cc-69-15

OSCAR V55: With Character String
Processing

by
Gilbert A. Bachelor

June, 1969

COMPUTER CENTER

Oregon State University
Corvallis, Oregon 97331

OSCAR V55:
With Character String Processing

by

Gilbert A. Bachelor

cc-69~15

Computer Center
Oregon State University
Corvallis, Oregon 97331

June, 1969

OSCAR V55: With Character String Processing

A new version of OSCAR (V55) has been released. The most
important new feature of V55 is the improved character string
processing facility. A full discussion of this facility appears
later in this report. First, we shall describe the other changes
and improvements in OSCAR V55.

CHANGES, IMPROVEMENTS AND CORRECTION OF BUGS

1) There were two bugs involving procedures in version 54.
One of them was that OSCAR failed to detect an attempt to define
a procedure with more than 13 parameters. It did not give an
error message; it simply gave an incorrect result. V55 detects
this situation and prints an error message. The other bug was
that if F (for example) were defined as a procedure with one or
more parameters, then one could not re-define F as a procedure
without parameters, without first CLEARing F. This bug has been

fixed.

2) Considerable effort has been expended to shorten OSCAR
by re-coding numerous portions of it. This effort has succeeded
well enough so that V55 is shorter (takes less memory space)
than V54, in spite of the new features that V55 has. One of the
changes made in this "shortening" effort has been to change and
shorten many of the error messages. For example, there were
three different messages concerned with lines that were too long:
INPUT LINE TOO LONG; INPUT RECORD TOO LONG; and LINE TOO LONG.
All three of these situations now produce the message LINE TOO
LONG.

3) The READCHAR statement now reads an empty character string
only at the end of a line. (For more information about READCHAR,
see the discussion on character string processing, later in this
report.)

4) Protected output unit: In version 54, if one used a
command &OUTPUT, (lun) and the specified logical unit were pro-

tected, OSCAR would simply switch to the teletype for output
instead of trying to write on the unit. This action tended to
cause confusion. In OSCAR V55, if the output unit is protected,
OSCAR will go ahead and try to write on it, which will produce
an 0S-3 error message. This situation will normally not occur,
however, since the &OUTPUT, (lun) command now checks for protec-
tion on the specified output unit and produces an error message
if the unit is protected.

5) The KIND function produces a character string telling
what "kind" of object its argument is. For example, KIND(4) is
"INTEGER". The spelling of some of the "kinds" has been changed
in version V55. For example, the spelling of RATIONL has been
changed to RATIONAL.

6) The square root function (SQRT) has been re-coded to
make it shorter, faster, and more accurate. One result of this
is that SQRT in V55 will produce slightly different answers, in
some cases, than V54's SQRT. Also, since SQRT is used in LOG
(when the argument is a complex number), and in ABS (when the
argument is an array or a complex number), these functions will

also give different answers in some cases.

7) When OSCAR V55 is reading data input (&INPUT,lun) from
a file and it comes to end of file or end of data, it prints a
message of the form (lun) AT EOF, and behaves as if interrupt
(MI) had occurred. In V54, OSCAR printed'a message and switched
data input to the teletype, which was usually more confusing than
useful.

8) 1If OSCAR V55 is attempting to read a very long line and
cannot because of a storage overflow situation, it prints the
message LINE TOO LONG and behaves as if interrupt (MI) had
occurred. OSCAR V54 printed the message and waited for a new
line from the teletype to replace the long line. Again, this
tended to be confusing.

9) When OSCAR is reading from a file (either CONTROL or
INPUT), there may be several blanks (spaces) at the end of each

record. This caused a problem when one was doing a READLINE
since one would not know how many blanks there might be. To
alleviate this problem, OSCAR V55 eliminates all trailing
blanks from records read from files except in the case where
the record is all blank. In this case, the record will contain
one blank.

10) As an aid to CRT users, the notation :== is now allowed
as a substitute for «=. Both of these notations represent the
"old value assignment". The value of an old value assignment is

the old (previous) value of the variable on the left. For
example, (X:==(X+Y)/2)EQ Y will assign the new value (X+Y)/2 to
X and then compare the previous value of X with the value of Y
to see if they are equal. Another example: Fl:=F2:=1; FOR I=1
TO 100 PRINT F1l:=F2:==F1+F2,CR will print a table of Fibonacci
numbers. (F1+F2 is assigned to F2, the previous value of F2 is
assigned to Fl, and this value is also printed. If the PRINT
statement were PRINT Fl:==F2:==F1+4F2,CR then the previous value
of Fl would be printed.)

