ccem-73-03

FORTRAN Programming on the CDC 3300
Under OS-3

Notes to accompany the OSU videotape series

COMPUTER CENTER

Oregon State University -
Corvallis, Oregon 97331

FORTRAN PROGRAMMING
O N T HE cDC 3300

UNDER 0Ss -3

Notes to accompany

the OSU videotape series

ccm 73-03
Computer Center
Oregon State University

Corvallis, Oregon 97331

July, 1973

PREFACE

The current OSU videotape series on FORTRAN consists of twenty
half hour tapes. Together they comprise a basic introduction to the
FORTRAN language. The tapes were completed in October of 1971. This
manual is intended for use in conjunction with the videotapes. It
can also be used, however, as a supporting text for any FORTRAN course
which uses the CDC 3300 at Oregon State.

TABLE OF CONTENTS

INTRODUCTION TO COMPUTERS

1-1 History

1-2 Power

1-3 Computer System

1-4 External Sources

1-5 Batch Processing

1-6 On-Line Time-Sharing: 0S-3
1-7 Machine Language and Computer Programming
1-8 FORTRAN

1-9 Compilation and Execution
1-10 FORTRAN Alphabet

1-11 Formulation of Statements
1-12 Data records

BIT STRUCTURE

2-1 Binary Nature of Computers

2-2 Decimal and Binary Numbers

2-3 Octal Numbers and the CDC 3300

2-4 Constants from Programmer's Point of View

2-5 Constants as Stored in Memory
SUMMARY OF DEFINITIONS

VARIABLES AND ARITHMETIC

3-1 Variables

3-2 Arithmetic Operations

3-3 1Integer and Real Arithmetic
3-4 Arithmetic expressions

3-5 Library Functions

ASSIGNMENT STATEMENTS - INPUT/OUTPUT

4-1 The Assignment Statement

4-2 A Sample Program

4-3 Executable ahd Non-Executable Statements
4-4 Input/Output

4-5 The READ Statement

4-6 Logical Units Under 0S-3

4-7 Statement Numbers and FORMATs
i

| | | B !
~ (o)) urow N oo}

0 ~N N0y U O R e
|
[oe]

9-12

9-10
10-11
11
11-12

13

14-17
14
14-15
15
15-16
16-17

18-21
18
18
18-19
19
19
20
20

4-8 Input Variable List
4-9 The WRITE Statement

INPUT/OUTPUT - FORMAT

5-1 Review of Input/Output Statements
5-2 The FORMAT Statement

5-3 Numeric Format Specifications

5-4 1Input Sample - READ and FORMAT
5-5 Exponential Numbers and E Format

5-6 End-of-record Specification

HOLLERITH; STARTING, STOPPING, TRANSFER OF CONTROL
6-1 The Hollerith Specification and Carriage Control
6-2 Starting the Program

6-3 Ending the Program

6-4 Transfer of Control - The GO TO Statement

6-5 The Computed GO TO Statement

ARITHMETIC IF; 0OS-3 CONTROL CARDS

7-1 The Arithmetic IF Statement

7-2 Requirements of the 0S-3 Operating System
7-3 The Job Card

7-4 Job Numbers, Charges and File Blocks

7-5 The Time Card

7-6 Assigning Logical Units: The Equip Card
7-7 The FORTRAN Compiler

7-8 The LOGOFF Card

PROGRAM EXAMPLES 1l; SUMMATION AND COUNTING
8-1 Program Example
8-2 EOF Check

8-3 Summation

SUMMATION AND COUNTING; LOGIC CONCEPTS
9-1 Summation Examples

9-2 Counting

9-3 Three-Way and Two-way IF Statements
9-4 Relational Operators and Expressions

9-5 ILogical Operators and Expressions
ii

20-21
21

22-26
22
22
23
24-25
25
25-26

27-30
27-28
28
28
28-29
29-30

31-35
31-32
32
32
32-33
33
33-34
34
35

36-41
36-38
39,40-41
39

42-45
42,43
42
42,44
44
44

10

11

12

13

14

9-6
9-7

The .AND. Operator
The .OR. Operator

LOGICAL IF; PROGRAM EXAMPLES

10-1
10-2
10-3
10-4
10-5
10-6
10-7
10-8

The .NOT. Operation

- The Logical IF Statement

Sample Problem

The Complete Hierarchy Rules
Parentheses and Logical Expressions
Example of Logical IF

Two Linear Equations in Two Unknowns
Quadratic Equations

ARRAYS AND SUBSCRIPTS

11-1
11-2
11-3
11-4
11-5
11-6

Arrays

The DIMENSION Statement
Subscript Forms

Exceeding DIMENSION limits
Uses of Arrays

Examples Using Arrays

OTHER TYPES OF CONSTANTS, VARIABLES & FORMAT SPECIFICATIONS

12-1
12-2
12-3
12-4
12-5
12-6

Declaration Statements

The INTEGER and REAL Statements

The DOUBLE PRECISION Statement

The COMPLEX Statement

The FLOAT and IFIX Library Functions
Hollerith Constants

HOLLERITH CONSTANTS; AW FORMAT; DO LOOPS

13-1
13-2
13-3
13-4
13-5

BCD Code

Forms for Integer and Real Hollerith Constants
AW FORMAT for I/O of Hollerith Constants

A Return to Summation and Counting

Initializing, Incrementing and Testing: The DO Loop

DO LOOPS CONTINUED

14-1
14-2
14-3

DO Loop Format
Execution of DO Loops

Rules for the Formulation of prs
iii

44-45

45

46-53

46

46

47,48
47,49

49

49-50
50,51
50,52-53

54-58
54
54-55
55-56
56
56
56-58

59-61
59
59
59-60
60
60-61
61

62-64
62
62.
63
63-64
64

65-67
65
65
66-67

15

16

L7

14-4

Sample Problem

NESTED DO LOOPS; INPUT/OUTPUT OF ARRAYS

15-1
15-2
15-3
15-4
15-5

Nested DO Loops

Sample of Nested DO's

Use of DO Loops with Arrays

I/0 and FORMAT Lists with Differing Numbers of Elements

Unlimited Groups

INPUT/OUTPUT OF ARRAYS, CONT; PROGRAM EXAMPLES

16-1
16-2
16-3
16-4
16-5

TWO
17-1
17-2
17-3
17-4
17-5
17-6
17-7
17-8

Repeated Groups

Input/Output of Arrays

Example 1 - Forces, Moments and Center of Gravity
Example 2 - Means and Standard Deviations

Example 3 - A Grading Problem with Many Special Features

DIMENSIONAL ARRAYS; SUBPROGRAMS

Storage of Two Dimensional Arrays in Memory
Calculation of Location of Array Element
Input/Output with 2D Arrays

Example of 2D Arrays

Reasons for Use of Subprograms

Compilation and Execution of Subprograms

The END and RETURN Statements

The FUNCTION Name Statement and its Parameters

SUBPROGRAMS CONTINUED; OTHER SPECIFICATION STATEMENTS

18-1
18-2
18—3
18-4
18-5
18-6
18-7
18-8

FUNCTIONS

Sample Problem with FUNCTION
SUBROUTINES

Other Specification Statements
COMMON

EQUIVALENCE

Labelled COMMON

DATA

ENTERING AND EDITING FORTRAN FROM TELETYPE

19-1
19-2
19-3

The 0S-3 EDITOR
Logging on

Entering Programs with the EDITOR
iv

67

68-71
68

68

69,70
69
71

72-77
72

72-73
73-74
75,76
75,77

78-82
78
78
78-79
79-81
81
81
82
82

83-88

83

83,84
83,85,86
85

85,87
87
87-88

88

89-94
89
89-90
90

19-4 Program to Calculate Mean of a Set of N test Scores 90-94

20 ENTERING AND EDITING FORTRAN FROM TELETYPE, PART II 95-99

20-1 A Sample FORTRAN Program 95-97
20-2 COPY 97

20-3 Combinations and Permutations 97-98
20-4 Program Using SUBROUTINE and FUNCTION 98-99

APPENDIX A COMMON ERROR MESSAGES IN FORTRAN PROGRAMMING ON THE CDC 3300
' AT OREGON STATE UNIVERSITY

APPENDIX B EXPANDED CONTENTS OF INDIVIDUAL VIDEOTAPES
APPENDIX C TAPE NUMBERS, TITLES AND TIMES (Minutes:Seconds)
APPENDIX D CDC 3300 CHARACTER CODES

APPENDIX E LINE PRINTXR CARRIAGE CONTROL

INDEX

1 - INTRODUCTION TO COMPUTERS

This series of lectures will introduce you to . FORTRAN - the
widely used computer programming language designed to give solu-
tions to problems expressible in terms of the symbols and opera-

tions of algebra.

You will find it helpful to have some general knowledge of
what happens inside a computer before you start your study of the
FORTRAN language. So we will begin with a very brief history of
computers and then proceed with a general description of a computer

system.

1-1 History

The history of electronic digital computers is quite a short
one. Major theories of computing and of computer design were
developed in the 1930's and 40's. The first working computers
were also built in this period. The modern era of computers
began about 1950 with the advent of the first computers designed
for commercial use. In the twenty plus years since those first
commercial models, the computer industry has grown very rapidly.
Improvements in computer hardware have occurred frequently with
the aid of numerous developments in electronics, electromagnetics
and microminiaturization. There have also been many advances in
software technology, inéluding the development cf several problem-
oriented programming languages designed to solve particular
classes of probiems of which FORTRAN was the first major algebraic-
like language. Also, extremely sophisticated operating systems
were developed to allow simultaneous execution of several unrelated

programs.

1-2 Power
Just what features do computers have that make them so useful
and powerful?

FIRST: SPEED - computers can do hundreds of thousands of

operations every second.

SECOND: VERSATILITY - computers can work on many different,

unrelated problems in areas ranging from scientific research to

1

accounting to classroom teaching to control of manufacturing pro-
cesses to information retrieval in a library. The list of areas
in which computers can be used has been growing steadily and there

is no end in sight.

THIRD: SIMPLICITY - through languages like FORTRAN computers

are easy to use, requiring a minimal amount of training.

FOURTH: PRECISION - computers do arithmetic operations on
many digits at a time, always obtaining the same answer. This
contrasts sharply with normal human execution of all but the
simplest a;ithmetic.

FIFTH: RELIABILITY - computers are nearly error-free. Not
that there are no errors associated with computers, but such errors

are 99% human errors and are not due to machine failure.

1-3 Computer System

A computer system consists of five interconnected components
which we can represent symbolically as follows:

MEMORY
N

OUTPUT

INPUT CONTR?%

AV
ARITHMETIC/
LOGIC

The arrows represent the interconnections and indicate the flow of
information. .

CONTROL - usually called the Central Processing Unit or CpPU,
for short, it controls the flow of instructions and the movement

of information.

MEMORY - the array of locations in which information is stored.
Every location is given an address. A particular piece of infor-
mation is located at a particular address. The MEMORY is some-

what analogous to a postal zip code sorter, which might be

2

represented as follows:

97330 97331 | 97332

The sorter consists of boxes (locations) with given zip codes
(addresses) in which mail (information) is stored. The MEMORY
unit is often called CORE or CORE STORAGE since the information
is often stored by magnetizing small ring-shaped magnetic cores;
these are placed in a lattice structure.with each core at the
intersection of several wires. When current is passed down
certain wires, the core is magnetized in a clockwise direction
and when the current is reversed, the core becomes magnetized
in a counter-clockwise direction. This gives rise to a natural
two state system and is the primary reason for representing all
information in terms of binary numbers, a zero being represented

by one of the directions, and a one by the other direction.

ARITHMETIC/LOGIC - the set of special locations, usually
called registers, in which arithmetic is done and logical compari-

sons are made by the use of special electronic circuits.

INPUT - any of several devices which pass information from
external sources into the computer's memory. The major input
devices are:

CARD READER A

TELETYPE (and other on-line terminals)

MAGNETIC TAPE

MAGNETIC DISK

In addition, several other input devices are used at various times.

OUTPUT - any of several devices which pass information from
the computer's memory to external sources. The major output
devices are:

LINE PRINTER

CARD PUNCH

TELETYPE (and other on-line terminals)

MAGNETIC TAPE

MAGNETIC DISK

O 0O~ o0 U b W NN - O N

1-4 External Sources

The external sources mentioned above are man-machine inter-
faces such as puached cards, punched paper tape, line printer
paper, the keyboard and paper display of a teletype or the key-
board and screen of a CRT (cathode ray tube) display.

Punched cards play a particularly important role as external
input sources. They were developed by Herman Hollerith to aid
in the tabulation of data for the 1890 U.S. Census. The code
he developed is still used today. The Hollerith card consists
of 12 rows and 80 columns arranged like this:
123 .. eeeceeecsansaonsnsaceannns ceesecssessasesansas casecsaces ceee 79

80

Each of the characters of the computer alphabet consists of a
unique combination of punches usually in 1, 2, or 3 rows of a
single column. Thus there are a maximum of 80 characters per
card. The numkers 0 through 9 are obtained with a single punch
in the equivalent row. Combining a 12,11 or 0 punch with the
punches in 1 to 9 gives the English alphabet. A is 12,1; B is
12,2; etc.

N"'U)‘JU”'CIH'O'UJ:J’
'—J
'—l
'—-'

0,9

1-5 Batch Processing

Programs and data are punched on cards by the use of a key-
punch and are submitted to the computer for batch processing in
which the deck c¢f cards is read into the computer's memory and
the instructions of the program are executed. Any data cards ,
are read into the memory when required by the program. This means

that only one job at a time is processed.

1-6 On-Line Time-Sharing: 0S-3

In recent years the use of teletypes and other keyboard
devices has allowed on-line operation in which many jobs are
processed simultaneously by sharing processing time among several
users connected by wire or telephone line to the computer. The
punching of cards is not required when teletypes are used. The
information normally punched is sent directly to the computer and
stored on magnetic disk for later use. Here at Oregon State we
have an excellent time-sharing system - 0S-3 for Oregon State
Open Shop Operating System. This system typicaily handles 30 to
40'jobs simultaneously. There are several informative videotapes
available dealing specifically with various aspects of 0S-3.
Questions concerning aspects of the system should be referred
to Computer Center pérsonnel.

1-7 Machine Language and Computer Programming

Every computer has a set of basic instructions it can execute;
add, subtract, store, retrieve, move, compare, input and output,
etc. This set of basic instructions forms the MACHINE LANGUAGE.
Each instruction consists typically of a group of digits repre-
senting an operation and the address of a location in MEMORY, the

5

contents of which is to be operated on. A computer program is a
sequence of these basic machine language instructions specifically
arranged to accomplish a given task. Computer programming is
both an art and a science summarized in these six steps:

1. State the problem.

2. Formulate an algorithm for the solution of the problem.

Algorithm - a complete, unambiguous procedure for
the solution of a given problem in & finite number
of steps - particular attention must be paid to
starting, stopping and error checking.

3. Write a program based on the algorithm.

4. Enter the program into the computer and test execution
on appropriate data.

5. Analyze the results.

6. If necessary, debug the program (that is, correct it)
and repeat the test.

1-8 FORTRAN
Since the machine language is not easy to use without con-

siderable training, we use the easier problem-oriented languages
like FORTRAN whenever possible. FORTRAN was devzloped by IBM in
1955 and is an acronym for FORMULA TRANSLATION. It has undergone
extensive modification since then. The current version, FORTRAN
IV, has been standardized by the American National Standards
Institute. The version available at Oregon State has many features
not found in the standardized version and is missing some of the
less useful standardized instructions. We will concern ourselves
with the standard version whenever possible and will indicate

any deviations in the 0S-3 version when they first occur.

Since FORTRAN is not similar to machine language, the computer
translates the FORTRAN program into an equivalent machine language
program and then executes this translated program. Thus all
FORTRAN programs must go through two phases.

1-9 Compilation and Execution

In phase one, the compilation phase, the computer's memory
is loaded with a pre-written compiler program usually supplied by

the computer manufacturer; at OSU we have systems programmers who

write the compilers themselves. The FORTRAN source program is

read as data and the output is in the form of a machine language
object program. This program is usually stored temporarily in a
work area on magrnetic disk. During the second phase, the execution,
this object program is loaded into memory and is executed with any
data required being read from the appropriate input unit and the

results being pui on the selected output unit.

1-10 FORTRAN Alphabet
FORTRAN is an alphabetic language like English or Russian and

unlike Chinese. There are 48 symbols in the alphabet: the 26
English letters A-Z, the ten digits 0-9, the 11 special characters
+>— * / , .0 ="8 énd the blank or space, represented on a card
with no holes punched. Since it is sometimes necessary to emphasize
the existence of a space within a FORTRAN program, we will represent

this character with}B Or, .

1-11 Formulation of Statements

Whether you enter your program from cards or from teletype,
the FORTRAN compiler treats each line as an 80 character record.
When writing a program, the placing of the statements is very
important. For a FORTRAN program follow these rules:

1. Put only one FORTRAN instruction on each record.

2. The boay of the program must be in columns 7 through 72.

3. Columns 73 through 80 are ignored by the compiler but
may be used for sequencing the statements to keep them
in order.

4. Columns 1 through 5 may contain a statement number
{(restricted to the positive integers). -This is used to
label a statement which is referred to by another state-
ment. '

5. If column 1 contains a C, the entire record is treated
as a comment and is not compiled.

6. If column 6 contains any character other than a blank
or a zero, then columns 7-72 of that record are treated,
not as a separate instruction, but as a continuation of

the instruction on the previous record.

7

7. Blanks within a FORTRAN program are ignored with one
exception which will be discussed later, e.g. READ
is identical to R E A D.

1-12 Data Records

When the program requires data records, either from cards,

teletype, or disk file, the above rules do not apply to the data.
For data records: 1) all 80 columns of a data record may

be used and 2) if the data are numeric, blanks are treated as

zeroes, while 3) if the data are alphabetic, blanks are treated

as spaces. In either case blanks in a data record are not ignored

unless they are specifically skipped. If data exist on magnetic

tape or disk, there may be more than 80 columns in one record.

These records must usually be handled by special instructions

which we will not discuss further.

2 - BIT STRUCTURE

2-1 Binary Nature of Computers

As we have indicated, the hardware of a computer system
consists of electronic and magnetic devices. Such devices are
bi-stable or two state devices, that is off-on, high voltage-
low voltage, clockwise magnetized—coﬁnterclockwise magnetized,
etc. Because of the two state nature of these devices, the basic
unit of information in the computer is not the familiar decimal
digit but the binary digit or bit, for short. The two states of
the hardware devices are equivalent to the two binary digits 0
and 1 from which we can construct this binary number table:

Binary Decimal

0 0

1 i

10 2

11 3
100 4
101 5
110 6
111 7
1000 8
1001 9
1010 10
1011 , 11
1100 - 12
1101 13
1110 14
1111 ' ' 15

2-2 Decimal and Binary Numbers

To determine the relationship between decimal and binary
3 4+ 5x10% + ox10t + 3x10°.

Thus, in the base 10 system the column position tells the power

numbers we obsexrve that 2503 = 2x10

of 10 that the decimal digit in that column is multiplied by -
first column to the left of the decimal point x 100 = 1, second

column to the left of the decimal point x 10! = 10, third column

X lO2 = 100, etc. All number systems work similarly so that in
the base 2 system the column position tells the power of 2 that
the binary digit in that column is multiplied by: Digit in the
first column to the left of the binary point x 20 = 1, digit in

the second column to the left of the binary point x 2l = 2, digit

9

in the third column to the left of the binary point x 22 = 4,

digit in the fourth column to the left of the binary point

x 22 = 8, hence 1101, = 1x23 + 1x2% + ox2l + 1x2% = 8 4+ 4 4+ 1 = 13,

Also, 100 111 000 1112 (where the subscript indicates the base) =

1x2™ + 128 & 1x27 + 125 4 1x22 4 1x2l + 1x20 = 2048 + 256 +

128 + 64 + 4 + 2 +1 = 250310. It is clear that arithmetic in

base 2 would be quite tedious for us since we have been programmed

through life to work with the decimal system. Still, we need

to refer to the binary representation within the computer from

time to time. Fortunately we can use the less tedious octal (base

8) system for this purpose. Note the interesting relationship

between the first nine numbers in the octal and binary systems.
Digits of base 8 Digits of base 2

000
001
010
011
100
101
110
111
001000

Thus we see that we can generate each of the octal digits 0-7

ONOYUIWNEFO

|

from sets of three binary digits. One octal digit = three bits
because 8 = 2° so 100 111 000 111, = 4707, = 4x8> + 7x8% + oxsl +
0

7X8° = 2048 + 448 + 7 = 250310.

2-3 Octal Numbers and The CDC 3300

‘The CDC 3300 uses the octal number system as a shorthand
form for representing the binary system. From FORTRAN the CDC
3300 has 3276810 addressable locations with addresses from 00000
to 32767. 1In octal these are numbered from 00000. to 77777,. We

8 8
thus see that five octal (i.e., 15 binary) digits are required for

each address in the computer's memory. Earlier we indicated that
the form of a typical machine language instruction was a group of
digits containing an operation and the address of a location, the
contents of which were to be operated on. To get all the operation
codes needed in the 3300's machine language, the computer requires
three octal (i.e., 9 binary) digits. Hence eight octal (24 binary)

10

digits are used to form a machine language instruction and thus
24 bits is the basic word size of the CDC 3300. Each of the
32768 addressable locations consists of one 24-bit word.

We need some knowledge of the binary representation in the
computer to understand the causes for the limitations on the size

of numbers we can work with.

2-4 Constants from Programmer's Point of View
What might be called the "nouns" of FORTRAN consist of con-

stants and variables. Constants are fixed numeric quantities
assigned by the programmer and stored in chosen memory locations
by the compiler. Thus they are essentially the "contents" of
memory locations. There are several types of constants, but for
now we shall work with the two most important: integer (or fixed
point) constants and real (or fleocating point) coastants. The
difference between the two types as seen by the programmer is de-
termined solely by whether or not the constant has a decimal point.
An integer constant is a set of decimal digits without a decimal

point. A real constant is a set of decimal digits with a decimal

point. The (real) number may or may not have a dacimal fraction part.
Examples of integer constants: 37, -6, 0, 10, 3, 999002 and of
real constants: 2.6, 18.471, -9.27, 3.1416, 4., 0.0, -8.

2-5 Constants as Stored in Memory

The difference from the computer's point of view is the form
in which the numbers are stored internally. On the 3300 under
0S-3 every integer constant uses one word of storage. The first
bit is the sign (0 = +, 1 = =) and the remaining 23 bits form the
number in binary; e.g. 2503 is an integer constant and is stored
in binary as 000 000 000 000 100 111 000 111
is 000047078. '

The largest integer constant is obtained when the sign is 0
and there are 23 l-bits. This number is 223-1 = 8388607. .Thus
all integers on the CDC 3300 must be between -8388607 and 8388607,

inclusive. This range changes from computer to computer depending

27 the octal equivalent

on the particular computer's bit structure.

