ccm 73-01

GRAFIT USER NOTES

February 1973

COMPUTER CENTER

Oregon State University
Corvallis, Oregon 97331

GRAFIT USER NOTES

ccm 73-01

by

Jeff Ballance
Jo Ann Baughman
Larry Hubble

ACKNOWLEDGMENTS

We wish to express our appreciation to Lyle Ochs for
his advice and helpful suggestions during the design of the
system and during the writing of this manual. We also
wish to thank the many users who have been so patient and
helpful during the implementation of the system.

This work was supported in part by a National Science
Foundation grant (GJ28453) for which we are grateful.

TABLE OF CONTENTS

Page
Acknowledgments —======== o e i
Introduction ——=====—=s s e 1
General Comments — === === === == === o 1
ARRAY == e e e e e e e e o 4
AUTOSCALE === e e e e e e e e 6
COMMAND == = o o e e e 7
DEVICE === e e e e e 9
DOMAIN = e e e e e 10
ERASE === o e e e e e 11
ERSPLOT — === e e e e e e e e 12
BT m e e e e e 13
FORMAT ~— e e e e 13
FULL = e e e e e e e e e 13
HALF = e e e e 14
INCPLOT = s e e e e e e e 16
INPUT = e e e e 17
KIL L = o m o 17
LABEL == o e e 18
ON e e e e e 21
OFF e e e e e e e 21
PO = e e e e 23
PPLOT = o e e e 26
QUARTER == = o e e e e e e e e e 26
RANGE == e o e e e e 27
READ === = e e e e e e o 28
REPEAT == == e e e e e e e e e e e 29
S o 29
SIZE = e e e 30
SYSTEM == == o o e e e 32
WRITE == m o o e oo 33
Changing Parameter Values ——=—==———emmeom e __ 35

ii

APPENDIX I -- Function Definition =—=e——mmmommm o
‘APPENDIX II -- Examples ——=——=—=mcm e
APPENDIX III -- Abstracts ————emeemo e e

iii

44

NOTES ON THE GRAFIT SYSTEM

Introduction

The GRAFIT system is an interactive program for displaying
data on the Tektronix terminal and/or the Calcomp plotter or
- on a Hewlett-Packard teletype compatible X-Y plotter and/or
the Calcomp plotter. The system contains a small function
translator which allows one to define functions on-line.
These functions may be specified by a formula or as the solu-
tion to a system of differential equations. Commands exist
for defining array storage, reading and writing data files, and
for plotting functions and arrays. One of the major features
of the system is the capability of defining one's own commands.
This is done by simply supplying a FORTRAN compatible subroutine
which carries out the desired operations.

General Comments

The GRAFIT system is stored as an overlay on the public
file *GRAFIT and may be called by typing the file name as a
control mode statement. Since GRAFIT may be run from a tele-
type or Tekterminal, the following question is asked upon
entering the system:_'

ARE YOU AT A TEKTERMINAL?

This question must be answered with a YES or NO depending upon
the device being used. After this question is answered, the
program will signal that a command may be entered by printing
a ">" and ringing the bell.

After the ">" has been printed and the bell rung, a command
or function definition may be given. A description of each of
the commands is given on the following pages.

Functions are entered in a notation similar to that of
ordinary mathematics and that used by programming languages
such as FORTRAN. A complete description of the language for
function definitions is given in Appendix I.

The size of the area used for plotting on the various
devices may be determined by the user and may differ if plotting
is being done on two devices simultaneously.

The plotting area may be divided into a maximum of four
plotting regions. Each of these regions may contain a set of
axes and curves independent of the other plotting regions.

Shown below is the sequence of commands necessary to define
and plot a function. The plot produced is also shown. (Items
typed by the user are underlined throughout this document.)

>F(T) = A*T42 + SIN(W*T)

A= 2
w=28
>PLOT, F
FULL DOMAIN SPECIFICATIONS
INITIAL VALUE = -3.0

FINAL VALUE = 3.0
NUMBER OF POINTS = 101

Typing errors may be corrected by using the backslash
(\) to delete the previous character or the at sign (@) to
delete the current line of input. If an input string is too
long to fit on one line, it may be continued on the next line
by pressing the line feed (LF) key at the end of a line. Input
will be accepted from the next line after a carriage return
has been outputted and the bell rung.

If plotting is to be done on the Calcomp plotter, logical
unit number 10 must be equipped to the plotter and labeled
before entering GRAFIT.

1.88€ 01]

<4

o
-l

350

Figure 1. The plot produced by the sequence of commands

given above.

DESCRIPTION OF THE COMMANDS

ARRAY,<array name> (<size>),...

The ARRAY command is used to reserve storage for singly
subscripted variables. The type (real or integer) is deter-
mined by the first character of the name, i.e., names with
first characters I-N are integer and names beginning with
the other letters are real.

In addition to defining array storage, the command may

be used to initialize an array to have functional values.
The general form of the command to do this is:

ARRAY, <array name> (<size>) =

<function name> (<initial value>;

<final value>)
where the function name is the name of a previously defined
function. The first argument of the call is assumed to be the
initial value of the independent variable of the function.
Other arguments preceding the semicolon are assumed to be fixed
parameters. The semicolon and final value are optional; but if
specified, will cause the entries in the array to correspond to:

£(ty), f(ti + At),...,f(tf)

where t;, is the inital value specified, t; is the final value
specified, and At is the increment calculated by:
t. - ti

At = £
[(array dimension)-1]

For example, the command

ARRAY,A(101)=SIN(0;1)
would define the array A to have 101 floating-point locations
and would initialize the array to contain the values of the
function SIN beginning at 0, with increment 0.01.

If the final value is omitted in the function argument
list, an increment of one is used.

An array may be initialized to have the same values as
another array with the above form of the command. The

4

argument list on the second array is ignored. Hence, the two
-arrays must be of the same dimension.

Examples:
ARRAY,A (101) ,B(26)
ARRAY,C(51) = F(0;3)
where F is a function that has already been defined.
ARRAY,D(51) = C

where C is the array defined in the previous example.

AUTOSCALE,< plotting region>,...

The AUTOSCALE command will cause the ranges of the axis
to be automatically determined, i.e., the data will be scanned
to pick the maximum and minimum values. The origins of the
axis are determined as follows: a) if zero is in the range,
the origin is set to zero; b) if zero is not in the range,
the origin is set to the low value. If the range is zero,
the low value will be set to -1.0, the high value will be set
to 1.0, and the origin will be set to -1.0.

The plotting area may be divided by the HALF and QUARTER
commands (see pages 14, 26) into plotting regions. Axis and
curves drawn in each of the regions are produced independently.
Thus, the plotting region parameter allows the ranges to be
determined automatically in the regions specified. The plotting
region mnemonics are those defined by the HALF and QUARTER
commands (see pages 14, 26).

Examples of the AUTOSCALE command:

AUTOSCALE
The ranges for the axis in all of the plotting
regions will be automatically determined.

AUTOSCALE,UL,LR
The ranges for the axis to be drawn in the upper
left (UL) and lower right (LR) corners of the
plotting area will be automatically determined.
These plotting regions would have been defined
by a QUARTER command.

COMMAND, <subroutine name>(<argl>,...,<argn>),<file or library
containing the binary deck>

This command allows a user to incorporate FORTRAN com-
patible subroutines into the system as commands. Once defined
as commands these subroutines can be executed by simply typing
the subroutine name and the actual argument list.

The information that must be given in the COMMAND state-
ment is déscribed below:
a) The subroutine name may be that of any FORTRAN com-
| patible subroutine and may be no more than eight
characters in length.
b) The list of arguments enclosed in parenthesis following
the subroutine name in the COMMAND statement must
agree in type (real or integer) and number with the
actual parameter list.
c) The information following the argument list in the
COMMAND statement is assumed to be the name of a
file containing the binary deck of the subroutine
and/or a loader library specification. If the binary
deck is stored on a loader library, the file name must
be specified using the library specification, e.g.,
‘LIB=*ARAND where *ARAND is a loader library file.
If a file name is given without a library specification,
an attempt will be made to load all of the decks on
the file. If this information is omitted, it will be
requested.

