cem-73-04

FORTRAN REFERENCE MANUAL

August 1973

COMPUTER CENTER

Oregon State University
Corvallis, Oregon 97331

FORTRAN REFERENCE MANUAL

ccm~-73-04

Oregon State University
August, 1973

TABLE OF CONTENTS

IntroduCtion:cceceeocccscccccassscccassccsccssnsns
User's Virtual Machineceeeecssescccccascasssacssss 1.0
Notation A
Character Setiieeetiierectencsccssccanccncnsssseans 3.0
Source Record FOrmatceeeeeeccssccsccscnssscnssnsees 4.0
CONSTANTS
Single-Word Integer Constant ...c..cceveesesccccecesss 5.0
Double-Word Integer Constantccceeescceocssssass 6.0
Octal Constantceeeeecesccccssscsoscssscsnsssncosse 1.0
Real or Floating-Point Constantcceceeeeeccecees 8.0
Hollerith--Left Justified ...ceeeeecesencscscecnssccsses 9.0
Hollerith——Left—Justified String FOrm ...ceeeeeeeeess 10.0
Hollerith--Right Justifiedcciieieececcecnnneees 11,0
VARIABLES
Simple Integer Variable ...cecceeececcscecscsscocnccessse 12.0
Simple Real Variable ..i.ceeececcescssncsssnccnsssses 13.0
KNAME> .eovses ceeceas Ceesessecscascsesscsscssccsssccasss 14.0
SUBSCRIPTING
Subscript EXpPresSiON ..c.ceeceescsccssccasssscssnssss 15,0
Subscripted Variable ...ccceeeeececcccscccscnccacesss 16,0
Type StatementsS ..eceeeeescsseececcscnsscssonssssses 16,0
Storage-Allocating DeclarativesS ..c.ceeeececcocceeasss 16.01
Subscripted Variable (Revisited)ccoceeeeeeeeses 16.06
<VAR> and <VARLIST> .ceeeeecccscccsccssoccccnssoancenes 17.0
Equivalence DeclarativVe .c.eceececesscsscsssessacssses 17.01
Type OTHER ArithmeticC ...ceveeceecceccsccccesenosaaes 18.0
DATA Statementceteeeecoseccscccoassacccnnsancsss 19.0
EXPRESSIONS
Arithmetic EXpressSion cececesescnsssncssess 20.0
Logical EXPreSSiON .eeeeeecececssscsscascosssccsncsocosss 21.0
Function Referenceceeeeececsccnccnces ceseceees 22.0
EXTERNAL Statement ceecessscssssesescaccas 22.0

STATEMENTS
Executable

Assignment

Statements © ® * 02 0000000000000 e0s00e0e00sea00

Statement @ ® eSS 0000000000000 0e000a0n

IF Statement R A I T T I

GO TO Statement L A R R I I I

DO Statement LS B B B I I I R O O N T T T S

Implied DO

A e O I I T T

ProgramModule Types'..I...........'.’..l

Executable Modules L

Non-executable Modules: Block Data and Define

Input Statements LA R R I R I B I S N TN T Y SO

BUFFER IN .

R EE R

READ (Unformatted) M I N I N R R R E S
READ (Formatted) L A A I I I I I

Format Specifier NOteS «oeeecoteeereeseeneeneeneenennn

nEw.d Input
nFw.d Input
niw Input .
nOw Input .

o.oc'c-ct--louo.‘oo.c-.a.‘.o.uc...a-.o.oo

n.ooooo.oan.c.o'-o.oo-ao-ut-...o.o.o-...t

--o-oo--ouoo.-ooOI.ooc..o.o-.o-o.co.-o.-co

nAw Input (Alphanumeric INPUL) cveeeeeennnnrennneens.

nRw Input (Alphanumeric Right Justified) eeeeeesee...

nX Input ..
/ on Input
Tp Input ..
wHs and 's'

o-'oto'.ooooo.-.-.oon.oo.-c..o-.oa.n.c-ooo
..oo-acno--oc-co.oo--ocv-oo.oocoo-o.noon..

Input L I I I T

Output Statements S T T T

BUFFER OUT

WRITE (Unformatted) A B I
WRITE (Formatted) A I I I T

nEw.d Output R A I I T T T

an.d Output .'noocooot'oooo..-.ouoo....ooo.-.o.o..-.

nIw Output
nOw Output
nAw Output
nRw Output

....o.....l.'....l..QO......Q..OQ.I'.Q.C..

nocoo.o.o-.o-oocc-oo.ont..oooo-a‘ocooo-too

o-.-..ouon-o--‘u.o-oooc.-couo-o'ooo...oni.

l..'..t....0.l-l..'.‘.l.l..".'.ll...r!e'l

23.0

23.0

24.0

25.0

26.0

27.0

28.0

28.0

28.04
29.0

29.01
29.03
29.04
29.05
29.06
29.08
29.09
29.10
29.11
29.12
29.13
29.13
29.14
29.14
30.0

30.01
30.02
30.03
30.04
30.06
30.07
30.08
30.09
30.10

nX Output
/ on Output
Tp Output
wHs and 's' Output

® © 6 52 0520850050000 200000906000 000006000608s00e0s0000

© 2 0 002020200000 000000060000000ee0000800006000

® © 020 00 % 000000020000 s e0 0000 e

EnCOde ® % 5 5 5 0006000085905 00¢00600900000000006060°0000000060e0060000a0

DeCOde © 8 2 02 0500000000000 00000 0s 0000 e 000 te0000006800

Miscellaneous I/0 Commands

Variable Format

Appendix
Appendix
Appendix
Appendix

T
penaix

=W

[§;}

Compiler Call Parameters

® o 00 0 0005 00 0008000

Deck Structuresccviveeevennnnenn.

Index of Metalanguage TErmS

Standard FORTRAN Library Functions and
SUDroUtinesS ...iiiiinneenenennnennennannns

Printer Carriage Control

35.0
36.0
37.0

38.0
39.0

0S-3 FORTRAN REFERENCE MANUAL

Introduction

FORTRAN is probably the most widely used scientific program-
ming language in the United States. However, both the
definition of the language and the method of implementation
vary from one installation to another.

This manual describes 0S-3 FORTRAN, version 3.1. Since
05-3 is a unique operating system, this manual will attempt
to provide a complete technical description of the 0S-3
FORTRAN impiementation, with special emphasis on those
features which are non-ASA standard or are not in agreement
with CONTROL DATA's definitions.

The User's Virtual Machine

Each user running on the CDC 3300 under Oregon State's Open
Shop Operating System (0S-3) has a "virtual" (or simulated)
computer with 65536 24-bit words of core storage. Half

of this, or 32K, is accessible to the FORTRAN user. The
remaining half may be accessed via subprograms written in
assembly language.

The following registers in the user's virtual machine are used
by FORTRAN object programs:

A - accumulator

Q - multiplier/quotient
EU - extension (upper)

EL - extension (lower)
and Register Files 40-77.

Each of these is 24 bits long.

In additicn, there are three 15-bit index registers designated
Bl1, B2, B3.

Each virtual machine may have a number of logical I/0O units

(LUNs) "equipped" at any one time. FORTRAN programs may
access LUNS 1 through 63.

NOTATION

The following meta-language symbols will be used to describe

FORTRAN syntax:

<X> -

a syntactic entity called X as opposed to the

letter X itself.

- separates

elements; means "or," so <X>|Yy

means either a syntactic entity called X
or else the letter Y.

is inside

means zero Oor more occurrences of whatever

the braces.

- m to n occurrences of whatever is inside

the braces.

<DIGIT> =
<SIGN> = +|-
<INT CONST> =

[33/4] = 9

Examples:

The format of each section

TITLE -

(Description -

Source Examples -
Source ¢

Examples in Context -

{ General Syntax -

- smallest integer > x.

0]1|2]3|4]5]|6]7]|8]9

{<sign>}3<DIGIT>{<DIGIT>}g

to follow is:
Meta-language name for entity being
defined.

An attempt to say in English what
the entity is syntactically and what

it means semantically.

Of only the syntactic entity des-
cribed above.

May use well-known, but not yet

defined, constructions.

Meta-language definition of the
entity.

2.0

Object Form - A description or depiction of
the object (machine-level) form

Object of the entity.

Examples - The same examples as given above
in the 'Source Examples' section

now in their object form.

CHARACTER SET <CHARA>

Description

The following table gives the characters of the FORTRAN
character set.

Symbol 6-bit BCD ASCII
A-I 21-31 301-311
<LTR>{ J-R 41-51 312-322
S-2 62-71 323-332
blank 60 240
= 13 275
+ 20 253
- 4 255
* 54 252
/ 61 257
(74 250
) 34 251
' 73 254
33 256
$ 53 244
<DIGIT> 0-9 00-11 260-271

3.0

SOURCE RECORD FORMAT

Description

If position one of a FORTRAN source record contains the
letter C, the record is a comment and is copied onto the
list unit (if one exists) and is otherwise ignored by the
compiler.

For non-comment records, positions one to five contain the
statement number, <STNUM>, if one is used. Only FORMAT and
executable statements may be numbered, and only those refer-
enced by other statements should be. Each statement number
must be an integer in the range 1 to 32767 and may occur
anywhere in positions one to five. (The word CEJECT in
positions one to six will begin a new page of listing, if

one is being generated.)

Position six or a FORTRAN source record is special. If this
position is not blank or zero, the physical record is taken

to be a logical continuation of its predecessor.

The body of each FORTRAN statement must occur between posi-
tions 7 and 72. Positions 73 through 80 are ignored and may
be used for sequence numbering, etc. Records may not be
longer than 80 characters. Remember this is true on con-
tinuation cards too.

SINGLE-WORD INTEGER CONSTANT <SWIC>

Description

A standard precision (24-bit) integer constant is specified
by an optional sign (+ or -) followed by one to seven decimal
digits. The number must be less than 8,388,608 in absolute
value.

Source Examples

1 -1 -1234567

Examples in Context

I=1 J=J+1

General Syntax

(+|-}5{<p16TT>}] where <DIGIT> = 0|1]2|3]4|5]6]7]8|9]

Object Form

23 0
s| VALUE

This depicts a single 24-bit word of CDC 3300 core storage.
Twenty-three bits are available to represent the value of

the integer constant, so the range is

~(2%3-1) = -8,388,607 to +(223-1) = 8,388,607.

The sign bit (bit 23) is 0 if the number is positive; one if
the number is negative. Negative numbers are represented in
one's complement form.

Examples

1 -1 -1234567
00000001 77777776 73224570

(Each octal digit
represents three
bits.)

5.0

DOUBLE-WORD INTEGER CONSTANT

Description

A double-word integer constant is specified by an optional
sign (+ or -) followed by 1 to 15 decimal digits and the
letter D.

Source Examples

1D -1D -1234567890D

Examples in Context

A=1D

General Syntax

{+|—}é{<DIGIT>}iSD

Object Form

2322 0 23 0
S VAL| |UE

Two consecutive words of core storage are used; 47 bits are

available to represent the value of the constant, so the

range is
~2%7-1) = -140,737,488,355,327 to
+(2%7-1) = 140,737,488,355,327

NOTE: In ANSI FORTRAN, the "D" suffix means double-precision
real (floating point). Beware when converting programs from

other installations.

ExamEles

00000000 00000001 1D

77777777

77777776

77777666

32376455

6.01

-1D

-1234567890D

OCTAL CONSTANT

Description

An octal constant is specified by an optional sign (+ or =)
followed by 1 to 16 octal digits and the letter B. From one
to eight source digits produce a single-word octal constant
in the machine. Nine to sixteen digits produce a double-word
octal constant. .

Source Examples

1B 10B 77B -11B -77777777B
1122334455667700B

Examples in Context

MASK=70707070B
IF (ICHAR.EQ.60B) GO TO 50

General Syntax

{+|0}é{<OCT DIG>}i6B where <OCT DIG> = 0|1]2]|3|4]|5]6]7

Object Form

s| VALUE or s VAL| |UE
Examples

00000001 1B

00000010 10B

00000077 77B

77777766 -11B

00000000

-77777777B

11223344

55667700

7.

