIS IS THE END™
568 END :

559 PRINT:PRINT®AT STATEMENT 198“: GOTQ 394
608 FRINT:PRINT"AT STATEMENT 2g6": GOTO S5
618 PRINT:PRINT"AT STATEMENT 38@“: GOTO 559

‘-‘
=i

Finally, the command RSEQ 99,508,108 resequences with
increments of 188, starting with a line number of 99 at old

line 5. The result is:

18 REM TEST FROGRSM

28 REM

3B PRINT:PRINT®THIS IS THE TEST PROGRAM":REM
48 % =9

33 EEM:RENM

1292 ¥ =K + 1

293 ON ¥ GOTO 532, 633, ¥359: LET ¥ = 1loud

392 PRINT:PRINT:PRINTH.PRINT"THIS IS5 THE END®
£33 END

S22 PRINT:PRINT"AT STATEMENT 488": GOTO 493
839 PRINT:PRINT"AT STHTEMENT 288" GOTO 132
723 PRINT:PRINT"AT STATEMENT Z8@": GOTO 4 9

Repacker

The REPACK Utility allows users of 0S-65D to pack their
programs into the smallest possible amount of space. This is
done by removing REM statements and/or blank spaces. Before
REPACKing, the program must be saved in an 0S-65D named file.
Once this has been done, reboot with Tutorial Disk Two and
type RUN"REPACK. Insert the disk which contains the program
you wish to REPACK into Drive A and enterlthe program's file
name. Now enter the method of REPACKing (remove blanks, REM's
or'both). Enter 1, 2, or 3. When the operations are completed,

a message will appear reporting the number of bytes removed from

the program.

Note that this program can be run only with the system

booted under 0S-65D V3.2 (Tutorial Disk Two).

Examples: Consider the following program:

+

19 REM TEST PROGRAM

28 REM

38 PRINT:.PRINT"THIS IS5 THE TEST PROGRAM":REM
49 K =8

58 REM:REM

B8 X =X + 1

78 ON X GOTO 1909, 283, 268: LET ¥ = 1600

88 FRINT:PRINT:PRINTA:PRINT"THIS IS5 THE END®
38 END

199 FRINT:PRINT"AT STATEMENT 120" GOTO 64
289 PRINT:PRINT"AT STATEMENT 299: GOTO 68
208 FRINT:PRINTYAT STRTEMENT 90 GOTO 65

106

Running REPACK results in the following screen display:

Gk
EUN"REFRCK

#k BASIC FROGRAM REFACK UTILITY

WARNING =-= USE ORIVE A ONLY ++

FILENARME? TEST

SCK BY REMOVING:
> BLANK SFACES

REM STATEMENTS

SO0TH BLANK SPACES AND REMS
ER YOUR CHOICE? 2

Soud

49 BYTES RECCOYERED.

CK

Then LISTing the program produces the following:

19 REH
28 REM
3@ PRINT:PRINT"THIS IS THE TEST PROGRAMY
38 X¥=9
S8 REM

66 LJ..'.J+1
78 ONKGOTO168, 269, 399 LETK=1000
g8 PRINT.PRIH*.PELPTR PRINT"THIS IS THE EhND®

39 gND

199 PRINTPRINT"AT STATEMENT 486" :G0TO6S
298 PE’H* FRINT"AT STATEMENT 253":G0T0AG
0@ P (PRINT"AT STATEMENT 288" :G0T0s8

107

Notice that 4@ bytes are saved in the second program.

This is done in the following way:

line # bytes saved

19 13 " (13 character REMark)
30 2 (":" and keyword "REM")
ug 2 (2 spaces)

58 4 (4 character REMark)
60 y (4 spaces)

70 9 . (9 spaces)
109 2 (2 spaces)

208 2 (2 spaces)

3p8 2 (2 spaces)

Total: up

Note that no lines are removed, even if they contain only

the keyword "REM".

108

Buffer Creator

The Buffer Creator also utilizes the top of memory. Hence,
it cannot be run on a system booted under 65D V3.3, or a system
with the RSEQ command enabled. The program is stored in the

file BUFFER.

To use it, boot the system with Tutorial Disk Two (65D V3.2)
and type RUN"BUFFER. Respond "B" or "ENABLE" to the enable/disable
question. The keyword "NULL" will be replaced with the word "BYTE"
and code will be placed at the top of memory that allows use of
the BYTE command. Then load the program for which you wish to
create (or delete) buffers and use the BYTE command according to

the following syntax:

p=<NB<6uppgo

BYTE NB<CR>- moves source leaving NB free bytes in between
the operating system and the source.

BYTE<CR> - reports the start of the buffer, the starting
byte of your program and the number of bytes
between the source and the operating system.

" Examples: Consider a program with no buffer, i.e., it starts
at the beginning of the workspace. The command
BYTE will produce the following listing:

oK
BYTE
DECIMAL HESADECIMAL
BUFFER STARTS 12678 $317E
PROGRAM STARTS 12478 $Z17E
BUFFER 5IZE 3 $8683

[}
(e}
w

‘'The command BYTE 6144 would be apprdpriate for saving two
single-track (3072 byte) buffers for, say, data file use with

this program on an 8" system. The following listing is produced:

i

BYTE 5144
DECIMAL HEMADECIMAL
EUFFER STARTS 12674 $347E
FROGRAM STRRTS 13814 $437E
BUFFER SIZE 6144 $1a

QK

On a 5" system, BYTE 4996 would create two single-track buffers.

To remove buffers from a program, simply enter the command
BYTE 0 (the command BYTE is not the same as BYTE @; BYTE simply.
reports information. It does not alter existing buffers in any
way).

With the BYTE NB command, all locations in the buffer are
set to zero; therefore, anything of value in the buffer area
should be saved before executing the command. After buffers are

created they can be saved on disk by saving the program.

When BYTE is enabled, the RSEQ command cannot also be
enabled. To disable BYTE, simply type RUN"BUFFER and respond

"D" or "DISABLE".

110

General String Oriented Sort

GSOSRT is a general purpose sorting program that may be
utilized on virtually any data file under 0S-65D. The program
allows for multiple fields in either sequential or random format

and has special conditions to accommodate MDMS Master Files.

To use GSOSRT on a MDMS master enter the master file name
(the "g" extension is optional) and type a "Y" or "YES" to the
question "IS THIS A MDMS MASTERFILE?". The program will then
list the fields that are present in the file. Select, by number,
the field you want the file to be sorted by. The program will
then list your responses up to this point and request the user's
final confirmation. A response of "Y" or "YES" will initiate

the sort. Any other response will abort the program.

To use GSOSRT with a non-MDMS type file, first specify
whether the file is sequential or random. If a random file is
specified, the user must additionally specify the number of
bytes per recafd. Default record size is 128 bytes under
0S-65D. The program will then ask for the number of fields
per record, and the number of the field the sort is to be done
on, i.e., an entry of 2 means sort on the second field. All
information the user has entered will then be displayed and a

request for confirmation will be made, as above.

After GSOSRT has completed the sort, the user is asked
whether the file should be stored in ascending or descending
order. After the user specifies his choice, the entire file
is repacked in the requested order. When done, the statement

"OPERATIONS COMPLETE" appears and the program will terminate.

111

This program can be run with the system booted under any

version of 65D.

BASIC Disassembler

The BASIC Disassembler is a machine code disassembler written
in BASIC. The program breaks down the machine code at specified
intervals to an assembler format. It will print out the addresses
in octal and hexadecimal, the machine code that was found at these
addresses, the 65@#2 assembler op-code, the operand which corresponds
to the op-code, and special notes (for JMPs and JSRs). The program
does not provide labels for branches, jumps, or other op-codes

which could use labels.

The program is started by running the program DISASM. Then
enter the addresses in decimal for the beginning and end of the
disassembly. After the disassembly has been completed,

"END OF DISASSEMBLY" will be displayed followed by the "OK"
prompt of BASIC. This program can be run with the system booted

under any version of 65D.

112

Data File Copier

The DISK!"LO___ " and DISK!"PU__ " commands provide the
capability for transferring a program from one file to another.
The utility program sorted in the file DATRAN provides a convenient

method for copying data between two files.

To use this utility, type RUN"DATRAN and then enter an input
file name, the device it is located on, an output file name, and
the device it is located on (A, B, C, D). The input file is then
copied onto the output file. Should the length (in tracks) of
the input file exceed the length of the output file, the program
will issue a warning and the user may at that point terminate
the program or choose to continue and fill the output file as
far as possible. This program assumes standard format data files,
i.e., 8-page tracks on mini-floppies and 1l2-page tracks on 8"

floppies.

This program may be run only with the system booted under

version 3.2 of 0S-65D (use with Tutorial Disk Two).

Program Listings

The last section of this chapter contains source listings for

the six program files in the Extended 65D Utilities Package.

113

(i) RESEQUENCER (File: RSEQ)

4
Ed
i
)
M
3]

i
34

1o RED
20 REM)

IO REM {Cr 198O by 081

40 REM Al RIGHTS RESERVED

50 REM F. Whitesel &/81

&0 REM

7O OFORX=709T0712: NAMES=NAME$+CHR$ {(FEEK {(X)YAND127) s NEXT

30 IFNAME$="RSEQ"ORNAME£="NULL"THEN11D

20 PRINTCHRF(7):FRINT"The ":nAME$:;" Command is snabled.”:
100 PRINT" Please disable it.":NEW

110 CC=FEEE (2073X) :FOKEZ20Q7Z,095

120 FORA=1TOZZ:FRINT:NEXT

130 PP=R0: IFREEK (8993) =2THENFF=&4

140 PP={(FFP-20)/2
150 FRINTTAR(FF)
150 FRINTTARB(FF)Y;;": RSER V3.0

170 FRIMTTAR(FF) ;"

180 FPRINT:FRINT:FRINT:FRINT

1920 FRINT:FRINT"Enable or Disable RSEQ
200 INFUT"- - ": QA%
210 IFLEFT$(BA%,1)="E"THENZ240

220 IFLEFT$(QA$, 1)="D"THEN47O

230 FRINT:FPRINT"Do not understand 7":GOTOL190

240 GOSURSZ0

250 BASE=(08X16+00)+(03%k16+02) %256

260 IFSIZE=491CS2THENOFFSET=25460: DEST=48000: GATOZ90

270 IFSIZE =3276BTHENOFFSET=1280: DEST=214616:G0TO290

280 IFSIIE>=245S7&6THENOFFSET=0000: DEST=23424

290 FOKE1ZZ, (DEST-2)-INT({(DEST-2) /2586) X236

TOO0 POEELZE, INT((DEST-2) /256)

Z10 PRINT:FRINT"Working "3

I20 FORX=0T0O1131

I30 T=PEEK (BASE+OFFSET+X)

F40 FPOKEDEST+X,T

Z50 FRINT"."3: IFFPOS(X) »=60THENFRINTCHR® (173) 3

I60 NEXT

270 AL=(DEST+28~1)-INT((DEST+28-1) /2356) X256

Z80 AH=INT(DEST+28-1) /2546

320 FPOKES46,AL:FOKES47,AH

400 FPOKE709,ASC("R") :FOKE710,ASC("S")

410 FPOKE711,ASC("E"):FPOKE712,ASC("Q@")+128

420 FORX=1TOZZ:PRINT:NEXT

470 FRINT"RSER command now enabled.":FRINT

440 PRINT"System memory size found to be";SIZE; "bytes.":FRINT
450 FOKEZO7Z,CC

460 NEW

470 NAS="":FORX=709T0712: NAs=NAS+CHRS (FEEK (X)AND127) : NEXT

480 IFNAMES="RSEQ"THENS1OQ

490 FRINTCHR$(7):PRINT"RSER not enabled,":

SO0 PRINT" therfore cannot disable it.":FOKEZ2073,CC:NEW

510 FOKE709,ABC("N") :FPOKE710,ASC("U"™)

520 POKETIL1,ASC("L"):FOKE712,ASC("L")+128

S20 FPOKES446, 108:FPOKES47,008

540 GOSUBRSIEO

mm

s can

11y

=
it

S&D
=70
580
S0
SO0
H10
&20
&Z0
&40
&30
&&0
&70
&80
&F0

PORELZZ, (BIZE-1)-IMT((SIZE~1) /255) £25&

FORKELZZ, INT{((SIZE-1} /25&)

FOREQR&0, INT((SIZE-1) /2558)—1:1 X=FRE (X)

FORX=1TOZZ: PRINT:NEXT

FRINT"RSER command now disabled.":FRINT
PRINT"System memory size found to be":;SIZE;"bytes.
FOKEZOD7Z,.CC

NEW

U1SR=FEEE (574} : UZSR=PEEK {573)

FOKES74, 12B: POKES7S,45: DISK ' "CA 2E79=39,2"
SIZE=USR(SIZE): IFSIZE<OTHENSIZE=SIZE+4553
FOKES74,U1SR: FOKESTS, U2SR
IFSIZE>{13¥%146+14)+({03X16+15) ¥x254) THENRETURN
FRINTCHR$ (7)Y : PRINT"Not enough memory, only";SIZE;
FRINT"bytes found.":FORKE2073,CC:NEW

1158

":PRINT

(ii) REPACKER (File: REPACK)

10 DEF FMAON) =10%IMNT{(X/186) +X—18XINT (X/18)

20 PRINT" X% BASIC FROGRAM REFACE UTILITY %%
21 FPRINT

ZZ2 PRIMT" %% WARMIMG ——— USE DRIVE A OMLY k%"
30 PRINT:PRINT:FRINT

Z1 DISKI!"SE A

40 INFUT"FILENAME"; A$:GOSURLLO

45 GOSURIOO

S IFA=0OTHENFRINT: FRINT"FILE NOT FOUND":GOTO1GG
50 FOKEL7022,A

7¢ DISK!'"60O 4280

8G FR=FEEK (17022)+2S&6%FEEK (17027)

0 FRINTFR"BYTES RECOVERED."

100 END

110 A=0:DR=118%97

120 As=A$+" ":A$=LEFT$ (A%, 6)

120 DISK!"CA 2E79=12,1"

140 GOSURL1&0: IFAXOTHENRETURN

130

DISK!"CA 2E79=12,2

150 FORI=1TOZ2:Ns="":FORJ=0TOS

170

N$=N$+CHR$ (FEEK (DR+(I-1) ¥8+J))

180 NEXTJ

190

IFNS$ *ASTHENNEXTI : RETURN

200 A=PEEK (DR+(I-1) X8+6&) : A=FNA (A) : RETURN

300

FRINT: FRINT"REFPACK FILE BY REMOVING:"

T10 PRINT" 1> BLANK SPACES"

I20

PRINT" 2> REM STATEMENTS"

II0 PRINT" I» BOTH BLANK SPACES AND REMS"

340

INFUT"ENTER YOUR CHOICE":E

IS0 IFB<10RE>360OTOI00

260

FOKEL17023, Bs RETURN

1186

(iii) BUFFER CREATOR (File: BUFFER)

W REM HE RS RN S
r REM : BYTEVL1 :
1 REM Trriszszi:
D REM
REM
REM (C) 1280 BY OHIO SCIENTIFIC, IMC.
o REM ALL RIGHTS RESERVED / WRITTEMN RY
REM FAUL A. JOYIAK 8/80 AURDORA
REM
REM
GASUR 1410
FOKE 2073,94 : REM CTRL-C OFF
FOR X=1 TO Z3: FRINT: NEXT
FRINT "ssssesssssszzssssszzazssss”
FRINT ": 08-462D BUFFER CREATOR "
FPRIMT "szzszzszsszzsszsssszzssesz": FOR X=1 TO S: FRINT: NEXT
FRINT: FRINT “"Enable or Disable BYTE command"
INFUT " - ":QA%: PRINT

IF LEFT$(QA$Q1)="E" GOTO =50
IF LEFT$(QA%, 1)="D" GOTO 1130
r FRINT: PRINT "WHAT 7": PRINT: GOTO 2T0

REM
» REM
REM FIND OUT HOW MUCH MEMORY
REM
I20 MEMSIZI=FEEK (8250)
T60 REM
I70 REM SET UF FOR TRAMNSFER
280 REM

IP0 IF MEMSIZ »>=9% GOTO 410

400 FRINT: FPRINT "Not enough memory, 24K RAM min.": NEW
410 IF MEMSIZ=23 GOTO 470

420 IF MEMSIZ <=127 THEN MEMSIZ=127: GOTO 470

470 MEMSIZI=121

440 REM

450 REM FOKE SYSTEM MEMORY SIZE

44650 REM

470 AD=({MEMSIZ-Z)%254)—-10: REM DECIMAL OF MEM TOF
480 REM

490 FOKE 132,AD-IMT (AD/2546) %2536: FOKE 133, INT(AD/235&)
SO0 T=FRE(X): REM FORCE NEW MEM ADDR

=510 REM

S20 REM SET BASE = START OF IMEEDDED CODE

5Z0 REM

540 IF MEMSIZ=92 THEM BASE=12488

S50 IF MEMSIZ=127 THEN BASE=13712

560 IF MEMSIZ=191 THEN BASE=14734

5465 BASE=RASE+254

117

ST0
=80
220
S0
E10
E20Q
&30
&40
=0
&&0
&70
&80
570
700
710
720
FZ0
740
730
THO
T70
780
720
800
1090
1100
1110
1120
1130
1140
1150
11560
1170
1180
1120
1200
1210
1220
1270
1240
1250
12&0
13280
13290
14060
1410
1420
142G
1440

REM

REM MOYVE BYTE CODE IMNTO FLACE

REM

FRIMT: FRINT "Working ";

FOR X=0 TO 1032: T=FEEK (X+BASE)}: FOKE AD+1+X,T
FRINT "."3: IF FPEEK(ZZ) > &0 THEN FRINT CHR$(13):
MEXT: FRINT CHR$(1Z);8PC(61);CHR$ (12

REM

REM DETERMIM DISFATCH ADDR.

REM

IF MEMSIZ=095 THEN DH=09Z

IF MEMSIZ=127 THEN DH=124

IF MEMEIZ=1?1 THEN DH=188

REM

REM FOEE DISFATCH ADDR INTO FLACE
REM

FOKE 54&5,07: FPOKE 547,DH

REM

REM FOKE RESERVED WORD "BYTE" INTO FLACE
REM -
FORE 709,ASC("B"): FOKE 710,A8C("Y")
FOEKE 711,ASC{"T"): POKE 712,A8SC("E")+128
REM
FORE207Z,173 : REM CTRL-C ON

REM

FRINT "BYTE command now enabled.": NEW

REM

REM

REM GOTO MACHIME CODE TO SET MEMSIZ

REM

FOKE S74,160: FOKE 575,062

X=USR(X): CLEAR

REM

REM FOEE "NULL" BRACK

REM

FOKE 702,ABC{("N"): FOKE 710,ASC{("U™)

FOKE 711,ASC("L"): FOKE 712,ASC("L")+128

REM

REM FOKE NULL DISFATCH RACHK

REM

FOKE S45,108: FOKE 547,008

REM

REM

FOFE 2073Z,173 : REM CTRL-C ON

FRINT: FRINT "BYTE command now disabled.": NEW

FRINT: 0A$=CHR$ (FEEK (709))

IF GA%="R" THEN FRINT"RSER is enabled, can not enable BYTE":NEW
IF @A%="E" THEN FRINT"EDIT is enabled, can naot enable BYTE":NEW

RETURNM

118

(iv) GENERALIZED STRING ORIENTED SORT (File: GSOSRT)

10

REM 05&83D VI.1 BEMERALIZED SORT UTILITY

13 REM o PIZL/TT
20 REM
25 FORI=1TOS:FRIMT:NEXT:RBY=2048

IO

33

40 PRINT:FPRINT

45 IMNPUT"ENTER DATA FILE MAME";A$: T=LENM{A$) : IFTOTHEMT=ASC (A%)

SO IFTC&50RT »206AT0O45

S5 FIs=A%:PRINT:FRINT

&0 INPUT"IS THIS FILE A MDMS MASTER FILE"'H$ FRINT

&5 ME=LEFTH{M$, 1) IFME >"Y"BOTOL1D

70 FIs=FIg+" "iFIs=LEFTS(FI$,5)+"Q"

75 DISK OPEN,&6,FI$:FPORELIZ2075,5:PORKELZO42, BY /64

80 INFUTH6,A%,MB,NF,FH,EN: IFEN=1G60OTD49929

85 EN=EN-1:DISK GET,.1

0 PRIMT:PRINT"SORT ON WHICH OF THE FOLLOWING FIELDS:"

5 FORI=1TONF: INPUT#5,A%,BS:FRINTI"> "3;A$:NEXT

100 INPUT"WHICH ONE";SE: IFSE«< 10RSEXNFGOTOL0QO0

103 PRINT:GOTOL17S

110 INFUT"IE THIS FILE "RANDOM® OR *“SEQUENTIAL™ ";A$

115 DISK OFEN,6,FIS '

120 R%-"R":IFLEFT$(Q$ 1)—"S"THENR$—"S"'GDTDI44

125 INFUT"NUMBER OF BYTES FER RECORD"3;A

120 IFACI0ORAXZ5560OTO12

135 B= BY!A.IFB&UGEB?EESBDTDI25

140 POKE12076,6:FOKE12042,B

145 INFUT"NUMBER OF FIELDS PER RECORD"j3NF

150 IFNF<10RNF>100B0T0145

155 IFNF=1THENSE=1:G0T0170

160 IMPUT"SORT ON WHICH FIELD";SE

165 IFSE<10RSE>NFGOTO160

170 INFUT"HOW MANY RECORDS TO SORTY;EM: IFEN<1G60OTO170

175 PRINT:PRINT:FPRINT"DESCRIFTION CONFIRMATION: ":FPRINT

180 AS="NON-MDMS": IFM®="Y"THENA$="MDMS MASTER"

185 PRINT"FILE TYFE"TAR(1IB)": "3;A%

190 IFMs="Y"GOTO210

195 A$="RANDOM": IFR$="8"THEMA$="SEQUENTIAL"

200 PRINT"DATA TYPE'TARB(18)": "AS$

205 IFR$<>"S"THENFRINT"BYTES FER RECORD"TAR(18)": "3:A

210 PRINT"NUMEBER OF FIELDS"TAR(18)": "NF

215 PRINT"SORT OM FIELD"TAER(18)": "GE

220 PRINT"RECORDS TO SORT"TAR(18)": "EN

225 PRINT: INFUT"IS THIS CORRECT":;Y$

270 IFLEFT$(Y$, 1)="N"THENRUN

235 DIMR(EN) ,L$(EN) ,S% (EN,NF)

240 PRINT:PRINT:PRINT"SORTING~——"

245 FORI=1TOEN: IFM&s="Y"THEN DISK GET,FNA(I):GOTOZ53
S0 IFR$="R"THEN DISK GET,I-1

255 FORJ=1TONF: INFUT#&6,8%¢(I,J) :MEXTJ

260 LE(I1)=83(I,SE):R(I)=I:NEXTI

265 T=0:FORI=1TOEM: IFVAL (L$ (1)) < *OTHENT=T+1

270 NEXT:As="":Rs$=" ":IFT<EN/3ZG0OT0OZ28S

DEF FMA{X)=NEXX+1
FRIMT"%% 05-55D V3.2 GEMERALIZED SORT UTILITY %%

118

275 FORI=1TOEN:L$(I)=STR$ (INT (VAL (L$ (1)) ¥1000)) : NEXT
280 AE=" ":R$=""

285 SL=0:FORI=1TOEN: A=LEN(L$ (1)) : IFA>SLTHENSL=A

290 NEXT:FORI=1TOEN:C$=L% (D)

295 IFLEN(C%$)«<SLTHENC$=A$+C$+R$:GOTOZIS

TOO L% (1) =C$:NEXT

T05 FORI=2TOEM: IFL$ (I-1)<=L%$(1)BOTOIZ0

T10 A$=L$ (D) 1 I=T:RO=R(I)

