
On.',.·.1151 ~ ... §\sc·· .. · . UUI · r-'13' ·· L-1™

version 1.2 for RSX

Ore s

Oregon
Software
2340tl.W. Canyon Road
Portland, Oregon 97201
(503) 226-7760
TWX 910-464-4 779

The software described in this publication is licensed for use
only at the site{~) designated in the user's license agreement.
This publication may be copied by licensed users for use at the
licensed site(s), provided that all copies include this notice
and all copyright notices.

Ownership of the licensed software is held by Oregon Software.
The licensed software, or any copies thereof, may not be made
available to or distributed to any person or site without
written approval of Oregon Software.

The software described by this publication is subject to change
without notice. Oregon Software assumes no responsibility for
the use or reliability of its software if modified without the
prior written consent of Oregon Software.

Copyright c 1980 Oregon Minicomputer Software, Inc.
ALL RIGHTS RESERVED.

Oregon Software, OMSI Pascal, and the Pascal portrait are
trademarks of Oregon Minicomputer Software, Inc.

DEC, PDP, RSTS/E, RT-11, RSX-11, IAS, VAX, and LSI-11 are
trademarks of Digital Equipment Corporation.

March 9, 1980
Printed in USA

G)
c: -· 0.
CD

OMSI Pascal-1 Vl.2/RSX User>s Guide

Welcome to OMSI Pascal!

This is the introductory manual, the User>s Guide. It explains:

1) how to compile and run Pascal programs;

2) how to interpret program listings and error messages;

3) some details of the compilation process.

This manual assumes that you are familiar with

1) simple RSX commands;

2) a text editor (EDIT, TECO, EDT, SOS);

3) elementary Pascal programming.

This manual is not:

1) an introduction to Pascal;
(see Programming in Pascal by Grogono)

2) a detailed description of OMSI Pascal-l
(see the Language Specification)

3) an expert>s guide to programming with OMSI Pascal-1
(see the Programmer's Guide)

OMSI Pascal~l Vl.2/RSX User~s Guide
Enter the Program .••

So you want to run a Pascal program?

Page 2

The first step is to enter the program into the computer and store
it in the file system. Use a familiar text editor to enter your
program, and store the program in a file with the extension .PAS.
The Pascal compiler accepts free-format program files, so use
blanks, tabs, new lines, and form feeds as desired to help make
your program readable.

This Pascal version of your program is called the source program,
or.the source file. All other versions of your program are
translations from the source program.

Sou~ce programs should be stored in files with the extension .PAS
for Pascal (example: FIRST.PAS). The .PAS extension may be
omitted from commands to the Pascal compiler, but must be included
in commands to other RSX systems such as the editor.

After €diting, your program must be compiled -- translated into a
form which can be directly executed by the .computer. The Pascal
compilation process is directed by the 'PAS' system task. The
Pascal compiler produces a .MAC assembler file; this is assembled
using MACRO to produce a relocatable object file. The Task
Builder combines the object file with the Pascal library to
produce an executable task image. The entire compilation process
requires these commands: ·

>PAS <file.MAC> = <file.PAS>
>MAC <file.OBJ> = <file.MAC>
>TKB <file.TSK>/FP/CP = <file.OBJ>, [l,l]PASLIB/LB

To illustrate the compilation process, a~sume that this program

program First <Output>1
begin

Write ('"Things are best in their beginnings"')1
Writeln (' - Blaise Pascal')1

end.

is stored in the file FIRST.PAS. The compilation process proceeds
as follows:

>PAS FIRST=FIRST
)MAC FIRST=FIRST
>TKD FIRST/FP/CP=FIRST, [1, 1JPASLIB/LD
>RUN FIRST
"Things are best in their beginnings" - Blaise Pascal

Notice the /FP and /CP switches in the Task Builder command, which
enable saving Floating Point context and CheckPointing
respectively. These switches are strongly recommended for Pascal
tasks -- see the Programmer's Guide for the details.

Page 3 OMSI Pascal-1 Vl.2/RSX User's Guide
Dealing with Errors

Notice also that no errors were detected. This is certainly
unusual if this is your first program! What happens if there are
detectable errors in the source program?

The following program contains a deliberate error:

program Second (Output>
begin

Writeln ('"Things get worse as the~ continue"'>i
end.

This program is missing a semicolon between the program heading
and the keyword ~begin~. Semicolon errors are the most common
errors made by beginning Pascal programmers. Semicolon errors are
always detected by the compiler:

>PAS SECOND=SECOND
2 begin

****** Expected 'SEMICOLON' missing

Errors detected: 1
Free memor~: 6106 words

For each error, a line of the source program is printed followed
by an arrow indicating the approximate position of the error, and
a message describing the error. Many compilation errors are
possible -- see Appendix A of the Programmer~s Guide for a
complete list.

OMSI Pascal-1 Vl.2/RSX User;s Guide
The Program Listing

Page 4

As is often the case, we need to see more of the program to
determine the precise lo~ation of the error and to correct it.
The Pascal compiler can be directed to display the entire program,
with all detected errors and other information. This is called
the ;listing; of the program.

The second output file (if present) is the listing file, with the
.LST default extension. For a listing at your terminal, ~pecify
;TI:' as the listing file~ the listing may also be written to the
lin~ printer or a disk file.

PAS <file.PAS>,<file.LST> = <file.PAS>

A .listing of a sample program follows:

>PAS THIRD.TI: 2 THIRD

THIRD OMSI Pascal V1.2B RSX 22-Feb-8022:14 Site 11-1 Page 1
Ore~on Software 2340 SW Canyon Road Portland, Oregon 97201 (503) 226-7760

Line Stmt Level Nest Source program

1
2

program Third <Output)
begin

****** Expected 'SEMICOLON~ missing

3
4

1
2

1
i

Errors detected: 1

1 Writeln <'"Things get hazy if you stare at them"')1
1 end.

Free memory: 6104 words
Errors detected: 1
Free memory: 6104 words

The listing is printed in pages, with a headline on each page
showing the program name, the exact version of the Pascal system,
the date and time, and the licensed site identification.

Four columns of numbers appear on the left side of each page. The
first column, labeled Line, simply numbers each line of the source
program. The second column is labeled Stmt and gives the
statement number of the first statement on that line. The
statement number starts at 1 for each control section, and
increases by one as each statement is compiled. An up-to-date
listing can be useful while debugging, because the statement
numbers are used by the Debugger to identify breakpoints.

Page 5 OMS! Pascal-1 Vl.2/RSX User's Guide
A Complex Program

To illustrate the Level and Nest columns, a more complex program
is needed:

>PAS FINAL.TI:=FINAL

FINAL OMSI Pascal V1.2B RSX 22-Fe~-8022:14 Site 11-1 Pag~ 1
Oregon Software 2340 SW Canyon Road Portland. Oregon 97201 <503> 226-7760

Line Stmt Level Nest

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22

1
2
3
4

1
2
3

1
2
3

2
2
2
2

2
2
2

1
1
1

Errors detected: 0

1
2
2
1

1
2
1

1
1
1

Free memory: 5981 words
)MAC FINAL=FINAL

Source program

program Final <Output>i

const Reality = True;

procedure ObJectivei
begin

if Reality

end;

then Write <'"Things become infinitely complex '>
else Write ('In the Beginning, ... ');

procedure Awareness;
var Eye: <SubJect, ObJect);
begin

for Eye :=Subject to Subject do
Writeln· ('as one understands them"');

end;

begin
Objective;
Awareness;

end.

>TKB FINAL/FP/CP=FINAL, (1, 1JPASLIB/LB
>RUN FINAL
"Things become infinitely complex as on~ understands them"

The Level column shows the depth of procedure nesting. The main
program is at level l, its procedures are level 2, and so on; a
procedure at level 4 is enclosed by two surrounding procedures or
functions. The Nest column shows a similiar nesting of statements
within other structured statements.

OMSI Pascal-1 Vl.2/RSX User's Guide
Compilation Switches

Page 6

The PAS command can include several source files, which are
combined in sequence to form the compl.ete program. The
compilation process can also be modified by the use of "switches"
in the PAS command line. A switch is a slash (/) followed by a
letter. The most commonly used switches are illustrated in the
following examples - see the Programmer's Guide tor a complete
list.

To demonstrate, let's compile and list the program E. This
pro9ram calculates an approximation of e (the base of the natural
logarithms) by summing the series

• 1+1/l!+l/2!+1/3!+ • • . +l/N!

to the point where additional terms do not affect the
approximation:

>PAS E:.TI:•E

.MAIN. OMSI Pascal Vl.2B RSX 22-Feb-BO 22:15 Site #1-1 Page 1
Oregon Software 2340 SW Can~on Road Portland, Oregon 97201 (503> 226-7760

Line Stmt Level Nest Source program

1
2
3
4
5
6
7
8
9

10

1
5
6
7

10
11
12

1
1
1
1
1
1
1

Errors detected: 0

var e. delta, fact: reali
N: integer1

begin
1 e: = 1. 01 N:"' 11 fact:• 1. 01. delta:• 1. 01
1 repeat
2 e:m e+delta1
2 N:• N+11 fact:= fact*N' delta:• 1/facti
2 until e = <e+delta>1
1 writeln< 'With ',N: 1,' t;erm1. the value of! • i•'• •: 18: 15)1
1 end.

Free memory: 6063 words
)MAC E=E
>TKB E/FP/CP=E,[1, 1lPASLIB/LB
:>RUN E
With 11 terms. the value of e is 2.718280000000000

Page 7 OMS! Pascal-1 Vl.2/RSX User's Guide
The Debugger

We can watch the progress of the computation and display
intermediate values without making any program changes. For this,
we use the /D/S switch pair to compile with the interactive
Debugger. After compiling, we set a stored breakpoint command to
display the current value of e (see the Debugger manual for
details of these commands).

Note the third output file in this example, and in.the Profiler
compilation~ this is the symbol table file (.SYM) used by the
Debugger and the Profiler.

>PAS E,E,E=E/D/S
>MAC E=E
>TKB E/FP/CP=E, Cl. lJPASLIB/LB
)RUN E
PASCAL On-line Deougging System -- 24-Apr-79

POD - program name? E
} DCMAIN,6l<W<El;C>
} G
Breakpoint at MAIN.6 e:= e+delta;
1.000000
Breakpoint at MAJN.6 e:= e+delta;
2.000000
Bredkpoint at MAIN.6 e:= e+delta;
2. 500000
Breakpoint at MAI~.6 e:= e+delta;
2.666667
Breakpoint at MAIN,6 e:c e+delta;
2. 708333
Breakpoint at MAIN.6 e:= e+delta1
2. 716667
Breakpoint at MAIN.6 e:~ e+delta;
2. 718056
Breakpoint at MAIN.6 e:= e+delta;
2. 718254
Breakpoint at MAIN.6 e:= e+delta;
2. 718279
Breakpoint at MAJN,6 e:= e+delta;
2. 718282
With 11 terms. the value of e is 2.718280000000000
Program terminated at MAIN, 12 end.
> ftz

OMS! Pascal-1 Vl.2/RSX User's Guide
Extended Precision and The Profiler

Page 8

The computed value is printed with 6 significant digits. For more
precision, we can us~ the /X switch which means "extended
precision". With extended precision, 15 significant digits are
computed and displayed - see the Programmer's Guide.

:>PAS E=E/X
>MAC E=E
>TKB E/FP/CPzE, [1, tJPASLIB/LB
!'RUN E
With 19 terms. the value of e i• 2.718281828459050

Finally, let's "profile" the program using the /D/S switch
combination, and adding the PROFIL module to the Task Builder
input. The leftmost column of the profile listing shows exactly

·the number of times each line is executed. This allows us to
concentrate attention on the parts of the program which might
effectively be optimized.

>PAS E,E,E=E/S/D
)MAC E=E
>TKB E/FP/CP=E,[1, lJPROFIL,[1, 1lPASLIB/LB
>RUN E
Progr-am name? E
Output profile to: TI:
With 11 terms. the value of e is 2.718280000000000

. MAIN. OMSI
Oregon Software 2340 SW

Line Stmt Level Nest

1
2
3

1 4 1 1 1
1 5 5 1 1

10 6 6 1 2
10 7 7 1 2
10 8 10 1 2

1 9 11 1 1
1 10 12 1 1

Errors detected: 0
Free m~mor11: 6055 words

Pascal V1.2B RSX 22-Feb-8022:16 Site #1-1 Page 1
Canyon Road Portland. Oregon 97201 <503) 226-7760

Source program

var e, delta. fact: real1
N: integer;

beg in
e:= 1.0; N:= 1; fact:• 1.01 delta:• 1.0;
repeat

e:= e+delta;
N:a N+11 fact:• fact*N1 delta:m 1/fact1

until e m (e+delta)1
writeln< 'With '• N: 1,' terms, the value of e is'• e: 18: 15>1

end.

Page 9 OMS! Pascal-1 V't.2/RSX User"'s Guide
For More Information

Thus ends the guided tour of OMS! Pascal-1. From here, we can
suggest several places to find additional knowledge:

(1) Try it! Certainly the most challenging course, and the
most open-ended and accurate as well. Acquire the habit· of
answering your questions by experiment -- "you can ... t hurt the
computer!"

(2) Programming in Pascal, by Grogono -- a good co11rse in
Standard Pascal,-With lots of sample programs for (i), above.

(3) This manual -- for fine points and grubby details of OMSI
Pascal-I, it ... s "the only place in town".

