cc-69-25

A Brief Description of OSCAR
(Third Revision)
(Describes Version 56)

by
Joel Davis
and

Gilbert A. Bachelor

COMPUTER CENTER

Oregon State University
Corvallis, Oregon 97331

A Brief Description of OSCAR
{(Third Revision)

(Describes Version 56)

by
Joel Davis

and
Gilbert A. Bachelor

cc=-69-25

September, 1969

INTRODUCTION

OSCAR (Oregon State Conversational Aid to Research) is an
arithmetic interpreter for use at remote teletype or CRT connec-
tions to the CDC 3300. OSCAR can function in two ways. It can
act like a sophisticated desk calculator executing direct state-
ments one by one, or it can store programming away in blocks,
then execute them (see sections M-P).

In the following, a box, [_____ |, indicates a specially
labelled key on the Teletype unit. [Control shift A | means
hold the control shift key down while typing’the character A.
The control shift is above the upper case shift key. Characters

printed by the computer are underlined in the examples below.
Section I describes the system's operations, and the remaining
section describes OSCAR.

I. Starting, Stopping, and Interrupting OSCAR.
OSCAR operates under the 0S-3 system. The following are
system operations needed to start and stop OSCAR. The user's

identification is a positive integer of 5 digits or less
(or a 4 letter word).
To start:
[Control shift A
#Job number, user identification farriage return]
#0SCAR [carriage return]| af. i 4
OSCAR AT YOUR SERVICE

To stop when done:
| Control shift A]
#LOGOFF [carriage return |

To interrupt OSCAR if it is calculating:
[Control shift A]

#MI |carriage return]

To interrupt OSCAR if it is typing:
[Break | (break release] [control shift A|
#MI |[carriage return]

II. OSCAR

OSCAR reads statements, one line at a time, and obeys- them
immediately. A bell is rung when OSCAR has completed a line.

A line must end with a [carriage return (or sometimes |escape] or

3 g , see below). A line starting with * or ending with *

[carriage return] is ignored, as is any character followed by \.

Statements are made up of constants; variables, and special words.

CONSTANTS:
These are numbers, arrays, and alphabetic strings:
1. Exact real numbers: 0; 1; -1; +1; 864216; 123;
-12345678901234567890123456789012345678901234567890;
1.264P (P means precisely); 12El11l (means 12 X 1011).

2. 1Inexact real numbers: 1.264314 (precision 7 decimal
6

digits); -29.6E-6P18 (-29.6 X 10 ° with precision 18
decimal digits); -29.6D-6P18 (same as preceding
example); 123. (When no P is given, a precision of
at least 6 is assumed); 123.6P4 (precision 4);
1.2345678901234567890123456789012345678901234567890
(precision 50 is maximum); 123.6E6EL0 (123.6 X 10°°
in precision 6); 123.4567P6 (precision 6 is used).

3. Rational numbers: 0; 1/2; -3/4 (in general, exact

number/exact number).

4. Complex numbers: 1I; -2I; 1-3I; -6I; 1 + 29.6D-6P18I;
1/3 + 2I/7; 2.-3J3 (J may be substituted for I).

5. Vector arrays: ARRAY (1, 6, -3, 6/7, 1-3I) (A
vector whose components are 1, 6, -3, 6/7, 1-31).

6., Matrix arrays: ARRAY ((1, -3, 5) (2, 6, 1+41) (I, -7,
(A 3 by 3 matrix).

7. Alphabetic string: "ANY OLD MESSAGE"; "A = " (used
in print statements); "THIS ENDS IN CARRIAGE RETURN;

CR means "|carri§qe return|".

8. Logical: TRUE, FALSE (used as logical operands).

8))

VARIABLES:
These are places in the 3300 memory to store the value of

constants or other expressions for later use. A user refers

to these by a 1 to 4 character name such as: A, B, M, X, TEMP,

Tl, T2, KEEP, MATRIX (only the first three letters plus the

last letter are used), or any other convenient mnemonic. Some

variables have a constant already in them. For example, PI is

preset to 3.1415926535898, E is preset to 2.7182818284590, I

and J to 1lI. No type declarations are used. If a variable

contains an array, the variable name can be subscripted by a

non-negative constant, variablé or expression. For example: V(1)

(means Vl); V(M) (means Vm); M(1,2) (means M

12)'

EXPRESSIONS:

These include any reasonable algebraic or arithmetic
combination of constants, variable names, and operations (such
as +, -, ...) which has a value.

Examples:

1.6; X; 1+42-(PI/2+180.*X)/2; -TEMP; A*B (means A times B);
A+B (or A**B, means AB); -A*B; A*B+C*D (means (A*B)+(C*D));
A>B (has value TRUE or FALSE); A OR B (A and B must be TRUE
or FALSE. OSCAR also recognizes AND, XOR, and NOT); "AB" +
"c" (giveé "ABC" as a value); A + B (A and B could refer to
real or complex arrays, or to alphabetic strings); A*B (could
mean matrix multiplication or matrix times an array); LOG X +
SIN(X + Y 4+ 2) + EXP 2; V(1:6) (means positions 1-6 of V).

STATEMENTS :

These can be used as direct and immediate commands to OSCAR.
Several statements, separated by semicolons, can be put in one
line; in this case, none are executed until the line is completed

with [carriage return| .

A. Replacement Statement. Examples:
X<«6 (the original contents (if any) of X are ignored;
the constant 6 is placed in X).

V(2)<X + 6. (If necessary, V is made into an array
large enough to hold Vye Yy is set equal to the
value of (X + 6));

V = 6 (the equal sign; =, can be used for <« in the
simple replacement statement, which has the general
form:

variable name <+« expression).

IS Statement. There is a key labelled (or

sometimes) which causes no printing or carriage

action. This is used in IS statements, for example:

2 + 4 IS 6 (the machine types 6, any expression
can be on left) : ,.

Y« 2 -7+ (X+ Y)/2 IS [scape] 68.264 (Y is set to
68.264 also).

IF Statement. Examples:

IF X < 6 THEN Y « 6 ELSE Y « X « 1;

IF -X*Y NEQ 29 THEN [X « 6; Y « 7] ELSE X « Y;

IF X=Y THEN X « 8 (otherwise do nothing);

IF S THEN X « 7 ELSE Y « 7 (5 must be TRUE or FALSE).

FOR Statement. Examples:

FOR I = 10 TO 60 DO A (I) = I (means A(10) <« 10;
A(1ll) « 11i; ...; A(60) « 60);

FOR J 10 BY -1 TO 1 DO [A(J) <« J; B(J+1l) « J + 21;

FOR X = 0 BY .1 TO 1.0 DO ABV (ABV contains a literal
expression, see Part J following).

