OMSI PASCAL-1 VERSION 1.2

CONTENTS

MANUAL FOR RT—11

ode

FastLstembler (/80) - =

.

MgmEe NMaym s

INTRODUCTION . - o 2 2 o o = = . . - i-xiv
For More Information . . ¢« 2 = =« 2. % 2 = & 2 = »a = « » = #ii
Nhﬂ AFE ME, QHYWBY? - - - - - - - - - - L] - = - - - = - Kiii
What is Pascal-27 . o « 2 2 = o = = = = 2 2 = = « =« =« « xiiid
and Finally = - = E 3 = = - = = - = = = - - - - - - E 3 - - xiv
SECTION_1: USER’S GUIDE - - i~i5
Introduction to the User’s Guide + « « « « = « = = o « = = = = -
In the Beginning +« « « o = & 2 2 = = « 2 s 2 s s w = « = & « =
Enteri ng thE F’l"ﬂgram - - »n Ed - - - - = - - - - - - - » I -
) Cﬂmpi 1i ng the F‘r‘ugr‘am e & = m =2 = = ® 8 ®= ®# ®% ®# @« s s ®» @
"Correcting the Program . « . I R
Compilation Switches and.what They DO o ¢ ¢ o 2 o o ¢« = = & =
The LiSting {/L} a - = = = L] " - = = - - - - s = - ; - - »
-Listing for a Complex Program . « « « « 2 « 2 =« &« = = » =«
ﬁﬂ!"e Qn PEL = - = - = - = - - L] E - - » ® [] '. » = = = E 3 -
The ﬁEbuggel“ (ID/S} - » 2 = - = = = - - n. = e ., - = - - - i 1
.E}(tEﬂdEd PFEEi ‘Si Qn (/X} - ” » [4 = - - » = -»] - » - t‘ - t’ 33
The Prnfiler ([P{S) " . = - - - = ™ - » - x =& ® &£ ®» & = * '14
YBLH" NE}:t StEp - - a. - L] . = = = = - - - = = - = - - » - - - - 15
SECTION_2: PROGRAMMER’S GUIDE. . . & o o 2 o & eiee e n e s 1786
Introducﬁicn to the Prngrammér’s Guide e e e e oem ;;i - 20
Cﬂmpi 1 atiﬂn Bﬁi tChES - = - -.' - [] . - - ,l' - .'v » - - t - v nﬁ‘ & - 21»
Listing (fL, !L:n, KN) & = & = s & & « - n‘}:‘:;ba e = % 2 a = 21
Partial Compilation (/G /My /07 o & o s 2.2 = = = = « » = 21
Real Qri thmatic (/X, XF) - ’ - - E] - = - - - ‘ﬁ - x - ‘u ﬁu 3 22
DEbuggEr (/ﬂ) A 2 = & s = = ‘& ®» = ‘= = = = e e m E m, oB ® = 22
) FProfiler (/F) = 2 & @ = e & = = = = = s a = s oz = e t‘- 22
Source Mode (/8) . = « « 2 e o & s a & =28 & ® 2 2 = & as 22
. Exterﬂal Mﬁduie (/E) - = - = - = - - - L] .‘ ‘- - .‘ ;c ’ -‘ » - ‘- . 23
Branch/Jump Improver (/I2. « « « o = = 2 a 2 = « = = = = = -gg_

Pascal—-1 V1.2/RT—11 Cantents

Embedded Switches . .« «

Error—Checking ($A, $T) . « =« =«
" Debugger/Profiler ($D) e = = =
External Module {$E) .« « « = =« =
Real Arithmetic (X, $F) . . .
Listing ($L) . o 2 &« « 2 '« &« a =
Source Mode ($8) . +» « «,s = = =
1/0 Control Switches . « . « « =« =
/BUFFERSIZEIN .+ » = = = « » =
4 e T
ZODT = 2« « =2 = =2 =2 = « = '= = »
/NFS o o 0 s o o = 2 « = = = =
/SEEK = - = - = - .-v >n’z“' - = - o
/SIZEIN = 2« = = = @ = = = = =
/SPAN . . . &+ & = & s = = = &=

 /TEHP_ -
The Profiler {(/P) . & ¢« =« « = = = =
Format and Cross—Reference (PASFMT)
The Improver (IMP) . . - .~‘ + o = =
{bynamic String Package « .« + -« = =« =

External Modules . . « « 2 =« = = = =

The Linker, Librarian, Overlays

Embedded. Assembly Code +« - « - =« = =

Run~Time Memory Urganizatiun - 2 ow o
RT-11 Vectors and Commumication
Program Code . - =« » = = « = =

‘Biohal Variables . « « = = = = =
Dynamic Memory —— The Heap . . -
. Local Variables —— The Stack . .
RT-11 Resident Monitor + = « « =«
I/0 Page . o« =« = « = =2 = = = « =
Stack Partition/Stack Frame . .
Function Return Valuge . « « « =
Parameters o« « ¢ =2 « = = = = = =
Retwurn Link . & « = o = » =« = =
Local Variables . « «'« = « =« =
Gtatic Link « « « =« = = = = = =
Foreground Operation - - =« « « =

B8 N & & » N 5 B

® N ® 4 & & 8 v »

l"l’l. u I} i&n

s & % % % B ® @ @

R N R T TN N T T T I

R.E & B OB W OW ¥R BB N

"

% N B B B % 4 & 8 B N B & &

B 8 8 B3 5 83 R % B B M B BB B

S 8 &8 & % R 8

& % & &5 w5 8 5

2 4 8 B B E 3 8 N 5 F B ® B &

5 & B ¥ 5. & B 3 »

A A " B F 5 & & & & F B & & »

LN N Y I A I

® R BB E AN RSB KRS S & W,

" B 8 B B B R ® N BN ¥ K N

B B % . ® &k % % ¥ =

t B N 5 K B & B B

-

$94988084Y & £ 4

I T T R T TR S T T T N L

8 B R B N ® 2

W
bA

Pascal—-1 V1.2/RT-11 Contents

EX tended Preci Si an = = - [] - - - - - = - -
The System Error() Procedure . « -« « « = =

Appendix A Compiler ErrnE'Messages

Appendix B: Run-Time Error Messages . . .

SECTION_THREE: LANBUAGE_ SPECIFICATION_ . .

Introduction to the Language Specification

Syntax Extensions .« .-« «
Program Heading . . <
‘Declaration Ordering . .
Comment Brackets . « . - . .
ELSE Clause in CASE Statement

- EXIT Statement . « = « « = = =« =
EXTERNAL Procedures and Functions
FORTRAN Procedures and Functions .

Low-Level Interface . . . « - « « =
Octal (Base 8) Numbers . . « » .
Unsigned Integers . « = « = = =
Logical Operations on Integers .
References to Fixed {(Absolute) Memory
Address Operator (8) . . « « = « = = =
Embedded Assembly Code . « « =« » = = =

-
-
-
-

I/0 Support Extensions « « « = « = = ; = -
Reset () /Rewrite() Optional Parameters
Sepk{) Procedwe . « s 2 « = =

Break() Procedure . « = .= = = = = « =
Close() Procedure . « « = = s = = = =
Readln() Array of Char . '~ . « « « = =
Write() Array of Char . . = « « = =« =
HWrite() Octal (Base 8) . . « « = = = =
Interactive I/0 . . o 2 o« =2 = « a = =

additional Predefined Functions
) Tl mE = = = = = » E 3 - = - - - - t] - -
Expl0{(} and Lng() s = e « = ® % a =

Mon-Standard LLanguage Elements « « « =« =
Pack{) and Unpack() Not Available .
Program Parameters . « - « ~ = &« =« =
Identifier Scope Rules « ¢ « =« « « =«
Read () /Write() Text Files Only . . =
Eof () Not Accurate (RT—-11, RSTS Only)

Implementaﬁinﬁ Definitions » « « = = « = =

¥ s 8 B 8 8 a2 @
)
LS S SR T T T
[2 B N A}
LI T I Y N
8 8 8 & B 88
LI IR L
TN L R
e B s ox o

[] " - . L] . -
T
A N
P T T)
T N
R T
IR EE
RN
IR
IR

S » B N B 8 5 8
R R R N R
R R R
N N I
PR L T T I)
P T 2 I T T I
" T T S
O A
U T I T I
P ST S I N A

.
.
.
»
[.
»
]
| I

[]

.

. s
»

L]

1]

"

»

»

Pascal—1 V1.2/RT-11 Contents.

Identifiers . - « = = '

—— Write Variable Value

Advanced Debugging Technigues

Standard Type Integer .« = = = 2 « = = = = .'. -

. Standard Type Real « « « = =« =« = = o = = = = = =

Standard Type CHAr « « = = a = = = = = = = s = =

Standard Type TexXt =« « « = = = = « = = s s = =« =

SET TYPES =] - » - - 8 - L] - - - - = = - - = =

New() and Dispose() Procedures « « « « « = = = =

Pru:edural Parameters .« = = = = s = = = « = = =

Impyementation Limitations « = = a = = = s = 2 =

Error Detection . « « - = = « = = & = @ = e o =

TABLE A: Predefined Identifiers . . « = = = » » = =

TABLE B: Reserved Words .« « =« s =2 =« = = &« = @« & 2 »
SECTION _FOUR: PASCAL ON-LINE DEBUBGER. = =_o_=s_=_=

Intrdductinn to the Debugger'. e &« = = = = = = = = &=

Including POD in Your Program « « = « « = ¢ = = & =

RL!nﬁing‘ PDE. - - L] E] - = - ..‘ - - - - - - - - - - - -

ACCESSing Pascal Statements ‘- - - - - - - - - - s =

Accessing Pascal Variables « « « = = = » =« = = = = =

PGD C‘:Dmmandﬁ » - » - N = «" & '®» = = - - - - - - - - -

B — Set/Clear Breakpoints .« « « « = = = = = = =

£ — Continue Execution . . « « = = = = = = ¢ =

D — Display POD Parameters . - =« =« = =« ¢ =« = =

G —— BO ar GQ tﬂ a Label «a 2 = = » = = = = s = =

H —— Print Program Execution History . . . - - =«

i{ —— Kill Breakpuints a‘nd LabElS .« = n & = = = =

L — Label 2 Statemeﬂt a 8 = = = =2 ®=m = =& s =» = =

P — Execute One Gtatement « = = = 2 & = & =3 = =

’ R hunand REgiStEr“ Dump « 8 » = = = & s @&« 3 = s = == &

S '—Single Step - - = = = = = = = = - - = - = =

T — Trace HDdE « 8 % ® = ® s = ®= = = s = = = =

V — ‘t‘ariable Natth s = . 0= - Y = - - = a = ® = ®

w - - a L] = E] * E = - -

T T L L T T I T I

a % % & %5 B M B W K B & N B

YN DR L DL I I I R B I

$# 5 B # ¥ 8 8 5 3 =

S # 8 8 % B 85 5 B R & X w W

Pascal—1 V1.2/RT-11 Contents

SECTION S5: INSTALIATION GUIDE . 2 o 2 o o 2 o 2 o o o = = o 91=100

Introduction to the Installation Guide .

Contents of the Distribution Medium

- Installation Files . .
Documentation Files -
Compilers . « . « =
Utility Programs . .
Object Libraries . .
Debugger Modules . .
Demonstration Programs

Installation Preparation . . . - =«
Installation Dialogue . « « « « =
Installation on VY2 or Floppy Disks
Daouble-Density Drives
V2 or Single-Density Drives .

Appendix A: Sample Installation .

Appendix B:I Programming Changes in

Pascal V1.2>

Appendix C: Customizing the PCL . « . - - . »

-

-

e % » & 5 8 3

% 5 & % N 8 5 8

2 8 & B ¥ 0 8 B

?z2

93
93
93
93
93
93
24
94

8

3 8399 3

102

103

Pascal—-1 V1.2/RT—-11 Introduction

INTRODUCTION

Welcome to Oregon Software’s Pascal-1!

This user manual coﬁtains_all the information you should need to
install and operate Oregon Software’s Pascal-1 system on DEC’s
RT-11 V2, V3 and V4 operating systems. ‘

The Ffirst part of this hanual that you will need is the
Installation Guide, which is in the back. ~f{We put it there-
"because you will want it only for reference after you have
installed ,your Pascal-1.) The other sections come in the order in
whxch you are most likely to need them.

The first section is the User’s Guide, which is a beginner®s walk
in the countryside of Pascal-1i. The User’s Buide has two parts.

- The first is a gquick jump into simple programs. The idea is to
immerse you immediately inm our product, to give you a feel for it.
The second part covers some of the same ideas, but expands on
concepts and details. You can cover this section at a brisk pace.
Experienced programmers will probably dash through it. »
But lest you get too confident in your stroll through the User’s
Buide, +there are brambles aplenty for unwary souls in the
following sections: the Programmer’s Buide, the Language
Specification, and the Debugger Guide. Experienced programmers
should have no +trouble, and beginners can make their way
carefully, but we encourage the latter toward additional reading.
{See the list of books that follows.) Each sectzan has a brief
1ntrnduct1nn explaining its function.

Fascal-1 V1.2/RT-11 Introduction
For More Information

For_ More Information

W2 can suggest several places to find more information about
Pascal:. f

-

(1> Try it! Certainly the most challenging course, and the
most open—-ended and accurate as well. Acquire the habit of
answering your questions by experiment. Remember, "You can’t
. hurt the computer!'"® '

{3) Pascal User Manual and Report by Kathleen dJerisen and

"Niklaus Wirth —— the first definition of Standard Pascal.

(4) This manual —— for fine points and grubby details of our
Pascal, it’s the only place in town. »

For the serious student, these books are available from Oregon
Software or elsewhere:

Systematic Programming: An Introduction, Niklaus Wirths
Prentice-Hall, $17.75

Algorithms + Data Structures = Programs, Niklaus Wirths
Prentice-Hall, $20.25

Structured Programming, Dahl, Dijkstra, Hoares

Academic Press, $15.30

Elements of Programming Style, Kernighan and Plaugers

e e e ot s b e Mmoo e ik SIS S Fvin S e PO

McBraw—-Hill, $3.95

And we recommend that vou join the Pascal Users® 6roup, which
publishes an excellent newsletter. Send €10 for a one-year

subscription to:

Pascal Users’® Broup
Attn: Rick Shaw

P.0O. Box 888524)
Atlanta, Georgia 30338
(404) 252-2600

Pascal—1 V1.2/RT-11 Introduétiun
Who Are We, Anyway? ’

Wwho_fAre_ UWe., Anyway?

Oregon Software traces its origins to OMSI — the Oregon Museum of
Science and Industry. OMSI is a private educational organization
chartered "to further the education of the youth of the
community”, and it was in the Research Laboratory at OMSI that we
began writing software. Seven of us came Ffrom OMSI to found
Oregon Software in September, 1977. Because of the close
association, the name "OMSI" stayed with us for a while, and we
cqntinué to contribute some of our corporate resources to the
Museum. N

But please, we’re Oregon Software. We’re a research and
development software corporation in Portland, with a nice view of
Mount Hood and of what’s left of Mount St. Helens. The seven from
OMSI have grown into twenty—five from all over.

On a serious note: OMSI is a non—profit, charitable institution.
Contributions of money and equipment are much needed and are
tax—deductible. Please earmark your donations for the Research
Lab, which supports independent science prajects in many fields,
including computing. For further information about the OMSI
Research Lab program, contack:s -) '

Director of Research
OMS1

4015 SW Canyon Road
Portland, Oregon 97201
(503) 248B-5743

s e A i S S A e e e S

Now that you know more about us, you may want to know more about
our newest product—-in-—-progress, Pascal-2. Pascal-2 is our new
optimizing compiler, written in Pascal. It’s designed to be
portable, and it"s already been moved to a Honeywell computer.
The Pascal-2 compiler is bigger and slower than Pascal-i, but not
the generated code. Typical programs are 40% smaller and almost
twice as fast. You can expect Pascal-2 compilers +o be available
on a wide range of 16-bit and 32-bit processors in the next
several years. Supported users of Pascal-1 will receive
substantial discounts on their purchase of Pascal—-2 licenses for
the PDP-11.

Pascal~1 V1.2/RT—11 Introduction
And Finally . . .

And Finally . . .

This manual is the third edition of our RT-11 manual aﬁd cuntains?
a number of changes and additions, including: .

1) Correction of errors and omissions in dacumentations
2) More details, especially about installation procedures;

3) A general Table of Contents and a Table of Contents far}
each sections ‘

4) A standard format for all sections and sequential
numbering for the entire manuals; :

5) Inclusion af all sample programs in the machinE*readablef
version of the manuals; .

&) Correction of spelling mistakes and other irritating
little errors.)

Most of the changes are in the nature of “tidying up”, but we
believe that it is a good deal easier to read and find things in
this version of our manual than in our earlier efforts. »

Oregon Software plans to continually upgrade its written
materials. In the future, ‘we expect to include more details and.
more sample programs and examples in the RT-11 manual . I¥ you
have any suggestions, or if vyou have any problems with this
manial , please tell us about them (in writingl.

SECTION_1: USER?S GUIDE

Introduction to the User’s BGuide

in the Beginning . « - . »°
Entering the Program -
Compiling the Program

. Correcting the Program

Compilation Switches and What They
The Listing (/L) . . . « « « =
Listing for a Complex Program
More on PCL . . & « « ="x =
The Debugger ((/D/S) . .
Extended Precision (/X)
‘The Profiler (/P/8) . .

8 8

Your Next Step - « - « =« - e e s .

V00w Noma »

® a4 %" s ® o2 on
I
L]] » L] L] » L]
L .' L] []) [] []
P)
" s &, 2 8 9 @
O T
» [§ » [] » L[] L]
" 8 % 85 8 ¥ @
" o % 8 " w8
R
LI T O O)

Pascal—1 V1.2/RT-11 User’s- Gui
. d
Introduction See rag= 4

Introduction to the User’s Guide

D P s S S e, s S P et S S i S S . s S, SO S B A, S, S e S S T WP St S

This is the introductory section, the User’s BGuide. It explains:
lé‘ﬁaw to compile and run your Pascal programs:
2@ hHow to interpret program listings and error messagess

3# some details of the compilation process.

This guide assumes that you are familiar with:
1} simple RT-11 commandsi
2} a text editor (EDIT, TECO, EDT, S085)3

3) elementary Pascal programming.

This guide is not:
1) an introduction to Pascal {(see Egggggmming in Pascal by
GBrogono)l s
2) a detailed description of Pascal-1l (see the Language
Specificationls
3) an expert®s guide to Pascal-1 (see the Programmer’s Guidel.

In examples, underlining is used to show the text that you should
type. Non-underlined text shows prompts or other responses by the

computer.

Pascal—-1 V1.2/RT—-11 User’s Guide , Page S
In the Beginning . . - '

Entering_the_ Program

So you want to run a Pascal program?

The first step is to enter the program into the computer and store
it in the file system. Use a familiar text editor to enter your’
program, and store the program in a file with the extension .PAS.
The Pascal system accepts free—format program files, s0 use
blangs,;tabs, new lines, and form feeds as desired to help make
yopr;prngram readable.