Before giving some examples of the COMMAND statement, the
following restrictions and notes should be made:
a) Subroutines used as commands cannot use unlabeled COMMON or
the COMMON/DATA storage areas. However, subroutines
may use labeled common blocks.
b) Subroutines used as commands cannot have more than
twenty-four arguments.

Examples of the COMMAND statement are given below:

COMMAND, SUMSQ (A, N, SQ) , *SUMSQB
COMMAND , AVERG (A ,N,AV)

ENTER THE FILE NAME: *AVERAGE
COMMAND, SMO (A,L,WGT ,M,L,B) , LIB=*ARAND

After a subroutine has been declared as a command, it may
be executed by typing the subroutine name and the actual argu-
ment list. For example, suppose the subroutine AVERG in the
examples above had been made a command. Typing

AVERG(A,100,AV)

would compute the average of the 100 data points stored in the
array A and return the result in the parameter AV.

DEVICE, <plotting device>

The DEVICE command is used to change the plotting device.

The plotting device modifiers allowed are determined by the

terminal from which the program is being run. If the input is

coming from a Tekterminal, the options are:

A)

B)

C)

=
-h

B)

C)

Notes:

CALCOMP - Plotting will be done for the Calcomp plotter.
The plotting information will be written on
logical unit 10, which must be equipped to
the plotter or to a file which will be copied
to the plotter at a later time.

TEK -~ Plotting will be done on the Tekterminal screen.

BOTH - Plotting will be done for both the Calcomp
and Tekterminal.

the input is coming from a teletype

CALCOMP - Plotting will be done on the Calcomp plotter.
The plotting information will be written on
logical unit 10, which must be equipped
to the plotter or to a file which will be
copied to the plotter at a later time.

HP - This option will cause information to be

| output in a form suitable for a Hewlett-Packard
teletype compatible X-Y plotter. If the
terminal is not equipped with such a plotter,
the data will be printed on the terminal.

BOTH - Plotting will be done for both the Calcomp
and Hewlett-Packard plotters.

1) When plotting is done on the Calcomp, the EXIT
command should be used to terminate the program.

2) The ERASE command must be used before a DEVICE
command in which the plotting device is changed
from CALCOMP or BOTH to TEK or HP. If this is.not

done, a portion of the Calcomp plot will be lost.

DOMAIN,<plotting region>,<INITIAL value>,< FINAL value> ,< NUMBER

of points>,...

This command is used to specify the domain of the inde-
pendent variable for the plot in the region specified by the
user. When plotting is done in this region, the independent
variable will take on the wvalues ti,ti+At,...,tf where

ti = jinitial value,
tf = final value, and
At = te - %

[(number of points)-1]

The plotting region parameter must be used when more than
one set of axis is to be produced on the screen. If the plotting
region parameter is omitted, the command is assumed to refer
to the region plotted in by the first plot command following
a FULL, HALF, or QUARTER command. See pages 14 and 26 for a
description of the order in which the plotting regions are
used.

The mnemonics used for the plotting region parameter are
described in the discussion for the QUARTER and HALF commands.

If the DOMAIN command is given without any parameters,
the domain specifications will be requested for all regions
in which plotting is to be done. For example, if the full
plotting area was to be occupied by one plot, the following
sequence would occur:

DOMAIN
FULL DOMAIN SPECIFICATIONS
INITIAL VALUE = 0.0
FINAL VALUE = 1.0
NUMBER OF POINTS = 10

where the underlined quantities were entered by the user.

Further examples of the DOMAIN command are:

10

DOMAIN,UL,‘l,l,zol
This command specifies the domain of the plot in
the upper left quarter of the plotting area.

DOMAIN,O0,,301
Since no plotting region is specified, this command
specifies the domain of the first region in the
plotting area in which plotting is done. The
previously specified final value will be left
unchanged since it was omitted.

ERASE

The ERASE command causes the screen to be erased. Following
the screen erasure, commands will be requested at the top of

the screen.

11

ERSPLOT, <plotting region>,...,<n>,<m>

The ERSPLOT command is used to clear the plotting area
and replot, for selected plotting regions, the functions
specified by previous PLOT commands. The parameters n
and m allow families of curves to be generated. The n para-
meter is the number of increments (may be non-integral) to add
to each of the varying parameters before the first curve is
plotted. The m parameter is the number of successive curves
to generate.

For example, suppose the function F(T) is plotted on the
full plotting area and contains a varying parameter "A" with
a current value of 1.0 and with an increment of 0.5. The
command

ERSPLOT, 3,2

would cause the screen to be erased and two curves plotted
corresponding to the function F(T) evaluated with A having
the value 2.5 and 3.0 respectively.

Other examples of the ERSPLOT command are given below:

ERSPLOT,UL, ,2
After erasing the screen, the functions specified
to be plotted in the upper left (UL) corner
of the plotting area are evaluated for the
current value of the varying parameters and
plotted; the varying parameters are then
incremented and the functions re-evaluated and
plotted.

ERSPLOT
All of the functions specified to be plotted by
previously given PLOT commands are evaluated,
using the current values of the varying para-
meters, and plotted in their respective plotting
regions.

12

EXIT

The EXIT command may be used to terminate the program.
Either the EXIT command or the ERASE command must be used

before terminating plotting on the Calcomp plotter. If
neither of these commands is given, a portion of the Calcomp

plot may be lost.

FORMAT ,<F or E><column width>.<number of digits to follow the

decimal point>

This command allows the user to specify a FORTRAN F or
E format for numbers written by the WRITE command (see page 33).
The WRITE command produces records which contain one item
from each of the elements in the list in the corresponding
order. Each item will be written in the specified format.
In specifying the format one should be careful to specify a
field width wide enough to allow at least one blank between
successive values on a line if the values are to be read by
the READ command. If no FORMAT command has been given prior to
a WRITE command, an El2.4 format will be used.

Examples of the FORMAT command are:

FORMAT,F6.2
FORMAT ,E16.8

FULL

The FULL command resets the plotting regions so that one
set of axis will fill the entire plotting area defined by the
SIZE command (see page 30 for a description of the SIZE
command). Successive PLOT commands will cause the screen to
be erased and the plot produced, again filling the entire
plotting area as currently defined by the SIZE command.

Note: Upon entering the system, the size of the plotting area
is 5.5" wide and 4" high, and the plotting region is

defined to fill the entire area.

13

HALF,<region for 1lst plot>,<region for 2nd plot>

The HALF command allows the plotting area as currently
defined by the SIZE command to be divided into two separate
regions where plotting may be done. The plotting area may be
divided vertically to give a left half (LH) and right half (RH)
split or horizontally to give a top half (TH) and bottom half
(BH) split. If no parameters are given on the HALF command,
‘the horizontal division is assumed, which is equivalent to the
command

HALF,TH, BH

Examples of the HALF command are:

HALF ,LH,RH
The vertical division of the plotting region is
made. The first set of axes, specified by the
first PLOT command following the HALF command,
will go on the left half (LH) of the plotting
area; and the second set of axes, specified
by the second PLOT command following the HALF
command, will go on the right half (RH) of the
pldtting area.

HALF,TH
The horizontal division of the plotting region
is made. Only one set of axes may appear in the
plotting area at a time. Each successive PLOT
command will cause the screen to be erased and
a new set of axes to be drawn on the top half
of the plotting area.

~Notes: 1) The order of the region specifiers (TH,BH,LH,RH)
‘ determines the order in which the regions will be
used by successive PLOT commands.
2) Either one or two regions may be specified--the
graphs actually being produced with one or two
_§ucqgssive PLOT commands respectively.

