
version 2.0 for RT-11 .

,·,,--...,_

~----

Rlscal-2@
Version 2.0 for RT-11
The Pascal-2 software described in this publication is licensed for use only at the site(s) designated
in the user's license agreement. This public_ation may be copied by licensed users for use at licensed
site(s), provided that all copies include this notice and all copyright notices.

Oregon Software holds right, title, and interest in the Pascal-2 software. The Pasc81-2 software, or·
any copies thereof, may not be made available to or distributed to any person or site without the
written approval of Oregon Software.

The Pascal-2 software described by this publication is subject to change without notice. Oregon
_Software assumes no responsibility for the use or reliability of any of its software that is modified
without the prior written consent of Oregon Software.

This publication is printed in the Computer Modern Roman family of type faces and has been typeset
with the 1EX typesetting system. Draft versions were produced at Oregon Software on a Versatec
printer/plotter driven by 1EjX..:in-Pascal and our VAX-11/780.- Finished pages were produced at the·
American Mathematical Society, Providence, Rhode Island, on an Alphatype CHS phototypesetter
driven by_1EX in SA.Il.. and a DECSystem-2060.

We wish to thank:

• Donald Knuth and the 1EX group at Stanford University, for giving to the world this
elegant and machine-independent tool;

• Barbara Beeton and the American Mathematical Society, for a cheerful voice in the wee
morning hours, and for the impeccable print quallty you see here;

• and Monte Nichols of Sandia Laboratories, for his personal encouragement and support of
our typesetting experiments.

© 1981 Oregon Software.

All Rights Reserved.

Rlscal-2 is a trademark of Oregon Software, Inc._

Oregon Software, OMSI Pascal; and the Blaise Pascal woodcut
are trademarks of Oregon Software, Inc.

DEC, PDP, RSTS/E, RT-11, RSX-11, IAS, VAX, and LSI-11
are trademarks of Digital Equipment Corporation.

1EX is a trademark of the American Mathematical .Society.

August. 1982
Printed in USA

Contents

Pascal-2 V2.0/RT-ll Introduction
For More Information
Support Policy .
A Note on Style ...
Who Are We, Anyway?
And Finally . . .

Pascal-2 V2.0/RT-ll User's Guide .
Introduction to the User's Guide .
Getting Started . .
Compilation Options
Your Next Step ·

Pascal-2 V2.0/RT-ll Programmer's Guide
Introduction
Compiler Commands .
Embedded Switches .
I/ 0 Control Switches .
. Extended Precision
External Modules ..
The Lin~er, Overlays, and the Librarian
Run-Time . Organization
Storage Allocation
·Compiler Errors
Error Termination Status
System Error Procedure
Implementation Notes .
Support Library
Compiler Optimizations

,·

Appendix A: Compiler Error Messages
Appendix B: Run-Time Error Messages ..

Pascal-2 V2.0/RT-11 Language Specification
Introduction to the Language Specification
Changes in the Standard .
Implementation Definitions
Syntax Extensions . . .
I/O Support Extensions
Low-Level Interface . .
Non-Standard Language Elements
Additional Predefined Function "Time" .
Error Handling
Appendix 1: Predefined Identifiers
Appendix 2: Reserved ·words
Appendix 3: Pascal-2 Syntax . .

ix
x.
x
xi

. xi
Xl

3
3
3
5

10

13
13
13
16
19
20
21
22'

. ' 24
2.8
29
29
30
31
34
35
38
41

45
45
45
47
48
50
51
56
57'
57
60
60
61

Pascal-2 V2.0/RT-11 Debugger Guide
Introduction
What the Compiler's Doing
Running the Debugger . .
Breakpoint Commands . .
Execution Control Commands
Tracking Commands . .
Data Commands
Informational Commands
Utility Commands . . .
Execution Stack Commands
·overlays

..

Appendix A: Debugger Command Summary .

The Pascal-2 Profiler
The Pascal-2 Profiler

Pascal-2 V2.0/RT-11 Utilities Guide
Introduction to the Utilities Guide

PASMAT: A Pascal-2 Formatter .
Overview of Capabilities
Using PASMAT . . .
Formatting Directives
Limitations and Errors
PASMAT Examples .

PB: A Pascal-2 Formatter
Using PB ·.
Example
Detailed Formatting Rules

XREF: A Pascal-2 Cross-Reference Lister
Using XREF
Limitations
Example of XREF Listing

·, .

PROCREF: Pascal-2 Procedural Cross-Reference Lister
Use of PROCREF
Limitations
Example

Dynamic String Package
Example

\ MACR0-11 Procedures With Pascal-2
Design of MACR0-11 Procedures
The PASMAC Macro Package
Procedure Definition Macros
Type Definitions
Example ...
Use of PASMAC

vi

•,

73
73
73
74
78
81
83
85
88
89
90
93
94

95
95

103
103

104
104
105
105
107
108

110
110
111
113

114
114
114

.114

116
116
117
117

119
120

121
121
121
123
127
128
131

'......__

-~

Prose: A Text Formatter . 133
Introduction 133
Historical Notes 133
Philosophy, Goals, and Capabilities 133
Basic Units of Text 134
A General Look at Directives 136
Controlling the Formatting Environment 137
Summary Directive Table 138

. Details on Directives 139
Running Prose 149

Conversion From Pascal-1 to Pascal-2 153
Introduction ... 153
Differences Between Pascal-1 and Pascal-2 153
General Procedures and the CONVRS Utility .156
Basic Conversion Techniques 157

·Programs Using External Procedures or Functions 159
Programs Using Low-Level Techniques 160
Likely Error Messages and Countermeasures 162

Pascal-2 V2.0/RT-11 Installation 167
Copying the Pascal-2 Files to. the System Device 167
Selecting a compiler for your system monitor 167
Selecting a run~ time library 168
Compiling the utility programs 168
Installing Pascal-2 With Pascal-1 168

/~. Appendix A - Pascal-2 System Distribution Files 169
Appendix B - Sample Installation Command File 170

vii

For More Information

Support Policy

A Note on Style

Who Are We,· Anyway?

And Finally ...

Contents

x

x

. xi

. xi

. xi

/

Pasca1~2 V2.0/RT-11 Introduction

Pascal-2 is a transportable multi-pass compiler that emphasizes conformance to the Pascal standard
while generating optimized code. Properly used, Pascal-2 will allow programs to be transported
between computer systems with a minimum of change. The compiler itself has already been installed
on computers made by two different manufacturers, and it is currently being implemented on two
others.

Developed over several years, Pascal-2 grew out of our experience with Oregon Software's first
Pascal compiler, Pascal-1. Pascal-1 is a one-pass compiler specific to the PDP-11 series, with low­
level extensions giving the programmer control over the PDP-11 hardware and operating system.
Pascal-2 is larger and compiles more slowly than Pascal-1, but Pascal-2 produces code that is much
shorter and faster than Pascal-1 code. Typical programs are 30 to 40 percent smaller and up to
twice as fast. ·

This user,manual contains all the information you need to install and operate the Pascal-2 system on
Digital's RT-11 operating systems: RT-11 V3 and V4, SJ, XM, and TSX-Plus by S & H Computing.

The first section is the User's Guide, which serves as a quick overview of Pascal-2, to give you a
feel for how it works. The guide, which is written on a beginner's level, takes you through the
basic steps of compiling, correcting, and running a Pascal-2 program. The User's Guide also has
brief explanations and examples of the Debugger, the Profiler, and the extended-precision format
for real numbers ~ the standard features of the Pascal-2 system.

The Programmer's Guide contains detailed descriptions of compilation commands, embedded and
low-level switches, and the low-level interface between Pascal-2 and the PDP-11 operating system.
The Programmer's Guide also contains a miscellaneous collection of articles on implementation­
related problems, divided into two broad categories: error situations (and what to do about them),
and implementation notes. Finally, the guide describes Pascal-2's optimizations, and it lists all of
Pascal-2's error messages.

The Language Specification describes Pascal..:..2's language features in detail. Because not everyone is
familiar with the major changes in the language since Jensen and Wirth's User Manual and Report in
1978, the Language Specification begins by summarizing those changes and describing the ways that
Pascal-2 deals with them. Thus, the guide serves not only as a description of our implementation
of Pascal but also as a review of th~ language's evolution since 1978~

The Debugger Guide and the Utilities Guide describe programs designed to improve the usefulness
of the Pascal-2 system or to alleviate the tediousness of programming. The Debugger helps you find
and correct errors that cannot be caught at compile time. The Utilities package contains program
formatters, a text formatter, cross-reference programs, an execution profiler, a package that helps
you to interface MACR0-11 routines with Pascal-2 programs, and a dynamic string package. Each
utility is· described in detail, with examples.

The Conversion Guide, geared toward present Pascal-1 users, explains specific language differences
between Pascal-1 and Pascal-2 and the practical programming problems created by the differences.
The guide describes the use of the CONVRS utility to help you isolate areas .in your Pascal-1
program that will have to be modified to convert to Pascal-2; the guide then details the steps
required to convert the programs. The section concludes with a list of solutions to errors that you
may encounter while completing the conversion to Pascal-2.

The Installation Guide describes the steps required to install Pascal-2 in your operating system.

This Pascal-2 manual assumes that you have a basic familiarity with the Pascal language. Some
sections, such as the Programmer's Guide and ·the Language Specification, assume a relatively
detailed working knowledge of the language. Beginners can make their way carefully through this
manual, but we encourage them to read the books described in the next section.

Pascal-2 V2.0/RT-11 Introduction

For More Information

We suggest several places to find more information about Pascal:

(1) Try it! Certainly the most challenging course; and the most open-ended and accurate as
well. Acquire the habit of answering your questions by experiment. Remember, ''You can't
hurt the computer!"

(2) Oh! Pascal, by Doug Cooper and Mike Clancy - an easy-to-read Pascal course for the
novice programmer.

(3) Programming in Pascal, by Peter Grogono - a good course in standard Pascal, with lots
of sample programs for (1), above.

(4) Paecal User Manual and Report, by Kathleen Jensen and Niklaus Wirth - the first
definition of standard Pascal.

(5) This manual - a description 'of the fine points and grubby details concerning Pascal-2.

For the serious student, these books are available from Oregon Software and elsewhere:

Algorithms + Data Structures = Programs, Niklaus Wirth; Prentice-Hall, $20.25

Structured Programming, Dahl, Dijkstra, Hoare; Academic Press, $15.30

Elements of Programming Style, Kernighan and Plauger; McGraw-Hill, $3.95

Systematic Programming: An Introduction, Niklaus Wirth; Prentice-Hall, $17 .7 5

And we recommend that you join the Pascal Users' Group, which publishes an excellent newsletter.
Send $10 for a one-year subscription to:

Pascal Users' Group
Attn: Rick Shaw
P.O. Box 888524
Atlanta, Georgia 30338
(404) 252-2600

Support Policy

The license fee for your Pascal-2 system includes one year of software support, which cover.s the
following:

1) Telephone assistance. We'll provide a qu!ck cure to your problem if at all possible.

2) Formal, written response to all problems, suggestions, and comments received in writing.
For complex problems, we need written descriptions of your technical problem to ensure
correct diagnosis and repair. (This service does not include applications consultation.)

3) A no-cost update to the latest revision of Pascal-2, upon the written request of your
Designated Contact Person. This is the standard response to bugs that have been fixed.
(A handling fee is levied for some media; no charge for magtape and floppies.)

4) The Oregon Software Pascal Newsletter, which contains status reports on all of our Pascal
products, announcements of new versions of software and new products, and various tech­
nical .articles.

Support may be renewed annually.

Customers of an Oregon Software distributor will receive the Newsletter directly from us but should
contact their distributor for other elements of support.

x

A Note on Style

A Note on Style

This manual. uses the following conventions:

Text: Sentence punctuation goes outside all quoted material. Pascal reserved words, predefined
symbols and directives are in bold· face typewriter type: begin, write. Program or
system names are in upper case typewriter: ROTAT. PAS, PROFIL. OBJ. Commands are in
typewriter: $fpp, /list.

Program Examples: Commands that you should type are in bold face typewriter: RUN EX. These
commands assume a carriage return at the end.

Program Listings:. Pascal-2 ·accepts any combination of upper-case and lower-case characters; for
consistency, the examples have Pascal words in lower case and have user-defined words
with an initial capital letter and other capitalization as .needed for readability, as shown
in this program fragment:.

procedure Show;
begin

SomeUserAction;
writeln(Result);

end;

Who Are We, Anyway?

Oregon Software traces its origins to the real OMSI - the Oregon Museum of Science and Industry.
OMSI is a private educational organization chartered "to further the education of the youth of
the community", and it was in the Research Laboratory at OMSI that we began writing software.
Seven of us came from OMSI to found Oregon Software in September, 1977. Because of the close
association, the name "OMSI" stayed with us for a while, and we continue to support OMSI and its

· educational programs.

But please, we're Oregon Software. We're a software research and development corporation in
Portland, with a nice view of Mount Hood (and what's left of Mount St. Helens!) The seven from
OMSI (the museum) have grown into twenty-five from all over.

On a serious note: OMSI is a non-profit, charitable institution. Contributions of money and
equipment are much needed and are tax-deductible. The Research Lab supports independent science
projects in many fields, including computing. For further information about the OMSI Research
Lab program, contact: ·

Director of Research
Oregon Museum of Science and Industry
4015 SW Canyon Road
Portland, Oregon 97201
(503) 248-5943

And Finally . . .

Oregon Software plans to ~ontinually improve its written materials. Please send any suggestions in
writing to:

Collins Hemingw~w
Documentation Editor
Oregon Software
2340 SW Canyon Road
Portland, Oregon 97201

xi

..--......\

_/

·Introduction to the User's Guide

Getting Started
Compiling the Program .
Checking For· Errors .

Compilation Options . . .
.The Program Listing . ·
The Formatter
The Debugger ..
Double Precision .
The Profiler .

Your Next Step

Contents

3

3
3
4

5
5
5
7
9
9

10

Pascal-2 V2.0/RT-11 User's Guide

·Introduction to the User's Guide

This is the introductory section, the User's Guide. It explains:

1) how to compile and run Pascal programs; .

2) . how to interpret program listings and error messages;

3) some details. of the compilation process.

This guide assumes that you are familiar with:

1) simple RT-11 commands;

2) a text editor (e.g., EDIT, TECO, KED);

3) elementary Pascal programming.

This guide is not:

1) ·an introduction to Pascal (see Programming in Pascal by Peter Grogono);

2) a detailed description of Pascal--2 (see the Language Specification, and Jensen and Wirth's
Pa seal User Manual and Report);

3) an expert's guide to Pascal-2. (see the Programmer's Guide).

Getting Started

The first step in running a Pascal program is to enter the program into the computer and store it in
the file system. Use a familiar text editor to enter a program; store the program in a file with the
extension . PAS. The Pascal-2 compiler accepts free-format program files, so use blanks, tabs, new
lines, and.form feeds as desired to help make the program readable.

This Pascal version of a program is called the source program, or the source file. All other versions
of the program are translation.s from the source program.

Compiling the Program

After editing, you must compile the program - translate it into a form that the computer can
execute directly - and link it to the Pascal-2 support library: With the compiler and the support
library on the system disk and with with a source file called TEST. PAS, the en.tire compilation process
follows this example:

.R PASCAL
*TEST

.LINK TEST,SY:PASCAL

3

.J

Pascal-2 V2.0/RT-11 User's Guide

As the example shows, the . PAS extension may be omitted from file names on commands to the
Pascal-2 system but must be included in commands to other RT-11 systems such as the editor.

To illustrate the compilation process, let's say that the program .

program First (output);
begin

write ('"Things are best in their beginnings"');
writeln (' -- Blaise _Pascal');

end.

is stored in the file FIRST. PAS.

Compilation proceeds as follows:

.R PASCAL
*FIRST

LINK FIRST,SY:PASCAL
.. RUN FIRST
"Things are best in their beginnings" -- Blaise Pascal

Notice that no errors were detected. The next example shows what happens if detectable errors are
present in the source program.

Checking For Errors

The Pascal-2 compiler will detect nearly 150 types of "grammatical" errors in a program: errors in
syntax such as missing semicolons, undefined identifiers, missing begin and end reserved words,· and
similar mistakes. As an example, the following program contains a deliberate error:

program Second (output)
begin

writeln ('Things get worse as they continue');
end.

A semicolon is missing between the program heading· and the reserved word begin. Semicolon
errors (the most common errors made by beginning Pascal programmers) are always detected by the
compiler:

.R PASCAL
*SECOND
Pascal-2. RT-11 SJ V2 .·OH 5-Jun-81 7: 21 PM Site #1-1 Page 1-1
Oregon Software, 2340 SW Canyon Road, Portland, Oregon 97201, (503) 226~7760

SECOND

1 progtam Second (output)
~19

*** 19: Use I· I to separate statements

*** There was 1 line with errors detected ***
?Errors detected: 1

For each detected error, a line of the source program is printed, then an arrow indicating the
approximate position of the error, then a message describing the error. (The number 19 is the error
message number generated by the compiler. See Appendix A of the Programmer's Guide for a
complete list of detectable compilation errors.).

I
I

Compilation Options

Compilation Options

· The Program Listing

Many times, to correct an error, you need to see more of the program than just the line on which
theerror appears. The Pascal-2 compiler can be directed to display the entire program, with all
detected errors and other information. This is the "listing" of the program.

To obtain· a listing (. LST) file, include the I 1 i st switch in the compilation. command line:

.R PASCAL
*SECOND/LIST

To get a program listing at a terminal, specify TT : as the listing file, as shown below. The listing
also may be written to the line printer or a disk file.

.R PASCAL
*THIRD, TT: = THIRD/LIST·

Pascal-2 RT11 SJ V2.0H 5-Apr-81 7:04 PM Site #1-1 Page 1-1
Oregon Software, 2340 SW Canyon Road, Portland, Oregon 97201, (503) 226-7760
THIRD.TT: = THIRD/LIST

1 program Third (output)

*** 19: Use
2
3
4

I· I
I to separate statements

begin

~19

writeln ('Things get hazy if you stare at them');
end.

***There was 1 line with errors detected ***
?Errors detected: 1

The listing is printed in pages, with a heading on each page showing the program name, the exact
version of the Pascal-2 compiler, the date and time; and the licensed site identification (the facility
name .and site number). The listing also prints out, in the left-hand column, the line number for
each line of the program. (You also may use the I errors switch to create a listing file containing
only the lines with detected errors.)

As illustrated in the above example of /1 ist, a compilation switch modifies the compilation process
in some way. A switch is signified by a slash and a descriptive name. The Programmer's Guide
describes all of the compilation switches, but the next examples show the most commonly used ones.
The examples also demonstrate some of the features of the Pascal-2 package - the Debugger, the
Profiler, the PASMAT formatter, and double.;.precision real number format.

The Formatter

Say you have a program, EX. It calculates an approximation of e (the base ofthe natural logarithms)
by summing the series·

1+1/1! + 1/2! + 1/3! + ... + 1/N!

until additional terms do not affect the approximation.

5

Pascal-2 V2.0/RT-11 User's Guide

Remember that the compiler will ~ccept a program in whatever format you choose. So the program
may look like this:

program Ex(output);
var E, Delta, Fact: real;
N: integer;
begin
E:=1.0; N:=1; Fact:=1.0; Delta:=1.0;
repeat
E:=E+Delta;
N:=N+1; Fact:=Fact•N; Delta:=1/Fact;
until E = (E+Delta);
write('With ', n:1, ' terms, ');
writeln('the valu~ of e is' ,E:18:15);
end.

In the interest of readability, you decide to format the program with PASMAT, one of the Pascal-2
utility programs. Give the following command:

.R PASMAT
•EX

and the program is reformatted to look like this:

program Ex(output);

var
E, Delta, Fact: real;
N: integer;

begin
E := 1.0;
N := 1;
Fact := 1.0;
Delta := 1.0;
tepeat

E := E + Delta;
N := N + 1;
Fact := Fact * N;

. Delta := 1 I Fact;
until E = (E +Delta);
write('With 1

, n:1, 'terms, ');
writeln('the value of e is' ,E:18:15);

end.

(PASMAT has other formatting options. See the Utilities Guide for details.) Now proceed to compile
the program .

. R PASCAL
•EX

.LINK EX,SY:PASCAL

.RUN EX
With 11 terms, the value of E is 2.718282000000000

6

Compilation Options

The Debugger

Even after correcting any syntax errors caught by the compiler, you may still get unexpected results
when the program runs. Paseal-2's interactive Debugger can help uncover and correct the problems
in this situation. With the Debugger, you can watch the progress of the computation, and you can
display intermediate values without making any program changes. You can then spot the point at
which values go awry and correct the error.

To do this, use the /debug switch to compile the program with the Debugger. (In most cases, you
probably also will want to overlay the Debugger module. See the Debugger Guide for details.)

First, compile the program with the command:

.R PASCAL
*EX/DEBUG

.LINK EX,SY:PASCAL

The I de bug compilation produces four output files: EX. LST, EX. SYM, EX. SMP, and EX. OBJ. You will
need the EX .LST file to determine the places to set breakpoints in the program. Don't worry about
the other three output files,. but don't delete them or the listing file. The Debugger. uses all of them.

After the EX/DEBUG command, you will find it handy to have a printout of the EX. LST file. The file
will look like this:

Pascal-2 RT-11 SJ V2.0H 5-Apr~81 7:04 PM Site #1-1 Page 1-1
Oregon Software, 2340 SW Canyon.Road, Portland, Oregon 97201, (503) 226-7760
EX/DEBUG

Line Stmt
1 program Ex(o~tput);
2
3 var
4 E, Delta, Fact: real;
5 N: integer;
6
7 1 begin
8 2 E - 1.0;
9 3 N - 1;

10 4 Fact - 1.0;
11 5 Delta - 1.0;
12 6 repeat
13 7 E := E + Delta;
14 8 N := N ~ 1;
15 9 Fact := Fact * N;
16 10 Delta - 1 I Fact;
17 until E = (E +Delta);
18 11 write('With ', n:1, ' terms, ');
19 12 writeln('the value of e is' ,E:18:1S);
20 end.

*** No lines with errors detected ***
Two columns of numbers appear on the left side of each page. The first column, labeled Line,
numbers each line of the squrce program. The second column is labeled Stmt and gives the statement
number of the first statement· on that· line. The statement numbers start at 1 for each pr:ocedure

7

Pasc.al-2 V2.0/RT-ll User's Guide

or function, increasing by one as each statement is compiled. The Debugger uses these statement
numbers to identify breakpoints.

In the program EX, for instance, you may want to set a breakpoint at statement number 7. This is
the point at which the approximation of e changes. If the program compiles correctly but produces
unsatisfactory results, you may set the breakpoint at MAIN, 7 to rrionitor the approximation to e as
the program runs. We'll do just that in the next example.

Notice that the Debugger willprompt for the name of the program and then allow you to set the
breakpoints. In this example, you tell the program to write the value of E at .the breakpoint and
then continue. (See the Debugger Guide for details on these commands.)

.RUN EX

Pascal Debugger V3.00 -- 27-Jan-81

Program name? EX
} B(MAIN,7) <W(E);C>
} G
Breakpoint at MAIN,7 E
1.0000000E+OO
Breakpoint at MAIN,7 E
2.0000000E+OO
Breakpoint at MAIN,7 E -
2.5000000E+OO
Breakpoint at MAIN,7 E -

2.6666667E+OO
Breakpoint at MAIN, 7 E -
2.7083335E+OO
Breakpoint at MAIN,7 E -

2.7166669E+OO

-- ----- at breakpoint, write E and continue
-- - - - ---- ------------------------------ start program

E + Delta;

E + Delta;

E + Delta;

E + Delta;

E + Delta;

E + Delta;

Breakpoint at MAIN, 7. E := E + Delta;
2.7180557E+OO
Breakpoint at MAIN, 7 E - E + Delta;
2.7182541E+OO
Breakpoint at MAIN, 7 E - E + Delta;
2.7182789E+OO
Breakpoint at MAIN, 7 E - E + Del ta;
2.7182817E+OO
With 11 terms the value of e is 2.718282000000000-

Program terminated.

Breakpoint at MAIN,12 writeln('the value. of e is', E: 18: 15);
} Q quit

8

Compilation Options

Double Precision

The computed value in the previous examples is printed with 7 significant digits. You may need
greater precision· for some programs. To get extended precision, use the /double switch, which
computes and displays i5 significant digits. (See the Programmer's Guide for details.)

.R PASCAL
*EX/DOUBLE

.LINK EX,SY:PASCAL

.RUN EX
With 19 terms, the value of E is 2.718281828459050

The Profiler

Finally, let's ''profile" the program by using the /profile switch and by adding the PRFILE module
to the Linker input. ':fhe Profiler will take control of your program and ask for the program's
name. Next, the Profiler will ask for the name of the profile output file. The default extension is
.PRO .

. R PASCAL
*EX/PROFILE

.LINK EX,SY:PRFILE,SY:PASCAL

.RUN EX

profile -V3,1 15-Mar-81

Prog~am name? EX
Profile output file name? EX -------- Output goes to EX. PRO

With 11 ter~s. the value of e is 2.718282000000000

Program terminated.

Profile being generated

The output file, EX. PRO, will look like this:

9

Pascal-2 V2.0/RT-11 User's Guide

Pascal-2 RT-11 SJ V2.0H 5-Apr-81 7:04 PM Site #1-1 Page 1-1
Oregon Software, 2340 SW Canyon Road, Portland, Oregon 97201, (503) 226-7760

C:X/PROFILE

Line Stmt
1 program Ex(output);
2 var
3 E, Delta .. Fact: real;
4 N: integer;
5

1 6 1 begin
1 7 2 E - 1. O;
1 8 3 N - 1·

'
1 9 4 Fact - 1.0;
1 10 5 Delta - 1. O;

10 11 6 repeat
10 12 7 E := E + Delta;
10 13 8 N := N + 1;
10 14 9 Fact := Fact * N·

'
10 15 10 Delta - 1 I Fact;

16 until E = (E + Delta);
1 17 11 write ('With I n: 1, I terms I) ;

1 18 12 · wri teln ('the value of e iS I, e: 18: 15);
19 end.

'*** No lines with errors detected ***

PROCEDURE EXECUTION SUMMARY

Procedure name statements times called statements executed

MAIN 12 1 57 100.003

There are 12 statements in 1 procedures in this program.
57 statements were executed.during the profile.

The leftmost column of the profile listing shows the number of times each line is executed. The
Profiler listing concludes with a "Procedure Execution Summary" that details each procedure name,
the number of times it is called, the number of statements it contains, and the number of statements it
executes. Note, too, that the summary shows the percent of execution count taken by each program
block. (In this example, with only one procedure, the portion is 100%.) Given this information, you
can attempt to optimize the procedures and statements that use a disproportionately large part of
the time ("90 percent of the time on 10 percent of th~ program").

See the Profiler section of the Debugger Guide for more information and for a much more detailed
example.

Your Next Step

Thus ends your guided tour through Pascal-2. At this point, you should be able to run a few simple
programs. Before getting into complex programs, however, you should consult the Programmer's
Guide, the Language Specification, arid the Debugger Guide. And, if you presently use Oregon
Software's Pascal-1, consult the Conversion Guide to determine the best ways to change over
programs to Pascal-2.

10

1.....,__

Introduction

Compiler Commands .
File Specifications
Compilation Switches
Compilation Examples
Linking and Executing

Embedded Switches . . .
Compiler Options . .
Run-Time Checking Switches

I/ 0 Control Switches
/BUFFERSIZE:n Switch
/GO Switch.
/ODT Switch .
/NFS Switch .
/SEEK Switch
/SIZE:n Switch
/SPAN Switch
/TEMP Switch

Extended Precision

External Modules .
External Module Libraries

The Linker, Overlays, and the Librarian
The Linker .
Overlays
The Librarian . . .

Run-Time Organization
Form of the Generated Code
Memory Organization
The Stack Frame

Storage Allocation

Compiler Errors .

Error Termination Status

System Error Procedure

Implementation Notes .
Multiple Source Files .
Timestamp Procedure
Foreground Operation
Virtual Jobs and the XM Monitor

Support Librarj .. ,• .

Compiler Optimizations

Appendix A: Compiler Error Messages

Appendix B: Run-Time Error Messages .

Contents

.. 13

13
13
14
15
16

16
17
18

19
19
19
20
20
20
20
20
20

20

21
21

22
22
23
23

24
24
25
26

28

29

29

30

31
. 31

32
33
33

34

35

38

41

Pascal-2 V2.0/RT-ll Programmer's Guide

Introduction

The Programmer's Guide contains nitty-gritty information about Pascal-2 for programmers well­
versed in the Pascal language. This guide describes compiler commands, compilation and embedded
switches, I/O control switches, and Pascal-2's low-level interaction with the PDP-11. This guide also

. · describes ways to handle common Pascal-related implementation questions on RT-11 and contains
other miscellaneous information.

This guide is not:

1) an introduction to Pascal (see Programming in Pascal by Peter Grogono);

2) a beginner's guide to Pascal-2 (see the User's Guide);

3) a detailed description of Pascal-2 (see the Pascal-2 Language Specification).

Compiler Commands

Compilation of a Pascal-2 program begins with the R PASCAL command. The Pascal-2 compiler
responds with . an asterisk (*) as a prompt. You must then supply the file specificat.ions and
compilation switches. ·

Examples in this document.list the compilation switches after the last file specification, but switches
may appear after any file specification and will apply to the entire compilation.

File Specifications

The only required file specification is the input file. Multiple input files are concatenated in the
order in which they are given, so that a large program can be split into separate files or w that a
common set of definitions can be placed in a configuration file. The default file extension for any
input file is . PAS. If no output spe~ification is given, the output is determined by the compilation
switches; the file name is taken from the last input file specified; and the output files will be placed
in the default directory.

The output file specification consists of the output file and the listing file. The output file specifies
the name of the object output, with a default extension of . OBJ. If the /macro compilation switch
is specified, the output is in MACRO and the default extension is . MAC. The listing file specifies the
file to receive the compilation or error listing, with a default extension of . LST.

An output file specification exists whenever an equal sign '=' appears in the command line. If an
equal sign '=' appears but no file name is listed in the position of the output file, no output file will
be generated. If no file name is listed in the position of the listing, a listing output will be produced
only if errors exist; if errors exist, output will be to the user's terminal with the I errors switch
assumed.

13

,

Pascal-2 V2.0/RT-11 Programmer's Guide

Compilation Switches

Compilation switches provide control over the files generated and over some aspects of the generated
code. A switch is signified by a slash '/' and a descriptive name (e.g., /check). A switch name
beginning with 'no' reverses the effect of the switch (e.g., /nocheck). A switch name may be
abbreviated as long as the shortened form is sufficient to identify the switch. Three characters of
the switch name (excluding the no) will always identify a Pascal-2 compilation switch (e.g., /che;
/noche, /mac, /nomac).

Some switches, such· as I object and /macro, are incompatible and will cause the error message
"Conflicting switches· specified" if used in the same compilation.

Formal Compilatio_n Syntax

compilation-spec = [output-spec] input-spec .

input-spec = input-file { "," input-file}. ·

output-spec -:- l output-file] ["," [listing-file]] "=" .·

input-file -:- file-spec .

output-file = file-spec .

listing-file = file-spec .

file-spec = <any legal file specification> { "/" ["no"] switch } .

switch = identifier .

Pascal-2 compilation switches are:

Program Options

/double: All real variables are in 8-byte floating-point format. You also must use colon notation
(e.g., E: 18: 15) within the program to obtain double-precision values in the write state,..
ment. Default is "off": real variables are in 4-byte format. (See the Extended Precision
section for more details.)

/nomain: No main program is expected; only procedures are compiled. The switch is used to
generate external procedures. If a main program is found, an error message is generated
saying that an extra statement has been found. Default is /main: a main program is
being compiled.

/own: ·Specifies that global-level variables are local to the compilation unit and are not shared
with other programs or external routines. Def a ult is "off": global variables are shared.

/pascal 1: Specifies that the interface to external procedures be compatible with Pascal-1. This
interface is a bit less efficient than that of Pascal-2; the /pascal 1 switch should be used
only when required. Default is the Pascal-2 interface.

Compiler Options

/er.rors: Requests that the listing file contain only lines with errors. Unless /list is specified,
the default is "on" and errors are printed on the terminal.

I 1 i st: Requests a full source listing in the listing file. If a listing file is specified, the default is
"on"; otherwise the default is "off".

I debug: Enables generation of code to interface to. the Pascal-2 Debugger. Default is "off". The
switch cannot be used with the I prof i 1 e switch.

I prof i 1 e: Requests an execution profile when the program is run. Default is "off". The switch
·cannot be used with the /debug switch.

14

Compiler Commands

Code Switches

I object: Generates an object format output file with default extension . OBJ. Default is "on"
unless an output specification is provided but no output file is listed. The switch cannot
be used with the /macro switch.

/macro: Gener.ates MACRO code in the output file. This code may be assembled by the MACRO
assembler command to produce an object file. When /macro is specified, I object is set
"off" and the default extension for the output file becomes . MAC. Default of /macro is
"off". The /macro switch cannot be used with the /object switch.

Processor Switches

The processor switch defaults to the processor option for the machine on which the compiler is
running. Change the value by specifying exactly one of these four switches on the command line:

/fpp:

/fis:

/eis:

/sim:

Requests the compiler to generate code for a machine with the Floating Point Processor
(FPP) option. FPP instructions include ADDF, MODF, DIVF, etc. This switch implies the
/eis switch and may not be specified at the same time as the /f is switch.

Requests the compiler to generate code for a machine with the Floating Instruction Set
(FIS) option. FIS supports only the four basic floating-point instructions and is available
on only a few types of machines. This switch. implies the I e is switch and may not be
specified at the same time as the /fpp switch.

Requests the compiler to generate code for a machine with the Extended Instruction
Set (EIS) option: The EIS processor option includes instructions to perform integer
multiplication and division. Floating-point· operations will be done with calls to a
floating-point simulator. ·

Requests code with calls to software routines for multiply and divide as well as for
floating-point arithmetic. Should be used ·only if the target machine does not have EIS.

Checking Switches

/nocheck: Disables all run-time checks, including index range checks, subrange assignment check,
nil pointer checks, stack checks, and case label checks. Note that compile-time errors
are still detected. Thus, if /nocheck is specified, var A: array [2 .. 10] of integer;
A[1] := O; will still be detected as an error, but I := 1; A[I] := O; will not be.
Default is I check.

I standard: Requests that all Pascal-2 extended language features be flagged as errors. Default
is /nostandard.

/test: Used in debugging of the compiler. Default is "off".

/times: Prints wall-clock time consumed by the compiler. Default is "off".

Compilation Examples

The following examples show the effects of various switches ~m the compilation.

Example 1.

.R PASCAL
*PROG/LIST

Compiles the file PROG. PAS and generates an object file PROG. OBJ and a listing file PROG. LST. The
I check option is assumed to be on, and code will be generated for the hardware options of the
machine on which the program is being compiled.

15

Pascal-2 V2.0/RT-11 Programmer's Guide

Example 2 .

. R PASCAL
*PROG,PROG=PROG

Equivalent to .Example 1.

Example 3 .

. R PASCAL
*PROG=PROG/NOCHECK/FIS

Compiles the file PROG. PAS and generates an object file PROG. OBJ. Any errors will be· listed on the
user's terminal. No run-time checking.code is generated, and code will be generated for a CPU with
FIS instructions.

Example 4 .

. R PASCAL
*HEADER,MIDDLE,PROCED/NOMAIN

Concatenates and compiles the files HEADER. PAS, MIDDLE. PAS, and PROCED. PAS in the order given,
and generates an object file, PROCED. OBJ. This code has no main body and therefore contains external
procedures. The I check .option is assumed to be on, and code will be generated for the hardware
options of the machine on· which the program is being compiled.

Example 5 .

. R PASCAL
* ,TT:=PROG

Produces a listing file to the terminal but no PROG. OBJ file.

Linking and Executing

After compilation, Pascal-2 programs must be linked to the support library before being executed.
For Version 4 of RT-11, the sequence is:

.LINK PROG,SY:PASCAL

.RUN PROG

J For Version 3 of RT-11, the sequence is:

.R LINK
*PROG = PROG,SY:PASCAL
*-c
.RUN PROG

Embedded Switches

Some characteristics of the compiled code may be controlled by switches included in. the source code.
These switches take the form of a Pascal comment beginning with a dollar sign '$' and followed by
a descriptive name, for example:

{$indexcheck}

A switch name beg_inning with "no" reverses the effect of the switch, for example:

{,$noindexcheck}

16

I

"---

' ."-...

Switches may be abbreviated to a minimum of three characters, for example:

{$ind} or {$noi}

Embedded Switches

Embedded switches are counting switches. Each occurrence increments or decrements the switch
value; the switch is enabled if its value is greater than zero. The initial value of a switch is controlled
by an equivalent compilation switch (such as /debug), if the equivalent compilation switch exists. If
no equivalent switch is present on tbe command line, the initial value is determined by the defaults
described below.

Once set, some switches are valid for the entire program. The $double switch is an example of this.
In some cases, the "no" form. of the switch is the one you would normally use, as with $nomai n.

Some switches may be turned "on" and "off" for a particular section of code, normally on a block­
by-block basis. The following example shows how debugging can be turned off for a procedure:

{$nodebug}
. procedure P;

begin
. {procedure}
end;

{$debug}

The particulars of each switch are described in the following sections.

Program Options

$double specifies that all real arithmetic is to be done with double precision rather than with
·single precision. $double applies to the entire compilation. You also must use colon
notation (e.g., E: 18: 15) to print the double-precision values in a write statement: This
switch IDllSt appear in the program before any data of type real is defined or used.
Default is "off".

