cem-71-06

SORT

A File Utility Program for OS-3

February, 1972

COMPUTER CENTER

Oregon State University
Corvallis, Oregon 97331

SORT
A File Utility Program
for 0S-3

ccm~-71-06

Computer Center
Oregon State University
Corvallis, Oregon 97331

February, 1972

TABLE OF CONTENTS

Page

PREFACE == m—mmm e e e e e e e e e e e e e e e e e ii
l. Usage ———————-———-——ms e e 1
1.1 Calling Sequence -—==—=—-—————————————e—— e 1

1.2 SORT Parameter Records ---—-—-—--—--——————e———————- 2
1.2,1 END =--mmmrorrrcee e e e r e c e e e e ————— 3

1.2.2 INPUT —===—= == e e 3

1.2.3 OUTPUT =——== = e e e e 4

1.2.4 KEY -—==—=———memm e 4

1.2.5. TABLE ==—————————m e e e 6

1.2.6 RECORD LENGTH ———==————=——— e 8

1.2.7 BLOCKING FACTOR ———==——===———— e me oo 8

1.2.8 LENGTH ERRORS =—=—=——===—mm e 9

1.2.9 PARITY ERROR —==——————m oo 9

. Core Requirements =--—--————=——-mmmr 10
. File Specifications ---—--—=--—-————————- — —. — —— 11
3.1 Variable-Length Records ------——-—-——-—-—c———e——wewem i1

3.2 Fixed-Length Records -----——----—————mmmmmmmue—— 11

3.3 Blocked Records —-—=—=——=————memmm e 12

3.4 Multiple Tape Conventions --=-——---—mec—emeccee———— 12

4. Error Messages —-—————-————-mmmm e e 13
4.1 Parameter Errors -————-——-eeeeeeeme e e e 13

4.2 Block Length Error --------—-—----—cemmemmmmmmee——— 14

4.3 Parity Errors =--—-—-—-—-—-—emmememc e c e 14

4.4 Other Messages -———===————mmmeece e 15

. Timing -——=-—=-m—rer e e e e e 15
. Method or Algorithm ---------e——emm e e 15
. Calling SORT as a Subroutine -—-----—-—-—————e—e——moo—o 17
7.1 Calling SORT from a Program =—=—-———————eeeeecemeceac—— 17
7.1.1 EXIT 1, Input Record Examination -----==-- 19

7.1.2 EXIT 2, Output Record Examination --=--=---- 20

7.1.3 EXIT 1A, Input File Open =—-—=—-=—=-emee—eee-- 20

7.1.4 EXIT 1B, Input File Close ====—==—eeeeaaa- 21

7.1.5 EXIT 1C, Input End of Tape =-==-==—=m=c———-- 21

7.1.6 EXIT 2A, Output File Open --—==—==cc——ceeee—- 22

7.1.7 EXIT 2B, Output File Close =—=====-——ceee-—-- 22

7.1.8 EXIT 2C, Output End of Tape -=-===—===—c———- 22

7.2 Calling OVSORT from a Program =——-—-—=——===——c—eeee—-- 23

8. Examples -—-—-—m—-m—e e e 23
9. Index —-——-———--s--m-me e 29

PREFACE

THE MANUAL

This manual is a technical description of how to use the
0S-3 SORT program. This manual is complete and contains some
sample problems.

THE PROGRAM

The 0S-3 SORT program is a general-purpose sort-merge that
allows the wuser to sort from one to thirty-two input files. It
will handle fixed length, variable length, and blocked records.
A number of options let the user choose how he wishes SORT to
handle parity errors and block length errors. The program may
be called as a subprogram and several special exits are provided
in order to link it to user-supplied routines for special test-
ing or modification of the records.

ii

SORT FOR 0S-3

USAGE

CALLING SEQUENCE

The calling sequence is the control statement SORT,I=a,0=b
where a and b stand for logical unit numbers or file names.
The I or input parameter specifies the logical unit or file
that contains the parameter records for the SORT program.
If the I is omitted, the SORT program will read parameter
records from logical unit 60. The O or output parameter
specifies the logical unit or file that the SORT program
will use when writing error messages and record counts. If
the 0 is omitted, the SORT program will.write messages on
logical unit 61. See section 7 for the calling segquence

One example of a typical sort job would be as follows:

JOB ,<number>,<user code>

~N 0

gEQUIP,1=DATA
7

gEQUIP,2=FILE
SAVE, 2=SORTDATA

SORT

0~ 0w

R20

B50

I1

02
KEY2,2,2
KEY10,1
KEY4,6
END

;LOGOFF

For other examples and formats, refer to section 8, Sample

Problems.