This Pascal version of your program is called the source program,
or the | source file. A11 other versions of your program are
tranﬂlatiqns from the source program.

Source programs should be stored in files with the extension .PAS
for Pascal {(example: FIRST.PAS) . The .PAS extension may be
omitted from commands to the Pascal system, but must be included
in commands to other RT-11 systems such as the editor.

Compiling_the Program

e e i B S S S s s S e, e s A e S e S R S S

After editing, you must compile your program —— +translate it into
a form that can be directly executed by the computer. The Pascal
compilation process is directed by the PCL (Pascal Command
Language? program. Its simplest form is:

.R PCL
*<{source file name>

To illustrate the compilation process, let’s assume that this
program

program First (output)s

begin .
write (?"Things are best in their beginnings"’23
writeln (° — Blaise Pascal”)}s;

end.

is stored in the file FIRST.PAS.

Pascal-1 V1.2/RT-11 User’s’' Guide Page 6
‘In the Beginning . . .

The compilation process begins with your command and is followed
by the computer’s response:

.R PCL

——

*EIRST
_.RU SY:PASCAL
*TEMP. TMP, TT:=FIRST/N

Errors detected: 0
Free memory: 11660 words

.R MACRO

*TEMP. TMP=TEMP. TMP
ERRORS DETECTED: O
*0

-« R LINK
*FIRST=TEMP. THMP, SY: PASCAL
*

-RU FIRST
" “Things are best in their beginnings" —— Blaise Pascal

Notice that the PCL command line compiles the source program and
then immediately runs (executes) the compiled program. This is
known as "compile and go" operation. Compiled programs are stored
in files with the .SAV extension (FIRST.SAV). After being
compiled, the .SAY program can be executed again with the °*R* or
RUN® commands. .

Notice also that no errors were detected. This is certainly
unusual if this is yvour first program! What happens if there are
detectable errors in the source program? The next example shows
the result of such an error.

Pascal-1 V1.2/RT-11 User = Eu1de Fage 7
In the Beginning . ..

Correcting the Program
The'fnllowing program contains a deliberate error:

program Second {output)
begin

writeln (°Things get worse as they continue?)s
end.

This program is missing a semicolon between the program heading
and the keyword ‘’begin’. , Semicolon errors are the most common
errors made by beginning Pascal programmers. Semicolon errors are
always detected by the compiler:

-R PCL

*SECOND

.RU SY:PASCAL ' u

*TEMP. TMP, TT: =SECOND/N
2 BEGIN

*xx¥%% Expected *SEMICOLON® missing

Errors detected: 1
Free memory: 11679 Hards

 «R MACRO
*TEMP. THP=TEMP. TMP
~C

]

For each error, a line of the source program is printed. then an
arrow indicating the approximate position aof the error, and a
mossage describing the error. Many compilation errors are
possible. See Appendix A of the Programmer®s Guide for a complete

list.

Pascal—1 VY1.2/RT-11 User®s Suide Page 8
Compilation Switches (The Listing)

The_Program_Listing_ (/L)

Often, we need to see more of the program to locate and correct
the error. The Pascal compiler can be directed to display the
entire program, with all detected errors and other information.
This is the "listing® of the program. To get a program listing at
your terminal, add the /L switch to the PCL command line:

.RiPCL '
l#<source file name>/L

To print a listing to the line printer or another destination,
give a comma followed by the destination file name, an equal sign,
and the source file:

.R PCL »
* , €listing file name’> = <{source file name>

Note: 1listing files are created with the .LST extension. A
iisting of a sample program fnllqws:

THIRD OMSI Pascal V1.26 RT11 26-Dec-80 08:29 Site #1-1 Page 1
Oregon Software Portland, Oregon 97201 (S03) 226~7760

Line Stmt Level Nest Source Program
1 | program Third (output)
2 begin
Pl
*xx%%¥ Expected "SEMICOLON® missing
3 1 1 1 writeln (°Things get hazy if you stare’);
4 2 1 1 end.

Efrors detected: 1
Free memory: 11677 words

The listing is printed in pages, with a heaﬁing' on each page
showing the program name, the exact version of tHe Pascal system,
the date and time, and the licensed site jdentification ‘(the

facility name and site number).

Four columns of numbers appear on the left side of each page. The
first column, labeled "Line", simply numbers each line of the
source program. The second column is labeled “Stmt" and gives the
statement number of the Ffirst statement on that line. The
statement number starts at 1 for each control section, and
increases by one . as each statement is compiled. An up—to—date
listing can be useful during debugging, because the statement
numbers are used by the Debugger to identify breakpoints.

Pascal—~1 VY1.2/RT—-11 User’®s Guide Page %
Compilation Switches (Listing for a Complex Program)

— e o e e e el G e e s S s e o e

To illustrate the “Level” and "Nest" columns, a more complex
program is needed: ’ : :

FINAL OMSI Pascal V1.2G6 RT1i1 26-Dec—-80 09:30 Site #1-1 Page 1
Oregon Software Portland, Oregon 97201 (503) 226-7760

Line Stmt Level Nest Source program

1 program Final (output)s
2 ;
3 const Reality = trues .
4. .
S procedure Objectives:
¥ begin
7 1 2 1 if Reality then
8 2 2 2 write(’Things become more complex 7)
2 3 2 2 else write(In the Beginning.: «..713:
10 4 2 1 ends
11 4
12 , procedure Awarenesss
13 var Eye: (Subject, Object)s
14 begin)
i5 1 2 1 - for Eye 1= Subject td Subject do
16 2 2 2 writeln(’as one understands them”™);
17 3 2 1 ends '
i8
12 : begin
20 i 1 1 Objectives
21 2 1 1 Awarenesss:
22 3 1 1 ehd.

Errors detected: O
Free memory: 115594 words

The "Level" column shows the depth of procedure nesting. The main
program is at level 1, its procedures are level 2, and so on: a
procedure at level 4 is enclosed by two surrounding procedures or
functions. The “Nest” column shows a similar nesting of
statements within other structured statements.

More_gn_PCL

The PCL command line can include up to six source files combined
in sequence to form the complete program. The compilation also.
can be modified by "switches" in the PCL command line. A switch
is a slash followed by a letter (such as /L. which prints the
listing). The most commonly used switches are shown in the
following examples. The Programmer’s Guide has a complete list.

FPascal—-1 VY1.2/RT—-11 User s Guide Page 10
Compilation Switches (More On PCL)

To further demonstrate the use of the PCL, let’s compile and list

the program E. This praogram calculates an approximation of E (the

base of the natural logarithms) by summing the series
1+1/1!+1l2!+1/3!+ -sa +1/N!

until additional terms do not affect the approximation.

.R PCL
*E/L

.RU SY:PASCAL
*TEMP. TMP, TT:=E

EX OMSI Pascal V1.26 RTii 26-Dec-80 12:58 Site #1-1 Page 1
Oregon Software Portland, Oregon 97201 (S03) 226-7760

Line Stmt Level Nest Source Statement

program EX3

1

2 var E, Delta, Fact: reals

3 N: integers

4 begin

S 1 1 1 E:= 1.03 Fact:= 1.0 Delta:= 1.0%
& 4 i i i= 13

7 S 1 1 ‘repeat

g8 é 1 2 E:= E + Deltas

2 7 1 2 M:= N + 13 Factz= Fact = N5

10 ? 1 2 Delta:= 1 / Facts

11 10 1 2 until E = (E + Deltal)s

12 11 1 1 write(’With *, N:1, * terms, *)3
13 12 1 1 writeln(’the value of E is®, EI11BI15)3
14 13 1 1 end. -

Errors detected: O
Free memory: 11636 words,

Errors detected: O
Free memory: 11636 words

.R MACRO

*TEMP. TMP=TEMP. TMF
ERRORS DETECTED: ©
*0C

~R LINK
*E’TEHP.TNP,SY PASCAL
®¥~C

-.RU E
With liiterms, the value of E is 2.718280000000000

Pascal—-1 V1.2/RT~11 User’s Guide Page 11
Compilation Switches (The Debugger’

———— s i o . s e

We can uatch the progress of the computation and can display
intermediate values without making any program changes. For this,
we use the /D/8 switch pair to compile with the interactive
Debugger. After compiling, we set a stored breakpoint command to.
display |the current value of E.

-R PCL
*E/D/S

-RU SY:PASCAL
*TEMP.THP,E,E=E/D/S

‘Errors detected: 0
Free memory: 11372 words

-.R MACRO
*TEMP . TMP=TEMP. TMP
ERRORS DETECTED: O
*C

R LINK
*E=TEMP.TMP,SY:PASCAL/C/T
*8Y:ras021/C

*SY:1RB/0:1/C

#8Y:10/0:2/C

*#8Yi1/70:2/C

*8Y:2/0:2/C

*8Y:3/0:2/C

*8Y:14/70:2/C

*#3Y:15/0:22/C

*#8Y16/0:2/C

*[Y217/0:22/C

*8Y:8/s70:2/C

*8Y:9/0:2

Transfer symbol? $S5TART
*~C :

Pascal—-1 V1.2/RT-11 User’s Guide Page 12
Compilation Switches (The Debugger)

R E

At this point, the Debugger will prompt you for the name of vyour
program, and you can set the breakpoints. In this example, we set
the breakpoint at MAIN,& because this is the point at which the
value of E changes in this particular program (see the listing on
Page 10). We also tell the program to write the value of E at
that '‘point and then continue. (See the Debugger Buide for details
of these commands.)

FaD ﬂPaécaI Online Debugger) — 24-Apr-79
POD — Program name? E
3 BMAIN.S) <W(E)3C>

B

Breakpoint at MAIN,& E:i= E + Deltas
1.000000 : ,
Breakpoint at MAIN,& E:= E + Deltas
2.000000 '
Breakpoint at MAIN,6 E:= E + Delta;s
2500000 ' ‘
Breakpoint at MAIN,S E:= E + Deltas
2. 666667

Breakpoint at MAIN,&6 E:i= E + Deltas
2. TRE3IEZ

Breakpoint at MAIN,6 E:i= E + Deltas
2.716667 '
Breakpoint at MAIN,6 E:= E + Deltas
2.718056

Breakpoint at MAIN,6 E:= E + Deltas
2.718254 ' . .o
Breakpoint at MAIN,& E:= E + Deltas
2.718279

Breakpoint at MAIN,& EI= E + Deltas
2.718282

With 11 terms, the value of E is 2.71828B0000000000
Program terminated at MAIN, 12 end.
i ¥

Pascglfl V1.2/RT-11 User’s Guide Page .13
Compilation Switches (Extended Precision}

Extended Precision_ (/X2

The computed value is printed with 6 significant digits. For more
precision, we can use the /X switch, which means "extended.
precision”. With extended precision, 15 significant digits are
computed and displayed. See the Programmer’s Guide. :

R PCL

*E/X

-RU SY:IPASCAL
*TEMP. TMP, TT:=E/X/N

Erraré detected: 0O
Free memory: 11636 words

-.R MACRO

*TEMP. TMP=TEMP. TMP
ERRORS DETECTED: O
*~C

-R LINK
#*E=TEMP.SY:PASCAL
L

.RU E ’

With 19 terms, the value of E is 2.71828182845?&50

Pascal—-1 V1.2/RT—11 User’s Buide Page 14
Compilation Switches (The Profiler)

The Profiler (/P/S)

Fanally, let’s "profile® the program by using the RS
cambxnatzan. The profile 1listing shows exactly the number of
times each line is executed, allowing us to concentrate on the
parts of the program that might be optimized effectively.

-R PCL

[N —

.RU SY:PASCAL
*TEMP. TMP, E, E=E/D/S

Errors detected: ©
Free memory: 11372 words |

. R MACRO

TEMP. TMP=TEMP. THMP
ERRORS DETECTED: ¢
*~0

.R LINK |
*E=TEMP. TMP, SY: PASCAL , SY:PROFIL
*~0

.RU E

Program name? E

Output profile to: TI:

With 11 terms, the value of E is 2.718280000000000

EX OM8I Pascal VI.ZB RT11 26-Dec-80 12:59 Site #1-1 Page 1
Oregon Software Portland, Oregon 97201 (503) 2267760

Line Stmt Level Nest Source Statement

1 program EX3

2 - var E, Delta, Fact: reals

3 Nz integers

4 begin
1 S 1 1 1 E:= 1.05 Fact:= 1.0; Delta:= 1.03
1 & 4 1 1 = 13
i 7 2 1 1 repeat

i0 a & i 2 E:= E + Deltas

10 ? 7 1 2 = N + 15 Facti= Fact * N3

10 10 ? 1 2 Delta:= 1 /7 Fact:

10 11 10 1 2 until E = (E + Deltals .
1 12 11 1 1 write(’With *, N:1, * terms, “):
1 13 iz i 1 writeln(’E is’®, Ez18:1523
i 14 i3 i 1 end.

Errors detected: O
Free memory: 11636 words

Pascal—-1 V1.2/RT-11 User’s Guide Page 15
Your Next Step

Your Next Step

T o vts o

Thus ends your guided tour through Pascal-1. At this point, vyou
should ' be able to run a few simple programs. Before getting into
complbx,programs, however, you should consult the Programmer?’s
Bulde& the Language Specification, and the Debugger Guide.

SECTION 2: PROGRAMMER’S GUIDE

Introduction to the Programmér’s

Compilation Switches . « « . =«
Listing (/L, /Lin, /N} . .
‘Partial. Compilation (/C, /M
Real Arithmetic /X, /F) .
Debugger (/D) . &« 2« o« = =«
Profiler (/P) . ¢« & « « =
Source Mode (/S) . . . - .
External Module (/E) . . .
Branch/Jump Improver (/I)
Fast:ﬁssembler (/8) . « «

Embe ded Switches . . . -
dr—Che:kzng (A, $T)
Debugger/Proleer ($D)
External Module ($E) . .
Real Arithmetic (%X, $F)
Listing ($L) . . « = = = =
Source Mode ($8) . .« - « «

1/0 Control Switches

/BUFFERSIZEIN =« « « = » =
/4 =
/ODT v v o = « = = = » @« =
/NFS o v ¢ o o o a = = = =
SSEEK . . . i s xom o= s om
/SIZEIDY o 2 = = = = = = &=
JSPAN . . &« a s e = =
/ TE"P = - - - L J - - - - -

The Profiler (/P) . . . « - =

-

B % 0 & 8 8 K 0

Buide
Q) .

Format and Cross—Reference (PASFMT) .

The ImpruverA(IMP) = e = & =

" s % 9 w s 0 8 % 2 N n B3 1

[T T T I T T

4 R a5 8 B B & B

20

21
21
21
22
22

22
23’
23
23

24
24
24
25
25
23

26
26
26
27
27
27
27
27
28

28

. 30

Pascal-1 V1.2/RT-11 Programmer’s Guide Page 19
Contents

Dynamic String Package . . ¢« o o 2 o o = 2= 2 2 2 = « = = = = = 31
Ex ternal Mﬂdul es - .' - - - - - - - - - - - L] L] - - L] - - - - - 33
The Linker, Librarian, GVerlays = = = ® =2 s s = = 2 ®= 3 =2 = = 34

Embedded Assembly Code . . e e e e e e e e e e e 39

Run—-Time Memory Organization . + ¢« & 4 « o« ¢ « o » = = » « =« « 37
RT—11 Vectors and Communication . . . = « 7 « o « « « « « 37
"Program COde « .« « 2 s.s = = o o o = = =« = o = = s« = = « =« 38
Global Variables . . & « « ¢ ¢« o« 2 o s = 2 2 ©# o« = = « = « 38,
Dynamic Memnry -— The Heap " s 8 & & % = = » 8 2 a2 =« 8 = = 38[
Local Variables —— The Stack - - « « ¢ &« o o o ¢ ¢ « o« = = 38
RT""i 1 Resi dent Mﬂﬂi tﬂf‘ - » a = - - - - s & = - - e = = - - 3?
I/0 Page a = % %= 8 ® @€ 28 @ @ ®w = =2 s = & ® = = =m s ® & &s = 39
Stack Partition/Stack Frame . . « =« « s » @« =« 2 = « » « = 39
‘Function Return Yalue .+ . 2 « 2 2 a2 2 2 2 2 a s s « « « «» 40
Parameters . « ¢« o 2 ¢« 2 « o 2 s a a 2 2 »a s » s = = s = « 80
Return Link . . &« ¢« = =2 2 = =2 2 2 = = = a « =2 = 2 « » » a 80
Local Variables . . 2 2 & 2 2 ¢ 4 ¢ e« 2 2 o a s = a « = « 40
Static Link - = - - - .= - - - - = L] 3 s = » » - - - = - - 40
Foreground Operation .« . . o« = 2 2« o 2 o 2 o = » = =« = « » 41

Extended Precision « + o« 2 2« 2 = =« s s &« o = = « s =« « » = « » 41
The System Error{) Procedure . .« = « 2 2 2 = s« =« = = = = = « « 42
Appendixjﬁ: Compiler Error Messages .« - « « a ¢ s = » "« e . . 43;

Appendix B: Run~Time Error Héssages Y

Pascal-1 V1.2/RT-11 Programmer’s Guide Page 20

Introduction

o e e s e

The Pqurammer’s Guide describes the way in which the Pascal-1
Vi.2 5ystem interacts with the PDP-11 and the way in which some of
the advanced features of Pascal-1 operate.

Thisibuiﬁe assumes that you are experienced in programming with

Pascal.’ |

This guide is pot:

12 an{ introduction to Pascal
Graogono) i .

(see Programming in Pascal by

—— ———

2) a beginner’s guide to Pascal-1 (see the User §dide)§

3) a detailed description of
Specification)s ‘

Pascal-1 (see the Language

In examples, underlining is used to show the text that you should
type. Non-underlined text shows the prompts or other responses by

the caomputer.

'Pascalfi V1.2/RT-11 Programéer’s Guide Page 21
Compilation Switches .

S s s St . 00 e e S e . U et et i e A S P o

The compilation process and the resulting program can be modified
by switches appearing in the PCL command line. Switches are a
single alphabetic character after the °/° (slash) marker, as in
the command line MAIN/D/S. ' :

The complete set of compilation switches appears below, follaowed
by a}dg#ailqd description of each switch. f
Lot | .
/C Compile only Complete compilation but no execution

/D Debug Debugger compilation

fE External External module — implies /0

/F Fast reals Generate calls rather than traps

/1 Improver Branch/jump resolution

L Listing Produce compilation listing

fLin Listing Specify listing page length

M Macro Partial compilation to assembler .MAC
/N Nolist List errors only :

/0 Object FPartial compilation to linker .0BJ

iP FProfile Profiler compilation

e Quick Uses fast MAC.SAV assembler

/8 Source Include source lines (modifies /D/P/M)
/X eXtend Extended precision Reals (105 digits)

Listing Control Switches (/L. /Lin, /N)

The /L switch directs the compiler to produce a listing. The /L:in
switch indicates that the 1listing is to be in pages of N lines.
gach., The /N switch directs the compiler to list only 1lines in
error. The /L and /N switches are related to the $L+ and $L-
embedded switches. '

Partial Compilation Switches (/C, /M, /0)

These switches interrupt the compilation process when intermediate
results are desired. , '

The /M switch performs only the first compilatiun‘step, resulting
in an assembly source translation of the-Pasca} program.