WHILE Statement.‘ Examples:

WHILE A(I) GEQ 7 DO I « I + 1 (means keep doing I « I + 1
until A(I) is not greater than or equal to 7.
OSCAR recognizes <, >, =, EQ, GEQ, NEQ, LEQ);

WHILE TRUE DO ABV (means do ABV repeatedly, ABV must
contain a literal ekpression, see Part J, following).

WHILE X<7 DO PART 1 (see Part M).

READ Statement. Examples:

READ X,Y (will cause OSCAR to expect a list of |,
two constants to be typed by the user, each
constant terminated by a comma or carriage
return. The first constant is put in X, the
second into Y);

READ "X=",X (will cause OSCAR to print X = then
await the user's typing of a constant to be
entered into X).

PRINT Statement. Example:

PRINT "A=", A, CR, "B=", B, CR
A = 6.24932°
B = 67.2345
PRINT A+B+42+(X+Y)/2,A(I),6 (Expressions can be printed.)

(These would be printed by OSCAR.)

FUNCTION or SUBROUTINE DEFINITION Statement. Examples:
LET F(X) = X*X (Then, for example, F(2) IS 4);
LET F2(X,Y,Z) X + Y + %242 (Thus, F2(6,3,2) is 13);
LET SR(X,Y,Z2) = X + Y + F(Z) (Same as F2);
LET F4(X,Y,2) [TEMP = Z 4+ 2, X + Y + TEMP] (Same as F2);
LET F5(X,Y) = [ABV; X + Y] (ABV contains a literal
expression, see Part J);
LET G (N) = IF N < 2 THEN 1 ELSE N*G(N-1) (G(N) is N!):
LET P(X,Y) BE PRINT X,Y,CR (Defines a subroutine to
print X, ¥, and CR. P(X,Y) has no value.)

LET P2(X,Y) BE [PRINT X,Y,CR; X « Y <« 0]

SUBROUTINE CALL Statement. Example:
P(6,2-56.78) (If P were defined as in Part H, this
’ statement would cause 6, Z-56.78, and CR to be
printed.)

ABBREVIATION Statement. An expression enclosed in

apostrophes is called a literal expression. Literal

expressions (or variables containing them) can be used
wherever expressions are allowed. Examples:

X:: = 'A + D + C/3' (means make X an abbreviation for

the expression (A + D + C/3). Wherever X is typed

in any statement of type A through I, OSCAR
uses (A + D + C/3) instead);

ABV:: = 'X « X 4+ 2; Y « Y ¢+ 3' (Used, for example,
in the definition of F5 in Part H);
X:: = 'Y'; X « 6 (This assigns 6 to Y.)

CLEAR Statement. Example:
CLEAR X,F5 (The variables named X and F5 are
cleared or made empty. Primarily used to clear

procedures or abbreviations.)

Commands. These are used to manipulate files, to
alter OSCAR, to print internal structures
of OSCAR, and miscellaneous other purposes.
A command must be the first and only statement
on a line and has a & as its first character.
A complete list of such operators is included
in the appendix. Examples:

&REWIND, 26 (This rewinds file 26)

&INPUT,14 (Further READ statements will read data
from file 14.)
&INPUT,14,TTY (This is the same as above, except, as

each line is read from 14, it is displayed on the
Teletype.)

&INPUT,TTY (Further READ statements will read from
the Teletype.)

&0UTPUT, 15 (The output of further PRINT or IS statements

goes to file 15.)

&OUTPUT, 15, TTY

&OUTPUT, TTY

&CONTROL, 8 (Direct statements are read and executed
from file 8; on reaching end of file or end of
data, control is returned to the Teletype.)

&CONTROL, 8, TTY (This is the same as above, except
that before the execution of each line, the line
is displayed on the Teletype.)

&PRECISION =10 (This changes the standard precision to
10; so, for example, 1.6 now means 1.6P10 instead
of 1.6P6).

&0OCTOUT A,B,C (The internal form of the variables A.B
and C is printed in octal).

&DATE (The current date and time are printed).

Store Statements. Examples:

12.34: A « X + Y (The text A « X + Y is stored in part
12, as step 12.34. The statement A « X + Y is neither
examined nor executed. The previous contents (if
any) of step 12.34 are lost. All the steps of part
12 must start with 12., the decimal fraction is

arbitrary (up to six decimal digits).

10.21:&INPUT,21 (Any sort of statement may be stored
including all of those from section A through section
P)o

DO PART or DO STEP Statements. Examples:

DO PART 12 (Means do the steps in part 12, starting with
the numerically smallest; and proceeding to steps
with ascending step numbers until the end of a part
is reached. If this last statement is not a GO TO
statement the DO PART statement is complete, other-
wise the GO TO statement is executed and the search
for the end of a part is continued. A GO TO statement
(see section 0) may change the above order of execution
of the steps or even the part being done.)

DO PART 12.61 (This is the same as above, except execution
is started at the first step in part 12 numbered 12.61
or higher).

DO STEP 12.61 (Means do the one statement at 12.61).

DO PART X+Y-1 (The value of X+Y-1 is used as the parameter
of the DO PART statement).

DO STEP v(I)

Note: The DO PART and DO STEP statements can be used
as direct or stored statements or in the body of
FOR, FUNCTION, IF, WHILE, or ABBREVIATION statements.

GO TO Statements: Example of use in a stored program:

8.1: READ X

8.2: PRINT X+2, Xt3, CR

8.3: GO TO 8.1

DO PART 8 (This will produce an infinite repetition of
the following:

Read a number, then print its sguare and cube.

Typing MI (standing for manual interrupt) as data for
the read statement will terminate this program).
9.2: GO TO X+Z (The value of (X+Z) is used as the para-

meter in this GO TO statement).

Note: A GO TO statement can be used in stored programming

only.

. Examples:

Suppose the program defined in sectidén O as part 8 has
already been stored.

8.25: PRINT X+4, X445, CR (This is a store statement
that would effectively insert a line between 8.2 and
8.3).

ERASE PART 8 (Would eliminate part 8).

ERASE STEP 8.1 (Would eliminate step 8.1).

PRINT PART 8 (Would print all the steps of part 8, including
step numbers).

PRINT STEP 8.2 (Would print the step 8.2 including its
step number).

&PROGRAM, 5, .01 (Would print 5.01: and expect the user
to type in the contents of step 5.01. Then 5.02:
would be printed by OSCAR, with its contents typed
by the user. This would continue indefinitely until

is pushed.)

USER-DEFINED OPERATORS:
‘The OSCAR user can define new operators of his own choosing.

