cc-69-5

MIMIC
A Digital-Analog Simulator

April, 1969

COMPUTER CENTER

Oregon State University
Corvallis, Oregon 97331




MIMIC

A Digital-Analog Simulator

cc-69-5

Computer Center
Oregon State University
Corvallis, Oregon 97331

April, 1969



SECTION
I INTRODUCTION=e:eeeagaséaea=u§aﬁasaasnoia
II DEFINITIONS .. vveuw. s e et e et s e e ner e
I11 TABLE OF MIMIC PROGRAMS......... reeasene
v EXAMPLE. . itveeroeeanse ceseseteeeon s ves
v ARBITRARY FUNCTIONS. .. v vveveecnesnnssnes
VI NUMERICAIL DATA FOR MIMIC PROGRAMS.......
VIT OUTPUT . ¢ s e evtvennnces PR .....;.......
VIII SOME SPECIAL MIMIC FEATURES
1. Logical Control Variables......
2. Integrator Mode Control........
3. Integrator Limiting............
4, Implicit Functions....... ceeaean
5. Time Delay...ceeeeeeneeennnns .
6. MIMIC SubprogramS......... e e
IX CARD FORMATS
1. Program CardS..ceeeeeascesas .
2. Data CardsS........ cerecesesaaenn
X ERROR MESSAGES...... ceenen ceessssssassane
XT SPECTAL POINTS AND SUGGESTIONS
l. Integration....ceiieeceeeeeennnn.
2. HMachine Fault Conditicons........
3. Control of Printed Output.......
4, Errors in ProgramS......eeeeoess.
XTI SAMPLE CONTROL CARDS FOR BATCH
XIIT SAMPLE CONTROL STATEMENTS FROM TELETYPE
X1V CONTROL CARD PARAMETERS
APPENDIX I - Two Sample ProgramS.....s.eeees
APPENDIX IT - Solution of a Partial Differ-

TABLE OF CONTENTS

ential Equation by Finite
ApproxXimationS...ceeeesans ceen

PAGE

I...-l

10
11
12
14
16
16
16
17
18

19
19

21
21

22

22
23
24
25

30

34



APPENDIX III

APPENDIX IV

- Example of Integrator Mode
Control and Use of Hybrid
Functions........ e eseaeaeaa

- Example of the Simulation of

a Type II Servo System with
Plotted Output...eccceeeee.an.

ii

40

44



INTRODUCTION

MIMIC is a programming system written for a digital
computer which, from the standpoint of the user, seems to
make the sequential machine function like the parallel
analog computer and at the same time virtually eliminates
the'problems of time and amplitude scaling. It does this
by providing a language which is based on the idea of
interconnecting basic computing elements such as adders,
integrators, switches, etc., as in the wiring of a
patch board for a real analog computer. 1In this respect
MIMIC is like MIDAS and PACTOLUS but has a larger set of
computing elements, is faster, more efficient and easier
to use for it allows FORTRAN-like expressions, MIMIC
language sub-programs and logical control of program

execution.

This manual presupposes a limited acquaintance

with analog techniques on the part of the reader.



II. DEFINITIONS

The following definitions will be used throughout

this manual.

1. Variable Name - A group of 1 - 6 letters or digits of
which one must be a letter.

e.g. AB, IB2, 24C2

The following symbols have special meanings to the
MIMIC processor:

T, DT, DTMAX, DTMIN, TRUE, FALSE.

2. Literals - There are two types of literals:
(a) Numeric constants which must conform to the rules:
(i) a decimal point
(ii) at least one digit
)

~de o e ~ 4+ :
at mMost siX Ciharalcters

'—h

{(ii
e.g. 47., 63.0, 4.5278.
(b) Logical constants TRUE, FALSE.

3. Function - A three letter mnemonic code for a MIMIC
computing element. All MIMIC computing elements are
specified in Table 1, Section IIXI.

e.g. LOG, ADD.

4. Expression - A MIMIC expression may be:
(1) a literal
or (ii) a wvariable name

or (iii) a MIMIC function with its arguments enclosed
in parentheses and separated by commas.

or (iv) any algebraically meaningful combination of
these formed using the arithmetic operators
+ - */** and parentheses.

NOTE: Multiplication cannot be implied,

£

e.g. A¥(B + C)

is legal but A(B + C) is not.



e.g. 28.0
-IBX
LOG(X,-2.)

1BX+28.0*SIN(T*(THETAl—THETA2)/360.)

NOTE: The arguments of MIMIC functions may be expressions.

5.

10.

Statement - A MIMIC statement consists of two things:
an expression and a variable name. The effect of the
statement is to assign the result of evaluating the
expression to the variable named.

e.g. X ADD(Y,Z,-4.,T*2.0+NEG (1BX))

The result of carrying out the operations specified
by the expression will become the value of the
result variable named X.

Exceptions: CON, PAR, RSP, OUT, HDR, FIN, END state-

- ments do not require a result variable.

Program - A MIMIC program consists of a set of MIMIC
statements, of which at least one must be a FIN
statement, followed by an END statement.

Job - A MIMIC job consists of a MIMIC program punched
on cards and possibly followed by data cards.

Processor - The MIMIC processor is a set of routines
written in FORTRAN-IV and COMPASS for the 3300 which
assembles and executes MIMIC programs.

Special Variables - The MIMIC processor reserves the
following symbols for the special purposes listed:

T - the independent variable (considered possibly
as time)

DT - the amount T changes between printouts
of values ‘

DTMAX - maximum integration stepsize allowed
DTMIN - minimum integration stepsize allowed
Program Run - The generation of the solution (to a

problem programmed in MIMIC) from T = O until
termination by a FIN statement will be called a run.

The processor performs successive runs until it exhausts
the supply of data cards provided for all PAR or PFN
statements in the program.



IIT. TABLE OF MIMIC COMPUTING ELEMENTS
TABLE 1. LIST OF FUNCTIONS
FUNCTION CODE INPUT (S) VALUE/REMARKS
1. ARITHMETIC FUNCTIONS
Addition ADD A,B(,C,D,E,F)* R = A+B(+C+D+E+F)
SUM
Subtraction SUB A,B R = A-B
Multiplication MPY A,B{(,C,D,E,F) R = A*B(*C*D*E*F)
Divide DIV A,B R = A/B
Multiply and Add MAD A,B,C(,D,E,F) R = A*B+C (*D+E*F)
Negation NEG A R = -A
Absclute Value ABS A R = |A]
Equality EQL A R=2A
2. ELEMENTARY TRANSCENDENTALS
Square Root SOR A(>0) R =/A
Sine SIN A(rads.) R = sin A
Cosine Cos A(rads.) R = cos A
Arctangent ATN 2A(,B) R = tan"l(A/B) .
If B is not
specified it
is assumed to
be +1.
Exponential EXP A(,B) R = BA. If B is
not specified
B = e is
assumed.
Logarithm - LOG -A(,B) R = logBA. If B
is not spec-
ified B = e
is assumed.
* Operands enclosed in parentheses need nqt be specified.
1. B,C,D may be any logical-valued expression