11) The "null" feature introduced in V54 has been more fully
implemented. A sub-array designator such as A(5:3) (first number
greater than second one) produces a "null" result, which when
added, subtracted, multiplied, etc., by anything else, is supposed
to produce the other operand as a result. In V55, there are still
some cases where this does not work, but it works in more situ-~
ations than it did in V54.

12) Assignment operators (:=, :==, ::=) can now be used on
either side of a colon (:) operator, and they have a higher
precedence than colon. For example, A(I:=I+1:J:=J-1) is now legal.
(This increments I, decrements J, and uses the new values to

select a sub-array of A.)

13) The "storage management" in OSCAR V55 has been changed
in several ways to try to alleviate the "fragmentation" problem.
OSCAR uses storage in blocks of words of various sizes, usually
powers of two (2, 4, 8, 16, etc.). A block which has been broken

into smaller blocks cannot be put back together again. As a
result, there sometimes occurs a situation where a large block

of storage is needed and there are none available, even though
there might be enough storage scattered around in smaller blocks.
In this situation OSCAR proclaims a STORAGE OVERFLOW and asks

the user if it is okay to get another page (2048 words) of storage.
We have made a number of changes in V55 to reduce the amount of
storage fragmentation. There are further changes that should be
made and work will continue on this problem. Users who have large
OSCAR programs that run into storage overflow problems can
alleviate the situation by having the program erase parts or steps
that are no longer needed and by CLEARing arrays that are no longer
needed. For example, one could put a statement 12.99:ERASE PART 12
at the end of part 12. One should also try to be sure that the
program is not "recursing" unintentionally. Use a GO TO where
possible, in preference to DO PART or DO STEP, since a DO PART or
DO STEP sends everything down to a "lower level", consuming more

storage.

14) Two minor changes have been made in the OSCAR display
console routines. One of these allows the CRT user to clear the
screen by pressing CLEAR, then SEND. (Previously, OSCAR would
clear the screen if the user mérely preésed SEND but this made
it too easy to clear the screen inadvertently.) Another change
is that if a blotch (#) is read in (not in upper left corner),
it is interpreted by OSCAR as a quote mark. This makes OSCAR'S
CRT input and output compatible for those users who like to read
statements displayed on the screen back into OSCAR.

15) Previous versions of OSCAR allowed zero divided by zero
(0/0) to slip through, giving an answer of 0 instead of an error
message. In OSCAR V55, this case will now produce an error
message. However, integer zero (0) divided by an inexact zero
(OE-5P1, for example) still gives an answer of 0. This should

be fixed in the next version of OSCAR.

NEW FEATURES

1) Comments are now allowed in stored program steps. For
example, 1.05:*COMPUTE THE SUM is now legal. Executing such a
step does not@ing; the value of the step is [] (undefined).

(In version 55, stored program steps with comments have to be
typed in individually; they can't be typed in when using

&PROGRZM unless one types a space before the #*).

2) OSCAR can now be used in a batch job. If OSCAR is
called by the statement ZOSCAR, it will treat unit 60 (the card
reader) as its "teletype" for input, and unit 61 (the line
printer) as its "teletype" output unit. All statements, commands
and data read from the input unit will be printed on the output
unit, with a mode indicator at left. Outputs from OSCAR to its
"teletype" will be printed on the output unit, with no mode

cator. A record read from the input unit that contains only
the word ESCAPE, starting in column 1, will cause OSCAR to behave
just as it does when a teletype user presses the ESCAPE key (at
the beginning of a line). (ESCAPE changes modes or interrupts

data input).

If OSCAR is called by a statement of the form gOSCAR,I=(lun),
then OSCAR will use the specified logical unit number as its
"teletype" input unit and will otherwise behave as described
above. The input unit must already be equipped before OSCAR

is called.

A file mark (or end of file card) on the input unit denotes
the end of input for OSCAR, and it will print END OF OSCAR RUN
and return to control mode. If any error occurs and the user is
not using DEBUG (see next section), OSCAR will abort its run with
the message **ABNORMAL END OF OSCAR RUN. (This is printed after

the error messages.)