SORT PARAMETER RECORDS

The parameter records are processed from left to right and
have no format except that information in character posi-
tions beyond column 72 is ignored. The SORT program first
searches the parameter input for a letter. Once a letter
has been found, the SORT program will search the parameter
input, ignoring all letters, for a positive integer. The
SORT program will then process the parameter and start
searching for a new letter. This process continues until
the letter E is found, or until a file mark or end-of-data
condition occurs. The comma, blank, and equals are always
ignored.

EXAMPLE: The following parameters will process
identically:

I5

I=5

INPUT=5

INPUT CAN BE FOUND ON LOGICAL UNIT 5
IS5

The parameter codes are:

R - Record size in words

B - Blocking factor (Records/Block)

- Input file

- Output file

-~ Key field

-Table for non-standard collating sequence
- Parity error options

—- Length error options

- End ©of SORT parameters

H B Yo R O M
|

NOTE: The order of presentation of parameters is critical.
The R, P, L, and B parameters apply only to the previous I
or O parameter unless they occur before the first I or O

parameter. If an R, P, L, or B parameter should occur before

the first occurrence of an I or C parameter, the R, P, L, or

1.2.2

B parameter will be treated as if it is specifying a default
option. It will then apply to all following I and O para-
meters which have no R, P, L, or B parameter.

EXAMPLE: The following parameter sequences will
process identically:

I=5 R=20 B=0 I=6 R=20 B=5 0=7 R=20 B=5
R=20 I=5 B=0 I=6 B=5 0=7 B=5
R=20 B=5 I=5 B=0 I=6 0=7

The following paragraphs describe the various SORT parameters.
The key letter is underlined. Only the key letter is neces-
sary when making parameter cards. All letters between the
key letter and the parameter value (positive integer) will

be ignored. 1In other words, the user need not worry about
whether he writes I=5, or I 5, INPUT5, or I5; the program

will accept free form input.

END

END should be the last parameter. The END parameter will
cause the_SORT program to stop processing parameters and
start reading from input units.

INPUT

A logical unit number should follow the INPUT parameter.

Up to thirty-two input units may be specified by repeated
use of this parameter. At least one input unit must be
specified. The input units are examined, one at a time,
from first to last. The input units are not rewound before
or after reading. An end-of-file or end-of-data condition
will stop the SORT program from reading from an input unit,
and will cause the SORT program to start reading from the
next input unit. The SORT program will stop reading when

the last input unit is at end-of-data or end-of-file.

EXAMPLES: INPUT=4
I=65,1I=66,I=67
I3
I 10

OUTPUT

Following the OUTPUT parameter should be the logical unit
number on which the sorted output will be written. The
output file is not positioned before writing, but follow-
ing completion of writing the output, a file mark is writ-
ten on the output unit. If the output unit is a file or
magnetic tape, the unit is positioned to the location before
the file mark. More than one output file may be specified;
however, the output is normally written on the first output
unit. For using more than one output file see section 7.1.2.

One output unit is required.

EXAMPLES: OUTPUT=61
0=73
ouT, 3
0 75

KEY

The sort key specifies the control field that will be used
in sorting. This parameter may be used repeatedly to
specify more than one SORT control field. The first key
is the major key, or major control break. The last key

is the least significant control field. Following the
KEY parameter there are three numbers: the first column
of the field, the number of columns in the field to be
sorted, and the type of collation desired. (A maximum
number of 10,000 columns may be specified in the keys.)

The first column number must be greater than zero and may
be a column that is outside of the record. (If 80-column
records are being sorted, a user may specify a key in
column 100.) All of the input records have assumed blanks
(if BCD) or assumed zeros (if binary) in columns greater

than the last column of the record.

The number of columns must be greater than zero and is

assumed to be one if omitted.

The collating sequence is specified by a number from zero
to seven. If omitted, it is assumed to be zero, which is

standard BCD collating sequence in ascending order.

If more than one record should contain identical keys, the
SORT program will select the record that was read first as
the "winner". That is, records with identical keys will

maintain their order.

The meaning of the collating sequence numbers is the fol-
lowi

- standard BCD collating sequence - ascending order
- standard BCD collating sequence - descending orde

- binary collating sequence - descending order

- signed binary collating sequence - ascending orde
- signed binary collating sequence - descending ord
- supplied with the 1lst Table card

ng:
0
1
2 - binary collating sequence - ascending order
3
4
5
6
7 - supplied with the 2nd Table card

Standard BCD collating sequence in Ascending Order

60 < 32 $ 53 (74 4 04 Cc 23 K 42 S
: 12 . 33 * 54 +~ 75 5 05 D 24 L 43 T
= 13) 34 + 55 = 76 6 06 E 25 M 44 8]
14 > 35 ¥ 56 A 77 7 07 F 26 N 45 \Y
< 15 - 36 > 57 0 00 8 10 G 27 O 46 W
% 16 7 37 / 61 101 9 11 H 30 P 47 X
[17 - 40 1 72 2 02 A 21 I 31 Q 50 Y
+ 20 vV 52 s 73 3 03 B 22 J 41 R 51 Z

r

r

er

62
63
64
65
66
67
70
71

The binary and signed binary collating sequences use the
CDC 3300 Internal BCD character codes to determine the
collating sequence. However, the signed binary collating
sequence uses the most significant bit of the field as a
sign bit.