FUNCTION CODE INPUT (S) VALUE/REMARKS
3. LOGICAL FUNCTIONS
Function Switch FSW A,B,C,Dl R =8B A< ¢
= C A =0
— =D A >0
Logical Switch LSW A,B,Cl R =B if A TRUE
= C if A FALSE
.
And AND A,B(,C,D,E,F)~ R =;TRUE if A and
B (and C and D
and E and F)
have value
TRUE.
FALSE, other-
wise
Exclusive Or EOR A,Bl R ={TRUE if A and
B are differ-
ent.
FALSE if A and
B are the sams
Inclusive Or IOR A,B(,C,D,E,F)l R = TRUE if A or
B (or C or D
or E or F) haw
value TRUE.
Otherwise R =
FALSE.
Complement COM Al R =(FALSE if A =
TRUE.
NOT TRUE if A =
FALSE.
4. INPUT/OUTPUT FUNCTIONS
Name Constants CON A(,B,C,D,E,F)2 Enters constant
) names
Name Parameters PAR A(,B,C,D,E,F)2 Enters parameter
names
1. A,B,C,D,E,F must be logical-valued expressions
2. Arguments must be variable names
3. Argument must be a numeric literal . _
4. SW is a control constant. If SW = 0., the data points will be

plotted.
points.

If SW = 1., straight lines will be drawn betwgen
If SW=2., a quadratic will be fitted to the points.

SCL is the multiplier to expand the scale in the X direction.



FUNCTION

CODE

INPUT (S)

VALUE/REMARKS

Name Function
(Constant)

Name Function
(Parameter)

Print Output
Print Headers

Plot

SUBPROGRAMS

Begin Subprogram
End Subprogram

Call Subprogram

Return Subprogram

CFN

PFN

BSP
ESP

CSP
RSP

(»,B,C,D,E,F)
(A,B,C,D,E,F)

Sw,sCL,A(,B,C,D)

a(,s,Cc,D,E,F)
A(IBICIDIEIF)

The name of the
array is entered
in the result
column. A =
number of pairs
or triples of
points.

The name of the
array is entered
in the result
column. A =
number of pairs
or triples of
points.

Print A,B,C,D,E,
F every DT units
of T.

Print heading
names given in

A,B,C,D,E,F

Supply A,B,C,D to
subroutine PLO
every DT units

of T.

The subprogram
name appears in
the result column
of the BSP and
ESP cards. The
inputs are named
on the BSP card
and the outputs
on the ESP card.

The name of the
called subprogram
is given in the
result field of
the CSP card. The
RSP card must
immediately follow
the CSP card.




FUNCTION CODE INPUT (S) VALUE/REMARKS
6. SPECIAL FUNCTIONS
Integration INT A,B(,C,D) R =8B + f AGT
C,D must be
logical val-
ued expres-
sions.
C
TRUE FALSE
D
TRUE |OPERATE HOLD
. FALSE| RESET OPERATE
Limit Integrators LIN A,B,C,D R=20 B < C
=A C<BZX<D
=0 B >D
First Order FTR  A,B R = L Y[a(s)/
Transfer Function (Bs+1)] where A
is the variable
operated on by
1/ (Bs+l)
Limiter LIM A,B,C R =B A < B
= A B <A <C
= C A > C
Dead Space DSP A,B,C R=A-B A < B
: = 0 B <A <C
= A - C A > C
Time Delay TDL A,B(,C) R = A(T-B). C is

the number of
points of A to be
stored and must be
a literal or con-
stant.

If C is not
specified, C = 100
is assumed. B may
be variable. If
T <B, R=A(0).




FUNCTION

CODE

INPUT (S)

VALUE/REMARKS

Function

Implicit Function

Maximum

Minimum

Random No. Generator5

o . - .5
Random No. Generator

Derivative

HYBRID FUNCTIONS

Monostable
Multivibrator

Track and Store

FUN

IMP

MIN

RNG

DER

- MMV

TAS

A,B(,C,D,E,F)

A,B(,C,D,E,F)

A,B,C6

:pl

W
2
[))

R = A(B)
R = A(B,C)

R =A
where |A-E(A)
55X10l6|A| |

max(A,B(,C,D,
F))

min(A,B(,C,D,
/F))

R = random sample
from a gaussian
distribution
with mean = A
and standard de-
viation B. C 1is
a starting num-
ber.

=i

=

]

= random sample
from a uniform
distribution
with lower limit
A and upper limit
B. C is a start-
ing number.

R =dA/dB. R = C
at T = 0.

R set TRUE when A
TRUE and stays
TRUE for B units
of T after A
goes FALSE.
R=Aat T = 0.

R = A when B TRUE
= R_ when B
FALSE.

(R = previous R)
R=Cat T = 0.




FUNCTION CODE INPUT(S) VALUE/REMARKS
. ’ 7 8 .

Flip-Flop FLF A;B.C R ={TRUE if A =
TRUE.
TRUE if B =
FALSE and R_=
TRUE. P
FALSE other-

- wise.
R=CatT-=0.

Zero Order Hold ZOH "A,B A is sampled every
B units of T. R =
held sampled value.
R=AatT-=0.

B . CONTROL FUNCTIONS

Go to Next Case FIN A,B Go to next run
whan A > B.

End of Program END Signifies end of -
MIMIC program and
beginning of MIMIC
data.

5, Different starting numbers will produce independent sequences,
hence many random number generators may be used in the same
program.

6. C should be a literal, constant or parameter.

7. A,B,C must be logical valued expressions.

3. R=AV(B'ARP).



10.

Iv. EXAMPLE

The method of forming expressions and statements defined
in section IT means that, unlike MIDAS and PACTOLUS, only those
variables of particular interest need be named in the result
portion of a MIMIC statement. Thus a MIMIC program could be
written down from the analytic form of the system being solved

without the necessity of a block diagram.
Suppose we wish to solve the problem
X+ %+ x=0 withx(0) =2, x(0) =0

A block (circuit) diagram representation of this problem
is obtained by writing the highest derivative in terms of
lower order derivatives,

eqg. X = -X =X

Thus we have

ADD |—= NEG X o INT X INT %

A MIMIC program which explicitly reflects the inter-

connection of each basic computing element is:

NEGDX2 ADD(X,DX1)

DX2 NEG (NEGDX2)

DX1 INT (DX2,2.)

X INT (DX1,0.)
OUT (X,DX1)
FIN(T,2.5)
END

The OUT and FIN statements cause the processor to print
out a table of wvalues of x, x for values of T = 0, .1, 2y ey,

2.5.



11.