11

A real or floating point constant is stored in the computer
in a modified form of binary scientific notation. Two consecutive
24-bit words are used to store one real constant. The first bit
contains the sign of the number (0 for plus, 1 for minus), the
next 1l bits contain a base 2 exponent which has been biased by
having 20008 (10 000 000 0002) added to it to allow for both
negative and positive exponents. The remaining 36 bits form the
normalized mantissa, a binary fraction less than one.

In the decimal system 281.37 = 2x102 + 8x101 + lxlO0 +
3xlO_l + 7x10_2 which in base 10 normalized scientific notation
would be .28137x103. In the binary system we might have 101.112 =
1x2% + ox2 4 1x2% + 127l v 1272 = 4+ 1+ 1/2 + 1/4 = 5.75
and in binary normalized scientific notation this is .lOlllx23.
This number would be stored as 20035600000000008 in the CDC 3300's
memory. The 20038 is the biased exponent, 20008 + 38; the 568 is
1011102, the fractional part of the number above.

The largest possible exponent obtainable from the 11 biased
digits 1is 210 - 1 = 1023 and the smallest exponent is -1023. This
means that the range of the real numbers the CDC 3300 can handle

21023 and +21023 308 308.

is between - or approximately -10 to +10

The 36 bit mantissa can contain a maximum fraction of 36

l-bits. This number is 236—l

, the 11 decimal digit number
.68719476735. The mantissas of all real numbers are formed of
these 36 bits; therefore every real number stored in the memory
of the 3300 is precise to either 10 or 11 decimsl digits, 11
digits for decimal fractions .10000000000 to .68719476735 and
10 digits for larger fractions. The range and precision depend

entirely on the bit structure of the computer in question.

12

SUMMARY OF DEFINITIONS

Slide 1.

INTEGER CONSTANTS are programmed without a decimal point
and stored in one 24 bit word, have an allowed range from
-8388607 to 8388607 and may have up to 7 decimal digits of

precision.

Slide 2.
REAL CONSTANTS are programmed with a decimal point, are

stored in two 24 bit words with a sign, an exponent and a

mantissa, have an allowed range from approximately —10308 to
10308, and have either 10 or 11 decimal digits of precision.
Slide 3.

VARIABLES are alphanumeric addresses of memory locations
chosen by the programmer, consist of 1 to 8 alphanumeric char-

acters and must have a letter (A-Z) as their first character.

Slide 4.
INTEGER VARIABLES are programmed with the first letter
either I,J,X,L,M or N and are addresses of locations, the

contents of which are integer constants.

Slide 5.
REAL VARIABLES are programmed with the first letter from A
through H or O through Z and are addresses of locations the

contents of which are real constants.

13

3 - VARIABLES AND ARITHMETIC

3-1 Variables

Variables are very important quantities in FORTRAN. These

are names given by the programmer to locations in the computer's
memory in which :nformation may be stored. The computer associates
a name with a particular numeric address but the programmer works
with the name only. We call this quantity a variable due to our
ability to change the contents of the location and also due to

its direct relationship with variables and unknowns in algebra.
There is an equivalent type of variable for each type of constant.
(1) on the 3300 a variable may consist of from 1 to 8 alphanumeric
(i.e., alphabetic and/or numeric) characters. Standard FORTRAN
allows only 1 to 6 characters. (2) The first character must be

a letter. Since decimal points are not allowed in the names of
variables, the distinction between integer and real variables is
made as follows. (3) If the first letter of the name is I,J,K,L,M
or N then the variable is implicitly type integer. A location is
established in memory with this name. Every reference to this
name refers to the contents of the location which will be a 24-bit
word with an integer value, so I,J,K47, INDEX, NUMBER, N4KX will
contain integer constant values. (4) If the first letter is not
1,J,K,L,M or N, then it must be A-H or 0-Z. The variable is
implicitly type real and two consecutive 24-bit words in memory
are associated with the variable name. Any reference to that

name is to the contents of the 48-bit real location. Anylnumber
stored in that location is a real constant with a sign, an ll-bit
biased exponent and a 36-bit mantissa: X,Y,Z, TABLE, DISTANCE,
RATE, TIME.

3-2 Arithmetic Operations

If we loosely think of the constants and variables as the
"nouns" of FORTRAN, then the operations on these nouns are the
"verbs". Since we are working with an algebraic language, we
need some way of doing arithmetic. There are 5 basic arithmetic
operations allnwed in FORTRAN. All algebraic problems and any
problems in higher mathematics must be expressed in terms of these

5 operations.
14

Operation Symbol

Addition +
Subtraction -
Multiplication *
Division /
Exponentiation * %

An arithmetic expression is defined as either (1) a constant
or a variable standing alone, (2) a pre-written function such
as a sine or a logarithm with an associated argument (a point at
which the function is to be evaluated), or (3) any valid combina-
tion of constants, variables, functions and the 5 operations.
Examples: A, 3, ALOG(X), A+B, 2*J, T1l-T2, Y/Z, A+B-C*D/E**F-SIN(X).

3-3 Integer and Real Arithmetic
With each of the two types of variables and constants, there

is associated a separate type of arithmetic. While integer and
real arithmetic are similar for addition, subtraction and multi-
plication, in integer division what would be the decimal fraction
part of the quotient is truncated since there is no room for it
in the 24 bit integer word: 2*3 = 6; 2.*3. = 6. and 3./2. = 1.5
but 3/2 = 1 and 99/100 = O.

3-4 Arithmetic Expressions

The formation of arithmetic expressions is governed by the
usual rules of algebra with some special rules needed by the computer.

Rule 1: Arithmetic operations are done according to the
natural hierarchy of algebra:

1. Function evaluation

Priority 2. **

Class 3. * and /
4. + and -

In any arithmetic expression all functions are evaluated
first and then all exponentiations are done, then all multiplica-
tions and divisions and finally all additions and subtractions.

A+ B * C *¥D=a + bcd

Rule 2: When operations of equal priority exist in an

arithmetic expression, these equal rank operations are done left

to right.
15

6 5 4

2
, [~ 3 12 1
A+ B -'C* D/E ** F' - 'ALOG (X)' operations done in order
by number
B * C/D = gg but B/C*D = gé.

Rule 3: Parentheses may be used as in algebra to change
the order of operations, in which case the expression inside

the parentheses is evaluated first, according to rules 1 and 2.

A+ B/C+D-=a+ g + d
_ b
A+ B/(C+D) = a + cid
(A+B) /C+D = 359 +d
_ a+t+b
(A+B) /(C+D) = od

Rule 4: When parentheses are nested, the innermost set is
*
always completed first. Thus (A + (B+C) * D/E) is a + {bt+c) *d

- e
while ((A + (B-C) * D)/E) ** F ig (a—t(]:_—c)_q’f :

Rule 5: Arithmetic expressions should be written in a

single mode entirely real or entirely integer. Do not mix modes.

One exception: It is not mixed mode when real numbers are raised
to an integer power; thus X ** 2 is preferable to X ** 2, because
the second method takes much longer and is also less accurate.
The 3300 does allow mixed mode operations but they can be

dangerous as this illustration shows:

Integer 3/2 * 5/4 =1 * 5/4 =5/4 =1

Real 3./2. * 5./4. = 1.5 * 5. /4, = 7.5/4. = 1.875

Mixed 3./2 * 5/4 1.5 * 5/4 = 7.5/4 = 1.875

Mixed 3/2 * 5/4,. 1 * 5/4. = 1.25 (not expected
answer)

Rule 6A: An operation is always required and never implied,
thus a(b+c)+>A*(B+C). Rule 6B: Two operation symbols may not
appear consecutively without an intervening non-operational
symbol, so A * -B should be A * (-B). ** jis allowed since it

represents exponentiation.

3-5 Library Functions
All versions of FORTRAN include a set of pre-written library

functions which varies somewhat from computer to computer. The

following functions are always available:
16

positive square root of real number X

SQRT (X) -

SIN(X) - sine of angle X, X in radians

COS (X) - cosine of angle X, X in radians

ATAN (X) - arctangent of X, ATAN in radians

ALOG (X) - natural logarithm of X

ALOG1l0(X) - base 10 logarithm of X

EXP (X) - exponential of ¥, e* natural antilogarithm
ABS (X) - absolute value of X

FLOAT(I) - floating point form of integer I

IFIX (X) - integer (truncated) form of real X

The quantity in parentheses (X) is the argument, a point at which
the function is being evaluated. It may be any arithmetic
expression of the proper mode , which means according to rule 3
that it must be evaluated before the function itself can be
evaluated. '

For a more complete list of library functicns available on
the CDC 3300 see the FORTRAN Reference Manual available at the

Computer Center.

17

4 - ASSIGNMENT STATEMENTS - INPUT/OUTPUT

4-1 The Assignment Statement

Once we understand how to form arithmetic expressions we can
proceed to the formation of the first instruction in FORTRAN - the
arithmetic assignment statement. It always has the form: variable
arithmetic expression. Examples: DIST = RATE * TIME;
3.1415926536 * RADIUS ** 2; FPS = 88./60. * MPH; I = I + 1.

The assignment statement says to do the following: evaluate

name
AREA

the arithmetic expression on the right of the equal sign and
store the value in the appropriate mode in the location whose
address is given by the variable on the left. The '=' is not an
arithmetic equal but means 'is replaced by'. Thus the current

value stored in location DIST is replaced by the product of the

current values of RATE and TIME. Note I = I + 1 is meaningless

in algebra but is wvalid in FORTRAN: the present value of I has

1 added to it and the answer put back in I. A = I + J computes

I + J in integer and converts to real for storage in A. K = 3.1 *
5.2 computes the constant 16.12 but stores 16 in K, as the

fractionsl part is truncated when the number is converted to integer.

4-2 A Sample Program
A typical FORTRAN program on the 3300:

N-EX PROGRAM SIMPLE ¢ start

EX READ (60,1) X, Y|e—-—o ---input
N-EX 1 FORMAT (2F10.0)

EX SUM = X + Y& v T -arithmetic calculations
EX WRITE (61,2) X, Y, SUM put
N-EX 2 FORMAT (3F12.2) <——-outpu _

EX CALL EXIT phase 2 stop “stopping
N-EX END phase 1 stopé"_tprocedures

4-3 Executable and Non-Executable Statements (EX and N-EX)

The instructions in a FORTRAN program are executed in sequential
order until a transfer of control statement is reached. Such state-
ments transfer control from the normal sequence to any executable
statement by referring to the statement number of that statement.
There are two hkasically different types of statements:

18

Executable Statements Non—-executable statements

Statements which cause action Statements which give the com-
within the computer: puter information but do not
Assignment statements cause action:
Transfer of control statements Specification statements
I/0 statements Subprogram statements

FORMAT statements

4-4 Input/Output

We now turn to the topics of INPUT and OUTPUT. Once an
algorithm has been found to solve a given problem, the programmer
can regulate the input and output according to the needs of the
problem, the limitations of the algorithm and the actual I/O
hardware devices. Beginning programmers usually work with the
80 columns of a card and the paper width of the computer's line
printer (which on the 3300 is 136 columns). Thus up to 80 characters

of information are available on each card (with additional
restraints within a particular language such as FORTRAN). The
teletype is more often about 64-72 columns per line, and when
teletypes are used as I/0 devices this limitation and their slow
speed leads to the necessity for small amounts of I/O. Since the
line printer and magnetic disk are easily accessible from teletype,
much use is made of outpﬁt to those devices and also to input from

magnetic disk.

4-5 The READ Statement
The primary input statement in FORTRAN is READ and it assumes

that the record is a card or card image (i.e., 80 column record
from teletype, magnetic disk or tape). It is used in conjunction
with an associated FORMAT:

READ (60,1) X, Y

1 FORMAT (2F10.2)

The general form of the input statement is:

READ (LUN,FMTNO) list
where LUN is the number of a logical unit, (LU) i.e., an input or

output hardware device such as a card reader, a teletype, a
magnetic tape or a magnetic disk. Such devices must have been
EQUIPPED, i.e., the system must be aware of what number represents

what piece of hardware.
19

4-6 Logical Units Under 0S-3
The allowable values for logical unit numbers are 0-100

under 0S-3. Howaver since all of these are not allowed in
FORTRAN a good working rule is the following. Use LUNs from 1
to 49 for magnetic tapes or magnetic disk files. Once your job
is recognized to be valid, LUN = 60 is automatically equipped
to the card reader or teletype, depending on whether the program
is batch processad or on-line. LUNs from 50 to 59 should be used
with care and only with knowledge of what the computer does with
these units. Examples:

READ (1,40) I

READ (27,96) J, K, X

READ (60,27) RATE

4-7 Statement Numbers and Formats
- FMTNO is the statement number of an associated FORMAT. FORMATs

are non-executable statements and under 0S-3 may appear anywhere

in the program. They are not executed sequentially but are
referred to when the READ is being executed. They may be referred
to by more than one I/O statement. Like any statement number, that
of a FORMAT must be positive and less than 32768. Every FORMAT

must have a statement number.

4-8 Input Variable List
The list must be made up only of variable names separated by

commas; no consiants, no functions and no other arithmetic
expressions are allowed. Numbers are read from a data record
and stored in the locations whose addresses are the variable
names. Thus consider:
READ (60,490) A, B, TABLE, TAX, IK

490 FORMAT (F8.2, Fl12.4, E13.4, F8.1, I7)
During compilation 4 real locations and 1 integer location are
established with the given variable names as addresses. During
execution this set of instructions reads five numbers from one
record and stores them in locations A, B, TABLE, TAX, IK in the
mode determined by the variable type. The FORMAT indicates the

namber of records to be read, where in the 80 columns each number

ro
(]

is located, whether it is integer or real and the number of decimal

places it has if it is real.

4~9 The WRITE Statement
The corresponding output instruction is:
WRITE (61, 364) X, Y
364 FORMAT ('y', F12.1, Fl2.1)
This statement writes the contents of locations X and Y on the

line printer. General form:
WRITE (LUN, FMTNO) list

with

LUN, FMTNO and list as in READ.
LUN = 61 is automatically equipped to the line printer or teletype;
LUN = 62 is usually equipped to the card punch. In general a

WRITE statement writes the contents of each variable name address
i the list on the LUN according to the FORMAT with statement

number FMTNO.

21

5 - INPUT/OUTPUT - FORMAT

5-1 Review of Input/Output Statements

We have seen that the general form for the input statement
is:
READ (LUN, FMTNO) list
where LUN and FMTNO are the logical unit number and the statement
number of an associated FORMAT statement, respectively, and list
is a set of variable names separated by commas. Information from
the LU is input according to the specifications of the FORMAT
with statement number FMTNO and stored in the locations given
by the variables in the list. The output statemant is similar:
WRITE (LUN, FMTNO) list
This statement outputs information from the locations given in
the list to the LU according to the specifications in the FORMAT,
e.g.
WRITE (61,32) X, TAX, IJ
writes the contents of locations X, TAX, IJ on LU 61 (either line

printer or teletype) according to the specifications in FORMAT 32.

5-2 The FORMAT Statement
FORMATs are complicated statements because of the many

different specifications which they can contain. All FORMAT
statements must have statement numbers since they are referenced
by one or more READ or WRITE statements. Although some compilers
require that all FORMATs be placed at the top or at the bottom of
the program, 0S-3 allows these non-executable statements to go
anywhere in the body of the program. The specifications indicate
the forms in which data exist on the input records and give the
chosen appearance to the output records. They are used to indicate
spacing, the types of quantities being input or output, the number
of decimal places of decimal numbers, and the positioning on the
I or O record. They are also used to generate headings and other
explanatory information in the output. The general form of
FORMAT 1is:

#FORMAT (specifications separated by commas).

14 FORMAT (I5, 6X, F10.2)
22

5-3 Numeric Format Specifications

Numeric specifications are designed primarily to handle
integer and real constants. Since READ is reading from a data
record we must remember that all 80 columns are available and
that blanks are treated as zeros.

To input/output integer constants use:

Iw—>integer field of w columns width. On input
the data must be right-justified to eliminate
blanks treated as zeros. On output the digits
will be right-justified with blank fill to the

left.
I2 XX, BX, -X X a digit
13 XXX, kXX, -XX

112 $uhdE XXXXXKX 0<#<8388607
PP _xxxxxxXXx -8388607<#<0
To input/output real constants in decimal fraction form use:

Fw.d =>real decimal field of w columns width. On input

if no decimal point exists in the w columns, then
d is the number of places to the right of the
decimal point when the number is stored in memory.

~ If the decimal point is in the w columns, d is
ignored. On output follow this rule: w>d+3.
This leaves space for d digits to the right of
the decimal point, the point itself, a leading
digit and a sign.

Thus -1.487 must be output in F6.3 specification
at least.
On output if the width w is considerably larger than the
number of decimal places d, then the number is right-justified
with blank fill to the left.

F6.2 XXX.XX or (on input only)XXXXAXX (the carat is
an implied decimal point).

F5.0 ¥XXX. or XXXXX (on input and on output on the
3300); most computers add a decimal point
on output when d = 0 but not the 3300.

Horizontal spacing: nX skips n columns, and is used on both
the input and the output. Thus, 3X skips 3 spaces horizontally,

i.e., reads or writes three blanks.

N
w

5-4 Input Sample - READ and FORMAT
Example of input from a card or teletype line:
Cols 4 56 7 8 9 10 17 18 19 20

123.45%6 - 1 8 7
READ (60,5) X would read one number and FORMAT 5 should have
one real specification, since X is real; if the specification is

F10.0, F10.1, ..., F10.10, since a decimal point is there,

X = 123.456 will be stored. If the specification is F7.0, F7.1,
«+«+, F7.7, since a decimal point is in column 7, X would be stored
as 123.000; since columns 8, 9, 10 are not part of w, .456 is

not part of the number.

If the specification is F6.0, we would also get X = 123.000,
having 6 digits with no places to the right and no decimal point
in the w columns. But for F6.1 we get 12.3; for F6.2, 1.23; for
F6.3, .123; for F6.4, .0123; for F6.5, .00123 and for F6.6, .000123.
There is no decimal point present in the 6 columns, so the d part
of the specification determines the magnitude of the number.

If we change the READ to:

READ (60,6) X, I
6 FORMAT (F10.3, 6X, I4)
we get X = 123.456, I = -187. If (F10.3, 6X, I3), then I = -18,
and if (F10.3, 14) then I = 0. Note: to find the field on the
record we add thne w's and the n's together: e.g.
(F10.3, 6X, I4)
cols 1-19 11-16 17-20
10 + 6 + 4
w n w
Since columns 11-16 were blank, we could also have:
6 FORMAT (F10.3, I10)
or if
READ (60,7) X, Y
7 FORMAT (F10.3, 6X, F4.0) or (F10.3, F10.0)
then X = 123.456 and Y = -187.00 if F4.1 we get ¥ = ~18.7;
F4.2, Y = -1.87. _
It may look as if there are only two numbers on the record,

but we can use specifications to define more, e.g.

24

READ (60,7) I, X, Y I =123
X = .456
7 FORMAT (I6, F4.0, 6X, F4.0) Y - S1a7.

5-5 Exponential Numbers and E Format

There is a third numeric specification Ew.d which is used
to read or write a number in scientific notation rather than
decimal fraction form. There are several shorthand forms for
inputting such numbers but we shall only discuss the normal form
which would require the number to be punched or typed right-
justified as X.XXXX E ﬁ_XX for exponents -99 to +99 with E XXX
for exponents 100 to 308 and with -XXX for exponents -308 to
-100. The input specification would be E 11.4. The output is
always in this form on the 3300, although this is not true in
standard FORTRAN. The output rule to follow is thus w > d + 7,
leaving one space for sign, leading digit, decimal point and four
spaces for the exponent. The main purpose of Ew.d specification
is the precise representation of very large and very small
numbers, e.g. if X = .00000000012743 this number can be more
easily represented on input by 1.2743 E-10, either READ using E
format or set by X = 1.2743 E-10; full precision on output will
be obtained only if we use Ew.d specification since X written in
F12.4 gives .00C0 while E12.4 gives 1.2743E-10. Similarly, the
large number 1 000 000 000.0 is more easily represented as 1.E 09
and on output F:2.4 would give 000 000.000%*, the * indicating
overflow of the FORMAT field, i.e., digits missing to the left,
while E12.4 would give 1.0000E 09. By putting a number n in front
of an F, E, or I specification that specification is repeated n
times like the skipping specification, e.g. (F10.4, F10.4, 15,
I5, I5) »+ (2Fl0.4, 315). '

5-6 End-Of-Record Specification

As well as a horizontal spacing specification, there is a
specification for vertical spacing: /. This specification
essentially signals the end of a record and is used to start a
new record within a single FORMAT: either a new card, a teletype
line, or magnetic disk card image on input or a new line on the

line printer or teletype on output.

25

Multiple slashes can be used to give multiple vertical spacing.
since / is an end-of-record indicator, it takes 2 slashes to skip
one line vertically, and in general it takes n+l slashes to skip n
lines. The slash also is a delimiter, so no commas are needed to
separate the slashes. In the FORMAT (F10.2//15) the first data wvalue
will be processed in F10.2 from the first record with the first /
indicating the end of that record. The second / indicates the end of
the second record and that record is thus blank, effectively skipped.
The second data value will be processed in I5 from the third record.
It is important %to note that the last right parernthesis of any FORMAT,

if it is reached, also acts like a slash and indicates end-of-record.

26

6 - HOLLERITH ; STARTING, STOPPING, TRANSFER OF CONTROL

6-1 The Hollerith'Specification and Carriage Control

On output whenever a new line is to be started, whether at
the beginning of a FORMAT or by a / inside, the first character
on that line is used as a carriage control symbol and is not
printed. The carriagé on the line printer or teletype is controlled
by that character. A blank will cause single spacing before any
printing: a 0 will cause double spacing and a 1 will cause a
skip to a new page. A - causes triple spacing and a + overprinting
on the current 3300 line printer. Single spacing is the most
common type of control needed and can be done in several ways.
The other CC symbols can be generated only by Hollerith specifi-
cations to be diécussea next. But to get a blank in column one
of the output record for single spacing we can use nX which will
skip vver n columns, e.g. (1X, F8.4) skips over column 1-Bin
column 1 -+ single space before printing. Or we can use a large
value for w in any of the numeric specifications, guaranteeing a
blank in column 1 because of the blank fill by the computer, e.q.
(F16.4) £Et bbb XXXX.XXXX. To obtain the other CC symbols we
need Hollerith specification, which is used primarily for output.
This specification is most important because it gives us a means
of printing out any string of characters as a heading or explana-
tion of the output. Hollerith specification can be formed in
either of two ways; (1) nH text where n is an exact count of the
characters in the text or (2) 'text' where whatever is between
the single quotes will be printed. This latter method is not
available in all FORTRAN compilers, but is available on the 3300.
It is preferred since miscounting n is a common error in the
first form. This, by the way, is the one place within a FORTRAN
program where a blank is not ignored. All blanks to be printed
by Hollerith specification must be included in the count (nH form) -
and space must be left for them in the téxt in the quote form.

