cc-68-44

DECKEDIT Routine for
CDC 3300|0OS-3, Version 2.0

by G. A. Bachelor

September, 1968

COMPUTER CENTER

Oregon State University
Corvallis, Oregon 97331

DECKEDIT Routine for CDC 3300/0S-3

4L WU 220U 7 ==

Version 2.0
by G. A. Bachelor

Report #cc-68-44

September, 1968

Computer Center
Oregon State University
Corvallis, Oregon 97331

DECKEDIT Routine, Version 2.0 (For CDC 3300/0S-3)

DECKEDIT is a routine which runs under 0S-3. It is stored
in a public file under the name *DECKEDIT, and may be used by
any 0S-3 user. Its purpose is to prepare and update (revise) a
"library" file, which contains a set of subprograms constituting a
single program system. DECKEDIT was written to help manage the
set of binary decks constituting OSCAR, and could be useful to

other persons or groups who are developing program systems.

A library file (as seen by DECKEDIT) consists of two parts.
The first part contains one or more relocatable subprograms, in
binary card image form. ©No two subprograms may have the same name.
A file mark terminates this part, which is in the proper form for
loading by the standard loader.

The second part of the file contains a directory. Each
entry in this directory is a four word BCD record, in which the
first two words contain the name of one of the subprograms in
the first part. The name consists of one to eight BCD characters,
left justified, blank filled on the right. The third and fourth
words of the entry contain the date (six BCD characters, left
justified) on which the subprogram was placed in the file. The
last twelve bits of the fourth word are of no significance in the
library file. This field is used as a tag during the processing
of a library file. There is one directory entry for each subprogram
in the library. The directory entries are usually, but not
necessarily, in the same order as the order of the subprograms
in part one. The directory is terminated by a file mark. (The
only purpose of the directory is to remember the dates associated

with the subprograms.)

The DECKEDIT routine can be used to (1) brepare a new library
file, (2) add new subprograms to a library, (3) delete subprograms
from a library, (4) punch copies of subprograms in a library, or

(5) change the order of subprograms in a library.

The DECKEDIT routine goes through the following steps:
1. Reads parameters from the standard input unit (lun 60), to

specify the actions desired.

2. Equips library units and punch unit, if necessary. Also removes
protection from "new" library unit and from punch unit.
Decides whether to write the new library on a scratch unit

or directly on the new library unit itself.

3. If there are units containing new subprograms, equips them
one at a time and reads from them. Subprograms may be copied
to the output, punched, held in memory for later writing, or
deleted. If two or more new subprograms have the same name,
only the first one is copied to the new library file. The

others are deleted.

4. If there is an "old" library file, reads subprograms from it.
Subprograms may be copied to the output, punéhed, held in
memory, or deleted. Subprograms read earlier and held in
memory may be copied to the output at certain points. Any
subprograms whose names are the same as new ones read in step
(3) are deleted.

5. If the "old" library has a directory, reads it and obtains
dates from it.

6. If the output has been going to a scratéh unit, this output is
read in and written on the new library unit. (This is done when

the 0ld and new libraries are the same unit.)

7. A directory is written on the new library file and then the
directory is printed on the standard output (lun 61), in a

more readable form.

DECKEDIT also prints a "log" as it goes along. This consists’
of a list of the names of subprograms read, with an "N" or "O"
indicating whether the subprogram is "new" or "0ld", and one of
the notations: (COPIED), if the subprogram was copied to the new

library file; (HELD), if it was held in memory; (INSRTED), when a
"held" subprogram was written on the new library; or (DELETED),

if the subprogram was deleted. The notations (COPIED) and (HELD)
are followed by the word PNCH if the subprogram was also written

on the punch unit.

Limitations: There is, of course, a limit on memory space for

subprograms being held in memory. This limit is about 30,000
words, or 60 file blocks. (Records are stored in memory in
variable length form, with one extra word per record to specify
the length.) When the o0ld and new library units are the same,
enough scratch file space should be allowed for an extra copy of

the library.