EXAMPLES: KEY 3,3,5
KEY 1,29
KEY 40 20 6 KEY=1,10,0 KEY=72,8,2
K452 K1l,2,6 K=10,2,7

TABLE

This parameter is used to define the special collating
sequence tables to be used when parameter values 6 or 7
are used as the third integer in a key parameter.

The first time that the TABLE parameter is used, Table 6
is defined. Table 7 is defined the second time the TABLE
parameter is used. The TABLE parameter may be used only
twice. AfterAthe_EABLE parameter there should be one
delimiter (blank, comma, or equals) followed by a string
of BCD characters. The string of characters is terminated
when any character is repeated. The string of characters
determines the collating sequence. All characters not in
the string will have equal values, higher than any char-
acter in the string.

EXAMPLES: 1) A collating sequence to order playing
cards could be defined by the follow-
ing TABLE parameter:

TABLE=AKQJT987654322

2) To order pinocle playing cards the
following TABLE parameter could be
used:

TABLE,ATKQJ9A

3) To order playing cards by suits, the
following TABLE may be used:

TABLE=SHDCC

The left parenthesis, right parenthesis, and V (internal
BCD code of 52B) are given special treatment when they
occur in a TABLE string. The parentheses may enclose a

- group of characters that are to be treated as having an
equal value. 1In this manner sort tables may be made that
handle zone or numeric collating sequences. For example,
the following TABLE parameter defines a table that ignores
the 11 punch that may occur in some types of numeric data.

T=(0VV) (1J) (2K) (3L) (4M) (5N) (60) (7P) (8Q) (9R)

In the above table the 1 and the J will be treated exactly
the same way. Both the 1 and the J will be treated as
having a higher value than the 0 or V and a lower value
than the 2 or K. Since the left and right parentheses
have special meanings, if it is desired to include them

in the table, it is necessary to precede them with the

V symbol. The V symbol simply specifies that the symbol
that follows it is not to be treated as a special symbol.
Hence, to include the V symbol, duplicate it.

EXAMPLES: TABLE=(0123456789) (ABCDEFGHI) (JKLMNOPQR)
(/STUVWXYZ)

TABLE= (:=X,*+-V(V)VV/;)0123456789

NOTE: The following four parameters: (RECORD LENGTH,
BLOCKING FACTOR, LENGTH ERROR, and PARITY ERROR) apply
to the INPUT or OUTPUT parameter that precedes them.

Any of the following four parameters which occur before
the first INPUT and QUTPUT parameter, is considered to be
a default option and will apply to all INPUT and OQUTPUT
parameters which do not have specific parameters.

1.2.7

If default values are not provided for any of the follow-
ing parameters, the SORT program will assume a default for

the particular parameter.

RECORD LENGTH=100
BLOCKING FACTOR=0
LENGTH ERROR=0
PARITY ERROR=0

The assumed default values are:

(words)
(implies variable length records)
(terminate on length error)

(terminate on parity error)

RECORD LENGTH

The record length (in words) should follow the RECORD para-
meter. For a detailed description of how this parameter
is to be used with various kinds of data formats see sec-

tion 3 on data formats.

EXAMPLES: RECORD LENGTH=20

R=100
R,21
R 10

BLOCKING FACTOR

The blocking factor or number of records in a block should
follow the BLOCKING parameter.
implies variable length records.

A blocking factor of zero
A blocking factor of one
implies fixed length records. A blocking factor greater
than one implies that blocks are to be read containing no
more than B records where B is the specified blocking fac-

tor.

EXAMPLES: BLOCKING FACTOR=10 (blocked ten)

B=0 (variable length)
B,1 (fixed length)
B O

LENGTH ERRORS

This parameter controls the way SORT handles block length
errors (see section 4.2). Following the LENGTH ERROR para-
meter should be a zero, one, or two. Length errors cannot
occur on the output unit or when using variable length

records.