'The'assembler source file has the extension .MAC. The /S .switch
is recommended with /M and will include the Pascal source lines as

comments.

The /0 switch performs the compilation and assembly steps,
producing a relocatable object file suitable for input to the
Linker or Librarian. The /0 switch is implied by the /E
{(External) switch.

Pascal—-1 V1.2/RT-11 Programmer’s Buide Page 22
Compilation Switches

The /C switch performs the entire compilation process, but does
not execute +the resulting.program. The program may then be run
with the R or RUN commands. '

Real Arithmetic Switches (/X. /F)

The /X switch causes the compiler to use extended precison for
values of type Real. Al1 Real values are extended. It is not
possible to mix normal and extended precision values. The 7X
switch lis related to the. $X embedded switch. See the section on
ExtenFed Precision. '

The /%‘ékitch is of limited utility. On processors lacking both
FPP ‘hﬂszIS?floating—pnint hardware, Real operations are normally
performed by a trap of each FIS instruction and simulation of its
-effects. The trapping pgrocess requires some overhead, but is
compact. The /F switch causes the compiler to generate subrautine
calls rather than simulating FIS instructions. The subroutine
calls are faster but require an extra word for each floating-point

instruction.

Debugger Switch (/D)

The /D switch indicates a Debugger compilation. This switch
causes generation of a symbol table file and, if /5 is also
present, a listing file. The /D switch also causes generation of
code to identify each procedure and statement teo the interactive
debugger. The /D switch is related to the $D+ and %D~ embedded
switches. See the section on the Debugger.

Profiler Switch (/P)

The /P switch causes the inclusion of code for performance
measurement, and generates a symbol table file and, if /S is also
specified, a 1listing file. The Profiler uses the Debugger
interface code, so that /P cannot appear with /D. The /P switch
is related to the $D+ and $D— embedded switches. See the section
on the Profiler.

R e mn | memaaamm v ——_ o S o

The /5 switch performs two distinct functions. When used with the
Debugger (/D/S) or Profiler (/P/95), /S enables the source program
mode of operation and connects the actions of the Profiler and
Debugger to the source text of the program.

Pascal—-1 V1.2/RT~-11 Programmer’s Guide FPage 23
Compilation Switches '

when used with the Macro sw1tch (/M/S), the generated assembly
langdage translation will include the Pascal source lines embedded
as comments within the assembly file. This use of the /8 sthch
is rélated to the $5+ and $S- embedded switches.

l
__;gﬁ_ _dule Switch (/E)

The /E swztch indicates an external module compilation. This.
causes the outermost procedures and functions to be identified to
the anker with global entry names. An external module can%
include global declarations, procedures, and functions but is not
requxred to include a main control section. The /E switch is;
related to the $E embedded switch. See the External Module
section. The /E switch should not be used to :umplle the mazn‘

proqram that calls external procedures.

T T e T e e e o e > e B cote e o s v

The /1 sw;t:h inserts an addltxanal step into the compilation
process, a branch/jump resolver (IMP). IMP replaces branch/jump
combinations with a single conditional branch where possible. The
Improver runs slowly, but typically reduces program size by 6 to 8
percent.. IMP is recommended only for compilation of fully
debugpeq;prnductxon programs.

-

Fast Assembler Switch (/@)

The /@ switch causes the compilation process to use the MAC.SAV
assembler instead of the MACRO assembler. MAC.SAV is a
single—-pass assembler that has no macro or local symbol ;
capabilities, but it assembles compiler output in about one third
of the time required by the RT—-11 MACRO assembler. ~

Pascal-1 V1.2/RT-11 Programmer’s Guide Page 24
Embedded Switches

. o S g S e St S s S S S s S P e

Embedded switches provide control of compilation options within
the Pascal source program. Embedded switches have the form of a
Pascal comment beginning with a dollar sign ($), followed by a
51ngle uppercase alphabetic character and possibly a plus or minus
sign, as in (*%L+x). Several of the embedded switch functions can
also be provided by compilation switches. Embedded switches have
the advantage that, once included in a program, they cannot be
accxdentally umxtted from a compilation. .

kThe cumplete list of embedded switches below is followed by a more
detailed description of each switch function. In general, a plus
sign enables a particular function, and a minus sign disables it.
Bwitches that are initially enabled are marked with [+1; switches
marked [MBF1 (*must be first”) must appear before any Pascal code.

$A—, $A+ Array bounds Include array bounds check [+1

$C Code insert See the Embedded Assembly Code section
$D—, $D+ Debugger Include debugger interface

$E-.$E+ External External module compilation

$F—,$F+ Fast FIS - Enable floating-point calls

$L—-,$L+ Listing Source lines in listing [+3

$5—-, %5+ Source mode Source lines in assembly
$T—,$T+ sTack check Include stack overflow check f+1
%X eXtend Extended precision reals [MBF]

The #A switch controls the generation of code to check each array
refeHenée and ensure that the index is within the bounds of the
array. Bounds checking is initially enabled; the $A— switch will
disable checking. If enabled, each bounds check adds 8 words to,
the size of the program.

The 3T switch controls stack overflow checking, and is initially
enabled. Stack overflow is possible upon entry to any procedure
or function block. This check can be disabled with $7-, with a
small savings of memory (2 words per procedure). :

e e e e

The $D switch controls the interface code to the Debugger and
Profiler. If enabled, each statement and procedure includes
instructions to call the Debugger or Profiler. These instructions
require 1 to 3 words per statement (1 word for statements 1-255 of
each procedure, 2 words otherwise, and an additional word if /S
source mode is enabled). In large programs, one may choose to
disable debug interface code generation for sections known to be
correct.

Pascal—-1 V1.2/RT—-11 Programmer’s BGuide Page 25
Embedded Switches

External Module Switch ($E)

Enabling the $E switch causds global procedures and functions to
be labeled as external entry points in the relocatable object
file. A main program section is ignored if it is encountered’ when
the $E switch is enabled. See the External Module section.

Reall Arithmetic Mode Switches ($X. $E)

The $X switch enables extended precision (1S-digit) real
arithmetic. If present; the $X switch must precede any Pascal
c?de; You cannot mix normal and extended precision in one
pﬂogfamL: so that each module in separate compilations must be
compiled with the same precision. See the Extended Precision
section. .

The $F switch is useful only on processors lacking FIS and FPP
hardware for floating point calculations. ©On these processors,
floating-point instructions are normally trapped and simulated.
The SF switch instead causes direct subroutine calls to
floating—point routines, saving about 0.2 milliseconds per
floating—point instruction at the cost of an extra word.

——— e s e . s et e e i o o o b o oy e s

The %L switch controls the appearance of lines in the program
listing file. If enabled, all program text will appear in the
listing. If the $L switch is disabled, only lines in error and
error messages will appear. :

Source Mode Switch (%S)

Enabling the $8 switch causes the Pascal source lines to appear as
comments in the compiler assembly output. This makes it easier to
determine the code generated for each statement. This switch also
modifies the behavior of the Debugger and Profiler. -

Pascal-1 V1.2/RT-11 Programmer’s Guide Page 26
I/0 Control Switches

1/0 Control Switches

The Reset() and Rewrite() standard procedures accept additional
arguments specifying a Filename of an external file, and a
Defaul tName with default fields of the filename. These arguments
can also include I/0 control switches, which give expllczt control
of the operating system xnterface details.

The I/O switches appear in the Filename or DefaultName parameters
as in this example:

. Rewritg(F,’data.dat/seek/span/size:12.’);

A special device (TI:) also may appear in the Reset() and
Rewrite() calls. The TIz device connects to the Pascal~1
terminal driver and is used in place of the TT: driver For
interactive use.

A complete list of I/0 switches appears below, followed by

individual details. All switches may be abbreviated -to the first
two letters.

/buffersizesn Allocate'N bytes for buffer

/go Allow prograsmed error handling
/fodt Single character terainal input
nfs Non-File-Structured access
/seek Direct-access file

fsizein File storage allocation

/span Records span block boundaries
/temp Temporary file

Pascal-1 normally allocates the minimum space required for a file:
buffer, which is usually 512 bytes but is dependent on device and
file characteristics. More efficient 1/70 transfers can be
performed at the cost of additional memory. The /Buffersizeln

switch specifies the storage to be allocated toe a file buffer.
The size value is a deczmal number if terminated with a period,

otherwise octal.

/60 Switch

1/0 transfer errors are normally fatal and cause immediate program
termination. The /Go switch indicates that transfer errors on the
specified file are non—fatal and allow praogram execution tn‘
continue. in using this switch, the programmer -accepts.
responsibility for checking the RT-11 1/0 status code gfter each
I/0 operation. The error code for the previous I/0 transfer error

Pascal—1 V1.2/RT—-11 Programmer’s Guide Page 27
1/0 Control Switches

is available in the byte at address 5ZB.

/0DT Switch

Sl \ Vo ' H
Thg /DD%*Snitch derives its name from the O0DT Debugger (Octal
Debuggihg Technique), which is driven by single character
commands. The /0DT switch is used with keyboard files, and
indicates: that each character read from the file is to be,
prbcéssed immediately without any wait for a carriage return or
other action character. .The /0DT switch also disables ‘the narmal:
one character buffer effect of the Read () standard procedure. ‘

The rubout and ctrl/u keyboard editing capabilities are not
effective on terminals open with /0DT.

P s N — At

The /NFS switch is used when you desire non—+file-structured access
to a device that is normally file-structured, such as a disk
device. Because direct access to such a device can destroy its
directory structure, Pascal-l prevents non—file-structured access
unless the /NFS switch is used.

© /SEEK Switch

The /Seek switch performs two functions: it enables the use of
the direct—access Seek() procedure, and it permits both read and.
write a;cess to the file variable so that records aay be updated.

/SIZE:n Switch

The /Size switch used in the Rewrite() procedure spécifies the
space to be allocated for the file. The size of the file is given
in blocks of 512 bytes, and is a decimal number if terminated by a
period, and octal otherwise. :

e e i e —

In files created or accessed by Pascal—-1 programs, fixed—-length
records are normally ’blocked’. This means -that an integral
number of records are stored in one disk block of 512 bytes, with
any remaining storage in "that block being unused. The /Span
switch packs records more efficiently, with records spanning from

one disk block to the next. This requires additional buffer
memory, which is automatically allocated, and some additional
computationa. Spanned and blocked files are not generakly

compatible. Files created. with /Span should be read with the same
switch. ‘

Pascal-1 V1.2/RT—-11 Praogrammer’s Guide Page 28
I1/0 Control Switches '

-.__._ ———— e

This switch is used in Rewrite() to indicate a temporary file thaﬁ
will be deleted on termination. No filename is needed if this
switth appears. :

The Prnf1ler

The Prof1ler identifies the sections of a program that can be most
eife&tx ely& ogptimized. Empirical measurements show that typxcal
pragra@s consume a large fractlnn of their computation time in a
small ‘portion of the program code ("90% of the time in 10%Z of the
code").‘ The Profiler counts the actual number of times each
statement is executed and each procedure is activated, and
displays this information either in the program listing or in a
tabular form.

The /P switch appears in the compilation command to ‘invoke the
Profiler. The /S5 switch is recommended in addition for more
convenient display of the profile information.

When the Profiler begins executing, it will ask ™ for the program
name. The Profiler uses the symbol table and listing files
produced by the compiler to identify procedures and statements in
the program. The symbol table file normally has the same name as
the program and the extension .8YM, and the listing file normally
has the extension .LST. The Profiler will ask for the correct
filenames if the normal files are not available.

The Profiler will then ask for the desired destination of the
profile information. The profile will be written to the specified
file with the default extension .PRO. This should be a permanent.
file (disk or hard copy device), as the Profiler requires roughly
a factor of fifty performance overhead while gathering
information. ‘

The program being measured will then execute normally, although
somewhat more slowly. Upon normal termination, or any fatal
error, or ctrl/C interrupt, the profile information will be
written to the specified file.

The first section of the profile is the Procedure Reference
Profile, which 1lists each referenced procedure and function with
the count of calls on that procedure. The second section is the
Statement Reference Profile, displayed in tabular format. If the
/S (source) switch is specified, this section displays the program
listing with an additional column contalnzng the reference count
for each line.

Pas;él—l V1.2/RT—-11 Programmer’s Buide Page 29
The Profiler

The Profiler is limited in several respects: only the first 100
statements in each procedure will be counted, and a maximum of 40
procedures and Ffunctions can be profiled. The $D- and $D+
embedded switches can be'used to selectively enable and disable
profiling. '

Exanplel
PRIMES?E‘DMSI Pascal V1.2G RT11 26-Dec-80 8:14 Site #1-1 Page 1
Oregon Software Portland, Oregon 97201 (S03) 226-7760

Line Stmt Level Nest Source Statement

i 1 program Primes; (% Author: N. Wirth =)
2 const N=2500; (¥ first 2500 Primes *)
3 type Index=1..N3; -
4 var X,Square: integers;
S I,K,Lim: Indexs;
=) Prime: Booleans
7 P: arrayllIndexl of integers:
a8 V: arrayll..100]1 of integers
< begin :
1 . 10 1 i 1 PE11:=25 Xi=15 Limi=1; Square:i=4;
1 11 S 1 1 write{(2)s; ‘
A 1 .12 & 1 v 1 for I:=2 tao N do begin
2499 13 8 1 3 repeat)
11153 14 ? 1 4 Xi=X+23 .
11153 195 i0 i 4 if Square<=X then begin
33 | 16 12 1 .6 VILLiml:=Square;
3 17 i3 1 6. Limi=Lim+1s
35 - 18 14 i é -Square:=PLLimI*PLLimls
35 12 1S5 i b ends
11153 . 20 16 1 4 :=235 Primei=trues
11153 .21 i8 1 4 while Prime and (K<Lim) do begin
24012 C 22 20 i | " é if VIKI<X
28669 C 23 21 1 7 ‘then VEKII=VIKI+PLKI1s
24012 24 22 1 & C Primei=(X<>IK1]); Ki=K+i;
?4012 L 25 24 1 6 ends
11153 26 25 1 4 until Primes
2499 .27 26 1 3 PLId:=X3 write(X)s
2499 . 28 28 i 3 ends
1 29 29 1 1 end.

Pascal—-1 V1.2/RT—-11 Pragrammer’s BGuide ' Page 30
Format and Cross—Reference, Improver

S e S s S e S i, S S o A, o s S S S P o,

The PASFMT wutility supplied with Pascal-1 will automatically
reformat a Pascal source program, adjusting indention and
pértitianing statements so that a program 1listing reflects the
program- structure. The PASFMT program can also provide a
cross—reference index of a Pascal source program showing block
calls, nesting, and identifier references. ‘ L

The PASFMT command line can ‘contain one or two output files, an
input source file, and several optional switches. Run PASFMT as
follows: T | '

-R PASFMT
PASFMT V2.0 (10Dec79)

o i e e, P e i, g S s T S e S SR S S i S e S Y e S s A A S S S s e S S S S

The Format output file is the formatted source program. Several
switches select token trarislation options: :

/L Lowercase Lowercase identifiers, uppercase keywords

™ Mixedcase Unchanged identifiers. uppercase keywords

/U . Uppercase = All letters uppercase -
The Crossref ocutput file (if specified) normally contains the
program listing with 1line and page numbers, followed by the
procedure call and nesting index. Two switch gptions apply to the
cross reference: : '

/C Crossref all Cross reference all identifiers
/M No listing Produce only crossref index

The /C switch may be used oniy for source programs of moderate
size, because of memory limitations.

The utility program IMP decreases the size of the gobject code
produced by Pascal—-1 by replacing branch/jump combinations with
single branches when possible. IMP will reduce the generated code
by roughly S to 8 percent. :

IMP is included in the compilation process by the /1 compilation
switch, as in the command line TEST/I. .

Note that IMP runs'quite slowly and therefore is recommended for
use only on completely debugged production programs.

FPascal-1 Vi.Z(RT—Il Prugréﬁmer’s Guide ' Page 31
Dynamic String Package

Dynamic_String Package

A package of procedures and {functions for dynamic string
processing is supplied with Pascal-1 V1.2, and is stored in the
file|STRING.PAS. The package is written in Standard Pascal, and
allows 'programs using strzngs to be moved to other Pascal
1qp1emeptatunns.

VSﬁrzngs are stored as a record structure with a fixed maxxnum
number lof characters (normally 100 but easily changed), and an
integer marking the current length of the string.

type String = record
Len: Integers
Ch: packed arrayfi..StringMaxl of Chars
ends

The, capabilities provided are:
Len(S}) — returns the current length of string é;
Clear(8) — initializes string S to emptys

ReadString(F,S) — reads a value for string S from the text file
F. The string is terminated by Eoln(F) and a Readln(F} is
perfnrmed. String overflow (a strxng longer than StringMax)
results in truncation.

NriteString(F,S) - writes the string § to the text file F. The
same effect can be achieved by passing the parameter S.ChiS.Len
to Write(), as in Write(F,’S5=",8.Ch:S8.Len).

Concatenate(T,S) —— appends string S to the target string T. The.
resulting value is string T. Overflow results in truncation to
StringMax characters. ' ’

Search(T,S,Start) —— searchs string T for the first occurrence of

- string S to the right of position Start (characters are numbered
beginning with one). The function Search() returns the position
of the first character in the matching substring, or the value
zero it the string S does not appear.

Insert(T,S,Start) — inserts the string S into the target string T
at position Start. Characters are shifted to the right as
necessary. Overflow produces a truncated target string. A
Start position that would prnduce a non—contiguous string has no
effect.

Pascal—-1 V1.2/RT-11 Programmer’s Guide Page 32
Dynamic String Package ’

The Start and Span parameters in the Substring and Delete
prncedures define a substring beginning at position Start (between
characters Start-1 and Start) with a length of Abs(Span). IFf Span
is posztave, the substring is to the right of Start; if negative,
the substring is to the left. *

Delete(S,Start Span}) - deletes the substring defzned by Start,
‘Span- from the string S.

Buberzng(T S,8tart,Span) — the substring of string S defined hy
Start; Span is assxgned to the target string T. .

