“cem-70-10

BASIC LIST PROCESSOR (BLIP-I)
Preliminary Reference Manual

by
Gil Bachelor

January, 1970

COMPUTER CENTER

Oregon State University
Corvallis, Oregon 97331

BASIC LIST PROCESSOR (BLIP-I)

Preliminary Reference Manual

by
G. Bachelor

January, 1970

ccm 70-10

Computer Center
Oregon State University
Corvallis, Oregon 97331

Part III

TABLE OF CONTENTS

Preface . .« ¢ ¢« ¢ ¢ o o « o o o

References ¢ « ¢« o ¢« « .
Introduction

Part I BLIP-I Basic Principles .

ALOMS . & ¢ 4 ¢ 4 e e 4 e e e .
Cells . v v ¢ ¢ ¢ o« o o o o o
Pointer ¢ ¢ o« .+ . .
Variables« « ¢« ¢« « « .
Free Storage List e e e e e .
Reference to a Cell e e e e e
List Structure (example) e . .
List Processing (example) . . .

Registers and Arithmetic Operations

Part II The BLIP-I Language . .

Subprograms

Q .

Main thr\-rnnr:m Str

Main ogram Stru

+ture
Subroutlne Subprogram Structure
Language Elements
~ Characters
Integers . . +« « ¢« o o o« . .
Variables « . « .
Registers
Labels
Special Characters and Words
Storage 0 o . . .
Initial Conditions
Assignment Statements
Label Definition
BEGIN, END, and Declarations .
Transfer of Control
PUSH and POP . . . « +. « « .+« .
Input and Output
Register Operations

Execution
Program Preparation
Program Translation
Program Execution
Program Termination
Example of a BLIP Run

BLIP-I Program Preparation

e e e e e
e e e e e .
e e e e e .
e e e e e
e e e e e
e e e e e .
e e e e e .
.« e e e e .
e e e e e .
« e e e e .
e e e e e .
e e e e e .
e e e e e .
e e e e e .
e e e e e .
e e e e e .
e e e e e .
e e e e e
e e e e e .
e e e e e .
e e e e e .
e e e e e .
e e e e e
e e e e e
e e e e e .
e e e e e
e e e e e .
e e e e e
e e e e e e
e e e e e .
e e e e e .
e e e e e .
e e e e e
Translation
e e e e e
e e e e e .
e e e e e .
e e e e e
e e e e e .
e e e e e

..
. .
. .
.- .
. .
. .
. .
. .
.- .
.- .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
.- .
. .
. .
. .
. .
. .
. .
. .
.- .
and
..
.- .
..
. .
. .
. .

BB W WwWwwhNDNDND

oo~ ooooanoutuntunutn

17
17
18
20
21
24

PREFACE

This manual describes a "basic list processor" called
BLIP, which is now available to 0S-3 users. BLIP is similar

to the WISP language designed by M. V. Wilkes (see references

4 and 5). It has been implemented by using the macro expander
SIMCMP (reference 3). The current version (BLIP-I) is con-
sidered "experimental". It can be improved considerably by

writing an actual BLIP compiler, which would make possible more
flexibility in the statement formats. Whether such improvements
will be implemented depends on the amount of interest shown by

users.

REFERENCES

Berkeley, E. C. The programming language LISP: an intro-
duction and appraisal. Computers and Automation, 13, 9
(Sept. 1964), 16-23.

McCarthy, J. et al. LISP 1.5 programmer's manual. MIT
Press, 1962.

Orgass, R. J. and Waite, W. M. A base for a mobile programming
system. Communications ACM, 12,9 (Sept. 1969), 507-510.

Wilkes, M. V. An experiment with a self-compiling compiler
for a simple list-processing language. Annual Review of
Automatic Programming, Vol. 4 (1964), 1-48.

Wilkes, M. V. Lists and why they are useful. ACM Proceedings
19th National Conference (1964) Fl-1 to F1-5.

