ccm-71-08

BASIC User’'s Manual

May 1972

i

COMPUTER CENTER

Oregon State University
Corvallis, Oregon 97331

BASIC User's Manual

ccem~71-08

Computer Center
Oregon State University
Corvallis, Oregon 97331

May 1972

TABLE OF CONTENTS

Page

INTRODUCTION ' ’ 1l
CHAPTER 1 - A BASIC PRIMER : 3
An Example 3

Formulas 8

Numbers 11

Variables 11

Relational Operators 12

Loops 13

Lists and Tables 16

Errors and Debugging ’ 19

CHAPTER 2 - SUMMARY OF ELEMENTARY BASIC STATEMENTS 25
Expressions 25

Arithmetic Expressions 25

Relational Expressions : 27

Logical Expressions 28

Simple Assignment (LET) ‘ - 28

GO TO 29

ON - GO TO 29

IF - THEN/IF - GO TO 30

FOR and NEXT 30

READ and DATA 32

INPUT 33

PRINT , . 34

DIM 35

Functions : 35

INT 35

RND 36

SGN ‘ 38

DEF 38

END , 39

CHAPTER 3 - ADDITIONAL BASIC STATEMENTS 41
GOSUB and RETURN 41

STOP 43

REM 43

RESTORE , 44

CHAPTER 4 - ADVANCED BASIC 45
Alphanumeric Data and String Manipulation 45

DIM . 45

LET 46

READ and DATA 46

CHAPTER 5 -

CHAPTER 6 -

CHAPTER 7 -

APPENDICES

INPUT
PRINT
IF - THEN/IF - GOTO
More About Printing
PRINT
TAB
Rules for Printing Numbers
PRINT USING and Image Statements
Integer Fields
Decimal Fields
Exponential Fields
Alphanumeric Fields
Literal Fields
General Rules

FILE INPUT/OUTPUT

Data Files

File Opening

File Reading

File Writing

End-of-File Check

File Restoring

File Scratching

File Closing

Characteristics of BASIC Data Files

MATRICES

MAT READ and MAT PRINT

Matrix Arithmetic

Scalar Multiplication

Identify Matrix

Matrix Transposition

Matrix Inversion

Matrix ZER and CON Functions

Dimensioning

Sample Matrix Programs
Matrix Program Example 1
Matrix Program Example 2

EXAMPLES OF ADVANCED BASIC PROGRAMS

Inventory Problem
Value of E to 1000 Places

APPENDIX A - TELETYPE OPERATION

APPENDIX B =~ FORMS OF BASIC STATEMENTS

46

47
47
48
48
50
50
51
52
53
53
54
54
55

57

57
57
58
58
58
59
59
59
60

61

62
62
63
63
64
64
64
65
66
67
68

71

71
74

79

APPENDIX C - ERROR MESSAGES
Compilation Errors
Command Mode Errors
Execution Errors

APPENDIX D - COMPARISON ORDER FOR
BASIC CHARACTERS

iii

85
85
86
86

91

INTRODUCTION

A program is a set of directions that is used to tell a computer
how to provide an answer to some problem. It usually starts
with the given data, contains a set of instructions to be carried

out in a certain order, and ends with a set of answers.

Any program must meet two requirements before it can be carried
out: first, it must be presented in a form that the computer
understahds; and second, it must be completely and precisely
stated. |

The computer's basic language consists of elementary INSTRUCTIONS
such as add, subtract, punch a card, or shift a number left or
right. The problem-solving procedure must therefore be TRANSLATED
into simple instructions that the computer is capable of obeying.
This translatioh, which is called programming or coding, can be
carried out entirely by a human being, or the computer may assist
in the process by use of a compiler.

A compiler is a large set of computer instructions which can
accept a problem-solving procedure, written in a form resembling
the language of the procedure, and produce from it the proper
elementary machine instructions that will solve the problem.

The programming language to use is BASIC, Beginner's All-purpose
Symbolic Instruction Code. BASIC is precise, simple, and easy
to understand.

An introduction to writing a BASIC)program is given in Chapters
1 and 2, which includes all that you need to know to write a
variety of useful and interesting programs. Chapters 3-6 deal
with more advanced techniques.‘ The appendices contain a variety
of reference materials. | |

CHAPTER 1 - A BASIC PRIMER

AN EXAMPLE
The following example is a complete BASIC program for solving
a system of two simultaneous linear equations in two variables:

ax + by = c dx + ey = £

and then solving two systems, each differing from this system
only in the constants ¢ and f. If ae - bd is not equal to zero,
you should be able to solve this system to find that:

_ lee - bE) _ (af - cd)
= T{ae - bad) Y = Ge - ba)

If ae - bd is equal to zero, either there is no solution or there
are infinitely many, but there is no unique solution. If you are
rusty on solving such systems, take our word for it that this is
correct. For now, we simply want you to understand the BASIC
program for solving this system.

Study the following program carefully -- the purpose of most lines
in the program is self-evident -- and then read the commentary and
explanation.

100 READ A,B,D,E

110 LET G=A*E-B*D

120 IF G=0 THEN 180
130 READ C,F

140 LET X={(C*E-B*F) /G
150 LET Y=(A*F-C*D) /G
160 PRINT X,Y

170 GO TO 130

180 PRINT "NO UNIQUE SOLUTION"
190 DATA 1,2,4

200 DATA 2,-7,5

210 DATA 1,3,4,-7

999 END

Notice that the program consists of several lines or STATEMENTS,
headed by a LINE NUMBER.

The line numbers also serve to specify the order in which the
statements are to be performed by the computer. This means that
your program may be typed in any order. Before the program is
run, the computer sorts and edits the program, putting the state-
ments into the order specified by their line numbers. This
editing process also facilitates correcting and changing (debug-

ging) programs, as explained later.

Note that each statement starts, after its line number, with an
English word. The word denotes the type of the statement. There
are several types of statements in BASIC, nine of which are dis-
cussed in chapters 2 and 3. Seven of these nine appear in the

sample program we are now considering.

Note also that, although it is not obvious from the program,
blanks have no significance in BASIC statements, except in mes-
sages that are to be printed out, as in line number 180. Blanks
may or may not be used to make a program more readable. State-
ment 100 could have been typed as 100READA,B,D,E and statement
110 as 110LETG=A*E-B*D,

The first statement, 100, is a READ statement. It must be
accompanied by one or more DATA statements. When the computer
encounters a READ statement while executing the program, it
causes the variables listed after the word READ to be given
values according to the next available numbers in the DATA state-
ments. In the sample program, A in statement 100 is read and
assigned the value 1 from statement 190, similarly B is 2, and

D is 4. At this point, the available data in statement 190 has

been exhausted, but there is more in statement 200,

Next go to statement 110, a LET statement, where a formula to
be evaluated is first encountered. (The asterisk, *, is used
to denote multiplication.) In this statement the computer is
directed to find the value of AE -~ BD, and to call the result G.

In general, a LET statement shows the principal way calculations
on numbers are performed. The formula on the right hand side of
the equal sign is evaluated by using the current values of the
variables that appear. Addition and subtraction are denoted with
+ (plus) and - (minus) signs respectively; multiplication, divi-
sion, and exponentiation by * (asterisk), / (slash), and + (up

arrow) respectively.

If G is equal to zero, the system has no unigque solution. There-
fore, in line 120, the computer is asked, whether G is equal to
zero. If the computer finds a YES answer to the question, it is
directed to go to line 180. Line 180 tells it to print out NO

UNIQUE SOLUTION. From this point, it would go to the next state-
ment. But lines 190, 200, and 210 give it no instructions, since
DATA statements are not executed, therefore it goes to line 999,

which directs it to END the program.

If the answer to the question "Is G equal to zero?" is NO, as it
is in the sample program, the computer simply goes to the next
statement, in this case statement 130. (An IF--THEN statement
tells the computer where to go if the IF condition exists, but
to go on to the next statement if it does not exist.) State-
ment 130 directs the computer to read the next two entries from
the DATA statement -- in this case -7 and 5, both in statement
200 -- and to assign them to C and F respectively. The computer

is now ready to solve the system:
X + 2y = =7 4x + 2y = 5

In statements 140 and 150, fhe computer is directed to find the
values of X and Y according to the formulas prdvided. Note that
parentheses must be used to show that CD - BD is divided by G.
Without parentheses, only BF would be divided by G, and the
computer would find:

ce -~ bf
g

X =

The computer is told in line 160 to print the two values computed,
those of X and Y. Having done so, it moves on to line 170, where
it is directed back to line 130. If there are additional numbers
in the DATA statements, as there are here in 210, the computer is
told in line 130 to take the next number and assign it to C, and
the one after that to F. The computer is now ready to solve the
system:

X + 2y = 1 4x + 2y = 3

As before, it finds the solution in 140 and 150, prints out the
values in 160, and then is directed in statement 170 to go back
to 130.

In line 130 the computer reads two more values, 4 and -7, which
it finds in line 210. It then solves the system:

X + 2y = 4 ‘ dx + 2y = -7

and prints out the solutions. It is directed back again to 130,
but there are no more pairs of numbers available for C and F in
the DATA statements. The computer therefore informs you that it
is out of data, by printing OUT OF DATA 130, and stops.

Let us look at the importance of the various statements. For
example, what would have happened if line number 160 had been
omitted? The computer would have solved the equations three times
and then told us it was out of data. However, since it was not
told to show us (PRINT) the answers, it would not do so, and the

solutions would be the computer's secret.

What would have happened if line 120 had been omitted? In the
problem just solved, nothing. But if G were equal to zero, the
computer would have had the impossible task of dividing by zero
in 140 and 150, error messages DIVIDE FAULT 140 and DIVIDE FAULT
150 would have been printed. Suppose statement 170 had been
omitted. The computer would have solved the first system,
printed out the values X and Y, and then gone on to line 180 as

[o))

directed; it would print out NO UNIQUE SOLUTION, and then stop.

A natural question that may arise is, why the selection of line
numbers. The particular choice of line numbers is arbitrary.

The only requirement is that statements be numbered in the order
that the computer is to follow in executing the program. The
statements could have been numbered 1, 2, 3, 4, ..., 13; however,
this is not recommended. The statements would normally be num-
bered 100, 110, 120, ..., 999. The numbers are placed such a
distance apart so that later additional statements may be inserted
easily. For example, if it is found that two statements belonging
between those numbered 140 and 150 were left out, they can be
given any two numbers between 140 and 150, say 144 and 146. 1In
the editing and sorting process, the computer puts them in the

correct place.

Another question that may arise has to do with the placing of the
elements of data in the DATA statements: why place them as they
are in the sample program. The choice is arbitrary. The numbers
need only be arranged in the order that they are to be read -- the
first for A, the second for B, the third for D, the fourth for E,
the fifth for C, and so on. In place of the three statements
numbered 190, 200, 210, the data may have been entered as:

195 DATA 1,2,4,2,-7,5,1,3,4,-7
or, perhaps more logically:

190 DATA 1,2,4,2
200 DATA -7,5
210 DATA 1,3

220 DATA 4,-7

by putting the coefficients in the first DATA statement and the
three pairs of righthand constants in the following DATA state-

ments.

Finally, every BASIC program must have an END statement. It
must be the last (highest numbered) statement in the program,

in this case it is statement 999. This statement marks the end

of the program, and it is also used to stop computation.

After inserting the program, type RUN followed by a carriage
return. Up to this point the computer stores the program and
does nothing else with it. It is the command RUN that directs

‘the computer to execute the program.

The sample program and the resulting printout are shown now as
they appear on the printer.

110 LET G=A*E-B*D

120 IF G=0 THEN 180
130 READ C,F

140 LET X=(C*E-B*F) /G
150 LET Y=(A*F-C*D) /G
160 PRINT X,Y

170 GO TO 130

180 PRINT "NO UNIQUE SOLUTION"
190 DATA 1,2,4

200 DATA 2,-7,5

210 DATA 1,3,4,-7

999 END

RUN
4 -5.50000
0.666667 0.166667
-3.66667 3.83333

OUT OF DATA 130

FORMULAS

The computer can carry out a great many operations. It can add,
subtract, multiply, divide, extract square roots, raise a number
to a power, find the sine of a number or an angle measured in

radians, and so on.

The computer calculates by evaluating formulas that are supplied
in a program. The formulas are similar to those used in ordinary
mathematical calculation, except that each BASIC formula must be

written on a single line. Five arithmetic operators can be used

to write a formula. They are listed in the following table.

SYMBOL EXAMPLE MEANING
+ A+ B Addition. Add B to A
- A - B Subtraction. Subtract B from A
* A * B Multiplication. Multiply B by A
/ A/ B Division. Divide A by B
+ A+ 2 Raise to the power. Find X+42

Parentheses may be used to group together a set of operations
that must be calculated as a unit. First, however, it is
necessary to be familiar with the hierarchy of operations
performed by the computer.

For example, if A + B * C 4+ D is typed, the computer first
raises C to the power D, then multiplies this result by B and
then adds A to the resulting product. This is the usual con-
vention for A + BC 4 D. If this is not the intended order,
parentheses must be used to indicate a different order.
Suppose it is the product of B and C that is to be raised to
the power D. The statement is written A + (B * C) 4+ D. Or,
if we want to multiply A + B by C to the power D, then the
statement is (A + B) * C + D. To add A to B, multiply their
sum by C, and raise the product to the power D, write

((A + B) * C) + D.

The order of priorities for calculating is according to the

following rules.

1. The formula inside the parentheses is computed
before the enclosed quantity is used in further
calculations.

2. In the absence of parentheses in a formula that
includes addition, multiplication, and the
raising of a number to a power, the computer
first raises the number to the power, then does
the multiplication, and finally the addition.
Division has the same priority as multiplication,
and subtraction the same as addition.