There is a 1 t of 128 sub
DECKEDIT uses to keep track of what needs to be done with the
various subprograms. If this table becomes full while DECKEDIT is
reading subprograms, each subprogram whose name is not already

in the table will simply be copied to the new library file, and
its name will be omitted from the directory. Also, DECKEDIT will
print the message "TABLE OVERFLOW" to let the user know £hat tpis

condition occurred.

DECKEDIT uses logical units in the range 53 to 59, except unit

56, for handling files. Hence, the user should not use these units.

Parameters.

If DECKEDIT is being used in a batch job; the parameters are key
punched (by the user) on one or more cards. The first card must
have a 7,8 punch in column 1, then *DECKEDIT, a comma, and the
parameters. If more than one card is needed, following cards
simply contain additional parameters (no 7,8 punch). The para-
meters are free field; up to 72 columns may be used, and end of
card is equivalent to a space. The parameters are separated by

spaces, and terminated by a dollar sign ($).

If DECKEDIT is being used at a teletype, the user types a
control statement, starting with *DECKEDIT, then a comma, and the
parameters. The parameters may be continued to additional lines,
if needed. Each line is ended by [return]. DECKEDIT outputs
[line feed]. To end the parameters, the user types a dollar sign
and [return].

DECKEDIT recognizes six kinds of parameters, of which the
only required parameter is the library (LIB) specification. The
forms and meanings of the parameters are described below. The
control words (LIB,DELETE,etc.) may be spelled in any way, so
long as the first letter is correct. 1In fact, a single letter is
okay (L, D,etc.). The notation (lun or name) indicates that one
- may épecify either a logical unit number in the range 0 to 99,
or the name of a saved file. The notation (namel,name2,...)
indicates a list of one or more names of subprograms, separated
by commas. Parentheses ()}, cdmmas, slashes (/), and equal signs
(=) should be typed as shown in the forms below. |

l. Specification of library units.

LIB(lun or name) Specifies old and new library units
(same unit).
LIB(lunl or namel, lun2 or name2) Specifies old library
(lunl or namel) and new library

(1un2 or name?2)
LIB(lun or name/NEW) Specifies new library unit, no old
library.

The LIB parameter must be given, in one of the three forms shown
above. Both the new library and the old library (if any) must be
files. If the new library is protected, DECKEDIT will remove
file protection so that it can write on it. (Exception: If the
o0ld and new library units are the same, and there are no new sub-
programs, no deletions, and no insertions, then it is not necessary
to write a new library, and protection is not removed.) If the
new library unit is a logical unit number that is not equipped,

DECKEDIT will equip the unit as a file. If the new library unit

5.

is a name and there is no saved file by that name, DECKEDIT will
Create a saved file with the specified name. The old library

(if any) must ex1st DECKEDIT will not create an old library. If
the old and new libraries are the same unit, DECKEDIT writes its
output on a scratch file until it has finished reading the old
library; then this output is copied to the library unit. Library

units are rewound before and after using them.

2. Specification of units containing new subprograms.

NEW(lunl or namel, lun 2 or name2, ...) Specifies units for
new subprograms.

NEW (1lun or name/PUNCH, ...) Same, but punch copies of all
subprograms on the new unit.

The NEW parameter is used to specify a list of one or more logical
unit numbers or saved files from which DECKEDIT is to read new
subprograms. These subprograms may be used to prepare a new library'
file, or to revise an existing library. "New" units must be either
files, or the card reader. (If a set of decks is to be read

from the card reader, it must be terminated by an end of file
card). Each new unit is rewound (unless it is a card reader), and
subprograms are read from it until a file mark or end of data

is encountered.

The PUNCH option may be used on some new units, omitted on
others. 1If there are too many new units to fit their names on
one card or line, simply end the parameter with the right paren-

thesis, and start another NEW parameter on the next line or card.

