cc-69-11

ALGOL: OS-3 User’s Manual

October, 1969

by

Jo Ann Baughman
Mary Lynn Berryman
Yvonne Yapp

COMPUTER CENTER

Oregon State University
Corvallis, Oregon 97331

ALGOL: 08-3 User's Manual

October, 1969

cc-69-11

Jo Ann Baughman
Mary Lynn Berryman
Yvonne Yapp

Oregon State University
Computer Center
Corvallis, Oregon 97330

Copyright 1969, Oregon State University
Computer Center Publications
Corvallis, Oregon 97331

Printed by the Oregdn State University
Department of Printing

PREFACE

ALGOL, algorithmic language, was developed during the
years of 1958 and 1959 on an international basis. ALGOL has
been defined as a language which is useful for the_desCrip-
tion of processes. These processes can be numerical or log-
ical.

The purpose of this manual is intended to provide, for
the user with a knowledge of ALGOL, some éxamples of entering
and executing ALGOL programs on the CDC 3300 or 3500 under 0OS-3.
No attempt has been made to teach ALGOL but only to illustrate
the use of those commands which will assist the ALGOL program-
mer in the use of ALGOL under 0S-3. This is not an all-
inclusive volume.

We wish to acknowledge the support of the National Science
Foundation grant GJ 51, NSF AUFENKAMP 370 Regional Center, which
aided in the development of this manual. We also thank
Gilbert Bachelor and Robert Brenne for their contributions to
this publication.

ALGOL: O0S-3 USER'S MANUAL

TABLE OF CONTENTS

Introduction S R I I I I I S A SR B N I A I N L AL AL R B B L B AL B A l

PART ONE

I. An Introduction to ALGOL from the Teletyp€....c.eeeeecees 3

1. USing EDIT..cccecccccsascsscscasossssasesasvsccsccsosnsasocs
2. An Example of Editing and Running -

an ALGOL PrOgraM....ccceseecessccssscccsccssssncns 0
3. Saving and Running a Binary Version of a Program.....l0
4. Making a Paper Tape of a Program on a Saved File.....1l2

II. An Introduction to ALGOL from Batch......,...............13

. To Run an ALGOL Source DeCK....cceeeessescscecccessssld
. To Run an ALGOL Program that is on File.....c.eeceeeeld
. To Punch a Card Deck from a Program on File..........1l6
. To Copy a Source Deck onto a Saved File.......c.e....17

> W N+

PART TWO

I. Elements of Simple Program.....c.oeeseeeesscsacssssssssesld

1. Illustration on Use of 'BEGIN', 'COMMENT',
'END" and 'EOP'.‘....I...’..'......".......0...019
2. Sample Program............................;..........20

II. DeClarationS.......-.....-.-.........o.............-.--0.21

1. Type DEClaratiONS.eeeeeesscasscassossscnsosasonssnessell
2. Array DeclaratiOnS...eceecessesccscoacssscscccscssaasld
3. Switch Declarations and Calling..ececeeeceescoosccssseld
4. Procedure Declarations and Calling....coceecacccecssss2B
5. Sample Program (on declaration).....ceeescecesccecsss3l

III.Operators AnNd ValueS.eeeeeeeeoseessesasssscsssacanssnnessld

1. Relational OpEratOr...ceseseesceescoesscsnsssasssssssdd
2. Logical OpPEratOr e ceeseesscnassasscensssasscascassssesdd
3. Arithmetic Operator..................................35
4. LOGical VAlU€.ueeeeeoceasossscssosoassassansasassasess3bd
5. Sample Program on OPEratOrSecesseccesesssscaannsssess3b

IVO Expressions-oa.-ooo.o'oooo.tloo.o.0.....0.........-.-..38

1. Function DesSignatoOrS..seeccscecscscsccesscssecssaasssl38
2. Arithmetic Expressions (Including IF clause).......38
3. Boolean EXpPresSSiONS....eeceeeececcccssscsssaasasssss38
4. Designational EXpresSiOnS....seeeesceesasscccscssss3d
5. Standard FUNCtionS....eeeceeessscosscnacssssncessss3d

V. StatementS......00ooot.o-oooco.o‘.oco.....co..o000‘0003040

Compound StatementS...eeeeceesecscsssecnscssssassesdl
BlOCK . eoeeeseseasooooscsasasscsssscnacnssssesesosseasddl
Assignment Statement...eiecessccesscscennssanacassad3
GO TO StatemeNt...eeeeeeeeceeeonsssoesscsssnacssessdd
DUMMY Statement...eeceeesscscssceccansessssssonceasadl
Conditional and Unconditional StatementS...........44
Procedure StatementS...cceescesessscsssscsescnsesessdB
FOR Statement...eeeeeeeeeeesesccasssscnsasssncsessssdB
Input/Output and Format String....ceceeeeeeceseccassd2
Sample Run on All StatementS....ccececececesssssssab2

cwvwoo~NOUd WD
L]

[

PART THREE

Io Newtonls Method---.....-.n--ooo.oo-0.6'00-000.0-0-00000-65

1. Newton's Method for Cube ROOtS.:ececocessssnsasessabd
2. Newton's Method with LOOPing..eeeeeccecceccccccaass/l

II. Two-Dimensional Array...eeseeeccccsscsssasnscnnesnsccossld
III. Economics Equilibrium Problem....cceesscccascacascnsaea’d

IV. Simpson's Rule for Integration.....ceceeeeeeeescaesscesaa8dd

REFERENCES C.‘0....DOQ.'0.0ll.....ll...-O.....lO.f.l......'..gg

INDEX.‘...l...l..-...........'..Q.......-.O..-..l.'.....l..l i

INTRODUCTION

The digital computer has astonishing capabilities as a tool
for the experimental scientist. It is immediately evident that
the use of such a tool requires thorough preparation. The com-
puter can do nothing that the user in principle could not also
do; it can only do it faster.

It is clear that we must write down the set of instructions
that we want to give to the machine. - However, we cannot use
everyday language and expect the machine to receive instructions
in the form of a letter or dictation. Instead we must adépt thev
language used to the capabilities of the machine.

Although the computing machine can be used in more general :
problems, in what follows we are chiefly concerned with computa-
tion--more precisely, arithmetic computation. Arithmetic formu-
las which contain numbers, names denoting yet unknown guantities,
and functions (such as SIN, COS, and LN) have long been used to
describe computational rules. Such formulas form a core embedded
within a sequence of organizationél statements which describe the
flow of the computational process. Thus, for example, the execu-
tion of parts of the computation can be made to depend on certain
conditions, or one can prescribe the number of times a part is to
be repeated. Indeed, the power of the automatic computer comes
from its ability to make precise decisions at definite’places
during the course of the computation in accordance with preassigned

criteria.

Finally, the machine must receive specifications as to type
and dimension of the initial data entering into the computation
(input data) and the numerical values given as the result (output
data). A complete set of instructions and rules written in such
a manner that it uniquely defines the course of a computation from

beginning to end, we will call a program.

The preparation of the program entails more than due consid-

eration to the arithmetic and organizational capabilities of the

machine. The simple-minded intelligence of the computer requires
that the language used be formed according to stringent rules. The
present manual explains the standardized formal language ALGOL
(ALGOrithmic Language) which arose out of an international effort.
ALGOL programs are largely independent of the properties of indi-
vidual machines and are conveniently readable by a wide circle of
interested people. To an ever increasing extent algorithms and
programs are being written and published in ALGOL.

In Part One the reader will find introductory examples illus-
trating the use of ALGCL from a remote Teletype and from batch
(cards) .

In Pert Two the words from the ALGOL language are defined
and examples are given with each. This section may be of benefit
to students enrolled in an ALGOL class. Throughout the manual
references will be made to the manuals listed at the end of the manual.

In Part Three complete examples are given with written explan-
ations for the procedures used. The comments include explanations
about the usage of ALGOL and also about the structuring of the
programs. Each example has been run from the Teletype and appears
exactly as it did on the printout from the Teletype unit.

Users interested in additional information should refer to
the following Computer Center publications:

cem-70-7, 0S-3 Editor Manual, Dayton, January, 1970
ccm-70-8, 0S-3 Reference Manual, Skinner, January, 1970

CDC, ALGOL Generic Reference Manual

PART ONE

T. AN INTRODUCTION TO ALGOL FROM THE TELETYPE

Since the user may make ﬁse of EDIT to create a program,

an introduction to EDIT will be given, then reference will
be made to special characters and keys on the Teletype.
Reference will then be made to the ALGOL language that the
compiler accepts. A detailed example of entering, editing,
and running an ALGOL problem is given along with an explana-
tion of all commands used.

1. USING EDIT

The 0S-3 system library contains various routines such as
the Fortran compiler, the Algol compiler, OSCAR, RADAR, and
EDIT.

The EDIT program allows the user to generate, alter, or
list files. 1In the EDIT program, a right bracket (]) sign
indicates that you are in the EDIT command mode.

All editing operations are performed in a core memory work
area. Information to be edited must be transferred into this
area to be modified. Modified information must be copied out
to a file before it can be used. Binary machine language
object programs cannot be handled by EDIT.

All editing operations are performed in a core memory work
area. Information to be edited must be transferred into this
area to be modified. Modified information must be copied out
to a file before it can be used. Binary machine language

object programs cannot be handled by EDIT.

Turn Teletype to ON LINE.

Type a Control A (hold CONTROL key down and type an A)

Type in your Job Number and Use
RETURN CR .
The Teletype should, if you typ

CS,A.
r Code and push key marked

ed a valid JOB and USER NUMBER,

block out your JOB and USER CODE and type the date and pound

symbol (#).

Type the word EDIT and push RETURN CR key.

the EDIT command mode.

You are now in

10217 AM TERMINAL 042

THIS WILL BE AN ADDING PROGRAM.

"3'% AsB)

* ') s
')f:-A:B:SUM)i

S S5S44AREGEEE

JANUARY 19, 1970

#EDIT

J INPUT

00001 :AL1

00002

00003

00004t 'BEGIN'

00005 " 'REAL' A,B,SUM:3
00006 INPUT(60> 'C°*
000NTs SUM=A+B3;
00008 QUTPUT(61, 'C°"
00009 OUTPUT(61, *(°
00010: ‘END"’

00Nttt - "EOP'
0nn12

The Teletype will type a right
is waiting for an EDIT command.

bracket (]), which indicates it
You type the command INPUT and

push the RETURN key CR .

The Teletype will print 00001:.

Within EDIT are many commands, one of which is INPUT.

command prepares a temporary storage for information.

This
A

sequence number followed by a colon is provided for each

line.
Center manual ccm-70-7.

For more information on the EDIT mode see 0OSU Computer

The Algol Compiler will use the first 8 characters preceding
the first 'BEGIN' as identification. This example will be
identified by the ALGOL Compiler as ALl.

You are now ready to enter YOur ALGOL program. If you make
an error while in EDIT, a backward slash, , (an upper case
L) will cause the last character or blank to be ignored. An
@ sign will cause the previous characters and blanks (on the
same line) to be ignored.

Example: ABD C is equivalent to ABC. Example: ADB@ABC is
equivalent to ABC.

Notice that in line 7 an error occurs. This will be picked
up later by the compiler, (it should ready SUM:=A+B). Let
us assume at this point that you do not know the error exists.

You are now ready to save the program. The name of the file
in which the program is saved may be different from the name
of the program. In this example, the name of the program is
ALl and the name of the saved file, on which there exists a
copy of the program, is ALONE; you can now access this program
by asking for the file ALONE.

J10UT,ALONE

]

2. AN EXAMPLE OF EDITING AND RUNNING AN ALGOL PROGRAM

To compile your program, type ALGOL,I=ALONE,X.

#ALGOL, I=ALONE, X

This command is typed in the 0S-3 Control Mode (#). The com-
mand will check your program for errors and send the object
program to LUN 56, (Logical Unit Number) .