3. In the absence of parentheses in a formula that
includes only multiplication and division (or
only addition and subtraction), the computer
calculates from left to right.

The rules are illustrated in the sample program already considered.
The rules also tell us that the computer, given A-B-C, subtracts B
from A and then C from their difference. Given A/B/C, it divides
A by B and then that quotient by C. Given A4B4C, the computer
raises the number A to the power B and then raises the resulting
number to the power C. 1If there is ever any question about the

priority, insert more parentheses to avoid possible ambiguities.

In addition to the five arithmetic operations, the computer can
evaluate several mathematical functions. The functions are given

special letter names, as shown in the following table.

FUNCTION MEANING

SIN(X) Find the sine of X X interpreted as a
COS (X) Find the cosine of X number, or as an
TAN (X) Find the tangent of X angle measured in
ATN (X) Find the arctangent of X radians

EXP (X) Find E 4 X

LOG (X) Find the natural logarithm of X (ln X)

ABS (X) Find the absolute value of X (]|X])

SQOR (X) Find the square root of X (vX)

Three other mathematical functions are available in BASIC: INT,
RND, and SGN. These are reserved for explanation in Chapter 2.

In place of X, any formula or number in parentheses may be sub-
stituted following any of the functions listed above. For
example, to find the square root of 4 + X + 3, write SQR(4 + X
+ 3), or the arctangent of 3X - 2E 4+ X + 8, write ATN(3 * X -

2 * EXPT(X) + 8).

10

NUMBERS

Since numbers and variables have already been mentioned it is
important to understand how to write numbers for the computer

and what variables are allowed.

A number may be positive or negative, and may contain as many as
eleven digits, but it must be expressed in decimal form. For

example, all of»the following are numbers in BASIC:

2 -3.675 123456789 -.987654321 483.4156
The following are not numbers in BASIC:

14/3 V7 .000123456789

The first two are formulas, but not numbers. The last example
has more than eleven digits. The computer may be asked to cal-
culate the decimal expansion of 14/3 or v7, and to do something
with the resulting number, but neither can be included in a list
of DATA. A

Additional flexibility is provided by using the letter E, which
stands for "times ten to the power." Using E, .00123456789 may
be written in several forms acceptable to the computer:
.123456789E-2 or 123456789E-11 or 1234.56789E-6. Ten million
may be written as 1E7 and 1969 as 1.969E3. A number may not be
written as E7, instead it is written as 1E7 to indicate that it
is 1 that is multiplied by 10. The power of ten may range
between +308 and -308.

VARIABLES

A variable in BASIC is denoted by any letter, or by any letter
followed by a single digit. The computer interprets E7 as a
variable, along with A, X, N5, 10, and O0l. A variable in

BASIC represents a number, usually one that is unknown to the

11

programmer at the time the program is written. Variables are
given or assigned values by LET, READ, and INPUT statements.
All variables have the initial value of zero, so that if the
starting value of a variable is to be zero, it is not necessary
to assign itrthat value. (Another kind of variable, the string

variable, is discussed later in Chapter 4.)

Although the computer does little in the way of correcting
during computation, it will issue error messages to indicate
that an absolute value was not used. For example, if the
square root of -7 or the logarithm of -5 is requested, the com-
puter gives the square root of 7 or the logarithm of 5 noting
that the square root or the logarithm of a negative number was
requested.

RELATIONAL OPERATORS

Three other mathematical symbols, symbols of relation, are
available in BASIC to indicate any of six standard relations.
These are used in IF--THEN statements, where values must be
compared. The six possible relations are shown in the following
table. See Chapter 2 for more information on relational
operators and their use in IF--THEN statements.

SYMBOL EXAMPLE MEANING

= A =B is equal to. A is equal to B.

< A < B is less than. A is less than B.

<= A <= B is less than or equal to. A is

‘ less than or equal to B.

> A > B is greater than. A is greater
than B.

>= A >= B is greater than or equal to. A is
greater than or equal to B.

<> A <> B is not equal to. A is not equal
to B..

12

LOOPS

Often a program may be needed where one or more parts are
traversed not just once, but a number of times, perhaps with
slight changes each time. 1In order to write the simplest
program, one in which the part to be repeated is written just

once, the programming device is known as a LOOP.

The use of loops can be illustrated by two programs for the
simple task of printing a table of the first 100 positive
integers together with the square root of each. Without a loop,

the program would be 101 lines long:

100 PRINT 1,SQR(1l)
105 PRINT 2,SQR(2)
110 PRINT 3,SQR(3)

590 PRINT 99,SQR(99)
595 PRINT 100,SQR(100)
600 END

With the following program, using one type of loop, the same
table may be generated with only 5 lines of instructions
instead of 101.

100 LET X =1

110 PRINT X,SQR(X)

120 LET X=X+1

130 IF X<=100 THEN 110
999 END

Statement 100 gives the value of 1 to X, which initializes the
loop. Line 120 increases the value of X by 1, to 2. Line 130
asks whether X is less than or equal to lOO-—é YES answer directs
the computer back to line 110. Here it prints 2 and v2, and goes
to 120. Again X is increased by 1, now to 3, and at 130 it goes
back to 110. This process is repeated -- line 110 (prints 3 and

13

v3), line 120 (X = 4), line 130 (since 4 is less than or equal
to 100 go back to line 110), and so on -- until the loop has
been traversed 100 times. Then X becomes 101. The computer
now finds a NO answer to the question in line 130 (X is greater
than 100, not less .than or equal to 100). It therefore does

not return to 110 but moves on to line 999, and ends the program.

Note: In line 120, the variable X appears on both sides of the
equal (=) sign. The = sign stands for replacément (but not
equivalent to). This is an important distinction, since it is
not a statement of algebraic equality. The proper interpre-
tation is "evaluate the formula on the right, and let this value
be assigned to the variable on the left."

All loops contain four elements: initialization (line 100 in the
program), the body (line 110), modification (line 120), and an
exit test (line 130). Because loops are so important, BASIC
provides a pair of statements that specify a loop even more
simply than the previous program. They are the FOR and NEXT

statements. Their use is illustrated in this program.

100 FOR X=1 TO 100
110 PRINT X,SQR(X)
120 NEXT X

999 END

which performs exactly the same operation as the two previous
programs. In line 100, X is set equal to 1, and a test is set
up, exactly as in line 130 above. Line 120 causes X to be
increased by 1, and also carries out the test to decide whether
to return to line 110 or to continue. Thus lines 100 and 120
take the place of lines 100, 120 and 130 in the previous pro-

gram -- and they are easier to use.

Note that the value of X is increased by 1 each time through
the loop. 1If a different increase is needed, it may be speci-
fied by writing:

100 FOR X=1 TO 100 STEP 5

and the computer assigns 1 to X on the first time through the
loop, 6 to X on the second time through, 11 on the third time,
and 96 on the twentieth time. Another step of 5 would take X
beyond 100, therefore the program prints 96 and its square root
and terminates. The step value may be either positive or nega-
tive. The first table printed may be obtained in reverse order

by writing line 100 as:

100 FOR X=100 TO 1 STEP -1

In the absence of a STEP instruction, a step size of +1 is

assumed.

More complicated FOR statements are allowed. The initial and
final value, and the step size may all be formulas of any com-
plexity. For example, if N and Z have been specified earlier

in the program, the following may be written:

250 FOR X=N+7*Z TO (Z-N)/3 STEP (N-4*z)/10

For a positive step size, the loop continues as long as the
control variable is less than or equal to the final value. For
a negative step size, the loop continues as loné as the control
variable is greater than or equal to the final value.

If the initiél value is greater than the final value (or less
than for a negative step size), the body of the loop will not
be executed even once. The computer immediately passes to the
statement following the NEXT. For example, the following
program adds up the first N integers to give the correct result

0, when N is 0.

100 READ N

110 FOR K=1 TO N
120 LET S=S+K
130 NEXT K

140 PRINT S ,
150 GO TO 100
160 DATA 2,10,0
999 END

15

It is often useful to have loops within loops. These are called
NESTED LOOPS. They can be expressed with FOR and NEXT state-
ments, but must actually be nested and must not cross, as the

following examples illustrate:

Allowed Allowed
FOR X FOR X
E::FOR Y FOR Y
NEXT Y FOR Z
NEXT X NEXT Z j
FOR W
Not Allowed NEXT W:}
NEXT Y
FOR X FCR Z
— FOR Y NEXT Z :]
NEXT X NEXT X
— NEXT Y

LIST AND TABLES

In addition to the ordinary numeric variables used in BASIC,
there are variables that may be used to designate the elements
of a list or table. Ordinarily a subscript or a double sub-
script is used at this time as for the coefficients of a poly-
nomial (al, az,...) or the elementsvof a matrix bi,j' The
variables used in BASIC consist of a single letter, which is
called the name of the list or table, followed by the subscripts
in parentheses. For the coefficients of the polynomial, write
A(l), A(2), and so on; for the elements of the matrix, write

B(1,1), B(1,2), and so on.

The list A(1l),...,A(l10) may be entered into a program very simply

with four lines:

[
(o)}

100 FOR I=1 TO 10

110 READ A(I)

120 NEXT I

130 paTA 2,3,-5,7,2.2,4,-9,123,4,-4

No special instructions to the computer are necessary if a sub-
script no greater than 10 occurs. For large subscripts, a
dimension (DIM) statement must be used, to tell the computer

to save extra space for the list or table. When in doubt,
indicate a larger dimension than you expect to use. For example,

if a list of 15 numbers entered is desired, write:

100 DIM A(25)

110 READ N

120 FOR I=1 TO N

130 READ A(I)

140 NEXT 1I

150 DATA 15

160 pbaATA 2,3,5,7,11,13,17,19,23,29,31,37,41,43,47

Statements 110 and 150 may have been eliminated by writing 120
as FOR I=1 TO 15. Using this form allows the list to be
lengthened by changing only statement 150, as long as the number

of elements in the list does not exceed 25.

To enter a 3 x 5 table into a program write:

100 FOR I=1 TO 3
110 FOR J=1 TO 5
120 READ B(I,J)

130 NEXT J

140 NEXT I

150 DATA 2,3,-5,-9,2
160 DATA 4,-7,3,4,-2
170 paTa 3,-3,5,7,8

A table may be entered with no dimension statement, and the com-
puter will handle all the entries from B(1,l1) to B(10,10). But
if you try to enter a table with a subscript greater than 10,
without a DIM statement, an error message is received saying:
SUBSCRIPT ERROR. This can be easily corrected by entering,

for example, the line:

95 DIM B(20,30)

which reserves space for a 20 by 30 table.

17

The single letter denoting a list or table name may also be used

to denote both a list and a table in the same program.

The form of the subscript is quite flexible.

You might have the

list B(I + K) or the table items B(I,K) or Q(a(3,7),B - C).

The following sample program uses both a list and a table.

The

program computes the total sales of each of five salesmen, each

of whom sells the same three products.
100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
9299

FOR I=1 TO 3
READ P(I)

NEXT I

FOR I=1 TO 3

FOR J=1 TO 5

READ S(I,J)

NEXT J

NEXT I

FOR J=1 TO 5

LET S=0

FOR I=1 TO 3

LET S=S+P(I)*S(I,J)
NEXT I
PRINT
NEXT J
DATA 1.25,4.30,2.50
DATA 40,20,37,29,42
DATA 10,16,3,21,8
DATA 35,47,29,16,33
END

RUN

TOTAL
TOTAL
TOTAL
TOTAL
TOTAL

SALES
SALES
SALES
SALES
SALES

FOR
FOR
FOR
FOR
FOR

SALESMAN
SALESMAN
SALESMAN
SALESMAN
SALESMAN

U W N
v v n

The list P gives the price per item of

Table S tells how many items of each product each man sold.

"TOTAL SALES FOR SALESMAN "

EPALLE

180.500
211.300
131.650
166.550
169.400

each of the three products.

Pro-

duct number 1 sells for $1.25 per item, number 2 for $4.30 per

item, and number 3 for $2.50 per item.

Salesman number 1 sold

40 items of the first product, 10 of the second, and 35 of the

third, and so on.

18

The program reads in the price list in lines
100, 110, and 120, using data in line 250.
table in lines 130 to 170, using data in lines 260 and 280.

It reads in the sales
The

same program could be used again, modifying only line 250 if the
prices'change,_and only lines 260 to 280 to enter the sales in

another month.

The sample program did not need a dimension statement, since the
computer automatically saves enough space to allow subscripts to
run from 1 to 10. A DIM statement is normally used when it is
necessary to save more space. But in a long program, reguiring
many small tables, DIM may be used to save less space for tables,

in order to leave more room for the program.

Since a DIM statement is not executed, it may be entered into
the program on any line before END. It is convenient, though,

to place DIM statements near the beginning of the program.

ERRORS AND DEBUGGING

Occasionally the first run of a new program will be free of errors
and give the correct answers. Usually, though, errors must be
corrected before the program runs correctly. Errors are of two
types: errors of form that prevent the running of the program,

and logical errors in the program that cause the computer to

produce either incorrect answers or no answer at all.

Errors of form cause error messages to be printed. The various
error messages are listed and explained in Appendix A. Logical
errors are often much harder to find, particularly when the pro
gram gives answers that are nearly correct. In either case,
after the errors are found, they can be corrected by changing,
inserting, or deleting lines from the program. A line is changed
by typing it correctly with the same line number. A line is
inserted by typing it with a line number between those of two
existing lines. A line is deleted by'typing its line number and
pressing the RETURN key. Notice that a line can be inserted only
if the original line numbers are not consecutive. For this
reason, most programmers begin by using line numbers that are

multiples of five or ten, but that is a matter of choice.