3100/3200/3300/3500 Computer Systems COMPASS Refe ce
Control Data Corporation, Pub. No. 60236800A (July, 1969).

ii

BASIC LIST PROCESSOR (BLIP-I)

"BLIP" is an acronym for Basic LIst Processor. The BLIP
language is a very simple, relatively "low-level" language.
Each BLIP statement generates from 1 to 9 machine instructions.
In the field of list processing languages, BLIP is at about the
level of an assembly language. Still, BLIP is machine-independent,

except for character codes and the permissible ranges of numbers.

Using BLIP, one can construct and manipulate lists and list
- structures of any desired cbmplexity. The basic data items are
integers or characters. (BLIP-I does not provide floating point
operations.) Some of the terminology used in BLIP is borrowed
from LISP (1,2): ATOM, CAR, CDR. Recursive subroutines are
easily written in BLIP. Subprograms can be compiled separately,
to be linked at time of loading.

At present, there is no BLIP compiler. The BLIP language is
defined by a set of macro definitions, which show how to translate
BLIP statements into COMPASS instructions. The macro expander
*SIMCMP (3) uses the BLIP macro definitions to translate a BLIP pro-
gram into a COMPASS (6) program. The COMPASS assembler is then
used to translate the COMPASS program into machine form (relocat-
able binary).

There are three parts in this manual, as listed below:

I. BLIP-I Basic Principles
(describes the basic data items and storage facilities of BLIP)
1I. The BLIP-I Language.

III. BLIP-I program preparation, translation, and execution.

I. BLIP-I Basic Principles

ATOMS An atom is a positive or negative (or zero) integer in
the range -4,000,000 to +4,000,000 (approximately).
Small non-negative integers may represent characters
for input or output. Such atoms are represented in
BLIP language by notations such as:
'i1* '7' ‘'A* 'X' '$' DOT RET

The integers 0 to 9 represent the characters 0,1,...,9.
The sequence of integer representations for character
is:

,1,2,...,9,A,8,C,...,%,:, other special charac-

ters, RET.

RET is a special character denoting carriage return
(end of line). DOT denotes the period (.).

(NOTE: There are gaps in the sequence of integers that
represents characters. For example, the integer that
represents the letter A is not 10 but 17.)

CELLS A cell is a storage element that is used in construecting
lists and list structures. Each cell has two fields,
called the CAR and CDR fields.

CELL ; ' !

CAR CDR
field field

Each field of a cell may contain either an atém or a
POINTER pointer to another cell. Normally, the CDR field con-
tains a pointer to the next cell in a linked 1list,
except that the CDR field of the last cell in a list
contains the atom '0'. The CAR field usually contains

either an atom or a pointer to a sub-list.

VARIABLES

FREE
STORAGE
LIST

LIST
STRUCTURE
(Example)

A variable is the name of a special storage element
which can contain either an atom or a pointer to a
cell. 1In BLIP-I, variable names are single letters:
A,B,C,...,%Z.

The variable F has a special purpose; F points to the
free storage list (FSL), which is a simple linked list
of all cells which are not currently in use. Cells
are removed from the FSL when needed to construct
lists; they are returned to it when no longer needed.
In BLIP, this is not automatic (except in the opera-
tions PUSH, POP, CALL, and RETURN). The BLIP program-
mer has the responsibility to return cells to the FSL
when he is finished using them.

In BLIP-I, the only cells which can be referred to
are those which are pointed to by a variable. For

example, if the variable V contains a pointer to a

‘cell, then CAR V refers to the CAR field of that cell

and CDR V refers to its CDR field. By using these
references, one can put atoms or pointers into the
fields of a cell; one can test the contents of a
field; and one can copy the contents of a field to
another cell or variable.

-——jff}mﬁ% * ih_m%

YN

SRRV S,

Here is an example of a simpie list structure. It is
a "tree" representation of the expression (A-B)* (X+Y),
and the variable E contains a pointer to its "first"
cell.