To do this, the user first picks a name for the operator. The
name must start with a question mark (?), and may include up
to 3 letters and/or digits after the (?). For example, one
could use the following as names for operators:

? ?A ?23X ?ADD 242
An operator is defined by a LET statement, and must have two
arguments. For example:

LET ?Q(X,Y) = SQRT (X+2 + Y+2)
An operator so defined is then used between its dperands, like
other operators. For example, B:=3 ?Q 4 will assign the value
5 to B. The statement C:=3 2Q 4 ?2Q 12 will assign the value 13
to C. (3 20 4 is 5, and 5 ?Q 12 yields 13).
All ?operators are considered to have the same precedence,

which is higher than all other operators except %.

NEW FEATURES:
1) Comments are now allowed in stored program steps. For
example, 1.05:*COMPUTE THE SUM is now legal. Executing such a

step does nothing; the value of the step is [] (undefined).

2) OSCAR can now be used in a batch job. If OSCAR is
called by the statement ZOSCAR, it will treat unit 60 (the card
reader) as its "teletype" for input, and unit 61 (the line
printer) as its "teletype" output unit. All statements, commands
and data read from the input unit will be printed on the output
unit, with a mode indicator at left. Outputs from OSCAR to its
"teletype" will be printed on the output unit, with no mode
indicator. A record read from the input unit that contains only
the word ESCAPE, starting in column 1, will cause OSCAR to behave
just as it does when a teletype user presses the ESCAPE key (at
the beginning of a line). (ESCAPE changes modes or interrupts
data input).

10.

If OSCAR is called by a statement of the form gOSCAR,I=(lun);
then OSCAR will use the specified logical unit number as its
"teletype" input unit and will otherwise behave as described
above. The input unit must already be equipped before OSCAR
is called.

A file mark (or end of file card) on the input unit denotes
the end of input for OSCAR, and it will print END OF OSCAR RUN
and return to control mode. If any error occurs and the user is
not using DEBUG (see next section), OSCAR will abort its run with
the message **ABNORMAL END OF OSCAR RUN. (This is printed after
the error messages.)

3) The DEBUG command is not new but it has a new feature for
the convenience of batch users of OSCAR. If a batch user of
OSCAR does not want the run aborted in case of an error, he should
include the command &DEBUG ON or the command &DEBUG ON (lun).
(The & is printed as a < on the line printer.) If the command
DEBUG ON has been used, then a subsequent error will produce a .
special message of the form ERROR AT (addr) (message), a few
blank lines, then the normal error messages and OSCAR will go
on reading from its input unit instead of quitting. If the
command DEBUG ON (lun) has been used, then an error will produce
the special message mentioned above. OSCAR will then read
commands (commands only) from the logical unit specified in the
DEBUG ON statement. Each command read will be printed and then
executed. This will continue until the command GO is read or a
record is read containing only the word ESCAPE. OSCAR will then
print the regular error messages and go on reading from its input

unit.

Teletype and CRT users can also use the DEBUG feature,
with the additional provision the OSCAR will read commands
from the console if an error occurs after a DEBUG ON command
has been given. An "escape" will terminate this special command

mode. The DEBUG ON (lun) works just as described above.

To cancel the debug mode, use the command DEBUG OFF.

11.

4) When OSCAR is reading from a file (or a card reader, in
a batéh'jbb) it will recognize a line containing only the word
ESCAPE. 1If OSCAR is reading statements or commands from the file,
ESCAPE causes it to switch from normal to command mode or vice
versa. If OSCAR is reading data from the file, ESCAPE causes an
"interrupt" just as if MI had occurred. Whenever the &CONTROL,
(lun) command is given OSCAR will start reading from the (1un)
in normal mode. At the end of a file, OSCAR switches back to
the étandard input unit (console, card reader, etc.) and also
reverts to normal mode.

5) For CRT users, there is now a RECORD feature, which enables
the user to get a "hard copy" of everything he does in OSCAR. In
conjunction with this is a "recall" feature, which enables the
CRT user to bring back to the screen a display of what he hés
done earlier.

™

The RECORD feature can be activated in either of two ways.

The easiest way is to call OSCAR with a statement of the form
#OSCAR,R=(lun). This will cause OSCAR to record on the specified
(lun) and this (lun) will be equipped as a file if it is not
already equipped. The other way to start recording is to use the
command <RECORD ON (lun). This will cause OSCAR to record on the
specified (lun), which must have been equipped previously. The
record feature can be turned off by the command <RECORD OFF. While
the Record feature is on, OSCAR displays an "R" next to the second
mode indicator at the right side of the screen.

When "Record" is on, every line displayed on the screen,
whether it is an input by the user or an output from OSCAR, will
be written on the specified record unit. The first two charac-
ters of each recorded line are blanks and the lines are from one
to thirteen words long (4 to 52 characters). (Trailing blanks
are removed.) This output can thus be written directly on a
line printer or can be written on a file and later copied to a
line printer, if desired.

The "recall" feature mentioned above is available only when
the Record feature is in use. Also, the record unit must be a

12.

file (since one cannot backspace a line printer). If one is
recording on a file and if one is in normal mode ("blotch" dis-
played in corner), then one can "recall" anything which has been
recorded on the file. To do this, one types a special "command"
whose first character is the "blotch". The SKIP key is used to
space past the blotch without wiping it out. Then one types
either a decimal integer or a minus sign followed by a decimal
integer and presses SEND. If an unsigned integer was typed,
OSCAR will rewind the Record unit then space forward as many
records as specified by the integer. It will then read the next
sixteen records from the file and show them on the screen. Finally,
it searches forward to the end of data on the file, to be ready
for further recording, etc.

If a negative integer was typed, OSCAR backspaces the file
the number of records specified by the integer. It then acts as

described above (reads forward sixteen records, shows them on the

screen, etc.).

If, for any reason, the recall command cannot be carried out,
OSCAR does nothing. If the file is positioned to a point less
than sixteen records from its end, then fewer than sixteen lines
will be shown on the screen. (Note: the recalled information

is not recorded on the file again.)

One convenient use of the recall feature is to position a
previously typed statement near the top of the screen, carriage
return down to it and read it back into OSCAR, possibly after
making changes in it.

CHARACTER STRING PROCESSING

Previous versions of OSCAR had some ability to process
character strings (add, subtract, compare). Version 55 has
several new features which make it possible to do general char-
acter string manipulations. These features include subscripting
and sub-array notation to refer to parts of character strings,

a search feature and DECODE and ENCODE functions. To indicate

the possibilities, three simple applications which have been

13.

programmed for OSCAR V55 are a "form letter" processor, a Markov
Normal Algorithm processor and a simple expression translator
(from algebraic expressions to Polish strings). We shall describe
OSCAR's character string processing features (both o0ld and new)

on the following pages.