An example nf the use of the string package is given below. The
example reads a line Ffrom the terminal and separates it into
single words. The compilation command to PCL should he
"STRING, EXAMPL".

type Lit = packed array [1..103 of charji

procedure Literal({var T:-8trings Ch: Lit; NI integer):
var 1: integers; ' .
begin -
Clear{Tij
for I := 1 to N do T.ChLIl 2= Ch{Il:
T.Len 2= N3 '
ends

var Space, Line, Word: Strings
‘Mark: integers: .
begin '
L1tera1(3pace, *y 123 { make 1 char string
‘ write(’Type a line:)3
' ReadString(Input, Line);
Concatenate(Line, Spacel}s;
Mark = Search(Line, 'Space, 13
- while Mark > O do begin
Substring{Word, Line, 1, Mark - 1)3
if Len{Word) > O then begin
WriteString(Output,Word)?;
writelns ’
ends ,
Deletel{lLine, 1, Mark)s
Mark := Search{lLine, "Space, 1)}
ends; '
end.

Fascal-1 Y1.2/RT-11 Praogrammer’s Buide Page 33
External Modules ‘ ,

External Modules

External modules allow several program sections, each containing
at 1least one procedure, function, or main program, to be compiled
independently and combined at 1link time. External modules may be
combined into module 1libraries to simplify-handling of common
routines. The external module interface also allows inclusion of
modules written in other linguages, such as FORTRAN and MACRO. :

The ngERNAL directive is used to reference a procedure or
function in an external module. The declaration of an external
procedure or function contains the procedure or function name and
parameters, followed by the directive EXTERNAL (similar to
FORWARD). The procedure or function body does not appear in the
program unit referencing the external routine.

The FORTRAN directive replaces EXTERNAL to reference external
routines written in FORTRAN or MACRO. The FORTRANM directive
causes the generation of a PDP—-11 standard calling sequence (the
Pascal calling sequence places parameters on the stack, while the
FORTRAN sequence points RS to a list of parameters).

The /E compilation switch and the $E embedded switch are used to
create modules that can be referenced by EXTERNAL directives.
When the $E switch is enabled, each global procedure and function
declaration causes an external (glcbal) symbol to be defined.
These global symbols are matched at 1link time to the global
references created by the EXTERNAL directive. ’
The external reference symbols are composed of the Ffirst six
characters of the external procedure or function identifier, and
must uniquely identify the external routine. Duplication or
overlap of externmal symbols results in the Link error “Multiple
definition’, while a missing module results in the ’Undefined
global® error message. ' ‘

Several cautions should be cbserved when you use EXTERNAL and
FORTRAN directives. Parameters to external modules cannot be
checked by the compiler for type conformance, so an accidental
type mismatch may cause entirely unpredictable results. The
FORTRAN directive causes only generation of the proper calling
sequences; the directive does not link or initialize the FORTRAN
I1/0 system.

External modules may reference global (static) variables, which
are shared by all of the modules composing a program. If all
modules (including the main program) are compiled with the same
global variables, the effect is as if all modules were compiled.
together. The compiler cannot verify type conformance of global
data.

When combining modules to form libraries, remember that all
procedures . and functions from a compilation form a single module,

Pascal—1 V1.2/RT-11 Programmer’s Guide : Page 34
External Modules

and cannnt be xnd1v1dua11y selected from the library. The module
name is taken from the first six characters of the program
identifier (in the program heading).

The Linker. Librarian, and Overlays

Object modules produced by the Pascal compiler using the /70 or /E
compilation switches are compatible with object modules produced
by the MACRO assembler, FORTRAN compiler, and other RT-11 system
utility programs. The Linker (LINK? can be used to produce
overlaid executable programs, allowing much larger programs. - The
Librarian {(LIBR) is used to build libraries of ocbject modules for
more convenient handling. "Some highlights of Linker and Librarian
capabilities are covered here. See the RT-11 System User’s Buide
for complete details. .

To run the Linker, give the command

-R LINK
*

{(*#* indicates that the Linker is waiting for a command). The
first command 1line can. include +the ocutput file, a map file if
desired, and up to six inpuat files. The file PASCAL.OBJ, which
contains the Pascal run—-time library, must appear in every Pascal
link procedure. The /C switch {continue) allows commands to be
continued onto the next line.

*0UT, MAP=MAIN, SUB1,LIB1/C

The overlay facilities of the Linker are selected’ with the /0N
switch, where the parameter N indicates the overilay region number.
Sets of modules that are allocated to the same region will be
overlaid against other modules in the same region, with only one
set of modules per region actually in memory at any one time. '

The following sequence links a main program, an external module,
and the Debugger into an overlaid executable file. The main
program, external module, and the Pascal library are not overlaid.
Debugger modules A and B do not call each other, and are overlaid
in region 1. Debugger modules 0-92 do not call each other, and can
be overlaid in region 2.
When using overlays in V4 of RT—-11, you must use the /T switch to
explicitly set the transfer address to the symbol $START. The /T
will avoid a bug in the V4 linker.

Fascal—1 V1.2/RT-11 Programmer’s Guide Page 35
The Linker, Librarian, and Overlays :

. «R LINK
*PROG=MAIN, SUB1,PASCAL /C/T
*P:A/0:1/C
*P:B/0:1/C
*P:0/0:2/C
*P.IIO'ZIC
*P‘E/D.ch
*P:3/0:2/C
*#P:4/0:2/C
”*P'SIO.ZIC
: *P.b/ﬂ'Z!C
*P17/0:2/C
*P:18/0:2/C
*P:19/0:2
Transfer symbul’ $5TART
*~C

The Librarian combines relocatable object modules to fordt object
iibiraries., These libraries may be included as input to the
Linker, which will select only those modules needed by the praogram
being linked. Note that a module always consists of the entire
set of procedures and functions from its compilation. Individual
procedures cannot be selected from a module.

For example, the string package STRINB.PAS can be edited to form 9
"modules, with each wmodule containing one procedure or function.
The 9 modules can then be caompiled, and combined into a library as
follows.
-.R LIBR

*STRINS—LEN;CLEQR&READS WRITES, CONC/C

*SEARCH., INSERT,DELETE, SUBS

*2C

Embedded_fAssembly Code

i S e e s o St

PDP—-11 assembly code can be embedded within an Pascal-1 program at
any point where a comment might appear. Embedded assembly code
takes the form of a special comment beginning with the gmbeﬁded
switch $C, as in the comment -

{$C MOV %0,—(%46) 2

The assembly code section extends to the closing comment brace
(this closing brace must not be in an assembler comment). Any of
the capabilities of the MACRO assembler may be used.

The Pascal—-1 compiler scans the embedded assembly code and
replaces tokens within the code that correspond to certain classes
of Pascal identifiers. This provides simplified access to Pascal
data and control structures. However, the programmer is required
to have some understanding of the internal structures. See the:

Pascal—1 VY1.2/RT-11 Programmer’s Guide . Page'36
Embedded Assembly Code ¥

section on Run-Time Memory Organization, and examine the code
oroduced by the compiler. Constant identifers appearing in
assembly code are repla:ed by their defxned values. Variable
identifiers are replaced by the numeric offset fraom the
appropriate base pointer. For global variables, the base pointeﬁ
is Register S (R9)3; for local variables, the stack pointer (SP)
is the base. For example, to swap the halves of a local integer
var1able I, the code would be

l

‘ ﬂﬁC‘SNAB I1{SP) 2

} : H
and tn assxgn the constant Ten to the glaobal variable Count one
can, ur1te :

I

{$C MDV #TEN,CGUNT(RS) 3

Any temporary stack usage is not recognized by the compiler, and
must be included in indexed addressing of local variables.

Parameters of Pascal procedures and functions are treated as local
variables, and are accessible in the same fashion. Internally, a
Var parameter is the address of the actual parameter, s0
references to Var parameters must be indirect, as in

" {sC MOV @VAR(SP)I,RO 2 |

Procedure and function identifiers are replaced by the internal
label assigned by the compiler. To assign a value to a function,
it is best to move the value to a local variable and then use a
Pascal assignment statement to copy the value to the function.

The programmer is responsiblé for selecting the proper base
register, as the compiler provides no error—-checking capability.
Identifier substitution is performed for all identifiers in these
classes. This can cause problems if the programmer defines "an
identifier :nrrespcndxng to a MACRO instruction, such as a

constant named “MOV’.

With one exception, registers RO-R4 are available within embedded
code sections. The exception is With statements, each of which
maintains a fixed address in a register. “With" register
allocation is in the order R3, R2, Ri, RO and can be determined
from the Pascal program. Registers RS and SP must be preserved
across the range of an embedded code section.

The default numeric radix of a Pascal-produced qséembly caode file
is decimal, not the normal octal.

Pascal—1 V1.2/RT-11 Programmer’s Guide Page 37
Run-Time Memory Organization '

Run—Time Memorv Organization

A PDP~11 program has an address space of 32,768 words, or 32KW, or
64kB (1KW is 1024 words). The figure below shows this address
space as it might be allocated for a typical program of moderate
size.

32k * *
! 1/0 PAGE !
. 28k *® *
! RT11 MONITOR b
26k * *
| 3 THE STACK . | ;
P —————3 : LOCAL VARIABLES i .
22k *® *
: UNUSED —-AVAILABLE !
! FOR HEAP AND STACK H
20k * *
H DYNAMIC MEMORY !
! THE HEAP !
15k * *
: GLOBAL VARIABLES !
rs —> 11k ® .
! . PROGRAM CODE !
: H
400 * *
: RT11 VECTORS - !
0 * ‘ *

This:figure represents a snapshot taken during program exe:ution,‘
illustrating the partitioning of available memory. Each partition
is described in the following sections. ‘

The RT-11 Vector partition begins at address zero and occupies-the
first 256 words of all programs. This area contains interrupt
vectors and RT-11 status indicators and also is used for
communication between the Pascal program and other programs linked
by chaining.

Program Code

The Program Code partition contains all of the instructions of the.
user program, including overlays, external modules, and routines
from the run—time librarvy. The partition is _allocated memory
atdiacent to the RT-11 Vector partition. The size of this

Pascal-1 V1.2/RT~11 Programmer’s Buide , Page 38
Run—Time Memory Organization

partition depends entirely on the size of the user program.

P

Global Variables

The Blobal Variable partition contains all of the program’s global
variables, those defined in the ocutermost, or main, block of the
program. This partition is fixed in size during program
execution. : i

Register S (RS) points to the base of the .Global variable
partition and is used for access to global variables.

Dynamic Memory —— The Heap

The Dynamic Memory partiticnk contains I/0 control blocks and
buffers, and variables allocated by the New() procedure. The Heap
is unique in that it is not allocated any memory initially., but
instead expands as necessary. The Heap is allocated adjacent to
the Blobal Variable partition, and may grow on demand to the upper
limit imposed by the Stack partition. The error message *New ()
exceeded memory® indicates total exhaustion of memory resources.

- ————

Local Yariables -= The Stack

The Stack partition contains all variables local ta inner blaocks
of the program, and is also used for temporary calculations,
parameter passing, and subroutine return information. At the time
a block is entered, a stack frame is created. The stack frame
contains all information local to that block. Stack +Frames are
created and released in a purely nested fashion. See below for a
detailed description of a stack frame. -

The current Stack frame is always pointed to by the Stack Pointer
(SP, register R&), which initially points to the top of the Stack
partition. As nested Stack frames are allocated, the Stack
Pointer decreases in value (points to lower addresses). If the
Stack partition is too small, the Stack Pointer will eventually
overrun the Heap partition and cause the *Stack exceeded memory’
error. . .

Note that the Stack is located at the high limit of user memory,
and that the USR, if swapping, will swap over the Stack. This
will cause problems for programs that call the USR via embedded
assembly code, or by external non—-Pascal subroutines. The
simplest solution is to use the *SET USR NOSHAP? command to make
the USR permanently resident. Another solution is, for each USR
call, to save the current stack pointer (SP), and then set the &P
to low memory {(1000) before pushing USR parameters onto the Stack.

Pascal—1 V1.2/RT-11 Programmer’s Guide , Page 39
Run-Time Memory Organization

ey e s . o G s 4O, e e s e s s e

Th15 area is at the high limit of available physical memory, and
cnnta1n5 the fixed RT-11 Resident Monitor, the User Service
Rbut;ne (USR) if it is set NOSWAP, and any device handlers 1loaded
uzthlthe LOAD command.

1/0 Page
[T

The 170 Page of address space contains all device status and
command registers and 1nterna1 processor registers.

A Closeup of the Stack Eé:t;&;gﬁ == The Stack Frame

The’Stack partition is entirely composed of Stack Frames. A Stack
Frame is created during entry to every blaock f{excluding.the main
program block), and is released when the block is exited. The
following 'diagram illustrates the possible components of a Stack
Frame. Most of these companents are optional. Only the Return
Link is required in every Stack Frame.

Temparary Storage

H H

Previous 4 H
Stackframe H H
H i H
———— H H

H H

i H

Current H _ H
Stackframe H Function Return Value H
H ‘ H H
———— H Parameters i

H H

: H

i Return Link H

H H

H H

H f.ocal Variables i

! H

Hp mo—————1 H Static Link H

: H

; ;

H i

i H

H H

Pascal—-1 V1.2/RT-11 Programmer’s Buide Page 40
Run—-Time Memory Organization

Function Return Value

This field'is present in Stack Frames associated with function
blocks, and holds the value to be returned by the function. Its
position at the bottom of the Stack Frame allows the field to be
*popped’ from the stack when control returns to the caller of thzs
blu:k.

i \

Parameters

The Parameters field contains either parameter values or their
addresses. | Blocks without parameters do not have this field in
their Stack Frame(s). '

: J
Return Link

This field is the subroutine return address, where control is
transferred on exit from this block.

Local Variables

This %islﬂlcuntains all local variables for this block. It does
not appear for blocks without local variables.

—— e i e s s

The Static Link appears -only in blocks which are lexically
enclosed by other procedure or function blocks. The Static Link
is used for references to intermediate 1level variables in the
enclusxng block(s). The Static Link points to the base aof the
Stack Frame bf the latest invocation of the immediately enclosing
prpcsduﬁe or Ffunction block, and it is the first link in the;
Stst#céhink chain. ;

The Stack Pointer (SP) is also used Ffor transient temporary
storage, as in interrupts and Pascal library calls, and each For
statement requires 3 words of tempurary stack storage during its
execution. :

Pascal-1 V1.2/RT-11 Programmer’s Buide Page 41
Extended Precision

pEe— T3 19—+ S8 b et

For foreground operation, you must allocate additional. memory to
ensure that you will have enough space for Pascal variables and
file buffers. Each Pascal file requires about 300 words (more for
large buffers), so you should allocate at least 600 words for the
default input and output files. Use the /N: switch for V3 and
the /BUFFER: switch for V4l

ﬁFRUN <%ile name>/N:1024. (V3)

.FRUN <file name>/BUFFER:1024. (V4)

Extended_Precision

Values of type Real are normally stored in the PDP-11
single-precision format, which requires 2 words of storage per
value and offers 7 decimal digits of precision. The X
compilation switch or the $X embedded switch causes all Real
values to have extended precision. Extended precision values each
occupy 4 words of storage, and provide 15—digit precision in all
real calculations, including the transcendental functions.

Extended precision applies to all Real values in a program. You
" rannot mix normal and extended precision variables. All external
modules must be compiled with the same precision as -the main
program, even if no Real variables are present.

Compared to normal precision Real variables, extended precision
variables .reguire twice the storage. The effect on computation
time is dependent on the processor hardware: the FPP
floating-point processor provides hardware support for extended
precision with a slight performance penalty (30%4)s3 processors
with the FIS floating—instruction set will experience the most
severe relative performance penalty (20 to 1), because FIS offers
no extended support and extended calculations are performed
entirely in softwares processors lacking any floating—-point
hardware can expect a performance penalty of about 100Z. (Even
so, the net effect on the program is still very small.)

Pascal-1 V1.2/RT-11 Programmer®s Guide Page 42
The System Error() Procedure : v

S i o s e e o

Hhen\a fatal run~time error occurs, the system procedure Error ()
is caLled iwith parameters descrxhxng the error and the system
staté ' The Error() procedure is known by the global name ERRDR,
and may be replaced by a user-written external madule of the same
name. The external module must accept the parameters defzneq
belaow. i '

type Class = (Fatal,IOError,Warning)s
. Message = packed arrayfl..100] of Chars
procedure Error(
ErrorClass: Class;
ErrorNumber: Integers
ErrorMsglLength: Integers
var ErrorMsg: Messages
var XFile: Texts
I0sStatus: Integers
UserPC: Integers:
Filenamelength:. Integers
var Filename: Messages
)

The ErraorClass parameter indicates the type and severity of the
errors; Fatal and IOError are errors with no possible recovery,
while Warning errors will recover automatically. The ErrorNumber
indicates the exact cause of the error. ErrorMsglength and
Errurﬂsg define the text of the printed error message normally
displayed for this error. The XFile parameter identifies the file
variable associated with this error, if any. I0Status is the
value of the RSTS/E 1I/0 status word. UserPC is the program
counter saved at this error, which can often he used to identify
the program segment responsible for the error. Finally,:
Filenamelength and Filename describe the external name associated
with the file variable XFxlE.

The possible courses of actzun available to the Error() procedure
are very lxmxted, as exiting from the Error() procedure normally
results in termination. The program global variables are
available and wmay aid in diagnosing the problem. The Error ()
procedure may provide operator interaction or recording
capabilities beyond the normal messages to the terminal, and as a
final resort may call on operating system facilities to ‘chain’
and restart the program or initiate another program.

Pascal-1 V1.2/RT-11 Programmer’s Guide
Appendix Al Compiler Error Messages

Page 43

7" used instead of *3§°

8 or 2 in octal constant
Argument must be integer
Argument must be ordinal type
ﬁrgument must be real
ARRAY 1ndexxnut of range
ARRAY 1ndex type error
Bad ABS argument

Bad argument

Bad CASE label
Béd‘cnnétant

Bad EXIT |

Rad expression

Bad field list

Bad FILE name

Bad FOR statement

Bad FUNCTIOMN name

Bad FUNCTION result type
Bad IN operands

Bad index type

Bad LABEL

Bad ORIGIN for variable
Bad. parameter

Bad PROCEDURE name

Bad PROGRAM name

Bad READ statement

Bad RECORD

Bad scalar type

Bad SET element

Bad subrange

Bad TYPE

Bad TYPE specxficaticn
Bad variable list

Bad variant

Bad WITH statement

Bad WRITE statement
Boolean expression needed
Constant overflow

Don’t repeat FORWARD parameter list
Duplicate CASE 1label '
Duplicate field name
ELSE must be last in CASE

Expression too complex — out of registers
Expression too complex — out of registers (real)

Field list must be in parentheses
File variable missing

Format expression must be 1nteger

FORTRAN must be VAR parameters

FUNCTION arg must be real or integer

FUNCTION argument missing

Pascal =1 V1.2/RT-11 Programmer’s Guide
Appendlx A: Compiler Error Messages

Il1legal
I1legal
Il1legal
Illegal

assignment
character
operator

type of operand

Improper symbol

Incompatible ARRAY type

Incompatible type

Invalid declaration, probably missing END
Invalid symbol

LABEL defined at wrong level

Label must be integer

LABEL not declared

LABEL redefinition

Local VAR definitions must precede PROCEDURE definitions
Missing *)*

Missing

Missing
Missing
Missing
Missing

Missing’

Missing
Missing
Missing
Missing
Missing

*)? ‘at end of list
*«” at end of program
BEGIN

END

END in CASE

field variable
LABEL

label definition
operand

aperator

semicolon

Missing UNTIL

Must be simple variable

NEW or DISPOSE arg must be pointer
Not implemented

ODD argument must be integer
Sutput File error

Source line too long

Strange *L[° —~ bad SET or missing ARRAY defxnztzon

TEXT file expected

Too few arguments

Too many arguments

Too many errors in this line.