01

1122334455667700B

REAL OR FLOATING-POINT CONSTANT <FPC>

Description

There are several source forms:

1) An optional sign, followed by a string of at most

11 decimal digits. This string must include a decimal

point (period character, "."), or

2) the string of digits may be followed by the letter E,

with the decimal point omitted, or

3) the decimal point may be included and the string

followed by an "E" and an optionally signed integer

exponent in the range -308 to +308.

Source Examples

1E 1.0 1.0E6 1.0E-100

Examples in Context

X=1.0 Y=X+1.0 IF (X+.6.EQ.5.5)

General Syntax

{+|-}é{<DIGIT>}ilE or

11-N

1 N
{+|—}0{<DIGIT>}X {<DIGIT>}y

{E<SWIC>}é

Y=1.E-1

where X+Y>1 and the <SWIC> is an optionally signed integer

exponent in the range -308 to +308.

Object Form

23 22 12 11 0 23 0

Exponent
bias +2000g

s FRA CTION

Examples

0f 2001 | 4000 00000000
0} 2001 | 4000 00000000
0] 2024 | 7502 ZOOOQOOO
0| 1263 [6777 45671110

1E

1.0E6

1.0E-100

HOLLERITH--LEFT JUSTIFIED

Description

From one to eight BCD characters can be specified as a con-
stant by preceding the string of characters by an integer from
one to eight and the letter H. Up to four characters are
stored in one computer word; five to eight require two words.
Unspecified character positions in the right end of the word
are filled with blanks (60B).

Source Examples

3HTWO 4HFORE SHTHREE

Examples in Context

DATE=6HAUG 39 IF (ZNAME.EQ.5HSMITH) GO TO 50 ITEM=3HBAD

General Syntax

nH{<CHARA>}§ where n is an integer 1|2|3|4]|5|6]|7]|8
specifying the length of the character string.

Object Form

Clic2|c3|c4

Cl|cz2|Cc3|c4 C5|C6|C7|C8

Examples
63]66|461}60 261465125 (NOTE: CDC 3300
BCD codes, blank
T W O A F O R E filled on right.)

63130)51]25 25/60(60{60

T H R E E A A A

HOLLERITH--LEFT-JUSTIFIED STRING FORM

Description

Any string of legal FORTRAN characters (see page 3.0) enclocsed

in single quotes. (Single quotes cannot be used inside the
string.)

Source Example

'THIS IS A STRING.'

Object Form

The characters are stored in BCD code, four per computer word

in [(length of string)/4] consecutive words of core storage.

ExamEle
63} 30} 311 62]160|31}62{60]121(60]62]63}}51{31145 (27 33|60}60]60
T H I S A I S A A A s T R I N G . A A A

10.0

HOLLERITH--RIGHT JUSTIFIED

Description

From one to eight BCD characters can be specified as a constant
by preceding the string of characters by an integer from one

tc eight and the letter R. Up to four characters are stored

in one computer word; five to eight characters require two
words. Unspecified character positions in the left end of the
word are filled with zeros (00B).

Source Examples

3RTWO 4RFORE SRTHREE

Examples in Context

IF (KODE.EQ.1lRA) GO TO 50 JX=2R17

General Syntax

nR{<CHARA>}§ where n is an integer 1|2|3|4|5|6|7|8 specifying
the length of the character string.

Object Form

cl|cz2ic3|c4

Cljcz2jc3j|c4 C5|C6 |C7!C8

Examgles
00[63(|66}{41 261465125
0O T W O F O R E

0o {o0(00|63 30151125}25

0o 0 o0 T H R E E

NOTE: The various types of constants defined on pages 5.0
though 11.0 will be referred to as <CONST>'s.

11.0

SIMPLE INTEGER VARIABLE <SIV>

Description

A single word of core storage can be given a name and then be
used to store either an integer or from one to four BCD charac-
ters. The name consists of from one to eight non-blank alpha-
numeric characters--the first chosen from I,J,K,L,M, or N.
(This can be overridden by a TYPE statement--see page 16.0.)
The name actually refers to the address of the word of core
storage and not to the data there.

Source Examples

I KREAL MOO
Examples in Context
J=I+1 DO 20 K=1,5 NINE=8

General Syntax

I|J|KIL|M|N{<LTR>[<DIGIT>}3

Object Form

23 0

s| VALUE (See page 5.0.)

ExamEles
23 0 23 0 23 0

s| VALUE s| VALUE Cljcz|c3{c4

loc 73077==1 loc 65002«» KREAL loc 70633=M0OO,
storing characters

(The address values used here were chosen arbitrarily.)

12.0

SIMPLE REAL VARIABLE <SRV>

Description

Two consecutive words of core storage can be given a name and
then be used to store either a finite representation for a
real number or from one to eight BCD characters. The name
consists of from one to eight non-blank alphanumeric charac-
ters--the first other than I,J,Xk,L,M, or N. (This can be
overriden by a TYPE statement--see page 16.0.) The name
actually refers to the address of the first of the two words
of core storage, not to the data there.

Source Examples

A OLDVALUE XBEFORE

Examples in Context

XP1=X+1. IF (TEST.LE.0.5) GO TO 751
XCOORD=XCOORD+STEP

General Syntax

alB|c| ...H|0|P|...le{<LTR>|<DIGIT>}g

Object Form

23 22 1211 0 23 0

Ex
s +2§008FRA CTION

Thus "A" might be a symbolic name for locations 73101 and
73102, "OLDVALUE" for 65264 and 65265.

Examples

23 22 1211 0 23 0

S EXP FRA CTION

locs 73077 and 73100===>1

13.0

23 22 12 11 0 23 0

s| EXP FRA CTION

locs 65002 and 65003<==>QLDVALUE

Cl |C2 | C3|C4 C5|C6 |C7 |C8

locs 70633 and 70634<=>XBEFORE,
storing characters

13.01

<NAME>

NOTE: Together <SIV> and <SRV> comprise the syntactic class
<LTR>{<LTR>]<DIGIT>}3
which we will henceforth call <NAME>.

However, elements of <NAME> are used to name entities which
are not variables. For example, main programs, functions,
subroutines, labeled common blocks, type-other variables,
BLOCK DATA and INCLUDE modules all use this syntactic

construction. The semantic distinction is clear to FORTRAN
from additional context.

14.0

SUBSCRIPT EXPRESSION <SSE>

Description

An expression used as a subscript must be either (1) a single-
word integer constant, (2) a simple integer variable, perhaps
multiplied by an integer constant, or {3) an expression as
described in (2),; plus or minus another single-word integer
constant.

Source Examples

a) 6 b) 6*J c) 7*J+1 d) 6*J-3
e) J+1 f) J-1

Examples in Context

A(6)=5. X(6*%J,7*J+1)=SQRT (2.0)

General Syntax

<SWIC>|{<SWIC>*}5 <sxv>{{+l—}<sw1c>}é

NOTE: FORTRAN does not permit negative or zero subscripts.

The <SWIC>s in these expressions must be non-negative.

Object Form

l) For subscripts expressed as constants, a "bias" or address
adjustment is computed at compile time and added to the
base address of the variable being subscripted.

2) For an expression involving a variable, a subroutine
may be included within the object program to compute the
appropriate address adjustment, given the current value
of the variable.

The subroutine for a particular variable used in a subscript

exXpression is re-executed each time the value of the variable

15.0

is changed within that program. BEWARE CHANGING INDEX VARI-
ABLES IN SUBPROGRAMS!

Examples

a)

b)

c)

For the constant <SSE> of six, an address adjustment
value of +5 is computed at compile time. (The sixth
element has address = base +5.)

For 6*J a subroutine (to be called each time the value

of J is changed in the running object program) is included,
and the subroutine's output is put in an auxiliary

integer variable. This value is loaded into one of the
three index registers when reference is made to an

element of the array.

For 7*J+1 another internal variable is used at run time
to store 7*J. A compile-time address adjustment is
contributed by the additive constant.

15.01

SUBSCRIPTED VARIABLE <SUBVAR>

Description

A single name can have the effect of referring to the locations
of more than one value. The name then refers to the first
word of a block of contiguous core storage locations; sub-
script expressions are used to select a particular element of
the block. The block or "array" may be thought of as having
one, two, or three dimensions.b

The total size of the block of core storage to be reserved
for the array must be declared before the first executable
statement by one or more of the following:

Declaratives

32767 words)

DIMENSION (max size
COMMON |
COMMON/<NAME> /
CHARACTER (max size
INTEGER

Type Statements REAL

‘ INTEGER2

TYPE <NAME> (<SWIC>)

16384 characters)

Declarative Source Examples

i) DIMENSION M(2,3,5),A(2,3,5)
ii) COMMON M(2,3,5),A(2,3,5)
iii) COMMON/EXPL/ M(2,3,5),A(2,3,5)
iv) CHARACTER M(2,3,5),A(2,3,5)
v) REAL M(2,3,5),A(2,3,5)
vi) INTEGER M(2,3,5),A(2,3,5)
vii) INTEGER2 M(2,3,5),A(2,3,5)

16.0

Declarative General Syntax

<DECL><DSUBVAR> {,<DSUBVAR>}

where <DECL> = DIMENSION|COMMON | COMMON/<NAME>/|CHARACTER |

INTEGER]REALIINTEGER2|DOUBLE PRECISION |TYPE
<OTHER> (<SWIC>)

and <DSUBVAR> = <NAME> (<SWIC>{,<SWIC>}§)

The integer constants, <SWIC>s, must all be unsigned, and
their product times number of words per variable must be at
most 32768.

Object Form

i) DIMENSION. An array which is specified in a DIMENSION
statement, and not further specified in a COMMON state-
ment, is local to the program in which it is declared
and can be referenced by other subprograms only if the

name (location) is passed as a parameter in the calling
sequence.

For DIMENSION M(2,3,5),A(2,3,5) the following storage
allocation results:

Program 1

Simple Variables
A } 60 words (74g)
M } 30 words (363)
Format Strings

Program 2

NOTE: The arrays
. A and M are "local"
° to PROGRAM1.

Program K

Simple Variablesd

Local Arrays

Format Strings

HIGHMEM

00020 = LOWMEM
16.01

ii)

If the name of a variable (subscripted or simple) is
mentioned in a COMMON or COMMON/<NAME>/ statement, then
that variable is located in numbered or labeled COMMON,
respectively. The term "numbered COMMON" means that
elements have actual run-time addresses computable from
their relative position in the list of names used in
the COMMON statement.

In particular, the first location in numbered COMMON
has absolute machine address = 20g.

77777
Program 1
Simple Variables
Local Arrays
Format Strings
Program 2
Program K
Simple Variables
Local Arrays
Format Strings HIGHMEM
00152 = LOWMEM
A
00056
M
00020

16.02

iii)

0S-3 FORTRAN permits the use of labeled common blocks.
There may be an arbitrary number of these used by a
system of subprograms. However, to avoid confusing the
loader, the names of all labeled common blocks and sub-
programs must be distinct. Labeled common blocks will
be preset with data as the subprograms are loaded if
appropriate DATA statements are wused in the source
text. (See page 19.0.)

Program 1

Simple Variables

Local Arrays

Format Strings

Program 2

Program K

Simple Variables

Local Arrays

Format Strings

} 60 words

} 30 words
HIGHMEM

EXPL

=

00020 = LOWMEM

16.03

Some rules of thumb regarding labeled common include:

1) Variables appear in core in the order they were
listed in the COMMON statement. (This is not generally
true for DIMENSIONed variables.)

2) The first subprogram loaded that uses a particular
labeled common block determines its length. No

subsequently loaded program can change the length
of the block.

iv) Each word of a simple or subscripted variable declared in a
CHARACTER statement is subdivided into four six-bit
fields, each of which is addressable by the FORTRAN
program. Thus, M(1,2,3) in the example below is the
fifteenth character in the array and occurs as the third

4~ < aa ~ mrmra e eemand o £
ield in the fourth word of M.