0S3 ALGOL V0.0 AL1 01719770 1020
(01) LINE 0004 PROGRAM BEGINS
oD LINE 0010 PROGRAM ENDS
(01) LINE 0010 SOURCE DECK ENDS
(03) LINE 0007 DELIMITER

Four (4) lines will be typed out for all programs. The first
will be general information: Version, Program Name, Date, Time
and Page. The second will be the line number where the program
begins. The third will be where the program ends. The fourth
will be where the source deck ends. Anything appearing after
these lines will be error messages.

If the error in line 7 had not been there you could have loaded
56 at this time. However, we will go back to EDIT and correct
the program. The error message tells us a delimiter is wrong
in line 7. The Search and Replace and List (SARL) command will

be used.

#EDIT
1FIN,ALONE

1SARLs Tes/=/s/ 8=/
00007 SUM:s=A+B;

J0UT,ALONE

]

The program has been corrected and we are ready to again call

the ALGOL Compiler; however, first rgwind or release LUN 56.

This time the compiler will be called with another parameter, L.
This will cause the program to be listed.

#RELEASE,56 o
"#ALGOL»I=ALONE»XsL

0S3 ALGOL V0.0 ALt 01719770 1022
ALl

' THIS WILL BE AN ADDING PROGRAM.

'BEGIN®
" 'REAL' A»B,SUMS
INPUT(80, *'C*' ')'» A»B);
SUM:=A+B; R
QUTPUT(61s 'C*' % *)')5
QUTPUT(61, 'C' ")', A»B,SUM)S
10%% *END* B
" *EOP!
01) LINE 0004 PROGRAM BEGINS
Q1) LINE 0010 PROGRAM ENDS
01 LINE 0010 SOURCE DECK ENDS

You are now ready to load the object program. Type LOAD, 56,

then type RUN followed by a carriage return (CR) and a Line
Feed (LF).

#L0AD>56
UN
RUN

The computer will now type standard channel information.

60 is the standard unit for TTY input; 61 is the standard unit
for TTY output. If the standard channels are all your pro-
gram requires, type starting in column one CHANNEL,END followed
by a (CR) and a (LF). |

CHANNEL» 60=LU60, P80
CHANNEL> 61=LU61,P136,PP60

C HANNEL» END (CR) (LF)
CHANNEL > END

The computer will now wait for you to enter the values for
variables A and B (a result of the statement in line 6 of the
program). End each record with a (CR) and (LF).

120 (CR) (LF)
13.0 (CR) (LF)

The computer will now type out the variable values indicated
in line 9 of the program.

+1+200000000 ' +001 +1.+300000000'+001 +2.500000000 '+001

END OF ALGOL RUN
#LOGOFF
TIME 7.226 SECONDS MFBLKS 1 COST $0.83

Since this program was saved in the previous example with the
command]OUT,ALONE (see page 5) the user can run the program
at any time with the command

#ALGOL, I=ALONE, X.

ENFBSEEREEEE

JANUARY 19, 1970

#ALGOLs I=ALONE» X

053 ALGOL V0.0

1) LINE 0004
(01) LINE 0010
(01 LINE 0010

#1.0AD»56

RUN

RUN

AL1

PROGRAM BEGINS

PROGRAM ENDS

10:26 AM TERMINAL 042

01719770 1026

SOURCE DECK ENDS

CHANNEL > 60=LU605 P80
CHANNELs 61=LU61,P136sPP60

C HANNEL» END
CHANNEL ., END

+1.200000000 ' +001

END OF ALGOL RUN

LOGOFF :
TIME 4.900 SECONDS

+1300000000 *+001

MFBLKS 1

+2.500000000 *+001

COST $0.62

3. SAVING AND RUNNING A BINARY VERSION OF A PROGRAM

The program is compiled as before but before loading 56, the
compiler (object) program on 56 is saved with the command

SAVE,56=BINALONE.

S 086S8AREEESE
JANUARY 19, 1970 10:29 AM TERMINAL 042

ALGOL, I=ALONE,» X=56

0S3 ALGOL V0.0 AL1 01719770 1029
oD LINE 0004 PROGRAM BEGINS
(01) LINE 0O0l0 PROGRAM ENDS
01> LINE 0010 SOURCE DECK ENDS

SAVE,56=BINALONE
#LOGOFF
TIME 1.848 SECONDS MFBLKS 1 COST $0.20

Since the command #ALGOL,I=NAME,X automatically equips the
ALGOL library and since we will not use this command with a
binary program we must equip the library, *ALGLIB to LUN 63.
The rest of the run is the same as before.

10

S266885E00AS :
JANUARY 19> 1970 10:32 AM TERMINAL 042

#EQUIP, 63=*%ALGLIB
#1.0AD, BINALONE
RUN

RUN

CHANNEL» 60=LU60, P80
CHANNEL, 61=LU61,P136sPP60
C HANNEL» END
CHANNEL, END
4325.7896 +97654325

+4+325789600'+003 +9.765432500 '-001 +4.326766143"+003

END OF ALGOL RUN

#LOGOFF
TIME 2.140 SECONDS MFBLKS 0 COST $0+29

11

4. MAKING A PAPER TAP‘E"GF' A PRQG"RAE“O‘N A SAVED FILE

The command, TTP, will generate sévérélvinches“automatiéélly for
the beginning and the end of the tape. After typing TTP make
sure the dial is turned to KT (keyboard and tape).* This com-
mand will automatically place a control shift R [TAPE] and a
control shift T on the tape.

yrrrrrrrr e .
JANUARY 19, 1970 10337 AM TERMINAL 042

#EDIT
JFIN,ALONE

JTTP
ALl
THIS WILL BE AN ADDING PROGRAM.

'BEGIN®
" 'REAL' A,B,SUM;
INPUTC(60> °*C* '")', A»B);3
SUMe:=A+B; ~ =~ = °
QUTPUT(61, "C' * *)')3
OUTPUT(61, *C' *)', A,B,SUM);
END° T
) ° 'EOP'

]
#LOGOFF
TIME 0.421 SECONDS MFBLKS 0 COST $0+06

* On a TTY 33 just punch and keyboard have to be turned on.

12

II. AN INTRODUCTION TO ALGOL FROM BATCH

'A batch job consists of a deck of cards submitted by the user
to the Computer Center. The computer operator places this
deck in the card reader, along with,other‘job decks. 0S5-3
reads in the decks and processes each job in turn. The user
may refer to the Computer Center User's Manual, cc-69-10,

for additional information.

The following are sample control cards and deck structures for
the batch operation of ALGOL programs.

13

1. TO RUN AN ALGOL SOURCE DECK

/I LOGOFF
8
77
88
/ |
/ |
/ DATA CARDS
/éHANNEL,END
//RUN
- 7 LOAD, 56
n g

W // SOURCE DECK

7 ALGOL,L,X

8
//1 TIME=10
8

//Z JOB,75537,LYNN SAVE FOR M
8

14

2. TO RUN AN ALGOL PROGRAM THAT IS ON FILE

7
//

B |~ "~ DATA CARDS

//CHANNEL;END

//(RUN

//i LOAD, 56
8

//fALGOL;I=SR00T,L,x
8

//j TIME=10
3

//EJOB,75537;LYNN SAVE FOR M
8 .

15

3. TO PUNCH A CARD DECK FROM A PROGRAM ON FILE

///j LOGOFF
8

///2 COPY , I=SROOT ,0=62
8

///j LABEL, 62/MARY
3

///2 JOB, 75537, LYNN SAVE FOR M
8

lé

4. TO COPY A SOURCE DECK ONTO A SAVED FILE

///Z_LOGOFF
8

7
88
/
//,
//,
//, SOURCE DECK

~ //j COPY ,0=SROOT
i 8

//(i JOB, 75537 , LYNN SAVE FOR M
8

17

PART TWO

JINLONYLS MOIAd HOYNOS WYIHOoUd

juswelels 0/I

Juswa3e3ls 2INPIDOIJ]

juswolels Aummd -

9sNeTD YO _
:3uswelels ¥Od

jusWwe3le3ls O9sneTd

sooTd dI :TeUOT3ITPUOD
punodwo) JusawWwa3lels
oTseg TeuoT3Tpuodu() -

Juswolels OL 0D

Jjuswolels IUSMUbLTISSY

‘poTaqerTun I
peTeqeT °d Uued sjuswaleis TT

‘wexboad syz utr Huotre sasymiue
po3I9SUT o ued s3udWEIeIS , LNIWWOD

—QZM- @

sausue1e3s @ ,

 NIDHES, QU

_QZM- @J

sjusweledisg ﬁu

uoTleIRIODd !
 NIDEH,

‘I I¥VHD

~¥}001g

- umo
o 3INpPo00Id-
v (2) RSl
NVATOOH~ mmmm«-
qmmmnﬁu SdAL-

o YEIOTINI -

ILON

,dOH,

 ONH ,

Juawa3els
atduts

Juswo1els
@qsomﬁoo--muuv

uoT3eaeTosad

W NIDED

swepN wexboxd

An_vj
©

ff M O U Mmoo A& =

18

I ELEMENTS OF SIMPLE PROGRAM

1. ILLUSTRATION ON USE OF 'BEGIN', 'COMMENT', 'END', and 'EOP'

200000 OOIBSOGEPINOSEOSIOEOTROEDSOS (a)

S0 0 S 00 OGO PO OSSP OO PSS

'BEGIN® _ (b)
:&6&&é§;:..‘....'.'. (é)
:ééﬁz..............’ @
"EOP (e)

'BEGIN', 'END', 'EOP' and 'COMMENT' have the following definitions

and/or equivalencies:

(a)

(b)

(c)

(a)

(e)

Any words before the first 'BEGIN' are comment. However,
the first 8 characters are designated to be the identi-
fication of the program.

'BEGIN' - The first executable symbol of an ALGOL program,
a Block or a Compound Statement. 'BEGIN''COMMENT' (LIST)
is equivalent to 'BEGIN', where (LIST) is any sequence
not containing a ;.

"COMMENT' - This word is used to indicate that an explana-
tory comment follows.

; "COMMENT' (LIST) is equivalent to ;, where (LIST) is any
sequence not containing a ;.

'"END' - This indicates the physical end to a compound
statement. Each 'END' corresponds to each 'BEGIN'.

'END' (LIST) is equivalent to 'END', where (LIST) is any
sequence not containing 'END' or ; or 'ELSE'.

"EOP' - Indication of end of a program (columns 10-14)
following the last 'END'.

19

2. SAMPLE PROGRAM

This program illustrates the source deck of a simple program.

#ALGOL,»I=STRUsX»L

0S23 ALGOL V0.0 SIMPLE o 02/20/70 1412 PAGE.
SIMPLE THE NAME OF THIS PROGRAM IS SIMPLE
'*BEGIN® °REAL 'A,B,SUM3 ’
‘*COMMENT ' THIS PROGRAM WILL READ 2 REAL NUMBERS.
ADD THEM AND PRINT OUT THE SUM;
INPUTC60, "C" *)*5A5B);3 A
*COMMENT ' THE ABOVE INPUT STATEMENT WITH FORMAT STRING
(' ')>' IS EQUIVALENT TO INREAL(C60-A) AND
INREAL(60,B) WHICH WILL FREEFORM INPUT A AND B3
SUMs=A+B3
10%%x OUTPUT(615 *('%*)"*); ,
'COMMENT ' THIS WILL GIVE A PAGE EJECT:
OUTREAL(61,SUM) 3
QUTPUT(612°C*/*)*);
COMMENT 7 MEANS NEW LINE.

'EN_D'
, 'EQP'
01) LINE 0002 PROGRAM BEGINS
(1) LINE 0017 PROGRAM ENDS
€01y LINE 0017 SOURCE DECK ENDS

#LOAD»56
RUN

RUN

CHANNEL, 60=LU60sP80 _
CHANNEL s 61 =LU61,P136,PP60
C HANNEL, END
CHANNEL,END -
240 3.456

+ 5456000000

\

END OF ALGOL RUN

: B o -

20

II DECLARATIONS

All identifiers of a program, except standard functions and labels

must be declared by one of the followingd
'OWN', 'BOOLEAN', 'INTEGER', 'REAL', 'ARRAY', 'SWITCH', 'PROCEDURE'

A declaration of an identifier must appear after the first 'BEGIN' of
a block and is only valid for one block. For example, observe the

following program:

'BEGIN'
*INTEGER®' X; 'REAL' Y3
'BEGIN® (a)
‘INTEGER'Y3 |Block |Main (b)
'END"'3
'END* (c)
A fEOP:
At point e X = integer, Y = real
~(b) X = integer, Y = integer
e X = integer, Y = real

21

TYPE DECLARATIONS. .