The meanings of the LENGTH ERROR parameter are:
0 - terminate on reading an incorrect length block
after writing an error message
l - write an error message and skip the block

2 - write an error message and use that portion
of the block which contains complete records

EXAMPLES: LENGTH ERROR=2
L=1

T b
40 L

PARITY ERROR

Following the PARITY ERROR parameter should be a zero, one,
or two. PARITY ERROR cannot occur on the output unit.

The meanings of the PARITY ERROR parameter are:

0 - terminate on a parity error
1 - skip the record with the error
2 - use the record with the error

In any case, an error message will be written.

EXAMPLES:

CORE REQUIREMENTS

Rarely should a user of SORT have to concern himself with

the memory requirements of SORT. This section is provided
for users with unusual sorting requirements and for users

planning to call SORT from a large running program.

The SORT program is about 2,000 decimal words long. It will
use as a scratch work area all memory between the contents
of an externally defined word called MEMLOW and the contents
of an externally defined word called MEMHIGH. If SORT is
not called as a subprogram, there are about 30,000 words of
scratch work area. 1If there is not sufficient scratch work
area for sorting or merging (internal) an M PARAMETER ERROR
will result (see section 4.1).

To determine the minimum amount of sCratch work area, the
minimum memory requirement for sorting and the minimum
memory required for merging must be calculated and the
larger of the two quantities selected. Both sorting and
merging will be faster if more than the minimum amount of
memory is available.

The following formulas may be used to calculate the minimum
scratch work area requirements for sorting and merging.

For SORT pﬁase
M = 4K + 2R + MAXB + 600
For internal‘merging phase
M= 1.5K + 2R + B + 2000

M is the minimum scratch work area in words.

K is the number of characters in all keys.

R is the largest record length.

MAXB is the largest input block size or the sum of all output
block sizes, whichever is larger. Zero if no blocking.

B is the sum of all output block sizes. Zero if no output
blocking.

10

3.2

FILE SPECIFICATIONS

It is necessary to describe to SORT the structure of the
input files so that SORT will interpret them correctly.

Likewise it is necessary to tell SORT the desired output
file structure. The file structure is specified after each
INPUT parameter (one for each input unit) and after the

OUTPUT parameter (for the output unit). SORT recognizes
three basic file structures: variable length records, fixed
length records, and simple blocked records. The B para-

meter (blocking factor) indicates the type of file struc-
ture to the SORT program.

VARIABLE-LENGTH RECORDS

Variable-lehgth records are specified when the blocking
factor is zero. The record length parameter determines
the length of the longest whole record that may be read.
Records longer than the record length will be truncated

to the specified record length when being read or written.

FIXED-LENGTH RECORDS

Fixed-length records are specified when the blocking fac-
tor is one. On output, the record length parameter deter-
mines the length of all output records. Records may be
truncated or filled with blanks (BCD) or zeros (binary) to
produce the correct length records. On input, any record
that'does not have the length specified by the record
length parameter will produce an error message and will

be handled differently according to the length error

parameter (section 1.2.8).

NOTE: The card reader under 0S-3 is not a fixed;length
input device. It may suppress trailing blanks. Usually
fixed-length records should not be read from the card
reader.

11

BLOCKED RECORDS

Blocked records are specified when the blocking factor is
greater than one. On output, the logical records will be
truncated or trailing blanks (BCD) or zeros (binary) will
be added to produce the correct length record. These
logical records will be blocked N to a block where N is
the blocking factor. TIf there is not a multiple of N
logical records (where N is the blocking factor), a par-
tially filled block (physical record) will be written as
the last block of the output file. This block will have
a length equal to the number of records in the block times
the length of a logical record.

On input, blocks with an integral number of logical records
less than or equal to the blocking factor will be accepted.
Long blocks (truncated) or blocks which do not contain a
whole number of records will be treated as specified by
the value of the length error parameter (section 1.2.8).

MULTIPLE TAPE CONVENTIONS

While reading from a tape unit, if a file mark (end-of-
file) is read and end-of-data (end of tape reflector) sta-
tus is present, the SORT program will assume that there is
another input tape that is a continuation to the current
tape. The current tape will be rewound and unequipped and
a new tape (probably tape #1) will be equipped and reading
will continue from the new tape.

If end-of-data (end of tape reflector) occurs on an output
tape, the SORT program will write a tape mark (end-of-file),
rewind, and unequip the tape. It will then ask for a new
output tape to be mounted (probably tape #1 unless already
in use).

12

ERROR MESSAGES

Various error messages may occur when using the SORT pro-
gram. Section 4.1 describes errors that will keep SORT
from processing any data. Sections 4.2, 4.3, and 4.4

describe errors that may occur while processing data.

PARAMETER ERRORS

The various error messages and conditions that may cause
the message to occur are listed below. All of these errors
will cause the SORT program to terminate before reading any

information from the SORT input units.