Program 1

Simple Variables

A } 8 words

M } 8 words

Format Strings

Program 2

Program K

Simple Variables

Local Arrays

Format Strings
2 HIGHMEM

{

00020 = LOWMEM

16.04

v) Same as i) except M and A are each 60 words long.
vi) Same as i) except M and A are each 30 words long.

vii) Same as v), and the compiler generates double precision
integer arithmetic instructions for calculations
involving elements of M or A.

16.05

SUBSCRIPTED VARIABLE
(Revisited)

General Syntax

<SUBVAR> = <NAME>(<SSE>{,<SSE>}§)

Source Examples

i) M(1), M(2), A(1), A(2)
ii) M(1,1,1), A(1,1,1)
iii) M(1,2,3), A(1,2,3)

iv) M(I+1,J,2%K+3)

v) A(I+1,J,2*K+3)

Object Form

used in the <DECL> which established its dimensions, then the
missing <SSE>s are assumed to be one. Thus M(1l) and M(1,1,1)
are equivalent; M(2) is equivalent to M(2,1,1).

For an <SSE> that is a constant, the address is computed at
compile time to be

ADDRESS OF FIRST ELEMENT - 1* (WORDS PER ELEMENT) + <SSE>

For an integer or character array, an element referenced by
a single <SSE> of the form

<NAME>{{<+|—>}<SWIC>}%

is accessed at run time by loading the value of the <SIV>
into an index register. The + or - <SWIC> portion is handled
as an address adjustment, computed at compile time. Since
index registers are 15 bits long, the maximum size of an

15 32768 words. NOTE: Due to the design of the
3300, character arrays should be no longer than 16384.

array is 2

Reference, by means of a <SSE> involving a variable, to an

element in an array, where the single item size is not one

16.06

word or one character, requires that the value of the variable

be multiplied by the single item size before the index regis-
ter is loaded.

For an array M with dimensions dl, d2, and d3, reference to

M(I,J,K) is accomplished by computing

(I-1) + (J-l)*dl + (K-l)*dl*d

2

and storing this value in a memory location. The component

of this sum for I is changed only when I is changed--similarly
for J and K.

i)

ii)

iii)

iv)

a. LDA

STA M
b. LDA
STA M+l NOTE: LACH and SACH instructions
c. LDAQ N are used if M is type character.
STAQ
d. LDAQ
STAG A+2

Same as i) a and i) c.

Assuming M and A are dimensioned (2,3,5), we have

a. LDA

TR M+14 NOTE: 14=(1-1)+(2-1)*2+(3-1)*%2+*3
b. LDAQ 1A
STag A+28 28=14*SINGLE ITEM SIZE

Three run-time subroutines will have computed I+J*dl +
(Z*K)*dl*d2 and stored this in a memory location with a
name of the form IFN.xx (visible only on assembly

language listing--A output).

The compile-time address adjustment would be (1-1) +
(0-1)*dl + (3—l)*d1*d
element of the array is thus accomplished by

2 = +10. Access to the correct

LDI IFN.xXX, b
LDA
STA M+10, b

16.07

v)

LDI IFN.yy, b'

LDAQ

'
STAQ A+20, b

where CONTENTS (IFN.yy)=2*CONTENTS (IFN.XX) .

Again note the use of the 15-bit index registers to realize
the displacement portion of a subscripted memory reference.
Thus, at most 32768 words can be addressed in this way.

16.08

<VAR> AND <VARLIST>

NOTE: The syntactic classes <SUBVAR>, <SIV>, and <SRV>
together comprise the class <VAR>.

A string of <VAR>s, separated by commas, will be denoted by
<VARLIST>. That is

<VAR> := <SIV>|<SRV>|<SUBVAR>
and

<VARLIST> := <VAR>{,<VAR>}

17.0

EQUIVALENCE DECLARATIVE

Description

<NAME>s equated in an EQUIVALENCE statement all refer to the
same physical core location at run time. A particularly
useful application of this technique on the 3300 is to
EQUIVALENCE a CHARACTER array to a word array.

Source Examples

EQUIVALENCE (ZIP,ZAP)

_ Examples in Context

DIMENSION IWORDS (200) , WORDS (100)
CHARACTER CHARS (800)

COMMON CHARS

EQUIVALENCE (IWORDS, WORDS, CHARS)

General Syntax

EQUIVALENCE (<VARLIST>) {, (<VARLIST>)}

Object Form

EQUIVALENCE is a compiler control command, producing nothing
overt in the object code. During compilation, all the
symbols included between pairs of parentheses are made

to refer to the same run-time core address, if possible.
Errors which make this impossible include:

1) EQUIVALENCEing two elements already in COMMON.

2) Extending a COMMON block backwards beyond its
beginning. A COMMON block may be extended forward

past its present end, however.

3) "Rearranging COMMON."

17.01

The following example violates all of these rules:

PROGRAM BOMB

COMMON X(10), JAKEX(20), Q
EQUIVALENCE (JAKEX(10),X) violates 1 and 2
EQUIVALENCE (Q,R), (R,X) violates 3

The diagnostic "EQUIVALENCE RELATION ERROR" would be issued
for both statements.

For the "IN CONTEXT" example given above, IWORDS (1)=WORDS(l)=
CHARS (1) through CHARS(4)=physical core address 208, since
CHARS brings all these arrays into numbered COMMON. In
general, WORDS (K)=IWORDS (2*K-1)=CHARS (8*K-7), so the same
data can be accessed one or two words or one character at

a time.

17.02

TYPE OTHER ARITHMETIC

Description

Type OTHER arithmetic allows the user to write his own arith-
metic package and interface it with FORTRAN.

The declaration is:
TYPE <NAME> (<SWIC>) <VARLIST>

where <NAME> is the name of the type OTHER arithmetic, and
the <SWIC> gives the number of words per variable.

Examples

TYPE INTERVAL (4) A,ZOT,BUG(12)
Note that BUG occupies 48 words of storage.

TYPE KLUDGE (8) QQQ,VVV,GROSS

NOTE: Instead of using the AQ and other hardware registers,
the compiler requires the user to establish a type OTHER
accumulator in core. Operations such as load, store, add,
multiply, etc. are compiled as subroutine calls to user-
supplied subprograms.

However, conditional statements (IFs) use the Machine-A
register for tests; so after each operation (including load
and store), the hardware-A register must indicate if the value
of the type OTHER accumulator is zero (=0), negative (<0),

or positive (>0). Remember that the result of arithmetic
operations must never be -0. One way of accomplishing this

is to leave 0, -1, or 1 in the A register for testing.

General Syntax

TYPE <NAME> (<SWIC>) <VARLIST>

18.0

Object Form

The compiler generates the following code:

RTJ NN.opXY (user-supplied subroutine)

77 Location of operand (may be index modified
for array).

RETURN here with condition code in A register
(user's responsibility).

X is the mode of the operand and Y is the mode of the
accumulator. Example: Put a real variable into the type
OTHER accumulator (type KLUDGE arithmetic).

RTJ KL.LDRO
77 Address of real value to be loaded.

RETURN here with value in type OTHER accumulator,
condition code in hardware-A register.

Type specifiers are:

R real

I integer

J integer2
X character

The OP portion of the RTJ address field is:

LD for load

LN for load negative
ST for store

AD for add

SB for subtract

MU for multiply

bV for divide

EX for exponentiate
CM for complement

18.01

DATA STATEMENT

Description

Local program variables and variables in labeled common may
be preset at load time if a DATA statement is used in the
source program. The DATA statement does not generate
executable instructions in the object program. Elements
which are preset in this way may be changed by executed
instructions in the running object program, but a DATA
statement cannot be "re-performed." Like all declaratives,
DATA statements must occur in the source program before

the first executable statement.

NOTE: O0S-3 FORTRAN DATA statements are very non-ASA standard.
Bewarel

Source Examples

i) DATA (I=2), (X=3), (¥y=4.0), (J=5.0)

ii) DATA (A(1,1)=1.0), (a(2,2)=1.0),
Assume A = =
dimensioned (A(1,2)=0.0), (A(2,1)=0.0)

2 x 2 iii) bpaTa (((a(x,J),I1=1,2),J=1,2)=1.0,
0.0, 0.0, 1.0)

iv) DATA (a=1.0, 0.0, 0.0, 1.0)

Then ii), iii), and iv) are equivalent; each sets A(l,l)=
A(2,2)=1.0 and A(1,2)=A(2,1)=0.0, so that A is a 2 x 2
identity matrix.

General Syntax

DATA (<ASGN>) {, (<ASGN>)}

where each <ASGN> is an assignment statement of the form
<WAS> = <REPCON>. A replicated constant, <REPCON>, has the
form <CONST>|<SWIC>(<CONST>). The word address specifier,
<WAS>, has the form <VAR>{<IMPDO>} with the implied DO's

19.0

nested at most three deep. (See page 27.0 for a discussion
of the implied DO's.) NOTE: Here, the increment for each
DO must be left unspecified (to default to one).

Object Form

The <WAS> specifies one or more word addresses. Each <CONST>
is converted to internal form, and the compiler generates
special records in the relocatable object deck so that when
the deck is loaded, the area of core beginning at the
specified word address is initially loaded with the con-
verted constants.

If the mode of the <VAR> is integer or character, the compiler
increments its storage allocation counter by one word for

each constant to be stored. For real variables, the counter
is incremented by two.

NOTE: The compiler does not compute the amount of storage
to allocate based on the length of the constant to be stored.

Constants are packed according to their mode--not according
to the mode of the variable. Thus DATA (A=2) results in

the left word of A being loaded with 000000028. The storage
allocation counter in the compiler is advanced by two, so the
second word of A is not changed.

NOTE: Do not initialize variable in numbered (unlabeled)
common, because if an overlay is created, the numbered common
area is not written out.

Examples

i) Variables I and Y will be properly initialized. X
will contain 00000003, 000000008, and J will contain
the left half of the representation for floating-
point five, i.e., 200350008.

19.01

ii) Works, provided A has been dimensioned at least 2 x 2.
iii) Equivalent to ii).

iv) The compiler does not complain if A is not dimensioned,
but only two words of core are allocated instead of
the eight that are needed.

19.02

ARITHMETIC EXPRESSION <AEX>

Description

The following are arithmetic expressions:

1) an arithmetic or right-justified numeric
character constant
<OPERAND> 2) a variable, simple or subscripted
3) a function reference
4) one of these (1-3), followed by an arithmetic

operation symbol
{ + - *# / ** } = <OPERATOR>

followed by an arithmetic expression
5) an arithmetic expression inside parentheses
6) an arithmetic expression preceded by a unary

minus (-)

The precedence of the arithmetic operations is

highest * % exponentiation
- unary minus
* and / multiplication and division

+ and - addition and subtraction

Parentheses can be used to override these precedence rules.

The value of the expression will be of the same type as the

highest operand type occurring. The order is

highest NON-STANDARD TYPE <OTHER>
REAL
INTEGER2
INTEGER

lowest CHARACTER

Source Examples

i) 1
ii) 2.0
20.0

iii) X
iv) SQRT (X + Y) .
v) A+ B - C * C/E ** ABS(F)
vi) -A + B - C * D/E ** ABS(F)
vii) (A + B~-C) * D/E ** ABS(F)
viii) -(A + B - C) * D/E ** ABS (F)

Examples in Context

DISCRIM = SQRT (B**2 -~ 4.,*A*C) IF (B*B - 4.*A*C) 10, 20, 30

General Syntax

{+|—}é<OPERAND>{<OPERATOR><AEX>}l(<AEX>)

Object Form

An arithmetic expression which includes one or more operator
symbols will be compiled into a series of executable machine
instructions. A single constant or variable is represented
as shown on pages 5.0 and 12.0.

Exalees

i) An integer constant--see page 5.0.
ii) A real constant--see page 8.0.
iii) A simple real variable--see page 13.0.

iv) LDAQ X

FAD Y
STAQ TEMP

RTJ SQRT
77 TEMP

v) LCAQ C -C

FMU D TIMES D
STAQ TEMP1 IN TEMP1
RTJ ABS
77 F ABS (F)

© STAQ TEMP2 IN TEMP2
"LDAQ E

RTJ POWER E**ABS(F)
77 TEMP2
STAQ TEMP2 IN TEMP2

20.01

vi)

vii)

viii)

LDAQ TEMP1

FDV TEMP2 DO THE DIVISION
FAD B ADD B
FAD A ADD A

Same as v) except final instruction becomes FSB A.