19

Corrections may be made at any time when they are noticed, either
before or after a run. Since the computer sorts lines and arranges
them in order, a line may be retyped out of sequence. Simply

retype the corrected line with its original line number.

As with most problems in computing, the process of finding errors
(or bugs) in a program, and correcting (or debugging) it, is best
illustrated by an example. Consider the problem of finding the
value of X between 0 and 3 for which the sine of X is a maximum,
and printing out this value of X and the value of its sine. If
you have studied trigonometry, you know that m/2 is the correct
value of X, but we shall use the computer to test successive

values of X from 0 to 3. 1Intervals of .1, then of .01, and finally
of .001 will be used.

Thus, the computer is directed to calculate the sine of 0, .1, .2,
«3, ..., 2.8, 2.9, and of 3, and to determine which of these 31
values is the largest. It will do so by testing SIN(0) and SIN(.1)
to see which is larger, and calling the larger of these two numbers
M. Then it will pick the larger of M and SIN(.2), and call it M.
This number will be checked against SIN(.3), and so on down the
line. Each time a larger value of M is found, the value of X is
stored in X0. When the computer finishes the series, M will have
the value of the largest of the 31 sines, and X0 will be the argu-
ment that produced that largest value. It will then repeat the
search, this time checking the 301 numbers o, .01, .02, .03, ...,
2.98, 2.99, and 3, finding the sine of each and checking to see
which sine is the largest. Finally, it will check the 3001 numbers
0, .001, .002, .003, ..., 2.999, and 3, to find which has the
largest sine. At the end of each of the three searches, the com-
puter is to print three numbers: the value X0 that has the largest
sine, the sine of that number, and the interval of search.

Assume the program is the following:

20

100 READ D

110 LET X0=0

120 FOR X=0 TO 3 STEP D
. 130 IF SIN(X) = M THEN 200

140 LET X0=X

150 LET M=SIN(X0)

160 PRINT XO0,X,D

170 NEXT X0

180 GO TO 110

190 DATA .1,.01,.001

999 END

The entire sequence is illustrated with explanatory comments on the

righthand side.

2110 LWR XO0=0

2120 FOR X=0 TO 3 STEP D
2130 IF SIN (X)<=M THEN 200
2140 LET X0=X

2150 LET M=SIN(X)

2160 PRINT XO0,X,D

2170 NEXT XO

?180 GOTO 110

?110 LET X0=0

2190 DATA .1,.01,.001
2999 END

?RUN

ILLEGAL FORMULA 160

NOT MATCH WITH FOR 170
LABEL. IS UNDEFINED 130

2160 PRINT XO0,X,D
2170 NEXT X
2130 IF SIN(X)<=M THEN 170

?RUN
0.10000 0.10000
0.20000 0.20000
0.30000 0.30000
0.40000 0.

21

After typing line 180 it was
noticed that LET was mistyped
in line 110. Thus it is

retyped this time correctly.

When the first error message
is received, line 160 is
inspected and it is found
that XO was used instead of
X0 for a variable. The next
error message refers to line
170 where the variables were
mixed. This is corrected by
changing line 170. The last
error message points out that

line 130 refers to a line that

does not exist. Line 130 is

retyped with the correct state-

ment number.

0.10000
0.10000
0.10000

2110 LET M=-1

?RUN

0 0]

0.10000 0.10000
0.20000 0.20000
0.3a000 ’
2160

?175 PRINT XO,M,D

?RUN

1.60000 0.99957
1.60000 0.99957

22

This is obviously incorrect.
Every value of X is being
printed. Stop the printing
by pressing break. Notice
that SIN (0) is compared with
M on the first time through
the loop, but M has not yet
been assigned a value. By
changing line 110, M is given
the value of -1; previously
X0 had been initialized
instead of M.

0.10000
0.10000
0.10000

The same table is being
printed as before. It is
printing out values each pass
through the loop. This is
remedied by deleting line 160
and retyping it as line 175,
which puts the PRINT statement
outside the loop. Also, it is
noticed that M and not X is to
be printed.

0.10000
0.

Notice that the same results
are again being received.
The case for D=.1 is being
repeated. Another look at
the program shows that 180
sent us back to line 110 to
repeat the operation rather
than back to line 100 to
pick up a new value for D.
We also decide to put in
headings for our columns
using a PRINT statement.

2180 GOTO 100
?95 PRINT "X VALUE" ,"SINE",RESOLUTION"

?RUN A
ILLEGAL FORMULA 95 There is a missing
?95 PRINT "X VALUE","SINE","RESOLUTION" quotation mark.
?RUN Correct and try

' again.
X VALUE SINE RESOLUTICN
1.60000 0.99957 0.10000
1.57000 1.00000 1.00000E-02

1.57100 1.00000 1.00000E-03
OUT OF DATA 100 :

Exactly the desired results.
Of the 31 numbers 0, .1, .2,
e3,...,2.8, 2.9, 3, it is

1.6 that has the largest sine,
namely 0.99957. Similarly

for the finer subdivisions.

Having changed so many parts
of the program, a list of
the corrected program is
asked for.

?2LIST

95 PRINT "X VALUE","SINE","RESOLUTION"

100 READ D :

110 LET M=-1

120 FOR X=0 TO 3 STEP D

130 IF SIN(X)<=M THEN 170

140 LET XO0=X

150 LET M=SIN(X)

170 NEXT X

175 PRINT XO0,M,D

180 GOTO 100

190 DATA .1,.01,.001

999 END The program is saved for

?FILE,MAXSIN later use. This should not
be done unless you expect
to use the program later.
The name of the file is
MAXSIN.

In solving this problem, two common programming utilities have been
used: PRINT and LIST. A PRINT statement may be inserted in the
program to confirm what the computer is actually calculating. For
example, the statement 155 PRINT M may have been inserted to direct
the computer to print the value of M. After several corrections
have been made to a program, it is often desirable to see a copy

of the entire program. Simply type LIST, and the computer prints
out the program in its current form.

23

CHAPTER 2 - SUMMARY OF ELEMENTARY BASIC STATEMENTS

This section gives a concise description of each of the types of
BASIC statements most useful in writing the simpler kinds of BASIC
programs. For each form, assume a line number and use underlining
to denote a general type. Thus, variable means any variable,
which is a single letter, possibly followed by a single digit.

EXPRESSIONS

An expression is a constant, a simple or subscripted variable, a
function, or any combination of these separated by operators and
parentheses. Expressions can be arithmetic which have numerical
values, or logical and relational which have truth wvalues. Each
type of expression has an associated group of operators and

operands.

ARITHMETIC EXPRESSIONS

The following operators are used in arithmetic expressions:

Symbol Function
+ Addition
- Subtraction
* Multiplication
Division
4 Exponentiation

Arithmetic operands are:

Constants
Variables (simple, subscripted, or strings)

Functions

Examples:

A
3.14159265
B+16.4832
(A-B(I,J))
G*C(J)+4.1/{(2{(3,3*K)}*SIN{V)

25

Rules

1. In an arithmetic expression do not use adjacent arith-
metic operators, X OP OP Y, or adjacent arithmetic
elements, A(B+C)D.

2. If X is an expression, then (X), ((X)), etc., are

expressions.

3. If X and Y are expressions, the following are expres-
sions:
X+Y X/Y
X-Y X*y
4. There is no implied multiplication. X(Y) does not
imply X*(Y). 2(X) does not imply 2*(X).

5. The left and right square brackets, [and] . may be
used interchangeably with the left and right paren-
theses, (and) any place in BASIC.

Order of Evaluation

The hierarchy of arithmetic operations is:

4 Exponentiation Class 1
/ Division Class 2
* Multiplication Class 2
+ Addition Class 3
- Subtraction Class 3

In an expression with no parentheses or within a pair of paren-
theses, evaluation proceeds from left to right, if unlike classes
of operators appear. The first operator of such an expression is
compared against the second. 1If the first operator takes prece-
dence over the second, the operation is scheduled for execution.
If the second operator takes precedence over the first, or is
equal to the first, the first operation is delayed and the second

operator is compared against the third.
Example: (A+B*C+4D)

The operation CtD is evaluated first. The multiplication is then

performed and finally the addition.

26

RELATIONAL EXPRESSIONS

The form of a relational expression is

El OP E2
where El, E2 are arithmetic expressions,
OP is an operator belonging to the set:
Operator Meaning
= Equal to
EQ Egqual to
<> Not equal to
>< - Not equal to
NEQ Not equal to
> Greater than
GTR Greater than
>= Greater than or equal to
GEQ Greater than or equal to
=> Greater than or equal to
< Less than
LSS Less than _
<= Less than or equal to
=< Less than or equal to
LEQ Less than or equal to

Notice that there is more than one form for each relational operator.

This is a convenience feature and the choice of form is arbitray,.

A relation is TRUE if El and E2 satisfy the relation specified by
OP. A relation is FALSE if El and E2 do not satisfy the relation

specified.

Example: A =1
D-W NEQ T*4
0.123 = SIN(X)

27

LOGICAL EXPRESSIONS

The general form of a logical expression is:
Rl OP R2

where R1, R2 are relational expressions and,

OP is one of the Boolean operators AND or OR.

Rules
1. The Boolean operators are defined as follows:

Rl AND R2 true only if Rl and R2 are true,
Rl OR R2 false only if R1 and R2 are false.

2. Precede and follow Boolean operators AND and OR with a

relational expression.

3. Do not enclose relational or logical expressions within
parentheses.

4. Logical expressions are evaluated from left to right.

Examples: a=1 AND B NEQ 10
T<10 OR T>20
A=B AND A=C OR C=A*3

SIMPLE ASSIGNMENT (LET)

The LET statement is not a statement of algebraic equality. It
is an instruction to the computer to do certain computations and
to assign the answer to a certain variable. Several variables
may be assigned the same value by placing them in a list on the
left half. Each LET statement is of the form:

LET variable = expression

or

LET variable list = expression

Examples: 100 LET X=X+1
259 LET W7=(W-X443)*(Z2-aA/(a-B))~-17
605 LET A=B=C=D=1.0
210 LET X=Y=N

381 I=0=X=N+!

28

The LET is optional.

100 LET A=1 is equivalent to 100 A=1l.

GO TO

At times, it may not be desirable to have all statements executed
in the order in which they appear in the program. An example of
this occurs in the MAXSIN program where the computer has calculated
the values X0, M and D and printed them in line 175. We did not
want the program to go on to the END statement yet, but we wanted
it to go through the same process for a different value of D. So
we directed the computer to go back to line 100 with a GO TO state-
ment. Each GO TO statement is of the form:

GO TO line number

Example: 150 GO TO 75

ON - GO TO

The simple GO TO statement provides a single branched switch.
The ON--GO TO statement provides a multibranched switch. The

form of the statement is:

ON expression GO TO line number,line number,...line number

The expression is any valid BASIC expression, and the line numbers
are those to which the statement transfers depending on the valte

of the expression.

Example: 230 ON X + Y GO TO 275,490,150

This statement is directed to line 575,490 or 150 depending on

whether the value of the expression X + Y is 1, 2 or 3.

The value of the expression is truncated to an integer if it is not
already an integer. For example, if X + Y equals 2.5, the value is
truncated to 2, and the program branches to line 490, the second
line number in the list.

29

IF - THEN/IF - GO TO

At times the normal sequence of statements is to be jumped if a
certain relationship holds true. For this we use an IF--THEN
statement, sometimes called a conditional GO TO statement. Such
a statement occurred at line 130 of MAXSIN. Each IF--THEN state-

ment is of the form:

IF relational expression THEN line number

or

IF relational expression GO TO line number

or

IF logical expression THEN line number

or

IF logical expression GO TO line number

Examples: 340 IF SIN(X)<=M THEN 630
360 IF G=0 THEN 1390
120 IF A NEQ B GOTO 230
214 IF A=1 AND B=2 GOTO 253
934 IF A=1 OR A=3 OR A=5 THEN 500
320 IF I GEQ 10 AND J LSS 20 GOTO 100

The first statement asks whether the sine of X is less than or
equal to M, and directs the computer to go to line 630 if it is.
The second statement asks if G is equal to zero, and if so directs
the computer to line 1390. 1In each case, if the answer to the
question is no, the computer proceeds to the next line of the
program. GO TO may be used in place of the THEN statement as

shown in the example.

FOR AND NEXT

The FOR and NEXT statements in loops have already been encountered.
Both statements must appear in a loop: the FOR at the entrance and
the NEXT at the exit (directing the computer back to the entrance).
Each FOR statement is of the form:

30

FOR variable = formula TO formula STEP formula

Most commonly, the formulas are integers and the STEP is omitted,
which means that a step size of plus one is assumed. The accom-
panying NEXT statement is simple in form. However, the variable
must be exactly the same as the one'following FOR in the FOR
statement. The form of the NEXT statement is:

NEXT variable

Examples: 130 FOR X=0 TO 3 STEP 0.5

(A) i

180 NEXT X

120 FOR X4=(17+C0S(X))/3 TO 3 * SQR(10) STEP 1/4

235 NEXT X4

240 FOR X=8 TO 3 STEP -1
(C) .
270 NEXT X

456 FOR J=-3 TO 12 STEP 2

(D) X

470 NEXT J

Notice that the step size may be a formula (1/4), a negative
number (-1), or a positive number (2). In example (B) lines

120 and 235, the successive values of X will be 8, 7, 6, 5, 4, 3.
In the last example, on successive trips through the loop J will
take on the values -3, -1, 1, 3, 5, 7, 9, and 11.