LIST
PROCESSING
(example)

REGISTERS
and
ARITHMETIC
OPERATIONS

Starting with the list structure shown in the example
on the preceding page, suppose we do the following

operations:

- 5
CAR E = '/' . c.__;%_..,-.. - b
= =3,
T = CDR E. | :
E I i]
U=CDRT. [G/] [-3 -T0o}
L‘_‘A— . "“;
V = CAR T. v 7‘—&*——1)‘{ =
CART = - PRgRE SRS S aRE e K 0 |
CAR U. : e
CAR U = V. =1 =7 —+YB 0.

The resulting list structure is shown above. Also
shown are the cells to which variables T,U,V are point-
ing. The structure is now a tree representing the
expression (X+Y)/{(A-B).

A register is the name of a special storage element that
may contain only an atom. In BLIP-I, the names of
registers consist of the letter "R" followed by a digit:
RO,R1,...,R9.

Arithmetic operations (+,-,*,/) and arithmetic compari-
sons can be performed on the contents of registers.
Arithmetic operations cannot be performed on atoms
contained in cells, and comparisons on cells do not work
properly for negative atoms. However, atoms can be
copied from the CAR fields of cells to registers, and \
vice versa.

IT. The BLIP-I Language

SUBPROGRAMS

MAIN
SUBPROGRAM
STRUCTURE

SUBROUTINE
SUBPROGRAM
STRUCTURE

LANGUAGE
ELEMENTS

CHARACTERS

A BLIP program may be divided into a number of
subprograms, which can be compiled separately,
then loaded together for a run. A group of
subprograms to be loaded and run must contain
one and only one "main" subprogram; it may con-
tain none or any number of "subroutine" sub-

programs.

BEGIN MP. MP is the name and entry point of

CELLS 00400.

[statements] this main subprogram; it is also

END MP. the starting location for the pro-
gram. The CELLS declaration causes
400 cells to be placed in the free
storage list, before the program is
started.

BEGIN SB. SB is the name and entry point of

éﬁgatements] this subroutine subprogram.

A subprogram is composed of statements and declara-
tions. Statements and declarations in BLIP are com-
posed of basic elements of the kinds * sted below.
Each BLIP-I statement or declaration must be on a
separate line and must end with a period (.). The
elements within each statement or declaration must
be separated by single spaces, except that no space
should precede the period.

Characters are represented in statements by nota-

tions such as '3','A',RET. The notation 'char'

will stand for any character (except period, NDOT, or

RET) in the descriptions of statements.

INTEGERS Integers can appear in certain statements and
declarations. An integer consists of 5 digits,
or a minus sign followed by 4 digits. The per-
missible range is -9999 to 16383. The notation
INTEGER stands for an integer in the descriptions.

VARIABLES A variable is a single letter (a,B,...,%Z). Vari-
ables are represented in the descriptions by nota-

tions such as vl,vz,...

REGISTERS A register is the letter "R" followed by a digit
(RO,R1,...,R9). Registers are denoted in the
descriptions by S PYEEYRRE

LABELS A label consists of two letters (for example,
PA, MP, SB,...). It identifies a place in the

program to which control can be transferred.
Labels are denoted by the notation LABEL in the

descriptions.
SPECIAL Other elements of statements are special characters
CHARACTERS _ .
" AND WORDS. (such as = or +) and special words (such as CAR, IF,

BEGIN). These elements serve to identify the action
or meaning of a statement or declaration. They are
represented in the descriptions by themselves.
Notations such as {ggg}?mean that any of the ele-
ments shown in the brackets can be used, with
various meanings according to which element is

chosen.

- STORAGE

INITIAL
CONDITIONS

ASSIGNMENT
STATEMENTS

In BLIP-I, variables are common to all subprograms.
For example, a reference to X in one subprogram
refers to the same variable as a reference to X

in another subprogram.

Registers in BLIP-I are local to each subprogram;
each subprogram has its own set of 10 registers,

which are not accessible to other subprograms.