INPUT, OUTPUT AND REPRESENTATION OF CHARACTER STRINGS

The internal representation of character strings in OSCAR
has been changed. 1In previous versions, a string was terminated
by a quote mark ("). This meant that a quote mark could not be
included in a string. The new representation includes an integer
(internally) that tells how many characters the string contains.

This makes it possible to include any characters in a string.

There are two ways of representing a character string in
OSCAR language. One way is to enclose it in gquotation marks, as
for example: "THIS IS A STRING". This notation is fine for
teletype users. There is no quotation mark on the CRT keyboard;
however, OSCAR, when used at a CRT, allows the notation ## to
represent a quotation mark. (On output to the CRT, a quotation
mark is displayed as a blotch.) Unfortunately, EDIT does not
recognize the ## notation and treats it as two apostrophes in a
row (''). A CRT user who wants to use EDIT to prepare or to
modify an OSCAR program cannot use the quotation mark at all.

To alleviate this problem, there is another notation for charac-
ter strings: TEXT /THIS IS A STRING/ means the same as the previ-
ous example. In this second notation, the word TEXT can be fol-
lowed by any non-space character (for example: / + : $, etc.),
then the string of characters and finally, the chosen "bracket"
character again. Thus, TEXT/X=/, TEXT:X=: and TEXT%X=% all

represent the same character string "X=".

There are three special conventions regarding the contents
of character strings. These are: 1) The bracketing character
(" or whatever bracketing character is used with TEXT) can be

included within a character string by writing it twice in a row.

14.

For example, "X""Y" represents the character string X"Y. Other
examples; TEXT =X=== represents the string X=, """" represents

the string ", and represents the empty string. 2) Carriage
return (end of line) always terminates a character string and the
carriage return is included in the string as its last chafacter.
Thus, if PRINT "RESULTS ARE: is the last thing on a line, the
character string to be printed will be RESULTS ARE:, followed by
a carriage return. 3) The character @ (¢ for CRT users) denotes

a carriage return within a character string. For example:
"FIRST LINE@ZND LINEG@LASTLINEZ"

The three (@ symbols in this character string represent carriage
returns. As a result of this convention, it is not possible to
type in a character string that actually has the character (8 (or
v) in it. The only way to get a character string with @& in it
is to use the ENCODE function (see later paragraph}.

When a character string is printed (using PRINT), the char-
acters in the string are simply typed out, with no bracketing
characters, and carriage returns cause output to go to the next
line. 1If EPRINT is used, the bracketing characters " " are
printed; quotation marks within the string are printed twice,
and carriage returns are printed‘aS(@. The result is that an
EPRINTed character string can be read back in and will produce
a character string identical to the one that was EPRINTed (unless
it contained a @ character; such a character will go back in as
a carriage return). The constant CR is a special case; this
represents a one-character string containing a carriage return
but it will be printed as a carriage return whether PRINT or
EPRINT is used.

There are three ways in which character strings can be
read in by OSCAR.

1) A statement such as READ X will read the next constant
from the input unit and assign it to X. The constant can be a
number, array, etc., or a character string, of eithcr the "..."
form or the TEXT/.../ form.

15.

2) The statement READLINE X will read an entire line (or
the rest of a partially read line), put it into a character string
and assign it to X. 1In this case, the carriage return at the end

of line will not be included in the character string.

3) The statement READCHAR X will read the next single char-
acter from the input unit and assign it to X as a one-character
string. At the end of a line, READCHAR will get an empty charac-

ter string instead of a string containing a carriage return.

The statements READ, READLINE and READCHAR may each include
a list of variables to be read. For example, READLINE X, Y, 2
will read three lines and assign them to the variables X, Y and Z.

o

OPERATIONS ON CHARACTER STRINGS

Character strings can be "added", "subtracted" or "compared".

X+Y If X and Y are character strings, X+Y is a character string com-
posed of X followed by Y (concatenation). For example, "STREET"
+"CAR" is the string "STREETCAR".

X-Y 1If X and Y are character strings, X-Y is found by searching X to
see if Y occurs within it (as a substring). If so, the part of
X that matches Y is removed, and the value of X-Y is what is
left. (X and Y are not changed.) 1If Y is not found in X, the
value of X-Y is simply X. Another way of expressing X-Y is
SAR(X,Y,""), that is, search and replace by empty (see next sec-
tion for SAR function). For example, "CHARACTER"-"AC" is
"CHARTER". Another example: "WALLA WALLA"-"ALL" is "WA WALLA"

(only the first occurrence of "ALL" is removed).

X EQ Y If X and Y are character strings, X and Y are compared charac-
ter by character to see if they are the same. If X and Y are the
same length, and all corresponding characters match, then the
value of X EQ Y is TRUE; otherwise, the value is FALSE.

X NEQ Y This is like X EQ Y except that it gives the result TRUE if
X is not the same as Y; if X and Y are the same, the value is FALSL.

X<Y

16.

If X and Y are character strings, then corresponding characters

of X and Y are compared, starting at the left, until two correspon-
ding characters are different or the end of one (or both) of the
strings is reached. If the strings are of the same length and

all characters of X match the corresponding characters of Y, the
value of X<Y is FALSE. If X is shorter than Y, but X matches Y

as far as it goes, the value of X<Y is TRUE. If Y is shorter than
X, and matches X as far as it goes, then X<Y is FALSE. If there

is some position where a character in X does not match the corre-
sponding character of Y, then X<Y is TRUE if the internal code

for the character in X is less than the code for the character in
Y; otherwise, X<Y is FALSE, (In comparing codes, letters and digits
are considered to be "greater" than other characters.) (See table
of codes at the end of this report.

X GEQ Y This is the same as X<Y except that it gives the answer TRUE

if X<Y is FALSE, and vice versa.

X>Y This is the same as Y<X.

X LEQ Y This is the same as Y GEQ X.

FUNCTIONS WHICH CAN BE USED WITH CHARACTER STRINGS

Of course, the OSCAR user can define functions of his own
which take character strings as arguments or produce chardcter
strings as values, or both. However, there are several "pre-
defined" functions available in OSCAR which can be used with

character strings. These are:

DECODE If X is a character string, then DECOQE(X) is an integer in

the range 0 to 63, giving the internal (OSCAR) code for the
first character of the string. If X is an empty character string,

then DECODE (X) has the value -1.

ENCODE If N is an integer in the range 0 to 63, then ENCODE(N) is a

ore-character string containing the character whose internal code

is the specified integer.

SRCH

SAR

SIZE

KIND

X(I)

17.

