cc-69-1

DEFINE and DIRECT
(for CDC 3300/0S-3)

by
Gilbert A. Bachelor

COMPUTER CENTER

Oregon State University
Corvallis, Oregon 97331

DEFINE and DIRECT

(for CDC 3300/0S-3)

cc-69-1

by

Gilbert A. Bachelor

Computer Center
Oregon State University
Corvallis, Oregon 97330

DEFINE and DIRECT
(for CDC-3300/05-3)

DEFINE and DIRECT are two programs that are stored in
public files (under the names *DEFINE and *DIRECT), which
are avalilable to all users of 0S-3. DEFINE is called by a
control statement of the form [*DEFINE,arguments]. It can
be used to equip and unequip units and files, to protect and
unprotect files, to save and delete files, and to change the
names of files. At the option of the user, DEFINE and DIRECT
can be used to maintain a (private) file containing the
names of other saved files belonging to the user. We shall
first describe DEFINE, then DIRECT and the directory feature.

The *DEFINE statement.
The things which are done by a *DEFINE statement can be

done by one or more of the 0S-3 control statements EQUIP,
UNEQUIP, FP, RFP, SAVE, and DELETE. These statements allow
only one argument, but *DEFINE allows many arguments in one
statement. Thus, one *DEFINE statement can do the work of many
other statements. For example:

*DEFINE,10,5=LP, 75=DATA3,56=BINDECKS, 25+,40/,2~
This statement illustrates some of the things that a*DEFINE
statement can do. In order, it equips logical unit 10 as a
file, equips 5 as a line printer, equips 75 to a saved file
DATA3, saves unit 56 under the name BINDECK, protects unit 25,
unequips unit 40, and removes protection from unit 2. It
would take at least seven 0S-3 control statements to do all
of this, and possibly more. If units 10, 5, or 75 were
already equipped, one would first have to UNEQUIP them; DEFINE
does this automatically. Also, in 75=DATA3, if there is no
saved file with the name DATA3, *DEFINE will equip 75 as a
file and save it under the name DATA3, And, if unit 40 were
a non-saved, protected file, one would first to remove pro-
tection (RFP) before unequipping it; again, *DEFINE does this

for the user.

Here is another example:

*DEFINE,12=95,ZAP/,15=QUORK?, 1=PVZ-,PRG/*PROG
This *DEFINE statement equips unit 12 to unit 95 (unequipping
12 first, if necessary), deletes a saved file name ZAP,
equips 15 to a saved file QUORK only if it exists, equips 1
to saved file PVZ and removes protection from it, and changes
the name of saved file PRG to *PROG.

These two examples illustrate the notations used in the
*DEFINE statement. In general, arguments are of five basic
forms, they may be followed by one of 5 "suffix" control
characters, and they are separated by commas. The suffix
control characters may modify the meaning of the basic argu-
ment, or they may simply specify an additional action to be
performed. The suffixes and their general meanings are:

+ Protect a file.

- Remove protection.

$ Save file under specified name.

? Equip file only if it exists; or, an inquiry:

does the file exist? |

/ Unequip, or delete.

The five basic forms of arguments are listed in the
table below, which also shows which suffixes are allowed
with each form of argument. An "X" means that the suffix
is allowed. (lun) and (lunl) represent logical unit numbers
in the range 0 to 99. (lun2) is a logical unit number in
the range 0 to 100. (name), (namel), and (name2) represent
names consisting of one or more letters, digits, and/or
asterisks, in which the first character is a letter or an
asterisk. These names may be hardware types (LP, PUN, etc.),
or they may be names of saved files.

Suffixes allowed

Form of argument + -S 2 /
lun X X X
name X X X X
lunl=lun2 X X
lun=name X XX X
namel/name?2 X X

Each form of argument may be used without a suffix, or
with one of the suffixes indicated above. In all, there are
20 combinations allowed. We shall list these below, and des-
cribe the meaning of each. First, we give a list of error
messages which DEFINE may print out. The numbers in the
descriptions of the arguments refer to the numbers of the

error messages in the following table.

Error messages.
1. *SYSTEM ERROR¥* This message means that an error has

occurred in 0S-3 or in DEFINE; it may be due to either
a hardware or a software malfunction.

2. ILLEGAL ARGUMENT An argument has an improper form.

The argument is ignored, and DEFINE goes on to process
the next one (if any).

3. (lun) IS NOT DEFINED The specified (lun) is not equipped.

4, (name) IS BUSY The file (name) is being used by some-
one else.

5. NOT ENOUGH FILE SPACE FOR (name) Either there is not
enough saved file space available to save the file; or,
there is not enough scratch file space available to
delete the file.

6. (name) IS NOT A FILE (name) is not a saved file. This
message occurs if one tries to protect, or to delete,

a "file", using a "hardware" name.

7. (lun) IS NOT A FILE This message occurs if one tries
to save, or to protect, a unit that is not a file.

8. (name) IS PUBLIC This message occurs if one tries to
delete, or to remove protection from, a public file that
belongs to someone else.