A simpler way of writing this program is

DX1 INT (- (X+DX1) ,2.)
X INT (DX1,0.)
OUT (X,DX1)
FIN(T,2.5)
END

V. ARBITRARY FUNCTIONS

MIMIC allows arbitrary functions of 1 or 2 independent
variables to be specified by tabulated data, i.e. by an array
of values of independent variable(s) and corresponding values

of the dependent variable.

desired and are used in calculations by means of a FUN state-

ment.
For example the statement
F CFN(5.)

has the effect of defining a function F to be specified by
5 sets of points which will be punched on data cards. Then

the function F could be used, for example in the following

statement
X  FUN(F,2)
i.e. the value of X will become F(Z).
Similarly

X FUN(F,U,V)
if F were a function of 2 independent variables.

The processor uses linear interpolation for values of
the independent variable(s) between tabulated points. The
function is assumed continuous and to have derivatives equal

to zero for all points outside the tabulated range.



12.

The number of data points as well as the number of
arbitrary functions is limited only by the computer memory
available for programs.

VI. NUMERICAL DATA FOR MIMIC PROGRAMS

Numerical values of variable names a programmer may have
used to designate constant coefficients, initial conditions,
arbitrary functions, etc., are supplied to the processor on
data cards following the END statement of the program.

There are 4 types of data used in MIMIC programs and
information concerning each type must appear in 2 places in
a job. First, the name of the data must appear in a CON,
PAR, CFN, or PFN statement and the corresponding value must
appear on a data card.

Values for data declared by a CON (Constant) statement
stay fixed for all runs. One data card must appear in the

data section for each CON statement in the program section.

Values for data declared by a PAR (parameter) statement
may change from run to run. One data card must appear for

each PAR statement in the program section for each run de-

sired.

Up to 6 variable names may be used as arguments of each
PAR or CON statement.

Data for arbitrary functions of 1 (or 2) independent
variable(s) declared by CFN (constant function) or PFN
(parameter function) statements are punched as 1 pair (or

triple) of points per data card in the following format:

- functions of 1 variable; independent variable punched’
in columns 1-12, dependent variable punched in columns
13-24 and the data cards ordered in increasing value

of the independent variable.



13.

- functions of 2 variables; lst indépendent variable

punched in columns 1-12, 2nd indpendent variable

punched in columns 13-24, dependent variable punch-

ed in columns 25-36.
the values of the 1lst independent variable form a non-

The cards are arranged so that

decreasing sequence and at each value of the lst in-
dependent variable, the values of the 2nd independent

variable must form an algebraically increasing se-

guence.

In addition the array must consist of at least

2 values of the second variable for each value of

the first and the array must contain points less

than and greater than the expected values of both

independent variables.

The number of data cards for both is specified as the

NV TITTM o £ 1

- o~ IS TS
argumentc or tne C

TRT
FaA

or PFN

statement.

Finally, any CON and CFN statements must come before

any PAR and PFN statements and these cards must be the

first cards in a program.

The order of the data cards

corresponding to each statement of each type is the same

as the appearance of the statements in the program.

For examp

are statements

le,

in

if

CON(A,B)

CFN(3.)
PFN(4.)
PAR (X)

a program, data cards might be

12 24 36
-4, 10. card 1:
-1.0 -2. 2
0. 0. 3
1. 2. 4
SMIMC,DCH3
2
2. - 17. 5
. . 10.8

constant values of A,B
specify constant
function F of 1

variable

specify function G of



14.

3. -2. | 25.0 7] 2 variables for 1lst run
4. 6.5 100.63 8%

~-25.36 9 value of X for lét run
1.5 -3.0 25.0 10
2.5 -2.0 14.0 11( function G for
2.5 4.0 73.0 12\ 2nd run
3. 0.0 28.5 13

~50.2 ' 14 value of X for 2nd run

NOTE: If *MIMIC load option is used, it must follow constant
function followed by number of parameter sets, in this

case 2, in I4 format columns 1 - 4.

VII. OUTPUT

1. Description of Printed Output
Values of up to 6 variables may be printed by means
of an OUT statement every DT units of T from T = 0 until a

FIN statement terminates the run. More than one OUT statement

is allowed per program.
e.g. OUT (A,X) will print columns of values of A and X.

A value for DT may be

(1) read in by a CON or PAR card
(ii) calculated by operations in a MIMIC program
(iii) assumed to be .1 if not specified by (i) or (ii).

Blank columns can be introduced by using a comma with

no preceding argument. For example OUT(A,,X).

Blank lines may be inserted in the output by an OUT
statement with no arguments. That is OUT ONLY.

Up to 6 column headings to appear at the top of the out-
put may be specified by HDR statements. The actual characters
to be printed are the arguments of HDR and can consist of 1-6
alphabeticvor numeric charicters. Blank column headings can



15.

be obtained by using a comma with no preceding argument and

blank lines in headings can be obtained by using HDR alone.

In addition the processor prints out the names and values

of any data it reads in for each run.

1. Description of Plotted Output

The plotter will supply a plotted output with the
independent variable as the abscissa and the function as the

ordinate.

Up to four functions can be plotted sinultaneously from
the data points which are stored in the plotting subroutine.
300 data points can be stored for each function; however, if
this number is exceeded a diagnostic will result.

The Y axis has a length of 20.0 inches, therefore, the
user must scale his output to fit this. A mean value of

10.0 is desirable.

The X axis is 30.0 inches long and it is possible to
scale the X-array by a multiplier supplied by the user. Tae

time scale is normally marked at 1 second per inch.

The user has the choice of plotting:-

1. Data points only------—-—==-—=—=-—==w~—- PLO(0.,SCL,--)
2. Straight lines between points--------- PLO(1l.,SCL,—-)
3. A guadratic curve fit between points-- PLO(2.,SCL,--)

Care should be taken using the third option if dis-

continuities are expected.

The second parameter in the call to plot, SCL, is the
multiplier used to expand the graph in the X direction and
is normally 1. The annotations of the X axis are modified
accordingly. It is possible to reduce the scale of the whole
graph. This is sometimes useful for photographic purposes.
The decimal fraction of the first parameter is used to divide

all dimensions in the plot.



le6.

Thus PLO(2.2,-—--—- ) will give a quadratic curve fit with
the graph reduced by 2. If the decimal fraction is blank or
zero, the graph is of normal size (20" x 30").

VIII. SOME SPECIAL MIMIC FEATURES

1. Logical Control Variables

In addition to variables which can take on numeric
values in the limits |1.7| x 10 +38, MIMIC allows logical
variables which can take on only the values TRUE or FALSE.
These variables can be used to provide control over the eval-

uation of expressions.

Logical variables may be assigned values by the use of
element FWS (function switch) and the value can be changed

by any of the logic functions (see parts 3, 7 of Table 1).

If the name of a logical variable is entered in the LCV
field of a MIMIC statement, the expression on that card will
be evaluated only when that logical variable has the value
TRUE. That is, logical control variables may be used to
select, under programmed control, which of several paths
should be evaluated.

For example, define a logical variable which is TRUE
only at T = O and use it to control precomputation of con-

stants, initial conditions, etc. (see example 2, Appendix I)

NOTE: If a logical control variable is used on statements
containing expressions involving INT or FTR, these
functions will not be initialized unless the variable

is TRUE at T = 0.