WRITE (61, 12) X, Y

12 FORMAT (1HO, 3X, 'X = ', Fl10.2, 3X, 'Y ="', F10.2)
X[337.276¢] Y| -28.74 | will generate, with the .276 rounded
to two decimal points, double space

X = 337.28 Y = -28.74

27

For a heading at the top of a page there may be no list, e.g.
WRITE (61,98)
98 FORMAT (1H1, O®, 'THIS IS A HEADER FOR A NEW PAGE')

To center on the page: 136 characters total
-1 for CC
=31 for number in text
107 left

104/2 = 52, so use 52X to center text.

6-2 Starting The Program

The first statement in every FORTRAN program on CDC computers
must be the non-executable statement: PROGRAM name. Name must

have the same form as a variable but cannot be the same as any
variable used in the program, e.g. PROGRAM SIMPLEZ. Standard FORTRAN
does not use this statement, but it must be used on the 3300 and

all CDC computers.

6-3 Ending The Program

The last statement in every FORTRAN program and also in
every subprogram, i.e., the last card in a program deck or the last
line on teletype in all FORTRANs is the non-executable END. This
statement indicates to the compiler during the compilation phase
the end of the set of related instructions to be translated,
either in the program or in a separate subprogram. (FUNCTIONS are
subprograms.)

During the execution phase the END no longer exists, so to
stop execution a STOP or CALL EXIT is needed. These are execut-

able statements. EXIT is a prewritten subprogram designed to
make the return of control to the operating system easier than
the plain STOP, designed for use on computers which actually
halted. Either statement signals the end of the EXECUTION phase.
There should be one or more STOP or CALL EXIT statements in every
program. They may appear anywhere between PROGRAM name and END
after the other non-executable statements we will discuss.

6-4 Transfer of Control - The GO TO Statement

A program designed from the instructions we have dealt with

so far would be executed sequentially, i.e., the statements would

Ye executed one at a time as they appeared in a listing of the

28

program. Most FORTRAN programs at some time require a change
from this normal sequential execution. We can make this change

by using transfer of control statements. The simplest of these

is the unconditional GO TQO of the form: GO TO n, where n is the

statement number of any executable statement, e.g. GO TO 7,
GO TO 43.
1 READ (60,3) X

WRITE (61,17) X, XQ, Y

GO TO 1

6-5 The Computed GO TO Statement

Somewhat less useful is the computed GO TO which uses the
value of an integer variable in standard FORTRAN (or any

arithmetic expression under 0S-3) as a switch. Depending on
the value of the switch, the program may transfer in any of
several possible directions.

GO TO (nl, Nyy o ewe nm), iswitch where the last comma is nec-
essary in standard FORTRAN (optional on the 3300). The Ny i=l, m
are statement numbers of executable statements. The value of

'iswitch' determines which statement number to transfer to

iswitch = 1, -~ ny if iswitch <l,+nl
2, » n,

m, > n if iswitch >m,»n

m m

e.g. company payroll with bonus being given, bonus amount
depends on years of service:

years 0-3 4-6 7-15 16-up
bonus 25 50 75 100
LCODE 1 2 3 4

29

If we can relate LCODE to years worked, then

GO TO (6,81,97,4), LCODE
6 PAY = PAY + 25,
GO TO 15
81 PAY = PAY + 50,
GO TO 15
97 PAY = PAY + 75,
GO TO 15
4 PAY = PAY + 100.
15 WRITE (61,13) PAY

30

7 - ARITHMETIC IF; 0S-3 CONTROL CARDS

7-1 The Arithmetic IF Statement

The computer has the ability to compare numbers and we can

take advantage of that fact by using another conditional transfer

of control statement: the arithmetic IF statement. This state-

ment is based on the Trichotomy Principle of mathematics: every
real number is either negative, positive or zero. Thus it is a
three way transfer of control statement of the form: IF (arithmetic
expression) Ny, Ny ngy where Ny, Ny n, are statement numbers of
executable statements, two of which can be the same but not all
three. This statement works as follows: the arithmetic expres-
sion is evaluated; the numeric result is either negative, positive
or zero. If the arithmetic expression is negative, transfer to
sz-atement n, . If the arithmetic expression is zero, transfer to
statement n,. If the arithmetic expression is positive, transfer
to statement nj. For example,

IF(X-Y) 3,4,5
32 =2. % X-Y

GO TO 6

4 7 = X+Y
GO 70 6

5 Z = X-Y

6 WRITE (61,36) Z
if X=3.,Y¥Y=4. X-Y<O0 2=6-4=2.
if x=4.,Y=4. XY =0 2 = 4+4 = 8.
if X=5.,Y=4. X-Y >0 2 =5-4=1.
Note that IF(X-Y) 3,4,5 says
if X-Y < 0 >3 same as if X <Y »> 3
if X-Y = 0 +4 same as if X = Y »> 4
if X-Y > 0+5 same as if X > Y > 5

So when we write down the arithmetic expression we can think
of comparing it with 0, e.g. IF(A) 12,14,17, or if it consists of
two or more parts we can compare the parts directly as we did
above. Another example of that type of comparison is:

IF(I + 2) 17, 17, 24

if I +2<0~17 I < =-2~»17
I+2=0=>17&1I = -2~ 17
I +2>0~> 24 I > -2~ 24

Common case to check for division by 0 before dividing, e.g. if

X = A + B/(C + D) to be calculated in a program.

31

DEN = C + D
IF(DEN) 12,19,12
12 X = A + B/DEN
GO TO 16
19 . . . no division

7-2 Requirements of the 0S-3 Operating System

We now have enough instructions to write some simple but
meaningful FORTRAN programs, but before we can submit any programs
to the computer, we need to examine the requirements of 0S-3. All
operating systems require the use of control statements so that
the System can keep track of valid users and their accounts. In
addition certain general features of the computing system are
accessible through these control statements. We will assume for
now that all the programs we write are punched oa cards and sub-
mitted as a deck to the 3300. Later we will demonstrate the
requirements for running FORTRAN programs from teletype.

7-3 The Job Card
The first card of any deck submitted to the CDC 3300 must

be

;JOB, XXXXXX, AAAA, ID

where the 7 and the 8 are multi-punched in column 1, there

being no single character on the keypunch which has a 7 code.

The job number is a six digit number. The user code ig four
alpha-numeric characters unique to a particular user. Not all
the commas are needed but for simplicity and consistency we will
put them in. The ID is your name and any other identifying
information which you may want. A specific example:

ZJOB, 748921, XYZQ, J. DOE

7-4 Job Numbers, Charges and File Blocks

‘When a job number/user code is created at the computer
center, a fixe¢ number of seconds of CPU time is established for
that job, depending on the amount of money supplied by the user
($5/min is the CPU charge). As each run is made under the job
number/user code, the cost of the run is subtracted from the
»revious balance. This cost includes card reading, printing

32

and on-line charges as well as CPU charges, so the system keeps
track of the total amount of money remaining in the account and
updates the number of CPU seconds remaining accordingly, also
at the end of each run. When the job number is created a fixed
number of save and of scratch file blocks are established for the
user. Save file blocks are permanent storage areas on magnetic
disk in which decks of cards, either programs or data, may be
stored rather than being in actual card form. One file block is
512 24-bit words. Programs and data may be stored permanently
in save file blocks by entering them directly from teletype and
storing them on disk, or by copying a deck of cards onto disk.
In either case each related set of information is saved under
a chosen 1 to 8 character file name and is retrievable by
referencing the file name.

| If the programs or the data are to be listed, or output is
required in printed form or in an intermediate form for later
inputting, then scratch file blocks are used. A scratch file
is temporary magnetic disk storage available only while the job is
being run. While standard output scratch files are sent to the
appropriate output device and some scratch files may become save
files during the run, all other scratch files are lost for
- further use at the end of the run.

7-5 The Time Card
When each job card is read by 0S-3 and determined to be

valid, the system automatically limits the job to 60 seconds

of CPU time. Since this is the equivalent of $5, it is best

for beginning programmers to change this limit in order to avoid
using all $5 on one run. We use the time card g TIME = 5 which
causes the computer to quit working on the job after 5 seconds,
if it does not finish before. For jobs which require more than
60 seconds we can use ; TIME = 3600, for example, to allow one
hour of CPU time. Note that the cost is greater than $300 due

to I/0 charges.

7-6 Assigning Logical Units: The Equip Card

In some instances the data for a program will not be on
cards but may be on a save or scratch file or on magnetic tape.
33

In these cases you will need to tell the computer where the data

are by equipping a LUN to a particular piece of hardware.

ZEQUIP, 9 = FILE establishes logical unit 9 as a scratch
file. Data may be written on the file and, after it is rewound,
they may be read from it again. Unless saved as a save file,
the information on LUN 9 is lost at the end of the run.

;EQUIP, 27 = TEMPDATA establishes logical unit 27 as
equivalent to the save file TEMPDATA. Data previously stored
on TEMPDATA are then available on LUN 27. |

The LUN in a READ must match the LUN in the EQUIP so that
the READ inputs data from the correct device. Similarly for the
LUN in a WRITE statement. Remember that 60/61 are automatically
equipped to the card reader and line printer or to the teletype.
From FORTRAN it is best to use LUNS 1-49 for save or scratch
files or magnetic tapes. 50-59 are used by the 0S-3 system,
and it is best to avoid these units.

7-7 The FORTRAN Compiler

To compile and execute a FORTRAN program from cards:

g FORTRAN, L, R Followed by deck of FORTRAN
RRL cards
Compiles FORTRAN ists on If no compilation errors,
source program in- LUN = 61. loads object program and
to object program. executes.
7

FORTRAN, L, R
PROGRAM NAME

8

;g end-of-file card for compiler, indicating last

program or subprogram to compile

77

88
{?7 (data cards if necessary)

88 if end-of-file check is used in the FORTRAN program

7-8 The LOGOFF Card
The last card of every deck must be g LOGOFF which completes

the run and updates the users account.

35

8 - PROGRAM EXAMPLES 1; SUMMATION AND COUNTING

8-1 Program Example

Example of a program to convert °F to °C.
(See sheet 8-#l)

Multiple sets of data on save file TEMPDATA
JOB,738921,XYzQ, J. DOE

TIME=3

EQUIP, 13=TEMPDATA

FORTRAN,L,R

OJd O oo oo~

PROGRAM TEMPS
1 READ (13,10) F
10 FORMAT (F10.0)
IF(F + 500.) 3,3,4 <
4 C =5./9. * (F-32.)
WRITE (61,7) F,C
7 FORMAT (F10.1, . . .)

GO TO 1
3 CALL EXIT
END
77
88
7
8LOGOFF

To stop, let the last piece of data have any temperature
<-500, since absolute 0 is approximately -458°F. The check on
the last card is inserted at the arrow above: IF(F + 500.) 3,3,4.

If the data on TEMPDATA are - 32.
100.
180.
212.
-999,

the program will stop when F is READ as =-999.
Program to calculate the distance of a point (X,Y)from the
origin of a Cartesian coordinate system.
(See sheet 8-%2)

36

£J0B.748921,XYZQ,J . DO
STIME=3

SFORTRAN, L. R

PROGRAM TEMPS
READ(60.,10)F
10 FORMAT(F10.0)
C=5./9.%(F-32.)
WRITE(61,7)F.C
/ FORMAT(F10,2, 'DEG.
F=",F10.2,'DEG., C')
CALL EXIT
END
g
(1 pATA cARD WITH DEG.C)
£LOGOFF

8-#1

37

PROGRAM DISTANCE
~ READ(60.18)X.,Y
18 FORMAT (2F5.1)

DIST=SQRT(X**2+Y**2)

WRITE(61,19)DIST
19 FORMAT(*THE DISTANCE IS’

1.F8.9)

CALL EXIT

END

8-#2

38

8-2 EOF Check

Rather than use F + 500. as the stopping criteria, we can
use an end-of-file, a ;;, and check for its having been read.
To check for EOF at the end of a data file we use the instruct-
ion in the form IF (EOF(LUN)) GO TO n or IF(EOF(LUN)) CALL EXIT.

We can modify our previous example to allow calculations of
distance to many points with the use of this instruction.
(See sheet 8-#3)
Here is a simple problem to illustrate arithmetic if
checking for division by 0 in X =A + B/ (C + D).
(See sheet 8-#4)

8-3 Summation

One of the most important topics in programming is the topic
of summation. We have seen that we can add together two quantities
stored in two locations in memory and store the sum in some
other location, e.g. SUM = A + B. What we are referring to with
the word summation is a mathematical sum, of not just two, but

an arbitrary number of quantities. This is often represented in
n

sigma notation as S = ¥ Xi where i is a subscript which takes
i=1
on values from 1 to n. S = g X. means X, + X, + X, + ... + X_.
iy 7L —— 1 2 3 n

This notation is valid regardless of the value of n but if we
‘were to write FORTRAN statements to represent this sum, e.g.
Xl + X2 + X3 + X4 + X5 + X6 for n = 6, we would need a new
statement every time n changed. We would like a technique
which like sigma notation remains valid regardless of n. We

take care of this problem by doing the following: consider

i=1+2+3+ ... + n.

n
n
h™mB

W
(e

SFORTRAN, LR
PROGRAM DIST2
10 READ(60,18)X.Y
18 FORMAT (2F5,1)
IF (EOF (60))CALL EXIT
DIST=SART (X**2+Y**2)
WRITE(61,19)DIST
19 FORMAT ('THE DISTANCE IS’
1,F8.3)
60 T0 10
END

oo
oo~

(DATA CARDS)

oo™l OO
OO

LOGOFF

8-#3

40

PROGRAM CALC
* READ(60,13)A.B.C.D
13 FORMAT (4F5.,1)
DENOM=C+D
IF (DENOM) 18,2718
18 X=A+B/DENOM
60 TO 36
27 WRITE(61,12)
12 FORMAT(' DENOMINATOR=0")
60 TO 34
36 WRITE(61,28)A,B.C.D.X
28 FORMAT (4F6.2.F10,2)
34 CALL EXIT
END

8-#l

41

9 - SUMMATION AND COUNTING; LOGIC CONCEPTS

9-1 Summation Examples

In our previous discussion of summation we progressed to
n

the point of considering S = y 1i=1+2+3+ ...+ n. We'll
i=1
now show a program that will do this operation.
(See sheet 9-#1)
Counter I is counted from 1 to N. X alsovgoes from 1. to
within a fraction of N (because of roundoff errors in binary
representation of decimal fractions). X may never beZ N (real

form) .

9-2 Counting

Counting and summing are essentially the same operation.
In counting the same three steps always occur. The counter is
initialized (usually to 0 or 1), then the counter is incremented
by having 1, (or some other integer) added to it e.g. I = I + 1.
Then the value is tested against a fixed value e.g. IF(I-N) 3,3,4.
The testing and incrementing can also be done in the reverse
order. When sunming, we often use a test on a counter to tell
us when we are through, but we do initialize and increment the
sum location in the same way.

There are two basic types of counts we can do. They are
illustrated as follows:

COUNT UP COUNT DOWN
initialize I =1 READ N
increment 3 I = I + 1 3N=N-1
test IF(I-N) 3,3,4 IF(N) 4,4,3
4 . . . 4 . . .
I <N->3 N<O0~»> 4

We will return to summation when we discuss arrays, sub-
scripts and DO loops.

9-3 Three-Way and Two-Way IF Statements

Note that IF(N) 4,4,3 is really a three-way IF with two
branches. Because this is not a very efficient statement the
lngical IF was developed with FORTRAN 1IV.

42

PROGRAM SIGMA
~ READ(60,10)N
10 FORMAT(13)
SUM=0,
X=1.
=1
3 SUM=SUM+X
X=X+1,
[=1+1
IF(I-N)3.3.4
4 WRITE(61,6)N, SUM
6 FORMAT ('SUM FROM 1 TO'
1.14,"18' ,F7.0)
CALL EXIT
END

9-#1

43

To understand this instruction we must first deal with
relational operators and expressions and logical operators

and expressions.

9-4 Relational Operators and Expressions

The relational operators are used to compare arithmetic

expressions. There are six relational operations.

LT, .GT. The periods before and after are
.LE. .GE. needed to distinguish these opera-
.EQ. .NE. tions from variable names.

Note: .EQ. is not the same as = in FORTRAN.

We use these operations as we did arithmetic operations,
to form expressions: representing an expression as <exp>.
<Rel. exp> = <arith exp><rel. op.><arith exp>. e.g. X * Y .LE. 47.
Z/Q. Now while an arithmetic expression has a numeric value, a
relational expression has a logical value - it is either true or
false, i.e.,

if X * Y < 47. -2/Q, the expression is T, or

if X * Yy > 47, -Z2/Q, the expression is F.

9-5 Logical Operators and Expressions

A relational expression by itself is a simple logical
expression. We may also combine two or more relational expres-
sions with one or more of the three logical operations thus
generating a compound logical expression. The three logical
operations are .AND., .OR., .NOT.

<Compound logical expressions> = <Rel. exp><log. op><rel. exp>
or <rel. exp> alone, such an expression also has a value T or F.
The truth value of a compound logical expression is determined
by the rules of Boolean algebra. The easiest way to present
the rules we need is to introduce truth tables.

9-6 The .AND. Operator

Let P,Q, be two relational expressions, then since P has
two possible values and Q has two, the truth table of PAQ
(P .AND. Q) is:

44

£ T I = T = B v

P .AND. Q

L s T I

2. * X .GT. Y + 3.

e.g.
X .LE. Y .AND.
let X = 6., Y = 7. then
let X = 3., Y = 7. then
let X =9., ¥ = 7. then
let X = 2.1, Y = 2. then
9-7 The .OR. Operator
A truth table for P \/ Q
P Q P .OR. Q
T T T
T F T
F T T
F F F
e.g.
A .EQ. B .OR. B**2 - 4,
let A = 8., B = 8. then
let A = 2, B =2 then A
let A =1, B= 4 then A
let A =4, B = 2 then A

6. < 7. and 12. > 10.
T

3. < 7. but 6. f 10.
: F

7. altho 18. > 10.
T

2.1 X 2. and 4.2 # 5.
F F

9.

s HBIA H)

(P .OR. Q) is:

* A .GE. 3.
= B and 64 - 32 > 3.
T T
B, but 4 - s’f 3
F

B but 16 - 4 > 3
T .

B and 4 - 16 3
Fi

o4~ "4 3

45

Whole exp.
T

F

Whole exp.
T

T

10 - LOGICAL IF; PROGRAM EXAMPLES

10-1 The .NOT. Operation
For == (.NOT. P), the negation operator operates on one

logical expression only; thus we have:

P .NOT. P

T F

F T
.NOT. X .LE. Y
let X = 3., ¥ = 6. X <Y so .NOT. X .LE. Y is False
let X = 9., Y = 6. X > Y so .NOT. X .LE. Y is True

10-2 The Logical IF Statement
The logical IF is formed as follows:

IF (logical expr.) statement s

statement t
Statement s may not be another logical IF or a DO and it must
be executable. It is executed as follows. The logical expres-
sion is evaluated. If it is T, then statement s is executed. If
the logical expression is F, then the normal sequence is resumed
with statement t next. If s is to be executed and s is a trans-
fer of control statement, then the statement executed after s
is entirely determined by the type of transfer. 1If s is
executed but it is not a transfer of contreol, then normal
sequencing is continued and t is executed after s.

IF(X .LE. Y .OR. Y .LE. Z) GO TO 37
WRITE (61,47) X,Y,Z

if X < Y or if Y < Z, then statement 37 will be executed next;
otherwise the WRITE is executed next.
IF(I * J .EQ. K*¥*2) T =1 + 1
WRITE (61,57) 1,J,K
if I *gJ-= K2 then I is reset to I + 1 and then the WRITE is exe-
cuted. If I * J % K2then just the WRITE is executed.

46

10-3 Sample Problem

Use of logical IF to find the largest element of a set
of numbers. We read the numbers one at a time and compare
each number with XMAX, which will contain the largest value

up to the particular comparison being made.
(See sheet 10-#1)

To jillustrate execution we introduce data cards:

77
88

XMAX is set to -1. X 10300, X is read

as 1., but it is not end-of-file so 1.
is compared against -1. X 10300 ang
XMAX is set to 1. Then X is read as
4., again no EOF, so 4. is compared
with 1. and XMAX is set to 4. Then X
is read as 7., again no EOF, so 7. is
compared with 4. and XMAX is set to 7.
Then X is read as 2., again no EOF, so
2. is compared with 7. XMAX is not
changed since 2. < 7. Then EOF is
read and XMAX is written as 7.0 and the .
program stops.

10-4 The Complete Hierarchy Rules

We now have all the available operations and can form
the final hierarchy rules which indicate the order in which

operations are performed.

(1} Function evaluation

(2) **
(3, * and /
(4) + and -

47

PROGRAM MAXFIND
XMAX=-1,E300
5 READ(60.1)X
1 FORMAT(F5.1)
IF(EOF(60))G0 TO 6
IF (X, GT. XMAX) XMAX=X
GO TO 5
6 WRITE(61.,10)XMAX
10 FORMATC('THE LARGEST IS’
1.F6.1)
CALL EXIT
END |

10-#1

48

(5) Relational operators: .LT., .LE., .EQ., .NE.,
.GE., .GT.

(6) ..NOT.

(7) .AND.

(8) .OR.

10-5 Parentheses and Logical Expressions

While parentheses are allowed to change the order of
arithmetic operations, on the 3300 they cannot be used to change
the order of logical operations. If the natural order is not
what is needed, two or more IF statements may be required to
cause proper checking of all logical operations. If r,s and t

represent logical expressions then

r .AND. .NOT. s .OR. t is evaluated as

.NOT. s followed by r .AND. (.NOT.s) and then
(r .AND. .NOT. s)

.OR. t.

10-6 Example of Logical IF

A useful example of the use of logical IF comes in a quick
visit to the dice tables in Nevada. Two dice are thrown and the
numbers on the upper surface of the dice are added. The possible

sums are 2,3,4,...,12. If the sum is 7 or 11, the game

49

is won. If the sum is

2,3, or 12 the game is lost. Any other

number becomes the player's "point" and he continues throwing

until he throws his "point" again in which case he wins or until

he throws a 7 in which case he loses. Some of the statements

in a program involving such a game might include generation of
the sum of the dice = NSUM, followed by

IF (NSUM .EQ.
IF (NSUM .EQ.