315 J=J-1: IFJ<10RLS (1) <=A$GOTOI2S

TZO L$ I+ =L$ (D) 1R (J+1)=R(J) :BOTOZ1LS

I2S J=J+1:L$ (1) =A%$:R (J)=RO

TTO NEXT:PRINT:PRINT:FRINT"SORT COMFLETE. WOULD YOU LIKE THE"
I35 FRINT"DATA TO BE STORED IN "ASCENDING® OR"

240 INFUT"°DESCENDING® ORDER";Y$:A=1:R=EN:C=1

T45 IFLEFT$(Y$,1)="D"THENA=EN:E=1:C=-1

I50 IFR$="S"THENDISKOFEN,6,FI1%

I55 FORI=ATOBSTEFC: IFM$="Y"THEN DISK GET,FNA(I):GOTOT6S
T60 IFR$="R"THENDISK GET,I-1

T65 FORJ=1TONF:PRINT#6,S%(R(I),J) :NEXTJ

370 IFR$="R"ORM$="Y"THEN DISK FUT

I75 NEXTI:IFR$="S"THEN DISK FUT

49999 FRINT:PRINT"OPERATIONS COMFLETE.":END

120

(v) BASIC DISASSEMBLER (File: DISASM)

F STaARTING DISASSEMRLY ADDRESS INM DECIMAL":;AL
4 4EUT ENDING ADDRESE";AZ

RIMNTTAR ﬁ*wt:“DCTHL"'TQE(iq!;“HE““'
INTTABIZZ) s "CODE"; TARB(ZZ) s "OFR"; TAR (407 5
FIMNTYOFRAMD" : FRIMT

MOT$(151) ,MNS (5867 , NS {15

SUE11&80:REM IMITIALIZE ARRAYS
'—&:EHH—S OC%=A1:508URLISZ0

QAE=0C%

10 W=4:Ba%=1&:0C%=A1: GOSURISZ0
0 ADE=0C%

W=7:0CK=FPEEK (A1) : GOSURLSTO
GOSURL GOS0 _
IFFL=1THENZGO
GOSUBZIO
Al=A1+VAL (NES$)

IFA1<=A2THENSO
EOTOZ20
PRINTTAR(10) ;0A$; TAR(18) :ADS: TAR(2T) ; OCS
Al=Al+1:60TO90
FRINT'END OF DISASSEMELY":END
TFTY$< 3" MY THENZS0
OC%=FEEK (Al+1) : GOSUB15I0
PRINTTAR(10) ;0A%: TAR(18) ; AD%;
S FRINTTAE(2T) ;01%;0C$; TAR(IT) s MN$ (VAL (FT$)) 3
FRINTTAB(40) ; "#$";0C%
RETURN
IFTY$< "2 “THENI40
OC%=PEEK (Al+1) : GOSUEB1SI0
FRINTTAB(lﬁi-QA$;TQB(1B);QD$;
FRINTTAE(23) ;01%;0CS; TAR (I3) ; MN$ (VAL (FT$)) 5
FRINTTAB(4uwg"$";DC$

ETURN
IFTY$< 3" ZX " THENZ9O
) OCY=FEEK (A1+1) : GOSUR1530
FRINTTAE(10) ;0A%; TAR(18) ; ADS;
PRINTTAB(23) ;01$;0C$; TAB(3T) ; MNS (VAL (PT$)) 5
FRINTTAE(40) ; "$";0C%; ", X"
RETURN
IFTYS$< > ZY " THENS4O
OC%=FEEK (A1+1) : GOSUR1ST0
FRINTTAE(10) ;0A%$; TAR(18) ; AD%;
5 PRINTTAB(2T) :01$;0Cs: TAR(IT) s MN$ (VAL (FT$)) 3
PRIMTTAR(40) 3 "$";0C$; ", Y"
RETURN
IFTY$<>"A "THENSIO
OC%=PEEK (A1+1) : GOSUE1530
FRINTTAE(10) ; 0A%$; TAR(18) ;AD$; TAE(23) ;01%; 0C%:
CO%$=0C%: OC%=FEEK (A1+2) : GOSUR1S30
FRINTOCS; TAR(IZ) 3 MNS (VAL (PT$)) ; TAR(A0) ; "$";0C%; CO%;
IFO1$="4C"0R0O1$="&C"THENFRINTTAE(S5) ; "¥%x JMP %%¥":GOTOSZO
IFO1$="20"THENPRINTTAR(SS) ; "¥% JSR %%":GOTOSZ2O
5 PRINMT
RETURN

121

-l
o
H

FTYSEL »"AX"THENS?G
OCH=FEEK (Al+1) :GOSURLISZO
FRINTTAE(LIG) ;0AS; TAB(LE s ADE; TAB(ZET) s 01%; 00 S
COE=00C%: QCH=FEEK (A1+2) : GASURIBEC
FRIMTOCE; TAB(ZE) s MNS (VAL (FTS) 13 TARB(AD) s "€ ; G 0O ", X
B8O RETURM
IFTY®< 2 "AY " THEMNESO
&0 OCh=FPEER (A1+1) :GOSURLISZO
S10 FRIMTTAROLO) ;0AS; TARILS) ; ADE; TAB(23: 3015 0C%;
S0 CO$=0C$: 0CU=FEEK {A1+2) : GOBURILISZO
SI0 PRIMTOCS: TAR(IZ) sMNS (VAL (PTS)) s TAR(ADY 3 " ; 0Cs; SO ", ¥"
&40 RETURNMN
&S0 IFTYSC =" I THEMT7 OO
S&0 QCU=FEEK (Al+1) : GOSURISTEO
&70 PRINTTAB(1G) ;0A%; TAB(18) s AD%;
7S OPRINTTAR(Z2Z) ;01$;0CE; TAR(EZ s MNS (VAL (FT%) 3 5
B0 PRIMTTAR(4O) ;" (s 30CHEs ", X0 "
&0 RETURN
TOO IFTYSL »"IV'"THEN7SO
710 OCY%L=FEEK (A1+1) :GOSURILISZO
720 PRINTTAR(1O);0A$:; TAR(18) ;AD%; i
725 FRINTTAR{ZZ) ;01%: 0CH: TAR(ZIZ) s MNS (VAL (FT$)) ;
730 PRINTTAR(4OQ) ;" (s ";0Cs: ") ¥Y" -
740 RETURN
7S50 IFTYSE ="IP"THEN78GO
7&0 PRINTTAR(10) ;0A%:; TAR(18) ;ADS;
7465 PRINTTAB(Z2Z) ;0163 TARB(ZZ) s MNS (VAL (FTH))
770 RETURNM
780 IFTY$<>"I "THENSB&O
720 QCAU=FEEK (Al1+1) : GOSURISZO
200 FRINTTAE(1G) ;0A%; TAR(18) ;ADS; TAR(Z2T) ;014;0C%;
810 CO$=0C%: 0C%U=FPEEK (A1+2) : GOSUR1S5TO
820 PRINTOCS; TAB(IZ) sMNE(VAL(PTSH)) s TAB(40) s " ($"; 0CE: CO%; ") '
820 IFO01$="4C"THENFRINTTAER{3I) ; "¥% JMF x¥x":B0TOBSC
240 FRINT
850 RETURN
8460 IFTY$<>"R "THEN1OQOZO "
870 QCU=FEEK (Al+1) :GOSUER1SZ0O
820 SS=FEEE (Al+1) '
890 IF 88<128 THEN OCY%=Al+2+5S
QO IF 88r»=128 THEN QC¥%=A1+55-254
50 FRIMTTARB(10) ;0A%; TAR(1IB) 1 ADS;
F65 FRINTTAB(2Z) s01$:;0CE; TARB(ZZ) s MNS (VAL (FT$)) 3
F7S W=4
80 GOSURILITEO
P0G FRIMTTAER(40)3;"$";0Cs
1020 RETURN
10Z0 PRINTTAB(10) ;0A%; TAE(18) ; AD%;
1335 PRINTTARB(2Z) ;01$; TAR(ZEZ) s MNS (VAL FTS)) s TAR (40) 3
1040 FRINT"A"
1050 RETURN
10680 FL=0:JO0=1:J1=151
1070 J=INT({JO+J L) /27
1080 0Z$=MIDS{O0T${I}),1,2)
1082 IF OCs=0Z%THEN 109D

122

foote ek

Joek el
P

Pk feek b ek deeb b job ek ek fesk beb s ek

fol ek peb fen

oy

R R N I e S

T T T S T = T o O Wy WAy Sy P
Pr e g Ju 7 x Lol Led Do) Ced 0e) Lof o) 0 3 3

[

15
1::“

ek} =~

110

[
{
1 b
+ L

fTIRAS
& -: }

7

[S

- L0l i'_ﬁ L

0@ 0

D)

-

-
ot

h b b el g
o
[N

IF ABS(I1

IF OC$40Z

IF OC%507:

BOTO 1070

O1$=0C%

TY$=MIDS (0TE(J), 3,2

MES=MIDS (OT$(J),5, 1)
FTS=MIDS (DTS (J), 8,2

RETURHM

REM TAEBLE DATA
FORI=1TO1S1:READOTS (I :NEXTI
FORI=1TOSE: READMNS {1} NEXTI
FORI=0TO1S: READNS (1) :MEXTI

RETURN

DATA" O L TOLIXEISY, "OSE
DATAMD . "ODA 3ITY, "OEA :
DATA"1 PIBIP1LA", "19AYIIEY
DATA"Z . "24Z 2GT7", 2SI
DATA"ZA . "ZCA 07", "ZDA :
DATA"S L "ISIXZAOM, "IBIF145Y,
DATA"AC ,"411x:24","4d 2247,
DATA" 47 L "4CA IZE","4DA I240,
DATA"SS MESIXITIV, "SBIFLLS",
DATA" cZIFl"?”, '&1IX2O1M, "&5I ZOLY,
DATA"&AACLAL", "&C1 328", "6DA I01",
DATA"7SIXZGL", "76ZX241", "78IF147",
DATA"S11x248", "84 250", 857 248",
DATA"SCA IS0","SDA 348", "8EA 349",

LATA"
DATA"AOIR

AT
et

SZxz48",

R AV

NQLTYD4GY

L"ALINZTON,

DATA"ABIF1SZ",
DATA"BOR 205",

DATAMEZAYIZO"
DATA"CLIXZ18"
DATA"CAIFRLIZ
DATA"DIZXZ18"
DATA"ECGIMZLIE"
DATAYERIMZ24
._‘ 1!
DATA"FE
uﬁTH“HDC”,
DATA"BRE",
DAaTS DEC",
JHTQ"'DV",
DATA"RGR",
DHTH"TQY“.

l"\l!

s* ““"_l.—."

o ted

DATA "0, "1,
E;‘_“T‘:i Ilﬁ!l,flEz!l’

FREM DECIMAL
chzun

b

1

b

4“,
IIF'(I “\44"5

"AND",
I!E;lv,\ClI’
"DE“”,
oy
wmTIn
IIT"‘"’"’
u(:u;l
TO HEX

=IMT {OCU/BARYS

Q Dua-ﬁH % 28]
E=M$ (R)+0CSE:

EEA T

~ar "'] "

PRI

"AFIf

"BAIF1T4"
"C4z 220"

"CCA Z20°

"OQIF1SI"

"AZIMEIL

AAIFLSLY
NE1IY2IOV,

T

"E4Z

e “a® b
« "BCAXIIR"
."CSZ z18"

l‘ ”CDH

"D&ZXZZ1",
"E1IX244",
"EAIF134",
"FSIX244",

" -“:LII
nEpgn
qu---un!I
. "LSR",
. "RTS",
"T”“".
1131!’ g

"DII.‘ IIE

f"
LY

=@

THEU 15"
THEN OC$=

k=T ngl .
. Hep o .
vEOR" .
HRIOF Y .
UE=¢=Tndl .
nTgYn .

]
X

zig®
"DEIFL1S"
"E4Z
"ECA

Tiom

"

219",

"FLIXKZ2ESY,

n BCS L
11 CLS n
"IN
"ORA™
1 SEC 1H
1t TX Famll

"es i 11
= n =

S
. npu

123

b
b
I

el

YO&E ROTEY,
04 ﬁF: = 1"1”;
“1§’H "q'_'E" «
. HoL7 7-4“12‘
"ZEA ’4H”,

"o

IFAYT
"a4&87
HAEH

N5

S T

Y2
"e&Z 2417,
"&EA T4LM,

4"’

ll""(?HY' -(’1"5
"gez 249",
"QOR 204",
"ooaYI4g",
”A4Z

TR
et m

"EDAXIEC
"CeZ 22

"CEA TZL1Y,
"DIAYZLIE",
"ESZ 244",
"EDA T4,
"FEIF14&

e L]

HE,:EQ” .
1" CLI L1} .
1 I!xjxﬂ .
'IFP:‘ " .

. HCED . neEl
. NTYGH
urn

IIBII "9"

"OR+OCE: BOTOL&1O

L H "E‘. ‘F

S"ADA
u "E’D

"E{ITII .
"CL"V,“ v
" INY
"EHF

"OEIFLTTY

Rhel=hg=F Rot=]
HEOR 2on

NIDAYIOEN
; D RS WAL

F.|—-r.”..

Tl

" CD“')I\ _"‘A_&H .

"&BIF1Ig"

!l_'i"'Fl "\1:‘:‘!

x

NTDAYIOL" }

"EgIF123"
"91IYZ48"
"GAIF1SE"
"ASZ

;T

"BEAYT
"CBIF1Z7"

-

a
n D’.-"F‘: mi')c 1t u
"DD’ \l"'vlo" .
HE‘:\‘,- 22!:'!& .

"EEA IEEM,

11 . "FD"’_""."'_qdq_ll

HEMT .
HCME Y .
"M
. e o .
. noTAaN

-

"ENE",
"CRX,
. [} "i;':_"Ftil n
Il‘__L"’lH 4

. -H:T 'u’

" C;?Ii‘. ‘_;"""ll

" 1SZXZ35"

":"f::’f" -._rr_-,.cu

ll"x?}:i“i r!‘ Tt

llrf,'-‘{ I" .‘_{—‘:I!
5

!l,'(qI ’?"_,14"
“:1 """1"'1“‘_“
"SEAX
"&FIM2OLY

H"’l T\}’?f}l 1]
"FEAXI4L"
"BAIF155"

I‘D_q_" "?:)Il

¥ TETIT
PP Y

w

X2
"FDAXE48"

SA T mT AN

L MAST 231
HACS TTT4oH
AEA 33

'. NESIEL 1Ty
1"’

“L' .Inr‘v‘ii' 1
HCeIM2ign
"Diivzige
"DEA
"EBIFLIZ&"
HEOR

"EDAK

-“"""“f
A

L Tay Rt
Ziks

za4n

Sy=1=S L
MR
HLGARY
L =0l
HoTy

(vi) DATA FILE COPIER (File: DATRAN

19
=0
is!
40
&0

—
7

g0

Q0

100
110
120
130
140
150
1&0
170
180
120
200
210
220

2E0

240
290
260
270
280
290
00
100
101
102
103
200
201
202
204
205
2086
207
208
209

— - -

RINIS)
F01
0z
F03
Z04
Io5
EnTy]
401
499

REM GEMERALIZED FILE TRANSFER UTILITY
REM 10/147/79
F$="/Q":S$="327E" : DR$="12"

FORI=1TOS:FRIMT:MEX
DEF FRE(Xi=10XINT{R/1&)+X-16%INT{(X/1&)
FRINT"%% DATA FILE TRANSFER UTILITY ®%":PRINT:FRINMT
INFUTYINFPUT FILE MAME"j§; IN$: T=LEM{IME) : IFTOTHEMT=ASC { IN$)
IFT<&50RT »20G0TOEBC

GOSURL1OGO: D1$=D%: FRINT: PRINT

DISE!"SE "+D$:N1$=IN$: GOSUBZOO0

IFS=0THENPRINT: FRINT"FILE MOT FOUND.":G0TO49992

IB=TO: IE=T?

FRINT: INFUT"OUTFUT FILE MNAME";0US: T=LEM{QU$) : IFT>OTHENT=ASC (QU$)
IFT<&SORT *2060TO140

GOSURLIGOO: PRINT: PRINT

IFDs< *D1I$THENDISK ! "SE "+D%

N1$=0U%: GOSURZGO0: IFS=0G0OTO120

IF (IE-IB) » (T9-TO) THENGOSUEBIOOO

OF=IRB-TOG:PRINT: INFUT"TYFE *¥Y® WHEN READY";VY$

FORI=IRTOIE

IFDS<*D1$THENDISE ! "SE "+Dl1$ -
T=1:G0SUR4GO0

DISE!"CA "+8$%+"="+T&+",1"

IFD$< *D1$THENDISK ! "SE "+D%$
T=1-0F: GOSUR4000
DISE!'"IN "+T$
DISE!"SA "+T$+",1="+5%+P%
NEXTI
FRINT: FRINT"OFERATIONS COMFLETE.":60T0499%9
O FRINT: INFUT"LOCATED ON WHICH DEVICE (A,B,C,.D)";D$
O D=LEM(D%$): IFD>OTHEND=ASC (D%)
O IFD<5650RD>68GOTO100G0
O DE=CHR$ (D) :RETURN
O Nis=N1s$+" ":N1S=LEFT$ (N1$,8)
O Z$=DR%+",1":GOSURZO4D: IFS=1THENMRETURN
0 Z%=DR$+",2":60T0O 2040
O DISK!"CA ZE79="+I%
0 8=0:FORI=118927TO12145STEFB: Ne=""
QO FORJ=0TOS: N&=N&+CHR$ (FEEK (I+J)) s NEXT
O IFNS< *N1$STHENNEXTI: RETURN
O S=1:TO=FEEK (I+6&) : T?=FEEK (I+7)
O TO=FNE(TOQ): T?=FNEB{(T?) : RETURN
O FRIMT:FPRINT:FRINT" wan WARNING »>::":PRINT
2 FPRINT"INFUT FILE LENGTH EXCEEDS QUTFUT FILE LENGTH"
O PRINT"BY"ABS(T?-TO-IE+IR) "TRACKS. FROGRAM MAY ONLY"
O PRINT"OUTFUT FILE TO"T9-TO+1"TRACES."
O PRIMNT: INFUT"CONTIMNUE (Y OR N)";¥Y$: IFYs="N"THENEND
O IE=IB+T9-TO: RETURN
O T$=MID${(STR$E(T) ,2) s IFT<1O0THENT$="0"+T%
2 RETURN
2 PRINT:FRIMT:EMD

124

Appendix 1 The Utility Programs

(Detailed Information and Listing)

The following pages contain detailed information on all

of the programs found on the 0S-65D V3.3 System Disk (Tutorial

Disk 5). For each program, the information will normally be in
three parts. Part one is a description of the program and its

use. Part two is a fact sheet with the name, size, location and
other notes concerning the program. (A sample fact sheet is on

the next page.) Finally, part three is a listing -(when appropriate)
of the program as it appears on the mini-floppy version of this

disk.

It has already been mentioned that four of these programs
(DIR, CREATE, RENAME and DELETE) are redundant in the sense that
they perform functions that are also performed by the BEXEC*
program. These four programs are included on this disk primarily
for the convenience of experienced programmers who may have used

them with earlier versions of OS-65D;

125

[SAMPLE TACT SHEET]

File name : As it appears in the directory
File type : Assembler source/BASIC program/Object code
Mini-floppy specifications 8" floppy specifications
Location: The track location of the file
Length : The length in tracks of the files
Buffers for: Is there a buffer for
Device $#6: YES/NO
Device #7: YES/NO
Other : Number of bytes/pages other than a device #6 or #7 buffer

Mini-floppy to 8" floppy program conversions

The lines in the BASIC program listings which can be changed
to make the mini-floppy listing agree with the programs on the 8"

floppies.

1286

0S65D3

The entry "0S65D3" in the directory is not an executable
program. It is the object code for the systems on disk (Assembler,
BASIC, ...). These nine tracks, numbered from zero through eight
(fourteen tracks on mini-floppy, numbered from zero through thirteen)
and the entry, "BEXEC*", are the most important pieces of software
on a disk. Do not delete these entries from the directory and never

initialize the tracks where these entries reside.

The next two pages give a complete breakdown of the object

code located on these tracks.

127

8¢T

5" Disk Directory

Sector
Progran track | 0 L [RERrE 0f | T | Rgress | Comnents

0S-65D V3.3 - Part 1 8 1 2208 8 2200
0S-65D V3.3 - Part 2 1 1 2A00 8
BASIC - Part 1 2 1 0280 8
BASIC - Part 2 3 1 BADD 8
BASIC - Part 3 4 1 1208 8
BASIC - Part U 5 1 1AP0 8
BASIC - Part 5 6 1 2200 1
0S-65D V3.3 - Part 3 6 2 3200 1]
0S-65D V3.3 - Zero Page 6 3 ppep 1
TRACK # UTILITY 6 y 8200 5 8209 .
ASSEMBLER - Part 1 7 1 9208 8
ASSEMBLER - Part 2 8 1 PADD 8
ASSEMBLER/ EXTENDED MONITOR 9 1 1208 8
EXTENDED MONITOR 198 1 1A00 8
EXTENDED MONITOR 11 1 2200 1 Rest of Track 11 used for storage
DIRECTORY - Page 1 12 1 2E79 1
DIRECTORY - Page 2 12 2 2E79 1
BASIC OVERLAYS 12 3 20CH 1
PUT/GET OVERLAYS 12 y 2E79 1
0S-65D V3.3 - Part U4 13 1 3274 g
BEXEC# 1y 1 3A79 8
COMPAR/TRACK® 39 1 8208 5 8208

39 2 ' 2

UTILITY

62T

8" Disk Directory

Progran track ooty (srt ot | e T comments
0S-65D V3.3 - Part 1 0 1 2208 8 2200
0S-65D V3.3 - Part 2 1 1 2A00 5
TRACK # UTILITY 1 2 0200 5 0209
0S-65D V3.3 - Part 3 1 3 3180 1
0S-65D V3.3 - Zero Page 1 I pooe 1
BASIC - Part 1 2 1 p2id | B/11
BASIC - Part 2 3 1 gDPP | B/11 !
BASIC - Part 3 N 1 1869 | B/11 _A
ASM/EM - Part 1 5 1 p20d | B/11
ASM/EM - Part 2 6 1 gDpd | c/12
ASM/EM - Part 3 7 1 1900 7 Rest of Track 7 used for storage
DIRECTORY - Page 1 8 1 2E79 1 o
DIRECTORY - Page 2 8 2 2E79 1
BASIC OVERLAYS 8 3 20CY 1
PUT/GET OVERLAYS 8 n 2E79 1
0S-65D V3.3 - Part 4 8 5 3274 8
BEXECH 9 1 3A79 | B/11
COMPAR/TRACK@ UTILITY 33 1 8200 6 | 6200

File name : 0S65D3

File type : OBJECT CODE

Mini-floppy specifications

Location: Tracks #-13
Length : "14% Tracks
Buffers for:

Device #6: NO

Device #7: NO
Other : NONE

8" floppy specifications

Tracks £-8

9 Tracks

NO
NO
NONE

Mini-floppy to 8" floppy program conversions

NOT APPLICABLE

130

BEXEC*

The 0S-65D operating system is intelligent in the sense that
it runs one program on boot up. This special program is called
"BEXEC*" on most disks. (The equivalent program on Tutorial Disks
three and four is called "MENU" for simplicity.) Generally, the
first few lines of this BASIC program, BEXEC*, are used for system
considerations such as memory configurations, I/0 device setup,
etc. The next section of the BEXEC#* program displays a disk title,
numbered options and then a request for your response such as,
"Type the number of your selection and depress RETURN?". Typing
in the number of your selection (generally followed by the RETURN
key) will select the program corresponding to your choice. A series
of checks forvthe legality of your entry along with the processing
of your selection will take place at this time. If an illegal
entry is made, BEXEC* will make a statement referring to the legality

of your entry and redisplay the menu waiting for a legal response.