' INTEGER'
All integers are of this type. They may be positive or negative

integer values including zero.

Example: 'INTEGER' P,Q,S;

' BOOLEAN'

The BOOLEAN declarator. 'BOOLEAN' declared variables may only
assume the values 'TRUE' and 'FALSE'. (For BOOLEAN FORMAT, see
format description page 56.

Example: 'BOOLEAN' C;

IOWNI
A declaration may be marked with the additional declarator 'OWN'.

The effect is that upon re-entry into the block containing OWN
qgquantities, they will remain the same as their last values at
the last exit. However, OWN values are initially defined as
zero at their first entry in the block.

AN EXAMPLE ON USE OF 'OWN':

‘

OWN EXAM
'BEGIN'
" *INTEGER'A»Bs15 :
© *FOR'I$=1 'STEP' 1 'UNTIL'3 ‘DO’
'BEGIN' Ai=1; B:=23 “ ‘

" 'BEGIN'
a " *QwN ' ' INTEGER ‘A3
&5 2=A+13 Bi=B+1;
_abTPUT(GI:'("('A=')f:ZDBBB:’('B=')':ZD')':A:B)$
OUTPUT(615 "¢ */*3*)§ ~ I
'END'; - e e

‘*END*;

'END' -

' ‘ 'EOP°®

22

Intermediate Analysis of the Program at Points (@)and (b

I=1 I=2 I=3

®@ 0 || | 6|06

A **0 1 1 2 2 3

** A is an own value, it is initially defined as zero in the block.

23

2. ARRAY DECLARATIONS

An array declaration does the following:
 *peclares one or several subscripted variables (arrays).
*Gives dimension of the arrays.
*Gives the bounds of the subscripts.
*Declares the type of the variable.
It is in the form of:
A[Ll:Ul'LZ:UZ'L3:U3’°"]'
where ‘
Ll'LZ’L3""’ are the lower bounds, and
UprUar
Both L and U can be any arithmetic expression

U3,..., are the upper bounds.

Limitation: A is defined if and only if U, > L, for all i.

Example:

'BEGIN' :
'REAL' 'ARRAY'B[2:3,4:5];
' INTEGER' 'ARRAY' IA['IF'C<0 'THEN'2 'ELSE'l:3];

NOTE: C has to be defined before declaration is processed

during run time, and it must be declared in higher
block. '

Analysis of Example

Array IA Array B

* Type: Integer : Type: ‘Real
* Dimension: 1 Dimension: 2

NOTE: If [and] are not presented on the keyboard, use
(/ and /) instead.

24

SWITCH DECLARATIONS AND CALLING

A SWITCH declaration defines the set of values of the corre-
sponding switch designators. With each of the designational
expressions there is associated a positive integer obtained by
counting the items in the list from left to right.

EXAMPLE:

'SWITCH' TEST: = S1, S2, S3, S4; where TEST is the switch
identifier; S1, S2, 83, and S4 are designational expres-
sions with integer values 1, 2, 3, and 4 associated with
them respectively. v

i.e. TEST [l] = S1; TEST [2] = S2;

TEST [3] = S83; TEST [4] = S4;

the corresponding calling statement should be: GO TO TEST [I]
where I is any arithmetic expression of integer value.

SAMPLE PROGRAM ON THE USE OF SWITCH

Program is to find angle and compute cube root of a complex
number. Coordinates in the complex plane are input as X and Y.

SWITCH in this program is used to branch on 9 possible con-

ditions
X < 0, Y <0
X <0, Y=20
X <0, Y >0
etc.

0 if X=0, ¥=0

F+1y =lr
R = V2 +¥2

n+TAN_l(Y/X)

W)

(cos % + I sin %) otherwise

X <0

o= 4 TAN-1(y/x) X >0
-1/2 X=0,Y<0
/2 X=0,Y>0

25

#ALGOL» I=SWITCH>XsL

053 ALGOL V0.0 SWITCH

SWITCH
'BEGIN'
‘REAL 'Y, Y5>Us Vs THETASPIs RS

02/20/70
TO FIND CUBE ROOT OF A COMPLEX NUMBER

1422 PAGE

'$UITCH' ANCGLE:=S155155S1552553,545555555553

EOF(60:END)Y
P1:=3.141592653
I INPUTC(60s°C'')'>XsY)5

'GOTO "' ANGLEL3*SIGN(X)I+SIGN(YI+513

S1: TYETA:=PI+ARCTANCY/X):

'GOTO'S 63

THETAs=-P1/23

*GOTO'S63

S3: je=03 V=03
*GOTO'0OUTS

Sas THETA:=PI/2;5

*GOTO'S 63

THETA :=ARCTANCY/X);

e = (XRX+AYRYIT(1/6)5

U:=R*C0O0S(THETA/3);

Ye=R*SIN(THETA/3)5

1 0%k
S

o0
e

1 n
o U1
o o8

20%%

OUTs
X2¥Y)3 v
OUTPUT(615°C*'/")")3
OUTPUT(61s *C"* ("’

l('*I l)’!')l;U,v);
QUTPUT(615 "C¥//77')");
'GOTO'INS '
'‘END';

'EOP'
LINE 0002
LINE 0028
LINE 0028

END:

PROGRAM BEGINS
PROGRAM ENDS
SOURCE DECK ENDS

015
01
01

#L0OAD»5S6
RUN
RUN

CHANNEL, 60=LU60,P80 :

CHANNEL» 61 =LU61,P1365PP60
C HANNEL» END

CHANNEL . END

26

OUTPUT (61, "(''('CUBE ROOT OF

')'3N)N:f('*l')")':

IS *)',N,N»

5 g

CUBE ROOT

7 0
CUBE ROOT

4 -8
CUBE ROOT

-6 -3
CUBE ROOT

-1 7 :
CUBE ROOT

-10
CUBE

-10
ROOT

0 4

CUBE ROOT

0 0
CUBE ROOT

0 =2.7
CUBE ROOT

OF +5.000000000°' 000
IS +1.853981716"' 000

OF +7.000000000"' 000

IS +1.912931183' 000

OF +4.000000000°' 000
IS +1.936020528" 000

OF =6.000000000" 000

IS +6.803253753"'~-001

OF _=-1.000000000' 000

IS +1.614999957° 000

OF =1.000000000 '+001

IS +6.258946390"'-001

OF +0.000000000 ‘+000
IS +1.374729637' 000

OF +0.000000000 *+000
IS +0.000000000 *+000

OF +0.000000000 '+000
IS +1.205920154" 000

27

+5.000000000°' 000
+4.967729021 "-001

+0.+000000000 '+000
+0+000000000 '+000

-8.000000000" 000
-7.487949627 '=001

=3.000000000°" 000

+1'758991384f 000

+7.000000000"' 000
+1.037210989 ' 000

=1+000000000'+001
+2.335870582" 000

+4.000000000" 000
+7.937005252"'-001

+0+000000000 "+000
+0+.000000000 *+000

=2+ 700000000" 000
-60962383244°~-001

*k 1
*1

*1
*1

*1
*1

*1
*I

*1
*1

*1
*1

*I
*1

*1
*]

*1
*1

PROCEDURE DECLARATIONS AND CALLING

PROCEDURE ('ECLARATIO:.

A procedure declaration serves to define the procedure associated
with a procedure identifier. The principal constituent of a pro-
cedure declaration is a statement, the procedure body, which,
through the use of procedure statements and/or function designa-
tors may be activated from other parts of the block where the pro-
cedure declaration appears. There are 2 types of procedures,

namely, function-type procedure and non-function-type procedure.

EXAMPLE 1: FUNCTION-TYPE PROCEDURE
(c)
(a) 'REAL''PROCEDURE'AVERAGE (LOWER,UPPER) ;

(e) 'VALUE ' LOWER,UPPER;
'REAL'LOWER,UPPER;
'BEGIN'
(f) AVERAGE: = (LOWER + UPPER)/2;
'END";

EXAMPLE 2: NON-FUNCTION-TYPE PROCEDURE

(b)'PROCEDURE'TQ%%SPOSE(A)ORDER:(N);
'VALUE'N;
'ARRAY'A;
"INTEGER'N;

'BEGIN' 'REAL'TEMP;
(g) "INTEGER'I,J;
'FOR'I: = 1'STEP'1'UNTIL'N'DO'
'"FOR'J: = I+1'STEP'1'UNTIL'N'DO’
'BEGIN'
TEMP: = A[I,J];
A[I,J]: = A[J,I];
A[J,I]: TEMP ;
'"END';
' END ' TRANSPOSE;

28

EXPLANATION

(a) For functiothype procedure, the procedure identifier must
be declared through the appearance of a type declaration as
the very first symbol of the procedure declaration. Type of
procedure can be 'INTEGER' or 'REAL' or' 'BOOLEAN'.

(b) No type declaration of procedure is needed for non-function-

type procedure.

(c) AVERAGE is the procedure identifier, whereas (LOWER,UPPER)
constitutes the formal parameter list. When no parameters
are to be passed, the list is empty. Formal parameters are

separated by commas, the parameter delimiters.

(d) TRANSPOSE (A) ORDER: (N) is equivalent to TRANSPOSE (A,N),
where TRANSPOSE is the procedure identifier, A and N are
formal parameters.)letter string:(is another representa-

tion of parameter delimiter.

(e) Value and specification part for formal parameters can be
empty or of the following form:

Value part: 'VALUE' identifier list
Specification part: it has to follow the value part and
must be supplied for all formal parameters in CDC ALGOL.

(f) The procedure body can be a block, a compound statement or
a simple statement. For function-type procedure declaration,
one or more assignment statements with the procedure identi-

fier in a left part must appear in the procedure body.

(g) For non-function-type procedure declaration, the procedure
identifier is not to appear as a left part of assignment
statement but may occur as procedure statement calling

itself. (Recursively)

PROCEDURE CALLING ‘
The actual parameter list of the procedure statement must have
the same number of entries as the formal parameter list of the

procedure declaration heading.

29

EXAMPLE 3: FUNCTION TYPE PROCEDURE CALLING

'REAL' X,%,S;

(a) S: = S+AVERAGE(X,Y);

EXAMPLE 4: NON-FUNCTION TYPE PROCEDURE CALLING

'REAL' 'ARRAY' B[1:20,1:20];
'INTEGER' M;

(b) TRANSPOSE (B,M) ;

.
.

3

EXPLANATION

(a) Function-type procedure can be called in an expression, or
by a procedure statement.

(b) Non-function-type procedure is called by the procedure
statement itself. A procedure statement is a procedure
identifier followed by the actual parameter list.

30

SAMPLE PROGRAM (on declaration)

Write a procedure to produce the roots of a quadratic equation
and a switch to determine the nature of the roots. The main
program is used to read the input, call the sub-program, and
produce the output.