3. Specification of subprograms to be deleted.

DELETE(namel, name2, ...) Delete the specified subprograms.
More than one DELETE parameter may be used, if needed. A DELETE
parameter specifies a list of one or more subprogram names. Sub-
programs with the names given are omitted from the new library.
Note: If DECKEDIT encounters more than one subprogram with a

particular name, only the first is written on the new library.

6.

Thus, a new subprogram will automatically cause deletion of an old
subprogram with the same name. The DELETE parameter deletes all

subprograms (including new ones) with the specified nameés.

4. Specification of punch unit, and subprograms to be punched.

PUNCH= lun or name(namel, name2, ...) Specifies punch unit
(lun or name), and names of subprograms
to be punched (namel, name2, ...).

PUNCH (namel, name2, ...) Specifies subprograms to be punched.
Unit 62 will be used unless a unit is
specified in some other PUNCH parameter.

PUNCH=1lun or name Specifies punch unit.

PUNCH parameters specify the unit on which to punch subprograms, or
the names of subprograms to be punched, or both, as shown above.

. It may be

a file or a card punch. If it is a file, DECKEDIT will remove
protection from it. If the punch unit is a logical unit number'
that is not equipped, DECKEDIT will equip it as a file (not a punch) .
If the punch unit is a name and there is no saved file by that

name, DECKEDIT will create a saved file with the specified name.

Subprograms to be punched may be specified by name in the
PUNCH parameter, or one can use the PUNCH option in the NEW para-

meter to cause all subprograms on a new unit to be punched.

Note: DECKEDIT is frequently used just to punch copies of
certain subprograms in a library. In this case, only the LIB and
PUNCH parameters are used, and DECKEDIT doesn't bother to write a
new library. Also, note that "PUNCH" is a bit of a misndmer, since

"punched" output can go into a file instead of to a punch.

5. Specification of insertions.

INSERT (namel,name2) Insert subprogram (name 1) in front of
subprogram (name2).

INSERT (name) Put subprogram (name) at end of library.
INSERT parameters are used to specify rearrangements of the order
of subprograms in a library. In the two-name form of the parameters,
the first subprogram (either a new one or one in the old library)

is held in memory when it is read. Later, when the subprogram

with the second name is found (in the old library), the first one
is written on the new library. If several subprograms have been
held for insertion in front of a particular subprogram, they are
all written on the new library, in the order in which their

names have occurred in the parameters. Then, the subprogram in
the old library is processed; it may be held, deleted, or copied
to the new library. If the subprogram with the second name in an
INSERT parameter occurs before the first named one, or if there
is no subprogram with the second name, then the first subprogram
will be held until the end of the old library and then written on
~ the new library. This is also what happens to the subprogram named

in the single-name form of INSERT parameter.

Note: By use of INSERT parameters and a little planning, one
can rearrange the subprograms in a library into any desired order,
subject only to the restriction that all the Subprograms to be
held will fit in the available memory. (See the earlier paragraph
on “limitations".) For example, if the order of subprograms in
a library is D, F, A, C, B, E, these can be rearranged into the
order A, B, C, D, E, F by the parameters I(C,E) I(D,E) I(F).

6. The "hold" parameter.

HOLD |
If the parameter HOLD occurs, then all subprograms read from new
units are held in memory, to be inserted in front of old subprograms
by the same names (and the o0ld subprograms are, of course, deleted).
The effect is to replace old subprograms by new ones with the same
names and keep the order of subprograms unchanged. (If HOLD is
not used, new subprograms are placed at the beginning of the new
library.) ©New subprograms which are mentioned as the first name
in a 2-name INSERT parameter are handled according to the INSERT
convention. In other words, HOLD is equivalent to saying INSERT
(name,name) for all new subprograms not specifically mentioned. (In

fact, this is the way the HOLD parameter is implemented.)

8.

($). Be sure to punch or type a $ to terminate the parameters.
The parameters may be given in any order, and should be separated

by spaces.