In both cases note the higher precedence of ** over /
and the call upon a library subroutine to perform

exponentiation to a real power.

LDAQ A

FAD B

FSB C A+B-C
FMU D TIMES D
STAQ TEMP1 IN TEMP1
RTJ ABS

77 F ABS (F)
STAQ | TEMP2 IN TEMP2
LDAQ E

RTJ POWER

77 TEMP2 E**ABS (F)
STAQ TEMP2 IN TEMP2
LDAQ TEMP1

FDV TEMP2

Note that the parentheses override the precedence
conventions, making (A+B-C) a subexpression to be
evaluated before multiplication by D.

Same as vii) plus two additional instructions to
complement result. (Arithmetic is one's complement, so
the negative of a number is simply its bit-wise comple-
ment.) ‘

20.02

LOGICAL EXPRESSION <LEX>

Description

A logical expression is one of the following:

1) a single arithmetic expression

2) two arithmetic expressions "joined" by one of six relational
operators: 1{.EQ. .NE. .LT. .GT. .LE. .GE.} = <RELOP>

3) the unary logical operator .NOT. followed by a logical -
expression

4) two logical expressions joined by either of the logical
operators .AND. or .OR.

The precedence hierarchy for all FORTRAN operators is:

highest function reference
unary minus
* and /
+ and -

. .BEQ. .NE. .LT. .GT. .LE. .GE.

.NOT.
.AND.

lowest .OR.

The logical constants .TRUE. and .FALSE. are not recognized

in source statements. Use 1 and 0 instead.

Source Examples

i) P.OR..NOT.Q.AND.R
ii) P.LE.5.0R.X-Y.GT.A.AND..NOT.Q
iii) A.EQ.B.OR..NOT.C.NE.D.AND.E.LT.F+G*H**ABS (X-Y)

Examples in Context

IF .(I.GT.5.0R.I.LE.O) STOP
Note that I.GT.5.0R..LE.O0 is not a <LEX>.

21.0

IF (I.EQ.9.0R.J.EQ.9) GO TO 5 IF (I.OR.J.EQ.9) GO TO 5
Note that these two are not equivalent.

General Syntax

<AEX>{<RELOP><AEX>}1 .NOT.<LEX>
0

<LEX>.AND.<LEX> | <LEX>.OR.<LEX>

Object Form

The CDC 3300 does not have a distinct representation for
logical values. Any single-word operand appearing in a
source statement will be handled properly at run time;
multiple-word operands will not.

The logical value FALSE is represented internally by zero (all
24 bits = OFF) or -0 (all bits = ON). Anything else represents
TRUE.

Examgles

i) P.OR..NOT.Q.AND.R
LDAQ P
AZJ,NE SUCCESS
LDAQ Q
AZJ,NE FAIL
LDAQ R
AZJ,NE SUCCESS

FATL

Note that the .NOT. operates only on Q. All operands
must be one word long or the AZJ,NE instructions
may not work properly.

ii) P.LE.5.0R.X-Y.GT.A.AND. .NOT.Q

LDAQ P

RTJ ADDMIXED
77 ADDR OF 5
AZJ,GE SUCCESS
LDAQ X

FSB Y
COMPLEMENT

FAD A

21.01

AZJ,GE FAIL

LDAQ Q

AZJ,EQ SUCCESS
FAIL ~———

iii) A.EQ.B.OR.NOT.C.NE.D.AND.E.LT.F+G*H**ABS (X-Y)

LDAQ A .
FSB B
AZJ,EQ SUCCESS
LDAQ C

FSB D
AZJ,NE FAIL
LDAQ X

FSB Y

STAQ TEMP1
RTJ ABS

77 TEMP1
STAQ TEMP1
LDAQ H

RTJ POWER
77 TEMP1
FMU G

FAD F
COMPLEMENT

FAD E
AzJ,LT SUCCESS

FAIL ~~m

21.02

FUNCTION REFERENCE <FUNREF>

Description

A function subprogram returns a single value (real, integer,

or character) to the calling program. Thus the construction
<NAME>(<AP>{,<AP>}82)

really stands for a single value, and so can be used as an

operand in an arithmetic or logical expression.

The addresses of the actual parameters, <AP>s, are passed

by the calling program to the function subprogram. Thus the
subprogram may change the values in these locations. An
index variable changed in this way will not be updated in

the main program.

An actual parameter may be simple enough to fall within the
definition of a subscript expression (see page 15.0). In
this case, there is no syntactic difference between a
function reference and a subscripted variable. FORTRAN
assumes that X(I) occurring in an expression means "transfer
control to a subprogram (or entry point) called X, passing
the address of I as a parameter," unless X has been declared
to be a subscripted variable by one or more of the declara-
tives listed on page 16.0.

In general, actual parameters may be arithmetic expressions,

function references or subprogram names. Logical expressions
are not allowed. Subprogram names passed as parameters must

be declared "external" to the calling program by a statement

of the form

EXTERNAL <NAME>{,<NAME>}

so that the compiler knows they are not local variables.

22.0

Source Examples

SQRT (B*B-4*A*C) SMURD (ANGLE, COS)

Examples in Context

Z=SQRT (ABS (SMURD (X,SIN)))+1.55

Here ABS and SQRT are library subprograms which will be called
in order. SMURD is presumably a user-written function sub-
program (see page 28.0) which expects its second parameter

to be a subprogram name. Since there is no syntactic clue
that SIN is not a local variable, the name must be declared
EXTERNAL in the calling program, or it will be treated as

a local variable.

General Syntax

<NAME> (<AP>{ ,<AP>}32)

Object Form

Each function reference generates the following code in the

main program:

RTJ <NAME>

77 address of actual parameter 1

77 address of actual parameter 2

77 address of last actual parameter < 63

:‘See page 28.0 for details at the receiving end of the calling
sequence.

Examples
i) SQRT(B*B-4*A*C)

LDAQ B

FMU B

STAQ TEMP
ECHA -4

RTJ CONVERT

22.01

FMU A

FMU C

FAD TEMP
STAQ TEMP
RTJ SQRT
77 TEMP

ii) SMURD (ANGLE,COS)

RTJ SMURD
77 ANGLE
77 Cos

iii) Z = SQRT(ABS (SMURD (X,SIN)))+1.55

RTJ SMURD
77 X
77 SIN
STAQ TEMP
RTJ ABS
77 TEMP
STAQ TEMP
RTJ SORT
77 TEMP
FAD : ADDR OF 1.55
STAQ p/

22.02

EXECUTABLE STATEMENTS

Assignment

<ASSIGN>

Description

The value of a variable may be changed within a running object
program by a statement of the form

<VAR> = {<VAR> = } = <EXPR>

where <EXPR> is an arithmetic or logical expression. The
compiler handles mixed mode situations automatically.

Source Examples

i) X=Y=12 =1.0
ii) DISCRIM = SQRT (B*B-4*A*C)
iii) 2 = I+J

Q.AND.R.OR..NOT.S

iv) P

General Syntax

<VAR> = {<VAR> = } <EXPR> with <EXPR> = <AEX>|<LEX>

Object Form

The value of the expression is computed by in-line machine
instructions and calls to function subprograms, and then
stored in the location(s) named by the variable(s).

Examples

i) LDAQ Address of floating-point constant 1.0
STAQ Z :
STAQ Y
STAQ X

ii)

iii)

iv)

LDAQ
FMU
STAQ
ECHA
RTJ
FMU
FMU
FAD
STAQ
RTJ
77
STAQ

LbAa
ADA
RTJ
STAQ

TRYS

SUCCEED

CONVERT
4

LDAQ
AZJ,EQ
LDAQ
AZJ,NE
LDAQ
AZJ,EQ
ECHA
UJp
ECHA
RTJ
STAQ

23.01

B*B
IN TEMP

—4*A*C

PLUS B*B
IN TEMP

CALL SQRT
ASSIGN TO Z

Q

TRYS

R
SUCCEED
J
SUCCEED
0

*+2

1
CONVERT
P

IF STATEMENT

Description

The original FORTRAN II conditional statement is a three-way

branch of the form

The source statement for this has the form

IF (<AEX>) <STNUM>,<STNUM>,<STNUM>
4 4 4
<0 =0 >0

FORTRAN IV relaxed the restrictions on the predicate portion
of the IF statement considerably. The so-called "logical"
IF statements have the forms

IF (<LEX>) <STMT>
or IF (<LEX>) <STNUM>,<STNUM>
+ 4

True False

The <STMT> in the first form can be any executable statement
except a DO or another IF.

Source Examples

i) IF (X) 5,10,17
ii) IF (A.OR.B.AND.C) 40,50

General Syntax

i) IF (<LEX>) <STMT> or

ii) IF (<LEX>) <STNUM>,<STNUM>
4 4

True False or

24.0

iii) IF (<AEX>) <STNUM>,<STNUM>, <STNUM>
4 4 4
<0 =0 >0

In case i), the <STMT> cannot be a DO or another IF.

Object Form

For the arithmetic IF, the strategy is to compute the
value of the <AEX>, leaving this in the A or AQ registers.
Then AZJ instructions are used to test the sign bit of

the accumulator.

Thus i) yields LDAQ X
AZJ,EQ L.00010
AZJ,LT L.00005
UJp L.00017
The logical case is as follows:
ii) LDAQ A
AZJ,NE L.00040
LDAQ B
AZJ,EQ L.00050
LDAQ C
AZJ,NE L.00040
UJp L.00050

24.01

GO TO STATEMENT

Description

Execution of a FORTRAN program normally proceeds sequentially,
statement by statement. A statement of the form

GO TO <STNUM> or
GO TO (<STNUM>{,<STNUM>}), <AEX>

will cause a transfer of control to the statement having the

specified number. 1In the first case, the transfer is to

the single statement number given.

In the second case the following cccurs:

1)

2)

The arithmetic expression is evaluated and truncated

to

Control is transferred to the first statement num-
ber in the list if the integer is <1, to the
second statement number if it is 2, ..., to the
ith statement number if it is i,..., and to the
last statement number in the list (say the nth one)
if the integer is >n.

Source Examples

GO TO 100

GO TO (100,200,300,400,500),SIN(ALPHA)

Note that both of these will always transfer control to
statement 100.

General Syntax

GO TO <STNUM> | GO TO (<STNUMLIST>) ,<AEX>

where <STNUMLIST> := <STNUM>{,<STNUM>}

Object Form

For the s

compiled.

imple GO TO, an unconditional jump instruction is

For the "computed" variety, the <AEX> is evaluated
P Y

25.0

and truncated to an integer, left in A. This is decreased by
two, and an AZJ,LT to the first statement number follows,
then an AZJ,EQ to the second statement number, then another
decrease of two, etc. An unconditional jump to the last
statement number completes the code for the computed GO TO.

Examples
i) ugp L.00100

ii) RTJ SIN
77 ALPHA
RTJ TRUNCATE
77 TEMP
INA -2
AZJ,LT L.00100
AZJ,EQ L.00200
INA -2
AZJ,LT L.00300
AZJ,EQ L.00400
UJp L.00500

25.01

DO STATEMENT

Description

FORTRAN provides a single statement to accomplish the three
steps necessary to establish and control an iterative loop.
These are:

1) 1Initialize a counting variable to some specified

value.

2 and 3) Increment the counting variable by another specified
value (defaults to one), and test for terminating

condition. These may be done in either order.

The terminating condition for a DO loop is simply a check of
the current value of the counting variable against another

value specified in the source statement. The DO is "satis-

3 " 3 +haa 1Trrand
fied" if the current

terminating value. Note that in 0S-3 FORTRAN the body of

the loop is not performed before the first terminating test.

Source Examples

DO 10 KOUNTER=ISTART,IEND,ISTEP

Examples in Context

DO 777 INEVER=1,INEVER,INEVER
PRINT 20, INEVER

20 FORMAT (X,Il2)

777 CONTINUE

General Syntax

DO <STNUM> <SIV> = <IQ>,<IQ>{,<IQ>}%‘ Here
A <IQ>:= <SWIC><SIV>
Starting is an integer
Value guantity.