There are two ways to exit the BEXEC* program into the oper-
ating system (DOS). The first way is to use a password when you
are asked for information. The password will normally be "UNLOCK"
or "PASS" ("PASS"™ in the case of the Tutorial Disk 5). The second
method is to select the menu selection which will open or exit to
the local operating system. Many disks will not have a menu
selection for exiting in which case UNLOCK or PASS must be used.
For others the menu selection is the only way to open the system.
After the exit function has been selected correctly the system
will be unlocked, which means that all available functions will
be enabled and the OK prompt of BASIC will appear on the screen

along with a message stating that the system has been opened.

131

One can always return to the initial menu by typing
RUN"BEXEC#*" followed by RETURN. In the case of Tutorial Disks

three and four, one must type RUN"MENU" followed by RETURN.

132

File name

File type

Location:

Length

Buffers for:
Device #6:

Device #7:
Other

BEXEC*

BASIC

Mini-floppy specifications

8" floppy specifications

Tracks 1u4-16

3 Tracks

NO
NO
NONE

Tracks 9-12

4 Tracks

NO
NO
NONE

Mini-floppy to 8" floppy program conversions

5 POKE 133,122:CLEAR:POKE14172,8:POKE14178,16
20 X=PEEK(18956):POKE8993,X:POKE899L ,X:DIMAL%(76)
2056 INPUT"and depress RETURN (1 to 76)";T1
2060 IF Tl<1l OR T1>76 THEN 2058
2076 INPUT"and depress RETURN (1 to 68)";N
2080 IF N<1 OR N>68 THEN 2870
2125 GOSUBSP@A1P:PG=12:P$="123456783ABCDEF"
2130 INPUT"How many pages per track (1 to 12). <12>";PG
2135 IF PG=¢ THEN PG=12
2149 IF PG<1l OR PG>12 THEN 2125
2156 J$="3A7E":IFPEEK(8999)=49 THEN J="317E"
5020 GOSUB1@20@:DISK!"SE A":DISK!"CA 7C@8=07,2"
5630 DISK!"CA 7D@@=07,3":DISK!"CA 7E@P=p7,u4":DISKI"CA 7Fpp=07,5"
5633 IF S=6 THEN DISK!"CA 7C@@8=67,6"
535 GOSUBS51@@:DISK"GO 2768":DISK!"SA $8,1=7CAGB/1"
549 DISK!"SA $8,2=7DPB/1":DISK!"SA #8,3=7E4@/1"
5058 DISK!"SA #8,u4=7F@P@/1":IF S=6 THEN GOSUB6AHY
6080 P$="12":T1=1:T2=5:G0SUB2153
6018 T1=9:T2=28:G0T02153
7000 L=1267@:IF PEEK(8999)=58 THEN L=1497.4
7049 L=L+N*3072:N=N+1:G0SUB5#A10:0NNGOTO71008,72008,7388
20000 NF=P:ES="N":FORK=0 TO 76:AL%(K)=0:NEXT
20085 DISK!"CA 2E79=08,1":GOSUB20#19P:DISK!"SA £8,1=2E79/1"
20019 DISK!"CA 2E79=08,2":GOSUB2#10@:DISK!"SA B#8,2=2E793/1"

133

BEXEC* Listing

1 REMiMew BEAECY July 1&,19g1 :

S FPORELIZE, 91:CLEAR:POREL4172,8:FPORFEL4L 7O, 15

1 PDHEESSB,&:PGFEBTE:‘O

Zi K=FEER {10950 : FOKE 8993, {:FOKESSF4. X1 DIMALK (ZF)
IO IFPEEK (S70EB =223 THENFOKESTS4, 57

A ﬁ:FFNh\a;=1'#INTf~f1u)+X lu*INT.A,iu;

S E FND “-=1 FIMNT (X100 +5-1 0% IMT (/100

{10 PRINT:PRINT'OS-65D Tutorial disk five':PRINT:FRINT
120 FRINT" 1 » Directory"”

120 PRINT" 2 » Create a new file”

140 PRINT" T > Change a file name"

150 PRINT" 4 » Delete file from diskette"

160 PRINT" 5 » Create blank data dishkette"

T OFRIMT" & * Create data diskette with files”
i8¢ FPRINT" 7 » Create buffer space for data 711e~"
190 FRIMT" 2 » Single or dual disk drive copier"
200 FRINT" ¢ > Enter 0S—-4&ZD system”

290 PRIMNT:FRIMT

230 FRINT"Type the number of youw selection ";

10 INPUT"and depress RETURN ";8%: IFSE="FASS"0ORS$="9" THEN&LOOIOO
215 IFLEM({(S$) »1 THENRUN

@20 E=INT (VAL {(S%)): IFS<10RE-E8THENRUN

80 GOSUBZGO10

89 FRINT" "3

990 ONSGOSURLGOO, 2000, TO00, 4000, GO0, SG00, 7000, BOOO

P92 IFF$="FASS" THENSOQOOQO

222 GOTO10O

1500 FRINT"Directory utility":FRINT:FRINT:FRINT"Directory of";
1048 GOSUR10000: GOSURS0O010: GOSUR10100: GOSURSDO1G

1910 PRINTH#DYV," —— Directory ——":FPRINT#DYV

1020 PRINTHDV,"File name Track range"

1030 FRIMTH#DY, - " GOSURZOQOG

130940 FRINTHDV:FPFRINTHDV.NF; "Entries free out of &4

1050 FRIMNT: GOTO10Z00

2000 FRINT"Create utility":PRINT:FRINT

2005 PRINT"Create a file on';:GOSUERLQOOO

2010 GOSURSOOL10:PRINT"Type in the name of the file you ";
2015 FPRIMT"want to create and":FRINT

2018 IMPUT"depress RETURN (1-6 Characters) ";A$: IFLEN(A$) *6THENZO1O

2018 IFAs=""THENRUN

2020 IFLEM(AS) <4THENAE=A%$+" ":GB0TOZ20Z0

2030 IFMIDE(A%,.1,1)<"A"ORMID$(As,1,1) >"Z"THENZOLO
2040 —J.BDSUE:UUﬂﬁ:IFE$""Y"THEN4UIOﬁ

2045 IFNF=GTHEM40Z00

2070 GOSUESOO10:PRINT"Type in the number of ";
2073 PRINT"tracks in this file":FRINT

2074 IMFUT"and depress RETURN (1 to 27) ";3;N

2080 IFNT1I0RN=27THENZOT7O

2020 FORT1=0TOZP-N+1:FORTS=0TON-1

2095 IFALZ(T1+TS) THENZ2110

2100 NEXTTS

2102 FRINT:PRINT"¥% TRACKS AVAILABLE FOR ";A®%;" Xx"
2102 T2=Ti+N=-1:N=0

2104 PRINMNT:FRINT:G60T02120

134

2110
2112
2114
2120
2121
2123
2125
21370
2175
2140
2130
2152
2153
2155
2160
21862
21464
21464
21467
2170
2200
OO0
20035
010
2015
016
017
018
2020
ZQ30
Z0OIS
2040
3044
3045
3047
JO50
20355
JI056
3060
3070
4000
4005
44010
4015
4016
4017
4018
A020
40Z0
4040
5000
5010
S020
S030
SOOI
SOIS
040

NEXT T1

FRINT:FPRINT" %% MNO ROOM FOR ";A%;" %%
PRINT:GOTO10200

FRINT"Do you want to initialize ":PRINT
INFUT"these tracks {(Yes or No) <Yesi* ";B%
IFLEFT$ (B$, 1) ="N"THEN220C
GOSUBS0010: FG=8: P$="123456789ABCDEF"

INFUT"How many pages per track (1 to 8) «83 ";PFG

IFFG=0THENFG=8

IFFPG< 10RFG>BTHENZ125

F$=MID%$ (P%,FG, 1)
FRINT"Initializing:s"

FORI=T1TOT2: T$=RIGHT£(STR$(I+100) ,2

FRINT"

Tr

DISK!"IN "+T% :
FORE10304,169: POKELIOQS0S,32: FOKEL10S49, 201 : FORKEL1 0S50, 32
DISKI"SA "+T$+", 1=DO00O/"+FPs$

FOKE 10304,177:POKE10305,254: FOKEL10549,209: FOKEL10550, 254

NEXT

ack "3;T&

IFS=4THENRETURN
S=2:60T0Z0000
FRINT"Rename utility":PRINT:FRINT

FRINT"Rename a file on'j;:GOSUR10Q00

GOSURSOOO0: FRINT"Type in the name of the file that vyou';
FRINT" want to rename":PRINT

INFUT"and depress RETURN (1-6 Characters) ";A%

IFLEN(A%) *6THENZO010Q

IFA$=""THENRUN

IFLEN{(A%) {5THENAS=A%+" ":G0TOZ020
S=5: 6OSUR20000: IFE$="N"THERN4OQOO
O$=RA%: FRINT ,
GOSURSOOOO: FRINT"Type in the name that will replace "j;
FRINTCHR$ (34) ;03%;CHR$(34)" in the directory":FRINT
INFUT"and depress RETURN (1-4 Characters) ";As$
IFLEN{A$) *6THENZ040 :

IFLEN (A%$) <6THENA$=A%+" ":G0TOI0S50

IFLEFT$ (A%, 1){"A""ORLEFT% (A%, 1) >"Z"THENZO040
IFO$=A%THEN4Q100 '

GOSUBZ0000: IFES="Y"THEN40100

8=2: 60TOZ0000
FRINT"Delete utility":FRINT:FPRINT

FRINT"Delete a file on"; :GOSUERIQOCO

GOSURS0Q0Q: FRINT"Type in the name of the file that you”;
FRINT" want to delete":FRINT

INFUT"and depress RETURN (1-& Characters) ";A%

IFLEN{(A%) >6THEN4O10

IFAs=""THENRUN

IFLEN(A%) {&THENAS=A%+" ":GO0TOQ4020
S=5: GOSURZ0000: IFE$="N"THEN4DQOO
S=4:GOTOZ20000
FRINT"Data disk create utility":PRINT:PRINT

FRINT"Be sure the tutorial disk is in drive A":PRINT
GOSURL10Z200:DISKE ! "SE A":DISK!"CA SC00=11,2"

DISK!"CA SDO0O=11,3":DISK!"CA SEOQOO0=11,4":DISK!"CA SFO0=11,5"
IFS=4THENDISE ! "CA SC00=11,5" :
GOSUBRS100:DISK ! "GO 27&8":DISK ! "SA 12, 1=5C00/1"

DISE!"SA

o
oy L

SDOO/1":DISK!I "G 12,3=8E00/1"

135

S0S0 DISK!"SA 12,4=5F00/1": IFS=46THENGOSUR&OOQO
5070 GOSUBS0010
5080 FRINT"Your diskette is now ready for data files.":FRINT
5090 PRINT:GOTOSS50S
5100 GOSUBSOO10
5105 PRINT"Remove your tutorial diskette from drive A and":FRINT
5110 PRINT"replace it with your blank diskette.":PRINT:GOTO10Z00
5900 GOSUBSOO010
5505 FRIMT"Remove your blank diskette from drive A and":FRINT
5510 FRINT"replace it with youwr tutorial diskette.":FRINT:GOTO10200
6000 FE="8":Til=1:T2=10:605UB2153
&010 T1=1Z:T2=27:60T0215
7000 LL=129246: IFFEEK (8999)=S8THENL=14974
7005 FRINT"Buffer set utility":PRINT:FRINT
7010 FRINT"Type in the number of file buffers";
7015 FRINT" vou need":FPRINT
7020 INFUT"and depress RETURN (0,1, or 2) <OX";N
7030 IFN<OORN>2THENGOSURSO010:GOTO7010
7040 L=L+N¥2048: N=N+1: GOSUBS00Q10: ONNGOTO7 100, 7200, 7200
7100 PRINT"No file buffers are resident.":6G0TO73500
200 FRINT"A single buffer is now resident.":G60TO7300
7300 PRINT"Two buffers are now resident.”
7300 PRINT
7510 FRINT"Type in your program and save it on your diskette.”
7520 GOSURS000
7540 FOKELIZO0,L+1-INT{(L+1)/256) ¥256:FOKEL1R21, INT({L+1) /256) : FOKEL, O: NEW
8000 X= FEEP(B?&U)-POiE132,X RUN"COPIER
10000 PRINT" which drive ?":PRINT
10004 INFUT"Type A,R,C or D and depress RETURN <A> ";D%
10005 IFD$=""THEND$="A"
10010 IFD$<"A"ORD%>"D"ORLEN (D%) < >1 THENGOSURSOOQOO: GOTO10004
10020 DISK!"SE "+D$:RETURN
10100 FPRINT"Do you want to list the directory":PRINT
10105 INPUT"tD the printer (Yes or MNo) <NoX ";P%
10110 DV=2: IFLEFT% (FP$%, 1)—"Y"THENDV—
10120 RETURN
10200 INFUT"Depress RETURN to continue ";F$:RETURN
20000 NF=0:E$="N":FORK=0TOZ9: AL%L () =0:NEXT
20003 IFS=STHENFRINT:FRINT:PRINT"Please wait.";
20003 DISK!'"CA 2E79=12,1":608UR 20100
20006 IFSr1ANDS<STHEN DISK!"SA 12,1=2E79/1
20008 IF S:>1 AND E$="Y" THENRETURN
20010 DISK!"CA 2E79=12,2":60SUR20100
20015 IFS>1ANDS<STHEN DISK!'"SA 12,2=2E7%9/1
20020 RETURN
20100 FORI= 11897T01A14qSTEP8
20110 0ONSGOSURZOZ200, J0000, 20Z00, 20400, Z0000
20115 IFNF= IANDS— THENGOSUEZ0300: E$="Y" : RETURN
20120 NEXT:RETURN
20200 IFFEEK (I)=35THENNF=NF+1:RETURN
20210 GOSURZI0100
20220 PRINTHDV,N$; TAR(12) ;FNA(FEEK (I+56)) 3 TARB(1&) 3" "3
20270 PRINTHDV, TAR(17) ;FNA(PEEK (I+7)) : RETURN
203T00 GUOSURZ0100: IFO0$< *N$THENRETURN
20310 E$="Y":60TOI0200
20400 GOSUBZ0100: IFAS< *N$THENRETURN
20410 E$="Y":As="H#H#H4H#H#" : GOSURTO200: FOKEI+6, 0: POKEI+7, 0: RETURN
J0000 IFFEEK (I)=35THENNF=NF+1: RETURN

136

41:11 1)
A1 10

AOT00

S50

=000
2010
S020
'3 i-') f':' i l:')

SO0 2 [}

; GOSURTGLGO: Ff‘ E=AFTHENES="Y"

To=FMAFEER (I+&) s TP?=FNA(FEEK {I+71)

FORE=TOTOTZ:ALX (MI=—1:1NE KT F’ETUF'\I

ME="":FORI=ITOI+5: NS=NS+CHRE(FPEEK (J1) s HEXT

FRINT" "3 :RETURHM

FORI=1TO&: FOKEI+I-1 , ASCI{MIDE (A%, T, 1))t HEXT:RETURN

SOSUBRZG200: FOKEI+S, FNE(T1) : FOKEI+7 SFMBOTZ) s NF=Z255: RETURN

FRINT: PRINT: FRINT %% “CHR$ (34) FAEICHRS (240" was not found i

FRINT"in the directory. X3":PRINT:GOTOL10Z00

FRIMNT:PRINT:FRINT"%% "CHR$ (347 31A%;CHRE(Z24)" already enists ';

FRINT"in the directory. ®¥¥":FRIMT:G0TOL10200

'=F' INT:FRINT:FRINT"%% Directory full ##":FPRINT:GOTOLIO0Z00
=11984: FORII=0TOZ4: READSC: FOKEST+II, SC: NEXT: RESTORE sT=82E00

IFF EER (BF92) =58THEN F‘F:INTCHR$ (2733 CHRE (21) : RETURN

FOKEESSS5S, 208

FR

20 FPORESRSS, 446: X=USR (X1 s RETURN

BATA 1469,208,141,219,46,169,32,162,0,157,0,208,232

DATA LGB.ZSU 172,219, 46.20& i40,2 19.4u51925:::,:40510
DATA 192.219.L08.2*5,16H,224 169,14,208,239,96
FORE741,75: FGkE,qU,7B:PDHE2073.i?Z.PG}E~897,55:PDHE2894,8
FOMEZ8E8B, 27: X=FEEK (8940) : PORELIZZ, X

RETURM

GFOSURSI000

GOSUEBSOOOO: CLEAR

FRINT"The system is now open for modification.®

137

COPIER

COPIER is a routine which can be used for copying diskettes.
The method you should use depends upon the configuration of your
system. If your system has only one disk drive, then you can select
the single drive copiler automatically by copying from drive A to
drive A. If your system has a dual disk drive then you can select

the dual drive copier by selecting any other combination of drives.

The first step in using either of the copiers is to select
two disks: the disk you wish to copy FROM and the disk you wish
to copy TO. (Note: It is possible to copy onto a previously used
diskette. The diskette is initialized as part of the copy process.)
Once you have selected the two diskettes to be used, carefully

follow the set of instructions given below. Type
RUN"COPIER"

The following instructions will be displayed on the screen
(each instruction will be displayed after you have entered an

answer to the previous one):

- Diskette copier -

Copy from which drive (A/B/C/D) ? _

Copy to which drive (A/B/C/D) ? _

What is the last track to be copied (Inclusive) <@-39> ? _

Are you ready to start copying (Y/N) ? _

The only difference between the single drive copier and the dual
drive copier is that the single drive copier prompts you to insert

the master and blank diskette during the copy operation.

138

A sequence of numbers will be displayed which shows the
progression of the copy process through the tracks. When the
copy process is completed, you will be asked to replace the
0S-65D disk 5 in the disk drive. When you confirm that you

have done so, the menu will again be displayed on the screen.

138

File name : COPIER

File type : BASIC

Mini-floppy specifications 8" floppy specifications
Location: Track 17 | Track 13
Lenéth : 2 Tracks 2 Tracks

Buffers for:

Device #6: NO NO
Device #7: NO NO
Other :+ 11 PAGE OBJECT FILE 12 PAGE OBJECT FILE

Mini-floppy to 8" floppy program conversions

NOT APPLICABLE

140

CHANGE

The changes in system parameters that can be effected by

running CHANGE are:

Workspace Limits
1. Tor creating buffers for disk input and output.

2. For leaving room for special programs such as machine
language subroutines.

Tﬁe "workspace" is that RAM area where the assembler and
BASIC socurce programs reside. It is used to hold these source
programs and various tables, lists, etc., that are used during
assembly or BASIC program interpretation. The workspace normally
begins at 14974 (hex 3A7E) for full size floppy disk systems and
mini-floppy disk systems under 0S-65D V3.3. Under other versions
of 0S-65D, the workspace normally begins at 12678 (hex 317E) for
full size floppy disk systems and at 12926 (hex 327E) for mini-

floppy disk systems.

The end of the workspace is normally the end of the main
memory (that memory which starts at address zero and is contiguous
up to some higher address). For 24K systems that means $SFFF
(24575); 32K systems are $7FFF (32767); and, 48K coﬁfigurations
have the end of workspace at $BFFF (49151). See the next page

for a diagramatic summary of the workspace.

Some instances where it may be necessary to change the work-
space limits are:

1. When the program to be entered will use disk data files,
that is, when PRINT#6, PRINT#7, INPUT#6 or INPUT#7 are
used in the program. In this case, it is necessary to
reserve space in the low part of memory to be used as
disk I/0 buffers. For example, if a PRINT#6 statement is
executed then the data is sent to the buffer in memory,

141

0S-65D V3.3 The Workspace

SS5FFF (2u4575)
STFFF (32767)
$BFFF (49151)

24K systems
32K systems
48K systems

128 pages

96 pages
192 pages

Normal end of
workspace

Defined by use of CHANGE > b e

Changed end of
workspace

Source code,
tables, lists, etc.
Storage used by
BASIC

Changed start of
workspace

Defined by use of CHANGE P e ——————]

Additional room
(if present)

8"=6527E (21118 dec) or 5"=$4ATE (19878 deC) m—s |]
Second Buffer

(if present)
(#7)

8"=38467F (18P46 dec) or S5"=S$U27E (17022 deC) - lememccccccccccm e —————

First Buffer*
(if present)
(#86)

Normal start of
workspace

8" and 5" = $3A7E (14974 dec)

v

* 8" buffer size = 3072 ($CPB) bytes or 12 pages
(equivalent to one disk track)

5" buffer size = 2048 ($8P@) bytes or 8 pages
(equivalent to one disk track)

(Compare to the diagram in Chapter 6)

142

not directly to the disk. The data is not put on the

disk until the execution of a DISK PUT at which time the
entire buffer area is written onto the disk. The user
should note that CHANGE cannot be used to put a buffer

on a program that already exists on disk or in memory.

The user should also note that a more convenient method

to create a buffer for a new program is to load a program
with the correct number of buffers from the disk (assuming
the user has such a program) and then type NEW.

If the user wishes to write a BASIC program that calls a
machine language subroutine, then space may be reserved
for the subroutine using CHANGE. The user should note
that the high part of memory may not be safe for this
purpose (without using CHANGE) even if the BASIC program
in the workspace is very short. The reason is that when
a BASIC program is running, string variables are stored
at the end of the workspace. CHANGE may be used to leave
space at the beginning of the workspace, or to set the

end of the workspace before the physical end of memory so
as to leave a part of memory unaffected by the BASIC pro-
gram. Putting machine language subroutines at the beginning
of the workspace may be the more convenient place because
anything in the part of memory between the start of the
user's workspace and the beginning of the BASIC program is
saved along with the BASIC program when a

DISK!"PUT..."

is executed, but the code above the adjusted end of memory

is not. A machine language program should not be put between
the start of the user's workspace and the beginning of the
BASIC program if the BASIC program uses disk data files -
because the machine language program will be overwritten
during disk access from file I/O.

The computer uses five memory locations to store the workspace

limit parameters.

1.

The number of pages in memory is stored at 8968 (=$23064)

in the DOS kernel. This is a one byte parameter. For
example, at boot up a value is automatically placed "in
this location reflecting the actual memory size. The
second series of questions (after terminal width questions)
asked by CHANGE allow the user to change this parameter.
The value stored at this location is used except when the
DOS commands

BASIC

or
ASSM

or
EM

are entered in response to the A*prompt.