14

3)

After all of the specified regions have been
filled by successive PLOT commands, another PLOT
command will cause the screen to be erased and
the functions specified plotted in the first
specified region. For example:

HALF,LH,RH

The plotting area is divided vertically.

- pLOT,F i
"The function F will be plotted in the
first region (LH).
PLOT,G |

The function G will be plotted in the
second region (RH).

The function H will be plotted in the
first region (LH) after the screen
has been erased.

15

INCPLOT,<plotting region>,...,<n>,<m>

The INCPLOT command is used to generate families of curves
in selected plotting regions from functions specified in previous
PLOT commands. The parameters n and m allow families of curves
to be generated. The n parameter is the number of increments
(may be non-integral) to add to each of the varying parameters
before the first curve is plotted. The m parameter is the
number of successive curves to generate.

For example, suppose the function F(T) is plotted on the
full plotting area and contains a varying parameter "A" with
a current value of 1.0 and with an increment of 0.5. The
- command
INCPLOT, 3,2

would.caﬁse the two curves to be plotted corresponding to the
function F(T) evaluated with A having the value 2.5 and 3.0
respectively.

Other examples of the INCPLOT command are given below:

INCPLOT,UL,,2
The functions specified to be plotted in the
upper left (UL) corner of the plotting area
are evaluated for the current value of the
varying parameters and plotted; the varying
parameters are then incremented and the functions
re-evaluated and plotted.

INCPLOT
All of the functions specified to be plotted
by previously given PLOT commands are evaluated,
using the current values of the varying para-
meters, and plotted in their respective plotting
regions.

16

INPUT, <logical unit number or file name>

The INPUT command allows commands and other inputs to
be read from a file. This command would be used if the same
sequence of statements was to be used many times. The sequence
of commands would be entered in the EDITOR and stored on a
file and then called in using INPUT. When an end-of-file is
sensed, input is again accepted from the terminal. The
iNPUT command can only accept information from the EDITOR
that was saved with the OUT command. Do not FILE or COUT
information in the EDITOR that is to be used by the INPUT
command .,

KILL

The KILL command may be used to clear the com
occupied by commands, arrays, and functions. The forms of
-the command are described below:

A) KILL,FUNCTIONS
All user defined functions and arrays are deleted.
The storage area and names may be reused.

B) KILL,COMMANDS
All user defined commands are deleted.

C) KILL
This form of the command causes both A) and B) to be
executed.

Note: Form B) or C) of the KILL command should be used if an
~error occurs while defining a command which places the
user in control mode. When placed in control mode, one

can return to GRAFIT by giving the MI control mode command.

17

LABEL,<plotting region>;<alphanumeric information>;...

The LABEL command allows the use of graphics input to

position a message on the display or to get the coordinates

of points on the graph.

The particular option chosen is

signaled by the character typed after the crosshairs have been

turned on and positioned.

A)

B)

C)

DEL -

SPACE BAR -

Any other key -

The options are described below:

Pressing the DEL key signals that a
series of straight line segments is

to be drawn. The crosshairs will be
turned on again and may be positioned.
Pressing the DEL key again will cause a
line to be drawn between the last and
the current point signaled with the DEL.

Pressing the SPACE BAR signals that

the coordinates of the point are to be
printed. After the SPACE BAR has been
pressed in response to graphics input,
the crosshairs are turned on again so that
the printed coordinates may be positioned
away from the curve. After repositioning
the crosshairs, pressing any key will
cause a line to be drawn from the point
signaled by the SPACE BAR to the current
position and the coordinate pair (x,y)

printed beginning at the current position.

Pressing any other key will terminate
the graphics input sequence. If a
message is to be printed, it will be
drawn starting at the current position

of the crosshairs.

The plotting region must be specified if more than one is

being used (the first plotting region is assumed if none is

specified), to insure that the coordinates will be printed

in the correct units.

18

If plotting is not being done on the Tekterminal, only
~alphanumeric information may be placed on the plotting regions.
This information will be drawn beginning at the upper left-hand
corner of the specified plotting region.

To illustrate the use of the LABEL command, suppose we
have divided the screen using the HALF command into two
plotting regicns (TH and BH) and have plotted SIN(T) on the
TH and COS(T) on the BH. The following sequence would produce
the labeling shown in Figure 2.

LABEL,TH; SIN(T) ; BH; THIS IS A;;PLOT OF COS(T) - (CR)

TH sequence: (position crosshairs) (SPACE BAR)
(position crosshairs) (any other
key--the coordinates are printed)
(position crosshairs) (any other
key--label is drawn)

BH sequence: (position crosshairs) (DEL) (position
crosshairs) (DEL~-the line segment
is drawn) (position crosshairs) (any
other key--the first part of the
message is drawn) (position cross-
hairs) (any other key--the second
part of the label is drawn)

Note that an alphanumeric message will not be drawn
immediately following the printing of the coordinates of a
point, but that in this case a new graphics input sequence is
begun. This feature can be used to get the coordinates of several
points with only one LABEL command. For example, giving the
command :
' LABEL;

will allow any number of points to be labeled with their
coordinates. Upon terminating the graphics input sequence,
the empty string will be drawn i.e., nothing is drawn.

19

Note: When plotting is being done on BOTH the Calcomp and
Tekterminal, any labeling done on the Tekterminal will
be done on the Calcomp plotter also.

1.00 {SIN(T)

3.14€ 00,-9.03E-03

o]

1.00 THIS IS A
PLOT OF COS(T)
' + + | : =y

-1.00

Figure 2. These plots illustrate the use of graphics
input to position labels and get the coor-
dinates of points.

20

ON or OFF,<plotting region>,<effect>

The ON and OFF commands allow the user to control certain

plotting effects and certain calculation effects. The plotting

region modifier only applies when the effect is for plotting.

The plotting effect modifiers are:

and tic mark labels will not be drawn

in the specified plotting region if AXIS is OFF.

AXIS - The axis
TICLABEL
drawn in
TICLABEL

- The labels on the axis's tic marks will not be

the specified plotting region if
is OFF. No labels will be drawn at

the tic marks if AXIS is OFF.

The calculation effects regard the solution to differential

The effects and their descriptions are given below:

- determines which predictor-corrector scheme is

to be used when solutions to differential

equations are calculated.

equations.
ITERATED
ON -
OFF -
FIXED

Iterated Method

A fourth order Adams corrector is
iterated until the normalized difference
between successive corrected values is

less than 10710,

Modified Predictor-Corrector Method

This method involves adding a correction
to the predicted and corrected values

at each step to compensate for the

truncation error.

- determines whether the initial stepwidth h is

to be allowed to be doubled and halved by the
program or is to remain constant throughout the

calculation of the solution to a system of

differential equations.

ON - The stepwidth h is to remain fixed

throughout the calculations.

21

OFF - The stepwidth h is to be halved and
doubled to keep the local truncation
error in the interval (10'5,10'8).

ERROR - the value of this variable determines if the
bound for the total error is to be calculated
when systems of differential equations are solved.

ON - The error bound will be calculated when
a system of differential equations is
solved. When a system of differential
equations is compiled, the quantities
for the largest eigenvalue and the
roundoff error used in the calculation
of the error bound will be requested
along with the initial conditions of the

set of equations.

OFF - The error bound will not be calculated
when a system of differential equations
is solved and the quantities needed for
the calculation of the error bound
will not be requested. Default values
will be assigned to these quantities.

22

PLOT, <function. or array name>,...

PLOT, (<function or array name>,<function or array name>),...

The PLOT command will produce a plot of the specified
fanctlons and/or arrays as ordered pairs (t,f(t)) or para-
meterically as (f(t),g(t)). The functions will be evaluated
at equally spaced points in the domain. The points plotted

will be f(ti),f(ti+At),...,f(tF) where
ti = initial value specified in the DOMAIN command,
tf = final value specified in the DOMAIN command, and
At = te ~

[(number of points)-1]

Arrays are assumed to contain elements which correspond to
- the successive values taken on by the independent variable,
i.e., (tl,A(l)),(tl+At A(2)),... where A is an array to be
plotted, and t; and At are defined as above.