If the initial, final, or step size values are given as formulas,
the formulas are evaluated only once upon entering the FOR state-
ment. The control variable can be changed in the body of the loop.

The exit test always uses the latest value of this variable.

31

If 150 FOR Z=2 TO -2 is written without a negative step size, the
loop is not executed, and the computer immediately goes to the

statement following the corresponding NEXT statement.

READ AND DATA

A READ statement is used to assign values from a DATA statement

to the listed variables. Neither statement may be used without

at least one of the other type. A READ statement causes the
variables listed in it to be given, (in order) the values of

next available numbers in the DATA statements. Before the program
is run, the computer groups all of the DATA statements, in the
order in which they appear, into a large data block. Each time

a READ statement is encountered anywhere in the program, the data
block supplies the next available number or numbers. If the data
block runs out of data, with a READ statement still asking for

more, the program is assumed to be finished.

Since data must be read in before the program can be worked with,
normally READ statements are placed near the beginning of a pro-
gram. The location of DATA statements is unimportant, as long as
they are in the correct order. A common practice is to put all
DATA statements together immediately before the END statement.

Each READ statement is of the form:

READ sequence of variables

and each DATA statement is of the form:

DATA sequence of numbers

Examples: 150 READ X,Y,Z,X1,Y2,Q9
330 DATA 4,2,1.7
340 DATA 6.734E-3,-174.321,3.14159265

234 READ B(K)
263 DATA 2,35,7,9,11,10,8,6,4

100 READ R(I,J)
440 DATA ~-3,5,-9,2,37,2.9876,-437.234E-5
450 DATA 2.765,5,5576,2.3678E2

Remember that only numbers are put in DATA statements, formulas

are not allowed.
32

INPUT

At times it is desirable to have data entered while the program
is running. This is particularly true when one person writes
the program and stores it in the computer's memory, and data is
to be supplied by others. This may be accomplished by using an
INPUT statement, which is similar to a READ statement, but does
not draw numbers from a DATA statement. Each INPUT statement

is of the form:

INPUT sequence of variables

If, for example the user is to supply values for X and Y in a

program, he writes:
140 INPUT X,Y

before the first statement that is to use either of the two values.
When the INPUT statement is encountered, the computer types a ques-
tion mark on the printout and waits for input. The user types two
numbers, separated by a comma, presses the return key, and the com-

puter continues with the remainder of the program.
Frequently, an INPUT statement is accompanied by an explanatory
PRINT statement. If in a program:

120 PRINT "YOUR VALUES OF X, Y, AND 2 ARE";
130 INPUT X,Y,2 .

the computer types out:

YOUR VALUES OF X, Y AND 2 ARE?
Without the semicolon at the end of line 120, the question mark
would have been printed on the next line.

Data entered by an INPUT statement is not saved by the program.

Also, it may take a long time to enter a large amount of data

using INPUT. This statement should therefore be used only when
small amounts of data are to be entered or when it is necessary
to enter data during the program run, as it is with game playing

programs.

33

PRINT

The PRINT statement has a number of different uses. It is dis-

cussed in more detail in Chapter 3. The most frequent uses are:
(A) To print out the result of some computations,
(B) To print out verbatim a message included in the program,

(C) A combination of A and B.

Up to now only examples of A and B have been seen in the sample
programs. Each type is slightly different in form, but all start
with PRINT after the line number.

Examples of Type A:

100 PRINT X,SQR(X)
135 PRINT X,Y,Z,B*B-4*A*C,EXP (A-B)

Statement 100 prints the value of X and then, a few spaces to the
right, its square root. Statement 135 prints five different num-
bers: X,Y,%Z,B+2-4AC, and e+t (A-B). The computer calculates the

two formulas and prints the values, if values have already been
assigned to A, B, and C. It can print up to five numbers per line
in this format.

Examples of Type B:
100 PRINT "NO UNIQUE SOLUTION"

430 PRINT "X VALUE","SINE","RESOLUTION"

Both examples have been seen in the sample programs. The first

prints the statement:

NO UNIQUE SOLUTION

The second prints the three labels with spaces between them. The
labels in statement 430 automatically align with three numbers
called for in a PRINT statement, as seen in the program MAXSIN.

34

Examples of Type C:

150 PRINT "THE VALUE OF X IS"; X
315 PRINT "THE SQUARE ROOT OF";X;"IS";SQR(X)

If statement 150 has computed the value of X as 3, it prints:
THE VALUE OF X IS 3
If statement 315 has computed the value of X as 625, it prints:

THE SQUARE ROOT OF 625 IS 25

In statements of type C, the semicolon is used to minimize space.

DIM

To enter a list or tablé with a subscript greater than 10, a DIM
statement must be used to direct the computer to save enough room
for the list or table. '

Examples: 120 DIM H(35)
135 DIM Q(5,25)

The first statement enables a list of 35 items to be entered and
the second, a table 5 by 25.

FUNCTIONS

This section describes three more BASIC functions and a statement

that allows a user to define his own funétions.

INT

INT frequently appears in algebraic computations as [X], and gives
the greatest integer not greater than X. Thus INT(2.35) equals
‘2, INT(-2.35) equals -3, and INT(12) equals 1l2.

One use of the INT function is to round numbers. For example to

round 2.9, to the nearest integer using the function INT(X+.5):

INT(2.9 + .5)=INT(3.4)=3

35

The function INT(X+.5) will round the number that is midway between

two integers up to the larger of the integers.

It can also be used to round to any specific number of decimal
places. For example, INT(10*X+.5)/10 rounds X correct to one
decimal place; INT(100*X+.5)/100 rounds X correct to two decimal
places; and INT(X*104D+.5)/104D rounds X correct to D decimal
places. '

RND
The function RND is a pseudo random number generator. It requires
a single argument, which has the following meanings:

If the argument is positive, it is used to initiate the
random number sequence.

If the argument is negative, a random number is used to
initiate the random number sequence,

If the argument is zero, RND supplies a random number. The
first use of RND(0) in a program always yields the same
random number. '

A positive or negative argument will normally be used to initiate

a sequence of random numbers, after which a zero argument will be
used repeatedly.

If the initial value used for the argument is 2 or any power of 2,
the same initial random number results.

If the first twenty random numbers are desired, the following

program may be used to get twenty-six digit decimal.

Example: 100 X=RND (1)
110 FOR I=1 TO 5§
120 PRINT RND(O),RND(0),RND(0O) ,RND(0Q)
130 NEXT I

1000 END

?RUN
2.20857E-02 0.38263 0.98879 0.106399
0.68124 3.68996E-02 0.30806 0.60544
0.94384 0.54407 6.34831E-02 0.72934
0.99684 0.12717 0.86718 0.89592
0.94197 0.2099%6 0.99979 1.77987E-0

36

If, on the other hand, twenty random one-digit integers are desired,

we can change line 120 to read:

120 PRINT INT(1lO0*RND(O0));
?RUN

to obtain-

O WYWOwo o
N OO W
WO 00O wWw
O W~ O

The kind of random numbers may also be varied. For example, to
obtain twenty random numbers ranging from 1 to 9 inclusive change
line 120 to read:

120 PRINT INT(9*RND(0)+1);

?RUN ‘
1 4 9 1
7 1 3 6
9 5 1 7
9 2 8 9
9 2 9 1

or to obtain random numbers which are integers from 5 to 24 inclu-
sive change line 120 to read:

120 PRINT INT(20*RND(0)+5) ;
?RUN

512 24 7 18 5 11 17 23 15 6 19 24 7
22 23 9 24 5
In general, if random numbers are to be chosen from A integers of

which B is the smallest, call for:
INT(A * RND(O) + B)

after first having initiated the random number sequence with a

positive or negative argument, as in line 100 of our sample program.

If you were to run the first version of our sample program again,
the same twenty numbers could be generated in order. However a
different set may be generated by discarding some of the random
numbers or by starting the series using a negative argument. The

following program finds and stores the first ten random numbers.

37

It then finds and prints the next twenty random numbers. By com-
paring this with the earlier program notice, the first ten random

numbers are the same as the second ten in the first program.

Example: 100 LET Z=RND(1)
110 FOR I=1 TO 10
120 LET Y=RND (0)
130 NEXT I
140 FOR I=1 TO 5
150 PRINT RND(O) ,RND(O),RND(0O),RND(0)
160 NEXT I

1000 END

?RUN
6.34831E~02 0.72934 0.99684 0.12717
0.86718 0.89592 0.94197 0.20996
0.99979 1.77987E-02 0.82975 0.32772
0.95100 0.54719 0.53430 0.68283
0.38419 0.34709 0.10066 0.49632

SGN

The function SGN allows the user to test for the sign of any value.
The form is SGN(argument) and it yields +1, -1, or 0 depending on

the value of the argument. The options are:

Argument Value Yields

Zero 0

Positive, not zero +1

Negative, not zero -1
Examples: sGN(0) yields 0

SGN(-1.82) yields -1

SGN (989) yields +1

SGN(-.001) yields -1

SGN (-0) yields 0

DEF

In addition to making use of the standard functions, any other
function that is to be used repeatedly in a program may be defined.
A DEF statement is used to define such a function. The name of the
defined function must be three letters, the first two of which are
FN. Hence up to 26 functions may be defined in one program: FNA,
FNB, FNC, and so on.

38

The usefulness of DEF can best be illustrated in a program. For
example, where the function E-(Xt2) is frequently needed. Intro-
duce the function by the line:

130 DEF FNE(X) = EXP(-X%*2)

and later on call for various values of the function by FNE(.1l),
FNE (3.45), FNE(A+2), etcetera. DEF can be a great time-saver when
values of a function for a number of different values of the

variable are needed.

The DEF statement may be inserted anywhere in the program, and the
expression to the right of the equal sign may be any formula that
can be accommodated on one line. It may include functions defined
by other DEF statements, and it can involve variables other than
the one denoting the argument of the function. For example, if
FNR is defined by:

170 DEF FNR(X)=SQR(2+LOG(X)-EXP(Y*Z) * (X+SIN(2*2)))

and if values have been previously assigned to Y and %, then
FNR(2,175) may be used. Before the next use of FNR, new values
may be assigned to Y and Z.

DEF is generally limited to cases where the value of the function
can be computed within a single BASIC statement. Often more com-
plicated functions, or an entire program seétion, must be calcu-
lated at different points within a program. For these functions,
the GOSUB statement will frequently be useful. It is described in
the following section.

END

Every program must have an END statement, and it must be the state-

ment with the highest line number in the program. Its form is:

line number END

Example: 999 END

39

CHAPTER 3 - ADDITIONAL BASIC STATEMENTS

Several types of BASIC statements were not covered in Chapters

1l or 2. They are:

GOSUB and RETURN
STOP

REM

RESTORE

GOSUB AND RETURN

When a particular part of a program is to be used more than once,
or possibly at several different places in the program, it is most
efficiently programmed as a subroutine. The subroutine is entered
with a GOSUB statement.

Example: 190 GOSUB 310
The line number, 310, is the first statement of the subroutine.

The last line of the subroutine should be a RETURN statement,

directihg the computer to return to the earlier part of the program.
Example: 450 RETURN

If statement 450 is the last line in the subroutine entered in
the previous example, it directs the computer to return to the
first line numbered greater than 190 and to continue the program

from there.

A GOSUB statement may be used inside a subroutine to execute yet
another subroutine. This is called nested GOSUBs. Note: the last
statement of the subroutine must be a RETURN. This command directs
the computer to return to the main program after it has finished
the computations within the subroutine. The subroutine must there-
fore, contain at least one RETURN statement.

41

A subroutine should never contain a GOSUB statement that refers
to one of the subroutines already entered. Recursion is not
allowed.

The following example, a program for determining the greatest
common divisor of three integers using the Euclidean algorithm,
illustrates the use of a subroutine.

Example: 100 PRINT "A","B","C","GCD"
110 READ A,B,C
120 LET X=A
130 LET Y=B
140 GOSUB 230
150 LET X=G
160 LET Y=C
170 GOSUB 230
180 PRINT A,B,C,G
190 GO TO 110
200 DATA 60,90,120
210 DATA 38456,64872,98765
220 DATA 32,384,72
230 LET Q=INT(X/Y)
240 LET R=X-Q*Y
250 IF R=0 THEN 290
260 LET X=Y
270 LET Y=R
280 GO TO 230
290 LET G=Y
300 RETURN

999 END

?RUN

A B c GCD
60 90 120 30
38456 64872 98765 1
32 384 72 8

The first two numbers are selected in lines 120 and 130, and their
GCD is determined in the subroutine, lines 230 - 300.

The GCD just calculated is called X in line 150, the third number
is called Y in line 160, and the subroutine is entered from line
170 to find the GCD of these two numbers. This number, and the
GCD of the three given numbers, is printed out with the three
numbers in line 180.

42

STOP

The STOP statement is equivalent to GO TO XXXXX, where XXXXX is
the line number of the END statement in the program. It is useful
in programs having more than one natural finishing point. For

example, the following two program portions are exactly equivalent.

Example: 250 GQ TO 999 250 STOP
340 GO;TO 999 340 ;TOP
999 EN; | 999 ;ND
REM

The REM statement allows the insertion of explanatory remarks in

a program. The form is:

REM any comment.

The computer completely ignores the part of the line following

REM, allowing comments to be included for using the program, for
identifying of the parts of a program, or for any further explana-
tions. Although anything following REM is ignorad, the line num-
ber of a REM statement may be used in a GOSUB or an IF--THEN st.te-

ment.