Termination
Test Value

Step (Defaults to one)

26.0

Object Form

OS-3 FORTRAN generates a very nonstandard code‘for DO loops.
In particular, the termination test is performed before

the first execution of the body of the loop; so if the ini-
tial value of the counting variable is greater than the
terminating value, the'loop is completely bypassed. This
is not the way IBM FORTRAN compilers handle DO statements.
Beware if converting.

In general, the code goes

LOAD STARTVAL

JUMP AROUNDLOOP
LOoP
AROUNDLOOP STA KOUNTER

SBA TERMVAL

AZJ,LT LOOP

AZJ,EQ LOOP
Example

ECHA 1

uJp AROUNDLOOP1
LOOP1 RTJ INIT-FORMATTED-OUTPUT

77 LUN

77 FORMAT~NUM

RTJ , OUTPUT-INTEGER

77 INEVER

RTJ END~FORMATTED-OUTPUT
L.C0777 LDA INEVER

ADA INEVER
AROUNDLOOP1 STA INEVER

SBA INEVER

AZJ,LT LOOP1

AZJ,EQ LOOP

Since INEVER-INEVER is always zero, the loop is "infinite."
It prints the integral powers of 2 from 1 to 8388607 and then
starts over again.

NOTE: Regular DO loops may be nested, at most, ten deep.

26.01

IMPLIED DO <IMPDO>

Description

A special form of the DO statement--the implied DO--may be
used in I/O and DATA statements to "drive" the statement
through a vector or array.

Source Examples

WRITE (61,100) (A(I),I=1,10)
READ (60,150) ((VALS(M,N),M=1,5),N=3,17,2)
DATA ((((XMTX(I,J,K),I=l,5),J=3,6),K=4,5)=40(l.0))

General Syntax

(<VARLIST>,<SIV>=<IQ>,<IQ>{,<IQ>})

4 4 + 4
Index Start Stop Step

Note that the entire construction is enclosed in parentheses

and that a comma occurs between the last <VAR> and the <SIV>.

Implied DO's can be nested. That is
(<IMPDO>,<SIV>=<IQ>,<IQ>{,<IQ>})

is also an <IMPDO>. 1In I/O statements, nest depth is limited
only by statement length limits.

Object Form

See page 26.0.

27.0

PROGRAM MODULE TYPES

EXECUTABLE MODULES

Description

Each collection of object program modules loaded for execu-
tion must contain exactly one primary transfer address and
may contain a secondary transfer address as well. Both of
these transfer points are provided by the FORTRAN compiler
when a "main program" is compiled. 1In the source language,
a main program is delimited by a PROGRAM <NAME> statement
at the beginning and an END statement, which is the final
record read by the compiler.

Two other types of FORTRAN source modules generate executable
code:

1) The statements FUNCTION <NAME>(<FP>{,<FP>}82)
and END are used to delimit a function sub-
program. The <NAME> of the function must be
assigned a value during execution of the sub-
program. This value is returned to the "calling"
program as the value of the function. The <NAME>
determines the mode of this value unless overridden
by a TYPE statement.

2) A subroutine subprogram is delimited by the
statements SUBROUTINE <NAME>{(<FP>{,<FP>}82)}%
and END. ©No value is attached to the
<NAME> of a subroutine subprogram.

Either type of subprogram should contain at least one RETURN
statement. Functions are invoked implicitly, as described
on page 22.0. Subroutines are explicitly CALLed by a
statement of the form

CALL <NAME>{ (<AP>{,<AP>}}

28.0

In both constructions, the <FP>s are formal parameters.
These are dummy <NAME>s which are used by the compiler only
to determine the mode of each argument to be passed to the
subprogram when it is activated by the calling program.
Vector and array parameters must be dimensioned locally
within the subprogram: The subprogram will compute sub-
script values based upon these dimensions, not from

those given in the calling program. No attempt may be
made to make a formal parameter into an actual, core-
occupying variable with its own physical address. That
is, <FP>s may not be mentioned in COMMON, EQUIVALENCE or
DATA statements.

Source Examples

PROGRAM TEST

END
FUNCTION FRUMP (N, X)

RETURN

END
SUBROUTINE COEFS(A,B,SEE)

RETURN

END

General Syntax

PROGRAM <NAME>
FUNCTION <NAME>(<FP>{,<FP>}82)

SUBROUTINE <NAME>{(<FP>{,<FP>}82)}1

0

28.01

Object Form

Each module delimited by a PROGRAM, FUNCTION, or SUBROUTINE
statement is a new task for the compiler, which "forgets"

everything it ever knew about previous modules.

The general form of an executable module produced by FORTRAN
is as focllows:

IDENT <NAME>
ENTRY <NAME>
[FORMAT STRINGS]
[LOCAL ARRAYS]
[INTERNAL CONSTANTS]

<NAME> uJp * % Al]l modules
RTJ INT. are subprograms

relative to
. run-time support
XIT. UJp <NAME> routine Q8Q.

INT. UuJp ** Activated by
RTJ <NAME>.

[Executable Instructions]

[Code to pick up para-
meters (addresses) from
calling sequence and
store these in execu-
table instructions
above. NULL IF MAIN

| PROGRAM.]
UJP INT.
END <NAME>

t————-Only if main program.

NOTE: In OS-3 FORTRAN, a subprogram can have more than one
entry point. This is specified in the source language by

a statement of the form ENTRY <NAME>. The statement is
essentially copied straight through to the assembly-level
code. No parameter string is specified: The same initiali-
zation is performed as is done when the subprogram is acti-
vated via its main entry point, so the calling sequences

must be identical in terms of number and types of parameters.

28.02

Pitfalls of Subprogramming

1.

As shown above, FORTRAN-produced subprogram modules do

not save and restore index registers.

Each reference to a formal parameter within a subprogram
requires an SWA or SCHA instruction to set up the actual
run-time address within the executable code. Thus, the
length of the INT. portion of the subprogram is directly
related to the number of <FP>s referenced within the
module. If a particular parameter must be referenced
more than once, copy it into a local variable within

the subprogram, or put it in COMMON.

Alteration of a <SIV>, used as part of a <SSE> within
this module where the <SIV> is defined, causes re-execu-
tion of the code which updates the multiples of the
<SIV> that index data elements of length # 1. If one of
these variables is changed within a different module,
this updating is not performed. Do NOT change the value
of an index in a subprogram other than the one where it
is defined. .

The remarks in 3) imply that FORTRAN passes the actual
run-time address of each parameter when a subprogram is

invoked. Consider this example.

PROGRAM CHANGE2

CALL BUMP (2.)

X=2.

WRITE (61,100) X
100 FORMAT (XF6.2)

END

SUBROUTINE BUMP (Z)
Z=7+1.

RETURN

END

The value printed by the WRITE statement in CHANGE2 will
be "3.00." The actual address of the constant 2. in
CHANGEZ2 is passed to BUMP, which changes the 2. to 3.

28.03

NON-EXECUTABLE MODULES: BLOCK DATA AND DEFINE

Description

A BLOCK DATA subprogram must be used in ASA-standard FORTRAN
to initialize variables in labeled COMMON. O0S-3 FORTRAN
processes these correctly, but labeled COMMON may also be
preset by ordinary DATA statements, so the BLOCK DATA
construct presumably would not occur except in an imported
program.

0S-3 FORTRAN also has a kind of built-in editor/text inserter
in the DEFINE/INCLUDE statement combination. The intended use
for this is the case of many subprograms each requiring iden-
tical declaratives--COMMON statements in particular. 1In such

the programmer may code the declaratives once, de-

this "program" ahead of all others in his system, and then
have the text of the declarative statements included in-line
in any program module by using the single statement INCLUDE
<NAME>. The text is stored in core and so exists only during
a given call of the compiler. The DEFINE subprogram must be
"re-compiled" each time FORTRAN is recalled from the system
library.

Limitations

BLOCK DATA subprograms may contain only declaratives: no
executable statements are accepted. A DEFINE subprogram may
not contain another DEFINE or an INCLUDE. Also note that

DEFINE subprograms steal core from the compiler.

Examples

i) BLOCK DATA
COMMON/ZORK/A ,B,ISEE
DATA (A='THIS SETS UP A,B AND ISEE')
END

28.04

ii) DEFINE EGGSWOPL
COMMON A (50) ,IA(100),CA(200)
EQUIVALENCE (A,IA,CA)
END

PROGRAM SHOWIT2M
INCLUDE EGGSWOPL

END

SUBROUTINE CALLME
INCLUDE EGGSWOPL

RETURN

END

FUNCTION ANYTIME (YOU,LIKE)
INCLUDE EGGSWOPL
DIMENSION ZIP(5)

ANYTIME=0.0

RETURN

END

28.05

INPUT STATEMENTS

Description

The values of variables can be established or changed within
a running object program by reading data into them from

peripheral units. This may be done in several ways:

1) Information may be copied, exactly as it appears on
the peripheral device, into a contiguous block of
core storage set up by the user. The BUFFER IN

statement is used to accomplish this.

2) The information may be transferred into a buffer which
is invisible to the user and then be moved by run-
time support routines into locations named by indi-

vidual variables. This "re-distribution" may be

statement.

If no FORMAT is referenced, the information is simply
moved word-by-word into the list of locations given
in the READ statement. If FORMAT control is
specified, each item is converted into the desired
internal representation (if possible) as it is moved.
This is accomplished at run-time by interpretation

of the character string of specifying codes, as given
in the FORMAT statement.

29.0

BUFFER IN

Description

This statement causes one physical record to be transferred
from an external device into a contiguous block of core
storage. The result is a bit-by-bit copy of the record in
core, with the external device advanced one record.

If the input device is a magnetic tape, the user must
correctly specify the actual parity of the tape. For other
types of devices, 0S-3's input routines automatically read
the data with correct parity checking.

Source Examples

BUFFER IN (40,0) (IARAY(1l),IARAY(1024))
BUFFER IN (13,1) (BTAB(51),BTAB(100))

General Syntax

BUFFER IN (<IQ>,<IQ>) (<VAR>,<VAR>)
4 4

LUN 0 indicates BCD, even parity and
1 indicates odd parity binary records.

Object Form

All FORTRAN input is performed by calls to run-time library
routines.

Examples
For the general case we have
ENA LUN
RTJ BUFIN
77 PARITY
77 START ADR
77 END ADR

NOTE: The user specifies the number of words to be buffered
in. If the record is shorter than this, the data transfer

29.01

stops at the end of the physical record, and the remainder
of the user's buffer is left unchanged. If the record is
longer than the number specified, data transmission stops
when the requested number of words have been transferred,
with the external device moved forward to the next physical

record.

SPECIAL CAUTION: Buffering IN a new value into a <SIV>
used as part of a <SSE> will not cause proper updating
of the multiples of the <SIV> which are used to access
data elements of length # 1.

29.02

READ (UNFORMATTED)

Description

A READ statement of the form

READ (<IQ>) {<WAS>{,<wWAS>}}
or
READ TAPE (<IQ>) {<WAS>{,<WAS>}}

transmits one logical record from an external device into
individually named locations in core storage. The information
is first read into a buffer, which is invisible to the user,
and then moved by run-time support routines into the non-

contiguous locations named by the variables in the <LIST>,

No "internalizing" is performed on the data; it is stored in
the elements of the <LIST> exactly as it appeared in the input
record.

Data to be read in this way should have been written by an
unformatted binary WRITE statement (see page 30.02).

Source Examples

READ (40) ZIP,IVAL,((ARAY(I,J),I=1,IVAL),J=l,lO)

Object Form

Again, everything is done by calls to run-time support sub-
routines.

29.03

READ (FORMATTED)

Description

A statement of the form

READ (<IQ>,<STNUM>) {<WAS>{,<WAS>}}
4 4
LUN Format Statement Number

causes a physical record to be read from the specified LUN
into a buffer invisible to the user. This data is then
converted under control of the format codes and moved to the

addresses stipulated by the word-address specifiers.

READ <STNUM>, is a synonym for READ (60,<STNUM>).