$nomain No main program is expected; only procedures are compiled. This switch is used most
often to compile modules containing only external procedure definitions. If a main
program is found, an error message is generated saying that an extra statement has
been found. Default is $main: a main program is being compiled.

$own specifies that global-level variables will be unique ·to this compilation unit and will -not
be shared with other compilation units. $own applies to the entire compilation. Default
is $noown, indicating that global variables will be shared.

$pascal 1 specifies that external procedures will be called in a manner compatible with Pascal-1.
This switch may slow program execution but should simplify conversion of programs from
Pascal-1 to Pascal-2. The switch must be turned on whenever a Pascal-1 procedure or
function is called; $nopascal1 turns off the switch. The default is $nopascal 1.

External Pascal-2 procedures may be called regardless of the setting of this switch.

Compiler Options

$node bug, $debug disables/enables some of the overhead of the Pascal-2 Debugger. These two
switches will have an effect only when -the /debug compilation switch is specified. The
/debug switch generates the extra files needed for debugging and sets the $debug switch
"on". $node bug can be used to turn off some of the debugging overhead for procedures or
functions that have already been fully tested. $debug can be used to restore debugging
for other blocks of code.

$noprof i le, $profile disables/enables some of the overhead of the Pascal-2 Profiler. These two
switches will have an effect only when the /prof i 1 e compilation switch is specified. The

17

Pascal-2 V2.0/RT-11 Programmer's Guide

/prof i 1 e switch generates the extra files needed for profiling arid sets $prof i 1 e "on".
$noprof i1 e can be used to turn off profiling for procedures or functions that do not need
to be profiled, and $prof i 1 e can be used to restore profiling for other blocks of code.

The state of the $debug/$nodebug and $profile/$noprofile switches when the begin
of a block is compiled will determine debugging or profiling for that entire block .

. The $debug/$nodebug and $profile/$noprofile switches serve the same functions as
far as the code generated. You would never use both sets in the same compilation. (You
can't debug the program and profile it at the same time.)

$nolist turns off the listing of source lines in the listing file; $li.st restores the. listing of source
lines. The switch may be turned on or off after each line of source code. The listing file
will display the $nolist/$list switches, and the line numbers will reflect the lines for
which listing has been disabled. In this program fragment, listing has been disabled on
lines 3 through 5:

1 program Ex(output);
2 {$nolist}
6 {$list}
7
8 begin
{program continues}

Lines with errors will be displayed even if the $nolist switch is on. Default is $list.

Do not use the $nol ist switch during debugging sessions. If you attempt to access any
"unlisted" line(s), the response will be the message "No such statement in this procedure".
Other errors may also be produced.

$standard, like the compilation switch I standard, alters the language checking to mark all
extended language features of Pascal-2 as compilation errors. By using the embedded
switch at the beginning of the program, you don't have to use the I standard switch
every time you compile the program.

In addition, if you want to compile the program using language extensions of Pascal-2,
but you want to mark the non-standard features (for later transportability to another
compiler, perhaps), insert the $standard switch at the start of the program, and enclose
any non-standard sections with the switches $nostandard and $standard. The compiler
will then check the rest of the program for non-standard features, so that you can
minimize your use of extensions. The $nostandard switch will be a textual flag to aid
any future conversion to a standard program.

The $standard and $nostandard switches may be turned on or off after each line of
source code. Default is $nostandard, which accepts the extended language features of
Pascal-2 as correct forms.

·Run-Time Checking. Switches

The compilation switch /nocheck will turn off all run-time checks. The four embedded switches
listed below will cancel particular checks selectively. Any of the four can be placed at the start of
the program to turn off a particular kind of check throughout. Or, "on/ off" pairings can be used
on a line-by-line basis within the program.

Turning off run-time checks will reduce the size of the program. However,· we rec;ommend that you
do not turn off any checks until the program has been fully debugged.

$noindexcheck stops the generation of code for array bounds checks; no array index is checked
as to whether it is within the array bounds. Default is $indexcheck.

18

Embedded Switches

$nopointercheck stops the generation of code that checks for nil pointer values. Default is
$pointercheck.

$norangecheck cancels the subrange assignment check capability. No assignment to a variable of
subrange type is checked as to whether the assigned value is within the allowed range.
Default is $rangecheck.

$nostackcheck stops the generation of code for stack overflow checks on procedure and function
entry. No entry to a procedure or· function is checked as to whether adequate stack
space is available for local variables. Note that some procedures call support library
routines that check for stack overflow. Thus, even when compiled with this switch, some
programs may still report stack overflow errors. The default is $stackcheck.

I/ 0 Control Switches

The reset and.rewrite standard procedures accept additional arguments specifying a file name of
·an external.· file, and a default name with def a ult fields of the file name. These arguments can also
include I/O control switches, which give explicit control of the operating system interface details.

The I/O switches appear in the file name or default name parameters as in this example:

rewrite(F, 'data.dat/seek/span/size:12. ');

A special device (TI :) also may appear in the reset and reWI'i te calls. The TI : device connects
to the Pascal-2 terminal driver and is used in place of the TT: driver for interactive use.

A complete list of I/O switches appears below, followed by individual details. All switches may be
abbreviated to the first two letters.

/buff ersfae: n
/go
/odt
/nf s
/seek
/size:n
/span
/temp

Allocate N bytes for buffet
Programmed error handling
Single-character. terminal input
Non-File-Structured access
Direct-access file

. File storage allocation
Records span block boundaries
Temporary file

/BUFFERSIZE:n Switch

Pascal-2 normally allocates the minimum space required for a file buffer, which is usually 512 bytes
·but is dependent on device and file characteristics. More efficient I/O transfers can be performed at
the cost of additional memory. The /Buffersize: n switch specifies the storage to be allocated to
a file buffer. The size value is a decimal number if terminated with a period, otherwise octal.

./GO Switch

I/O transfer errors are normally fatal and cause immediate program termination. The /Go switch
indicates that transfer errors on the specified file are non-fatal and allow program execution to
continue. In using this switch, the programmer accepts responsibility for checking the RT-11 I/O
status code after each I/ 0 operation. The error code for the previous I/ 0 transfer error is available
in the byte at address 52B.

19

Pascal-2 V2.0/RT-ll Programmer's Guide

/ODT Switch

The /DDT switch derives its name from the ODT Debugger (Octal Debugging Technique), which is
driven by single-character commands. The /DDT switch is used with' keyboard files, and indicates
that each character read from the file is to be processed immediately without any wait for a carriage
return or other a~tion character .. The /DDT switch also disables the normal one-character buffer
effect of the read standard procedure.

Note that the /DDT is only effective for files on the TI: terminal device. Also, the rubout and
Control-U keyboard-editing capabilities are not effective with -/DDT.

/NFS Switch

The /NFS switch is used to achieve non-file-structured access· to a device that is normally file­
structured, such as a disk device. Because direct access to such a device can destroy its directory
structure, Pascal-2 prevents non-file-structured access unless the /NFS switch is used.

/SEEK Switch

The /Seek switch enables the use of the direct-access seek procedure, and it permits both read_ and
write access to the file variable so that records may be updated.

/SIZE:n Switch

The /Size switch used in the rewrite procedure specifies the space to be allocated for the file. The
size of the file is given in blocks of 512 bytes, and is a decimal number if terminated by a period,
otherwise octal.

/SPAN Switch

In files created or accessed by Pascal-'-2 programs, fixed-length records are normally "blocked".
This means that an integral number of records are stored in one disk block of 512 bytes,. with any
remaining storage in that block being unused. The /Span switch packs records more efficiently, with
records spanning from one disk block to the next. This requires additional buffer memory, which
is automatically allocated, and some. additional computation. Spanned and blocked files are not
generally compatible. Files created with /Span should .be read with the same switch.

/TEMP Switch

This switch is used in rewrite to indicate a temporary file that will .be deleted on termination. No
file name is needed if this switch appears.

Extended Precision

Values of type real are normally stored in the PDP~ll single-precision format, which requires 2 words
of storage per value and offers 7 decimal digits of precision. The /double compilation switch.or the
$double embedded switch gives double precision to all real values. Each extended-precision value
occupies 4 words of storage and provides approximately 15-digit precision in all real calculations,
including the transcendental functions.

Normal and extended-precision values cannot be mixed in a program: the /double or $double
switch will generate extended precision for all real values. All external modules must be compiled
with the same precision as the main program, even if rto real variables are present.

20

Extended Precision

In addition, you must use the colon notation output format (e.g., E: 18: 15) to display double precision
values in write statements.

External Modules

An external module is a program fragment ·containing at least one procedure, function, or main
program. External modules ·are compiled independently and combined at link time. External
modules may be combined into libraries to simplify the handling of common routines. (See· the
section on the Linker, Overlays, and the Librarian.) The external module interface allows inclusion
of modules written in other languages, such as FORTRAN and MACRO.

~------- ·--·---··--·-----·-·······-··

The external directive declares a procedure or function as "external", which means that the
procedure may be referenced by other modules or defined in another module. External routines
can be declared only at the outermost level of a program, but they may be called from inner levels

. as with any other global rout~ne.

The external directive is similar to the forward directive in that the declaration of' an external
routine is separated from the body of that routine. The body of the external routine can appear in
only one compilation unit. Declarations may appear in several compilation units; in fact, an external
declaration must appear in each compilation unit that calls an external routine.

For example, a Pascal-2 external procedure is defined by:

procedure Proc(Arg: Argtype);
external;

procedure Proc;
begin

e.nd;

---------··--------- · - this is the declaration

----·---------------·--··-··--- this is the body

External modules may reference global ~tatic) variables, which are shared by all of the modules
composing a program. If each ~(inclutlfug tlie-illain program) is compiled with the same
global variables, the effect is as if all modules were compiled together.

The NonPascal directive replaces external in references to external routines written in FORTRAN
or MACRO. The NonPascal directive causes the generation of a PDP-11 standard calling sequence

V (the Pascal calling sequence places parameters on the stack, while the FORTRAN sequence points
internal register R5 to a list of parameters).

Each external procedure name consists of the first six characters of the procedure or function identifer
and must uniquely identify the external routine,, because the names are used as globa~ entry points
by the Linker. The title of the module containing the external procedure(s) consists of the first six
characters of the output file name. Any underscore character '_' in a procedure name or module
title will be converted to a period '. '.

Duplication of external symbols will cause the Linker error "?LINK-W-Mul tiple def ini ti on". A
reference to a missing external routine results in the "?LINK-W-Undefined globals" error message.

External Module Libraries

Suppose you want a library of procedures that can be referenced by any program. For a particular
program, you will not necessarily reference all the procedures in that library, and you do not want
the entire library loaded with the program.

Procedures and functions from one compilation form a· single object module and cannot be in­
dividually loaded. If procedures A, B, and C are compiled together and placed in a library, any

21

Pascal-2 V2.0/RT-11 Programmer's Guide

reference to one of them will cause all three to be loaded. If each procedure A, B, and C is compiled
separately and the three object modules are placed in the same library, then a reference to one of
them will cause only that module to be loaded in the program. To keep final program size to the
minimum, library modules should be compiled separately whenever possible. ·

Rather than write external declarations in the main program for each procedure needed, create a
single header file containing the external declarations for all the external procedures defined in the
library. Include that header file in the compilation. No external reference will be generated for any
external procedure in the header file that is not referenced by the program, so only those modules
actually used by each compilation unit will be loaded into the final image file (assuming that the
library modules ·were themselves separately compiled).

Use of a header file in this way avoids errors that could be caused by a mismatched declaration; and
it forces any change made to a declaration for an external procedure to be reflected in all 'programs
using the affected procedure. Carried to the fullest extent, a library and its corresponding header ·

· file can be us.ed system-wide.

Cautions

Observe one caution· when using the external or NonPascal directive. Parameters to external
routines cannot be checked by the compiler for type conformance, so an accidental type mismatch
will cause unpredictable results. Also, the compiler cannot verify the conformance of global data.

All external modules must be compiled with the same real precision (single or double) as the main
program.

Anyone attempting to combine Pascal-1 and Pascal-2 external procedures should first consult the
Conversion Guide.

The Linker, Overlays, and the Librarian

The Linker

Object modules produced by the Pascal-2 compiler are compatible with object modules produced
by the MACRO assembler, FORTRAN compiler, and other RT-11 system utility programs. The
Linker, LINK. SAV, can produce overlaid executable programs, allowing much larger programs. The
Librarian, LIBR. SAV, can build libraries of object modules1 Some highlights of Linker and Librarian
capabilities are covered here. See the .RT-11 System User's Guide for details.

To run the Linker, give the command:

.R LINK

*
(' *' indicates that the Linker is waiting for a command.)

The first command line can include the output file, a map file if desired, and up to six input files. The
file PASCAL. OBJ, which contains the Pascal run-time library, must be used when linking a Pascal
program. The example below links the object module MAIN with two others, SUB1 and LIB1, to
produce a MAIN. SAV file and a MAIN. MAP file.

*MAIN I MAIN=MAlN I SUB1 I LIB1/C
*SY:PASCAL
*-c

. 22

-~

The Linker, Overlays, and the Librarian

Overlays

The /0: N switch selects the overlay facilities of the Linker, where the parameter N indicates the
overlay region number. Sets of modules allocated to the same region will be overlaid against other
modules in the same region, with only one set of modules per region actually in memory at a11-y one
time.

The following sequence links a main program and several external modules into an overlaid executable
file. The main program and the Pascal library are not overlaid and must be in the root s·egment (on
the first command line). FIRSTA and FIRSTB do not call each other and are overlaid against each
other in region 1. · TWOA and TWOB do not call each other and are overlaid against each other in region
2. The set of NEXT A, NEXT2A, and NEXT3A are overlaid against the set of NEXTB, NEXT2B, and NEXT3B
in region 3. No module in one set calls a module in the other set that is overlaid in region 3. The
continue switch (le) allows the input file list on the next line to be included in the linking .

. R LINK
*PROG = MAIN,SY:PASCAL/T/C
*FIRSTA/0: 1/C
*FIRSTB/0:1/C
*TWOA/0:2/C
*TWOB/0:2/C
*NEXTA,NEXT2A,NEXT3A/0:3/C
*NEXTB,NEXT2B,NEXT3B/0:3
Transfer symbol? $START
*-c

Overlays for the Pascal'.'""2 Debugger are described in the Debugger Guide of this manual.

The Librarian

The Librarian combines relocatable object module. files to form an object module library. This
library may be included as input to the Linker, which will. select only those modules needed by
the program being linked. Note that a module always consists of the entire set of procedures and
functions from its compilation. Individual procedures cannot be selected from a module:

For example, the dynamic string package STRING. PAS, supplied as a Pascal-2 utility, can be edited
to form 9 files, with each file containing one procedure or function. The 9 files can then be compiled
and combined into a library containing 9 modules, as follows .

. R LIBR
*STRING=LEN,CLEAR,READS,WRITES,CONC/C
*SEARCH I INSERT I DELETE I SUBS.
*-c

·23

'
r

t

Pascal-2 V2.0/RT-ll Programmer's Guide

Run-Time Organization

Form of the Generated Code

Pascal-2 code. is divided into program sections called "psects". The psects for the main program
and any separately compiled procedures are combined with the Pascal support library by the Linker
to produce an executable program image. The use of multiple psects provides greater flexibility for
the combination of individual procedures into a.program.

The compiler generates these psects:

, <blank> .The instruction code for the compilation unit. The blank psects for all compilation
units are concatenated; compiled code will not attempt to write to this psect;

CONSTS All, constants generated by the compiler. This includes constants declared by constant
declarations or implicit in the code. This psect also contains jump tables generated by
case statements, so there is a complete separation of instruction references and data
references. The CONSTS psects for all compilation units are concatenated; compiled code
will not attempt to write to this psect.

TABLES Contains bit tables used for access to set elements and individual bits within a word. All
Pascal compilations generate this psect, but all copies will be overlaid by the Linker so
that only a single copy will exist in the final program. Compiled code will not attempt
to write to this psect.

SHIFTS Generated only if the target machine does not have the EIS hardware option (/sirn).
This psect contains a table of shift instructions that simulate multiple shifts. The psect
is overlaid in a manner similar to TABLES and is treated as read-only by the compiled
code.

GLOBAL Contains all ·global variables used in the main program and external procedures. This
psect is arranged so that the global variables are shared among all procedures .. The main
program and all procedures that reference global variables should have exactly the same
declarations. The size of the resulting psect is that of the largest GLOBAL psect generated
by any of the compilation units.

If the I own switch is specified in the compilation, this psect will instead be named with
the first six characters of the program name, allowing multiple global variable segments.
Compiled code will write to this psect.

The following table summarizes the attributes of.the various psects. Refer to the MACR0-11 manual
for further information on the meaning of the attributes.

Psect Name

<blank>
CONSTS
TABLES
SHIFTS
GLOBAL

Attributes

I ,LCL
D,CON,LCL
D,OVR,GBL
I ,OVR,GBL
D,OVR,GBL

So that Pascal programs may be included in libraries, each Pascal-2 object file has a module name
consisting of the first six characters of the output file name. Thus a program compiled with the line:

.R PASCAL
*RESPRDG.= HDR,INPROG

will have the module name RESPRO.

24

Run-Time Organization

Memory Organization

A program on the PDP-11 has access to 32768 words (frequently abbreviated to 32K). The exact
arrangement of storage is determined by the commands to the Linker, but a typical program may
look something like the following figure, which represents a snapshot taken during execution. The
numbers are representative and will vary from program to program. .

I/O Page

RT-11 monitor

------------ stack -----------
USR swap area

heap

run-time 11].>rary_
tables

constants

global variables

program code

RT-11 System Area

RT-11 System Area

32K

28K

26K
+-SP

16K ·

14K

lOK

0

The RT-11 System Area occupies the first 256 words of all programs and contains interrupt vectors
and status indicators used by RT-11. This area is also used for communication between the Pascal
program and other programs linked by chaining.

Program Code

The program code section contains the instructions for the user program. The size of this section is
determined by the amount of user code.

Global Variables

The global variables section contains the .global variables used by. the Pascal main. program and
external procedures. The size is that of the largest global variable section in any compilation unit.

Constants

The constants section consists of all constants, such as strings or real constants, needed by the
program. The section also. contains the jump tables· for case statements. The size of this section is
determined by the user code. ·

25

Pascal-2 V2.0/RT-11 Programmer's Guide

Tables

The tables section, which contains data needed by all Pascal programs, is 40 bytes long.

Run-Time Library

This section contains routines from the Pascal run-time library used by a program. Only those
routines needed by a particular program are loaded here.

The Stack

The stack contains all variables local to inner blocks of the program, plus parameters, procedure
linkage information, and temporary working storage. Upon entry to a procedure or function, space
is allocated on the stack (a stack frame) containing space for all storage local to that block. The
format of the stack frame is described below.

The stack starts at the highest available address and expands downward, and the heap begins just
after the program image and grows upward. This allows the maximum room for growth in both.

The stack pointer (SP) always points to the top of the stack (lowest physical space). If the space
available for the stack is too small, the stack pointer will eventually exceed the limits of the stack
space and cause the error, "Stack exceeded memory".

The .Heap

The heap is the area for dynamically allocated memory. The heap is used for I/O control blocks,
buffers, and variables allocated with new.

The heap is allocated from the bottom of available memory and can grow until it meets the stack,
which is allocated at the top of available memory.

Space is returned to. the heap when files are closed or when variables previously allocated with new
are deallocated with dispose. Such space is then available for further heap allocation. The error
message "New() exceeded memory" will result if no space is available to satisfy a request for heap.
storage.

The Monitor and I/O Page

For RT-11 systems other than X1v1 virtual jobs, the Monitor space contains the RT-11 resident
monitor, the user service routine (USR) if it is set "NOSWAP", and any device handlers loaded with
the LOAD command. The I/ 0 page contains· device s.tatus and command registers.

For an RT-11 X1v1 virtual job (bit 10 set in the JSW), the monitor and I/O page are not allocated,
and the stack will begin at the top of user memory. See the X1v1 section for details.

The Stack Frame

As each procedure or function is entered, space is allocated on the stack for parameters, linkage
data, and local use. This space is called a "stack frame"; the "stack" consists· of these stack frames.

The format of a stack frame is:

26

Run-Time Organization

(previous stack frames)

function return value

parameters

return link

local variables

register save area
+-SP

temporary storage

Not all of the fields will be used by the compiler for every procedure; only the return link is present
in every frame. It is the responsibility of the called procedure to remove the parameters and local
variables from the stack before a return is made to the caller.

Function Return Value

The function return value field appears only for functions. A value assigned to the function name
within the function will be stored in this location and left on the top of the stack when the function
returns. Space for this field is allocated by the caller before evaluation of the arguments for the
function call. The space will be removed from the stack when the caller has no further use for the
value.

Parameters

The parameter area has an entry for each parameter to the procedure or function. The entry for a
value parameter will contain the value of the corresponding argument, while the entry for a variable·
parameter will contain the address of the argument. Parameters are pushed onto the stack as they
are evaluated, in left to right order, so the first parameter to a procedure will be the first one pushed
ontd the stack.

Return Link

The return link is the address to which control will be transferred on return from the procedure or
function.

Local Variables

The local variable field contains space for all local variables of the procedure or function. The field
is allocated upon entry to the block.

Register Save Area

This area saves the values of all registers used within the procedure. The registers are saved on entry
· to the procedure and restored on exit. Only registers actually used are saved. The general regist'ers
are stored first, with the highest register used pushed first. (This is important to the algorithm for
locating variables in lexically enclosing blocks.) The register RS is used as a pointer to the lexically
enclosing block, and the compiler must be able to locate the value contained in RS in each block to
¢hain back ·to further enclosing blocks.

Temporary Storage

In the process of generating code, expressions -that are ~sed more than once are computed and the
values. saved. These values may be saved on the stack if no register is available to hold them. Also,
the stack is used to interface with support library routines and the operating system.

27

Pascal-2 V2.0/RT-11 Programmer's Guide

Storage Allocation

The compiler assigns storage for variables of pre-declared types as shown in this table:

Type Size Alignment

Boolean
(bytes)

1
(bytes)

1
·Char
Integer
Real
Real
Text

1
2
4
8
2

1
2
2 ($double off)
2 ($double on)
2

Space for user-defined types is allocated as follows:

Enumeration Types: If the type· has up to 256 members, it is allocated one byte -aligned on a
byte boundary. If it has more than 256 members, it is allocated two bytes, aligned on a
two-byte boundary.

Subrange Types: Allocated in the same way as the parent type.

Pointer Types: Allocated two bytes, aligned on a two-byte boundary.

Array Types: Allocated ·the amount of· space needed to hold the number of elements specified,
aligned in the same way as the element type. ·

Set Types: Allocated one bit for each member of the base type, with the total size rounded up to
the next larger full byte. If the size is a single byte, it is aligned on a byte boundary;
otherwise it is aligned on a two-byte boundary. Abase type that is a subrange is expanded
to the full range of possible values before the set is allocated. For example:

type
Color= (Red, Orange, Yellow, Green, Blue);
Hot =Red .. Yellow;

Colorset = set of Color;
Hotset = set of Hot;

In this example, Hotset is allocated the same amount of space as Colorset. A maximum
of 256 members is allowed; a base type of integer, or any integer subrange, has members
from 0 to 255.

Record Types: Each field in the record is allocated space in the same way as a variable of the
same type, in the order specified. The alignment of the record is the .maximum of the
alignments of its fields.

Packed Array Types: The number of bits needed to contain ~each element is computed. For.
example, the subrange type 0 .. 3 requires two bits to contain a value. If the space
required for an element is less than a word; the element size is increased to the smallest
power of two bits (1, 2, 4, 8, 16) that will contain the value. The array is allocated space
to hold the number of elements specified, where each element is considered to be of the
size just computed. In this case, the array is aligned on a byte boundary. If the elements
require a word or more, space is allocated as for. a normal array type.

Packed Set Types: The same as unpacked sets, except that the size is not rounded up to an even
byte, and thealignmerit is to a byte boundary.

Packed Record Types: Each field in the record is allocated exactly the number of bits required to
contain it, except that a field of a simple type that would span or cross a word boundary
will be forced to begin at· a word boundary. Fields are allocated in the order declared,
beginning at bit zero (least significant bit).

28

Compiler EITOrs

Compiler Errors

Overflow Errors

Very complex or very large programs may exceed the capacity of the Pascal-2 compiler. Overflow
of this sort is reported directly to the terminal rather than to the listing or error file. The.compiler

·reports the type of overflow along with the name· of the procedure causing the problem. The following
list of error messages assumes that a procedure named MuchTooCompl icated has caused an overflow:

Too many keys in procedure MuchTooComplicated
Out of memory in procedure MuchTooComplicated
Too .many labels iri procedure MuchTooComplicated
Too many nodes in procedure MuchTooComplicated
Code too complex in procedure MuchTooComplicated
Too much object code in procedure MuchTooComplicated

An overflow condition in the main program will be reported as:

Too many keys in main program

.If compilation of a program causes one ofthe above error conditions, simplify the offending procedure
·or main program section. The easiest way to do this is to split the routine into several sub-procedures.

Consistency Checks

In addition to the above error messages, consistency checks within the compiler can (in theory)
trigger one of,,. these errors:

Undeleted temps in main program
Travrs build error in main program
Travrs walk error in main program

You should never see consistency-checkerrors; they are documented here for the sake of completeness.
If you do see such an error, call Oregon Software immediately (503-226-7760) for a priority response.

Error Termination Status

Both the Pascal...,.2 compiler and Pascal programs return a termination status when they exit. The
Pascal-2 compiler terminates with a "severe error" status if it detects compilation errors. Upon
detecting an error while running, such as subscript out of bounds, a Pascal program also will
terminate with a ".severe error" status. Otherwise, a "successful completion" status is returned.

The termination status can be used by the command file processor and the batch processor to
terminate a command stream that encounters an error. For instance, a command file that compiles
and links a Pascal program can use the compiler termination status to detect any errors and skip
the link step. .

The Pascal support library contains a routine that may be called from Pascal programs to set the
termination status and stop the program. To use this feature, declare an external procedure named
EXITST. This procedure, defined in the support library, takes an integer argument, as shown:

procedure Exitst(Status: integer); external;

29

Pascal-2 V2.0/RT-11 Programmer's Guide ·

Call the procedure at a point in the program where you want to exit in case of a severe error, as
shown:

begin

Exitst(4); { terminate with severe status }

end.

A status of 1 means normal termination; a status of 4 means that an error terminated the program.

System Error Procedure

If ·a run:.time error .is detected, the system procedure Error is called with parameters describing
the error and the system state. The Error procedure, known by the global name ERROR, may be
replaced by a user-written external module of the same narrie. The external module must accept
the parameters defined below.

type
Class= (Fatal, IOError, Warning);
Message= packed array [1 .. 100] of char;

procedure Error(ErrorClass: Class;
ErrorNumber: integer;
ErrorMsgLength: integer;
var ErrorMsg: Message;
var XFile: text;
IOStatus: integer;
UserPC: integer;
FilenameLength: integer;
var Filename: Message);

The ErrorClass parameter indicates the type and severity of the error; Fatal and IOError are
errors with no possible recovery, while Warning errors will recover automatically. The ErrorNumber
indicates the exact cause of the error. See Appendix B for a list of values. ErrorMsgLength and
ErrorMsg define the text of the printed error message normally displayed for this· error. The XFile
parameter identifies the file variable associated with this error, if any. IOStatus is the value of
the J/O status word. UserPC is the program counter saved at this error, which ·can often be used
to identify the program segment responsible for the error. Finally, Fi lenameLength and Filename
describe the external name associated with the file variable XFile.

The possible courses of action available to the Error procedure are very limited, as a normal exit
from the Error procedure results in program termination. The program global variables are available
and may aid diagnosis of the problem. The. Error procedure may provide operator interaction or
recording capabilities beyond the normal messages to the terminal, and as a final resor.t may call
upon operating system facilities to "chain" and restart the. program or initiate another program.

30

Implementation Notes .

Implementation Notes

Multiple Source Files

To combine multiple Pascal-2 files into a single compilation unit, you may use multiple input files on
the compilation command line, the %include extended language feature within the program text,
or both. ·

Your choice will depend on your needs. If, for instance, you are preparing programs for different
machines, you can separate machine-dependent data from your individual programs and use the
configuration data in a "header" file on the compilation command line.

The %include directive allows the inclusion of separate text files within a program, thus simplifying
the calling of external procedures. The directive is written as:

·%include <file name>;

The cont.ents of the specified file are inserted at the point Of the %include directive. If no file
extension is specified, . PAS is assumed. The included file itself may contain %include directives, to
a maximum nesting· of seven levels.

The example below illustrates the use of both header files and the %include command.

Assume that the file CONF I G . PAS consists of this:

{ This file contains configuration data that is }
{ subject to change from installation to installation. }

con st
MaxEntries = 10;
D.ebug = false;

{entries allowed}
{if true, make debugging calls}

Assume also that the file COMDEF . PAS consists of this:

{ This file contains the definitions of some external }
{ procedures, together with the type declarations needed }
{ by th~ main program and the external routines. }

const
NameSize = 24; {size of name field}

type
Data Item = record {describes a custome.r}

Name: packed array [1 .. NameSize] of char;
Age: 0 .. max int
end;

procedure ReadData(var Thisitem: Dataitem; {result of read}
var Done: boolean {No more items});

external;

procedure WriteData(Thisltem: Dataitem {item to write});
external;

31

Pascal-2 V2.0/RT-11 Programmer's Guide

And assume that the file EXAMPL . PAS consists of this:

%include comdef;

var
Base: array [1 .. MaxEntries] of Dataitem;
Buf: Dataitem;

Counter: 0 .. MaxEntries; {count of items in data base}
I: 0 .. MaxEntries; {induction var}

Done: boolean;

begin
Counter :=· O;
repeat

ReadData(Buf, Done);

{set when no more items}

if not Done then begin
Counter := Counter + 1;
Base[Counter] Buf;
end;

until Done;

{ Process data base }

for I := 1 to Counter do
WriteData(Base[I]);

end.

These files are compiled with the command:

.R PASCAL
*CDNFIG,EXAMPL

The result is an object module, EXAMPL. OBJ, that contains the output from the compilation of
CONFIG. PAS, COMDEF. PAS, and EXAMPL. PAS, concatenated "in that order. The object module can
then be linked with the Linker to produce an executable image.

Any compilation switches used will apply to all input files.

Timestamp Procedure

The Timestamp procedure provides a way to get the date and time from within a Pascal program.
Date and time will be obtained simultaneously so they will be consistent, even close to midnight.

Timestamp is included in the Pascal-2 library, but the name is not pre-declared by the compiler.
The user must include a definition similar to:

procedure timestamp(var day, month, year,
hour, min, sec: integer);

external;

The following program will print the date and time using Timestamp.

program PrintTime(output);
var

Day, Month, Year: Integer;
Hour, Minute, Second: Integer;

{ date data }
{ time data }

32

{ date }
{ time }

procedure Timestamp(var Day, Month, Year,
Hour, Min, Sec: Integer);

external;

procedure PrintTwo(N: Integer);

Implementation Notes

{ date }
{ time }

begin { Print a number on the output file with two digits, including
leading zeros if needed. The number must be 99 or less }

write(output, N div 10: 1, N mod 10: 1);
end; { PrintTwo }

begin
Timestamp(Day, Month, Year, Hour, Minute, Second);
PrintTwo(Day);
case Month of

1: write(output, '-Jan-');
2: write(output, '-Feb-');
3: write(output, '-Mar-');
4~ write(output, '-Apr-');
5: write(output, '-May-');
6: write(output, '-Jun-');
7: write(output, '-Jul-');
8: write(output,. '-Aug-');
9: write(output, 1-Sep- 1);

10: write(output, 1 -0ct- 1
);

11: write(output, 1 -Nov- 1
);

12: write(output, '-Dec-');
·end;

write(output, Year: 4, 1 ');

PrintTwo(Hour);
write(output, 1

: ');

PrintTwo(Minute);
write(output, 1

: ');

PrintTwo(Second);
writein(output);

end.

Foreground Operation

For foreground operation, allocate additional memory to ensure sufficient space for the stack, the
heap, and file buffers. Each Pascal file requires about 300 words (more for large buffers), so allocate
at least 600 words for the default input and output files. Use the /N: switch for V3 and the /BUFFER:
switch for V 4:

.FRUN <file name>/N:1024. {V3}

.FRUN <file name>/BUFFER:1024. {V4}

Virtual Jobs and the XM Monitor

The XM monitor has the ability to create a ''virtual job" with a separate 32K word address space.
A virtual job does not need to reserve space for the monitor, device handlers, or the I/O page, and
can therefore use the entire available address space. A virtual job cannot mi;i,ke direct reference to

33

Pascal-2 V2.0/RT-11 Programmer's Guide

device registers or perform other specialized functions. These operations are restricted to "privileged
jobs". To be compatibile with previous versions of RT-11, privileged jobs are the default type. For
most purposes, however, virtual jobs are preferred.

Making a virtual job requires the setting of bit 10 (2000 octal) in the JSW (Job Status Word) in
location 44 (octal) of the . SAV image file. Neither the Linker nor the Monitor supports this operation,
but the VIRJOB. OBJ file supplied with Pascal-2 will set the virtual bit in the JSW, for Pascal-2 or

· other programs. VIRJOB should be included as an input file in the Linker command(s) .

. LINK /X M TEST I VIRJOB I SY: PASCAL

One additional restriction: The . SAV image file containing a virtual job must be stored on the system
device (SY:),· and must be run via the R command.

Virtual overlays work with Pascal-2 modules. For more information on virtual jobs and overlays,
see Digital's RT-11 Software Support Manual.

Support Library

The Pascal support library is a collection of about 60 modules contained in an object module library·
called PASCAL. OBJ located on the system device. When compiling a program, the Pascal compiler
generates subroutine calls to routines in the Pascal support library. The entry points in the library

· are identified as $Bxx where 'xx' is a small integer. To s_ee ~h_es~_~yprQ!.!ti11~ ~a1ls, _i:nspect_t.~e_.MACRO
E~?:~ __ generated by the Pascal-2 /macro switch.

Most of the routines in the Pascal support library deal with I/O operations or arithmetic com­
putations such as floating-point simulation or trig function approximation. Other routines allocate
dynamic memory and report error conditions. When you build a Pascal job, the Linker searches
the P·ascal support library for the modules required to run the job. For example, if you compute a
logarithm in your program, the Linker will include the support library module that approximates
logarithms (OPFLOG. OBJ).

In most Pascal jobs, the Linker includes from 2K words to 9K words of library modules.

The following table describes the modules in the Pascal support library PASCAL. The first column is
the name of the module as it appears in the library. The second column is the name of the source file
compiled to produce that module. The third column briefly describes the function of the module.

Module Source Description
DBG DBG1 .PAS Pascal-1 Debugger root module
DBGFID DBGFID.PAS Pascal-'l Debugger symbol file acces.s
ERROR ERROR .PAS Error message printing
$AP ROX OPAPRX.MAC Double real rational approximation
$ARI TH OP INT .MAC Integer multiply/ divide/mod simulation
$CNVRT OPCNV .MAC Real/integer conversions
$DADD OPDADD.MAC Double real addition simulation
$DATN OPDATN.MAC Double real arc tangent
$DCMP OPDCMP.MAC Double real comparison
$DDIV OPDDIV.MAC Double real division. simulation ·
$DEXP OPDEXP.MAC Double real exponentiation
$DLOG OPDLOG.MAC Double real logarithm
$DMUL OPDMUL.MAC Double real multiplicat~on simulation
$DSQRT OPDSQR.MAC Double real square root
$DTIME OPDTIM.MAC Double time
$DTRIG OPDTRG.MAC Double sine/ cosine
$DYNMM OPDYN .MAC Dynamic memory (new/dispose)
$ERROR OP ERR .MAC Error processing

34

'""\,

, ,
~

'a
I
i

I

j

I

I

t ,
•

!I \
I .-·----.._

~ "

Support Library

$FATN OPFATN.MAC Real arc tangent
'$FCMP OPFCMP.MAC Real. comparison
$FEXP OPFEXP.MAC Real exponentiation
$FLOG OPFLOG.MAC Real logarithm
$FL TIO OPFLIO.MAC Real number I/O common routines
$FORT OPFORT.MAC FORTRAN call interface
$FPS IM OPSIM .MAC Single-precision floating-point simulator
$FRACT OPFRAC.MAC Double-precision common routines
$FSIM OPFSIM.MAC Floating-point simulation trap linkage
$FSQRT OPFSQR.MAC Real square root
$FTRIG OPFTRG.MAC Real sine/cosine
$INIT OPINIT .MAC Initialize Pascal program
$10 OPIO .MAC Common I/ 0 routines
$0PDBG OPDBG .MAC Pascal-1 Debugger trap interface
$OPEN OPOPEN.MAC File open
$P2DBG OPDBG2.MAC Pascal-2 Debugger trap interface
$P2ERR OP2ERR.MAC Pascal-2 error text
$PACK OPPACK.MAC Pack/Unpack
$READC OPRDC .MAC Read characters
$READ I OPRDI .MAC Read integer yalue
$READR OPRDR .MAC Read real value
$READS OP RDS .MAC Read strings
$REG OP REG .MAC Register save/ restore
$RESET OPRSET.MAC File Reset
$REWRI OPRWRI.MAC File Rewrite
$SEEK OPSEEK.MAC Seek record in file
$SET OPSET .MAC Set operators
$SWAP OPSWAP.MAC Swap real parameters on stack
$TIME OPFTIM .MAC Real time
$WR ITC OPWRC .MAC Write characters

· $WRITI OPWRI .MAC Write integer value
$WR I TR OPWRR .MAC Write real value

Compiler Optimizations

The Pascal-2 compiler implements these optimizatio~s:

Variable Assignments to Registers

The compiler will permanently assign up to three floating-point accumulators and two general
registers to commonly used local variables in each block. The compiler assigns the registers to the
variables that are used the most often. No register will be assigned for variables passed to a procedure
as a var parameter or referenced directly by a procedure local to the declaring.procedure. In addition,
this optimization is disabled for the main program if any external procedures are referenced, since
the compiler cannot determine what variables may be used by such routines.