2

quadratic equations ax” + bx + c =0
. = b+ V2 -4ac
1 2a
. = b -V p?-4ac
2 2a
or
r, = Rl + R2
r2 = Rl - R2
-b
R, = »—
where 1 2a

CODE NATURE OF THE ROOTS CONDITION

1 2 unequal imaginary roots b%-4ac ¢ 0
2 2 equal real roots b?-4ac = 0
3 2 unequal real roots b?2-4ac » 0
4 1l real root = —% a=20

#ALGOL» I=DFCLAR, ¥sL

0S3 ALGOL V0.0 -

10%:%

20% %

30%*

DECLARAT 02/24/70 1126 PAGE

DECLARATION AND PROCEDURE

'REGIN®

'REAL'DsEsFsPloP23
'INTEGER'ICODES
'SWITCH' COD:=AA,BB,CC»DD;
'DROCEDURE' ROOT(A»BsCsR1,R2,1ID)3
'UALUE'45,BsCs
'REAL'R1,R25A5BsC3
'INTEGER'IDS
'BEGIN'
'REAL "DET

. ’IF'
DET:

A=0 °'THEN' 'GO TO' L13
=B10-4%A%CE -

Rl:==B/(2%A)3
R2:=SQRT(ABS(DET))/(2%A);

.IF'

DET>0 °'THEN'ID:=3 'ELSE'

*IF'DET=0 °‘THEN' ID:=2 °ELSE'ID:=1;
*GOTO'END3 ' '

Ll

END:
START®

AA:

BB:

"ID:=43

R1:=~C/Bj3

'END *'ROOTS
Pi:=03 P2:=03 ICODE:=0;
INPUTC60s "(**)*sDsE»F)3
OUTPUT(61s *C*//*('COEFF OF QUAD ARE'"Y /") ")
OQUTPUT(61s'C*")'>DsE>F)3
QUTPUT(61,'C*'7/7")");
EOF(60,ENDYS ‘
ROOT(DsE»FsP15,P25 ICODE) 3

'"GOTO®' CODLICODEIS
OUTPUT (615 '¢'*('2 UNEQUAL IMAGe ROOTS')"))3
OUTPUT(61, (/') ")
QUTPUTC(61, ¢ (¢ ') ,N:'('+I*') SN") :PIJP?):
QUTPUT(61, "C(*/ '3 ") .
OUTPUT(615 "C** (' AND TY'SN, TC'-IX ") LNT) *sP1sP2)5
OUTPUT(GIJ'('//') ¥s ‘ - o
'GOTO'STARTS
OUTPUT(615 '¢"'('2 EQUAL REAL ROOTS')"))3
QUTPUT(61-"C'/')*);
OUTPUT(61:'("(" ') JN Y5 P1)3

32

40%* QUTPUT (61, YCY/7/773 ")y
'GOTO*START:
CC: OUTPUT(61,'C*'('2 UNEQUAL REAL ROOTS">'')");
OUTPUT(615*C*/")*); I
OUTPUT(61, 'C** (" *)'5N,'C" AND ™)',
N*) 'P1+P2,PI~-P2); = ~ ' '
OUTPUT(615 "C*//7*) ")
*GOTO*STARTS = ~
DD: OUTPUT(61,"'C'"'(*'1 REAL ROOT')"'')");
OUTPUT(615°'C'/")"); ‘
SO%* OUTPUT(61,"C** (" *Y'LN"I'PL)S
OUTPUT(615"C*/7')%)3
'GOTO*'STARTS =~
END: °*END°*
) YEOP'
(01) LINE 0002 PROGRAM BEGINS
(01) LINE 0053 PROGRAM ENDS
01) LINE 0053 SOURCE DECK ENDS

#L0OAD> 56
RUN
RUN

CHANNEL, 60=LU60,P80
CHPANNEL, 61=LU61,P136,PP60

C HANNEL» END
| CHANNEL » END
0 2 -6

33

COEFF OF QUAD ARE ' :
+0+000000000 '+000 +2+000000000° 000 =6.000000000" 000

1 REAL ROOT
+3.000000000" 000

1 2 1
COEFF OF QUAD ARE o
+1.000000000 ' 000 +2+000000000' 000 +1+000000000" 000

2 EQUAL REAL ROOTS
-1.000000000"' 000

1 -5 4
COEFF OF QUAD ARE
+1.000000000" 000 =5+000000000" 000 +4.000000000" 000

o UNEQUAL REAL ROOTS
+4.000000000" 000 AND +1.000000000° 000

4 =3

COL. .~ OF QUAD ARE _ .
+4.000000000" 000 =3.000000000' 000 #1+000000000' 000
2 UNEQUAL IMAGe ROOTS

+3+750000000 =001 +I*+3.307189139°-001
AND +3.750000000'-001 =I*+3.307189139"-001

34

III. OPERATORS AND VALUES

1. RELATIONAL OPERATOR

'"EQUAL' : =
'GREATER' : >
'LESS' : <

'NOT EQUAL' : #
'NOT GREATER' : <
'NOT LESS' : >

Relational operators are used to connect simple arithmetic
expressions in Boolean expressions.tt

2. LOGICAL OPERATOR

'EQUIV' : = (equivalent)
'IMPL' : D
'OR' : V (inclusive or)
'"AND' : A
'NOT' : 7

3. ARITHMETIC OPERATOR

+ : ADD
- : SUBTRACT
* . MULTIPLY
/ : DIVIDE.

' POWER'

or + : EXPONENTIAL

EXAMPLE: C:= SQRT (A+2 + B+2);

t+ Arithmetic expressions (IV.2)
Boolean expressions (IV.3)

35

4, LOGICAL VALUE

'"TRUE', 'FALSE'

NOTE: Logical values cannot be used in place of integers,
or vice-versa.

5. SAMPLE PROGRAM ON OPERATORS

#ALGOL»> I=0PERAT»X>L

0S3 ALGOL V0.0 -OPERATOR 027247170 1134
OPERATOR , , '
'BEGIN ' '"BOOLEAN'QsRsPs>Zo W3
- 'REAL'X,Y3
"X$=3+463;3
Ye=3e63
Qe =X=Y3 i)
'COMMENT' @ IS FALSE;
RE=X<Y;
'"COMMENT®* R IS TRUES
10%% Z:=Q'AND'RS .
'COMMENT®* Z IS FALSE:;
Wi=Q'OR'R} ,
'*COMMENT® W IS TRUES
P¢=Z'AND'W;5 _
'‘COMMENT® P 1S FALSE;
OUTPUT(615°C*'(*'Z IS ') 's5F")'»2)5
OUTPUT(61s *CY7/%3")5 C
OQUTPUT(61s ¥C " ' C'W IS ") 's5F") ')
OUTPUT(61»"C'7/%) "y =~ S
20%% OUTPUT(612'C " C*W AND Z IS *)'s5F*) '5P)3
OUTPUT(61,'C*7/') ") T B
'END ' oo T
" : '‘EOP'
(s} D) LINE 0002 ~ PROGRAM BEGINS
(1 LINE 0022 PROGRAM ENDS
01 LINE 0022 SOURCE DECK ENDS

#L0OAD»56
RUN
RUN

PAGE

CHANNEL», 60=LU6Q,PB0
CHANNEL» 61=LU61-P136,PP60

C HANNEL» END ‘
CHANNEL » END

zZ IS F
W IS T

W AND Z IS F

END OF ALGOL RUN

#

37

2.

3.

tt

IV, EXPRESSIONS

FUNCTION DESIGNATORS

Function designator is a procedure identifier followed by actual
parameter list (actual parameter list can be empty.)

It defines
" single numerical or logical values. There are also standard
functions. For example: SIN{X)Tt.
EXAMPLES:
COS (A+B)

AVERAGE (N,X,Y) or AVERAGE (N) HIGH: (X) LOW: (Y)

ARITHMETIC EXPRESSIONS (Including IF clause)

EXAMPLES:.

1) 'IF' A < 0 'THEN' B+C
'ELSE''IF' A = 0 'THEN' B/C
'ELSE' D

2) W*U-V ¢+ 2

PRECEDENCE OF OPERATORS

i) 4
ii) *,/
iii) +,-

BOOLEAN EXPRESSION

EXAMPLES:

1) X = =2
2) Q=T7TAABVC

See section IV.5 for standard functions list

38

PRECEDENCE OF OPERATORS
i) Arithmetic operators
ii) <l<l=rir.>r?£

iii)

—
iv) A
v) Vv
vi) D
vii) =

4., DESIGNATIONAL EXPRESSIONS

Labels and switch designators

EXAMPLE:

COD[ICODE]
ANGLE[3*SIGN(X) + SIGN(Y) + 5]
Ll

5. STANDARD FUNCTIONS

ABS(E): absolute value of the expression E
SIGN(E): +1 for E > 0
0 for E =0

-1 for E< 0
SQRT (E) : square root of E
SIN(E): sine of E
COS(E): cosine of E
ARCTAN(E): arctangent of E
LN(E): natural logarithm of E

EXP(E): exponential function of E
ENTIER(E): largest integer value not greater than the value
of E

39

[e

V. STATEMENTS

COMPOUND STATEMENTS

A sequence of statements enclosed by 'BEGIN' and 'END'.

SYNTAX:

'BEGIN' S; S;...5; S 'END'
(Where S stands for statements, it can be again a complete
statement or block.)

EXAMPLE:

"BEGIN'
SUM: = 0; .
'FOR'I: = 1 'STEP' 1 'UNTIL' N 'DO’
SUM: = SUM + A[I]

"END'

BLOCK

A sequence of declarations followed by a sequence of statements
and enclosed between 'BEGIN' and 'END'.

NOTE: Every declaration that appears in a block is valid only
in that block.

SYNTAX:

'BEGIN' D; D; ... D; S; 8; ... S '"END'
Where S = statements and D = declarations.

40

Example o©of Block Structure

ALGOLs I=BLOCK,X»L

0S3 ALGOL V0.0 BLOCK . na2/24/70 1137 PAGE 1
BLOCK
'*BEGIN''INTEGER'I> J3
INREAL (605 1)3 INREALC60,J)3
OUTPUT(C 61, "C*//")"*);
QUTPUT(615,"C" ' C"I IS ")'>+ZZD»"C' J IS ") '">+ZZD")'51,J);
BLOCK: 'BEGIN® '
*INTEGER"K;
'COMMENT® THIS IS A BLOCK WHICH
‘ WILL INTERCHANGE TWO VALUES;
10%% K:=13
1:=Js
Je=K;3
'*END'BLOCKS
QUTPUT(615 'C'/7') ")
OUTPUT(615> "C""('EXCHANGE I AND J")'*) ")}
QUTPUT(615 'C"/7%)");

OUTPUTC61s *C""C'T IS *)'>+ZZD>'C' J IS ") 'H>+ZZD')'515J)3
"END"
"EOP"

(01> LINE 0002 PROGRAM BEGINS

(01> LINE 0018 PROGRAM ENDS

(01> LINE 0018 SOURCE DECK ENDS
#LOAD>56
RUN
RUN

41

CHAUNEL»s 60=LU60,P80
CHANNEL» 61=LU615P136sPP60

C HANNEL» END
CHANNEL» END
2 -5

1 IS +2 J 1S =5
EXCHANGE I AND J

1 1S =5 J IS +2

END OF ALGOL RUN

#

42

3. ASSIGNMENT STATEMENTS

SYNTAX:

left part variable: = Arithmetic express;on+
or Boolean expressiontt

where left part variable is a variable or a procedure identifier.

Any number of left part variables may appear at the left part of
assignment statement.

EXAMPLES:

S: = N: = S+N;
(If S is 2 and N is 6, then S and N will be of the value 8 after
the assignment statement.)

A: = B+C - B/C ;

W: = UAV;

4. GO TO STATEMENT

SYNTAX:
ttt

'GO TO' designational expression;
EXAMPLE:

'GO TO' COD[ICODE];

'GO TO' ANGLE[3*SIGN(X) + SIGN(Y) + 5];
'GO TO' L1;

5. DUMMY STATEMENT

A dummy statement executes no operation. It is empty and may
serve to place a label.

t Arithmetic Expressions (IV.2)
t+ Boolean Expressions (IV.3)
t++ Designational Expressions (IV.4)

43

EXAMPLE:

START: 'BEGIN'

END 'END'

CONDITIONAL AND UNCONDITIONAL STATEMENTS

CONDITIONAL STATEMENT: LEGAL STRUCTURE

(a) '"IF' Bl 'THEN' S1;

(b) 'IF' Bl 'THEN' S1 'ELSE' S2;

(c) 'IF' Bl 'THEN' S1 'ELSE' 'IF' B2 'THEN' S2
'ELSE' S3; S4;

(d) 'IF' 'IF' 'IF' Bl

'"THEN' B2 'ELSE' B3
'THEN' B4 'ELSE' BS
'THEN' S1 'ELSE' S2;
Bl, B2, B3, B4, B5 are Boolean Expressions (IV.3)
S1l, S2, S3 are unconditional statements. S4 is the

statement following the complete conditional statement.