1u3

2. BASIC stores the address for the end of the workspace on
page 8, memory locations 132 (=$84) and 133 (=$85). The
low half or low byte of this address is stored at 132
and the high half or high byte at 133. For example, on
a 24K computer the end of memory would be $5FFF, so the
contents of the low byte 132 would be $FF (255) and the
contents of 133 would be $5F (95). When the DOS command

BASIC

is entered in response to the A* prompt, the value at
8960 is used to compute a value to be stored at 132

and 133. When the value stored at these locations is
changed by CHANGE, the effect on BASIC will be immediate.
For example, this value is used when BASIC makes an "out
of memory" check.

3. Memory locations 121 (=$79) and 122 (=$7A) contain the
address of the beginning of BASIC programs in the work-
space. The low byte of this address is stored at 121
and the high byte at 122. When the system boots up,
the contents are generally $7E (126) and $3A (58) in 121
and 122, respectively. When this value is changed by
CHANGE, the byte at the beginning of workspace is POKEd
with.8.

Important: See page 147 for a warning on the use of the work-
space after is has been modified by CHANGE.

The following directions explain how to change systems
parameters using the CHANGE program.

The program output and your inputs are shown below. Any
unacceptable response will result in an error message and/or a
repeat of the request for input. Enter RUN"CHANGE". You will see:

CHANGE PARAMETER UTILITY
CHANGE BASIC'S WORKSPACE LIMITS (Y/N)?

Enter YES or NO. If you enter NO, the program terminates.

If you enter YES, the program requests the following:

HOW MANY 12 (8 for mini-floppy) PAGE BUFFERS DO
YOU WANT BEFORE THE WORKSPACE (8, 1, or 2)?

Enter 8, 1, or 2 to reserve that many track buffers at the
beginning of the workspace. Note that device 6 memory buffer I/O

uses the first buffer while device 7 uses the second buffer. If

1k 8-18-4"

the answer is YES then a new value is POKEd to 132 and 133.
If no buffers are specified, the program asks: o
WANT TO LEAVE ANY ROOM BEFORE THE WORKSPACE (Y/N)?
Enter YES or NO. If you enter NO, the program outputs the
address of the start of the BASIC workspace as shown below. IF
YES is entered, proceed to the "HOW MANY BYTES?" question below.

An answer of YES will change the value at 132 and 133.

If one or more buffers was specified, the program continues
with:
WANT TO LEAVE ANY ADDITIONAL ROOM (Y/N)?
Enter YES or NO. If you enter YES, the_-following queétion
is asked:
HOW MANY BZTES?
Enter the number of additional bytes to be allocated before

the start of the workspace.

The program then outputs the new address .for the start of
the workspace and the total number of bytes reserved for buffers,
etc.

THE BASIC WOﬁKSPACE WILL BE SET TO START AT aaaaa
LEAVING bbbb BYTES FREE IN FRONT OF THE WORKSPACE

IS THAT ALRIGHT (Y/N)?

Enter YES or NO. If you enter NO, the program requests that
you specify an exact lower limit address for the workspace.
NEW LOWER LIMIT? |
Enter a lower limit address. The program then confirms this
value by outputting:
bbbb BYTES WILL BE FREE BEFORE THE WORKSPACE

The program then continues with:

145

YOU HAVE xx K OF RAM

DO YOU WANT TO LEAVE ANY ROOM AT THE TOP (Y/N)?

Enter YES or NO. A YES answer will cause values to be POKEd

to 121 and 122. If you enter YES, the following question is asked:
HOW MANY BYTES?

Enter the number of bytes to be allocated between the top of

the workspace and the end of main memory.

The program then outputs:

THE BASIC WORKSPACE WILL BE SET TO END AT cccce
LEAVING dddd BYTES FREE AFTER THE WORKSPACE

IS THAT ALRIGHT (Y/N)?

Enter YES or NO. If you enter NO, the program requests that

you specify an exact number limit address for the workspace.
NEW UPPER LIMIT?

Enter an upper limit address. The program then confirms this

value by outputting:

eeee BYTES WILL BE FREE AFTER THE WORKSPACE

Note that the reservation of spéce after the workspace is
not recorded on disk with a program when it is saved in a file.
The allocation is only recorded as a RAM resident change to the
BASIC interpreter and remains in effect until explicitly changed
again, or BASIC is reloaded by typing BAS in the DOS command mode.
Later, running a program that results in an "Out of Memory" (OM)
error may be the result of a workspace that has been unnecessarily

left reduced.

146

Program output continues with:
YOU WILL HAVE fffff BYTES FREE IN THE WORKSPACE
IS THAT ALRIGHT (Y/N)?

Enter YES or NO. If NO is entered, the Change Parameter
Utility Program restarts from the beginning. Otherwise, the

requested changes are made, the workspace contents are cleared

and the program terminates.

WARNING: If you enter a DISK!"LOAD filename" command after
running CHANGE the workspace parameters are not those selected

by CHANGE, but rather those associated with "filename".

Therefore, if you are not ready to enter a new program in
your CHANGE modified workspace, you should enter a short dummy

program, perhaps with a few REM statements specifying the special

workspace parameters; Then save this with a DISK!"PUT filename"
command. Later, this file can be LOADed and the special workspace
parameters will be automatically set. Then you can enter a new
program or merge in an old program via indirect files (see the
BASIC Reference Manual, Chapter 12) without alterning the work-

space specififcations.

For a discussion on how to use a machine language subroutine

in your CHANGEd workspace, see Appendix 11.

147 8-18-8(

CHANGE - Logical Flowchart

RUN
CHANGE PARAMETER UTILITY

CHANGE BASIC'S WORKSPACE LIMITS (Y/N) ?

Nt Y
0K

HOW MANY m PAGE BUFFERS DO YOU WANT
BEFORE THE WORKSPACE (9, 1, or 2) ?

1 or 27
9 y WANT TO LEAVE ANY ADDITIONAL
ROOM (Y/N) ?
Y
A 4
WANT TO LEAVE ANY ROOM BEFORE | Y
THE WORKSPACE (Y/N) ?
y
. Ny HOW MANY BYTES?
¥

THE BASIC WORKSPACE WILL BE SET TO START AT xxxxx
LEAVING n BYTES FREE IN FRONT OF THE WORKSPACE
IS THAT ALRIGHT (Y/N) ?

NL Y

NEW LOWER LIMIT ?

n BYTES WILL BE FREE BEFORE TEE WORKSPACE

x

YOU HAVE yy K OF RAM ’

DO YOU WANT TO LEAVE ANY ROOM AT THE TOP (Y/N) ?

Yy

NY HOW MANY BYTES ?

A

THE BASIC WORKSPACE WILL BE SET TO END AT xwxxx
LEAVING o BYTES FREE AFTER THE WORKSPACE
IS THAT ALRIGHT (Y/N) ?

N1 Y

NEW UPPER .LIMIT?

n BYTES WILL BE FREE AFTER THE WORKSPACE

x

YOU WILL BAVE xxxxx BYTES FREE IN THE WORKSPACE
IS THAT ALRIGHT (Y/%) ?

N Yy
oK

148

File name

File type

Location:

Length :

Buffers for:
Device #6:

Device £7:
Other H

'+ CHANGE

.

: BASIC

Mini-floppy specifications,

8" floppy specifications

Tracks 19-20

2 Tracks

NO
NO
NONE

Track 15

1 Track

NO
NONE

Mini-floppy to 8" floppy program conversions

25 XZ=14974:IF PEEK(8999)=49 THEN XZ=12678

4L PRINT "HOW MANY 12 PAGE BUFFERS DO YOU WANT"

60 L=XZ+B*3@72:REM L=$317E PLUS B#*$C@0

149

CHANGE

i Iss
I 230

i1
145 EER (BR9F! 252&
CINT 4T "CHANGE UTILITY" @ FPRINT
INT UT "CHANGE IREEFACE LIMITE (¥ FEAE::
BIMT: I '." THEM
40 FRINT"HO = FABE 0L WANT v
41 INFUT“E R . oo Z) O3B
35 PRINMT
S IFBCQOREBLEZCREBY FINT (B THENFRIMNT"AMSWER ©, 1, OR 2":FRINT:GO0TO40
S0 L=XZ+BxZ048 : REM L=$3I27E FLUE B%s8C0U
ToOIF B D THEM 1Z0
o INFUT "WANT TO LE%VE AMY ROOM BEFORE THE WORESFACE (Y /M) "shs
O IF MIDS (A%, 1,10<x"y" THEN 170
140G CINT: INFUT 'HGN MAaNY BYTES ":R

110 L=L+E

120 G0OTO 1740

130 INFUT "WANT TO LEA”E AMY ADDITICNAL ROOM (Y /M) "s:A%

ido IF Wluifé$.;,1} Y"OTHEN L70

150 FRINT: INFUT 'HDN MANY BYTES ":R

160 L=L+R

170 PRIMT:FPRINT "THE BASIC WORKSFACE WILL BE SET TO START AT L
18C FRINT "LEAVING":;L-XZ;"EYTEE FREE IN FRONT OF THE WORKSFACE"Y
190 INFUT "IS5 THAT ALRIGHT (Y/N) ":A%

200 IF MID${(As,1,1)="¥Y" THEN 210

204 PRINT: INPUT "NEW LOWER LIMIT ":L:FRINT:IF L«<XZ THEN 204

2086 PRINT L-XZ3;"BYTES WILL BE FREE BEFORE THE WORKSFACE"

210 MP=FEEK (B8940)

220 PRINT:PRINT "YOU HAVE"j:; (MF+1)/4;"K OF RAM":FRINT

2T0 U=(MP+1) %258

240 INFUT "DO YOU NQNT TO LEAVE ANY ROOM AT THE TOP (Y /N) ";A%
250 IF MID$S{As,1,L)<>"Y" THEN 280

2&0 PRINMT: INPUT "HON MANY BYTES ";

270 UsU-R '

280 FRINT:FRINT "THE RASIC WORKSFACE WILL BE SET TO END AT";U
290 PRINT "LEAVING"; (MP+1) %25&-U; "BYTES FREE AFTER THE WORKSFACE"
IO0 INFUT "IS THAT ALRIGHT (Y/N) “;A% :
I10 PRINT:IF MIDs{(As,1,1)="¥Y" THEN 320

T12 OIMPUT"NEW UPFER LIMIT";U:PRINT: IFUX491S20RU<L+ITHENT12

Z14 PRINT (MF+1)%2846-U; "BYTES WILL BE FREE AFTER THE WORKSFACE"
I20 PRIMT:FRINT"YOU WILL HAVE";U-L+1;"BYTES FREE IN THE WORKSFACE"
I3C O IMPUT "IE THAT ALRIGHT (VY/M) ";As

340 IF MIDS{As,1,1)<-"Y" THEN RUN

2590 REM

3&0 REM MOW DO THE ADJUSTHENTS

270 REM

I80 POEEIZZ,U-INT(U/Z58) 4286 FOKELZZ, INT(U/258)

290 FOEEL20,L+1-INT({L+1) /2546) ¥256: POKEL21, INT({L+1) /Z So).PDPEL.U NEW
1000 REM

1010 REM

1020 FRINT "THE TERMINAL WIDTH IS SET FOR":FEEK(Z2T)

1020 INPUT "DO YOU WANT TO CHANGE IT (Y/MN)":;AS

1040 IF Asd>"vY" THEN 1100

1050 INPUT "NEW YALUE";WD

10680 IF WD+ 14 OR WDXZESS THEN FPRIMT "RAD VALUE" : GOTO 190S0

14070 FPOKE 22,WD

1380 NC=INT{WD/14)%14: REM *Ri

1090 FOKE 24,NC

150

o

i3]

fan
-

z
-

-
T

- o
e

q £

151

CREATE

This utility program is used to create new named files. Note
that a file must have been created with this program before it can
be referenced by any of the file commands. To create a file, type:

RUN "CREATE"

The program output and the kind of input you may enter in

response are as shown below. Any unacceptable response will result

in an error message and/or a repeat of the request for input.

FILE CREATION UTILITY
PASSWORD?

Enter PASS.
The program continues with an explanation of its operation:

CREATES AN ENTRY IN DIRECTORY FOR A NEW FILE AND

INITIALIZES THE TRACKS THAT THE NEW FILE WILL

RESIDE ON. THE TRACKS WILL CONTAIN NULLS WITH

A RETURN AT THE END OF THE TRACK.

FILE NAME?
Enter a one to six character file name that is not a duplicate of an
existing file name. It must start with a letter.

FIRST TRACK OF FILE?
Enter the number of the first track the file is to reside on. Note
that a file always begins on a track boundary and resides on a whole
number of tracks.
NUMBER OF TRACKS IN FILE?

Enter the number of tracks on which the file is to reside. All tracks
assigned to a file must not have been previously assigned. It is often
useful to run a directory of the diskette prior to rﬁnning the create
utility so that the free tracks on the diskette can be identified.

The program then continues with:

12 (8 for mini-floppy) PAGES PER TRACK. IS THIS OK?

152

Type YES if the specified number of pages per track is acceptable;

otherwise, type NO. If you type NO, the following question is asked:
' HOW MANY PAGES PER TRACK THEN?

Enter the number of pages of storage you want each track to contain.
Any number up to the default number of pages is acceptable. For full
size diskettes this is twelve pages and for mini-diskettes it is eight
pages per track.

The file will now be created and its name and track location will
be entered into the directory. Each of the tracks of the file will
be initialized to nulls with a return character at the end of each

track.

' 153

File name : CREATE

File type : BASIC

Mini-floppy specifications 8" floppy specifications
Location: Track 21 Track 16
Length : 2 Tracks 2 Tracks

Buffers for:

Device #%: YES YES
Device #7: NO NO
Other : 18 BYTE OBJECT FILE 18 BYTE OBJECT FILE

Mini-floppy to 8" floppy program conversions

239
499
500
510
529
570
580
599

DATA 160,8,162,12,152,153,126,58,208,208,250
DIM AL%(76)

FORI=0TO76:AL$(I)=0: NEXT

DISKI"CA 2E79=08,2":GOSUBL2000

DISK!"CA 2E79=08,1":GOSUB1#888

IF FL=1 THEN DISK!"SA §8,1=2E79/1":END
DISK!"CA 2E79=08,1":GOSUB22080

IF FL=1 THEN DISK!"SA 082=2E79/1":END

208399 IF TB<8 OR T@#>76 THEN 20089

20119 IF NT<1 OR NT+T@>77 THEN 201448

20178 PG=12

20189 INPUT"12 PAGES PER TRACK. IS THIS OK";B$

20285 IF PG<l OR PG>12 GOT028200

29219 IF PG<>12 THEN ?:?"DEFAULTS SET FOR 12 PAGES"

154

CREATE

mm g ML mEm e e e
S2, d-.lkm.gS,Luu,;uB,Auu

S L
7o

ﬁEu "WLEI,E:NEXT

0 DATAL,Z2,3,4,5,5,7.2,%,4,B.C

FRINT"RETURM AT THE EMD OF THE TRACK."
FRINT

INPUT"FILE MNAME":AS$

IFLEN{AS! *6THEN41O
IFLEM{A%) L ATHENAE=AS+" ":G60T0440
IFMID%iﬁ$,1,1)""é”DRMIDﬁ&H$ 1,10 x"Z"THENE2G
440 REM

430 DIMALL(Z?

SO0 FDRI‘OTDZ?.ALX(I)=O:NEXT

310 DISKE!"CA Z2E79=12,2":G0SURLIOQOG

D20 DISK!"CA 2E79=12,1":60SURLIOOQ0

ST0 REM

=40 REM

560 GOBURZOGOO

570 IFFL=1THENDISK!"SA 12,1=2E79/1":END
80 DISK!I"CA ZET79=12,2":G60SUBZ000O0

90 IFFL=1THENDISK ! "8A 12,2=2E79/1":END
FP*NT“** DIRECTORY FULL %x%x":END
100 REM

1:;!:)1{) FEM

1GOZ0 FORI=PHM+&TOPN+Z2S48TEFRFS

10040 IFFEER {I-&)=35THEN10100

::‘ \—"-L

IFFEEH&E '9;=SIT E“PDFE‘lDHG S
FORKEZPSS, 126: FOEERRSS, +h.n—”qn$A':FG EESET, 212
FRIMNT:FRINT"FILE LFEHTIﬁH UTILITY"sFPRINT
PH=118%7

IMNFUT"FAESHORDY ; A€ IFASY - "FASS " THEMENMD
FRINT
DEFFRNA(Y) =1&8INT(XA10Y+X—10%INT (X1
DEFFMEB(A =103 INT{X/1&+3—158%INT(E/16

=

FRINT"CREATES AN ENTRY IM DIRECTORY FOR A MNEW FILE™
PPRINT"AND IMITIALIZES THE TRACKS THAT THE MEW FILE
FRINT"RESIDE ON. THE TRACKS WILL CONTAIM NULLS WI

WILL™

TH A"

10030 C$="":FORK=1T0&6: C$=Cs+CHR$ (FEEK (I-7+kK)) : NE%TH.IFC${}Q$THEN1QQQQ

10080 FPRINT"%% FILE NAME ";CHR$(Z4);A$;CHR$(I4) 3"
10090 TO=FNE{FEEK (1)) : T9=FNB (FEEK (I+1))
10095 FORE=TOTOTS: ALY (K)=—1:NEXTK

1323100 NEXTI

10110 RETURN

20000 REM

20010 REM

20030 FORI=FPNTOFN+248STEFS

20040 IFFEER (I1)=35THENZQOB80

20050 MEXTI

20080 FL=03:1RETURN

20080 PRIMT: INPUT"FIRST TRACK OF FILE";TO
20090 IFTOC1Z0ORTO>ZI2THENZOOBO

20100 INFUT"NUMBER OF TRACKES IN FILE";NT
20110 IFNTS10RNT+TOX>40THENZOL1OG

20115 T9=TOo+NT-1

- 201 :(_l Fh=0

201320 FORE=TOTAQT?

20140 IFALL D THENFRINT"$% TRACK";k;:; "IN USE #x%":Fk=1

20130 MEXATH ‘)
155

USE ¥x":RUN

I ra

H
jAn]

B

EII

H':’-V
II+T$+II . 1=II+J£+ n I,’ 1 +FI$

#

—
AT

1]

4 |

e W
- =
Ul i
[] I

VT
T T
i

i i

_— ~ I}
o e
1= o (L
L] I 1

T o~ =
- g -
= 1

I+J,¢

E

Ok

]
J

2TOS

o ™
(g

i
A b

=5

156

DELETE

This utility program may be used to delete a named file from
the directory. DELETE frees the tracks on which that file resided,
but it does not actually alter the contents of those tracks.
Consequently, until a new file is created residing on those tracks
or the tracks are otherwise changed, the contents of the old (deleted)
file are still recoverable by a direct track number access. To delete
a named file, type:

RUN "DELETE"
The program output and the kind of ipput you may enter in)

response are as shown below. Any unacceptable response will result

in an error message and/or a repeat of the request for input.

DELETE UTILITY
REMOVES AN ENTRY FROM THE DIRECTORY
PASSWORD? |

Enter PASS. The program continues with:
FILE NAME?
Enter the name of the file to be deleted. The file will now be

deleted from the directory.

157

File name

File type

Location:

Length

Buffers for
Device %6

Device %7
Other

.
.
-
-

-
.

: DELETE

: BASIC

Mini-floppy specifications

Track 23

1 Track

NO
NO
NONE

8" floppy specifications

Track 18

1 Track

NO
NO
NONE

Mini-floppy to 8" floppy program conversions

5@ DISK!"CA 2E79=88,1"

60 GOSUB1@d@0:IF FL=1 THEN DISK!"SA #8,1=2E79/1":END

780 DISK!"CA 2E79=08,2"

80 GOSUB1p4@@@:IF FL=1 THEN DISK!"SA £#8,2=2E79/1":END

158

DELETE

10 REM DELETE FILE UTILITY UMDER DOS-450 VERSION 3.0
20 REM
FRINT:FRIMNTYDELETE UTILITY":PRINT
FRINT "REMOVEE AN ENTRY FROM THE DIRECTORY":FRIMNT
INFUT "PASSHCORDY; A% @ IF A< -"FPAES" THEM END
FRIMNT
FLaG=0 ¢ PR=11897
IMFUT "FILE MAMEY;AS
I IF LEM{AZ)»5 THEN 40
7OIF LEMOAS)<& THEN Ag=as+" " : GOTO 47
G DIBE) "CA ZETE=1Z2,1¢ .
GOSUR 10000 3 IF FL=1 THEN DISK ! "84 12,1=ZE7%/1" : END
DISK ' “"CA ZET9=12Z,2¢
GOBUE 10000 : IF FL=1 THEN DISKE ! "SA 12,2=ZE7%/1" : END
FRINT "%% ";CHR$(Z4);A$:CHR$(34) ;" NOT FOUMND IM DIRECTORY %%

140 EMD

1000 REM

100310 REM SEE IF FILE NAME A% IS IM DIRECTORY BUFFER
10020 REM

1003G FOR I=FNT TO PN+248 STEF 8

10340 FOR J=1 TO I+5

3 IFFEEMA(J) < *AECIMIDE(AS, J-I+1,173 THEM 10100
NEXT J

70 FOR J=1 7O I+3 : FOKE J,ASC("#") : NEXT J
10080 POEE I+6,0 : FOKE I+,.u

10090 FLAG=1 : RETURN

13100 MEXT I

12110 FLAG=0 : RETURN

159

DIR

This utility program may be used to display a list of all
currently existing named files and the numbers of the tracks on
which they reside. The directory can be unsorted or sorted in
alpha numeric order by file name or sequentially'by track number.
To display a directory, type:

RUN "DIR" -

The program will display a title and a menu followed by a
prompt for information as shown below. Any unaccéptable response
will cause an error message and/or a repeat of the request for
information. 'If an error message is encountered, then type RUN to
restart the utility.’

DIRECTORY UTILITY

1> Directory

2> Directory sorted by name

3> Directory sorted by track

Type 1, 2 or 3 and depress RETURN ?
Enter 2 or 3 to specify a named or a track sort, respectively. The
program continues with:

LIST ON LINE PRINTER INSTEAD OF DEVICE #d?

Enter YES or NO. (d is the current output device assignment.)

If you enter YES, the directory output will be on device 1; other-
wise, it will be on the currently assigned output device, the video
monitor. If you answer YES and there is no device 1 on the system,
the directopy will not be displayed. The system will lock up and you

will have to reboot.

160

If the number 1 was entered to the menu prompt above,
THEN IT WILL BE. UNSORTED
is displayed and the directory list will be in the same order as the

actual entries in the directory.

Sample mini-floppy directory displays, sorted by name and track
number, éppear on the next page. The line at the bottom of each
directory stating, "46 ENTRIES FREE OUT OF 64", means that eighteen
directory files use up eighteen of the 64 available directory entires.

Forty-six entries remain free for new file names.