Initially (when the main subprogram is started), all
variables except F contain the atom '0'. F contains
a pointer to the free storage list (FSL), which is a
linked list of all available cells. The CAR fields
of all cells contain '0', and the CDR field of each
cell points to the next cell. The CDR field of the
last cell contains '0'. The number of cells is
equal to the number specified in the CELLS declara-
tion.

The initial content of registers is not specified.

An assignment statement copies the cuantity speci-
fied on the right of the equals sign (=) into the
variable or field (of a cell) specified on the left.
The quantity on the right can be an atom or pointer
contained in a variable or cell, or it can be a
specified character (an atom). BLIP assignment

statements can have the following forms:

FORY EXAMPLE
= P = X.
Vl VZ.
v. = CAR: A = CAR Q.

088 EXAMPLE

CAR T
= . DR B = T.
CDR} Vi T V2 ¢
CDR} vy =)cor{ V2r CAR
CAR — 1 ' CAR S = '$'.
CDR}VI char'. _ $
DOT '
= - T = R T.
CAR Vl RET& CAR E
v, = 'char'. 4 E="'0".
1
LABEL Labels are defined by the statements shown below,
DEFINITION . s o
and also by BEGIN statements. A label identifies
a location in a program; a transfer of control to
a label causes statements following the label to
be executed.
FORM EXAMPLE
label. XB.
Label refers to the statement that follows it; it is
local, unknown outside the subprogram in which it
occurs.
ENTRY label. ENTRY PE.
Label refers to the statement that follows it; it is
global and can be referred to form other subprograms.
BEGIN, END, BEGIN and END statements mark the beginning and
AND DECLARA-
TTIONS . end of subprograms. Declarations provide informa-

to the BLIP compiler.

BEGIN 1label. BEGIN ZP.
This is the first statement of a main or subroutine
subprogram. The label is the name of the subpro-
gram, and is also defined as an entry point (see
ENTRY) that refers to the first statement of the

8

TRANSFER
OF
CONTROL

subprogram.

FORM EXAMPLE
END. END.

This is the last statement of a subroutine sub-
program. If execution reaches the END statement,
a RETURN is executed (see RETURN statement).

END label. END ZP.
This is the last statement of a main subprogram.
The label specifies the statement at which execu-
tion is to begin (normally the same as the label
on the BEGIN statement).

If execution reaches the END statement, a RETURN

is executed.

CELLS integer. CELLS 00350.
The CELLS declaration specifies the number of cells
to be placed in the free storage list before start-
ing execution of the program. One and only one
CELLS declaration must appear among all the subpro-

grams to be loaded for a given run.

EXT label. EXT PE.
The EXT declaration declares the label to be exter-
nal to the subprogram. That is, it is an ENTRY

point in some other subprogram.

To "transfer control" means to cease executing
statements at one place in a program and start
executing statements at the place to which control
is transferred. The statements TO, CALL and RETURN
unconditionally transfer control. The IF statements
transfer control if a certain condition is satis-

fied. Most of the IF statements compare two gquan-

tities to see if one of the relations listed below

is satisfied. 1If so, the transfer of control takes

place.
RELATION CONDITION IS SATISFIED IF:
X EQ vy X =y (x is egqual to y)
X NE y Xx #y (x is not equal to y)
X LT y X <y (x is less than y
X GE y X >y (x is greater than or

equal to y)

NOTE: In the IF statements listed in the group
below, all atoms appear to be positive, with nega-
tive atoms appearing to be larger than positive
atoms. See the register operations for tests that

work correctly with negative atoms.

EQ FORM ' EXAMPLE
TO label. IF X NE J TO BD.
\
EQ
ﬁg; V2 TO label. JF CAR Y EQ B TO QX.
GE
4
EQ
NE
LT ggg v, TO 1label.
GE
- IF CDR K GE CAR T TO LB.
EQ
NE
LT{ 'char' TO label.
GE
IF CAR Z LT ':' TO DL.
EQY
NE .DO
IF CAR vy LT RE TO label.
GE IFF CAR B NE DOT TO MR.