UNCONDITIONAL STATEMENTS

(a) Basic statements:

*Assignment statements (V.3)

*GO TO statements (V.4)

*Dummy statements (V.5)

*Procedure statements (V.7 or II.4)
(b) Compound statements (V.1)
(c) Block (V.2)

44

SIMPLE EXAMPLE OF CONDITIONAL STATEMENTS

'"IF' A< B '"THEN' S: = B 4+ 2
'ELSE' 'GO TO' L1;

'IF': Beginning of a conditional statement.
'THEN': This word ends the IF clause and precedes the
_ true alternative in a conditional statement.
'ELSE': This word follows the true alternative and precedes
the false alternative.
'GO TO'

Transfer control to the destination.
No GO TO statement can lead from outside into a block.

EXECUTION OF CONDITIONAL STATEMENT

Conditional statement causes certain statements to be executed
or skipped depending on the running values of specified Boolean
expressions.

Bl or B2 is true
'IF' E} 'THEN" gl 'ELSE"{E' B2 'THEN' S2 'ELSE' S%; éﬁ

&
Bl 1s false B2 is false

Execution of S1, S2, S3, S4 are as follows:
(1) True Bl: Sl; S4;
(2) False Bl, True B2: S2; S4;
(3) False Bl, False B2: S3; S4;

45

PROGRAM ON ILLUSTRATION OF IF CLAUSE

#ALGOLs» I=CONDIT»XsL

0S3 ALGOL V0.0 CONDITIO 02/24/70 1140 PAGE
CONDITIONAL STATEMENT - IF CLAUSE
THIS PROGRAM WILL CALCULATE FACTORIAL
FENI=N! =Nk (N=-1)k(N=2)%eeoe¥2%]
WHERE N IS LESS THaAN 10

'BEGIN' 'INTEGER'®ARRAY'F[1:91;
_ "INTEGER'N»I3
START: OUTPUT(61s"C*'¢('ENTER N'")'»//')");
INREALC60-N)35 ‘
10%:x '"IF'N<10 °'THEN'
’ © 'BEGIN'’ o
“*FOR'f:=1"STEP'] *UNTIL*N°DO’
“FLId:='IF'I<2'THEN'L
'ELSE* IxFC1-113
OUTPUT(6i>"C'Do"C't IS ") 7%
ZZZZZD') 'L N, FIN1); o
OUTPUT(61s 'C*//')");
'*GOTO'STARTS
'END's ’
20%% OUTPUT(61s 'C('DDs "¢' IS GREATER')'»
¢' THAN 9sSTOP HERE') ")'5>N)3
'"END* T '
) ' 'EOP’
(01 LINE 0006 ~ PROGRAM BEGINS
01> LINE 0022 . PROGRAM ENDS
01 LINE 0022 SOURCE DECK ENDS

#1.0AD»56
RUN
RUN

46

-

CHANNEL» 60=LU60,P8B0 _ .

CHANNEL, 61=LU61,P136,PP60
C HANNEL » END

CHANNEL» END

ENTER N

1! 1S 1

ENTER N

4! IS 24

ENTER N

91 IS 362880
ENTER N

10
10 IS GREATER THAN 9,STOP HERE

END OF ALGOL RUN

¢

47

PROCEDURE STATEMENTS

See sectic. II.4

8. FOR STATEMENT
STRUCTURE OF 'FOR' STATEMENT:
(1) iFOR' TEST:=A 'STEP' B '"UNTIL' C 'DO' S;
(2) 'FOR' TEST:=E '"WHILE' F 'DO' S;
A,B,C,E: Arithmetic expressions
S: Statement
'FOR': The beginning of a 'FOR' statement
'gTEP': This identifies increment value in a 'FOR' statement
'UNTIL': This word identifies the final value in a 'FOR'
statement
'"WHILE': Separator in a 'FOR!' statement
'DO': This word causes the statement that follows it
to be executed
TEST: Variable name
FUNCTION OF 'STEP' - 'UNTIL' IN A 'FOR' STATEMENT

TEST=A

(TEST—C)*Siiiifl:B//f Yes

No

i~

Statement S

e

TEST=TEST+B

48

FUNCTION OF 'WHILE'

IN A

'FOR'

STATEMENT

Yes

Statement S

EXAMPLE

'FOR' Statement
'FOR' I:=1

'STEP' 1
'UNTIL' N

'DO'" A(I):=I;

Y:=APP:
'"FOR'

'"WHILE'
IDOl

:=(2.0*%Y+A/ (Y42) /3.0

((Y-X)/X)'GEQ'0.0001
Y:=X;

49

Equivalent Condition Statement

I:=1;
L1:'IF' I-N>0
'THEN' 'GO°
A(I) :=I;
I:=I+1;
'GO' lTol

'TO' L2;

Ll;
L2:

Y:=APP;
Ll1:X:=(2.0*Y+A/(Y42)/3.0;

'IF' (Y-X)/X<(0.0001)

'THEN' 'GO' 'TO' L1;

Y:=X; 'GO' 'TO' L1;
L2:...

PROGRAM ON ILLUSTRATION OF FOR STATEMENT

#A1LGOLs1=FOR»X>L

0S3 ALGOL V0«0 . FOR STAT _ 02724770
FOR STATEMENT STRUCTURE ILLUSTRATION
THIS PROGRAM WILL CREATE AND PRINT AN ARRAY
'BEGIN’
h *INTEGER ' "ARRAY 'AL1:515
*INTEGER'S,13
‘Se=03 | . o
*FOR® I:=1 'STEP'1'UNTIL' 5 ‘DO’
'RBEGIN'ALIl:=31(I-1)3 - '
"Se=S+A[LI];

1143 PAGE

10%* 'END '3 ,
OUTPUT(61s 'C*'"C'SERIES OF ") %
*('GEOMETRIC¢ PROGRESSION '3°»
"('WITH R=3,A=1 ")'")");
OUTPUTC(61s *C*//7%) "3~
'*FOR' I:=1 'STEP'1 'UNTIL' S5 'DO‘
“OUTPUT(61s "(*+ZZZD") '5AL01135
QUTPUT(61,°C'7/ ") ")}
OUTPUTC61s "€ ('S = ") *HZZZZD") '»S);

'END’ .
20%% 'EOP'
(01) LINE 0003 = PROGRAM BEGINS
01> LINE 0019 PROGRAM ENDS
(01) LINE 0019 SOURCE DECK ENDS
#L0AD»56
RUN

RUN

50

CHANNEL, 60=LU60,P80

CHANNEL» 61=LU61,P136sPP60
C HANNEL, END

CHANNEL s END

SERIES OF GEOMETRIC PROGRESSION WITH R=3,A=1
+1 +3 +9 +27 +81

S = 121

END OF ALGOL RUN

#

51

9. INPUT/OUTPUT AND FORMAT STRING

I/0 Procedure Call

(a) Character transmission

INCHARACTERC(CHANNEL>STRINGs DESTINATION);
OUTCHARACTER(CHANNEL,STRINGs SOURCE)S

STRING: Any character strings in the form of
N O RN

e.qg. *('"*('ABCDE")'")"

INCHARACTER: Reads a character from the channel, compares it

to the character string until a match is found or upon exhaus-

tion of the characters in the stri g.

Value of destination = J if a match is found at Jth character
0 if no match is found.

EXAMPLE:
INCHARACTER (60, ' ('ABC') ' ,I);

Input Character 1 Vvalue of I

A

B

C
other

o w N

Informative error of type 01- non-format error will appear.

However, this is not an actual error. . __ L -

52

OUTCHARACTER: Examines the value of source and writes out
i) The corresponding character of the string if the
value is in the range of 1-J (length of string)
or ii) the error message "out character error" if the value
is not in the range of 1-J.

EXAMPLE:

OUTCHARACTER (61, " ("TUV') ", J)

LY

Value of J Outputted character
__2 - - B : T
3 U
4 v
other "OUT CHARACTER ERROR"

Note comment on page 52

(b) Transmission of Arrays

INARRAY(CHANNEL,NAME OF ARRAY);

OUTARRAY(CHANNEL,NAME OF ARRAY)3S

- Reads or writes out a whole array by rows

EXAMPLE:

"ARRAY' X[122,12313
INARRAY(605 X) 3

OUTARRAY(61,X)3

X is a 2 x 3 array with the elements inputted or printed in
the following order:

X110 Xy Xy30 Xg90 X550 X3

53

(c) Transmission of Type Real

LNREALC CHANNEL:VARIABLE-NAME)i

OUTREAL ¢ CHANNEL.,VARIABLE NAME);

- Reads or writes out variables using standard

format one at a time.

EXAMPLE:
"REAL'A3

INREAL(60,A)3
OUTREAL(615A);

fCOMMENTf INREAL(605A5B) 1S INVALIDS

INPUT OUTPUT
Al 1.01 +1.010000000'-000

(d) 1I/0 Control Procedure Calls

EOF (channel, label): transfers control to the label when
an end of file is encountered on an output device.

EXAMPLE: EOF (60,END);

(e) FORMAT I/O Call
INPUT¢ CHANNEL,FORMAT STRING,LIST OF VARIABLE NAMES);

OUTPUT(CHANNEL,FORMAT STRING, LIST OF VARIABLE NAMES)3

- Reads in or writes out one or more values according to

specified format string.tt

+t+ Legal format string and example, see section V.9

54

FORMAT STRING Summary of format codes

Blank Space

Digit (without zero suppression)

Boolean true or false (variable must be declared 'BOOLEAN')
INTEGER VARIABLE; 8 consecutive BCD characters are to be
INPUT/OUTPUT to or from a single integer variable.

Standard format (+D.9D'+3D)

String character-used for output of string quantities

e S B w B+ <

Truncation
Implied Decimal Point
Zero suppression

+ N Hn =

Print the sign

Print the sign if it is minus
0 Delimiters of replicated format string
New line

~

* New page

. Decimal point

'('')"' Inserted character string (can be used for title format)

! Exponent part indicator. E.G. 1.25'+002

EXAMPLE ON INPUT/OUTPUT AND FORMAT STRINGS

(1) NUMBER FORMATS
'REAL' A,B;
At=-1000+999;
B:=21+126;
OUTPUT (61, * ¢ "2(+ZZZDDD+DD4B) ') ' ,A,B) ;
RESULT: =-1001.00 +021+13
OUTPUT (61, *€*2¢+3Z3D+2D4B) ') ' ,A,B) ;
RESULT: -1001.00 +021.13
OUTPUT (615 ' ¢ '2(~3D2B3D+2DT4B) ') '5A,B)3
RESULT: -001 000.99 =000 02112
OUTPUT (61, "¢ "2¢ "¢ *INTEGER PART FRFEYYAVRIEY
FRACTION')'5B3D>/) ") ',A5B);3
RESULT: INTEGER PART -1000s FRACTION 999

INTEGER PART 21, FRACTION 126
55

(2) STRING FORMAT

FORMAT CODE: S
During compilation, it will give message as:
(01) LINE xxxx NON-FORMAT STRING

EXAMPLES:
QUTPUT (615 *C*35')*s "¢ "YES ') *)3
RESULT: YES
OUTPUTC61,°C*25*) 's "C'YES ') ")
RESULT: YE
OUTPUTC615*C'55%) "5 *C"YES ') ")
RESULT: YES')
OUT§UTcei,'Cfssf)f,j(jY35j>j>;
RESULT: YES')'00
o This is an Algol error
(3) BOOLEAN FORMAT
'BOOLEAN' A,B3
A:='TRUE'S
B:="FALSE's
OUTPUT(615 "C'F*) *5A);3
RESULT: T
OUTPUT(615 'C'FFF') "sB)3

RESULT: F

(4) ALIGNMENT MARKS

OUTPUT(615*C* /"3 ")
RESULT: (LINE RETURN)
OUTPUT (615 " C'%%) *);

RESULT:. (PAGE EJECT)

56

(5) TITLE FORMAT

OUTPUT(61, '(**("ENTER DATA') "'} ');
RESULT: ENTER DATA
OUTPUT (615 *C**(*STOP') '*) *)3

RESULT: STOP

(6) STANDARD FORMAT
FORM: +D+ 9D *+3D
There are several ways of inputting and outputting with
standard format

(a) Read or write l variable
A2=123.4573

OUTPUT(615'C**) "5A);5
Or OUTPUT(61,"C°N')'>A);

or OUTREAL(61,A);
Will give the same result as:

+lo2345700b0'+002
(b) For 2 or more variables
0UTPGTkéi:?¥ff>f:A:B§5 is recommended
chever,-one can still use format code N, for example:
OUTPUT (615 " C'NsN "> "sAsB) 5

NOTE: "C'N>N*)>' £ "¢'2N")° this will give
FORMAT STRING ERROR, but 2(N) is okay.