9. NAME NEEDED WITH (lun) The specified (lun) is a saved

file; one must specify its name in order to remove

protection.
10. (name) DOES NOT EXIST There is no saved file
with the specified name.
11. (lun) IS ALREADY SAVED The {(lun) is already a saved

file and cannot be saved under another name.

12. (name) ALREADY EXISTS There is already a saved file
with the specified name; one cannot save another file
under the same name.

13. ILLEGAL NAME: (name) The specified (name) is a
hardware type; it is illegal to save a file under

such a name.

Note: The following names are hardware types:

FILE, LP, MT, NULL, PLOT, PR, PUN, RAF.
There are no hardware names for "card reader”, "teletype®,
or "display console". These are "standard input devices",

and whichever one of these is available to the user is al-

ways equipped as logical unit 100.

Arguments and their meanings.

(lun) Unequip (lun) and equip it as an empty scratch
file. Errors: none.

(lun)+ Protect (lun). Errors: 3, 7.

(1un) - Remove protection from (lun). Errors: 3, 9.

(lun)/ Unequip (lun), even if it is a protected, non-

saved file. Errors: none.

(name) If there is no saved file with the specified name,
create an empty saved file with this name. Errors:
4, 5.

(name) + Protect the saved file with the specified name.

Errors: 4, 6, 10.

(name) - Remove protection from the specified saved file.
Errors: 4, 8, 10.
(name) ? Does there exist a saved file with the specified

name? If not, print an error message; otherwise,
no message. Errors: 4, 10.

(name) / Delete the saved file with the specified name,
whether or not it is protected. Errors: 4, 5, 6,
8, 10.

(lunl)=(lun2) Unequip (lunl) and equip it to (lun2).

Errors: 3.

(lunl)=(1lun2)+

(lunl)=(1lun?) -

(1lun)=(name)

(lun)=(name) +

(1lun)=(name) -

(lun)=(name) $

(namel) / (name2)

{(namel) / (name?2)+

(namel) / (name2) -

Unequip (lunl), equip it to (lun2), and
protect it. Errors: 3, 7.

Unequip (lunl), equip it to (lun2), and

remove protection. Errors: 3, 9.

Unequip (lun) and equip it to (name). If
(name) is not a hardware type and there is
no saved file with the specified name,
create an empty saved file with this name,
eguipped to (lun). Errors: 4, 5.

Same as (lun)=(name), but protect the file
after equipping it to (lun). Errors: 4, 5,
7.

Same as (lun)=(name), but remove protection
after equipping. Errors: 4, 5, 8.

Save (lun) under the specified name. Errors:
3, 5, 7, 11, 12, 13.

do not create a saved file if none exists
under this name. Errors: 4, 10.

Change the name of file named (namel), soO
it has (name2). Errors: 4, 5, 6, 8, 10,

12, 13.

Change name of file (namel) to (name2), and
protect it. Errors: 4, 5, 6, 8, 10, 12, 13.
Change name of file (namel) to (name2), and
remove protection. Errors: 4, 5, 6, 8, 10,
12, 13.

A *DEFINE statement may have several arguments. If an

error occurs in one of them, an error message is printed and

DEFINE goes to process the other arguments. There may be

several error messages from one *DEFINE statement.

Usage of *DEFINE statements.

DEFINE may be used in any of the three modes of 0S-3:

1. Batch: To use DEFINE in a batch job, punch a 7 and 8

in column 1, then *DEFINE, a comma, and the arguments. All
of the characters needed are available on the key punch ex-
cept the question mark. To represent a question mark, punch
0,7,8 in a single column. (This will print on the line
printer as an "and" symbol/A.) The first 72 columns of the
card may be used.

2. Teletype: Make sure you are in control mode (# printed
out). Then type *DEFINE, a comma, the arguments, then press
the RETURN key. Typing errors may be corrected by using the
reverse slant (\), except that *DEFINE must be spelled
correctly. A *DEFINE statement at a teletype should not be
more than 80 characters long.

3. Display console: Make sure you are in control mode

(# in upper left corner). Then type *DEFINE, a comma, the
arguments, then press the SEND key. Use the "and" symbol
The *DEFINE statement

A

! 4
(A} in place of

a gu i
should not be more than 52 characters long. If no errors
occur, DEFINE will blank the 5creen (# in corner) when
finished. If there are errors, an error message will appear
on the screen. The user should read the message, then press
CLEAR and SEND (in this order). If there are more errors,
another error message will appear. Repeat this procedure

until the screen blanks.

A *DEFINE statement calls a program (DEFINE); hence,
it is not possible to resume execution of another program
that has been interrupted. One should therefore use *DEFINE

statements only "between" other programs.

DIRECT and the directory feature.