Example: 100 REM INSERT DATA IN LINES 900-998, THE FIRST
110 REM NUMBER IS N, THE NUMBER OF POINTS.THEN
120 REM THE DATA POINTS THEMSELVES ARE ENTERED, BY

200 REM THIS IS A SUBROUTINE FOR SOLVING EQUATIONS.

300 RETURN

526 GOsSUB 200

43

RESTORE

Sometimes it is necessary to use data in a program more than once.
The RESTORE statement permits the reading of data as many addi-
tional times as necessary. Whenever RESTORE is encountered in a
program, the computer restores the data block pointer to the first
item of data. A subsequent READ statement then starts reading the

data again.

Warning: If the data items to be reused are preceded by code num-
bers or parameters, superfluous READ statements must be inserted

to bypass the numbers.

For example, the following section of a program reads the data,
restores the data block to its original state, and rereads the
data. Note the use of line 570 to bypass the value of N, which

is already known.

Example: 100 READ N
110 FOR I=1 TO N
120 READ X

200 NEXT I

560 RESTORE
570 READ X
580 FOR I=1 TO N
590 READ X

44

CHAPTER 4 - ADVANCED BASIC

Chapter 2 discussed how to write programs in BASIC. Chapters 4
to 6 now examine some capabilities of BASIC that were not previ-

ously mentioned. These include:

Alphanumeric data and string manipulation
Files
Matrices

ALPHANUMERIC DATA AND STRING MANIPULATION

Alphanumeric data, names, and other identifying information can
‘be handled in BASIC using string variables. It is possible to
enter, store, compare, and print out alphanumeric and certain

special characters in the BASIC character set.

A STRING is any sequence of alphanumeric and certain special

characters in the basic character set not used for control purposes.

A STRING VARIABLE is denoted by a letter followed by a dollar sign.
For example, A$, B$, and X$ denote string variables. There is no
limit to the length of a string variable although it must be less
than 72 characters because BASIC statement (including LET) must

not exceed one line.

DIM

Strings can be set up as one-dimensional arrays only. If a two-
dimensional array is requested, the error message DIMENSION
ERROR is received.

Examples: 100 DIM A(5),C$(20),A$(12),D(10,5)
200 DIM R$(35)
300 DIM M$(15),Bs$(15)

In line 100, only C$ and A$ are string variables. R$, as dimen-

sioned in line 200, allocates storage space for 35 entries.

45

LET

Strings and string variables may appear in only two forms of the
LET statement. The first is used to replace a string variable
with the contents of another string variable.

Example: 156 LET G$=HS$

The second is used to assign a string to a string variable.

Example: 160 LET J$="THIS STRING"

Line 160 assigns the string THIS STRING to variables A$, G$ and JS.
Any valid expression or string may be used.

READ AND DATA

READ statements can contain string variables intermixed with
ordinary variables. In the corresponding DATA statements, every
item corresponding to a string variable in the READ statement
must be a valid string. If the string contains any characters
that have special meaning in BASIC - such as commas, semicolons,
leading or traiiing spaces - they must be enclosed in quotation
marks. Unquoted strings must begin with an alphabetic character.

Example: 100 READ AS$,BS$,CS$,DS$,A,ES$
200 DATA THE,"","PEOPLE,",YES--,"500",0F THEM.
300 PRINT A$;B$;C$;DS;A;ES
999 END

This program prints THE PEOPLE, YES--500 OF THEM. The DATA state-
ment has quotation marks around B$ because it is a blank space,

and around:the value for C$ because it includes a comma.

INPUT

INPUT statements may also contain string variables intermixed
with ordinary variables. Every item corresponding to a string
variable in the INPUT statement must be a valid string variable.

Tf the string contains characters that have special meaning in

46

BASIC, it must be enclosed by quotation marks. If the string
begins with anything other than an alphabetic character it must

be enclosed in quotation marks.

Example: 110 INPUT L$(17),M$,NS$(I)

PRINT

The PRINT statement may also contain string variables intermixed
with ordinary variables. When a string variable is encountered
that has not been assigned, the PRINT statement ignores that
variable. A semicolon after a string variable in a PRINT state-
ment causes the printout of the variable following that string

to be directl? connected to the string variable.

Example: 135 PRINT A,16,B$,CS$;N
140 PRINT 100+I,"DATA",L$;MS$;N$
150 PRINT SS$

IF - THEN/IF - GOTO

Only one string variable is allowed on each side of the IF-THEN
relation sign. The six standard relations are valid (=, <>, <,
>, <=, and >=). When strings of different lengths are compared,
the shorter string and the corresponding part of the longer
string are used. If they compare, the shorter string is taken
to be the lesser of the two.

Example: 100 IF N$="SMITH" THEN 105
200 IF AS$<>B$ GOTO 205
300 IF "JUNE" <=M$ GO TO 305
400 IF D$>="FRIDAY" THEN 600

Quotation marks must be used around the string to be compared, as
above, unless it is referenced in the IF~-THEN statement by a

string variable name.

Characters are compared in their BASIC code representations. The

collating sequence used in comparing is listed in Appendix D,

47

MORE ABOUT PRINTING

Although the format of the printout is automatically supplied for
the beginner, the PRINT statement, the TAB function, and image
formatted output permit a greater flexibility for the advanced

programmer in establishing different formats for his output.

PRINT

The teletypewriter line is divided into five zones of fifteen
spaces each. Some control of the use of these zones comes from
the use of the comma. A comma is a signal to move to the next
print zone or, if the fifth print zone has been used, to move to
the first print zone on the next line.

Shorter zones can be made by using the semicolon. The zones are
two characters longer than the length of the number to be printed.
An additional space is reserved for the sign. Thus a 2 digit
number will have a five character zone and an 11 digit number will
have a 14 character zone. A semicolon is a signal to move to the
next short print zone or, if the last such zone on the line has
been used, to move to the first print zone of the next line.

The first space in any print zone is reserved for the sign, even
though it is not printed if it is plus,

If the following program is typed:

100 FOR I=1 TO 15
110 PRINT I

120 NEXT 1

999 END

The teletypewriter prints 1 at the be inning of the first line, 2
at the beginning of the second line, and so on, finally printing
15 at the beginning of the fifteenth line. But if line 110 is
changed to read:

110 PRINT I,

48

The numbers are printed in zones:

1 2 3 4 5
6 7 8 9 10
11 12 13 14 15

Using a semicolon in place of the comma produces:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Remember that a label inside quotation marks is printed exactly,
as it appears, and also that the end of a PRINI statement signals
a new line, unless a comma or semicolon is the last symbol. The

instruction:
150 PRINT X,Y

results in the printing of two numbers and the ré&turn to the next
line, but
150 PRINT X, Y,

results in the printing of two numbers and no return. The next
number is printed in the third zone on the same line as the values
of X and Y.

Since the end of a PRINT statement signals a new line, a statement
such as

250 PRINT

causes the completion of a partially filled line, as illustrated
in the following section of a program:

100 FOR M=1] TO N

110 FOR J=1 TO M

120 PRINT B(M,J);

130 NEXT J

140 PRINT
150 NEXT M

The program prints B(l,1l) and next to it B(1l,2). Without line 140,
the teletypewriter then continues printing B(2,1), B(2,2), B(3,1),
B(3,2), if there is sufficient space remaining on the line. Line

140 directs the teletypewriter to start a new line after printing

the B(1,1) value corresponding to M=1, the B(2,2) value corresponding
to M=2, and so on.

49

TAB

The print function TAB permits tabbing of the input terminal
whenever the TAB function is used in the PRINT statement, it
causes a line pointer to move over to the position indicated
by the argument of TAB. The next value to be stored in the

print line goes into this position.

Example: 150 PRINT X; TAB(10); Y; TAB(2*N);Z

The argument of TAB refers to a print position on the line. The
positions are assumed to run from 0 through 74. 1In the above
example, if the value of N is 10, the pointer moves to the 10th
print position after printing the value of X, and to the 20th
print position after printing the value of Y.

When utilizing the TAB function, the semicolon should be used in
the PRINT statement to minimize field width.

If the argument of TAB is less than the current print position,
it is ignored.

All arguments of TAB are treated modulo 75.

RULES FOR PRINTING NUMBERS

The following rules for the printing of numbers will held in
interpreting printed results.

If a number is an integer, the decimal point is not
printed. If the integer is larger than or equal to
2% (i.e. 536,870,912), the teletypewriter prints the
first digit, followed by (1) a decimal point, (2) the
next five digits, and (3) an E followed by the appro-
priate exponent integer. For example, it prints
32,437,580,259 as 3.24376E+10.

For any decimal number, no more than six significant
digits are printed.

For a number less than 0.1, the E notation is used unless
the entire significant part of the number can be printed

as a six decimal number. For example, .03456 means that

the number- is exactly .0345600, but 3.45600E-2 means that
the number has been rounded to .0345600.

PRINT USING AND IMAGE STATEMENTS

Formatted line output may be established by use of the PRINT

USING and image statements.

The form of the PRINT USING statement is:

PRINT USING line number,output list

The form of the image statement is:

line number:line image

where line number is that of the image statement in
the program,
line image consists of format control charac-

ters and printable constants.

Format control characters are:

! (Apostrophe) a one-character field that is filled with
the first character in an alphanumeric string regardless

of the string length.

" (Quotation Marks) the replacement field of an alpha-
numeric string of two or more characters; the field
width includes the quotation marks as well as the

characters (if any) contained within the marks.

(Pound Sign) the replacement field for a numeric

character.

4444 (Four Up-arrows) indicates scientific notation for a

numeric field.

All other characters are treated as printable constants.

51

The following simple example is part of a program, showing the use
of the PRINT 7JSING statement, the line image statement, and format

control characters.

Example: 100 PRINT USING 120,AS$,"S$",A,324,X
120:" " THEH . HE #H4H4 ##.##404244

If the values of A$, A, and X are FIRST, 12.9, and 24687, then
the output is:

FIRST $ 12.90 324 2.47E+04

An image statement must begin with a colon. It is composed of

fields which form the print line. There are five types of fields:

Integer fields
Decimal fields
Exponential fields
Alphanumeric fields
Literal fields

INTEGER FIELDS

The following rules apply to integer fields.

An integer field is composed of pound signs (#).

Numbers in an integer field are right justified and trun-
cated if they are not integral.

The field is widened to the right if the number is too big.
The field must reserve a place for the algebraic sign.

If the rnumber is greater than 1,073,741,823 in absolute
value, asterisks are printed.

Example: 100: #### Bhddd $##
110 READ 2,B,C
120 PRINT USING 100,A,B,C
130 GO TO 110
140 DATA 123.45,-34.856,45.7,457.34,-17,89.999

999 END
?RUN
123 -34 45
457 -17 89
OUT OF DATA 110

52

DECIMAL FIELDS

The following rules apply to decimal fields:

A decimal field is a string of pound signs (#) with an
imbedded period. Note that .## is not a decimal field
because the period is not imbedded.

The number is rounded to the number of places specified
by the pound signs following the decimal.

The number is right justified, placing the decimal as
given in the field definition.

The field will be widened to the right if the number is
too large.

The field must include a place for the algebraic sign.

Example: 100: ####.## H#HE# HEHS #HH#H . #.HEF
110 READ A,B,C,D
120 PRINT USING 100,A,B,C
130 6o TO 110
140 DATA 123.456,-34.856,47.7,-.0177
150 DATA 1.999,876.55,-17,.893

999 END
?RUN
123.46 -34.8560 48. -.018
2.00 876.5500 -17. .893

OUT OF DATA 110

EXPONENTIAL FIELDS

The following rules apply to exponential fields:

An exponential field is a decimal field followed by four
up-arrows (4444), which reserve a place for the exponent.

The pound signs preceding the decimal represent the factor
by which the exponent is adjusted.

The number is rounded as with decimal fields.

A place must be reserved for the sign.

Example: 100: #.#####4+444 L EEEAEAL O Hag A4 #.oHE#AA A
110 READ A,B,C,D
120 PRINT USING 100,A,B,C,D
130 GO TO 110
140 DATA 123.456,-34.856,47.7,-.0177
150 DATA 1.999,876.55,-17,.893
999 END
?RUN

53

.12346E+03 -3.486E+01 48.E+00 -.18E-01
.19990E+01 8.766E+02 -17.E+00 .89E+00Q

ourT

OF DATA 110

ALPHANUMERIC FIELDS

The following

rules apply to alphanumeric fields:

The apostrophe is used to print the first character from a
string variable or gquoted constant.

A field bounded by quotation marks is used to print two or
more characters. .

In an alphanumeric field of two or more characters, the
string is left justified within the field and blank filled
or truncated on the right.

Example: 100:
110
120
130
140
150
160
170
299
?RUN

"23456" "THE NAME GOES HERE" ! vy
READ AS$,BS,C$,DS$,ES
PRINT USING 100,A$,BS$,CS$,DS$,ES
DATA ABCDEFGHI
DATA ABCDEF
DATA ABC
DATA ABC
DATA ABC
END

ABCDEFG ABCDEF A AA

LITERAL FIELDS

A literal field is composed of characters or character strings

that are not centrol characters. It appears on the print line

exactly as it

Example: 100:
110
120
130
999
?RUN

appears in the image.

THE VALUE FOR A IS THEHS . HE
LET A=100.54
LET AS="§"
PRINT USING 100,A$,A
END

THE VALUE FOR A IS $ 100.54

54

GENERAL RULES

The following rules apply in general to formatted line output.

The list elements in the PRINT USING statement may be
expressions, variables, numeric constants, and quoted
literals.

Numeric list elements must replace numeric rields, and
alphanumeric elements must replace alphanumeric fields,
or the error message BAD IMAGE XXX is received.

If the output list contains more elements than there are
replaceable fields in the image statement, a carriage
return is supplied after the last field in the image, and
the image is reused. The extra elements are printed on a
second line only if they match the image fields that are
to be used.