For the serious student, the following books are available from
Oregon Software:

Systematic Programming: An Introduction, Niklaus Wirth;
Prentice-Hall, $17.75

Algorithms + Data Structures ~ Programs, Niklaus Wirth;
Prentice-Hall-;-$20.25

Structured Programming, Dahl, Dijkstra, Hoare;
Academic Press, $15.30

Elements of Programming Style, Kernighan and Plauger;
McGraw-Hill, $3.95

And we recommend joining the Pascal Users ... Group, which publishes
an excellent newsletter -- send $6 for a one year subscription:

Pascal Users"' Group
Attn: Rick Shaw
Digit31 Equipment Corporation
5775 Peachtree Dunwoody Road
Atlanta, Georgia 30342
(404) 252-2600

OMSI Pascal-1 Vl.2/RSX User~s Guide
Epilogue (for the curious)

Who is OMSI?

Page 10

OMSI is not Oregon Minicomputer Software, Inc. -- it~s the Oregon
Museum o"fS"cience and Industry, where we began writing software in
the Research Laboratory in the basement. OMSI is a private
educational organization whose charter is "to further the
education of the youth of the community". Seven of us came from
OMSI to found Oregon Software in September, 1977. The name has
stuck with us, and we continue to contribute our personal time and
corporate resources to the Museum.

But -- we're Oregon Software, please.

On a more serious note: OMSI is a non-profit, charitable
institution -- contributions of money and equipment are much
needed and are tax-deductible. Please earmark your donations for
the Research Lab, which supports independent science projects in
many fields including computing. For further information about
the OMSJ Research Lab program, contact:

Director of Research
OMSI
4015 SW Canyon Road
Portland, Oregon 97201
(503) 248-5943

What is OMSI Pascal-2?

Pascal-2 is our new compiler, still under wraps as of this
writing. It's an optimizing compiler, written in Pascal -- it's
designed to be portable, and has already been moved to a Honeywell
computer. The Pascal-2 compiler is bigger and slower than
Pascal-1, but not the generated code -- typical programs are 40%
smaller and almost twice as fast. You can expect Pascal-2
compilers to be available on a wide range of popular 16 and 32 bit
processors in the next several years. Supported users of OMSI
Pascal-1 will receive substantial discounts on their purchase of
DMSI Pascal-2 licenses for the PDP-11.

r­m
::s

'° c:
t\)
c.a
(0

CJ)
"C
ro
0

-· ()
Q)
0
::s

OMSI Pascal-1 Vl.2 Language Specification

The Language Specification contains details of extensions and
limitations of OMSI Pascal-1 as compared to Standard Pascal.
Standard Pascal was first defined in the Pascal User Manual and
Report by Kathleen Jensen and Niklaus Wirth. A further def 1nition
is available in the draft proposed Standard from the British
Standards Institution (BSI). The draft BSI Standard is being
considered for acceptance as an international standard by the
International Standards Organization (ISO) and the American
National Standards Institute (ANSI). The original' Report and the
draft BSI Standard are in general agreement. Where the Report and
the Standard differ, this document will give a specific reference.

January 3, 1980
Copyright 1980 Oregon Software

Section
1.1
1. 2
1.3
1.4
1.5
1.6
1.7

Section
2.1
2.2
2.3
2.4
2.5
2.6

Section
3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8

1: Syntax Extensions
Program heading
Declaration ordering
Comment brackets

Contents

ELSE in CASE statement
EXIT statement
EXTERNAL procedures and functions
FORTRAN procedures and functions

2: Low-Level Interface
Octal (Base 8) Numbers
Unsigned Integers
AND, OR, NOT operators on Integer
Absolute memory addressing (ORIGIN)
Address operator (@)
Embedded assembly code

3: I/O Support Extensions
Reset()/Rewrite() standard procedures
Seek() procedure
Break() procedure
Close() procedure
Readln() Array of Char
Write() Array of Char
Write() Octal (Base 8)
Interactive I/O

Section 4:.Additional Predefined Functions
4.1 Time
4.2 ExplO() and Log()

Section
5.1
5.2
5.3
5.4
5.5

Section
6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10

5: Non-Standard Language Elements
Pack()/Unpack() not available
Program parameters
Identifier scope rules
Read()/Write() Text files only.
Eof () not accurate (RTll, RSTS only)

6: Implementation Definitions
Identifiers
Standard type Integer
Standard type Real
Standard type Char
Standard type Text
SET types
New() and Dispose()
Procedural Parameters
Implementation Limitations
Error Detection

TABLE A: .Predefined Identifiers
TABLE B: Reserved Words

Page 3 OMSI Pascal-1 Vl.2 Language Specification
Section 1: Syntax Extensions

1.0 Syntax Extensions

This section describes extensions to the formal structure of
Pascal which are of general utility.

1.1 Program heading

The program heading is optional in OMSI Pascal-1 programs, and it
may be omitted entirely. If the program heading appears, the
program name will be printed on each page of the program listing.
The first six characters of the name will be used as the external
name of the object module. Parameters appearing in the program
heading are ignored.

1.2 Declaration ordering

The ordering of global declaration sections (CONST, TYPE, VAR,
LABEL) is extended in OMSI Pascal-1. Declaration sections may
appear more than once and in any order, so long as identifiers are
defined before being used.

One application of this is the concatenation of source modules
with main programs which provides a primitive source library
capability.

Example - compiler input PLOT,MAIN:

(* define
VAR
PROCEDURE
PROCEDURE
(* end of

source module PLOT *)
(* global plotter variables *)
(* and plotter functions *)

plotter module *)

(* program file MAIN *)
VAR (* global variables *)
BEGIN (* main program code *) END.

1.3 Comment brackets

OMS! Pascal-1 provides three forms of comment brackets: the
Standard braces { ••• }, the Standard alternate for upper-case
terminals (* ... *), and the additional form/* ••. */. These may be
interchanged freely - it is not necessary for opening and closing
comment brackets to have the same form. Comments may not be
nested.

· OMSI Pascal-1 Vl.2 Language Specification
Section 1: Syntax Extensions

Examples:
{* This is a valid comment */ .
{ This is (* not *) a valid comment }

1.4 ELSE clause in CASE statements

Page 4

OMSI Pascal-1 allows an optional ELSE clause to appear in a CASE
statement. It indicates a statement which is to be executed if
tbe CASE selector expression does not match the value of any CASE
label. If included, the ELSE clause follows all other statements
inside the CASE statement. If no ELSE clause appears and no
statement is selected, control passes to the statement following
the CASE statement. ·

Example:

repeat
Readln(Ch);
case Ch of

""A"' , ""a"" : Append;
... D ... , "'d"': Delete;
"'I"" ,"'i"': Insert;
""N"","'n"": Newfile;
"'Q"" , q : . ;
else Writeln(""""",Ch, ... " is not a legal command"');

end;
until (Ch = ""Q"") or (Ch = "'q"')·;

1.5 EXIT statement

The EXIT statement terminates the immediately enclosing iterative
statement (WHILE, REPEAT, FOR).

The EXIT statement is included for compatibility with previous
versions of OMSI Pascal-1. Its use is not recommended in programs
intended to be portable.

E~ample (table search):

Found := False;
for I := 1 to Tablesize do

if.Table[IJ=Key

end;

then begin
Found := True;
exit;

Page 5 OMSI Pascal-! Vl.2 Language Specification
Section 1: Syntax Extensions

1.6 EXTERNAL Ffocedures and Functions

The keyword EXTERNAL provides access to separately compiled
.subroutines and to program libraries and overlay facilities.
EXTERNAL appears in the place of a procedure or function body to
indicate that the procedure or function is compiled separately.

The compiler will generate references to an external (global)
symbol. The first six characters of the procedure or function
identifier must form a unique external symbol. References to an
external procedure or function are resolved at link or task build
time.

Note that the compiler is unable to check parameter types at an
external interface.

Examples:

procedure Erase; external;
function Rad50(A,B,C: char): Unsigned; external;

1.7 FORTRAN Procedures and Functions

The directive >FORTRAN> is similiar to the EXTERNAL directive.
The compiler will generate a calling sequence corresponding to the
Digital PDP-11 standard calling sequence, with register 5 (RS)
pointing to an argument list. The FORTRAN directive enables
calling of external MACRO and FORTRAN subroutines. The FORTRAN
calling sequence passes parameters by reference, so the
corresponding Pascal parameters must be declared as VAR
parameters.

The FORTRAN directive generates the proper call sequence for
FORTRAN subroutines, but calling FORTRAN subroutines which perform
I/O is operating system dependent. RSX FORTRAN and Pascal share
the FCS library without difficulty; the RTll FORTRAN I/O library
requires initialization which is not provided by OMSI Pascal;
RSTS/E FORTRAN I/O requires RTrr- system calls which are not
supported by OMSI Pascal.

Example:

function Difference(var X,Y: Real): Real; fortran;

OMSI Pascal-1 Vl.2 Language Specification
Section 2: Low-Level Interface

2.0 Low-Level Interface

Page 6

The low-level interface section describes those OMSI Pascal-1
extensions which are useful to programmers who need access to
machine dependent PDP-11 characteristics.

2.1 Octal (Base 8) Numbers

Int~ger constants may b~ written in octal notation by appe~·'ing
tne · capital letter ... B... to the number. This applies onlt to
compile-time constants -- runtime integer conversions via Read()
ace performed using decimal notation.

Example: const TabCode = llB; (* ASCII tab character *)

2.2 Unsigned Integers

The predefined type Integer has the subrange (-32768 .. 32767) and
uses the PDP-11 signed arithmetic ope-rations. Unsigned integers
may be specified with the subrange 0 •. 65535. The compiler will
generate the unsigned comparison operations ·of the PDP-11 and will
not detect multiplication and division overflow of unsigned
integers.

Unsigned integer operations apply only to integer calculations.
I/O conversions and conversions to and from Real values are always
signed integer operations.

Example: type Unsigned=0 •• 65535;

2.3 Logical operations o'n Integers

The Boolean operators AND, OR, and NOT are extended to Integer
operands. The operators perform the Boolean operations on all 16
~its of their operands. This allows testing or setting of
individual bits within a word (for instance, status bits within a
device register). ·

Example: Byte := Ord(Ch) and 377B;

2.4 References to fixed (absolute) memory

OMSI Pascal-1 allows the keyword ORIGIN to appear in variable
declarations, associating a variable identifier·with a specific
memory address. This provides access to fixed memory addresses,

Page 7 OMS! Pascal-1 Vl.2 Language Specification
Section 2: Low-Level Interface

such as device control registers ·or operating system parameter
blocks.

Example (read directly from the RTll console):

const Readv=200B;
var KbCsr origin 177560B, KbBuff origin 177562B: Integer;

Ch: Char;
begin

while (KbCsr and Ready)=O do (* nothing *);
Ch:= Chr(KbBuff); (*get character~)

end;

2.5 Address operator (@)

OMS! Pascal-1 provides a unary address operator, indicated by the
@ character. When applied to a variable of type T, it yields a
value of type AT (pointer to T). The address operator can be used
to link variables into list structures or (more commonly) to pass
variable addresses to low-level routines.

Example:

var Buffer: Block; XRLoc origin 446B: ~Block;
begin

XRLoc:= @Buffer; (*pass address to RSTS/E *)
end

2.6 Embedded assembly code

PDP-11 MACRO assembly code may appear at any point in an OMSI
Pascal-1 program. Assembly code sections have the form of a
Pascal comment, beginning with the $C embedded switch. Any
MACR0-11 feature may be used within embedded code. The compiler
provides some assistance in accessing Pascal variables, though the
programmer is expected to have some understanding of the OMSI
Pascal-1 runtime environment. Note that the default radix within
a Pascal-produced MACRO file is decimal, not octal.

Example:

procedure EmtTrap(N:Integer);
begin

(*$C
MOV N(SP) ,-(SP) push parameter N
EMT 53 call EMT handler

*)
end (*EmtTrap*);

OMSI Pascal-1 Vl.2 Language Specification
Section 3: I/O Support Extensions

3.0 I/O Support Extensions

Page 8

I/O support extensions provide the OMS.I Pascal-1 programmer with
additional control of the interface to the operating system.

3.1 Reset()/Rewrite() optional parameters

Three additional parameters may appear following the file variable
in ·calls to the Reset() and Rewrite() standard procedures. These
optional parameters allow the program to dynamically bind a file
variable to an external file and provide status and error
ir:iformation.

The general form is:

Reset(F , Filename , DefaultName , Size)

where the parameters have these types:

F - any file variable
Filename - literal string, or (packed) array of Char
DefaultName - same as Filena~e
Size - Integer variable

Reset(F,Filename) connects the file variable F with the external
file identified by Filename. Filename conforms to the operating
system conventions, and may contain device, filename, extension,
and other fields such as PPN/UIC and version number. The Filename
parameter may also contain switches specifying access modes or
otl:ier spe.cial character is tics. If the external file does not
exist prior to the Reset(), a fatal error will result. Upon
successful completion of a Reset(), either the file buffer Fn will
contain the first element of the file, or Eof (F) will be True.

Reset(F,Filename,DefaultName) performs the same function, with
DefaultName having the same format as Filename. Fields of the
external name which are not specified in Filename are filled from
the information in DefaultName. Common default fields are the
~xtension, protection code, and mode switches.

Reset(F,Filename,DefaultName,Size) provides a recovery capability
on· file open errors. Size must be a variable (VAR parameter).
After a successful Reset(), Size contains the length of the file
in blocks. If an error occurs, Size is set to negative one (-1).

Rewrite(F , Filename , DefaultName , Size

Rewrite()
have the
specifies
file.

creates a new external file. The optional parameters
same meaning as in Reset() with one addition: Size

the initial storage, in blocks, to be allocated for the

Page 9 OMSI Pascal-1 Vl.2 Language Specification
Section 3: I/O Support Extensions

Reset() and Rewrite() may be applied to the standard files Input
and Output respectively. This will redirect the default input or
output streams to the specified file instead of the user terminal.
A subsequent Close() will break the connection and reconnect the
default file to the terminal.