161

0S-65D VERSION 3.3

-- DIRECTORY --
FILE NAME TRACK RANGE
ASAMPL 34 - 34
ATNENB 35 - 35
BEXEC* 14 - 16
CHANGE 19 - 298
COLORS 36 - 36
COMPAR 39 - 39
. COPIER 17 - 18
CREATE 21 - 22
DELETE 23 - 23
DIR 24 - 24
MODEM 37 - 38
0S65D3 g - 13
RANLST 25 - 26
RENAME 27 - 27
SECDIR 28 - 28
SEQLST 29 - 398
TRACE 31 - 31
ZERO 32 - 33

46 ENTRIES FREE OUT OF 6u

0S-65D VERSION 3.3

-- DIRECTORY --
FILE NAME TRACK RANGE
0S65D3 g - 13
BEXEC* 14 - 16
COPIER 17 - 18
CHANGE 19 - 20
CREATE 21 - 22
DELETE 23 - 23
DIR 24 - 24
RANLST 25 - 26
RENAME 27 - 27
SECDIR 28 - 28
SEQLST 29 - 30
TRACE 31 - 31
ZERO 32 - 33
ASAMPL 34 - 34
ATNENB 35 - 35
COLORS 36 - 36
MODEM - 37 - 38
COMPAR 39 - 39

46 ENTRIES FREE OUT OF 6u

162

File name : DIR

File type : BASIC

Mini-floppy specifications g" floppy specifiqations
Location: Track 24 Track 19
Length : 1 Track 1 Track

Buffers for:

Device #6: NO NO
Device #7: NO : NO
Other ¢ NONE : NONE

Mini-floppy to 8" floppy program conversions

19p6@ DISK! "CA 2E79=@8,1"

19988 DISK! "CA 2E79=#8,2"

163

[
e 0 30 2
"

P ol »
g

54 DY
3& PRI
oF o T
[P
28 FRI
70 INF
F1 IFZ
52 PRI
g2 IFZ
7S PRI
P45 INF
100 IF
i1y PR
1000

10010
10020
100730
10035
10040
10050
10080
10070
10080
10090
10095
13097
101 00
13110
14120
101320
10140
11000
11010
11020
110640
11030
110&0
11470
111C0
11110
11120
11130
11144
20000
20010
20015

sl inle

20072

20070

CIMT

DIR

~—r
.

i}
1 W=l 3 F=FEEK (8994}
=% THEM 2&
A1 ¥V=Y4Y 3 GOTO 82
MT:FRINT "DIRECTORY UTILITY":FRINT
MT" 1x Directory”:FRINT" 2» Directory sorted by name”
MT" Zr Directory sorted by track":FRINT
UT"Typa 1, Z, or 2 and depress RETURM ":Z%
FCFTIANDZSC F2YANDZ S P I THENRUN
: FZs="2"THENZ $="N"

+H

-
ey

At 1 IF MIDS(AS,1,1)="Y" THEM DV=1
Zg="N" OR Z$="T"
"THEN IT

T
T "LIST OM LINEFRINTER IMNSTEAD OF DEVICE #";DV;:
T

THEN 18000
WILL BE UNSORTED"

REM

REM
REM -

FRINT #DV : PRINT #DV, "0S-&5D
FRIMT #DV," —— DIRECTORY —--=" : FPRINT #DV
FRINT #DV,"FILE NAME TRACE RANGE"
FRINT #DV," "
DISKE ! “"CA ZE79=12,1

GOSUE 11000

DISK ' "CA ZE79=12,2 .

GOSUE 11000

IF Zz="N" THEM GOSUR
IF Z%="T" THEN GOSUE
FOR I=0 TO AV-1
FRINT #DV,NM$(I);TAB(LIZ) ; TOX(I) 3 TAR(LS) ;=" TAB(17) ; TO%(I)
NEXT I
FRINT #DV :
END

REM

REM

REM

FOR I=FM TO FN+Z48 STEF B

IF FEEK (I)=35 THEN 11130

NE=CHR$ (FEEK (1)) +CHR$ (PEEK (I+1)) +CHR$ (FEEK (1+2)) +CHRS (FEEK (I+3))
ME (AY) =NS+CHRS (FEEEK (I+4)) +CHR$ (FEEE (I+5))

TO% (AY) =FNA (FEEE (I+&))

T?% (AV) =FNA (FEEE (I+7))

AV=AV+1

NEXT I

RETURN

REM

REM

REM

REM

M=AV—-1

- ru

VERSION Z.73

20000
21000

FRINT #DV,54-AV; "ENTRIES FREE OUT OF &4" : FRINT #DY

; M=INT (M/2)

IF M=0 THEN RETURN
164

21120

THEN

L)

.
Fu

L TO

(I

LY
fu

T

IF

VALY =TH

G

: T
1 T?

}

!
[

T

s TO% (1)
?%(I)=T

Z=TOWN (T,

T
[

(Li=T%

Ly
fn

Y
:

s
A

@

,

i

21080

—~
a—

J+1

J=

21120

21025

=
w
€I
-

_—
EAY)

172

1
Py S

GOTO

21040

~
-

R

114

]

165

RANLST

This utility program may be used to list the contents of a
random access file either a single record at a time or in groups
of contiguous records. The program assumes 128 byte records. To
list a random file, type:

RUN "RANLST"

The program output and the kind of %pput you may enter in
response are as shown below. Any unacceptable response will result
in an error message and/or a repeat of the request for input.

RANDOM ACCESS FILE READ

- FILE NAME? -

Enter the name of the random access file to be listed.
EXAMINE SINGLE RECORDS OR GROUPS (S/G)?
Enter S or.G. If S is entered, the number of the single record to
be listed is requested.
RECORD NUMBER?

Enter the number of the record to be listed. (Records are numbered
from.zero through n.) The specified record is listed, then the
RECORD NUMBER questions is again asked. To terminate the program,
merely depress RETURN in answer to this question.

If G is entered, above, the range of record numbers to be listed
are requested.

7 FIRST RECORD?
Enter the number of the first record to be listed.
LAST RECORD?
Enter the number of the last record to be listed.
The specified records are listed, then the "SINGLE RECORDS OR

GROUPS" question is again asked. To terminate the program, merely

depress <RETURN>.
166

File name

File type

Location:

Length :

Buffers for:
Device %6:

Device %7:
Other :

: RANLST

BASIC

- 8" floppy specifications

Mini-floppy specifications
Track 25A

2 Tracks

YES
NO
NONE

Track 28

2 Tracks

YES
NO
NONE

Mini-floppy to 8" floppy program conversions

NONE

~3

(=]
[=}}

RANLST

) v} -

0o]

i . e,
m

= o] [N
o T, -
L i
18 48

Il
L
)

RECORD";R

A
R

"RECORD NUMEER';R

"FIRST

E

Sy
S bam”

A
NFUT
. AS

FRIN
INFUT

168

0

THEN 20
RS

TO
FRINT A%

PRt e F AN

-
LT

"LAST RECORD";R9

RO

"y
]

R
GET,R
INFUT #5,A%

FRIMNT

: R=

FO

240

-
e

AT
e,

DISk

0

—
20
2&0

~

NEXT R
G0TO

-

R

e
-

280

RENAME

This utility program may be used to change the name of any

file listed in the directory. To rename a file, type:
RUN "RENAME"

The program will display a title and prompt you for information
as shown below. Any unacceptable response will cause an error message

and/or a repeat of the request for information.

RENAME UTILITY

OLD NAME?

Enter the name of}the file to be renamed as it currently appears
in the directory. Theﬂérogram then displays:

RENAME "aaaaaaﬁ TO0? (aaaaaa is the o0ld file name)

Enter the new namé:for this file (one to six characteré, the first
being a letter). Thisiﬁew name will then appear in the directory in
place in "aaaaaa". |

The name will be changed and the utility program will end with

the BASIC prompt. For example,

RENAME UTILITY

OLD NAME? TEST
RENAME "TEST " TO? TESTER

0K

169

File name : RENAME

File type - : BASIC

Mini-floppy specifications

Location: Track 27
Length : 1 Track
Buffers for:

Device #6: NO

Device #7: NO
Other : NONE

8" floppy specifications

Track 22

1 Track

NO
NO
NONE

Mini-floppy to 8" floppy program conversions

5@ DISK! "CALL 2E79=08,1"

60 GOSUB1A@PP:IF FLAG=1 THEN DISK!"SAVE @8,1=2E79/1":END

78 DISK! "CALL 2E79=048,2"

80 GOSUB1A@MP:IF FLAG=1 THEN DISK!"SAVE 88,2=2E79/1":END

170

RENAME

3T R
FEI SR
ET R T
B b R g
b
P ibeai
.
FRIR
Fia
- ;
» INFU 5
qe= T 2
4% IF L 40
47 IF L Af=4s+" " 3 BFOTO 47
=Ty Ll
(S N 4 &
e t H— o, i R e T 3
&3 L=1 THEM LIZK ! "854 12,1=2E7%/1" : END
Toon 220
7 2.2
» — =, 1t A End T ™Y - " -
. L—l THEN DISK ! "Sa4 12,Z=2E79/1 EMD

i

FAS;CHRE (IS ;" MOT FOUMD IN DIRECTORY

[T S |

IF FILE MAME A% IS IM DIRECTORY RUFFER

I
l'f‘._-" IF CHR$(FEEK {J))< MIDE (A%, IJ-I+1,1) THEN 10100
OG&0 MNEXT J .
D070 FRINT "RENAME ";CHR$(Z4);A%$;CHRE(34); @ IMNPUT " TO";AMS
S IF LEN{ANS) & THEN 10070 .
O IF LEM(ANS) <& THEM AME=ANE+" " 1 GOTO 10080C
10082 IF MIDE(AN%, 1, 1)<"A" OR MIDE(ANS,1,1)»"Z" THEN 10070
10085 FOR J=I TO I+5 : FOKE J.ASCIMIDE (ANSE, J-I+1,12) : MNEXT J
10090 FLAG=1 : RETURN
10100 MEXT I
10118 FLAB=C ¢ RETURN

=
\J
-
o

.LHHQ..L.....HHH,_..

171

SECDIR

This utility program may be used to ocutput the number and size
of each sector on each of a specified range of tracks. To output a
sector directory, type:

RUN "SECDIR"

The program output and the kind of input you may enter in
response are as shown beiow. Any unacceptable response will result
in an error message and/or a repeat of the request for input.

SECDIR

USES 0S-65D'S DIR COMMAND TO PRINT OUT A SECTOR MAP
OF A GIVEN RANGE OF TRACKS

FIRST TRACK?
Enter any valid track number greater than zero and less than the total
number of existing tracks (76 for full size disks or 39 for mini-disks).
LAST TRACK?
Enter any valid track number greater than that entered for the first
track.
A sector map for the specified tracks will be output, then the
program will terminate. A sample of such is shown below.
SECTOR MAP DIRECTORY
TRACK 01
p1-85
p2-95
TRACK @2
p1-9B
etc.
0K
In the sample, track 1 has two sectors, both five pages in length.

Track 2 has one sector of 11 (hex B) pages.

172

File name : SECDIR

File type : BASIC

Mini-floppy specifications 8" floppy specifications
Location: Track 28 Track 23
Length 1 Track 1 Track

Buffers for:

Device #6: NO NO
Device #7: NO NO
Other : NONE NONE

Mini-floppy to 8" floppy program conversions

4@ IF TA<1l OR TP>76 THEN 340

686 IF T9<TH OR T9>76 THEN 50

173

SECDIR

FRIMT

XA

=T

iy
AN

[]

e =
b= O
= e

™
i

]
!

IMF

"LAST TRACK"; TS

HEM S0
M&aFE

"SECTOR

7

FEERT

T

CINT

s FRI

Yy
i

IRECTO

s
o

¥

In

(S

L

10+ TS
"+RIGHT$(STRE(I),

C

TG 1

b}
—

~
o

‘DIR

FRINT

o=

MEXT I

150

174

SEQLST

This utility program may be used to list the contents of a
sequential file. A sequential file is one in which all entries
within the file are contiguous with no intervening gaps. To
list a sequéntial file, type:

RUN "SEQLST"

The program output and the kind of input you may enter in
response are as shown below. Any unacceptable response will result
in an error message and/or a repeat of the request for input.

SEQUENTIAL FILE LISTER
TYPE A CONTROL-C TO STOP
FILE NAME?
Enter the name of the sequential file to be listed.

The specified file is listed until you type a CONTROL-C or the
end of the file is reached in which case the program terminates with
the following end-of-file message:

ERR #D ERROR IN LINE 100
oK

175

File name : SEQLST

File type : BASIC

Mini-floppy specifications 8" floppy specifications
Location: Track 29 Track 2u4
Length : 2 Tracks 2 Tracks

Buffers for:

Device %#6: YES YES
Device #7: NO NO
Other : NONE NONE

Mini-floppy to 8" floppy program conversions

NONE

176

SEQLST

fonde ol iR L
PO L

TO

NTROL-C
"FILE NA

£
o

FE"; A%

sy
~

177

TRACE

During the development of any new program, frequent testing
is required to insure that the program is actually performing the
desired tasks. The process of correcting the program problems
(bugs) is called debugging. The TRACE utility is an aid for de-
bugging BASIC programs, which displays the line number of each
line of the BASIC program as it is being executed. This gives the
programmer useful location information about any 'bugs' that he
might be trying to cure.

This utility program may be used to enable or disable a line
number trace for BASIC programs. To trace a BASIC program, type:

RUN "TRACE"

The program will display a title and then prompt you for informa-
tion as shown below. Any unacceptable response will cause the request
for information to be repeated.

TRACE UTILITY

WHEN BASIC'S TRACE FEATURE IS ENABLED, BASIC WILL PRINT OUT EACH
LINE NUMBER OF THE PROGRAM BEFORE IT IS EXECUTED.

ENABLE OR DISABLE (E/D)? ‘
Enter E to enable the trace, or D to gisable the trace. If the
trace is being enabled,
160
0K
will be displayed. The "168" is a trace of the last line of the
‘utility program. Now run the program you wish to test with line
number tracing.
Note that the execution of any program (including utility

programs such as this one) will cause the line number of the line

currently being executed to be displayed, along with all other

178

information displayed by the program, while the trace is enabled.

This should not adversely affect the operation of the program.

File name : TRACE

File type : BASIC

Mini-floppy specifications 8" floppy specifications
Location: Track 31 Track 286
Length : 1 Track 1 Track

Buffers for:

Device #6: NO NO
Device $7: NO NO
Other :+ NONE NONE

Mini-floppy to 8" floppy program conversions

NONE

180

TRACE

=l =
== t
= 4
=4 1] .

<+

L FR
EXE
HEL+4

T
T
i

c
I
DT W

PRy R e R R

=
¥
T

! 1

3 1 1%

. (11 =i
£ L Hm.. 1
. 03 L L

P oL L e

[
Cr
=Y
R
=1
=8

(&) - i =
L gt]
_._M 4 b .

FOREL+1,218:POREEL+2,

Tl
q tsmm

"QREL

REM

]
:

b

S0

-~
i
N

<EL+4,

[2N

SRR,

wi)

Rl I

FOKEL+

INE

[

181

POMEL+1, 144: FOKEL+

2 g

e
PR

1

E

.

ELE
FO:

&I
11

:

=2

EM THIS MUST ALL EBE DOME AS ONE
EM

J
'
h

L

REM
REM

R

3
0

1
220
2350
bt

]
-

=T
o “a®

ZERO

This utility program is used to zero the contents of a data
file. This fills the entire data file with null (hex 88) characters
which are ignored (skipped over) during BASIC input. You may find
it advantageous to "zero" random data files before entering data into
them in order to provide a "background" that is "transparent" (not
seen) by a BASIC INPUT command. To zero a file, type:

RUN "ZERO" |

The program output and the kind of input you may enter in response
are as shown below. Any unacceptable response will result in an error
message and/or a repeat of the request for input.

FILE ZERO UTILITY

COMPLETELY ERASES THE CONTENTS OF A DATA FILE

PASSWORD?
Enter PASS.

FILE NAME?
Enter the name of the file to be zeroed. The program continues with:
IS IT A NORMAL 12 (8 for a mini-floppy) PAGE DATA FILE?
Enter YES or NO. If NO is entered, the following message is output:
THEN HOW MANY PAGES PER TRACK?

Enter 1 through 12 (8 for a mini-floppy) to specify the number of 256
byte pages per track in the file.

The file will be zeroed and the program will terminate.

182

File. name : ZERO

File type : BASIC

Mini-floppy specifications 8" floppy specifications
Location: Track 32 Track 27
Length : 2 Tracks 2 Tracks

Buffers for:

Device #6: YES “ YES
Device #7: NO NO
Other : 18 BYTE OBJECT FILE 18 BYTE OBJECT FILE

Mini-floppy to 8" floppy program conversions

230 DATA 160,0,162,12,152,153,126,58,200,208,250
37ﬂ DISK!"CA 2E79=08,l":GOSUBlﬂﬂﬂﬂ

390 DISK!"CA 2E79=88,2":GOSUB14A30

495 PG=12

4L1g ?:INPUT"IS IT A NORMAL 12 PAGE DATA FILE";AA$
L4pg IF PG<1l OR PG>12 THEN 438

183

190

‘‘‘‘‘‘

L eyt
Z.oL)

240
2EO
240
280
285
290
00
310
. IZ0
E30

340
330
Z&0
Z70
Z8C
390
430
4035
4140
420
430
440
4350
480
490
495
S00
Sl

—
SZ0

1 5000

EM FILE ZERQIMG UTILITY OF OS-&3D VERSIOM Z.0
Er

EM-TO ZERD OUT DATA BUFFER: EXECUTE THIS;

i

REM ZETE ACGD0 ZERQ LDY HO

FEM ZES0 AZO8 LDX #3

REM ZEBZ 28 TYA

REM ZEBT PRTEIZ ONE =STA 2IZTE,Y OR £IATE
REM ZEB& OB IMY

REM ZEBT DOFA BME OME

REM ZEB? EEBSZ INC. ONE+Z2

REM ZEBC CA DEX

REM ZERD DOF4 EME ONE

REM ZEBF &0 ' RTE

REM

DATA 1&0,0,1582,8,152,153, 125,58,
DATA 238,133, 46,202,208,244, 94
FORI=11902T011919: READD: FOKEI, D: NEXT

IFFEEK (8999) =SOTHENFOKE 1905, S0
FOKER9SS, 126: FOKEBSSS, 463 X=USK (X) : FOKES9SS, 212:
DEF FNA{X)=10KINT(X/1&) +X-16%XINT(X/1&)
FRINT:FRINT"FILE ZERO UTILITY":PRINT

200,208,250

FRINT"COMFLETELY ERASES THE CONTENTS OF A DATA
FRINT
INFUT "FASSWORD";As$: IF A% ="PASS" THEN END

INFUT "FILE NAME";AS%
IF LEN(A%) *6 THEN IZT0
IF LEN(A%) <& THEN As=As+" Y 3
Fr=11897
DISK!'"CA

GOTO 350

2E79=12,1":GOSUER 10000
IF FL< >0 THEN 405
DISK!"CA ZE72=12,2":
IF FL=0O THEN FRINT
FG=8

GOSUR 10000

FRINT: INFUT"IS IT A NORMAL 8 FAGE DATA FILE":AA

IF MID$S(AA%,1,1)="Y" THEN 450

INFUT "THEM HOW MANY FAGES FER TRACE";FG
IF PG<1 OR PG>»8 THEN 430

REM

FOR I=TO TO T9

TE=RIGHTS (STRE(I+100) , 2)
JE="ITATE": IFFEEK (899%)=50THENJI$="327E"
DISK!"SA "+T$+", 1="+Js+"/"+RIGHT$ (STR$(FG), 1)
MEXT I

EMND

REM

"X¥ FILE NAME NOT IM DIRECTORY

FOKES9S4, 34

FILE"

&
=)

X" EMD

10010
10020
10030
10G40
10050
10080
1GO70
15080
12090
10100

REM FIND A% IN DIRECTORY

REM

FOR I=FN TO FN+248 SBTEF

B$= nu

FOR k=1 TO I+5 :
IF As<xBE THEN 10090
TO=FMA(FEEK {I+&)) :

FL=1 : RETURN
NEXT I
FL=0 : RETURN

Be=RBs+CHR$ (FEEK (F)) =

8

T9=FNA(FEEE (I+7))

184

NEXT K

ASAMPL

Tutorial disk 5 contains a file named ASAMPL. This file holdg
a sample assembly language program which cannot be loaded while BASIC
is in memory. If you are interested in assembly language programming
and would like to examine this file, choose option 9§ from the Tutoriél

Disk 5, then enter the command EXIT. The DOS prompt, A* will appear.

Enter ASM to load the assembler/editor. When the '.' prompt appears,
load ASAMPL by entering "!LO ASAMPL'. The '.' prompt will again
appear. To list the program enter 'P'. Next, enter A3 to assemble

and store the program. Finally run the program by entering '!GO 1688°'.
_ The message -

THIS IS A SAMPLE PROGRAM

should appear, then the system control is transferred to DOS as

indicated by the A* prompt.

As indicated earlier, the loading of ASMAPL used memory which
contained BASIC. In order to return to BASIC, then, BASIC must be

reloaded by entering BA. When this is done, the message

0SI 9 DIGIT BASIC
COPYRIGHT 1977 BY MICROSOFT
8601 BYTES FREE

will appear followed by the 0K prompt.

185

File name : ASAMPL

File type : ASSEMBLER

Mini-floppy specifications 8" floppy specifications
Location: Track 34 Track 29
Length : 1 Track 1 Track

Buffers‘for:

Device #5: NO v NO
Device #7: NO NO
Other : NONE NONE

Mini-floppy to 8" floppy program conversions

NONE

186

'“"_J {r

sl
D

v 0 [0

,‘
.-
=

.

-
[y
N

bt b b ek b et
P

Jh gl ol i B

-

L)

140
144
14¢
140
1440
144
130
140
140
140
144

43
14¢
144G
144G
1440
144G
140
143G
140
148
140
134G
160

70
180

.o
LR
T

sROl=

207 3=

4
1ot

1500
146073
1504
1&07
1608
1&09
1504
1&0R
15G0C

”QQA“D
So7Io
,.' —d—

94
48
49
5=
20
49
5=
20

1800 20

SOE
160F
1510

o

[S N T Yy ST

bt et pb bt pe bk b ek b bk p b
g I O N+ I o T O o S 1 - Y Y N T

LA ¥ S ¥ S v S o v S VA O I

[y
- o
-
mo

bt b e bt

[y
o

[y
S|

162%

41
=0

—ard

.J -t
41
4D
S0
4c
a5
20
S0
52
aF
47
52
41
4D
[a18]
ZOSATD
4CS12A

ASAMPL

1 SAMFLE ASEEMEBLY LAMNGUAGE F
5 EXTERMNAL LARBELS

H

CRL = $2D&A

JSUJD = FIZAIL

STROUT = $2D73

Y

¥ = $1500

START JSR CRLF
JER ETROUT

LEYTE "THIS IS A SAMFLE FROGRAM™,

JSR CRLF
JMFP 0S&SDI

- EMD

187

ATNENB

Tutorigl disk 5 contains a program called ATNENB which is used
to enable or disable BASIC's arctan function and the 0S-85D V3.3
print extensions. Due to memory contraints in V3.3, only one of
these features may be enabled at a time. To enable the features
you desire, run the program ATNENB. You will be given an option
of which feature you want. After making your selection, the system
will configure itself to your needs. Use of the 0S-65D V3.3 print

extensions will be explained in Chapter 6.