2 .OR. NSUM .EQ. 3 .OR. NSUM .EQ. 12) GO TO 16
7 .OR. NSUM .EQ. 11) GO TO 18

NPOINT = NSUM

10 GENERATE NEW
IF (NSUM .EQ.
IF (NSUM .EQ.

. GO TO 10
18 handles win

16 ﬂaﬁdieé loss

. . - .

NSUM
7) GO TO 16
NPOINT) GO TO 18

10-7 Two Linear Equations In Two Unknowns

Sample problem:

unknowns.

10-8

System of two linear equations in two

mathematical example solution check

3X + 4y = 10 X =2 6 + 4 =10

8X - 6Y = 10 Y =1 lé - 6 = 10
In general AX + BY = C Two unknowns ———>cannot be

DX + EY = F formulated in FORTRAN directly.

Algorithmic solution:

x = CE - BF y = AF - CD

AE - BD AE - BD

(See sheet 10-#2)

Sample data for linear equations problem.

3. 4.
3. 4.

71
8 8

10. 8. -6. 10.
10. 6. 8. 10.

Quadratic Equations

Sample problem:

Quadratic equation solutions.

mathematical example solutions
x2 - 6x +8 =0 X =4, X =2
In general ax2 + bx + ¢c =20

PROGRAM LINEQNS
1 READ(60.7)A.B.C.D.E.F
7 FORMAT(6F10.2)
IF (EOF (60))CALL EXIT
DENOM=A*E-B*D
[F (DENOM.EQ.0.)G0 T0 9
X=(C*E-B*F)/DENOM
Y=(A*F-C*D)/DENOM
WRITE(61.37)X.Y
37 FORMAT('0X=",F10.2.5X,
1'y=",F10.2)
GO 70 1
9 WRITE(61,45)
45 FORMAT("ONO SOLUTION')
G0 TO 1
END

10-#2

51

The solution is obtained from the quadratic formula:

X = -b £ Vb“ - 4dac

2a

b2 - 4ac is the discriminant. The discriminant

determines the type of roots.

If discriminant < 0, there are two complex roots: case (1)

If discriminant = 0, there are two

If discriminant > 0, there are two unequal real roots: case

Case:

(2) if discriminant = 0,
(3) if discriminant > 0,

and

(1) if discriminant < 0,

We can work with complex
defer discussion until later.

_ _=b
X2 =% =5
X. = -b + \VVdiscr.
1 2a
_ -b - Vdiscr.
X, =
2 2a

complex conjugate roots

X. = -b +\i—discr. i

1~ 2a 2a
X = -b _\/—disér. i
2 2a 2a

arithmetic on the 3300 but we will

What we do instead is to work

with the real and the imaginary parts separately:

(See sheet 10-#3)

_ -b
XREAL = 7=
XIMAG = V:%%E%EL

equal real roots: case (2)

(3)

PROGRAM QUADEQNS
1 READ(60.19)A.B.C
19 FORMAT(3F10.2)
IF (EQF (60)) CALL EXIT
TWOA=2.*A
DISCR=B*B-4,*A*C
- IF(DISCR)30.40,50
30 XR=-B/TWOA
X1=ABS (SQRT(-DISCR)/TWOA)
WRITE(61,37)XR.X1
37 FORMAT('OTWO COMPLEX CON’
1,'JUGATE ROOTS'.F8.4.
2'+0R-",F8.4."1")
GO TO 1
40 X=-B/TWOA
WRITE(61.38)X
38 FORMAT('OTWO EQUAL REAL’
17RO0OTS BOTH' .F8.41)
0101
50 ROOT=SQRT(DISCR)
X1=(-B+R00T) /TWOA
X2=(-B-R0OOT)/TWOA
WRITE(61.39)X1,X2
39 FORMAT('OTWO UNEQUAL’.
1'REAL ROOTS'.5X.F8.4,
2'AND’,F8.4)
GO T0 1
END

10-#5

53

11 - ARRAYS AND SUBSCRIPTS

11-1 Arrays

Our next topics are arrays and subscripts. An array in
FORTRAN is simply an interrelated set of constants stored in
consecutive locations under one variable name. Each array ele-
ment, also called a subscripted variable, is obtained by refer-
ring to the name of the array and a subscript telling which ele-
ment of the array is under consideration: thus A(3) refers to
the third element of A while TABLE (4,2) refers to the element
in the 4th row, 2nd column of the two-dimensional (2D) array table.
There are three types of valid arrays. 1D arrays can be thought
of simply as lists of related items or, mathematically speak-
ing, as vectors. 2D arrays can be thought of as tables with
rows and columns, or mathematically as matrices. They are not
stored in rows and columns, however, but are stored consecutively
in a particular way which allows the computer to find each ele-
ment easily through the use of a simple formula. We'll see how
this works later on. 3D arrays are also used occasionally; they
can be thought of as 3D lattices with rows, columns and planes
or ranks. Thus THREED (2,3,1) is the element in the second row,

third column and first plane of the array THREED.

11-2 The DIMENSION Statement

Any variable name may be an array, but if it is an array it

cannot also be a simple variable within the same program. To
define a variable name as an array we use a DIMENSION statement:
forﬁ:

" DIMENSION VARL(#), VAR2(#), etc.
This is a non-executable statement to tell the compiler a variable
is én array; it is used by the computer to establish the maximum
number of locations needed to store all the pcssible array ele-
ments. Every quantity treated as an array within a program must
appear in a DIMENSION statement which, on the 3300, must‘come at
the top of the program after PROGRAM name, but before any execut-
able statements. With the name of each variable in the DIMENSION
statement, there must be associated a number which represents
the maximum number of elements the array may have. 1In the

54

executable statements of the program the array name must always,
with two exceptions, appear with a subscript which indicates
which element of the array is being referenced. The two excep-
tions: the array name may be used with a subscript or by it-
self without a subscript in READ or WRITE statements and in the
call to a subprogram; in every other executable statement the
array name must be written with a subscript.

DIMENSION A(20), X(100), Z(3,4) sets up arrays A}X; and Z.
A is a 1D array with a maximum of 20 elements. X is a 1D array

with a maximum of 100 elements and Z is a 2D afray with 12 ele-

ments arranged in 3 rows and 4 columns; X X X X
X X X X
X X X X

READ(60,7) A(l) <« reads 1 element

HIGH = ABS(A(I)) <« absolute value of Ith element
Y = A(2) * A(3)

IF(A(3) - A(5) * A(4) .LE. A(7)) GO TO 6

exceptions

READ(60,7) A <+ 20 elements READ
AMAX = FINDMAX(A,20) « All of A sent to subprogram

11-3 Subscript Forms

Subscripts must always appear in parentheses. They do not:
count as one of the 1 to 8 characters of the variable name. In
FORTRAN subscripts must have one of the following forms and they

are always integer.

1. Integer constant A (1)
2. Integer variable A (I), I defined previously
3. Combinations: All variables in these com-

binations must have been pre-
viously defined.

A (I + 1) '~ Integer variable + Integer
constant

A (T -2) Integer variable - Integer
} constant

A (2 * K) ‘ Integer constant * Integer
_ _ variable

A (3 * IK + 1) A Integer constant * Integer

variable + Integer constant

A (4 * L - 11) Integer constant * Integer
: variable - Integer constant

55

In some cases it may be more advantageous to calculate one

of the valid combinations and store it. IPl =TI + 1
C(IPl) = A(IP1l) + B(IPl)

may be cheaper than C(I + l) = A(I + 1) + B(I + 1).

J + K
A (JK)

Any other form must be temporarily stored: JK
X

11-4 Exceeding DIMENSION Limits

If the value of the subscript exceeds the maximum limit of

DIMENSION, strange things may happen, including the possibility
of destroying part of your program or transferring to an illegal
address. The newest version of the 0S-3 compiler has a special
option, the E parameter added to the FORTRAN control card, which
checks for exceeding these limits, a very common error of all

FORTRAN programmers.

11-5 Uses of Arrays

The primary advantages of arrays are: (1} the same name is
used for all related elements, (2) all elements may be saved for
future use; rather than requiring READ, calculate, READ, calculate
with one value at a time, we can do all READing and then all
calculating which is often a better way to program, (3) we can
use the power of counting with an integer variable acting as a
counter and also as a subscript. Thus:

DIMENSION A(50) All A's are saved and re-
trievable by referencing

N="... A with a subscript which
I=1 has the appropriate value.
3 READ (60,1) A(I)
I=1I+1
IF(I - N) 3,3,4
4 . . .

(4).we can do operations on and with vectors and matrices, both

very important quantities in higher mathematics.

11-6 Examples Using Arrays

Consider this averaging problem with arrays which calculates
the mean test score and then determines each student's deviation

from the mean. Without arrays we would need to input the data

again to allow those calculations of deviations which cannot
be done before the mean is calculated. (See sheet 11-#1)

The answers would appear like this:

The average is 70.0

Student Score Deviation
1 50 : -20.0
2 , 70 -0
3 90 20.0

57

PROGRAM AVERAGES
DIMENSION SCORE(100)
SUM=0,
READ(13,7)N
/ FORMAT(I3)
I=1
3 READ(13,8)SCORE(I)
8 FORMAT(F5.0)
SUM=SUM+SCORE()
[=1+1
IF(1-N)3.3.4
4 XN=N
AVG=SUM/XN
WRITE(61.13)AVG
13 FORMAT ('OTHE AVERAGE IS’
1,F10.1//'0STUDENT',5X,
2'SCORE DEVIATION')
I=1
21 DEV=SCORE(I)-AVG
WRITE(61,15)1,SCORE(I) ,DEV
15 FORMAT(16,F11.0,F11.1)
[=1+1
IF(I-N)21,21,22
22 CALL EXIT
END

11-#1

58

12 - OTHER TYPES OF CONSTANTS, VARIABLES & FORMAT SPECIFICATIONS

12-1 DECLARATION Statements
There are several other non-executable statements, which,

if present, must also go at the top of the program with any
DIMENSION statement. No particular order is required for these
non-executable specification statements. Those statements we
will discuss are used to change the normal modes of arithmetic.
It is sometimes inconvenient to have variables beginning with
I,J,K,L,M or N always being integer. Thus a programmer working
with latitude and longitude would prefer to use variables LAT
and LONG but because of their implicitly integer type it would
appear he cannot do so. There is an easy way to get around this
inconvenience and similar situations in which a variable starts
with A-H or O-Z but it is wished to treat it as integer, e.g.,

if you wish to use the variable COUNT as counter.

12-2 The INTEGER and REAL Statements
We have explicit type DECLARATION statements which change

implicit type and establish location in the mode defined. INTEGER
list and REAL list use lists of variables and/or arrays separated
by commas. You may define‘every variable as one or the other if
you wish, but it is easier to use the implicit types when you are
thoroughly familiar with them.

PROGRAM CHECK

DIMENSION X(50), A(20), TABLE(S 3), ISET(6)
INTEGER TABLE, COUNT

REAL LAT, LONG

COUNT = 0
READ (60,17) LAT, LONG real
17 FORMAT (2F10.2)
COUNT = COUNT + 1 integer

12-3 The DOUBLE PRECISION Statement
Occasionally the 10 or 11 precise digits automatically

established for real variable locations on the 3300 are not
sufficient for a particular application. Then the declaration
statement DOUBLE PRECISION list may be used to change the vari-
ables in the list to 96 bit quantities with the 48 extra bits
added to the mantissa. This gives 84 bits, which is equivalent

59

to 25 or 26 decimal digits. If the 7 digits of an integer
constant are not sufficient then DOUBLE(2) list changes all

the variables in that list to DP integers with 48 bits - the
largest number is then 15 digits long. All normal arithmetic

is done in DP mode when mixed mode operations are present. DP
constants cannot be defined easily on the 3300 so the contents
of DP locations usually are the result of arithmetic expressions
calculated in DP arithmetic. Also, unfortunately, 0S-3 does not
currently allow I/0 of DP quantities. The usefulness of DP is

thus somewhat curtailed.

12-4 The COMPLEX Statement
More useful than DP is the COMPLEX type statement COMPLEX
list which establishes each variable in the list as 96 bits; 48

for the real part and 48 for the imaginary. Normal complex
arithmetic is done by the five basic operations, but a series of
special functions exists for forming complex constants, taking
real and imaginary parts, square roots, logarithms, etc. For
more information on the complex arithmetic package consult the

Computer Center.

12-5 The FLOAT and IFIX Library Functions

As we have seen we can change the type of a variable for

the entire program by using the type declaration statements.
We may, however, wish a variable to be both integer and real
at different times in the same program, particularly to avoid

mixed mode, e.g.,

n
N sgores, mean = Z: Si READ N
i=1

n 3 READ X
SUM = SUM + X
+ 1

IF(I-N) 3,3,4

XMEAN = SUM/N
We count scores with integer N but need real N to divide
without mixed mode. Without using mixed mode this can be done

in two ways:

60

READ (3,7) N READ (3,7) N

XN = N XMEAN = SUM/FLOAT (N)
XMEAN = SUM/XN ' o

FLOAT is a library function to allow a change in variable

type without actually changing the location N. There is also
the opposite function IFIX with truncation of any fraction:
J = K + IFIX{X). X is still real, only in integer form for
this computétion. When a mixed mode operation occurs, FLOAT
is used by default to change integei values to real for that
computation only.

12-6 Hollerith Constants

We have already discussed the bit structure of integer
and real constants, but we can, on the 3300, also have a quantity
called a Hollerith constant. This consists of one or two words

filled with characters represented as binary coded decimals (BCD).

61

13 - HOLLERITH CONSTANTS; AW FORMAT; DO LOOPS

13~1 BCD Code

Integer or real numeric BCD notation requires 4 bits to

- represent the digits from values 0 to 9 and twc extra bits to
include all the other characters. Thus each BCD character is

6 or 64 characters

expressed with 6 bits, giving a total of 2
possible, the 48 of FORTRAN plus 16 others. 6 bits = 2 octal
digits. There are 64 characters possible from 008 to 778. A
is 218, B is 228 and so forth.

13-2 Forms for Integer and Real Hollerith Constants

The 24 bits of a word on the 3300 are separable into 4 sets
of 6 and thus we can represent 4 BCD characters in every computer
word. Hollerith constants are formed with nHvas in the FORMAT
specification, but unlike the specification 1 < n < 4 defines
an integer Hollerith constant, while 5 < n < 8 defines a real
Hollerith constant. Thus only n determines the type here.
Characters are left justified and, if n < upper limit, the

computer blank fills to the right.

NAME1l = 4HJOHN
NAME2 = 4H DOE
NAME3 = 3HJOE
stores | JJO[H[N] in NAME1l 24 bits of NAMEl
__|[D]OJE| in NAME2 24 bits of NAME2
[JJOJE]] in NAME3 24 bits of NAME3
while XNAME = 8HJOHN DOE
stores [J]OTH]N] [DJOJE] in 48 bits of XNAME

This type of variable has many uses as in grade reporting.
DIMENSION IGR (5)

IGR (1) = 1HF stores F
IGR (2) = 1HD D
IGR (3) = 1HC C
IGR (4) = 1HB B
IGR (5) = 1lHA A

Note integer = integer and real = real for Hollerith constants
or conversion from mode to mode may destroy some of the characters.
Integer Hollerith constant 1HA, 2HAB, 3HABC, 4HABCD _
Real Hollerith constant 5HABCDE, 6H...,7H...8HABCDEA§;

62

13-3 AW FORMAT for I/O of Hollerith Constants

To input or output BCD information we use either an integer
or a real variable name in the list and AW FORMAT (or RW) which
allows input or output of characters forming Hollerith constants
into or from integer or real locations.

The limitations on w are 1 < w < 4 for integer variables and
1 <w< 8 for real variables; the variable type not the w indi-
cates whether 4 or 8 characters can be stored. Again blank fill
occurs to the right when w < upper limit ' ’

DIMENSION XNAME (3)
READ (60,7) XNAME
7 FORMAT (3A8)

reads a 24 character name into the 3 real words forming XNAME.

WRITE (61,8) XNAME
8 FORMAT ('0', 3A8)

writes 24 characters for XNAME.

13-4 A Return to Summation and Counting
We will now return to the topics of summation and counting.

In our previous discussion we wrote a program to sum the integers

from 1 to N. The heart of that program was:

SUM = 0.
X =1.
I =1
3 SUM = SUM + X
X =X+ 1.
I=1I+1
IF(I-N) 3,3,4
4
This could be improved in several ways:
(1) Count down : (2) Integer arithmetic
SUM = 0. ISUM = 0
X=1. I =1
~ 3 SUM = SUM + X 2 ISUM = ISUM + I
X=X+ 1. I=I1+1
N=N-~-1 IF(I-N) 3,3,4
IF(N) 4,4,3 4 . . .
(3) Using XN = N as limit (4) Integer arithmetic
XN = N count down
SUM = 0. ISUM = 0
X =1. 3 ISUM = ISUM + N
3 SUM = SUM + X N=N-1
X=X+ 1. IF(N) 4,4,3
IF (X-XN) 3,3,4 4 . ..
4 . . .

(5) Test first

ISUM = 0

I =1
3 IF(I-N)2,2,4 or IF(I .GE, N) GO TO 4
2 ISUM = ISUM + I

I=1I+1

GO TO 3
4 . . .

13-5 Initializing, Incrementing and Testing: The DO Loop

This last form is very important.

I=1 ' initialize
3 IF(I .GT. N) GO TO 4 test

I =1I+1 increment

GO TO 3 loop

The steps labelled form the basis for the most difficult instruc-
tion in FORTRAN: DO loop. All are done automatically by DO
which is the iteration instruction in FORTRAN. All the steps
within a DO loop are repeated until some terminating condition
is met. The values of the variables are usually changed on
every pass through the loop.

Thus:

ISUM = 0

DO 1 I = 1,N

ISUM = ISUM + I
1 CONTINUE

sums the integers from 1 to N without requiring individual steps

on I being written.

64

14 - DO LOOPS CONTINUED

14-1 DO Loop Format

In DO loops the initializing, testing, incrementing and
looping are all done automatically. The DO instruction is gen-
erally of the form: ‘

DO n 1ndex = ml, mz, m3
where n is the statement number of the last statement in the

range of the DO, which is all the statements to be repeated,

down to and including statement n. The index must be an integer
variable. The value of this variable is defined only within the
loop by the index parameters, m,, M,, M. These may only be
integer variables or positive integer constants. m; is the ini-
tial value for the index. m, is the testing value and m, is the
incrementing value. If the comma and the m, are omitted, m4 is

automatically set to 1.

14-2 Execution of DO Loops

During execution of a DO the index is initialized to my -

then it is tested. If index>m then we have a normal exit from

’
the DO and transfer is made_tozthe first executable statement
following the statement numbered n. If the indeximz, then all
the statements in the range, down to and including statement n,
are executed. When statement n has been executed, control is re-
turned to the indexing section of the DO. The index is incre-

mented by m, (index = index + m3) and again tested against m

If there is3a transfer of control statement within the rangezof
the DO which causes transfer out of the range before the index>
My, then this is said to be a non-normal exit. If no exit occurs
we remain in the loop and repeat the steps within the loop, re-
turning again to the indexing section when statement n is execu-

ted until a normal or non-normal exit does occur.

[«
i

14-3 Rules for the Formulation of DO's

1. Control may not be passed from statements outside the
DO to statements inside the DO; transfer only to the DO itself.
2. Control may be passed from inside the DO to outside
(a2 non-normal exit). 1In this case the value of the index is
available for further use. If we have instead a normal exit,
the value of the index is not available. The index can then be
reused in another DO or in any other way except as an array

hame, since it cannot be both an array and a simple variable.

Normal exit: Non-normal exit:
DO1K=1, N DO 1 I =1, 15
KSUM = KSUM + K READ (60,2) X (I)

1 CONTINUE IF(X(1I) .LT. 0.) GO TO 9
K=K+ 1 1 CONTINUE

Invalid since K unde- :::
fined or normal exit 9 X(I) = -X(1)

3. Control may be passed from one statement inside the
loop to another statement inside the loop, but all branches must
ultimately reach the last statement in the range to keep the
loop going to completion. Note that a statement reached from
within a loop may appear to be physically outside the loop, but
if it transfers back inside, it is still in the range.

4. The last statement in the range of a DO must be execu-
table and since it signals the return to the indexing section of
the loop, may not be a transfer of control statement, another DO
or any other statement which would stop this looping procedure.
A good rule to follow to avoid having to remember what cannot go
at the end of a DO loop is to always use a CONTINUE statement as
the last statement. This statement causes no overt action but
allows continuation of normal operations. Thus:

DO 17 JKLX = J1, K46B, M
17 CONTINUE

5. The index and its parameters must not be changed by
statements in the range of the DO. Thus:

DO 1
I =1
N =N

3 1I=1,N
+ I

/2

13 CONTINUE

(@)
(o2}

is illegal, but

po 13 I =1,N
13 CONTINUE
N=N-1
DO 14 I

1l
=
b

14 CONTINUE

is wvalid.

14-4 Sample Problem

Assume that the value of Y from the formula Y = 41.2981+x%+

1/3_X

X~/ °E® is needed for values of X from 1.00 to 3.00 in steps of

.02. We will need to generate a printed line for each X-Y pair.

The solution is done most easily with a DO.

PROGRAM FORMULA
WRITE (61,28)
28 ... :
DO 1 J = 100,300,2 |
X = FLOAT (J) /100. (Note J/100 gives wrong answer)
Y = 41.298 * SQRT (1. + X * X) + X ** _333 * EXP (X)
WRITE (61, 37) X,Y
37 FORMAT (Fl4.2,F11.3)
1 CONTINUE
CALL EXIT
END ‘

[e)}
~J

15 - NESTED DO LOOPS; INPUT/QUTPUT OF ARRAYS

15-1 Nested DO Loops
DO loops may be nested, i.e., DO loops inside DO loops.

When nested, the range of the inner DO must not exceed the range

of the outer DO. The last statements may coincide however.

DO 6 IJX = M1, M2, M3
DO 8 K = 1, KMAS
DO 10 I =1,5
bo 12 J=2, N, 2
l [—-DO 12 L. =2, M, 2
12 -
L 10 ~————
8 —m—mm
6 ———— e

On the 3300 DO's may be nested up to 10 deep. 1In nested
DO's the index of the outermost DO is initialized, then when the
next DO is reached, its index is initialized and it retains con-
trol until a normal or non-normal exit is effected. The index
of the outer DO is held constant. When statement n of the outer
DO is reached, control returns to the indexing section of the
outer DO. When the inner DO is reached again, its index is re-
initialized and it is completed again with no change to the index
of the outer loop. So each pass through the outer loop means

that the entire inner loop is done.