Note 1l: Earlier versions of DECKEDIT insisted that a library file
have a directory at the end of it. Version 2.0 is not so fussy;
any file of binary subprograms can be used as a library file.

New libraries written by DECKEDIT will have the directory at the
end. A loader library cannot be used as a library for DECKEDIT
because it has a loader directory at the beginning (a quite differ-
ent sort of directory from DECKEDIT's). One can equip a loader
library, search forward past file mark (SFPFM), then copy the rest
of it to another unit. This unit can then be used as a library

for DECKEDIT.

Note 2: EXS cards and RADAR symbol cards may be included in (or
at the end of) binary decks. DECKEDIT considers a subprogram
deck to start with an IDC card and to continue until the next IDC

card, or file mark, or end of data.

Note 3: 1If a user of DECKEDIT has a (private) file called

DIRECTRY, DECKEDIT will equip it and write information on it,

giving the names of old and new library units and punch unit, if
any. (It does not do this with names of new program units.) This
information is in the form required by the DEFINE and DIRECT
routines (see separate description). DECKEDIT doesn't try very hard
to do this; if there is no file called DIRECTRY, or if there is

one but it is busy or protected, DECKEDIT simply drops the idea

and goes on with its main job. The purpose of this feature is

to aid those users who are using DEFINE and DIRECT to help main-

tain a list of names of saved files.

Note 4: Earlier versions of DECKEDIT had a limit of 4 units for
new subprograms. This restriction has been removed in Version 2.0.
Each new unit specification requires three words of memory, and

there is a lot of memory space available.

Use of DECKEDIT in batch jobs.

(1) Given a set of binary decks of subprograms, to prepare a
new library file of them, to be called PROGLIB.
3J0B,77777,ABC, SAVE FOR ABC
g*DECKEDIT,L(PROGLIB/N) N(60) $
[Binary decks of subprograms to be placed in library.]
gg [end of file card]
gLOGOFF

(2) Revise a library (PROGLIB), with new subprograms on binary

decks. Also load and run the new program library.

- 4J0B,77777,ABC,SAVE FOR ABC
g*DECKEDIT,L(PROGLIB) N(60) $
[Binary decks of new subprograms.]
gg [end of file]
gEQUIP,40=PROGLIB
gLOAD,4O
MAP
RUN
[data for program]
gLOGOFF

&
(3) Assemble and punch some new subprograms, use them together

with some binary decks to update a library (PROGLIB), putting the

‘new library on a scratch unit, and load and run it.

gJOB,77777,ABC,SAVE FOR ABC
JLABEL, 62/ABC
gCOMPASS,L,R,X,P
[source decks for assembly]
FINIS
§*DECKEDIT,L (PROGLIB,44) N(56,60) $
[binary decks]
43

gLOAD,44

10.

MAP

RUN
[data]

gLOGOFF

(4) Update a library (PROGLIB), creating and saving a new library
file, to be called NEWPLIB. New subprograms are on saved files
named NEWl and NEW3. All subprograms on NEWl are to be punched.
Also punch a copy of subprogram named PROG3, delete subprograms
named PROG6 and PROG8 (all on PROGLIB), and insert subprogram
- named PROG5 in front of subprogram named PROGX, in preparing new
library. (Note: PROGLIB remains unchanged.)

gJOB,77777,ABC,SAVE FOR ABC

JLABEL, 62/ABC

/
4*DECKEDIT,L (PROGLIB,}

I (PROG5,PROGX) P (PROG3
gLOGOFF

Use of DECKEDIT from a teletype.