2. Integrator Mode Control

The mode of each integrator in MIMIC can be indi-
vidually set to one of reset, operate or hold. In reset
mode, the output of the integrator is set equal to the ini-
tial condition argument and no integration takes place. In
operate, the integrator is updated by the integration routine.

In hold, the input to the integrator is removed.



17.

Two extra arguments which must have logical values are
used with INT to control the mode. If these are not present,

the mode is assumed to be "operate".
For example
X  INT(Y,XO,C,D)

is a completely specified integrator. Logical variables C,D
control the mode of the integrator by the following scheme:-

C
TRUE : FALSE
D
TRUE OPERATE HOLD
FALSE RESET OPERATE

3. Integrator Limiting

MIMIC contains a function LIM to limit between some
lower and upper bounds the values that a variable may assume.
However, if the variable to be limited is the result of an
integration, it is necessary to set the derivative of the
variable to zero whenewver the variable is equal to a limit
value by use of function LIN before using it as input to an

integrator.

For example, if x is the output of an integrator but is
to be limited such that L < x < U, MIMIC statements might be

XDOTLM LIN(XDOT,X ,L,U)
X INT (XDOTLi1, X0)
or simply

X INT (LIN(XDOT,X,%L,U) ,X0)



18.

A block diagram for this is

i ] [

X (limited) x

— LIN 1 INT

4. TImplicit Functions

MIMIC contains an element IMP for solving equations
of the form x = £(x). An iterative method is used and thus
a starting value must be given by a PAR statement (or assigned

in a calculation performed before any integration starts).
For example
PAR (X)

X IMP(X,SIN(X)+Y)
would solve x = sin x + y where y is specified elsewhere in
the program.

Some computational efficiency can be obtained with im-
plicit functions by using dummy variables since the processor
function-sorting routine will insure that all computations
involving the result of an IMP will be placed after the IMP.

eqg. PAR (X1)

X IMP (X1,SIN(X1)+Y)



19.

NOTE: x = f(x) is solved by the scheme

Xy = supplied value

f(xn) - cnxn

1l - ¢
n

5. Time Delay

The expression TDL(A,B,C) has the effect of delaying
the variable A by B units of T. Here, B may be any expression;
C, if specified must be a literal or constant, and represents
the number of values of the input variable A stored at any
one time for providing the delay. If C is not specified, it
is assumed to be 100. |

If T < B, the result of TDL is the value of A at T = 0.

6. MIMIC Subprograms

MIMIC language subprbgrams present a way of extend-
ing the list of available functions for a given program. In
particular, it allows functions with multiple outputs to be

generated.

A subprogram is defined as those statements occurring
between BSP (begin subprogram) card and an ESP (end sub-
program) card. The subprogram name is entered in the result
field of the BSP and ESP cards. The dummy inputs to the sub-
program are specified as arguments of the BSP element and the
dummy outputs as arguments of the ESP element. Up to 6



20.

inputs and outputs may be used and must be single variable

names.

A subprogram is used by entering its name in the result
field of a CsP (call subprogram) card with the actual inputs
listed as arguments of the CSP element and the actual outputs
as arguments of the RSP element. Actual outputs must be

single variable names but actual inputs may be expressions.
The following rules apply in writing subprograms:

(i) A dummy variable must be defined as an input or

a result before it can be used as an argument.

(ii) The names used in a subprogram must not be used
elsewhere in the program.

{(iii) The RSP card must be the card immediately after
the CSP card.

For example, we define a subprogram SAMPLE to evaluate

X, =X cCos z +y sin z

and Yy, = X sin z + y cos z.

The inputs are x,y,z and the outputs are Xy1Yq-

SAMPLE BSP (X,Y,Z)
X1 X*COS (Z) + Y*SIN(Z)
X1 = -X*SIN(Z) + Y*COS(Z)
SAMPLE ESP (X1,Y1)

We could use SAMPLE in several places in a program pos-

sibly as follows:

SAMPLE Csp(Ul,u2,U03)
RSP (V1,V2)

SAMPLE CSP(2.*T,45.,PI)
RSP (P1,P2)



21.

Restrictions:

(i) The functions FTR and INT may not be used in

subprograms.

(ii) Arbitrary functions defined by CFN or PFN
statements cannot be used as input to a
subprogram; however, they may be used in

FUN expressions within the subprogram.

IX. CARD FORMATS

1. Program Cards

1o 15 19 72
LCV Result ’ Expression field
field : field

12

I~

Any symbol in column 1 results in the entire card being

treated as a comment.

A single variable name only can appear in the LCV or
Result field.

2. Data Cards

1 12 24 36 48 60 72

>

1st data 2nd data e . e . e 6th data
field field field
Up to six 12-column fieids allowed per card.

For CON and PAR statements, the value corresponding to
the jth argument must be punched in the jth data field of the
data card (1 < j < 6).

Data is punched in FORTRAN floating point format E12.0, i.e.
(i) possible prefixed minus sign.

(ii) explicit decimal point.



22.

(iii) possible postfixed exponent of forms E+dd, E+d,

Edd, Ed where d is a digit.
(iv) no more than 12 characters per number.
eg. -1.72E7 means -1.72 x lO7

Note: An E-style number must be right justified in its data
field.

For example, for CON(A,B,C,D) a data card might be

12 24 36 48

f/,—,o -.0005 -1.25E+10 0.0

Only the following errors will be detected and identified
by the processor and will cause deletion of the execution

phase.
(i) Variable names which have not been assigned a value.
(ii) Algebraic loops.
(iii) A BSP card and no ESP card.
(iv) A CSP card not followed immediately by an RSP card.
(v) Use of a function not contained in Table 1.

In addition, the usual execution time F-IV error mess-

ages might appear.

XI, SPECIAL POINTS AND SUGGESTIONS

1. Integration

(i) A maximum of 95 integrators is allowed.

(ii) If DTMAX, DTMIN, DT are not specified in the

program, the following values are assumed:



23.

DTMIN = 0.>
(iii) The processor uses a variable step, high order
Runge-Kutta routine for integration. The step
size may range from DTMIN to DTMAX. Setting
DTMIN equal to DTMAX results in fixed step
length integration. '

(iv) Use of hybrid functions FLF, MMV, TAS, ZOH re-
quire that DTMAX = DTMIN.

(v) The integration routine will automatically vary
the step size in order to satisfy an error cri-
terion. Thus, problems involving discontinuities
generated by function switches, limiters, ran-
dom number generators, etc. can cause trouble
as the routine could continue to reduce the
step size indefinitely, if a positive DTMIN is
not specified, in order to integrate across

discontinuities.

It is impossible to give a rule for select-
ing a DTMIN but the following approach is sug-
gested.

Try DTMIN = 107%pT ana compare the results

with another run with DTMIN one tenth the first
value. If the results agree well enough, neither
value inhibited the integration routine to any
appreciable extent. If the results differ sig-
nificantly, decrease DTMIN and rerun. Always

try to use the largest value of DTMIN consistent
with satisfactory results in order to decrease

computer time.