Too many errors!

Too many levels

Toao many symbols

Undefined FORWARD PROCEDURE or FUNCTION
Undefined operand

Undefined pointer base type
Undefined symbol

Unresolved forward type reference
WITH nested too deep

FPage 44

Pascal-1 V1.2/RT—-11 Praogrammer’s Guide Fage 45
Appendix B: Run-Time Error Messages

Run—-Time Error_ Messages

Bad flLename

Can?t Reset (output)

Can’t Rewrxte(lnput)
Cnmnxler/lxbrary mismatch — please recompile
Dzspose(n:l) attempted
Division by zero

Dupl::ate Dispose(}

End of file!)

Exp{() overflow

File not open
Floating-point format error
Get () not allowed

1/0 transfer error

Illegal value for integer
Integer overflow

Log(} of zero or a negative number
New() exceeded memory

New() of zero length.

No channels available

No file to Reset()

Overlay error

Put () not allowed

Real overflow

Reset () failure

Rewrite() failure

Seek() on sequential file
Seek() out of range

Set element out of range
Sgrt{() of a negative number
Stack exceseded memary
Subscript ocut of bounds
Trunc/round overflow
Unexpected trap

OMSI Pascal—-1 V1.2 Language Specification

The Language Specification contains details of extensions and
limitations of OMSI Pascal—-1 as compared to Standard Pascal.
Standard Pascal was first defined in the Pascal User Manual and
Report by Kathleen Jensen and Niklaus Wirth. A further definition
is available in the .draft proposed Standard from the British
Standards Institution (BSI). The draft BSI Standard is being
considered for acceptance as an international standard by the
International Standards Organization (IS0} and the American
National Standards Institute (ANSI). The original Report and the
draftquI Standard are in general agreement. Where the Report and
the%ﬁténdard differ, this document will give a specific reference.

January 3, 1980
Copyright 1980 Oregon Software

At AW
L] L]] L]] 1]
mw»m#mm

n
]

ection

i
N

2

txcn

NdAN

W oauuno

A
_r

i

1]

b=

oD
. [] L] s & & 3 |] 4

O ONEU R UWN -

o

TABLE A:
TABLE B3

Contents

1: Syntax Extensions
Program heading
Declaration Drderxng
Comment brackets

ELLSE in CASE statement
EXIT statement

EXTERNAL procedures and functions

FORTRAN procedures and functions

2: Low-Level Interface

. Octal (Base 8) Numbers

Unsigned Integers
AND, OR, NOT operators on Integer
fbsolute memory addressing (ORIGIN?

- Address operator (@)
‘w_Embgdded assembly code

3: 1I/0 Support Extensions
Reset () /Rewrite() standard procedures
Seek () procedure .
Break() procedure

Close() procedure

Readln(} Array of Char

Write() Array of Char

Write() Octal (Base 8)

Interactive 1/0

4: Additional Predefined Functions
Time
Exp10() and Log{) -

5: Non—Standard Language Elements
Pack () /Unpack(} not available

- Program parameters

Identifier scope rules

. Read () /Write() Text files only

Eof{) not accurate (RTi1, RSTS only}

6 implementation Definitions
' Identifiers _
' Standard type Integer

Standard type Real
Standard type Char
Standard type Text

SET types

New{() and Dispose()
Procedural Parameters
Implementation Limitations
Error Detection .

Predefined Identifiers
Reserved Words

. OMSI Pascal-1 V1.2 Language Specification ' Page 3
Section 1: Syntax Extensions .

1.0 iSyntax Exfensions

This section describes extensions to the formal structure of
Pascal which are of general utility. ‘

1.1 :Prograﬁ heading

The program heading is optional in OMSI Pascal-1 programs, and it
may be omitted entirely. If the program heading appears, the
program name will be printed on each page of the program 1listing.
The:{fﬂrst six characters of the name will be used as the external
name of the ocbject module. Parameters appearing in the program
heading are ignored. :

1.2 Declaration ordering

The ordering of global declaration sections (CONST, TYPE, VAR,
LABEL) is extended in OMSI Pascal-1. Declaration sections may
appear more than once and in any order, So long as identifiers are
defined before being used. '

One application of this is the concatenation of source modules
with main programs which provides a primitive source library
capability.

Example — compiler input PLOT,MAIN:

{* define source module PLOT *

VAR asa {# global plotter variables %)
PROCEDURE (* and plotter functions %)
PROCEDURE ... ‘

(* end of plotter module *)

(*'prngram file MAIN *)
VAR ... {(%# global variables ¥}
BEGIN (* main program code %) END.

1.3 Comment brackets
OMSI Pascal—-1 provides three forms of comment brackets: the
Standard braces {...}, the Standard alternate for upper-case
terminals (*...%), and the additional form /%...%/. These may be
interchanged freely — it is not necessary for opening and closing
comment brackets to have the same form. Comments may not be
nested. ‘

oMSI Pascal—1 V1.2 Language Specification FPage 4
Section 1: Syntax Extensions

Examples:
{* This is a valid comment */
{ This is (% not %) a valid comment 2

1.4 ELSE clause in CASE statements

OMSI Pascal—-1 allows an optional ELSE clause to appear in a CASE
stathmént. . It indicates a statement which is to be executed if
the CASE selector expression does not match the value of any CASE
label. 1f included, the ELSE clause follows all other statements
inside the CASE statement. If no ELSE clause appears and no
statement is selected, control passes to the statement following

the CASE statement.
Example:

repeat
Readin(Ch?;
case Ch of
A7, 7a’: Appends:
D,°d*: Deletes
*17,%i?: Inserts
N*,’n’: Newfiles
’Q:,:qs: H
' else Writeln(’"?,Ch,”" is not a legal command”®)3
- ends R
until (Ch = *@%) or (Ch = °g”);3

1.5 ' EXIT statement

" The EXIT statement teﬁminatgs the immediately enclosing iterative
statement (WHILE, REPEAT, FOR).

The EXIT statement ic included for compatibility with previous
versions of OMSI Pascal—-1.. Its use is not recn@mended in programs
intended to be portable.

Example (table search):

Found := Falsej .
for I := 1 to Tablesize do
if Tablellli=Key
then begin
Found 2= Trues
exits
endy

OMSI Pascal—-1 Vvi1.2 Language Specification Page 5
Section 1: Syntax Extensions

1.6 EXTERNAL Procedures and Functions

The keyword EXTERNAL provides access to separately compiled
subroutines) and to program libraries and overlay facilities.
EXTERNAL appears in the place of a procedure or function body +to
1nd1cate that the procedure or function is compiled separately.

s
The Fump:ler will generate references to an external (global)
'.-‘.‘ymtn':bl.I The first six characters of the procedure or functxan
1dentzﬁzer ﬁust form a unique external symbol. References to an
external procedure or function are resolved at link or task build

time.

Note' that the cnmpiler is unable to check parameter types at an
external interface.

Examples:

procedure Erase; external;
function RadS0(A,B,C: char}: Unsigned; externals

1.7 FORTRAN Procedures and Functions

The directive *FORTRAN® is similiar to the EXTERNAL directive.
The compiler will generate a calling sequence corresponding to the
Digital PDP-11 standard calling sequence, with register 5 -(R3)
pointing to an argument 1list. The FORTRAN directive enables
calling of external MACRO and FORTRAN subroutines. The FORTRAN
calling sequence passes parameters by reference, so the
carréspandxng Pascal parameters must be declared as VAR
parameters. :

The FORTRAN directive generates the proper call sequence for

FORTRAN subroutines. it does not provide for initialization of
the FORTRAN runtime I/0 system. s

Example:

function Difference(var X,Y: Real): Real; fortrans

OMSI Pascal-1 V1.2 Language Specification FPage 6
Section 2! Low-Level Interface

2.0 Low-lLevel Interface

The low-level interface section describes those OMSI Pascal-1
extensions which are useful to programmers who need ‘access: to
machine dependent PDP-11 characteristics.

L
2.1 i Octal (Base 8) Numbers

Integer cunstants may be written in octal notation by appending
the capltal letter °B° to the number. This applies only to
compale~t1me constants —— runtime integer conversions via Read(h
are performéd using decimal notation.

Example. const TabCode = 11B; (% ASCII tab character %)

2.2 Unsigned Integers

The predefined type Integer has the subrange (~32768 «e 32767) and
uses the PDP-11 signed arithmetic operations. Unsigned integers
may be specified with the subrange 0..65535. The compiler will
generate the unsigned comparison operations of the PDP-11 and will
not detect wmultiplication and division overflow of unsigned
integers. :

Unsigned integer operations apply only to intéger calculations.
1/0 conversions and conversions to and from Real values are always
signed integer operations.

Example: type Unsigngd=0ﬂ,65535§

2. »Lag:cal gperations on Integers:

The Buulean aperators AND, OR, and NOT are extended ¢to Integer
gperands. The operators perform the Boolean operations on all 1é
bits of their operands. This allows testing or setting of
individual bits within a word {(for instance, status bhits within a

device register).

Example: Byte I= Ord{(Ch) and 377B;

2.4 References to fixed (ahsolute) memory

DMSi Pascal—-1 allows the keyword ORIBIN to appear in variable
declarations, associating a variable identifier with a specific
memory address. This provides access to fixed memory addresses,

OMSI Pascal-1 V1.2 Language Specification fPage 7
Section 2 Low-Level Interface "

such as device control registers or gperating system parametef
blocks.

Example (read directly from the RT11 console):

const Ready=200Bj; :
var KbCsr origin 177560B, KbBuff origin 177562B: Integers;
Ch. Chaf‘s
begin L. :
while (KbCsr and Ready)=0 do (* nothing *)j
€h 2= Chr(KbBuff); (* get character %)
end3; :

2.5 Address operator (@)

OMSI Pascal-1 provides a unary address operator, indicated by the
8 character. When applied to a variable of type Ty it yields a
value of type T {(pointer to T). The address operator can be used
to 1link variables into list structures or (more commonly) to-pass
variable addresses to low-level routines.

Example:

- var Buffer: Blocks XRLoc origin 44&6B: “~Blocks
begin '
XRLoc:= @Buffer, (¥ pass address to RSTS/E #) .
end ‘

2.&. Embedded assembly code

FDP—-11 MACRO assembly code may appear at any point in an OMSI
Pascal-1 program. Assembly .code sections have the form of a
Pascal comment, beginning with the $C esbedded switch. Any
MACRO-11 feature may be used within embedded code. The compiler
provides some assistance in accessing Pascal variables, though the
programmer is expected to have some understanding of the OMSI
Pascal-1 runtime environment. Note that the default radix within
a Pascal-produced MACRO file is decimal, not octal.

Example:

procedure EmtTrap{N:Integer);
begin
{(%3$C
MoV N(SP),-(SP) ; push parameter N
EMT S3 ‘call EMT handler
*)
end (*EmtTrap#*)s

OMSI Pascal-1 V1.2 Language Specification Page 8
Section 3: I/0 Support Extensions

3.0 I/0 Support Extensions

I/0 support extensions provide the OMSI Pascal—1 programmer with
additional control of the interface to the operating system. -
‘ :

3.1 Reset () /Rewrite() optional parameters

Three additional parameters may appear following the file variable
in calls to the Reset() and Rewrite() standard procedures. These
optional parameters allow the program to dynamically bind a file
variable to an external .file and provide status and error
information.

The general form is:
Reset(F , Filename , DefaultName , Size)
where the parameters have these types:

F -~ any file variable.

Filename - literal string, or (packed) array of Char
DefaultName - same as Filename

S8ize - Integer variable

Reset (F,Filename) connects the file variable F with the external
file identified by Filename. Filename confores to the operating
system conventions, and may contain device, filename, extension,
and ather fields such as PPN/UIC and version number. The Filename
parameter may also contain switches specifying access modes or
other special characteristics. I+ the external file does not
exist prior to the Reset{(), a fatal error will result. Upon
sucessful campletion of a Reset(), either the file buffer F™ will
contain the first element of the file, or Eof(F) will be True.

Reset {(F,Filename,Defaul tName) performs the same- function, with
DefaultName having the same format as Filename. Fields of the
external name which are not specified in Filename are filled +from
the information in DefailtName. Common default fields are the
extension, protection code, and mode switches.

Reset (F,Filename,Defaul tName,Size? provides a recovery capability
on file open errors. Size must be a variable (VAR parameter).
After a succcessful Reset (), Size contains the length of the file
in blocks. If an error occurs, Size is set to negative one (-1).

Rewrite(F , Filename , DefaultName , Size)
Rewrite{() creates a new external file. The optional parameters
have the same meaning as in Reset() with one addition: Size
specifies the initial storage, in blocks, to be allocated for the
file.

OMSI Pascal—-1 V1.2 Language Specification Page 9
Section 3: I/0 Support Extensions

Reset () and Rewrite() may be applied to the standard files Input
and ' Output respectively. This will redirect the default input or
output streams to the specified file instead of the user terminal.
A subsequent Close() will break the connection and reconnect the
default file to the terminal. '

Example:

program Copy3 (* copy to printer *)
var Name: arrayl1..201 of Chari
' Ch: Chars Len: Integers;
begin .
. repeat (% Bet a Filename and Reset() it =)
- Write(’File:)3
Readln{Name); ' :
' Reset {Input,Name, * .PAS? ,1en)
until Len <> —13 (% until not error code ¥)
Rewrite(Output,’LP:?)s (# redirect output to printer =)

while not Eof do begin (% copy Input to Output *)
while not Eoln do begin
Read(Chl; Write(Ch})s
end; . ’
Readln; Writelns
ends
end.

3.2 Seek() procedure

The predefined procedure Seek() causes direct positioning of, a
file window variable to any desired component of the file.

Seek(F , Index)

F may be of any file type except Text, and must be connected to an
external file which supports direct access (typically disk or
DECtape). Index is an unsigned integer expression which specifies
the desired compaonent. File components are numbered sequentially
beginning with one (1). If Index specifies a number greater than
the number of components actually present, then Eof (F) is set to
True. :

To read component N of file F, use:

Seek(F,N); (* component N is available in F~ #)
. To write component N, use the sequence: |
Seek(F,N); (* position to component N *)

F~ 1= Q3 (* assign new value *)
Put (F)s3 (% write component to file %)

oMSI Pascal-1 vi.2 Language Specification Page 10
Section 3: 1/0 Support Extensions

1f the Put () in the above seguence is omitted, the effects will be
unpredictable and the new data may be lost. '

Sequential 1/0 operatinné such as Get() and PuE() may be mixed
with Seek{) and will. advance the file window ta -the next
component. Reset (F) is equivalent to Seek{F,12.

The ?di#ect‘ access extension bypasses - the Standard Pascal
réstéictinn; prohibiting simultaneous read and write access to a
file. For this reason, direct access files are identified by the
> /Spek’ switch which must appear in the Filename or DefaultName
field of the associated Reset () or Rewrite().

3.3 Break() procedure

For efficiency, OMSI Pascal-1 buffers transmitted data. Break (F)
farces the actual transmission of data from a partially filled
buffer of file F. This can be useful with interactive terminals,
or to guarantee actual - transmission of data to a shared disk file.

;3.4 Close{) procedure

Close(F’ indicates that the program has completed processing the
file F, and that internal buffer storage may be reclaimed.
Close(F) removes any connection to an external file, so that
Reset (F) or Rewrite(F) must precede any subsequent operations with
that fi}e.variable. ' h :

3.5 ' Readln() Array of Char

REadk) and Readln{) will read characters from a Text file into a
(packed) array of characters. Reading begins at the current file
paosition and continues until either the array is filled, or Eoln)
is True, in which case the remainder of the array is filled with
blanksa.

3.6 Write() Array aof Char

In accordance with the draft proposed IS0 Standard, a WriteQ

procedure call applied to an array of Char will truncate the

written string if the field width parameter will not allow the
entire string to be written.

OMSI Pascal—-1 V1.2 Language Specification Page 11
Section 3: I/0 Suppart Extensions

Example:

Nrite(Buf?er:BuffCount); (* write buffered characters #)

3.7 Write() Octal (Base 8),

Write() will write integers in octal notatian‘if'the field width
specification is negative. -) '

Example: Write(Iz-S); (# Display octal value of 1 %)

3.8 Interactive 1/0

The Pascal Standard requires that the first element of a file be
available as soon as the file is Reset () (the buffer variable F©
is assigned a value immediately). This can present serious
difficulties when applied to files which are interactive
terminals. For example, if the default input file is the user’s
terminal, the standard can be interpreted to require that the user
type the first input character (or line) prior to the execution of
the first program statement. ' :

OMSI Pascal~1 takes the following route around the problem. When
an interactive file is Reset(), the buffer variable is set to a
space and Eoln(F) is set to False, but no actual 1/0 transmission
OCCUrS. Each Read() request then waits for sufficient data to
satisfy the request, but no more.

This solves most of the problems with interactive terminals in &
predictablé manner, but one should note that this approach creates
other difficulties. When applied to an interactive file, the
following program is unable to distinguish between an empty line
and a line containing a single space. This is because Eoln()
cannot be set until the end of line character is typed to satisfy
the Read({) request.

Example: (the standard schema for reading a line of characters)

var Line: arrayl1..721 of Chars;
Count: Integers
begin
"Count = 03
while not Eoln do begin
Count = Count+1:
Read(LinelCountl};
ends; '
Readlns;
ends

OMSI Pascal-1 V1.2 Language Specification Page 12
Section 4: Additional Predefined Functions

4.0 Additional Predefined Functions

OMSI Pascal-1 provides some additional built-in functions.

4.1 Time function

The Time function takes no parameters and returns a real value
which corresponds to the current time of day. The Time is
represented in hours after midnight, so that 2:30 aM is 9.50 and
1243 PM is 13.75. The exact resolution of the Time function is
dependent on the operating. system, but all operating systems
provide a resolution of at least one second.

Example:

procedure WriteTimes
var Hrs, Mins: Integers;
AmPm: arrayll..2] of Chars
begin
Mins 1= Round(Timex&60);
Mrs I= Mins div 4603
Mins = Mins mod &03
if (Hre < 12)
then AmPm := ’AM°
else if (Hrs = 12) and (Mins = 0)
then AmPm 1= M °
else AmPm = *PM”;
Write("At the tone the time will be: 7);
. Write{(((Hrs+11) mod 12 + 1):2);
Write(*2°, Mins div 1021, Mins mod 10:1, AnPm:I3);:
" Writeln(Chr(7)); ' :
ends

"At the tone the time will be: 11:56 AM™

4.2 Expl10{() and Log() functions

The Expl0() and Log() functions are similiar to the standard Exp()
and Ln(} functions, but with a logarithm base of ten (10).