Example:

program Copy; (* copy to printer *)
var Name: array[l .. 20] of Char;

Ch: Char; Len: Integer;
begin

repeat (* Get a Filename and Reset() it *)
Write ("'Fi le : "') ;
Readln(Name);
Reset(Input,Name,"'.PAS"',len)

until Len <> -1; (* until not error code *)
Rewrite(Output,"'LP:"'); (* redirect Output to printer *)

while not Eof do begin (*copy.Input to Output*)
while not Eoln do begin·

Read(Ch); Write(Ch);
end;
Readln; Writeln;

end;
end.

3.2 Seek() procedure

The predefined procedure Seek() causes direct positioning of a
file window variable to any desired component of the file.

Seek(F , Index)

F may be of any file type except Text, and must be connected to an
external file which supports direct access (typically disk or
DECtape). Index is an unsigned integer expression which specifies
the desired component. File components are numbered sequentially
beginning with one (1). If Index specifies a number greater than
the number of components actually present, then Eof (F) is set to
True.

To read component N of file F, use:

Seek(F,N); (*component N is available in F" *)

To write component N, use the sequence:

Seek(F,N);
F" := ();
Put (F);

(* position to component N *)
(* assign new value *)
(* write component to file *)

OMSI Pascal-1 Vl.2 Language Specification
Section 3: I/O Support Extensions

Page 10

If the Put(} in the above sequence is omitted, the effects will be
unpredictable and the new data may be lost.

Sequential I/O operations such as Get(} and Put(} may
with Seek(} and will advance the file window to
component. Reset(F} is equivalent to Seek(F,l}.

be
the

mixed
next

The direct access extension bypasses the Standard Pascal
restriction prohibiting simultaneous read and write access to a"
fil~. For this reason, direct access files are identified by the
'/Seek' switch which must appear in the Filename or DefaultName
field of the associated Reset(} or Rewrite(}.

3.3 Break(} procedure

For efficiency, OMSI Pascal-1 buffers transmitted data. Break(F)
forces the actual transmission of data from a partially filled
buffer of file F. This can be useful with interactive terminals,
or to guarantee actual transmission of data to a shared disk file.

3.4 Close() procedure

Close(F) indicates that the program has completed processing the
file F, and that internal buffer storage may be reclaimed.
Close(F) removes any connection to· an external file, so that
Reset(F) or Rewrite{F} must precede any subsequent operations with
that file variable.

3.5 Readln() Array of Char

Read() and Readln() will read characters from a Text file into a
(packed) array of characters. Reading begins at the current file
position and continues until either the array is filled, or Eoln()
is True, in which case the remainder of the array is filled with
blanks.

3.6 Write(} Array of Char

In accordance with the draft proposed ISO Standard, a Write()
procedure call applied to an array of Char will truncate the
written string if the field width parameter will not allow the
entire string to be written.

Page 11

Example:

OMSI Pascal-1 Vl.2 Language Specification
Section 3: I/O Support Extensions

Write(Buffer:BuffCount); (*write buffered characters*)

3.7 Write() Octal (Base 8)

Write() will write integers in octal notation if the field width
specification is negative.

Example: Write(i:-5); (*Display octal value of I*).

3.8 Interactive I/O

The Pascal Standard requires that the first element of a file be
available as soon as the file is Reset() (the buffer variable F~
is assigned a value immediately). This can present serious
difficulties when applied to files which are interactive
terminals. For example, if the default input file is the user~s
terminal, the standard can be interpreted to require that the user
type the first input character (or line) prior to the execution of
the first program statement.

OMSI Pascal-1 takes the following route around the problem. When
an interactive file is Reset(), the buffer variable is set to a
space and Eoln(F) is set to False, but no actual I/O transmission
occurs. Each Read() request then waits for sufficient data to
satisfy the request, but no more.

This solves most of the problems with interactive terminals in a
predictable manner, but one should note that this approach creates
other difficulties. When applied to an interactive file, the
following program is unable to distinguish between an empty line
and a line contain~ng a single space. This is because Eoln()
cannot be set until the end of line character is typed to satisfy
the Read() request.

Example: (the standard schema for reading a line of characters)

var Line: array[l .• 72] of Char;
Count: Integer;

begin
·count := O;
while not Eoln do begin

Count := Count+l;
Read(Line[Count]);

end;
Readln;

end;

OMSI Pascal-1 Vl.2 Language Specification
Section 4: Additional Predefined Functions

4.0 Additional Predefined Functions

OMSI Pascal-1 provides some additional built-in functions.

4.1 Time function

Page 12

The Time function takes no parameters and returns a real value
which corresponds to the current time of day. The Time is
represented in hours after midnight, so that 9:30 AM is 9.50 and
1:45 PM is 13.75. The exact resolution of the Time function is
d~pendent on the operating system, but all operating systems
provide a resolution of at least one second.

Example:

procedure WriteTime;
var Hrs, Mins: Integer;

AmPrn: array[l .• 2] of Char;
begin

Mins := Round(Time*60);
Hrs := Mins div 60;
Mins := Mins mod 60;
if (Hrs < 12)

then ArnPm := 'AM'
else if (Hrs = 12) and (Mins = 0)

then ArnPm := 'M '
else AmPm := 'PM';
Write('At the tone the time will be: ~);
Write(((Hrs+ll) mod 12 + 1):2};
Write(':', Mins div 10:1, Mins mod 10:1, ArnPm:3);
Writeln(Chr(7));

end;

4.2 ExplO() and Log(} functions

Tbe ExplO() and Log(} functions are similiar to the standard Exp()
and Ln() functions, but with a logarithm base of ten (10).

Page 13 OMS! Pascal-1 Vl.2 Language Specification
Section 5: Non-Standard Language Elements

5.0 Non-Standard Language Elements

This section describes the elements of OMSI Pascal-1 which do not
conform to the accepted definition of Standard Pascal.

5.1 Pack() and Unpack() not available

The reserved word PACKED may appear in type definitions, but it
has no meaning in OMSI Pascal-1 programs. Packed types require
the same amount of storage as unpacked types. The standard
procedures Pack() and Unpack() are not available. The following
equivalent FOR statements can be used instead:

var A: array[M .. N] of T;
Z: packed array[P •. QJ of T;

for J:= P to Q do zrJJ := A[J-P+I]; {
for J:= P to Q do A[J-P+IJ := Z[J]; {

5.2 Program Parameters

Pack(A,I,Z) }
Unpack(Z,A,I) }

Program parameters (identifiers appearing in the program heading)
have no meaning in OMSI Pascal-1 programs. The program heading
may be omitted entirely if desired. External files can be
declared by using the Reset() and Rewrite() procedures with
optional parameters.

5.3 Identifier Scope Rules

In Standard Pascal, the scope of an identifier (that section of
the program within which the identifier indicates a particular
object) is directly related to the block structur~. A definition
of an identifier in a procedure, for example, prohibits that
identifier from indicating another object throughout the entire
procedure.

OMSI Pascal-l uses a subtly different rule for the scope of an
identifier, called ~one-pass~ scope, in which a definition of an
identifier prohibits only subsequent uses of the identifier within
the block from indicating an object outside the block.

The non-standard scope rule is described here for completeness,
but it is of little concern to the programmer. Indeed, the
majority of Pascal compilers use the identical (incorrect) rule.

OMSI Pascal-1 Vl. 2 Language Specification
Section 5: Non-Standard Language Elements

5.4 Read()/Write() Text files only

Page 14

In the 1978 printing of the Pascal User Manual and Report, the
Read() and Write() standard procedures were extended to apply to
all file types. This extension has not yet been incorporated into
OMSI Pascal-1, so that Read() and Write() are applicable only to
files of the standard type Text.

The following substitions may be used:

For Read(F,V), use: V:=FA; Get(F);

For Write(F,V), use: FA:=V; Put(F);

5.5 Eof () not accurate (RTll, RSTS only)

On the RTll and RSTS operating systems, a file is structured as a
sequence of 512 byte blocks. No finer resolution is available as
to the end of data in the last block. Therefore, the Eof ()
standard function can not be relied upon as accurate, and another
method (sentinel record, record count) should be used to indicate
the end of usable data.

Note that this problem does not apply to Text files, where Eof ()
is identified correctly.

Page 15 OMSI Pascal-! Vl.2 Language Specification
Section 6: Implementation Definitions

6.0 Implementation Definitions

This section provides specific ·details and characteristics of
implementation-defined elements of OMSI Pascal-1.

6.1 Identifiers

OMS! Pascal-1 permits identifiers to be of
characters are significant. Lower case
are interpreted the same as upper case, so
and "NAME" are equivalent identifiers.

any length, and all
letters may be used and
that "name", "Name",

Due to limitations of the object program file structures, the
first six characters of any EXTERNAL or FORTRAN identifier must
form a unique external name.

6.2 Standard type Integer

The standard type Integer has the range (-32768 .. 32767). Unsigned
integers may be declared using the subrange notation 0 .. 65535.
Note that arithmetic overflow is detected only for multiplication
and division of signed integers.

The predefined identifier Maxint has the value 32767.

6.3 Standard type Real

Real variables have the standard PDP-11 single or double precision
floating point structure, with the range lE-38 .. 1E+38. Single
precision values give 7 decimal digit precision; extended (double
precision) values give 15 digit precision. Arithmetic overflow is
detected for all real operations, but underflow is ignored and
gives a result of zero.

The standard transcendental routines are accurate to 6 decimal
digits in single precision, and 15 decimal digits in extended
precision.

6.4 Standard type Char

OMSI Pascal-1 uses the 7-bit full ASCII character set. Characters
are stored as signed bytes with all 8 bits available to the
programmer, so that Ord(Char) has the subrange (-128 .. 127).

OMS! Pascal-1 Vl.2 Language Specification
Section 6: Implementation Definitions

6.5 Standard type Text

Page 16

The standard type Text is a file type with components of type
Char, with RSTS/E and RTll input masked to the 7-bit ASCII set
minus the NUL (0) character. On RSX systems, the standard
function Eoln() is set by the end of a file record; on RSTS/E and
RTll systems by the LF (10) or ESC (27) character codes.

The standard procedures Read () , Readln () , Write () , Wr i teln () , and'
the· standard function Eoln() are applicable only to Text files.
Tne Seek() procedure is not recommended for use with Text files.

6.6 SET types

OMS! Pascal-1 limits sets to a maximum of 64 elements. The 64
element maximum forms a subrange which is not required to have a
lower bound of zero, but may instead be positioned at any 64
element (or smaller) subrange of a base type (for example:
100 •• 150, -25 •• 25).

A set of the standard type Char is equivalent to the set of
Chr(32) .. Chr(95), which is a subset of ASCII containing the upper
case letters, digits, punctuation symbols, and the space
character, but lacking the control characters and lower case
letters.

6.7 New() and Dispose() procedures

In allocating storage for variant records, the New() procedure
will allocate memory for the largest variant; any-tag field
values specified to New() and Dispose() are ignored.

Storage must be explicitly released with Dispose() -- no automatic
garbage collection is performed. Storage occupied by variables
passed to Dispose() is reclaimed for use by the New() procedure.

·Dangling pointer references are not detected.

6.8 Procedural Parameters

The passing of PROCEDURE and FUNCTION parameters is supported by
OMSI Pascal-1 with the syntax described in the Pascal User Manual
and Report (the proposed ISO Standard differs in tlus area).

Predefined procedures and functions are not permitted as
procedural parameters. This can be bypassed by declaring a second
procedure which calls the standard procedure, and which can itself
be used as a procedural parameter.

Page 17

Example:

OMSI Pascal-1 Vl.2 Language Specification
Section 6: Implementation Definitions

function S'ine(X: Real): Real;
begin

Sine:= Sin(X)
end;

6.9 Implementation Limitations

The PDP-11 has six general purpose registers. In OMS! Pascal-1,
one register (RS) is always allocated for access to global
variables, and another (R4) is allocated in some blocks for access
to intermediate level variables. The remaining registers are used
for integer calculations, address computations, and WITH statement
variable access. Each WITH statement uses one register for the
duration of the enclosed statement. This implies a maximum
nesting of WITH statments of three levels. Complex expression
calculations can also exceed the available registers. If the ~Out
of registers~ error occurs, remove a WITH statement or simplify
the indicated expression by calculating intermediate results.

The syntactic nesting of procedures is limited to a depth of 10
levels. There is no implementation restriction on the actual
depth of recursion of a program, although unlimited recursion will
eventually cause the program to exceed available memory.

6.10 Error Detection

OMS! Pascal-1 does not detect the following runtime errors:

Uninitialized variables
Subrange bounds exceeded
Integer overflow
Real underflow
Record variant mismatch
Dereference of NIL pointer

The following runtime errors are detected:

Stack overflow
He.ap overflow
Real overflow
Integer multiply/divide overflow
Array bounds exceeded
Dispose() of NIL or duplicate pointer
Incorrect numeric format
I/O errors

OMSI Pascal-1 Vl.2 Language Specification
Table A: Predefined Identifiers

Constants
False,True
Max int

Types
Boolean
Char
Integer
Real
Text

Variables
Input, Output

Functions
Abs
Arc tan
Chr
Cos
E.of
Eoln
Exp
ExplO
Ln
Log
Odd
Ord
Pred
Round
Sin
Sqr
Sqrt
Su cc
Trunc
Time

Procedures
Break
Close
Dispose
Get
New
Page
Put
Reset
Rewrite
Read
Readln ·
Seek
Write
Writeln

Predefined Identifiers

Base 10 Exponential

Base 10 Logarithm

Time of day

Transmit buffered output
Close file

Direct access I/O

Page 18

Page 19

And
Array
Begin
Case
Const
Div
Do
Down to
Else
End

* Exit
* External

File
For

* Fortran
Forward
Function
Goto
If
In
Label
Mod
Nil
Not
Of
Or

* Origin
Packed
Procedure
Program
Record
Repeat
Set
Then
To
Type
Until
Var
While
With

OMSI Pascal-1 Vl.2 Language Specification
Table B: Reserved Words

Reserved Words
(* extensions)

'"'CJ ...
0

c.c
m
3
3
CD ...
(J) ..