15-2 Sample of Nested DO's

ISUM = 0
DO 10 I =1,2
bo 10 J =1,3
ISUM = ISUM + I + J
10 CONTINUE
WRITE ...
IStM = 0; I =1: Jg=1, ISUM =0+ 1 + 1 =2
J=2, ISUM =2 + 1+ 2 =5
J=3, ISUM=5+1+3 =9
J = 4>3 Complete with normal exit, return to
indexing of first DO.
I =2: =1, ISUM= 9 + 2 + 1 = 12
J =2, ISUM = 12 + 2 + 2 = 16
J =3, ISUM = 16 + 2 + 3 = 21
J = 4>3 Complete (inner)
I = 3>2 Complete (outer)

68

15-3 Use of DO Loops with Arrays

DO loops are used for iteration and counting. The most pow-
erful feature of FORTRAN is the use of the index of the DO as the
subécript of an array.

Sample program for finding the largest eiement of an array,

assuming 10 elements. (See sheet 15-#1)

15-4 I/0 and FORMAT Lists with Differing Numbers of Elements

As we have seen, arrays are very important gquantities in
FORTRAN. They are also somewhat awkward to work with and so spec-
ial means exist for inputing and outputing arrays. Since the
actual number of elements in an array may be less than the limit
established in the DIMENSION and in many cases -is variable, we
need FORMAT rules to handle this variability. Previously, every
I/0 list had exactly the same number of variables as there were
I,E,F and A specifications. If there are more I,E,F or A specifi-
cations in the FORMAT than elements in the list, the I/O of the
variables in the list is completed with the left-most specifica-
tions and the remainder is ignored. Any Hollerith or Spacing
specifications between the last I,E,F,A and the first one ignored
will be printed on output.

WRITE (61,26) X,Y
26 FORMAT (3HOX=,F6.1, 3X, 2HY=,F8.2, 3X, 2HI=,I5)

is executed as
X = XXXX.X Y = XXXXX.XX I =

I1f, on the other hand, there are more items in the list than
I,E,F or A specifications and the rightmost parenthesis is encoun-
tered with more items to be input or output, then a new record is
automatically started and the computer continues the FORMAT from
the rightmost left parenthesis and repeats from that point.

WRITE (61,30) A,B
30 FORMAT (' ',F10.2)

A written in F10.2, right parenthesis encountered, new rec-

ord started and B written on next line in F10.2.

69

PROGRAM FINDMAXA
DIMENSION A(10)
READ(60,10)A

10 FORMAT(10F8.,2)
AMAX=A(1)
D0 1 1=2.10
IFCACT) .GT . AMAX) AMAX=A(I)

1 CONTINUE
WRITE(61,12)AMAX

12 FORMAT('OTHE LARGEST IS" .F10.2)
CALL EXIT
END

15-#1

70

15-5 Unlimited Groups

If, as indicated in 15-4, there are more jitems in the list
than I,E,F or A specifications and the rightmost parenthesis
is encountered with some list elements still to be input or
output, then a new record isvautomatically started (the right
parenthesis acts like /) and the computer repeats the FORMAT
from the rightmost unlimited group, where an unlimited group is
one or more FORMAT specifications inside a set of parentheses
without a multiplier in front of the group. Thus in the FORMAT
(1X, (F10.2) ,2(2F8.4,3X)) the (F10.2) is an unlimited group while
the 2(2F8.4,3X) is not. The first three variables in a WRITE
list will be printed as though the FORMAT were (1X,F10.2,2F8.4,
3X,2F8.4,3X), but after that, all the rest will be printed in
(F10.2) and every time the right parenthesis of the unlimited
group is reached now, a new record is automatically initiated.
If no unlimited groups exist within the FORMAT, then the entire
FORMAT is treated as an unlimited group. Consider this program
segment:

DIMENSION X(6)

DO 1 I=1,6
1 X(I)=I
WRITE(6,10)X WRITE(6,11)X
10 FORMAT (1X, (F10.2) ,F12.4) 11 FORMAT (1X,2(F10.2) ,F12.4)
this will print this will print
1.00 2.0000 1.00 2.00 3.0000
3.00 4.00 5.00 6.0000
4.00
5.00
6.00

71

16 - INPUT/OUTPUT OF ARRAYS, CONT; PROGRAM EXAMPLES

16-1 Repeated Groups

We previously mentioned shorthand notation for specifica-
ﬁions. (I5,I5)>(21I5). We can also use this shorthand on
repeated groups of specifications, with the use of extra par-
entheses.

(110, F10.2, 15, F10.2, I5)-(I10, 2(F10.2, I5))
rightmost

16-2 TInput/Output of Arrays

There are three basic ways to input or output arrays. We
can use the array name without subscripts.

DIMENSION A(10)

READ (60,20)A
This reads all 10 elements of A. The FORMAT completely deter-
mines how many numbers per record and where on the records the
numbers fall. We can also use a DO loop with N = number of
elements. With N = 10

bo 1 1 =1,N

READ (60,20) A(I)

1 CONTINUE

Since the READ is executed on every pass through the loop, we
have N cards read and only one number per card, so the FORMAT
is not in control. Finally we have the implied DO which may

be used only in I/0 statements.
READ (60,20) (A(I), I = 1,N)

Again the FORMAT is in complete control, because the READ is

only executed once; in addition the value of N may change

~J
3]

without requiring a change in the FORMAT. With the following
FORMAT
20 FORMAT (10F8.0)

ten numbers per card are read; if N>10, then the cards are
read with ten numbers per card until exactly N numbers are in-
put, depending only on the FORMAT rules we have just discussed.
If the FORMAT is (F8.0), then 1 number per card is read, or if
(5F8.0), then 5 numbers per card are read. General form of the
implied DO:

READ

WRITE (array (sub), index = my, M,, m3)
Rules on subscripts and on the index and its parameters are as
before. Usually sub = index. Implied DOs are preferable be-
cause they allow flexibility.

WRITE (61,7) (X(I), ¥Y(I), I = 1,N)
7 FORMAT (1HQ, F10.2, F10.4)

writes answers X3 Y+ automatically, with double spacing.
X Y
—_Xg__—yg_

16-3 Example 1 - Forces, Moments and Center of Gravity

Consider this problem from physics:

<—X2+§<—Xl—>

F2 : F1

A A {
When the system is balanced, the sum of the moments = 0, where
each moment = F.X.. The total moment = n
) 171 ZF'X'

i%i .
i=1

Without arrays:

PROGRAM TEST
READ (5,7) N
7 FORMAT (I5)
AMOM = 0,
po 100 I =1,N
READ (5,8) F,X
8 FORMAT (2F10.2)
AMOM = AMOM + F * X
100 CONTINUE _
WRITE (61,19) AMOM
19 FORMAT (' TOTAL MOMENT =',6 F12.2)
CALL EXIT

END 73

The values of F and X arc lost after being read, with only the
last set available at the end. If further computations on F
and X are wanted, then they would have to be reread - an expen-
sive and slow process.

With arrays:

PROGRAM TEST 2
DIMENSION X(100), F(100), AM(100)
READ (5,7) N
7 FORMAT (I5)
AMOM = 0,
READ (5,8) (F(I), X(I), I = 1,N)
8 FORMAT (8F10.2) or (2F10.2)
bo 100 I = 1,N
AM(I) = F(I) * X(I)
AMOM = AMOM + AM(I)
100 CONTINUE
WRITE (61,19) AMOM
19 FORMAT (....)
WRITE (61,47) (F(I), X(I), AaM(I), I = 1,N)
47 FORMAT (3F14.2)
CALL EXIT
END

If the F, are weights, the center of gravity C.G. = Z_moments

L wts
SUMF = 0.
AMOM = 0.
pol1I1I-=1,N
AMOM = AMOM + F(I) * X(I)
SUMF = SUMF + F(I)
1 CONTINUE

CG = AMOM/SUMF

WRITE (61,13) CG
After CG is computed, we redefine the value of X so the elem-
ents of X give the distances from the Center of Gravity rather
than from the origin of the coordinate system.

po 2 I =1,N

X(I) = X(I) - CG

2 CONTINUE

WRITE (61,19)(F(I), X(I), I = 1,N)

Without arrays this last part would be impossible since all the

Xi would not be available.

16-4 Example 2 - Means and Standard Deviations

A statistical example - mean and standard deviation of a
set of test scores.

n

Ww=1IX/n | G = VZ(Xi—u)z
) n-1

i=1

which is computed with fewer operations by the formula

= \lzxi% - (£xi)%/n
n-1 '

where IXi’ = sum of squares of the scores and (ZXi)2 = the

square of the sum'Qf the scores. (See sheet 16-#1)

16-5 Example 3 - A Grading Problem with Many Special Features

The next program calculates individual grade point averages
from totai grade points and total units as calculated course by
course. The important features are the use of INTEGER type dec-
laration, the FLOAT library function, Aw FORMAT and Hollerith
constants. (See sheet 16-#2)

75

PROGRAM MEANSD
DIMENSION SCORE(100)
READ(60,13)N
13 FORMAT(13)
READ(60,14) (SCORE(D),I=1,N)
14 FORMAT(16F5.0)
SUM=0.
SUMSQ=0.
DO 21 I=1.N
SUM=SUM+SCORE(I)
SUMSQ=SUMSQ+SCORE (1) **2
21 CONTINUE
XN=N
SMU=SUM/XN
SD=SQRT ((SUMSQ-SUM**2/XN)
1/ (XN-1.))
WRITE(61,19)XMU.SD
19 FORMAT('OMEAN = '.F6.1,
1*STANDARD DEVIATION = '
2,F6.2)
CALL EXIT
END

16-#1

PROGRAM GPAS
DIMENSION NUN(99),GR(99)
1,COURSNAM(99) , SNAME (2)
INTEGER GR.,GP
WRITE(61,20)
20 FORMAT('1",3X,'NAME',17X.
- 1'GP*.,5X, "UNITS' , 10X, 'GPA")
10 READ(6,15) SNAME,NC
15 FORMAT (2A8.14)
IF(EOF(6))CALL EXIT
READ(6,25) (COURSNAM(I),
INUNCDD L GR(I) , I=1,NC)
25 FORMAT (A8,12,1X,AD)
TGP=0.
TUN=0.
DO 5 I=1.NC
GP=4
IF(GR(I).EQ.1HB)GP=3
IF(GR(I).EQ.1HC)GP=2
IF(GR(I).EQ.1HD)GP=1
IF(GR(I) .EQ.1HF)GP=0
TGP=TGP+FLOAT (GP*NUN(I))
TUN=TUN+FLOAT (NUN(I))
5 CONTINUE
GPA=TGP/TUN |
WRITE(12,35) SNAME, TGP,
1TUN.GPA
35 FORMAT(",2A8,2(5X,F5.0)
1.8X.F6.2)
GO TO 10
END

16-#2

~l
~]

17 - TWO DIMENSIONAL ARRAYS; SUBPROGRAMS

17-1 Storage of Two Dimensional Arrays in Memory

As we mentioned briefly, 2D arrays are not actually
stored in tabular form in the computer's memory, but rather in

sequential locations so that an array such as 1 3 7

is stored in consecutive locations in 2 i g
column order as 1,2,6,3,3,4,1,0,7,5,9,4 3 0 4

that is a(1,1), a(2,1), A(3,1), A(4,1), A(L,2), A(2,2), etc. -
the first subscript always varies the fastest. We must be aware
of the form in which 2D arrays are stored before we can input or

output 2D arrays properly.

17-2 Calculation of Location of Array Element

The computer is able to determine which element is required
by use of a simple formula. If array A is DIMENSIONed NR by NC
where NR is the maximum number of rows and NC the maximum number
of columns (both actually numbers), then the formula the computer
uses to find the position of element A(I,J) in the NR * NC consec-
utive locations of array A is

LOC = I + (J-1) * NR where LOC is from 1 to NR * NC.
Thus DIMENSION A(4,3) has NR = 4, NC = 3. There are 12 €lements
and LOC goes from 1 to 12.

A(l,1) is in position 1+ (1-1) * 4 =1
A(2,1) is in position 2 + (1-1) * 4 = 2
A(l,2) is in position 1+ (2-1) * 4 =25
A(4,2) is in position 4 + (2-1) * 4 = 8

and so on.

17-3 1Input/Output with 2D Arrays

There are several ways to do I/O with 2D arrays. Consider:

(1) DIMENSION B(6,4)
READ (60,17) B
17 FORMAT ()

This reads all 24 elements:

in column order with the number

of records and the number of values per record completely deter-

mined by the FORMAT.

(2) Do 1 I

DO 1 J

READ (60,

19 FORMAT (
1l CONTINUE
This double DO loop inputs

more natural row order but with
the READ gets executed 24 times

umn order we simply reverse the

(3) DO 1 I
READ (61,
21 FORMAT (

1 CONTINUE

1 B(I,J)

1,6

1,4
9)

)
all the elements of B in the
only one number per record since
- one record per READ.
order of the DOs.

21)
) .

For col-

(B(1,3), J =1,4)

This implied DO-in-normal-DO reads the data in row order

and the FORMAT would be best as

with one row on each card.

(4)
and
are the simplest and best forms

order respectively{ The double

READ (60,
READ (60,

(4F10.0) , thus requiring 6 cards

23) ((B(1,3), I=1,6), J 1,4)
24) ((B(Z,J3), J=1,4), I =1,6)
for inputting B in column and row
implied DO allows either order

with the FORMAT in complete control as to the number of records

and the number of values on each record.

ral for English speaking people who read left to right.

last form is the best.

17-4 Example of 2D Arrays

Here is an example dealing with a 2D array.

Row order is more natu-

Hence the

Consider the

following table in which the rows represent different brands of a

product and the columnsrepresent the cities in which the product

was sold.

base - the sales index.

~J
O

The entries are sales reduced to a common population

SF PORTLAND SEATTLE

Brand W 88 89 21
X 67 75 78
Y 95 86 89
Z 90 83 83

DIMENSION TABLE (4,3)
READ (60,10) ((TABLE (I,J), J=1,3), I=1,4)

10 FORMAT (3F5.0)
Possibility 1 - total and average index of Brand W. The total
is the sum of the elements of row 1.

X = 0.

po 11 J=1,3

X = X + TABLE (1,J)
11 CONTINUE

AVG = X/3.

Possibility 2 - total and average index of all brands sold in
PORTLAND. The total is the sum of the elements of column 2.

Y = 0. '

po 12 1 =1,4

Y = Y + TABLE (I,2)

12 CONTINUE

AVG = Y/4.
Possibility 3 - total indexes of each of the fcur brands in all
cities. Each brand has a total - the sum of the elements in
the brand-row. We use an array to store the four row sums.

DIMENSION TABLE (4,3), ZROW (4)
DO 14 I =1,4

ZROW (I) = 0.
po 14 J=1,3
ZROW (I) = ZROW (I) + TABLE (I,J)

14 CONTINUE
Possibility 4 - total indexes in each of the three cities of all
brands - the three column sums.

DIMENSION TABLE (4,3), ZCOL (3)
po 15 J=1,3

ZCoL (J) = 0.
Do 15 I =1,4
ZCOL (J) = 2ZCOL (J) + TABLE (I,J)

15 CONTINUE

20

Possibility 5 - total index and average of all brands in all

cities - the sum of all the entries in the table.

TOTAL = 0,

DO 16 I =1,4

Do 16 J=1,3

TOTAL = TOTAL + TABLE (I,J)

16 CONTINUE
AVG = TOTAL/12.

17-5 Reasons for Use of Subprograms

We have mentioned the existence of pre-written library
functions several times and have used some of them in our examp-
les. We also have the capability of writing subprograms our-
selves, both FUNCTIONs and SUBROUTINEs. There are several reas-
ons for the use of subprograms. (1) To allow easy use of common
mathematical operations such as SIN, EXP, etc. (2) To allow
repetition of a series of steps needed at several places within
one program. (3) To allow segmenting of a large program into
smaller portions, each of which can be compiled and tested separ-
ately. (4) To allow programming by one installation for use by
another without the worry of different input and output require-

ments.

17-6 Compilation and Execution of Subprograms

Usually the subprogram is a complete entity with its own
starting and stopping statements. The set of statements which
make. up a subprogram are.compiled together but can only be execu-
ted in conjunction with a main program, (startihg with PROGRAM

name. and ending with END), which references the subprogram.

Main program Subprogram

RETURN

Call to subprogram END

oo
et

17-7 The END and RETURN Statements

As we have mentioned, the last statement in every program
or subprogram is END. Thus all FUNCTIONs and SUBROUTINEs must
have END as the last card, again to signal the compiler the end
of related statements to be compiled. The last executable
statement must be RETURN - establishing linkage to the point
from which the subprogram is called. There may be more than one
RETURN statement.

17-8 The FUNCTION Name Statement and its Parameters

The first card of a FUNCTION must be:
FUNCTION name (parameters separated by commas)
thus FUNCTION FN(X,Y,N).
The parameters must be variable names which are used in the body
of the FUNCTION. They are dummy variable names which are re-
placed by the addresses of the actual parameters to be used dur-
ing the call to and the execution of the function.

READ (60,10) X FUNCTION SIN(A)

XRAD = X * 3.1415926536/180. @ -—————=—=--

Y = SIN(XRAD) mmmmm -

WRITE (61,11) X,Y SIN = scme function of A

11 RETURN
END

[0 8]
[\

18 - SUBPROGRAMS CONTINUED; OTHER SPECIFICATION STATEMENTS

18-1 FUNCTIONS

We have seen that (1) the first statement in every FUNCTION
subprogram must be FUNCTION name (parameters), (2) the last
statement must be END to signal the end of related statements to
be translated, (3) there mus£ be one or moré RETURN statements.
(The RETURN is always the last executable statement in each
branching segment within the FUNCTION), and (4) the name of the
function must appear on the left of an = sign or in a READ state-
ment in order that the value of the function is stored in that
location. Thus the name determines the type of function. An in-
teger name = an integer function and a real name = a real funct-
ion. Only one value is returned to the main program - that
stored in the location given by the namé of the function.

In the main program VAR = FUNCTION name (actual parameters)
references the function with the given name with the actual para-
meters, which may be any arithmetic expression - they are not
limited to variable names as are the dummy parameters. The funct-
ion reference itself may be alone as above or as part of a com-
pound arithmetic expression.

XYZ = Z*B-SUMFN (X,Y,2)

18-2 Sample Problem with FUNCTION

Here is a main program and the function it uses to evaluate

the largest element of an array. (See sheet 18-#1)

18-3 SUBROUTINES

In contrast to FUNCTIONs which return only one value, we
have SUBROUTINES which may return one or more values or none at
all. As with FUNCTIONs, the last statement in a SUBROUTINE must
be an END and there must be one or more RETURNs to generate the

83

PROGRAM MAIN
DIMENSION X(500)
READ (60, 10)NUM, (X(1) , I=1, HUM)
10 FORMAT (13/(10F8.0))
BIG=XMAX (X, NUM)
WRITE(61,30)B16
30 FORMAT (F16.7)
CALL EXIT
END

FUNCTION XMAX(A,N)

DIMENSION A(D)

XMAX=A (1)

DO 1 I=2.H

IFCACD) . GT . XMAX)XMAX= A(I)
1 CONTINUE

RETURN

END

18-#1

24

correct linkage for return to the main program. The first'state—
ment must be SUBROUTINE name (parameters). Again the parameters
are dummy names which are replaced by the actual parameters when
the calling program calls the SUBROUTINE. Tc reference a SUBROU-
TINE: since no value or more than one value may be returned, we
cannot use an assignment statement, so we use a CALL such as:

CALL SUBNAME (actual parameters). Thus the name of the SUBROUTINE
does not determine the values returned; the argument list does.
Again the actual parameters may be any arithmetic expreséion but
the parameters in the statement SUBROUTINE name (parameters) must
be variables only. Example: Mean and Standard deviation of a set
of scores with a SUBROUTINE. (See sheet 18-#2)

18-4 Other Specification Statements

There are four other non-executable specification statements
of importance. Each, when used, must appear at the top of the
program after PROGRAM name along with any DIMENSION or type decla-

ration statements. Symbolically, the computer's memory looks like
this: ' LOWMEM is the lower part of memory with

1771738

| HIMEM g addresses near 000005 and HIMEM is the

f ; upper part of memory with addresses near
§ 17T,

LOMEM _

000004 _

FORTRAN programs when compiled correctly are loaded into HIMEM.

18-5 COMMON

The area starting at location 000208 is set aside as the COM-
MON area. The values of variables placed in COMMON are thus ac-
cessible from subprogréms by referencing positions relative to the
beginning of COMMON. Large programs unable to fit in available
memory can be segmented and, with the use of COMMON, quantities de-
termined in one segment will be available to the other segments.
DIMENSION information may also be included in the COMMON list. The

variables in the list, including any arrays, are stored in consec-

85

PROGRAM SCORES
DIMENSION X(100)
READ(60,10)N, (X(1), I=1.N)
10 FORMAT(13/(10F8.0))
CALL MEANSD(X.N.XBAR.SD)
WRITE(61.,12)XBAR,SD
12 FORMAT('MEAN'.F10.1,'SD’
1.F10.2)
CALL EXIT
END

SUBROUTINE MEANSD(A,N.XMU,SD)
DIMENSION A(1)
SUM=0,
SUMSQ=0.
DO 1 I=1.N
SUM=SUM+A(I)
SUMSQ@=SUMSQ+A (1) **2
1 CONTINUE
XN=N
- XMU=SUM/XN
SD=SQRT ((SUMSA-SUM**2/XN)
1/ (Xk-1.0))
RETURN
END

18-#2

86

utive locations starting at the beginning of the COMMON area.

COMMON &, B, X(25), I, JK sets up 29 consecutive locations,
27 real and 2 integer, in the COMMON area. Values stored in
those variables in a main program may be accessed in a subpro-
gram without an argument list with a statement which matches in
type but is not necessarily identical to that in the main pro-
gram. Thus '

| ‘COMMON X,Y,%(25), J,L or COMMON Z(27), I(2)

matches the COMMON above. A variable in COMMON need not be in-
cluded in the argument list of a subprogram as long as both the
main program and the subprogram have COMMON statements similar
to the one above to allow both to access the same quantities.
While the 3300 initializes all locations established in a pro-
gram before execution to zero, those declared in the COMMON area

are not zeroced.

18-6 EQUIVALENCE

The EQUIVALENCE statement is used to allow two or more var-
iables to share a single location. It may be used to join
programs written by different programmers or simply to save stor-
age space. Thus, once a particular variable is no longer néeded,
its location can be used with a different name. EQUIVALENCE
statements are often used in conjunction with arrays, particularly
those in COMMON.

COMMON IN(150), B, N, X(35), A(20,10) A
EQUIVALENCE (IN(1l), IYR), (IN(2), MONTH), (IN(3), IDAY),
1(IN(4), IHR) '

IN(1l) through IN(4) have alternate names IYR, MONTH, etc.,
either name may be used to refer to the contents of the first four
elements in the COMMON area.