Example: 100 PRINT USING 120

110 PRINT
120: I 142 143
130: HERBHGH ER RS LER RS R

140 FOR I=1 TOC 6

150 LET A(I)=I

160 LET B(I)=I+42

170 LET C(I)=I+43

175 NEXT I

180 FOR I=1 TO 6 STEP 2

190 PRINT USING 130,A(I),B(I),C(I),A(I+1),B(I+1),C(I+1)
200 NEXT I !

999 END

?RUN
I I+2 I+43
1 1 1
2 4 8
3 9 27
4 16 - 64
5 25 125
6 36 216

The following program demonstrates one kind of application in which

the formatted output line is useful.

Example: 100 PRINT USING 170
: 110 PRINT
120 FOR I=1 TO 4
130 READ A$,A,B
140 LET T=A*B
150 PRINT USING 180,AS$,A,B,"$",T
160 NEXT I

55

170 :NAME HRS WORKED RATE PAY
180:" " hind . H4 ##.###/HR "HEHE . HH
190 DATA ANDREWS,47.5,3.987,KELLY,40,2.865,MANLEY,46,3.020
200 DATA ZUMPANO,42.34,4.255

999 END

2RUN

NAME HRS WORKED - RATE PAY
ANDREWS 47.50 3.987/HR $ 189.38
KELLY 40.00 2.865/HR S 114.60
MANLEY 46.00 3.020/HR $ 138.92
ZUMPANO 42.34 4.255/HR $ 180.16

56

CHAPTER 5 - FILE INPUT/OUTPUT

DATA FILES

BASIC data files are standard 0S-3 files. BASIC will accept EDIT,
COSY, or BCD files as input. Data files can ke created by a BASIC

program or the 0S-3 text editor.

Files must be opened before the program can read or write on them.
An open file is always in either READ or WRITE mode. The SCRATCH
statement establishes a file in write mode. The RESTORE statement

establishes it as read mode.

FILE OPENING

The form of the open statement is

OPEN %I,"fname"

where I file designator; a number (logical unit)
between 1 and 20,
"fname" any valid TCL/EDIT filename of 1 to 8 characters.

A BASIC program references files by specifying a logical unit (LUN).
The OPEN statement, given a filename of 1-8 characters, prepares
the file for data transmission by assigning a logical unit number
to the file. The logical unit number should be used for any sub-

sequent references to this open file from within the program.

Example: 100 OPEN %1,"FILELl"
200 OPEN %2,"FILE2"
300 OPEN %3,"INPDAT"

An OPEN statement sets an existing file in read mode. If it
references a file that does not yet exist, then a file with the

specified name is created and put into write mode.

57

FILE READING

The file READ statement takes information from an open file and
assigns the values to variables specified in the list given with
the READ statement. A file must be in read mode before a READ
is allowed. The format of the file READ statement is:

READ %logical unit,list

Example: 100 OPEN %1,"DATAFILE"
150 FOR I=1 TO 10
200 READ %1,X(I),Y(I),z2(I)
250 NEXT I

FILE WRITING

A file WRITE statement inserts information into a data file. It
operates similar to a PRINT statement with a list of values to
transfer, exceptvthat when a print line is finished the line is
put into the next sequential position of the data file specified
in the WRITE statement. A file specified in a WRITE statement
must be in write mode. Refer to the descriptions of the SCRATCH
and OPEN statements. After a WRITE the file position is auto-
matically incremented to the next line. The format of the WRITE
statement is:

WRITE %logical unit,list

Example: 100 OPEN %5,"DATFILE"
200 SCRATCH %5
300 FOR I=1 TO 100
400 WRITE %5,I,I*I,I*I*I
500 NEXT I
600 CLOSE %5

END-OF-FILE CHECK

This statement is of the form:

IF END %logical unit THEN line number

58

If the last READ statement detected an end-of-file, the program
goes to the line number specified in the THEN clause. Otherwise

it executes the next statement.

If the program continues reading a file after engountering an end-
of-file the diagnostic UNCHECKED END-OF-FILE XXX is printed and
the program stops.

FILE RESTORING

The RESTORE statement is of the form:

RESTORE %logical unit

This statement has two functions. It positions the file at the
beginning of its data and sets the file in read mode. A file

which is being written cannot be read until it is restored.

FILE SCRATCHING

The SCRATCH statement is of the form:

SCRATCH %logical unit

This staﬁement causes a currently open file to be set into write
mode. It also deletes any data on a currently existing file.
Afterrscratching the contents of a file, a subsequent WRITE
starts at the béginning of the file. This means a file cannot

be modified once written except by being copied.

FILE CLOSING

The CLOSE statement is of the form:

CLOSE %logical unit

CLOSE makes the file unavailable for reading and writing from the

program. It also clears the output buffer for a write mode file.

59

All output files MUST be closed or some of the data written may be
lost. When a program reaches the END statement any open files are
automatically closed by BASIC. '

CHARACTERISTICS OF BASIC DATA FILES

BASIC creates BCD (card images) format files when using the WRITE
or PRINT on data files. 1Interactive BASIC can READ all standard
0S-3 file types. Files created with a WRITE have the data items
put sequentially on the file with items in the same line separated
by commas. The file READ statement expects data to be separated
by commas.

To prepare a data file outside of BASIC, type in the data items
separated by commas. String constants may appear at any point.
The rules for values in a file are the same as for the DATA state-
ment list entries. |

Example: SALT,PEPPER,SUGAR,NUTMEG,COFFEE,MARCH
-1,0
-1,0,0

The PRINT statement may be used on files and each line of the

file will be the same as a normal PRINT on the user's terminal.

60

CHAPTER 6 - MATRICES

The matrix operation statements available in BASIC are among the

most powerful and useful in the entire language.
Following is a list of matrix statements.

MAT READ A,B,C Read matrices A, B, and C, the dimen-
sions of which have been previously
specified. Data is read in row-wise

sequence.

MAT PRINT A,B;C Print matrices A, B, C and store A
and C in the regular format, but store

B closely packed.

MAT C=A+B Add matrices A, -and B and store the
result in matrix C.

MAT C=A-B Subtract matrix B from matrix A and
store the result in matrix C.

MAT C=A*B Multiply matrix A by B and store the
result in matrix C.

MAT C=INV(4a) Invert matrix A and store the result
in matrix C. ’

MAT C=TRN(A) Transpose matrix A and store the
' result in matrix C.

MAT C=(K)*A S Multiply matrix A by the value repre-
’ sented by K. K may be either a number
or an expression, but in either case
it must be enclosed in parenthesc..

MAT C=CON Set each element of matrix C to one.
CON means constant.

MAT C=ZER Set each element of matrix C to zero.

MAT C=IDN Set the diagonal element of matrix C

to ones and the non-diagonal elements
to zeroes, yielding an identity matrix.

61

MAT READ AND MAT PRINT

Using the MAT READ and MAT PRINT statements, data may be read into
or printed from a matrix without having to reference each element
of the matrix individually.

Example: 100 MAT READ A,F,H,G
150 MAT PRINT C
175 MAT READ 2
190 MAT PRINT A,L

Information is read into a matrix using the DATA statement. The

elements in the DATA statement are taken in row order, that is,

A A

Al,l'Al,2"°' l,n'AZ,l'A2,2'°'° m,n

Information is read from the DATA statements until the matrix array

is completely filled. Partial matrices cannot be read or printed.

Example: 110 DiM L(2,3),M(2,2)
150 MAT READ L,M
160 LET L(2,2)=-2*L(2,2)
200 MAT PRINT L,M
500 DATA 1,2,3,4,5,6,3,-12,9,7

Line 110 defines L as a 2 by 3 matrix and M as a 2 by 2 matrix.
The MAT READ statement reads in row order from the DATA statement
at line 500. The matrix element L is recomputed at line 160. The
two matrices are then printed to yield:

MATRIX ARITHMETIC

It is possible to add, subtract, and multiply matrices using the
matrix arithmetic statements. The matrix dimensions must be con-
formable for each operation. If dimensions are not conformable,

execution is stopped and a dimension error message is received.

62

Matrix arithmetic statements may take the forms:

MAT C=A+B MAT C=A-B MAT P§Q*R
Only one operation can be performed in each statement.
Example: CALCULATE H=A*B+E-K

612 MAT H=A*R

615 MAT H=H+E
618 MAT H=H-K

SCALAR MULTIPLICATION

A matrix can be multiplied by a scalar expression using a state-
ment of the form:

MAT X=(expression)*D

where X and D are matrices and the expression in parentheses is a
scalar quantity. The parentheses are required to indicate scalar
rather than matrix multiplication. Only one operation per state-
ment is allowed:

Example: 100 MAT F=(2)*G
150 MAT Q=(2.33+M)*Q
750 MAT B={(N)*A

IDENTITY MATRIX

An identity matrix is defined by a statement of the form:

MAT B=IDN or MAT R=IDN(expression,expression)

In the first statement, matrix B is established as an identity
matrix. If B is not defined to be square, a dimension error

message is received. 1In the second statement, the size of the
identity matrix R is determined at execution time by the value

of the expression enclosed in parentheses.

63

Examples: 190 MAT A=IDN
100 MAT V=IDN(2*N+1,2*N+10)
120 MAT B=IDN(Q,Q)
130 MAT W=IDN
140 MAT C=IDN(1,1)

MATRIX TRANSPCSITION

Matrices are transposed using the form:
MAT Y=TRN(Z)

where Y and 2 are both matrices. The transpose of matrix A
replaces matrix Y. Y and Z must conform. Matrix transposition
in place (MAT A=TRN(A) is not allowed.

Examples: 300 MAT G=TRN (H)
400 MAT U=TRN(V)

MATRIX INVERSION

Matrices are inverted using the form:
MAT T=INV(J)

where I‘and J are both matrices. I contains the inverse of J.
I and J must conform. Matrix inversion in place (MAT A=INV (A)
is not allowed. If a matrix is singular, the message NEARLY
SINGULAR MATRIX XXX is received.

Examples: 500 MAT K=INV (L)
560 MAT A=INV(B)

MATRIX ZER AND CON FUNCTIONS

The ZER function is used to zero out all elements of a matrix.
It may also be used to redefine the dimensions of a matrix during
execution as described in "Dimensioning". For example:

MAT C=ZER

zeroes out the elements of matrix C.

64

The CON function is used to set all elements of a matrix to ones.

For example:
MAT C=CON

sets all elements of matrix C to ones.

DIMENSIONING

Every matrix variable used in a program.must be given a single-
letter name. A matrix variable must be defined in a DIM statement,
which reserves the amount of storage required by the matrix variable
during execution of the program. For example:

DIM P(3,4),0(5,5)

This DIM statement defines two matrices, P and Q. P is defined
as a 12 element matrix, and Q as a 25 element matrix. Note that
the first element of P is P(1,1) and the last element P(3,4).
The elements of Q run from Q(1,1) through Q(5,5). All matrix

variables must be doubly dimensioned, as shown here.

Before any computation using the MAT statements is performed, the
precise dimensions of all matrices to be used in the computation
must be declared. Four MAT statements are used for this purpose:
MAT READ C(M,N)
MAT C=ZER(M,N)

MAT C=CON(M,N)
MAT C=IDN(N,N)

The first three statements specify matrix C as consisting of M
rows and N columns. The fourth statement specifies matrix C as

a square matrix of N rows and N columns.

These same statements may be used to redimension a matrix during
a run. A matrix may be redimensioned to either a larger or a
smaller matrix, provided the new dimensions do not require more
storage space than was originally reserved by the DIM statement.

To illustrate, consider the following.

65

Example: 110 DIM A(8,8),B(8,8),Cc(8,8)
150 MAT READ A(2,2),B(2,2)
160 MAT C=2ZER(2,2)

200 MAT A=IDN(8,8)
219 MAT READ B(4,4),C(4,4)

Note that the DIM statement reserves enough storage to accommodate
three matrices, each consisting of 64 elements. The initial MAT
READ specifies the dimensions of both matrices A and B as 2 rows
and 2 columns.

The MAT READ also reads the number of values required by the
dimensions into the storage that was reserved by the DIM statement.
It reads them in row-wise sequence. 1In the initial MAT READ, the
elements are read in the order A(lL,1), A(1,2), A(2,1), A(2,2),
B(1,1), B(1,2), B(2,1), and B(2,2). Statement 160 uses the ZER

to specify dimensions and to zero the elements of matrix C. State-
ments 200 and 210 illustrate redimensioning. Matrix A is redimen-
sioned as an 8 row, 8 column identity matrix; and matrices B and C
are redimensioned as 4 row, 4 column matrices into which data is to
be read.

The combination of ordinary BASIC statements and MAT statements makes
BASIC very powerful. In addition to having both a DIM statement and
a declaration of current dimension, the MAT statements should also be
used with care. For example, a matrix product MAT C=A*B may be
illegal for either of two reasons: A and B may have such dimensions
that the product is not defined, or C may have the wrong dimensions
for the answer. 1In either case the DIMENSION ERROR message is
received.

SAMPLE MATRIX PROGRAMS

The following two programs illustrate some of the capabilities of
the MAT statements. In the first program, the values for M and N
are read. Using these two values as indices, statement 120 sets
the dimensions for matrices A, B, D, and G. The values for the

elements of these four matrices are read, then:

66

Thée dimensions of matrix C are specified and the elements
set to zero (Line 130).

Matrix A is printed (Line 150).
Matrix B is printed (Line 170).

The sum of matrices A and B is calculated and stored in
C (Line 180).

Matrix C is printed (Line 200).

The dimensions for matrix F, a vector, are set and the
elements set to zero (Line 210).