A parametric plot is specified by giving the ordered pairs
of functions to be plotted. For example, if a plot of f(t)
versus g(t) was to be produced, giving the command

PLOT, (G,F)
would cause the plot to be produced.
Another example of the PLOT command is:

PLOT,F,G
This would cause the functions or arrays F and
G to be plotted as F(T) versus T and G(T) versus
T on the same axis set.

In addition to specifying which functions to plot, one
can also specify how the functions are to be plotted, i.e., with
data marks, dashed lines, no lines connecfing the data points,
or any combination of these. Following a function name or

ordered pair of functions with one or more of the special words

POINTS
DASHES
MARK (code for mark)

will cause the function to be plotted with the specified

23

effects. The codes for the data mark must be one of the
following:

Code Data Mark
1 small x
2 large x
3 small +
4 large +
5 small -
6 large -
7 small ¢
8 large 1
9 small +

10 large 4
11 small +
12 large +
13 small -
14 large -
15 small «
16 large <«
17 small A
18 large
19 small A
20 large A
21 small *
22 large *
23 small X
24 large X
25 small ®

NN
® 9 o
= 0
P 3 o
N o K
Q = Q
o = O
(OROW |

24

An example of the use of the effects is:

PLOT,F,POINTS,G,MARK (1)
When the plot is produced, F will be plotted
with points, i.e., no lines will be drawn
between the data points; and G will be plotted
with a small x at each data point and with
lines connecting the points.

Notes: 1) A maximum of eight functions may be specified to
be plotted by one PLOT command.

2) If a DOMAIN command has not been given before the
first plot command is given for a plotting area,
the domain specifications will be requested.

3) Once the domain values (initial point, final point,
and number of points) have been specified, they
remain in force until redefined by a DOMAIN
command.

25

PPLOT,<function or array name>,...

PPLOT, (<function or array name>,<function or array name>) ;...

The PPLOT command will produce polar plots of the speci-
fied functions or arrays. The description of this command is
the same as for the PLOT command (see page 23) except that
the ordered pairs (0,R(0)) or (TH(O),R(0)) are plotted instead
of (T,F(T)) or (G(T),F(T)).

QUARTER, <region for 1lst plot>,...

The QUARTER command allows the plotting area, as currently
defined by the SIZE command, to be divided into four regions
where plotting may be done. The parameters on the QUARTER
command determine the order in which the regions will be used
by successive PLOT commands. The number of parameters deter-
mines the number of axes sets that may appear in the plotting

area concurrently.

If the QUARTER command is given with no arguments, the
four regions are initialized for plotting so that four sets
of axes may appear in the plotting area. The order in which
the plotting regions will be used by successive PLOT commands
in this case are:

UL - upper left corner
UR
LL

LR - lower right corner

upper right corner

lower left corner

An example of the QUARTER command is:

QUARTER,UL,LR
The plotting area will be divided into four
regions. The next two PLOT commands will
produce plots in the UL and LR plotting regions
respectively. A third PLOT command would cause
the plotting area to be cleared and the plot
produced in the UL plotting region.

26

RANGE,<plotting regicn>,<low value dep>,<high value dep>,

<origin dep>,<low value ind>,...

The RANGE command is used to specify the ranges of the
dependent and independent axes. If the range of the indepen-
dent axis is not specified, it will be determined from the
domain specifications if the ordered pairs (t,g(t)) are
being plotted or by automatically scaling the first component
data when ordered pairs (g(t),f(t)) are plotted. 1If the
ranges have not been specified by a RANGE command, they will
be automatically determined. The plotting area mnemonic is
the same as those used on the QUARTER and HALF commands.

If no modifiers are given on the RANGE command, the
pertinent information is requested for all plotting regions.
A question is asked after the dependent axis range has been
specified as to whether the independent axis range is to be
specified. The following example is of an unmodified RANGE
command with user responses underlined:

>RANGE
FULL RANGE SPECIFICATION
LOW VALUE = =-1.0

HIGH VALUE = 1.0

ORIGIN = 0.0

DO YOU WISH TO SPECIFY FOR BOTH AXES? YES
LOW VALUE = 0

HIGH VALUE = 3.0

ORIGIN = 0.0
Other examples of the RANGE command are given below:

RANGE,0'3,0
RANGE,UL'—].,S’O,—4'7,0

Note: A DOMAIN command will cause the independent variable
axis range to be automatically determined. Hence, if
the ranges of both axes are to be set by the RANGE
command, i.e., a plot of the form (G(T),F(T)) is to be

produced, the domain specifications must be given first.

27

READ,(<pa:ml>,...,<parmn>),<lun or file name>

READ, (<array namel>(<index variable>),...,<carray name >
(<index variable>) ,<index variable>=<initial value>,

<final value>,<increment>) ,<lun or file name>

The READ command is used to read parameter values or array
elements from a file or from the terminal. The values are read
in a free format with blanks or other special characters

delimiting the numbers.

When the second form of the READ command is used, the
index is set to the initial value and values read are stored
in the arrays using this index until the list of array names
is exhausted; then the index is incremented and the process

is repeated. If the increment is not specified, it is assumed
to be one. If a lun or file name is not specified, the values
will be read from the terminal.

To facilitate the use of segmented files, a search-end-
of-file-forward is executed on the files from which array
values have been read. This is not done if parameter values

have been read.
Examples of the READ command are given below:

READ, (A,B),1
Values for the parameters A and B are read from
logical unit 1.

READ, (C(I),D(I),I=1,10),2
Values for the arrays C and D are read from
logical unit 2. The values are read in the order
c(1), b(1), c(2), bp(2),...,c(10), D(10). After
the values have been read, a search-end-of-file-
forward is executed so that the next READ from
lun 2 would read values from the first record

following the end-of-file.

Note: An error occurs if an end-of-file or end-of-data is
encountered before the list has been satisfied. The
data files must not be in a compressed form as is pro-
duced by the FILE or COUT commands in the EDITOR.

28

REPEAT

This command allows the user to re-execute the last user
supplied command given. For example, one could have specified
several of the arguments as parameters in the original call.
By giving these parameters new values and giving the REPEAT
command, the subroutine would be called again with a new set
of parameters.

RESET

The RESET command will cause all parameters and initial
conditions which are varying to be reinitialized to the last
values specified by the user. The last value specified may
have been done using the READ command (see page 28), para-
meter initializing statement (see page 35), or in response to

a request following a function definition (see page 37).

29

SIZE,<device>,<x-size in inches>,<y-size in inches>

The SIZE command allows the user to define in inches the
dimension of the plotting area on the Calcomp and Tekterminal.
Upon entering the system, the plotting area is defined as
5.5" x 4", The device modifier indicates whether the dimen-
sions specified are to apply to plotting done on the Calcomp
or the Tekterminal. The modifiers are:

CALC - Calcomp plotter

TEK - Tekterminal (or Hewlett-
Packard plotter)

BOTH -~ Calcomp plotter and Tek-
terminal (or Hewlett-
Packard plotter)

The Tekterminal screen is approximately 8.18" x 6.08". On

the Hewlett-Packard plotter, the user determines the actual
size of his graph. This size is assumed to be 8.18 inches
wide and 6.08 inches high. Any sizes specified by the SIZE
command will then be proportional to the 8.18" x 6.08" assumed

‘size.

Notes: 1) It may be necessary in some applications to have
the display contain axis of a certain length. This
can be done using the following formulas and table
of constants:

(x~axis length in inches)

(x~size in inches)
(x-factor)

(y-size in inches) = (y-axis length in inches)
(y-factor 1)+ (x-axis length in inches)
(y-factor 2)

30

Display Area | Plotting

Division Regions x-factor |y-factor 1| y-factor 2

FULL FULL 1.17021 1 0.051064
TH, BH 1.17021 2 0.24615

HALF
LH, RH 2.82052 1 0.051064
UL, UR

QUARTER ILL LR 2.82052 2 0.24615

2)

For example, if it was desired to have the x- and
y-axis four inches in length when plotting on the
FULL plotting area, the size of the area would be
specified as 4.68" x 4.20".