2. Machine Fault Conditions

A diagnostic of the following form will be returned every
time a machine fault occurs as follows:-



24,

ERROR IN MIMIC CALLED FROM XXKXXX YYYYY
Where XXXXX is a machine address

and YYYYY is a. exponent overflow,
b. divide fault, or

c. arithmetic overflow.

3. Control of Printed Output

The processor outputs 60 lines per page on the printer.
Thus if a DT = 10-6 were selected for integration over a
range as small as 0 < T < 6 about 105 pages of output would
be printed. It might be possible that only the final values
for T = 6 are of interest. The following are suggestions

for controlling the volume of output:

(i) Specify DTMAX to control integration and specify

DT>>DTMAX to con u

(ii) Use logical control variables in the LCV field
of OUT statements to produce selected output.

For example:

.
-

CONOUT FSW(T-B,FALSE, TRUE, TRUE)

CONOUT OUT(T,X)

.
.

will produce output only when T > B.

(iii) Use more than one FIN statement to terminate
the run. For example, terminate if some con-
dition, say stable values of a variable, has

been achieved or total time has elapsed.



25.

4. Errors in Programs

Section X details the only source language errors de-
tected by the processor. Thus a programmer should take care
in keypunching since the processor will evaluate expressions
which are syntactically incorrect or outright meaningless.

For example the processor will produce a value for 2.*TRUE.

In compiling a program, the processor reduces all com-
plex expressions to a sequence of calculations using the basic
elements of Table I and lists this simplified program below
the input program. A perusal of this simplified listing will

often detect errors in the original program.

XII. SAMPLE CONTROL CARDS FROM BATCH

JOB, <JOB #> ,<USER $>,<LISTING ID>
TIME = <time limit>
MFBLKS = <File Block limit>

*MIMIC, <PARAMETER STRING>

0O~ WO~J WO~ -l

MIMIC Program
Constants

Constant Functions

.

Data card - number of parameter sets (FORMAT(I4))
Parameter functions

Parameters

g LOGOFF

Note if plotted output is required, EQUIP a unit
to a plotter; label it and have a PLOT = LUN PARA-
METER on the control card.



JOB,<JOB #>, <USER #> , <LISTING ID>
TIME = <TIME LIMIT>

MFBLKS = <FILE BLOQCK LIMIT>

O~ O~ 00~ 00~

*¥MIMIC, <PARAMETER STRING>
MIMIC PRCGRAM

CONSTANTS
CONSTANT FUNCTIONS

*MIMICLOAD, <PARAMETER STRING>

00 ~J

26.

DATA CARD - Number of parameter sets (FORMAT 14)

DADAMETMIOTD TTNIM
f g B AW SRJ N N RN MR F \,T

PARAMETERS

o~

LOGOFF

XITI. SAMPLE CONTROL STATEMENTS FROM TELETYPE

#<JOB#>, <USER#>

#TIME=<TIME LIMIT>

#MFBLKS=<FILE BLOCK limit>
#*MIMIC,I=NAME , <PARAMETER STRING>
#LOGOFF

XIV. CONTROL CARD PARAMETERS

Options on the call to the compiler are separated by

commas and each may be any number of letters long,

and may

be followed by an =XX where XX is some logical unit number.

For *MIMIC the options currently available are:

ASSEMBLY produces an assembly listing on the
unit. If no unit is specified, the
listing appears on the same unit as

listing (Logical unit 61 if neither

requested
assembly
the source
the LIST

or ASSEMBLY options have specified a unit).



CONSTANT

FUNCTION

INPUT

LIST

PLOT

OUTPUT

27.

produces a listing of the constants defined on
CON or CFN cards. If no unit is specified,
listing defaults to other units in the same
order as the FUNCTION listing.

produces the SORTED FUNCTION LISTING GENERATED
by the compilier. If no unit is specified use
the assembly unit if specified or default to

the list unit if specified or USE 61.

specifies the unit or file from which the
source program is to be read. (Logical unit
60 is assumed if no unit is specified or if
the option is not present.) The compiler will
automatically recognize and unblock EDIT and
COSY compressed records in addition to stan-
dard Hollerith card images. As an additional
feature, the name of a saved file may be used
in place of a logical unit number on this op-
tion. MIMIC will rewind the input unit before

reading if a name was specified as the input.

specifies that a listing of the source is to
be written out on the specified unit (Logical

unit 61 if no unit was specified.)

produces the plot as specified on PLO cards.
(If PLO cards are present and the plot option
is not uSed the plot will be suppressed.)
Assumes Logical unit 55 if none specified.
(However it is a good idea to equip a unit to
a plotter before starting a run and labeling
the unit.)

the unit to list the output generated by the
source program. Logical unit 61 is assumed

if not specified.



RUN

XCT

28.

indicates a unit (Logical unit 56 if none is
specified) on which binary output is to be
generated. The RUN unit is released initially
by the compiler, and on compiling the last
program eiement, is automatically rewound and
loaded and execution is initiated if no seri-

ous errors were encountered in compilation.

indicates a unit (Logical unit 56 if none is
specified) on which binary output is to be
generated. MIMIC releases this unit before

compiling.

If the RUN option is not present and either the plot or

output option is present they are ignored. If the source

program input and the data for the source program are on dif-

ferent Logical units the RUN cannot be used.



29,

For *MIMICLOAD the options currently available are:

INPUT . specifies the unit or file from which the data
for the source program is to be read. (Logical
unit 60 is assumed if no unit is specified or
if the option is not present.) The cdmpiler
will automatically recognize and unblock EDIT
and COSY compressed records in addition to
standard Hollerith card images. As an addi-
tional feature, the name of a saved file may
be used in place of a logical unit number on
this option. The compiler will rewind the in-

put unit before reading.

OuTPUT the unit to list the output generated by the
source program. Logical unit 61 is assumed
if not specified.

PLOT produces the plot as specified on PLO cards.
(If PLO cards are present and the plot option
is not used the plot will be suppressed.)
Assumes Logical unit 55 if none specified.
(However it is a good idea to equip a unit
to a plotter before starting a run and label-

ing the unit.)

XCT unit on which to find binary output from
*MIMIC. If no unit specified assumes Logical
unit 56.

NOTE: *MIMICLOAD is a loader that loads binary output pro-
duced by *MIMIC and then starts execution.

SAMPLE COMPILER CALLS

*MIMIC,R,L
*MIMIC,X,I=10,L,F=5
*MIMICLOAD,X,J=1,0=45,P=13
*MIMIC,R,L,A,F,C,P



30.

APPENDIX T

Example l: The equations for a bouncing ball dropped from
rest at height h are %= -g, X (0) = 0, x(0) = h where x (t)
represents the height at time t. But whenever x = 0, the

velocity is changed in direction and decreases in magnitude

by proportion e, the coefficient of elasticity.