The product of matrices C and D is computed and stored
in F (Line 220).

The dimensions for matrix H (single value) are specified
and the elements set to zero (Line 230).

Finally, the product of matrices G and F is found, stored
in H and printed (Lines 240,260).

MATRIX PROGRAM EXAMPLE 1

100 DIM A(5,5),B(5,5),C(5,5),D(5,5)

105 piM E(5,5),F(5,5),G(5,5),H(5,5)

110 READ M,N

120 MAT READ A(M,M),B{M,M),D{(M,N),G(N,M)

130 MAT C=ZER(M,M)

140 PRINT "MATRIX A OF ORDER";M

150 MAT PRINT A;

160 PRINT "MATRIX B OR ORDER";M

170 MAT PRINT B;

180 MAT C=A+B

190 PRINT " C=A+B"

200 MAT PRINT C;

210 MAT F=ZER(M,N)

220 MAT F=C*D

230 MAT H=ZER(N,N)

240 MAT H=G*F

250 PRINT " H"

260 MAT PRINT H;

270 DATA 3,1

280 DpATA 1,2,3,4,5,6,7,8,9,9,8,7,6,5,4,3,2,1,1,2,3,3,2,1

999 END '
- ?RUN

67

MATRIX A OF ORDER 3
1 2 3

MATRIX B OF ORDER 3
9 8 7

360

MATRIX PROGRAM EXAMPLE 2

In this second program, a value N is read that determines the
order of the Hilbert matrix segment to be computed, stored, and
printed. ©Next the matrix is inverted and printed. Finally the
Hilbert matrix is multiplied by its own inverse, and the resulting
product matrix is printed. Notice that line 290 specified N as
equal to 2 to produce the first three matrices of order 2, and
later returns to read in the data '3', which redimensions to a
larger array--larger than 2, but smaller than the original 20--and
produces more output. The final case uses a value of 4 for the
order.,

100 DIM A(20,20),B(20,20),C(20,20)

110 READ N

120 MAT A=CON(N,N)

130 MAT B=CON(N,N)

140 MAT C=ZER(N,N)

150 FOR I=1 TO N

160 FOR J=1 TO N
170 LET A(I,J)=1/({I+J-1)

68

180 NEXT J

190 NEXT I

200 PRINT "HILBERT MATRIX OF ORDER";N

210 MAT PRINT A;

220 MAT B=INV (A)

230 PRINT "INVERSE OF HILBERT MATRIX OF ORDER";N
240 MAT PRINT B; .

250 MAT C=A*B

260 PRINT "HILBERT MATRIX TIMES ITS OWN INVERSE ORDER";N
270 MAT PRINT C;

280 GO TO 110

290 DATA 2,3,4

999 END
?RUN

HILBERT MATRIX OF ORDER 2
1 0.50000
.50000 0.33333

INVERSE OF HILBERT MATRIX OF ORDER 2
4.00000 -6.00000
-6.00000 12.0000

HILBERT MATRIX TIMES ITS OWN INVERSE ORDER 2
1 0
5.82077E-11 1.00000

HILBERT MATRIX OF ORDER 3

1 0.50000 0.33333"
0.50000 0.33333 0.25000
0.33333 0.25000 0.20000

INVERSE OF HILBERT MATRIX OF ORDER 3

9.00000 -36.0000 30.0000
-36.0000 192.000 -180.000
30.0000 -180.000 180.000

HILBERT MATRIX TIMES ITS OWN INVERSE ORDER 3

1.00000 1.86265E-09 -3.7252%E-09
2.32831E-10 1.00000 -9.31323E-10
-1.16415E-10 -9.31323E-~-10 1.00000

HILBERT MATRIX OF ORDER 4

1 0.50000 0.33333 ‘ 0.25000
0.50000 0.33333 0.25000 0.20000
0.33333 0.25000 0.20000 0.16667
0.25000 0.20000 0.16667 0.14286

INVERSE OF HILBERT MATRIX OF ORDER 4

16.0000 -120.000 240.000 -140.000
-120.000 1200.00 -2700.00 1680.00
240.000 -2700.00 6480.00 -4200.00
-140.000 1680.00 -4200.00 2800.00

69

HILEERT MATRIX TIMES ITS OWN INVERSE ORDER 4

1.00000 4.47035E-08 -1.49012E-08 6.70552E-08
2.09548E-09 1.00000 8.19564E-08 -1.11759E-08
1.16415E-10 9.31323E-09 1.00000 -3.72529E-09
5.82077E-10 -3.72529E-09 1.11759E-08 1.00000

OUT OF DATA 110

70

CHAPTER 7 - EXAMPLES OF ADVANCED BASIC PROGRAMS

Following are two sample programs illustrating the use of many of
the advanced capabilities of BASIC. The first program is developed

as an inventory case problem, and utilizes a BCD file.

INVENTORY PROBLEM

Mr. Swift, a storekeeper, would like to. know how any five items
in his store are selling in any given month. He would like a
permanent file of the items that were sold eachvweek over a four
week period. He also wishes to update his file at the end of
each week, and he may or may not want a compléte written record
of his sales. However, he may want a written report at any time

during the month.

The record should consist of an easy to read table listing the
items and the number sold in each week. The table should also
show the total number of items for each week, the total number
of each sold tb date, and the total number of all items sold to
date. '

The five items that Mr. Swift would like to check are salt, pepper,

sugar, nutmeg, and coffee. The month is March.

The foilowing program results from Mr. Swift's requirements. The

program is explained by remarks included in it.

100 OPEN %1,"STOCK"

110 DIM A(5,4)

120 FOR I=1 TO 6

130 READ AS(I)

140 NEXT I A

160 REM W=INITIAL PASS FLAG,P=PRINTOUT FLAG

170 REM W=0 INITIAL PASS, P=0 PRINTCUT DESIRED

180 READ W,P

190 IF W<O0 THEN 300 ,

210 REM FOR THE INITIAL PASS,WRITE 3 ZEROES. THERE IS NO
220 REM DATA INITIALLY, AND SOMETHING MUST BE WRITTEN
230 REM BEFORE IT CAN BE READ. ‘

240 SCRATCH %1 '

250 WRITE %1,0;0;0

71

260
280
285
299
295
300
301
302
304
306
310
320
340
350
360
38C
3990
400
420
430
440
450
460
470
480
500
510
530
54¢C
550
560
570
580
590
600

610:

620

630:

640
660
670
680
690
700
710
720
730
740
750
760
770
780
790

RESTORE %1 ;

REM READ IN DATA WRITTEN INTO THE FILE FROM
REM PREVIOUS WEEKS

REM X..ITEM,Y..WEEK,A(X,Y)..NUMBERS OF ITEMS
REM SOLD TO DATE

READ %1,X,Y,Z

IF END %1 THEN 350

IF X GEQ 6 OR X <0 THEN 2000

IF Y GEQ 5 OR Y <0 THEN 2000

IF X EQ 0 OR Y EQ 0 GOTO 300

A(XIY)=Z

GOTO 300

REM READ DATA FOR THIS WEEK OR DATA MISSED PREVIOUSLY

READ X,Y,7Z
IF X<0 GOTO 430

REM WHEN X IS NEGATIVE THE DATA READ IS FINISHED.
LET Z(X,Y)=A(X,Y)+Z

GOTO 350

REM WRITE THE UPDATED INFO BACK TO THE PERMANENT FILE
SCRATCH %1

FOR X=1 TO 5

FOR Y=1 TO 4

WRITE %1,X;Y;A(X,Y);

NEXT Y

NEXT X

REM IS A PRINTOUT WANTED

IF P<0 THEN 870

REM PRINT THE MONTH

PRINT AS(6)

PRINT " "

PRINT TAB(10);

REM PRINT THE COLUMN HEADER FOR EACH WEEK
FOR I=1 TO 4

PRINT USING 610,I,

NEXT I
#REH#
PRINT USING 630
TOTALS
PRINT " "
REM BEGIN TO GENERATE THE TABLE OF VALUES.

FOR I=1 TO 5

PRINT AS(I);TAB(10);

FOR J=1 TO 4

REM SUM OF EACH ITEM FOR THE ELAPSED WEEKS.
T(I)=T(I)+A(I,J)

REM SUMS FOR EACH WEEK

LET S(J)=S(J)+A(1,J)

PRINT USING 610,A(1,J),
NEXT J :

PRINT USING 610,T(I)
NEXT I

PRINT " "

PRINT "TOTAL";TAB(10);

800 REM PRINT SUBTOTALS FOR EACH WEEK AND
810 REM THE TOTAL FOR THE PERIOD.

820 FOR K=1 TO 4

830 PRINT USING 610,S(K),

840 S=S+S(K)

850 NEXT K

860 PRINT USING 610,S

870 STOP

880 REM 1..SALT,2..PEPPER,3..SUGAR,4..NUTMEG,5..COFFEE
890 DATA SALT,PEPPER,SUGAR,NUTMEG,COFFEE,MARCH
1000 DATA -1,0 -

1010 paTa -1 ,0,0

2000 PRINT "INVALID ITEM",X,Y,Z

2005 GOTO 300

8000 END

?RUN

Suppose that two weeks have passed and Mr. Swift wants a record of
his sales to date. He runs the program with data in line 1000 as
shown above. The -1 specifies not the first week, andvthe 0 speci-’
fies a printout of the file data. Also he enters data in line 1010
as shown above. The -1 indicates the termination of data, and the
two final zeroes are dummy data put in to satisfy the read state-

ments. See the following results.

MARCH

1 2 3 4 TOTALS
SALT 3 4 0] 0] 7
PEPPER 7 5 0] 0] 12
SUGAR 4 3 0 0] 7
NUTMEG 8 7 0] 0 15
COFFEE 2 9 0] 0 11
TOTAL 24 28 0 0] 52

At the end of the third week, an updaté and a printout are required.
All Mr. Swift must do is replace line number 1010, as shown on the
next page. The BCD data file is updated, and the printout shows
the entries for the third week and the resulting changes in the
totals. ‘ '

73

1010 paTaA 1,2,7,2,3,5,3,3,1,4,3,5,5,3,12,-1,0,0

?RUN
MARCH

1 2 3 4 TOTALS
SALT 3 4 7 0 14
PEPPER 7 5 5 0] 17
SUGAR 4 3 1 0 8
NUTMEG 8 7 5 0 20
COFFEE 2 9 12 0 23
TOTAL . 24 28 30 0 82

VALUE OF E TO 1000 PLACES

The following program asks for a number less than 1000 and then
calculates the value of E (base of natural logarithms) to that
many decimal places. The string variable C$ is used to generate
the individual digits of the result. The inner loop between lines
190 and 240 gives one more digit of the result each time the loop
is entered. Line 250 converts an integer digit M to a character

in the output line. Line 275 causes the line to be printed after
the FOR loop‘starting at 170 has been exhausted. Each pass through
the loop starting at 170 produces one line of output with up to 25
digits of the result.

5 cs(1)="0"
10 c$(2)="1"
15 c$(3)="2"
20 C$(4)="3"
25 C$(5)="4"
30 C$(6)="5"
35 €$(7)="6"
40 C$(8)="7"
45 C$(9)="g"
50 C$(10)="9"
60 PRINT "HOW MANY DECIMAL PLACES";
70 INPUT P
80 IF P GTR 1000 GOTO 60
90 X=0
100 DIM A(1000)
110 PRINT " THE VALUE OF E IS APPROXIMATELY 2."
120 FOR I=2 TO 1000
130 a(1)=1
140 NEXT I
150 A(1)=0

74

160 FOR I= 1 TO INT (P/25+1)
170 FOR N=1 TO 25

180 M=0

190 FOR J=2 TO 1000

200 X=1002-J

210 L=A(K)*10+M

220 M = INT(L/K)

230 A(K)=L~-M*K

240 NEXT J

250 PRINT CS$S(M+1);

254 X=X+1

256 IF X GEQ P THEN 300
260 A(1)=0

270 NEXT N

275 PRINT

280 NEXT I

300 PRINT

1000 END
?RUN

HOW MANY DECIMAL PLACES?500
THE VALUE OF E IS APPROXIMATELY 2.

7182818284590452353602874
7135266249775724709369995
9574966967627724076630353
5475945713821785251664274
2746639193200305992181741
3596629043572900334295260
5956307381323286279434907
6323382988075319525101901
1573834187930702154089149
9348841675092447614606680
8226430016847741185374234
5442437107539077744992069
5517027618386062613313845
8300075204493382656029760
6737113200709328709127443
7470472306969772093101416
9283681902551510865746377
2111252389784425056953696
7707854499699679468644549
0598793163688923009879312

75

APPENDICES

APPENDIX A - TELETYPE QOPERATION

The Control Data 3300 computer at Oregon State operates under a
time-sharing operating system called 0S-3 ("Oregon State Open

Shop Operating System").

Each user must first establish contact with the computer through

the facilities of the operating system. 1In local jargon, this is
called "Logging On." A brief, but hopefully adequate description
of how to log on and off will be given here. For a more complete
treatment of 0S-3, the reader may consult ccm-71-07, "Primer for

0S-3 Users". |

- Before you can log on to the system, you must have a currently
valid six-digit job number/four-character user code combination.
To obtain information regarding these access codes, visit or call
Room 126 in the basement of the Computer Center (phone 754-2494).

When you have obtained a job number/user code and have located
a teletype which is (or can be) connected to the system at 0OSU,
follow these steps to log on.

1) Turn the MODE SELECT knob on the front right-hand corner
of the machine to LINE position.

2) Depress the "CNTL" key (leftmost key, third row from top)
and the A key simultaneously.