C')
c -· a.
co

OMSI Pascal-1 Vl.2/RSX Programmer;s Guide
Compilation Switch Options

Compilation Switch Options

The compilation process and the resulting program can be
by switches appearing in the PAS command. Switches are
alphabetic character following the ;/; (slash) marker, as
command PAS PROG=PROG/X.

modified
a single

in the

The complete set of compilation switches appears below, followed
by a detailed description of each switch.

Debugger compilation
External module compilation
Generate calls rather than traps
Produce compilation listing
List errors only

/D
/E
/F
/L
/N
/S
/X

Debug
External
Fast reals
Listing
Noli st
Source
extend

Include source lines (modifies /D)
Extended precision Reals (15 digits)

Listing Control Switches (/L, /N)

The /L switch overides embedded listirig switches, and
compiler to produce a listing. The /N switch directs
to list only lines in error. The /Land /N switches
to the $L+ and $L- embedded switches.

Real Arithmetic Switches (/X, /F)

directs the
the compiler
are related

The /X switch causes the compiler to use extended precision for
values of type Real. All Real values are extended -- it is not
possible to mix normal and extended precision values. The /X
switch is related to the $X embedded switch. See the section on
Extended Precision.

The /F switch is of limited utility. On processors lacking both
FPP and FIS floating point hardware, Real operations are normally
performed by trapping each FIS instruction and simulating its
effects. The trapping process requires some overhead, but is
compact. The /F switch causes the compiler to generate subroutine
calls instead, which are faster but require an extra word for each
floating point operation.

Debugger Switch (/D)

The /D switch indicates a Debugger or Profiler compilation. This
switch requires the specification of a symbol table file and, if
/S is also present, a listing file. The /D switch causes
generation of code to identify each procedure and statement to the
interactive Debugger or Profiler. The /D switch is related to the
$0+ and $0- embedded switches. See the section on the Debugger.

OMSI Pascal-1 Vl.2/RSX Programmer~s Guide
Compilation Switch Options.

Source Mode Switch (/5)

Page 2

The /S switch performs two distinct functions. When used with the
Debugger switch (/D/S), it enables the source program mode of
operation and connects the actions of the Profiler and Debugger to
the source text of the program.

The /S also causes the assembler output file to include the Pascal
source lines embedded as comments within the assembly file. This"
use of the /5 switch is related to the $S+ and $5- embedded
switches.

External Module Switch (/E)

The /E switch indicates an external module compilation. This
causes the outermost procedures and functions to be identified to
the Linker with global entry names. An external module can
include global declarations, procedures, and functions but is not
required to incluqe a main control section. The /E switch is
related to the $E embedded switch. See the External Module
section.

The Task Builder

The Task Builder combines the main program with library routines
from the Pascal and system libraries to produce an executable task
(.TSK) image. Input to the Task Builder may also include external
modules or libraries, overlay descriptions, and optional memory
and file allocations.

The basic Task Builder command is:

>TKB MAIN/FP/CP=MAIN, [l,l]PASLIB/LB

This command combines the program MAIN.OBJ with the required
modules from the Pascal library [1,l]PASLIB.OLB and the system
library [l,l]SYSLIB.OLB, and produces the task image MAIN.TSK.
T-Oe /FP switch directs the RSX system to save floating point
context information. The /CP switch designates the task as

· "checkpointable"; this means the task may be swapped to disk as
necessary, and also that the task may be dynamically extended.
The /FP and /CP switches are recommended for all Pascal tasks.

To include external modules, aad the file names to the command
line after the main program:

>TKB MAIN/FP/CP=MAIN,SUB1,SUB2,fl,l]PASLIB/LB

Page 3 OMSI Pascal-1 Vl.2/RSX Programmer~s Guide
The Task Builder

Libraries of external modules may be included in a similiar
fashion, but are marked with the /LB switch:

>TKB MAIN/FP/CP=MAIN,SUB1,LIB1/LB,LIB2/LB, (l,l]PASLIB/LB

To produce a memory map which displays the contents of the task
with the addresses and memory requirements of each component, add
a second output file to the Task Builder· command. The map file is
created with the .MAP default extension.

>TKB MAIN/FP/CP,MAIN=MAIN,[l,l]PASLIB/LB

There are two options which are commonly used with Pascal
programs. The UNITS option increases the number of Logical Unit
Numbers (LUNs) which are available to the program. The number of
LUNs available determines the maximum number of files which may be
open at any time. Two LUNs (5 and 6) are always used by Pascal
for the standard files Input and Output; if the Debugger is in
use, it requires two LUNs for its operation. There are 6 LUNs
allocated by default, so a program using three or more files
should allocate more LUNs with the UNITS option as shown below:

>TKB
TKB>MAIN/FP/CP=MAIN, (l,l]PASLIB/LB
TKB>/
Enter Options:
TKB>UNITS=9
TKB>//

The EXTSCT (Extend Section) option allocates additional memory for
a program section. Pascal uses the section named $$HEAP for the
Stack and local variables; if dynamic expansion is not available,
the $$HEAP section is used for all variables and buffers as well.
The EXTSCT option parameters specify the section name and the
number (in octal) of bytes of memory to allocate to that section.
This example allocates 4KW to the Stack:

>TKB
TKB>MAIN/FP/CP=MAIN, (l,l]PASLIB/LB
TKB>/
Enter Options:
TKB>EXTSCT=$$HEAP:20000
TKB>//

The full capabilities of the Task Builder are described in the
Task Builder Reference Manual (DEC-11-0MTBA-C-D) . See also the
Overlays section of this manual.

OMSI Pascal-1 Vl.2/RSX Programmer~s Guide
I/O Control Switches

Page 4

I/O Control Switches

The Reset() and Rewrite() standard procedures accept additional
arguments specifying a Filename of an external file, and a
DefaultName with default fields of the filename. These arguments
can also include I/O control switches which give explicit control
of the operating system interface details. ·

The I/O switches appear in the Filename or DefaultName parameters
as·in this example:

Rewrite (F, ""data/si: 12"", dat/seek/span"") ~

A complete list of
individual details.
two letters.

I/O switches appears below, followed by
All switches may be abbreviated to the first

/BLK

/SPAN
/NOBLK

/ALOC:n
/CL:n

/SI:n

/CR

/NOCR

/FTN

(Blocked) -- records in the file are not to cross disk
block boundaries. This allows. faster access at the
cost of additional space .. This switch is the default
for record files.

(Spanned) -- records in the file are allowed to cross
disk block boundaries, making most effective use of
space. This is the default for variables of type Text.

(Allocation or Clustersize) the parameter N
determines the allocation unit for each extension of
the file. A positive value for N indicates a
contiguous allocation; a negative value indicates a
non-contiguous allocation.

(Size) -- used with Rewrite() to
allocation of space for the file.

specify the initial
A positive value for

a negative value N will allocate contiguous blocks;
will allocate non-contiguous blocks.

(Carriage control) -­
are to be preceded
with a CR character.
variables.

when printed, records in the file
by a LF character, and terminated
This is the default for Text

(No carriage control) -- the default for non-Text file
variables.

(FORTRAN carriage control) -- the first character of
each record determines the line spacing before
displaying the record, as per the FORTRAN conventions.

Page 5

/RW

/SEEK

/TEMP

/NSP

/SHR

OMSI Pascal-1 Vl.2/RSX Programmer~s Guide
I/O Control Switches

/RO (Read-only) -- only read accesses to the file are
permitted. This is the default for files initially
opened with Reset().

(Read-write) -- both read and write access permissions
are available. This is the default for files initially
opened with Rewrite{).

(Direct-access) -- permits use of the Seek() ~tandard
procedure, and allows both Get() and Put() operations
on the file variable. The /RW switch should be used in
combination with /SEEK for update access to files
opened with Reset().

(Temporary) -- marks the file for deletion upon Close()
or program termination. A file created with no file
name, as in Rewrite(F), will also be marked as a
temporary file.

(No supersede) -- when creating a file with Rewrite(),
this switch will cause an error if a file of the same
name already exists.

(Share) -- permits shared access by multiple users to
the file. Note that OMSI Pascal-1 offers no built-in
facilities for record locking.

The following switches permit access to
capabilities of the File Control System. The
to control fields in the File Descriptor Block
described in detail in Appendix A of the
Operations Reference Manual."

more specialized
descriptions refer

(FDB) , which is
"IAS/RSX-11 I/O

/ACTL:n Sets F.ACTL to the parameter N. F.ACTL determines the
number of retrieval pointers and magtape positioning
characteristics.

/APD Sets FA.APD in F.FACC; this indicates that records are
to be appended to an existing file.

/EXT

/INS

/WRT

/FIX:n

Sets FA.EXT in F.FACC; allows extension of the file.

Sets FD.INS in F.RACC; indicates that Put() operations
in sequential mode should update the record and not
truncate the file.

Sets FA.WRT in F.FACC, which provides write access to
the file.

Sets R.FIX in F.RTYP. This indicates a file of fixed
length records of length N; .this is the default file
type for non-Text files.

OMSI Pascal-1 Vl.2/RSX Programmer~s Guide
I/O Control Switches

Page 6

/VAR:n

/SQ

Sets R.VAR in F.RTYP to indicate a file of variable
length records, with a maximum length of N bytes. The
default type for Text files is /VAR:l32.

Sets R.SEQ in F.RTYP to indicate a sequenced file type~
the sequence numbers are not readily available to the
Pascal programmer.

The"Profiler

The,Profiler is a program measurement tool which can be useu to
i~entify the sections of a program that can be most effectively
optimized. Empirical measurements show that typical programs
consume a large fraction of their computation time in a small
pnrtion of the program code ("90% of the time in 10% of the
code"). The Profiler counts the actual number of times each
statement is executed and each procedure is activated, and
displays this information either in the program listing or in a
tabular form.

The /D switch causes compilation for the Profiler or the Debugger,
which use the same interface. The PROFIL module is included at
Task Build time. The /S switch is recomme~ded in addition for
more convenient display of the profile information.

When the Profiler begins execution, it will ask for the program
name. The Profiler uses the symbol table and listing files
?roduced by the compiler to identify procedures and statements in
the program. The symbol table file normally has the same name as
the program and the extension .SYM, and the listing file normally
has the extension .LST. The Profiler will ask for the correct
filenames if the normal files are not available.

The Profiler will then ask for the desired destination of the
profile information. Th~ profile will be written to the specified
file with the default extension .PRO. This should be a permanent
f il~ (disk or hard copy device), as the Profiler requires roughly
a factor of fifty performance overhead while gathering
-~nformation .

. The program being measured will then execute normally, although
s9mcwhat more slowly. Upon normal termination, or any fatal
error, or ctrl/C interrupt, the profile information will be
written to the specified file.

The first section of the profile is the Procedure Reference
Profile, which lists each referenced procedure and function with
the count of calls on that procedure. The second section is the
Stat~rnent Reference Profile, displayed in tabular format. If the
/S (source) switch is specified, this section displays the program
listing with an additional column containing the reference count
f~r each line.

Page 7 OMSI Pascal-1 Vl.2/RSX Programmer~s Guide
The Profiler

The Profiler is limited in several respects: only the first 100
statements in each procedure will be counted, and a maximum of 40
procedures and functions can be profiled. The $D- and $D+
embedded switches can be used to selectively enable and disable
profiling.

Example:

1
1

2499
11153
11153

35
35
35

11153
11153
94012
28669
94012
Y4012
11153

2499
2499

1

PRIMES OMSI Pascal V1.2D RSX 22-Feb-80 22:52, Site #1-1 Page 1
Oregon Software 2340 SW Canyon Road Portland, Oregon 97201 (503> 226-7760

Line Stmt Level Nest Source program

1
2
3
4
5
6
7
8
9

10 1 1
11 6 1
12 8 1
13 9 1
14 10 1
15 12 1
16 13 1
17 15 1
18 16 1
19 18 1
20 20 1
21 21 1
22 22 1
23 24 1
24 25 l
25 26 1
26 28 1
27 29 1

Errors detected:
Free memory: 5967

0

program Primes; <* Author: N. Wirth •>
const N=2500; (* first 2500 Primes *>
type Index=1.. N;
var x. Square: integer1

I, K. Lim: . Index1
Prime: Boolean1

begin

P: array[Index J of integer1
V: arrayC1.. 100] of integeri

1 PC1J:=21 write<2>1 X:=l1 Lim:at1 Square:=41
1 for 1:=2 to N do begin
3 repeat
4 X: =.X+2;
4 if Square<=X then begin
6 VCLimJ:=Square;
6 Lim:=Lim+1; Square:=PCLiml*P[Limli
6 end;
4 K:=2; Prime:=truei
4 while Prime and <K<Liml do begin
6 if VrKJ<X
7 then VCKJ:=VCKJ+PCKJ;
6 Prime:=<X<~VCKJ>1 K:=K+1;
6 end;
4 until Prime;
3 PCIJ:=X; write<X>1
3 end;
l end.

words

Extended Precision

Values of type Real are normally stored in the PDP-11 single
precision format, which requires 2 words of storage per value and
offers 7 decimal digits of precision. The /X compilation switch
or the $X embedded switch cause all Real values to have extended
precision. Extended precision values each occupy 4 words of
storage, and provide 15 digit p~ecision in all real calculations,
including the transcendental functions.