A possible job is

12 _ 10 19 24

CON (TS{rOP, DTMIN)
PAR (E,H)

ZEROHT FSW (X, TRUE, TRUE,FALSE)

EROHT BECOMES [TRUE WHEN X REACHES| ZERO AND IS FALSE FOR X POSITIVE
XDOT INT(-32{.2,0.)

ZEROHT XDOT ~E*XDOT
X INT (XDOT, H)

HDR (TIME,SPEED,HEIGHT)
HDR ’
OUT (T,KDOT,X)
FIN (T,[’STOP)
END

.0 1.0E-4
.09 | .15E+02
.8 | po.o
.5 P5.0

TT MMTTT

[n]

10
|
0

o

The use of logical variable ZEROHT ensures that we
account for elasticity and direction only at times when
X < 0. ( <used should the integration routine slightly

overshoot to negative x)



31.

Example 2: Illustration of subprograms and precomputation

of constants.

Evaluate the complex-valued variable

z = P(s)/g
where P(s) = u52 - Vs +w= (us=-v)s + w
u = el®
v = log(sing)
w = ocosf + iBsino
g = o + ipt
s = t(a + iB)
for t = 0 (.2) 2. (a0, B are real numbers)

Since u, v, w remain constant for all t, we will compute
them only once when t = 0 by using a logical control variable
which has the value TRUE only when T = 0.

Subroutines COMPAS, COMPMD will be defined as follows:

COMPAS - number of inputs = 5

- inputs 1, 2, 3, 4 are real and imaginary parts of

2 complex numbers
- input 5 is a logical-valued argument
- if its value is TRUE, COMPAS adds
- if its value is FALSE, COMPAS subtracts
- number of outputs = 2
- the real and imaginary parts of the result.

COMPMD - number of inputs = 5

- inputs 1, 2, 3, 4 are real and imaginary parts

of 2 complex numbers



32.

-~ input 5 is a logical—valued argument
- if its value is TRUE, COMPMD multiplies
- if its wvalue is FALSE, COMPMD divides

- number of outputs = 3

- outputs 1, 2 are real and imaginary parts of
the result

- output 3 - a logical-valued variable
- its value is FALSE only if the input divisor

was zero for a complex division. (Outputs

The program:

1, 2 =

0 in this case)

the value TRUE.

12 10 19
CON (ALPHA, BETA)
OEFINE SUBPROGRAM | COMPAS
cOMPAS  [BSP (RA,IA,RB,IB,LIN)
SIGN LSW(LIN,1.,-1.)
RC RA+SIGN*RB
IC IA+SIGN*IB
coMPAs  [ESP (RC,IC)
DEFINE SUBPROGRAM | COMPMD
coMPMp  [BSP (R1,Il,R2,I2,LOGIN)
STGN1  [LSW(LOGIN,l.,-1.)
R3 R1*R2-SIGN*I1*I2
I3 SIGN1*R1*I2+I1*R2
NOTL NOT (LOGIN)
lLouT |TRUE
ZERO FALSE

Otherwise it hasb



33.

12 10 19
NOTL DENOM FR2¥R2+12%12
NOTL ERO FSW (DENOM, TRUE , FALSE , TRUE)
ZERO 3 R3,/DENOM
ZERO 3 13/DENOM
NOTL [OUT ZERO

COMPMD  |ESP (R3,I3,LOUT)
BRECOMPUTE} U,V,W, [DT
ZEROT - |FSW(T,TRUE,TRUE,FALSE)

ZEROT  [RU COS (ALPHA)
ZEROT Ty SIN (ALPHA)
i{ZEROT RV L.OG (SIN(BETA))
{ZEROT v 0.

IZEROT RW ALPHA*COS (BETA)
{ZEROT W BETA*SIN (ALPHA)
ZEROT DT 0.2

CALCULATION OF %
' COMPMD  |CSP (RU,IU,T*ALPHA, T*BETA, TRUE)
RSP (RP, IP, LOGVAL)

coMPAS |CSP(RP,IP,RV,IV,FALSE)

|RSP (RO, TQ)

COMPMD  {CSP (RQ,IQ,T*ALPHA,T*BETA,TRUE)
| |IRSP (RS, IS, LOGVAL)

COMPAS  |CSP (RS, IS,RW,IW,TRUE)

: RSP (RT, IT)

COMPMD  {CSP (RT,IT,ALPHA*T,BETA*T,FALSE)
RSP (RZ,I%,LOGVAL)

OGVAL | OUT (T,RZ,IZ)
FIN(T,2.)
END

=

LOGVAL is used as an LCV on the OUT statement so no results

are printed in case a zerc division was attempted in COMPMD.



34.

APPENDIX II

Solution of a Partial Differential Equation by Finite Approximationsl

The equation for the concentration C (r,t) of a liquid
component diffusing radially out of a solid particle cylinder

of radius R is

D is the diffusivity.

There is an initial uniform concentration distribution
C* throughout the cylinder and at time t = 0 we allow the
material to commence diffusing by putting C(R,0) to zero and

maintaining it at zero.
The analytic solution to the problem is

! Do
© *
C(r,t) = I 2C JO (ai f) exp (-

i=1 uiJl(ai) R | R

N

t) II-1

2

(See Reddick and Miller: Advanced Mathematics for Engineers,
J. Wiley, p. 319, Eq. 21)

a; are the positive zeros of Jo(x)

To acquire numerical values of C(r,t) using MIMIC we make
the approximations

82
C C - C C C 2C +C

9 n n+l n-1 , = n+l n n-1

n
T 2Ar 8r2 (Ar)2

1. Contributed by Professor T. Fahidy, University of Waterloo



35.

where C, = C(nAr,t). The partial differential equation is
turned into a set containing n ordinary differential equations.

This is a conventional technique for analogue computers.
Now we have

dac ' B
n ___ D 1 - -1
2 = [(1 + ) C 2c + (1 ) cn_lJ

: n+l
at (Ar)z 2n 2n

n=1, 2, 3,4, ...

for the concentration on concentric circles of radius nAr.

Taking C* = 1, R = 0.5, r ='0;l, n=5, D= 10_5 we get

c, = 107° (1.5C, - 2¢; + 0.5 C)

c, = 107 (1.25C, - 2C, + 0.75 C;)

63 = 1073 (1.167C, - 2C, .‘+ 0.833 C,)

c, = 1073 (1.125¢, - 2¢, + 0.875 ;) (Cg = 0 = boundary value)

A MIMIC program to integrate this system of equations for
Cj in t = 0 (10.) 200. along with all computer output follows.

Total 3300 time for this job was 1 minute 21 seconds.
The value of C(0.4, 200) calculated from II-1 is
0.872488 in contrast with the MIMIC - computed value of
0.813412. The error (about 7% may be further reduced

by considering smaller increments of Ar. This is a case
where accuracy and program complexity have to be bal-
anced.