(7) H FORMAT

Read or write out 8 consecutive BCD characters (integer
variable)

57

'INTEGER'IS

INPUTC60s "C"H) *»1)3
OUTPUT(615 "¢ H') '51);
DATA= AB12HFZG (8BCD)
RESULT: AB12HFZG
DATA= XYZ1234AB (9BCD)
RESULT: XYZ1234A
DATA= 1235564 (7BCD)
RESULT: 123556A

(8) FREE FORM INPUT AND STANDARD OUTPUT

FORMAT STRING '('")'
Tt will read in values according to their types and write

out values in the form of:

+D.9D' + 3D (real)
+152D (integer)

EXAMPLE

#A1,G0Ls I=FREEFORMs X» L

0S3 ALGOL V0.0 FREEFORM 02/24/170 1147 PAGE

FREEFORM

'BEGIN'

" *INTEGER'A»B3

'REAL 'CsD3

INPUT(C60s 'C' '")'5A8,B2C>D);}
OUTPUT(615'¢* '3'5A,C);
QUTPUT(615°C*//') ")
QUTPUT(61,"C* "' D»B);

'END' T -

10 %% ’ 'EOP"

58

(01> LINE 0002 = PROGRAM BEGINS

(01> LINE 0009 PROGRAM ENDS

(01> LINE 0009 SOURCE DECK ENDS
#1L0AD,56

RUN
RUN

CHANNEL» 60=LU60,P80

CHANNEL» 61=LU61,P1 36, PP60
C HANNEL s END

CHANNEL» END

1 -2456 13.44 =00999

#1 +1.344000000 '+001

- 9990000000 "=001 -2456

END OF ALGOL RUN

#

59

Example on I/0 and FORMAT String

#ALGOL, I=INOUT»Xs L

0S3 ALGOL V00 INOUT 02/24/70 1150 PAGE 1
INOUT .
ILLUSTRATION OF I/0 STATEMENTS AND VARIOUS FORMAT STRINGS
'BEGIN' :
© 'INTEGER'I;
'REAL'Y3
'ROOLEAN 'B3
B:=°'TRUE'S _
STABT: OUTPUT(61s "C*%**)")3 _ .
OUTPUT(615 "¢* "¢ *ENTER 1 TO READ AND WRITE®)''>')3
10%% OUTPUT(615 "C"7"3 "33 -
OUTPUT(61s *(" ¢ *ENTER 2 TO PRINT LOGICAL VALUE')'')');5
QUTPUTC6Ls " C*7'5)3 I
OUTPUT(61» "¢ "' ¢*ENTER 3 OR LARGER TO STOP®)'">*)3
QUTPUT(615 "(*7"3)3 o
INPUTC605 "C*" "% 123
OQUTPUT(615'¢*/7°3");
*IF' I=1 °'THEN' 'GO TO' IN _
"'ELSE' 'IF'l=2 'THEN'® 'GOTO' PRINTB
*ELSE' 'BEGIN'
20%* " © "QUTPUT(61s*C*"C'STOP*)"*)")3
*GO TO'FINISH; '
‘ , YEND'3
PRINTB: OUTPUT(61s'C'F")'>B);
"GO TO'STARTS !
IN: OUTPUT(61,"¢*"C(’ENTER Y ")°*")");
OUTPUTC615 7C"7*) *)3
INPUTC60s "C'" ")'>Y)3
OUTPUTC6Ls"¢* ~'5°5Y)3
'G0 TO'STARTS
30%% FINISH: 'END'
; ‘EOP' |
¢01) LINE 0003 ~ PROGRAM BEGINS
¢01) LINE 0030 PROGRAM ENDS
¢01) LINE 0030 SOURCE DECK ENDS

#L0OAD»S56

RUN
RUN

60

CHANNEL» 60=LU6Q,P80 .
CHANNEL, 61=LU61,P136, PP60

C HANNEL » END- ’
CHANNEL » END

ENTER 1 TO READ AND WRITE
ENTER 2 TO PRINT LOGICAL VALUE
ENTER 3 OR LARGER TO STOP

1

ENTER Y
1.567 o
+1.567000000" 000

ENTER 1 TO READ AND WRITE
ENTER 2 TO PRINT LOGICAL VALUE
ENTER 3 OR LARGER TO STOP

o

ENTER 1 TO READ AND WRITE
ENTER 2 TO PRINT LOGICAL VALUE
ENTER 3 OR LARGER TO STOP

3

STOP

END OF ALGOL RUN
‘ 61

10.

SAMPLE RUN ON ALL STATEMENTS

Given a

date, this program will find the day of the week on

which that date occurred.

INPUT: 12/25/1965 means December 25, 1965
03/15/1970 means March 15, 1970
Compute J by the formula given below.
J =K + 2*M + (3*(M+1)/5) + N + (N/4) - (N/100) +
(N/400) + 2.
where
M = Month
K = Day
N = Year
Note: Treat January and February as the 13th and 14th months
of the preceding year.
Compute L = remainder of J/7.
Then the day is Saturday if L = 0
Sunday if L = 1, etc.
OUTPUT:

THE DATE XX/XX/XXXX FALLS ON XXXXXXXXX

62

—

#ALGOL:I—STATE:X:L

053 ALGOL V0.0 STATEMEN 02/24/70 1156 PAGE
STATEMENTS - ILLUSTRATION ON STATEMENTS.
THIS PROGRAM IS TO FIND THE DAY OF THE WEEK.
'BEGIN' N
“YINTEGER'MsDsYaLs
YSWITCH® DAY =51552553554,55s56s573
'INTEGER"PBOCEDUKE' JIMsKsN)I3
" YUALUE'M>KsN3
YINTEGER® MsKsN3
. 'BEGIN®
1 0% * T Je=K+2%M+ENTIER(3*(M+1)/5)+N+ENTIER(N/4)
-ENTIER(N/100)+ENTIER(N/400)+23
'END" :
'INTEGER"PROCEDURE' REM(I»J)3
" YWVALUE'J3 "INTEGER' 1,J;3
*BEGIN' i
" YINTEGER'REMM;
REMMs=1;5"
SUBs 'IF' REMM °'NOT LESS' J °'THEN'
'BEGIN' REMM : =REMM~-J3) i
20%% i 'GOTO SUB;
'END';
REM$=REMM; ~
YEND 'REM;

START: OUTPUT(61, 'C('"C'INPUT THE DATE)"))3
OUTPUT(61, °C¢*7/%)");
INPUT(60, 'C*'") "> MsDr Y3
EOF(60,ENDY; ™ =
'IF"™M<3 'THEN"BEGIN' M"M+12:

) ’ T Yi=Y=~13
30%% ' *END '3
Le=REM(J(MsDsYI» 7}
'IF* M>12 °*THEN' °'BEGIN® M:=M-123Y:=Y+13'END';3
OUTPUTC61, *C**C"THE DATE °")',ZD,"C'/'>'»ZD,»
'C*/)%, 4D, ("' FALLS ON ')") :M:D:Y):
'GOTO* "DAY C(L+113
Si: OUTPUT(GIJ'("('SATURDAY)"))'

'GOTO* L1

S23 OUTPUT(61:'("('SUNDAY X'

_ 'GOTO'L1s ~

40%* S3s OUTPUT(61-°C'"('MONDAY')'")");

. *@0TO* L1353~

S4: OUTPUT(GI:'("('TUESDAY AP AY

. . '60TO" L1

S5: OUTPUT(61, "' "('WEDNESDAY')'") *);
'GOTO' L1

S6s 0UTPUT(61:'("('THURSDAY >">)3
*GOTO" Lis ™~

S7: OUTPUT(61, "C**C"FRIDAY')'') ')}
L1: OUTPUT(61,'C'7/7°)"); ’

63

50%x "GOTO'START; "

END: END'"
*ROP®
€01) LINE 0003 ~

PROGRAM BEGINS

(40 LINE 0051 PROGRAM ENDS ,
01 LINE 0051 SOURCE DECK ENDS

#LOAD» 56
RUN
RUN

CHANNEL, 60=LU60>P80
CHANNEL, 61=LU61,P13 6, PP60

C HANNEL., END '
CHANNEL s END

INPUT THE DATE

0170271964

THE DATE 1/ 2/1964 FALLS ON
INPUT THE DATE

1170871947 }

THE DATE 11/ 8/1947 FALLS ON
INPUT THE DATE

1272571970

THE DATE 12/25/1970 FALLS ON
INPUT THE DATE

0170171970

THE DATE 1/ 171970 FALLS ON

INSUT THE DATE

64

THURSDAY

SATURDAY

FRIDAY

‘THURSDAY

PART THREE

~Part Three contains several programs that
are meant to serve as examples of ways in
‘which ALGOL can be applied, not only in

mathematical areas, but also in the simu-

lation of models.

'I. NEWTON'S METHOD

NEWTON'S METHOD FOR CUBE ROOTS

This program uses Newton's iteration method for locating
the zeros of a function. The equations take the following

form for cube roots:
f(x)=x3—a=0

g(x)=x3-a+x=x

9 (x) =%~ |
3- xea /52
g(x)=x—x3x3 _ 2x g/x

The last equation is used in the program in the following
manner:
y=X
2
x=(2y+A/y7) /3.
The degree of accuracy can be controlled by the IF State-

ment on line 12.

65

EXAMPLE

#TIME=10

1 #ALGOL» I =NEWTON» XL
® 3 ALGOL V0.0 ' NEWTON 10707/ 69
5 NEWTON
CUBE ROOT DETERMINATION

EXAMPLE 1 A

'BEGIN'
‘*REAL® A, APPs» X» Y5
IN REAL(60s5A)3
IN REAL(60» APP); -
Xt =APP3
10%% NEWTON:Y:=X3
X3=(2.0%Y+A/(Y?12))/3+0 3
'IF' (Y-X)/X < (.0001) °'THEN'
OUTPUT (61, °C°® 4ZDe6Ds 7/ *)°'s» X)
'ELSE® °'GOTO® NEWTON:
‘END"*
‘EOP’
1) LINE 0005 PROGRAM BEGINS
4 (01) LINE 0015 PROGRAM ENDS
o1 LINE 0015 SOURCE DECK ENDS

#L0AD,S56
5 RUN

\ RUN

66

10

CHANNEL, 60=LU60. P80
CHANNEL, 61 =LU61,P136,PP60

CHANNEL,END
CHANNEL,END

1430 5.4

5.229322

END OF ALGOL RUN

#TIME
TIME 4.947 SECONDS
#DATE

MFBLKS 1

OCTOBER 7, 1969 1345 PM

#

67

CFBLKS 1

Comments to the example, Newton's Method for Cube Roots

1 The command "ALGOL, I=NEWTON,X,L" is used to
call the ALGOL compiler. The "I" is used to specify
where the program is coming from. In this case it
is the saved file NEWTON. The "X" indicates where

‘the object program should be sent. In this case it
is 56, thé standard unit that is assumed if none is
stated. The "L" is used to specify that a listing
of the program as it appears on NEWTON is desired.

NOTE: For other options see reference 7, pages 9, 10.