18-7 Labelled COMMON

The 3300 now allows labelled (or block) COMMON, one or more

87

areas which immediately precede the program in HIMEM. COMMON/
blockname/list is the form. These blocks allow shorter COMMON
statements in several parts; each part can be used or not in
each subprogram - all blocks would probably be included in the
main program. '

COMMON / XYBLOCK/ X(15), Y(15)

‘COMMON / INTS / I, J, K, LM(47)

18-8 DATA

The last of the four statements is DATA. This statement
allows constant values to be stored in variable locations at
compilation time rather than at execution time. The CDC 3300
- unfortunately has a non-standard form for this instruction,

DIMENSION NAME (2), SUM (1500)
DATA (PI = 3.1415926536), (E 2.7181828184),
1 (NAME = 4HJOHN, 4H DOE), (SUM 1500(0.))

Thus at compilation time locations PI and E are established

nn

with their correct values. The integer array NAME has 2 Hol-
lerith constants stored in it and the 1500 elements of SUM are
zeroed guickly and efficiently. Care must be taken to avoid
mixed mode across the equal sign in DATA statements since no
conversion can take place. Variables in unlabelled COMMON
should not be initialized with DATA statements. The DATA state-
ment is most often used in conjunction with labelled COMMON
blocks.

88

19 - ENTERING AND EDITING FORTRAN FROM TELETYPE

19-1 The 0S-3 EDITOR

We will now finish our discussion of FORTRAN by entering
and editing some FORTRAN programs directly from the teletype. In
order to do this properly we need to spend some time discussing
the 0S-3 EDITOR. The EDITOR is really another language which in
turn is translated into machine language. Since the EDITOR is a
special purpose language designed to allow the entering and edit-
ing of programs and data directly from an on-line keyboard, rela-
tively few instructions are needed and the task of using the
EDITOR will not be as difficult as you might think. In any case
we will not attempt to presen£ all the available instructions for
the EDITOR but rather those most commonly used. To use the EDITOR
we must first log on a keyboard device. For our purposes we will

assume this to be a teletype.

19-2 Logging On

OFF
To log on a teletype, turn the switch to LINE.
LINE LOCAL

Hold down the CTRL key on the keyboard and hit A --[CTRL,A]. This
signals the computer that you wish to log on. The computer res-

ponds with a # - the main'symbol of cohtrol or command mode. You
then have about 20 seconds to type your job number, a comma, and

your user code, followed by a carriage return [CR]. If you take

more than 20 seconds, you must repeat the steps.

[CTRL,A]
$#703001, JSSI [CR]

The computer then crosses out your number and prints the date, the
time and the terminal number if your number is valid. It then re-
turns another #.

#TIME = 10 establishes a 10 second limit (which can be
changed later if necessary)

#*HI or #*SCOOP generates important information as to the
amount of time remaining on the job number, the number
of save file blocks currently in use and the number of
users currently time-sharing.

89

#DIRECTORY gives a list of all save file block names as of
the preceding night.

There are many other general features of the computing
system available in this mode but we will introduce only those

we need when we need them.

19-3 Entering Programs with the EDITOR

To enter a program directly from the teletype we proceed as

follows:
#EDIT - this calls in the EDITOR language translator. The
EDITOR has its own symbol,]. 1In EDIT mode we have available

the EDITOR scratch pad, an area in memory in which we can create
programs or data files or into which we can bring an already cre-
ated program or data file and then make changes with the use of
the EDIT instruction set.

JINPUT - this instruction allows us to use the scratch pad
to enter our own program. Each line in the scratch pad is given
a sequence number and the computer lists this sequence number

next.

19-4 Program to Calculate Mean of a Set of N Test Scores

] INPUT

00001: PROGRAM MEAN skip to column 7

00002: DIMENSION SCORE (100)

00003: READ (60,10)N read N from unit 60=TTY
00004: 10 FORMAT (I3)

00005:READ@ READ (60,11) forgetting to skip to col. 7,
00006: 1SCORE(I) ,I=1,N) @ wipes out line and we start
00007: 15 FORMAT (4F5.0) again

00008: SUM=0,

00009: DO 1 I=1,N continuation in column 6 on
00010: SUM=SUM+SCORE (I) line 6 was required for TV pic-
00011: 1 CONTINUE ture

00012: XMEAN=SUM/FLOAT (I)

00013: WRITE(61,17)XMEAN

00014: 17 FORMAT('OMEAN =',F6.1)

J0015: CALL EXIT

0001e6: END when completed, we return to
00017: EDIT mode with [ESC] or .[ALT.

MODE] .

A

]OUT, SCORES

JFORTRAN,I=SCORES,R

ERRORS FOR MEAN

LABELS NOT REFERENCED
15

ERROR 0501 AT 1 STATEMENT PAST
PARENTHESES DO NoT MATCH
LOADING DELETED

#EDIT

]FIN, SCORES

JLIST

Line 6 had a missing parenthesis,

a special edit instruction, SARL,

Save program by sending it to
disk file named SCORES.

Call FORTRAN compiler with in-
put from SCORES: compile, load
machine language program and
execute if no errors.

Since we had compilation errors,
no loading can occur.
Back to the drawing board!

Bring the present version of
SCORES back into the scratch pad
area .

This lists the contents of the
scratch pad but we will omit the
listing for space considerations.

so we insert the parenthesis with

which searches for a given string

of characters and replaces any occurrences of that string with

another string.

1SARL,6,,/1S8/,/1(s/
00006: 1(SCORE(I) ,I=1,N)

]OUT, SCORES
]FORTRAN, I=SCORES,R

ERRORS FOR MEAN

LABELS NOT REFERENCED
15

UNDEFINED STATEMENT LABELS
11

ERROR 2700 AT

We again put our newest version
on file.
Again we
execute.

attempt to compile and

But again we have compilation
errors, even more serious than
before; we need to carefully ex-
amine the error messages and
completely correct all the errors,
it's getting expensive!

1 STATEMENT PAST 10

THE FORMAT STATEMENT REFERENCED DOES NOT EXIST

LOADING DELETED

91

The first error message indicates that statement number 15 is not
referred to by any other statements, while statement 11 has been
referred to, according to the second message, but no statement 11
exists. The last error message indicates that what has probably
happened is that a FORMAT statement with statement number 15 exists
but is not referenced, while a FORMAT which is supposed to have
statement number 11 is missing. The logical conclusion is that
statement 15 should really be 11, or that the reference to 11 should
be changed to a reference to 15.

#EDIT So we edit again.
]FIN,SCORES We bring SCORES back into the
scratch pad.
lnisT,5,6 We list lines 5 and 6 since by
ferring back we know we have
00005: READ (60,11) re :
00006: 1(SCORE (I) ,I=1,N) @ READ using FORMAT 11.
]LIST,? We also need line 7.
00007: 15 FORMAT (4F5.0)
1PXX2 Feedback on the teletype line
unexpected--returns us to con-
#MI trol mode. MI sends us back to
\ what we were doing before.
1SARL,6,,/1(/,/1/ If we forget what we are doing
00006: 1SCORE(I) ,I=1,N) we may end up uncorrecting some-
thing which is correct now.
]OUT, SCORES Out it goes again; we really
didn't pay much attention to the
]FORTRAN, I=SCORES,R error messages.

Again we get error messages and again we will have to edit.

$EDIT

]JFIN, SCORES

lnisT,5,7 List lines 5 through 7.
00005: READ (60,11)

00006: 1SCORE(I) ,I=1,N)

00007: 15 FORMAT (4F5.0)

lsarv,6,,/1s/,/1(s/ We correct this again, hopefully
for the last time.

92

After the SARL instruction is executed, line 6 is written again

on the teletype:

00006: 1(SCORE(I) ,I=1,N)

1SARL,5,,/11/,/15/ At last we have corrected the
00005: READ(60,15) statement number error!

10UT, SCORES ' We out the program to disk file

]JFORTRAN, I=SCORES,R

NO ERRORS FOR MEAN _ Hurray! No compilation errors.
RUN The computer prints RUN to show
it is beginning execution.
3 We enter‘the number of scores, 3.
50 60 70 We enter the values for each of

the scores.
MEAN = 45.0 The answer (?). is printed in the
form indicated by our FORMAT.
END OF FORTRAN EXECUTION CALL EXIT has been executed.

Since the mean of the three scores we entered is definitely not
45,0, we must have made a logic error in our program. Since it is
the mean that is wrong, let's return to the editor, bring our pro-

gram back into the scratch pad area and find the mistake.

#EDIT

]FIN,SCORES

1SARL, , ,/MEAN/ We look through the whole program
00001: PROGRAM MEAN for the string of characters MEAN
00012: XMEAN=SUM/FLOAT (I) and list all occurrences.

00013: WRITE(61,17)XMEAN

00014: 17 FORMAT ('OMEAN =',6F6.1)
]

TIME CUT Qops! Our 10 second time limit

$TIME=30 has just been exceeded. We reset

#GO the limit and GO back to the
editor.

1sarL,12,,/1/,/N/ The culprit is the I in the denom-

00012: XMEAN=SUM/FLOAT (N) inator of line 12.

Vo)
w

JFILE,SCORES

JFORTRAN, I=SCORES,R

NO ERRORS FOR MEAN
RUN

3
50 60 70

MEAN = 60.0

END OF FORTRAN EXECUTION

Another way of generating a file
on disk.

Again we have no compilation er-
rors.

We enter the number of scores.
We enter the scores.

SUCCESS!!

20 - ENTERING AND EDITING FORTRAN FROM TELETYPE, PART II

20-1 A Sample FORTRAN Program

#FORTRAN, I=INPUT,R

NO ERRORS FOR INPUT
RUN

SOME USEFUL INSTRUCTIONS
APPEND
ERASE
FIN
INPUT.
INSERT
LIST
MOVE
OuT
REP
RESEQ
SARL

FOR EXPLANATIONS OF EACH
FOLLOW DIRECTIONS

ENTER INSTRUCTION OR [CTL,W]
APPEND

APPEND

ADDS TEXT WHICH FOLLOWS
AFTER THE LAST LINE

IN THE SCRATCH PAD

ENTER INSTRUCTION OR [CTL,W]
ERASE

ERASE,N1 or ERASE,N1,N2
ERASES LINE N1 ONLY OR
ALL LINES FROM N1 THRU N2

ENTER INSTRUCTION OR [CTL,W]
FIN

FIN,NUMBER OR FIN,FILENAME
ENTERS INFORMATION INTO

THE SCRATCH PAD FROM EITHER
SCRATCH FILE WITH LUN=NUMBER
OR SAVE FILE FILENAME

95

FORTRAN program to illustrate
power and convenience of on-line
interaction of user with computer
and at same time to list and ex-
plain major EDIT instructions.

A list of the most useful instr-
uctions in the EDITOR.

Directions for obtaining- infor-
mation (from the program) on any
of the instructions or terminating.

User enters instruction he wants
explained.

Program prints format of instruc-
tion and explains what the in-
struction does.

On to the next instruction to be
explained.

ENTER INSTRUCTION OR [CTL,W]
INSERT -

INSERT,N
INSERTS LINES WHICH FOLLOW
AFTER LINE NUMBER N

ENTER INSTRUCTION OR [CTL,W]
INPUT

INPUT

CLEARS SCRATCH PAD, PROVIDES
SEQUENCE NUMBER FOR EACH LINE
OF TEXT WHICH USER ENTERS
LINE BY LINE FROM KEYBOARD

ENTER INSTRUCTION OR [CTL,W]
LIST

LIST
LISTS ENTIRE SCRATCH PAD

LIsT,N1
LISTS LINE N1 ONLY

LIST,N1,N2
LISTS ALL LINES N1 THRU N2

ENTER INSTRUCTION OR [CTL,W]
MOVE

MOVE,N1,N2,N3
MOVES LINE N1 THRU N2
AFTER LINE N3

ENTER INSTRUCTION OR [CTL,W]
ouT

OUT,NUMBER OR OUT,FILENAME
OUTPUTS INFORMATION FROM

THE SCRATCH PAD TO EITHER
SCRATCH FILE WITH LUN=NUMBER
OR TO SAVE FILE FILENAME

ENTER INSTRUCTION OR [CTL,W]
REP

ENTER

REP,N

REPLACES LINE N WITH LINES
WHICH FOLLOW

Xe]
N

ENTER INSTRUCTION OR [CTL,W]
RESEQ

RESEQ
CAUSES RESEQUENCING
OF THE LINE NUMBERS

ENTER INSTRUCTION OR [CTL,W]
SARL

SARL,N,M, /STRING/,/REPLACE/
SEARCHES LINES N THRU M
FOR CHARACTERS IN STRING,
REPLACES ALL OCCURRENCES
WITH REPLACEMENT STRING,
THEN LISTS ALL CORRECTIONS

ENTER INSTRUCTION OR [CTL,W] The CONTROL key is held down and
[CTL,W] the W is struck. |[CTL,W] sends
an End-of-file to the computer.

END OF FORTRAN EXECUTION

20-2 COPY

One of the most useful of the'general features of the computer
system is the COPY command. We COPY from an input unit, usually a
save or scratch file or the card reader (if our input is on cards),
to an output unit - another save or scratch file or the line printer
or teletype (if just a listing is required).

#COPY, I=unit or file, O=unit or file

This is the most commonly used form. The input unit is 60 if

the "I=" parameter is omitted, while the output unit is 61 if the

"O=" parameter is omitted.

20-3 Combinations and Permutations

Now we will use the COPY command to print out the definitions
and formulas pertaining to combinations and permutations which
have been placed on files COMB, PERM and FORMULAS. Then we will
write and execute a FORTRAN program with a SUBROUTINE and a
FUNCTION to calculate permutations and combinations from the given

formulas.

97

#COPY, I=COMB COPY from file COMB to unit
THE NUMBER OF COMBINATIONS 61 - the teletype
OF N OBJECTS TAKEN R AT A TIME
IS THE NUMBER OF WAYS IN WHICH
R OF THE N OBJECTS CAN BE CHOSEN
WITHOUT REGARD TO ORDER.

FOR 4 OBJECTS A,B,C,D TAKEN
3 AT A TIME WE HAVE

ABC ABD ACD BCD

#COPY , I=PERM COPY from file PERM
THE NUMBER OF PERMUTATIONS
OF N OBJECTS TAKEN R AT A TIME
IS THE NUMBER OF ARRANGEMENTS
THAT CAN BE MADE CONSIDERING
THE ORDER IN WHICH THE OBJECTS
ARE TAKEN.

FOR 4 OBJECTS A,B,C,D TAKEN
3 AT A TIME WE HAVE

ABC ACB BAC BCA CAB CBA
ABD ADB BAD BDA DAB DBA
ACD ADC CAD CDA DAC DCA
BCD BDC CBD CDB DBC DCB

#COPY, I=FORMULAS
THE ALGEBRAIC FORMULAS

P(N,R)=N!/(N-R) !
WHERE N'=1.2.3...(N-1).N

C(N,R)=N!/(R!. (N-R)!)
» OR C(N,R)=P(N,R)/R!

20-4 Program Using SUBROUTINE and FUNCTION

$EDIT Now our program to calculate
: the number of permutations

] INPUT and combinations of 4 objects

00001: PROGRAM MAIN taken 3 at a time with a SUB-

00002: X=4. ROUTINE and a FUNCTION

00003: R=3.

00004: CALL PC(X,Y,PXY,CXY)

00005: WRITE(61,10)PXY,CXY

J0006: 10 FORMAT (2F8.0)

002007 CALL EXIT

00008: END

00009: [ESC] or [ALT MODE]
]SARLI4I I/XIY/I/XIR/

00004: CALL PC(X,R,PXY,CXY)
]APPEND

00009: SUBROUTINE PC(X,Y,PXY,CXY)
00010: PXY=FACT (X) /FACT (X~-Y)
00011: CXY=PXY/FACT (Y)
00012: RETURN

00013: END

00014: FUNCTION FACT (X)
00015: N=X

00016: FACT=1.

00017: DO 1 1I=2,N

00018: FACT=FACT*FLOAT (I)
00019: 1 CONTINUE

00020: RETURN

00021: END

00022:

]1OUT , PERMCOMB

JFORTRAN, I=PERMCOMB, R
NO ERRORS FOR MAIN
NO ERRORS FOR PC

NO ERRORS FOR FACT
RUN '

24 4

END OF FORTRAN EXECUTION

#LOGOFF

TIME 9.161 SECONDS MFBLKS 4 COST $1.70

[Ne
\0

We stop at end of main pro-
gram to correct error.

Append the SUBROUTINES on
current content of scratch

pad, i.e. the main program
above.

Program to disk

Compile and execute

No compilation errors

P(4,3)=24 and C(4,3)=4

#LOGOFF to terminate run
and update account

APPENDIX A

COMMON ERROR MESSAGES
IN FORTRAN PROGRAMMING ON THE CDC 3300
AT

OREGON STATE UNIVERSITY

FORTRAN ERROR MESSAGES

FORTRAN programs go through three phases: compiling, loading
and execution. Each phase can have errors associated with it.
Normally in each phase some information is given about the errors
involved. The FORTRAN compiler will list all the diagnostic errors
in the syntax at the end of the program listing. Most such diag-
nostic errors are fatal and prohibit any further action on the pro-
gram. Certain of these diagnostics will allow execution to continue.
Most of the time, however, the existence of the error means some-
thing is wrong with the program or at least there is some redun-
dancy: either extra statements which can never be reached or state-
ment numbers not referenced by other statements in the program. The
compiler messages are usually somewhat cryptic, but they do attempt
to point to the statement in which an error has been detected. When
an error is detected, the location of the error is given relative
to the statement number of the closest previous statement with a
number. Unfortunately, the error message pointing to a particular
statement may actually be caused by an error in or omission of a
previous statement; thus when the programmer examines the statement
indicated by the error message, there may be no visible error. Be
sure to understand all the error messages and make certain all the
errors are corrected before you make any further attempt to run the

program again.

We'll now look at some examples for finding statements

relative to a given statement number.

ERROR AT 3 STATEMENTS PAST 13
ERROR AT STATEMENT 27
ERROR AT 5 STATEMENTS PAST 0

When counting statements past a given statement number, comment
cards (C in column 1) are not counted, nor are continuation cards
(non-zero, non-blank in column 6), which are part of the preceding
statement and not new statements. In the above set of examples
there are possible errors at three statements past the line with

statement number 13, at the line with statement number 27, and at

i |
L9

five statements past 0 where the 0 indicates that the error
occurred before the first statement with a number. Statement
number 0 is assumed to immediately precede the first statement

in the program or subprogram being compiled.

The following program has been designed to generate many of
the most common error messages. Below the listing of the program
are the actual FORTRAN compiler diagnostics. The 05-3 EDITOR line
number is given to the left of each line of the program as it would
appear on being output on the line printer. We have added numbers
to the error messages to make it easier to refer to them in the
analysis of the errors which follows the list of errors as generated

by the compiler.

0+001 DIMENSION A(10)
0+002 Y=7+X
0+003 DIMENSION T(25)

0+004 13 Q=C+ (X* (B+X*1n)
0+005 13 CONTINUE

0+006 Y-B+C=X

0+007 TUVWXYZOW=I+JK
0+008 FORMXT

0+009 12 FORMAT(F8,2,I3,)
0+010 FORMAT (I16)
0+011 DO 1 X=1,25
0+012 Y=A (X)

0+013 1 CONTINUE

0+014 DO 10 I=X,Y,Z
0+015 DO 14 J=1,2

04016 10 CONTINUE
0+017 14 CONTINUE

0+018 DO 11 I=1,N

0+019 I=I+1

0+020 11 N=2*N

0+021 WRITE(61,12) (B(I) ,I=1,N)
0+022 WRITE(61,16)1,SQRT (X)
0+023 GO TO 27

0+024 A=R+S

0+025 37 IF(J=K) GO TO 10
0+026 A=R+-S

04027 WRITE(61,12)T(J)
0+028 STOP

0+029 END

ERRORS FOR JOB

UNDEFINED SIMPLE VARIABLES (1)
S K JK Z R

A2

LABELS NOT REFERENCED (2)
37 13

UNDEFINED STATEMENT LABELS (3)
27 16

ERROR AT 1 STATEMENTS PAST 0 ' (4)
PROGRAM IDENTIFICATION NOT PRESENT

ERROR AT 3 STATEMENTS PAST 0 (5)
DECLARATIVE STATEMENTS MAY NOT APPEAR AFTER EXECUTABLE STATEMENTS

ERROR AT STATEMENT 13 : (6)
PARENTHESES DO NOT MATCH

ERROR AT 1 STATEMENTS PAST 13 (7)
LABEL ON THIS STATEMENT HAS BEEN USED PREVIOUSLY

ERROR AT 2 STATEMENTS PAST 13 (8)
LEFT SIDE OF REPLACEMENT STATEMENT NOT IN CORRECT FORMAT

ERROR AT 3 STATEMENTS PAST 13 (9)
IDENTIFIER HAS MORE THAN EIGHT CHARACTERS

ERROR AT 4 STATEMENTS PAST 13 ' (10)
CANNOT IDENTIFY STATEMENT TYPE _

ERROR AT STATEMENT 12 (11)
SYNTAX ERROR IN FORMAT SPECIFICATION

ERROR AT 1 STATEMENTS PAST 12 ‘ (12)
FORMAT STATEMENT NOT LABELED

ERROR AT 2 STATEMENTS PAST 12 ‘ , (13)
RUNNING INDEX OF A DO NOT A SIMPLE INTEGER VARIABLE

ERROR AT 3 STATEMENTS PAST 12 (14)
SUBSCRIPT IS NOT A SIMPLE INTEGER VARIABLE

ERROR AT 1 STATEMENTS PAST 1 (15)
DO LOOP QUANTIFIER IS NOT A SIMPLE INTEGER VARIABLE OR CONSTANT

ERROR AT 2 STATEMENTS PAST 14 (16)
THE RUNNING INDEX IN A DO MAY BE CHANGED WITHIN THE LOOP

ERROR AT STATEMENT 11 (17)
THE UPPER LIMIT VARIABLE (M2) OF THE DO MAY BE CHANGED WITHIN THE LOOP

ERROR AT 1 STATEMENTS PAST 11 (18)
FUNCTION OR UNDIMENSIONED ARRAY IS IN I/O LIST

ERROR AT 2 STATEMENTS PAST 11 (19)
WRONG FORMAT OF I/O DATA LIST OR ILLEGAL ENTRY IN I/O DATA LIST

ERROR AT 2 STATEMENTS PAST 37 (20)
FUNCTION OR UNDIMENSIONED ARRAY IS IN I/O LIST

ERROR AT 4 STATEMENTS PAST 37 (21)
END LINE SUPPLIED BY COMPILER

ERROR AT 3 STATEMENTS PAST 11 (22)

STATEMENT LABEL REFERENCED IS UNDEFINED

A3

ERROR AT 4 STATEMENTS PAST 11

STATEMENT CAN NOT BE EXECUTED
ERROR AT STATEMENT 37

= <OPERAND> APPEARS IN ARITHMETIC EXPRESSION
ERROR AT 1 STATEMENTS PAST 37 '

+ - APPEARS IN ARITHMETIC EXPRESSION

(23)

(24)

(25)

An analysis of each of these errors follows with the identifying

error message given before each error is explained to make it easier

to use this set of notes when finding errors in your own programs.