3) The DEBUG command is not new but it has a new feature for
the convenience of batch users of OSCAR. If a batch user of
OSCAR does not want the run aborted in case of an error, he should
include the command &DEBUG ON or the command &DEBUG ON (lun).

(The & is printed as a < on the line printer.) If the command
DEBUG ON has been used, then a subsequent error will produce a
special message of the form ERROR AT (addr) (message), a few
blank lines, then the normal error messages and OSCAR will go
on reading from its input unit instead of quitting. If the
command DEBUG ON (lun) has been used, then an error will produce
the special message mentioned above. OSCAR will then read
commands (commands only) from the logical unit specified in the
DEBUG ON statement. Each command read will be printed and then
executed. This will continue until the command GO is read or a
record is read containing only the word ESCAPE. OSCAR will then
print the regular error messages and go on reading from its input
unit.

Teletype and CRT users can also use the DEBUG feature,
with the additional provision the OSCAR will read commands
from the console if an error occurs after a DEBUG ON command

has been given. An "escape" will terminate this special command

mode. The DEBUG ON (lun) works just as described above.
To cancel the debug mode, use the command DEBUG OFF.

4) When OSCAR is reading from a file (or a card reader, in
a batch job) it will recognize a line containing only the word
ESCAPE. If OSCAR is reading statements or commands from the file,
ESCAPE causes it to switch from normal to command mode or vice
versa. If OSCAR is reading data from the file, ESCAPE causes an
"interrupt" just as if MI had occurred. Whenever the &CONTROL,
(lun) command is given OSCAR will start reading from the (lun)
in normal mode. At the end of a file, OSCAR switches back to
the standard input unit (console, card reader, etc.) and also

reverts to normal mode.

5) For CRT users, there is now a RECORD feature, which enables
the user to get a "hard copy" of everything he does in OSCAR. In
conjunction with this is a "recall" feature, which enables the
CRT user to bring back to the screen a display of what he has

done earlier.

The RECORD feature can be activated in either of two ways.
The easiest way is to call OSCAR with a statement of the form
#0SCAR,R=(lun). This will cause OSCAR to record on the specified
(lun) and this (lun) will be equipped as a file if it is not
already equipped. The other way to start recording is to use the
command <RECORD ON (lun). This will cause OSCAR to record on the
specified (lun), which must have been equipped previously. The
record feature can be turned off by the command <RECORD OFF. While
the Record feature is on, OSCAR displays an "R" next to the second
mode indicator at the right side of the screen.

When "Record" is on, every line displayed on the screen,
whether it is an input by the user or an output from OSCAR, will
be written on the specified record unit. The first two charac-

ters of each recorded line are blanks and the lines are from one

to thirteen words long (4 to 52 characters). (Trailing blanks
are removed.) This output can thus be written directly on a

e
line printer or can be written on a file and later copied to a
line printer, if desired.

The "recall" feature mentioned above is available only when
the Record feature is in use. Also, the record unit must be a
file (since one cannot backspace a line printer). If one is
recording on a file and if one is in normal mode ("blotch" dis-
played in corner), then one can "recall" anything which has been
recorded on the file. To do this, one types a special "command"
whose first character is the "blotch". The SKIP key is used to
space past the blotch without wiping it out. Then one types
either a decimal integer or a minus sign followed by a decimal
integer and presses SEND. If an unsigned integer was typed,
OSCAR will rewind the Record unit then space forward as many
records as specified by the integer. It will then read the next
sixteen records from the file and show them on the screen. Finally,
it searches forward to the end of data on the file, to be ready

for further recording, etc.

If a negative integer was typed, OSCAR backspaces the file
the number of records specified by the integer. It then acts as
described above (reads forward sixteen records, shows them on the

screen, etc.).

If, for any reason, the recall command cannot be carried out,
OSCAR does nothing. If the file is positioned to a point less
than sixteen records from its end, then fewer thén sixteen lines
will be shown on the screen. (Note: the recalled information

is not recorded on the file again.)

One convenient use of the recall feature is to position a
previously typed statement near the top of the screen, carriage
return down to it and read it back into OSCAR, possibly after

making changes in it.