Assignment of Constants and Addresses to Registers

. The compiler attempts to fill all registers with useful. operands during compilation of a procedure,
since operations on registers are faster and take less space than the corresponding operation per­
formed in memory. Once a procedure is compiled, unused· registers are filled with constant operands
and addresses if such assignment will save space. This low-level optimization often results in a saving
in execution time as well. ·

35

Pascal-2 V2.0/RT-11 Programmer's Guide

Constant Folding

The compiler directly evaluates (folds) simple arithmetic involving constant operands of the types
integer, char, real, and boolean. The generated code contains the result rather than the
expression. (The RT-11 SJ compiler does not fold real constants; the XM compiler does.) Set
expressions and relational expressions are not folded.

Dead Code Elimination

If statements and case statements are optimized if the selection expression is constant. In this
case only one path of execution is possible, and the compiler will discard others. Knowledge of
this optimization can lead to the writing ·of conditional code much like that available in some
preprocessors. For example:

if Debugging then writeln(SomeUserValue);

No code for this statement will be generated if the identifier Debugging is defined as a constant with.
the value false.

Boolean Expression Optimization

When appropriate, Pascal-2. will use the minimum number of operations necessary to compute the
final value of operands in Boolean expressions, thereby reducing the cost of evaluating individual
Boolean expressions. (This method is known as a "short-circuit" evaluation.) The programmer must
be careful not to assume that all operands of Boolean operators will be evaluated or that some may
not be evaluated. (This optimization takes advantage of a provision in the Pascal standard that
allows an implementation to evaluate only the necessary operands of a Boolean expression.)

Expression Targeting

The compiler can determine from context where a particular expression result should be computed.
For instance, procedure parameters can often be computed directly on the run-time stack, and at
times expressions on the right side of the assignment operator can be computed directly into the
variable on the left side. ·

Common Subexpression Elimination

Multiple occurrences of the same expression are detected and simplified: Such optimization of
redundant expressions is needed even though a programmer can often avoid writing such code by
introducing auxiliary variables. For instance, this example:

wri teln (I + 1, I + 1);

may be simplified to:

J ·:=I+ 1; writeln(J, J);

The simplification avoids the redundant computation. However, redundancy of the sort in the first
example often leads to a more readable program. Also, certain classes of redundant expressions
cannot be eliminated in the source program. For instance, array index calculations involve several
underlying operations that are not reflected in the source code and therefore cannot be simplified
by the programmer~ Pascal-2 eliminates a wide class of common subexpressions, across statement
boundaries as well as within simple expressions.

The /debug compilation switch disables this optimization.

36

Compiler Optimizations

Common Branch Tail Elimination

In some cases the compiler will generate several branches to the same location in the object program.
At times the compiler can replace redundant instructions preceding one such branch instruction with
a branch to a point in the generated code that executes the same instruction stream. This low-level
optimization executes an extra branch instruction in order to save some space.

The /debug compilation switch disables this optimization.

Array Index Simplification

Index expressions of the form [variable+ constant] and [variable - constant] are partially computed.
The addition or subtraction of the constant operand is folded into the value computed for the base
of the array. This optimization is enabled only if array bounds checking is disabled and the array
is unpacked.

37

Pascal-2 V2.0/RT-11 Programmer's Guide

Appendix A: Compiler Error Messages

'(' expected
')' expected
' ' expected
' .. ' expected
' : ' expected
' : =' expected
' · ' expected after procedure body
'=' expected
1
[' expected

']' expected
']

1 or ',' must follow index expression
Actual parameter type doesn't match formal parameter type
Array exceeds addressable memory
Array subscript out of range
Assignment of file variables not allowed
Assignment operands are of differing or incompatible types
Assignment to constants not allowed
Assignment value out of range
BEG IN expected
Bad CASE label
Bad IN operands
Bad ORIGIN value
Bad constant
Bad parameter element
Bad type syntax
Badly formed expression
Binary operator expected
Block declarations are incorrectly ordered
Block ended incorrectly
Block must begin with LABEL, CONST, TYPE, VAR,

PROCEDURE, FUNCTION, or ·BEGIN
Boolean value expected
CASE label does not match selection expression type
CASE selection expression must be a non-real scalar type
Can't assign a real valu~ to an integer variable (use TRUNC or ROUND)
Can't pack unstructured or named· type

.Case label defined twice
Case label must be non-real scalar type
Case label type does not match tag field type
Compiler writer error -- please contact Oregon Software at ~503) 226~7760

DO expected
Declaration terminated incorrectly
Declared labels must be defined in procedure body
END expected
Exp6nent must lie in range -38 .. 38
Expression type is incompatible with FOR index type
External procedures/functions must be defined at outermost level
Extra END following block --.Check BEGIN ... END pairing
Extra procedures found after main program body
Extra statements found after end of program

38

Appendix A: Compiler Error Messages

FOR-loop control variable can only be a simple non-real scalar variable
Field variable expected for NEW
File cannot contain a file component
File names in RESET/REWRITE are non-standard
File variable expected
File variable or pointer variable expected
Files must be passed as VAR parameters
Format expression must be of type integer
Forward procedure/function body is never defined
Forward type reference is never resolved
Function cannot be applied to an operand of this type
Function identifier is never assigned a value
Function name expected
Function result must be of scalar or pointer type
Function result type cannot be duplicated in for.ward-declared function body
Identifier cannot be redefined ~r defined after use at this level
Identifier expected
Illegal character
Illegal comparison of record, array, file, or pointer values
Illegal function assignment
Illegal subrange
Index expression 'type does not match array declaration
Index must be non-real scalQt type
Index variable missing in this FOR statement
Integer label expected
Integer overflow or division by zero
Integers must lie in range -32767 .. 32767
Label cannot be redefined at this level
Label defined twice
Label is target of illegal GOTO
Label must be declared in LABEL declaration
Label must be unsigned integer cohstant
Line too long
Must assign value before using variable
Need at least 1 digit after '.' or 'E'
Need at least one value to WRITE
Need at least one variable to READ
No strict inclusion of sets allowed
Non-standard comment form, please use "{" or "(*"
Nonsense discovered after program end
OF expected
OTHERWISE/ELSE clause in CASE not allowed
Octal ~onstant contains an illegal digit
Octal constants are not standard Pascal
Only 15 levels of nesting allowed
Only functions can be called from Bxpressions
Operand expected
Operands are of differing or incompatible type
Operator cannot be applied to these operand types

39

Pascal-2 V2.0 /RT-11 Programmer's Guide

Packed array [1 .. n] of characters expected
Parameter list cannot be duplicated in

forward-declared procedure/function body
Pointer variable expected
Procedure name expected
Procedures cannot be followed by type definition
Readln and writeln must be applied to text file
Reassignment of FOR~loop control variable not allowed
Record identifier expected
Set is constructed of incompatible types
Set types must have a base in the range 0 .. 255
Sets must be non-real scalar type
Statement ended incorrectly ·
String constants may not include line separator
String of length zero
THEN expected
TO or DOWNTO expected
Tag does not appear in variant record label list
Tag identifier already used in this record
This function was declared as a forward procedure
This parameter cannot be followed by a format expression
This procedure was declared as a forward function
This procedure/function name has been previously declared forward
Too few actual parameters
Too many actual parameters
Too many errors!
Too many forward references (only 50 allowed)
Too many identifiers (only 1599 allowed)
Too many nested INCLUDE directives (only '8 aliowed)
Too many procedures (only 250 allowed)
Too many strings or identifiers
Type name expected
UNTIL expected
Unary 1 + 1 or 1

-
1 cannot be applied to set operands

Undefined identifier
Unexpected ')' -- Check for matching parenthesis
Unexpected ELSE clause -- Check preceding IF for extra '; '
Unknown directive
Use ' ' after main program body
Use ' ; ' to s~parate declarations
Use 1

; ' to separate statements
VAR parameters cannot .be passed an expression or packed field
Variable name expected
Variable of type array expected
Variable of type re~ord expected
Variables of this type are not allowed in READ
yariables of this type are not allowed in WRITE
Variant label is undefined

40

Appendix B: Run-Time Error Messages

2 Array subscript out of bounds
32 Attempted reference through NIL pointer
18 Can't read
11 Can '.t reset (output)
11 Can't rewrit~(input)
35 Case selector matches no label
30 Channel not open
36 Dispose() of Nil

5 Division by zero
22 Duplicate Dispose()
17 End of file
8 EXP overflow

30 File not open
33 File overflow
6.Floating point format error
3 Floating point overflow

29 FPP error
23 Illegal value for integer
20 Integer overflow·
9 LOG of zero or a negative number
1 New() exceeded memory

21 New() of zero length
16 No channels available
19 Put not allowed
3 Real overflow

30 Reset and no file
11 Reset failure
29 Reserved instruction trap
11 Rewrite failure
28 Seek on sequential file
27 Seek out of range
1 Stack exceeded memory
7 Square root of a negative number

33 Transfer error
29 Trap to 4
20 Trunc/round overflow
35 Variable subrange exceeded
33 Write past eof

41

Appendix B: Run-Time Error Messages

Contents

Introduction to the Language Specification 45

Changes in the. Standard 45

Implementation Definitions ... 47
"Integer" "Real" "Char" · "Text" and "Set" Types

' ' ' '
47

I/ 0 Definitions 47

Syntax Extensions 48
Identifiers . 48
"%Include" Lexical Directive 48
Program Heading 48
Declaration Order •. 48
"External" and "NonPascal" Directives 49
Structured Constants . 49
Def a ult Case Label ("Otherwise") 50

I/O Support Extensions 50
External File Access 50
"Close" Procedure 50
Direct-Access Files ("Seek") 51
Octal Output· 51
String Input ("Read" and "Readln") 51
"Break" Procedure . 51

-, Real Number Formatting . 51

Low-Level Interface 51
Boolean Operators on Integer 52 .
Octal Constants 52
Extended-Range Arithmetic . 52
"Origin" Declaration 52
"Ref" Function 53

· "Loophole" Function . 53
"Size" and "Bitsize" Functions 55

Non-Standard Language Elements 56
Program Parameters 56
Interactive Text I/O 56
Directives . 56
"Eof" Not Accurate For Binary Files 57
"Mod" of Negative Numbers 57

Additional Predefined Function "Time" 57

Error Handling 57
Detected Errors 58
Undetected Errors 59

Appendix 1: Predefined Identifiers 60

Appendix 2: Reserved Words 60

Appendix 3: Pascal-2 Syntax 61
Pascal-2 Syntax Diagrams 61
Extended Backus-Naur Form 65
Pascal-2 Lexical Description 66
Pascal-2 EBNF Syntax . 67

Pascal-2 V2.0/RT-11 Language Specification

Introduction to the .Language Specification

The Pascal-2 compiler processes the standard Pascal language as described in the Pascal.Revised
Report by Niklaus Wirth, published by Springer-Verlag, corrected printing of 1978, and more
completely described in the ISO Draft Proposal 7185.1, ISO/TC 97 /SC 5 N595, dated January
1981. Compliance is Level 0: conformant array parameters are not included. Pascal-'-2 includes the
extensions detailed below.

This ·manual includes data on non-standard language features. This guide is not intended as a full
language document. Differences between Paseal-:2 and Pascal~l are described in the Conversion
Guide of this manual.

Examples of ~yntax definitions in this guide follow the protocol described in Appendix 3, Pascal-2
Syntax.

Changes in the Standard

Because you may not be familiar with all the changes to the Pascal language from Jensen and
Wirth (1978) to the most-recent draft of the standard (1981), this section outlines those changes and
Pascal-2's method of coping with them. Some of the feature_s appeared in Pascal-1 as non-standard
elements when ·that compiler was developed and . have since become standard. Other features are
new to Pascal-2.

"For" Statement Controlled Variables

For statement controlled variables must be simple variables, local to the routine in which the for
statement is written. Originally, any variable could be used.

File Declaration Point

The standard states that the files input and output are automatically declared as global variables if
they are mentioned in the program heading. Since program headings are optional in Pascal-2, input
·and output are declared as global variables in every Pascal-2 program. Thus, you cannot define a
variable or procedure as input or output at the global level. In earlier versions of the language,
the actual point of definition was undefined; in Pascal-1, input and output are defined at a level
outside of the global level.

Parameter Compatibility

The compatibility rules for var parameters are now defined according to a restrictive ·rule called
name compatibility. A variable passed as a var parameter must be declared with the exact type
identifier used to declare the parameter. Previously, the rules for var parameters were undefined.
(Pascal-1 rules are less restrictive in places.)

Procedure and Function Parameters

The draft Pascal standard has changed the method of declaring procedure and function parameters.
The new syntax provides a way of checking the parameters of these procedures and functions, thus
reducing the likelihood of type errors.

The syntax for a parameter list is changed to:

parameter-list . "(" parameter~section {";" parameter-section } ")"

45

Pascal-2 V2.0/RT-ll Language Specification

parameter-section = (["var" J identifier { ", " identifier } ": " identifier) I procedure­
heading I function-heading.

A full procedure heading must be provided for any procedure or function declared as a parameter,
and the procedure heading for any procedure or function passed as an actual parameter must match.
For example: ·

var
K, L: integer;

procedure P(procedure Q(l, J:integer));
begin

. Q(K, L);

end;

procedure P1(I,J: integer);
begin

writeln('test of proc parameters', I, J);
end;

Strings

begin
P (P1) ;

end.

A string can. no longer extend over more than a single line. The earlier standard was unclear on
this point, and Pascal-1 allows strings extending over more than one line. The change allows better
diagnostics for unterminated strings.

"'Vrite", "Writeln" of "Array of Char"

A write or wri teln procedure call applied to an array of char will truncate the written string if
the field-width parameter will not allow the entire string to be written.

Examples:

write(Buffer:BuffCount);
write('cutoff' :3)~

Identifiers

{ write buffered characters }
{ will write 'cut' }

Identifiers may be of any length; all characters are significant. Lower-case characters. are interpreted
in the same way as upper-case characters, so that name, Name, NamE, and NAME are equivalent.
(P ascal-2. also allows the $ and _ (under bar) in identifiers. See Language Extensions for details.)

Alternate Symbol Representations

The standard now defines alternate representations for symbols that are unavailable in some charac­
ter sets. These are:

Standard Symbol
~·or t

{.
}

[
']

Alternate Symbol
@

(*
*) .

(.
.)

The alternate comment delimiters are equivalent to the standard comment delimiters, and a comment
may open with one type of delimiter and dose with the other. Comments may not be nested.

46

Changes in the Standard .

Examples:

(* This is a valid comment }
{This is (* not •) a valid comment }

Implementation Definitions

This section provides details and characteristics of implementation-defined elements of Pascal-2.

"futeger'', "Real", "Char'', "Text", and "Set" Types

The standard type integer has the range (-32768.,32767). An unsigned (extended-range) integer
may be defined with the range 0 .. 65535. ·

The predefined identifier maxint has the value 32767.

Standard Type "Real"

A real variable has the standard PDP-11 single-precision or double-precision floating-point struc­
ture, with magnitude in the range 1E-38 .. 1E+38. Single-precision values give approximately 7
decimal digit precision; extended (double-precision) values give approximately 15-digit precision.
Arithmetic overflow is detected for all real operations, but underflow is ignored and gives a result
of zero.

The standard transcendental routines are accurate to 6 decimal digits in single precision and to 15
decim.al digits in extended precision.

Standard Type "Char'' .

Pascal-2 uses the 7-bit full ASCII character set. A character is stored as a byte unle_ss it is part of
a packed record. Ord(char) is in the range 0 .. 127.

Standard Type "Text"

The standard type text is a file type with components of type char. Text is implemented as a file
- of 7-bit ASCII characters.

"Set" Types

Pascal-2 limits a set to a maximum of 256 elements. The lower and upper bounds must lie in the
range 0 .. 255. The declaration set of integer is equivalent to the declaration set of O .. 255.

I/ 0 Definitions

The following table summarizes the default field widths used when values are written to a text file:
Value Type Field Width

integer 7
real 13
boolean 5

The floating-point representation of a real number includes an upper-case E, a sign character '+' m
'-', and two exponent digits: For example, the real number -100.0 will print as -1. OOOOOOE+02.
Positive numbers will have a blank in place of the negative sign.

Boolean values are written in upper case (TRUE, FALSE).

The procedure page is equivalent to wri teln (ff), where ff is the form-feed character.

47

Pascal-2 V2.0/RT-11 Language Specification

Reset (input) performs the equivalent of a readln, but otherwise has no effect. Rewrite (output)
will print any incomplete line, but otherwise has no effect. Reset (output) or rewrite (input)
produces error messages. If the extended form of Reset (input) or rewrite (output) is used, the
standard files input and output may be associated with external. files in the same way as other file
variables. For example, rewrite (output, 'LP: ') will switch the standard output to the line printer.

Syntax Extensions

This section· describes extensions to the syntax of standard Pascal.

Identifiers

The character $ (dollar sign) is allowed in an identifier anywhere an alphabetic character is allowed.
The character _ (under bar) is allowed anywhere a numeric character is allowed. The following are
legal identifiers:

syst(3m$name
$$file ·
this_is_a_long_identifier.

"%Include" Lexical Directive

A special directive form allows the inclusion of separate text files within a program. The syntax is:

include-directive = "3i nc 1 ude" fl.le-name ";"

The contents of the specified file are inserted at the point of the %include directive. If no file
extension is specified, . PAS is assumed.

The included file may contain nested ~include directives, to a maximum: of seven levels .

. Example:

%include hdr;

See the Programmer's Guide for more details.

Program Heading

The program heading and parameters are not required to be present in Pascal-2. If the program
heading is present, it will be checked for proper form, but it has no other meaning to the program .

. An additional parameter to reset and rewrite specifies an external file. (See External File Access
under I/O Support Extensions for details.)

Declaration Order

The declaration sections (label, const, type, var) may be interleaved as desired at the global level
of a prbgram. Only const and type may be interleaved at other levels. Any number of declaration
sections may appear in any order. An identifier still must be defined before the identifier is used
in any other way. This extension is useful for source module inclusion and structured constants as
described below.

48

Syntax Extensions

"External" and "NonPascal" Directives

The directive external may be used in a manner similar to forward to distinguish a particular
Pascal procedure or function. The. body of an external procedure or function is not required to
appear in a compilation. An external procedure must be declared at the global level. References
to the external procedure will be resolved at link time.

If the body of the external procedure does appear, its name will be made available in the object
module for reference by other modules.

Note that limitations of the object module structure require that external names be distinct within
the first six characters. The ... (under bar) cannot be expressed in the object module format and will
be replaced by a period (.) in the external name. No type checking is done for parameters of an
external routine. ·

T~e directive nonpascal may be used instead of external if the external procedure is written in.
a language other than Pascal. Nonpascal generates the Digital standard calling sequence used by·
FORTRAN and most ·MACRO routines. This calling sequence passes all parameters by referen~e,
so only var parameters may be used.

Structured Constants

The syntax for constant definitions is extended to allow the specification of constants of record or
array type. The following changes are made to the syntax:

constant = [sign] (unsigned-number I constant-identifier) ·
I character-string I structured-constant .

structured-constant = structured-type-identifier constant-component-list .

constant-component-list = "(" constant-component {"," constant-component } ")"

constant-component-:-- constant I constant-component-list .

The structured-type-identifier must name a type with an array or record structure, and all of the
components of that structure must be of simple types or array or record types. The constant-compon­
ents correspond one-to-one with the components of the structured type. Each constant-component
must be a constant of the same type as the corresponding structure component. An access to the
structure component will return the value of the constant-component. If the structure component
is of a structured type, only the corresponding constant-component-list must be provided. The
structured-type-identifier for that component need not be provided. For variant records (even those
without a tag-field) a tag value must be provided in the constant-component-list.

Example:

type
Compensation= (Paid, Unpaid);
Paytype = Record

Title : (Clerk, Indian, Chief, President);
case Compensation of

Paid: (Rate: real) ;
Unpaid: ();

end;
Employeetable = array[1 .. 4] of record

Name : packed array[1 .. 10] of char;
Payinfo : Paytype;
end;

49

Pascal-2 V2.0/RT-ll Language Specification

.const
Workers = Employeetable(.

('Charlie (Clerk, Paid, 3.40)),
('Samuel (Indian, Paid, 5.25)),
('Maxine (Chief, Paid, 6.85)),
.('Edward (President, Unpaid))
) ;

Default Case Label ("Otherwise")

A default statement can be included in a case statement according to the following syntax:

case-statement = "case" case-index "of" case-list-element {";" case-list-element }[";"]
["otherwise" statement [";"]] "end" .

The statement afte4~~rwise ,is the default statement and is executed if.no case-constant matches
the value of the case-index. ,//

'··--...... /. .

Example:

case I of
1: Ch := I. I.

9: Ch := I. I.

otherwise Ch :~ '*';
end;

I/O Support Extensions

I/O support extensions provide the Paseal-2 programmer with additional control of the interface to
the operating system.

External File Access

The standard procedures reset and rewrite accept an optional second parameter specifying the
name of an external file with which the file. variable is to be associated. The file name parameter
must be a string type and may be either a literal string or a variable. An optional third parameter,
also of a string type, provides def a ult· values for any file fields not provided in the file name.

An optional fourth parameter is set to the file size in blocks when the file is reset and specifies the
number of blocks initially allocated on re\vri te. The fourth parameter must be an integer variable.
The fourth parameter, if present, is set to a status code of -1 if the file cannot be opened, allowing
recovery from a normally fatal error.

These optional. parameters may be used to redirect the standard files input or output, as in the
example: ·

rewrite(output, outstring, '.lis', size)

"Close" Procedure ·

The close predefined procedure indicates that its file parameter is no longer in use; close will
reclaim buffer memory. Further access to the file is prohibited until reset or rewrite is used. Note
that files are automatically closed upon program termination, or when they appear in another reset
or rewrite. This procedure allows the reuse of the buffer memory.

50

I/ 0 Support Extensions

Direct-Access Files ("Seek")

Pascal-2 includes the seek predefined procedure to allow direct access (random access) to data files.
The seek procedure requires two parameters: a file variable to be positioned, and an integer record
number (records in the file are ~umbered sequentially beginning with 1). After the seek call, the
specified -record is available in the file buffer variable if it exists; otherwise eof is set to indicate that
the record is not available.

Seek also enables both reading and writing on the same file for in-place record updates. Put is
required if the file buffer variable is to be written to the file. Get and put may be mixed with seek
for sequential access. The following sequences may be used for direct access.

seek(f,i); read(f,v); {read record i into v }
seek(f,i); write(f,v); {write record i from v}

Note that a I seek file switch rnust appear in calls to reset or rewrite if the seek procedure will
be used oh the file.

Octal Output

In an integer write procedure call, a negative field-width specification will represent characters in
octal (base 8). ·

Example:

write (I: -5) ; { Display octal value of I }

String Input ("Read" and "Readln")

The read and readln procedures may be used to read variables of string types. Characters are read
until the variable is filled. If eoln becomes true, the remainder of the string is filled with spaces.

"Break" Procedure

For efficiency, Pascal-2 buffers transmitted data. Break (F) forces the actual transmission of data
from a partially filled buffer of file F. This can be useful with interactive terminals or to guarantee
actual transmission of data to a shared disk file.

Real Number Formatting

If the second formatting field is negative, a real number will be printed in scientific notation. The
number of digits to the right of the decimal point willbe the number specified in the second field.
For example, .

write(R:20:-5)

will print R with one digit to the left of the decimal point. and five digits to the right, followed by an
upper-:case E, a sign character '+' or '-' and two digits signifying the exponent. The entire number
will be right-justified in a 20-character field.

Low-Level Interface

This section describes Pascal-2 extensions that are useful to programmers needing access to machine­
dependent PDP-11 characteristics.

51

Pascal-2 V2.0/RT-11 Language Specification

Boolean Operators on Integer

The Boolean operators and, or, and not may be applied to operands of integer or integer subrange
type. The operators produce a 16-bit result of integer type.

Octal Constants

Octal (base 8) notation for integer constants is signified by the suffix 'B' (upper or lower case),, so
that 377B and 377b are the same value as 255 decimal.

Extended-Range Arithmetic

The normal range of integer variables in Pascal-2 is -32768 .. 32767, but you also may declare
integer types in the range 0 .. 65535. A variable with an upper limit greater than 32767 is called an
extended-range variable. Normal arithmetic operations are performed on extended-range variables.
Comparisons are unsigned. An integer value may be assigned to an extended value, being converted
as a bit pattern. If the value being assigned is negative, the error is not trapped at run-time, since
there is no way for the compiler to tell the difference between a negative value and an extended­
range value. The same sort of implicit transformation is true when an extended value is assigned
to an integer variable. No conversion is done for constants, and the assignment bignumber : = -1
will produce a compile-time error message if the variable bignumber is of an extended-range type.
Values greater than 32767 will be read and written as negative numbers.

"Origin" Declaration

A variable can be declared to have a particular address in the I/O page or system area with the
following syntax:

var-declaration = var-element { "," var-element} type .

var-element= identifier ["origin" constant] .

The constant in the above syntax must have an integer value. A variable so specified will have the
address given by the integer following origin. This must be in the system space O .. 7778 or in the
I/O page 1600008 .. 1777778.

The following example demonstrates the use of origin, plus the use of the ref and, size functions.
See Ref Function and Size Function for more details on those.

The example controls a mythical device. The procedure Read_Data sets up the device's control
registers and initiates a transfer from the device into the task's memory.

This example is specific to a'machine without memory management hardware, such as a small RT-11
machine, but the setting up of origin is the same for RSX or RSTS /E.

52

'\
,~-·" ---............,,

Low-Level Interface

Pascal-2 RT-11 SJ V2.0H
Oregon Software, 2340 SW
ORIGIN/LIST

5-Apr-81 7:04 PM Site #1-1 Page 1-1
Canyon Road, Portland, Oregon 97201, (503) 226-7760

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22 .
23
24
25
26
27
28
29

"Ref" Function

program Device;

const
Ready = 2008;
Read Buff er = 1;

type

{ example of device control }

{ ready flag }
{ read data command }

Buffer= packed array [1 .. 100] of char;
Buff er_Pointer = -suffer;

var
Status_Register
Control_Register
Buffer_Address
Byte_Count
Data: Buffer;

origin 1773168: integer;
origin 1773148: integer;
origin 1773128: 8uffer_Pointer;
origin 1773108: integer;

{ holds data from device }

procedure Read_Data;
begin

Buffer_Address := ref(Data);{ Address for DMA xfer}
Byte_:Count. := size(8uffer); { size of buffer }
Control~Register := Read_8uff~r; { start transfer }
{ Wait for device to complete transfer }
while (Status_Register and Ready) = 0 do {wait};

end;

begin
Read Data;

end.

The ref function, with a variable argument of type T, produces a pointer to that variable with result
type "'T (pointer to T). Note: the dispose routine cannot always detect attempts to dispose of a
pointer generated with this function, and you should not try to do so.

See the example under Origin Declaration for use of ref in a program.

"Loophole" Function

The loophole function provides a controlled escape from Pascal type rules. The first parameter is
a type identifier specifying the result type of the function. The second parameter is an expression
of a 'compatible' type. In this context two types are considered compatible only if

1. They require the same amount of storage, or

2. They are both non-real scalar types.

53

Pascal-2 V2.0/RT-11 Language Specification

For example, the following are all legal:

type
Realequi v = array [O .. 1] of integer;
scalar= (Va10, Va11, Va12, Va13);

var
Re: Re8:lequiv;
R: real;
S: scalar;
I: integer;

Re := loophole(Realequiv, R)';
R - loophole(Real, Re);
S - loophole(scalar, I);

- loo~hole(integer, S); {equiv to I ~= ord(s);}

The result of the loophole function is the bit pattern of the argument, considered as a value of the
type specified.

The only. other method of type coercion (also non-standard) is to declare a record with variants,
using the fact that the. compiler overlays storage for different variants. The loophole function has
several advantages . over variant records:

1. No assumption need be made about field allocation in a variant record.

2. The compiler checks that the different types are the same size.

3. The bypassing of type checking rules is clearly marked (the compiler will flag loophole if
the $standard switch is set.) Also, if the code is used with a compiler other than Pascal-2,
that compiler should mark loophole as an error, and appropriate changes can be made to
the code. With variant records, the code might compile but not work.

The f ~llowing sample program uses the loophole function to perform arithmetic on pointers so that
a block of the task's memory can be printed.

program Dump;
type

Word = 0. : 65535;

{ dump memory contents }

procedure DumpMemory(Start, Finish: Word);
type

Pointer = -integer;
var

P: Pointer;
begin

P := Loophole(Pointer, Start);
while Loophole(Word, P) <= Finish do begin

. end;

begin

wri teln (Loophole (integer, P): -6, ' : ', p-: -6);
P := Loophole(Pointer, Loophole(Word, P) + 2);
e·nd; .

{ main program }
DumpMemory(12008, 12408);

end.

54

~,

Low-Level Interface

.RUN LOOPHOLE
1200: 616
1202: 16605
1204:" 10

. 1206: 20566
1210: 6
1212: 101032
1214: 10546
1216: 12746
1220: 177772
1222: . 4767
1224: 1124
1226: 12746
1230: 11064
1232: 12746
1234: 2
1236: 11646
1240: 4767

"Size" and "Bitsize" Functions

Two functions,· size. and bitsize, give the programmer information on the space allocated for
values of different types. The functions have a single argument, a type identifier.

The function size returns the number of bytes that would be allocated for an object of that type by
normal variable allocation. The function bi tsize returns the number of bits that would be allocated
for an object of that type as a component of a packed record. This is the actual number of bits

· required to hold the value.

For example, consider

type subrange= 0 .. 15;

then

size (subrange) = 2, a full word is allocated,

and

bi tsize (subrange) = 4, the bits required for the value.

These functions are primarily useful when you are interfacing with the operating system or with
hardware functions.

See "Origin Declaration" for another example of size.

55

Pascal-2 V2.0 /RT-11 Language Specification

Non-Standard Language Elements

Program Parameters

According to the standard, parameters supplied in the program header indicate external files.
FUrther, the predefined files input and output must appear in the program header if they are used -
in the program.

With Pascal-2, the program header is not required, and any program parameters are entirely ignored.
External files are referenced by an extended form of reset and rewrite using a second parameter
(a string) giving the external filename.

The predefined files input and output are . always defined at the global level, and may not be
redeclared at that level.

Interactive Text I/ 0

The Pascal standard requires that the first element of a file be availa_ble as soon as the file is
reset (the buffer variable F- is assigned a value immediately). This requirement can present serious
difficulties when applied to files tha:t are interactiv~ terminals. For example, if the default input file
is the user's terminal, the standard can be illterpreted to require that the user first type the initial
input character (or line) before the first program statement is executed.

Pascal-2 takes this route around the problem: When an interactive file is reset, the buffer variable
is set to a space and eoln (F) is set to false, but no actual I/O transmission occurs~ Each read
request then waits for sufficient data to satisfy the request, but no more.

This approach solves most of the problems with interactive terminals in a predictable manner, but
other difficulties may arise. When applied to an interactive file, the following program is unable to
distinguish between an empty line and a line containing a single space. This is because eoln cannot

_be set until the end-of-line character is typed to satisfy the read request.

Example (the standard schema for reading a line of characters):

var Line: packed array [1 .. 72] of char;
Count: integer;

begin
Count := O;
while not eoln do begin

Count := Count+l;
read(Line[Count]);
end;

readln;
end;

Directives

Pascal-2 does not allow an identifier to have the same name as one of the directives (forward,
external, nonpascal). These directives are treated in the same way as reserved words.

56

Non-Standard Language Elements

"Eof" Not Accurate For Binary Fileij

An RT-11 file structure is a sequence of 512-byte blocks. A file containing short records may actually
end in the middle of a block, but no information is available as to the end of valid data in the last
block, so the eof standard function should not be relied upon as accurate. Another method, such
as a. sentinel record or a record count, should be used to indicate the end of usable data.

Eof is correctly indicated for text files.

"Mod" of Negative Numbers

The draft standard states that the operator mod always has a non-negative result. That is,

0:::; JmodJ < J.

Pascal-2 generates a PDP-11 divide instruction that will give a negative result if I is negative. The
standard result can be generated by ·

if I < 0 then Result = I mod J + J
else Result·= I mod J;

· Additional Predefined Function "Time" .

Pascal-2 provides the additional built-in function, Time. This function takes no parameters and
returns a real value corresponding to the current time of day. Time is represented in hours after
midnight, so that 9:30 a.m. is 9.50 and 1:45 p.m. is 13.75. The exact resolution of Time is dependent
on the operating system, but all operating systems provide a resolution of at least one second.

Example:

procedure WriteTime;
var Hrs, Mins: integer;

AmPm: packed array[! .. 2] of char;
begin

Mins := Round(time * 60);
Hrs := Mins div 60;
Mins := Mins mod 60;
if (Hrs < 12)

then AmPm := 'AM'
else if (Hrs = 12) and (Mins = 0)

then AmPm := ' 1 M '
else AmPm := 'PM'~

write ('At the tone the time wi 11 be: ') ;
write(((Hrs+11) mod 12 + 1) :2);
write(':', Mins div 10:1, Mins mod 10:1, AmPm:3);
writeln(Chr(7));

end;

Error Handling

This section describes the errors defined by the Pascal standard and Pascal-2's handling of them.

57

Pascal-2 V2.0/RT-11 Language Specification

Detected Errors

Pascal-2 detects the following errors in all cases:

1. An attempt to call get, read, or readln when the file has not been reset or when eof is
true for that file.

2. An attempt to call put, write, wri teln, or page when the file has not been rewritten or
when eof is false for that file.

3. Ln or sqrt has a negative argument.

4. The integer value returned by trunc or rol.ind lies outside the range -maxint-1 .. maxint.

5. Integer or real division by zero.

6. The result of a real operation cannot be expressed because of limitations in the fioating­
point format.

7. No label matches the value of the case index in a case statement.

8. The characters being read from a -text file do not represent a legal value for the type of
variable being read.

Pascal-2 detects the following errors under these conditions:

1.

2.

3.

4.

5.

6.

7.

8.

9.

The value assigned to a variable or value parameter is not within the declared range of
values for that variable. Detected when the $rangecheck compiler switch is enabled.
(Default.) Not detected when a negative value is assigned to an extended-range variable.
(See Extended-Range Arithmetic for more details.)

An index expression for an array access is outside the range of the corresponding index
type. Detected when the $indexcheck switch is enabled. (Default.)

A reference through a pointer with a nil or undefined value. Reference through a 9il
pointer is detected when the $pointercheck switch is enabled. (Default.) Refereflce
through an undefined value is not detected, although many cases will be detected at compile

·time.

In a for statement, the initial and final values are not within the range of the controlled·
variable .when the initial value is assigned to the controlled vari.able. Detected when the
$rangecheck switch is enabled. (Def a ult.)

An attempt to call put on a file that was opened with reset. Detected except for a file
with the I seek switch specified when the file was opened.

Calling of dispose with a nil or undefined parameter. Detected if the parameter is nil;
detected if the parameter was made undefined by a previous dispose. The dispose of an
undefined pointer is sometimes _detected.·

The result of the sqr fu?ction is out of range. ·Detected if the argument type is real;
undetected if the argument type is int~ger.

The result of chr (x) is not within the chQ,racter set. Detected only if a value is assigned·
to a variable or is passed as a parameter.

The result of succ or pred lies outside the range of the type.· Detected only if the value
then is assigned to a variable or is passed as a parameter.

10. A mod with the right-hand side less than or equal to zero. Detected if the value is zero;
otherwise not.

11. Reference to an undefined variable. Undetected in generaL However, many simple cases.
are detected at compile time.

58

\

Error Handling

12. A return from a function without a value being assigned to the function. Undetected in
general. However, many simple cases are detected at compile time.

Undetected Errors

Pascal-2 does not detect the following errors:

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

A set value assigned to a set variable or value parameter contains members not in the range ·
of the base type of the set variable.

An access to a field in a variant record that is not selected. by the current value of the
tag-field.

A dispose of a variable allocated on the heap while there is an active reference to that
variable as a variable parameter or in a with statement.

A change in the value of a file variable by a get or put while there is an active reference
to that variable as a variable parameter or in a with statement.

A call to put when the file variable is undefined.

A reset of a file that· has not yet been written to. An empty file is made available for
reading as the result of a non-standard language element in Pa.scal-2.

Accessing of a variable allocated with new(p, ci, ... , Cn) as an entire variable, in an assign­
ment or as a parameter.

Calling of dispose (p) when the value of p- was created with new(p, ci, ... , Cn), or calling
of dispose (p, ci, ...) cn) with a variable created with new and a different set of tag values.

The result of an integer operation is incorrect because of overflow.

The value of a format expression to a write statement is less than 1. Undetected (used in
a language extension).