10

The following IF statements test a quantity to
see if it is or is not an atom. (If not an atom,
it is a pointer.)

FORM EXAMPLE,
EQ !
IF v, { oot ATOM TO label. IF S EQ ATOM TO SA.
r {CBRL & 1 EQL 2nom mO 1abel.

CDR 1) NE

IF CDR Q NE ATOM TO QL.

Unconditional transfers of control (and a special

IF statement) are listed below.

TO label. TO PQ.

Unconditionally transfers control to specified label.

CALL label. CALL SB.
Saves location of following statement on a push down
list (ADSTAK) and transfers control to specified
label.

CALLX label. CALLX SX. _
Same as CALL, but also declares the label to be exter-
nal (see EXT).

RETURN. RETURN.
Returns control to the statement following the most
recently executed CALL or CALLX statement that has
not been "returned to". (Location is obtained from
ADSTAK, and ADSTAK is popped.)

ERETURN. ERETURN .

This is the "error return" statement; it is the

11

same as RETURN, but sets an "error flag" that can

be te ted by an IF ERROR statement.

FORM EXAMPLE
IF ERROR TO label. IF ERROR TO RR.

This statement (if used) must immediately follow

a CALL or CALLX statement. It will transfer con-
trol to the specified label if the subroutine that
was called returned with an ERETURN statement.

NOTES: The labels specified in transfer of control
statements can be either local or external.

The main subprogram is "called" initially to start
execution; a RETURN to this call terminates execu-

tion.

PUSH AND To "push" a list means to add a new cell at the

POP beginning. To "pop" a list means to remove the
first cell. These operations can easily be per-
formed by BLIP assignment statements. However,
they are so useful and frequently used that

special statements are provided to carry them out.

FORM EXAMPLE EQUIVALENT CODE
PUSH vy PUSH M. T =F.
- F = CDR F.
CDR T = M.
M=T.

A PUSH statement removes a cell from the FSL and puts
it at the head of the list pointed to by vy (If v,
contalned an atom, it will now point to a 51nqle -cell

list.)

12

INPUT
AND
OUTPUT

FORM EXAMPLE EQUIVALENT CODE

POP Vi POP K. T = K.
K = CDR K.
CDR T = F.
F =T.

A POP statement removes a cell from the head of the

list pointed to by v, and puts it in the FSL.

NOTE: In the "equivalent code" shown at right

above and on the preceeding page, the variable T
is used. Of course, PUSH and POP statements do
not actually use a variable like this. The only

variables affected are F and Vl'

Input and output for BLIP programs are handled by

special subroutines. For input, one line (or card)

.
is read and characters are passed at ime ¢

O

the BLIP program, with codes converted to those
used in BLIP. When the last character of a line
has been "read", the special code RET is supplied
next. The next call for a character causes another
line to be read. The BLIP program can also cause
the rest of the current input line to be discarded,

by using the INRET statement.

For output, a BLIP program outputs one character at
a time. These characters are stored, to build up a
line. When the line is full, or when the code RET
is output, the line is actually written. (When a
BLIP program terminates, with or without error, the

last partially filled line, if any, is written
anyway.)

FORM EXAMPLE
CAR v1 = IN. CAR R = IN.
One character (an atom) is read from the input unit
and stored in CAR vy- The character RET is always

13

REGISTER
OPERATIONS

supplied at the end of a line.

FORM EXAMPLE

INRET . INRET.
Causes characters to be read and discarded until
a RET has been received.

ON EOF TO label. ON EOF TO EF.
If an IN or INRET statement results in reading a
file mark (denoting end of input data), control
will automatically be transferred to the specified
label. Each ON EOF statement overrides the effect

of any previously executed OM EOF statement.