If X and Y are character strings, then SRCH(X,Y) is an integer
telling where string Y occurs within X, if it does occur. If it
does not occur, the value of SRCH is zero. For example, SRCH
("ABCDE","CD") has the value .3. (CD occurs within ABCDE, starting
at the third character of ABCDE.) If y occurs in X in more than
one place, SRCH indicates the location of the left-most occurrence
of Y.

If X, Y and Z are character strings, the value of SAR(X,Y,2) is a
character string formed in the following manner: X is searched
for an occurrence of Y (using SRCH); if found, a new string is
constructed in which the part of X that matched Y is replaced by
Z. This new string is the value of SAR. If Yy does not occur
within X, the value of SAR is simply X. In any case, X, Y and Z
are not changed. For example, SAR ("OSCAR","CAR", "WALD") has the

If X is a character string, SIZE(X) is an integer (0 or larger)

telling how many characters the string X contains.

KIND (X) produces a character string telling what kind of value
X has.

Note: The arguments of the functions described above can
be any expressions, so long as the expressions have the proper
kinds of values.

SUBSCRIPTING AND SUB-ARRAYS

Subscript notation can be used to refer to individual
characters in a string and the sub-array notation can be used
to refer to sub-strings of a string.

If X is a character string and I is an integer in the range
1 < I < SIZE(X), then X(I) is a one-character string containing
just the Ith character of X. If I'= 0 or if I > SIZE(X), then
X(I) is an empty character string. For example, if X = "ABCDE",
then X(4) is "D" and X(6) is "".

18.

X(I:J) 1If X is a character string and I and J are integers such that
1 < 1T <J < SIZE(X), then X(I:J) is a character string containing
the Ith through Jth characters of X, inclusive. If any of the
three inequalities specified above is not true, then X(I:J) is an
empty character string. For example, if X = "ABCDE", then X({(2:4)
is "BCD", X(4:6) is "", and X(4:1) is "".

Note: One cannot assign values to x{I) or to X(I:J), when
X is a character string. For example, X(3):="Q" is illegal if
X is a character string. One can accomplish the effect desired
in this example by the statement
Xe= X(1:2) + "Q" + X(4: SIZE(X))

OTHER NOTES ABOUT USE OF CHARACTER STRINGS

As we have implied in the foregoing paragraphs, variables may
have character strings as their values. This can happen either by
reading in a character string or by an assignment statement (such
as the example above). One can use either ordinary assignment (:=)
or the old value assignment (:==) in dealing with character strings.

One can also use the exchange operator (==).

Another useful concept to keep in mind, is that the elements
of an array can be character strings. For example, A(l):="THIS";
A(2):="IS"; A(3):="AN"; A(4):="EXAMPLE." If the array A has only
these four elements, then PRINT A will produce the sentence THIS
IS AN EXAMPLE. Also, A(4,1:4) is the string "EXaM". (This
selects the first through fourth characters of the fourth element
of A.) Another way to define an array containing character strings
is to use an ARRAY constant. For example, B:=ARRAY("THIS", "IS",
TEXT/ANOTHER/, "EXAMPLE.") (One can use either the "..." or the
TEXT notation in an ARRAY constant.) If B is PRINTed, the result
is THIS IS ANOTHER EXAMPLE. And finally, PRINT B-A would produce
OTHER. (Actually, B-A is an array whose Ith element is B(I)-A(I),
for 1=1,2,3,4. But, three of these elements are empty character

strings; only the third one actually contains any characters.)

19.

OSCAR internal character codes

The following table gives the character codes used in OSCAR. These
codes determine the values of the DECODE and ENCODE functions, and
also determine the results of comparisons such as <, GEQ, etc.

(TTY denotes the teletype character; CRT denotes the display console
character; and LP denotes the Line Printer character.)

OSCAR card TTY CRT Lp OSCAR card TTY CRT Lp
code code char char char code code char char char
0 0 0 0 0 32 0,6 W W W
1 1 1 1 1 33 0,7 X X X
2 2 2 2 2 34 - 0,8 Y
3 3 3 3 3 35 0,9 _ 2 Z Z
4 4 4 4 4 36 12,3,8 . . :
5 5 5 5 5 37 11,6,8 @ + +
6 6 6 6 6 38 5,8 & < <
7 7 7 7 7 39 11,0 ! v v
8 8 8 8 8 40 (none) carriage return
9 9 9 9 9 41 0,7.,8 ? A A
10 12,1 A A A 42 12,5,8 # > >
11 12,2 B B B 43 4,8 ! # #
12 12,3 C C C 44 12,6,8 " a -
13 12,4 D D D 45 12,0 < < <
14 12,5 E E E 46 3,8 = = =
15 12,6 F F F 47 11,7,8 > > >
16 12,7 G G G 48 12 + + +
17 12,8 H H H 49 11 - - -
18 12,9 I I I 50 11,4,8 * * *
19 11,1 J J J 51 0,1 / / /
20 11,2 K K K 52 11,5,8 ¢+ 4 +
21 11,3 L L L 53 0,6,8 <« ! =
22 11,4 M M M 54 0,4,8 (((
23 11,5 N N N 55 12,4,8)))
24 11,6 o o} o 56 7,8 [[[
25 11,7 P P P 57 0,2,8] 1]
26 11,8 Q Q Q 58 2,8 : : :
27 11,9 R R R 59 0,3,8 , ' ’
28 6,2 S S S 60 12,7,8 ; A ;
29 6,3 T T T 61 blank space
30 0,4 U U U 62 11,3,8 § $
31 0,5 \% v \Y 63 6,8 % %

APPENDICES TO OSCAR MANUAL
(It is planned that, eventually, there will be a manual

for OSCAR. This manual has not yet been written, but there is
a need for information about OSCAR. Hence, we present here
some Appendices for the manual. These provide lists of
reserved words, special symbols, etc.)

A. List of Reserved Words.

B. List of Special Symbols.

C. Order of Precedence of Operations.

D. Constants and Data Inputs.

E. Forms of Statements.

F. List of Commands.

APPENDIX A: Reserved Words and Special Variables

The following is a list of reserved words in OSCAR. These

will be discussed on succeeding pages. Words preceded by an

asterisk (*) have not been implemented yet. Use of any word

of this list in other than its intended use may cause diagnostic

messages.
ABS FALSE PREC
ACCEPT FOR PRINT

* ALL FP PROCEDURE

AND GCD PRODUCT
ARCCOS GEQ PUSH
ARCSIN GO RE
ARCTAN GOTO READ
ARG GTR READCHAR
ARRAY IF READLINE
BE IM SAR
BY IP SET
CLEAR IS SIGMA
COS KIND SIGN
CR LEQ SIN
DECODE LET SIZE
DENOM LN SQORT
DET LOG SRCH
DIV LOGT STEP,STEPS
DO LSS STOP
DONE MAX TAN
ELSE MIN TEXT
ENCODE MOD THEN
ENTIER NEQ TO
EPART NOT TRUE
EPRINT NPART TYPE
ERASE NUM UNTIL
EQ OR VALUE
EXIT PART,PARTS WHILE
EXP PDL WRITE
EXPR» POP XOR

ZARRAY

The following is a list of names of special variables in
OSCAR. These are ordinary variables in the sense that they
can be used for any purpose by the user. However, these have
initial values when OSCAR is called, and can be used by the user
without his defining them.