The sizes specified will always be supplied on

the Calcomp plotter. However, the display created
on the Tekterminal (or Hewlett-Packard plotter)

is a constant multiple of the Calcomp plot.
Therefore, if the user specifies a size on the
Tekterminal which is not a multiple of the Calcomp

size, the Tekterminal size is adjusted accordingly.

31

SYSTEM

The SYSTEM command allows the user to enter a system of
differential equations. It is not required to use the SYSTEM
command if a single differential equation is being entered.
Appendix I contains a description of the rules for defining
single as well as systems of differential equations. Fol-
lowing a SYSTEM command, a colon will be printed and the bell
rung. This indicates that the first equation may be entered.
A colon will be printed and the bell rung on each succeeding
line until a carriage return is given as the first input on

a line.

An example of the SYSTEM command is given below (user
input is underlined):

>SYSTEM (Note: (CR) indicates

X' (T) = X42 + Y42 (CR) a carriage return.)

:Y'(T) = X42 - ¥+2 (CR)

: (CR) (The initial conditions
X =0.0 of the system are

Y =

o
L]
(&3]

requested.)

32

WRITE,(<parml>,...,<parm >) ,<1lun or file name>

WRITE, (<array name >(<1ndex variable>),...,<array name >
(< index var1able>),<1ndex variable>=<initial value>

<final value>,<increment>) ,<lun or file name>

The WRITE command is used to write parameter values or
array elements ontoc a file or the terminal. The values are
written in the order specified using the current format (see
page 13).

When array elements are written, all values for a particular
index value are written on one record. For example, the command

WRITE, (A(I),B(I),I=1,101),3

would cause A(l) and B(l) to be written on the first record,
A(2) and B(2) on the second, etc.

An end-of-file mark is written on the file after all of
the specified array elements have been written. No end-of-file
is written when parameter values are written.

As with the READ command, if the increment is omitted,
it is assumed to be one. If a lun or file name is not specified,
the values are written on the terminal. The WRITE command will
Create a flle if the lun specified is not equipped and will
create and save a file under the name specified if a file by
that name does not exist.

Examples of the WRITE command are given below:

WRITE, (A,B),1
The values of the parameters A and B are written
in the current format on one record on lun 1.
No end-of-file mark is written on lun 1.

WRITE,(C(I),D(I),I=l,10),2
The elements of the arrays C and D are written
in the current format on lun 2 in the form:

33

Record 1: Cc(l) D(1)
Record 2: Cc(2) D(2)

Record 10: C(10) D(10)

' An end-of-file is written on lun 2 following record 10.

34

Changing Parameter Values

Parameters and initial conditions may be given new values

and/or increments with any of statement forms below:

<number> BY <number>
B) <name> = <number>

A) <name>

C) <name> = BY <number>

The <name> may be a parameter or differential equation solution.
The <number> may be any signed number. Examples of this command
are: '

1) A=5BY 2
2) Y' =-0.1,B =BY 3

In example 1) the parameter A is given a new value and
increment. 1In example 2) a new initial condition is specified

the parameter B is given a new increment.

[oN)

- T T
Ior X an

Notes: 1) If a parameter is specified which has not been used
previously, it is defined and given the value
specified.

2) A varying parameter can be changed to be fixed by

specifying a zero increment.

35

The
allows a

a)

b)

c)

APPENDIX I

GRAFIT system contains a function translator which
user to specify a function in three ways:

by a formula, e.qg.,
F(T) = A*T42 + B*T + C
as the solution of a single differential equation,
e.g.,
Y'(T) = -Y
as the solution to a system of differential equations.

With the exceptions listed below, functions are entered

in a notation similar to that of ordinary mathematics. The

exceptions are:

a)

b)

c)

d)

Implicit multiplication is not allowed. Multiplication
is indicated by a single asterisk. Thus, the product
a*b is entered as A*B.

Subscripting and/or superscripting are not allowed.
Exponentiation is signified by the uparrow (4) or by

2 is entered as A+2 or A**2,

two asterisks, e.g., a
No distinction is made between upper- and lower-case
letters.

The highest derivative term in a differential equation

must be isolated on the left of the equal sign.

A function definition can be broken into two parts, with

the equal sign as the divider. The gquantity to the left of the

equal sign is the function identification and gives the name

of the function being defined, the order of the derivative

if it is a differential equation, and the independent variables.

The quantity on the right of the egual sign is a mathematical

expression defining the function. An expression is composed

of identifiers, constants, operators, and special symbols

combined according to the rules of mathematics subject to the

restrictions listed above.

36

An identifier may be the name of a function, array, para-
meter, or independent variable. An identifier name consists
of an alphabetic character followed by from zero to three
alphanumeric characters.

A function may be either a standard function, e.g., SIN,
COS, etc. (see Table 1 for a complete list) or be cne of the
functions the user has already entered. In the case of a
system of differential equations, references may be made to any
function in the system, as well as to those previously defined.

The form of a constant is the same as that of a constant
in a FORTRAN source program. A constant can be entered in
. scientific notation with the exponent being specified by an
E followed by a signed or unsigned integer.~ Some examples

of constants are:

1l

0.2

2E-3 is equivalent to 2-1073
100.59

Internally, all constants are represented as floating-point
numbers. Hence, there is no distinction between 1 and 1.0.

Arithmetic operators and special symbols are used to
combine identifiers and constants in expressions. In addition
to the arithmetic operators shown in Table 2, the differential
operators ' and " have been introduced to identify the differ-
ential equation solution toc be used or to specify that the
numerical derivative of the function is to be used. The special
symbols (,), [, and] are used to group operations in the
normal way. Several symbols and words are used as separators.
These are listed with their descriptions in Table 3.

Befeore discussing more specific features of the language,
a few examples will be given to illustrate how functions speci-
fied by a formula are entered. 1In each of the examples, note
that a parameter does not have to be defined before it is
used. After compilation, parameters which have not appeared

37

Table 1. A list of the standard functions available to the
o user in defining functions.

SIN(X) sine function

Cos (X) cosine function

SQRT (X) square root function

ABS (X) absolute value function
COSH (X) hyperbolic cosine function
SINH (X) hyperbolic sine function
TANE (X) hyperbolic tangent function
TAN (X) | tangent function

ASIN (X) : inverse sine function

ACCS (X) inverse cosine function
ATAN (X) inverse tangent function
EXP (X) exponential function--e*
LN (X) . base e logarithm

LOG (X) base 10 logarithm

b
INT(F,2,B,N) calculates a[f(t)dt using a quadrature

formula with n intervals

b
SUM(F,K,A, computes 1f with k being incremented by i
B,I,) k=a
ERR(Y) returns the computed upper bound for the

total error in the system of differential

equations involving Y

38

Table 2. Arithmetic and relational op-
erators.

** or + exponentiation

* multiplication

/ division

+ addition and unary plus

- subtraction and unary minus

< less than relation

> greater than relation

= ' equal relation

<= less than or equal relation

>= greater than or equal relation
not equal relation

Table 3. A list of the special symbols and words
recognized.

; or ELSE separates segments of a function de-
fined by conditionals

IF separates an expression giving a pos-
sible value for the function from the
conditions under which the function

will be defined by that expression

39

in previously-entered functions will be printed, and their
values requested. A parameter may have a fixed value or be
made to vary by following the fixed value with an increment.
In the following example, the underlined guantities are
typed by the user.