CHARACTER STRING PROCESSING

Previous versions of OSCAR had some ability to process
character strings (add, subtract, compare). Version 55 has
several new features which make it possible to do general char-
acter string manipulations. These features include subscripting
and sub-array notation to refer to parts of character strings,

a search feature and DECODE and ENCODE functions. To indicate

the possibilities, three simple applications which have been
programmed for OSCAR V55 are a "form letter" processor, a Markov
Normal Algorithm processor and a simple expression translator
(from algebraic expressions to Polish strings). We shall describe
OSCAR's character string processing features (both old and new)

on the following pages.

INPUT, OUTPUT AND REPRESENTATION OF CHARACTER STRINGS

The internal representation of character strings in OSCAR
has been changed. In previous versions, a string was terminated
by a quote mark ("). This meant that a quote mark could not be
included in a string. The new representation includes an integer
(internally) that tells how many characters the string contains.

This makes it possible to include any characters in a string.

There are two ways of representing a character string in

OSCAR language. One way is to enclose it in quotation marks, as

for example: "THIS IS A STRING". This notation is fine for
teletype users. There is no quotation mark on the CRT keyboard;
however, OSCAR, when used at a CRT, allows the notation ## to
represent a quotation mark. (On output to the CRT, a quotation
mark is displayed as a blotch.) Unfortunately, EDIT does not
recognize the ## notation and treats it as two apostrophes in a
row (''). A CRT user who wants to use EDIT to prepare or to
modify an OSCAR program cannot use the quotation mark at all.

To alleviate this problem, there is another notation for charac-
ter strings: TEXT /THIS IS A STRING/ means the same as the previ-
ous example. In this second notation, the word TEXT can be fol-
lowed by any non-space character (for example: / + : $, etc.),
then the string of characters and finally, the chosen "bracket"
character again. Thus, TEXT/X=/, TEXT:X=: and TEXT%X=% all

represent the same character string "X=".

There are three special conventions regarding the contents
of character strings. These are: 1) The bracketing character
(" or whatever bracketing character is used with TEXT) can be
included within a character string by writing it twice in a row.
For example, "X""Y" represents the character string X"Y. Other
examples; TEXT =X=== represents the string X=, """" represents
the string ", and "" represents the empty string. 2) Carriage
return (end of line) always terminates a character string and the
carriage return is included in the string as its last character.
Thus, if PRINT "RESULTS ARE: is the last thing on a line, the
character string to be printed will be RESULTS ARE:, followed by
a carriage return. 3) The character @ (+ for CRT users) denotes

a carriage return within a character string. For example:
"FIRST LINE@2ND LINEGLASTLINEZ®"

The three (® symbols in this character string represent carriage
returns. As a result of this convention, it is not possible to
type in a character string that actually has the character @ (or
¥) in it. The only way to get a character string with @ in it

is to use the ENCODE function (see later paragraph).

1o0.

When a character string is printed (using PRINT), the char-
acters in the string are simply typed out, with no bracketing
characters, and carriage returns cause output to go to the next
line. If EPRINT is used, the bracketing characters " " are
printed; quotation marks within the string are printed twice,
and carriage returns are printed as @. The result is that an
EPRINTed character string can be read back in and will produce
a character string identical to the one that was EPRINTed (unless
it contained a @ character; such a character will go back in as
a carriage return). The constant CR is a special case; this
represents a one-character string containing a carriage return
but it will be printed as a carriage return whether PRINT or
EPRINT is used. |

There are three ways in which character strings can be
read in by OSCAR.

1) A statement such as READ X will read the next constant
from the input unit and assign it to X. The constant can be a
number, array, etc., or a character string, of either the "..."
form or the TEXT/.../ form.

2) The statement READLINE X will read an entire line (or
the rest of a partially read line), put it into a character string
and assign it to X. In this case, the carriage return at the end

of line will not be included in the character string.

3) The statement READCHAR X will read the next single char-
acter from the input unit and assign it to X as a one-character
string. At the end of a line, READCHAR will get an empty charac-

ter string instead of a string containing a carriage return.

The statements READ, READLINE and READCHAR may each include
a list of variables to be read. For example, READLINE X, Y, Z
will read three lines and assign them to the variables X, Y and Z.