Special Variable Initial Value

E 2.718281828u4590
I 1T (v™=1)

J 19 (v™=1)

0 (letter) 0 (zero)

PI 3.1415926535898

The special variable INDEX has no initial value, but whenever
SAR is used, INDEX is set to an integer value telling where the
replacement was made. (Zero means no replacement occurred.)

A.3

List of reserved words and special variables with brief description.

ABS Absolute value function.

ACCEPT Same as READ.

ALL Reserved for future use.

AND Logical operator.

ARCCOS Arccos function.

ARCSIN Arcsin function.

ARCTAN Arctan function.

ARG Arg (xX,y) is the angle of the complex number x + y*1I.
Arg (z) is the angle of the complex number z.

ARRAY Defines array constant.

BE Used in procedure definitions.

BY Identifies increment value in FOR statement.

CLEAR Clears variables (makes them undefined).

Cos Cosine function. '

CR Constant. Its value is "(carriaage return)."

DECODE Decode runction. Argument is character string. Result

is an integer (the OSCAR code for the first character
of the string).

DENOM Function, denominator of a rational number (see NUM).

DET Determinant function.

DIV Integer division operator.

DO Do the expression or statement that follows.

DONE In a stored program, indicates that we are done with
this part (terminates execution of a DO PART).

E Special variable. 1Initial value is 2.7182818284590.

ELSE Follows true alternative, precedes false alternative,

in conditional statement or expression.

ENCODE Encode function. Argument is an integer. Result is
a character string, the character whose OSCAR code is
the given integer.

ENTIER Entier function (greatest integer less than or equal
to argument).
EPART Function, exponent part of number (see NPART).

EPRINT Emphatic print. Prints actual form of quantity (see PRINT).

ERASE

EQ
EXIT

EXP
EXPR

INDEX
Ip
IS

KIND

LEG
LET
LN
LOG
LOGT
LSS
MAX
MIN
MOD
NEQ
NOT

A.4

Erase step 2.6 erases step 2.6 from a stored program.
Relational operator, equal to.

EXIT means exit from a FOR statement or a procedure.
EXIT TO (step number) means EXIT and then GO TO the
specified step.

Exponential function (e to the power).

If Y is a variable which represents a literal expression,
X«EXPR(Y) will copy the expression to X. (X<Y would
evaluate the expression).

Logical constant.

Beginning of a FOR statement.

Function, fraction part of a number (see IP).
Function, greatest common divisor of arguments.
Relational operator, greater than or equal to.
Same as GO TO.

Transfer control to a new step (can be used in stored
programming only).

Same as GO TO.

Relational operator, greater than.

Special variable. 1Initial value is 1I (equivalent to 1J).
Beginning of a conditional statement or expression.
Function, imaginary part of a complex number (see RE) .
Svecial variable. See page A.2.

Function, integer part of a number (see FP).

Print value of preceding expression.

Special variable. 1Initial value is 1J (equivalent to 1I).

Function. Value is a word indicating what kind of
quantity the argument is.

Relational operator, less than or equal to.
Beginning of a function or procedure definition.
Natural logarithm function.

Same as LN.

Function, logarithm to base ten.

Relational operator, less than.

Function, maximum of arguments.

Function, minimum of arguments.

Modulus operator, remainder of division.
Relational operator, not equal to.

Unary logical operator.

NPART
NUM

O (letter)

OR
PART
PARTS
PDL
PT
POP
PREC
PRINT

PROCEDURE

PRODUCT
PUSH

RE

READ

READCHAR
READLINE
SAR
SET

SIGMA
SIGN

SIN
SIZE

SQRT
SRCH
STEP

STEPS
STOP
TAN
TEXT

A.5

Function, number part of number (so X=NPART (X)*10+ (EPART (X)).

Function, numerator of a rational number (see DENOM).
Special variable, initial value is 0 (zero).

Logical operator, inclusive or.

A section of stored program.

Same as PART.

Defines push-down list constant.

Initial value is 3.1415926535898.
Pop up each variable following (see PUSH).

Special variable.

Function, gives precision of argument.

Print values of following expressions.

Same as LET.

Reserved for future use.

Push down each variable following (see POP).
Function, real part of complex number (see IM).

Read in values for variables following, print out values
of constants. (Note: Character strings are constants.)

Reads one character as an alphabetic string.
Reads an entire line as an alphabetic string.
Search and replace function.

Beginning of an assignment statement (may be omitted
in most situations).

Reserved for future use.

Function, value is 1, 0, or -1 according as argument
is positive, zero, or negative.

Sine function.

- Function, value is integer giving size of argument

(number of elements in a vector, for example; see
SIZE function table).

Square root function.
Search function.

Identifies increment value in a FOR statement. Also
step refers to a step in a stored program.

Same as- STEP.
Stop execution of program and revert to normal mode.
Tangent function.

Provides another representation for character strings:
TEXT/string/.

THEN
TO

TRUE
TYPE
UNTIL
VALUE
WHILE
WRITE

XOR
ZARRAY

Follows IF clause, precedes true alternativé, in a
conditional statement or expression.

Identifies final value in a FOR statement (unless it
follows the word GO).

Logical constant.

Same as PRINT.

Identifies final value in a FOR statement

Function, value is value of argument (not very useful).
Beginning of a WHILE statement.

Same as PRINT.

Logical operator, exclusive or.

Defines array constant with subscript starting at zero.

SIZE FUNCTION TABLE

Kind of
Argument

Value

Logical, inexact,
exact but not
rational

Character string
Rational or complex
Array: vector

Array: matrix

Number
used

Number

Number

Number

of machine words
in number

of characters

of elements

of rows

..

Appendix B
Special symbols in OSCAR

Decimal point.

Addition operator (concatenation operator for character strings).
Subtraction operator (also character string deletion operator).

Multiplication operator. '

Division operator.

Exponentiation operator (raise to power).

Same as 1 .

Precision operator. X % 12 has same value as X, but with
precision 12. '

Relational operator, less than (same as LSS).

Assignment operator (equivalent to <), or relational operator
(equivalent to EQ), depending on context.