This is only a sample of the most common errors. There will be

other messages which you may have to decipher yourself.

UNDEFINED SIMPLE VARIABLES

(1) K, M, JK, Z and R are UNDEFINED SIMPLE VARIABLES because

they appear in the program without having been input or

assigned a value through an assignment statement. They would

be undefined and thus have zero values at execution time.

diagnostic is non-fatal.

LABELS NOT REFERENCED
(2) 37 and 13 are redundant or incorrect statement numbers.

This

They are not referred to by any other statements. Either these
numbers are incorrect or the numbers in the statements which

are supposed to reference these statement numbers are incorrect.
A third possibility is that these numbers are not needed at all.

This diagnostic is non-fatal.

UNDEFINED STATEMENT LABELS
(3) 27 and 16 are UNDEFINED STATEMENT LABELS since no such

statement numbers exist in the program but at least one state-

ment references each of these numbers. It may be that the

statement number 27 is incorrect here, that the entire state-

ment is missing or that the statement is present but has the

wrong statement number or none at all. Combining the infor-
mation of this message with that from the last message suggests
that perhaps 27 should be changed to 37 or that the 37 which

does exist should be changed to 27.

A4

PROGRAM IDENTIFICATION NOT PRESENT
(4) PROGRAM name must be the first card of every program on
CDC computers. We need to insert such a statement here. For
example: PROGRAM GARBAGE. This statement must be inserted
before the first DIMENSION.

DECLARATIVE STATEMENTS MAY NOT APPEAR AFTER EXECUTABLE STATEMENTS
(5) Declarative statements are non-executable statements
which are used by‘the compiler to define variables as arrays
or to change the implicit nature of certain variables.
DIMENSION, REAL, INTEGER, COMPLEX, DOUBLE PRECISION and COMMON
are the most commonly used declaratives. All such statements
must be placed immediately after the PROGRAM name and before

any executable statements.

PARENTHESES DO NOT MATCH
(6) There must be the same number of left and right parentheses
in any given arithmetic expression. Here parentheses must be
balanced by adding a right paren after the single right paren
already present or by deleting the first left paren.

LABEL ON THIS STATEMENT HAS BEEN USED PREVIOUSLYF
(7) Since statement 13 is already present, this statement
cannot be labelled 13. This is one statement past the only
valid 13.

LEFT SIDE OF REPLACEMENT STATEMENT NOT IN CORRECT FORMAT

(8) The form of an assignment statement must be VARIABLE =
EXPRESSION. Note that this is two past the only valid
statement 13.

IDENTIFIER HAS MORE THAN EIGHT CHARACTERS
(9) A maximum of eight alphanumeric characters is allowed

as a variable name.

CANNOT IDENTIFY STATEMENT TYPE
(10) FORMXT is not a valid statement and is unrecognizable

to the compiler.

A5

SYNTAX ERROR IN FORMAT SPECIFICATION
(11) This message can be caused by any error within a FORMAT,
so it is necessary to analyze exactly what the FORMAT is
supposed to do. A normal correction here might be 12 FORMAT
(F8.2,I3) but (¥8.2,13,F7.1) could have been what was wanted.
Since the Hollerith specification in the nHtext form requires
an exact count of the number of characters in text, including

all blanks, this error often occurs because of a miscount of n.

FORMAT STATEMENT NOT LABELED
(12) The statement immediately following 12 is a FORMAT with
no statement number. It therefore cannot be referenced by
a READ or WRITE.

RUNNING INDEX OF A DO NOT A SIMPLE INTEGER VARIABLE
(13) The index of a DO must be an integer variable. This
statement would be made valid by inserting INTEGER X as a
declarative statement after the PROGRAM name statement.

SUBSCRIPT IS NOT A SIMPLE INTEGER VARIABLE
(14) X is used as a subscript but is real. Subscripts must
be integer. Again the INTEGER X statement would correct
this error, as long as no attempt is made to treat X as a

real in some other calculations.

DO LOOP QUANTIFIER IS NOT A SIMPLE INTEGER VARIABLE OR CONSTANT
(15) The index parameters (or quantifiers) must be integer

variables or integer constants only.

THE RUNNING INDEX IN A DO MAY BE CHANGED WITHIN THE LOOP
(16) The index of the loop is I and the second statement in the

loop attempts to redefine I. This cannot be allowed.

THE UPPER LIMIT VARIABLE (M2) OF THE DO MAY BE CHANGED WITHIN THE LOOP
(17) The limiting parameter N is changed within the loop.
This cannot be allowed. In this loop the violation of these
rules would generate an infinite loop if N were originally

daf‘ned greater than 1.

A6

FUNCTION OR UNDIMENSIONED ARRAY IS IN I/O LIST
(18) According to the form of the output statement, B is
an array. But B does not appear in a DIMENSION statement
and thus it is not an array. It is thus an UNDIMENSIONED
ARRAY IN AN I/0 LIST. The lack of a DIMENSION for B causes

the error in a statement which is by itself perfectly valid.

WRONG FORMAT OF I/0 DATA LIST OR ILLEGAL ENTRY IN I/0 DATA LIST
(19) Only variables can be included in an I/O list. 1 is a

constant and is thus an illegal entry.

- FUNCTION OR UNDIMENSIONED ARRAY IS IN I/O LIST

(20) Only variables can appear in an I/0 list. All arrays
must have been DIMENSIONed and no FUNCTION names, such as
SQRT (X), are allowed.

END LINE SUPPLIED BY COMPILER

(21) The last line in every program and in every subprogram

must be END. The 0S-3 compiler will put an END after the last

77

card before the 88 but this may indicate some cards are missing

or that the end-of-file card is in the wrong place.

STATEMENT LABEL REFERENCED IS UNDEFINED

(22) A statement number has been used in a transfer of control

or a DO and no such number currently exists in the program.

In this case there is no statement number 27 which is referred

to by the GO TO 27 (line 0+023). Note that this is the

second error message about statement number 27.

STATEMENT CAN NOT BE EXECUTED

(23) This message is given whenever a statement follows a

transfer of control (other than a logical IF) but the statement

has no statement number. Without a number on it there is no
way to get to such a statement during execution. Although

non-fatal, this error usually means that one or more state-
ments will not be executed even though they are part of the

program.

A7

= <OPERAND> APPEARS IN ARITHMETIC EXPRESSION
(24) An = has appeared in the logical expression part of a
logical IF. Only .EQ. is valid in logical ekpressions. Note,
however, that the 's' part of IF(logical expression)s may

have an = if it is an assignment statement.

+ - APPEARS IN ARITHMETIC EXPRESSION
(25) This error is due to a violation of the arithmetic rule
which states that two operators may not be consecutive.
Parentheses must be used to separate the -S from the R: R+(-S).
Other errors like these last two are possible when the
precedence rules, the parentheses rules, and the other rules
on the formation of arithmetic and logical expressions are

violated.

INPUT RECORD ERROR
Since there is no easy way to tell what column you are
working in when you are using a teletype, it may happen that
one of your statements goes beyond column 80. If this does
happen in a FORTRAN program entered from the EDITOR, then
when an attempt is made to compile the FORTRAN program, the
message INPUT RECORD ERROR is given and no further compilation

takes place. This cannot happen when working from cards.

LOADING DELETED

If fatal compiler diagnostics are generated and no
object program is created, and the R parameter has been
used, then the message LOADING DELETED is given and the job
is terminated.

Once all compilation errors have been corrected, the
machine language object program, which is normally placed
on logical unit 56, can be loaded into memory with all
appropriate subprograms needed being loaded from the system
library. 1In the LOADER phase errors are usually unlikely
unless the programming is relatively sophisticated. Some
errors which might occur follow. All are fatal, causing

the job to be terminated.

e
(e9]

PROG

XQRT

DUPLICATE SYMBOL IN PROG

This is caused by having attempted to load two copies
of PROG. This happens on-line when running a corrected
version of a program right after a previous version without
having rewound or released the LUN on which the previous
object program resided. The use of the R parameter on the
FORTRAN control card will eliminate this problem, but it is

not always possible to use this parameter.

UNDEFINED SYMBOL IN ZAP

This is caused by having omitted to include a subprogram
called XQRT with your main program ZAP. This could be a
simple omission of the card deck for XQRT; it_could be a
mispunch of SQRT; or it could be that you had intended XQRT
to be an array and did not DIMENSION it. 1In any case the
LOADER looks for such a subprogram and it is missing from

the object program and also from the system library.

0 TRANSFER SYMBOLS

After loading all of the object program and the library
routines, no main program has been found. This occurs when
using the R parameter on the FORTRAN control card when there
are diagnostic errors in the main program but there are also
some subprograms included by the programmer which have no
diagnostics. An object program gets generated consisting of
only those subprograms which have no fatal compiler diagnostics.
An attempt to load this object program and the library causes

difficulty since no main program exists.

SUBPROG MEMORY OVERFLOW

The total number of memory locations of all programs
and subprograms loaded to this point exceeds 32768. This
error usually occurs when large arrays are being used.
If neither compiler nor loader diagnostics have terminated
the run, then the object program and the various subprograms
it requires from the system library, as loaded by the LOADER,

can be executed. We then have the possibility of execution

A9

errors which in turn can cause abnormal termination of the job.
Such errors occur due to errors in the logic of the program
when, for example, transfer is made to an illegal address or
vwhen a record is input which is illegal under a given FORMAT
specification or when an attempt has been made to read beyond
the end-of-file on a given file.

The following partial list of arithmetic errors indicates
the types of checks that are kept on the various library
functions. These errors are not fatal but usually end up

giving one or more incorrect results.

ERROR IN SQRT CALLED FROM 77676 NEGATIVE ARGUMENT
An attempt to take the square root of a negative number
has been made. The error was detected in the sSQRT library
function which was referenced from location 77676 (octal)

in memory.

ERROR IN EXP CALLED FROM 77724 X NOT LT/GT 709.089/-709.78
An attempt has been made to take the exponential of
a number which would exceed the largest real number allowed.
The error was detected in EXP which was referenced from

location 77724 in memory.

ERROR IN ALOG CALLED FROM 77735 X LE 0
An attempt has been made to take the natural logarithm
of a number less than or equal to 0 but such a logarithm is
undefined. The error was detected in ALOG while execution
occurred at 77735.

It is interesting to note that dividing by zero and
exceeding the maximum or minimum limits on the size of an
integer or real number (other than as above in the EXP
example) do not lead to error messages under the present
version of 0S-3. Division by zero gives a result of 2'or 2.,
depending on the mode. Exceeding the limits of valid integers
or reals leads to erroneous results which may be extremely
difficult to detect. For example 8388607 + 8388607 = -1i.

Al0

To eliminate these problems there are LIBRARY subprograms
available to allow checks on the existence of these condi-
tions. For more information refer to the FORTRAN reference
manual sections on DIVIDE FAULT, EXPONENT FAULT or OVERFLOW
FAULT.

TIf an execution error occurs during an I/O operation,

a message is given and the job is terminated. For example

ERROR IN BCD IN CALLED FROM 76277 ILLEGAL CHARACTER LUN 23
INPUT RECORD 1.00.

An input error has been detected in the BCD IN routine
called by a READ in the source program and loaded at location
76277. An attempt was made to read a record from logical
unit 23 but a character exists in one of the data fields
on that record which is illegal under the FORMAT specification
being used. This could be two decimal points in the same
field, a comma or alphabetic character in a numeric field
or simply the wrong FORMAT being used by the programmer. The
record in which an error has been detected is listed after
the message INPUT RECORD.

ERROR IN BCD IN CALLED FROM 75251 UNCHECKED EOF LUN 14
An attempt has been made to read beyond the end-of-file
record on this logical unit. If the program has no end-of-
file check, it may need one. If it already has one, it may
be in the wrong place or more likely, the input FORMAT and
the READ list do not match and the wrong number of data cards-

has been read.

ERROR IN BCD OUT CALLED FROM 76653 RECORD OVERFLOW LUN 61
An attempt has been made to output a record greater than
136 characters. This error is detected in the BCD OUT routine
which is called by a WRITE at location 76653.

If any of these or certain other fatal execution
diagnostics occur the job will be terminated. You will
usually get the additional message ABNORMAL TERMINATION OF
FORTRAN EXECUTION.

All

If the E parameter is added to the FORTRAN compile
control card, then some additional useful information is
given when an execution error occurs and in addition sub-
script limit error checking code is added to your object
program during compilation so that the values of subscripts
can be checked against the limits automatically established
in the DIMENSION statement. The additional message might
look like this:

WHICH WAS AFTER LABEL 00013 IN PROGNAME

This extra information relates the execution error back
to the statement numbers used in the program PROGNAME,
excluding FORMAT statements. Thus this error occurred at or
after the statement with statement number 13 and before the
next statement in the program with a statement number. FORMATSs
are excluded because they are non-executable statements which
are not really executed in-line but are used by READ and
WRITE statements to indicate how things should be input or
output.

ERROR IN SQRT CALLED FROM 77676 NEGATIVE ARGUMENT
WHICH WAS AFTER LABEL 00037 IN ZYZZLE
This illustrates the message given when the E parameter

is used and an attempt has been made to take the square root
of a negative number. The error occurs in program or sub-
program ZYZZLE and can be traced to some statement at or after
statement number 37 and before the next statement with a number.
Since this message occurs during execution, it is possible
fhat the attempt was made to take the square root on each pass
through a loop of statements which include at least one SQRT
reference. This means that the first occurrence of an error
will be the one which causes the first occurrence of the
message. This, of course, does not have to be on the first
pass through the loop. Note that simply modifying the call
to the SQRT function so that it takes the absolute value of
the argument before taking the root does not really solve the
problem. The question to be answered is what is actually

causing the program to get a negative argument.

Al2

If the E parameter is not used, it is possible to have

abnormal termination after a message like

FORMAT ERROR 3
The number indicates which type of FORMAT error has

occurred. There is a list of these in the FORTRAN reference
manual, but it is usually unnecessary to know which error has
occurred since these messages almost always occur when part
of an existing FORMAT statement is wiped out during execution
by inadvertently assigning a value to a memory location in
which'part of a FORMAT resides. This is usually done when
using an array with a subscript which takes on a zero or
negative value by acident. The arrays are located immediately
after the FORMATs in memory when the object program is léaded,
SO a zero or negative subscript on an array actually may
reference an area in memory which contains part of a FORMAT
statement.

When the E parameter is used, the actual value of the
subscript is compared with 1 and with the maximum permissible
value as established in the DIMENSION; if the subscript is
outside this range, then the following diagnostic is given

and the program is abnormally terminated.

ERROR IN ERRCHK CALLED FROM 77731 SUBSCRIPT LIMIT ERROR
WHICH WAS AFTER LABEL 00006 IN PROGNAME

A search after statement 6 in PROGNAME should yield a
zero or negative value for some subscript or possibly a value
greater than the maximum allowed. The error was detected in
the ERRCHK subprogram which is only included in the object
program when the E parameter is used.

Execution errors give the subprogram in which the error
was detected, the absolute address in octal at which the
error was detected and a message as to the type of error. The
octal address can be very useful if the programmer knows
assembly language or can generate a FORTRAN compiler map,

showing where all the variables and all the statement numbers

Al3

used in the program are relative to the start of the program
or subprogram being compiled, and a LOADER map, giving the
absolute addresses for all subprograms and their alternate
entry points. To generate these two maps use the following
sequence of control cards.

———————————————————— JOB card, TIME card, etc.

;FORTRAN,L,M,X Call FORTRAN compiler;

generate list
program deck on 61, compiler map on 61,

object program on unit 56

ZZ End-of-file for compiler

;LOAD,56 LOAD needed when X option used

MAP Generate LOADER map on unit 61

ZLOGOFF

ILLEGAL INSTRUCTION READ LUN 1 AT 076554
FILE AT END OF DATA
This is a system error message which usually means

serious problems. In this instance the FILE AT END OF DATA
message indicates that an attempt was made to read beyond
the end-of-file and there was an end-of-file check in the
program. The check was either in the wrong place or the pro-
gram was allowed to continue reading data records after the
EOF was encountered.

ILLEGAL INSTRUCTION HALT 00004 AT 077751
This is also a system error message which usually means
even worse trouble. It will occur, for example, when a
program references a subprogram but sends the wrong number
of arguments to the subprogram. _
There are a number of other system errors which may

occur from time to time.

TIME CUT
This message indicates that the amount of time you

established in your TIME=number control card has been

Al4

exceeded or that the job number is completely out of time.
The simple solution of increasing the time and rerunning the
job may be dangerous. Find out why the program used the time

it did before resubmitting the job.

INSUFFICIENT FILE SPACE

This message is given when all the currently available
scratch file space on the job number has been used. When
the job is initiated, the system establishes a scratch file
limit of 100 blocks. The job will terminate with this
message if that limit is reached or if the lower limit
normally established on student jobs is reached. If a lower
limit is desired or the job has a higher limit which you do
not want to approach, then use the MFBLKS=number control card
to change the limit up to the maximum available on the job
number.

INSUFFICIENT SAVE FILE SPACE

This message is given when all the available magnetic
disk save file space under a particular job number has been
used. The limit is established at the Computer Center when the
job number is created and can only be changed with special
permission. To make use of the save file space when this
message is given, some current save files must be destroyed
with the DESTROY,name control card.

After some of these system error'messages and in certain

other instances the system generates a report on the status

of the special purpose registers in the control unit of the
computer. This information is of use to a programmer famil—v
iar with assembly language and the uses to which the various
registers are put. To most programmers, then, the following
is useless information. The status report looks something
like this:

P 077747
LJA 077757
A 00000001
0 46332262

Bl 77757
B2 00010
B3 77776

Al5

EU 20035600
EL 00000000 '
other information added usually at this point

FORTRAN programmers do not need to concern themselves with
these status reports unless/until they become familiar with
the assembly language for the 3300. '

If, through hard work and a little good luck, you manage
to get through all the phases without running into a fatal
error, then the computer will print the message

END OF FORTRAN EXECUTION
and terminate the job (or actually, look for the next control
card should the job contain more than one major task). You
must still check your answers to satisfy yourself that there
are really no errors in the logic. Such undetectable errors
as an incorrectly matching FORMAT or an incorrectly coded
formula or a logical comparison which transfers in the wrong
direction may still exist but not violate any of the rules
of the three phases. These may be hard to track down, but
at least the lack of any error messages means everything else
is valid.

Obviously there are many other errors which can occur
which cannot be listed here; hopefully this set of notes
will give ycu some insight into how and where to look for
your errors and perhaps even help you decide what to do about
them.

e
[
[e))

APPENDIX B

EXPANDED CONTENTS OF INDIVIDUAL VIDEOTAPES

CONTENTS OF VIDEOTAPE LECTURES IN FORTRAN

1. Introduction to Computers -- (a) general concepts of a computer

system; (b) definitions of hardware and software; (c) general idea
of computer programming; (d) specific discussions on FORTRAN alpha-

bet and rules for forming instructions.

2. Bit Structure, Part I -- (a) introduction to binary numbers

and analogs with the decimal system; (b) specific form of infor-
mation storage in CDC 3300 computer-groups of 24 binary digits,
each group processed as a single unit (a word); (c) constants:
fixed numeric quantities stored in the computer's memory -- (1)
integer (or fixed point) constants, (2) real (or floating point)
constants, (3) how constants are stored in memory in two different

forms, (4) how constants are programmed.

3. Bit Structure, Part II -- (a) variables - names assigned to

locations in computer's memory at which constants are or can be
stored; (b) how to form variable names; (c) arithmetic operations
in FORTRAN; (d) algebraic and computer rules for formulating
arithmetic expressions; (e) integer and real arithmetics and their

differences; (f) library functions.

4. Arithmetic Assignment Statements; Input/Output -- (a) assigning

values to variables through use of arithmetic expressions; (b)

sample program - (1) executable statements, those which cause

action, (2) non-executable statements, those which supply infor-
mation; (c) data records; (d) input of data from records by READ
statements; (d) logical unit numbers; (e) output of data stored

in computer's memory by WRITE statements.

5. Input/Output - FORMAT -- (a) FORMAT statements - (1) non-
executable statements supplying information as to number of pieces
of data on data record, type of each, number of decimal places, if
any, and location on record, (2) used in conjunction with READ

and WRITE to input information to and to output information from

the computer's memory; (b) discussion of specific FORMAT specifica-
tions - (1) integer, (2) real decimal, (3) exponential, (4) spacing

specifications.

Bl

subscripts; (f) reasons for use of arrays; (g) example of use of

arrays in averaging problem.

12. Other Types of Constants, Variables and FORMAT Specifications --
(a) REAL and INTEGER explicit type declaration statements; (b)

DOUBLE PRECISION and COMPLEX type statements and associated
arithmetic; (c) library functions for converting from integer to

real and vice versa.

13. DO Loops -- (a) Hollerith constants, which contain letters
instead of numbers; (b) FORMAT specification for Hollerith
constants; (c¢) return to summation - several ways to sum the
integers from 1 to N; (d) DO statements - iterative statements

which cause a series of'othervsteps to be repeated in a loop.

14. DO Loops Cont. —-- {a) the strict limitations on the form of

the DO; (b) action which occurs in a typical loop; (c) rules for

using DO's to iterate a series of steps.

15. Nested DO Loops; Input/Output of Arrays -- (a) loops inside

loops; (b) example of doubly nested DO loops for double iteration;
(c) examples of use of DO; (e) use of DO loops with arrays; (f)
FORMAT rules if more or fewer elements in the argument list than

numeric and alphanumeric FORMAT specifications.

16. Input/Output of Arrays Cont.; Program Examples -- (a) I/O

of arrays with and without subscripts; (b) use of DO loops for
I1/0 of arrays; (c) implied DO's; (d) examples of programs with
arrays - (1) test scoring and averaging (2) use of other types of

constants, variables and FORMAT specifications with arrays and DO's.

17. Two Dimensional Arrays; Subprograms -- (a) reasons for use of

2D arrays - (1) matrices, (2) tables; (b) examples of operations
on a table of numbers; (c) definition of subprograms; (d) reasons
for use of subprograms; (e) FUNCTION subprograms to define a

single-valued function of several variables.