Extended precision applies to all Real values in a program it.
is not possible to mix normal and extended precision variables.
All Axternal modules must be compiled with the same precision as
the main program, even if no Real variables are present.

OMSI Pascal-i Vl.2/RSX Programmer~s Guide
Embedded Switches

Embedded Switches

Page 8

Embedded switches provide control of 6ompilation options within
the Pascal source program. Embedded switches have the form of a
Pascal comment beginning with a dollar sign ($), followed by a
single uppercase alphabetic character and possibly a plus or minus
sign, as in (*$L+*). Several of the embedded switch functions can
also be provided by compilation switches. Embedded switches have
the .advantage that once included in a program, they cannot be
a~cidently omitted from a compilation.

The ~omplete list of embedded switches below is followed by a more
d~tailed description of each switch function. The switches which
have +/- signs are counting switches; that is, each occurrence
either increments or decrements the switch value, and a positive
value enables the switch function. Switches which are initially
enabled are marked with [+]1 switches marked [MBF] 'must be
first' they must appear before any Pascal code.

$A-,$A+
$C
$D-,$D+
$E-,$E+
$F-,$F+
$L-,$L+
$S-,$S+
$T-,$T+
$X

Array check
Code insert
Debugger
External
Fast FPP
Listing
Source mode
sTack check
extend

Include array·subscript check [+]
See the Embedded· Assembly Code section
Include debugger interface
External module compilation
Enable floating point calls
Source lines in listing [+]
Source lines in assembly
Include stack overflow check [+]
Extended precision reals [MBF]

Error Checking Switches ($A, $T)

The $A switch controls the generation of code to check array
references and ensure that the index is within the subscript range
of the array. subscript checking is initially enabled; the $A­
switch will disable checking. If enabled, each subscript check
requires 8 words.

~he $T switch controls stack overflow checking, and is initially
enabled. Stack overflow is possible upon entry to any procedure
pr function block. This switch can be disabled with $T-,
r~sulting in small savings of memory (2 words per procedure).

Debugger/Profiler Switch ($D)

The $D switch controls the interface code to the Debugger and
Profiler. If enabled, each statement and procedure includes
inst:uctions to call the Debugger or Profiler. These instructions
require 1-3 words per statement (l word for statements 1-255 of
each procedure, 2 words otherwise, and an additional word if /S
~urce mode is enabled). In program sections known to be correct,

Page 9 OMSI Pascal-1 Vl.2/R9X Programmer~s Guide
Embedded Switches

the Debugger interface may be disabled by preceding the section
with {$D-} and concluding the section with {$D+}. The Debugger
interface must be enabled at the start of the main program block.

External Module Switch ($E)

Enabling the $E switch causes global procedures and functions to
be labeled as external entry points in the relocatable.object
file. A main program section encountered when the $E switch is
enabled is ignored. See the External Module section.

Real Arithmetic Mode Switches ($X, $F)

The. $X switch enables extended precision (15 digit) real
arithmetic. If present, the $X switch must precede any Pascal
code. Note that it is not possible to mix normal and extended
precision in one program, so that each module in separate
compilations must be compiled with the same precision. See the
Extended Precision section.

The $F switch is useful only on processors which lack FIS and FPP
hardware for floating point calculations. On these processors,
floating point instructions are normally trapped and simulated.
The $F switch instead causes direct subroutine calls to floating
point routines, saving about 0.2 milliseconds per floating point
instruction at the cost of an extra word.

Listing Control Switch ($L)

The $L switch controls the appearance of lines in the program
listing file. If enabled, all program text will appear in the
listing. If the $L switch is disabled, only lines in error and
error messages will appear.

Source Mode Switch ($8)

Enabling the $S switch causes the Pascal source lines to appear in
the compiler assembly output as comments. This makes it easier to
determine the code generated for each statement.

OMSI Pascal-1 Vl.2/RSX Programmer~s Guide
Format and Cross-Reference (FORMAT)

Format and Cross-Reference· (FORMAT)

Page 10

The FORMAT utility supplied with OMSI Pascal-1 will automatically
reformat a Pascal source program, adjusting indentation and
partitioning statements so that a program listing reflects the
program structure. The FORMAT program can also provide a
cross-reference index of a Pascal source program showing block
calls, nesting, and identifier references.

The FORMAT command line can contain one or two output files, an
input source file, and several optional switches. Run FORMAT as
follows:

>RUN FORMAT
FORMAT V2.0 (10Dec79)
*<Formatted.PAS>,<Crossref .CRF>=<Source.PAS>/switches

The Format output file is the formatted source program.
switches select token translation options:

Several

/L
/M
/U

Lowercase
Mixedcase
Uppercase

Lowercase identifiers, uppercase keywords
Unchanged identifiers, uppercase keywords
All letters uppercase

The Cro~sref output file (if specified) normally contains the
program listing with line and page numbers, followed by the
procedure call and nesting index. Two switch options apply to the
cross reference:

/C
/N

Crossref all
No listing

Cross reference all identifiers
Produce only crossref index

The /C switch may be used only for source programs of moderate
size, due to memory limitations.

The Improver (IMP)

The utility program IMP decreases the size of the object code
produced by OMS! Pascal-1 by replacing branch/jump combinations
with single branches when possible. IMP will reduce the generated
code by roughly 5 to 8 percent.
-
IMP asks for the assembler file (INPUT) and the destination of the
improved assembler file (OUTPUT) • These are usually the same
filename.

Because IMP runs quite slowly, it is recommended for use only· on
completely debugged production programs.

Page 11

Dynamic String Package

OMSI Pascal-1 Vl.2/RSX Programmer .. s Guide
Dynamic String Package

A package of procedures and functions for dynamic string
processing is supplied with OMSI Pascal-1 Vl.2 in the file
STRING.PAS. Written in Standard Pascal, the package supports
programs using strings on any Pascal implementation. Strings. are
stored as a record structure with a fixed maximum number of
characters (normally 100 but easily changeable) ,· and an integer
marking the current length of the string.

type String = record
Len: Integer;
Ch: packed array[l •• StringMax] of Char;
end;

Len(S) - returns the current length of string S;

Clear(S) - initializes string S to empty;

ReadString(F,S) - reads a value for string S from the text file F.
The string is terminated ·by Eoln(F) and a Readln(F) is
p~rformed. String overflow results in truncation.

WriteString(F,S) - writes the string S to the text file F. The
same effect can be achieved by passing the parameter S.Ch:S.Len
to Write(), as in Write(F, .. S= .. ,S.Ch:S.Len).

Concatenate(T,S) - appends string S to the target string T. The
resulting value is string T. Overflow results in truncation.

Search(S,T,Start) - searchs string T for the first occurrence of
string S to the right of position Start (characters are numbered
beginning with one). The function Search() returns the position
of the first character in the matching substring, or the value
zero if the string S does not appear.

Insert(T,S,Start) - inserts the string S into the target string T
at position Start. Characters are shifted to the right as
necessary. Overflow produces a truncated target string. A
Start position which would produce a string which is not
contiguous has no effect.

The Start and Span parameters in the Substring and Delete
procedures define a substring beginning at position Start (between
characters Start-1 and Start) with a length of Abs(Span). If Span
is positive, the substring is to the right of Stari, and if
negative, the substring is to the left.

Delete(S,Start,Span) - deletes the substring defined by Start,
Span from the string s.

Substring(T,S,Start,Span) - the substring of string S defined by
Start, Span is assigned to the target string T.

OMSI Pascal-1 Vl.2/RSX Programmer's Guide
External Modules

External Modules

Page 12

External modules allow several program sections, each containing
at least one procedure, function, or main program, to be compiled
independently and combined at Task Build time. External modules
may be combined into libraries to simplify handling of common
routines. The external module interface also allows inclusion of
modules written in other languages, such as FORTRAN and MACRO.

The.EXTERNAL directive is used to reference a procedure or
function in an external module. The declaration of an external
procedure or function contains the procedure or function name and
parameters, followed by the directive EXTERNAL (similiar to
FORWARD) . The procedure or function body does not appear in the
program unit referencing the external routine.

The FORTRAN directive replaces EXTERNAL to reference external
routines written in FORTRAN or MACRO. The FORTRAN directive
causes the generation of a PDP-11 standard calling sequence (the
Pascal calling sequence places parameters on the stack, while the
FORTRAN sequence ~oints RS to a list of parameters) •

The /E compilation switch and the $E embedded switch are used to
create modules which can be referenced by EXTERNAL directives.
When the $E switch is enabled, each global procedure and function
declaration causes an external (global) symbol to be defined.
These global symbols are matched at Task Build time to the global.
references created by the EXTERNAL directive.

The external reference symbols are composed of the first six
characters of the external procedure or function identifier, and
must uniquely identify the external routine. Duplication or
overlap of external symbols results in the Task Builder error
'Module multiply defines symbol', while a missing module results
in the 'Undefined symbols' error message.

One caution should be observed when using EXTERNAL and FORTRAN
directives. Parameters to external modules cannot be checked by
the compiler for type conformance, so an accidental type mismatch
may cause entirely unpredictable results.

External modules may reference global (static) variables, which
are shared by all of the modules composing a program. If each
module (including the main program) is compiled with the same
global variables, the effect is as if all modules were compiled
together. Again, the compiler cannot verify the conformance of
global data.

When combining modules to form libraries, remember that the
procedures and functions from one compilation form a single
module, and cannot be individuqlly selected from the module. The
module name is taken from the first six characters of the program
identifier (in the program heading).

Page 13

Overlays

The Task
wherein
by other
chapters
overview

OMSI Pascal-1 Vl.2/RSX Programmer;s Guide
·Overlays

Builder has the capability of creating overlaid tasks,
program· sections which are not in use can be overwritten
sections. The full overlay capabilities are described in

5 and 6 of the Task · Builder Reference Manual: an
is presented here, oriented toward Pascal tasks.

The overlay structure of a program can be very complicated, so
there is a special "language" to define overlays called the
Overlay Description Language (ODL). An overlay structure is
defined in an ODL file (with the extension .ODL), whic:1 ·describes
each program section and its position in an overlay tree.

Supplied with OMSI Pascal-1 is an overlay description file
([l,l]PAS.ODL) which contains overlay descriptions for the Pascal
runtime library and the FCS system I/O routines. The following
overlay structures are defined in PAS.ODL:

SYSIO - a co-tree for the FCS I/O routines used by Pascal

SINGLE - the Pascal library routines for single precision real
arithmetic and transcendental operations

DOUBLE - the extended precision library routines

DEBUG, DEBUGl, DEBUG2 -·three co-trees that describe the full
overlay structure of the Pascal On-line Debugger

Any of these descriptors can be used in an ODL file by g1v1ng an
indirect file reference to [l,l]PAS.ODL. The example ODL file
below builds a task with a main program (MAIN) and an overlaid
Debugger.

@[l,l]PAS.ODL
.ROOT DEBUG,DEBUG1,DEBUG2,SYSIO,*MAIN
.END

(the '*' is necessary -- it causes autoloading of MAIN)

If this ODL file is named DEBUG.ODL, the task can be built with
the following Task Builder command:

>TKB MAIN=DEBUG.ODL/MP

The following ODL file builds a task containing a main program
(MAIN), and three external modules (SUBl, SUB2, SUB3) which are
called only by MAIN and can be overlaid against each other.

@[l,l]PAS.ODL
.ROOT SYSIO,SINGLE,*MAIN-*(SUBl,SUB2,SUB3)
.END

OMSI Pascal-1 Vl.2/RSX Programmer~s Guide
Runtime Memory Organization

Runtime Memory Organization

Page 14

A PDP-11 program has a virtual address space of 32,768 words, or
32KW (lKW is 1024 words). The figure below shows this address
space as it might be allocated for a typical program of moderate
size.

Dynamic Me:nory
The Heap (4KW)

Global Variables (SKW)

R5-l2K 1------------------1
S? ~ Local Variables) EXTSCT=$$HEAP:l0000

'-- The Stack (2KW)
lOK t-------------------1

Program Code (lOKW)

Task Header j

This figure represents a snapshot taken during program execution,
ill11strating the division of available memory. Each section is
~escribed in the following paragraphs.

Tas~ Header

The Task Header contains task parameters and data required by the
Executive and provides a storage area for saving the task context.

Page 15

Program Code

OMSI Pascal-1 Vl.2/RSX Programmer's Guide
Runtime Memory Organization

The Program Code section contains the instructions of the user
program, including overlays, external modules, and routines from
the runtime library. The size of this division depends entirely
on the user program and its overlay structure.

Local Variables - The Stack

The Stack contains all variables local to inner blocks of the
program, and is also used for temporary calculations, parameter
passing, and subroutine return information. At the time a block
is entered, a stack frame is created which contains all
information local to that block. Stack frames are created and
released in a purely nested fashion. See below for a detailed
description of a stack frame.

Memory is allocated for the Stack immediately adajacent to the
Program Code section. The Stack is the only division whose
allocation can be directly controlled by the user. The size of
the Stack is set at Task Build time; the option format is
EXTSCT=$$HEAP:nnn, where nnn is the number of bytes (in octal) to
be allocated to the Stack. The default size of the Stack is 2K
words, or 10000 (octal) bytes.