2 The listing of the program begins. Notice that
the date is given and also the version, V0.0, the
first eight letters of the program, the time, and
the page. Anything that is stated before the first
"BEGIN" is treated as a comment, and is not exe-

cuted.

3 The executable part of the program begins.
Under the 0S-3 ALGOL certain words must be
enclosed in single quotes, " ' ". See Part Two if
you are in doubt about a word. Colons can be sub-
stituted for two periods: Semicolons can be substi-
tuted for a period and a comma.
In this example, Newton is used as a label for

the line "NEWTON:Y:=X;". Notice that later in the

68

program the command " 'GOTO' NEWTON" is used to

return to that line.

'For each "BEGIN" there must correspond an "END".
Notice the "10**", this indicates line number ten.

If the preram contains any errors they will be
listed here. Fbr a list of error messages and their
explanations see reference 3. The beginning, end, and
source deck ending is also listed.

The command "LOAD,SG" was used to load the binary
object program; The first "RUN" is typed by the user,
and is terminated by a carriage return and a line feed.
The second "RUN" is typed by the computer.

Two channel specifications are automatically
supplied by the ALGOL system. If more channel speci-
fications were desired they would be added at this
point. They would have the form:

CHANNEL ,AA=LUxx,Pbb,PPcc

where
AA integer channel number, up to 14
decimal digits
XX Operating System LUN (Logical Unit
Number), 0-99
60 for input standard unit
61 for output standard unit
62 for card punch output
bb Maximum physical record size in charac-
ters (normally 136 characters per line,
or 68 for Teletype)
cc Number of records per page

For more parameters see reference 8, page 5, Control
Data Instant ALGOL, (this booklet can be purchased
from the Computer Center main office).

69

10

Example: CHANNEL, 40=LU40,P80,PP60

where LUN 40 would be equipped earlier by the control

mode command

EQUIP,40=FILE |
EQUIP,40=<Name of your or data file>,...,etc.

The data is typed in by the user. Data may be
separated by two or.more spaces or by one comma and
one space, or data input format may be specified by
using the command INPUT (see Part‘Two, page 7, 8).

The cube root of 5.229322 is typed by the com-
puter. ' .

The line, END OF ALGOL RUN, which is typed by

the computer indicates a normal termination.

70

2. NEWTON'S METHOD WITH LOOPING

_EXAMPLE

S38588ARsA8E
1 #DATE
OCTOBER 3» 1969 4:48 PM

#%SCOOP
MAXTIME 1022
2 SFBLKS 98
SFBLKLIM 100
#TIME=20
3 #ALGOL, I=NEWTON2,XsL
053 ALGOL V0.0 NEWTONZ 10/03/ 69
NEWTONZ
CUBE ROOT DETERMINATION, MORE THAN
ONE ROOT CAN BE CALCULATED PER RUN.
EXAMPLE 1 B
'BEGIN® ,
4 ‘REAL' As APP, Ys ENDTEST» X3
OUTPUT(61» *C' '(' ENTER DATA "'
vt L
: 10%% LOOP: INBUT(60s 'C' ")'» ALAPPYS
5 Xe « =APP3
NEWTONe e Yo o =X3
Keoe=(2¢0 *xY +A/(Y12))/3+03
YIF' (Y=-X)/X < 001 °'THEN'
OUTBUT(61s *C' *(*' THE CUBE OF "'
s> 3ZDe3DBBBs, '(' IS ')
3ZD«9DBB»// ') '5As XD
'ELSE' 'GOTO' NEWTONS
6 0% INREAL (60> ENDTEST)S

'COMMENT' THIS WILL BE A POSITIVE

OR NEGATIVE VALUE;

*IF' ENDTEST < O 'THEN' ‘GOTO’

LO0F °*ELSE® °'GOTO' FINISH;
FINISHee 'END’

, ‘EOP*
1413 LINE 0006 @ PROGRAM BEGINS
(o1 LINE 0025 PROGRAM ENDS
(013 LINE 0026 SOURCE DECK ENDS

#10AD>56
RUN
RUN 71 R

CHANNEL, 60=LU60,P80
CHANNEL, 61=LU615P1365PP60

CHANNEL s END
CHANNEL > END

ENTER DATA

143 5e4 =1 34.00 3.5

THE CUBE OF 143.000 IS

THE CUBE OF 34.000 IS

END OF ALGOL RUN

#LOGOFF
TIME 4700 SECONDS MFBLKS 1

72

1

5.229321532

3239611805

COST $Ne52

Comments to the example, Newton's Method with Looping

1 #DATE

2 #*SCOOP

3 $#TIME=20

4 OUTPUT (61...

This command is used to print the date

" and time on the printed output.

This tells the user how much time
(seconds) he has left under his number,
how many saved file blocks he is using and

the maximum number he can use.

Time consumption (seconds) is limited

to 20.

This statement is used to print out
ENTER DATA. Characters that appear within

the format string enclosed in another set

of '(' and ')' will be printed with the
output.
5 LOOP: The label loop is set up for the pur-
pose of reading more input after one calcu-
lation has been made. See lines 24 and 25.
6 INREAL (60, ENDTEST) If endtest is positive the pro-

gram will go through the normal termination
(i.e., END OF ALGOL RUN). If endtest is
hegative, another computation will be

performed.

73

II. TWO-DIMENSIONAL ARRAY

This program declares a series of arrays of ever-

increasing dimensions.

EXAMPLE

c3ssesansess
#DATE ‘ ‘
OCTOBER 7, 1969 1:48 PM

#TIME=10
#ALGOL,» I=ALGOLDIM, XsL

053 ALGOL WVO.0 2~-DIMENS 10707/ 69 1349
2-DIMENSIONAL ARRAY

THIS PROGRAM DECLARES A SERIES OF ARRAYS
OF EVER-INCREASING DIMENSION. THE ARRAY IS
THEN FILLED WITH COMPUTED VALUES» ONE OF
WHICH 1S ALTERED. THE ALTERED VALUE IS
THEN SEARCHED FOR AND PRINTED.
SINCE THE PROGRAM HALTS NORMALLY WHEN THE
DECLARED ARRAY SI1ZE EXCEEDS THE AVAILABLE
MEMORY IT IS NECESSARY TO LIMIT THE

10%* TIME.

'BEGIN'
*INTEGER® 1,M»N3
1t=103
Lilt=]+]l3
OUTPUT(61» *C' /, 3D *)°%» 1)

'BEGIN’
'ARRAY' AC[-3%*13-1, 1:2%1);3
20%% *INTEGER®' P,Q3
'FOR®' Pi= =3%1 °‘STEP® 1 °UNTIL® -I
‘DO’ °*FOR®' Q= I °STEP' 1 °'UNTIL®
2% 'DO°* A(P»Qls= ~-P+100*Q3
Mi= =2x%]13
Ng= J+23
ACMsNlzt= ACMsN) + 10000;
*FOR® Ps:= =3%1 °STEP® 1 °'UNTIL® -I
'DO°* °'FOR® Qt= I °*STEP' 1 'UNTIL'
ox1 °*DO' 'IF°' ACP,Q) °NOT EQUAL® 100*Q-P
30%% *THEN®
'BEGIN' ‘
OUTPUT(61,» °C°' /55D *)', AlP»Q1)
*END '3

74

‘GOTO* L
.END.

END’3
40%% 'EOP’
01> LINE 0012 PROGRAM BEGINS
(01) LINE 0039 PROGRAM ENDS
1) LINE 0039 SOURCE DECK ENDS

#LOAD,»56
RUN
RJN

CHANNEL, 60=LU60, P80

CHANNEL, 61 =LU61,P136,PP60
CHANNEL,END

CHANNEL,END

011
11322
012
11424
013
11526
014
11628
01s
11730
016
11832
017
11934
o018
12036
019
12138
020
12240
021
12342

75

TIME CUT
#TIME
TIME 9.912 SECONDS MFBLKS 4 CFBLKS 2
fTIME=12
#GO

o22
12444
023
12546
024
12648

TIME CUT
#LOGOFF
TIME 11.956 SECONDS MFBLKS 4 COST $1.15

76

Comments to Example II, Two-Dimensional Array

1 In this program, it is necessary to set a time
limit, since the pfogram will run until memory over-
flow. A time limit of 60 seconds is automatically
set. However, it is still good procedure to set a
smaller time limit if you are not sure of a program
or if you know the programvdoes not have a normal
exit.

When you do get a time cut, reset time=o0ld value+

10 etc., and then type GO.

This program was-saved under the file name ALGOLDIM.

2 In this example the comment statements are used
to explain the purpose of the program. The name of
the program is taken from the first eight characters
of the first line. Before loading this program, or
a program of this type, it is a good idea to set a
time limit. This is done from the control mode, "#",

by stating "TIME= (NUMBER OF SEC)".

3 The executable program begins on line 12. Notice

the "10**" which indicates line number 10.

4 The " (/" also represents the left bracket "[" and
they can be interchanged. The same is true for the
right bracket.

The symbols '(', ')' used in the format are

77

delimiters and must be used to enclose the format
string under the 0S-3 ALGOL. The symbol / causes
a line feed. The code 3D indicates a 3-digit output

for integers. The I indicates the variable that is

to be printed.

The values for M and N are set and the value

of the M and Nth element of the Array is set.

78

III. ECONOMICS EQUILIBRIUM PROBLEM

This program uses a model that is made to resemble an
economic system that is controlled by NNP=Consumption +
Investment, with an assumed multiplier working on Investment.

Government and Taxes are excluded from this simplified model.

The aésumption is made that the public will be slow to
react to the increased Investment. Therefore, a time lag is

introduced in line 19.

79

EXAMPLE

cassssansess
#DATE
OCTOBER 7» 1969 1155 PM

 #TIME=10

'ALGOL'I'ALECON:X:L

B 3 ALGOL V0.0 ALECON 10707769 1355
ALECON ;

ECONOMICS PROBLEM IN EQUILIBRIUM.

Al STANDS FOR INVESTMENT DEMAND

C STANDS FOR CONSUMPTION DEMAND

ANNP STANDS FOR THE VALUE OF NNP

ANNPL STANDS FOR THE VALUE OF THE LAST
NNP.
THIS PROGRAM CALCULATES THE CHANGE IN NNP CAUSED BY AN
INCREASE OF 10 BILLION 1IN INVESTMENT, ACCORDING TO THE
10** MULTIPLIER THEORY.

"BEGIN' 'REAL®' Al,C,ANNP,ANNPL,DF;
Al3t=60.03
Coe=T740+03
ANNP«+=800+03
ECON« «OUTPUT (615 °(*3C¢e10D)»7")'»CsANNP,AI)S
ANNPL t =sANNP3
Alee=T70.03
Ceoem206+667 + (2+40/730)*% ANNPL 3
20%% - ANNPt= C+ Al3
DFee= 001 -C(ABSCANNP-ANNPL))3
8 *IF* DF < 0«0 °'THEN' °'GOTO®' ECON °*ELSE’
GOTO" LASTS
LAST« «QUTPUT(615°(*3(5D)»7"°)',CsANNP,»AI,ANNPL);
!mn'

W

=9
e N e el) P,

N oy

‘EQOP’*
(0o1) LINE 0012 PROGRAM BEGINS
({0} LINE 0025 PROGRAM ENDS
(1) LINE 0025 SOURCE DECK ENDS

#LOAD»S56
RUN
RUN

10

CHANNEL» 60=LU60, P80

CHANNEL:61-LU61:P136:PP60
CHANNEL » END

CHANNEL ,END

*+7 «400000000 * +002%*%+8.000000000 * +002%*+ 6000000000 *+00 1 *
*+7.400003334 '+002%%+ 8100003334 ' +002%%+7.000000000'+001 *
*+ 7866672223 *+002%%+8+ 166672223 '+002%%+7. 000000000 '+001*
+7.511118148'+002%+8.200

#

#EDIT
JFIN,ALEN\CON
JRESEQ

JSARLss2/¢10D/5s/3ZD« 10D/ :
000162 ECONe «OUTPUT (615 °(*3(3ZD.10DY»/")*>»CsoANNP,AL);

JOUT,ALECON

#ALGOL,» I=ALECON, X

0S3 ALGOL V0.0 ALECON 10707/ €9
(01) LINE 0012 PROGRAM BEGINS :
(01) LINE 0025 PROGRAM ENDS |
(01) LINE 0025 SOURCE DECK ENDS !