PARAMETER ERROR

An illegal letter or special character was found as
the first character on the parameter cards or the
first character after an integer. The only legal
characters are B, E, I, X, L, 0, P, R, T, comma, and

equals.

EXAMPLE: The Q is not legal. INPUT=5 Q 0O=7

K PARAMETER ERROR

In the key parameter the first parameter must be
between 1 and 10,000. The sum of the first two para-
meters must be less than 10,000. The second parameter
must not be zero. The third parameter (if present)

must not be greater than 7.

M PARAMETER ERROR

The B, R, and K parameters require more than the
available amount of core memory to perform the SORT.

See section 2 on Core Requirements.

13

T PARAMETER ERROR

More than two sort tables are being specified.

R PARAMETER ERROR

A record length of zero is not legal.

I PARAMETER ERROR
Illegal logical unit number is being used.
No input units.

Too many input and output units are specified.

O PARAMETER ERROR
Illegal logical unit number is being used.

Too many input and output units are specified.

BLOCK LENGTH ERROR

This error message will always occur if a block (physical
record) that does not contain an integral number of logi-
cal records is read from a SORT input unit. It will also
occur if the block contains more logical records than
specified by the BLOCKING parameter. This error cannot

occur on output. The form of the error message is:

BLOCK LENGTH ERROR LUN XX XXXXX RECORDS

PARITY ERRORS

This error message may occur on input only when an irfecov-
erable input error has occurred. When reading from a file
it indicates that the file has become abnormal/unavailable.
When reading from a tape drive this message indicates a
permanent read error. The form of the message is:

PARITY ERROR ON LUN XX XXXXX RECORDS

14

OTHER MESSAGES

The parameter cards, record, and record counts for each
input and output device are listed at the end of a job.

The format for the record count message is:

LUN XX XXXXX RECORDS IN
or

LUN XX XXXXX RECORDS OUT
or

XXXXX RECORDS DELETED

TIMING

No thorough study of timing has been made. However, it is
possible to make some estimate of timing using the follow-

ing formula:
T=(R/4+11)*N

where R is number of words in each record, N is the number

of records to be sorted, T is CPU time in milliseconds.

For sorts of less than about 1,000 records, no merge passes
will be necessary and CPU times may be better than the
formula indicates. For sorts of more than about 32,000
records, more than one merge pass will be necessary and
times may be longer than the formula indicates. Using
blocked input and output may reduce CPU time.

METHOD OR ALGORITHM

Sorting

During sorting, records are read into an ordered data
structure. The data structure is such that the records
can be written out in correct order. The data structure
is a tree with ordered nodes for every significant char-
acter in the key of every record. The tree structure for

15

THEX, THIS, and THERE would be:

THIS

THERE THEX

By "picking" the records off the tree from left to right,
the records will be in order.

If memory becomes full while sorting, all records read are
written into a merge unit. Up to 32 merge units may be
used.

Merging

If memory does not become full, the output from SORT goes
directly to the output unit. If merging is necessary, the
merge phase reads from all the previous merge output units
into as many as 32 more merge units. During internal
merging, great care is taken to keep pre-ordered records
from being shuffled when information in the sort keys is
identical. Each time a merge pass is completed, the
sorted strings on the merge units become 32 times longer.
The finazl merge pass merges from up to 32 units onto the
output unit. All merge files that theVSORT program had

16

7.1

equipped are now unequipped. A filemark is written on the
output unit and the output unit is backspaced if it is a

file or magnetic tape.

Tournament replacement sorting is done during internal

merging.

CALLING SORT AS A SUBROUTINE

If it is desired to sort a data file as a step in a pro-
gram the user may wish to call SORT from his program with
a subroutine call. There are two ways this may be done.
The SORT program may be loaded from the FORTRAN library
and share the lower 32K memory with the user's program
(see section 7.1), or the user may elect to use a version

NADT +h at runs

£ Q
OL WINJLN L L PR = n the

uns in upper 32K memory allowing the

user's program to use all of the lower 32K memory (see

section 7.2).

Source and binary decks of the SORT program may be obtained
from the Computer Center program library. SORT may also be
found on the FORTRAN library.

CALLING SORT FROM A PROGRAM

This section describes how to call SORT from a program SO
that the SORT subroutine is loaded into the lower 32K
memory along with the user's program. The SORT subroutine
requires about 2,000 (decimal) words of memory for the
program and then requires additional scratch memory in
order to run (see section 2). If the user's program is
very large, if large arrays are needed, or if large
blocked records are to be sorted, there may not be enough
scratch memory available for the SORT subprogram to run
efficiently. The amount of scratch memory available to

17

SORT may be found by computing the difference between the
values of HIGHMEM and LOWMEM, symbols found near the end
of a loader map made when the program is loaded.