The current Stack frame is always pointed to by the Stack Pointer
(SP, register R6), which points initially to the top of the Stack.
As nested Stack frames are allocated, the Stack Pointer decreases
in value (points to lower addresses). If the Stack is too small,
the Stack Pointer will eventually overrun the Program Code
division and cause the 'Not enough memory' error.

Global Variables

The Global Variables section contains the program's global
variables - those defined in the outermost, or main, block of the
program. The size of this division does not change during program
execution.

Register 5 (RS) points to the base of the Global Variables and is
used for access to global variables.

Dynamic Memory - The Heap

The Heap contains I/O control blocks and buffers, and variables
allocated by the New() procedure. The Heap is unique in that it
is not allocated any memory initially, but inst~ad expands as
necessary. The Heap is allocated adjacent to the Global
Variables, and may grow on demand to the upper limit of 32KW or
the system maximum set with the /MAXEXT option. When that limit

OMSI Pascal-1 Vl.2/RSX Programmer~s Guide
Runtime Memory Organization

Page 16

is reached, any unused memory in the Stack will be used as well.
The error message· ~Not enough memory~ indicates total exhaustion
of memory resources.

Dynamic task expansion requires that the Extend Task (EXTK$)
directive be included during RSX system generation, and that the
task be checkpointable (/CP Task Builder switch). If the task
cannot be dynamically expanded, then the EXTSCT=$$HEAP:nnn option
rnu~t be specified at Task Build time to allocate space for the
Stack, Heap, and Global Variables sections.

A Closeup of the Stack - The Stack Frame

The Stack is composed entirely of Stack Frames. A Stack Frame is
created during entry to every block (excluding the main program
block), and is released when the block is exited. The following
diagram illustrates the possible components of a Stack Frame.
Most of these components are optional -- only the Return Link is
required in every Stack Frame.

Function Return Value

Parameters

Return Link Current Stackframe

Local Variables

SP-+ Static Link

j Temporary Storage

Function Return Value

This field is present in Stack Frames associated
blocks, and holds the value to be returned by the
position at the bottom of the Stack Frame allows it

with function
function. Its
to be ~popped~

Page 17 OMSI Pascal-1 Vl.2/RSX Programmer's Guide
Runtime Memory Organization

from the stack when control returns to the caller of this block.

Parameters

The Parameters field contains either parameter values or their
addresses. A block without parameters does not have this field in
its Stack Frame.

Return Link

This field is the subroutine return address, where control is
transferred on exit from this block.

Local Variables

This field contains all local variables for this block.
not appear for blocks without local variables ..

It does

Static Link

The Static Link appears only in blocks which are lexically
enclosed by other procedure or function blocks. The Static Link
is used for references t6 intermediate level variables in the
enclosing block(s). It points to the base of the Stack Frame of
the latest invocation of the immediately enclosing procedure or
function block, and it is the first link in the Static Link chain.

The Stack Pointer (SP) is also used for transient temporary
storage, as in interrupts and Pascal library calls. Each For
statement requires 3 words of temporary stack storage during its
execution.

Embedded Assembly Code

PDP-11 assembly code can
program at any point
assembly code takes the
the embedded switch $C,

{ $C MOV % 0 , - (% 6) }

be embedded within an OMSI Pascal-1
where a comment might appear. Embedded

form of a special comment beginning with
as in the comment

The assembly code section extends to the closing comment brace
(this closing brace cannot appear in an assembler comment). Any
of the capabilities of the MACRO assembler may be used.

The OMSI Pascal-1 compiler scans the embedded assembly code and
replaces tokens within the code which -correspond to certain
classes of Pascal identifiers. This .provides simplified access to

OMSI Pascal-1 Vl.2/RSX Programmer~s Guide
Embedded Assembly Code

Page 18

Pascal data and control structures. However, the programmer is
required to have some understanding of the internal structures.
See the section on Runtime Memory Organization, and examine the
code produced by the compiler.

Constant identifers appearing in assembly code are replaced by
their defined values. Variable identifiers ar~ replaced by the
numeric offset from the appropriate base pointer. For global
variables, the base pointer is Register S (RS); for local
variables, the stack pointer (SP) is the base. For example, to
swap the halves of a local integer variable I, the code would be

1$C SWAB I(SP) }

and to assign the constant Ten to the global variable Count one
can write

. {$C MOV #TEN,COUNT(RS) }

Any temporary stack usage is not recognized by. the compiler, and
must be included in indexed addressing.of local variables.

Parameters of Pascal procedures and functions are treated as local
variables, and are accessible in the same fashion. Internally, a
Var parameter is the address ·of the actual parameter, so
references to Var parameters must be indirect, as in

{$C MOV @VAR(SP) ,RO }

Procedure and function identifiers are replaced by the internal
label assigned by the compiler. To assign a value to a function,
it is best to move the value to a local variable and then use a
Pascal assignment statement to copy the value to the function.

The programmer is responsible for selecting the proper base
register, as the compiler provides no error checking capability.
Identifier substition is performed for all identifiers in these
classes. This can cause problems ift"he programmer defines an
identifier which corresponds to a MACRO operation, such as a
ponstant named ~MOV~.

~ith one exception, the contents of registers RO-R4 may be changed
within embedded code sections. Registers allocated for use in
With statements must be preserved. With register allocation is in
the order R3, R2, Rl and can be determined from the Pascal
program. The contents of registers RS and SP must always be
preserved across the range of an embedded code section. ·

The default numeric radix of a Pascal-produced assembly code file
is decimal, not.the normal octal.

Page 19 OMSI Pascal-1 Vl.2/R$X Programmer~s Guide
The System Error() Procedure

The System Error() Procedure

When a fatal runtime error occurs, the system procedure Error() is
called with parameters describing the error and the system state.
The Error() procedure is known by the global name ERROR, and may
be replaced by a user-written external module of the same name.
The external module must accept the parameters defined below.

type Class = (Fatal,IOError,Warning);
Message= packed array[l •• 100) of Char;

procedure Error(
ErrorClass: Class;
ErrorNumber: Integer;
ErrorMsgLength: Integer;

var ErrorMsg: Message;
var XFile: Text;

IOStatus: Integer;
UserPC: Integer;
FilenameLength: Integer;

var Filename: Message;
)

The ErrorClass parameter indicates the type and severity of the
error; Fatal and IOError are errors with no possible recovery,
while Warning errors will recover automatically. The ErrorNumber
indicates the exact cause of the error - see Appendix B for a list
of values. ErrorMsgLength and ErrorMsg define the text of the
printed error message normally displayed for this error. The
XFile parameter identifies the file variable associated with this
error, if any. IOStatus is the value of the FCS I/O status word.
UserPC is the program counter saved at this error, which can often
be used to identify the program segment responsible for the error.
Finally, FilenameLength and Filename describe the external name
associated with the file variable XFile.

The possible courses of action available to the Error() procedure
are very limited, as exiting from the Error() procedure normally
results in program termination. The program global variables are
available and may aid in diagnosing the problem. The Error()
procedure may provide operator interaction or recording
capabilities beyond the normal messages to the terminal, and as a
final resort may call on operating system facilites to 'chain' and
restart the program or initiate another program.

OMSI Pascal-1 Vl. 2/RSX Programmer ... s Guide
Appendix A - Compiler Error Messages

Compiler Error Messages

... , ... used instead of ... ; ...
8 or 9 in octal constant
Argument must be integer
Argument must be ordinal type
Argument must be real
ARRAY index out of range
ARR.['.Y index type error
Bad ABS argument
Bad argument
Bad.CASE label
B_ad constant
Bad EXIT
Bad expression
Bad field list
Bad FILE name
Bad FOR statement
Bad FUNCTION name
R1d FUNCTION result type
Bad IN operands
Bad index type
Bad LABEL
Bad ORIGIN for variable
Bad parameter
Bad PROCEDURE name
Bad PROGRAM name
Bad READ statement
Rad RECORD
Bad scalar type
Bad SET element
Ba1J subrange
Bad TYPE
B1d TYPE specification
Bad variable list
Bad variant
Ba.) WITH statement
Bad WRITE statement
Boolean expression needed
Constant overflow
Dan"t repeat FORWARD parameter list
Duplicate CASE label
Duplicate field name
ELSE must be last in CASE
Expcession too complex - out of registers
Expression too complex - out of registers (real)
Field list must be in parentheses
File variable missing
Format expression must be integer
FORTRAN must be VAR parameters
FUNCTION arg must be real or integer
FUNCTION argument missing

Page 20

Page 21

Illegal assignment
Illegal character
Illegal operator
Illegal type of operand
Improper symbol
Incompatible ARRAY type
Incompatible type

OMSI Pascal-1 Vl.2/RSX Programmer's Guide
Appendix A - Compiler Error Messages

Invalid declaration, probably missing END
Invalid symbol
LABEL defined at wrong level
Label must be integer
LABEL not declared
LABEL redefinition
Local VAR definitions must precede PROCEDURE definitions
Missing "') "'
Missing"')"' at end of list
Missing"'."' at end of program
Missing BEGIN
Missing END
Missing END in CASE
Missing field variable
Missing LABEL
Missing label definition
Missing operand
Missing operator
Missing semicolon
Missing UNTIL
Must be simple variable
NEW or DISPOSE arg must be pointer
Not ilTlplemented
ODD argument must be integer
Output file error
Source line too long
Strange "'["' - bad SET or missing ARRAY definition
TEXT file expected
Too few arguments
Too many arguments
Too many errors in this line
Too many errors!
Too many levels
Too many symbols
Undefined FORWARD PROCEDURE or FUNCTION
Undefined operand
Undefined pointer base type
Undefined symbol
Unresolved forward type reference
WITH nested too deep

OMSI Pascal-1 Vl.2/RSX Programmer ... s Guide
Appendix B - Runtime Error Messages

Runtime Error Messages

Can ... t open file
Compiler/Library mismatch -- Please recompile
Default file name syntax error
Default file switch error
Division by zero
Double deallocation of dynamic memory
E~ror reading file
Error writing file
EXP.overflow
File name syntax error
File not open
File switch error
Floating point format error
Floating point overflow
Illegal value for integer
Integer conversion error
Integer overflow
LOG of zero or a riegative number
NEW of zero length
Not a random access file
Not enough memory
Reading past end of file
Reserved instruction trap
SEEK to record zero
Set element out of range
Square root of a negative number
Subscript out of bounds
Too many files open

Page 22

c
CD
C"
c:

c.a
(.Q
CD
~

OMSI Pascal-1 Vl.2 Debugger {POD)

Contents

Introduction •

How to include POD in your ~rogram •

Running POD

Accessing Pascal statements

Accessing Pascal variables ••

POD commands
B - Set/Clear Breakpoints
c - Continue
D - Display Parameters
G - Go or Go to a Label
H - Execution History
K - Kill Breakpoints and Labels
L Label Statement
p - Single Procedure Step
R - Register Dump
s - Single Step
T - Trace Mode . . . ;, . .
v - Variable Watch
w - Write Variables

Advanced debugging techniques

OMSI Pascal on-line debugging system documentation.
Copyright 1980 Oregon Software.
OMSI Pascal is a trademark of Oregon Software.

• • 2

3

• • 4

• • 4

• 5

. . 7
9 . . 9

10
ll
12
12
13
13
14
14
15
17

18

OMSI Pascal-1 Vl.2 Debugger (POD) Page 2

Introduction

The Pascal On-line Debugging system (POD) is a symbolic debugging
tool that lets you interactively control the execution of your
Pascal program. You can suspend execution at particular
-statements, execute one statement at a time, and examine and
modify the values of particular variables. Since POD traps errors
and identifies the last statement executed, you can easily
pinpoint the source of run-time errors.

POn is really a series of Pascal procedures which are linked with
a program. When you specify the debugging option (/D) , the Pascal

. compiler includes a call to POD before each procedure and
stakement in your program. This lets POD control program
execution. The compiler also produces a symbol table file

~ containing the definitions and locations of all variables and
procedures in your program. Using this, POD can find and modify
variables and refer to procedures by name.

Page 3 OMSI Pascal-1.Vl.2 Debugger (POD)
How to include POD in your program

How to include POD in your program

To use POD, you must compile your program with the debuggipg
switch, /D. You must also include a third output file in the
compilation command -- this is the symbol table file for your
program. For example:

>PAS TRIM,,TRIM=TRIM/D

The /D switch causes debugging instructions to be included in the
compiled program. The third output file is a de·1~gger file
(TRIM.SYM) containing the symbol table information for the
procedures and variables of TRIM.

POD supports an option called source debugging, selected using the
/S compilation switch. This lets POD print the Pascal source
lines associated with the compiled statements in your program.
With the /S switch you can debug a program without having to print
a listing of the program. The cost for using source debugging is
an increase in the size of the program being debugged and a
somewhat slower execution speed. All of the examples in this
manual use the source debugging option.

If you wish to use the source debugging option, specify both the
/S and /D switches in the compilation command, and include three
output files (MACRO, listing, and symbol table):

>PAS TRIM,TRIM,TRIM=TRIM/S/D

POD reads the listing file file to display the source program for
each Pascal statement. If the listing file is deleted, source
debugging is automatically disabled, and POD will then identify
statements only by procedure name and statement number.

POD itself is a large Pascal program (about 12K words) which
resides in the same partition as the program being debugged. The
procedures and functions of POD can be overlaid to reduce the
memory requirements to about 4K words. Instructions for
overlaying POD can be found in the Overlays section of the
Prograrnmer>s Guide.