In using DECKEDIT from a teletype, one would do the same kinds
of things as in the batch jobs above, except that binary decks
would not be read from unit 60 (the teletype). One would type
control statements such as:

(1) i*DECKEDIT,L(PROGLIB,44) N(56) $ [return]
(2) i*DECKEDIT,L(PROGLIB,NEWPLIB) N (NEWL/P,NEW3) [return]

I (PROG5,PROGX) P(PROG3) D(PROG6,PROG8) $ [return]
The user ends each line with the return key. DECKEDIT (or 0S-3)
supplies the line feed. After reading a line with a dollar sign,
DECKEDIT goes to work, It first prints a heading, then begins
printing the log and directory, as described earlier. If the tele-
type user does not wish to have all of this printed out, he can use
the "break" key to stop the output, then type the control statement
#MI [return]. DECKEDIT will finish its job without printing anything

11.

except a couple of blank lines, or possibly an error message.
When done, DECKEDIT puts the user back into 0S-3 control mode
(# is printed out).

If one makes a mistake while typing the parameters for DECKEDIT,
one can use the reverse slant (\) to cancel preceding characters.
However, one cannot canCel errors in a line which has already been
ended by "return"”. Also, one must spell *DECKEDIT correctly. If
an error in either of these situations is made, one must type

[control A}, then start over.

DECKEDIT error messages.

T

There is one situation in which DECKEDIT prints an "informative”
message. This is TABLE OVERFLOW, which is printed‘if DECKEDIT
encounters more than 128 subprogramAnames. The occurrence of this
message means that the directory will not contain the names of

all the subprograms.

All other errors detected by DECKEDIT cause an abort; DECKEDIT
prints the message DECKEDIT ABORT , followed by one of the messages
listed below. These messages should be self-explanatory, for the
most part. "PARAMETER ERROR" occurs if one of the parameters does
not start with D, H,.I, L, N, or P; if a parameter has an improper
form; or if there is no LIB parameter. "CANNOT RFP" means that
DECKEDIT cannot remove file protection from the unit mentioned.
"INPUT UNIT" refers to one of the units containing new subprograms.
"SCRTCH UNIT" refers to the scratch file on which DECKEDIT writes
the library temporarily, when the old and new libraries are the
same unit. There should not be any BCD cards on this unit since
DECKEDIT writes only binary records on it. "*SYSTEM ERROR*" should
-not occur; it indicates a malfunction either in DECKEDIT or in
0S-3. The error messages are listed in approximately the order in
which the conditions are likely to be encountered. If more than

one of these error conditions is present, the first one discovered

causes an abort, with the corresponding error message.

PARAMETER ERROR

NEW LIB IS BUSY

NEW LIB NOT A FILE

CANNOT RFP NEW LIB

OLD LIB IS BUSY

OLD LIB DOES NOT EXIST
OLD LIB NOT A FILE

PUNCH UNIT IS BUSY

CANNOT RFP PUNCH UNIT
INPUT UNIT IS BUSY

INPUT UNIT DOES NOT EXIST
INPUT UNIT NOT A FILE OR CARD RDR
BCD CARD ON INPUT UNIT
BCD CARD ON OLD LIB
MEMORY FULL

BCD CARD ON SCRTCH UNIT
SYSTEM ERROR

12.

Appendix

List of DECKEDIT parameters for handy reference.

LIB(lun or name) 0l1d and new libs (same).
LIB(lunl or namel, lun2 or name2) 0ld and new libs.
LIB(lun or name/NEW) | New lib (no old 1lib).
NEW(lunl or namel, lun2, or name2,...) Units for new subprograms.
NEW(iun or name/PUNCH,...) Same, but punch copies.
DELETE (namel, name2,...), Delete specified subprograms.
PUNCH=lun or name (namel, name2, ...) Specifies punch unit and
‘ subprograms to be punched.
PUNCH (namel,name2, ...) Punch specified subprograms.
PUNCH=lun or name _ ~ Specifies punch unit.
INSERT (namel, name2) , ‘Insert subprogram (namel) in
front of subprogram (nameZ).
INSERT (name) , Put subprogram (name) at
end of 1lib.

HOLD ‘ ’ Hold all new subprograms in
: memory, insert them in 1lib
at places where old subprograms
by same names are.

$ End of parameters.

	0001
	001
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13