188

File name

File type

Location:

Length :

Buffers for:

Device %6:
Device 27:

Other

: ATNENB

BASIC

Mini-floppy specifications

8" floppy specifications

Track 35

1 Track

NO
NO
1 PAGE OBJECT FILE

Track 30

1 Track

NO
NO
1 PAGE OBJECT FILE

Mini-floppy to 8" floppy program conversions

NONE

. 188

ATNENB

10 PRIMTCHRE(Z7) sCHRE (21 BEM run wnder 0S-&45D YILIT only
S0 OPRIMT #%d ATH wvs. PRINT extenszicons ¥EX":SRINMT
30 PRINT"Only cne may be enabled at a time!";ERIMT
FRINT"Enter the number of vour szelecticn:”
FRINT: FRINT '
FRIMT"1:> Enable ATN function
FRIMNTY"ZY Enable FPRINT extenszicnhns"
FRIMT:PRINT
INFUT"Your choice (1 or 2) "iv$
IF Cyax"1") AND (ywE0:"2") THEN SO0
S0 y=Yal(y$) 1 t=8278: f=14974: ct1=FEEK (2072) : FOKE Z073,%&
o255 s
530 IF yE="2" THEM FOR i=1 TD 9:READ a:NEXT:f=f+110
5S40 @

350 FOR i=0 TOQ 109:a=FEEK (f+i):FOKE t+i,a:NEXT i
S50

S7C¢ a=0S58:READ by,c :FPOKE a.b:FOKE a+l,c

573 a=082Z8:READ b,c,d:FPOKE a,b:POKE a+l,c:FPOKE a+2,d
=80 a=2&84Z:READ b,c :FOKE a.,b:FQKE a+l,c

85 a=B&4Z:READ by,c :FOKE a,b:FOKE a+l,c

5Q0 =

&0O0 FOKE 2073,ctl:as="ATM function"

&H10 IFyE="2" THEN a$="FRINT extensions"

20 FRIMT:FPRINT:FRIMTas" enabled."”

EMD

"
a

DATA 1&%,033, 065, 084,206,2346,028,205, 012
DATA 088, 032,010,010,138,127,047, 178, 032

130

‘COLORS

Tutorial disk 5 contains a program called COLORS which ma§ be
used to aid in the adjustment of your color monitor. When the
program COLORS is run, a test pattern is displayed on your video
monitor. The pattern shows all sixteen colors that can be produced
by your Challenger computer. You may then adjust your monitor using
these colors as a guide. To exit the program, depress the SPACE BAR

on the keyboard.

191

" File name : COLORS

File type : BASIC

Mini-floppy specifications 8" floppy specifications
Location: Track 36 Track 31
Length : 1 Track 1 Track

Buffers for:

Device #6: NO NO
Device $7: NO NO
Other : NONE NONE

Mini-floppy to 8" floppy Program conversions

NONE

192

Tl
ANE LR

Gl = T]

s

1130
1140
1130
20000
20010
20020

20070

WL T e 1T

" Or YE
SRS B 4 Y19

7 INY
" gr EBEL
vogx INY
" 10> FU
"olix TNV
12> 8k
13 INY
14> EL
DaTa" 15> INY
FRINT"
DISK!"GO 233
FRINT! (28);
RUN"BREXECK

ER B e R e T R R

e ot it e o Jut i

T

T I
—

b N e O i - e e e R i S I

oo Dg

CQUERMNCE TEST FROSRAM X

MTHIZET ;

-

=

=1TOZ2

V{ZZe PU{EL, IS (2
YiEf=a%:MEXT

LLOW ' "

FERTED YELLDW

ERTED OLIVE GREEN "
ue "
ERTED BLUE "
RPLE "
ERTED PURFLE "
Y BLUE "
ERTED SkEY EBLUE "
ACH "
ERTED BLACK (WHITE) “
HIT THE SFACE BAR TO ENMD THIS PROGRAM "3
&' IFPEERA(Q0S9) < +T2THENZOGLO

AT
CaTa" Z2» RED "
G * 3 IMVYERTED RED "
i . 4> GREERM "
i " T INVERTED GREEN "
D " & OLIVE GREEH "
B

o

183

MODEM

This is a BASIC program which will set up a machine
code modem routine designed for use with a standard modem
(with RS-232). The routine will operate with the modem ports
on the Ohio Scientific Cl1lP, C4P and C8P computers. The 638
and UTI board modem ports are exceptions to this and are not
supported by this routine.

Under 0SI 65D V3.3 (but not under V3.2 or ROM) input
and output are directed through the Hazeltine iuzo emulator.
Thus, you will appear as a Hazeltine terminai to the computer.
Some}142ﬂ codes have been altered slightly to allow manipu-
lation of 0SI's color video. Others have been altered to
Facilitate use with 0SI's Microsoft BASIC. Additionally,
some codes have been added to support features the Hazeltine
does not. In all cases, the changes to the Hazeltine command
set have been done in a way to maximize software compatibility

between the serial and video systems offered by Ohio Scientifiec.

194

There are two lcoccal commands:

CONTROL-D -~ Toggles the output back and forth between Full
and Half duplex mode. (Sometimes echoed as a
comma.)

CONTROL-B - Returns to BASIC if the routine is operating on
a cassette system, or runs BEXEC* if it is
operating on a disk system, effectively
terminating the call.

Shift-0 is still used to output a delete character code.
Since ROM BASIC doesn't process a backspace, the previous
character will be omitted from the text but not on the
video screen. The delete code will be displayed as a graphic
backspace, a forward space and another graphic backspace on
the ROM BASIC computers.

Sﬁppose you want to call the local computer club
computérized bulletin board, phone number (XXX-XXXX). You

would;

1. Connect your modem to your computer via RS-232
(as discussed in your user's manual).

2. Type, RUN"MODEM"<RETURN>.

3. Dial up the bulletin board and connect the telephone
to your local modem.

4. When you are through with modem operations, sign off
using the remote's protocol and type <CTRL-B>.

5. Physically hang up the telephone to complete call
termination.

185

File name : MODEM

File type : BASIC

Mini-floppy specifications

8" floppy specifications

Location: Tracks 37-38
Length : 2 Tracks
Buffers for:

Device #6: NO

Device #7: NO
Other : NONE

Track 32

1 Track

NO
NO

NONE

Mini-floppy to 8" floppy program conversions

NONE

196

MODEM

S{FB00) =TETHENFS=2
: IZTHENFORI=1T048: REA EXT:
READF,C(1),C(2) : IFFTHENFOKEF, C(FS) : GOTOS

S0

201G

2070

f-B:;

Q0

Z0

-l-ll‘\.).J

11
-tiﬂ()
IO

RITSIN]

E(nlslal
TOO0e
2010

ZO2O
Z03 20
Z040
A000
4010
{320
O30

TV TN

DATA 9734,31,43 *

DATA 9725,4,10

DATA 9738,22.39

DATA 80O, 72.64

DATA 9&3&,101,?3

DATA 275648,101,75

DATA Q770,101,732

DATA %213 .101. .

DATA 9\51’-’ I.A.qu :::

DATA 9783 .l_u. 23

DATA 482,955,164

DATASS2946,0,1,0,0,0

FORI=0+FTOZ1&6+F: READX

IFX=—1THENX=INT(I/254&)

FOEEL, X NEXT ’

RETURN

DATA 22,.13,37,173,0,240,74,144,6, 173, 1,.240,32,467,35
DATA 32,93,-1,240,23 ,Lal.z._4u.22.201 4,240,21,72,32
DATA &7,35,173,0,240,74,74,144,249,104,141,1,240,7&, 37
DATA -1,7&,13,37,173,63,-1,73,12,141,63,-1,208, 225, 138
DATA 72,152,72 '

DATA qh.¢41 lq.h.lﬂ.* » 10,56,237,19,2,141,19,2, 1488, lu

DATA 74,240, 49 136,200, 74 144,252,208, 4 :.~_4 Iug.:ﬁT.:EZ.ﬁUg
DATA 21,2,208,38, Hé.;O.Z._4U.4J.icu.g.*ah._:u,:u:,:us 253
DATA 1 u‘:._'JB 4\.;.24’:1.\.” ..f- 3&.4“.«..!... l-fbl.-’o_q.s‘.’lg.'—'5.;4‘-’,_!45 1&0
DATA 1Q""“'“1“"*"-4“ 4‘-’! 1‘-'9 411::&2-1411:1!21 1(:»9-2‘ 141

DATA Lu._.‘uu.dc.165.lqu._vﬁ._b.Z.EUS.;.léE,14,142,20,2
DATA 141,22,2,1469,1,.32,190,252,32,207,252,74, 144,323, 76
DATA 143.253.208,194,160.32.’6 1ox.‘q4.1c,.U.:o.18-.257
GOSURSGOC

IFY=4THENFOKEB?SS, 34: FOKERSSE, B82: F=210245: GRTO1S00
F=34&: GASUR 1 S00

FOKES46, 44: FOKES?2, 924

FORESS?, 251 PDPE’cO.&.POHE57$._51 FOKES?7,2

PDPE“&Q 41:FPOKET 127 :POKET S5, 76: FORE7 56, 45: POKET7 47, 191
PDF_;*._4 rDFElS._.RETURN ’
SOSURTOO0

FOEEF+55, 141 : POREF+&6, 0: POKEF+&7, 223

POKEF+568, 174: POKEF+469, O: POKEF+70, 223

FOREF+193,141: PDhEF+1°4.u-DDhEF+195.:23

197

DATA 169,1,32,190,252, 32, QUQEEZ(EGB.SQ1ﬁqzn8424d1~40'ug

DATA 74,144,9,42,224,33,208,243, 149,27,208,33,32, 200,253

198

COMPAR

Diskettes can be compared on a dual drive system as follows:

Place one disk in drive A and one in drive B.

Choose option 9, then enter
EXIT

The A* prompt will appear.
Enter
CA 0288=33,1 (for 8" floppies)
or

CA P92806=39,1 (for 5" floppies)
then enter

CA 2888=39,2 (for 8" and 5" floppies)
Start running the program by entering
GO 0208

The disk COMPAR utility menu will appear on the screen.
Select option 1.

Answer the sequence of questions so that the comparison
will be made from drive A to drive B and over the range
of tracks you wish to compare.

As each track is compared, its track number and
sector specifications will appear on the screen.

If any differences occur in a track, they will be
listed with drive A on the left and drive B on
the right, as follows:

87

1

gopp 7B 7C
pad1 s 949
P18 96 87
g8

1

199

This shows three differences on track 7, sector 1.
The first, second, and seventeenth bytes on this
track/sector differ. The compare program found a
7B, B85, and 96 hex. on drive A and a 7C, 89, and
87 on drive B at these disk addresses.

200

File name : COMPAR

File type : OBJECT CODE

Mini-floppy specifications 8" floppy specifications
Location: Track 39 Track 33
Length : 1 Track 1 Track

Buffers for:

Device #6: NO NO
Device 27: NO : NO
Other : NONE NONE

Mini-floppy to 8" floppy program conversions

NOT TRANSFERABLE

201

Appendix 2

ASM

BASIC

CALL NNNN=TT,S

D9

DIR TT

EXAM NNNN=TT
GO NNNN
HOME

INIT

INIT TT
I0 NN,MM

10 ,MM

I0 NN
LOAD FILNAM
LOAD IT

MEM NNNN, MMMM

DOS Command Summary

LOAD THE ASSEMBLER AND EXTENDED MONITOR.
TRANSFER CONTROL TO THE ASSEMBLER.

LOAD AND TRANSFER CONTROL TO BASIC.

LOAD CONTENTS OF TRACK, "TT" SECTOR, "S"
TO MEMORY LOCATION ''NNNN".

DISABLE'ERROﬁ-Q. THIS IS REQUIRED TO READ
SOME EARLIER VERSION FILES (V1.5, V2.9).
(on 8" systems only)

PRINT SECTOR MAP DIRECTORY OF TRACK "TT".
FOR EACH SECTOR, THE NUMBER OF PAGES IS GIVEN.

LOAD THE ASSEMBLER AND EXTENDED MONITOR.
TRANSFER CONTROL TO THE EXTENDED MONITOR.

" EXAMINE TRACK. LOAD ENTIRE TRACK CONTENTS,

INCLUDING FORMATTING INFORMATION, INTO
LOCATION "NNNN".

TRANSFER CONTROL (GO) TO LOCATION "NNNN".

RESET TRACK COUNT TO ZERO AND HOME THE CURRENT
DRIVE'S HEAD TO TRACK' ZERO.

INITIALIZE THE ENTIRE DISK. T.E. ERASE THE
ENTIRE DISKETTE (EXCEPT TRACK §) AND WRITE
NEW FORMATTING INFORMATION ON EACH TRACK.

SAME AS "INIT", BUT ONLY OPERATES ON
TRACK "TT".

CHANGES THE INPUT 1/0 DISTRIBUTOR FLAG TO
"NN'", AND THE OUTPUT FLAG TO "MM".

CHANGES ONLY THE OUTPUT FLAG. (See page 5u)
CHANGES ONLY THE INPUT FLAG. (See page 5u4)

LOADS NAMED SOURCE FILE, "FILNAM" INTO
MEMORY . ‘ :

‘LOADS SOURCE FILE INTO MEMORY GIVEN STARTING

TRACK NUMBER "TT".

SETS THE MEMORY I/0 DEVICE INPUT POINTER TO
"NNNN'", AND THE OUTPUT POINTER TO "MMMM".

202

?UT FILNAM SAVES SOURCE FILE IN MEMORY ON THE NAMED DISK
FILED "FILNAM".

PUT TT SAVES SOURCE FILE IN MEMORY ON TRACK "TT" AND
FOLLOWING TRACKS.

RET ASM RESTART THE ASSEMBLER.

RET BAS RESTART BASIC.

RET EM RESfART THE EXTENDED MONITOR.

RET MON- : RESTART THE FROM MONITOR (VIA RST VECTOR).

SAVE TT, S=NNNN/P SAVE MEMORY FROM LOCATION ﬁNNﬁN" ON TRACK "fT"

SECTOR "'S" FOR "P" PAGES.
SELECT X) SELECT DISK DRIVE "X'" WHERE "X" CAN BE;

A, B, C, OR D. SELECT ENABLES THE REQUESTED
DRIVE AND HOMES THE HEAD TO TRACK 8.

XQT FILNAM LOAD THE FILE, "FILNAM" AS IF IT WAS AN OBJECT
: FILE, AND TRANSFER CONTROL TO LOCATION $3A7E
(317E on 8" Vv3.2; 327E on 5" v3.2)
XQT TT . LOAD THE FILE BEGINNING ON TRACK "TT" AS IF IT

WAS AN OBJECT FILE AND TRANSFER CONTROL TO
LOCATION $3A7E (317E on 8" v3.2; 327E omn 5" V3.2)

NOTES:

= ONLY THE FIRST 2 CHARACTERS ARE USED IN RECOGNIZING A COMMAND.
THE REST UP TO THE BLANK ARE IGNORED.

- THE.LINE INPUT BUFFER CAN ONLY HOLD 18 CHARACTERS INCLUDING
THE RETURN.

- THE COMMAND LOOP CAN BE REENTERED AT $2AS1.

- FILE NAMES MUST START WITH A "A" TO "Z" AND CAN BE ONLY
6 CHARACTERS LONG.

- THE DIRECTORY IS ALWAYS MAINTAINED ON DISK. THIS PERMITS THE
INTERCHANGE OF DISKETTES.

- THE FOLLOWING CONTROL KEYS ARE VALID:

CONTROL - Q CONTINUE OUTPUT FROM A CONTROL-S.
CONTROL - S STOP OQUTPUT TO THE CONSOLE. -

- COMMANDS CAN BE USED IN THE BASIC MODE IN THE FORM DISK!"DOS"
WHERE DOS REPRESENTS ONE OF THE COMMANDS ABOVE. :

203

Appendix 3 BASIC Command Summary

The entries are organized alphabetically according to Keywords used.

Each entry consists of the general syntax, examples where appropriate,
and a brief descriptionm.

[n]
(*)

(+)

(2)
(3)
{n}
ae
Te
se
dos
e
v

c
nv
iv
sv
niv
rae
FILE
loc
sn
dev

The following notation is used:

see page n of the 0S-65D Tutorial and Reference Manual (this manual)
cannot be used in the immediate (direct) mode; must be used with

a program statement number.

can only be used in the .immediate (direct) mode; must not be

used within a program. '

not available under 0S-65D V3.3.

available only under 0S-65D V3.3.

see page n of the 0SI BASIC Reference Manual

a numeric constant or arithmetic expression (see {3})
a logical constant or relational expression (see {4}
a string constant or expression (see {4}) '
a 65D Disk Operating System (DOS) command.

a constant or expression. .

a variable

a constant

a numeric variable

an integer variable.

a string variable

nv or iv

re or ae

disk file name

memory location address

program statement number

an 0S-65D deyice number (see [54])

P

ABS ABS(ae)

A function. . Returns the absolute value of its
argument. {19} - :

AND re AND re '
IF X<15 AND X>=@i THEN 14¢
A bitwise Booléan AND operator . re AND re
will be TRUE only when both of the operands -
have the value TRUE. {4} -

AsC _ AsC(se)
ASC(X$) _ - ASC("BIG") ,
A function. Returns the ASCII vyalue in
decimal of the first character in.the argument

" {20}

ATN ATN(ae) " (-1<ae< 1)
ATN(@.431) .
A function. Returns the arctangent of the
argument {20} (2) C188]

204

CLOSE

CONT

Ccos

DATA

DEF FN

DIM

DISK!

DISK CLOSE
DISK FIND
DISK GET
DISK OPEN
DISK PUT

EDIT

CHR3(ae) (P<ae< 255)

CHRZ(66)
A function. Returns the character whose decimal
ASCII value is the greatest integer less than or
equal to the argument. {21}.

CLEAR :
Clears the program variable table and restores
the data pointer (*) {17}

DISK CLOSE, dev (dev =6 or dev =7)
Closes a disk file that has been previously
opened. {28} C15]

CONT :
Restarts as program whose execution has been
interrupted by a STOP or END statement or a
CTRL-C. {15} (**)

COS (ae)
A function. Returns the cosine of thg.
argument. {20}

DATA ¢, c, €, ...

DATA 1.7, "BIG", 173, -812
Establishes a list of constants to be input
by the program via the READ statement {63}

DEF FNav(nv) = ae.

DEF FNA(X) = X*7+3
Defines a single variable function for future
use within the program segment {23} (%)

DIM v(ae, ae,...)y---

DIM A(20), B3#(6,7)
Declares the variables specified to be
subscripted. {18},

DISK! "dos"
DISK! "I0.5,6"
DISK! "LOAD FILE"

-Permits 65D DOS commands to be used within a

BASIC program. [2¢27

see CLOSE

see FIND

see GET
see open
see PUT

EDIT sn
EDIT 149
Returns line sn for editing. The short
form is ! sn. (*%*) [711 (3)
205

END

EXIT

EXP

FIND

FOR

GET

GOSUB

GOTO

END .
Terminates program execution {13}

EXIT
Transfers control to the DOS mode {28} [531 (*%)

EXP (ae) ae< 88.$29619

EXP(41.662)
A function. Returns e = 2.71828...raised to
the power equal to the value of the argument.

"{19} _

DISK FIND, se

DISK FIND, "BIG" ,
Beginning at current file pointer locatiomn, the
data file is searched for the specified string, the
pointer is set to the end of the field in which
it is found. An unsuccessful search results in
a #D error. [961 (3)

see DEF FN

FOR niv = ae TO ae
FOR niv = ae TO ae STEP ae
FOR XZ = 15 TO. 45 STEP 5
Opens program .loop. End of the loop is
indicated by the statement NEXT or NEXT niv.
STEP is used to define an increment other than
1 for niv for each iteration of the loop. In
the example, the loop is executed 7 times {12} (%)

FRE (X) X is a dummy variable
A function. Returns the number of bytes of memory
in the workspace that are unused. Save the program

before using FRE. {17}

DISK GET, niv
DISK GET, 15
Brings the record number niv from the disk
to buffer #6 and sets the 1/0 pointers to the
beginning of the record {28} [171

GOSUB sn

GOSUB 1990
Program control is transferred to statement number

sn. When the statement RETURN is encountered,
control goes back to the statement following sn

" {23}

GOTO sn
GOTO 1999

"Program control is transferred to statement

number sn. {111}

206

IF

INPUT

" INPUT#

LEFTS

LET

LIST

LIST#

IF rae GOTO sn

IF rae THEN sn

If the value of rae is TRUE (arithmetic expressions
are considered to be TRUE if they have a value
other than §) program control is transferred to
statement sn. :

IF rae THEN S (S is a program statement)

If the value of rae is TRUE, statement S is
executed {11}

INPUT V, V, ...
INPUT X, Y, AS
Prompts for keyboard input to the specified

variables {6} 1*!

INPUT#dev, V, V, ...

INPUT#6; A, B, Q$
Input is from device number dev to the
specified variables. {9} C13] (®

INT (ae)
INT (-16.8)
A function. .Returns the greatest integer less

‘than or equal to the argument {19}

LEFTS(se, ae) ae >P

LEFTS(“ABCDE" 3)
A function. Truncates ae to an integer and
returns that leftmost number of characters from
string se. In the example, YABC" is returned.

“{21}

LEN(se)

LEN(A$)
A function. Returns the length of the string
se {21}

LET V=-e
LET A$ = "BIG"
Assignment statement. Keyword LET is optional.

{6}

LIST

LIST sn-sn
LIST 199-209
LIST - 1909
LIST 200-

Lists the program in the workspace between the two
specified statement numbers. -1f the first (second)
statement number is omitted, the default is the
beginning (end) of the program. {15}

LIST#dev:

LIST#4
Same as LIST, but the listing is sent to device
number dev. {9, 15}

207

LOG

MIDS$

NEXT

NOT

ON

OPEN

OR

PEEK

POKE

POS

LOG (ae) ae>p

LOG14.8
A function. Returns the natural logarithm (log
to the base e) of the argument. {19}

MID$(se, ae, ae) first ae>f, second ae=f

MID$ ("ABCDEFG", 2, 3) .
A function. In the example, A string of length 3
starting at position 2 is returned; i.e. "BCD".
If the second ae is omitted, the sting returned
goes to the end of se. {21}

NEW
Clears the workspace to prepare for creatiom of
a new program {15}

see FOR

NOT re
NOT (A>5)
A bitwise Boolean NOT operator. Reverses the

truth value of the operand re. {3}

NULL iv i< 8
Inserts iv zeros at the beginning of each line as
it is stored on tape. {27} {2}

ON ae GOTO sn, sn,...

ON ae GOSUB.sn, sn;...

ON a GOTO 1#¢; 209
Depending upon the value of ae (truncated to an

integer) program control passes to the ae-th
statement in the list of statement numbers

‘{12, 24}

DISK OPEN, dev, "FILE" (dev = 6 or 7)
Opens the disk file FILE for sequential (dev=6 or 7)

or random access (dev=6 only) {28} [15]

re OR re

IF A >5 OR A <2 THEN 149
A bitwise Boolean OR operator. re OR re is
FALSE only when both of the operands are FALSE.

{3}

PEER(loc)

A function. Returns the value stored in memory
location loc {25}

POKE loc, ae ae is an integer.
POKE 11686, 17
The value ae is stored in memory location loc

{25} -

POS (X) X is a dummy variable.

A function. In or followxng a PRINT statement,
returns the current position (between § and
132) of the cursor {9}

208

PRINT

PRINT# -

PRINTY

PRINT CHR$

PRINT&

PRINT USING

PUT

RESTORE

RETURN

PRINT e, e,...