As mentioned earlier, one can use DEFINE and DIRECT to

maintain a saved file that contains the names of other saved

files. To use this feature, one must have a saved file named

DIRECTRY. One can create such a file by the statement:
*DEFINE,DIRECTRY

DEFINE will create a saved file named DIRECTRY and write a
record on it containing the name DIRECTRY. Subsequently,
whenever one uses a *DEFINE statement that refers to saved
files, DEFINE will write information in the user's DIRECTRY
file, indicating the names of saved files that exist or
that do not exist in the 0S-3 file system. DEFINE doesn't
try very hard to do this; if the user does not have a file
named DIRECTRY, or if his DIRECTRY is busy or protected,
DEFINE drops the idea.

Some of the software available to 0S-3 users will also
write information in a user's DIRECTRY file if he has one.
DECKEDIT (see separate publication) does this. The new
version of EDIT will also do this. However, as of this
writing, the 0S-3 control statements (such as SAVE, DELETE,
EQUIP, DESTROY) do not update a user's DIRECTRY, and there
are no current plans to have them do this. Hence, if one

oy e e v g ey 7

uses 0S-3 control statements SAVE, DELETE, O DESTROY to
save or to delete files, one should then use a *DEFINE
statement to get the information entered in his DIRECTRY.
To do this, use a statement such as:

*DEFINE,ABC?,*QZORK? ,D143A?

Using the question marks after the names causes DEFINE to

try to discover whether the files exist or not. If they do,'

DEFINE writes information to this effect in the user's
DIRECTRY. If a file does not exist, DEFINE prints an error
message (such as *QZORK DOES NOT EXIST) and writes infor-
mation in the user's DIRECTRY, indicating that this file
does not exist.

The DIRECT program has two basic purposes: (1) to
process the information in the user's DIRECTRY, and (2) to
print a list of file names for the user. DIRECT reads the
user's DIRECTRY file and and constructs a table of file
names, entering or removing names according to information
written by DEFINE, DECKEDIT, and EDIT. Then it writes this
table back out on the user's DIRECTRY file. Finally, DIRECT

prints a list of the file names, together with the most

recent date and time that each file was referenced by one
of the programs mentioned above. The DIRECT program is
called by a control statement of one of the two forms shown
below:
*DIRECT Prints directory on unit 61.
*DIRECT, (lun) Prints directory on the specified
logical unit (0 to 100).

DIRECT may be used in a batch job, or from a teletype
or display console. If it is used at a display console, and
the output unit is the display console itself, DIRECT will
display the list of file names, up to 19 of them at a time.
When the user presses SEND, he will get some more names, if
there are any more.

By the time DIRECT begins to print the directory, it
has already done all of its essential work. So, if a user
stops DIRECT after it starts printing, nothing will be lost
except the output to the user's teletype or display console.

If one uses *DEFINE to equip public files that belong
to someone else, DEFINE will enter the names of such files
in the user's DIRECTRY, since DEFINE does not "know" that
the files don't belong to the user. To remove such names
from a DIRECTRY, use a *DEFINE statement, attempting to
remove protection from them. For example:

*DEFINE, *LIB-
This causes DEFINE to attempt to remove protection from the
file. DEFINE "discovers" that it cannot do so, because the
file is public. DEFINE will then write an error message
(such as *LIB IS PUBLIC) and also write information in the

user's DIRECTRY to cause the name to be removed.

Error messages from DIRECT.

There are three different error messages that one may
get when calling *DIRECT.
DIRECTRY DOES NOT EXIST means that the user does not
have a file named DIRECTRY.
DIRECTRY IS EMPTY means that there are no file names
in the user's DIRECTRY.

DIRECTRY IS BUSY means that someone else is using
the user's DIRECTRY (and, of course;

the same job/user number).

Format of information in DIRECTRY.

This section describes the format of the information
that is written in a user's DIRECTRY. It is intended for
the use of those who may wish to code their own programs
to maintain DIRECTRY's, and persons who only wish to use
DEFINE and DIRECT need not be concerned with this section.

The information in a DIRECTRY consists of a sequence of
BCD records, each of them 4 words or longer. There should
not be any file marks in the DIRECTRY. This makes it pos-
sible for a program (such as DEFINE) to equip the user's
DIRECTRY, "search forward past file mark" to get to the
end of the file, then write one or more records on the end
of the file. The program which is updating a DIRECTRY
should unequip it when finished.

All records written in a DIRECTRY contain a date and
time in the first two words. The date is in the first word,
obtained from register 378, and the second word contains
the time, from register 228. The rest of the record con-
tains one or more file names to be entered or removed. If
a name is to be entered, one simply writes two words con-
taining the name. (Both words must be present, even if the
second one is all blanks.) If a name is to be removed,
three words are used; the first word contains +0, and the
next two words contain the name to be removed. (This con-
vention relies on the fact that a valid 0S-3 file name can-
not have zeros for its first four characters.) Several
names may be entered and/or removed with one record. Here

are some examples:

ldate | time | PROG | RAM | Enters name PROGRAM in
DIRECTRY.

10.

ldate Ttime [+0 IDATA |5] Removes name DATAS.
ldate [time [ZORC [H 1 +0 T[xzap[| Enters
ZORCH, re-

moves *ZAP.

The maximum length allowed for a record in a DIRECTRY is
fairly large; up to 1000 words or so is okay.

	0001
	001
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10