.GMSI Pascal—-1 V1.2 Language’Specificatinn Page 13
Section 5 Non-Standard Lanquage Elements

5.0 Non—Standard Language Elements

This section describes the elements of OMSI Pascal—-1 which do not
conform to the accepted definition of Standard Pascal.

| E Pack() and Unpack() not available
i .
The }eserved word PACKED may appear in type definitions, but it
has]nu meaning in OMSI Pascal—-1 programs. Packed types require
the same amount of storage as unpacked types. The standard
procedures Pack() and Unpack() are not available. The following
equivalent FOR statements can be used instead:

var A: array[M..N1 of T:

: 4 packed arrayfP..21 of T3 .
for Ji= P to @ do ZLJ1:= ALJ-P+I1; { Packi{n.I.,Z) 2
for Ji= P to 8 do ALJ-P+1I1:= ZLJ15 { Unpack(Z,A,I} 3

5.2 Program Parameters

Program parameters (identifiers appearing in the program heading}
have no meaning in OMSI Pascal-1 pragrams. The program heading
may be omitted entirely if desired. External files can be
declared by using the .Reset() and Rewrite() procedures with
optional parameters.

S.3 . Identifier Scope Rules

In Standard Pascal, the scope of an identifier (that section of
the program within which the identifier indicates a particular
object) is directly related to the block structure. A definition
of an identifier in a procedure, for example, prohibits that
identifier from xndxcatzng ancther abject throughout the entire
procedure. :

OMSI Pascal-1 uses a subtly different rule for the scope of an
identifier, called ’one—pass’ scope, in which a definition of an
identifier prohibits only subsequent uses of the identifier within
the block from indicating an object outside the block.

The non-standard scope rule is described here for completeness,
but it is of 1little concern to the programmer. Indeed, the
majority of Pascal compilers use the identical (incorrect) rule.

OMSI Pascal-1 V1.2 Language Specification Page 14
Section 5: Non—-Standard Language Elements

3.4 Read()/Write() Text files only

In the 1978 printing of the Pascal User Manual .and Report, the
Read() and Write() standard procedures were extended ta apply to
.all file types. This extension has not yet been incaorporated into
OMSI Pascal-1, so that Read() and Write() are. applicable only to
f11es of the standard type Text.

The following substitions may be used:
For Read(F,V), use: V:=F~;: Get(F);
For Write(F,V), use: F 1=V Put(F);
S

5.5 Eof() not accurate (RT11i, RSTS only)

On the RT11 and RSTS operating systems, a file is structured as a
sequence of 512 byte blocks. No finer resolution is available as
to the end of data in the 1last block. Therefore, the Eaof()
standard function can not be relied upon as accurate, and another
method (sentinel record, record count) should be used to indicate
the end of usable data.

Note that this problem dues not apply to Text f:les,A where Eof ()
is 1dent1f1ed correctly. - : :

OMSI Pascal—1 V1.2 Language Specification Page 13
Sectiuq 6: Implementation Definitions

6.0 ‘Implementation Definitions -

This section provides specific details and characteristics of
implementation—-defined elements of OMSI Pascal-1i.

6.1 Identifiers

OMSI Pascal-1 permits identifiers to be of any 1length, and all
characters are significant. tower case letters may be used and
are interpteted the same as upper case, so that “name", “Name",
and "NAME" are equivalent identifiers. ‘ :

Due ‘to limitations of the object program file structures, the
first six characters of any EXTERNAL or FORTRAN identifier must
form a unique external name. :

6.2 Standard type Integer

The standard type Integer has the range (-32768..32767). Unsigned
integers may be declared using the subrange notation 0..65535.
Note that arithmetic overflow is detected only for multiplication
and division of signed integers. ‘

The predefined identifier Maxint has the value 32767.

6.3 Standard type Real

Real variables have the standard PDP-11 single or double precision
floating point structure, with the range 1E-38... 1E+38. Single
precision values give 7 decimal digit precision; extended {(double
precision) values give 135 digit precision. arithmetic overflow is
detected for all real operations, but underflow is ignored and
gives a result of zero. : ‘

The standard transcendentél routines are accurate to 6 decimal
digits in single precision, and 135 decimal digits in extended
precision.

6.4 Standard type Char

OMSI Pascal—-1 uses the 7-bit full ASCII charactef set. Characters
are stored as signed bytes with all 8 bits available to the
programmer, so that Ord(Char) has the subrange {(—-128..127).

OMS1I Pascal—-1 V1.2 Language Specification Page 1&
Section é: Implementation Definitions

6.5 Standard type Text

Thedstandard type Text is a file type with components of type
Charl, ' with the characters masked to the 7-bit ASCII set, and
skzpp1ng the null (0) character. On RSX systems, the standard
funcﬁldn Enln() is set by the end of a file record; on RSTS/E and
RT11 systems by the LF (10) or ESC (27) character codes.

4

The standard procedures Read(), Readln(), Write(}), Writeln(), and
the ;| standard function Eoln{() are applicable only to Text files.
The Seek() procedure is not recommended for use with Text files.

6.& SET types

OMSI Pascal-1 limits sets to a maximum of &4 elements. The 64
element maximum Fforms a subrange which is not required to have a
lower bound of zero, but may instead be positioned at any &4
element (or smaller) subrange of a base type (for example:d
100. » 1'50; "'25- -25). ‘

A set of the standard type Char is equivalent to the set of
Chr(32)..Chr(93), which is a subset of ASCII containing the upper
case letters, digits, punctuation symbols, and the space
character, but 1lacking the control characters and lower case
letters.

-

6.7 New() and Dispose() procedures

Iﬁ‘allccating storage fuf variant records, the New() pfo:edure
will allocate memory for the largest variants any tag field
values specified to New() and Dispose() are ignored.

Storage must be explicitly released with Dispose() — no automatic
garbage collection is performed. Storage occupied by variables
passed to Dispose() is reclaimed for use by the. New(} procedure.
Dangling pointer references are not detected.

6.8 Pr'cx:edural Parameters

The passing of PROCEDURE and FUNCTION parameters is supported by
OMSI Pascal—-1 with the syntax described in the Pascal User gggggl
and Rggart (the proposed IS0 Standard differs in this areal.

Predefxned procedures and functions are not permztted .as
procedural parameters. This can be bypassed by declaring a second
procedure which calls the standard procedure, and which can itself
be used as a procedural parameter.

ﬁMSI Pascal—1 V1.2 Langquage Specification Page 17
Section &6: Implementation Definitions

Example:

function Sine(X: Real): Reals
begin

© Binel= 8in(X)

ends

6.9 ||Implementation Limitations

: | | : - :
The ﬁDBTI; has six general purpose registers. In OMSI Pascal-1,
one 'register (RS) is always allocated for access to giabal
variables, and another (R4) is allocated in some blocks for access
to intermediate level variables. The remaining registers are used
for integer‘calculations,'address,cnmputatinns, and WITH statement
variable access. Each WITH statement uses one register for the
duration of the enclosed statement. This implies a maximum
nesting of WITH statments, of three levels. Complex expression
calculations can also exceed the available registers. If the *0ut
of registers® error occurs, remove a WITH statement or simplify
the indicated expression by calculating intermediate results.

The syntactic nesting of procedures is limited to a depth of 10
levels. There is no implementation restriction on the actual

’ depth of recursion of a program, although unlimited recursion will

eventually cause the program to exceed available memory.

6.10: Error Detection
'DﬂSI;PaécaIJI does not detect the following runtime errors:

Uninitialized variables
Subrange bounds exceeded
Integer overflow

Real underflow

Recaord variant mismatch
Dereference of NIL pointer

The following runtime errors are detected:

Stack overflow

" Heap overflow
Real overflow " ‘
Integer multiply/divide overflow -
firray bounds exceeded ' ;
Dispose() of NIL or duplicate pointer
Incorrect numeric format o ,
1/0 errors

OMSI Pascal—1 V1.2 Language Specification Page 18
Table A: Predefined Identifiers

Predefined Identifiers

Constants
False,True
Mauint

Types
: Boolean
Char
Integer
Real
Text

vérirhqes |
- ! " Input, Output

Functions
‘ Abs
Arctan
Chr
CCos
Eof
Eoln
Exp :
- ExploO Base 10 Exponential
Ln
Log Base 10 Lagarithm
Odd
Ord
Pred
- Round
- 8in
Sqr:
Sqrt
Succ
Trunc ,
Time Time of day

Procedures : ‘ v
Break Transmit buffered ocutput
Close Close file
Dispose

Get

New

Page

Put

Reset

Rewrite

Read

Readln : :

- Sepk Direct access 1/0
Write

Writeln

DMSi Pascal—-1 V1.2 Language Specification
Table B: Reserved Words

‘Reserved Words
{* extensions)

And

Array
Begin
Case

Const

- Div

Do
Downto
Else

"End

CExit %

External #*
File

For
Fortran =
Forward
Function
Bato

If

In

Label

Mod

Nil

Not

of

or

Origin *
Packed
Procedure
Program
Flecord
Repeat
Set

Then

To

Type
Until

Yar
While
With

Page 19

e S mm s

Introduction to the Debugger

Including POD in Your Program

Runnund POD = m e s & s s a

Accesszng Pascal Statements

Aécessiﬂg Pascal Variables .

POD Commands « = = | « % & =

S*C—iﬂlﬂ'ﬂf’ﬂi:ﬁ!d!?ﬂf

——
w—e oo
-
—
v
———
-———
—
——
——
——

¥

Advanced

-— Set/Clear Breakpuxnts

Continue Execution

Display POD Parameters

Go or Go to a Label

Print Program Execution
Kill Preakpoints and Labels .

Label Statement . .

Execute Dne Statement .

Register Dump . .
Single Step . . .
Trace Mode . . .
Variable Watch .
Write Variable Value

Debugging Techniques

Histaory

>
® & % 8 8 & 8 u NS 8 8 8

L R B B 2 I R S O R T T)

72
73
74
74

77 .

79
79

81

82
a3

.83

84
84

87

Pascal—-1 V1.2/RT—-11 Debugger (POD) Page 72
Introduction _ :

Introduction_to_the Debugger

=

The Pascal On-Line Debugger (POD) is a symbolic debugging tool
that 1lets vyou interactively control the execution of your Pascal
program. You can suspend execution at particular statements,
execﬁtE‘onefstatement'at a time, and examine and modify the values
of particular variables. Since POD traps errors and identifies
the last statement executed, you can easily pinpoint the saurce of
run—-time errors. '
| [i .

| i : . - B
POD is really a series of Pascal procedures that are linked with a
program. When you specify the debugging option (/D) , the Pascal
compiler includes a call to POD before each procedure and
statement in vyour program. This 1lets POD control program
execution. The compiler also produces a symbol table file
containing the definitions and locations of all variables and
pracedures in your program. Using this, POD can find and modify
variables and refer to procedures by name. :

The Debugger Guide assumes that you are familiar with the User’s
Buide and the Programmer’s Guide in this manual. '

In examples, underlining ié used to show the text that you should
type. Non-underlined text shows the prompts or other responses by
the computer. : ‘ ’

Pascal—1 V1.2/RT-11 Debugger (FOD) Page 73
Including POD in Your Program

Including POD in_Your Program

To use POD, you must compile your program with the debugging
switch, /D. This automatically generates a symbol table file for
your nrngram. For example:

.R PCL :

TRIM/D'
The. /D snxtch causes debugging instructions to be included in the
:ompxleB program. The /D switch also produces a debugging file
(TRIM.SYM) ‘containing the symbol table information for the
procedures and variables of TRIM. l

PDD“ up urts an option called source debugging. selected with the
/S8 compilation switch. This 1lets POD print the Pascal source
lines associated with the compiled statements in your program.
With the /S switch you can debug a program without having to print
a listing of the program. The cost for using source debugging is
an increase in the size of the program being debugged and a
somewhat slower execution speed. A1l of the examples in this
section use the source debugging option.

If you wish to use the saurce debugging option, speci*é both the
/8 and /D switches in the compilation command:

=B POL
*TRIM/S/D

When the /S source debugging option is selected, a listing file
(TRIM.LST) is automatically created. POD reads this file to
display the source program for each Pascal statement. If the
listing file is deleted, source debugging is automatically’
disabled, and POD will then identify statements only by procedure
name and statement number.

P
Pascél—i V1i.2/RT—-11 Debugger (POD) Page 74
Running POD, Accessing Pascal Statements

A e e e e e~ s ot e e

When your program starts, POD will identify itself and ask you for
the name of your program. It is assumed that the symbol file and
listing file (if the S option is invoked) will share the program
name. - If either file cannot be found, POD will ask specifically
for the necessary file name. If POD asks for a listing file ‘and
‘none exists, give a carriage return. This will cancel the source
debugging option. POD will then ask for a symbol' file name. Here
is a typical POD opening dialogue:l :

RUN TRIM

POD (Pascal On-line Debugger) = 24-Apr-79
'POD - program name? IRIM
3

When POD is ready to accept commands, it will prompt vyou with a-

right brace (3). On some terminals this will print as a right

square bracket (1). Commands to POD may be typed in either loner

or upper Ccase, and spaces in the commands are ignored. Several

POD commands can be typed on the same line if you separate each
command with a semicolon (3).

POD commands are presented alphabétically beginning on fPage 77.

e s . o e St

0D identifies Pascal statements by the name "of the procedure
containing: the statement. and the number of the statement in the
procedure. The statement number can be found in the column
labeled STMT in the listing file produced by the Pascal compiler.
Statements in the main body of a Pascal prngram~are-:cnsidered to
be in the procedure MAIN. All Pascal programs begin executing at
MAIN, 1.

If the source debugging option is being used, POD will print the
source line along with the procedure name and statement number.

Pascal allows you to define procedures that define other loeal
proceduras. In this way vyou can create a-program containing
several procedures all having the same name. However, we strongly
recommend that all of the procedures in your program have unique
names in order to avoid confusion during debugging.

Pascal—-1 V1.2/RT-11 Debugger (POD) Page 75
Accessing Pascal Variables .

néy you use variables in Pascal. Variables and procedure
paramet S ére identified by name, such as MARGIN, LIMIT, or
SHOESIZE. 'Records are specified with the standard dot: notation,
suchlas. CGDRD.X, and RANGE.TOLERANCE.LOW. POD will generate an
errar message if too few (or too many) fields are specified for a
record. Arrays of multiple dimensions are allowed, and POD will
check the data type and 1limits of each index when accessing
arrays. Pointers are specified in the usual way. The value of
the pointer itself is interpreted as a decimal integer. A nil
pointer has a value of zerao, and POD will generate an errur
message if a reference through a nil pointer is attempted.

PBD letE you access the variables in your program in much the same
r

You can access complex structures by camhznzng several of the
structures described above. In general, POD can access a variable
in a structure in the same way as that variable is wused in vyour
program. Examples of legal variables are shown below:

FEET

Q. B' c‘ D

CHIP~. TEMPLATEL3,1,-51.FLUX
PTR~.S0N". SON~.SON

-

Integers are treated as 1&4-hit signed numbers. The letter “B®
placed after an integer (377B, for example) indicates an octal
value. ' 'Boolean variables take values of either TRUE or FALSE.
Charadcter data, including character strings, are always enclosed
within single quotes as with *X* and *THIS IS A TEST’. Spaces are
not ignored within a character string. Real variables are used in
the usual way. POD also can access scalar types defined by the
user. For example, consider the program section belowi

"

TYPE

- COLOR={RED, WHMITE, BLUE:}:
VAR . - o
X: COLORs

When POD displays the value of X, it will correctly print the
scalar type of X. . This capability is provided only by POD —
Standard Pascal does not permit output of scalar types.

¥ X:=RED
3 WLX)
'‘RED

3

Pascal—1 V1.2/RT-11 Debugger (POD) Page 76
ficcessing Pascal Variables

POD has another facility not available to the Pascal programmer:
its i ability to display the value of sets. The “.." notation for
inclpded set elements is available for both the input and output
of set values.

TYPE
. |COLOR=(RED, ORANGE, YELLOW, GREEN, BLUE);

VAR| ,
. |RB: SET OF COLOR;
VALUES: SET OF INTEGER;
'@: SET OF CHAR;

These variables may!be accessed by POD as shown below:
_ =]

e s e e s e e, e s s e e v e |

+ WIRB) '
[RED..YELLOW,BLUE]

£i..20,30,40,501

} Q::I’E",A’u,c,l,F,i’B’q’D’]
3 W(E) e

£’A°..°F*3

>

As demonstrated above, POD lets you assign values to variables in
the same way as you assign values to variables in your program.
The any restriction is that you cannot evaluate expressions such
as Cf=ﬁ+8, and you cannot call functions such as RI=SIN(3.14135). ‘
oo

PDD;Eﬁﬁorces the Pascal scope rules. In general, this means that
at *hny point in your program you can only access the variables
that! the program itself can access at that point. Giohal 1level
variables, those defined at the start of the program, are always
available. However, as different procedures are executed, the
local variables and arguments of those pruceﬁures-are-temporarily
available, while the 1local variables in procedures not being
executed are never available. If you try to use a variable that
is not available, POD will print a “symbol naot found® error
message. Remember, at any statement, you can only use the
variables that are available to the program at that point.

POR lets you directly address memory locations as integers. For
example, 1234B:=240B modifies location 1234 (octal) to contain 240
(octal). This feature is most commonly used when you -deal with
pointers. However, be careful, for you might accidentally modify
a location within your program and cause unpredictable results.

Pascal-1 V1.2/RT-11 Debugger (POD) Page 77
B(): Set/Clear Breakpoints

B(): Set/Clear Breakpoints
The "B" command sets a breakpoint at a particular. statement within
a program. Before executing each statement ip your program, POD
checks to see whether a breakpoint has been set at that statement.
I+ a breakpoxnt has been set, POD suspends the execution of the
program and enters command mode. . At this point you can examine
and alter varzables, check the history of ‘the program’s execution,
or c?ntlnue;the execution of the program. F

To set a breakpoint at a statement, type a "B*" followed by thé
statement identifier (procedure and statement number) contained
wzthxn parertheses. POD will interrupt the execution of your
prog amL Just before the statement at which a breakpoint is set.

é ght breakpoznts may be in effect at any one - time.
Examples. .

2 BMAIN,1)
3

Breakpoint at MAIN,1 BEGIN I:=03
BrESEESmt at—INIT,S‘ PARAM1 =03 PARAM2:=03
3

(The examples above show how the source debugging option works.
when FPOD stops at breakpoint, it prlnts the Pascai source line for
that statement)

1
|
v

The "G”icommand in the exaample starts program execution. The "C¥
cdmméndﬁcnntinues from the breakpoint.

