cc-69-7

RADAR (Revised)

by
James W, Meeker

April, 1969

COMPUTER CENTER

Oregon State University
Corvallis, Oregon 97331

RADAR

(Revised)

cc-69-7

by

James W. Meeker

April, 1969

Computer Center
Oregon State University
Corvallis, Oregon 97331

RADAR

RADAR* is an advanced, on-line, symbolic debugging sys-
tem written for the 0S-3 Time Sharing system at Oregon State
University. RADAR contains an opcode table of the CDC 3300
instructions and a symbol table of programmer-defined symbols
which enable it to allow the user to examine and change his
program in an assembly language instead of the more machine
oriented absolute form. In addition, RADAR has versatile
facilities for controlling the execution of a program by both
instruction stepping and nine software "breakpoints," with

which the user can trace the actual execution of his program.

SYMBOLS :

<SYMBOL>--—Letter|<SYMBOL><letter>|<SYMBOL><dlglt>|<symbol><ner10d>
Any characters occuring after the eighth one are ignored.
Thus, the symbol ABCDEFGH is treated as being the same as the
symbol ABCDEFGH765XYZ23PDQ9. Each symbol has a 24-bit binary
quantity associated with it called its value. Each symbol must
have a value, or it is considered to be undefined. However,
two symbols may have values which are equal.
Symbols may be defined in any of three distinct ways.
First, symbols may be defined from symbol table output from
either COMPASS or FORTRAN by using the SYMLOAD command. Second,

if the user types a line of the form
SYMBOL : EXPRESSION

the symbol is put into the table with its value eqgqual to the
value of the expression. Third, if the user is typing an ex-
pression into an opened word, he may precede the expression
with SYMBOL: and the symbol will be defined as having a value

equal to the address of the opened word.

*Real-time Assembler-Disassemble and éid to Research

SYMLOAD:

The symbols used in a COMPASS or FORTRAN program may be
loaded into the symbol table if the S option was used at ass-
embly or compilation time, respectively. The command given
to RADAR is of the form:

24

SYMLOAD, LUN

-

o SYMLOAD, LUN ,NAME
where NAME is the name of the subprogram and LUN is a general
expression which specifies a logical unit number. (The radix
is set to ten during evaluation of the unit expression.) If
the NAME is specified, only the symbols for that subprogram
are processed, otherwise, all symbol records will be processed.
The unit specified is initially rewound, and then searched
for symbol records with the indicated name, and then rewound
when a file mark is encountered. Each time a record is found,
the symbols are entered into the symbol table and the values
relocated according to information in the LST and RFT of the
Loader. Symbols with character relocation and undefined ex-

ternal symbols are not processed.

PURGE:

PURGE followed by a carriage return removes all user de-
fined symbols from the symbol table. The special symbols des-

cribed below are not affected by this command.

KILL:

This command is used for removing specific symbols from
the symbol table. It is particularly useful when the user has
a symbol defined which is also an opcode mnemonic (if LDA was
defined as a symbol, one could not assemble LDA instructions
with RADAR). The format for the KILL command is

KILL,symbol

KILL,symbol,symbol,...symbol

SPECIAL SYMBOLS:

If a "." or "*" occurs when an operand is expected, it
is treated as a symbol whose value is the same as the address
of the last opened word. The symbols P, A, Q, EU, EL, X1, X2,
X3, HIGHMEM, LOWMEM, RADIX, NUMLJ, NUMSS, and NUMSZ are special
predefined symbols supplied by RADAR. The values of the first
eight symbols are used to store the values of the internal re-
gisters when a breakpoint is encountered or whenever RADAR has
control of the machine. The values of those eight symbols are
restored to the processor registers whenever control returns
to the user's program. The value of the symbol RADIX is equal
to the current radix of all integers. For example, if RADIX
is equal to eight, all numbers are expressed in octal. The
last three symbols are used to control the format of integers
which are typed out. If the two octal numbers 77777777 and
00000000 are used to represent true and false values of the
symbols, then when NUMLJ is true, numbers are printed in left-
justified format. When NUMSS is true, the signs are suppressed;
and when NUMSZ is true, RADAR suppresses leading zeroes (NUMSZ
has no effect if the numbers are left-justified). The values
of LOWMEM and HIGHMEM are default values on memory searches
and are also modified by the OVREAD and MC commands.

INTEGERS:

Integers are represented internally as one's complement
binary integers using 24 bits of precision. Integers may be
typed with a space or minus sign or nothing preceding the
digits. The digits are packed in the radix specified by the
value of the symbol RADIX unless a temporary change has been
made as described below.

The radix may be temporarily changed by typing the special
character "+" followed by a B, O, D, or an integer (which is
assumed to be in base ten for standardization), and then typing
the digits. If the integer is to be negative, the minus sign

should precede the up-arrow.