OMS! Pascal-1 Vl.2 Debugger (POD)
Running POD

Running POD

Page 4

When your program starts executing, POD will identify itself and
ask you for the name of your program. It is assumed that the
symbol file and listing file (if the S option is invoked) will
share the program name. If either file cannot be found, POD will
ask specifically for the necessary file name. If POD asks for a
listing file and none exists, give a carriage return. ·This will
canc·e1 the source debugging option. POD will then ask for a
symbol file name. Here is a typical POD opening dialogue:

>RUN TRIM
POD (Pascal On-line Debugger) - 24-Apr-79
POD - program name? TRIM
}

When POD is ready to accept commands, it will. prompt you with a
right brace (}). On some terminals this will print as a right
square bracket (]). Commands to POD may be typed in either lower
or upper case, and spaces in the commands are ignored. Several
POD commands can be typed on the same line by separating the
commands with semi-colons (;).

When you are finished with a debugging session, exit from POD by
typing Ctrl/Z or by typing two Ctrl/C's.

POD commands are presented alphabetically beginning on page 7.

Accessing Pascal statements

POD identifies Pascal statements by the name of the procedure
containing the statement and the number of the statement in the
procedure. The statement number can be found in the column
labeled STMT in the listing file produced by the Pascal compiler.
Statements in the main body of a Pascal program are considered to
be in the procedure MAIN. All Pascal programs hegin executing at
MAIN,l. If the source debugging option is being used, POD will
usually print the the source line along with the procedure name
and statement number.

Pascal allows you to define procedures which define other local
procedures. In this way it is possible to create a program
containing several procedures all having the same name. It is
strongly recommended that all of the procedures in your program
have unique names in order to avoid confusion during debugging.

Page 5 OMS! Pascal-1 Vl.2 Debugger (POD)
Accessing Pascal variables

Accessing Pascal variables

POD lets you access the variables in your program in much the same
way as you use variables in Pascal. Variables and procedure
parameters are identified by name; such as MARGIN, LIMIT, or
SHOESIZE. Records are specified using the standard dot notation
such as: COORD.X, and RANGE.TOLERANCE.LOW. POD will generate an
error message if too few (or too many) fields are specified. for a
record. Arrays of multiple dimensions are allowed, and POD will
check the data type and limits of each index when accessing
arrays. Pointers are specified in the usual way. The value of
the pointer itself is interpreted as a decimal integer. A nil
pointer has a value of zero, and POD will generate an error
message if a reference through a nil pointer is attempted.

You can access very complex structures by combining several of the
structures described above. In general, POD can access a variable
in a structure in the same way as that variable is used in your
program. Examples of legal variables are shown below:

FEET
A.B.C.D
CHIPA.TEMPLATE[3,l,-5] .FLUX
PTRA.SONA.SONA.SON

Integers are treated as 16 bit signed numbers. Octal integers are
specified by placing a "B" after the integer such as 377B.
Boolean variables take values of either TRUE or FALSE. Character
data, including character strings, are always enclosed within
single quotes as with 'X' and 'THIS IS A TEST'. Spaces are not
ignored within a character string. Real variables are used in the
usual way. POD can also access scalar types defined by the user.
For example, consider the program section below:

TYPE
COLOR=(RED, WHITE, BLUE);

VAR
X: COLOR;

When POD displays the value of X, it will correctly print the
scalar type of X. This capability is provided only by POD -­
Standard Pascal does not ·permit output of scalar types.

OMSI Pascal-1 Vl.2 Debugger (POD)
Accessing Pascal variables

Page 6

POD has another facility not available to the Pascal programmer:
its ability to display the value of set~. The" •• " notation for
included set elements is available for both the input and output
of set values.

TYPE
COLOR=(RED, ORANGE, YELLOW, GREEN, BLUE):

VAR
RB: SET OF COLOR:
VALUES: SET OF INTEGER:
Q: SET OF CHAR:

These variables may be accessed by POD as shown below:

} RB:= [RED .. YELLOW, BLUE]
} W (RB)
[RED .. YELLOW,BLUE]
} VALUES:=[l. .20,50,40,30]: W(VALUES)
[1..20,30,40,50]
} Q:=['E','A','C','F','B','D']
} W(Q)
['A7::''F']
}

As demonstrated above, POD lets you assign values to variables in
the same way as you assign values to variables in your program.
The only restriction is that you cannot evaluate expressions such
as C:=A+B, and you cannot call functions such as R:=SIN(3.1415).

POD enforces the Pascal scope rules. In general, this means that
at any point in your program you can only access the variables
that the program itself can access at that point. Global level
variables, those defined at the start of the program, are always
available. However, as different procedures are executed, the
local variables and arguments of those procedures are temporarilv
available, while the local variables in procedures not being
executed are never available. If you try to use a variable which
is not available, POD will print a "symbol not found" error
message. Remember, at any statement, you can only use the
variables that are available to the program at that point.

POD lets you directly address memory locations as integers. For
example, 1234B:=240B modifies location 1234 (octal) to contain 240
(octal). This feature is most commonly used when dealing with
pointers. However, be careful, for you might accidently modify a
location within your program and cause unpredictable results.

Page 7 ·OMS! Pascal-1 Vl.2 Debugger (POD)
B(): Set/Clear Breakpoints

B{): Set/Clear Breakpoints

The "B" command sets a breakpoin~ at a particular statement within
a program. Before POD executes each statement in your program it
checks to see if a breakpoint has been set at that statement. If
a breakpoint has been set, POD suspends the execution of the
program and enters command mode. At this point you can examine
and alter variables, check the history of the program~s execution,
or continue the execution of the program.

To set a breakpoint at a statement, type a "B" followed by the
statement identifier (procedure and statement number) contained
within parentheses. POD will interrupt the execution of your
program just before the statement at which a breakpoint is set.
Up to eight breakpoints may be in effect at any one time.
Examples:

t ~(MAIN, 1)

Breakpoint at MAIN,l BEGIN I:=O;
} B(INIT, 5); C
Breakpoint at-INIT,5 PARAMl:~O; PARAM2:=0;
} '

(The examples above show how the source debugging option works.
When POD stops at breakpoint, it prints the Pascal source line ·for
that statement.)

The "G" command in the example starts program execution. The "C"
command continues from the breakpoint.

If your program "runs away" or loops unexpectedly, you may regain
control at any time by typing Ctrl/C -- this causes an immediate
breakpoint interrupt and returns control to the Debugger.

POD has the capability to execute a series
breakpoint is encountered. This facility,
is specified by placing the command within
after the break command as shown here:

} B(MAIN,6) < W(DEPTH); DEPTH:=5 >
} B(POSITION~32)<W(X,Y) ;C>

of POD commands when a
called stored commands,

angle brackets (< >)

The first example displays the value of the variable DEPTH then
assigns the value of 5 to DEPTH each time the program comes to the
statement at MAIN,6. The second example displays the values of
the variables X and Y and then continues the execution of the
program. In this case POD will not stop and enter command mode.

OMSI Pascal-1 Vl.2 Debugger (POD)
B(): Set/Clear Breakpoints

Instead, each time the program
POSITION,32, the variables X and Y
program will continue.

Page 8

comes to the statement at
will be displayed and the

Any POD command may appear in a stored command, but stored
commands may not be nested, ie. a stored command may not define
other stored commands. As many POD commands as will fit on a
single line may be specified in a stored command.

There are two ways to cancel a breakpoint. The "K" command
described below can be used to kill all breakpoints or just a
single breakpoint. However, if the program has just been
in~errupted because a breakpoint was reached, that breakpoint can
be cancelled by using the "B" command with no arguments.

1 ~(MAIN,1)
Breakpoint at MAIN,l BEGIN I:=O;

l ~
The "D" ·command may be used to display the currently active
breakpoints and their associated stored commands.

Page 9 'OMSI·Pascal-1 Vl.2 Debugger (POD)
C, C():· Continue Execution

ft. £il.:.. Continue execution

If the execution of your program has been suspended· by POD, you
may use the "C" command to resume execution of the program. If
your program has not started executing, either the "C" or the "G"
command may be used to start the program. The section above
describing breakpoints has several examples which use the "C"
command. Once your program has terminated and POD has re-entered
command mode, any attempts to continue the program with the "C"
command will be ignored. (There is nowhere to go!) The program
may, however, be restarted with the "G" command described below.

If you set a breakpoint inside a loop, it is sometimes desirable
to let the statement at the breakpoint execute several times
before stopping. One way to do this is to use the "C" command
several times to continue from the breakpoint until the desired
iteration in the loop is reached. Another solution is to use a
repeat count contained inside parentheses after the "C". The
repeat count tells how many times the statement at which the
breakpoint has been set should be executed before the breakpoint
takes effect. For example, you can set a breakpoint at COUNT,10
which is inside a loop structure. When the loop is first entered,
POD will stop the program at COUNT,10 with a breakpoint. The
command C(6) will let the loop iterate 6 times before the program
stops again at COUNT,10 with a breakpoint. Each of the eight
breakpoints has its own repeat count.

D: Display POD Parameters

The "D" command displays the watched variables, labels, and
breakpoints which are currently active. Watched variables are
described below in the section about the "V" command. Labels are
discussed below in the sections about the "G" and "L" commands.
The stored commands associated with breakpoints and the watched
variable ~re also displayed.

} D

Watching: B[S] <W(B[6] ,B[7] ,B[8J)>

Breakpoints:
MAIN,13 <W(FOO) ;C>
MAIN,20
ERR,5 <W(ERRORCODE);H>

User defined labels:
1: MAIN,l BEGIN I:=O;
5: RETRY,3 RESET(F,NAME,~DAT~,STArus);
}

OMSI Pascal-1 Vl.2 Debugger (POD)
G, G(): Go or Go to a Label

~ .§l2....!_ Go or Go to a Label

Page 10

The ,"G" command without arguments starts or restarts your program
at MAIN,l. If the "G" command is followed by a label number in
parentheses, the program will be continued at that user defined
label. Do not confuse user defined labels with Pascal statement
labels. User defined labels are created with the "L" command
dynamically as POD controls your program. Pascal statement labels
are defined in your source code and are used by the PASCAL
corr~iler to generate targets for the Pascal GOTO command. POD
does not use Pascal statement labels.

Th~ "L" command labels the program statement about to be executed.
The most common way to define a label at a particular statement is
to set a breakpoint at that statement, execute the program until
that statement is reached, and then use the "L" command to define
the label.

The "G" command should be used with care. ·It is not always
possible to branch from any Pascal statement to any other Pascal
statement. Labels follow the same scope rules as variables, so
depending on which procedures are being executed, some labels may
not be available. If you try to go to a label which is not
available, POD will respond with the error message "You can't get
there from here". One reason that POD cannot go to a particular
label is that if the label is in a procedure which is not being
executed, POD is not able to invent the values of the local
variables associated with that procedure.

} B(MAIN,5); E_
Breakpoint at MAIN,5 J:=SIN(Q);
} L (3) ; B { MA I N , 2 7) ; C
Breakpoint at MAIN,27 WRITELN('X>Y');
t G (3)
Breakpoint at MAIN,27 WRITELN('X>Y');
} G
Br~akpoint at MAIN,5 J:=SIN(Q);
}

Page 11 OMS! Pascal-1 Vl.2 Debugger (POD)
H: Print Program Execution History

H: Print Program Execution History

POD maintains a list of the last 10 statements executed by a
program. This history is useful in determining how the program
got to a breakpoint or how it got to a statement which caused an
error. The "H" command prints the history and also the procedure
execution stack. The stack shows the procedure and function
nesting all the way back to the main body of the p~ogram.

} B(EVALUATEBOARD,l) ;C
Breakpoint at EVALUATEBOARD,l FOR I:=-5 TO 49 DO BMAN[I] :=FALSE;
} H
Program execution history

GENMOVE,3 BEGIN
GENMOVE,4 FATHER:=F;
GENMOVE,5 MOVE:=I*256+J;
GENMOVE,6 OLDPIECE:=B[I]; B[I] :=EMPTY;
GENMOVE,7 OLDPIECE:=B[I]; B(I] :=EMPTY;
GENMOVE,8 IF TURN=BLACK THEN
GENMOVE,9 IF J<=8 THEN B(J] :=BtACKKING ELSE B(J] :=OLDPIECE
GENMOVE,11 IF J<=8 THEN B[J] :=BLACKKING ELSE B[J] :=OLDPIECE
GENMOVE,15 VALUE:=EVALUATEBOARD(ENEMY);
EVALUATEBOARD,l FOR I:=-5 TO 49 DO BMAN[I] :=FALSE;

Procedure execution stack

EVALUATEBOARD,l FOR I:=-5 TO 49 DO BMAN[I] :=FALSE;
GENMOVE,15 VALUE:=EVALUATEBOARD(ENEMY);
MOVEPIECE,11 IF MOVESALLOWED THEN GENMOVE(I,J);
EXPAND,15 IF COLOR[WHO]=TURN THEN MOVEPIECE(I,I,0,0);
MAIN,7 EXPAND(ROOT,TRUE);
}

OMSI Pascal-1 Vl.2 Debugger (POD) Page 12
K, K(): Kill Breakpoints and Labels

!L, K(): Kill Breakpoints and Labels

When tl1e "K" command is given without arguments, all label
definitions and breakpoints are deleted. When the "K" command is
followed by a statement identifier, the breakpoint at that
statement is removed.

I B(MAIN,5)
K(MAIN,5)
~(MAIN,17)

Individual breakpoints can also be removed with the "B" command.

L(): Label a Statement

You may label up to eight statements with the "L" command. Labels
are used as targets of the "G" command. The label number (1
through 8) is placed in parentheses after the "L". The "L"
command always defines the label at the current location within
the program being executed. Check the description of the "G''
command above for a warning about branching within a Pascal
program. The "D" command may be used to list the currently active
labels.