OUT = CAR vl. OUT = CAR W.
Outputs the (presumably) character contained in
CAR
e s 'rl L]

OUT = 'char'. ouT = 'E'.

Outputs the specified character.

OUT = DOT. OUT = DOT.
Outputs & period.
OUT = RET. OUT = RET.

Outputs a RET, causing a line to be written.

Due to the manner in which atoms and pointers are
represented in variables and in cells, it is not
feasible to perform arithmetic operations on these
quantities. Atoms can be copied from the CAR
fields of cells into registers, and vice versa.
The copying process alters the representation of
an atom, so that arithmetic operations can be per-
formed on it. (If a pointer is copied to a regis-
ter, it will be converted into an atom.) The

atoms in registers are integers in the (approxi-

14

mate) range -8,000,000 to +8,000,000. An atom
whose magnitude is larger than (about) 4,000,000
cannot be copied correctly into the CAR field of

a cell. (No error indication is given.)
FORM EXAMPLE
r, = CAR vy R3 = CAR B.
Copies atom in CAR vy into register r-
CAR vl = rl. CAR H = R7.
Copies atom in ry into CAR vy-
ry = I, R2 = RS.
Copies atom in r, into ry.
r, = integer. R5 = 00003.

1

Puts specified integer into ry.

rl = r2 + r3. RO = R8 + R1.

Adds the atoms in r, and Ty, puts result in r

rl =TI, - r3. R4 = R4 - R6.

Subtracts Iy from Ty puts result in r-

r R3 = R9 * R2.

= *
17 f2 7 Fae ,
Multiplies r, by T3, puts result in ry-
r, =r, / rs- R5 = R1 / RS8.

Divides r, by ry, puts quotient (an integer) in ry.

rl = REM. R4 = REM.
If previous statement was a divide operation, stores
the remainder from the division in r-

15

NOTE: If overflow or division by zero occurs in
arithmetic operations, an erroneous result is

stored, with no error indication.

The three registers used in an arithmetic opera-

tion do not have to be distinct registers.

FORM EXAMPLE
EQ
NE
IF r LT {0 TO label. IF R7 LT 0 TO RN.
GE

EQ
NE
IF rl LT r

GE

2 TO label. IF R3 NE R6 TO JP.

The comparisons above work correctly; negative

integers aré "less than" positive integers.

16

III. BLIP-I Program Preparation, Translation, and Execution

PROGRAM
PREPARATION

A BLIP program can be punched on cards, one state-
ment per card; or it can be typed in and stored in
a file, one statement per line. 1In either case,
there must not be any spaces at the beginning of
the line; there must be exactly one space between
each element of a statement and the next element;
and each statement must end with a period (no space
in front of the period). Anything that follows the
period on a line or card will be ignored.

A BLIP prdgram may consist of several subprograms.
The first line must be a BEGIN. After the END of
one subprogram comes the BEGIN of the next one

(if any). After the END of the last subprogram,
type a line with only a single period. (An end of
file card can be used instead.)

If EDIT is used to prepare the program, one should "
use the OUT command to put the program into a file
(either a unit number or a name). Since EDIT
writes a file mark at the end of the output, the
last line mentioned above (a single period) is not
needed.

The following illustration shows the overall form
of a BLIP program.

BEGIN AB.

CELLS 00200.

(Main subprogram)
END AB.

BEGIN CD.

(A subprogram)

END.

BEGIN EF.

(Another subprogram)
END.

. (or a file mark, or end of file card)

17

PROGRAM
TRANSLATION

At present, there is no BLIP compiler. The BLIP-I
language is defined as a set of "macros", in a
file called *BLIPM. The macro expander *SIMCMP
translates a BLIP program into a COMPASS-language
program, using the macro definitions in *BLIPM. '
Then the COMPASS assembler is used to translate the
COMPASS—lahguage program into relocatable binary
form.
"

If the BLIP program to be translated is in a file,
one first calls SIMCMP with a control statement of
the form: ‘

*SIMCMP ,M=*BLIPM,I={(lun or name) ,0=50,D,

'z

The (lun or name) following "I" is the logical unit
number or name of the file where the BLIP program

is stored. The output unit (50 in the example above)
is the unit on which the COMPASS-language program is
written. The "D" causes unrecognized lines to be
written on logical unit 61, with sequence numbers to
indicate where they appeared in the BLIP program.