Examples:
+D 11 is 13 in octal
+0 12 is 12 in octal
+B 101 is 5 in octal
-43 12 is =5 in octal

Each number must be terminated by some character that is not
a digit. No check is made to be certain that the digits are
all less than the radix.

For convenience to systems programmers and other users
who work with individuai characters, an alphabetic mode has
been added. Like the temporary changes of radix described
above, the user types "+" followed by an A. The first char-
acter after the A is then treated as a positive 8-bit integer
and is the appropriate ASCII code with the most significant
bit of the character always being a cne bit. BAn example of

this is:

+AX is 330 in octal.

EXPRESSIONS:

An expression is a symbolic string which is used to de-
termine a quantity called the value of the expression. All
symbols used in expressions must be defined. The string is
evaluated from left to right according to standard precedence
rules and conventions cdncerning the operators and parentheses.
The following binary operators are allowed: +, -, *, DIV,

MOD, AND, OR, and XOR. In addition, two unary operators,

- and @ are allowed. (The @ symbol has the effect of replacing
its argument by the word that the address of its argument
points to. For example, @ 234 would be equal to the contents
of word 234.) An expression may contain any combination of
operators and operands so long as the following rules are not

violated.

4.

Two operands must not be adjacent.

A binary operator may not be to the immediate right

of any operator.
Parentheses must be balanced.

The combination @ - is not allowed.

Some examples of legal expressions are:

ALPHA DIV 2+3* ((-BETA XOR 777)+GAMMA)-@ DELTA+@ (-3 XOR ZORCH)

GAMMA+123

'@7654+1

2+2 4 1225DIV (3*ZORRO)

The precedence rules are as follows:

1.

Quantities within parentheses are evaluated and re-

placed by their values.

@ operators are performed from rlght to 1eft

Unary minus operators are performed from rlght to left.

AND operators are performed from left to right.
OR and XOR operators are performed from left to right.
DIV, MOD and * operators are performed from left to right.

+ and - operators are performed from left to right.

The value of an expression can be printed in the current radix

by typing the expression and following it with an equal sign.

RADAR will then print out the value and a carriage return with

a line-feed. This feature is primarily used to print out

the values of symbols, but it can also be used to do integer

and logical arithmetic calculations.

ASSEMBLY :

If, in the process of evaluating an expression, an un-
defined stbol is encountered, RADAR examines the opcode
table to see if it is an instruction mnemonic. If it is not,
an error has occurred. I1f it is a mnemonic, the expression
evaluator goes into an assembly mode. The basic skeleton of
the instruction is set up and RADAR begins assembling the word
in almost the same manner as COMPASS, but with the following

exceptions:

1. The space is used as a separator, but it does not

terminate the field in which it occurs.

2. The comma is used to terminate fields if there is
another field which follows. Special characters
not having a definite function in assembly terminate

the instruction.

3. There are no sub-fields as in COMPASS, except for
the opcode modifiers like I, S, EQ, LT, GE, and NE.
These fields are assumed to be blank by RADAR un-
less a comma is the first nonspace character to

follow the opcode mnemonic.

4, General expressions are allowed in all fields ex-
cept for the opcode field and the opcode modifier
sub-field,

5. Character addresses are not automatically shifted
left two binary places. The user must type "4*"
to do the shift.

Thus, the following lines of code may be assembled by RADAR:
ﬁJP ZAP |
LDA,I 3*(ZORCH+123)AND+8 7777,BETA XOR 3 +1
LACH 4*ZILCH+6

uJp,I ,3

When a blank field has occurred, as in the address field of

the last example shown, it is assembled as a zero field.

DISASSEMBLY :

Words being disassembled are printed as an opcode (with
its modifier if it has one) followed by all of its fields -
separated by commas. All fields are printed out as lefft-
justified, sign suppressed integers of the current radix ex-
cept for the address field. The address field will be ex-
pressed as the current location plus or minus an integer less
than or equal to seven if it is possible. If that is not
possible, then it will be expressed as a symbol plus an inte-
ger less than orvequal to sixty-three, such that the integer
is minimized. If neither of those two are possible, then

the address is expressed like any other field. Examples:
UJp,I ZORCH+12,0
ENA,S 77777

IJD .-5,2

EXAMINATION OF MEMORY:

The examination pointer points to a word which has been
opened, that is, a word which may have a new quantity typed

into it.

The slash will cause RADAR to type out symbolically
(i.e., disassemble) the contents of the location last

typed by the programmer or RADAR.

Examples of this are:
ADR+3/LDA ZAP+5,1 (1)
ZORCH/UJP,I P+7,0 /UJP ZORRO,0 (2)

If the location which precedes the slash is the first item in
the line as in (1), the examination pointer will be set equal

to that location. If the location which preceded the slash

is not the first item in the line, as in the second occurrence

of (2), then the examination pointer is not changed.