59

Pascal-2 V2.0/RT-11 Language Specification

Appendix 1: Predefined Identifiers

* Extensions
Constants Functions Procedures

False Abs Break*
Max int Arc tan Close*
True Bitsize* Dispose

Chr Emt*
Types Cos Get

Boolean Eof New
Char Eoln Pack
Integer Exp Page
Real Ln Put
Text Loophole* Head

Odd Readln
Variables Ord Reset

Input Pred Rewrite
Ou:tput Ref* Seek*

Round Unpack
Sin Write
Size* Writeln
Sqr
Sqrt
Su cc
Time*
Trunc

Appendix 2: Reserved Words

* Extensio~s
And Function Packed
Array Goto Procedure
Begin If Program
Case In Record
Const Label Repeat
Div Mod Set
Do Nil Then
Down to NonPascal* To
Else Not Type
End Of Until
External* Or Var
File Origin* With
For Otherwise* While
Forward*

60

Appendix 3: Pascal-2 Syntax

Appendix 3: Pascal-2 _Syntax

Pascal-2 Syntax Diagrams

program ----1!.program heading I J (I declarations ~

program heading · program identifier

block declarations begin

declarations

cons ts con st identifier constant

types identifier

·vars identifier

constant ---.----"--....--i -~-----4 number ~-------..----'--.,.--.­

constant identifier

character

type identifier structure component

structure component --'--..----------t constant 1---------,.--Jll-

61

Paseal-2 V2.0/RT-11 Language Specification

number~)J l~J (~)J ;...
type ___________ ____. type identifier !-'-------------~---

variant part type identifier

procedure-~--< procedure heading

procedure

function __ __. function heading .

function

procedure heading procedure identifier

62

••

Appendix 3: Pascal-2 Syntax

function heading

function identifier formal parameter type identifier

·directive .:....· --~~ forward 1---.,,.--:a-.

external

formal parameter -~~-1 type identifier 1----,;..~-

1'-----~---1 procedure heading 1------~--_,1

~-------< function heading 1------.,.----'

statement -~\~_,.(_~ unlabeled statement f---

unlabeled statement
variable expression 1--------'-----------------~~

procedure identifier

statement statement 1-------_,1

expression

expression statement

statement 1----------------........./1

63

Pascal-2 V2.0/RT-11 Language Specification

variable variable identifier 1--------------------,.--~

simple expression

factor------------< unsigned constant 1--------~~-

,..__ _______ _, variable 1------------1

function identifier

expression expression

unsigned constant -'---~-~ number 1----~..­

character string

identifier

..____~--i nil 1-----~

64

Appendix 3: Pascal-2 Syntax

Extended Backus-Naur Form

The notation used for describing syntax in this guide is a variant of the Backus-Naur Form (BNF)
originally developed to describe the syntax of Algol 60. This particular variant was proposed by
Niklaus Wirth ("What Can We Do About the Unnecessary Divergence of Notations for Syntactic
Definitions?", Communications of the ACM, November 1977, vol. 20, number 11).

A terminal symbol is a symbol that actually appears in the language itself. Examples of terminal
symbols in Pascal ~re:

begin + >:::

Terminal symbols are written in quotes, e.g.: "terminal".

Some terminal symbols are not ·easily expressed in this way, and these may be represented by
comment_s· contained in angle brackets < >. For example:

<any printable character>

A nonterminal symbol is used in the description of the language b:ut does not actually appear in the
text of the language. That is, it is used to talk about the language. A nonterminal symbol will stand
for some sequence of terminal or non-terminal symbols. Nonterminal symbols are written without
quotes. For example: ·

identifler, interface-part

A production is a rule specifying which terminal and nonterminal symbols make up another nonter­
minal symbol. A production is written:

left-hand-side = right-hand-side .

The left-hand-side is a nonterminal symbol; the right-hand-side is some combination of terminal and
nonterminal symbols. A production indicates that the left-hand-side is made up of the symbols on
the right~hand-side. A production is terminated with a period.

Within a right-hand-side, the following operators may occur:

(blank) indicates that the two symbols are concatenated. For example

lbs = "a" "b" "c" .

indicates that lbs consists of the string abc.

(vertical bar) indicates that the two symbols are alternatives. Concatenation is performed
before alternation. For example:

lbs = "ab" I "cd" .

indicates that lbs consists of one of the strings ab, ed.

[] (brackets) indicate that the enclosed symbols are optional. For example:

lbs = "a" ["be"] "d" .

indicates that lbs consists of one of the strings abed, ad.

{} (braces) indicate that the enclosed symbols are repeated zero or more times. For example:

lbs = "a" { "b"} "c" .

65

Pascal-2 V2.0/RT-11 Language Specification

indicates that lhs consists of any of ac, abc, abbc, abbbc,

() (parentheses) are used for grouping as in mathematics.

We can now use this notation to describe itself as an example. The productions for letter, digit and
character are not given here but are obvious.

syntax = {production } . ·

production = non-:-terminal-symbol _" " expression "."

expression = term {"I" term } .

term = factor {factor } .

factor= non-terminal-symbol I terminal-symbol I "(" expression ")"
I "[" expression "]" I "{" express!on "}" .

terminal-symbol = " 11
" · character {character } "11

" I <any comment in angle brackets> .

non-terminal-symbol-= letter {letter I digit I "-" }.

Pascal-2 Lexical Description

This set of productions defines the lexical representation of Pascal-2.

Productions that differ from the standard are marked with an asterisk (*).

The case of any alphabetic character is insignificant except in a character-string. Lower-case is used
in this description.

1. * letter= "a" I "b" I "c" I "d" I "e" I "f" I "g" I "h" I "i"
I "j" I "k" I "l" I "m" I "n" I "o" I "p" I "q" I "r"
I "s" I "t" I "u" I "v" I "w" I "x" I "y" I "z" I "$"

2. digit= "O" I "1" "2" "3" "4" "5" "6" I "7" "8" I "9" .

~ 3. * octal-digit = "O" "1" "2" "3" "4" "5" I "6" "7" .

4. special-symbol = "+" I "-" I "*" I "/" I ·"='·' I "<" I ">" I "[" I "]" I "(." l ".)"
I "." I "I" I ":" I ";" I "~" I "@" I "(" I ")" I "<>" I "<=" I ">="
I " : =" I " .. " I word-symbol .

5. * word-symbol = "and" I "array" I "begin" I "case" I "const" I "div"· I "ct'o"
I "downto" I "else" I "end" I ."file" I "for" I "function" I "goto" I "if"
I "in" I i'label" I "mod" I "nil" I "not" I "of" I "or" I "origin" I "otherwise"
I "packed" I "procedure" I "program" I "record" I "repeat" I "set" I "then"
I "to" I "type" I "until" I "var" I "while"! "with".

6. * identifier = letter {letter I digit I "_" }.
7.* directive= "forward" I "external" I "nonpascal"

8. digit-sequence = digit {digit }.

9. unsigned-integer= digit-sequence;

10. unsigned-real= (unsigned-integer "." digit-sequence ["e" scale-factor])
I (unsigned-integer "e" scale-factor) .

11. * octal-number= octal-digit {octal-digit } "b" .

12. * unsigned-number.= unsigned-integer I unsigned-real I octal-number.

13. scale-factor = signed-integer .

66

\..

·~ ... ,
~"'

Appendix 3: Pascal-2 Syntax

.14. sign= "+" I "-" .
15. signed-integer= [sign] unsigned-integer;

'16. signed-real= [sign] unsigned-real;

17. ~ signed-number = signed-integer I signed-real I [sign] octal-number .

18. label= unsigned-integer;

19. Character-String = "Ill String-element {String-element } "I" •

20. string-element= "' '" I <any printable ASCII character> .

21. comment = ("{" I "(*")
<any sequence of characters and ends of lines not containing "}" or "* f >
("}" I "*)") .

22;* lexical-directive= "%include" <host flle name> ";".

Pascal-2. EBNF Syntax

This set of. productions defines the syntax for the language accepted by the Pascal-2 compiler,
including all extensions.

This section is to be interpreted in conjunction with the lexical description of the language.

Productions are based on those in the ISO draft Pascal standard. Where the language accepted by
the Pascal--:2 compiler differs from this standard, the production is marked with an asterisk ("*").

1. * program = [program-heading] {label-declaration-part
I constant-deflnition-part I type-deflnition-part
I variable-declaration-part I routine-declaration } [body ". "] .

2. program-heading= "program" identifler ["(" program-parameters ")"]

3. program-parameters= identifler {"," indentifler }.

4. block = declarations. body .

5. declarations = [label-declaration-part] [constant-deflnition-part]
[type-deflnition-part] [variable-declaration-part]
{routine-declaration } .

6. label-declaration-part= "label" label{"," label}";" .

"·.,,

7. · constant-deflnition-part = "canst" constant-deflnition {";" constant-deflnition } ";" .

8. constant-deflnition = identifler "=" constant .

9. * constant = ([sign] (unsigned-number I identifler))
I character-string I structured-constant .

10. * structured-constant = identifler constant-component-list . ·

11. * constant-component-list = "(" constant-component {"," constant-component } ")"

12. * constant-component= constant I constant-component-list .

13. type-deflnition-part = "type" type-deflnition {";" type-deflnition } "; '' .

type-deflnition · = iden.tifler "=" type . 14.

15. type · identifler I enumerated-type I subrange-type I set-type
I array-type I record-type I flle-type I ("-" I "@" identifler) .

67

Pascal-2 V2.0/RT-11 Language Specification

16. enumera,ted~type = "(" identifier {"," identifier } ")"

17. subrange-type = constant " .. " constant .

18. set-type = ["packed"] ''set" "of" type .

19. array-:-type - ["packed"] "array" "[" type {"," type } "]" "of" type .

20. record-type = ["packed"] "record" field-list [";"] "end"

21. field-list = (fixed-part [";" variant-part]) I variant-part .

22. fixed-part = record-section· { ";" record-section }.

23. record-section = identifier { ", " identifier } " : " type .

24. variant-part = "case" [identifier ":"] identifier "of" variant { ";" variant }.

25. variant = con~tant { "," constant } ":" "(" [field-list] [";"] ")" .

26. file-type = ["packed"] "f i 1 e" "of" type .

27. variable-declaration-part = "var" variable-declaration ";" { vaf'.iable-declaration ";" }. ·

28. variable-declaration.= var-specification {"," var-specification } ":" type .

29. var-specification = identifier ["origin" constant] .

30. routine-declaration = (procedure-declaration I function-declaration) ";"

31. procedure-declaration = (procedure-heading ";" block)
· 1 (procedure-heading ";" directive) I (procedure-ident ";" block) .

32. procedure-heading= "procedure" identifier [parameter-list] .

33. procedure-ident = "procedure" identifier .

34. function-declaration = (function-heading ";" block)
I (function"' heading ";" directive) I (function-ident ";" block) .

35. function-heading= "function" identifier [parameter-list] ":" identifier.

36. function-ident = "function" identifier .

37. parameter-list = "(" parameter-section { ";" parameter-section } ")"

38. parameter.,.section = (["var" J identifier {"," identifier } ":" identifier) I
procedure-heading I function-heading.

39. body= compound-statement .

40. statement = [label ":"]
[assignment I procedure-call I compound-statement
I if-statement I case-statement I while-statement I repeat-statement I for-statemen

I with-statement I goto-statement) .

41. assignment = variable ": =" expression .

42. procedure-call = identifier [arg-list I write-arg-list) .

43. arg-list = "(" expression { "," expression } ")" .

44. write-arg-list = "(" write-arg { "," write-arg } ")"

45. write-arg = expression [":" expression [":" expression]] .

46. compound-statement = "begin" statement { ";" statement } "end" .

68

' \

Appendix 3: Pascal-2 Syntax

47. if-statement= "if" expression "then" statement ["else" statement] .

48. * case-statement = "case" expression "of". case-element {";" case-element }[";"]
["otherwise" statement [";")) "end" .

49. case-element = constant {"," constant } ":" statement .

50. while-statement = "wh i 1 e" expression "do" statement .

51. repeat-statement= "repeat" statement{";" statement }"until" expression.

52. for-statement= "for". V8.l'iable ": =" expression ("to" I ·"down to") expression
"do" statement .

53. with-statement = "with" expression {"," expression } "do" statement .

54. goto-statement = "goto" label .

55. expression= simple-expression [relational-operator simple-expression) .

56. relational-operator= "<" I ">" I "<=" I ">=" I "=" I "<>" I "in" .

57. simple-expression = [sign] term {adding-operator term } .

58. adding-operator = "+" I "-" I "or" .

59. term= factor {multiplying-operator factor}.

60. ·multiplying-operator= "*" I "/" I "div" I "mod" I "and" .

61. factor= unsigned-constant I vMiable I function-call
I ("not'' factor) I ("(" expression ")")
I (("[" I "(.") [member-designator.
{ "," member-designator }] ("]" I ".)")) .

· 62. unsigned-constant = unsigned-number I string I identifler I ''nil" .

63. function-call = identifi.er [arg-list] .

64. variable = identifi.er
·1 (v8.l'iable ("[" I "(.") expression {"," expression }("]" I ".)"))
I (vMiable (· "~" I "O"))
I (V8.l'iable " . " identifi.er) .

65 . . member-designator= expression [" .. " expression] .

69

Introduction

What the Compiler's Doing

Running the Debugger ..
Basic Debugger Commands
Stepping Through a Debugger Session

Breakpoint Commands . . . · . .
B, B () : Control Breakpoints
K, K () : Killing of Breakpoints . . .
V, V (): Data Breakpoints (Variables)

Execution Control Commands
G: Go
C: Continue Execution .

Contents

Examples for the B, K, D, G and C Commands
S, S (): Step to Next Statement . . .
P, P () : Proceed to Next Statement . .
Examples for the S and P Commands

Tracking Commands
H, H () : History of Program Execution
T () : Execution Trace
Example for the T Command

Data Commands
W (): Write Variable Value .
Variable Assignment . . .
Examples for the W Command and Variable Assignment .

Informational Commands . .
D: Display Parameters
L, L (): List Source Lines

Utility Commands . . .
M () : Define Macro .
X () : Execute Mac"ro
Examples for the M and X Commands

Execution Stack Commands
H, H () : History of Program Execution
N, N (): Names of Variables .. ·
E ():Enter Stack-Frame Context ...

· Examples for the H, N, and E Commands

Overlays

Appendix A: Debugger Command Summary.

The Pascal-2 Profiler

73

73

74
74
74

78
79
79
79

81
81
81

. 81
82
82
83

83
83
84
84

,_

85
85 .
86
87

88
88
88

89
89
89
90

90
go·

91
. 91

92

93

94

95

.......
\

Pascal-2V2.0/RT-ll Debugger Guide

Introduction

The Pascal-2 Debugger helps uncover program errors that cannot be caught at compilation time.
These errors are usually ones in which the syntax is correct but the algorithm itself is not (e.g.,
incorrect number of loops in statements, unintended but legal changes to variable values, and the
like). The Debugger is oriented to the programmer's viewpoint, so that you need no knowledge of the

. underlying computer architecture. When called, the Debugger. will take control of a program .. The
Debugger keeps track of constants, variables, procedures and functions and all standard and user­
defined data types. The Debugger can show what's happening to data and ·allow you to change it as
the program executes. You can also access the original source text of your program for immediate
identification of context. Taken together, these features allow the trouble-shooting of a program
until you have detected and corrected any errors.

What the Compiler's Doing

The /debug compilation switch calls the Debugger. (See the Programmer's Guide for details on
compilation switches.) The /debug switch causes several things to happen. The object module will
contain extra code to locate statements -in your program. The overhead is about one word per Pascal
statement and about six words for each procedure.

The /debug switch also turns off optimizations that would interfere with debugging. For example,
the compiler normally folds similar statements into one section of code and optimizes the usage of
some variables by keeping their values in registers or on the stack temporarily. These optimizations
would prevent the· Debugger from setting breakpoints in statements and from changing the values
of variables while your program was running - both of which are important debugging facilities.

The net effect of the Debugger overhead and the turning off of some optimizations is that programs
will increase in size while you debug them. (See "Overlays" regarding what to do if the program
size grows too much.) The code will return to its normal size once you correct the problem and.
recompile without I debug.

The /debug switch implies the /1 ist switch, so the compiler will automatically generate a formatted
listing file, . LST, in the same directory as the output file. The Debugger reads this listing file to
display the source lines when statements are identified. The Debugger can use only the listing file
produced by the /debug switch. ·

The /debug switch also causes the compiler to create files with the extensions . SYM and . SMP, also
in the same directory as the output file. The . SYM symbol table file describes ·the constants, types,
and variables and the memory layout of variables. The symbol table file also contains information
about each procedure and function. The . SMP file contains a map of the location of the statements
and their position in the listing. Both the . SYM and the . SMP ,files are in binary form and are not
readily examined by users.

After correcting any syntax errors discovered in a normal compilation and then compiling the
program with /debug, you must link it with the Debugger. The Debugger is supplied in the
PASCAL. OBJ library on the system device and will be automatically included when the /debug switch
is used. See the examples below for the proper command sequence.

73

Pascal-2 V2.0/RT-11 Debugger Guide

Running the Debugger

Basic Debugger Commands

When in control of a program, the Debugger prompts with the right brace "}" symbol. (This may
print on upper-case-only terminals as the right bracket "]" character.) The Debugger accepts any
of the. single-character commands defined in the fallowing sections, with parameters in parentheses.
Numeric parameters are indicated by 'n', as in the command S (n). You may have more than one.
command specified on a single line; commands must be separated by semicolons. The ? (question
mark) command will print a summary of Debugger commands. To exit from the Debugger, give the
Q (quit) command, or type a Control-Z (-z), or type the Control-C (-c) twice in a row. A single
Control-C (-c) typed during program execution will stop the Debugger, thus permitting you to break
into "infinite loops" in your program.

Stepping Thro:ugh a Debugger Session

You will seldom use only a single Debugger command at any one session, so no single example can
demonstrate the context in which certain commands are used or all of the ways in which certain
commands relate. Our approach, therefore, is to begin by stepping through a sample program to
demonstrate some of the common commands in a problem/example context. The sections that
follow will describe in detail each Debugger command, including those not demonstrated in the
sample program. Examples in later sections also provide context by showing several commands used
together.

The sample program, ROTALPAS, prints an array of seven integers. You are then asked for a starting
and ending position in the array. The program is supposed to rotate that section of integers to the
left, with. the left digit replacing the right digit.

After correcting any syntax errors discovered in a normal compilation, you compile a program with
/debug and then link it with the Debugger and the Pascal support library, as shown:

.R PASCAL
*RDTAT/DEBUG

.LINK ROTAT,SY:PASCAL

Remember that the /debug switch implies /1 ist and that this listing file is the only one that should
be used with the Debugger. This listing file, ROTAT. LST, has two columns of numbers. The leftmost
column lists the line numbers in the source file .. The second column contains. the number of each
statement in the program, beginning with 1 for each procedure or function. These numbers identify
points where you may set breakpoints to interrupt program execution. You should have a printout
of the listing file· as reference when you begin a debugging session, or you can use the L command
to list parts of the program while you are debugging.

74

~ ..
,,,,.---------.

i
·-- _)

Running the Debugger

Pascal-2 RT-11 SJ V2.0H 5-Apr-81 7:04 PM Site #1-1 Page 1-1
Oregon Software, 2340 SW Canyon Road, Portland, Oregon 97201, (503) 226-7760
ROTAT/DEBUG

Line Stmt
1 program Rotat; { rotate an array of numbers }
2
3 canst Arraylen = 7;
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22.
23
24
25
26
27
28
29
30

type Index =. 1 .. Arraylen; Element = 0 .. 10;
Numbers = array [index] of Element;

var I: Index; N: Numbers; Left, Right: Index;

procedure Rotate(First, Last~ Index;
var A: Numbers);

var I: Index;

1 begin
2 for I := First to Last do
3 A [I] : = A [I + 1] ;
4 A [Last] : = A [First] ;
5 write('Rotated 'rfirst: 1,' thru ',last: 1, '=');

end;

1 begin { main program }
2 for I := 1 to Arraylen do·
3 beginN[I] :=I; write(I:2); end;
5 writeln; write('Left,Right? ');
7 readln(Left, Right);

. 8 I := 4;

9 . Rotate(Left, Right, N);
10 for I := 1 to Arraylen do
11 write(N[I] :2);

end.

*** No lines with errors detected ***

75

I~ I

I
I

Pascal-2 V2.0/RT-11 Debugger Guide

After compiling and linking the program, you can now run it. The Debugger will take control of the
program and· enter command mode .

. RUN ROTAT

Pascal Debugger V3.00 -- 27-Jan-81

Program name? ROTAT
} G ---.. -----------·----------------begin execution

1 2 3 4 5 6 7
Left,Right? 1,7

?Array subscript out of bounds
Program counter: 1356

Program terminated.

Breakpoint at ROTATE,3 A[I] := A[I + 1];
} W (I) ------------- --- write the value of I
7
} W(A [8])
Array subscript too large
W (A [8])

write the value of A[8]

The limits are 1 .. 7
} Q ---- --·-------~----------'- quit the Debugger

Now we can diagnose the error. The for loop in the R_otate procedure is l_ooping too many times.
We reduce the final value by 1 (last becomes last - 1 in line 15) and recompile the program.

This time, when we run the program, we tell the Debugger to list procedure Rotate, so that we can
more closely follow the section of the program we changed .

. RUN ROTAT

Pascal Debugger Va.OO -- 27-Jan-81

Program name? ROTAT
} L (Rotate, 1, 5) -- - ----- list_ 5 lines of procedure Rotate

14 1
15 2
16 3

begin
for I - First to Last - 1 do

A[I] := A[I + 1];
A [Last] : = A [First] ;

} G

17
18

4
5 wr{te('Rotated ',first: 1,' thru ',last: 1, '=');

begin execution
1 2 3 4 5 6 7

Left,Right? 1,7
Rotated 1 thru 7= 2 3 4 5 6 7 2
Program terminated.

Breakpoint at MAIN,11 write(N[I] :2);
} W (N [7])

2
write the value of N[7]

-The results are closer to what they should be, but.something is still wrong: the last number is not 1
as it should be. With the L command, we now list the part of the main program that initializes the

76

..........

-\.

Running the Debugger

N array. From this, we can choose a locationfor a breakpoint once the array is initialized.

} L (main, 1, 5) list 5 lines of main program
21 1 begin { Main program }
22 2 for I := 1 to Arraylen do
23 3 begin N[I] :=I; write(I:2); end;
24 5 writeln; write('Left,Right? ');
25 7 readln(Left, Right); ·

} B(main, 6) set breakpoint at MAIN, 6
} G ·--~------------------- begin execution·
1 2 3 4 5 6 7

Breakpoint at MAIN,6 writeln; write('Left,Right? ');
} I (N [7]) write value of N [7]
7

(Note the way in which the Debugger counts statements when more than one is placed on a line, as
on line 24 above. Though not explicitly listed, the second statement on line 24 is statement number
6 and must be identified as such.) -

Examination of the array N at this breakpoint shows the array to be correct; the change to the value
of the variable must be occurring-somewhere else. Using the V (watched variable) command, we tell
the Debugger to stop the program whenever N [7] is changed.

} V (N [7])
} c

------------ watch for changes of value of N [7]
continue execution

Left.Right? 1,7
The value of "N[7]" was changed by the statement:
Rotate,4 A[Last] := A[First];
Old value: 7
New value: 2
Breakpoint at ROTATE,5 write('Rotated ',first:!,' thru ',last:!,'=');

------~----write values' of First and Last } W(First,Last)
1 7
} W(N) write values of array N
2 3 4 5 6 7 2

}

At Rotate, 4 the first element is assigned to the last -element after the first element has been changed.
We must introduce a temporary variable to hold the first element value so that it will not be destroyed.
We correct the program (adding a "temp" variable, an assignment at line 14 and another between
lines 16 and 17), then recompile. ·

Again, we use the L command to inspect the part of the program we changed.

77

Pascal-2 V2.0/RT-ll Debugger Guide

.RUN ROTAT

Pascal Debugger V3.00 -- 27-Jan-81

Program name? ROTAT
} L (Rotate, 1, 6) list 6 lines of procedure Rotate

14 1 begin Temp := N[First];
15 3 for I := First to Last - 1 do
16 4 A [I] : = A [I + 1] ;
17 5 A[Last] := Temp;
18 6 write('Rotated ',first: 1,' thru ',last: 1, '=');
19

} G
1 2 3 4 5 6 7

Left,Right? 1,7

end;

Rotated f thru 7= 2 3 4 5 6 7 1
Program terminated.

Breakpciint at MAIN,11 write(N[I] :2);

----- begin execution

} G ------ ---------------------- -------------------·--------------- begin execution
1 2 3 4 5 6 7

Left,Right? 3,4
Rotated 3 thru 4= 1 2 4 3 5 6 7
Program terminated.

Breakpoint at MAIN,11 write(N[I] :2);
} G - ----------------- --------- - ----------------~-------- begin execution

1 2 3 4 5 6 7
Left,Right? 2,6
Rotated 2 thru 6= 1 3 4 5 6 2 7
Program terminated.

Breakpoint at MAIN, 11 write(N[I] :2);
} Q . - --------- --------------------~---- quit Debugger

Now the program seems to be running correctly. Note that the G command will restart the program
even after it has terminated.

Once satisfied that the program is correct~ we recompile it without the /debug switch to reduce
memory requirements and to improve execution speed.

Debugger commands are described in detail in_ the next se~tions. Commands with similar functions
are grouped together. Some examples are grouped together to provide context. Appendix A contains
a summary of Debugger commands.

Breakpoint Commands

Breakpoint commands allow you to set or remove breakpoints when your program reaches a certain
point in execution or when a specified variable in your program changes value. Breakpoints allow
you to interrupt the program in order to execute other Debugger commands.

78

'"- -/

Breakpoint Commands

B, B () : Control Breakpoints

A program control breakpoint is identified by two items: a block name (procedure, function, or
MAIN), and a statement number within that block. Statements are sequentially numbered within
each block. Statement numbers are listed in the second column of the program listing produced by
the I de bug command.

The B (BlockName,StatementNumber) command sets a control breakpoint within tbe block named
BlockName at the statement numbered StatementNumber. When the breakpoint is reached, your
program will be interrupted before execution of the named statement, the breakpoint will be
identified, and the Pascal source line will be displayed. The Debugger then will accept commands.

These may be interactive commands (from your terminal) or stored commands executed automati­
cally. To save stored commands for automatic execution at a breakpoint, ~ppend a list of commands
separated by semicolons and enclosed in angle brackets B () < . . . >. Any Debugger command can be
stored for execution at a breakpoint. Stored commands are executed before interactive commands.
If the stored commands direct the Debugger to resume execution, the program will continue without
waiting for an interactive command.

You may interrupt the program at any time with a Control-G (-c). This command will stop the·
program and identify the point of interruption as if you had set a control breakpoint.

Note: If you type a Control-C (-c) while the program is awaiting input for a real or an integer at
a read or readln statement, the Control-C (-c) will not take effect until after you have completed
the input request.

A run-time error or pr6gram termination also will cause a control breakpoint after the error message
or termination status is displayed. You may set any number of control breakpoints. (The program
will execute more slowly if you define many.)

See the example listed after the C command.

K, K () : Killing of Breakpoints

You may remove a breakpoint in two ways. The B command with no parameters will delete the break­
point that most recently stopped the program. Otherwise, the K (BlockName, StatementNumber)
command will delete the breakpoint specified. The K command with no parameters will remove all
breakpoints.

See the example after the C command.

V, V (): Data Breakpoints (Variables)

The data breakpoint facility (also called the ''watched variable" command) causes an immediate
breakpoint when the value of a specified variable is changed. The V (variable) command sets a data
breakpoint, with 'variable' indicating the variable to be monitored. When the value of the variable
is changed, the Debugger prints both the old and new values and interrupts program execution for
commands.

Like control breakpoints, data breakpoints may have stored commands that are automatically
executed when the breakpoint is triggered. A list of the stored commands, separated by semicolons,
is enclosed in angle brackets after the watched variable command: V (variable) < . . . >.

The V command will monitor a variable of any type, but only the first 32 bytes of data will be ·
watched. You may watch any number of variables. (The program will execute slowly if you set
many.)

79

Pascal-2 V2.0/RT-11 Debugger Guide

Example of data breakpoints:

} V(N [7])
} c
Left,Right? 1,7
The value of "N[7]" was changed by the statement:
Rotate~4 A[Last] := A[First];
Old value: 7
New value: 2
Breakpoint at ROTATE,5 write('Rotated ',first:!,' thru ',last:!,'=');

(This example, ROTAT. PAS, is from "Running the Debugger", before.)

The V command without parameters removes all data breakpoints. It is not possible to remove
individual data breakpoints.

If a local variable is being monitored and the associated block is completed, the Debugger will remove
the breakpoint and display a message that the variable no longer exists.

Example:

Breakpoint at DECODE,3 FirstChar := M[1];
} L

1255 function Decode(M:Name) :integer;
1256
1257 var I: Boardlndex; Found: boolean; FirstChar: char;
1258

1 begin
2 Found := false;
3 FirstChar := M[1];

1259
1260
1261
1262
1263

4 if (FirstChar >= 'a') and (FirstChar.<= 'h') then
5 FirstChar := chr(ord(FirstChar)-40);

1264 6 for I := 5 to 40 do
1265 7 if FirstChar = UserMoves[I,1] then
1266 8 if M[2] = UserMoves[I,2] then begin
1267 9 Found := true;
1268 10 Decode := I;
1269 end;
1270 11 if not Found then Decode := O;
1271 end;
1272

} V(Found)
} c
The value of "FOUND" was changed by the statement:
DECODE,9 Found := true;
Old value: FALSE
New value: TRUE
Breakpoint at DECODE,10 Decode := I;
} K kill breakpoints
} C ·· ·----- ···-·- --····-----·-- -···--------------·------·---~ continue execution
Watch terminated for "FOUND". Value did not change.

80

'':-.

Execution Control Commands

Execution Control Commands

Execution· control commands provide the means .to monitor and control the flow of the program.
The commands initiate, interrupt, or continue execution.

G: Go

The G (Go) command begins executing the program at MAIN, 1. The G command may be used at
any point in the program to restart it.

See the example after the C command.

C: Continue Execution

The C (Continue) command resumes program execution from the current breakpoint.

If you set a breakpoint inside a loop, you may use the C (n) command to let the· statement at the
breakpoint execute 'n' times. For instance, you can set a breakpoint at COUNT, 10 inside a loop
structure. When the Debugger stops at that b~eakpoint, you can give the command C (6) to let the
loop iterate six times before the program stops again at COUNT, 10. Each breakpoint has its own
counter, which is independent of the counters for other breakpoints.

The C command will function like the G command to begin executing the program if you are at the
start of the program.

If you use the c· command after the program has terminated, you will receive an error message telling
you to use the G command to restart the program.

Examples for the B, K, D, G and C Commands

.RUN ROTAT

Pascal Debugger V3.00 -- 27-Jan-81

Program name? ROTAT
} L(main,8,2) ------ List 8th statement of MAIN, 2 lines

26 8 I := 4;
27 9 Rotate(Left, Right~ N);

} B(main,9)<W('I=' ,i) ;·C>
} B(Rotate,4)<W('In rotate, I=',i)>
} G

1 2 3 4 5 6 7
Left,Right? 1,7
Breakpoint at MAIN,9 Rotate(Left, Right, N);

I= 4

Breakpoint at ROTATE,4 A[I] := A[I + 1];
In rotate, I= 1
} D ---------~·----·----------------------- --·--------------------------

Breakpoints

ROT ATE I 4 A [I] : = A [I + 1] ;
<W('In rotate, I=',I)>

MAIN,9 Rotate(Left, Right, N);
-<W (I I= I , I) ; C>

81

display breakpoints

Pascal-2 V2.0/RT-11 Debugger Guide

} W (I) ; C (2) ; W (I)

1
Breakpoint at ROTATE, 4 A [I] : = A [I + 1];
In rotate, I= 3
3
} K (Rotate ,.4)
} c ---·- --· -. ----·--··-----------·--
Rotated 1 thru 7= 2 3 4 5 6 7 1
Program terminated.

kill. specified breakpoint
continue execution

Breakpoint at MAIN,11 write(N[I] :2);
} D

Breakpoints

MAIN,9 Rotate(Left, Right, N);
<W('I=',I);C>

} K
} D
} Q

S, S (): Step to Next Statement

-------- display breakpoints

kill all breakpoints
--- (no breakpoints to display)

---------- quit Debugger

The S (Step) command· executes the next statement of the program. The S (n) command will
execute 'n' statements without interruption. If a statement being "stepped" calls another procedure
or function, that new procedure or function also will be exec.uted one step at a time.

See the example after the P command.

P, P () : Proceed to Next Statement

The P (Proceed) command executes the next statement at the current level of the program. P
differs from S in that P will not single-step through functions and procedures called by the current
statement. P will treat an entire nested call as a single statement; thus procedure calls ,and function
invocations will be completed before program control returns to the Debugger, allowing you to bypass
the detailed execution of routines (e.g., ones already debugged). ·

If the current procedure· ends, P will begin single-stepping the procedure that called the current
procedure.

The P (n) command is equivalent to repeating the P command 'n' times.

As with the C command, you may not go past the end of the program with an S or a P command.
If you do so, you will receive an error message telling you to use G to restart the program.

82

\
·'--

Examples for the S and P Commands

.RUN ROTAT

Pascal Debugger· V3.00 -- 27-Jan-81

Program name? ROTAT
} B(main, 9)
} G

1 2 3 4 5 6 7
Left,Right? 1,5
Breakpoint at MAIN,9 Rotate(Left, Right, N);
} s
Breakpoint at ROTATE,1 begin Temp := N[First];
} s
Breakpoint at ROTA.TE,2 begin Temp : = N [First] ;
} s
Breakpoint at ROTATE,3 for I := First to
} s
Breakpoint at ROTATE,4 A[I] := A[I + 1];
} s
Breakpoint at ROTATE,4 A[I] := .A[I + 1];
} S(3)

Breakpoint at ROTATE,5 A [Last] := Temp;
} c
Rotated 1 thru 5= 2 3 4 5 i 6 7
Program terminated.
Breakpoint at MAIN,11 write(N[I] :2);
} G

1 2 3 4 5 6 7
Left.Right? 1,5

Last -

Breakpoint. at MAIN,9 Rotate(Left, Right, N);
} p

Execution Control Commands

1 do

Rotated 1 thru 5=Breakpoint at MAIN,10 for I := 1 to Arraylen do
} p

Breakpoint at MAIN,11 write(N[I] :2);
} p
: 2Breakpoint at MAIN,11 write(N[I] :2);

Tracking Commands

Two commands help you track program execution. The H command lists the statements that have
brought you to your present position. The T command traces program execution through each

. statement.

H, H () : History of Program Execution

·The Debugger maintains a list of the last 50 statements executed while your program was running. ·
With the H command you can review this execution history. For instance, if the program failed

'-., because of an error during execution (such as division by zero), the H command will show· the steps
leading to the statement causing the error. The H command with no parameters prints a list of the
last 10 statements executed. H (n) will print the last 'n' statements up to 50.

83

Paseal-2 V2.0/RT·ll Debugger Guide

The H command has other important functions as well. See "Execution Stack Commands" for details
and for examples of the command.

T () : Execution Trace

The T command accepts a Boolean parameter, either enabling or disabling the tracing of program
execution. When tracing is enabled with the T (TRUE) command, each statement will be identified
by its block name and statement number and will be displayed before being executed.

A Control-C (-c) will interrupt the trace and return the Debugger to command mode. You can
then turn off tracing with the T(FALSE) command and continue running your program.with the C
command.

Example for the T Command

.RUN ROTAT

Pascal Debug&er V3.00 -- 27-Jan-81

Program name? ROTAT
} L(main,9,3)

27 9 Rotate(Left, Right, N);
28 10 ·for I := 1 to Arraylen do
29 11 write(N[I] :2);

} B (main, 9) <T (TRUE); C> -----'----'---. --- set breakpoint, tracing, ·continue
} G
1234567

Left,Right? 1,3
Breakpoint at MAIN,9 Rotate(Left, Right, N);

ROTATE,1 -begin Temp := N[First];
ROTATE,2 begin Temp := N[First];
ROTATE,3 for I := First to last - 1 do
ROT A TE, 4 A [I] : = A [I + 1] ;
ROTATE,4 A[I] := A[I + 1];
ROTATE,5 A[Last] := Temp;

tracing enabled

ROTATE,6 write('Rotated ',first: 1,' thru ',last: 1, '=');
Rotated 1 thru 3=MAIN,10 for I := 1 to Arraylen do
MAIN, 11 write (N[I] : 2);

2MAIN,11 write(N[I] :2);
3MAIN~11 write(N[I] :2);
1MAIN, 11 write (N [I] : 2) ;
4MAIN,11 write(N[I] :2);
5MAIN,11 write(N[I] :2);
6MAIN, 11 write (N [I] : 2) ;
7

Program terminated.

Breakpoint at MAIN, 11 write (N [I] : 2) ;

84

\..)

Tracking Commands

. } T(FALSE)
} D

------------------~-- tracing off

Breakpoints

MAIN,9 Rotate(Left, Right, N) ;.
<T(TRUE);C>

} K
} G

1 2 3 4 5 6 7
Left.Right? 1,3
Rotated 1 thru 3= 2 3 1 4 5 6 7
Program terminated.

Breakpoint at MAIN,11 write(N[I] :2);

/

Data Commands

Debugger data commands allow you to display the current values of variables and to assign new
values to them. The data commands provide full access to user identifiers and type definitions. The
data commands conform to Pascal type compatibility rules.

W (): Write Variable Value

Yol:l use the W command to write the value of a variable (including a pointer), of a constant; or of a
memory location. The format for the W command is:

. } W (Namel, Name2, Name3, ...)

where 'Name' is the name of the variable you want to write. AB shown, you can write the value· of
more than one variable by separating variable names with commas.

The type of variable determines the format of the output. For example, integers are displayed as
16-bit signed decimal numbers. Set variables are displayed in Pascal set notation. Scalar variables
are displayed as the name of the enumerated type they represent.

You may use the Pascal colon notation ":" to alter the way variables are written. For example, to
print the integer variable "I" as an octal number, you use:

} W(I:-1)

Also see the example after Variable ABsignment.