29.04

FORMAT SPECIFIER NOTES

Notation throughout this section on formatted input/output
has been standardized. The following are definitions of
the symbols used:

n - How many times to repeat the specifier.
w - The width of the field in characters.

d - The number of digits to the right of the decimal
point, or the negative power of 10 to multiply the
number by ON input (see E specifier).

n
I

A string of BCD characters.

Sample format strings look like

1) FORMAT (10X,I5,F13.2,4HTEST,I2)
2) FORMAT (X,2I5,3F10.2)

3) FORMAT (X,2(I3,X,I2))

4) FORMAT (X,3(13),1X)

If the number of items in the variable list is the same or
less than the number of specifiers, then the record is fin-
ished when the last variable is processed. However, if the
format list is exhausted before the variable list is finished,
the record is output or a new record is read and processing
starts again at the right-most left parenthesis of the format
statement. This process repeats until the variable list

is exhausted.

All format specifiers should be separated by commas.

29.05

nEw.d INPUT

The Ew.d specifier causes the data to be stored in the corres-
ponding real variables in the input list. Leading blanks

are ignored and trailing blanks are treated as zeros.

The field for input may include integer, fraction, and
exponent in one of the following forms:

n .MEVVV
n.m n.mEVVV
.m n.mtvvv
EVVV .mivvv

Input subfield format is:

»o N

Integer n Fraction {m) Exponent (VVV)

+ +
- - VvV
digit . E
4+ decimal point
number

The total range of the exponent and number must be be-

tween -10308 and +10308.

If no decimal point is present in the input field, then d

specifies a negative power of 10, and the number is multiplied

by lO—d. If 4 is not specified, it defaults to zero.

The number may contain a maximum of 11 digits.

29.06

Input Format Internal

Field Specifier Form
Annnnb E6.0 +6
ananB2 E6.1 +6.1
+67.32 E6.2 +67.32
6.732E01 ES.3 +67.32
-22E300 E7.1 -2,2%10300
~9.9+220 E7.0 +9.9%10220

29.07

nFw.d INPUT

The Fw.d specifier causes the data to be stored in the
corresponding real variable in the input list. If there is

no decimal point in the input data, then a decimal point

is inserted d places from the right side of the field.

Leading blanks are ignored and trailing blanks are treated

as zeros. The input data may have E followed by an optionally
signed exponent. (See nEw.d, pages 29.06-29.07.)

Examples:
Input Format Internal
Field Specifier Value
367.2593 F8.4 367.2593
-4.7366 F7.0 -4.,7366
.62543 F6.4 .62543
144.15E-03 Fll.2 .14415

29.08

nlw INPUT

The Iw format specifier converts the data from an input field
of length w to an integer constant, if possible. Trailing
blanks are treated as zeros and leading blanks are ignored.

A 24-bit number is stored for integer variables; 48 bits are
stored for INTEGER2 variables.

Examples:

Input Format Internal
Field Specifier Value
An234 I5 +230
An23 I4 +23
-23 I3 -23
-23. I4 -230

29.09

noOw INPUT

The Ow specifier causes the octal number in the input field
to be stored in the corresponding variable in the input list.
The field may contain blanks (treated as zeros) and octal
digits (0-7). A minus sign may be included to denote the
negative (one's complement). If the field length (w) is
greater than 8 for integer or 16 for real, only the right

8 or 16 digits are used. The number is stored right-justi-
fied in the variable. |

Examples:

Input Variable Format Internal

Field Type Specifier Form
0124 Integer 04 +124
7777776 Integer 08 -1
-1.n Integer 04 -100
An=0 Integer 04 -0
2001400000000000 Real 016 +1

29.10

PAw INPUT (ALPHANUMERIC INPUT)

The Aw format specifier causes the six-bit BCD characters

in the field to be stored in the corresponding variable in

the input list. The variable may be either real or integer.
If a real variable is used, eight characters are stored;

and if an integer variable is used, four characters are
stored. Characters stored are left justified and blank filled
on the right. If more characters are specified by w than

can be stored, only the right-most characters are stored.

Examples:

Input Variable Format Internal

Field Type Specifier Value
ABCDEFGHIJKL Integer A2 AB. A
ABCDEFGHIJKL Integer Ad ABCD
ABCDEFGHIJKL Integer A6 CDEF
ABCDEFGHIJKL Real A2 ABAannnnn
ABCDEFGHIJKL Real A8 ABCDEFGH
ABCDEFGHIJKL Real AlO CDEFGHIJ

29.11

nRw INPUT (ALPHANUMERIC RIGHT JUSTIFIED)

The Rw specifier causes the six-bit BCD information in the
input field to be stored in the corresponding variable in
the input list. Characters are stored right-justified zero
filled. This specifier is useful for reading into character
variables. The stored length is eight characters for real
variables, four characters for integer variables, and one
character for character variables. If w is greater than the
number allowed for the variable type, only the right-most

characters are stored.

Examples:

Input Variable Format Internal
Field Type Specifier Form
AB Character R2 B

ABCD Integer R2 00AC
ABCD Integer R4 ABCD
ABCDE Integer R5 BCDE
ABCDE Real R5 000ABCDE

25.12

nX INPUT

The X specifier on input ignores the character whose posi-
tion it represents in the input record.

Example in context:
READ (60,102)J
102 FORMAT (5X,I2)

Input Record: JUNK.22
Result: J=22

/ ON INPUT

The slash will cause the rest of the current record to be
ignored and a new record to be read. The scanning starts
at column one of the new record.

Example in context:

READ (60,104)J,K
104 FORMAT (I2/I4)

Input Records: 23.370

0102
Result: J=23 and K=102

29.13

Tp INPUT

The Tp specifier positions the scanning pointer to column

p in the input record.

unnecessary data on the record.

Examples in context:

READ (60,100)J,K,L
100 FORMAT(I12,T5,I1,T1,11)

Input Record:

Result: J=10, K=8, and L=1

wHs AND 's'

This makes it easy to skip over

INPUT

The wHs specifier allows text to be read into the format
statement to be printed at some later date.

The 's' is the same as wH except it is not necessary to

count the number of characters.

Examples:
Input Format
Field Specifier
ABCD 4HTEXT
ABCDEFG 'GARBAGE'

29.14

Format Specifier
_After Read

4HABCD
'ABCDEFG'

OUTPUT STATEMENTS

Description
Data can be written by 0S-3 FORTRAN programs in two funda-
mentally different ways:

1) Information may. be copied from a contiguous block
of core storage to an output unit--the BUFFER OUT
statement.

2) Information may be transferred from individually
specified word addresses, with or without benefit
of FORMAT interpretation.

See page 29.0 for more details on the implementation of
FORMATs.

30.0

BUFFER OUT

Description

The contents of a contiguous block of core may be BUFFERed
OUT to any peripheral unit capable of accepting output.
This statement comes closest to a standard 0S-3 assembly
language WRITE instruction. Minimum overhead and expense
are incurred.

Source Examples

BUFFER OUT (40,0) (IARAY,IARAY (1024))
BUFFER OUT (13,1) (BTAB(51),BTAB(100))

General Syntax

BUFFER OUT (<IQ>,<IQ>) (<VAR>,<VAR>)
4
LUN 0 indicates BCD, even parity and
1 indicates odd parity, binary records.

Object Form

See page 29.01.

30.01

WRITE (UNFORMATTED)

Description

A WRITE statement of the form

WRITE (<IQ>) <WAS>{,<WAS>}

or

WRITE TAPE <IQ>, <WAS>{,<WAS>}

produces the following actions:

1)

2)

The data from the words of core listed by the word-
address specifiers are packed into a 127-word buffer
(invisible to the user).

If the logical record is less than 127 words long,
it and a header word are written, with the first
word equal to

o(ojoll

If the logical record is > 127 words, the first
127 words are written with a leading word of

0(0j0j0

The process continues, with the logical record
written as a series of 128-word physical records,
each having a leading word of zeros, except the
last which has as its header word the count of the
number of physical records written.

The <IQ> specifies the LUN. The records are written
in binary (odd) parity.

30.02

WRITE (FORMATTED)

Description

A statement of the form

WRITE (<IQ>,<STNUM>) <WAS>{,<WAS>}
4 4
LUN Format Statement Number

causes the data in the words named by the word-address

specifiers to be written on the indicated LUN under FORMAT
control.

PRINT <STNUM>, is a synonym for WRITE (61,<STNUM>).
PUNCH <STNUM>, is a synonym for WRITE (62,<STNUM>).

The following pages describe format specification codes for
output.

30.03

nEw.d OUTPUT

The Ew.d specifier causes the corresponding real variable

in the output list to be printed in exponential format. The
number is placed right justified and rounded in the field
with leading blanks in unused positions. The fractional

part may contain a maximum of 11 digits.

The field formats are:

L a.a...aB.ee when |ee| < 99
1 a.a...aEeee when 99 < ee < 308

w a.a...a-eee when -308 < eee < -99

The a.a...a are the most significant digits of the number,
and ee or eee is the exponent. If d is zero or blank, the
decimal point and all digits to the right of the decimal
point do not appear. The field w must be wide enough to
hold the sign, decimal point, fraction, and exponent. Note
that the exponent is always four characters long. There
are always d digits to the right of the decimal point as
shown below.

w character

g
ls N

s N.mmm...m Euece

J —— e
minus d digits L—4>always four
or after deci- characters

blank mal point

So w should be at least d+7 characters long.

30.04

Internal Format Output

Form Specifier Form
+67.32 E8.2 6.73E.01
-67.32 E8.2 6.7%¥E.01
-67.32 E9.2 -6.73E.01
+67.32 E9.2 ~6.73E.01
-67.32 El12.2 ~Aan=6.73E.01
+67.32 E12.3 ~an06.732E.01

30.05

nFw.d OUTPUT

The Fw.d specifier causes the corresponding element in the

variable list to be printed. The real number is printed

right justified in the field--rounded. The plus sign is

omitted for positive numbers. If too few character posi-

tions are specified by w, an asterisk (*) is printed in

the field to denote a format error. Leading zeros are
suppressed.

Examples:

Internal Format Output
Data Specifier Field
+123.45678 F10.5 ~123.45678
-123.45678 Fl10.5 -123.45678
+123.45678 F8.5 23.4567%*

+10.0 F6.2 ~10.00

30.06

nIw OUTPUT

The Iw format specifier causes the contents of the corres-
ponding variable to be printed as an integer number with
leading zeros suppressed. If the number is too large to

be printed in the field specified, an asterisk (*) is placed.
in the field. One position must be reserved for the sign

if the number might be negative. The I format is also used
when printing INTEGER2 variables.

Examples:

Internal Format Output
Value Specifier Field

+23 I4 An23

+23 I2 23

-23 I4 A=23

~-23 I3 -23

-23 I2 (error field

too small)

30.07

nOw OUTPUT

The Ow specifier causes the corresponding variable in the
output list to be printed in octal. The number is right
justified in the field; and if the field is smaller than
8 for integer and 16 for real variables, only the right-
most w digits are printed. If the field is larger than 8
for integer and 14 for real, leading blanks are inserted.

Examples:
Internal Variable Format Output
Data Type Specifier Field
+144 Integer 03 144
+144 Integer 08 00000144
+144 Integer 0l1l ~~~00000144
+1 Real 016 2001400000000000

30.08

nAw OUTPUT

The Aw format specifier causes the contents of the corres-
ponding variable to be printed as six-bit BCD characters.
Integer variables contain four characters and real variables
contain eight characters. If w is less than four (for integer)
or eight (for real), only the left w characters are printed.

If w exceeds four (for integer) or eight (for real), the
excess characters are printed as blanks on the left of the
field.

Examples:

Internal Variable Format Output
Form Type Specifier Field

ABCD Integer A2 AB

ABCD Integer A4 ABCD

ABCD Integer A6 ~~ABCD

ABCDEFGH Real A2 AB

ABCDEFGH Real A8 ABCDEFGH

ABCDEFGH Real Al0 ~~ABCDEFGH

30.09

nRw OUTPUT

The Rw specifier causes the six-bit BCD information in

the corresponding variable in the output list to be printed.
The characters are right justified in the output field. If
w exceeds the maximum allowed number of characters for the
variable type (one for character, four for integer, eight
for real), leading zeros are printed. This format should

be used when outputting character variables.