>Y(T) = -0.5*G*T42

G = 9.8 BY 0.1
>F(T) = EXP(SIN(T)*Y(T)) - 2*COS(T/2)
>H(X,Y) = -G*X42 + B*F (Y)

B = 5.27

Two things should be noted about the function H(X,Y) in
the example. First, a function may have more than one inde-
pendent variable. Second, if an independent variable has the
same name as a function already defined, no ambiguity results
since independent variables have been given higher priority
than functions. |

Many times a function is defined by several different
formulas, depending upon certain conditions. To handle these
functions a conditional statement has been provided, which
has a form very close to that used by textbooks. For example,
the function ‘

sin(t) 0 <t < m/2
f(t) =41 m/2 <t <7

et T T < t

would be entered in the following way (the word "ELSE" can be
used instead of the semicolon):

>F(T) = SIN(T) IF 0 <= T <= PI/2;

1l IF PI/2 < T < PI;
EXP(T-PI) IF PI <= T

The parameter PI is supplied by the program and has the value
3.14159... . If in a function using conditionals none of

the conditions are satisfied, a zero value is returned.

40

One of the special features allowed is the option of
omitting the argument list of a function appearing in an ex-
pression if it is the same as that of the function being
defined. For example, if one wished to use the function Y(T)
from the example in the function u(t) = y(t)-t?, one could

enter

U(T) Y*T42

instead of

u(T)

Y (T)*T+2

This feature cannot be used if the functions have a different
number of independent variables.

The normal algebraic interpretation was maintained for
expressions using the unary plus and minus. For example, the
expression -A4-B is interpreted as -(a~P). Note in the above
example that a unary plus and minus may follow another operator.
Other examples of the use of this feature are:

A4-B means a-b
A*-B means a(-b)
A+-B means a+(-b)

An approximation to the first or second derivative of a
function may be used in an expression by following the function
name with ', ", or two single primes. For example, if F(T)
had been defined as in the example on page 10, entering

G(T) = 5*F' + T42

will cause the first derivative of F(T) to be calculated when

G is evaluated. Only the first or second derivative of a
function specified by a formula may be specified. It is not
possible to calculate higher derivatives by successive function
definitions. For example, the following construction is not

allowed:
F(T) = T42
H(T) = F'(T)
G(T) = H'(T)

41

In addition to specifying a function by a formula, a
function may be specified as the solution to a differential
equation or a system of differential equations. These func-
tions are entered in nearly the same way as functions speci-

fied by a formula.

‘ When entering a differential equation, the highest der-
ivative term is isolated on the left of the equal sign. The
highest derivative term with the independent variables thus
becomes the function identification. For example, to enter
the differential equation

y' + y2 - t2 =0

one would rewrite it as
2 2

- 3= P
[%

T
Y =

A
.

and enter it as
Y'(p) = T42 - y42

To enter a system of differential equations, one first
gives the SYSTEM command and then enters the members of the
system on succeeding lines. The system is terminated by
pressing the (CR) as the first character in a line. For
example, the system

y' - x2 - y¥ =0
x' - x" + y2 =0

would be entered as (user responses are underlined):
>SYSTEM
:Y'(T) = X442 + Y42
X' (T) = X42 Y42
: (CR)

The rules for entering the expression on the right of the equal
sign for these functions are the same as those discussed
previously for functions specified by a formula.

- 42

After a system of differential equations has been entered
and compiled, the initial conditions for the equations are
requested, along with any parameters which may be undefined.

For example, the above system would appear as (user responses are

underlined): >SYSTEM
:Y'(T) = X42 + Y42
+X! (T) = X42 - Y42
: (CR)
Y=0
X = 0.5

In response to the requests for initial conditions in the
above example, numerical quantities were entered. However,
the response may be an expression as well. This feature only
applies to requests for initial conditions, and does not apply
to requests for parameter values. An example of this feature

is (user responses are underlined):

>SYSTEM
X"(T) =0
:Y"(T) = -G
: (CR)
X =0
X' = VO*COS (TH)
)
Y' = SQRT(VO42 - X'42)
c =98
VO = 20
TH = ;EE

As illustrated by the example, the expression specified in
response to a request for an initial condition may involve
other initial conditions. These expressions are evaluated

in the order they are entered; hence, one cannot have an ex-
pression involving an initial condition which will be speci-
fied later with an expression. In the above example, Y' could
not have appeared in the expression for X'.

43

APPENDIX II

Examples

44

ENTER COMMAND
>F(X)=SIN(K*X)

K=} BY @5
>G(X)nSIN(K*X+PH)
. PH = 1.57
>»SCXI=FCX)+G(X)
>HALF
>PLOT»FsG» DASHES

T™H DOMAIN SPECIFICATIONS

INITIAL VALUE = @
FINAL VALUE = 6.28
NUMBER OF POINTS = 101
>PLOT»S
BH DOMAIN SPECIFICATIONS

INITIAL VALUE = @

FINAL VALUE = 6.28

NUMBER OF POINTS = 181

>LABEL,»TH3F(X) AND G(X)3BH3F(X) + G(X)
>INCPLOT» 1,1
>EXIT

¥

45

ENTER COMMAND
>SYSTEM
$X"(T)=p
tY*(TI)=-8

X = @

X* = VO*COS(TH)

Y =8

Y* s SQRT(VOt2-X*?2)

G = 9.8

Vo = 2¢

TH = «75 BY =@.1
>DOMAIN, P, 4,101
>PLOT» (X, Y)
>INCPLOT, 1,2
>LABEL3PROJECTILE SHOT AT DIFFERENT TH BUT SAME WO
>EXIT
¢

PROJECTILE SHOT AT ENT TH BUT SAME VO

%55t 0

-2.39€ 01

46

ENTER COMMAND
>R(Z)I=A/[1+E*COS(Z~B)]

A=] :

E = | BY -0.25

B= @
>DOMAIN, @, 6.28,8\1081
>RANGEs ~4,54:0+~6:1,8
>PPLOTsR (See a)
>LABEL3E=].90
>ERSPLOT»1,1 (See b)
SLABEL3E=B. 75

SEXIT
4

a)

=1.0 4.00T

800 ’ : + y y >1.oﬁ”‘

"4-00 -

47

b) E=0.75 4.00

ES
-+

-5.00

-‘1100 .1-

48

ENTER COMMAMND
sRCTH)=COS(A*TH)
A= 2BYE®
>DOMAIN, 8,628,391
>RANGE
FULL RANGE SPECIFICATIONS

LOV VALUE = =i

HIGH VALUE = 1

ORIGIN = 8 ,

DO YOU WISH TO SPECIFY FOR BOTH AXIS?YES
LOV VALUE = =1

HIGH VALUE = 1

ORIGIN = @

SPPLOTsR (See a)
SLABELA=2

>ERSPLOTs 18 - (See b)
SLABEL JAnag

>ERSPLOT» 1,1 : (see c)
>LABEL3A=6

>ERSPLOT,» 151 (See 4d)
>LABEL3A=8

>EXIT

#

49

1.00

~1.0¢

c)

50

.............

a)

ENTER COMMAND
>ARRAY»XC(14),Y(14),YL(14),CO0EF(6)
SCOMMAND» EXPFIT(X,YsYLsN,P»M,C)»*EXPFIT

>READ, (X(I)»Y(1),i=1,14),%EXPDATA
>DOMAIN,1,14,14

PPLOT»(X,Y) (See a)
SLABELJEXPERIMENTAL DATA
*Pm~1esTE=4
SEXPFIT(X»YoYLs145P»3,COEF)

EXPFIT ENTERED WITH NO. OF POINTS = 14
0. OF COEF. = 3 NONLINEAR PARAMETER = ~-1.790000000Kk-084

PAUTOSCALE

PPLOT» (X2 Y)>POINTL,MARKC(19)5(X,YL) (See b)
SLABELIEXPERIMENTAL DATA -~ MARKS 31 FITTED DATA -~ SOLID LINE
SWRITE, (CORF(1),1I=1,3)

*] 3838 83

Be7ISSE 03

=1 +3BRORE 03

RESCI)=C(Y(I)-YLCI))?2

*AUTOSCALE

>PLOT,RES (See c)