The input and output logical unit numbers must be passed
to the SORT program. The following is a FORTRAN calling
sequence that may be used.

CALL SORT (ILUN,IOLUN)

In the above subroutine call, the parameter ILUN may be an
integer (or integer variable) which is the logical unit
number that the SORT program will use when reading para-
meter records. However, if it is desired to pass the
input parameters in memory, ILUN may be the name of a word
array containing the SORT parameters as BCD characters.
IOLUN is an integer that is the logical unit that will be
used when writing error messages and record counts.

The SORT program may also be called as a function. It
will return a floating value of one on normal termination
and will return a value of zero on abnormal termination
(caused by errors found in the parameter records, parity
errors, or block size errors). The following is an exam-

ple of the function calling sequence that may be used.

IF (SORT(60,61)) 24, 992

Logical units 60 and 61 are used. Statement 24 will be
executed when sorting is completed. Statement 992 will

be executed if sorting could not be performed. If sorting
could not be performed, an error message will be written
on the output unit.

The COMPASS calling sequence is as follows:

EXT SORT
RTJ SORT
77 ILUN

77 OLUN

|
Q)

AZJ,EQ ABNORM Abnormal termination

AZ2J,NE NORM Normal termination
ILUN DEC 60 Input Logical Unit
OLUN DEC 61 Output Logical Unit

When any of the methods of calling SORT described in this
section (section 7.1) are used, the SORT program will call
a number of subprograms which the user may define. The
user may write subprograms, called exits, which may perform
input and output file positioning, label checking, input
data selection and modification, and output data formatting.
If the user does not desire to use any or all of the exits,
the standard exit program from the FORTRAN library will be
loaded.

EXIT 1, INPUT RECORD EXAMINATION

EXIT 1 enables the user of SORT to examine, modify and/or
delete records after they have been read (and unblocked if
necessary) but before SORT examines the record. The fol-
lowing subroutine is a model EXIT 1 program containing only
the necessary linkage.

SUBROUTINE SEXITI1 (IA,IC,LENG,IUNIT)

CHARACTER IC

DIMENSION IA(20),IC(80)

cC **BODY OF FORTRAN PROGRAM* *

RETURN
END

In the above subroutine, IA is an integer array containing
the last logical record that was read. The character
array, IC, is also the record that was just read. The user
may examine and modify the record using either or both the
integer and character arrays. The length of the record in
words is in LENG. Hence, the only valid values of the sub-
script of IA would be 1 through LENG. Likewise, the only
valid values of the subscript of IC would be 1 through
4*LENG.

19

7

~1

1.

2

The integer IUNIT contains the SORT unit number. That is,
if the record was read from the third input unit in the
SORT parameter list, IUNIT will have the value of three.
If IUNIT is set to zero, the record will be deleted by
the program.

EXIT 2, OUTPUT RECORD EXAMINATION

EXIT 2 enables the user of SORT to modify and select an
output unit for each logical record after the record has
been sorted but before it has been written. The following
subroutine is a model EXIT 2 program containing only

necessary linkage.

SUBROUTINE SEXIT2(IA,IC,LENG,IUNIT)
CHARACTER 1IC
DIMENSION IA(20),IC(80)
C **BODY OF FORTRAN PROGRAM* *
RETURN
END

In the above subroutine IA, IC, and LENG have the same
functions as they did in the SEXIT1 program (EXIT 1).

The integer IUNIT contains the SORT output unit number on
which the record would normally be written. SORT will
always set IUNIT to one. If IUNIT is set to zero, the
record is to be deleted. If IUNIT is one, the record is
to be written on the first output unit; if two, the second
output unit, and so on. The EXIT 2 program may change
IUNIT causing the recdrd to be deleted or written onto a
different logical unit. If zero or an illegal output unit
is specified, the record is deleted.

EXIT 1A, INPUT FILE OPEN

EXIT 1A enables the user of SORT to position and do label
checking on SORT input units before SORT reads from the

20

unit. Without EXIT 1A, SORT will expect the input units
to be properly positioned and will not do any label check-
ing. The following example is an EXIT 1A program which
will rewind each SORT input unit before it is used. ILUN
is the actual logical unit number. |
SUBROUTINE SEXITI1A (ILUN)
REWIND ILUN

RETURN
END

EXIT 1B, INPUT FILE CLOSE

EXIT 1B should be used when special file positioning or
label checking is desired after SORT has completed reading
from a SORT input unit. SORT will stop reading from an
input unit when either a filemark or end of data is found.
Without EXIT 1B, SORT will leave the unit positioned after
the filemark or at the end of data and will not do any
trailer label checking. The following example is an
EXIT lB'program which is designed to rewind and unequip
input units which have been processed.