PRINT A, B$; C$
Outputs the values stored in the list of
expressions. The keyword PRINT can be replaced
by a question mark. {7}

PRINT#dev, e, é,...
Same as PRINT, but output is directed to device)

number dev instead of the screen. {7} [13]

PRINT! (HOC), e, €,... (HOC=Hazeltine Operation
code-see [223]1)
PRINT!(28) X$, A, B, C _
Depending on the value of HOC, certain screen
characteristics and cursor positons are selected
before beginning output of- expression.values;
emulates certain Hazeltine terminal capablllties.
£2231(3)

see CHRS

PRINT&(X, Y), e, e,...

PRINT& (10, 20) A, BS

Moves the screen cursor to screen position X,)
(9, 8) = upper left cormer) before beginning output
of expression values. Identical to:

PRINT! (17,X,Y), e, e,... L[79] (3)

PRINT USING se ae, ae, ...

PRINT USING "####.##" 6.87304
Used to format numeric output; se must be a string
expression made up of a decimal point and/or #'s. -
In the example the output format specified results
in printing 6.87 (with three leading blanks)
L731 (3)

DISK PUT
Follows a previous DISK GET; places the current
record back to the disk. {28} [171]

READ V, V, V,...

READ A, BS§, C
Inputs constants that are spec1fied by DATA
statements in the same program iuto the
specified variables {6} (*)

REM any remark

REM THIS 1S A TEST PROGRAM
Used for program documentation. Everything
appearing after REM is ignored on execution of
that line {16} (*)

RESTORE :
Resets the pointer in a program's DATA list
to the first item. {7} (%)

See GOSUB -

209

RIGHTS

RUN

SGN
SIN

SPC

SQR

STEP

STOP

- STR$

RIGHTS (se, ae) -

RIGHTS (""ABCDEF",2)
A function. Truncates ae to an integer and returns
that number of rightmost characters. In the example,
"EF" is returned. {21}

aed

RND(ae)

RND(-16)
A function. Returns a number between § and 1.
Can be used repeatedly.tq-generateeauseQuenéeuof
pseudo—random values. 1f ae>P, the argument is a
dummy argument. If ae=p, RND returns the previous
value again. If ae<§, ae functions as a "seed" and
RND starts a new sequence. The sequence repeats
after a certain period determined by the seed.

{19}

RUN

Starts execution of the program in the workspace at
the first statement. '

RUN sn ' .

Starts execution of the program in the workspace at
statement number sm.

RUN "FILE"

Leads the program from disk file

FILE and starts executionm.

RUN "TT" (TT = a disk track number)

Loads the program from the disk file beginning at
track TT and starts execution. {15}

SGN(ae)
A function. Returms +1 if ae >9, 9 if
ae = g, -1 if ae <g. {19}

SIN(ae)
A function. Returns the value of the sine
of the argument ae. {20} '

SPC(ae)

PRINT "A"; spc(5); "B"
A function. Used to print ae spaces in a
PRINT sequence {9}

SQR(ae) ae>f
A function. Returms the square root of the
argument ae. {20}

See FOR

STOP

Halts execution of a program and prints a BREAK
message indicating the statement number of the
STOP statement {13}

STRS (ae)
. STR$(6.71)
A functiou. Returns the value of the argument

ae as a string. {21}
210

TAB

THEN

TO

USR

VAL

WAIT

TAB(ae) ae is an integer

TAB(19)
A function. Used in a PRINT statement to move
the print position for the next character to
position aetl on the print line. {8}

TAN(ae) :
A function. Returns the tangent of the
argument. {20}

See IF
See FOR

TRAP sn

If an error is encountered in a program after thls
statement, then control transfers to statement sn.
TRAP @ disables error trapping. [71] (3)

USR({ae))

Y = USR(X)

Transfers control to a machine language routine

at a location determined previously by appropriate
POKES. ae may be an input parameter. (and USR(ae)

an output parameter) or ae may be a: dummy parameter.

{34}

VAL(se)

VAI;(“6.31")
A function. It is the opposite of STRS;
returns the numeric value of the string .
expression se if se represents a number.
Otherwise, # is returned.

WAIT loc, J - 0 <J <255

Halts program execution, Reads the contents

of location loc and AND's the result (bitwise)
until a nonzero result is obtained, then resumes
program execution.

WAIT loc, J, K 0 <J, RS 255

Halts program execution, reads the contents

of location.loc, exclusive OR's that value
(bitwise) with K, and then AND's the result with
J until a nonzero result is obtained ; then
resumes execution {25} {2}

211

Appendix U4 Editor Command Summary (V3.3)

The syntax for editing a line is as follows:

p=<IN<64 PP <CR> = carriage return or RETURN

EDIT LNKCR> or !'LNCR> Edit the statement with the line

number LN.
EDITIKCR> or !!<CR> - Edit the same line that was just
EDIT<CR> or !<CR> = Editr the line immediately following

the line that was just edited.

The line with its line number will be displayed following the <CR>, 1If

the line number LN does not exist, the statement with the next line number

will be displayed (e.g., typing EDITH or !§ will always give the first line
of the program). After the statement is displayed, the cursor will reside

at the end of that line. The following commands are.used.for the actual

line editing.) : .

CTRL-P -~ non-destructive foruvard space. Moves
the cursor one space to the right.

CTRL-H - non-destructive backspace. Moves the
cursor one space to the left.

RUBOUT or SHIFT-0 - single character delete. The editor makes
the correct delete keys operational as
well as the old ones (i.e., the RUBOUT
key as well as SHIFT-0 will work on the
0SI polled keyboard when the éditor .is
enabled).

SHIFT-P i - entry delete. This will erase the line
currently being edited, leaving the line
in the text as it vas before it was edited.

CTRL-R - non-destructively moves the cursor to the
) "rear” of the statament.

CTRL-¥ - non-desiructively moves the cursor to the
“front" of the statement.

CTRL-I - non-destructively moves the cursor foruard
to tha oext Tab Position (positions 1, 8,
15, 22, 29, 36, 43, 50, 57, 64, 71).

CTRL-T =~ retypes the statement you are currently
edicing.

<CR> or RETURN ~ enters the line as vritten or vieved. The
. line will look (to the BASIC interpreter)

a8 1f it was typed in by the user from
scratch,

Character insertions and deletions can be accomplished anywhere by using’
the commands for non-destructive movement of the cursor. After the cursor

"is positioned, the user can type in insertions or delete unwanted characters.
NOTE: 1) Characters are inserted to the left of the character on which t:hec;
cursor resided, 2) the character on which the cursor resides is deleted unti®
the end of the line is reached. The characters to the left will be deleted if
the cursor resides at the end of a line.

212

Appendix 5

Error Message Codes

A. DOS Error Message Codes

1 -

2 -

B. BASIC
BS

CN

DD

FC

ID

Can't Read Sector. (Parity Error).

Can't Write Sector (Reread Error).

Track Zero is Write Protected Against that Operation.
Diskette is W;ite Protected.

Seek Erfor (Track-Header Doesn't Match Track).

Drive Not Ready.

Syntax Error in Command Line.

Bad Track Number.-

Can't Flnd Track Header Within One Rev of Diskette.

' Can't Find Sector Before One Requested.

Bad Sector Length Value.
Can't Find that Name in Directory.

Read/Write Attempted Past End of Named File:

Error Message Codes

Bad subscript: Matrix outside DIM statement range,
etc.

Continue Errors: Attempt to inappropriately con-
tinue from BREAK or STOP.

Double Dimension: Variable dimensioned twice, Re-
member subscripted vanab]cs default to dimension

14.

Function Call Error: Parameter passed to function
out of range.

"IMegal Direct: INPUT and DEF statements can-—
not be used in direct-mode.

Long String: String Jonger than 255 characters.

N

[
w

NF
oD
OM

ov
RG
SN
ST

™

us
19

oS

NEXT without FOR.
Out of Data: More reads than data.

Out of Memory: Program too big or too many
GOSUBs, FOR-NEXT Joops or variables.

Overflow: Result of calculation too large.
RETURN without GOSUB.

Syntax Error: Typo, etc.

String Temporaries: String expression too complex.

Type Mismatch: String variable mismatched to
numeric varniable.

Undefined Function.

Undefined Statement: Attempt to jump to nonexis-
tent line number. .

Division by Zero.

Out of String Space: Same as OM.

214

POKE AND PEEK LIST

Appendix 6

As systems develop, different locations are committed to hold parameters.
Many of these parameters have been mentioned in the text material. These
parameters are collected here, along with some other useful parameters which
may be needed by an advanced programmer. Users of the video systems and
systems that include certain options and accessories (e.g., Home Security,
Remote Control, High Resolution Graphics, etc.) may need to PCKE or PEEK other
parameter locations. These locations are fully documented in the appropriate
User's Manuals.

Caution: care must be taken when POKEing any of these locations to avoid
system errors and subsequent software losses.

LOCATION NORMAL
DECIMAL HEX CONTENTS (DEC) COMMENTS

23 17 132 Terminal width (number of printer
characters per line). The default
value is 132. Note, this is not to be
confused with the video display width
(64 characters).

24 18 112 Number of characters in BASIC's 14~
character fields (112 characters =
8 fields) when outputting variables
separated by commas.

129~ 78— 127 Lo-Hi byte address of the beginning of
121 79 S50 BASIC work space (note 127 = $7F,
50 = $32).
Normal contents of Location 121 is
58 on V.3.3 and 49 on Serial Systems.

741 2E5 19 Control location for "LIST." Enable
’ with a 76, disable with a 19.

750 2EE 19 Control location for "NEW." Enable
with a 78, disable with a 1.

1797 705 32 Controls line number listing of BASIC
programs, enable with a 32, disable
with a 44.

2073 819 173 "CONTROL C" termination of BASIC

programs. Enable with 173, disable
with 96.

215

LOCATION

DECIMAL

2209

2888

2893

2894

2972

2976

8708

8722

8992

8917

8954

8969

8993

8994

HEX

898

B48

B4D

B4E

B9C

BAD

2204

2212

22C6

22D5

22FA

2309

2321

2322

NORMAL

CONTENTS (DEC)

27

55

88

58

44

41

27

po

218

COMMENTS

The monitor ROM directs Tract @
to load here at $2204.

A 27 present here allows any null
input (carriage return only) to force
into immediate jumping out of the
program. Disable this with a .
Location 8722 must also be set to #.

Alternate "break on null input"
enable/disable location.

A null input will produce a "REDO FROM
START" message when 2893 and 2894 are
POKEd with 28 and 11 respectively.

Normally a comma is a string input
termination. This may be disabled
with a 13 (see 2976).

A colon is also a string input
terminator, this ig disabled with a
13 (see 2976).

Output flag for peripheral devices.

Null input if = @@, normal input
if = 27.

Determines which registers (less 1)
RTMON scans.

USR (X) Disk Operation Code:
f-write to Drive A
3-read from Drive A
6-write to Drive B
9-read from Drive B

Location of JSR to a USR functiom.
Present to JSR $22D4, i.e., set up
for USR (X) Disk Operatiom.

Has page number of highest RAM
location found on 0S-65D's cold start
boot in. This is the default high
memory address for the assembler and
BASIC.

I/0 Distributor INPUT flag (see p. 54)

1/0 Distributor OUTPUT flag(see p. 54)

LOCATION

DECIMAL

8995

8996

HEX

2323

2324

NORMAL
CONTENTS (DEC)

COMMENTS

Index to current ACIA on 55§ board.
If numbered from 1 to 15 the value
POKEd here is a 2 times the ACIA
number.

Location of a random number seed.
This location is constantly incre-
mented during keyboard polling.

(Note: Locations 8998 through 9005, 9132-9133, and 9155-9156 are used
for Disk Buffer #6 (I/0 Flag Bit 5 device) usage parameters.)

8998-
8999

990 0-
9991

9992
9993
9094
9¢¢$

(Note;

9¢9p6—
90997

9908-
9999

2326~
2327

2328~
2329

232A
232B
232C

232D

126
*

126

Locations 9996 through 9613,
Disk Buffer #7 (I/0 Flag Bit 6 device) usage parameters)

232E~
232F

2339
2331

126
%

126
*

217

LO-HI byte address for the start of
Buffer #6 (*contents vary: 58 on all
V3.3; 50 on 5" V3.2; 49 on 8" :
v3.2)

LO-HI byte address for the end of
Buffer #6 (*contents vary: 66 for
5" v3.3; 70 for 8" v3.3; 58 for 5"
v3.2; 61 for 8" Vv3.2)

First track of Buffer #6 File

Last track of Buffer #6 File
Current track in Buffer #6

Buffer #6 Dirty Flag (if contents is

non-zero, then data has been written
to the buffer, but has not yet been

_ transferred to the disk)

9213-9214, 9238-9239 are used for

LO-HI Byte address for the start of
Buffer #7 (*contents vary: 58 on
5" 3.2; 61 on 8" V3.2; 66 on

5" v3.3; 70 on 8" v3.3)

LO-~-HI Byte address for the end of
Buffer #7 (*contents vary: 66 on
5" v3.2; 73 on 8" Vv3.2; 74 on 5"
Vv3.3; 82 on 8" V3.3)

" LOCATION

DECIMAL

9910
9911
9¢12

9013

9998~
9999

9105~
9106

9132~
9133

9155~
9156

9213~
9214

9238-
9239

9368
9554

9666

9667

9680

HEX

2332
2333
2334

2335

238A~
2388

2391~
2392

23AC-
23AD

23C3-
23C4

23FD~
23FE

2416~
2417

2498

2552

25C2

25C3

23Dp

NORMAL
CONTENTS (DEC)

215

95

218

COMMENTS

First track of Buffer #7 File
Last track of Buffer #7 File
Current track in Buffer #7

Buffer #7 Dirty Flag (9 = Clean;
see comment for location 9¢65)

Pointer to Memory Storage Input
(Lo and Hi Byte).
Memory is dedicated for use as file.

- Pointer to Memory Storage Output

(Lo and Hi Byte). Use of memory
as a file.

LO-HI Byte address of Buffer #6
current input. (* 56 om 5" V3.2;
49 on all other systems)

LO-HI Byte address of Buffer #6
current output. (*58 on 5" V3.2;
49 on.all other systems)

LO-HI Byte address of Buffer #7
current input. (%62 on 5" V3.2;
61 on all other systems)

LO-HI Byte address of Buffer #7
current output. (*62 on 5" V3.2;
61 on all other systems)

Indirect File Input Address (Hi Byte)
(Lo = #P) (For use, see BASIC Referemce
Manual, Chapter 12)

Pointer to Indirect File (Hi Byte

only) for output (Lo = 0@)

When POKEd with N (#-63) and a LIST
command is given, this will move the
left hand margin to the right N spaces
(dashes will echo on the left unless
the cursor is removed).

When POKEd with N (207-215) and a
LIST command is given, this will
move the scroll up 4*(215-N) lines.

Cursor symbol character designation,
for video screen.

LOCATION

DECIMAL

9682~
9683

9774

9796
9822

9823
9824
9826

9976

1995@ .

‘11511

12p42

12076

13026

13743

HEX

25D2-
25D3

262A

2644
265D

265F

2660

2662
26F8
2Aceh
2CF7
2FgA
2F2C

32E2

35AF

NORMAL

CONTENTS (DEC)

64

171

32

218

COMMENTS

Next Position for Cursor on video
screen (HI and LO Bytes)

Display control parameters. Single

Space = 64; Double Space = 128;

Quad Space = 255; Two columns = 32,

Entry point to Keyboard Swap Routine
Sector for USR(X) on Disk.

Page Count for USR(X).
Read or Write.

Pointer to memory for USR(X).

(Lo and Hi Bytes) USR(X)Y will
reside in location pointed to.

Contains track number for USR(X)
on disk

Disable ":" Terminator. See Location
2976 comments.

Console terminal number. (*1 on
Serial Systems; 2 on Video Systems)

Used by Disk Page #/1 Swap Used by
Random Access File

Sets Number of records per track for
data file use (see chapter 4 or 6)

Sets record length for data file use
(see chapter 4 or 6)

Selects cursor character (V3.3 only)

Selects Flashing cursor; 44 selects
non-flashing curser. (V3.3 only)

Appendix 7 ASCII Character Codes
CODE CHAR CODE CHAR CODE CHAR
00 - NUL 2B + 56 \
o1 SOH 2C , 57 w
@2 STX 2D - 58 X
23 ETX 2E . 59 Y
04 EOT 2F / 5A Z
25 ~ ENQ - 30] 5B {
06 ACK 31 1 5C /
@7 . BEL 32 2 5D]
78 BS 33 3 SE A
99 HT 34 4 SF _
QA LF : 35 5 60
@B vT 36 6 61 a
ac FF 37 7 62 b
@D -CR 38 8 63 c
QE SO 39 9 64 d
oF Sl 3A : 65 e
10 DLE 3B H 66 f
11 DC1 3C < 67 g
12 DC2 3D = 68 h
13 DC3 3E > 69 i
14 DC4 3F ? 6A i
15 NAK 40 @ 68 k
16 SYN 41 A 6C |
17 ETB 42 B 6D m
18 CAN 43 C 6E n
19 EM 44 D 6F o]
1A sSuB 45 E 70 p
18 ESC 46 F 71 q
1C FS 47 G 72 r
1D -GS 48 H 73 '8
1E RS 49 | 74 t
1F us 4A J 75 u
20 SP 48 K 76 v
21 ! 4C L 77 w
22 " 4D M 78 X
23 # 4E N 79 y
24 3 4F 1)} TA F4
25 % 50 P 7B. {
26 & 51 Q 7C }
27 ! 52 R 70 !
28 (- 53 S 7E +
29) 54 T 7F DEL
2A) 55 U

220

Appendix 8

V3.3 PRINT Command Summary

A. Arranged According to Function

(These commands must be used in PRINT statements)

1(28)

1(2L)

1(22, w, h)

Single Step

CHR$(8)
CHR$(16)
1(12)
1(11)
CHRs(18)

Multistep

CHR$(13)
CHR$(14)

Anzghere

1(17, %, y)
g(x, vy)

Home

1(18)

1(26)

Display Size

Selects "wide letter" display (32 x 32 on
C4P and C8P, 12 x 24 on ClP, clears screen
and homes cursor to upper left screen corner.

Selects "narrow letter" display (32 x 64 on
C4P and C8P, 24 x 48 on ClP), clears screen,
and homes cursor to upper left screen corner.

Selects_print window w characters wide and h
characters high. Upper left window corner is
at current cursor position; screen is not
cleared.

Cursor Control

Back one space.
Forward one space.
Up one space.

Down on space.
Down one space.

Back to front of line.
Forward to next eight space tab set
(seven space for left-most field).

Relocate to x, y(d, # at upper left corner).
Relocate to x, v (4, 8 at upper left corner).

Relocate to @, # (upper left corner).

Insert

‘Inserts line at cursor position; lower lines

scroll down.

0~
N
[N

Line
1(15)
1(19)
Screen

1e2y)

1(28)

Color Select

1(1)
1(25)

1(31, n)

Color Change

1(2, n, m)

1(29, n)

1(5)

1(33)

Clear

Clears from cursor to end of line.

Clears entire line (lower lines move up).

Clears from cursor to end (lower right)
of window.

Clears entire screen and homes cursor in
window.

Color

Selects color @ as cell background.
Selects normal black/white display
mode (i.e., black background, white character).
Selects color n as cell background.

Changes all displayed cells of background
color m to background color n.

Clears all displayed cells of background
color n (i.e., cell background is changed
to black and character is replaced with a
blank).

Cursor Sensing

Sends information for current cursor position
X, ¥, to string variable in following INPUT
statement. Information is in the form of two
characters for which (x + 65) is the ASCII
code. Line feed follows the INPUT statement
used with !(5).

Sends character at cursor position to

string variable in following INPUT statement.
Line feed follows the INPUT statement used
with 1(33).

222

B. Arranged According to ASCII Codes.

1(1) Color g select

1(2, n, m) Color change

1(5) Cursor position sensing

CHR$(8) Cursor backspace

CHR$(19) Cursor down one space

1(11) Cursor déwn one space

1(12) Cursor up one space

CHRS$(13) Cursor tab forward

CHRS$(1u4) Carriage return

1(15) Partial line clear

CHR$(16) Cursor forward one space

117, %, y) Cursor relocation to position (x, y)
1(18) Cursor home

1(19) Total line clear (lower lines up)
1(28) Wide character select

1(21) ' Narrow character select

1(22, w, h) Window selgct

1(2y) Partial screen (or window) clear
1(25) Color black/white select

1(26) Line insert (lower lines down)
1(28) Total screen clear (cursor home)
1(29, n) Selective color clear

1(31, n) Color n select

1(33) Character pick-up

N
N
w

Appendix 9 Extended Utilities Command Summary

RESEQUENCER

System must first be booted under V3.2. Enable by the command RUN'"RSEQ
and then type "E". Then LOAD the program to be resequenced into the workspace.

The syntax for the RSEQ command is as follows:

NLN
OLN
INC

new line number F<=NLN<64 000
0old line number- #<=0LN<64 000
increment between line number #<INCL256

RSEQLCR> - resequence starting with the line
number 1¢ at the first line and
renumber the lines in increments
of ten.

RSEQ NLNZCR> : - resequence using NLN as the first
line number and renumber the lines
that follow by increments of ten.

RSEQ NLN, OLNZCR> - resequence starting at line OLN with
line number NLN and renumber the lines
that follow by increments of ten.

RSEQ NLN,OLN, INCKCR> - resequence starting at line OLN with
: the line number NLN and renumber the
lines that follow by increments of INC.

RSEQ NLN,,INC<CR> - resequence starting with the first line
as NLN and renumber the lines that
follow by increments of INC.

RSEQ ,,INCLCR> - resequence starting with the first line
and renumber the lines that follow by
increments of INC.

REPACKER

System must first be booted under V3.2. Simply RUN"REPACK, insert the
disk which contains the program to be repacked and enter the program's file
name. Select the method of repacking (remove blanks, REM's or both). When
the operations are completed, a message will appear reporting the number of
bytes removed from the program.

224

BUFFER CREATOR

System must first be booted under V3.2. Enable with the command RUN'"BUFFER
and then type "E". Then LOAD the program you wish to work with (the source)
and use the BYTE.command accerding to the following syntax:

P=<NB<64 300

BYTE NB<CR>- moves source leaving NB free bytes in between the
operating system and the source.

BYTEXCR> -~ reports the start of the buffer, the starting byte

of your program and the number of bytes between the
source and the operating system.

DATA FILE COPIER

System must first be booted under V3.2. To use, type RUN"DATRAN and
respond to the prompts for input file name, output file name and location
(device A, B, C, D) for each file. The input file is then copied onto the
output file.

BASIC DISASSEMBLER

Can be run with the system booted under any version of 65D. To use, type
RUN"DISASM and then enter the addresses in decimal for the beginning and end
of the disassembly.

GENERAL STRING ORIENTED SORT

Can be run with the system booted under any version of 65D. To use,
type RUN"GSOSRT and respond to the prompts for type of file and type of
sorting. The sorted file can be stored in ascending or descending order.

SEE CHAPTER 8 FOR DETAILS

N
N
(4]

Appendix 10 GLOSSARY

ACIA (Asynchronous Communications Interface Adapter) An IC
used for serial data transfer between a device such as a small
computer and a serial terminal.

A/D (Analog/Digital) Refers to changing an analog signal to a
digital signal which the computer can use.

BACKPLANE BOARD (Sometimes called Mother Board) Allows simple
interconnection between small computer boards using the same
bus.