POD has the capability to execute a series of POD commands when a
breakpoint is encauntered. This facility, called stored commands,
is sﬁe:xfzed when you place the command within angle brackets
« >i after the break command as shown here:

?
i

} B(MAIN,A) £ W(DEPTH)3: DEPTH:=5 2
3 B(POSITION,32)<W(X,Y)5C>

The first example displays the value of the variable DEPTH then
assigns the value of S5 to DEPTH each time the program comes to the
statement at MAIN,&6. The second example displays the ' values of
the variables X and Y and then continues the execution of the
program. In this case POD will not stop and enter command mode.
Instead, each time the program comes to the statement at
POSITION,32, the variables X and Y will be displayed ‘and the
-program will continue.

Any POD command may appear in a stnred' command, but stored:

Pascal 1 V1.2/RT-11 Debugger (POD) Page 78
B() Set/Clear Breakpoints

commands may not be nested; i.e., a stored command may not define
other stored commands. As many POD commands as will fit on a
single line may be specified in a stored command.

There are two ways to cancel a breakpoint. The "K" command
described below can be used to kill all breakpoints or just a
"single breakpoint. Homwever, if the program has just been
interrupted because a breakpoint was reached, that breakpoint can
be canceled by means of the "B" command with no arguments.

kpuxnt at MAIN,1 BEGIN I:=0;3

w&§w
01 8 10

The "D" command may be used to display the currently active
breakpoints and their associated stored commands.

Pascal-1 V1.2/RT—11 Debugger (POD) Page 79
C: Continue Execution, Display Parameters

C: Continue Execution

o s e e, S

Iﬁ ;Aeg?xgcqtinn of your program has been suspended by FOD, you
mqy;;uﬁg . the “C" command to resume execution of the program. If
your pqégra_ has not started executing, either the sge or the “GB"
chm%n?L may be used to- start the program. ‘The section above
describing breakpoints has several examples that use the "C"
cqm@gndT . Once your program has terminated and POD has re-entereq
command mode, any attempts to continue the prograa with the “C"
cdmméndj will be ignored. (There is nowhere to go!) The program
may, hawever, be restarted with the uge command described below.

If you set a breakpoint inside a loop, it is sometimes desirable
to let the statement at - the breakpoint execute several times
before stopping. One way to do this is to use the "C" command
several times to continue from the breakpoint until the desired
iteration in the loop is reached. Another solution is to use a
repeat count contained inside parentheses after the "C". The
repeat count tells how many times the statement at which the
breakpoint has been set should be executed before the breakpoint
takes effect. For example, you can set a breakpoint at COUNT,10
inside a loop structure. When the loop is first entered, POD will
stop the program at COUNT,10 with a breakpoint. The command C(6)
will 1let +the loop iterate & times before the program stops again
at COUNT,10 with a breakpoint. Each of the eight breakpoints has
its own repeat count. '

D:_Display POD_Parameter

e Gere. -— s e e

The. "D* command displays the watched variables, labels, and
breakpoints that are currently active. Watched variables are
described belaw in the section about the sys command. Labels are
discussed below in the sections about the "6% and "L" commands.
The stored commands associated with breakpoints and the watched
variable are also displayed. s

> D

Watching: BILS1 <W(BL&1,BL71,BIB81)>

Breakpoints:

MAIN, 13 <W(FOO)sC>
MAIN, 20

ERR,S <W(ERRORCODE);H>

User—defined labels:
.13 MAIN,1 BEGIN I:=0;
5: RETRY,3 RESET (F, NAME, ° DAT’ ,STATUS) §
I _

Pascal—-1 V1.2/RT-11 Debugger; (POD) Page 80
G, G(): Go or Go to a Label

G, 6¢): Go or Go_to_a Label

The “6“ command without arguments starts or restarts your program
at HAIN,I._ If the "6" command is followed by a label number xﬁ
parentheses, the program will be continued at that user—defined
label. Do’ not confuse user—defined labels with Pascal statement
labels. User—defxned labels are created with the "L" command
dyna 1‘ally as POD controls your program. Pascal statement labels
akelhafxned in your source code and are used by the Pascal

hlfr tb generate targets for the Pascal 6070 statement. POD
doeﬁ n't usé Pascal statement labels. !

The, fLﬂ cammand labels the program statement about to be executed.
The must common way to define a label at a particular statement 15
to set a breakpnznt at that statement, execute the program until
that statement is reached, and then use the "L" command to define
the label.

The "G" command should be used with care. It is not always
possible to branch from any Pascal statement to - any other Pascal
statement. Labels follow the same scope rules as variables, so
depending on which procedures are being executed, some labels may
not be available. If you try to go to a label that is not
available, POD will respond with the error message "You can’t get
there from here”. U0One reason that POD cannot go to a particular
label is that if the label is in a procedure that is not being
executed, POD is not able to invent the values of the local
variables assaciated with that procedure.

e e e e s e

Breakpolnt at NQIN,S Js —SIN(Q),

> L{3); B(MAIN,27)3 €

Breakpoint at HAIN,27 WRITELN(*X2>Y");
2 684(3)

Breakpoznt at NQIN,27 WRITELN{X>Y" 23
} 8

‘Breakpoint at MAIN,S5 J:=8IN@@);

3 .

Pascal—-1 V1.2/RT-11 Debugger (FOD) Page 81
H: Print Program Execution History

.—.———_.—..-—-.—u

POD maintains a list of the- last 10 statements executed by a
programa. This history is useful in determining how the program
reached a breakpoint or how it reached a statement that caused an
1=l gt gfw’ gii The "H" command prints the history and also the procedure
execution stack. The stack shaows the procedure and function
nestzng all: the way back to the main body of the program.

e e A =

Breakpoxnt at EVALUATEBOQRD, FOR I:=-5 TO 4% DO BMANLIJ1:=FALSE:
FH! ‘
Prng am executxnn history
] H
GENﬂDvE, BEGIN
GENNDVE, FATHER:z=F3; v
GENMOVE,S MOVE:=1%256+J;5 °
 BENMOVE.& OLDPIECE:=BL135 BLIJl:=EMPTY:;
GENMOVE,7 OLDPIECE:=BLI1; BLII:=EMPTY;
GENMOVE,S IF TURN=BLACK THEN
GENMOVE,9 IF J<=8 THEN BLJ1:=BLACKKING ELSE BLJ1: =0LDPIECE
GENMOVE, 11 IF J<=8 THEN BLJ1:=BLACKKING ELSE BLJ1: ~0LBPIECE
GENMOVE, 15 VALUE:=EVALUATEBDARD (ENEMY) 3
EVALUATEBOARD,1 FOR I:=-35 TO 4% DO BMANLI1:=FALSE;

Procedure execution stack

EVALUATEBOARD,1 FOR I:=-5 TO 49 DO BMANLII: =FALSE;
GENMOVE, 15 VALUE: =EVALUATEBOARD (ENEMY) §

MOVEPIECE,11 IF MOVESALLOWED THEN GENMOVE(I,J)3
EXPAND, 15 IF COLORCWHDI=TURN THEN MOVEPIECE (I, 1,050)3
MAIN,7 EXPAND(ROOT, TRUE) 3

3 o '

Pascal—1 V1.2/RT—11 Debugger (POD) Page 82
K, K{)2 Kill Breakpoints and Labels

Ka K():w Kill Breakpoints and_Labels

Nhen|the "K* command is given without arguments, all label
def1n1txons and breakpoints are deleted. When the "K" command is
fullowed by a statement identifier, the breakpoint at that
statement is removed. ‘

B(MAINLS)

s s a0 gy s v e, s it

B(MAIN,17)
K

W A b by

o P
Iﬁdi%iﬂual breakpoints also can be removed with the "B" command.

L{): Label a_ Statement A ‘ .

LI . o e s Pt

You may label up to eight statements with the "L"™ command. Labels
are used as targets of the “G" command. The label number (1
" through' 8) is placed in parentheses after the it T The “L*
command always defines the label at the current location within
the program being executed. Check the description of the ng"
command above for a warning about branching within a- Pascal
program. The "D" command may be used to list the currently active
labels.

Y BMAIM. 1313 €&
Breakpoint at NAIN,13 A
> LC1)

3 B(MAIN.15)5 €
Breakpoint at MAIN, 1S B:i=37;5
3 LAS)

D

e
]
Pab
L 1]

Breakpoints:
MAIN, 13
MAIN, 15

' User—defined labels:
1: MAIN,13 A:=

'5: MAIN,15 B:=37;
3

Pascal—1 V1.2/RT-11 Debugger (POD) Page 83
P, PO): Execute One Statement, Register Dump »

P, _P(): Execute One Statement in Current Procedure

The;PPPi;coqmand executes a single statement in the current
procedure. | "P" will not single step through functions and
pro¢édpkes +ested in the current procedure, but instead will treat
their ‘' calls as single statements. If the current procedure ends,
“P“:wiglibegin single-stepping the procedure that called the
c&r?éntlfprécedure. (Compare "P" to the similar “8% command
described below.) o

If a repeat count is given in parentheses after the npu, the
specified number of statements will be executed before stopping.
As with the “C" command, you may not proceed past the end of the
program once the program has terminated. Use the "6" command to
restart the program.

I .

Breakpoint at MAIN,1 BEGIN I:=03

P

Breakpoint at MAIN,2 J2=RANDOMINTEGER (32 5
B

Breakpoint at MAIN,3 Ki=J®J-13

> P(S) o : ' ,
Breakpoint at MAIN,8 IF K<J THEN BEGIN
¥ ’ ‘

R:_Register Dump

The "R" command prints the values of the processor registers RO-PC
in both octal and decimal. This command is normally useful only
to those programmers who include in—line assembly language code in
their Pascal programs. :

Pascal—-1 V1.2/RT-11 Debugger (POD) Page B4
8, S(): 8Single Step

S, SQ: Single Step

The,“S“ command is 1dent1cal to the "P" command above, except that
if a statement being stepped through calls another procedure nr
funct1dn, then the new procedure or function also will be executed
one. step at a time. As with np® ., a repeat count may be spec1¥xed.

\
|

3 S

?Bre?kpoxnt at MAIN,1 BEGIN I:=03

3 8

Breakpa1nt at MAIN,2 RANDOMINTEBER(3)3
(2 841)

Breakpoint at RANDOMINTEGER,1 BEGIN RANDOM:=X
e

T{): Trace_ Hode

"T(TRUE)" turns on statement trace mode, while "T(FALSE)" turns it
off. When trace mode is on, PBD will print the location of esach
statement before it is executed. If several Pascal statements
appear on the same line in the ‘'source file, and if those
statements are each executed in sequence, then the line containing
those statements will be prznted only once.

MAIN,1 BEGIN 1:1=03

MAIN,2 J:=03 K:=0; L:=3.1415%;
MAIN,ﬁ WRITELN(®HI THERE®):

HI THERE :

Breakpoint at MAIN,&6 WRITELN;
2

Pascal-1 V1.2/RT-11 Debugger (POD) Page 85
V: Variable Watch ‘

- e S 2P ey A s e s S e o e

The "V" command makes POD watch the value of a variable. Before
each statement in your program is executedy POD compares the
current value of the variable with the value it had when - the »y*
command was given. If the wvalue has changed, POD stops your
program and tells you so. - If you continue yaur. program, POD will
cont?nue watching for a change in the variable.

The %VJ‘cnmmand is useful if your program is malfunctioning
because the value of some critical variable is being destroyed
somewhere. The "V" command also can be used to watch locations in
low @empry to detect the incorrect use of a nil pointer.

c
Value of "DEPTH" changed at statement:
DESCEND, 1 DEPTH:=DEPTH+1;
0id value: 0
New value: 1 '
Breakpoint at DESCEND,2 IF DEPTH>MAXDEPTH THEN
: C
Value of “DEPTH" changed at statement:
DESCEND,1 DEPTH:=DEPTH+1;
01d value: 1
Mew values: 2 .
Breakpoint at DESCEND,2 IF DEPTH>MAXDEPTH THEN
P C :
Value of "DEPTH" changed at statement:
DESCEND, 38 DEPTH:=DEPTH-15 ‘ :
Old value: 2 ’ ‘ ' o
New value: 1 . .« '
Breakpoint at DESCEND,39 END;s
'3
|

} V(DEPTH)
3

Pascgl—i V1.2/RT-11 Debugger (FPOD) Page 86
V():; Variable Watch

-

Stored cnmmands may be specified with the “V" command in the same
way ias with the "B" command. The "D" command will list the name
of the varxable being watched and the stored commands if any were
ngen.] You can terminate a variable watch by using the uye
command with no arguments. POD will automatically terminate a
watch on a variable when that variable is no longer avallable-
When POD does this, it prints the message “Watch terminated
value dxdn’t change”.

s S e < i e S S

‘ Z;Breakpoznt at EVALUATEBQQRD, FOR I:=5 TO 39 DO
: 3 V(BLACKSCBRE)<H(WHITESCGRELQ
: 3
Value of “"BLACKSCORE" changed at statement:
EVALUATEBBARD 224 FELSE BLACKSCORE:=BLACKSCORE+MOC4;
0ld value: ‘
New value: 400
Breakpoint at EVALUHTEBOARD,ZZﬁ IF BLACKDENY<WHITEDENY THEN
0
> C
‘Hatch terminated -— value didn’t change
‘Breakpoxnt at MAIN,28 MAXLEVEL:=0:

FPascal—-1 V1.2/RT—11 Debugger (POD) ‘ Page 87
W(): Write Variable Value

WO : Write Variable Value

Thel"ﬂ“ command is used to write the value of a varzahle, pointer,

tant, nr memory location. The format of the output is
detérmﬂned by the type of the variable being written. For
= ample, integer variables are written as 16-bit signed decimal
1ntggers, while set variables are written with set notation. The
names | of | the variable to be displayed are placed 1n5ide
par%ntheses after the "W". If more than one variable is to be
written then the names are separated by commas. Physical memory
locations are addressed as integers (either octal or decimal). As
in Pascal, integer and real values may use format control with the
colon (I) notation. This is also how one exasines memory
locations in octal. k

o i g e

e b L A e e e e A R s e e e e e N R Sl s

I s . e e e Y et st PO e s s e

? WAROOT~.SON"~.VALUE)
402

3 W(S54B)
-10154

? W(S4B:—1)
154126B

3 W(S)

t,A’ 2 ’N’ s ”z’]
3 WIR)

3. 141S93E+00
3 WLCH)

’A?

¥ WD

123
3

Pascal—1i V1.2/RT-11 Debugger (POD) Page 88
Advanced Debugging Techniques

Advanced Deﬂquinq Techniques

If you write large programs, restrictions in memory size may limit
ynur use of FOD for debugging. However, you can do several th1ngs
tn reduce the amount of memory required by POD. |

The, easzest thing is to disable source debugging. The use of the
sourcei debuggxng option (/S) expands your program by one word for
ever Pas:al statement in your program. For large programss, you
may ave mn#e than 1K words by not using source debugging. 5
l Y.i‘: Lo N
Anotheritechnzque you can use is selective debugging. ¥You can
e&:ti ynur ’prngram to turn off the generation of POD debugging
1nfurmaﬁxon around procedures that have already been tested and
debugged. To turn off debugging, place the line {$D-} before the
procedure definition and {3D+} after the procedure. You will not
be able to set breakpoints or examine variables in such
procedures, but you will save two or three words for every
statement not debugged. Be sure debugging is enabled around all
variables you may wish to examine and around the main procedure.

If your program uses overlays, you can still debug your praogram
using POD. When you compile the main body of-the program, which
resides in, the root segment, use the debugging switch (/D) and
produce a symbal table file. Compile each of the external modules
in the normal way without the debugging switch.

The best way to debug an external procedure is to edit vyour amain
program to include the definition of the external procedure. Once
the procedure has been debugged, you can move the procedure from
the main program into an external module.

Another way to debug one- external pracedure at a time is to
cumpxle that external procedure with the debugging option (/D).
Edit your main program to enable debugging only around the BEGIN
statement that is the start of the ma:n program as shown:
‘ |
{$D+}
' BEGIN {MAIN2
{$D-2

This initializes the Debugger when the program starts. Then
compile the main program in the nromal way. When POD asks you for
the program name, give the name of the external procedure you wish
to debug.
When you link your overlaid program you will have to use two
overlay regions to contain the modules of POD. These two overlay
regions may, in most cases, also contain your own external
procedures. There should be no conflicts because POD only lets
you debug in the root segment, and as long as the two POD modules
RTDBG and DBG are placed 1n the roat, there should be no problems
with the overlays. ' ‘) '

FPascal—1 V1.2/RT—11 Debugger (POD) Page 89
Advanced Debugging Techniques

You cannot set breakpolnts within external procedures, but you can
cause a break when the external procedure is called from the main
praogram. This is done by setting a breakpoint and giving only the
name of the procedure at which to break as with: B(OVER1). This
type of breakpoint will stop the program befare the external
procedure OVER1 is executed. The only variables you will be able
to examine. and modify in OVER1 are those variables in the
parameter list for OVER1. Note that the names of the parameters
are’ defzned by the external procedure definition of OGVER1 in the
maxn‘program, not by the definitions in OVER1 itself.

SECTION 5: INSTALLATION GUIDE

Introduction to the Installation Buide . . . - « . - = - - . 92
o | .
Contents of the Distribution Medium

- - = - - - - - - = - - - 93
Installation FileS o « = = 2 = 2 = 2 = = a2 = = = « = = = 93
Documentation Files . « = « o = 2 « 2 « o« a = = = = = & = 23
COMPIilers o« « « = = ='= 2 s s 2 = s = = = =2'2 = = = = @ 93
Utility Programs . . «,c = = = ¢ « = = = o = = o o = =« & 93
Object Libraries .« « « « = = =« 2 =2 ¢ a e« =2 = a = = = &« = 93
Debugger Modules . . « « = = = 2 2 = o « s« = & = = 2 = = 4
Demonstration Programs .« « = » « = = = = = » = = = = = = 94

Instfallatim Preparatiﬂﬂ s ‘= - [- = = - = - - ‘ - - - - = = - 94
. Installa‘tinﬂ Dialog“e s = = = -. = = & m = = ®B = = =8 = = =2 s = | 95
Installation on V2 or Floppy Disks . « « « « = =« =« = = = « = 97

Double-Density Drives « « « « &« =2 = = = = 2. s = = s a = » 7

V2 or Single-Density Drives . « » « » o « =« s =2 2 2 = « = 98
Appendix Al Sample Installation . « « 2 = =2 « =« = = = = = =« & 99
Appendix B: Programming Changes in Pascal V1.2 . . .« « « « « 102

‘Appendix C: Customizing the PCL . « « « =« = « = = =« = = = = =« 103

Introduction to_the Installation Guide

This guide describes the procedures for installing Pascal-1 V1.2
on - your RT-11 operating system. Note that the pracedures for the
installation of V2 of RT—-11 differ from those for V3 and V4 of
RT—-11. The latter two are identical.

In examples, underlining is used to show the text that you should
type. Non-underlined text shows the prompts or other responses by
the computer. Lo

Fascal—1 V1.2/RT-11 Instaiiation Buide
Contents of the Distribution Medium

Fage 93

Contents_of_the Distribution Medium
Ea:hzm dium contains a complete set of distribution files. Below
is a‘lmst of these files with a brief explanation of each ane.