Real numbers may be formatted according to the same rules used by the compiler.

A numeric constant can be used as an address if you· wish to write the integer value contained in
a memory location. A 'B' placed after the number, as in "W(27740B)", specifies an octal memory
location. Memory locations are displayed as 16-bit signed integers.

The Debugger can write any complex Pascal data structure, including records and arrays. Each
element of an array is printed, starting with the first element.

Each change of a multi-dimensional array index generates an end-of-line character, so that the array
or table is clearly displayed in groupings that correspond to changes in the indices. One blank line
will separate the elements of the rightmost index from those in the next-rightmost index; two blank

85

Paseal-2 V2.0/RT-11 Debugger Guide

Jines will separate the elements of the next-rightmost index from those in the third-rightmost index;
and so on.

Example:

Pascal-2 RT-11 SJ V2.0H 5-Apr-81 7:04 PM Site #1-1 Page 1-1
Oregon Software, 2340 SW Canyon Road, Portland, Oregon 97201, (503) 226-7760
MULTI/DEBUG

Line Stmt
1 program Multi; { multi-dimension variables }
2'

3 var A: array [1 .. 3, 1 .. 3, 1 .. 3] of integer;
4 I, J, K: integer;
5
6 1 begin
r 2 for I := 1 to 3 do
8 3 for J := 1 to 3 do
9 4 for K := 1 to 3 do

10 5 A[I,J,K] := (I * 10 + J) * 10 + K;
11 end.

*** No lines with errors detected ***

.RUN MULTI

Pascal Debugger V3.00 -- 27-Jan-81

Program name? MULTI
} G

Program terminated.

Breakpoint at MAIN,5 A[I,J,K] - (I * 10 + J) * 10 + K;
} W(A)

111 112 113
121 122 123
131 132 133

211 212 213
221 222 223
231 232 233

311 312 313
321 322 323
331 332 333

When you write records, the Debugger will list each field name followed by the value of that field.
The format of each field is determined by the data type of the field. Complex records, such as those
containing arrays of records, can get messy; you may want to have the listing on hand to· show the
definition of the record being printed.

Variable Assignment

The Debugger command to modify a program variable is identical in form to a Pascal assignment

86

Data Commands

statement. The left-hand side of the ": =" assignment operator indicates the variable to be modified.
This variable may include array indices, record. field selectors, and pointer accesses. The right-hand
side specifies the value to be assigned. This may be a simple constant or literal value, or another
program variable. Standard notation is used for all values, including sets. General expressions
(operators and functions) are not permitted.

Debugger variable assignments must conform to the Pascal assignment compatibility rules .. All
variables accessed in an assignment command must be available in the current stack context. The
E (n) command may be used to temporarily change context,. if necessary.

Examples for the W Command and Variable Assi~ent

Pascal-2 RT-11 SJ V2.0H 5-Apr-81 7:04 PM Site #1-1 Page 1-1
Oregon. Software, 2340 SW Canyon Road, Portland, Oregon 97201, (503) 226-7760

COLOR/DEBUG

Line Stmt
1
2
3
4

5
6
7.
8
9

10
11
12
13
14
15

program Color;

type
Color= (Red, Orange, Yellow, Blue, Green);

var
c: Color; I: integer;
Colorset: set of Color;
a: array [O .. 4] of Color;
r: record

I: integer;
S: set of Color;·
C: packed array [1 .. 4] of char;

end;

16 1 begin
17 2 for C := Red to Green do A[ord(C)] := C;
18 4 Colorset := [Red, Yellow .. Green];
19 5 R.I - 123; R.S := [Or~nge, Green]; R.C := 'TEST';
20 end.

*** No lines with errors detected ***

.RUN COLOR

Pascal Debugger V3.00 -- 27-Jan-81
Prog.ram name? COLOR
} G

Program terminated.

Breakpoint at MAIN,7 R.I := 123; R.S - [Orange, Green]; R.c· - 'TEST';
} W(A)

RED ORANGE YELLOW BLUE GREEN

} A[1] := Red; A[4] := Red; W(A)
RED RED YELLOW BLUE RED

87

Pascal-2 V2.0/RT-11 Debugger Guide

} W (Color set)
[RED, YELLOW .. GREEN]
} Colorset :=[Red .. Green]; W(Colorset)
[RED .. GREEN]
} W(R)
I: 123
S: [ORANGE,GREEN]
C: TEST

} R.I := 321; R.S .- Colorset; W(R)
I: 321
S : [RED . . GREEN]
C: TEST

Informational Commands

Informational commands show data being maintained by the Debugger. The D command shows
the current breakpoints, user-defined macros, and variables being watched. The L command shows
selected parts of the program listing, so that you won't have to reprint the listing each time you
revise your program.

D: Display Parameters

The D command displays all breakpoint locations with stored commands, user-defined· macros, and
the variables being watched. Breakpoints are set with the B command. Macros are stored Debugger
commands created by the M command and executed by the X command. The V command is used to
set variable watches. (See the respective sections for details on these commands.) ·

See the ROT AT . PAS example in "Running the Debugger" and the example after the C command.

L, L () : List Source Lines

The L command uses the statement numbers in the listing file of your program to list portions of
the source program. The L command allows you to list individual statements, parts of procedures,
or entire procedures.

When a breakpoint is set at a statement via B () , the· Debugger prints only the first line associated
with the statement. The History command H also prints only the first line of th~ statement. The L
command, in contrast, prints all lines containing the statement.

The L command with no parameters lists the current procedure. You can list any other procedure
by giving the procedure name enclosed in parentheses. For example, L (main) will list the body of
the main program.

The command L (Proc, Stmt) lists a single statement, where 'Proc' is the name of the procedure and
'Stmt' is the number of the statement to print.

You also may·list sections of the program starting or ending at a particular statement by specifying
, a line count after the statement number. For exampl_e, L (main, 1 , 1 O) will list the first ten lines of
the main program.

The general form of the command is L (Proc, Stmt, Count) where 'Proc' and 'Stmt'. describe a
statement in the program. A positive 'Count' will print that many lines starting at the statement
specified. A negative 'Count' will print that many lines in front of the. statement specified.

88

\...

·"-...

Informational Commands

This example lists 5 lines beginning with the 1st statement of procedure Rotate:

} L(Rotate,1,5)
14 1
15
16
17
18

2
3
4

5

begin
for I := First to Last - 1 do

A[I] := A[I + 1];
A[Last] := A[First];
writa('Rotated ',first: 1,' thru ',last: 1, '=');

This ·example lists 2 lines before the start of the 4th statement of procedure Rotate:

} L(Rotate;4,-2)
15 3
16 4

. for I := First to Last - 1 do
A[I] := A[l + 1];

When you list an entire procedure, the Debugger attempts to include the procedure heading and
· local variable declarations in the listing. However, this header information is only used by the Pa~cal

compiler, so the Debugger has to estimate where the procedure header information is located in the
listing file. Ai; a result, the Debugger wiH not always print the complete header information and
sometimes may print part of the preceding procedure.

Long procedures may take some time to print~ A single Control-C (... c) will interrupt the listing and
return the Debugger to command mode.

Utility Commands

M () : Define Macro

The M command can save you some typing when you need to issue repetitive commands. For example,
you may need to write the value of several critical variables at different places in your program. The
M feature lets you combine these commands under one· name, then execute this group of commands
by using the X command, ·explained below. You cannot pass parameters to. macros.

The format for definition of a macro is:

} M (Name)< command!; command2; ~6mmand3; ... >

where 'Name' is any alphanumeric symbol containing up to 32 letters. The X ~ommand uses 'Name'
to identify the macro. You may place as many Debugger commands in the angle brackets "< ..• >"
as will fit on one command line. You can delete a macro by typing M (Name) with no commands.
Available memory is the only limit on the number of macros you may define. The D command will
list macro names and the commands associated with· each name.

See the example after th.e X command.

X () : Execute Macro

You may execute the Debugger commands associated with a macro by using the X command. The
format is: ·

} X(Name)

where 'Name' is the name of the macro. The effect of the X command is to execute the Debugger
commands defined by the M command of that· name.

Pascal-2 V2.0/RT-11 Debugger Guide

Examples for the M and X Commands

.RUN ROTAT ·

Pascal Debugger V3.00 27-Jan-81

Program name? ROTAT
} M (DumpN) <W (-•The value of N=' , N) >
} B(Rotate,1); G

--------- define macro

1 2 3 4 5. 6 7
Left,Right? 1,7
Breakpoint at ROTATE,1 begin Temp := N[First];
} M(DumpI)<W('I=' ,I)>
} D

--------------- define macro

Brea!cpoints

ROTATE,1 begin Temp N[First];

Macros

DUMP I
DUMPN
} s

W('I=' ,I)
W('The value of N=' ,N)

Breakpoint at ROTATE,2 begin Temp := N[First];
} s
Breakpoint at ROTATE,3 for I := First to Last~ 1 do
} s
Breakpoint at ROTATE,4 A[I] := A[I + 1];
} X (Dump I) --------------- - -- -- ------ -
I= 1
} S(4); X(DumpI); X(DumpN)
Breakpoint at ROTATE,4 A[I] := A[I + 1];
I= 5
The value of N=· 2 3 4 5 5 6 7

} Q

Execution Stack Commands

execute macro

The execution stack command H shows at any time a history of program execution and the current
stack of pending procedure and function calls; the N. command lists the names of the parameters and
local variables in any procedure in the. execution stack; and the E command allows you to change
the context of the stack frame. from the current procedure· to another so you can access variables
you otherwise wouldn't be able to.

H, H () : History of Program Execution

As described above, the Debugger maintains a list of the last 50 statements executed while your
program was running. With the H command you can review this execution history. For instance, if
the program failed because of an error during execution (such as division by zero), the H command
will show the steps leading to the statement causing the error. The H command with no parameters
prints a list of the last 10 statements executed. H (n) will print the last 'n' statements up to 50.

90

\

Execution Stack Commands

The H command also lists the execution stack. Each time a procedure or function is called, a new
entry is made at the top of the execution stack. When the procedure exits, that entry is removed
from the top of the stack. The main program is always at the bottom of the stack. The H command
shows the procedures that were called to get from the main program to the current procedure. H (0)

will print just the execution stack.

In the display, each procedure or function in the execution stack is identified by a number .. This
procedure number is used to identify procedures in the execution stack for the N and E commands
described in following sections. (These are not the statement numbers used to identify other Debugger
commands.)

In the display, the "<" character marks the current procedure. Unless the E command is used (see
below), this is always the top procedure in the execution stack. The Debugger u·ses the current
procedure to determine the local variables that can be accessed according to Pascal scope rules.
Procedures marked with the "*" character are those procedures which lexically contain the definition
of the current procedure. The parameters and local variables in· the procedures so marked are the
only local variables that you may look at or change directly. If you wish to look at local variables
in other procedures in the execution stack, you must use the E command.

See the example after the E command.

N, N (): Names of Variables

The N command with no parameters lists the names of the parameters and local variables in the
current procedure. If you are in the main program, the command will display all of the global-level
variable names.

N with a numeric parameter lists the names of the. local variables in the procedure so numbered on
the execution stack. These numbers are obtained via the H command, described above.

Note that N will list the names of the local variables and parameters in any procedure or· function
on the stack, not merely the ones marked with the "*". However, you cannot write or change the
value of variables unless they are in procedures or functions marked with the "*".

The E command, described below, allows access to variables that you otherwise cannot access from
the current procedure.

See the example. after the E command.

E () : Enter Stack .. Frame Context

The Debugger normally enforces Pascal's scope rules. If you stop your program in the middle of
a procedure, you can write or modify only the variables and parameters in each of the procedures
enclosing the current procedure, as described above in the section on the H command.

If you want to look at or change local variables in procedures that are not accessible to the current
procedure, the E command will get around the Pascal scope rules by temporarily changing the
context of the current procedure ..

The H command numbers the procedures in the execution stack. The main program is always 1,
and procedures called from the main program are listed as 2, and so on. If you want to examine
variables in procedure 5 in the current execution stack, and it is not marked with a "*" (and therefore
not available to you from where you are), you use E (5) to temporarily enter the context of that
procedure.

The E command affects only debugging commands that follow it on the same command line. For
example, to print the value of the variable 'I' in the procedure listed as 5, you type:

} E(S); W (I)

91

Pascal-2 V2.0/RT-11 Debugger Guide

This command line will make procedure 5 the current procedure. Then, using the context of
procedure 5, the. Debugger will print the value of the variable 'I'. At the end of the command
line, the current procedure will be changed back to. the top procedure in the execution stack.

Because the N command allows you to list the names (only) from all the procedures on the execution
stack, the following commands are equivalent:

·} E(S); N
} N(S)

Examples for the H, N, and E. Commands

Breakpoint at CHECK, 1 begin start of check
------~------~- list last 5 statements executed } H(S)

Program execution history:

ANALYZEMOVE,9 Vacant[Target] :=false;
ANALYZEMOVE,10 if CentralSquares[Target] then
ANALYZEMOVE,14 PossiblaMoves := PossibleMoves+1;
ANALYZEMOVE,15 Check(4); Check(5); Check(-4); Check(-5);
CHECK,1 begin start of check

Procedur~ execution stack

8< CHECK,1. begin start of check
7* ANALYZEMOVE,15 Check(4); Check(5); Check(-4); Check(-5);
6* ANALYZE,12 AnalyzeMove(4,I); AnalyzeMove(5,I);
5* EVALUATEBOARD,4 Analyze;
4 GENMOVE,15 EvaluateBoard(N-,Turn);
3 MOVEPIECE,9 if MovesAllowed then GenMove(I,J);
2 EXPAND,11 if Color[Who]=Turn then MovePiece(I,I,0,0);
1* MAIN,8 Expand(Root,True);

} N
DIRECTION SRC DST F
} N(7)

DIRECTION I SAFE WASKING TARGET THRT
} N(4) -------------~---- names in frame 4
I J N OLDPIECE
} E(7); W(I)

14
} E (4); W (I)

27
} E(4); H(O)

-change context to frame 7, write value

---------- change context to frame 4, write value

92

Execution Stack Commands

Procedure execution stack

8 CHECK,1 begin start of check
7 ANALYZEMOVE,15 Check(4); Check(5); Check(-4); Check(-5);
6 ANALYZE,12 AnalyzeMove(4,I); AnalyzeMove(5,I)~
5 EVALUATEBOARD,4 Analyze;
4< GENMOVE,15 EvaluateBoard(N-,Turn);
3* MOVEPIECE,9 if MovesAllowed then GenMove(I,J);
2* EXPAND,11 if Color[Who]=Turn then MovePiece(I,I,0,0);
1* MAIN,8 Expand(Root,True);

}

Overlays·

Debugger modules, contained withill the Pascal-2 library, are automatically included during the
linking of a module compiled with the /DEBUG switch. These modules can add up to 12K words to
the size of a program, often making it too big to run. If this happens (as it often will with large
programs), overlay the Debugger so that it takes less room, as shown:

.LINK/PROMPT
*PROG = SY:DBRUN,SY:PASCAL/C/T
*PROG,SY:DBUSER/0:1/C
*SY:DBUG/0:1
Transfer address? $START

DBRUN. OBJ, the interface between Pascal-2 programs and the Pascal-2 Debugger, processes all
Debugger traps. DBRUN . OBJ must be linked into the root segment of overlaid programs.

DBUSER. OBJ reloads the user program after an exit from Debugger command mode. DBUSER. OBJ
- must be loaded into the same region as the program being debugged.

DBUG. OBJ is the Debugger, which processes Debugger commands. The Debugger normally overlays
the user program being debugged.

93

Pascal.:...2 V2.0/RT-11 Debugger Guide

Appendix A: Debugger Command Summary

B
B (Block, Statement)
B (Block, Statement) < . . . >
c
C (n)

D
E(n)

G
H
H(n)

K
K (Block, Statement)
L (Proc)
L (Proc, n)
L (Proc, n, x)
M (Name) <Commands>
N
N(n)
p

P(n)
Q

s
S (n)

T (True/False)
V (variable)
V (variable)< ... >
WO
X(name)
variable : = value
?
-c (Control-C)

Remove current breakpoint
Set a control breakpoint
Control breakpoint with stored commands
Continue through breakpoint
Continue 'n' times
Display breakpoints and macros
Enter context of frame. 'n' (1 line only)
Restart program
Display recent history and full stack
Display last 'n' statements
Remove all control breakpoints
Remove specified breakpoint
List source of Proc.
List statement 'n' in Proc.
List 'x' lines after statement 'n' in Proc.
Define stored command macro
List variables for current frame
List variables for frame 'n'
Proceed 1 statement at current level
Proceed 'n' statements .
Quit Debugger
Single-step statement
Single-step 'n' statements
Enable/disable tracing
Set data breakpoint
Data breakpoint with stored commands
Write list of values
Execute named macro command
Assign value to variable
Help (display command summary).
Immediate breakpoint

94

The Pascal-2 Profiler

The Pascal-2 Profiler can help you tune Pascal programs by detecting bottlenecks: small sections of
code in which your program spends a disproportionately large amount of time. The Profiler counts
the number of times each Pascal statement in your program is executed and prints a ·summary
describing how many times each procedure is called, and what fraction of the total statements
executed are f owid in that procedure.

To use the Profiler, you· should compile your program with the /profile switch. {See the Program­
mer's Guide for details on compilation switches.) The /profile switch will cause the Pascal-2
compiler to generate several auxiliary files. These. files, which permit the Profiler to locate the
statements and procedures in your program, are the same ones generated by the I debug switch and
are described in "What the Compiler's Doing" at the beginning of the Debugger Guide. The Profiler
requires 2K words, plus aoout 4 words per statement in the program. Thus, a program containing
1000 statements will require about 6K words for the Profiler. ·

After compiling the program, include the Profiler module at the link step. The Profiler is supplied
as an object module, SY: PRFILE. OBJ. The compilation and link steps are shown below, using a
program named PROG. PAS .

. R PASCAL
*PROG/PROFILE

.LINK PROG,SY:PRFILE,SY:PASCAL

The Profiler will take control of the program and ask for its name. The name should be the name
of the output file specified when you compiled the program. This name is used to open the auxiliary
files created by the Pascal compiler. For large programs, there may be a short pause while the
Profiler scans the auxiliary files to build internal data structures.

Next, the Profiler will ask for the name of the profile output file. If you specify a disk file, the
default file type will be . PRO. Writing a profile to the terminal is practical only for a short program.

The next example involves a program, CHECKR. PAS, that plays a game of checkers. Compile and
link the program as described above, then. run it .

. RUN CHECKR
profile V3.1 15-Mar-81

Program name? CHECKR
Profile output file name? CHECKR ---- Output goes to CHECKR.PRO
Welcome to CHECKERS -----------Program continues, slowly

The Profiler counts the number of times each statement is encountered. This counting of each
statement. will slow down program execution. For this reason, it may not always be possible to
profile -programs that operate in a time-critical environment.

95

The Pascal-2 Profiler

The Profiler will generate a performance outline when the program terminates. Termination occurs
when your program reaches the logical end of the program or when the program detects a fatal error
condition. A Control-C Cc) will interrupt the program and generate a profile at that point. Two
control-C's will abort the generatfon of the profile.

The Profiler listing ·has the same two columns of numbers as the Debugger listing (one column
numbers each line of the source program and the other gives the ·statement number of the first
statement on ·each line), plus an extra column of numbers at the far left of the listing. This leftmost
column lists the number of times the staterrient on that line is executed.

If. more than one statement appears on the line, the count applies only to the first statement on
the line. To obtain an accurate count of. each statement in the program, you can run your source
program through the PASMAT formatter supplied with Pascal-2. The PASMAT 'S' directive reformats
the code so that no more than one statement appears on each line. {PASMAT is described in the
Utilities Guide.)

If no number is printed in the leftmost column, then· that particular statement was never executed.
· You can sometimes detect logic errors in your program by scanning the profile output to find sections
of code or perhaps entire procedures that are never executed.

A summary of the program's execution, procedure by procedure, will appear at the end of the
profile listing. Procedures are listed in the order they appear in your source code. Three columns of
information are displayed for each procedure, as follows:

Statements This column lists the number ·of statements that appear in the definition of the
procedure.

Times
Galled

This column shows how many times each procedure is called during program execu­
tion.

Statements This column has two figures. The first is the number of statements executed in the
Executed procedure. For example, a procedure that contains 10 assignment statements and

is called 5 times will show 50 statements executed in the statements executed
column. This direct relationship is valid only for very simple procedures. In most
procedures and functions, loops and other control structures will cause the number
of "statements executed" to be. much larger (or smaller) than you may expect at first
glance. The second figure in this column is the . percentage of statements executed
in this procedure as compared to the total number of statements executed in ·the
program. The. total number of procedures and statements and the total number of·

·statements executed are printed at the bottom of the procedure execution summary.

The example profile below from CHECKR shows that 2.6 million statements were executed. (To save
space, only the Procedure Execution Summary and relevant portions of the profile listing will be
documented here.) The Profiler listing shows that the program spent most ofits time in only a few
procedures. For example, the summary shows that 21 percent of the total statements executed were
in the 15-statement procedure Check. However, Check was called 71,212 times, so that percentage
does not seem too far out of line. More interesting is that almost half a million statements (17.63
percent) were executed in the procedure Initialize. This number seems excessive because the
procedure does nothing more than initialize variables and tables each time. a board position is
analyzed and was only called 1348 times. We may have a problem here.

96

_.

' PROCEDURE EXECUTION SUMMARY

Procedure name statements times called statements executed

NEWNODE 15 1390 18070 0.693
INITIALIZE 17 1348 459668 17.633
SCAN 32 1348 120580 4.623
CHECK 15 71212 567111 ' 21. 753
ANALYZEMOVE 40 ·25362 516325 19.803
ANALYZE 38 1348 298566 11.453

· UNPACKNODE 54 1348 60660 2.333
PACKNODE 23 1348 22768 0.873
SCOREGRADIENT 15 1348 250028 9.593
SCOREBOARD 54 1348 99228 3.803
EVALUATEBOARD 5 1348 6740 0.263
DISPLAYBOARD 22 41' 5453 0.213
EXTRACT 18 715 7328 0.283
KILL 11 1388 13621 0.523
PRUNE 3 219 657 0.033
iNIT 165 1 1575 0.063
COMPARE 14 4128' 24768 0.953
INSERT 26 1843 40490 1.553
DUMPNODE 11 0 0 0.003
GENMOVE 18 1273 17822 0.683
GEN JUMP 53 75 4389 0.173 .,
MOVEPIECE 12 1790 32100 1.233
EXPAND 17 239 20372 0.783
POSITIONCURSOR 2 0 0 0.003
MAKEMOVE 5.5 306 7371 0.283
DESCEND 26 197 3592 0.143
FULLEXPAND 45 127 6046 0.233
READ MOVE 6 .2 12 0.003
DECODE 12 0 0 0.003
READFILENAME 9 0 0 0.003
GETUSERMOVE 108 1 90 0.003
MAIN 91 1 2406 0.093

There are .1032 statements in 32 procedures in this program.
2607836 statements were executed during the profile.

Because we suspect a problem in the procedure Initialize, we examine the profile output associated
with that procedure. The first column of numbers is the statement execution count. The second
column is the line number of the statement in the source file. The third column of numbers. is
the statement number of the· statement. (This statement number is the same number used by the
Debugger.)

97

/

,.

The Pascal-2 Profiler

The Profiler listing for procedure Initialize is:

173
174
175

1348 176 1
1348 177 2

74140 178 3
74140 179 4
74140 180 5
74140 181 6
74140 182 7
74140 183 8

184
.1348 185 9
1348 186 10
1348 187 11
1348 188 12
1348 189 13
1348 190 14
1348 191 15.
1348 192 16
1348 193 17

194

procedure Initialize;
var

I: integer;
begin { start of Initialize }

for I := - 5 to 49 do begin
Vacant[!] := false;
Friend[!] := false;

.Enemy[!] := false;
FriendKing [I] : = false;
EnemyKing[I] - false;
Protected[!] - false;
end;

Pinned := O;
Threatened - O;
Umobil := O;
Denied := O;
BlackPieces - O;
WhitePieces - O;
Center := O;
MoveSystem := O;
EnemyHasKings := false;

end; { of Initialize }

In statements 3 through 8, a for loop is initializing several Boolean arrays of the same type. Each
assignment inside the loop is executed 7 4,140 times - a very inefficient way to initialize these arrays.
Instead, we can modify the program to initialize one array, then assign that array to the other arrays
to be initialized.

The effect of the modification is apparent in this new profile of the same section of code. ·

173 procedure Initialize;
174 var
175 I: integer;

1732 176 1 begin { start of Initialize }

1732 177 2 for I := - 5 to 49·dO begin
95260 178 3 Vacant [I] := false;

179 end;
1732 180 4 Friend := Vacant;
1732 181 5 Enemy := Vacant;
1732 182 6 FriendKing := Vacant;
1732 183 7 · EnemyKing := Vacant;
1732 184 8 ·Protected := Vacant;
1732 185 9 Pinned := O;
1732 186 10 Threatened - O;
1732 187 11 Umobil := O;
1732 188 12 Denied := O;
1732 189 13 BlackPieces - o· I
1732 190 14 . WhitePieces - 0;
1732 191 15 Center := O;
1732 192 16 MoveSystem := O;
1732 193 17 EnemyHasKings := false;

194 end; { of Initialize }

98

\

)
,. ___ ,-'

The result is clear: Instead of six assignments, each of which is executed 7 4,140 times, we have one
assignment executed 95,260 times. (The execution numbers differ from the example above because
the CHECKR program uses random numbers to play a different game each time it is run.) Overall,
the Program Execution Summary will show that the time spent in the Initialize procedure has
·dropped from 17 percent to 4 percent of the total program. By rewriting six lines, we have improved
performance by 11 percent. ·

Further, the number of times Statement 3 is executed can be reduced by the use of a global array
initialized only once at the start of the program.

Similar optimizing techniques may be applied to other parts of the program. The Procedure
Execution Summary indicates where the effort can best be applied - and where it cannot. For
example, the program spent· 21 percent of its time in the 15-statement procedure called CHECK.

The trimming of even one statement from this procedure could significantly improve performance.
On the other hand, one of the larger procedures in the CHECKR program is Genj ump, containing 53

. statements. The program, however, spent much less than 1 percent of its time in this procedure.
Even by eliminating this procedure completely, we would improve program performance by only a
trifling amount.

Two warnings: First, a statement count is not identical to ''work". Complex statements take more
time to execute than simple statements, and this time is not measured. Second, the percentages
shown in the statements executed column are percentages of execution counts, not execution time.
For compute-bound programs such as CHECKR, the execution percentage closely approximates the
percentage of time spent in the procedures. I/0-bound programs, however, may spend much of their
execution time opening files or waiting for the disk to transfer information to memory. In this case,
the execution count percentages may differ significantly from the real amount of time spent in the
procedures.

99

Contents

Pascal-:-2 V2.0/RT-11 Utilities Guide . .
Introduction to the Utilities Guide .

PASMAT: A Pascal-2 Formatter .
Overview of Capabilities
Using P ASMAT
Formatting Directives
Limitations and Errors
PASMAT Examples .

PB: A Pascal-2 Formatter
Using PB
Example
Detailed Formatting Rules

XREF: A Pascal-2 Cross-Reference Lister
UsingXREF
Limitations
Example of XREF Listing

PROCREF: Pascal-2 Procedural Cross-Reference Lister
Use of PROCREF
Limitations
Example

Dynamic String Package
Example ·.

MACR0-11 Procedures With Pascal-2
Design of MACR0-11 Procedures
The PASMAC Macro Package
Procedure Definition Macros
Type Definitions
Example
Use of PASMAC ..

Prose: A Text Formatter
Introduction
Historical Notes . .
Philosophy, Goals, and Capabilities
Basic Units of Text

..

A General Look at Directives
Controlling the ·Formatting Environment
Summary Directive Table
Details on Directives
Running Prose

"

'· ~

103
103

104
104
105
105
107
108

110
... 110

111
113

114
114

... ·. 114
114

116
116
117
117

119 '--

120

121
121
121
123
127
128
131

·- 133
133
133
133
134
136
137
138
139
149

Pascal-2 V2.0/RT-11 Utilities Guide

Introduction to the Utilities Guide

The Pascal-2 utilities are .a collection of programs designed to make life easier for programmers.
Some of the. utilities, such as the formatters, are designed to lessen the tedium in . formatting
programs. Other utilities, such as the cross-reference programs, can help analyze code. Still other
utilities, such as the MACRO package or the string-processing package, extend the capabilities of
Pasca1....:.2. ·

Each section of the Utilities Guide describes the particular utility in detail and includes examples
on its use. Briefly, however, the Utilities Guide contains the following:

Two Program Formatters: PASMAT, a sophisticated formatter with a number of options; PB, a simple
formatter designed to assist, rather than supplant, your own formatting of program text.

Two Cr_oss-Reference Programs: XREF, which cross-references the variables in your program; and
PROCREF, ·which cross-references the procedures in your program.

Dynamic String Package: Designed to help you manipulate character strings.

MACRO Package: PASMAC, which helps to interface MACR0-11 routines with Pascal-2 programs.

· Text Formatter: PROSE, which provides a number of formatting options for the production of
computer-related documentation.

103

I.

PASMAT: A Pascal-2 FQrmatter

PASMAT generates a standard format for Pascal code. PASMAT will accept standard Pascal and the
language .extensions in Pascal-2. PASMAT accepts full programs, external procedures, or groups of
statements. A syntactically incorrect program will cause PASMAT to abort and to cease formatting
the output file.

PASMAT's default formatting requires no control from you. The best way to find out how the
formatting works is to try it and see. In addition, PASMAT's formatter directives give you considerable
control over the output format when you wish.

Overvie~ of Capabilities

PASMA T has these capabilities:

1. The program may be converted to uniform case conventions, under the control of the user.

2. The program is indented to show its logical structure and to fit into a specified. output line
length.

3. -Comment delimiters are changed to braces ({}).

4. If requested, the break character (_) will be removed from identifiers for use at installations
that do not support the break character.

5. If requested, the first instance of each identifier will determine the appearance of all
subsequent instances of the identifier.

6: All nonprinting characters are removed; this feature is useful after certain editing bugs.

P ASMA T handles comments, statements, and tables in the following manner:

Comments

PASMAT's rules allow you to achieve almost any effect needed in the display of comments.

1. A comment standing alone on a line will be left.. justified to the current indention level, so .
that it will be aligned with the statements before and after it. If it is too long to fit with
this alignment, it will be right-justified. ·

2. ·A comment that begins a line and continues to another line will be passed to the output un­
altered, indention unchanged. This type of comment is assumed to. contain text formatted
by the author, so it is not formatted.

3. _ If a comment covered by one of the above rules will not fit within the defined output line
length, the output line will be extended as necessary to accommodate the comment. Once
formatting is complete, a message to the terminal will give the number of times the width
was exceeded and the output line number of the first occurrence.

4. A comment embedded within a line will be formatted with the rest of the code on that line.
Breaks between words within a comment may be changed to achieve proper formatting, so
nothing that has a fixed format should be used in ~uch a comment. If a comment cannot be
properly spaced so that the line will fit within the output length, that line will be extended
as necessary. Once formatting is complete, a message to the terminal will give the number
of times the width was exceeded and the output .line number of the first occurrence. If no
code follows a comment _in the input line, then no code will be placed after the comment
in the output line.

104

';____,.

t.

Overview of Capabilities

Statement Bunching

The normal formatting rule for a case statement places the selected statements on a separate line
from the case labels. The B directive (see below) tells the formatter to place. these statements on
the same line as the case labels if the statements will fit.

Similarly, the rl,lles for if-then-else, for, while, and with place the controlled statements on
separate lines. The B directive tells the formatter to place the controlled statement on the same line
as the statement header if the statement will fit.

Tables

· Many Pascal programs contain lists of initialization statements or constant declarations that are
logically a single action or declaration. You may want these to be· fit into as few lines as possible.
The S directive (see below) allows this. If this is used, logical tab stops are set up on the line, and
successive statements or constant declarations are aligned. to these tab stops instead of beginning on
new lines.

At least one.blank is always placed between statements or comment declarations, so if tab stops are.
set up at every character location, statements will be packed on a line.

· Structured statements, which normally format on more than one line, are not affected by this
directive.

Using PASMAT

Invoke PASMAT with the following. command:

.R PASMAT
*output-ii.Te = input-file I options=" directives"

input-fi.le: The Pascal source file being reformatted. PASMAT accepts only one input file. The
default file extension for both input and output is . PAS.

output-file: The reformatted output file. If output-file is omitted, the output file receives the
same name as the input file and becomes the latest version of that file.

/options="directives": Settings for formatting directives. The /options switch is optional. ·It
may be abbreviated to Io and may be placed anywhere on the command line. When
specified on the command line, directives must be placed in quotes as shown. The
directives field will be scanned as though the directives were in a Pascal comment
at the start of the source program.

Formatting Directives

Formatting directives can be specified either by an /options switch on the command line or by a
special form of the Pascal comment structure.

Formatting directives are of two breeds: switches that turn on with the plus sign (+) and off with
the negative sign(-) (e.g., R+ and L-); or numeric directives of the form T=S. Multiple directives are
separated by commas (e.g., R+, L-). Blanks are not allowed within a directive. Case is ignored:. R+

is the same as r+ in a directive.

The following example shows a program named PROG. PAS being formatted with a command-line
directive that sets the switch B on, R off and the numeric directives 0 to 72 and T to 5 .

. R PASMAT
*PROG/OPTIONS="B+,0=72,T=S,R-"

105

PASMAT: A Pascal-2 Formatter

If used in the program text as part of an embedded Pascal comment, format directives are placed
within square brackets that, along with any other comments, are placed within the standard Pascal
comment braces. A compiler directive (e.g., $nomain), if present, must begin any comment containing
a P ASMA T directive. In this case, the P ASMA T directive may come before or after any other text:

{$compiler-directives text [directives] text}

If no compiler directive is present, the PASMAT directive must begin the comment:

{[directives] text}

The following embedded directive has the same effect as the command-line directive shown above.

{[b+,o=72,t=5,r-]}

The P ASMA T formatting directives are:

·A (Default A-) Adjusts each identifier so that the first instance of the identifier determines
the appearance of all subsequent instances of the identifier. This facility standardizes the
use of upper-case and lower-case characters and the break character(_) in program text.

B (Default B-) Specifies that the statements following a then, or else, for, with or while
will be put on the same line if they will fit. The statement following a case label will be
put on the same line if it fits.· The result is a shorter output, which may be easier to read
but which also may be harder to correct.

C (Default C-) Converts leading blanks to tabs on output.

F (Default F+) Turns formatting on and off. This directive goes into effect immediately after
the comment in which it is placed and can save carefully hand-formatted portions of a
program.

K (Default K-) Converts the Pascal-1 else clause in a case statement to otherwise as used
in Pascal-2.

L (Default L+) Specifies that the case of identifiers and reserved words be a literal copy of the
input. This directive overrides the U and R directives and is disabled by the P directive.

M (Default M+) Converts all alternate symbol representations to the standard form. Otherwise,
all symbols are left as they are in the text. The nonstandard comment brackets I* . . . *I
are always converted, either to braces or, in the case of M-, to (* ... *).

N (Def a ult N-) Inserts no new lines into the output unless they are required to .rriake the lines
fit. This directive just indents the source, keeping the line structure set up by the user.
If a line exceeds the output length, it will be broken at the best place available, but the
results may not be what you want. Look things over carefully after using this option.

a (Numeric directive, default 0=78) Specifies the width of the output line. The maximum
value allowed is 132 characters. If a particular token will not fit in the width specified, ·
the line will be lengthened accordingly, an.d a message at the end of the formatting will
give the number of times the width was exceeded and the output line number of the first
occurrence.

-p (Default P-) Sets "portability mode" formatting, which removes break characters (_) from
identifiers. The first letter of each identifier, and the first letter following each break
character, will be made upper case, while the remaining characters will be in lower case.
This directive overrides the L. and U directives. The R directive sets the case of reserved
words.

Warning: Pascal_,2 considers break characters significant: User _DoesThis is one identifier
and UserDoes_This is a~other. Take care when using this directive that you do not make
two different identifiers the same: UserDoesThis and UserDoesThis.

106

Formatting Directives

R (Default R-) Specifies that all reserved words will be in upper case. With this off, reserved
words will be in lower case. The L directive overrides the R directive.

S (Numeric directive, default S=1) Specifies the number of statements per line. The space
from the current indention level to the end of the line is divided into even pieces, and
successive statements are put on the boundaries of successive pieces. A statement may
take more than one piece, in which case the next statement again goes on the boundary of
the next piece. This is similar to the tabbing of a typewriter.

Any statement requiring more than one line will not be affected, but may cause unexpected ·
results on following statements. This directive only affects the constant declaration and
statement portions of the program and is intended for use in initializing tables. The default
value of 1 provides normal formatting.

T (Numeric directive, default T=2) Specifies the amount to "tab" for each indention level.
Statements that continue on successive lines will be ·additionally indented by half the value
of T.

U (Default U-) U+ specifies that identifiers are converted to upper case; U- specifies that they
will be converted to lower case. The L and P directives override this directive.

Limitations and Errors

PASMAT is limited in these ways:

1. The maximum input line length is 132 characters.

2. The maximum output length is 132 characters.,

3. Only syntactically correct statements are formatted. A syntax error in the code will cause
the formatting to abort. An error message will give the input line number on which the error
is detected. The error checking is not perfect, and successful formatting is no guarantee
that the program will compile.

4. The number of indention levels handled by PASMAT is limited; PASMAT will abort if this
number is exceeded - a rare circumstance.