Relational operator, greater than (same as GTR).

Relational operator, less than or equal to (same as LEQ).

Same as <= .

Relational operator, greater than or equal to (same as GEQ).
Same as == .

Relational operator, not equal to (same as NEQ).

Same as<>.

Assignment operator (assign value to variable on left).
Same as < .

Emphatic assignment operator (same as < , except when the
variable on left represents a literal expression, in which
case. the variable is cleared before assignine. new value).

0l1d value assignment operator. (Same as <, except value of
the assignment statement is the old value of the left operand,
not the new value).

means ::=

means <= v

Exchange operator (exchange values of variables).
Same as ==.

Colon operator. Defines number pair for selecting portion
of an array. For example, X(3:6).

Means <=

v Comma . Separgtes subscripts in a subséripted variable.
Separates variables or expressions in list following READ,
PRINT, etc. Separates elements in an ARRAY constant.

; Semicolon. Separates statements. Also causes preceding
statement to be executed.

Left parenthesis.
Right parenthesis.
Left bracket (statement parenthesis).
Right bracket (statement parenthesis).

1 bed 1 Nl AN

1 An empty variable.

2.

Absolute value bracket (left or right, depending on context).
lexpr! is equivalent to ABS (expr) .

' Literal expression bracket (left or right, depending on
context).

" Character string bracket.

& - Illegal, except in a character string, or unless it introduces
a command (see part F).

Illegal except in a character string (denotes carriage return).
First character in the name of a user-defined operator.

Illegal except in a character string.

N FH= oV D

Same as a semicolon (;) in an OSCAR statement. Denotes "bypass"”
on input to a READ statement.

Reverse slant denotes backup. (Cancel preceding character).
* A * at beginning or end of a line cancels the line.
... Three dots in a row denote continuation to a new (physical) line.
(space) Space separates items.
(return) Return denotes end of line.
(line feed) Line feed is ignored.

(escape) Escape denotes end of line, except at beginning of line,
where it causes a change of mode or an interrupt.

(altmode) Same as (escape).

(control W) Control W is same as escape.

(control R) Control R means change to tape input mode.

(control T) Control T means change back to keyboard input mode.

MI denotes "Manual Interrupt" if read by a READ statement.

ESCAPE If a line read from a file contains only the word ESCAPE,
this is treated the same as the (escape) key at a teletype.

Appendix C

Order of precedence of operations in OSCAR

Generally, execution of operations in an OSCAR expression,

is left-to-right, with the exceptions discussed below.

(1)

(2)

(3)

Expressions within brackets () [1 ! ! are evaluated

before operations outside them. For example, in A*(B+C) ,

the addition is done first, then the multiplication.

The evaluation of an expression within literal brackets

(apostrophes) is postponed as long as possible, consistent

with other rules.

In A(2%I)+B(J-1)

In 'A(2*I)'+B(J-1)

In X« 'A+B/C!

For example:

the order of operations is *, subscript
A, -, subscript B, +.

the order is -, subscript B, *, sub-
script A, +. (The evaluation of 'A(2*I)°
is postponed until it actually has to be
carried out).

the literal expression 'A+B/C' is assigned
to X without evaluating it. Subsequent
references to X cause the expression to be
evaluated.

Certain operations are done in right-to-left order. This in-

cludes assignment operations (e, :=, ::=) and evaluation of

functions. For example:

In A<+ B« A+B, the value of A+B is assigned to B and then to A.
In SQRT ABS X , the absolute value of X is computed, and the
square root of this result is found.

In A(I) B(J)<S+T, first, A is subscripted, then B is sub-
scripted, then S+T is assigned to B(J), then to A(I).

c.2

(4) There is an order of precedence in performing operations.
For example, in A+B*C, the multiplication B*C is done
first and then A is added to the result. The reason is
that multiplication has a higher precedence than addition.

The order of precedence (highest to lowest) is as follows:

subscripting
function evaluation
user-defined operators
3 (precision operation)
+ or ** (exponentiation)
* / DIV MOD (multiplying and dividing operations)
+ - (addition and subtraction)

= <> GEQ LEQ NEQ (relational operations)

NOT
AND
OR XOR
<= <« := ::= (assignment operations)
4
The exchange operation (== or :=:) has lower precedence

than subscripting and higher precedence than semicolon (3),
but does not have a precedence relative to other operations,
since no other operations may appear on either side of it.

TO ALL MANUAL HOLDERS:

Appendices D. and E. are not included in this OSCAR

Manual, but will follow later. They should be added on to the
back of this manual.

March 20, 1968

Revised July 15, 1968
Revised November 22, 1968
Revised September 25, 1969

APPENDIX F: Commands in OSCAR

In the following descriptions, (lun) denotes a logical
unit number (a decimal integer from 0 to 99). (lunlist) denotes
a list of lcogical unit numbers, separated by spaces or commas.
In general, upper case letters are fixed (to be typed as is),

while lower case letters denote variable quantities.

Part I - User Commands
&ASCII, cl, c2, ...

Print ASCII ccdes cl, c2, ... on the teletype (codes expressed
in octal).

&ASCII, vl, v2 ...

If vl, v2, ... are simple variables whose values are non-
negative integers, prints their values as ASCII codes on the
teletype.

&AUTODUMP, 1un

Release (lun) and then write the user's storage area and
all of OSCAR on (lun) in two records. If this is later
AUTOLOADed, it will restore OSCAR to the condition at time

of AUTODUMPing. If (lun) is omitted, logical unit 0 is
used.

&AUTOLOAD, lun

Rewind (lun), read one record from it, and jump to location
0. If (lun) is omitted, logical unit 0 is used. This command
is equivalent to the 0S3 control statement #AUTOLOAD, lun.

&BKSP, lunlist

Each logical unit in the list is backspaced one record.

&BKSPACE, lunlist

Same as &BKSP.

&BLANK

When used at a CRT, this command causes the screen to be
blanked (cleared).

&CONTROL, 1lun

Read OSCAR statements and/or commands from (lun). If end-of-
data is reached, if a file mark is read, or if an error occurs,
revert to teletype control. (An error also causes outputs and
data inputs to revert to the teletype). A line containing

only the word ESCAPE will cause mode change (switch from normal
mode to command mode, or vice-versa).

&CONTROL, lun,TTY

Same as &CONTROL,lun except print on teletype the

information read from (lun).
&CONTROL , TTY

Read OSCAR statements and/or commands from the teletype.
&DATE

Print out the current date and time.
&DELETE, lun=name

Delete the name from the file which is currently equipped
to (lun).

&§EQUIP, lun=name

Equip logical unit (lun) to the hardware type or saved file
specified by (name).

&FP, lun
Protect the file which is equipped to (lun).