18. Subprograms Cont.; Other Specification Statements -- (a) for-

mation of FUNCTION subprograms - (1) starting, (2) stopping, and
(3) function definition requirements; (b) example of FUNCTION sub-

program with accompanying main program; (c) SUBROUTINE subprograms -

B3

(1) definition and (2) requirements; (d) referencing a SUBROUTINE
from a main program - the CALL statement; (e) example of SUBROUTINE
subprogram with accompanying main program; (f) other types of non-
executable specification statements - (1) COMMON, (2) EQUIVALENCE,
(3) COMMON/DATA/, (4) DATA statements and their uses.

19. Entering and Editing FORTRAN from Teletype -- (a) the 0S-3
EDITOR language for entering and editing both programs and data
directly from an on-line keyboard; (b) use of teletypes - 1ogging
on; (c) some useful features of 0S-3; (d) input and running of a

FORTRAN program from teletype; (e) correcting errors with the

EDITOR - (1) compilation errors and (2) execution errors due to

incorrect logic.

20. Entering and Editing FORTRAN, Part II -- (a) some useful

EDITOR instructions - their general form and purpose; (b) direct

on-line, real-time communication with computer; {(c) 0S-3 COPY
command; (d) definitions of permutations and combinations through
use of COPY and stored data files; (e) program example - permuta-
tions and combinations; (£f) LOGOFF.

to
159

APPENDIX C

TAPE NUMBER, TITLES AND TIMES

W 0 N O U > W N
L]

T TP W T)
=S VS B (ST N e
. . .] L[]

15.
l6.
17.
18.
19.
20.

Introduction to Computers (30:00)

Bit Structure, Part I (29:35)

Bit Structure, Part II (31:25)

Assignment Statements; Input/Output (31:10)

Input/Output - FORMAT (30:30)

Starting, Stopping, Transfer of Control (30:00)

Arithmetic IF; 0S-3 Control Statements (32:00)

Program Ex. 1; Summation and Counting (30:00)

Summation and Counting; Logic Concepts (32:00)

Logical IF; Program Ex. 2 (32:00)

Arrays and Subscripts (26:52)

Other Types of Constants, Variables & FORMAT Specifications (27:17)
DO Loops (32:00) |

DO Loops Continued (31:30)

Nested DO Loops; Input/Output of Arrays (31:00)

Input/Output of Arrays Continued; Program Examples (33:00)
Two Dimensional Arrays; Subprograms (31:05)

Subprograms Continued; Other Specification Statements (33:10)
Entering and Editing FORTRAN from Teletype (30:00) |
Entering and Editing FORTRAN from Teletype, Par£ II (30:30)

@
)

APPENDIX D

CDC 3300 Character Codes

CDC 3300 Character Codes

BCD CARD KEY LINE TELE ASCII BCD CARD KEY LINE TELE ASCII
CODE CODE PNCH PRNT TYPE CODE CODE CODE PNCH PRNT TYPE CODE

a0 0 0 0 0 260 40 11 - - - 255
01 1 1 1 1 261 41 11,1 J J J 312
02 2 2 2 2 262 42 11,2 K K K 313
03 3 3 3 3 263 43 - 11,3 L L L 314
o4 Y 4 4 y 264 4y 11,4 M M M 315
05 5 5) 5 265 45 11,5 N N N 316
06 6 6 6 b 266 46 11,6 0 0 0 317
07 7 7 7 7 267 47 11,7 P P P 320
10 8 8 8 8 270 50 11,8 Q Q Q 321
11 9 9 9 271 51 11,9 R R R 322
12 2,8 : 272 52 11,0 ! 241
13 3,8 = = = 275 53 11,3,8 $ $ $ 24y
14 4,8 ' # ' 247 54 11,4,8 % % % 252
15 5,8 < 3 246 55 11,5,8 4 4 336
16 6,8 z % 245 56 11,6,8 ¥ @ 300
17 7,8 L [333 57 11,7,8 > > 276
20 12 + + + 253 60 Blnk Blnk Blnk Spce 240
21 12,1 A A A 301 61 0,] / / / 257
22 12,2 B B B 302 62 0,2 S S S 323
23 12,3 6 C C 303 63 0,3 T T T 324
24 12,4 D D D 304 bu 0,4 U U U 325
25 12,5 E E E 305 65 0,5 Y V \Y 326
26 12,6 F F F 306 66 0,6 W W W 327
27 12,7 G G G 307 67 0,7 X X X 330
30 12,8 H d H 310 70 0,8 Y Y Y 331
31 12,9 I I 1 211 71 0,9 Z Z Z 332
32 12,0 < < 274 72 0,2,8]] 335
33 12,3,8 . . . 256 73 0,3,8 , , , 254
34 12,4,8)) 251 74 0,4,8 (((250
35 12,5,8 > 243 75 0,5,8 ~ N 334
36 12,6,8 - " 242 76 0,6,8 z « 337
37 12,7,8 ; ; 273 77 0,7,8 A ? 277
Other teletype characters and their ASCII codes: Display unit uses
L. BCD codes, with
Bell 207 Horizontal Tab 211 line printer char-
Line Feed 212 Vertical Tab 213 acters, except:
Return 215 Form Feed 214 : ; S
Rubout 377 All Mode & Escape 233,374 96 - (carriage return

375,376 37 & (send)
75 @ (parity error)
D1 76 ' (print)

APPENDIX E

Line Printer Carriage Control

The character in column 1 of information sent to a line printer
specifies control of paper movement during printing. This character
is never printed. Listed below are the more commonly used carriage
control symbols and the action of the paper carriage on the current

CDC 3300 line printer when these characters are used in column 1.

Character Action
% (blank) Single space before printing.
0 (zero) Double space before printing.

- Triple space before printing.
No space before printing, overprint.
Skip to a new page before printing, page eject.

Single space, print, skip to new page.

Clear automatic page eject.
Reset automatic page eject.

Reset to six lines per inch vertical spacing.

H n w o ¥ HE o+

- Select eight 1ines per inch vertical spacing.

B,X,Y,2,2,3,4,8,9 are used as special purpose carriage control
symbols, but their function will not be explained here. The remaining

characters will cause single spacing before printing.

Q,R,S,T when used as carriage control symbols, inhibit printing
of anything eise within the FORMAT. Automatic page eject and 6 lines
per inch are standard default options, so R and § are used only when
0 and T have been used previously in the same program and the program

needs to return to the standard options again.

=
=

INDEX

ABS FUNCTION,17,53

addition,15

Address, 2,3

ALOG FUNCTION,15,17

ALOG1l0 FUNCTION,17

Alphabet, CDC 3300,D1

Alphabet, computer,4

Alphabet, FORTRAN,7

Alphanumeric,l4

.AND. operator,44,45

APPEND command, 95,99

Arguments, see parameters

Arithmetic assignment statements,
18,19 ‘

Arithmetic expressions,15,18,31,44

Arithmetic IF statement,31,42"

Arithmetic operations, 14,15

Arithmetic unit,?2

Arrays,1D,54,69,70

Arrays,2D,54,78,79,80,81

Arrays,3D,54 .

Arrays, element location of 2D,78

Arrays,1/0 of,72,73,74,78,79

Arrays,sample problems with 58,70,
79,80,81

Arrays,uses of,56

Assignment statements,18

. ATAN FUNCTION,17

Aw FORMAT specification,63,75,77

Batch processing,5

BCD codes,4,5,61,62

Binary coded decimal, see BCD

Binary computer,9

Binary numbers,9

Binary-decimal conversion,9,10

Binary-octal conversion,l0

Bit structure,9

Bits,9

Blanks,8

Block COMMON, see COMMON

Branch,2-way, see logical IF

Branch,3-way, see arithmetic IF

Branch,4 or more way, see
computed GO TO

Calculation of location of 2D
array elements,78

CALL EXIT,28,93

CALL statement,85

Card, end-of-file, see EOF

Card punch,3,21

Card, punched,4,5,19

Card reader,3,19

Carriage control,27,El

cbc 3300,10,11,12,14,16,17,19,28,29,
32,49,60,61,62,68,87

Centering heading, 28

Character codes,4,5,7,62,D1

Characters,4,5,7,14,D1

Charges for using the computer, 32,33

Checking for end-of-file, see EOF

Codes, BCD,61,62,D1

Codes, card,4,5,D1

Codes, character,4,5,7,62,D1

Codes, Hollerith,4,5,D1

Column order,79

Combinations and permutations,97,98,99

Comment cards,7

COMMON statement,85,87,88

COMMON statement, labelled, 87,88

Compilation,6,7,28,88

Compilation errors, see error mes-
sages ’

Compilation of subprograms,81

Comipiler,6,34,91

Compiler, FORTRAN,6,7,34

Compiler map,Ald

Complex arithmetic,60

Complex locations in core,60

COMPLEX type statement,60

Computed GO TO statement,29,30

Computer program,6

Computer system,2,90,97

Conditional transfer of control, 29

Constants,11,12,13,14,62,63

Constants and variables, 13,14

Constants as stored in memory,11,13

Constants from programmer point of
view,11,13

Constants, Hollerith,62,63

Constants, integer,11,13

Constants, precision of,11,12,13

Constants, range of,11,12,13

Constants, real,11,13

Continuation cards,7

" CONTINUE statement,66

Control cards,32,33,34,35,89,90,97
Control unit,2

COPY command, 97,98

Core,3

Core storage,3

COS FUNCTION,17

Counting,42,63

CRT, 4

Data, blanks in,8
Data cards,5,19

Data files, see files

Data records,8

DATA statement,88

Debugging, 6

Decimal-binary conversion,9,10

Decimal-octal conversion,9,10

Declaration statements,59

Diagnostic errors, see error mes-
sages

DIMENSION statement,54,55,72,74,76,
77,78,80,85

DIRECTORY command, 90

Disk file, see files, disk

Distance in Cartesian Coordinates
program, 36,38 :

Division, 15

Division by zero,31,32

DO loops and arrays,69,70,71,72,79,
80,81

DO loops,

DO loops,

DO loops,

DO loops,

DO loops,

DO loops,

DO loops,

formulation of,65

implied,72,73,74,79

index of,65,66

index parameters of,65,66

nested, 68

non-normal exit from,65,66

normal exit from,65,66

DO loops, range of,65

DO loops, rules governing use of,
65,66,67,68

DO loops, sample programs with,
67,69,70,73,74,76,77,80,81,86,
90,99

Double precision arithmetic,60

Double precision locations in mem-
ory,59

DOUBLE PRECISION type statement,59,60

EDIT command,90,91,92,98

EDITOR, 89,90

EDITOR instruction APPEND,95,99

EDITOR instruction ERASE,95

EDITOR instruction FILE, 94

EDITOR instruction FIN,91,92,93,95

EDITOR instruction INPUT,90,95,96,98

EDITOR instruction INSERT, 95,96

EDITOR instruction LIST,91,92,95,96

EDITOR instruction MOVE,95,96

EDITOR instruction OUT,91,92,93,95,
96,99

IDITOR instruction

EDITOR instruction RESEQ,95,97

EDITOR instruction SARL,91,92,93,95,97

EI'ITOR =cratch pad,90,91,93

END statement,28,82,83

Ending programs, 28

Erd-of-file, see EOF

REP, 95,96

End-of-record FORMAT specification
(/) 25,26

EOF, checking for,34,39,97

EOF ¥UNCTION,34,39,97

.EQ. operator,44,45,46

Equal sign, use in FORTRAN,18

EQUIP command,19,20,33,34

"EQUIVALENCE statement, 87

ERASE command, 95

Error messages, compiler,91,92,93,94,
99,Al1,A2,A3,A4,A5,R6,A7,A8

Error messages, execution,Al0,All,
Al2,Al13

Exror messages,

Error messages,
Al6

Ew.d FORMAT specification,25

Exceeding DIMENSION limits,56,Al3,
Al4d

Executable statements,18,19,29,31,
54,82

Execution errors, see error messades

Execution of subprograms,81l

Execution phase,6,7,28

Exit from DO loop, 65,66

EXIT, see CALL EXIT

EXP FUNCTION,17,81

Exponential constants,25

Exponential notation,12,25

Exponentiation,15

Expression, arithmetic,15,18,31,44

Expression, logical,44,45,46,49

Expression, relational,44,45,46

External sources,3,4

loader,A8,A9
system,A8,A14 ,Al5,

Fahrenheit-Centigrade conversion
program, 36,37

File block,33

File block, save,33,95,96

File block, scratch,33,95,96

FILE command, 94

Files, disk,19,20,33,90,93,94,95,96,
97,98,99

FIN command,91,92,93,95

Fixed point, see INTEGER

FLOAT FUNCTION,17,60,61,75,77

Floating point, see REAL

FMTNO, see FORMAT statement number

Forces, moments and center of gravity
program, 73,74

FORMAT, Hollerith,27

FORMAT, repeated groups in,72

FORMAT, repeated specifications in,
25,72

FORMAT rules,22,23,69,71,72

FORMAT specification Aw,63,75,77

FORMAT specification Ew.d,25 History of computers,l

©ORMAT specification Fw.d,23,24 Hollerith codes,4,5,D1
FORMAT specification Hollerith form Hollerith constants,61,62,63
" nHtext, 27 Hollerith FORMAT specification,27
.-ORMAT specification Hollerith form Hollerith, Herman,4
'text',27 ' Hollerith and carriage control,27
FORMAT specification Iw,23,24
FORMAT specification nX,23,24 , IF statement, arithmetic,31,42
FORMAT specification /,25,26 IF statement, logical,43,46,49,50
FORMAT specifications,22,23,24,25,26, IFIX FUNCTION,17,60,61
27,63,71,72,75,77 Implied DO loops,72,73,74,79
FORMAT statement,22,23,24,25,69,71, Incrementing,42,64
72,73 Index of DO,65,66
FORMAT statement number,19,20,21,22 Index parameters,65,66
FORMAT, unlimited groups in,71 - Information,2,3 .
FORMATs and I/O lists with differing Initialization, 42,64
number elements,69,71,72,73 INPUT command,90,95,96,97
FORTRAN,1,6,7,14,16,17,19,29,42,54, Input, see I1/0
62,64,69,89 Input unit,2,3
FORTRAN alphabet,7 Input/Output, see I/0O
FORTRAN compiler,6,7,34 INSERT command, 95,96
FORTRAN control card,34,91,92,93,94, Instructions, machine language,5
95,99 Integer arithmetic,15
FORTRAN, formulation of statements Integer constants,11,12,13
in,7,8 Integer precision,11,12,13
FORTRAN program,6,7,8,18,28,29,32,34, Integer range,11,13
89,95 Integer-real conversion,60
FUNCTION ABS,17,53 INTEGER type statement,59,75,77
r*UNCTION ALOG,15,17 Integer variables, 13,14
k- 'UNCTION ALOG1l0,17 : Interactive programming,95,96,97
FUNCTION ATAN,17 1/0,3,19,20,21,22,72,73
FUNCTION COS,17 I/0 lists,20,21,22
FUNCTION evaluation,15,17,82,83 1/0 of arrays,72,73,78,79
FUNCTION EXP,17,81 I/0 statements FORMAT, see FORMAT
FUNCTION FLOAT,17,60,61,75,77 I/0 statements READ,19,20,22,24,25,34
FUNCTION IFIX,17,60,61 I/0 statements WRITE,21,22,27,34
FUNCTION, sample program with, 84,99 Iteration, see DO loop
FUNCTION SIN,15,17,81 Iw FORMAT specificatiocn, 23,24
FUNCTION SQRT,17,53
FUNCTION statement,28,81,82,83,84 JOB card,32
Functions, library,15,16,17 ’ Job number,32,33,89

Fw.d FORMAT specification, 23,24
: Key, [ALT.MODE],90,99

, -GE. operator,b44,45 ‘ Key, @,90
GO command, 93 Key, [CTRL],89
GO TO statement, computed,29,30 Key, [CTL,wW],97
GO TO statement, unconditional,29 Key, [EsC],90,99
Grade point average problem,75,77 Key, #,89 .
.GT. operator,44,45,48 Key, [RETURN] or [CR],89
‘ Keys, teletype,89,90,97,99
Hardware,1l _ Keyboard, 4,89
Heading, centering,28 Keyboard devices,4,5
Headings, see Hollerith FORMAT Keypunch,5,D1
*HI,89 ' ‘
ierarchy of operations,15,47,49 Labelled COMMON statement, 87,88

HIMEM, 85 Language, FORTRAN,6,7

Language, machine,5,6,7,91

Largest number, program to find, 47,
48,69,70,83,84

.LE. operator,44,45,46

Library functions, see functions,
library

Line printer,3,19,20,21,D1,E1l

Linear equations program,50,51

LIST command,91,92,95,96

Listing programs, see FORTRAN con-
trol card,LIST,COPY

Loader errors, see error messages

Loader map,Al4

Loading object programs,7,34,91

Locations in memory,2,3,11,12,62

Locations in memory of 2D array
elements, 78

Logging on from a teletype,89

Logic unit,2,3

Logical expressions,44,45,46,49

Logical IF statement,43,46,49,50

Logical operators,44,45,46,49

Logical units and unit numbers,l9,
20,21,22,33,34

LOGOFF command, 35,99

Looping, see DO loops

LOWMEM, 85

.LT. operator,44

LUN, see logical units

Machine language,5,6,7,91

Magnetic disk,3,5,8,19

Magnetic properties of computer
components, 3,9

Magnetic tape,3,8,19

Maps,Al4d

Matrices, 55,56

Maximum number of elements of an
array,54,55,56,A13

Maximum, see largest number

Mean, programs involving,56,57,58,
75,76,90,91,92,93,94

Non-normal exit, see DO loops
.NOT. operator, 44,46
nX FORMAT specification, 23,24

Object program,7,34

Octal addresses,10,11

Octal-binary conversion,l1l0

Octal-decimal conversion,1l0

Octal numbers,10

On-line operation,5,89,95

Operating system,1l,5

Operators, arithmetic,14,15

Operators, logical,44,45,46,49

Operators, relational, 44

.OR. operator, 44,45

0s-3,5,6,20,32,33,34,35,56,60,89

0S-3 control cards,32,33,34,35,89,
90,97

0S-3 EDITOR, see EDITOR

OUT command,91,92,93,95,96,99

Output unit,2,3

Output, see 1/0

Paper tape,4

Parameters, actual,82,83,85

Parameters, DO loop,65,66,6R

Parameters, dummy,82,83,85

Parameters, subprogram,82,83,85

Parentheses, nested,l6

Parentheses, non-use of in logical
expressions,49

Parentheses, use of in arithmetic
expressions, 16

Permutations and combinations pro-
gram,97,98,99

Power of computers,l,?2

Precision,2,11,12,13,59,60

Priority classes,15

Program, interactive,95,97

Program, machine language,5,6

PROGRAM name statement, 28,85

Program, object,7,34

Memory,2,3,90 Program samples,18,36,37,38,40,41,43,

Memory, zip code sorter analog with, 48,51,53,58,67,70,73,74,76,77,84
2,3 86,90,91,92,93,94,95,96,97,98,99

MI command, 92 Program, source,7,34

Mixed mode arithmetic,16,88 Punch, card,3,21

Mode changes,59,60,61 Punched card,4,5,19

MCVE command, 95,96

"ultiplication,15 Quadratic equations program,50,52,53

.NE. operator,44

asted DO loops,68

uHtext Hollerith FORMAT specifica-
tion, 27

Non-executable statements,18,19,
54,85

Range of constants,11,12,13
Range of DO,65

READ statement,19,20,22,24,25,34
Reader, card,3,19

Real arithmetic,15

Real constants,11,12,13

Real precision,12,13

Real range,12,13

Real-integer conversion,6l

REAL type statement,59

_.eal variables, 13,14

Record, data,8,20

Relational expressions,b44,45,46

Relational operators, 44

Relational operators .EQ.,44,45,46

Relational operators .GE.,44,45

Relational operators .GT.,44,45,48

Relational operators .LE.,44,45,46

Relational operators .LT.,b44

Relational operators .NE.,6 44

Reliability,2

REP command, 95,96

Repeated FORMAT specifications,
25,72

Repeated groups, 25

RESEQ command,b 95,97

RETURN statement,82,83

Row order,79

Sample programs, see program sam-
ples

SARL command,%1,92,93,95,97

Save files, see file blocks

Scientific notation,12,25

-*SCOooP, 89 '

,cratch files, see file blocks

‘Scratch pad, see EDITOR

Sequencing card decks,7

Simplicity,2

SIN FUNCTION,15,17,81

Slash(/), see FORMAT specifica-
tion /

Software, 1l

Source program,7,34

Specification statements,18,19,85

Speed, 1

SQRT FUNCTION,17,53

Starting the program,28

Statement numbers,7,19,20,29,31

STOP statement,28

Stopping the program,28,36,39

Storage, see memory

Subprogram, 28,81,82,83,85

Subprogram parameters, see para-
meters

Subprogram reference, see CALL,
FUNCTION

Subprograms, use of,81

SUBROUTINE statement,81,83,85

SUBROUTINE, sample program with,86,99

" ubscript forms,55,56

Subscripted variable, see arrays

Subscripts,54,55,56

Subtraction, 15

Summation,39,42,63

Summation from 1 to N program,42,43,63

System errors, see error messages

Systems of linear equations program, .
50,51

System, computer,2,90,97

System, operating,l,5

Teletype,3,4,5,19,20,21,89,90,D1

Testing for end of loop,42,64

Testing for end-of-file, see EOF

TIME command,33,89,93

TIME CUT message,93,A14,A15

Time-sharing,5

Transfer of control statements,18,19
28,29

Transfer of control, conditional,29

Transfer of control, unconditional,29

Type statement,59,60

Type statement COMPLEX, 60

Type statement DOUBLE PRECISION,59,60

Type statement INTEGER,59

Type statement REAL,59

Unconditional transfer of control,29
Unit numbers, see logical unit numbers
Unlimited groups,71

User code, see job number

Validity code, see job number
Variables,11,12,13,14,62
Variables and constants,11,13,62
Variables, formulation of,13,14
Variables, integer,13,14,62
Variables, real,13,14,62
Vectors, 55,56

Versatility,1,2

Vertical spacing, 25,26

Word, computer,10,11,12,13,14,62,63
WRITE statement,21,22,27,34

	0001
	0002
	0003
	001
	002
	003
	004
	005
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	51
	52
	53
	54
	55
	56
	57
	58
	59
	60
	61
	62
	63
	64
	65
	66
	67
	68
	69
	70
	71
	72
	73
	74
	75
	76
	77
	78
	79
	80
	81
	82
	83
	84
	85
	86
	87
	88
	89
	90
	91
	92
	93
	94
	95
	96
	97
	98
	99
	A-00
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	A-11
	A-12
	A-13
	A-14
	A-15
	A-16
	B-00
	B-01
	B-02
	B-03
	B-04
	C-00
	C-01
	D-00
	D-01
	E-00
	E-01
	Index-01
	Index-02
	Index-03
	Index-04
	Index-05