Examples:

Internal Variable Format Output
Form Type Specifier Field

A Character R1 A
A Character R2 0a
ABCD Integer R2 Cb
ABCD Integer R4 ABCD
ABCD Integer R6 00ABCD
ABCDEFGH Real R5 DEFGH

30.10

nX OUTPUT

The X specifier on output causes the character store
pointer to skip over the character position it represents
in the output string.

Example in context:

WRITE(61,103)J,K
103 FORMAT (X,I2,4X,I1)

Output Records: .10....8
Result: J=10 and K=8

/ ON OUTPUT

The slash on output causes a new line to be started and
the old record to be written out. The position is set to
column one of the new record.

Example in context:

WRITE(61,105)J,K
103 FORMAT (X12/4XI1)

Output Records: .10

l\l\/\/\8

Result: J=10 and K=8

30.11

Tp OUTPUT

The Tp specifies the position in which the next character
will be placed.

Example in context:

WRITE(61,101)J,K,L where J=10, K=8, and L=7.
101 FORMAT(TZ,IZ,TlO,Il,T6,Il)

Result: ALOAATAAAB

wHs AND 's' OUTPUT

The wH specifier allows text to be printed in the output.
w specifies the number of characters to be printed. The
's' is the same as the wH specifier except it is not
necessary to count the number of characters.

Examples:

Format Output

Specifier Field
4HGOOD GOOD
6HTEST A & TESTA A
9HTEST1l.=A A TEST1 .=, A
'GOOD'! GOOD
'"TESTAA' TESTA A
'"TEST1 =AA" TEST1A=ax

30.12

ENCODE

' Description

In addition to BUFFER statements, CDC-derived FORTRAN

provides two additional non-ASA standard statements, ENCODE
and DECODE. The essential idea is to allow use of the
FORMAT-controlled data conversion routines for core-to-core
transfers, as well as for I/0O. ENCODE packs a contiguous area
of core from individually named locations under format control.

General Syntax

ENCODE (<IQ>,<STNUM>,<VAR>) <WAS>{,<WAS>}
T A
Number
of char-
acters
Format

Statement
Number

Beginning
word address
of receiving
field

Object Form

As in the case of actual I/O, ENCODE is performed by a

call to a run-time library routine.

ENTERA 100B

RTJ Q8QINGOT

77 L.<STNUM>

77 address of <IQ>

77 beginning word address

The effect is to pack data from the individually named
variables into a contiguous block of core, beginning at the
specified word address. If the final word is not completely
filled, it is padded on the right with blanks.

31.0

DECODE

Description

DECODE distributes data from a contiguous block of core to
individually named locations under FORMAT control.

General Syntax

DECODE (<IQ>,<STNUM>,<VAR>) <WAS>{,<WAS>}
T A
Number
of char-
acters
Format
State-
ment
Number

ddddcdmsa

word address
of trans-
mitting field

Object Form

Call to run-time library routine. See previous page.

32.0

MISCELLANEOUS I/0O COMMANDS

REWIND i

Rewind: Rewinds file or magnetic tape i to the load point.

If the file is already rewound, the statement acts as a do-

nothing statement.

Before executing a REWIND on an output unit, FORTRAN writes

an EOF record,

BACKSPACE i

Backspace: Backspaces file or magnetic tape i one logical

record. When the file is already at the load point (rewound),

BACKSPACE i acts as a do-nothing statement.

Backspace is

interpreted as a locate to the beginning of the previous

record.

ENDFILE i

Endfile: Writes an end-of-file on file or magnetic tape i.

I/0 Status Checking

The FORTRAN library contains functions and subroutines that

check status after I/0 operations:

Subroutine or Function

Operation Checked

Condition Checked

End-of-file check
(EOF) (EOFCK) (EOFCKF)

Parity check
(IOCHK) (IOCHKF)

Unit status test
(UNITST) (UNITSTF)

Length test
(LENGTHF)

Previous read/
write I/0 request

Previous read/
write I/O request

Last buffer

operation

Last BUFFER IN

33.0

End~of-file

Parity error

End-of-file, parity
errors, completion
of operation

Number of words
transferred

Attempting to read past an EOF without checking for EOF causes

job termination. For BCD or binary operations, EOFCK or

EOFCKF senses the condition; for BUFFER IN, UNITST or UNITSTF
senses the condition.

33.01

VARIABLE FORMAT

Format lists need not be provided with FORMAT statements;
instead, they can be placed in arrays. Placing format lists
in arrays and referencing the arrays instead of a FORMAT
statement permits the programmer to change, index, and specify
formats at the time of execution.

Format arrays are prepared by storing a format list, including
left and right parentheses, as it would otherwise appear with
a FORMAT statement. Variable specifications can be read in
from cards, changed with replacement statements, or preset

in labeled common with a DATA statement.

Example:

Prepare an array for format list.

’QE12.2,F8.2,I7,2E20.3,F9.3,I4)

1 517

DIMENSION IVAR (8)
READ (K1,1) (IVAR (I), I = 1,8)
1} [FORMAT (8A4)

Result: IVAR(l) contains (E1l2
IVAR(2) contains .2,F
IVAR(3) contains 8.2,
IVAR(4) contains 17,2
IVAR(5) contains E20.
IVAR(6) contains 3,F9
IVAR(7) contains .3,I
IVAR(8) contains 4)AA

34.0

When using the specifications, the array can be
referenced as follows:

1 5|7

WRITE (K2, IVAR (1)) A,B,I,C,D,E,J
or
WRITE (K2, IVAR) A,B,I,C,D,E,J

34.01

APPENDIX 1

Compiler Call Parameters

FORTRAN,A=LUN,D=LUN, H=LUN, I=LUN, K= (NUMBER) ,L=LUN, N= (NUMBER) ,
P=LUN,R=LUN, S=LUN,X=LUN

This control mode instruction causes 0S-3 to load the FORTRAN
compiler. For each of the parameters described below, any
string of letters may be appended to the single letter shown
to the left of the equal sign. NOTE: To force a LUN to be

rewound, use /R after its number.

A=LUN This specifies that an assembly language
listing of the program is to be prepared and
sent to the logical unit specified. 1If no
LUN is specified, then LUN 61 is assumed un-
less a LUN is specified in the L parameter.

D=LUN This specifies that the diagnostic error
messages are to be sent to the logical unit
specified. If no LUN is specified then the
LUN listed with the L parameter is assumed.

If L is missing, then LUN 61 is assumed.

=LUN This specifies that a FORTRAN source deck
is to be sent to the LUN specified. This
deck will be in a standard FORTRAN format.
Logical unit 62 is assumed if no LUN is

specified.

I=LUN This specifies that the input to the FORTRAN
compiler is to come from the logical unit
specified. If no LUN is specified, LUN 60
is assumed. The logical unit number in this
parameter may be replaced by the name

of a saved file. 1Input logical units are

35.0

K= (NUMBER)

L=LUN

N= (NUMBER)

P=LUN

R=LUN

rewound, if possible, by the FORTRAN
compiler before reading. Input units
numbered between 50 and 59 inclusive are

unequipped at the end of compilation.

This specifies the type of card keypunch
used. If (NUMBER) is 029, then the deck
was punched in extended BCD code (EBCDIC)
used by the IBM 360. If (NUMBER) is 026
or is omitted, then the standard model
026 keypunch is assumed. If (NUMBER) is
027, then the deck is assumed to contain
cards punched on both 026 and 029 key-
punches. 1Invalid 026 codes will be trans-
lated as 029 code. This option should
be used only with special card decks.

This specifies that a listing of the
source program is to be sent to the logicail
unit listed. LUN 61 is assumed if no LUN

is specified by the user.

This function allows the user to over-
ride the normal lines/page set by the
system.

This functions exactly as X, except that
LUN 62 is assumed if no LUN is specified,
and no file mark is placed at the end.

This specifies that a binary object pro-
gram should be sent to the LUN specified.
This logical unit is released before
compilation. After compilation, if no
fatal diagnostic occurred, the program will
be loaded and run. If no LUN is specified,
then logical unit 56 is assumed. This

35.01

parameter differs from X only in that a

BCD RUN statement is written in place of the
file mark at the end of the output, and the
file is automatically loaded and executed

after compilation.

S=LUN - This instructs the FORTRAN compiler to
prepare symbol output on the LUN specified.
If no LUN is specified, then the P-LUN is
assumed. If P was not specified, then X

is assumed.

X=LUN This specifies that the output from the
FORTRAN compiler (binary object program)
should be sent to the logical unit speci-
fied. If no LUN is specified, then LUN
56 is assumed. A file mark is automatically
put at the end of file.

All logical units specified in the FORTRAN control mode
instruction must have been previously defined by the user.

Any of the parameters A,D,H,I,X,L,N,P,R,S,X may be omitted; the
desired ones may be listed in any order.

This control mode instruction will destroy any interrupted pro-

gram so that it may not be restarted with a GO command.

Examples of FORTRAN control mode instructions are:

FORTRAN, I=45,5=33,L=67,P=89,A=91
FORTRAN,L,X

FORTRAN, IN=TEST ,RUN=47

FORTRAN,R, INPUT=TEST

FORTRAN, I=45,X,L=18,D=61,K=027,S
FORTRAN, INPUT=33,A=61,X=3,L=47,D=61
FORTRAN, IN=TEST,X,H=37 ;N=20

35.02

APPENDIX 2

Deck Structures

BATCH ON-LINE

Compile only, with listing and diagnostics.

JOB (LOGON)

7 #FORTRAN, I=<INPT>,L
8FORTRAN,L

7
8

Listing and diagnostics
Source Decks

#LOGOFF
77
88
7
8LOGOFF
Compile and run, with listing.
JOB (LOGON)

0~ 0

FORTRAN,L,R

#FORTRAN, I=<INPT>,L,R
Source Decks ~

Listing and diagnostics

Run if no fatal diagnostics

[ecBEN]

Data, if needed Gutput

END OF FORTRAN EXECUTION
#LOGOFF

10~ I
[eeBEN}
0

LOGOFF

[eaBEN]

36.0

BATCH

Compile, get binary deck.

Load

JOB

FORTRAN, X

Source Decks

1 0~d oo

o0 J

SAVE ,56=<BINDECK>

CO~J 0O~ 00~

LOGOFF

and run binary deck.

JOB

LOAD, <BINDECK>

0W~Jd 0OJ

RUN
Data, if needed

77
88

LOGOFF

[eeBEN]

36.01

ON-LINE

(LOGON)

#FORTRAN, I=<INPT>,X
NO ERRORS FOR JOB.

#SAVE , 56=<BINDECK>

#LOGOFF

(LOGON)

#LOAD , <BINDECK>
RUN

Output

END OF FORTRAN EXECUTION

#LOGOFF

Term

<LTR>
<DIGIT>
<STNUM>
<SWIC>
<FPC>
<SIV>
<SRV>
<NAME>
<SSE>
<SUBVAR>
<DECL>
<DSUBVAR>
<VAR>
<VARLIST>
<ASGN>
<REPCON>
<WAS>
<CONST>
<AEX>
<LEX>
<FUNREF>
<ASSIGN>

<STNUMLIST>

<IQ>
<IMPDO>
<FP>

APPENDIX 3

Index of Metalanguage Terms

Description

letter

digit

statement number
single-word integer constant
floating-point constant
simple integer variable
simple real variable
name

subscript expression
subscripted variable
declarative

dimension subscripted variable
variable

variable list
assignment construct
replicated constant
word address specifier
constant

arithmetic expression
logical expression
function reference
assignment statement
statement number list
integer quantity
implied DO

formal parameter

37.0

Page

3.0
3.0
4.0
5.0
8.0
12.0
13.0
14.0
15.0
16.0
16.0
16.01
17.0
17.0
19.0
19.0
19.0
19.0
20.0
21.0
22.0
23.0
25.0
26.0
27.0
28.0

APPENDIX 4
Standard FORTRAN Library Functions and Subroutines

The FORTRAN library contains standard subprograms which
check the status of I/O operations, sense machine conditions,
perform a FORTRAN dump, or perform various mathematical
operations (such as evaluating trigonometric functions or

determining square roots).