5. If a comment will require more than the maximum output length (132) to meet the rules
given, processing will be aborted. This situation should be even rarer than indention-level
problems.

6. When it aborts, PASMAT attempts to copy the rest of the file. You should, however, recover a
copy of the source file and inspect the PASMAT-generated copy carefully; we cannot guarantee
that PASMAT will recover all the text for every error condition.

107

PASMAT: A Paseal-2 Formatter

PASMAT Examples

To show how the various PASMAT options work together, we will take the sample program that follows
and show how it appears after reformatting with two different sets of options. ·

program Ex(output);
{ Compute an approximation for E from its Taylor series }
{ The Nth term in the series is 1/(N!) }
var E, series_term: real; N: integer;
begin
{ set iniiial conditions }
E := 1.0~ N := 1; SeriesTerm :=·1.0;
{ loop to approximate E; quit when the series sum stops changing }
repeat
E := E + seriesterm;
{ compute next term of series }
N := N + 1; seriesterm := seriesterm I N;
until E.= (E + SeriesTerm);
writeln('With ', n: 1, ' terms, value of e is'; e: 18: 15);
end.

First we reformat the program using the standard indention of text and comments. We use the
/options switch on the command line to specify the width of the output line (the options switch
specifies a short line width to illustrate the right-justification of long comments).

The program is formatted with the commands:

.R PASMAT

*EX/0:"0=66"

Program text after formatting:

program Ex(output);
{ Compute an approximation for E from its
{ The Nth term in the series is 1/(N!)

var
E, series term: real;
N: integer;

begin
{ set initial conditions }
E := 1.0;
N := 1;
SeriesTerm := 1.0;

Taylor series }
}

{ loop to approximate E; quit when the series sum stops changing }
repeat

E := E + seriesterm;
{ compute next term of ~eries }
N := N + 1;
seriesterm := seriesterm I N;

until E = CE+ SeriesTerm);
writeln('With ', n: 1, ' terms, value of e is', e: 18: 15);

end.

The second example illustrates embedded PASMAT commands. We have altered the original program
by inserting the text {[A+, L-, R+]} before the first line .. The directive A+ changes each identifie.r to

108

PASMAT Examples

match the appearance of the first use of that identifier. (Notice the variant forms of series_ term
and E in the original program.) The directives L- and R+ together turn off the literal reproduction
of the reserved words and make them upper case. The program is formatted with the commands:

.R PASMAT
*EX

Program text after formatting:

{[A+,L-,R+]}
PROGRAM Ex(output);
{ Compute an approximation for E from its Taylor series }
{ The Nth term in the series is 1/(N!) } ·

VAR
E, series term: real;
N: integer;

BEGIN
{ set initial· conditions }
E :=·1.0;
N := 1;
series~term := 1.0;
{ loop to approximate E; quit when the series sum stops changing }
REPEAT

E E + series_term;
{ compute next term of series }
N := N + 1;
series_term series_term /.N;

UNTIL E = (E + serie~_term);
writeln('With ', N: 1, ' terms, value of~ is', E: 18: 15);

END ..

109

PB: A Pascal-2 Formatter

PB is designed on the premise that a formatting program can't do everything, that formatting requires
an understanding· of the meaning of a program. Thus, PB. is meant to assist, rather than replace,
the manual arrangement of program format. The simple transformations performed by PB reduce
the tediousness of formatting program text, and help ensure consistency within a variety of personal
formatting styles.

PB can be used on code as it is being developed, even code that is incomplete or incorrect. You write
a program, or program fragment, to some level of detail, then run it through PB. You can then edit
the resulting code to alter its meaning or improve its appearance, and use PB again. This cycle can
be repeated as the code progresses from initial idea to working program, and later as the program
is "maintained".

Text produced by PB usually looks much like the input. Each input line is transformed into a single
output line containing essent~ally the same text; within the code on a line the spacing is. the same;
and simple stateme.nts that continue onto multiple lines stay lined up.

PB adjusts program format to be consistent with the syntactic structure of Pascal. Statements at the
same nesting level line up, and indention increases with the nesting level. Where possible, trailing
comments are lined up with one another. Keywords and identifiers in the text are altered to match
the capitalization style of their first occurrence (which may be in an included file),

Using PB

You invoke PB with the following command:

.R PB

* output-file = input-files

input-flles: These are the Pascal source files being reformatted (the default file extension is
. PAS). Multiple files, if specified, ·are separated by commas. Multiple files are
concatenated to produce the output file.

output-file: file in which the reformatted Pascal source file is placed (default file extension is
. PAS). If the output-file is not specified, it will be created with the same name as
the last input file.

Two command line switches adjust PB formatting. The indent switch (I indent: num) specifies the
number of columns (num) in an indention step (the space that text is shifted when the nesting level
changes). The default setting is 2; larger values make the separation between levels clearer, but
may force text past the right margin. The comment indent (I comment: num) specifies the column
(num) to which trailing comments are indented. Th~ default setting is 33; this value works well.
when trailing comments are used primarily to annotate declarations.

These command line switches are placed after the input file names.

110

_

\'-...

Example

Example

This example illustrates the functions provided by PB. The example also shows a particular devel­
opment style, discussed above, to which PB is suited.

We start with the program at an intermediate stage in its development. It is perhaps one or two
stages past an initial sketch, and some new code has just been added. Notice that the new code is
not indented; it is broken into reasonable lines, but we will let. PB do the rest of the formatting.

var I, X: integer;
begin

x := 1;
for I := 1 to n do begin

repeat
x := x + 1;
prim := x is a prime number;­
until prim;
write(X);

end;
end.

Processing by PB gives this result:

var I, X: integer;
. begin

x := 1;
for I := 1 to n do begin

repeat

end.

x := x + 1;
prim := X is a prime number;

until prim;
write(X);
end;

The indent changes at most one step from line to line. When control constructs appear one per line
(the repeat statement, for instance) each causes the indent to increase by one step, but when a
second one appears on a line it has no effect on indention. In the example, this has been used to cut
the "noise" from begin ... end brackets.

Notice a couple of things at this stage. First, PB does not know much about Pascal language syntax
(note the phrase "X is a prime number"). Second, PB uses the first instance of a word, regardless of
context, for its capitalization style (you can set the style for.an.identifier by adjusting its declaration,

·since the declaration of an identifier must precede its use).

111

PB: A Pascal-2 Formatter

Of course, the program is not yet complete, nor does it contain any comments. The following is
closer to a final version.

type Index= 1 .. n;
var
X: integer; { number being tested for primality}
j, {count of primes found}
k, { trial divisor }
lim: index; { last divisor to test }
Prim: boolean; { 'true' until a divisor is found }
P: array [index] of integer; { P [I] = Ith prime number }
begin

P[1] := 2; X := 1; Lim := 1;
write (' 2 ') ;

for J := 2 to n do begii
repeat

x := x + 2;
if sqr(P[Lim]) <= X then Lim := Lim + 1;
K := 2; Prim := true;
while Prim and (K < Lim) do begin
Prim := (X mod P[K]) <> O;
K : = K + 1;
end;

end.

until Prim;
P [J] : = X; write (X) ;
end;

Processing by PB gives:

type Index= 1 .. n;
var

X: integer;

j '
k,
lim: Index;
Prim: boolean;
P: array[Index] of integer;

begin
P[1] := 2; X := 1; lim := 1;
write('2');
for j := 2 to n do begin

repeat
x := x + 2;

{ number being tested for primality }
{ count of primes found }
{ trial divi~or }
{ last divisor to test }
{ 'true' until a divisor is found !
{ P[I] = Ith prime number }

if sqr(P[lim]) <= X then lim := lim + 1;
_k '.= 2; Prim :=true;

end.

while Prim and (k < lim) do begin
Prim := (X mod P[k]) <> 0;
k := k + 1;
end;

until Prim;
P [j] : = X; write (X) ;
end;

112.

~,

Example

The comments have been moved to the right, where they stand apart from the program code and
line up for easier reading. If we had wanted to keep a comment attached to the code, we could
have placed it in front of the final comma or semicolon on its line (then it would not be a trailing
comment and would be treated as part of the text), or placed it on a line by itself (where it would
be aligned at the prevailing indent).

Detailed Formatting Rules

Indention is directeP. by. the nesting of control constructs in the program text. Generally, when the
nesting level increases, the indent increases by the indention step; when a nesting level ends, the
indent reverts to that of the surrounding nesting level. A change of indention at the beginning of a
line takes effect immediately; otherwise, it takes effect on the next line. The exceptions to the rules
are:

1. The start of a new nesting level does not change the indent if it begins on the same line as
the surrounding level. .

2. . When a line begins with a statement label, the indent· for that line is decreased by the
indention step.

Normal indention rules do not apply when a simple statement or clause continues across multiple
lines. In these cases, the initial line is indented normally, but the following lines are arranged to
preserve their alignment with the initial line. Changes of indention within continued lines take effect
after the last continuation.

A similar adjustmen~ occurs when a comment continues across multiple lines. When a trailing
comment is continued, the following lines stay aligned with the initial part of the comment, but not.
necessarily with the rest of that line (a trailing comment may shift in relation to the rest of the line).

The following constructs· affect the indention level:

1. A program-declaration, procedure-declaration or function-declaration is arranged so that
the heading, the keyword introducing a label-declaration-part, const-defi.nition-part, type­
defi.nition-part, or variable-declaration-part, and the body are all at the same indention
level. The list of declarations within a label-declaration-part, const-defi.nition-part, type­
defi.nition-part, variable-declaration-part, or procedure-and-function-declaration-part is set
one indention step deeper.

2. The component-type of an array-type or fi.le-type, and the base-type of a set-type are
indented one more step. Within a record-type the field-list is indented another step, the
list of variants within the variant-part is indented an additional step, and the fi.eld-lists
within individual variants are indented yet another step.

3. The statement-sequence within a compound-statement is indented an additional step.

4. The controlled statement within a for-statement, if-statement, else-part, while-statement
or with-statement, and the statement-sequence within a repeat-statement are indented
another step. Within a case-statement the list of case-list-elements is indented one more
step, and the controlled statement of each case-list-element is indented an additional step.

113

XREF: A Pascal-2 Cross-Reference Lister

XREF produces a cross-reference listillg of the identifiers in a Pascal program. ·Each identifier is listed,
along with an entry for each reference to that identifier. Each entry consists of the line on which
the reference occurs, plus an indication of whether the reference is a declaration or assignment.

Using XREF

You invoke XREF with the following corrimand:

.R XREF
*output-file = input-file /switch

input-file: The Pascal source file being cross-referenced. The input file has a default extension of
. PAS. XREF accepts only one input file.

output-file: The cross-reference file. The output file has a default extension of . CRF. Output-file
and = are optional. If they are omitted, an output file with the same name as the input
file is placed in the default directory.

I switch: Command line switches. Switch can be either or both of these switches:

The /1 ist switch generates a listing of the input file before the cross-reference. This
listing includes line numbers and a flag character (c) indicating multiple line comments
and strings. The flag character simplifies the locating of certain bugs that cannot be
easily diagnosed by the compiler.

The /width: num switch specifies the page· width for the cross-reference listing, where
num is the number of characters across. The default is 132 characters.

The switches may be abbreviated to one letter.

Limitations

The XREF program has two limitations on the size of the programs· it can handle.

1. An internal limit exists for the number of distinct identifiers ·allowed. You can, change this
number in XREF . PAS and recompile the program.

2. The total number of references is limited by the amoynt of dynamic storage available.

The XREF program does not do a complete syntax analysis of the program, and it may not flag all.
declarations or assignments.

Example of XREF Listing

This example shows the cross-referencing of the program EX. PAS .

. R XREF
*EX/LIST/WIDTH:66

114

·----· .

Example of XREF Listing,

l~ '""""',
1 program Ex(output);
2 { Compute an approximation for E from its Taylor series

c 3 The Nth term in the series is 1/(N!)
c . 4 } c is the flag character for continued comments

5
6 var
7 E, SeriesTerm: real;
8 N: integer~

9
10 begin
11 { set initial conditions }
12 · E := 1. 0;
13 N := 1;
14. SeriesTerm := 1.0;
15 { loop to approximate E; quit when the sum stops changing }

·16 repeat
, 17 E : = E + SeriesTerm;
·18 { compute next term of series }
19 N := N + 1;
20 SeriesTerm := SeriesTerm I N;
21 until E = (E + SeriesTerm);
22 writeln('With ', N:· 1, ' terms, value of e is', E: 18: 15);
23 end.

Cross reference: * indicates definition, = indicates assignment
"\

-E-
E 1* 12= 17= 17 21 21 22
EX 1*

-I-
INTEGER 8

-N-
N B* 13= 19= 19 20 22

-0-
OUTPUT 1*

-R-
REAL 7

-s-
SERIESTERM 1* 14= 17 20= 20 21

-w-
WRITELN 22

end xref 8 identifiers 24 total references
.----.,

115

PROCREF: Pascal~2 Procedural Cross-Reference Lister

PROCREF, based on a procedural cross-reference program published by Arthur Sale in Pascal News
(Number 17, March 1980), is designed to help programmers sort through the procedures in medium
to large Pascal programs. The program has been modified to allow the use of multiple input files
and ~include directives and to provide "called by" data in the listing.

PROCREF reads· the text of a Pascal program to produce a compact listing of the procedure headings
and an alphabetized list of procedures with usage information. PROCREF processes ~include direc­
tives in t!ie same way as the Pascal-2 compiler, so that all parts of a compilation can be analyzed.

The procedure listing includes each procedure heading, along with its location in the input file.
Procedure headings are indented to show lexical level. No attempt is made to fit the procedure
headings into a limited line width: ·

The cross-reference listing places procedures in alphabetical order. For each procedure the listing
includes:

1. . The file and line number where its heading starts.

2. The file and line number where its body starts, unless it is external or is a formal procedure·
parameter and has no body. In such a case, the note external or formal· is printed.

3. If the procedure was declared forward or is externally defined, the listing contains the file
and line number where the procedure heading stub starts.

4. A list of all procedures immediately called by this procedure. These are listed in the order
in which they occur in the text. A procedure is listed only once, even if it is called more

. than once.

5. A list of all procedures that call this procedure. Again, the list is in textual order and only
one reference is shown per procedure. .

Only the first sixteen characters of a procedure name appear in the cross-reference listing. Those
characters are written exactly as they appear in the program text.

Use of PROCREF

You invoke PROCREF with the following command:

.R PROCREF
* output-fi.le = input-fl.Jes /width: num

input-fi.les: The Pascal source files being cross-referenced. The input files have a default extension
of . PAS. Multiple input files, if specified, are separated by commas. Multiple files will be
concatenated.

output-fi.Je: The cross-reference file. The output file has a default extension of . PRF. Output-fl.le
and = are optional. If they are omitted, an output file with the same name as the last
input file is placed in the default directory.

/width: num Specifies the page width for the cross-reference listing, where num is the number of
characters across the page. The default is 80 characters. The /width switch is optional,
and it may be abbreviated to one letter. .

Note that the RT-11 system will automatically truncate the name PROCREF to PROCRE.

116

Limitations

Limitations

The PROCREF program does not do a complete syntax analysis of the program being processed.
PROCREF will err in one case: If a field identifier in a record has the same name as a procedure, and
if that field is referenced without a preceding record variable name, as in a with statement, the field
identifier will be treated as a reference to the procedure.

·Example

Let's assume that we wish to generate a procedure cross-reference for the following program,
L VSPOOL . PAS.

Pascal-2 RT-11 SJ V2.0H 19-Apr-81 6:21 AM Site #1-1 Page 1-1
Oregon Software, 2340 SW Canyon Road, Portland, Oregon.97201, (503) 226-7760
LVSPOOL/LIST

'1 program LVSpool(input, output);
2 procedure ScanLV;· external;
3 procedure ReadFontinfo(i: integer; j: integer); forward;
4

5 procedure LoadFonts;
6 procedure GetByte;
7 begin
8 end;
9 begin

10 GetByte;
11 ReadFontinfo(1, 2);
12 . end;
13
14 procedure ReadFontinfo;
15 begin
16 LoadFonts;
17 end;
18
19 procedure ShowPage;
20 begin
21 ScanLV;
22 end;
23
24
25

begin
ReadFontinfo(0,1);

26 ShowPage;
27 end.

*** No lines with errors detected ***

We cross-reference the procedures as follows .

. R PROCREF
*LVSPOOL = LVSPOOL/W:72

117

{main program}

"-._/

PROCREF: Pascal-2 Procedural Cross-Reference Lister

The /W: 72 requests that the cross-reference listing not exceed 72 characters wide so that we can
look at the result on a terminal. The result, placed in the file L VSPOOL . PRF, consists of:

Procedural Cross-Referencer - Version 3.0
LVSPOOL/W:72

Line Program/pro~edure/function heading

LVSPOOL.PAS:

1 program LVSpool(input, output);
2 procedure ScanLV; external;
3 procedure ReadFontlnfo(i: integer; j: integer); forward~

5 procedure LoadFonts;
6 procedure GetByte;

14 procedure ReadFontlnfo;
19 procedure ShowPage;

Procedural Cross-Referencer - Version 3.0
LVSPOOL/W:72

Cross Reference Listing

GetByte Head: LVSPOOL.PAS, 6 Body:
Called by LoadFonts

LoadFonts Head: LVSPOOL.PAS, 5 Body:

LVSPOOL.PAS,

LVSPOOL.PAS,
Calls GetByte ReadFontlnfo
Called by ReadFontlnfo

LVSpool Head: LVSPOOL.PAS, 1 Body: LVSPOOL.PAS,
Calls ReadFontlnf o ShowPage

ReadFontinf o Head: LVSPOOL.PAS~ 3 Body: LVSPOOL.PAS,
Forward, header stub: LVSPOOL.PAS, 14

Calls LoadFonts
Called by LoadFonts LVSpool

ScanLV Head: LVSPOOL.PAS, 2 external
Called by ShowPage.

ShowPage Head: LVSPOOL.PAS, 19 Body: LVSPOOL.PAS,
Calls ScanLV
Called by LVSpool

118

7

9

24

15

20

Dynamic String Package

A package of procedures and functions for dynamic string processing, STRING. PAS, is supplied in the
Pascal-2 distribution kit. The package, written in standard Pascal, provides convenient facilities for
handling character strings of varying lengths. Also, programs using STRING may easily be moved to
other Pascal implementations.

Strings are stored as a record structure with space for a fixed maximum number of characters
. (normally 100 but easily changed), and an integer marking the current length .of the string:

type String = record
· Len: integer;
Ch: packed array[1 .. StringMax] of char;
end;

In the definitions below, string and target represent variables of type String. File is a variable of
type text.' Start and span are integers.

The capabilities provided are:

Len (string) : Returns the length of string.

Clear (string): Initializes string to empty.

ReadStr i ng (file, string) : Reads string from file. The string is terminated by eo 1 n (file) , and a
readln (file) is performed. A string longer than the maximum allowed, StringMax, is
truncated.

Wri teString (file, string): Writes string to file. The same effect can be achieved by passing the
parameter string. Ch: string. Len to write, as in write (F, 'S=' , S. Ch: S. Len) .

Concaten~te (target, string): Appends string to target. The resulting value is target. Overflow
results in truncation to StringMax characters.

Search (string, target, start) : Searches target for the first occurrence of string to the right of
position start (characters are numbered beginning with 1). The function Search returns
the position of the first character in the matching substring, or the value zero if string
does not appear.

Insert(target, string, start): Inserts string into target at position start. Characters are shifted
to the right as necessary. Overflow produces a truncated target string .. A start position
that wc,mld produce a non-contiguous string has no effect.

The start and span parameters in the Substring and Delete procedures define a substring beginning
at position start (between characters start-1 and start) with a length of Abs (span). If span is positive,
the substring is to the· right of start; if negative, the substring is to the left.

De 1 ete (string, start, span) : Deletes the substring defined by start, span from string.

Substring (target, string, start, span) : The substring of string defined by start, span is as'"
signed to target.

119

Dynamic String Package

Example

The following sample program, EXAMPL. PAS, demonstrates the use of the string package to .read a
line from the terminal and to separate the string into single words. The string package may be used
as a "header" file or included in the program text via the ~include command. If the string package
is used as a header file, the command is:

.R PASCAL
*STRIHG,EXAMPL

The following example uses STRING. PAS as an included file.

program Exampl;
%include String; --~---------- dynamic string package

type Lit= packed array-[1 .. 10] of char;
var Space, Line, Word: String;

Mark: integer;

procedure Literal(var T: String; Ch: Lit; N: integer);
var I: integer;
begin

Clear (T); defined in string. pas
for I := 1 to N do T.Ch[I] := Ch[I]~
T.Len := N;

end;

begin
Literal(Space,' 1); make 1 char string
write('Type a line: ');
ReadString(Input, Line); ----~----defined in string.pas
Concatenate(Line, Space); --------defined in string.pas
Mark : = Search (Line, Space 1 1); · defined in string. pas·
while Mark > 0 do begin

Substring(Word, Line, 1, Mark - 1); --- defined in string.pas
if Len(Word) > 0 then begin

WriteString(Output,Word);
writeln;
end;

-------defined in string.pas

Delete(Line, 1, Mark); ------'--------defined in string.pas
Mark := Search(Line, Space, 1);
end;

end.

Run the program with the~e commands:

.R PASCAL
*EXAMPL

.LINK·EXAMPL,SY:PASCAL

.RUN EXAMPL
Type a line: This is an example~
This
is

·an
example.

120

\...._.

MACR0-11 Procedures With Pascal-2

Although most programs can be written within the Pascal-2 language, applications involving inter-
. face to the operating.system require the use of MACR0-11 assembly language code. A set of macros
provided with the Pascal-2 system makes this interface easy. You can code a set of macro calls that
look much like a Pascal procedure declaration, and the PASMAC macro package will assign addresses
to the parameters and generate procedure entry and exit code.

Design of MACR0-11 Procedures

Follow these general rules in deciding what to put in a MACR0-11 procedure:

1. Do the absolute minimum in MACR0-11. If you must use MACR0-11 code to use a
system service, process the result in Pascal-2 code. (This is not always possible, since some
ope~ating systems require very low-level manipuJations~)

2. Isolate a common function and make the procedure handle the most general case of that
function.

3. Pass all data to and from the procedure as parameters. Global references from MACR0-11
are not recommended for these reasons: the address is hard to find; if the Pascal program
changes, the MACRO program will have to be changed; and global references· cannot be
checked for type compatibility. This guide does not describe ways to make global references.

Once you have decided on the contents of the procedure, define the calling sequence as a Pascal
external procedure. Then write a functional description of the procedure. Then actually write the
procedure. These· documents will be your implementation guide.

When you have the external definition, use the PASMAC macro package described below to define
parameters and local variables. As long as the stack is not changed within the procedure, these
macros can access parameters or local variables directly. For this reason, you should probably store
local temporary values in the local variables rather than pushing them on the stack. If thoroughly
familiar with writing MACR0-11 code, you can use the stack, but make sure you understand the
Pascal-2 run:.time structure, described in the Programmer's Guide.

The PASMAC Macro Package

The PASMAC macro package is provided to simplify the writing of MACR0-11 procedures to interface
with Pascal-2. Using this package, you can declare procedures, .parameters, and variables, and you .
can easily refer to these items within the procedure.

The package consists of the following macros:

Name

proc

f unc

par am

var

save

Arguments

procnmne

funcname
result
res type
parmnmne
parmtype
varnmne
vartype
<regO, . . . , regn>

Function

Begin the declaration for the procedure procname.

Begin the declaration for the function function. The
returned value will be that assigned to result, of type
res type.
Declare a parameter named parmname of type parmtype.

Declare a local variable named varname of type vartype.

Specify general registers to save on procedure entry.

121

MACR0-11 Procedures With Pascal-2

rs ave <acO, . . . , a.en>

begin

end pr

Specify floating accumulators to save on procedure entry.

Begin the actual procedure code. This macro generates
code to push the variables on the stack and to save
registers.
End the code for this procedure, restore registers, pop
variables and parameters from the stack, and return to
the calling location.

The following example demonstrates how these macros may be used in a procedure declaration.
Note the correspondence between the Pascal-2 code and the MACR0-11 code.

Pascal-2 declaration:

procedure Examp1 (Inp1: integer; {first value parameter}
Inp2:. real; {second value parameter}
var Outp: integer {variable parameter});

var
Vari: integer; {first local variable}
Arri: array [1 .. 3] of integer;{second local var}

begin

end;

MACR0-11 code:

proc exampl
pa ram inp1,integer
par am inp2,real
pa ram outp,address

var var1,integer;
var arr1,3*integer

save <r0,r1>
rs ave <ac0,ac1>

begin

end pr

{begin body of procedure}

{procedure code}

{end of procedure}

declare the procedure
first value parameter
second value parameter
variable parameter

first local variable
second local variable

regist~rs being used
floating accum being used

begin body of code

procedure code

reset everything and return ·

122

\--. __

j

Procedure Definition Macros

Procedure Definition Macros

The PASMAC procedure definition macros must be used in the order:
proc/func Exactly one of these is required
param · As many as required (or none)
var As many as required (or none)
save/rsave Either or both as needed
begin Required

User code

end pr Required

A MACR0-11 error will be produced if the macro calls are not made in the required order.

Above references to parameter and variable "types" assume that "type" identifiers are equivalent to
the length of a va~ue of that type. For example, the identifier integer has the value 2, the identifier
real ·has the value 4, and a disk buffer may have the value 512. The PASMAC package defines some
standard types. See "Type Definitions" below. ·

Parameter, variable and function result names are set to offsets relative to the value of the stack
pointer at the end of the begin macro. This takes into account local variables allocated on the
stack, plus the space used .for register saving. Take into account any additional values pushed onto
the stack.

Examples:

param param1,integer defines param1

mov param1(sp),r0 use param1

The proc Macro

The proc macro, used to begin the definition of a procedure, specifies the name to be used and
initializes the symbols that store data about the procedure. This macro must be the first macro used
in a procedure declaration.

The calling sequence is:

proc procname[, check=1]

procname: Name to be used to call the procedure. Only the first six characters of this name
are significant.

check: Optional parameter specifying stack overflow checking. A non-zero value (default)
requests a stack overflow check. This check is free (and always done) if more than
three registers are saved, and costs two words in the procedure entry otherwise. The
time for the check is very small, so disabling it. is not recommended ..

Examples:

proc p,check=O

or:

proc p,O

Begins the declaration of a procedure with the external name p and no stack overflow checking.

123

MACR0-11 Procedures With Pascal-2

proc savetime

Begins the declaration of a procedure with the external name saveti and stack checking enabled.

The func Macro

The func macro, similar in function to the proc macro, also allows you to specify a name and type
for the returned ,value. In Pascal, the returned value is specified by assignment to the function name.
In MACR0-11, this assignment is not possible, since the function name is used for the procedure
entry and cannot also point to the appropriate place on the stack. Any value assigned to the result
name defined in the func macro at exit from the function is returned as the function value.

The calling sequence is:

func funcname, resname, restype[, check=1]

funcname: Name to be used to call the function. Only the first six characters are significant~

resname: Name to be used to reference the returned value. Any value assigned to this location
during execution is returned to the calling program upon exit from the procedure. ·

restype: The length of the result value. This is not used in the current implementation of
the macros, but is included for documentation and possible future use.

check: Enables stack checking if non-zero. See the description under the proc macro.

Exaniple:

· func curtime,tval,real

Begins the declaration of a function with the external name curtim and stack overflow checking
enabled. The result location will be named. t val, of type real. Here real is assumed to have the
value 4, which is the length of a single-precision real value.

The param Macro

The param macro specifies parameters to the current procedure or function. Each parameter has
one -param macro, in the order declared in the Pascal procedure declaration. In the Pascal-2 calling
sequence, parameters are pushed onto the stack in the order in which they are declared, so the first
parameter is at a higher address than the last parameter. Value parameters have the ,actual value
pushed, and variable parameters have the· address of the variable pushed. When these parameters
are declared, the parameter name is set equal to the .offset of that parameter relative to the stack·
pointer (sp) after the begin macro has been called. This value may be used to access the parameter
location relative to the stack pointer.

The. calling sequence is:

param

paramname:

par am type:

Examples:

paiamname, paramtype

The name to be used for accessing the parameter. Within the body of the procedure,
if the stack pointer (sp) has not changed since the begin macro, value parameters
can be referred to by paramnan:ie(sp), and variable parameters can be referred to
as Oparamname(sp).

The length of the parameter, used to determine the space on the stack used by this
parameter.

param input, integer input: integer
para.m result, address var result: integer

124

''--

\'

· Procedure Definition Macros

These macros define two parameters. The first is a value parameter with the name input of type
integer and is referred to in the body of the procedure as input (sp). The second is a variable
parameter with the name result of type integer. Note that the type is defined only in the comment;
the actual value pushed on the stack is of type address. Within the body of the procedure this is
Qresul t (sp).

The var Macro

The var macro, similar to the param macro, defines a local variable to be allocated on the stack
upon procedure entry. The space for these variables is allocated automatically by the begin macro,
but is not initialized. Such variables are referenced relative to the stack pointer (sp).

The calling sequence is:

var

varname:

vartype:

Example:

v:ar
var

varname, vartype

The n~e to be used for accessing the variable .. Within the body of the procedure,
if the stack pointer (sp) has not been modified since the begin macro, variables can
be referred to by varname(sp).

The length of the variable, used to determine the space to be allocated for this
variable.

temp, integer
name,10*char

temp: integer;
name: array [1 .. 10] of char;

The example· defines two local variables. The space for these variables will be pushed onto the stack
by the begin macro. The variable temp has two bytes allocated and is referred to as temp (sp). The
variable name has ten bytes allocated and is referred· to as name (sp).

The save Macro

The save macro specifies the general registers to be saved on procedure entry. The Pascal-2 calling
conventions require a procedure to save and restore all registers used within a procedure, so any
registers altered within the procedure should be listed here. If more than three registers are to be
saved, a routine from the Pascal support library is used to save the registers. The stack pointer and
program counter (sp and pc) cannot be saved.

The calling sequence is:

save <regl, ... , regn>

<regl, ... , regn>: A list of registers.to be saved, enclosed in angle brackets (<>)and separated by
commas. These registers will be saved on entry and restored on exit. The registers
sp and pc cannot be saved, as they are modified by the action of saving them.

Examples:

save <r0,r1>

Save registers rO and r1 and restore them on exit. The code generated will use explicit mov
instructions to do this.

save <r0,r1,r2,r3,r4,r5>

Save and restore all available registers. Support routines will be used.

125

The rsave Macro

The rsave macro is useful only for machines with the Floating Point Processor (FPP) hardware
option and serves the same function as save·except for the floating-point accumulators. You are
required to specify the FPP mode, either single or double (default is single). Since the accumulators
ac4 and ac5 cannot be moved directly to memory, they may not be used unless one of the ac­
cumulators acO to ac3 is also used. Of course, you cannot get data into ac4 or ac5 without using
one of the lower accumulators, so you should not have any problems meeting this requirement.

The calling sequence is:

rs ave <accuml, ... , accumn>[, double=O]

<accuml, ... , accumn>: A list of accumulators to be saved, enclosed in angle brackets (<>)and
separated by commas. These registers will be saved on procedure entry and restored
on procedure exit.

double: If set·to 1, specifies that the FPP is in double mode. The default is zero. The setting
does not affect the setting of the FPP; it simply allows the correct computation of
the space required for the registers.

Examples:

rs ave <ac0,ac4>

Save accumulators acO and ac4 and assume that the FPP is in single mode.

rs ave
or:
rs ave

<ac0>,double=1

ac0,1

Save accumulator acO and assume that the FPP is in double mode.

The begin Macro

The begin macro marks the start of the procedure body. This and the endpt. macro are the only
ones to actually generate code. When the begin macro is assembled, all of the data saved up by
the previous macros is used to generate procedure entry code and define all of the parameter and
variable addresses.

The calling sequence is:

begin

The endpr Macro

The end pr macro marks the end of the procedure body. Only one endpr is allowed in each procedure.
When the end pr is assembled, registers are restored, the variables and arguments are popped off the
stack, and control is returned to the calling procedure. The endpr macro is designed to generate
good· code for popping the stack and returning.

The calling sequence is:

end pr

126

Type Definitions

Type Definitions

In addition to the procedure definition macros described above, the PASMAC package defines some
standard "types" and provides a set of three macros to simplify the definition of data structures.
Each type is represented by its length in bytes.

The predefined types are:
type

char
boolean
scalar
int.eger
pointer
address
real
double

length

1
1
1
2
2
2
4
8

The structure definition package consists of three macros:

Name ·Argument

record typename

field name

Function

Begins the definition of a record type typename. The
symbol typename will be set to the length of the record
at the end of the definition.
Defines a field in the record. The fields are allocated in

size ascending order, and any field with a length greater than
1 is allocated on a word boundary. Fields so defined are
set equal to the offset of the field relative to the beginning
of the structure.

endrec Ends the definition of a record and assigns the total length
to the typename given in the record macro.

For example, consider the following Pascal record definition:

prec = record
Intf 1: integer;
Intf2: integer;
Boolf1: boolean;
Realf 1: real;
end;

The equivalent code using the structure-"definition macros is:

record
field
field
field
field
end rec

prec
intf1,integer
intf2,integer
boolf1, boolean
realf1, real

prec = record
intf 1: integer;
intf2: integer;
boolf1: boolean;
realf1: real;

end;

Later in the procedure, where the definition above occurs, we find:

var local,prec : local:prec

And we would refer to field intf2, for example, as

mov local+intf2(sp),r0

127

'

Example

· This example shows the coding of a MACR0-11 procedure for use with Pascal-2. The procedure
chosen for the example is not one that would normally be coded in MACR0-11, but most such
procedures are extremely dependent on the operating system. In fact, we will begin with a version
of the algorithm as it is coded in Pascal-2:

{$nomain}

procedure CountOnes(N: integer; {number to count bits in}

external;

var Ones: integer; {number of "one" bits}
var First: integer {highest "one" bit});

{ This is a procedure that counts the "one" bits in an integer and
returns the number of ones in "ones" and the highest bit found
in "first". If no bi ts are set, "first" receives "-1".

}

The procedure uses an extension of Pascal-2 that allows the
signed number "n" to be treated as an unsigned number "tn".

procedure CountOnes;

var
TN: 0 .. 65535;
Bits: 0 .. 16;

begin
First := ~1;
Ones := O;
Bits := O;
TN := N;
while TN <> 0 do begin

end;

if odd(TN) then begin
Ones := Ones + 1;
First := Bits;
end;

Bits := Bits + 1;
TN := TN div 2;
end;

{local unsigned value of n}
{bit count}

This simple procedure counts the number of bits set in an: integer, checking whether the lowest
bit is set, incrementing a counter, and terminating when there are no more bits set. The use of
the unsigned number, which is a Pascal-2 extension, avoids the shifting of the sign bit into the
lower-order bits. This procedure (and many others that are often coded in low-level co~e) can be
coded as a Pascal-2 procedure. But in many ways this procedure is typical of the sort of procedure
you may code in MACR0-11:

1. It performs a single function with simple internal logic.

2. It is a generally useful form of the function, rather than a special use.

3. It makes no reference ·to global variables. All data is passed as parameters.

The first example gives the most direct translation into MACR0-11, with all references to variables
made directly to memory. It is quite possible to do the entire function in registers, with some saving
in code and execution time, but for the sake of the example we will not do this. We change the

128

\

-,
\

-,

I_,/

Example

algorithm slightly to make use of the state of the condition code at the end of the loop. The use of
a conditional branch at this point shortens execution time slightly· at no cost in code size .

. title examp

This is a sample procedu~e that counts the number of bits
set to one in a word "n" and also sets the variable."first"
to the bit number of the.highest bit set.

This is used strictly as an example; some values that would
normally be kept in registers are being kept in local variables
or handled directly in memory for demoristration purposes.

proc countones procedure countones(
par am n,integer n: int'3ger; .
par am ones,address var ones: integer;

. param first,address var first: integer);

var
var bits, integer bits: integer; bit counter

begin begin
mov #-1,Qfirst(sp) first := -1;
elf Qones(sp) ones - O;
clr bits(sp) bits - o·.

I

tst n(sp) if n <> 0 then
beq 10$

1$: repeat
bit #1,n(sp)
beq 2$ if odd(n) then begin
inc Gones (sp) . ones := ones+1;
mov bits(sp),Ofirst(sp)

first := bits;
2$: end;

inc bits(sp) bits := bits + 1·
I

clc
ror n(sp) n - n div 2;
bne 1$ until rO = O;

10$:
endpr
.end

This procedure illustrates the use of parameters, local variables, and the begin and endpr macros:
The local variable to hold n is not needed as there is no distinction made between signed and unsigned
integers at the MACR0-11 level. The equivalent Paseal-2 code in the comments should make the
MACRO. code easy to follow.

In actual practice, local variables would be kept in registers, and the save and restore macros
would be used to save and restore the registers used. The following version is an example of this

129

t
I

t
I

I

MACR0-11 Procedures With Pascal-2

kind of code. \....

.title examp1

This simple procedure counts the number of bits
set to one in a word "n" and also sets the variable "first"
to the bit number -0f the highest bit set.