The quote is the same as slash except that the contents
of the location are printed out as integers of the cur-
rent radix in the format specified by the format control

symbols.

The number sign causes the two words at the location to
be printed out in floating point. If (CR) is then typed,

the location is incremented by two.

The apostrophe is like the slash except that there is
no printout. In addition, the address which preceded
the apostrophe is opened, and the quantity which follows
is placed in that location. As soon as the quantity is
typed, the location specified by the examination pointer

is reopened.

The equal sign causes RADAR to re-type the last quantity
in the opposite mode in which it was typed by either the
user or RADAR,

Examples:

(CR)

XAPER"012345678

12345°'0 (Causes 0 to be placed in location 12345)
SWISH"01073752 = UJP ZORCH+15,0

BETER/LDA,I BUZZ = 20463572

The backslash acts just like the apostrophe except that
the word which was last typed is opened instead of the

word whose address was last typed.

The carriage return causes RADAR to type a line-feed,
increment the examination pointer by one, and print out
the new examination pointer followed by a "/", a """, a
"$", or a "'", depending upon the examination mode,
followed by the contents of the location, if it is to be
printed.

(LF) The line-feed causes RADAR to print a carriage return and
a rubout, then set the examination pointer to the last

address typed, then proceed as the later part of the

carriage return sequence.

The semicolon causes RADAR to type a carriage return and

Y1

a line-feed, and to await some input by the user.

BREAKPOINTS:

| RADAR has nine breakpoints which allow the programmer to
interrupt his program at user-defined points, and to examine
the status of the machine from his teletype.

When a breakpoint is encountered in the program, the
registers are all saved in the locations which correspond to
the values of the symbols which were previously mentioned.
The instructions which were originally in the breakpoint lo-
cations are restored, and the breakpoint number and the add-
ress printed dut on the user's teletype.. Control then passes
to RADAR, which enables the programmer to look around. If
the break came from within RADAR, the registers are not saved

and control passes to RADAR.

To insert a breakpoint the user need only type $n:
EXPRESSION followed by a carriage retﬁrn.‘ The lower sixteen
bits of the expression are then put into breakpoint number
n. To find out at what value a breakpoint is set, the user
types $n/ and RADAR types out six spaces if the breakpoint is
not being used, or the value that the breakpoint is set at
if it is in use. After that, the user may type a carriage
return, which leaves the breakpoint unaffected, or an ex-
preésion followed by a carriage return, which causes RADAR
to set the breakpoint to the lower sixteen bits of the ex-
pression. In either casé, RADAR then prints a line—feed.

To remove breakpoints the user types $nK and RADAR de-
letes breakpoint number n. Typing $K kills all of the break-

points.

10.

To return to his program after a break has occurred the
user types GO and RADAR restores all the registers and saves
the instructions at the breakpoint locations, and puts a
special instruction in their places. RADAR then jumps to
the program after executing the instruction at thebbreakpoint

location from which the break occurred.

RESTRICTIONS ON BREAKPOINTS:

Breakpoints should never be placed in words which are
modified or used as data. Neither should they be placed at
multiword instructions. No responsibility is assumed if any

of these conditions are violated.

EXECUTION OF INSTRUCTIONS:

Any expression may be executed by typing XCT, EXPRESSION
followed by a carriage return. RADAR then types a line-feed,
followed by one or two extra line-feeds if a single or a
double skip occurred. This feature may be uéed to start a
program. For example, to start a program at location ZORCH+3,
the user could type XCT, JUMP ZORCH+3 followed by a carriage

return.

INSTRUCTION STEPPING:

If a rubouf is‘typed at the beginning of a line, then
the instruction at the location pointed to by P will be exe-
cuted and the value of the symbol P will be changed in the
same manner as the hardware program counter. The values of
the symbols A, Q, X1, X2, X3, EU, and EL are updated in a
similar fashion.

After the instruction has been. executed, the instruction
at location P is disassembled and a new line is started. More
rubouts may be typed and this process repeated. At any point
‘after the first rubout, typing rubout will execute the instruc-

tion which was displayéd by the previous rubout.

11.

Typing GO(CR) at the start of a line will cause execution
to begin at the address indicated by P.

After loading a program with the loader the user may
type RADAR instead of RUN. This causes the value of the pri-
mary transfer symbdl to be stored in P and the vaiue of the
secondary transfer symbol to be stored in Q. Control is then
passed to RADAR main control. The user may now change words, -
examine memory, set breakpoints, and so forth. Execution of
the program will bégin if the’GO statement is used.

At the beginning of any line the user may find out what
the contents of the dynamic registers are by typing STATUS
followed by carriage return. If the user is felocated to
operand state, then [ROS] is printed; otherwise, this line
is absent. The names of the registers followed by the con-
tents expressed in octal are printed on successive lines.