Some subprograms can be requested either as functions or
as subroutines. Both FORTRAN references will be shown.
Note that a subroutine requires the use of CALL.

I/0
The FORTRAN library contains functions and subroutines that
check status after

type integer.

EOFCK and IOCHK are used with read/write I/O statements
only. When they reference buffered files, the job terminates
abnormally.

Parity Check

Subroutine: TIOCHK (k,3j)
Function: IOCHKF (i)

IOCHK checks the status on the previous I/O request on logical
unit or file i to determine if a parity error occurred.
i Identifies the logical unit or file.

j Location in which the value is stored. For the
function IOCHKF, the value is returned in the A

register.

38.0

Value Condition

1 Parity error occurred on previous
I/0 operation.

2 No parity error occurred.
3 End of allocated area detected during

last operation.

Error return: If the logical unit number of file number is
not 1-62, the run is terminated with the following message
on the standard output unit.

ERROR IN IOCHK CALLED FROM ILLEGAL I/0 REQUEST UNIT no.

Sample: Convenient forms for using IOCHKF are:
GO TO (nl,nz), IOCHKF (i)
or

IF (IOCHKF (i).EQ.l)nl,n2

End-of-File Check

Subroutine: EOFCK (i,j)
Function: EOFCKF (i)

EOFCK checks the status of the previous I/0 request on
logical unit or file i to determine if an end-of-file was

encountered.
i Identifies the logical unit or file.
j Location at which the value is stored. For the

function EOFCKF, the value is returned in the
A register.

Value Condition
1 An end-of-file was encountered on

the last read operation.

2 No end-of-file was encountered.

38.01

On a mass storage file, each of the following is interpreted
as an end-of-file condition (value 1 returned in the A
register).

Record just read was defined end-of-file record.

Last read attempted to read beyond the highest block
written.

Locate for the last read attempted to locate the file
limit.
Last read attempted to read beyond the file limit.
Error return: If the logical unit or file number was not

1-62, the run is terminated with the following message on the
standard output unit.

ERROR IN EOFCK CALLED FROM xxxxx ILLEGAL I/0O REQUEST UNIT no.

Sample: Convenient forms for using EOFCKF are:
GO TO (nl,nz), EOFCKF (i)
or

IF (EOFCKF (i).EQ.l)nl,n2

Function: EOF (i)
Sample: IF (EOF(2)) GO TO 10

The EOF function returns a true/false value for end-of-file
checking. It is the preferred method of checking for end-
of-file. The function is true if an end-of-file was
encountered.

Unit Status Test

Subroutine: UNITST (i, Jj)
Function: UNITSTF (i)

UNITST checks the I/0 status of the last BUFFER IN or BUFFER
OUT operation on logical unit or file 1i.

38.02

i Identifies the logical unit or file.

j Location at which the value is stored. For the
function UNITSTF, the value is returned in the
A register.

Value Condition
1 Buffer operation not complete.
2 Buffer operation complete and no

errors occurred.

3 Buffer operation complete, but an
end-of-file has been sensed.

4 Buffer operation complete, but a
parity error has occurred.

Length Test

Function: LENGTHF (i)

The length test determines the number of words transferred
during the last BUFFER IN operation on unit i. The number

of words is returned in the A register for use by the calling
statement.

Example:

J =1 Set flag 1

BUFFER IN (10,0) (A,2) Initiate buffered
read for logical
unit 10, even
parity. The

first word of

the block is A;
the last 2

GO TO (5, 6, 7, 8), UNITSTF (10) Check transmission
status

38.03

Page missing from
original document

70

70
200

KERR = LENGTHF (10)

WRITE (21, 70)

FORMAT (12H EOF UNIT 10)
GO TO 200

KERR = LENGTHF (10)

WRITE (21, 80)

FORMAT (10X,12HPARITY ERROR)
REWIND 10

STOP

CONTINUE

Sense Light Control

Subroutine:

Function:

SLITE (i)
SLITEF (i)

KERR will contain
number of words
read

Error message
End-of-file error

KERR will contain
number of words
read

BUFFERED trans-
mission complete;
continue program

SLITE turns on sense light i if i = 1-24 or turns off all

sense lights if i = 0. The value of i is returned in the A

register.

SENSLIT. i

i corresponds to a bit in the storage location
= 1-24 sets the corresponding bit in SENSLIT,

and i = 0 clears all bits.

Storage: 104 locations, including SLITET, which is auto-

matically loaded at the same time.

Error return:

If i is less than zero or greater than 24,

the following message is printed and a 2 is returned in the

A register.

ERROR IN SLITE/F CALLED FROM xxxxx I LT 0/GT 24

Sense Light Test

Subroutine:

Function:

SLITET (i,])
SLITETF (i)

38.05

SLITET tests sense lighti, if i = 1-24, a bit in storage loca-
tion SENSLIT, and clears sense light i if it was set.
If i = 0, no bits are tested and a 2 is stored.

j Specifies storage location of result; 1 is stored
if light i was on, 2 if it was off. For the
function SLITETF, these values are returned in the

A register.

Storage: 104 locations, including SLITE, which is automatically
loaded at the same time.

Error return: If i is less than zero or greater than 24, a
2 is stored in j (SLITET) or in the A register (SLITETF)
and the following message is printed.

ERROR IN SLITET/F CALLED FROM xxxxx I LT 0/GT 24

Exponent Fault Test

Subroutine: EXFLT (j)
Function: EXFLTF (i)

EXFLT uses the internal sense instruction to determine if
the bit indicating exponent overflow is set and clears it if
it is set.

i Dummy parameter required by EXFLTF but not used.

| Location at which result is stored; a 1 is stored
if the fault bit was set, a 2 if it was not. For
EXFLTF, these values are returned in the A register.

Storage: 47 locations, inecluding OVERFL and DVCHK.

Overflow Test

Subroutine: OVERFL (j)
Function: OVERFLF (i)

38.06

OVERFL uses the internal sense instruction to determine if the
bit representing arithmetic overflow is set; and if so, clears
this bit.

i Dummy parameter required but not used by OVERFLF.

j Location to which result is returned. A 1 is
returned if the overflow bit was set, a 2 if it
was not. For OVERFLF, these values ate returned
in the A register.

Storage: 47 locations, including DVCHK and EXFLT.

Subroutine Library

Some of the commonly used library routines are:

Subroutine Operating System Definition
SLITE (i) all set sense light i
SLITET (i,3) all test sense light i
DVCHK (i) all check divide fault
EXFLT (i) all check exponent
fault

OVERFL (i) all check overflow
fault

EOFCK (i,3) all test for end-of-
file on unit i

IOCHK (i,j) all test for parity
error on unit i

UNITST (i,3j) all test status on
unit i

FORTDUMP (b,e,m,d,c) all system dump
routine

Function Library

The following FORTRAN library functions are predefined and may
be referenced by a program or subprogram. X represents real

values; I represents integer values. F is optional as a

38.07

final character in most function names. For machine conditions,
i designates the component, unit, or file number.

Operating
Function System Definition
ABS (X) ; ABSF (X) all absolute value
IABS(I) ;XABSF (I)
ALOG (X) ; LOGF (X) all natural log of X
ATAN (X) ;ATANF (X) all arctangent of X
radians
COS (X) ;COSF (X) all cosine of X radians
EXP (X) ; EXPF (X) all e to xth power
FLOAT (I) ;FLOAT(I) all integer to real con-
, version
IFIX (X) ;XFIXF (X) ;FIXF (X) all real to integer con-
version
SIGN(Xl,Xz);SIGNF(Xl,XZ) all sign of X2 times Sl
ISIGN(Il,Iz);XSIGNF(Il,Iz) all sign of I2 times Il
SIN(X) ; SINF (X) all sine of X radians
SQRT (X) ; SQRTF (X) all square root of X
SLITET (i) all set sense light i
SLITETF (i) all test sense light i
DVCHKF (1) all check divide fault
EXFLTF (i) all check exponent fault
OVERFLF (i) all check overflow fault
EOFCKF (i) all test for end-of-file
on unit i or file i
IOCHKF (i) all test for parity
' error on unit i or
file i
UNITSTF (i) all test status of unit i
or file i
LENGTHF (i) all words in last BUFFER
IN on unit i or file i
LOCATEF (i,b) all locate to block b
of file 1

38.08

NOT (a)
AND (a,b)
OR (a,b)
FOR (a,b)

all integer masking functions

The functions XABSF, LOGF, FIXF and XSIGNF must appear in a
TYPE declaration to indicate the correct mode of the result.

38.09

APPENDIX 5

Printer Carriage Control

Column 1 of information being sent to a line printer specifies
control of paper movement during printing. This character
will not be printed. Listed below are the control characters
and the action that will be performed before and after

printing.
Control Action Before Action After
Character Print Print Comments
(blank) space 1 no action single space, skip
over bottom margin
0 (zero) space 2 no action double space, skip
over bottom margin
- (minus) space 3 no action triple space, skip
over bottom margin
+ no action no action over print
eject page no action top of page
2 skip to level 12 no action one inch from
bottom of page
3 skip to level 6 no action level 6 is every
6th line
4 skip to level 5 no action level 5 is every
' 5th line
5 skip to level 4 no action level 4 is every
4th line
6 skip to level 3 no action level 3 is every
3rd line
7 skip to level 2 no action level 2 is every
2nd line
8 eject page no action same as 1
9* skip to level 7 no action
Z* skip to level 8 no action

* These codes work on the 512 printer only.
39.0

Control Action Before

Action After
Print

no action

no action

Comments

level 12 is 1"
from bottom of

page
level 6 is every
6th line

level 5 is every
5th line

level 4 is every
4th line

level 3 is every
3rd line

level 2 is every
2nd line

will skip over
bottom margin

—— — —— — —————— — — ————————— T ——— T — i — " s W G A — e W S ——— S A —

clear AUTO PAGE
EJECT

set AUTO PAGE
EJECT

print six
lines per inch

print eight
lines per inch

print over the
crease in the
page
skip over the
crease in the
page

i — — —— - — " " — T ——— T ———— — S ————— T T — - — S — ——— — — — — ——— . - W ——

Character Print
Y* skip to level S
X* skip to level 10
A space 1
B space 1
C space 1
D space 1
E space 1
F space 1
G space 1
H* space 1
I* space 1
J* space 1
K* space 1
L* space 1
Q space 1
R space 1
S space 1
T space 1

other space 1

codes

no action

* These codes work on the 512 printer only.

39.01

same as (blank)

	000
	001
	002
	003
	004
	005
	006
	01.00
	02.00
	02.01
	03.00
	04.00
	05.00
	06.00
	06.01
	07.00
	07.01
	08.00
	08.01
	09.00
	10.00
	11.00
	12.00
	13.00
	13.01
	14.00
	15.00
	15.01
	16.00
	16.01
	16.02
	16.03
	16.04
	16.05
	16.06
	16.07
	16.08
	17.00
	17.01
	17.02
	18.00
	18.01
	19.00
	19.01
	19.02
	20.00
	20.01
	20.02
	21.00
	21.01
	21.02
	22.00
	22.01
	22.02
	23.00
	23.01
	24.00
	24.01
	25.00
	25.01
	26.00
	26.01
	27.00
	28.00
	28.01
	28.02
	28.03
	28.04
	28.05
	29.00
	29.01
	29.02
	29.03
	29.04
	29.05
	29.06
	29.07
	29.08
	29.09
	29.10
	29.11
	29.12
	29.13
	29.14
	30.00
	30.01
	30.02
	30.03
	30.04
	30.05
	30.06
	30.07
	30.08
	30.09
	30.10
	30.11
	30.12
	31.00
	32.00
	33.00
	33.01
	34.00
	34.01
	35.00
	35.01
	35.02
	36.00
	36.01
	37.00
	38.00
	38.01
	38.02
	38.03
	38.04
	38.05
	38.06
	38.07
	38.08
	38.09
	39.00
	39.01