Functionally, this is the same procedure as "examp", except that
it works with local quantities in registers whenever possible.

proc countones
par am n,integer
par am ones.address
pa ram first,· address

save <r0,r1,r2,r3>

begin
mov n(sp),rO
mov #-1,r1
clr r2
clr r3

tst rO
beq 10$

1$:
bit #1,rO
beq 2$
inc r2
mov r3,r1

2$:
inc r3
clc
ror rO
bne 1$

10$:
J

mov r1,Qfirst(sp)
mov r2,Qones(sp)
end pr
.end

procedure countones(
-n: integer;
var ones: integer;
var first: integer);

rO. := Il' I

r1 - -t; first
r2 - o· ones

'
r3 - O; bits

if rO <> 0 then

repeat

if odd(rO) then begin
r2 := r2+1;
r1 := r3;

end;
r3 - r3 + 1;

rO rO shift 1;
until rO = O;

first := r1;
ones := r2;

130

Use of PASMAC

Use of PASMAC

The macros· described here are included in the file PASMAC. MAC, which also includes definitions of
standard data types. It is assumed that this file will be assembled as a header to any MACR0-11
code. This would normally be done with a command .line similar to:

.R MACRO
*EXTPRO,EXTPRO=SY:PASMAC,EXTPRO

The result of this assembly is an object file (. OBJ) that is linked in . the same way as any other
external module. Note that the reference to any module assembled with the PAS MAC package is
external rather than NonPascal.

The example above also generates a listing file (. LST). Listing of the PASMAC file is disabled with a
. nlist directive at the start of the file. A compensating . list directive is placed at the end of the
file, so a program listing is not affected .. Defining the tag $1 i st anywhere in your code will enable
listing of the PASMAC file.

The macros .. depend on the existence of a uniform radix throughout the declaration of a single
procedure. This radix may be octal or decimal, but it rnust not be changed within a procedure
declaration. Also, the macros use labels of the form P$. . . and macros of the form $P . . . for
stor.ing state data. Avoid such forms in

1

your own code.

131

Introduction

Historical Notes

Philosophy, Goals, and Capabilities

Basic Units of Text

A General Look at Directives

Controlling the Formatting Environment

Summary Directive Table .

Details on Directives
BREAK
COMMENT
COUNT, COUNT number
FORM, FORM (parameters) .
INDENT, INDENT number ..

Contents

INPUT, INPUT number, INPUT (parameters)
INX text
LITERAL text
MARGIN, MARGIN number, MARGIN (parameters)
OPTION, OPTION number, OPTION (parameters)
OUTPUT (terminal-type parameters)

... · ...

PAGE, PAGE number
PARAGRAPH, PARAGRAPH number, PARAGRAPH (parameters)
RESET, RESET (parameters), RESET (EXCEPT parameters)
SELECT (parameters)
SKIP, SKIP number · . . .
SORTINDEX, SORTINDEX (parameters.)
SUBTITLE text
TITLE text ; . . .
UNDENT, UNDENT number
WEOS ..

Running Prose

•.

·, .

133

133

'133

134

136

137

138

139
139
139
139
139
140
140
142
142
142
143
145
146
146
147
148
148
148
148
148
149
149

149

Prose: A Text Formatter

Introduction

The tediousness of preparing and editing computer-oriented documentation can be made easier by
computerized text-processing tools such as text editors and formatters. This guide describes a text-.
formatting program named Prose and assumes a basic knowledge of computer-related text processing
tools.

The Pasc.al-2 distribution kit includes the Pasc.al-2 manual in machine-readable form. The text has
been prepared with Prose, and the Prose program is supplied in the Pasc.al-2 system. Prose will
allow you to print this (anc;l any other) documentation in whatever format you wish.

The contents of this guide are adapted from the Prose·Instruction Manual written by John P. Strait
(© 1978, University Computer Center, University of Minnesota), as described in Pase.al News (No.
15) in September 1979.

Text examples in this manual have been extracted from Alice's Adventures In Wonderland by Lewis
Carroll.

Notes for the PDP-11

This document describes the version of Prose installed on the .Digital PDP-11 and VAX 11/780
computers at Oregon Software. The def a ult form of Prose commands correspond to PDP-ll usage,
and the output devices fit those available on the PDP-11. Specific machine-dependent characteristics
of this version of Prose are are flagged by "(PDP~ll)". Several items in. the original Prose manual
referring to the idiosyncracies of another machine have been shamelessly removed.

Historical Notes

Most text. formatting programs available today descend from ·one of several original programs.
Among these is RUNOFF, developed on the Dartmouth Time-Sharing System in the 1960s. Later, the
Call-a-Computer system provided a RUNOFF version called EDIT RUNOFF as a text editor command.
In 1972, Michael Huck, working on the University of Minnesota's MERITSS system (a CDC 6400
running the KRONOS operating system), began to develop a version of EDIT RUNOFF called TYPESET.
TYPESET went through many changes, stablizing somewhat in early 1977 at version 5.0, which is
written in CDC COMPASS assembly language. Prose, written in Pascal, was developed over a
year's time starting· in the spring of 1977. The design was influenced heavily by TYPESET, making
Prose one of the many descendants of RUNOFF.

Prose, with minor changes, was installed on the Univac 1100 series computers in early 1980 by
Michael S. Ball of the Naval Ocean Systems Center. He converted this version from the Univac to
the PDP-11 in July 1980 at Oregon Software.

Philosophy, Goals, and Capabilities

Prose is intended primarily for the preparation of machine-retrievable documentation, and this
has influenced the choice of its repertoire of abilities. TYPESET was intended as a ''versatile text
information processor commonly used to typeset theme papers, term papers, essays, letters, reports,
external documentation . . . , and almost any other typewritten text" [Typeset 5.0 Information,
© 1977 by Michael Huck). In ~pite of these aspirations, no program can be all things to all people,

133

Prose: A Text Formatter

and so it is with Prose. It is intended that Prose be able to do most of the things needed to produce
high-quality computerized text.

The design of Prose had several. goals, among them, that high-quality results should be produced
with a minimum number of directives and· that Prose should have about 90% of the abilities that
you think are useful and that the 10% it doesn't have should .be so esoteric as to be non-essential.
Some text formatters take the approach of providing a minimum set of built-in abilities, along with
a "general and powerful" feature such as macros. The idea is that you can accomplish anything you
want (no matter how much effort it will take) by defining appropriate macros. The problem with

. this approach i~ that the user is forced to learn a complicated feature to produce any but the most
trivial results.

The philosophy behind Prose is that the user should not be overwhelmed by a large number of
complicated directives; that the syntax of the directives should be· consistent; that the text, not the
directives, should stand out. Because of this goal of simplicity, Prose may or may not be the tool
for a given application. The following two tables should aid you in deciding whether to use Prose.

Prose ...

a. Prose has a small number of commands providing an easily learned set of basic formatting
abilities.

b. Prose can do underUning and discretionary hyphenation.

c. Prose can remember and restore the text processing environment.

d. Prose can produce mixed-case or upper-case-only output from either mixed-case or upper-
case-only input.

e. Prose can accumulate and produce a sorted index, referring to page numbers.

f. Prose can print selected pages on request.

g.. Prose can format text in pages with headers, footers, and other aids.

h. Prose can fill and justify text to specified margins.

i. Prose is. a portable program, written in standard Pascal, using ASCII as its internal
character code. Prose is written to encourage its· transportation between computers with
different hardware and different operating systems .

. and Cons

a. Prose cannot control photo-typesetting machines.

b. Prose cannot do graphics.

c. Prose does not have multi-column ability.

d. Prose does not have macros, variables, or other programming language-lik~ features.

d. Except for its indexing ability, Prose cannot store text and retrieve it later.

e. Prose does not have tabs.

f. Prose does not have directives to do everything you always wanted to do.

Basic Units of Text

Some of the basic units of natural language are the word, the phrase, the sentence, and the paragraph.
In text formatting, the basic units are the word,. the line, and the paragraph. A word is defined as
any non-blank string of characters, with a blank on either side. For the purposes of formatting, a
punctuation character is part of the word it is next to. By default, Prose reformats its input by

134

\...... ..

Basic Units of Text ·

filling words into lines, adding blanks to justify the lines to left and right margins, and printing
lines together to make paragraphs. In filling lines, Prose does not pay any attention to the original
positions of the words, but instead fills as many words as possible into the output lines, preserving
the original order. The following example ·illustrates this process of filling and justifying.

Input to .Prose:

"When we were little," the Mock Turtle went on at last,
more calmly, though still sobbing a little now and then,
"We went to school in the sea. The master was an old
Turtle--we used to call him Tortoise--"

"Why did you call him Tortoise, if he wasn't one?"
Alice asked.

"We called him Tortoise because he taught us, 11 said the
Mock Turtle angrily. "Really you are very dull!"

i•You ought to be ashamed of yourself for asking such a
simple question," added the Gryphon; and then
they both sat sileht and looked at Alice, who felt ready to
sink.into the earth.

Output from Prose:

"When we were little," the Mock Turtle went on at
last, more calmly, though still sobbing a little now and
then, "we went to school in the sea. The master was an
old Turtle--we used to call him Tort.oise-- 11

"Why did you call him Tortoise, if he wasn't one?"
Alice asked.

"We called him Tortoise because he taught us," said
the Mock Turtle angrily. "Really you are very dull! 11

"You ought to be ashamed of yourself for asking such
a simple question," added the Gryphon; and then they both
sat silent and looked at Alice, who felt ready to sink
into the earth.

Most of text formatting is filling and justifying. In the absence of special instructions (called
directives), Prose will fill all of the input words into output lines and justify all of those lines.

The distinction between one paragraph and the next is defined by a justification break, which causes
Prose to· stop filling the current output line and print it without justifying. Since the break is one
of the most frequently used instructions (as well as one of the simplest), it can be indicated in many
ways. Paragraphs can be separated (broken) by one or more blank line~, by leading blanks typed on
an input line (a paragraph indentation), or by the Prose . BREAK directive. The following example
demonstrates these three methods.

135

)

/

Prose: A Text Formatter

Input to Prose:

At last the Gryphon said to the Mock Turtle "Drive on.
old fellow! Don't be all day about it!" and he·went
on in these words:--

"Yes. we went to school in the sea, though you mayn '. t
believe it--"
.BREAK
"I never said I didn't!" interrupted Alice .
. BREAK
"You did." said the Mock Turtle.

"Hold your.tongue!" added the Gryphon, before Alice
could speak again.

Output from Prose:

At last the Gryphon.said to the Mock Turtle "Drive on, old
fellow! Don't be all day about it! 11 and he went on in
these words:--
"Yes, we went to school in the sea, though you mayn't
believe it--"
"I never said I didn't!" interrupted Alice.
"You did." said the Mock Turtle.

"Hold your tongue!" added the Gryphon, before Alice
could speak again.

When you use one of these methods to create a paragraph, Prose only does a justification break.
Prose will not skip lines or indent unless blank lines or indentations explicitly appear in the input
file. You can do fancier things with the . PARAGRAPH directive, to be introduced later.

A General Look at· Directives

In its def a ult mode, Prose automatically fills and justifies output lines, formatting the output in
pages. Directives instruct Prose to do anything fancier. Directives can change the margins, control
options, and define the type of outpu~ device you intend to use.

A line of directives is indicated by the directive·escape character in the first column of an input line.
The period is the default directive escape character (although you can change it if you wish) because

·it seems unlikely that anyone will want to type a period in the first column of a line of text. Several
directives can be typed on the same line, provided that they ~re separated by the directive escape
character. For example:

.BREAK.SKIP 2.MARGIN(LS R65)

Some directives take the remainder of the line as their parameter, so no other directives can follow
these. Long directives may extend to several lines. Continuation lines are indicated by a plus sign
(+) typed in column one. The continuation may be made anywhere that a blank is allowed. For .
example:

.FORM('[Ill L58 II #73 'PAGE' p Ill J
+ [Ill L58 II 'PAGE' p Ill])

Examples in this guide will show directives typed in upper case, but both upper-case and lower-case
characters may be mixed. ·

136

A General Look at Directives

Every directive begins with the name of the command, MARG IN for instance. The name can be
abbreviated to three letters (in fact, Prose only examines the first. three letters.) The directive name
may be followed by a parameter. In the absence of a parameter, default values are used. The
parameter has four forms:

1) The. absence of any parameter.

2) A single numeric value.

3) The remainder of the directive line.

4) A information enclosed in parentheses, consisting of descriptors defined by the· directive
itself.

When a numeric value is required (for a parameter or as part of a descriptor), an explicit positive
integer may be given. In many directives, a relative value may be used. A relative value, specified by
a plus or rriinus sign before the integer, indicates that the old value should be increased or decreased
by the number of the integer.

In the following example, the left margin is set to 10 and the right margin to 70. Then, the margins
are squeezed together by 5 characters on both sides .

. MARGIN(L10 R70)

.MARGIN(L+5 R-5)

Controlling· the Formatting Environment

The formatting environment is defined to be all the options and specifications that direct Prose as
it produces formatted output from unformatted input. The concepts that make up the formatting
environment can be loosely grouped into six areas; directives control each one:

1) INPUT controls the meaning and treatment of characters on the input file.

2) OUTPUT describes the type of output device for which the formatted result is intended.

3) FORM specifies the format of the page into which the running text will be inserted. This
includes information on the placement of titles, footers, and the like.

4) MARG IN sets the left and right margins.

5) PARAGRAPH describes special actions for the beginning of each paragraph.

6) OPTION controls the rest of the miscellaneous options that affect the text formatting process.

Of these six groups, the INPUT, MARGIN, OPTION, and PARAGRAPH settings are likely to be changed
often throughout the test. The number of different settings, .however, will probably be small. To
accommodate these needs, a simple device is available for these four directives.

The setting of options controlled by these directives follows this syntax:

. d.irecti vename (parameters)

where the parameters consist of a· key letter followed by option settings. For instance:

.MARGIN(L5 R60)

sets the left margin to 5 and the right to 60. Each time one of the four directives is processed, Prose
saves the new values in a keep buffer. Ten keep buffers (numbered 0 through 9) are associated with
each directive. A keep parameter may be used to specify the buffer to be used; if not specified, the
values are saved in the numerically next buffer .

. Old values may be recalled by using the following form:

.directivename number

137

!

'"'"'
/

Prose: A Text Formatter

For example:

. MARGIN 5

sets the margins to the values stored· in keep buffer 5.

If no parameter is specified, the values are set to those stored in the numerically previous keep
buffer. Since the keep number is automatically incremented .when the parenthesis form is used and
automatically decremented when no parameter is given, the keep buffers can be used as a stack .

. MARGIN(LO R70)

.MARGIN(L10 R60)

.MARGIN

In the previous example,. the last· MARG IN directive resets the margins to their previous values: left 0
and right 70.

Summary Directive Table

Directive Meaning (action) Break Parameter type
BREAK break justification * -none-
COMMENT no action remainder of line
COUNT set page count numeric
FORM define page format * (...)
INDENT indent following line * numeric
INPUT set input parameters * (. . .) or numeric
INX store index entry remainder of line
LITERAL print literal text remainder of line
MARGIN set margins * (. . .) or numeric
OPTION set options * (...) or numeric
OUTPUT set output parameters (...)
PAGE eject to top of page * numeric
PARAGRAPH set paragraphing params (. . .) or numeric
RESET reset directive defaults * (...)
SELECT select pages to print * (...)
SKIP skip output lines * numeric
SORT INDEX sort and print index * (...)
SUBTITLE set the subtitle remainder of line
TITLE set the main title remainder of line
UNDENT undent following line· * numeric
WEDS write end of section * -none-

The directives marked with an asterisk (*) cause a justification break before they are processed,
since they affect the filling and justifying environment.

(...) indicates that the parameter is enclosed in parentheses and is described in detail along with
the description of the directive itself.

138

Details on Directives

Details on Directives

BREAK

Causes a justification break

COMMENT

Prose treats the remainder of the directive line as a comment; i.e., it is· ignored. The CO:M:MENT
directive allows you to include information in the source of your document. that will n~t be printed
in. the formatted copy.

COUNT, COUNT number

Sets the page counter. The numeric parameter can be relative; for example, . COUNT + 1 increments
the page nuwber by one. Without a parameter, the default sets the page number to one.

FORM, FORM (parameters)

Defines the page format, including titles, footers, date/time, and the top and bottom of the page. The
argument consists of parameters, followed by' an optional field width, if appropriate. For example,
T: 30 prints the title in a field of 30 characters. Text lines are built by. the FORM directive from
leR to right, starting in the first printable column, although the tabbing specification may be used

·to alter that. The following table describes the available FORM specifications.

Key Char
c
D·
E

Ln
pf

s
T
w

Meaning
24 hour clock as hh. mm. ss (15. 37. 58)
raw date as yylmmldd (78102113)
nice date as dd Mmm yy (13 Feb 78)
fill in n lines of running text
cµrrent page number, f selects the form:

N or n arabic numerals (default)
L upper case letter
1 lower case letter
R upper case roman numerals
r lower case roman numerals

subtitle
main title
wall clock as hh: mm AM (3: 37 PM)
or hh:mm PM

#n tab forward or backward to absolute column n
print literal text ,

I print an end of line (by itself, a blank line)
In print n ends of lines
[define top of page
] define bottom of page

Default form (PDP-11)

Def a ult Field Width
8
8
g

3
[the field
width will
be expanded
if needed)

its length
its length

8

.FORM([II T #62 E Ill L54 Ill #33 '- I PN:1 I -' /Ill J)

139

Prose: A Text Formatter

The FORM directive is processed interpretively. The FORM argument is re-scanned as each page of
output is produced, so that a change in a title buffer with the TITLE or SUBTITLE directive will
change the title or subtitle on the. next page.

The top of page definition is used for several things. By using the OUTPUT directive, you can request
Prose to send a page eject to the output device when it reaches the top of a page. You also can
request Prose to pause. at the top of each page to allow you to change paper. At the end of the
document, Prose does one last page eject. and continues to interpret the FORM specification until it
reaches the top of page. (This ensures that any commands specified for the bottom of the last page
- such as a page number - are executed.)

Prose increments the page number at the bottom of the page specification, so if .you print the page
number both before and after the bottom of page definition you will get different numbers.

Once you understand the FORM directive, you can easily produce fancy page formats. You can, for
example, design a FORM that will print the page number at the right of odd numbered pages and at
the left· of even pages. This is done with a FORM that defines two pages with two ['s and two] 's:

.FORM [II T #62 E Ill L56 II #63 1 PAGE 1 P Ill]
+ [II T #62 E Ill L56 II 'PAGE' P Ill])

In the absence of any of the parameters described. above, no special page formatting is done. The
result is a FORM consisting of a single L specification defining an infinite number of lines per page.
In this mode, a PAGE directive with no parameter will put 5 blank lines between sections of text.

INDENT, INDENT number

. Indents the following line by a certain number of spaces. In the absence of a parameter, the default
is 5.

INPUT, INPUT number, INPUT (parameters)

The INPUT directive is used to define the input environment, that is; the interpretation of characters
in the input file. The parameters, which can be giv:eri in any order, consist of a key letter followed
by a value. The following table summarizes the parameters.

Key Letter Meaning Typ~ Default Relative
B explicit blank character ·character nul
C case-shift character . character nul
D directive escape character character ' ,
H hyphenation character character nul
K keep number next no
u underline character character nul
w input width number 150 no·

The def a ult value is assigned when Prose begins processing. The def a ult value also will be set if the
key letter is given by itself. The value of a parameter changes only when a is given.

B: The explicit blank character indicates a blank that Prose should not tamper. with. Thus,
if the cross-hatch (#) is specified as the explicit blank:

. INPUT (B#)

then two words that are separated by an explicit blank:

Mr.#Smith

140

!\

I

. \

C:

Details on Directives

will never be split from one line to the next, and Prose will never fill blanks in between the
words to justify a line. .

The ease-shift character must be· used to create mixed-case output from upper-case-only
input. When a case-shift character is specified, Prose automatically s~ifts all upper-case
letters to lower case. To specify an upper-case letter, you must surround letters with the
case-shift characters, causing a shift-up and shift-down. Since most upper-case letters
are at the beginning of a word (following a blank), another method, called stuttering, is
to double the first character of a word to achieve upper-case characters. The following
example demonstrates the production of mixed-case output from upper-cas~only input.

Input to Prose:

. INPUT (C-)
TTHE MMOCK TTURTLE WENT ON.

11 -w-E HADE THE BEST OF EDUCATIONS--IN FACT, WE WENT TO
SCHOOL EVERY DAY--"

-I 'VE- BEEN TO A DAY-SCHOOL, TOO, II SAID AA.LICE. u-y-ou
NEEDN'T .BE SO PROUD AS ALL THAT."

u-w-ITH EXTRAS?" ASKED THE MMOCK TTURTLE, A
LITTLE ANXIOUSLY ..

u-ri::s, II SAID AALICE: "WE LEARNED FFRENCH AND MUSIC. II

11 -A-ND WASHING?" SAID THE MMOCK TTURTLE.
"-CERTAINLY NOT," SAID AALICE, INDIGNANTLY ..
11 -A-H TTHEN YOURS WASN'T A REALLY GOOD.SCHOOL," SAID THE

MMOCK TTURTLE IN A TONE OF GREAT RELIEF. u-N-ow, AT -ouRs-, THEY
HAD, AT THE END OF THE BILL, •.-F-RENCH, MUSIC, -AND
WASHING--- EXTRA. I II

Output from Prose:

'The Mock Turtle went on.
"We had the best of educations--in fact, we went to

school every day--"
"I'VE been to a day-school, too," said Alice. "You

needn't be so proud as all that."
"With extras?" asked the Mock Turtle, a little

anxiously.
"Yes, 11 said Alice: "we learned French and music."
"And washing?" said the Mock Turtle.
"Certainly not," said Alice, indignantly.
"Ah Then yours wasn't a really good school," said the

Mock Turtle in a tone of great relief. "Now· at OURS, they
had, at the end of the bill, "French, music, AND WASHING-­
extra.' 11

At first glance, the sti.Ittering method may seem clumsy, but experience shows that it is
reasonably easy to get used to. To enter words that already have a double letter at the
beginning (like llama and oops), merely precede the word with two case-shift characters,
causing a shift-up/shift-down (--LLAMA and --oops). The case-shift character does not
need to be used unless you want to create mixed-case output from upper-case-only input.
If possible, use mixed..,case input to create mixed-case output.

, D: The directive escape character is the character you type in the first column of an input line
to flag it as a directive line .

H: The hyphenation character is used to define hyphenation points within words. Sometimes
a long word will cause many blanks to be inserted to justify the preceding line. Prose will

141

I

Prose: A Text Formatter

hyphenate such a word if you have defined the syllable boundaries within it. Of course, not
all the syllable boundaries need be specified, only those at which you want Prose to be able
to split a word. For example, if the hyphenation character is set to be the slash (/), you
may type "syncopation'' as "syn/co/pa/tion". Prose will insert a hyphen (-) only when
the characters on both sides of the hyphenation point are letters. You may type "hyper­
active" as "hyper-/acti ve", and Prose will split the word if necessary, without adding
a superfluous hyphen. If Prose is forced to insert more blanks than a certain threshold (set
with the OPTION directive), it will issue a message suggesting that you insert hyphenation
characters.

K: The keep parameter explicitly specifies the keep buffer to be used to store the new input
options. The default is for Prose to use the numerically next buffer.

U: Text surrounded by the underline character will be underlined. Blanks are not underlined,
but explicit blanks are.

W: The input width is used to specify the number of characters to be read from each input
line. If your input lines have sequencing information at the right of each line, you will need·
to set the width to an appropriate value. ·

INX text

Enters the remainder of the line together with the current ·page number as an index entry. If the
formatted text migrates from page to page, the resulting index will always be correct.

LITERAL text

Prints the remainder of the line on the output file. The special processing for upper /lower case,
underlining, and literal blanks is performed on the text of the parameter, and then it is printed as
a single output line. This output line is printed independently of filling and justifying and page
formatting processes; it is transparent to the usual Prose formatting and is not counted as an output
line. The LITERAL directive is useful for producing special printer control characters on some systems.
LITERAL is of little use on the PDP-11 and is described for the sake of completeness.

MARGIN, MARGIN number, MARGIN (parameters)

The MARGIN directive sets the left and right margins for filling and justifying. The left margin is
the number of leading spaces before the first printed character, and the right margin is the column
number of the last printed character. Thus, subtraction of the left margin from the right margin
gives the number of printed columns. The parameters,. which inay be given in any order, consist of
a key letter followed by a value. The following table lists the parameters .

. Key Letter Meaning Type Default Relative
K keep number next no
L left margin number 0 yes
R right margin number 70 yes

Prose assigns the default value when it begins processing. The default value also is set when the key
letter is given by itself. A parameter value is changed only when a specification is given.

The keep parameter explicitly specifies the keep buffer to be used to store the new margins. The
default is for Prose to use the numerically next buffer.

142

··~

~.

I

Details on Directives

OPTION, OPTION number, OPTION (parameters)

Miscellaneous options that affect the text formatting process are gathered together in the OPTION
directive. These options are summarized in the following table. For switch options, + is on and - is
off.

·Key Letter Meaning Type Default Relative
E print error messages switch + n/a
F fill output lines switch + n/a
J justification limit numeric 3 no
K keep numeric next no
L left justify switch + n/a
M multiple blanks switch + n/a
p 2 blanks after periods switch + n/a
R right justify switch + n/a
s spacing numeric 1 no
u shift to upper case switch n/a

. Prose assigns the default value when it begins processing. The default value also is set when the key
letter is given by itself. A parameter value is changed only when a specification is given.

E:

F:

J:

Error messages appear in the formatted text of the main output files at the approximate
location of the errors. Error messages are suppressed when the E option is set to E-.

Output lines are automatically filled and justified as described in the section "Basic Units
of Text". If the fill switch is turned off, Prose will print the input lines as they are, without
reformatting to fill up the output lines. In effect, a justification break is done after each
input line.

In justifying the left and right margins of an output line, Prose has· to insert blanks that
are not explicitly on the input file. The justification limit controls the point at which Prose
will attempt to hyphenate a word. If, for instance, the justification limit is three, then the

. hyphenation process will be invoked when Prose has to insert three blanks between any
adjacent words on a line. If hyphenation is not possible, or Prose is not able to bring the
number of inserted blanks below the limit, an error message is printed.

K: The keep parameter explicitly specifies the keep buffer to be used to store the new options.
The default is for Prose to use the numerically next buffer.

L: The left and right justify switches work together to determine the kind of justification
R: to be done. If both switches are on, output lines are justified to both the left and right

margins. If both switches are off, the lines are centered between the two margins. If one
is on and one is off, the result is one straight margin (either left or right) and one ragged
margin. The following demonstrates these four options.

OPTION(L+ R+) :

"You couldn't have wanted it much," said Alice;
"living at the bottom of the sea."

"I couldn't afford to learn it," said the Mock Turtle
with a sigh. "I only took the regular course."

".What was that?" inquired Alice.

143

Prose: A Text Formatter

"Reeling and Writhing, of course, to begin with," the
Mock Turtle replied; "and then the different branches
of Ari thmetic--Ambi ti on, Distraction,, Uglification,
and Derision."

"I never heard of 'Uglification, 111 Alice ventured to
say. "What is it?"

The Gryphon lifted up both its paws in surprise.
"Never heard of uglifying!" it exclaimed. "You know
what to beautify is, I suppose?"

.OPTION(L- R-) :

"Yes," said Alice doubtfully: "it
means--to--make--anything--prettier."

"Well, then," the Gryphon went on, "if you don't know
what to uglify is, you are a. simpleton."

Alice did not feel encouraged to ask a.ny more ques­
tions a.bout it: so she turned to the Mock Turtle, and

said "What else ha.d you to l.ea.rn?"

"Well, there wa.s Mystery," the Mock Turtle replied,
counting off the subjects on his fla.ppers--"Mystery,
ancient a.nd modern,·with Sea.ography: then Drawling-­
the Drawling-master was an old conger-eel, that used
to come once a week: he taught us Drawling, Stretch-

ing, a.nd Fainting in Coils."

.OPTION(L+ R-) :

"What wa.s that like?" said Alice.

"Well, I can't show it to you, myself," the Mock
Turtle said. "I'm too stiff. And the Gryphon never
learnt it."

"Hadn't time," said the Gryphon: "I went to the
Classical master, though. He wa.s an old crab, he
was."

"I never went to him," the Mock TUrtle said with a
sigh. "He taught Laughing and Grief, they used to
say."

"So he did, so he did," sa_id the Gryphon, sighing in
turn; and both creatures hid their faces in their
paws.

"And how many hours did you do lessons?" said Alice,
in a hurry to change the subject ..

144

. OPTION (L- R+)

"Ten hours the first day," said the Mock Turtle: "nine
the next, and so on."

"What a curious plan! .r• exclaimed Alice.

"That's the reason they're called lessons," the
Gryphon remarked: "because they lesson from day to

day."

This was quite a new idea to Alice, and she thought it
over a 1 i ttle before she made her ·next remark. "Then

·the eleventh day must have been a holiday?"

"Of course it was," said the Mock Turtle.

"And how did you manage on the twelfth?" Alice went on
eagerly.

"That's enough about lessons," The Gryphon interrupted
in a very decided tone. "Tell her something about the

games now."

Details on Directives

M: If the multiple blanks switch is· on, multiple blanks ·in the input file are considered to be
significant. That is, if there are several.blanks betweentwo words in the input file, there will
be at least that many in the output file. Prose may add more blanks during justification.
If the switch is off, multiple blanks will be changed into a single blank. . ·

P: The 2 blanks after periods option will ensure that each period already followed by at least
one blank will be followed by at least two blanks. Prose will not add blanks before justifying
if there are already two. This makes for nice spacing in· your final copy even if you are not
careful about typing spaces in the original. .

S: Set the spacing option to 2 or 3 to get double-spaced or triple-spaced output, respectively.
(Default is 1.)

U: Since some output devices are not able to handle mixed-case files, you can shift all lower­
case letters to upper-case letters by selecting the shift to upper case option. This option is
also handy for printing an entire unit, such as a sample program, all in upper case.

OUTPUT (terminal-type parameters)

The OUTPUT directive defines important aspects of the output device to which you will send the
formatted text. The OUTPUT directive. may be used only once. It must appear in one of only two
places: before any lines are printed on the output device or immediately after the . RESET (OUTPUT)
directive.

Terminal-type may be one of the following.

(PDP-11) All of the following is specific to the PDP-11.

ASC ASCII terminal, uses back space for underlining, but is otherwise the same as LPT below.
There is, however, a difference in the handling of pauses for page eject. (See the P option
below.) ·

145

Prose: A Text Formatter

LPT Line printer, using overprinting with a carriage return to do underlining. This is the default
output device.

VTR Video Terminal (DEC VTlOO or VT52). This does underlining by means of the control
sequences defined for these terminals. The parameters define further characteristics of the
output device, along with several global output options. The parameters, which may be
given in any order, are listed in the following table.

Key Letter .· Meaning
E page eject at top of page

·. ([in FORM description)
pause at top of page

Type
switch

switch p

s shift output lines to the right numeric
u underlining is available switch

Default

0
+

E: The page . eject option will print a form feed each tirrie a [is encountered in the FORM
specification.

P: Selection of the pause option will cause Prose

· to stop printing and await operator acknowledgement each time a [is encountered in th,e
FORM specification. On. an ASC terminal, Prose will sound the bell and wait for a carriage return to
be entered. For an LPT output device, no action will be taken.

S: AJ.l output that Prose produces can be shifted to the right by any number of spaces up to
50. This makes it easy to center the output on a wide printer page.

U: ir the destination terminal does not have underlining ability and your input does underlin­
ing, the underlining available option should be turned off to prevent Prose

from trying to generate overprinted underlines.

PAGE, PAGE number

Causes a page eject if there are fewer than the specified number of lines remaining on the current
page. If no parameter is given, PAGE does an unconditional page eject.

PARAGRAPH, PARAGRAPH number, PARAGRAPH (parameters)

Paragraphs can be indicated by any of the methods introduced in the section "Basic Unit~ of Text".
The PARAGRAPH directive provides a more versatile method of creating paragraphs.

The PARAGRAPH directive specifies the action to be .taken when a new paragraph is signaled by the
paragraph flag character in the first column of an input line. An automatic indent or undent can
be selected, an automatic skip and/ or automatic page eject can be specified, and you can even have
Prose automatically number the paragraphs.

Key Letter Meaning Type Default Relative
F paragraph character character nul n/a
I Automatic indent number 0 no
K keep number next no
N number generator none n/a
P automatic page eject number 0 no
S automatic skip number 0 no
U automatic undent number 0 no

Prose assigns the default value when it begins processing. The default value also is set when the key
letter is given by itself. A parameter value is changed only when a specification is given.

146

~ .

Details on Directives

F: The paragraph flag character invokes this collection of paragraphing actions.when it appears
in the first column of an input line. Note that this character must be set in at least one
PARAGRAPH directive, or none of thes~ actions will work.

I: · The automatic indent or automatic undent is applied to the first line of the paragraph (see
V: . the description of INDENT and UNDENT). If the number generator is used, the indent or

undent is applied after the number is generated.

N: If the number generator is specified, a new number (or letter) will be generated for each
occurrence of the paragraph flag character. The number generator is initialized to 1 each
time new paragraph settings go into effect. Resumption of an old setting will also resume
the old numbering. The number replaces the paragraph flag character when the line is
formatted. The number generator parameter has the form: Nfn.

f selects the. numeric· form:
-blank-
Norn
L
1
R
r

no. numbering
arabic numerals ·
upper-case letter
lower-case letter
upper-case roman
lower-case roman

n is the field width, which will be expanded if needed. If, for example, you want an arabic
numeral with three spaces left for the numeral, the command is. Nn3.

P: The automatic page eject simulates the effect of the directive

. PAGE number

before the first line of the paragraph. If this parameter is set to 4, for instance, ~page eject
is done if fewer than four lines will be left at the bottom of the page for the paragraph.
The command is applied after the automatic skip.

S: The automatic skip is done before the first line of the paragraph, and functions the same
as, a skip directive.

K: The keep parameter explicitly specifies the keep buffer to be used to store the new paragraph
options. The default is for Prose to use the numerically next buffer.

RESET, RESET (parameters), RESET (EXCEPT parameters)

The RESET directive sets directives to their default values. If you have changed the values of many
directives (such as FORM, MARGIN, or OPTION), the simple command

:RESET

resets the values of all directives to their defaults. You also may reset.directives selectively by using
the second form of the command. For example,

.RESET(MARGIN OPTION)

only resets the MARGIN and OPTION directives. Directives also may be excluded. For example, ·

.RESET(EXCEPT FORM OUTPUT)

resets all directives with the exception of FORM and OUTPUT.

· Any of the following parameters may be reset:

COUNT FORM INPUT INX
MARGIN OPTION OUTPUT PAGE
PARAGRAPH SELECT SUBTITLE TITLE

147

Prose: A Text Formatter

The values of parameters for most directives are set to their defaults (listed with the description of
each directive), except for the keep parameters, which are set to KO. For the COUNT, JNX, and PAGE
directives, however, the action is different. A reset of COT.JNT sets the page counter to 1; a reset of INX
deletes all index entries that have accumulated; and a reset of PAGE causes a page eject. In addition,
a FORM or OUTPUT reset also causes a page eject, since these directly affect the printed result.

SELECT (parameters)

You may use .the SELECT directive when you need ·to print only certain pages of a document. The
entire text will be formatted, but only the selected pages will be pr1nted. Processing time will not
be reduced much, but printing time will be. The descriptor consists of page numbers separated by
spaces. Two page numbers separated by a colon (:) will select the span of pages between the pages,
inclusive. The second page number may be specified relative to the first. The following example
selects pages 3, 5, 10 through 15, and 20 through 25 to be printed .

. SELECT(3 5 10:15 20:~5)

The default is to select all pages to be printed.

SKIP, SKIP number

Skips a certain number of output lines, i.e., prints blank lines. SKIP will never print blank lines at
the. top of a page, so to skip lines at the top of a page at least one actual blank line must precede

· the SKIP directive. The default of SKIP is 5 lines.

SORTINDEX, SORTINDEX (parameters)

Index entries accumulated by INX directives can be sorted either alphabetically or by page number,
then printed in a relatively flexible manner. The SORTINDEX directive allows you to specify the
column that is to be considered the first significant column for alphabetical sorting, the number of
leading blanks to print at the left of each index line, and the way to format the page number. The
parameters, which may be given in any order, and listed as follows.

Key Letter Default Meaning
L 2 ·Left width of page number (field width of number)
M 0 Margin (left margin before index line)
P 0 Column (in index entry) to insert page number
R 2 Right width of page number, blanks printed after
S 1 Sorting· option. If this is numeric, it is the first

significant column for alphabetic sorting. If it is
the letter P, sorting is selected by page number.

In the absence of parameters, defaults are used.

SUBTITLE text

Enters the remainder of the directive line into the subtitle buffer. The subtitle buffer is used by the
FORM directive.

TITLE text

Enters the remainder of the directive line into the main title buffer. The title buffer is used by the
FORM directive.

148

Details on Directives

UNDENT, UNDENT number

Undents the next line a certain number of spaces. The undent is sometimes known by the name
"outdent" or "hanging indent". A line can never be undented past the leftmost column of the printer
page, so a large number is adjusted to a smaller value. In the absence of a parameter, the default is·
to undent to the leftmost printable column~

WEOS

Write an end.;of-section on the output file. This directive is useful for creating multiple section
writeups under systems with utilities that manipulate ·multiple section files.

(PDP-11) This directive has no effect on the PDP-11 versjon of Prose.

Running Prose

After formatting the text as desired, invoke Prose as shown:

.R PROSE
* output-file = input-tile

input-tile: The Prose source file(s), with a default extension of . PRS. Multiple input files are read
and concatenated in the order listed.

output-file: The formatted Prose file. If the output. file and the = are omitted from the command
line, the output file will take the name of the last input file and the extension . DOC. Such
a default output file will be placed in the default directory. The default extension for
the output is . DOC.

We recommend as a general practice that you set up each ·Prose text without OUTPUT or FORM
directives. Instead, keep these directives in another file that you will use as the first input file.