SUBROUTINE SEXITI1B (ILUN)

REWIND ILUN

CALL UNEQUIP (ILUN)

RETURN
END

EXIT 1C, INPUT END OF TAPE

EXIT 1C is called by SORT only when SORT has detected an
end of file, and when the end of tape condition is also
present. Without EXIT 1C, SORT will rewind and unequip
an input unit which is at end of tape. SORT will then
equip a new tape (probably tape #1l) and continue to read
from it. EXIT 1C has the same parameters as EXITS 1A and
1B.

21

7.1.

EXIT 2A, OUTPUT FILE OPEN

EXIT 2A enables the user of SORT to position and do label
checking or label writing on the SORT output unit before
SORT writes on the unit. Without EXIT 2A, SORT will expect
the output units to be properly positioned and will not do
any label checking. The following example is an exit 2A
program which writes a user label on the SORT output unit.

SUBPROGRAM SEXIT2A (ILUN)

REWIND ILUN

WRITE (ILUN,99)

99 FORMAT (# SORTED OUTPUT FOLLOWS#)

RETURN
END

EXIT 2B, OUTPUT FILE CLOSE

EXIT 2B should be used when special positioning or label
writing is desired after SORT has completed writing on a
SORT output unit. Without EXIT 2B, SORT will write a file-
mark and, if the output unit is a tape or file, will back-

~Space past the filemark. When EXIT 2B is used, SORT will

always write a filemark and then call EXIT 2B.' EXIT 2B
has the same parameters as EXIT 2A,

EXIT 2C, OUTPUT END OF TAPE

EXIT 2C is called by SORT only when SORT has detected the
end of tape condition. Without EXIT 2C, SORT will write
a filemark, rewind, and unequip the tape. SORT will then
equip a new tape (probably tape #1) and continue to write
on it. When EXIT 2C is used, SORT will always write a
filemark on the tape and then call EXIT 2C. EXIT 2C has
the same parameters as EXIT 2A.

22

CALLING OVSORT FROM A PROGRAM

This section describes how to call SORT from a program so
that the SORT subroutine is loaded into the upper 32K
memory bank. - Loading the SORT program into the upper 32K
memory bank makes it possible for a user with a large pro-
gram to include a file sort as a step in his program and

yet only increase the length of his program about 50 words.

However, since the SORT program is in the upper bank of memory,

the SORT exits may not be used and the SORT parameters may

not be passed in memory.

The following is a FORTRAN calling sequence that may be

used.

CALL OVSORT (ILUN,IOLUN)

In the above subroutine call ILUN is an integer (or integer
variable) that is the logical unit number that the SORT
program will use when reading parameter records. IOLUN

is an integer that is the logical unit number that will be

used when writing error messages and record counts.

The FORTRAN function call and COMPASS calling sequence have
the same form as described in section 7.1 except that
OVSORT is used in place of SORT.

EXAMPLES
Example 1

A deck of cards containing names of people is to be sorted
into alphabetical order to be listed on the printer. Col-

umns 1-30 contain the person's name.

JOB,

~ 00

8EQUIP,1=FILE

23

ZSORT

I 60 Input on unit 60 (cards)

01 Output on unit 1

K 1,30 Sort on columns 1 for 30 columns
END End of parameters

<cards to be sorted>
77

88 End of file
;COPY,I=1/R,O=61 List the sorted file on the printer
7
8LOGOFF

Example 2

A file containing fish observations at various observation
stations is to be processed to make a report on the number
of fish falling into various Ccategories at each observa-
tion station. The report is to list for each station a
daily summary of the fish in each category. Before the
report may be made, the data (on the file called FISHDATA)
must be grouped by observation station. Within each
Oobservation station, the data needs to be grouped by day,
then by species and finally by length. The data has the
following format:

Item Columns
Observation Station ID 1-2
Julian Date 5-7
Year 8-9
Species ID 15-18
Length 11-13

Here is a sort that may be used to group the data for the
report program,

7508,

gEQUIP,25=FISHDATA

;EQUIP,29=FILE

;SORT

I=25 Read input from logical unit 25

0=29 Write output onto logical unit 29

KEY 1,2 Sort first by Station ID within

KEY 8,2 each station, sort by year

KEY 5,3 within each year, sort by day

KEY 15,3 within each day, sort by species
KEYy 11,3 within each species, sort by length
;REWIND,29

Example 3

Many sort applications involve records which may contain
identical keys. Take, for instance, a computerized bank-
ing system that makes, for every transaction during a day,
a card containing the bank account number, the type of
transaction, and the amount of the transaction. In order
to process the transactions for the day the transaction
for each account must be grouped. Furthermore, deposits
must be processed before withdrawals. However, when more
than one deposit is received for the same account (an
identical key) it is desirable that they stay in the order
of arrival. Here is an example sort that the bank could

use to order the transactions.