The notation D=(lun or name) can be used to cause the
diagnostics to be written on a unit other than 61.
The "N" option causes SIMCHMP to put sequence numbers
in columns 76 to 80 of the output, which correspond
to the input lines. (For example, the 23rd line of
the BLIP program might generate 5 lines of COMPASS
language. All 5 lines will have the sequence number
00023.)

If the BLIP program is on cards, one would use the

control statement:

;*SIMCMP ,M=*BLIPM,0=50,D,N

followed immediately by the BLIP program deck.
(Omitting the "I" parameter causes unit 60 to be

used for input.)

18

If the BLIP program has been successfully translated
into COMPASS (no diagnostics), then one calls COMPASS

with a control statement of the form:

COMPASS,1=50,X,D

If COMPASS produces no diagnostics, one can proceed
to run the program. (See next section.) However,
there are several kinds of errors in BLIP programs
that may show up dﬁring the COMPASS assembly. If
such errors occur, and the user is on-line, one
should use the control statement UNEQUIP,56 before
the next attempt to translate the program. A typi-
cal COMPASS diagnostic is shown below:

C=00125 U 00216 UJP X7

The number (if any) following the "C=" is taken from
columns 76 to 80 of the line that COMPASS read. The
letter (or letters) following this number indicates
what kind of error (or errors) was detected. The
number following the error "flag" is the relocatable
machine address of the instruction that COMPASS
generated for this line. The rest of the diagnostic

message consists of the first 36 columns of the line.

If the "N" parameter was used on the *SIMCMP call,

then the number following "C=" will indicate which

line of the BLIP program generated the COMPASS instruc-
tion on which the error was found. Some of the COMPASS
error flags and possible BLIP programming errors that

could cause them are listed below.

Error
flag Meaning Possible BLIP errors
A Address error. 1. Improper variable.

Example: B = CAR %.

2. Improper register
specifier.
Example: R5 = R2 + RS.

19

PROGRAM
EXECUTION

ERROR

FLAG MEANING
D Duplicate symbol.
DA Duplicate symbol

in address field.

L Label error.
M Modifier error.
U Undefined symbol.

POSSIBLE BLIP ERRORS

3. Improper label in a
TO, IF, or CALL
statement.

Example: TO $5.

1. Definition of a
particular label
more than once in
a subprogram.

1. All references to a
duplicate symbol are
flagged "DA".

1. Improper label.
Example: 53Z.

1. Improper condition
in an IF statement.

Example:IF CAR B LE
CAR W TO DE.

1. Label in IF, TO, or
CALL statement is
not defined.

Example: CALL XY.
(where XY is not
defined.)

2. Misspelled words in
various statements.
Examples: CUR X = B.
OUT = RAT.

If there are no errors in either the SIMCMP or

COMPASS translations, one can attempt to load and run

the program. First, the BLIP subroutine library must

be equipped:

EQUIP,63=*BLIPLIB

Then one uses the control statement

LOAD, 56
followed by the line

RUN

(Teletype users must type "return", then "line feed"

after the word RUN.)

20

PROGRAM
TERMINATION

The loader may detect some errors. The most likely
ones are DS (duplicate symbol), UD (undefined sym-
bol), and TR (transfer symbol). DS means that the
label (following."DS") appeared more than once as
the name of a subprogram or as an ENTRY label. UD
means that the label (following "UD") appeared in

" an EXT or CALLX statement, but was not defined as an

ENTRY label or as the name of a subprogram. A "TR"
error means that there is more than one main subpro-

gram.