MIMIC SOURCE-~LANGUAGE PROGRAM

The Radial Diffusion Problem with 5 Increments

CON (1A, 22,34, 2N)
CON (1B, 2B, 3B, 4B)
CON (DT, DTMAX) j
1C  INT(lA*2C-2N*1C+1B,1.)
2C  INT (2A*3C-2N*2C+2B*1C,1.)
3C  INT(3A*4C-2N*3C+3B*2C,1.)
4C  INT(-2N*4C+4B*3C,1.)
FIN(T,200.)
HDR(T,C1,C2,C3)
HDR(,C4)
HDR |
ouT (T, 1C, 2C, 3C)
OuUT (, 4C)
END



.
tf
=

***FUNCTION-LANGUAGE PROGRAM GENERATED***

LCcv RESULT FTN A B

0
W

S CON 1A 2a  3A 2N
CON 1B 2B 3B 4B

|

W 0 ~1 O U1 = W N+

W W W NN DN NDDND NN - H e
N H O W o oUW N O W oS0 Ww N o

CON DT  DTMAX
103 MPY 1A  2C
104 MPY 2N 1C
105 SUB 103 104
106 ADD 105 1B
1c INT = 106 1.
108 MPY 2A  3C
109 MPY 2N 2C
110 MPY 2B 1C
111 SUB 108 109
112 ADD 111 110
2C INT 112 1.
114 MPY 3A  4C
115 MPY 2N  3C
116 MPY 3B 2C
117 SUB 114 115
118 ADD 117 116
3C INT 118 1.
120 MPY 2N  4C
121 MPY 4B  3C
00 NEG 120
122 ADD 00 121
4C INT 122 1.
FIN T 200.
HDR T c1l c2 cC3
HDR ca
HDR
OUT T 1C 2¢  3C
ouT 4C
END



***FURTHER DIAGNOSTICS AND EXECUTION FOLLOW**#*

1A 2A 3A 2N
1.50000E-03 1.25000E-03 1.16700E-03 2.00000E-03

1B 2B 3B : 4B
5.00000E-04 7.50000E-04 - 8.33000E-04 8.75000E-04

DT DTMAX
1.00000E 01 1.00000E-01

38.



N
U

1.00000E
2.00000E
3.00000E
4.00000E
5.00000E
6.00000E
7.00000E
8.00000E
9.00000E
1.00000E
1.10000E
1.20000E
1.30000E
1.40000E
1.50000E
1.60000E
1.70000E
1.80000E
1.90000E

2.00000E

01
01
01
01
0l
01
01
01
01
02
02
02
02
02
02
02
02
02
02

02

Cl
c4

1.00000E 00
1.00000E 00
9.99998E~-01
9.88860E-01
9.99997E-01
9.77940E-01
9.99994E-01
9.67234E-01
9.99992E-01
9.56737E-01
9.99990E-01
9.46443E-01
9.99987E-01
9.36348E-01
9.99986E-01
9.26447E-01
9.99984E-01
9.16735E-01
9.99980E-01
9.07208E-01
9.99976E-01
8.97860E-01
9.99972E-01
8.88689E-01
9.99965E-01
8.79688E-01
9.99958E-01
8.70856E-01
9.99949E-01
8.62186E-01
9.99939E-01
8.53677E-01
9.99927E-01
8.45323E-01
9.99912E-01
8.37121E-01
9.99896E-01
8.29067E-01
9.99877E-01
8.21159E-01
9.99855E-01
8.13392E-01

c2

1.00000E 0O
9.99998E-01
9.99995E-01
9.99989E-01
9.99978E-01
9.99962E-01
9.99938E-01
9.99907E-01
9.99866E-01
9.99814E-01
9.99752E-01
9.99677E-01
9.99590E-01
9.99488E-01
9.99372E-01
9.99241E-01
9.99095E-01
9.98932E-01
9.98752E-01
9.98555E-01

9.98341E-01

C3

1.00000E 00
9.99934E-01
9.99742E-01
9.99429E-01
9.98999E-01
9.98458E~-01
9.97810E-01
9.97058E-01
9.96208E-01
9.95263E-01
9.94228E-01
9.93105E-01
9.91899E-01
9.90613E-01
9.89250E-01
9.87815E-01
9.86309E-01
9.84736E-01
9.83099E-01
9.81400E-01

9.79643E-01

39.



40.

APPENDIX III

Example of Integrator Mode Control and Hybrid Functionsl

This problem is designed to illustrate the use of in-
dividual mode control of the integrators and the use of cer-
tain other logical elements in the solution of problems
which more conventionally might be solved on a hybrid analogue-
digital computer installation. The problem chosen is that
of hitting a target at a known distance with a projectile
fired at a certain muzzle velocity and at some angle of ele-
vation to the horizon.

— ——

\ -7 T~
o .~ ~
0 )'r'I.'}xRGET N
P -, 02

ERROR

Actual dynamic equations describing such a system are
quite complex when all the aerodynamic forces on the pro-
jectile are considered. The method of solution illustrated
by this problem is general enough to be used for the deter-
mination of the firing parameters in complex non-linear rep-
resentations of the projectile equations. However, for the
sake of computer time and so as not to obscure the method
of solution by using an unnecessarily difficult equation set,
the actual equations chosen have been simplified to the point

of triviality.

1. Contributed by E. M. Hinchley



41.

The equations (neglecting all forces except gravity) are:

=V, coso ‘x(0) =0
y = -g y(0) = Vo sinsg
y(0) =0

The desired point of impact is designated by x = RANGE
and y is the variable representing the height of the pro-
jectile. VO is the muzzle velocity, and 6 is the angle of
elevation (see sketch). For simplicity VO will be assumed
constant and 6 will be the parameter we must determine.

The equations of the projectile are so simplified that they
are easily solved by direct integration. However, we are
attempting to illustrate a more general method of solution-

an iterative analog computer-like solution.

The equations are programmed in MIMIC as they would be

for an analog computer solution. A value of 6 is assumed and
the analog solution is operated until y <0(and x>0). The
value of x at y=0 represents the distance of the point of
impact. The analog solution is placed in the HOLD mode
while the error function X-RANGE is calculated, and a new
value of 6 equal to the previous 0 plus K(x-RANGE) is deter-
mined. K is a carefully chosen constant which affects both
the convergence properties and the stability of the solution.
The analog solution is next RESET to the new initial condi-
tions and then placed in OPERATE and the new point of impact
is determined. The process is repeated until a point of

sufficiently close to the desired RANGE is found.

The modes of the integrators are controlled by logical varia-

bles C and D according to this table:

1
D TRUE FALSE
TRUE OPERATE HOLD
FALSE RESET OPERATE

Through the use of two function switches in the program, a
logical variable Bl is obtained such that Bl is FALSE for y< 0,

X >0 and TRUE otherwise. Another logical variable S becomes



42.