} B(MAIN,13); G
Breakpoint at MAIN,13 A:=l;
} L(l)
} B(MAIN,15); C
Breakpoint at MAIN,15 B:=37;

lt(5)

Breakpoints:
MAIN,13
MAIN,15

User defined labels:
1: MAIN,13 A:=l;
5: MAIN,15 B:=37;
}

Page 13 OMSI Pascal-1 Vl.2 Debugger (POD)
P, P(): Execute one Statement-in Current Procedure

~PC): Execute one Statement in Current Procedure

The "P" command executes a single statement in the current
procedure. "P" will not single step through functions and
procedures nested in the current procedure, but instead will treat
their calls as single statements. If the current procedure ends,
"P" will begin single stepping the procedure that called the
cur rent procedure. (Compare "P" to · the similar "S" command
described below.)

If a repeat count is given in parentheses after the. "P", the
specified number of statements will be executed befo~~ stopping.
As with the "C" command, you may not proceed past the end of the
program once the program has terminated. Use the "G" command to
restart the program.

} p
Breakpoint at MAIN,l BEGIN I:=O:
} p
Breakpoint at MAIN,2 J:=RANDOMINTEGER(3):
} p
Breakpoint at MAIN,3 K:=J*J-I:
} p (5)
Breakpoint at MAIN,8 IF K<J THEN BEGIN
}

R: Register Dump

The "R" command prints the values of the processor registers RO-PC·
in both octal arid decimal. This command is normally useful only
to those programmers who include in-line assembly language code in
their Pascal programs.

OMS! Pascal-1 Vl.2 Debugger (POD)
S, S(): Single Step

~ S () : Single Step

Page 14

The "S" command is identical to the "~" command above, except that
if a statement being stepped through contains a procedure or
function call then the new procedure or function will be executed
one step at a time. As with "P", a repeat count may be specified.

} s
Breakpoint at MAIN,l BEGIN I:=O;
} s
Breakpoint at MAIN,2 RANDOMINTEGER(3) i
} s (1)
Breakpoint at RANDOMINTEGER,l BEGIN RANDOM:=X;
}

T(): Trace Mode

"T(TRUE)" turns on statement trace mode, while "T(FALSE)" turns it
off. When trace mode is on, POD will print the location of each
statement before it is executed. If several PASCAL statements
appear on the same line in the source file, and if those
statements are each executed in sequence, then the line containing
those statements will be printed only once.

l B(MAIN,6)
T (TRUE)
G

MAIN,l BEGIN I:=O;
MAIN,2 J:=O; K:=O; L:=3.14159;
MAIN,5 WRITELN(>HI THERE>);
HI THERE
Breakpoint at MAIN,6 WRITELN;
}

Page 15 OMS! Pascal-1 Vl.2 Debugger (POD)
V(): Variable Watch

V(): Variable Watch

The "V" command makes POD watch the value of a variable. Before
each statement in your program is executed, POD compares the
current value of the variable with the value it had when the "V"
command was given. If the value_ has changed, POD stops your
program and tells you so. If you continue your program, POD will
continue watching for a change in the variable.

The "V" command is useful if your program
because the value of some critical variable
somewhere. The "V" command can also be used to
low memory to detect the incorrect use of a nil

1 ~{DEPTH)
Vaiue of "DEPTH" changed at statement:
DESCEND,l DEPTH:=DEPTH+l;
Old value: 0
New value: 1

is malfunctioning
is being destroyed
watch locations in
pointer.

Breakpoint at DESCEND,2 IF DEPTH>MAXDEPTH THEN
} c
Vaiue of "DEPTH" changed at statement:
DESCEND,l DEPTH:=DEPTH+l;
Old value: 1
New value: 2
Breakpoint at DESCEND,2 IF DEPTH>MAXDEPTH THEN
} c
vaiue of "DEPTH" changed at statement:
DESCEND,38 DEPTH:=DEPTH-1;
Old value: 2
New value: 1
Breakpoint at DESCEND,39 END;
}

OMSI Pascal-1 Vl.2 Debugger (POD)
V(): Variable Watch

Page 16

Stored commands may be specified with the "V" command in the same
way as with the "B" command. The "D" command will list the name
of the variable being watched and the stored commands if any were
given. A variable watch is terminated by using the "V" command
with no arguments. POD will automatically terminate a watch on a
variable when that variable is no longer available. When POD does
this, it prints the message "Watch terminated value didn-t
change".

THEN

} B(EVALUATEBOARD,35); C
Breakpoint at EVALUATEBOARD,35 FOR I:=5 TO 39 DO l ~(BLACKSCORE)<W(WHITESCORE)>
vaiue of "BLACKSCORE" changed at statement:
EVALUATEBOARD,224 ELSE BLACKSCORE:=BLACKSCORE+MOC4;
Old value: 0
New value: 400
Breakpoint at EVALUATEBOARD,225 IF BLACKDENY<WHITEDENY

0
} c
Watch terminated -- value didn-t change
Breakpoint at MAIN,28 MAXLEVEL:=O;
}

Page 17 OMSI Pascal-1 Vl.2 Debugger (POD)
W(): - Write Variable Value

W(): Write Variable Value

The "W" command is used to write. the value of a variable, pointer,
constant, or memory location. The format of the output is
determined by the type of the variable being written. For
example, integer variables are written as 16 bit signed decimal
integers, while set variables are written using set notation. The
names of the variable to be displayed are placed inside·
parentheses following the "W". If more than one v~riable is to be
written then the names are separated by commas. Physical memory
locations are addressed as integers (either octal or decimal). As
in Pascal, integer and real values may use format control with the.
colon (:) notation. This is also how one examines memory
locations in octal.

} W (TURN)
BLACK
} W(COLOR[BLACKKING] ,COLOR[WHITEKING])
BLACK
WHITE
} W(USERMOVES[S])
... Bl
} W(ROOTA.SONA.VALUE)
402
} W(54B)
-10154
} W(54B:-l)
154126B
} W (S)
[... ~M ... ,-"z""]
} W (R)

3.141593E+OO
} W (CH)
-"A
} W (I)
12_3_
}

OMSI Pascal-1 Vl.2 Debugger (POD)
Advanced Debugging Techniques

Advanced Debugging Techniques

Page 18

If you write large Pascal programs, you might find that you are
not able to use POD (even overlaid) to help debug your program
because of memory size restrictions. However, there are several
things you can do to further reduce the amount of memory required
by POD. The easiest thing to disable source debugging. The use
of the source debugging option (/S) expands· your program by one
word for every Pascal statement in your program. For large
programs you may save more than lK words by not using source
debugging.

Another technique you can use is selective debugging. You can
e~it your program to turn off the generation of POD debugging
information around procedures which have already been tested and
debugged. To turn off debug9ing, place the line {$D-} before the
procedure definition and {$D+} after the procedure. You will not
be able to set breakpoints or examine variables in such
procedures, but you will save two or three words for every
statement not debugged. Be sure debugging is enabled around all
variables you may wish to examine and around the main procedure.

If you program uses overlays, you can still debug your program
using POD. When you compile the main body of the program, which
resides in the root segment, use the debugging switch (/D) and
produce a symbol table file. Compile each of the external modules
in the normal way without the debugging switch. You cannot enable
debugging in external procedures because you would have to produce
a symbol table file for POD. The main body of your program must
also have a symbol table, and there is no way to combine the two
into a single usable file. The only way to debug an external
procedure is to include its definition in the main program. In
other words, you must make the procedure not be external.

When you task build your overlaid program you will have to use two
overlay regions to contain the modules of POD. These two overlay
regions may, in most cases, also contain your own external
procedures. There should be no conflicts because POD only lets
you debug in the root segment, and as long as the two POD modules
RTDBG and DBG are placed in the root, there should be no problems
with the overlays.

You cannot set breakpoints within external procedures, but you can
~ause a break when the external procedure is called from the main
program. This is done by setting a breakpoint and giving only the
name of the procedure at which to break as with: B(OVERl). This
type of breakpoint will stop the program before the external
procedure OVERl is executed. The only variables you will be able
to examine and modify in OVERl are those variables in the
parameter list for OVERl. Note that the names of the parameters
are defined by the external procedure definition of OVERl in the
main program, not by the definitions in OVERl itself.

:::J
(/) ,....
0,) --O.> ,.... -· 0
:::J

OMS! Pascal-1 Vl.2/RSX Installation Procedures·

How to Install OMS! PASCAL-1 on RSX-llM

This release kit contains all the files necessary to build an OMS!
Pascal-1 compiler and runtime library on any PDP-11 computer
running RSX-llM.

First, login to any privileged UIC, and assign LB: as SY: so
that the Pascal compiler and runtime library will be available to
all users from LB:. Then, copy the command file called PASBLD.CMD
from the distribution medium to your disk using one of the
following commands:

>FLX SY:/RS=MT: [l,l]PASBLD.CMD/DO

>FLX SY:/RS=DK:PASBLD.CMD/RT

>FLX SY:/RS=DX:PASBLD.CMD/RT

(for magtape)

(for RK05 disk)

(for floppy diskettes)

Next, initiate the build process by executing the command file
PASBLD.CMD. To do this, type:

>@PASBLD

You will be asked several questions to determine the hardware
configuration of your system. Then, two object module libraries
(a compiler library and a runtime library), a Task Builder command
file, and the compiler ODL file will be selected from the
distribution medium and copied onto the system disk. The Pascal
compiler will be built and installed as ... PAS, and the runtime
library will be copied to LB: [l,l]PASLIB.OLB. Finally, the build
files which are no longer needed will be deleted.

After completing the automatic installation procedure, you should
copy the utility programs, documentation files, and demonstration
programs to your system. A description of the files on this
release kit appears below.

LISTME.DOC This document.

PASBLD.CMD The MCR command file to build the Pascal compiler on
your system and select one of the runtime libraries
below.

PASCAL.CMD The Task Buil~er command file to build the Pascal
compiler. Some compiler characteristics (such as
symbol table size) can be changed by editing this file
before installation.

PASCAL.ODL The overlay description of the Pascal compiler.

OMSI Pascal-1 Vl.2/RSX Installation Procedures Page 2

CMPFPP.OLB
CMPFIS.OLB The object module libraries for the Pascal

compiler(s). CMPFPP is the compiler for processors
with the FPP instruction set; CMPFIS is for all other
processors.

FPPLIB.OLB
FISLIB.OLB
EISLIB.OLB
SiiiLIB.OLB

PAS.ODL

·. PROF IL. PAS

FORMAT.PAS

IMP.PAS

The Pascal runtime libraries. FPPLIB uses the FPP and
EIS instruction sets; FISLIB uses the FIS and EIS
instruction sets; EISLIB uses only the EIS
instruction set, and SIMLIB operates on any PDP-11
processor.

An overlay description to assist in overlaying the
Pascal runtime library and Debugger to conserve
memory. This file should be installed in LB:[l,l].

The Pascal Profiler -- produces an annotated listing
of a Pascal program showing how often each statement
was executed. This file should be compiled,
assembled, and made available to all users as
LB: [l,l]PROFIL.OBJ.

A Pascal
generator.
all users.

program reformatter and cross reference
FORMAT should be compiled and available to

A post-compilation optimizer which performs branch
optimization of the output of the OMSI Pascal
compiler. This program should be compiled and made
available to all users.

STRING.PAS A collection of Pascal procedures and functions which
implement dynamic character string operations.

ERROR.PAS

FOB.PAS

RANDOM.PAS

PLO.PAS

MAZE.PAS

CHECKR.PAS

Source code for the standard error routine in the
Pascal support library. ERROR is called whenever a
runtime error is detected in a Pascal program.

A modified version of the standard error procedure
which prints a detailed map of the FDB associated with
the file which caused the I/O error.

A random number generator.

Simple compiler example.

Demonstration maze generator and solver.

Plays the game of checkers.

Page 3 OMSI Pascal-1 Vl.2/RSX Installation Procedures
Appendix A: Programming Changes in OMSI Pascal-1 Vl.2

Programming Changes in OMSI Pascal-1 Vl.2

There are four specific language features that have been changed
from Vl.l to Vl.2, all of which are related to I/O
characteristics. If a program which was written using Vl.l fails
to operate properly with Vl.2, check the following trouble
shooting points.

(1) In Vl.l, Eoln{) on interactive terminal files had the initial
value True. This has changed to False in Vl.2.

Symptom: program "hangs", or ignores the first input line.

Cure: remove the initial Readln(), or replace it by the
statement "if Eoln{) then Readln()", which runs correctly with
either version.

(2) The Vl.l Read() procedure, when reading a (packed) array of
. Char, ignored leading blanks and terminated on a blank or a

comma. The Vl.2 Read{) procedure will read characters without
skipping blanks, and terminates at Eoln() or upon filling the
array.

Symptom: program does not interpret commands properly, or
loops.

Cure: reprogram sections which use the Vl.l Read{). Programs
which are heavily dependent on the Vl.l style Read(} may be
more easily recoded using the Vl.2 string package.

(3) The declaration "file of Char" is no longer equivalent to the
declaration "Text". This change corresponds to the more
strict type checking of the draft ISO Pascal Standard.

Symptom: compiler error message "TEXT file expected".

Cure: substitute the type Text and recompile.

(4) The Seek(), Deposit(), and CloseRandomFile() procedures which
are supplied with Vl.1 have been superseded by the built-in
procedure Seek().

Symptom: unpredictable I/O failures. The Vl.l procedures will
compile under Vl.2, but will not operate correctly.

Cure: reprogram affected sections using the built-in Seek().
Note that the Vl.2 Seek() numbers records beginning at 1.