If there are no loading errors, the loader prints
RUN and starts the user's program. The program may
be terminated immediately, if one of two errors

occurs. If so, a message is printed:

NO MAIN PROGRAM means that there is no main

subprogram.

TOO MANY CELLS means that there is not enough
storage space for the number of

cells that the user declared.

Finally, if no errors have been detected, the pro-
gram actually starts running, at the first statement
of the main subprogram. The program may print out-
puts (on logiéal unit 61) and/or read inputs (from
logical unit 60). Teletype users must end each input
line with "return" and "line feed" (in this order).

There are several conditions that can terminate the
execution of a BLIP program. In each case, a message

is printed, as shown below:

END OF BLIP RUN This message is printed when
the main subprogram executes
a RETURN to the initial CALL

that started execution.

21

UNCHECKED EOF

ERROR FOLLOWING XY:

ERROR FOLLOWING XY:

22

This message is printed if a

file mark (end of file card)

is read, and no ON EOF state-
ment has been executed.

V IS EMPTY

A message of this form is
printed when a reference to
the CAR or CDR of a variable
is made, and the variable con-
tains an atom instead of a
pointer to a cell. The label
(XY in the example above)

indicates the section of pro-

‘gram where the error occurred.

Ml 2 o ve o o e
41X

by a PUSH or CALL statement,
if the free storage list (F)

becomes empty.

BAD RTN ADR

This message means that a cell
(in ADSTAK) containing a return
address has been altered. This
situation can occur if some
variable contains a pointer to
a cell that is in the free
storage list, if this cell is
used for a return address (on

a CALL), and then the cell is
changed before a RETURN is exe-
cuted. The label (XY in this
example) may also be destroyed

in a situation like this.

ERROR FOLLOWING XY: INTERRUPTED

This message is printed if
the user presses "break" or
"control A" to stop the pro-
gram, and then types the con-
trol statement MI (manual
interrupt). If a program is
in a loop, this technique can
be used to find out what part
of the program is being exe-

cuted.

Two other conditions can cause 0S-3 to stop the
program and print a message:

INSUFFICIENT FILE SPACE
This means that the program
is attempting to write a line
on a file or line printer (or
other device), and the file

space limit has been reached.

TIME CUT This means that the time limit

has been reached.

In either case, the 0S-3 control mode is entered. If
this occurs in a batch job, the job is aborted. If
the user is on-line, he can increase the file space
limit or the time limit (if possible) and type the
control statement GO to resume execution. Or, he

may decide that something is wrong, and use the state-
ment MI. (see discussion above, under INTERRUPTED.)

23

EXAMPLE OF A BLIP RUN

Here is an example of an actual BLIP run. The program is very
simple. It reads a line, stacking the characters in a push
down list (P). Then it prints the line out, with the characters

appearing in reverse order.

#EDIT

] INPUT

00001:BEGIN EX. ,
00002:CELLS 00100.
00003:RD.

00004:PUSH P.

00005:CAR P = IN.
00006:IF CAR P NE RET TO RD.
00007:PT.

00008:POP P.

00009:IF P EQ ATOM TO ND.
00010:0UT = CAR P.
00011l:TO PT.

00012:ND.
00013:0UT = RET

MV a e - .

00014:TO RD.
00015:END EX.
00016: (escape)
JOUT , EXAMPLE

1EXIT
#*SIMCMP,M=*BLIPM, I=EXAMPLE,D,N,0=50

#COMPASS, I=50,X,D
NUMBER OF LINES WITH DIAGNOSTICS 0

#EQUIP,63=*BLIPLIB
#LOAD, 56

RUN

RUN

THIS IS A TEST.

.TSET A SI SIHT

12345

54321

A QUICK BROWN FOX JUMPED OVER THE LAZY DOG'S BACK.
.KCAB S'GOD YZAL EHT REVO DEPMUJ XOF NWORB KCIUQ A
(control A)

#

24

	0001
	0002
	0003
	001
	002
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24