BASIC (Beginners All-Purpose Symbolic Instruction Code) A
popular computer language ideally suited for use with Ohio
Scientific computers. One of the simplest languages to learn,
it can be used for a wide variety of applications.

BAUD A measure of the speed with which information can be
communicated between two devices. For example, if the
information is in the form of alphabetic characters, then 300
baud usually corresonds to about 30 characters per second.

BIT The smallest amount of information that can be known (one
or zero). Eight bits equal one byte.

BUS The means used to transfer information from one part of
the computer to another.

BYTE A unit of information composed of 8 bits, which is
treated by the computer as a single unit. A byte is usually
used to represent an_ alphanumeric character or a number in the
range of 0 to 255. :

CASSETTE A compact magnetic tape medium for the electronic
storage of data. Most personal computers use ordinary
audio-cassette tape recorders and cassette tapes.

CENTRAL PROCESSING UNIT (CPU) The part of computer hardware
responsible for interpreting data and executing instructions.

CHIP A small rectangular module thch encapsulates an
integrated circuit. ' :

COMPUTER An electronic device which is programmable and which
processes, operates on, and outputs information according to
its stored program upon receipt of signals through an I/0
device,

COMPUTER LANGUAGE A language that is used for programming a
computer, e.g., BASIC.

226

CURSOR The marker (underline,. rectangle, etc.) on a video
monitor screen which indicates the location on the screen where
the next character will appear.

DAC (Digital-to-Analog Converter) A device that changes
digital signals into one continous analog signal (voltage
output). ‘ , . .

DATA The information units, or signals, that are processed by
a computer.

DIGITAL Word used to described information thét can be
represented by a collection of bits. Modern computers store
information in digital form. -

DISK A circular piece of rigid material which. resembles a
record and which has a magnetic coating similar to that found
on ordinary recording tape. Digital information can be stored
magnetically on a disk. ' ,

DISK DRIVE A peripheral which can store information on, and
retrieve information from, a disk. A floppy disk drive can
store and retrieve information from a floppy disk.

EPROM (Erasable Programmable Read Only Memory) Information
stored in an EPROM IC (Integrated Circuit) can only be removed
by special light sources or specific voltages (depending on the
type of EPROM). Through the use of a special programming
device, the user can store a set of information in the EPROM
after it has been erased.

FLOPPY DISK A thin, pliable 8" or 5-1/4" flexible media for
storing data. 8" disks store 3, or more, times as much
information as 5-1/4" floppies and access the information
faster. :

FOREGROUND/BACKGROUND ~ Operation term used to describe the
ability of a computer to function with normal programs at the
same time it monitors external devices, e.g., home appliances,
security, etc.

HARD COPY 1Information printeé on paper or any durable surface,
as opposed to information temporarily presented on the CRT
screen (see Monitor) .

HARDWARE The physical equipmeni: that makes up the computer
system.

IC (Integrated Circuit) Many miniature electronic components
(transistors, diodes, resistors, etc.) built into one small
multicontact unit (chip) to produce a special purpose circuit.

I/0 (Input/Output) Refers to bringing information into the

machine in a form it recognized and allowing the machine to
transmit information. In other words, communicating with the

227

outside world.
INPUT Signals given to a computer for processing.

INTERFACE The connection between two systems. A printer
interface, for example, connects the printer to the computer.

JOYSTICK Accessory equipment (peripheral) that permits the
user to move the figures on the monitor. For example, when you
and another person play a joystick computer game, you operate
joysticks to perform the functions of the game.

K The initial "K" stands for "kilo", meaning 1,000, In
computer language, K means 1,024 bytes of information that can
be stored in a computer system. A computer with 16K memory,
for example, has 16 times 1,024, (16,384) bytes of memory.

LSI (Large Scale 1Integration) Descriptive of the type of
circuit in an IC chip where thousands of electronic functions
are included. ' :

MEMORY The area in the computer for storage of data and
instructions.

MICROCOMPUTER A computer based on a microprocessor.

MICROPROCESSOR The “"brains® or CPU of -a modern personal
computer. All Ohio Scientific personal computers use the 6502
microprocessor, generally recognized as the fastest
microprocessor available. '

MINI-FLOPPY DISK A small 5-1/4" floppy disk that stores about
1/3 the information on an 8" floppy disk.

MODEM Word derived from MOdulator-DEModulator. A device that
allows the computer to communicate over telephone lines and
other communications media by changing digital information into
audio tones (modulating) and from audio tones into digital
information (demodulating).

MONITOR A CRT or television screen. You can purchase an Ohio
Scientific monitor to hook up to your computer or else simply
use an ordinary TV set and attach it with an RF convertor.

OS Operating system.
PC BOARD (Printed Circuit Board) A card with foils
(electronically conductive pathways) connecting electronic
components which are mounted on the board.

PERIPHERAL Any device that can send informtion to and/or
receive information from a computer, e.g., printer, modem, etc.

PIA VPeripheral Interface Adapter. A programmable control 1C.

228

PRINTER A peripheral device which makes hard copy of letters
and numbers.

PROGRAM A set of instruction, arranged in a specific seguence,
for directing the execution of a specific task, or the solution
of a problem, by a computer.

PROM (Programmable Read Only Memory) Memory which can have
information stored on it once, but is not normally changeable.

PROMPT A signal given by a computer to indicate that a
particular function is ready.

RAM (Random Access Memory) A storage device and main memory of
any computer which can be read from and written into.
Information and programs are stored in RAM, and they ‘can be
retrieved or changed by a program.

ROM (Read Only Memory) A memory.storage device in which the
information is stored once, usually -by the manufacturer, and
cannot be changed.

" SOFTWARE Programs and operating systems used by the computer;
they may be on cassette or on disk and in ROM.

N
N
w

INDEX

Page
A
ABS Function . 204
AND Operator 204
Arc Tangent Enable 188
ASAMPL Program Listing 187
ASC Function 204
ASCII Character Codes 220
Assembly Program Example 185
ATN Function 204
ATN, Absence of 98
ATNENB Program Listing : 190
B -
BASIC Arithmetic Symbols 4
BASIC Command Summary 204
'BASIC Device Numbers 54
BASIC Disassembler 112
BASIC Error Codes 213
BASIC Immediate Mode 3
BEXEC* 131
BEXEC* Program 27, 46
BEXEC* Program Listing 134
Biorhythm Demonstration Program . 2
Blank Space Removal 106
Bootup 3
Break Key 1
Breakout Demonstration Program 2
Buffer _ , 12, 50
Buffer Creation 41, 109
Buffer Memory Locations ul
Buffer Program Listing 117
Buffer #6 ‘ 12
Buffer #7 , 12

BYTE Command 109

N
w
o

C

CALL Command

CHANGE Program Flowchart
CHANGE Program Listing
CHRS$ Function

CLEAR Command

CLOSE Statement

Color Adjustment

Color Change Commands
Color Code Table

Color Control Limitations

Color Select Commands

COLORS Program Listing

Comparing Disks ’

CONT Command

Control Commands

CONTROL~B Command

CONTROL-D Command

CONTROL-F Command

CONTROL-H Command

CONTROL~I Command

CONTROL-P Command

CONTROL-R Command

CONTROL-T Command

Copying Data Files

Copying Disks

Copying Programs

COS Function

CREATE Program Listing

Creating a File

Cursor Change

Cursor Location Control

Cursor Movement '

Cursor Movement
Multistep
Single-Step

Cursor Sensing Commands

Cursor, V3.3

231

15,

58
148
150
205
205
205
191

83

81

69

193
199
205

50
195
195
212
212
212
212
212
212
113

29
138
205
155

32

66

T4

79
79
78
8u
66

D

Data Buffer Vertification
Data Buffers
Data File Copier
Data File Erasing
Data File Sorting
Data File Storage
DATA Statement
DATRAN Program Listing
Debugging Programs with TRACE
DEF FN Statement
DELETE Program Listing
Deleting Files
DIM Statement
DIR Command
Directory Entry Creation
Directory Entry Deletion
Directory Format
Directory Program Listing
Directory, 5" Disk
Directory, 8" Disk
Directory Listing
Directory, Disk Track Sector
Directory, Sorted by Name
Directory, Sorted by Track
Directory

Tutorial Disk 2

Tutorial Disk 3

Tutorial Disk 5
DISASM Program Listing
Disassembler, Machine Code
DISK CLOSE Command
Disk Drive Select Error
DISK FIND Command
DISK FIND Random File Example
DISK FIND Record Calculation Program
DISK FIND Sequential File Example
Disk Format
DISK GET Command
Disk Initialization
DISK OPEN Command
Disk Operating System (DOS)
DISK PUT Command
Disk Storage Capacity
Display Sort Example Program
DOS Command Summary
DOS Commands
DOS Error Message Codes
DOS Kernel
DS Command

N
o
N

108
142
113
182
111
43
205
124
178
205
159
31
205
58
152
157
61
164
128
129
26
172
160
180

102
29
27

121

112
62
27
92
97
93

13, 25, 56
62
58
62

10, 13, 25

63, 202
58
64, 213
11, 45
59

E

EDIT Command

Editing Prégrams (V3.3)
Editor Commands

END Statement

Erasing Data Files
Error Message Codes
Error Messages, DOS Kernel
Escape Key (ESC)

Escape Key (ESC) Codes
EXAM Command

Examining Disk Files
EXIT Command

EXP Function

Extended Utilities

F

File

File Name Limitations
File Storage

File, Random

File, Sequential

FIND Command

FOR Statement

FRE Function

G

General String Oriented Sort
GET Command

GOSUB Statement

GOTO Statement

GSORT Program Listing

H

Hangman Demonstration Program
Hazeltine 1420 Emulation
Header

Sector

Source File

Track
HOME Command

233

70,

205,

71,

101,

82,

17,

212
70
212
206
182
213
B4
2
68
58
38
2086
206
224

10
60
12
12
206
206
206

111
206
206
2086
1189

I

I/0 Device Description

I/0 Distributor Commands

I/0 Flag Settings

IT Statement

Indirect File Memory Locations
INIT Command

Input Flag

Input Pointer

INPUT Statement .

INPUT# Statement

Input/Output Distributor Table
INT Function

K

Kernel Command Format
Kernel Commands

L

LEFT$ Function

LEN Function -
LET Statement

Life Demonstration Program

Line Clear Command

Line Editor (V3.3)

Line Insert Example Program

Line Insertion Command

LIST Command

LOAD Command

Loan Interest Demonstration Program
LOG Funection

M

Memory Allocation
Memory I/0 Pointers
Memory Locations, Important
Memory Maps
Memory Size
Memory Size Table
Menu
Tutorial Disk 1
Tutorial Disk 3
Tutorial Disk §
MID$ Function
Modem Operation
Modem Program Listing

w

N
+

55
50
54
207
218
56, 58
54
56
207
13
54
207

51
50,- 63

207
207

47
56
215
49
lu43
34

26
208

1394
197

N

Narrow Letter Screen Display 76
NEW Command g, 208
NEXT Statement 206
NOT Operator 208
NULL Command 208
NULL, Absence of 98
Numerical Output Formatting 73
0

ON Statement 208
OPEN Statement 15, 208
Operating System 45
OR Operator . 208
Output Flag 54
Output Pointer 56
P

PEEK Command 6, 208
POKE and PEEK List 215
POKE Command 6, 208
POS Function 208
PRINT CHR$ Statement) 209
Print Command Summary 221
PRINT Statement 209 .
PRINT USING Statement 73, 209
Print Window 76
PRINT! Commands 75, 2089
PRINT# Statement . 13, 209
PRINTE Demonstration Program 89
PRINTE Statement 74, 209
Printer Control 86
Printer Form Length : 86
Program Entry 6
Program Length Determination 11
Program Listing - See Program Name

Prompt 3
PUT Command , 17, 36, 60, 209

235

R

Random File Example Program 19 -
Random Files, Listing - 166
RANLST Program Listing 168
READ Statement 209
Record 12
Record Length 13
Record Length Change Table 21
Record

Fixed Length 13

Variable Length) 13
REM Statement 209
REM Statement Removal 106
RENAME Program Listing 171
Renaming Files 34, 169
REPACK Program Listing 116
Repacker ' 106
Resequencer ' 102
Reset Button 1
RESTORE Statement 209
RETURN Statement 208
RIGHTS$ Function 210
RND Function 210
RSEQ Command 103
RSEQ Program Listing 11y
RUN Command 7, 38, 210
S
SAVE Command 58
Screen Clear Command 80
Screen Commands - Limitations 69
Screen Display Control 67
Screen Display Print Window 76
Screen Display Size Commands 76
Screen Display ‘

Narrow Letter 76

Wide Letter ' 76
SECDIR Program Listing 174
Sector ' 57
Sector Header 57 .
SELECT Command 58
SEQLST Program Listing 177
Sequential File, Listing a 175

Sequential File Example Program : 16

(S
W
[52]

S - continued...v

Serial System Limitations ii, 1, 68, 100
SGN Function 210
SIN Function 210
Sorting Data Files 111
Sorting MDMS Master Files 111
Source File Header 59
Source Files . 59
Space Wars Demonstration Program 2
SPC Function 210
SQR Function . 210
STEP Statement 210
STOP Command 210
Storing Program Files 39
STR$ Function 210
System Memory Maps 49
T

TAB Function 211
TAN Function 211
Torpedo Demonstration Program 2
TRACE Enable 178
TRACE Program Listing 181
Track , 13, 56
Track Header 57
Track Sector 57
Track Zero 56
Transfer of Control Chart 52
Transfer of Control Limitations 53
Transient Processor Memory Area 48
TRAP Statement . 71, 211
Typing Error Correction 4
U

Upper/Lower Case Interchangeability 69
USR(X) Function 211
USR(X) Operation 216, 219
Utility Programs : 6L
Utility Program Sample Fact Sheet 126

237

v

VAL Function - 211
W

WAIT Statement 211
WAIT, Absence of 98
Wide Letter Screen Display 78
Workspace , 3, 24,142
Workspace Limits, Changing 141
Workspace Size Table .34

238

65D Tutorial and Reference Mamial

Addendum 1

Using Machine Language Subroutines

A. Finding a Place for a Machine Language Routine
There are three areas in memory that are normally used

to hold a machine language subroutiner

1) The beginning of workspace
The workspace for BASIC programs begins at address
$3A7E (327E in Version 3.2). It is possible, however, to
move the starting point for BASIC to a higher address,
leaving some free space in front of the BASIC program.
One advantage in using this space for a machine language
subroutine is that when a BASIC program is in memory and

a
DISK!"PUT..."

is executed, everything in memory is saved from $327E to
the end of the BASIC program. Thus, a machine language
program in this area is saved along with the BASIC pro-
gram that uses it. A disadvantage is that the start of
the BASIC program will still be at the higher address
even after a NEW command, thus effectively shortening
the space for a new BASIC program. To restore the work-
space to normal the user can either re-boot or LOAD a
program known to use the normal workspace. For example,
the BEXEC* program on disk #5 of the tutorial set some-

times calls a machine ‘language screen clear routine but
Tutorial Addendum 1-1

S-18-8l

this routine does not change the normal workspace

otherwise it would still be there after a NEW command
The user can.do some PEEKS to the file headers

to determine the_a@dresses of the beginning and end of

any BASIC program in the workspace. A five byte file

header is maintained at addresses $3A79(=14969) through

$3A7D(=1u4973) ($3279-$327D for 3.2 systems).

Address . Contents
. -3A79 €& 3A7A A pcinter to the beginning
of the BASIC program (low,
high)
3A7B & 3A7C - A pointer to the end of the

BASIC program (low, high)

3A7D The number of tracks needed
to hold the program.

For example, suppose the contents of these locations

are:
Address Contents

3A79 7F

3A7A 3B

-.3A7B - o 5 8d

3A7C 4B

3A7D 82

Since the workspace always begin at $3A7F and this
program begins at $3B7F, there are $100(=256) bytes free
- at the beginning of the workspace. The program ends at

$4B8# and two.disk tracks. are required to hold the program.

Tutorial Addendum 1-2

2)

To reserve a place at the beginning of memory for
a machine language program, the programmer should
RUN"CHANGE" | |
He should respond:YES té'thé quéétidn
CHANGE BASIC'S WORKSPACE LIMITS?
and also respond YES* to
WANT TO LEAVE ANY ROOM BEFORE THE WORKSPACE?

The programﬁéfﬂshbuld createffﬁigfsbace after the

- machine language subroutine has ‘been created (so he knows

its size in bytes) buf before. the BASIC program has been
entered. Please refer to CHANGE-(pages 141-151) in the
Tutorial Manual. if the BASIC program already exists,
either in the workspace or on disk, then the indirect
files technique must be used. See Chapter 12 of the
BASIC Reference Manual. The area at the beginning of
the workspace is used as an I/0 buffer area for BASIC
programs that use disk data files. When a machine
language subroutine resides at the beginning of the
workspace it is also said to be in a "buffer" although
it is not an I/0 buffer. :
The end of workspace

Machine language subroutines can be put at the end
of memory. This area of memory. is not "safe™. until the

end of work8§ace pointers: (at 132-and 133) are'reset

Tutorial Addendum 1-3

3)

because even short BASIC programs store generated string
data (e.g., through string addition or INPUT statements)

at the end of memory. : The address of the end of memory

.is stored at locations 132 (low half) and 133 (high half)

and' the user can POKE new numbers to these bytes to create

a safe place at the end of memory. .. For example, on a 24K

-system, the values -are # at address 132 and 96 at 133

‘(these are decimal values). '~ Since 96=$68, this means

that the end of memory is at address $6008.

The commands

POKE 133,95:POKE 132,128J

will set this end of memory pointer to §5F80 (since
QS;éSP?é;&”£é8;§édiagﬁagwcfeating a 128 byte "safe" area
at the end of memory. The numbers at addresses 132 and
133 are not saved with the BASIC program so that the same
POKEs must be done every time the program is run.
The directory buffer

There is a one page (=256 byte) area between addresses
$2E79 and $2F78, inclusive, that is used to hold the disk
directory and is'qsed”fqr only that. This directory is
bfough£ into.ﬁémory oniy when é refefence is made to a
disk file name, as for ekaﬁple; in fhe DIR directory

program or when DISK!"LOAD. "Filename or RUN"filename"

is executed. This area is unused otherwise.

Tutorial Addendum 1-U4

B. Bringing a Machine Language Program into Memory

1) POKEs
A machine language routine-may be POKEd. into memory
- by the BASIC program that uses it. This method is used
in the BEXEC* program to put a 'screen clearing’ routine
into the directory-buffer.:-: For .example; consider the
three line éssembly?ianguage*program*below whieh. puts

- an airplane character near the ¢enter: of-the:zvideo screen:

2E8@° A9ED “LDA #237
2E82 8D1FD4 STA &Dulf

2E85 68 RTS < -~ -~

The first column is théﬁﬁexadécimai address, the next
column is the machine language, also in hex, and the last
two columns are the source code. Thus, the seven bytes of

the machine language program are, in hex and decimal:

$A9=169 (LDA)
$ED=237 (ASC Code for airplane character)
$8D=141 (STA)
$1F=31 (screen location, 1o-h1
R .. $Dhu=212 Jbyte -format)
T 7 sepi9s (RTS)

The beglnnlng address is $2E80 11904. A BASIC program to

put this machlne 1anguage 1nto memory 13”

FOR I=ﬂ TO 5.

READ X~

POKE 11904+I X

NEXT I-) T ’
DATA 169, 237, 141, 31, 212, 96

Tutorial Addendum 1-5

2) DISK!"CALL..."
If .a machine language routine has been put into
‘memory by an A3 command to the Assembler/Editor or by
hand using the PROM monitor (for details see the
Assembler/Editor and Extended Monitor Manual) then it
. can be saved on disk using -
DISK!"SAVE..."
A BASIC program can bring it back to memory with
 DISK!"CALL..."
(refer to Tutorial Manual p. 58 for -CALL and SAVE details)
The user should note that the number of bytes brought
into memory by this method is always*a multiple of 256.
3) Putting- it in the BASIC file
If a machine language routine has been put into a
"buffer" area at the beginning of workspace (i.e.,
between address $3A79 and the start of the BASIC program)
then a
DISK!"PUT..."
-command will save the buffer avea along with the BASIC
. program. Hence, a;machine»laﬁguage subroutine in a
-buffeér will be brought inte memory whenever the BASIC
> program is RUN or LOADed.(pefer:to Tutorial Manual p. 60
for LOAD and PUT details).
C. Calling a Machine Language Subroutine from BASIC
1) Y=USR(X)
This statement branches (via a JSR instruction) to

the address stored at memory locations 574 (=$23E) and

Tutorial Addendum 1-6

5§75 (=$23F). The low order half of the address is at
- 574 and the high half at.575.: Thus, foriexample, the
- three line subroutine given in:Section B.could be called
by
POKE 574;128:POKE-575,46:Y=USR(X).

These are the required POKEs since the starting address
is $2E80 and $2E=46 and -$8¢=128. 1In

L Y=USR(XYX: o v e
the X may be any formula and Y”may be any variable. The
;calling BASIC program may -pass .& parameter to the sub-
~routine via the formula X and a built .in routine may be
. called by the: machine language subroutine:ito pass back a
valve to the variable Y.> See" CThapter’ 13! of the 'BASIC
Reference Manual or Chapter 9 of the Assembler/Editor and
Extended Monitor Reference Manual for details. If the
subroutine does not call a routine to store a value at Y
then Y will have the same value as X after return from the

subroutine. When a routine is called by the USR function,

- - :no registers. must:-be saved, however, the imtegrity of

pages 8 and 1 must be maintained. . Thus, if“a machine
1anguage prggram:islgallgd via the USR .function, .any page
zero locations that. are-used may have. to be 'saved and

restored.

© Tutorial-:Addendum 1-7 -

2)

DISKI!"GOXXXX"

Here XXXX is the address of the subroutine in hex.
This command causes a JSR to be executed. Parameters may
be passed using POKEs and PEEKs. (Parameters may also be
passed in this manner when the routine is called using the

USR function.)

For example, consider the routine below. When

called, it will fill the lower 1/8 of the screen with

the character whose code is stored at the byte labeled

CHR.

£=$5000
5080 AD #C 54 LDA CHR
5093 A2 08 LDX #8
5885 9D #9 D6 LOOP STA $D66D,X
5098 ES8 INX
5099 D@ FA BNE LOOP
5098 60 RTS
508C CHR .BYTE 9

If this routine is in memory then the BASIC statements

($580C=2p492, CHR$(36)= $)
POKE 26492,36:DISK!"GO 54g8"

will cause the subroutine to fill the lower 1/8 of the

screen with dollar signs ($).

It can be called by USR as follows:

POKE. 574, 0
POKE 575,80
POKE 2P492,36
Y=USR(X)

Similarly, PEEKs can be used to retrieve answers from

Tutorial Addendum 1-8

a machine language subroutine.

The execution of a DISK!"GO XXXX" produces the
- following sequence of éventsi Page;ﬁfand”I are swapped
(moved) to a . -temporary’storage area at $2E79-63p878. A
JSR ‘to -address XXXX takes place. The code at XXXX is
.processed. :Upon completioniof.this ebde, pages 8 and 1
are swapped back from $2E79-$3078 and the program
continues to the next BASIC statement.)

'Thus, use of the DISK'"GO XXXXW command allows the
programmer full use of pages ﬂ and l. The trade off,

.of‘course, is that DISK'"GO XXXX"‘lS somewhat slower

than the equivalent USR call to a machine code subroutine.

Tutorial Addendum 1-9