OPERATIONS ON CHARACTER STRINGS

Character strings can be "added", "subtracted" or "compared”.

11.

X+Y If X and Y are character strings, X+Y is a character string com-
posed of X followed by Y (concatenation). For example, "STREET"
+"CAR" is the string "STREETCAR".

X-Y If X and Y are character strings, X-Y is found by searching X to
see if Y occurs within it (as a substring). If so, the part of
X that matches Y is removed, and the value of X-Y is what is
left. (X and Y are not changed.) If Y is not found in X, the
value of X-Y is simply X. Another way of expressing X-Y is
SAR(X,Y,""), that is, search and replace by empty (see next sec-
tion for SAR function). For example, "CHARACTER"-"AC" is
"CHARTER". Another example: "WALLA WALLA"-"ALL" is "WA WALLA"

(only the first occurrence of "ALL" is removed).

X EQ Y If X and Y are character strings, X and Y are compared charac-
ter by character to see if they are the same. If X and Y are the
same length, and all corresponding characters match, then the
value of X EQ Y is TRUE; otherwise, the value is FALSE.

X NEQ Y This is like X EQ Y except that it gives the result TRUE if

X is not the same as Y; if X and Y are the same, the value is FALSE.

X<Y If X and Y are character strings, then corresponding characters
of X and Y are compared, starting at the left, until two correspon-
ding characters are different or the end of one (or both) of the
strings is reached. If the strings are of the same length and
all characters of X match the corresponding characters of Y, the
value of X<Y is FALSE. If X is shorter than Y, but X matches Y
as far as it goes, the value of X<Y is TRUE. If Y is shorter than
X, and matches X as far as it goes, then X<Y is FALSE. If there
is some position where a character in X does not match the corre-
sponding character of Y, then X<Y is TRUE if the internal code
for the character in X is less than the code for the character in
Y; otherwise, X<Y is FALSE. (See table of codes at the end of
this report.)

X GEQ Y This is the same as X<Y except that it gives the answer TRUE
if X<Y is FALSE, and vice versa.

+

12.

X>Y This is the same as Y<X.

X LEQ Y This is the same as Y GEQ X.

FUNCTIONS WHICH CAN BE USED WITH CHARACTER STRINGS

Of course, the OSCAR user can define functions of his own
which take character strings as arguments or produce character
strings as values, or both. However, there are several "pre-
defined" functions available in OSCAR which can be used with
character strings. These are:

DECODE If X is a character string, then DECODE (X) is an integer in

the range 0 to 63, giving the internal (OSCAR) code for the
first character of the string. If X is an empty character string,
then DECODE (X) has the value -1.

ENCODE If N is an integer in the range 0 to 63, then ENCODE(N) is a

SRCH

SAR

n
=
3

one-character string containing the character whose internal code

is the specified integer.

If X and Y are character strings, then SRCH(X,Y) is an integer
telling where string Y occurs within X, if it does occur. If it
does not occur, the value of SRCH is zero. For example, SRCH
("ABCDE","CD") has the value 3. (CD occurs within ABCDE, starting
at the third character of ABCDE.) If Y occurs in X in more than
one place, SRCH indicates the location of the left-most occurrence
of Y.

If X, Y and Z are character strings, the value of SAR(X,Y,Z) is a
character string formed in the following manner: X is searched
for an occurrence of Y (using SRCH); if found, a new string is
constructed in which the part of X that matched Y is replaced by
Z. This new string is the value of SAR. If Y does not occur
within X, the value of SAR is simply X. 1In any case, X, Y and 2
are not changed. For example, SAR("OSCAR","CAR","WALD") has the
value "OSWALD".

If X is a character string, SIZE(X) is an integer (0 or larger)

telling how many characters the string X contains.

KIND

X(I)

13.

KIND (X) produces a character string telling what kind of wvalue
X has.

Note: The arguments of the functions described above can
be any expressions, so long as the expressions have the proper
kinds of values.

SUBSCRIPTING AND SUB-ARRAYS

Subscript notation can be used to refer to individual
characters in a string and the sub-array notation can be used
to refer to sub-strings of a string.