3) The computer (0S-3 actually) will type "#" and wait about
20 seconds for you to enter your job number, a comma, your
user code, and then terminate the line with a carriage
return (CR key, second key from right end, second row
down) .

4) If you do all this within 20 seconds, 0S-3 will type
masking characters over what you typed, then print a
message giving the data, time, and number of your terminal
(or perhaps a message "ILLEGAL JOB/USER NUMBER" if you

mistyped a character).

5) 1If you get the ILLEGAL NUMBER message, Or no message at
all, repeat steps 2 and 3. Otherwise, 0S-3 will have
typed another "#" - its trademark - and you may now
enter BASIC by typing BASIC followed by a carriage return.

When you wish to conclude your run, you must once again establish
communication with the 0S-3 control mode routine (trademark "#").
This may be accomplished by again depressing the CNTL and A keys
simultaneously. The control mode routine will respond with "#",
and you may type LOGOFF and a carriage return to end your session
with the computer. Note that unless you have taken steps to save
your program, it will be lost when you logoff.

80

STATEMENT

LET
READ

MAT READ

DATA
PRINT

MAT PRINT

INPUT
WRITE

MAT WRITE

GO TO

ON
IF - THEN

FORMS OF BASIC STATEMENTS

SYNTAX

LET<variable>=<expression>

APPENDIX B

(LET is optional)

READ<variable>,<variable>,...,<variable>

READ % LUN<variable>,<variable>,e¢..,<variable>

MAT READ<matrix variable>,<matrix variable>,...,

<matrix wvariable>

DATA<number>,<number>, ..., <number>
PRINT<1list>

<list> may include:

a variable, an expression, a message in
quotes, or any combination of these
separated by commas or semi-colons.

"THE VALUE OF X IS",

Example:

10 PRINT A, B, C,

A+B*COS (C)

PRINT % LUN,<list>

MAT PRINT<matrix variable>,<matrix variable>

<matrix variable>

MAT PRINT:<filename>:<matrix variable>,

<matrix variable>,...,<matrix variable>

INPUT<variable>,<variable>,...,<variable>

WRITE:<filename>:<variable>,<variable>,...,

<variable>

F e 0o g

MAT WRITE:<filename>:<matrix variéble>,<matrix

variable>,...,<matrix variable>
GO TO<line number>

ON<expression>G0 TO<line number>

IF<expression><relational symbol><expression>

THEN<line

number>

IF<expression><relational symbol><expression>
GO TO<line number>

81

FOR

NEXT
END
STOP
DEF

GOSUB
RETURN
DIM
OPEN
IFEND
CLOSE
REM
RESTORE

SCRATCH
MAT

FOR<unsubscripted variable>=<expression>TO

<expression>STEP<expression> NOTE: FOR and NEXT
are used in pairs
only to delimit a
END loop to be repeatedly
executed. FOR-NEXT

STOP . . .

- | pailrs may occur within
DEF FN<letter> (<unsubscripted other such pairs.

NEXT<unsubscripted variable>

variable>)=<expression>
GOSUB<1line number>
RETURN
DIM<letter> (<integer>) ,<letter> (<integer>,<integer>)...
OPEN % <lun>,"name"
IFEND % LUN
CLOSE % LUN
REM <any string of characters>
RESTORE
RESTORE % LUN
SCRATCH % LUN
MAT<matrix variable>=<matrix variable>+<matrix variable>
MAT<matrix variable>=<matrix variable>-<matrix variable>
MAT<matrix variable>=<matrix variable>*<matrix variable>
MAT<matrix variable>= INV<matrix variable>
(Invert matrix)
MAT<matrix variable>= TRN<matrix variable>
(Transpose matrix)
MAT<matrix variable>= (<number>)*<matrix variable>
MAT<matrix variable>=ZER
(Fill matrix with zeros)
MAT<matrix variable>=CON
(Fill matrix with ones)
MAT<matrix variable>=IDN
(Set up identity matrix)
MAT<matrix variable>=<matrix variable>

82

BASIC FUNCTIONS

Available functions are:

Function

Purpose

SIN(X)
COS (X)
TAN (X)
ATN (X)
EXP (X)
ABS (X)
LOG (X)
SOR (X)
SGN (X)
RND (X)
INT (X
TAB (X)

Sine of X

Cosine of X X must be in radians
Tangent of X _

Arctangent of X

Natural exponential of X >
Absolute value of X

Natural logarithm of |X|

Square root of |X|

Sign of X (-1 if 'X<0, 0 if X=0, +1 if X>0)
Generate random number

Integer part of X -

Used in a PRINT statement. Tabs over to the
Xth print position. If the current print
position is greater than X it is ignored.

83

APPENDIX C

ERROR MESSAGES

Because most programs under development contain errors, a series
of error messages is included in BASIC. Some of the messages
are received during compilation and others during execution of a
program. Many of the messages not only identify the type of
error, but indicate the line number where the error occurred.

In the following table, XXX denotes a line number.

During execution, some messages occur that do not stop execution,
but inform the user of irreqular conditions existing in identified
lines of the program. Other messages, however, point out more
serious errors that cause execution to stop.

COMPILATION ERRORS

MESSAGE : MEANING
DIMENSION ERROR XXX An array has previously been
dimensioned.
END IS NOT LAST - END statement encountered before

the last of the program.

FOR WITHOUT NEXT XXX There is no NEXT statement that
matches FOR statement.

ILLEGAL FORMULA XXX Perhaps the most common error
message. May indicate missing
parentheses, illegal variable
names, missing multiplication
signs, illegal numbers, or
almost any syntax error. Check
the statement thoroughly.

INCORRECT FORMAT XXX - Error in data for a DATA statement,
improper subscript format, or
incorrect statement syntax.

LABEIL IS UNDEFINED XXX Line XXX contains a reference to a
label that does not exist.

NO END STATEMENT The END statement is missing from
the program.

85

NOT ENOUGH NEXTS A NEXT statement is missing. This
message can occur in conjunction
with NOT MATCH WITH FOR XXX.

NOT MATCH WITH FOR XX There is an incorrect NEXT statement,
perhaps with a wrong variable given.
Check also for incorrectly nested
FOR statements.

PROGRAM TOO LONG Either the program is too long, or
the amount of space reserved by the
DIM statements is too much, or both.
Cut the length of the program, reduce
the length of printed labels, or
reduce the size of the lists and
tables, or reduce the number of

N simple variables.

SYSTEM OR BASIC ERROR Probably due to an error in the BASIC
compiler. Please notify Computer
Center. If possible provide documen-
tation so that the problem can be
fixed more readily.

UNDEFINED FUNCTION XXX The function referenced at line XXX
has not been defined with a DEF
statement.

COMMAND MODE ERRORS

FILE DOES NOT EXIST The file name specified in a FIN
command does not exist.

ILLEGAL COMMAND The command just typed in is not
one of the legal commands specified
in Appendix B.

LINE NOT FOUND The line specified in a list command
does not exist.

PARAMETER ERROR A parameter for the BASIC command
just given is in error.

EXECUTION ERRORS

ABSOLUTE VALUE RAISED A computation of the form (-3)+2.7 has
TO POWER XXX been attempted. The computer supplies
(ABS(-342.7) and continues. Note:
(-3)%3 is correctly computed to give -27.

ARRAY BOUNDS ERROR XXX A subscript has been called for that
lies outside the range specified in
the DIM statement, or, if -
statement applies outside the range
1 through 10 or is 0. The program
halts.

86

BAD IMAGE XXX

DIMENSION ERROR XXX

DIVIDE FAULT XXX

EXP TOO LARGE XXX

EXPONENT FAULT XXX

FILE ALREADY OPEN XXX

FILE IS BUSY

FILE NOT OPEN XXX
ILLEGAL LUN XXX

INPUT DATA NOT IN
CORRECT FORMAT XXX

INSUFFICIENT SAVE FILE
SPACE

There are syntax errors in the image
statement referenced by line number
XXX, or an attempt has been made to
put numeric data in an alphanumeric
field, or alphanumeric data in a
numeric field.

A dimension inconsistency has occurred.
The program stops.

A division by zero has been attempted.
The computer supplies 0 and continues
running the program.

The argument for the EXP function is
greater than 709.089.

A number larger than about 8.98847E307
has been generated. The computer
supplies 0 and continues running the
program. A number csmaller in absolute
size than about 10E-307 has been
generated. The computer supplies zero
and continues. In many circumstances,
underflow is permissible and may be
ignored.

The logical unit specified in an OPEN
statement is already open.

The file specified in a FIN, FILE, or
OPEN is currently open at another
terminal or in a currently running
batchH job. Also, if you open a file
within the IOS subsystem and then
transfer to BASIC with the file still
open, BASIC will give the FILE IS BUSY
message. This is not the case if
going from the EDIT subsystem to BASIC
since EDIT will automatically clos:z
any open files when transferring to
any other subsystem.

The file OPEN statement is missing for
this logical unit.

The logical unit referenced at line
XXX is not in the range of 1 to 20.

Data for an INPUT or a READ statement
is not in the correct format.

Not enough saved fil=z space available
for a file.

87

LOG OF NEG NUMBER XXX

LOG OF ZERO XXX

MATRIX MUST BE SQUARE

NEARLY SINGULAR MATRIX XXX

NUMBER TOO LARGE XXX

OUT OF DATA XXX

ON ERROR XXX

READING FROM OUTPUT UNIT XXX

RETURN BEFORE GOSUB XXX

The program has attempted to calculate
the logarithm of a negative number.
The computer supplies the logarithm
of the absolute value and continues.

The program has attempted to calcu-
late the logarithm of zero. The com-
puter supplies -8.98847E307 and con-
tinues.

Program tried to invert a non-square
matrix at line XXX.

The INV operator in MAT has encountered
a matrix with zero or nearly zero
pivotal elements. The matrix being
inverted is singular or nearly so.
Note, however, that this check is not
completely reliable. For instance,
this message need not occur even if

the inverse is meaningless, as with
high order Hilbert matrices. If this
error occurs, the program stops.

The result of an exponentiation is
greater than 8.988465E307. The wvalue
8.988465E307 used as a result.

A READ statement has been encountered
for which there is no DATA. If this
means a normal end of your program,
ignore the message. Otherwise, it
means that insufficient data has been
supplied. 1In either case, the program
halts.

The range of an ON--GOTO statement is
incorrect. Example: ON X GOTO 10,20,30.
When the integer value of X is either
minus, zero, or greater than 3, the
expression is out of range.

An attempt has been made to read from
a write mode file. Indicates a logic
error or no RESTORE statement encoun-
tered before read mode activity.

A RETURN has been encountered before
the first GOSUB in the program. Note:
BASIC does not require the GOSUB to
have an earlier statement number--only
to execute a GOSUB before executing a
RETURN. The program stops.

88

SQUARE ROOT OF A NEGATIVE
NUMBER XXX ‘

TOO MANY GOSUBS XXX

UNCHECKED END OF FILE XXX

/X/ GT 2436-1 XXX

ZERO TO A NEGATIVE POWER XXX

The program has attempted to extract
the square root of a negative number.
The computer supplies the square
root of the absolute value and con-
tinues.

Too many GOSUB calls have been made.
This refers to the number of nested
GOSUB calls. The level of nesting
is counted up by one for each GOSUB
that is executed and is counted down
by one for each RETURN executed.

An attempt has been made to write
into a read mode file. Indicates a
logic error or no SCRATCH statement.
encountered before write mode
activity.

The argument for a SIN, COS, or TAN
function is too big. A value of zero
is supplied and execution continues.

A computation of the form 04(-1) has
been attempted. The computer supplies
+ (about 8.98847E307) and continues.

!

89

APPENDIX D

COMPARISON ORDER FOR BASIC CHARACTERS

Internal
Collating Octal Line
Sequence Code Terminal Printer
00 60 Space Blank
01 12 :
02 13 = =
03 14 / #
04 15 & <
05 16 % 3
06 17 [[
07 20 + +
08 32 < <
09 33 . .
10 34))
11 35 " >
12 36 # —fhot)
13 37 H g
14 40 - -
15 52 | v (or)
16 53 $ $
17 - 54 * *
18 55 4 4

91

Collating Igiéiglilal Terminal L%ne [

Sequence Code Printer
19 56 @ v
20 57 > >
21 61 / /
22 72]]
23 73 ' ,
24 4 ((
25 ’ 75 « >
26 76 |\ =
27 77 ‘ ? A(and)
28 T 0 0
29 o1 | 1 1
39 02 2 2
31 03 | 3 3
32 04 4 4
33 | 05 ; 5 5 :
34 06 6 6 |
35 07 7 7 i
36 10] 8 8
37 ‘ 11 9 9

t

92

Internal

Coabeine octal | reminai | Line
Code
38 21 A A
39 22 B B
40 23 C C
41 24 D D
42 25 E E
43 26 F F
44 27 G G
45 30 H H
46 31 I I
47 41 J - J
48 42 K K
49 43 L L
50 44 M M
51 45 N N
52 46 0 o)
53 47 P P
54 50 Q Q
55 51 R R
56 62 S S

93

Collating | Internal 5 Line
Sequence Octal gTerminal Printer
Code |
57 63 T T
58 64 U U
59 ! 65 v \Y%
60 § 66 W W
61 | 67 X X
62 | 70 Y i 4
63 | 71 7 z

	0001
	0002
	001
	002
	003
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	51
	52
	53
	54
	55
	56
	57
	58
	59
	60
	61
	62
	63
	64
	65
	66
	67
	68
	69
	70
	71
	72
	73
	74
	75
	76
	77
	78
	79
	80
	81
	82
	83
	84
	85
	86
	87
	88
	89
	90
	91
	92
	93
	94