&FWDSPACE, lunlist

Each logical unit in the list is spaced forward one record.
&FWSP,lunlist

Same as &FWDSPACE.

&INPUT, lun

Read data inputs from (lun). (Data inputs are constants

read in by READ, READCHAR, and READLINE statements). If end-
of-data is reached, if a file mark is reéd, or if an error
occurs, switch Control, Input, and Output to the teletype

and print an error message.

&INPUT, lun,TTY

Same as &INPUT,lun except print on teletype information read
from (lun).

&INPUT,TTY
Read data inputs from teletype.
&0OUTPUT, lun

Write all following outputs on {(lun), until another &OUTPUT
command is given. If an error occurs, revert to teletype
output. (An error also causes control and data inputs to

revert to the teletype.)
&OUTPUT, lun, TTY

Write following outputs on (lun), and also on the teletype.
&OUTPUT, TTY

Write following outputs on teletype.
&PARTLIST

Print a list of all part numbers that currently exist.
&PRECISION, <integer>

Standard precision is changed to <integer>; initially it is 6.
&PROGDUMP

Print all stored program parts that exist.
&PROGRAM, part no., interval

Accept stored program as input. Print a step number, allow a
statement to be typed in, add the interval and print the next

step number, etc. The interval must be less than 1. If

it is omitted, an interval of .01 is used. The part number
may be an integer, or an intéger with a fraction part,
denoting the initial step number. If both interval and part
number are omitted, the part number is assumed to be 1 and the

interval is .0l1. Use [escape] or [alt mode] to exit from
&§PROGRAM mode.

&RECORD ON lun

Effective only at a CRT. Causes all subsequent CRT inputs
and outputs to be written on the specified (lun).

&RECORD OFF

Stops recording.
&RELEASE, lunlist

Release each logical unit in the list.
&RESTART

Restart OSCAR. Clear user's storage area, etc.
&REWIND, lunlist

Rewind each logical unit in the list.
&RFP, lun

Remove protection from the non-saved file equipped to (lun).
&RFP, lun = name

Remove protection from the saved file (name), which is currently

equipped to (lun).
&SAVE, lun=name

Save the file currently equipped to (lun), under the name
specified.

&SBPFM, lunlist

On each logical unit in the list, search backward past file

mark.
&SEFB, lunlist

Same as &SBPFM. {(above)

&SEFF,lunlist
Same as &SFPFM. (below)

&SFPFM, lunlist

On each logical unit in the list, search forward past file mark.
&STORAGE,n

Add n more blocks of Storage to user's sto:age area, if

possible. (A block contains 2048 words,) If n is omittéd,
1 is assumed.

&TIME

Print out (in seconds) the amount of computer time used since
~ logging on. |

&UDUMP, 1un

5

Release (1lu

11) and Fhen tnrit

4+ - 5]
and then w e one record containing the user's

storage area. If this is later ULOADed by the same version of

OSCAR under which it was UDUMPed, it will restore conditions at

time of UDUMPing. If (lun) is omitted, logical unit 0 is used.
&ULOAD, lun

Rewind (lun) and read one record into user's Storage‘area.

This record must have been'UDUMPed by the same version of

OSCAR as the one being used, or unpredictable effects will
occur. If (lun) is omitted, logical unit 0 is used.

&UNEQUIP, lun

Unequip the file or device which is equipped to (lun).
&WEOF, lunlist

Same as &WFM. (below)

&WFM, lunlist

Write a file mark on each logical unit in the list.

&WIDTH, integer

Set the console line width to the number of characters
specified (decimal integer). WIDTH is normally 72 for a
teletype, 50 for a CRT, 132 in a batch job.

Part II

Commands of Use Mainly to System Personnel

&DEBUG ON
Turn on DBFLAG. Causes OSCAR to enter "command" mode when-
ever an error occurs. Allows one to get dumps, etc., before

error conditions are "cleaned up."
&DEBUG ON lun

Same as DEBUG ON, except reads commands from specified (lun)
if an error occurs.

&DEBUG OFF
Turn off DBFLAG. (DBFLAG is normally off.)

&DUMP

Print in octal all non-zero words in user's storage area.

&DUMP fwa,lwa
Print in octal the non-zero words in memory, from (fwa) to

(lwa) , where (fwa) and (lwa) are octal addresses.

&ERRPRINT

Print the last set of error messages that has been stacked.
(If MI is used, error messages are stacked but not printed.

This command enables one to find out what the messages are.)

&EXECUTE ON
Turn on RUNFLAG. Execute OSCAR statements. (RUNFLAG is
normally on.)
&EXECUTE OFF
Turn off RUNFLAG. Do not execute OSCAR statements.
&SFREELIST

Print the free storage lists.

&FREELIST,nl,n2,...

Print the free storage lists for blocks of sizes (nl), (n2),

etc. (The sizes are expressed as decimal numbers.)

&GO
Valid only in OSCAR command mode (see &DEBUG) . Clean up
eérror conditions and go back to normal mode.

Print a list of subprograms in OSCAR, with their initial
addresses (in octal).

&MAP namel, name2, ...
Print the addresses of the subprograms whose names are given.

&MAP addrl, addr2, ...
Determine which subprograms contain the given octal addresses

and prir . their names and addresses.

&OCTOUT varl, var2, ...
Print in octal the values of the specified variables. (non-

&OCTOUT strl, str2, ...
Print in octal the values pointed to by the entries in the
symbol table at relative locations (strl), (str2), etc., where
the (str)'s are small octal integers (less then 40008).

&OCTOUT ptrl, ptr2, ...
Print in octal the values pointed to by the pointers (ptrl),
(ptr2), etc., where the pointers are expressed in octal.

&POLISH ON

Turn on PSFLAG. Print out the Polish string representation

of each OSCAR statement read in.

&POLISH OFF

Turn off PSFLAG. Do not print Polish strings. (PSFLAG is
normally off.)

&RENAME, vl = v2

If variable vl is in the symbol table change its name to v2.

&RUBOUT

Release values pointed to by symbol table, clear symbol table,
free storage list, and pad, dump what is left, and restart.

&SYMTAB
Print the symbol table.

&TEMPOUT ON

Turn on OCTLIST flag. Print, in octal, temporary structures,
such as subarrays.

&TEMPOUT OFF

Turn off OCTLIST flag. Do not print temporary structures.
(OCTLIST flag is normally off.)

	0001
	001
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	A.00
	A.01
	A.02
	A.03
	A.04
	A.05
	A.06
	A.07
	B.01
	B.02
	C.01
	C.02
	D.01
	F.01
	F.02
	F.03
	F.04
	F.05
	F.06
	F.07
	F.08
	F.09