The STATUS command may also be used to determine the status
of a logical unit. The command is in the form STATUS,LUN

followed by a carriage return. LUN is a general expression
evaluated in base ten. The command prints out the hardware

type followed by the names of the status bits.

BREAK:

The system control statement BREAK causes an interrupt
to RADAR's break location. This is useful when a program
gets into a loop, or if the user causes an illegal instruction
within RADAR itself. The latter case w1ll cause RADAR to
enter main control and not disturb the user's registers since

the break originated from within RADAR.

RADAR:

The system control statement RADAR causes RADAR to be
loaded into the user's virtual memory and control passed to
RADAR main control.

12.

LOGICAL UNIT FUNCTIONS:

A function may be applied to a series of logical units

with a command of the form:
FUNCTION,LUN,LUN,LUN,...LUN

where LUN is a general expression which is evaluated with

- radix equal to ten, and FUNCTION is one of the following:

BACKSPACE - backspace each unit.

BKSPACE same as BACKSPACE.

BKSP same as BACKSPACE.

CLEAR | clear status on each unit.

FWDSPACE forward space on each unit.

FWSP same as FWDSPACE.

RELEASE release each unit.

REWIND rewind each unit. ‘
SBPFM search backward past file mark on each unit.
SEFB same as SBPFM.

SEFF same as SFPFM. _

SFPFM search forward past file markbon each unit.
UNEQUIP .~ unequip each unit. ’

WEOF _ " same as WFM.

WEM write file mark on each unit.

In addition, RADAR processes EQUIP commands in the same

format as those processed in system control moce.

SEARCHES: -

. The user may search memory for any quantity'looking at
only certain bits which are user defined. The search is
similar to that which the MEQ instruction dbes, but unlike
the hardware masked equality search, the user may look for
77777777 octal and not find a lot of zero words, too. To

start a search, the user types:
'SRCH,EXPRESSION:EXPRESSION:EXPRESSION:EXPRESSION

followed by a slash, an apostrophe, or a quote mark. When

13 .v

the search finds a word it prints the address followed by the
symbolic contents of the word if slash was typed, or the nu-
meric contents of the word if a quote was typed, or nothing
if the apostrophe was typed. The first and second expressions
typed in settihg up the search are the lower and upper limits
of the search respectively. The value of LOWMEM is assumed
for the first expression if the expression is empty, and the
value of HIGHMEM is assumed for the second expression if it
is empty. The value of the third expressiOn is the quantity
being searched for, and the last expression'is the mask. 1In
the search; bits are compared only where there are one bits

in the mask. Thus,
SRCH, ZAP : ZORCH+5:ADR: 77777/

will have RADAR search memory from ZAP to ZORCH+5 looking
for ADR in the lower fifteen bits of each word and ignoring
the upper nine bits of each word that it examines. If it '

finds some words it might type:
65234/UJP ADR,O0

76702/UJP,I ADR,1

MC:

The command MC followed by a carriage return causes
RADAR to zero all the dynamic registers, clear all the break-
points, clear the ROS condition, and reinitialize LOWMEM and
HIGHMEM to 00000 and 777778 respectively. ‘The command MC,I/O
followed by a carriage return has the effect of unequipping
all logical units and then equipping 60 and 61 to the stan-

dard terminal input-output.

OVERLAYS:

Two commands are supplied by RADAR to facilitate making

minor corrections to overlays. Both commands rewind the unit

14.

specified before performing the operation and OVWRITE will
equip the unit as a file if it is not already defined. OVREAD
reads the header record into the lower four words of memory
and then uses the information in the header as fifteen bit
addresses to read the overlay record into the lower 32K of
virtual memory. OVREAD also sets the program counter and
Q register appropriately. OVWRITE uses the lower four words
of core in an inverse fashion. Format for these commands
is as follows: |

OVREAD,LUN

and

OVWRITE,LUN

each is terminated by a carriage return and LUN is a general

expression evaluated in base ten arithmetic.

AEROCORE :

The ZEROCORE command is terminated with a carriage re-
turn, and its effect is to set the lower 32K of virtual mem-

ory to zeroes.

MISCELLANEOUS:

To change the format or radix of numeric printout, the
user defines the special symbols previously shown. The RADAR
‘system is initialized as being octal, sign-suppressed, right-
justified, and printing leading zeroes. To change to decimal

sign printing, the user would type:

RADIX <« 4D 10
NUMSS <« 0

Since the two most frequent modes of printout require
three symbol definitions to switch back and forth, two commands,
DECIMAL and OCTAL have been implemented which change the mode
to sign-printing, left-justified decimal or sign-suppressing,
right-justified octal respectively.

	0001
	001
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14