>LABELJRESIDUALS SQUARED

>EXIT

' 4

EXPERIMENTAL DATA

3.406 0 T

3.19€ 01

52

Yoe oz

b)
EXPERIMENTAL DATA -- MARKS : FITTED DATA -~ SOLID LINE

3.4E 01 -
-+
3J.19€ M ,; . . . s . . . N
o) N ')) 3.00E 02
c)
RESIDUALS SQUARED
-
-’
+
-+
L A
SQSSE"OS $ $ $ N 3 N N "
1.00 ' ' 53001

53

#*GRAFIT
ARE YOU AT A TEKTERMINAL? YES
ENTER COMMAND

>ARRAY,X (100),Y(100) ,YL(100),B(7),P(7)
>READ, (X(I),Y(I),I=1,100),*DATAW
>DOMAIN,1,100,100

>PLOT, (X,Y) ' (See a)

>LABEL;

(position crosshairs) (space bar) (position crosshairs) (space bar)
(position crosshairs) (space bar) (position crosshairs) (space bar)
(line feed)

>READ, (B(I),I=1,7) (The parameter array is set up for the
100 nonlinear model. Background first.)
5.5 3.5 49 (height, width, position)

6.1 3.5” 77.§ (MTT,cn 1 2 nonlinaar

(=]
EVIIAIRD Y L <o diVisa gaio e

>COMMAND,NLLSQ(X,Y¥,N,B,K,ITER,P) ,*NLLSQP least square routine.)
(LOREN is a routine to

>COMMAND, LOREN (X, Y, YL, N, B, K, P) evaluate the model func-

>LOREN (X,Y,YL,100,B,7,P) tion for all values of

_ _ X using the current

>RES (I)=(U(I)-YL(1))*2 parameter estimates.)

>HALF

>DOMAIN,BH,1,100,100

>AUTOSCALE

>PLOT, (X,Y), (X,YL). (See b, TH)

>PLOT, (X,RES) (See b, BH)

>READ, (B(I),I=7,7)

79

>REPEAT (Re-evaluate the model using LOREN)
>AUTOSCALE, BH

>ERSPLOT (See c)

>NLLSQ (X,Y¥,100,B,7,5,P)

>LOREN (X,Y,Y¥L,100,B,7,P)

>AUTOSCALE , BH |

>ERSPLOT (See d)

54

>WRITE, (B(F) ,I=1,7)

1.0001E02
5.8718E00
3.6881E00
4.8574E01
6.4969E00
3.6040E00
7.9375E01

55

a)

b)

01, 9.39€ 01)

—t{wE

1.06¢ 02

1.006 02 T
L 4
1\-
<4
1 L
i < 01, 5.45€ 01)
_ (_7.78€]|
8.39€ 01 L_ ’ ; + } +
0
1.00€ 02 T
-’
9.39¢ 01 5 : + ! t —
9.787
3.24£-07 3 ; : 4 f\‘: N . \L

56

1.6 a2

c) 1.00€ 02

9.39€ m | 3 + + "

+
e 3

1.56E 02

1.38 .

0 1.06€ 02

d) 1.00€ 02

9.38 @1 | 4
0

+

156 72

9.07€-02

1.37€-07

57

#EQUIP,10 = PLOT
#LABEL,10/SAVE FOR LARRY HUBBLE
#*GRAFIT

ARE YOU AT A TEKTERMINAL? YES

ENTER COMMAND

>DEVICE,BOTH

>P(M,TH) = 2.5*COS(TH)+43-1.5*COS (TH)
>L(TH) = P(M,TH)+2

M=3BY1

>V(R) = VO*EXP[-(R+2/A42)]
Vo = =30
A =2

>F(R) = C IF R<1E-3;
M* (M+1)/(R+D) 42

C = 250
D= 1.01E-2
>U"(R) = [V+F-E]*U
u=20
U' = 1E-4
E = -2.65
>USQ(R) = 0 IF R<1E-3;
(U/R) 42

>COMMAND , POWDER2P (R,NR, TH,NTH, THIN, THFN,NPTS) , *POWDER
>ARRAY,R(101) = USQ(0;5),TH(201) = L(0;6.28)

>HALF

>DOMAIN,0,5,101,BH,0,6.28,201

>PLOT,R

>PPLOT,TH

>POWDER2P (R,101,TH,201,0,6.28,1500)

> (position crosshairs to define circular region)

>EXIT

58

65

APPENDIX III

Special Subroutines Available

60

CHEBFIT

ABSTRACT:
The subroutine CHEBFIT computes the least squares fit
to a set of data using Chebychev polynomials.

USAGE:
The calling sequence is:
CALL CHEBFIT(X,Y,F,N,M,COEF)
where the parameters are:
X - An array which contains the independent
variable data.
Y - An array which contains the dependent variable
data.
F - An array which will contain the Chebychev
polynomial values upon exiting the routine.
N - The number of data points. The arrays X,
Y, and F must be dimensioned of at least
length N.
M - The order of the Chebychev polynomial to use.
M must not be greater than 7.
COEF

Upon exiting the routine, this array will
contain the coefficients of the fitting

polynomial. COEF must be dimensioned of at
least length M.

"NOTES:
l. A binary deck of CHEBFIT is stored on file *CHEBFIT.

61

EXPFIT

ABSTRACT:
The subroutine EXPFIT computes the least squares fit to

a set of data using up to six exponential terms.

USAGE:
The calling sequence is:
CALL EXPFIT(X,Y,F,N,P,M,COEF)
where the calling parameters are:
X - An array which contains the independent
variable data.
Y - An array which contains the dependent variable
data.
F - An array which will contain the exponential
function values upon exiting the routine.
N - The number of data points. The arrays X,
Y, and F must be dimensioned of at least length
N.
P - The nonlinear term used in each exponential

term. Each exponential term is of the form:

_i.p.x.

C.-e J

i
M - The number of exponential terms to use in the
fit. M must be in the range 1-6.

COEF - Upon exiting the routine, the array COEF will
contain the coefficients of each exponential
term. COEF must be dimensioned at least of
length M.

NOTES:
1. A binary deck of EXPFIT is stored on file *EXPFIT.

62

SUBROUTINE HIST

ABSTRACT:
HIST produces a histogram of a set of data. The intervals
are assumed to be equally spaced between limits specified
by the user.

USAGE:
- The calling sequence is:
CALL HIST(A,LA,HINIT,HFINAL,NINC,FREQ)
where the calling parameters are:
A - The array of data points.
LA - The number of data points in the array A to
be used in the histogram.

The initial interval value.

i
H
2z
~
3
1

HFINAL - The final interval value.
NINC - The number of equally spaced intervals between
HINIT and HFINAL.
FREQ - An array of at least length NINC. Upon return
this array contains the frequence of occurance

of each interval.

NOTES:
1. The binary deck of HIST is stored on the file *HISTB.

2. HIST uses plot drivers stored on file *PLOTDR.

63

SUBROUTINE NLLSQ(X,Y,N,B,K,ITER,P)

ABSTRACT:

NLLSQ performs a nonlinear least squares fit to a set of

data using a model function supplied by the user.

METHOD:

The algorithm used was developed by D. W. Marquardt and

is described completely in

"An Algorithm for Least-Squares Estimation of
Nonlinear Parameters," J.SIAM (Vol. 11, No. 2)
June, 1963, pp. 431-441.

USAGE:

The calling sequence is:

MAATT

r w7 rn -

CALL NLLSQ({X,Y,N,B,K, ITER, P)

where the calling parameters are:

X -

ITER

An array containing the values of the inde-
pendent variable at the N observed data

points.

An array containing the values of the de-
pendent variable at the N observed data

points.

The number of data points to be used in the
least squares fit.

An array containing the nonlinear parameter.
Upon entering the routine this array must
contain the initial estimates of the parameter,
and upon exiting the routine the array will
contain the converged parameter values.