L txon Files
l |

Installation documentation
Installation program
nacumenta:;’gn Files

Table of Contents
Introduction

User’s Guide .
Programmer’s BGuide ,
Language Specification
Debugger Guide
Installation Buide

.Doc
.Doc

TABLE
INTRO
USER .DOC
GUIDE .DOC
PASCAL . DOC
DEBUE .DOC
INSTAL.DOC

_—— ==

Compiler for FPP machines
Compiler for non—-FPP machines

PASFFP.SAV
PASSIM. SAV

Qtili:x'E:ggcégg

Formatter and cross reference
Post—compilation optimizer

Program profiler

Pascal command 1anguage interpreter
System Error () procedure

jPQSFﬂT PAS
IMP i -PAS
 PROFIL.PAS
{PCL ' .PAS
'ERROR .PAS

STRING.PAS
INTRPT.PAS
€SI .PAS
MACEIS.SAV
MACSIM. SAV

String manipulation procedures
Interrupt handling examples
Interface for .CSIGEN

Fast assembler for EIS machines
Fast assembler for non-EIS machines

Gblect Libraries

Library for FPP on RT-11 V3/V2

LIBFFP.V3/7.V2

LIBFIS.V3/.V2 Librafy for FIS on RT-11 V3/V2
LIBEIS.V3/.V2 Library for EIS on RT-11 V3/VZ2

L IBSIM.V3/.V2 Library for non—-EIS on RT-11 V3/V2

’

Pascal—-1 V1.2/RT-11 Installation Guide Page 24
Contents of the Distribution Medium

Debugaer Modules

OFPP.V3/.V2, ... ,9FPP.V3/.V2,AFPP.V3/.V2,BFPP.V3/.V2
.| . FPP debugger modules for RT-11 V3/V2 ‘

OSIH.V3/ 92, ees »78IM.V3/.V2,ASIM.V3/.V2,BSIM.V3/. V2
! Non—-FPP debugger modules for RT-11 V3/v2

-t .

The game of Hearts
Random number generator
Amazing Demonstration

Installation P_ggaratzun

For RT—-11 V3 and V4, the Pascal V1.2 system is installed by an
automatic configuration procedure. For RT-11 V2, the procedure is
only partially automated. .

Several system programs supplied by DEC are reguired far
installation of Pascal and for use by the Pascal system. These
programs are PIP.SAV, the file transfer utility; MACRO.SAV, the
assemblers SYSMAC.SML, the MACRD library: SYSLIB.OBJ, the
default system object library; and LINK.SAV, the linking ioader.
You should verify that these programs are on your system disk.

Pascal-1 V1.2/RT-11 Installation Guide - Page 95
Installation Dialogue

Installation Dialoque

The installation procedure builds Pascal on a single target disk.
The | target’ disk must contain at least 544 free blocks if no
documentation or demonstrations are desired. The documentation
files require 2435 blocks of storage, while the demonstration files
use 1735 blocks, or 244 total blocks.

To 5%aqt the installation process, type:
! ty C ! ’

| .RUN xxn:INSTAL

where xxn: is the device name and unit number of the distribution
med1umq This starts the installation procedure, which will ask
several questions. The default answer is given in parentheses at
the fend of each question and will be used when you respond with:
only a carrage return. Below are the questions and a description

of each.
DEVICE FOR THE DISTRIBUTION MEDIUM (MT:z) ?

Enter the device name and unit numbher on which the Pascal
distribution medium is mounted. If the device is "MT:I", a
carriage return will use this name as default.

DEVICE FOR THE TARGET DISK (SY' ?

Enter the device name and unit number of the disk on wh:ch
Pascal is to be installed. - .

INCLUDE DEMONSTRATION PROGRAMS AND DOCUMENTATION (YES) ?

- If the answer is yes, the demonstration programs and
" documentation files are included in the system
1nstallatxon procedure.

USE THE CURRENT SYSTEM S CDNFIGURQTIDN {YES) 7

If the answer is yes, the version of RT-11 and the math
‘hardware on the current system are used in configuring
" Pascal, and the following questions are omitted.

VERSION OF RT-11 TO BE USED (n) ?

Answer “4" if Pascal is to run on RT-11 V4. Answer "3" if
Pascal is to run on RT-11 V3. fAnswer "2" if Pascal is to
run on RT-11 V2. The default will be the current version
‘of RT—-11. The same Pascal system is used for RT-11 V3 or
V4.

IS FPFP HARDWARE TO BE USED (YES/NQ) 7

I¥f you will be uszng a ma:hzne thh an FPII floatxng—poxnt

Pascal-1 V1.2/RT-11 Installation Guide ' Page 96
Installation Dialogue

-

processor, answer, vyes, otherwise no. If yes, then the
hex# two questions are skipped. The default will he the
-current system®s configuration. '

IS FIS HARDWARE TO BE USED (YES/NO) =

' If you will be using a machine with a PDP-11/40 style
- floating—point instruction set answer yes, otherwise na%
- If yes, then the next question is skipped. The default

will be the current system®s configuration. '

IS EIS HARDWARE TO BE USED (YES/NO) 7

If you will be using a machine with an extended
“instruction set. for integer operations answer yes,
otherwise no. The default will he the current system’s
canfiguration. '

Pascal—-1 V1.2/RT-11 Installation Guide Page 97
Installation Dialogue

After these questions have been answered, the configuration to be
installed will be printed, as in the example: -
CONFIGBURATION BEING INSTALLED
SOURCE: MT:
| TARBET: RKZ:
iRT—ll: VI .
MATH: EIS

Thefih%&allétinn program will then proceed to copy the files fruﬁ
the distribution medium to the target device. !

For flnppy and DECtape distribution, the installation program nili
prompt the dser to mount the next volume when needed. ;

After all files have been copied, several programs need to be
compiled. These are PASFMT.PAS, the Pascal text farmatter:
IMFR.PAB, the macro code improvers; PCL.PAS, the Pascal command
interpreter; and PROFIL.PAS, the Pascal program profiler object
module. ' ‘

For RT~11 V3 and V4, an indirect command file automatically
compiles these programs. See Appendix A for a sample
installation. You also will need to customize the Pascal command
language program, PCL, as described in Appendix C, if the target
device is other than the system disk.

Installation_on_VZ or_Floppy Disks

For RT-11 V2 or for floppy drive systems, you must compile the
above programs by typing some or all of the commands on the
cunsdlezterminal, following the same general procedure shown in
Appendix A. : ' 1

Memory storage is a problem with floppys, so your first action is;
to clean your disk. The next step depends on whether you have!
double-density drives or single-density drives as main storage.

—— i s . s e s st S S e S e o S

If your system has double-density drives with at least 544 free
blocks, you may use the automated installation driver, INSTAL.SAV,
to partially build your Pascal system. This means you can follow
"Step ‘1z Automatic Installation® described in the sample
installation in Appendix A. The installation procedure will run
out of space shortly after creating the indirect command file,
PASCAL.COM. The last message you normally will see before the
crash is:

All files have been copied — beginning compilations.

Pascal—-1 Vi.2/RT-11 Installation Guide Page 98
‘Installation Dialogue

You will have to manually perform all of the steps that follow
this message, under the heading "Step 2: Compilation Process®
shown in Appendix A. You will have to use an additional drive for
intermediate files. All files used by Pascal-1 V1.2 can be stored
on a SQstem%disk. . i

. 1 " |k ‘ v - . .
V2 or Single-Density Drives
| o | '
I

i ! i . .
yqfhgye-RT~11 V2 or if your system uses single-density drives,
‘xquémust build Pascal-1 manually. Begin with these steps:. |

t‘eﬁ

. N I - ‘
! ’hf*~9e1éct a compiler from PASFPP.SAV or PASSIM.SAV and call

ﬁt!%ﬁ9c$L.sav.

it |
. 2) Select a support library from LIBFPP.V2/V3, LIBFIS.V2/V3,
LIBEIS.V2/V3, or LIBSIM.V2/V3 and call it PASCAL.OBJ.

3} Select the debugger modules. The debugger consists of 12

object modules that must be copied onto your system as A.0BJ,

B.OBJ, 0.0BJ,...,%.0BJ. The distribution kit contains

debugger madules for RT-11 versions 2 and 3/4 supporting FPP

and FIS/EIS/SIM floating-point hardware. - Choose those 12
- files appropriate to your system.

After transferring the files given above, you have a Pascal system
capable’ of compiling, assembling, linking, debugging, and
 executing Pascal programs.

You may now generate the utilities PASFMT, IMP, PCL, PROFIL, and
STRING. ' You may then store these utilities on another device to
save space. You also may delete the intermediate .MAC and .0BJ
f“leé‘?§that were created in the installation process, then
"‘qdéezé” your disk to reclaim space. You must, however, save
PASCAL.OBJ, the 12 debugger modules and PROFIL.O0BJ. After
_cleaﬁing,;tﬁen, device SY: should have these files: :

PASCAL . SAV (Compiler)

- PASCAL.OBJ (Run—time support)
A, B, 0-2.0BJ {Debugger modules)
PCL.SAY (Command Language Interpreter?
IMP.SAV (Macro code improver)
PASFMT.SAV {Source text formatter)
PROFIL.OBJ (Profiler module)
MAC. SAV {Fast assembler)

(plus RT-11 system utilities and files)

This sequence will bring y&ﬁ,up to "Step 2: Compilation Process"
described in Appendix As; you should manually complete all of the
commands in Step 2. B " :

. Pascal -1 V1.2/RT-11 Installatlon Guide Page 99
Append1x A: Sample Installatxon

Sample_ Installation

Step 1: Automatic Installafinﬂ

This installation is from magtape to the system disk on RT-11 v3
with FPP. The “<CR>" means that a carriager return i the only
=espnnse.) .

.ggg MT'INSTAL

| INsTAL — System installation for OMSI Pascal-1 V1.2 on RT-11
L 3

Fur the folloﬂzng questxans, 4 default answer is

ngen 1n parentheses The default will be used when

ou press the carriage return key. For details about the
;uestz , type a *?°; otherwise type the desired response.

Dev1ce for the distribution medium (MT. ? <CR> -
Device for the target disk (SY:) ? <CR>

Include demonstration prdgrams and dacumentation (YES) 7 <CR>
Use current system’s configuration (YES) ? LCR>

Configuration being installed:
SOURCE: MT:
TARGET: SY:
RT11: V3
MATH: FPP

Cnpyzng files: ,
‘ MTZUSER .DOC to SY:USER .DOC
o MTIPASCAL.DOC to SY:PASCAL.DOC
- MT:DEBUS .DOC to SY:DEBUG .DOC
! MTIGBUIDE .DOC to SY:SUIDE .pocC
b MT:PASFPP.SAV ' to SY:PASCAL.SAV
MTIMACEIS.SAV to SY:MAC .SAV
MT:LIBFPP.OBJ to SY:PASCAL.OBJ

MT:AFPP .V3 to S8¥Y:A -0BJ
MT:BFFP .Vv3 to SY:B - 0OBJ
MT:OFPP .¥3 to S8Y:0 - 0BJ
MT:1IFPP V3 to 8Sy:i -0BJ
MT:2FPP .V3 to S8Y:2 -0BJ
MTI3FPP .V3 to SY:3 « 0BJ
MTI4FPF .V3 to SY:4 - 0BJ
MTISFPP .V3 to 8Y:S = 0BJ
MT:6FPP .Vv3 to gY:ié «0OBJ
MTZ7FPP .¥3 to S8Y:7 «-0OBJ
MT:8FPP .V3 tg SyY:8 - 0BJ
MT29FPP .V3 to - 8Y:I9 -« 0BJ

NT:PQSFMT;PQSI to GSY:PASFMT.PAS
MT: IMP -PAS to SY:IMP .FAS
*MTIPROFIL.PAS to SY:PROFIL.PAS

Pascal—i V1.2/RT-11 Installation Guide ‘ Page 100
Appendix A: Sample Installation

MT:PCL .PAS to SY:PCL .PAS
MT:STRING.PAS to SY:STRING.PAS
MT:HEARTS.PAS to SY:HEARTS.PAS
MT:CHECKR.PAS to SY:CHECKR.PAS
MT:RANDOM.PAS to SY:RANDOM.PAS
’nT:nAZE .PAS. to SY:MAZE .PAS

All fxles have been copied — beginning compilations

Step 2.‘ Compxlat:on Process

After copying all these files, the automatic installation- program
creates the indirect command file PASCAL.COM, which then campiles
the Pascal source programs. . The compilation process is not shown
here: fnr reasons of brevzty.

For RT-11 V2 users and for dauhle~dens:ty and single-density
- floppys, this command file will not be created; the user must do
the following steps manually to compile the supplied source
programs. ‘

-.ASS yyn DK (yyn: is the target devicel) .
«RU PASCAL o
*PASFMT=PASFMT
' «RU PASCAL

*IMP=1MP

-RU PASCAL

#PROFIL=PROFIL

.RU: PASCAL

*PCL=STRING, PCL

-.R MACRO

#*PASFMT=PASFMT

#IMP=IMP

#PROFIL=PROFIL

*PCL=STRING,PCL

*~C

«R LINK

*PASFMT=PASFMT ., PASCAL

*IMP=IMP,.PASCAL

_*PCL-PCL,PASCRL/“.&OOOO

*~C

R PIP

*PASFMT . PAS, PASFMT . MAC, PASFMT. OBJ, IMP. PAS, IMP.MAC, IMP.OBJ/D
*PRDFIL.PAS,PRBFIL.&AC,PCL HAC,PCL oB3/D
*Ac

and if the demonstration programs are included:

-.RU PASCAL
*HEARTS=HEARTS
«RU PASCAL
*CHECKR=CHECKR

Pascal—-1 V1.2/RT-11 Installation Guide - Page 101
Appendix A: Sample Installation

.RU PASCAL
*MAZE=MAZE

.R MACRO

*HEARTS=HEARTS

*CHECKR=CHECKR

XMAZE=MAZE

*#°C |

-R LINK

*HEARTS=HEARTS, PASCAL

#*CHECKR=CHECKR, PASCAL.

*MAZE=MAZE, PASCAL

.R PIP

*HEARTS. MAC, HEARTS. OBJ , CHECKR. MAC, CHECKR. OB3 /D
*MAZE.MAC, MAZE.OBJ/D

®#°C

Pascal-1 V1.2/RT-11 Installation Guide Page 102
Appendix B: Programming Changes in Pascal-1 V1.2

Prngramminq Changes_in Pascal—1 V1.2

Four: specxf:c language features have been changed from V1.1 to
Vi, 2, ~all *of which are related to 1/0 characteristics. If a
prngfam that was written in V1.1 fails to operate properly wzth
V1.2, check' 'these poznts. ;

.l‘ L

1 1, Eoln() on interactive terminal files had the initiai
Le TTue. This has changed to False in Vi.2. . |

|

ah:f Pragram "hangs"”, or ignores the first input line. .

Femnve the initial Readln(), or replace it by the statement
'Eoln() then ReadlnQ®, which runs correctly with either
VErEIQn-

(2) The V1.1 Read() procedure, when reading a {(packed) array of
Char, ignored 1leading blanks and terminated on a blank or a
comma. The V1.2 Read() procedure will read characters without
skipping blanks, and terminates at Eoln{() or when the array is
filled.

Symptom: Frogram does not interpret cnmmands-p?nperly, ar loops.
Cure: Reprogram sections that use the Vi.1 Read(). Programs that

are heavily dependent on the V1.1 style Read() may be more
'easily recoded with the V1.2 string package.

(3) The declaration éfilemnf Char® is no longer equivalent to the
. declaration “Text". This change correspaonds to the more
‘ strxct type checking of the draft IS0 Pascal Standard.

Symptom.; Campxler error message STEXT file expected”.
|
Cﬁrg. Substztute the type Text and recompile.
(4) The Seek{), Deposit(), and CloseRandomFile) procedures
supplied with V1.1 have been superseded by the built-ip

procedure Seek()L

Symptom: Unpredictable 1/0-failures. The Vi.1 procedures will
compile under V1.2, but will not operate correctly.

Cure: Reprogram affected sections using the huilt*iﬁ Seek(}.
Note that the V1.2 Seek() numbers file records beginning at 1.

Pascal—1 V1.2/RT-11 Installation Guide Page 103
Appendix 01 Customizing the PCL

Customizing the Pascal Language_Command_Program (PCL)

For sites using RT-11 V3 or V4, the Pascal command language
program PCL can be used to . automate the compilation process. PCL
accepts a line of input in standard Command String Interpreter
(CS51) format and produces an indirect command file to perform the

compilation, assembly, linking, and start-up of a program.

when!Pagcalfi is installed on the system disk,‘#CL will need no
modifications the PCL.SAV created in the installation procedure
will work correctly. ' ‘

If Pascal-1 is to be on a non-system disk, PCL.PAS will need
modification and recompilation. The editing can be done with a
standard text editor. Change the first line of PCL.PAS to:

PascalDevice = *yyn:’; (% Device for the Pascal files =)

where yyn: is the device name and unit number on which the Pascal
files can be found. After this change has been made, recompile
PCL with the following commands:

-ASSIEN yyn DK
-R PASCAL

T o v o s

.MAC PCL '

———

Hote: FPCOL featwres are déscrihed_in detail in a comments section
at the beginning of the PCL.PAS prograam. -

PROGRAM convertgroups (datafile, binaryfile, output);
CONST :
groupsize = 103

TYPE

index = 1 .. groupsizes

group = ARRAY lindexl OF reals

VAR '

datafile 2 texts;

binaryfile : FILE OF group;

in & indexs

groupcount I integers;

BEGIN .

reset (datafile)s

rewrite(binaryfile)s;

groupcount = O3

REPEAT

ik 1=13%

read(datafile,binaryfile~Lix1)}

IF NOT eof (datafile)

THEN

BEGIN

REFEAT

i = ix + ij
read{datafile,binaryfile~Lix1}

UNTIL (ix = groupsize) OR eof (datafile);
IF eof (datatile) ,

THEN writeln(’File ends with short group?)
ELSE

BEGIN

put (binaryfilels

groupcount I= groupcount + 1

END

END ' .

UNTIL eof(datafile);

writeln(groupcount, ’Groups converted?®)
END. { convertgroups 3

YAR I: INTEGERS

BEGIN
WRITELN:
CASE CLASS OF
WARMING: WRITE(’Warning: °)3
IOERROR: WRITE(*?I/0 error: "):
ELSE WRITE(® ?Fatal error: 7)3
END3
writelnimsgierrormsglengthls;
IF CLASS=IDERROR THEN BEGIN
" IF FILENAMELENGTH > O THEN i
WRITELN{® Filename: "’,filename:filenamelength,”"};
_ writeln(® 1/0 status: *,I0STATUS:1)3: ‘
CEND3 '
"WRITELN(® Program counter: °,USERPC:I-1)3
END3