For example, Oregon Software supplies two header files with the Prose utility. One file, VT100. PRS,
contains a set of OUTPUT and FORM directives for terminals. The other, PRINTER. PRS, contains a set
of OUTPUT and FORM· directives for the line printer.

If these header files are stored on the system device, you would use this command ·to prepare the
document for the terminal:

DOCNAM = SY:VT100,DOCNAM

and this command to prepare the document for the line printer:

DOCNAM = SY:PRINTER,DOCNAM

These header files may be edited as needed, or you may create your own.

149

Contents

Introduction

Differences Between Pascal-1 and Pascal-2
Improvement of Error Checking
Removal of Extensions
Changes to Extensions
Improvements to Implementation
Changes in Implementation Definitions
Changes to or Clarifications of Standard Pascal

General Procedures and the CONVRS Utility

Basic Conversion Techniques
Conversion of Embedded Switches
Run-Time Checking

Programs Using External Procedures or Functions
The "/Pascall" Compiler Switch
Conversion Procedures

Programs Using Low-Level Techniques
In-line Assembly Code
Variants For Type Conversion . .
"Origin" Variables

Likely Error Messages and Countermeasures

.•

153

153
153
154
155
155
156
156

156

157
158
159

159
159
160

160
161
161
162

162 _,.

Conversion From Pascal-1 to Pascal-2

Introduction

This manual describes the significant differences between Pascal-1 (Vl.2) and Pascal-'-2 (V2.0) and
the steps for conversion of programs from Pascal-1 to Pascal-2.

Pascal-1 is a one-pass compiler for the Digital PDP-11 seriesthat contains several low-level extensions
giving the programmer control over the hardware and operating system. Pascal-1 generates assembly
code with no attempt at global optimizations.

Pascal-2 is a transportable multi-pass compiler that emphasizes conformance to the Pascal standard
while generating excellent code. Properly used, Pascal-2 will allow programs to be transported

· between computer systems with a minimum of change; the compiler itself has already been installed
on computers made by two. different manufacturers, and it is· currently being implemented on two.
others.

Pascal-2 generates code that is shorter and faster than Pascal-1 code. In many cases, programs
running with all run-time checking enabled will be smaller than the same program running without
checking under Pascal-~.

Programs that are acceptable to Pascal-1 may not be acceptable to Pascal-2 for the following
reasons: Pascal-2 has tighter error checking than Pascal-1; extensions that are considered ill-advised
or. that are not practical in an optimizing compiler have been removed (in-line code, for instance);
some extensions have been modified; certain improvements create compatibility problems; finally,
Pascal-2 conforms to recent changes and cl~rifications in the language definition as a result of the
international standardization effort.

The conversion procedures given in this manual have two goals. The first is to get programs that work
under Pascal-1 to work under Pascal-2. The second is to eliminate or isolate machine dependencies
so that the resulting programs can be moved to other machines or to other Pascal compilers with
relative ease.

This conversion guide is our effort to pass on to users our own experience and ideas in converting
programs from Pascal-1 to Pascal-2. Warning: No rote conversion procedure will work. And you
must read the Pascal-2 Language Specification before attempting any conversions.

Differences Between P ascal-1 and P ascal-2

The following summary of the ways in which Pascal-2 differs from Pascal-1, though not complete,
describes most cases.

Improvement of EITOr Checking

This section does not enumerate all the places where the checking has been tightened up, but it
does list the changes that you probably will encounter most frequently in converting programsfrom
Pascal-1 to Pascal-2.

1. Pascal-2 does range checking at compile time, and assignment of a constant that is out of
the range of the .variable will be marked as an error. In particular, an attempt to assign a
negative value to an extended-range (unsigned) integer will be detected as an error.

2. Pascal-2 detects assignments of out-of-range values to subrange variables. An extended­
range variable, however, may have the same bit pattern as a negatiye number, and there

153

I I

Conversion From Pascal-1 to Pascal__..:2

is no way to tell at run time whether the value should be negative or extended. An· error
will be noted, however, if the value, considered as an extended-range value, is outside the
range limits of the variable.

3. Pascal-2 detects dereference of a nil pointer at run-time.

4. Pascal-2 can, at compile time, detect many uses of uninitialized variables and will flag the
uses as errors. For instance, the compiler will detect as an error the use of a for loop
variable after exit from the loop.

5. Pascal-2 flags as an error .any attempt to assign a value to a for loop variable within the
loop.

6. A file, or any structure containing a file, may not be assigned or passed as a value parameter
to a procedure .. Pascal-1 allows the assignment of a value parameter, but actually assigns
a pointer fo the file control block, not the file.

7. A component of a packed structure may not be passed as a var parameter to a procedure.
This is most likely to show up when a component of a packed array of char is passed
as a parameter. This limitation does not apply to the standard procedure read.

8. Pascal-2's checking for scope rules follows the Pascal standard, and you cannot can use
a name in a scope and subsequently re-define it in that scope, as Pascal-1 allows. (The
Pascal-1 usage probably results in an undetected error.)

Removal of Extensions

The following extensions have been removed.

1. The exit statement in Pascal-1 has been removed from Pascal-2. Exit can be replaced
with a goto statement.

2. The Pascal-1 pre-declared type alfa does not appear in Pascal-2. It can be replaced with
the type declaration

type alfa =packed array [1 .. 10] of char;

3. Embedded assembly code is not allowed in Pascal-2. Most in-line code can be moved into
MACRO subroutines. that can be called from your Pascal-2 program.

4. In Pascal-1, any array of char may be treated as a string. A Pascal--,2 string is more
tightly defined as the standard:

packed array [1 .. n] of char;

This one change will probably cause many conversion problems, but the cure is simple, and
the modified program will run under both Pascal-1 and Pascal-2.

5. The Pascal-1 pre-defined func,tion float does not exist in Pascal-2. It is redundant: R : = I
is equivalent to R : = float (I). You can eliminate float wherever it is used.

6. The pre-defined functions l~g and exp10 have been removed; they can be defined in terms
of ln and exp, as described in "Likely Error Messages and Countermeasures".

. '

7. Pascal-2 does not accept the non-standard comment brackets /* and */. The PASMAT
formatter will replace such comment brackets with standard brackets.

8. Pascal-2 does not allow the following substitute characters, which were allowed in some
early versions of Pascal-1:

154

Differences Between Pascal-1 and Pascal-2·

Pascal-1 Symbol Standard Symbol Function

Changes to Extensions

or+­

&

<>
and
or

assignment
"not equal" comparison
logical "and" operator
logical "or" operator

Changes have been made in the implementation of the following extensions.

1. External procedures are handled differently. Pascal-1 external procedures are defined by
a compiler switch and are called· by the external directive. In Pascal-2, the external
directive serves both functions. If the qody of the external procedure.appears in the module,
then it is available for other modules to use (defined externally). If the body does not appear
in the module, the procedure is assumed to be a reference to another module (an external
reference).

2. The fortran directive of Pascal-1 is renamed to the nonpascal directive of Pascal-2.

3. Origin variables can have addresses only in the system space (less than 10008) or in the I/ 0
space (greater than or ~qual to 1600008). (In Pascal--:.1 origin addresses can be anywhere.)

4. Only actual strings are allowed as the file name and default arguments for reset and
rewrite. Pascal-1 accepts character constants (such as 'a'), which it converts to string
constants.

5. The Pascal-2 ref function replaces the Pascal-1 use of·'@' as an address operator.

hnprovements to Implementation

1. Packing of structures is implemented and can result in major space savings in run-time
data. The cost in unpacking code is usually small. Packing is discussed at greater length
in the Programmer's Guide.

2. A record allocated on the heap by new(ptr, tagi, tag2 , •.• , tagn) is now allocated the exact
amount of storage required for the variants specified. This can result in considerably less
heap storage being used. The data must be disposed of by the corresponding form of
dispose, and the record itself may not be assigned as a unit.

3. The standard procedures pack and unpack are now implemented. This change .simplifies
the transport of programs written on other systems, but the use of these procedures is not
recommended in new code. A :for· loop is always more efficient and is usually easier to
understand.

4. The procedures read and write now apply. to all file types.

5. An extension allows the definition of structured constants. This is useful for constant tables
or initialization.

6. A loophole function provides a simple and visible method of violating the usual type
compatibility rules.

7. The %include lexical directive simplifies the use of header files or standard code.

155

Conversion From Pascal-1 to Pascal--2

Changes in Implementation Definitions

1. Sets must have a base type in the subrange of 0 .. 255, or any enumeration type with 256
elements or less. This includes a full set of char. ·

2. The character set in Paseal-2 is 128 characters (7-bit), and the character set in Pascal-1
is 256 characters (8-bit). The difference can cause compile-time range errors on programs
that set the parity bit. One solution is the declaration of a file of 0 .. 255. This file will no
longer be a text file, however, and no references can be made to eoln.

3. ASCII control characters, including ·tabs, are not allowed in string constants. Control
characters may be written to a file with the chr function.

Changes to or·Ciarifications of Standard Pascal

Pascal-2 differs from Pascal-1 in the following·ways because of changes to or clarifications of the
language standard.

1. For loop controlled variables must be simple variables, local to the routine in which the
for loop is defined. In Pascal-1 any variable can be used.

2. The compatibility rules for var parameters adhere to a more restrictive rule called "name ·
compatibility". A variable passed as a var parameter must be declared with the same type
identifier used to declare the parameter. Pascal-1 rules are less restrictive.

3. A full procedure heading is now required for any procedure or function to be passed as
a parameter, reducing the likelihood of type errors. See the Language Specification for
details.

4. Though not yet part of an official standard, the otherwise clause in a case statement
apparently will become a standard extension to Pascal. The otherwise has therefore been
added to Pascal-2 to serve the same function in a case statement as the else clause does
in Pascal-I. Pascal-2 still allows an else clause in the place of an otherwise clause, but

·else may not be allowed in a future release. The PASMAT text formatter can transform
else to otherwise.

5. Line separators are not allowed in strings. The entire text of a string constant must be on
one line. Pascal-1 strings are allowed to span line separations, with a system-dependent
line-separation character(s) inserted in the string. The change helps you find unterminated
strings. ·

6. The standard now specifies that input and output are. defined at the global level if used
as program parameters. Since Pascal-2 ignores program parameters, input and output
are predefined as global variables in every program, even if they are not used. Thus; you
cannot define the identifiers input and output at the global level as in Pascal-1.

7. The ·standard now specifies the "at" .character '@' as an alternate character for the pointer
symbol '~'.

General Procedures and the CONVRS Utility

Your first step in conversion is to install the Pascal-2 library in place of the Pascal-1 library. The
Pascal-2 library contains all of the routines in the Pascal-1 library, plus additional routines used
by Pascal-2. The Pascal-2 library can be used by both compilers.

A utility program, CONVRS, is provided with Paseal-2 releases to aid conversion. CONVRS scans
your program, producing a list of potential problem areas. CONVRS will not detect problems that
will be detected by the Pascal-2 compiler. Most programs can be converted ·as described in the

156

·.'--.../

General Procedures and the CONVRS Utility

following section, "Basic Conversion Techniques". CONVRS also will flag programs that use external
procedures or functions as "external" and programs that use low-level techniques as "low-level". If
your program is so marked, you must use additional conversion techniques described in "Programs
Using External Procedures and Functions" and "Programs Using Low-Level Techniques".

CONVRS will flag the following problems, with an indication of where in the program they occur.

1. Embedded· switches.

2. External routine definitions.

3. In-line code.

4. Use of variant records without tag fields.

5. Use of origin.

The CONVRS command line follows this form:

.R CONVRS
· * output-file = input-fl.le I switch

input-flle: The form of the input file(s) should be identical to that used for a normal Pascal-1
compilation. ·

output-fl.le: This file will contain a list of possible incompatibilities, along with the file name, line
number, and text of the line where the incompatibility was noted. The default extension
for the output file is . CVR.

/switch: CONVRS needs the /E (external) compiler switch if it is required for the Pascal-1
compilation; any other switches will. be ignored.

For example, if.the module is compiled with Pascal-1 as:

.R PASCAL
*PROCS = HEADER,PROCS/X/E

CONVRS uses this command:

.R CONVRS
*PROCS = HEADER,PROCS/E

Basic Conversion Techniques

Programs contained in a single ·source file, using no externally compiled procedures and· using
no extensions such as in-line code, generally require little conversion effort. (Conversion of long -
programs, of course, may be time-consuming.) The main problems will probably arise from the
improved error checking in Pascal-2.

If the program is split into multiple files, you may want to use the %include feature of Pascal-2 to
concatenate the files automatically at compilation. (See the Programmer's Guide for details.)

The conversion procedure follows.

1. Make sure that the program compiles under Pascal-1; double-check that CONVRS did not
flag the program as "external" . or· "low-level" .

2. Change any embedded switches noted by CONVRS to the equivalent Pascal-2 switches.
The following section, "Conversion of Embedded Switches", gives the equivalent Pascal-2
switches.

3. Compile the modified program under Pascal.:__2, using the /list or /errnrs switch.

157

Conversion From Pascal-1 to Pascal-2

4. Referring to the listing and to "Likely Error Messages" described below, modify the program
to eliminate the errors.

5. Repeat 3. and 4. above until the errors disappear.

At this point, you will have a clean compilation of your program. However, Pascal-2's run-time
diagnostics are considerably more detailed than those for Pascal-1 and may detect additional errors.
Apply standard debugging techniques to eliminate these errors.

Two changes in the heap· management may cause the program to fail in unusual ways. Storage
allocated on the heap is initialized to a system-dependent value (currently -1 but subject to change).
If your program. does not initialize a variable, your program may run differently than you expect.

Also, if a heap variable is allocated with new(ptr, tagi, ... , tagn), only the amount of storage required
to hold this exact variant will be allocated. If other variants are used, or if the record is assigned
as a whole, you may get unexpected results at some point apparently unrelated to the assignment.
These actions are illegal in standard Pascal, but there is no diagnostic for them.

Conversion of Embedded Switches

Embedded switches serve similar functions in both compilers, but the format and switch· names
differ. Pascal-1 switches are single characters, followed by "+" or "-" to turn the switch "on" or
"off". Pascal-2 switches are full words. A no in front of the switch name -turns off the switch.
Pascal-2 switches may be abbreviated to 3 characters. The CONVRS program will flag Pascal-1
switches; and you must insert the equivalent switches for Pascal-2. The Pascal-2 compiler will
ignore any Pascal-1 switches left in the code. The Pascal-1 compiler, on the other hand, will accept
(but may misinterpret) Pascal-2 switches. (See the Programmer's Guide for details on switches.)

The following table gives the conversions:

$A Use $arraycheck. Pascal-2 produces additional checks. See "Run-Time Checking" below.

$C No equivalent. Techniques for conversion of in-line code are described in "Programs Using
Low-Level Techniques" below.

$D Use $debug. Note that this implies $1 ist and that the Debugger is somewhat diffe:rent for
Pascal-2. (See the Debugger Guide for details.)

$E No equivalent. Techniques for conversion of external procedures are described in "Programs
Using External Procedures and Functions" below.

$F Use $sirn. Note that the handling of hardware options is different in Pascal-2; check the
Programmer's Guide to determine the proper switches for your hardware configuration.

$L Use $1 ist.

$8 No equivalent. Pascal-2 does not normally produce assembly code, and in an optimizing
· compiler no direct connection exists between the source lines and the code produced. In ·
Pascal-1, $8 is also used to modify the $D debugging. command. Source-line debugging is
always enabled in Pascal-2, so a Pascal-1 program with SD is equivalent to a Pascal-2
program with $debug.

$T Use $stackcheck. Pascal-2 produces additional checks. See "Run-Time Checking" below.

$X Use $double.

158

Basic Conversion Techniques

Run-Time Checking

Pascal-2 supports more kinds of run-time checking than does Pascal-1. In addition to $arraycheck
and $stackcheck, there are $rangecheck (assignment of a value to a subrange) and $pointercheck
(use of a nil pointer). In many cases, th~ code. generated by Pascal-2 with. all checking enabled is
smaller than the code generated by Pascal-1 without checks. You can (and should) leave checking
turned on in most cases. However, $nocheck will generate the shortest and fastest program.

Programs Using External Procedures or Functions

Pascal-2 has a more general method of defining external procedures than does Pascal-1. The
Pascal-1 compiler switch (IE or $E) specifies that all procedures on the main program level are
available to other modules (externally defined). The Pascal-·1 external directive declares that the
module is using an external routine (an external reference).

In Pascal-2, the external directive serves both functions. The external directive is treated in a
manner similar to the forward directive. If the procedure is defined when the external directive is
given, the procedure is available to other modules (externally defined). If the external procedure is
not defined, the procedure is assumed to be a reference to another module (an external reference).

Thus, you can place the declarations for all external procedures in a single header file that can be
used to compile all modules.

For example, a Pascal-1 external procedure is defined by:

{$E+ make the following procedure external}
procedure Proc(Arg: Argtype);

begin
{procedure body}
end;

{$E-}

A Pascal-2 external procedure is defined by:

procedure Proc(Arg: Argtype);
external;

procedure Proc;
begin
{procedure body}

end;

Note that with Pascal-2 you may have external procedures in the main program. You may not need
this feature specifically to convert to Pascal-2, but the new external declaration may simplify some
programs.

Pascal-2 external procedures can be called from Pascal-1 main programs or procedures. However,
they cannot reference global variables or the files input and output unless· the main program is
compiled with Pascal-2.

The "/Pascall" Compiler Switch

The /pascal 1 compiler switch causes the compiler to generate code for external calls, allowing you
to call both Pascal-1 and Pascal-2 routines. If parameters or global variables passed between the
two .systems have different storage allocation, you may have difficulties. All global variables used and
all global variables that textually precede the variables used must have the same storage allocation
in both Pascal-1 and Pascal-2.

159

Conversion From Pascal-1 to Pascal-2

The code generated for external procedure calls with this switch is about twice the size as that
generated without the switch. It is to your advantage to eliminate the /pascal 1 switch. (Even so,
a Pascal-2 program using the /pascal 1 switch will still execute much faster than if the program
remained t~tally in Pascal-1.)

The following is a list of differences in storage allocation.

1. Pascal-1 compilers prior to revision Vl.2H allocate extra memory for text files.

2. Packed structures (other than packed array of char) are allocated differently.

3. An enumeration type with less than 128 members is allocated a single byte of storage in
both systems. An enumeration type with 129 through 256 members (inclusive) is allocated
one byte in Pascal-2 and one word in Pascal-1. Enumeration types with more than 256
members are allocated full words in both systems.

4. Sets are incompatible between the two systems.

Conversion Procedures

The exact procedures depend on the form of the program being converted. The following cases are
of interest.

1. No global variables are used by the external procedures, or all global variables have
compatible storage allocation - and - no incompatible parameter types exist. In this
case, the /pascal 1 switch can be used to convert the program in easy stages.

2. Some variables have incompatible storage allocation, either in the shared global section, or
when passed as parameters. Any portions of the program having these problems must be
converted as a unit.

3. Some of the procedures use low-leve1 techniques. Isolate these procedures arid call them
using the /pascal 1 switch until they can be converted as described in the next sectfon.

The general procedure for conversion is:

1. Convert the main program to· Pascal-2 if at all possible. If not, you can . convert only
procedures that do not have· global references.

2. Convert the external modules one at a time. If possible, use the /pascal1 switch to allow
the conversion of one module at a time, then check each module for errors as it is converted
to Pascal-2. This can considerably simplify the checkout procedure. Don't forget to remove
any dummy main program in external modules to be compiled with Pascal-2. You also
may want to include the $nornain switch in external modules.

3. Convert to the new form of -external definition for external procedures to be converted. It
all procedures are to be converted, you can move. all external definitions into a header file.

4. When all modules have been converted, check the program modules as a whole as described
under "Basic Conversion Techniques" and correct any errors discovered by the improved
Pascal-2 run-time checking.

Programs Using Low-Level Techniques

Pascal-2 has low-level extensions to provide direct interface to an operating system or to machine
resources. Pascal-2 also provides low-level constructs that will be detectable if the program is
transferred to another system ...

Unfortunately, many of the low-level programming techniques used in Pascal-1 code are not directly
detectable by the Pascal-2 compiler. For instance, Pascal-2 treats in-line code as a comment; that

160

·.._

Programs Using Low-Level Techniques

part of the program will be omitted without warning. CONVRS attempts to flag in-line code; at
times, however, CONVRS can only guess at what is goiJ;lg on, and it may flag so~e legitimate
constructs or miss some low-level constructs.

Low-level techniques considered in this section are:

1. In-line assembly code.

2. The use of variant records to do type conversion.

3. Origin variables:

In-line Assembly Code

Here are three basic approaches to conversion of programs using in~ line ·assembly code.

1. Recode the assembly code. This is frequently possible with the low-level extensions of
Pascal-2.

If the in-line code is being used to insert . TITLE or a similar MACRO directive, read the section
in the Programmer's Guide on the run-time environment to see whether you can achieve the same
effect without the code insertions.

2. Code an external routine in assembly to do the function required. This is usually easy- to
do with the PASMAC utility macros provided with Pascal-2. (See the Utilities Guide for
_details.)

3. Leave the procedure using in-line code in Pascal-1, then use the /pascal1 switch in all
Pascal-2 modules that use the procedure. Performance for the entire·· program will be
reduced, but this approach may be the most practical.

Whatever approach is taken, no rote procedure will work You will have to look at the purpose
of the code and decide how to create the same effect using the Pascal-2 tools provided. (See the
Programmer's Guide for details.)

Variants For Type Conversion

Where variant records are used, with or without tag field, to do type conversion, you may have no.
difficulty converting from Pascal-1 to Pascal-2.

The major difficulty, if it appears, will be the difference in field allocation between the two versions
of Pascal. This difference can be remedied only with care and study of the declarations of the record
types. You might use the loophole function instead of this method, as the compiler wiH then check
for size compatibility and the non-standard action will be noted in an obvious way instead of being
buried in standard-appearing code.

Additional difficulties may occur if you assign an absolute address to a pointer that in turn is used
to access memory for some purpose. If the memory being accessed is in the I/O page, the value may
be changed without action on the part of the Pascal-2 program. The Pascal-2 compiler may have
eliminated some references to the locations as unnecessary, since it may preserve a local register
copy of the value. Unexpected results are possible. (This is not a problem with origin variables.)

Solution: Make discrete references through a separate procedure, since the compiler.does not optimize
across procedure boundaries.

161

Conversion From Pascal-1 to Pascal-2

"Origin" Variables

Pascal-2 variables may be specified with origins in the system space (addresses less than 1000B) or in
the I/O page (addresses greater than 1600008). If variables with origins outside that range are being
used for communication with other processes, the code must be changed to use a pointer that has
been set to the address of the variable. This pointer value can be set with the loophole function.

Likely Error Messages and Countermeasur.es

This section lists error messages that you are likely to see when compiling programs that compile
without error messages on Pascal-1. For each message, likely causes are listed, plus solutions. The
errors are listed iri numerical order to make reference easier.

*** 1: Illegal character

A. A substitute character allowed in early versions of Pascal-1. appears.

Solution: Replace it with the appropriate standard symbol.

B. A control character appears in. a string constant.

Solution: Reprogram to use the chr function instead.

*** 17: Block must begin with LABEL,CONST,TYPE,VAR,PROCEDURE,FUNCTION, or BEGIN

A. A fortran procedure or function appears.

Solution: Change it to nonpascal. ..

*** 45: Operand expected

A. This is an "at" character (@) used as an address operator.

Solution: use the ref function instead.

*** 58: Identifier cannot be redefined or defined after use at this level

A. An identifier from an outer level has been used at the current level, then an identifier has
been defined at the local level with the same name.

Solution: Find the earlier identifier (it is almost certainly ·a constant or type) and either
change the use or change the name of one of the identifiers (norm.ally, you'll change the
local identifier). ·

B. The identifier is input or output and is declared at the main program level. Pascal-2
makes. these identifiers pre-defined at the main program level even if they are not used.

Solution: Change the name of the offending identifier.

*** 62: Undefined identifier

A. If this is an exit statement, either change the loop logic to remove the need for the exit,
or replace it with a goto statement to a label beyond the end of the loop. Remember to
declare the label in the declarations for the procedure.

B. If this is the type alfa, which is predefined in Pascal-1, insert the global declaration
alf a = packed array [1 .. 10] . of char;.

C. If this is the Pascal-1 predefined function float, remove it, or define a float function:

function float Ci:integer): re~l;
begin float := I; end;

162

\

Likely Error Messages and Countermeasures

D. .If this is a Pascal-1 predefined function log or exp10, write a functi0n in Pascal to do the
equivalent, using the identities:

log1o(x) = ln(x)/ln(lO) = 0.43429448190325183*ln{x)

expto(x) = exp(x*ln(lO)) = exp(2.30258509299490457*x)

E. An assignment with the Pascal-1 special character '_' is considered to be an undeclared
identifier in Pascal-2, which allows the'_' character in an identifier.

Solution: Change the form of a_ b to a : = b for assignment.

*** 76: Reassignment of FOR-loop control variable not allowed

A. The controlled variable of a for loop is the target of an assignment statement, or is being
passed as a var· parameter. This is not checked in P ascal-1.

Solution: If the assignment is to terminate the loop prematurely, change the loop to a
while or repeat statement. If the assignment is an error, c~rrect it.

*** 89: Too many actual parameters

A. This is a call to a procedure passed as a parameter. In Pascal-1, no parameter specifications
are provided in the declaration of the procedure parameter, so Pascal-2 assumes that this
is a procedure without parameters.

Solution: Specify the parameters in the declaration.

*** 91: Actual ·parameter type doesn't match formal parameter type

A. .If the actual parameter is a string, the formal parameter is not declared packed array
· [1. .n] of char.

Solution: Change the declaration to correspond to the standard rules; Note that if the
original declaration had a lower bound other than 1, some code may have to be changed as
well. · ·

B. If this is a procedural parameter, the parameter declaration must be modified as specified
under the error "Too many actual parameters", above.

*** 95: Illegal comparison of record, array, file, or pointer values

A. The operands being compared are of type array of char, and the standard will only allow
comparison of packed array [1 .. n] of char.

Solution: Change the declarations as appropriate. If the previous declaration did not have
a lower bound of 1, the program code may h~we to be changed as well.

*** 97: Assignment operands are of dfffering or incompatible types

A. You are trying to assign a string to a variable that is not of type packed array [1 .. n]
of· char.

Solution: Fix the declaration to be of the form packed array [1 .. n] of char. If the
· previous declaration did not have a lower bound of 1, the program code may have to be

changed as well.

*** 107: FOR-loop control variable must be declared at this level

A. The Pascal standard now allows only local variables in a for loop.

Solution: Declare a local for control variable.

163

./ '
/ ---/

Conversion From Pascal-1 to Pascal-2

*** 115:
*** 119:

*** 121:

A.

Variables of this type are not allowed in WRITE
Variables of this type are not allowed in READ
Packed array [1 .. n] of characters expected

The variable is not of a string type.

Solution: Change the declaration to the form packed array (1 .. n] of char. If the
previous declaration . did not have a lower bound of l, the program code may have to be
changed as well. Note that single-character literals (such as 'a') are not ·strings.

*** 134: Must assign value before using variable

A. The variable must be assigned a value before being used.

*** 136: Assignment value out of range

k A constant value assigned to a subrange variable is out of the subrange .

. Solution: Correct either the assignment or the declaration of the variable.

*** 140: Files must be passed as VAR parameters

A. Pascal-1 allows files to be passed as value parameters, but actually passes a pointer to the
file, so it is the equivalent of a var parameter. Pascal-2 conforms to the standard by not
allowing files to be passed as value parameters.

Solution: Change the parameter declaration to be a var parameter.

*** 141: Assignment of file variables not allowed

A. Pascal-1 allows the assignment of file variables, but it actually assigns a pointer to the
low-level file control data structure. If this is done to generate a pointer to the low-level file
control structure, the program uses low-level techniques; consult the appropriate section
above. Otherwise, you must decide what is actually being done with this assignment and
reprogram to avoid it. You might, for instance, have to pass the file as a parameter to the
procedures using it.

*** 142: String constants may not include line separator

A. Under the new standard, a string constant may not span line boundaries. In Pascal-1, a
system-dependent line separator character is inserted in the string.

Solution: Change the program to avoid the problem.

*** 143: Set types must have a base in the range 0 .. 255

A.- Pascal-1 limits set types to 64 elements, and the lower bound can be any non-negative
value. Pascal-2 limits sets to base types with ordinal values within the range 0 .. 255.

Solution: Change the program so the base type is within the allowed limits.

*** 145: Non-standard comment form, please use "{" or "(*"

A. Nonstandard comments of the form/* ... */.

Solution: Change to standard comment brackets. The PASMAT formatter will do this for
you automatically.

164

Contents

Copying the Pascal-:-2 Files to the1System Device

Selecting a compiler for your system monitor

Selecting a run-time library . .

Compiling the utility programs

Installing Pascal-2 With Pascal-1

Appendix A - Pascal-2 System Distribution Files

Appendix B - Sample Installation Command File

\

'----"

167

167

168

168

168

169

170

Pascal-2 V2.0/RT-11 Installation

To install Paseal-2, v2p for RT-11 V3 and V4, follow the steps below:

1. Copy all of the Paseal-2 files to the system device (SY:);

2. Select a compiler depending on your system monitor;

3. Select a run-time library depending on your processor hardware options;

4. Compile the Paseal-2 utility programs;

5. Delete files no. longer n~eded (optional).

These steps are described in detail in the following paragraphs, and are illustrated by an example
that can be found in Appendix B of this Installation Guide. At the completion of installation, the
Pascal-2 system will be fully operational as described in the User's Guide.

Copying the Pascal-2 Files to the System Device

Copy all of the distribution files to the system device (SY:) using the PIP program. This will speed
the installation process if there is sufficient disk space available .

. R PIP
SY: = MTO:.* replace MTO: with your distribution medium

. If your system disk is a floppy disk, or is otherwise limited in available space, you should first read
the following sections and select the files that will be necessary for your system. The minimal system
requires one compiler file and one library file. You may wish to build more than one system disk
and, for example, install the compiler, library, and Debugger on one disk and the utility programs
on a second system disk.

After selecting the necessary files, you can exarriine the directory listings supplied with the Pascal-2
system and copy only the required files to your system.

Selecting a compiler for your system monitor

There are two compilers supplied with Pascal-2. Your choice of a compiler depends on the version
of the· RT-11 monitor you will use. There are four possibilities: the Base-Line (BL) monitor, the
Single-Job (SJ) monitor, the Foreground-Background (FB) monitor, and the eXtended-Memory. (XM)
monitor.

If you will be using either the BL or the SJ monitor, choose the compiler called SJ .SAV. If you use
the XM monitor, select the compiler called XM. SAV.

The FB monitor does not leave sufficient memory to run the Pascal-2 compiler. If you are using the
FB monitor, you will need to switch to either the SJ or XM monitors (using the BOOT command)
before compiling a Pascal program. Once compiled, programs may be linked and run under the FB
monitor.

The XM compiler should be chosen over the SJ compiler where possible because it uses the virtual
overlay capability and will give faster compilations.

When you have selected a compiler file, copy it to SY: PASCAL. SAV. This compiler will operate as
described in the User's Guide. You may then delete SJ. SAV and XM. SAV, or you may leave them on
your system disk for use under their respective monitors.

167

Pascal-2 V2.0/RT-ll fustallation

Selecting a run-time library

There are four run-time libraries supplied with Pascal-2, one for each combination of processor
instruction sets. Choose the library. that matches the configuration of the processor that will run
your compiled programs.

The possible configurations are:

• FPP - a processor with the Floating Point Processor instruction set. The FPP is standard
equipment on thePDP-11/60, and optional on all new PDP-ll's and the LSI-11/23. If your
processor includes the FPP, select the LIBFPP. OBJ library.

• FIS - the Floating Instruction Set. The FIS hardware is an option available for the LSI-
11, LSI-11/2, and some older PDP-11 processors. If your processor has FIS, select the
LI BF IS. OBJ library.

• EIS - Extended Instruction Set, for hardware support of multiply, divide, and long shift
instructions: EIS is standard equipment on all new PDP-11 and LSI-11/23 processors, and
an option available for all older LSI-ll's and PDP-ll's. If your processor has neither FPP
nor FIS, but does have EIS, then select the LIBEIS. OBJ library.

• For processors with no extended or floating instructions, select the LIBSIM. OBJ library.
This library will operate on any LSI-11 or PDP-11 regardless of its actual configuration,
but will not take advantage of any optional hardware.

After selecting a library file, copy it to SY: PASCAL :OBJ to be used as described in the User's Guide.
You may then remove the other library files, or leave them on the system for ·use with other
configurations.

Compiling the utility programs

Six utility programs are supplied in source form. Each of the utilities should be compiled following
the procedure in Appendix B. The utility programs will then be available for use as described in the
Utilities Guide. ·

Installing Pascal-2 With Pascal-1

The Pascal-1 system compiler can be renam~d to allow simultaneous use of Pascal-1 and Pascal-2.
Then, the files for both systems can be present on the system device without conflict.

The object library PASCAL. OBJ can.be shared by the two systems; the libraries supplied with Pascal-2
include all of the Pascal-1 routines.

For versions of Pascal-1 prior to revision Vl.2H, a change in the Pascal-2 run-time library may
affect existing Pascal-1 programs: Pascal--:.1 global variables are now initialized to bit patterns of all
ones (minus one) .. Prior to Vl.2H, global variables were not initialized but were often zero. Programs
that have uninitialiZed variables are now more likely to fail. ·This helps to identify latent problems
with uninitialized variables. Pascal-1 programs that worked, but fail when linked with the Pascal-2
libraries, should be carefully examined for variables that are used before acquiring a value.

168

Appendix A - Pascal-2 System Distribution Files

Appendix A - Pascal-2 System Distribution Files

Compilers

SJ . SAV Pascal-2 Compiler for SJ monitor
XM . SAV Pascal-2 Compiler for XM monitor

Object Libraries

LI BFPP . OBJ Library for processors with FPP and EIS
LIBFIS. OBJ Library for processors with FIS and·EIS ·
LIBEIS. OBJ Library for processors with EIS only
LIBS IM. OBJ Library for base-level processors
VIRJOB. OBJ Header module for XM virtual jobs

· Debugger and Profiler Modules

DBRUN . OBJ Debugger root module
DBUSER. OBJ Debugger user load module
DBUG' . OBJ Debugger overlay module
PRFILE. OBJ . Profiler

Utility Programs

PASMA T . PAS Program formatter
PB . PAS Pascal Beautifier
XREF . PAS Cross-referencer
PROCRE. PAS Procedure cross-referencer
PROSE . PAS Text formatter
CONVRS. PAS Pascal-1 conversion aid
ERROR . PAS System Error procedure
STRING. PAS String package

. PASMAC . MAC MACR0-11 interface package

Documentation Files

INTRO . PRS Introduction
USER .PRS User's Guide
GUIDE .PRS Prog.I'.ammer's Guide
PASCAL.PRS Language Specification
DEBUG .PRS Debugger· Manual
UTILIT .PRS Utilities Guide
CONVER.PRS Conversion Guide
INSTAL.PRS Installation Guide
VT100 .PRS VTl 00 header
PRINTE.PRS Line. printer header

Demonstration Programs

HEARTS . PAS Four~ handed· game· of Hearts
LIFE . PAS The game of Life
CHECKR. PAS A Checkers game
PLO .. PAS PL/O - a simple compiler
RANDOM . PAS Random number generator
MAZE . PAS Amazing Demonstration

169

Pascal-2 V2.0/RT-11 Installation

Appendix B - Sample Installation Command File

The following steps illustrate the installation of Pascal-2 from magtape on a processor that includes
the FPP floating point processor. The Pascal-2 compiler for the single job (SJ) monitor is selected.
The commands below will work for both V3 and V4 RT-11 systems ..

.ASSIGN SY: DK:

.R PIP
*SY : = MTO : * . * ---------------­
*PASCAL. OBJ= LIBFPP.OBJ
*PASCAL.SAY= SJ.SAY
*-c

.R PASCAL
*PASMAT
.R LINK
*PASMAT = PASMAT,SY:PASCAL
*-c
.R PASCAL
*PB
.R LINK
*PB = PB,SY:PASCAL
*-c

--- assign SY: as the def a ult device

--- copy all files to the system disk
select the FPP ·run-time library

select the SJ compiler

----- Build the utility programs

-~-- Build the PASMAT formatter

-------- Build the PB formatter

. R PASCAL -- -- --------------------. ---,-----------. Build the XREF cross-referencer
*XREF \:;,,_,,
.R LINK

. * XREF = XREF I SY : p AS CAL
*-c
.R PASCAL
*PROCREF

-------- - ----- ---------Build the PROCREF cross-referencer

.R LINK
*PROCREF = PROCREF,SY:PASCAL
*-c
.R PASCAL
*PROSE

- ------------------------- --~------------------ Build the PROSE text formatter

.R LINK
*PROSE= PROSE,SY:PASCAL
*-c
. R PASCAL ----------------------------- Build the CONVRS Pascal-1 conversion aid
*CDNVRS
. R LINK
*CONVRS = CONVRS,SY:PASCAL
*-c

. R PIP ---------------- ------·-------- Clean up the system disk (optional)
*SJ. SAV, XM. SAV /D -----------------Remove the compilers, leaving PASCAL. SAV

--- ________________ c__ ___ --- Delete the libraries, leaving PASCAL. OBJ
*LIBFPP.OBJ,LIBFIS.OBJ,LIBEIS.OBJ,LIBSIM.OBJ/D .

·-- - - ----- Delete the utl.lity compilation files
*PASMAT.OBJ,PB.OBJ,XREF.OBJ,PROCREF.OBJ,PROSE.OBJ,CONVRS.OBJ/D
*-c

170