Item Columns
Bank Number 2-3 (binary number)
Type of Account 10 (numerical)
Account Number 4-9 (numerical)

Type of Transaction 12 (alphabetic)

Transaction Code Meaning

Opening new account
Correction

Deposit

Withdrawal

Closure

O=0p =

25

JOB,

~ 0o~

EQUIP,10=RAWDATA

8
7

8EQUIP,11=FILE

ZSORT

I 10 Input unit

o 11 Output unit
KEY 2,2,2 Bank number
KEY 10,1 Account type
KEY 4,6 Account number

TABLE=NADWC
KEY 12,1,6 Transaction type
END

SAVE, 11=SORTEDF

LOGOFF

W~ 0O~

Example 4

For many applications of SORT it may be desirable to block
either the input or output, or both. If magnetic tape is
used the cost of reading the tape is generally much less
if the records are blocked. Even with disk files, blocking
will usually reduce the cost of the sort. A word of cau-
tion is in order, however. Blocked files may be awkward
to use and may result in lost time due to additional de-
bugging. Also, if the block size becomes very large the
sort will become inefficient since the memory used by the
large blocks is not available as scratch work area for
SORT. A reasonable block size would be 1,000 words.

The following sort shows how unblocked records may be
blocked to produce a blocked, sorted file. The output of
the sort is a magnetic tape. The sort key is a signed

floating point number in the second word of each record.

26

o
(@]
to

EQUIP,1=DATA

EQUIP,2=MT 7032 AT 556 WITH RING

O~ CO~N 00O~ 0o~

SORT
I=1 Read variable length records from unit 1
0=2,R=20,B=50 Write 20 word records blocked 50
KEY 5,8,4 Signed binary, 2 words (floating point)
ENDSORT END or ENDSORT may be used to indicate
7 sort terminations
8LOGOFF
Example 5

records may be sorted to produce blocked output.
7
8JOB,
7
8EQUIP,1=DATA5
JEQUIP,2=MT 7032 AT 556 NO RING

;EQUIP,3=MT 7047 AT 800 WITH RING

7
gSORT
I=1
I=2,R=20,B=50
0=3,R=20,B=50
KEY 5,8,4

END

7

8LOGOFF

Example 6

If, in example 5, the data on the input tape (number 7032)

was sorted it would usually be more economical to sort

27

only the unsorted file (DATA5) and then merge it with the
sorted file. 1In general, it is usually wise to replace
large sorts with merges when possible since sorting almost

always uses more computer time and memory than merging.

The following sort and merge will achieve the same result

as the sort in example 5, but will probably cost less.

508,

gEQUIP,l=DATA5

;EQUIP,10=FILE

7

7 SORT
Il

0 10,R20,B50

K 5,8,4

END

7

8REWIND,10
;EQUIP,2=MT 7032 AT 556 NO RING

ZEQUIP,3=MT 7047 AT 800 WITH RING

IMERGE
I 10 R20 B5O
I 2 R20 B50

0 3 R20 B50

K

E

5 8 4

gLOGOFF

28

INDEX

Abnormal/Unavailable

Block Length Error
Blocked Records
Blocking Factor Parameter

Calling Sequence
Collating Seguence

Core Memory Requirements
CPU Time Estimates

Data Formats
Default Options

End of Data
End of Tape
End Parameter
Exits

F pecifications
Fixed-Length Records
Fortran Calling Segquence

I Parameter Error
Input Formats
Input Parameter

K Parameter Error
Key Parameter

Length Error Parameter

M Parameter Error
Magnetic Tape Conventions
Memory Requiréments

O Parameter Error
Output Formats
Output Parameter

Parameter Errors
Parity Error

Parity Error Parameter
Program Exits

R Parameter Error
Record Counts

Record Length

Record Length Parameter

29

Section Number

-~
=
.
[\
1
[\

~
w
.
S

.

~N =W
[l NI~ ()

.
e

~ W W
. .
-

W o
. L] L]

R
)

RN
. o .
[\ N =
[o0] £

3

-
38
.

N W b
. .

~ b
B

.

|

oW o
L] . L]
N =
w

SN RS
(] L] [] .
N W

.
= O

(S
L] *
O RN,
L] .
o))
-
)

Sorting Sequence
Storage, Core

T Parameter Error
Table Parameter
Timing

Truncation

Variable-Length Records

30

	0001
	0002
	001
	002
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30