The number of nonlinear parameters in the model.
The maximum number of iteration of the algorithm
to be applied before stopping. If convergence
is not reached before ITER iteration, an error
message is printed and the calculation termi-
nated.

64

P - An array of length K used by the model sub-
routine to store the partial derivatives of

the function with respect to the parameters.

NOTES:
1. The user must supply a subroutine MODEL with the
following calling sequence:
CALL MODEL(X,Y,B,I,K,P,RE,F)
where the calling parameters are:

X - An array containing the value of the
independent variable of the observed
data points.

Y - An array containing the value of the
dependent variable of the observed
data points.

B - An array containing the nonlinear
parameter estimates.

I - The index of the X array of the value
of the independent variable at which
the model is to be evaluated.

K - The number of nonlinear parameters.

P - The MODEL subroutine must evaluate the
partial derivatives of the function
(at the indicated value of the indepen-
dent variable) with respect to the K
parameters and store them in this array.

RE - The residual defined by RE=Y (I)-F where
F is the value of the modeling function
at the point X(I).

F - The value of the modeling function at

the point X(I).

2. The binary decks of NLLSQ and the routines it requires
are stored on the file *NLLSQBl. One needs to load
this file along with the binary deck of the model

subroutine being used.

65

SUBROUTINE POWDER1

ABSTRACT:
POWDER]1 produces a randomly generated powder plot repre-
sentation of a one-dimensional array of data. POWDERL
uses graphics input to determine the region in which to
produce the powder plot. The region will be rectangular
and is specified by positioning the crosshairs at one end-
point of the diagonal and depressing any key. When the
crosshairs come on again, position them to the other end

of the diagonal and depress any key.

METHOD:
The algorithm used was developed by Robert Ehrlich and is
described completely in
"Physical Simulations for an On-Line Computer-
Controlled Oscilloscope," Computers in Under-

graduate Science Education Conference Proceedings,
August, 1970, p. 220.

USAGE:
The calling sequence is:
CALL POWDERI (A,NELM,NPTS)
where the calling parameters are:
A - The array of data.
NELM - The number of elements in the A array.
NPTS - The number of points to be plotted in the
powder plot (500 usually produces a pleasing
display).

NOTES:
1. The binary deck of POWDER1l is saved on the file *POWDER.
2. Before POWDER1 may be used, the button marked Keyboard/
Aux must be set to both keyboard and Aux.

3. The maximum value of A must be greater than zero.
4. POWDERl uses plot drivers stored on the file *PLOTDR.

66

SUBROUTINE POWDERZ2

ABSTRACT:
POWDER2 produces a two-dimensional, randomly generated
powder plot of a function. The function of two variables
is assumed to be separable into a product of two functions
of one variable (i.e., F(X,Y) = FX(X)*FY(Y)). The powder
plot is rectangular, and the region is specified using
graphics input. The crosshairs are positioned at one
end of the diagonal and any key is depressed. When the
crosshairs come on again, position them to the other end

of the diagonal and depress any key.

METHOD:
The algorithm is an adaptation of that described by Robert

Ehrlich in

"Physical Simulations for an On-Line Computer-
Controlled Oscilloscope," Computers in Under-
graduate Science Education Conference Proceedings,
August, 1970, p. 221.

USAGE:
The calling sequence is:
CALL POWDER2 (X,NX,Y,NY,NPTS)
where the calling parameters are:
X - Array containing the values of FX.
NX - Number of elements in the X array.
Y - Array containing the values of FY.
NY - Number of elements in the Y array.
NPTS

Number of points to be plotted in the powder
plot (1500 usually produces a pleasing display).

NOTES:
1. The binary deck of POWDER2 is saved on the file *POWDER.
2. Before POWDERZ may be used, the button marked Keyboard/
Aux must be set to both keyboard and Aux.

3. The product of the maximum value of X and the maximum
value of Y must be greater than zero.
4. POWDERZ2 uses plot drivers stored on the file *PLOTDR.
67

SUBROUTINE POWDERZ2P

ABSTRACT:
POWDER2P produces a two-dimensional, polar randomly
generated powder plot of a function. The function of
two variables is assumed to be separable into a product
of two functions of one variable (i.e., F(r,@) = FR(r)*
FTH(©)). The powder plot is circular and is centered in
a rectangular region specified using graphics input.
The crosshairs are positioned at one end of the diagonal
and any key is depressed. When the crosshairs come on
again, position them to the other end of the diagonal
and depress any key. The powder plot will fall in the
largest circle that can be centered within the rectangle

specified.

METHOD:
The algorithm is an adaptation of that described by
Robert Ehrlich in
"Physical Simulations for an On-Line Computer-
Controlled Oscilloscope," Computers in Under-

graduate Science Education Conference Proceedings,
August, 1970, p. 221.

USAGE:
The calling sequence is:
CALL POWDER2P (R,NR,TH,NTH,THIN, THFN,NPTS)
where the calling parameters are:
R - Array containing the values of FR.
NR - Number of elements in the R array.
TH - Array containing the values of FTH.
NTH - Number of elements in the TH array.
THIN - Initial angle at which to start the powder
plot.
THFN - Final angle in the powder plot. (Normally,
THIN and THFN would be set to zero and 27

68

respectively. This would correspond to a
circular powder plot; however, if only a
wedge-shaped portion of the circular powder
plot were wanted, THIN and THFN could be
given the appropriate values.)

NPTS - Number of points to be plotted in the powder
plot (1500 usually produces a pleasing display).

The binary deck of POWDER2P is saved on the file
*POWDER.

Before POWDERZP may be used, the button marked
Keyboard/Aux must be set to both keyboard and Aux.

The product of the maximum value of R and the
maximum value of TH must be greater than zero.
POWDER2P uses plot drivers stored on the file
*PLOTDR.

69

SUBROUTINE SURFACE

ABSTRACT:
SURFACE produces a perspective drawing of a function of
two variables (i.e., a two dimensional array) with the
hidden lines removed. The perspective view point may be
chosen by specifying the coordinates of the view point.

METHOD:
The algorithm used to generate the perspective drawing
and to remove the hidden lines is described completely in
"The Perspective Representation of Functions of

Two Variables," J.ACM (Vol. 15, No. 2), April,
1968, pp. 193-204.

USAGE:
The calling sequence is:
CALL SURFACE(A,XL,XH,M,YL,YH,N,ZL,ZH,DX,DY,DZ)
where the calling parameters are:
A - A two dimensional array of M rows and N columns.
The data is assumed to be stored in the following

way:
A(l,1) = F(XL,YL),A(1,2) = F (XL, YL+AY) ,...
A(2,1) = F(XL+AX,YI),A(2,2) = F (XL+AX,YL+AY) , ...
_ XH-XL _ YH-YL
where AX = -1 and AY = V=T -

For any given columns of the matrix, X increases
as the first indice increases and for any given
row of the matrix, Y increases as the second
indice increases.

XL - Initial value of X.

XH - Final value of X.

M - The number of rows, i.e., the number of indi-
vidual X values.

YL - Initial value of Y.

70

YH - Final value of Y.

N - The number of columns, i.e., the number of
individual Y values.

ZL - The lowest Z coordinate of any viewable point.
Points which have lower Z coordinates will be
hidden.

ZH - The largest Z coordinate of any viewable point.
Points which have larger 2 coordinates will be
hidden.

DX - The X coordinate of the view point.

DY -~ The Y coordinate of the view point.

Dz - The Z coordinate of the view point.

NOTES:
1. The binary deck of SURFACE is stored on the file
*SURF6B.
2. SURFACE uses plot drivers which are stored on the file
*PLOTDR.

3. SURFACE calls several other subroutines which are in
the package. Communication between the subroutines
is done largely through the labeled common block
LABI. |

71

	0001
	0002
	001
	002
	003
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	51
	52
	53
	54
	55
	56
	57
	58
	59
	60
	61
	62
	63
	64
	65
	66
	67
	68
	69
	70
	71