FALSE at the same time. It was decided arbitrarily that the
solution should HOLD for 1 second after impact, and then RESET

for 1 second after that. The timing was obtained through the use
of monostable multivibrators (MMV). The logical variable H is
TRUE when S is TRUE and becomes FALSE one second after S becomes
FALSE. Logical variable 0 becomes FALSE 2 seconds after S becomes
FALSE. The integrator control variables C and D are obtained by
"ANDing" and "ORing" combinations of the above variables to give
the proper mode cycling from OPERATE to HOLD to RESET to OPERATE.

The logical functions are:

S = H-0.-B14+B1.0 . is AND

= S.0.H+S-H + is OR
D = H.0 X 1s NOT x

<

Tnitially Bl is TRUE, and S is made TRUE, is assuring that
d the soluti

These logical functions were obtained through the use of a
simple truth table. Some other simpler methods of controlling the
integrator modes were tried, but since the 7040 is a serial mach-
ine, it was found that the simulation of parallel logic required

a great deal of care.

The variable THETA (o) is updated in the HOLD mode only
through the use of a track and store device (TAS) and logical
control variables. It was necessary to use equal integration
intervals because of the logical devices being used. Despite the
simplicity of the equations and the use of a fairly large integra-
tion interval, solution times were surprisingly large on the 7040.
Convergence towards a solution was obtained. A program listing

including comment cards follows:



43,

PARAMETERS
PAR(RANGE, V0O ,THETAO0,G,K,DT)
EQUAL INTEGRATION INTERVAL
- DTMIN EQL(.01)
DTMAX EQL(DTMIN)
LOGICAL VARIABLE Bl BECOMES FALSE_AT THE END OF EACH ITERATION

B FSW(Y,FALSE,FALSE, TRUE)
Bl FSW(X,TRUE, TRUE, B)
TQ TRUE AT T=0, CONTROLS PRECOMPUTATION OF CONSTANTS
TQ FSW(T,FALSE,TRUE,FALSE)
NTQ CoOM(TQ)
LOGICAL VARIABLES FOR MODE CYCLING FOLLOW
TQ S EQL(TRUE)
NTQ S TOR(AND(H,0,B1) ,AND(B1, COM(O)))
H MMV (S, 1. 0)
0 MMY (S, 2. 0)
C TOR(AND(S,0,H) ,AND(COM(S) ,COM(H)))
cP CoM(C)
D AND(H,0)
NEXT 3 CARDS COMPUTE THETA,UPDATING IT IN THE HOLD MODE
H TAS (THETA,C, THETAO ) |
CP THETA EQL(TH+COR)
TQ THETA EQL(THETAOQ)
ACTUAL PROJECTILE EQUATIONS ARE SOLVED BY THE NEXT 2 STATEMENTS
X INT(VO*COS (THETA) ,0.0,C,D)

INTEGRATE ~G TWICE WITH RESPECT TO TIME
USING MODE CONTROLS

Y INT (INT (-G, VO*SIN(THETA),C,D),0.0,C,D)
ERROR FUNCTION AND A CORRECTION FOR THE NEXT VALUE OF THETA ARE FOUND
ERR SUB(X,RANGE)
COR MPY (K,ERR)
FINISH CONDITIONS
CP FIN(100.0,ABS(ERR))

FIN(T,?200.)
TITLES AND OUTPUT CARDS
HDR(T,X,Y,THETA)
HDR
OUT(T,X,Y,THETA)
NUMERICAL VALUES FOR PARAMETERS FOLLOW END CARD
END
2000.0 750.0 0.8 32.2 0.00001 0.2



44 .

APPENDIX IV

The Simulation of a Servo Control System

Figure 1 shows the control system to be simulated using
three settings of the compensation network bandwidth denoted as
1 1

X1 ’ X§- and Xi—o .

The transfer function

(1 + STl)(l + ST3)

S(1 + ST2)
is reduced to
T, + T3 = T,T5 - T,
T3 T
+ = + 2
T, 1+ 1,8

and the equivalent mimic elemental representation of the servo
system is shown in Figure 2. Use is made of the first order
transfer function, FTR, the integrator INT and the usual arith-
metic elements. Listing of the source program is shown in
Figure 3 and the plotted output Figure 4. Total computer run
time on the CDC 3300/MASTER was 1 minute 38 seconds.



YELODYNE
TRANSFER
CONTROLLER
COMPENSATION OUTPUT FUNCTION
Aglsi 10 - VOLTAGE AXIS
POSITION POSITION
DEMAND + K1+ sT) (1 +57y) //‘\\\_ k '
2 V3 S S—i>
(14 5T,) i_\\~‘,/
X1 X1/3 X1/10
PARAMETER UNITS
EL AZ EL AZ EL AZ
K 454 25 4.54 2.5 .454 .25 YOLTS/SECOND/DEGREE
k 222 .400 222 .400 222 .400 DEGREES/SECOND /VOLT
T 15 47.4 150 SECONDS
T2 165 522 1650 SECONDS
T3 2.5 7.91 25 SECONDS

FIGURE 1 - COMPENSATED

TYPE 2 POSITION LOOP

%



MIMIC EQUIVALENT OF FIGURE 1

0
LLLAEL GETR EL mpy AL A e I wey B2 INT
) 1 1
K K )
B1
MPY
17577, B3
831 .
MPY FTR

i
TI+T3- T-,T3‘T2—T2 T,

FIGURE 2

"9¥



47.

TO RUN FROM BATCH THE DECK LOOKS LIKE:

000100 #<JOB#>, <USER#>, <USER ID>

000200 BEQUIP,1=PLOT

000300 &LABEL,1/<USER ID>

000400 G#MIMIC,L,P=1,R

000500 THIS IS A SIMULATION OF A PRECISION ANTENNA
000600 CONTROL SYSTEM

000700 CON (THETAI,DT)
000800 PAR(T1,T2,T3,K1,K2)
000900 Al SUB(THETAI , THETAO)
001000 A2 MPY (A1,K1)

001100 B1 MPY(A2.(T1%T3)/T2)
001200 B2 INT(A2,0.)

001300 B3l MPY (A2 ,T1+T3-T1*T3/T2-T2)
001400 B3 FTR(B31,T2) |
001500 D1 ADD(B1,B2,B3)

001600 D2 MPY (D1,K2)

001700 THETAOQ INT(D2,0.)

001800 FIN(T,120.)

001900 | HDR (TIME,RESP)
002000 HDR

002100 - OUT (T, THETAO)

002200 PLO(2.,.25,THETAO)
002300 ' END

002400 1.00000E 01 8.00000E-01

002500 3

002600 1.50000E 01 1.65000E 02 2.50000E 00 2.50000E 01 0.4000CE 00
002700 L4.74000E 01 5.22000E 02 7.91000E 00 2.50000E 00 .0.4%0000E 00
002800 1.50000E 02 1.65000E 03 2.50000E 01 2.50000E-01 0.40000E 00

FIGURE 3



—t
AT

TIME

F oy

R0

i
(D]

Lets o
3

y t—t—trt -t
o ame d Qes* oSt

h Yo}
’ cIlaUI¥EA  INIONIJID

MIMIC PROGRAM QUTPUT



	0001
	0002
	001
	002
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48