#L0AD»56
RUN

TIME CUT

#TIME

TIME 9910 SECONDS MFBLKS 1 CFBLKS 1
#TIME=20 ‘

#G0

RUN

81

CHANNEL, 60=LU

60,P80

CHANNEL, 61 =LU61,P136,PP60

CHANNEL » END
CHANNEL, END

740.0000000000
740.0003333000
7466672222000
751.1118148000
754.0748765000
756.0502510000
7573671674000
758.245111 6000
758.8304077000
759.2206051000
759.48073 68000
759.6541578000
7597697719000
759.8468479000
759.8982319000
759.9324880000
759.9553253000
7599705502000
759.9807001000
759.9874 668000
7599919778000
759.9949852000
7599969901000
759+9983268000
759.99922 829.9

8000000000000
810.0003333000
816+ 6672222000
821.1118148000
824.0748765000
826+.0502510000
8273671674000
828.245111 6000
828.8304077000
829.2206051000
829.48073 68000
829+ 6541578000
829+7697719000
829. 8468479000
829.8982320000
829.9324880000
829.9553253000
829.9705502000
829.9807001000
829.9874668000
8299919778000
829.9949852000
829+9969902000
829.9983268000
9922 70.00000

600000000000
70.0000000000
70+0000000000
70.0000000000
70.0000000000
70.0000000000
70.0000000000
70.0000000000
700000000000
70+0000000000
70.0000000000
700000000000
70.0000000000
70.0000000000
700000000000
70.0000000000
70.0000000000
70.0000000G00
70.0000000000
70.0000000000
70.0000000000
70.0000000000
70.0000000000
700000000000

+8.299983268"'+002

END OF ALGOL RUN

#LOGOFF

TIME 16.700 SECONDS MFBLKS 1 COST $1.79

82

Comments to Example III, Economics Equilibrium Problem

1 The first six characters of the beginning
of an ALGOL program are used for the name, in this

case ALECON.

2 The characters that occur between the name and
the first "BEGIN" are ignored by the computer. They

are usually used for comments.

3 The first "BEGIN" appears and immediately fol-
lowing it is a declaration, in this case "REAL".
This gives the variables AI,...,DF real storage loca-

tions (decimal).
4 The values of the variables are set.

5 The label ECON is set up. This will be used for
reference later in the program. See line 00022,

' GOTO' ECON.

6 The last value of NNP is saved before the next

is calculated by giving it the name ANNPL.

7 The Investment (AI) is increased by +10 billion.
This causes disequilibrium of the economic model.
Notice that in this simplified model, Government and

Taxes are absent.

8 DF is a test value that will have a positive

value when the economic model is in equilibrium.

83

10

Output statement allows format specifications.
See Part Two. The format that was used was not
readily readable, so we will go back to EDIT and

change the format.

The format is changed, and the changed program

saved.

84

IV. SIMPSON'S RULE FOR INTEGRATION

This program gives an approximation to the integral of
a specified function. The program will calculate only a

positive integral.

The interval of integration is subdivided into an even
number of intervals.

The number of intervals is n.

The step width is J=(B-A)/n, where B is the upper limit

and A is the lower limit of integration

Xk=X0+KJ(K=l,2,...n)

fo (x)dx = %- [£ (x) +4£ (37) +2F (%)) +. . .+
A

4f(xn_l)+f(xn)]+Rem.

85

Example IV

#TIME=2
#ALGOL»

0
I=ALSIMIN, XL

0S3 ALGOL V0.0 ALSIMIN 10707/ 69 1409

10%*

N
"=

4 20%*

r 30%*

ALSIMIN :
THIS PROGRAM GIVES AN APPROXIMATION FOR THE
INTEGRAL OF F(I) » WHICH IN THIS EXAMPLE IS:

FCI)=SQRT(2¢0/3+1416)%10/2+7181 ((=X12.0)/2+0)¢

THIS EXAMPLE 1S SET UP TO HANDLE ONLY POSITIVE

UPPER AND LOWER LIMITS.
A STANDS FOR THE LOWER LIMIT OF THE INTEGRAL.
B STANDS FOR THE UPPER LIMIT OF THE INTEGRAL.
N STANDS FOR THE NUMBER OF INTERVALS.

THIS EXAMPLE USES SIMPSON'S RULE FOR INTEGRATION.

"BEGIN' 'REAL®' A»BsNX»Js»R»SUMs» INTEGRAL
“ " 'INTEGER' K»13
"ARRAY' F(1110013

INPUT(60, °C® 3(2D+3DBB)s/ ')',A,BsN)S
'IF* N < 0.0 °'THEN®' °"GOTO' TWO °ELSE' °*GOTO’
" STARTS3 i o ' -
STARTe.«Xt=A3
R$=SQRT(2:0/3.1416);
Jt=(B=A)/N3
*FOR® I:=] °STEP®' 1 °‘UNTIL® 100 ‘DO’

'BEGIN® F(I1l:=R%2.7183t((~X12)/2.0)3
"*IF' X< B °'THEN'®' 'GOTO® NEXT
“'ELSE* °'GOTO°* TWO3 '
NEXT+ X=X + J}
*END'3
TWO. Ks=1}
SUMs=F(K13
ONEe..K32K+ 1| 3 :
SUMs=sSUM+ 4.0 * FLK] 3
KssK + | 3
SUMts SUM+ 2.0 * FLK] 3
*IF' ((K+1)-1) < 0.0 °THEN®' 'GOTO’
) 'ONE ‘ELSE°*
Ke=sK + 13

86

40%* ' SUMs=SUM + FCKJ3
INTEGRAL t= (J/3.0)%*SUM;

OUTPUT(61s *(* //, *¢' THE STEPWIDTH *)°,

2D+4D,/,* (' THE UPPER AND LOWER L *)°*

>2(3D.ADBBBBBY, /> '¢' THE INTEGRAL VALUE *)',

BBBB3D+4D,/ ')'s Js> Bs» A» INTEGRAL); “

QENDS : : ’ -
" *EOP’

(01> LINE 0014 ~ PROGRAM BEGINS

(01> LINE 0047 PROGRAM ENDS

(01> LINE 0047 SOURCE DECK ENDS

#LOAD»S6
RUN
RUN

CHANNEL . 60=LU60-P80
CHANNEL., 61=LU61,P136,PP60
- CHANNEL,END
- CHANNEL,END
1
#G0
01000 02000 10000

THE STEPWIDTH 0001000
THE UPPER AND LOWER L 002.0000 001 +0000
THE INTEGRAL VALUE 000+2754

END OF ALGOL RUN

#LOGOFF :
TIME 8.400 SECONDS MFBLKS 4 COST $1.50

87

Comments to Example IV, Integration Approximation

1 A blank line is ignored.

2 ALGOL uses free-spacing (i.e., there are no
specified columns in which instructions must fall

with the one exception of "EOP" 10-14).

3 The variable F is declared to be an array

having 100 locations, F[1l], F[2], F[3], etc.

4 _ An "IF" statement is used to test the value of
'N. If N is negative the program jumps to line 31,
where the label TWO is found. If N is positive the
program goes to the line where the label START is

found, line 21.

5 A "FOR" statement is used to set up a loop
around a "BEGIN", "END". The "IF" statement tests
to see if the upper limit of the integral has been
reached. If it hasn't been reached the program goes

to line 29 where the label NEXT is found.

6 These lines are a statement of Simpson's Rule

for Integration: I=J/3[F(K)+4F(L)+2F M)+...F(P).

7 The usage of the break key was made here when
the typing error,".", occurred. The break key was
pressed before the carriage return so the "." was

not sent to the computer. The 05-3 control mode

command GO causes the return back to the program.

88

REFERENCES

An Introduction to ALGOL 60, by C. Anderson, Mass.,
Addison-Wesley Co., Inc., 1964.

Computer System ALGOL, reference manual, Control Data

Corporatidn, 1966.

ALGOL Generic Reference Manual, CDC, 3000,6000; 1968.

0S-3: A User's Manual with Examples, OSU Computer Center,‘

Baughman, Berryman, Pielstick, cc-69-24, September, 1969.

Oregon State University Computer Center, 0S-3 User's Manual,
G. Bachelor, cc-68-3, March, 1968.

0S-3 Editor Manual, Dayton, ccm-70-7, January, 1970.

0S-3 Reference Manual, Skinner, ccm-70-8, January, 1970.

Control Data Instant ALGOL, 3100/3200/3300/3500, Control
Data Corporation, 1966.

89

*ALGLIB;10,11
ALGOL; 2
Arithmetic Expression
Operators; 35
Precedence of Operators;39
'ARRAY' Declarations;24
Assignment Statements;43

Batch;2,13-15 .
'BEGIN';19
Binary Program;10
Blanks~-Format;55
Block
Example; 41,42
Structure; 21
Syntax; 40
Boolean
Declarations;21,22
Expressions; 38
Format;56
Bounds-Array
Upper & Lower;24

Card Usage;13-17

Carriage Return Key on
Remote Terminal;4

CDC 3500;preface

CHANNEL END;8

Channels; 8,69

'COMMENT';19

Compound Statements;40

Conditional Statements;44

CONTROL A Key;4

Control Statements on
Remote Terminal;4,6,7

Decimal Point-Implied;55
Declarations;21

Delimiters;6

Designational Expressions;39
Diagnostic-Example;6

Dummy Statement;43,44

EDIT Mode;3

Elements of Single Program;19
'END';19 '
'EOP';19

Error Message-Example;6

INDEX

Expressions
Arithmetic;38
Designational; 38,39

Format
Alignment;56
Boolean;56
Codes;55
Free Form;58
Number;55
Standard;57,58
String;52,54,55
. Title;57 '
FOR Statement;48
Function Designators; 38
Functions (Standard) ;39

GO TO Statements;43

'IF';44-46
INARRAY; 24,53
INCHARACTER;SZ
INPUT-Editor;4,5
INPUT-OUTPUT;52
INREAL;
'"INTEGER' Declaration;21
LABELS

LOGICAL Values;

Operators
Arithmetic; 35
Boolean; 35
Precedence; 39
Relational; 35

0S-3;preface

OUTARRAY;53

OUTCHARACTER;53

OUT-Editor;5

OUTPUT; 24

OUTREAL;

'OWN' Declarations;21,22

Paper Tape;1l2
Procedure
Calling;29,30
Declaration;21,28
Program;l

Program Diagram of
Source Deck Structure;18
Programs
Simple Programs;6-12,20
Boolean; 36,37
Cube Roots of Complex
Numbers; 26
Day of Week;62-64
Economics Equilibrium;79-84
Examples with I/0;60-61
Geometric Progression;50,51
Newton's Method for
Cube Roots;65-73
Roots of Quadratic;31-34
Simpson's Rule for
Integration;85-88
Two-Dimensional Array;74-78

'REAL' Declarations;21
Remote Terminal-Teletype;2,3

SARL-Editor;7

Statements
Assignment; 43
Conditional; 44
Dummy ; 43,44
FOR; 48
GO TO;43
Procedure;21

'STEP';48

'SWITCH'
Declaration;21
Sample Program;25,26

Teletype;2,3
TIMECUT;76,77
TTP-Editor;12

TYPE Declarations;2l
'"WHILE';48

Zero Suppression;55

ii

	0001
	001
	002
	003
	004
	005
	01
	02
	02a
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	17a
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	51
	52
	53
	54
	55
	56
	57
	58
	59
	60
	61
	62
	63
	64
	64a
	65
	66
	67
	68
	69
	70
	71
	72
	73
	74
	75
	76
	77
	78
	79
	80
	81
	82
	83
	84
	85
	86
	87
	88
	89
	Index-01
	Index-02