If X is a character string and I is an integer in the range
1l < I < SIZE(X), then X(I) is a one-character string containing
just the Ith character of X. If I = 0 or if I > SIZE(X), then
X(I) is an empty character string. For example, if X = "ABCDE",
then X(4) is "D" and X(6) is "".

X(I:J) 1If X is a character string and I and J are integers such that

1l <I<J < SIZE(X), then X(I:J) is a character string containing
the Ith through Jth characters of X, inclusive. If any of the
three inequalities specified above is not true, then X(I:J) is an
empty character string. For example, if X = "ABCDE", then X(2:4)
is "BCD", X(4:6) is "", and X(4:1) is "".

Note: One cannot assign values to x(I) or to X(I:J), when
X is a character string. For example, X(3):="Q" is illegal if
X is a character string. One can accomplish the effect desired
in this example by the statement

Xe= X(1:2) + "Q" + X(4: SIZE(X))

OTHER NOTES ABOUT USE OF CHARACTER STRINGS

As we have implied in the foregoing paragraphs, variables may
have character strings as their values. This can happen either by
reading in a character string or by an assignment statement (such
as the example above). One can use either ordinary assignment (:=)
or the old value assignment (:==) in dealing with character strings.

One can also use the exchange operator (==).

14.

Another useful concept to keep in mind, is that the elements
of an array can be character strings. For example, A(l):="THIS";
A(2):="IS8"; A(3):="AN"; A(4):="EXAMPLE." 1If the array A has only
these four elements, then PRINT A will produce the sentence THIS
IS AN EXAMPLE. Also, A(4,1:4) is the string "EXAM". (This
selects the first through fourth characters of the fourth element
of A.) Another way to define an array containing character strings
- is to use an ARRAY constant. For example, B:=ARRAY("THIS", "IS",
TEXT/ANOTHER/,"EXAMPﬂE.") (One can use either the "..." or the
TEXT notation in an ARRAY constant.) If B is PRINTed, the result
is THIS IS ANOTHER EXAMPLE. And finally, PRINT B-A would produce
OTHER. (Actually, B-A is an array whose Ith element is B(I)-A(I),
for 1=1,2,3,4. But, three of these elements are empty character

strings; only the third one actually contains any characters.)

15.

OSCAR internal character codes

The following table gives the character codes used in OSCAR. These
codes determine the values of the DECODE and ENCODE functions, and
also determine the results of comparisons such as <, GEQ, etc.

(TTY denotes the teletype character; CRT denotes the display console
character; and LP denotes the Line Printer character.)

OSCAR card TTY CRT Lp OSCAR card TTY CRT LP
code code char char char code code char char char
0 0 0 0 0 32 0,6 W W W
1 1 1 1 1 33 0,7 X X X
2 2 2 2 2 34 0,8 Y Y Y
3 3 3 3 3 35 0,9 Z 2 Z
4 4 4 4 4 36 12,3,8 . . .
5 5 5 5 5 37 11,6,8 @ v ¥
6 6 6 6 6 38 5,8 & < <
7 7 7 7 7 39 11,0 ! v v
8 8 8 8 8 40 (none) carriage return
9 9 9 9 9 41 0,7,8 ? A A
10 12,1 A A A 42 12,5,8 # > >
11 12,2 B B B 43 4,8 # #
12 12,3 c o c 44 12,6,8 " (| -
13 12,4 D D D 45 12,0 < < <
14 12,5 E E E 46 3,8 = = =
15 12,6 F F F 47 11,7,8 > > >
16 12,7 G G G 48 12 + + +
17 12,8 H H H 49 11 - - -
18 12,9 I I I 50 11,4,8 * * ®
19 11,1 J J. J 51 0,1 / / /
20 11,2 K K K 52 11,5,8 + N n
21 11,3 L L L 53 0,6,8 <« ! =
22 11,4 M M M 54 0,4,8 (((
23 11,5 N N N 55 12,4,8)))
24 11,6 0 0 o 56 7,8 [[[
25 11,7 P P P 57 0,2,8 1]]
26 11,8 Q Q Q 58 2,8 : : :
27 11,9 R R R 59 0,3,8 , ’ ’
28 0,2 S S S 60 12,7,8 ; i ;
29 0,3 T T T 61 blank space
30 0,4 U U U 62 11,3,8
31 0,5 v v \Y 63 6,8 % % %

	0001
	001
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15

