0S-3: The Oregon State open shop

operating system

by JAMES W. MEEKER, N. RONALD CRANDALL,

FRED A. DAYTON, and G. ROSE

Oregon State University Computer Center
Corvallis, Oregon

INTRODUCTION

This paper is a discussion of the OS-3 operating system
developed at Oregon State University. Before proceed-
ing to a discussion of that system, it is appropriate to
say a few words in order to view this work within a
more global context.

It is little more than a truism to say that computers
are difficult and expensive to use. That is to say, com-
puters are difficult and expensive with respect to the
problems men wish to solve. One primary reason for
this state of affairs is embedded in many years of cultural
history. In the absence of computing machinery we
have developed methodologies that ingeniously avoid
the necessity for computational solutions.

For example, if it is necessary to perform several
million multiplications in order to test a hypothesis,
then until recently it was quite likely that such a hy-
pothesis would remain unexplored. Now, of course,
this situation is radically changed. Nevertheless, the
thinking that will take proper advantage of current
computer power is still in its infaney. Thus, computers
are difficult and expensive to use because we haven’t
yet learned how to use them.

If we could see clearly enough into the future to de-
termine those approaches to problem solving that will
be most successful during the coming decades, then we
would not hesitate to develop software tailored to best
underwrite these approaches. To the degree that we
lack the foresight to proceed in this fashion, there re-
mains an acceptable alternative: the general purpose
computer utility. If we can provide a utility that is in-
expensive, reliable, and convenient to use, then we can
deliver a powerful tool directly into the hands of the
problem solver.

One overall requirement implicit in this idea is that
such a utility must be comprehensive enough to free the

problem solver from the burden of becoming a system’s
programmer. This burden has been responsible for the
migration of many scientists from other disciplines in-
to systems software development after which they pro-
ceed to neglect half a lifetime of training in their own
field: an expensive proposition.

In addition, our objectives in developing a computer
utility include the following: the utility should be

1. inexpensive—that is, system overhead should be
small.

2. convenient—programming conventions should be
easy to learn and use as well as generally acces-
sible.

3. transparent—the user should have ready access
to information about the state of the system, his
account with the system, the status of a running
program, and the contents of his saved storage.

4. information oriented—facilities must be avail-
able for creating, manipulating, and maintain-
ing files of arbitrary structural complexity.

5. self extending—facilities should be available
for building upon past experience in a facile way.

This paper is specifically a discussion of a time-shar-
ing operating system that is intended to satisfy the
first three of these objectives. The remaining two
are also under development at O.8.U., but do not
exist at the level of the resident operating system.

The following sections include a description of the
system as seen by a user, a brief discussion of salient
software characteristics, and a summary of system
performance.

User features

08-3 is a time-sharing operating system for the Con-
trol Data 3300 computer. It was developed at 0.8.U.

241

249 Spring Joint ‘Computer Conference, 1969

and is presently our principal operating system. Cur-
rently the system can service up to 32 on-line users
together with a batch user, and during early 1969, it is
anticipated that this number will exceed fifty.

The system is used by various departments on cam-
pus, local industry, and other colleges throughout the
State of Oregon. At the present moment the system
logs approximately 4,000 console hours per month.

The operating system multiplexes available hardware
resources among concurrent users (CRT, Teletype,
and bateh) in a time-slicing fashion. Processor time and
core memory are allocated to running programs based
upon considerations of program demand and page
traffic flow.

Hardware environment

In order to orient those not immediately familiar with
the 3300, it should be sufficient to say that the machine
includes the following features:

«24-bit word

. Paged memory and page file
. Executive mode operation

. Usual interrupt system

. Usual register configuration
+Real time clock

. 64-word fast core

Memory is expandable in units of 2 words; we possess
four such units. The 3300 addressing scheme will per-
mit a user’s program to address at most 2!¢ words. Our
hardware configuration is depicted in Figure 1.

System library

The system library is composed of an absolute library
and a user generated library. Most of the programs in
the absolute library are written in reentrant code and
treated as such by the operating system. The library
includes:

1. Fortran compiler—a modified CDC Fortran
with several input/output options including
short form diagnostics suitable for listing at a
console.

2. Algol compiler—modified CDC Algol.
OSCAR—an 0.8.U.-developed conversational
arithmetic interpreter with sfored program
capabilities.! OSCAR recognizes scalars, vectors,
matrices; it is fully recursive and allows defini-
tion of functions and abbreviations. Formatting
is allowed but due to the use of default format
options it is not required. OSCAR can commu-
nicate with other available languages.

o

814 Disk
File

r,405 Card
I Reader

5(854)

Disks 415 card

Punch

501 Line
Printer

"

Teletype -
Data Phone

Teletype

\

4(604)
Tapes

CRTs

Figure 1—Hardware configuration

4. Compass—an extended version of the 3300 as-
sembly language.

5. RADAR?—an on-line debugging language. RA-
DAR includes an assefnbler/disassembler and
permits single stepping through a program.
(A CRT oriented version of the language is also
available.)

6. Edit®>—an on-line editing language with con-

text searching capabilities. '

Sort/Merge

8. Utilities—including Autoloading and file manip-
ulation.

-1

The user-generated library contains programs local to -
each user. If a user declares a program to be publie,

0S-3 243

then anyone can access it in a fashion analogous to that
used for the absolute library. Of course, only the creator
can modify the program, and that only when it is not
currently in use.

Input/output

At the level of the operating system, files have little
structure. Two types of files exist: linear and random
access. A linear file is physically a series of fixed length
blocks. These are dynamically allocated up to some
storage limit that is preset for each user. A user reads
and writes a linear file in variable length records;
writing a record in the middle of a linear file causes the
remainder of that file to be released (see Figure 2).

File Control Block

Status
[nformatioq
Pointers

L

File Block fFfile Block File Block]|

File Control Block

Load Point

Core Pointer

Block number of current block

Current Position Pointer

Status
Haraware

current block
End Position Pointer

Total Length
Accounting Word

File Block
Forward Pointer

Backwarad Pointer

Wordcount

Record

Wordcount

Record

Figure 2—Linear file

Random access files can be viewed as terminally open
files together with a file pointer. This type of file is
essentially a large block of apparently econtiguous
storage (maximum size = (2° — 2)2!8 words). Physical-
ly the random access file is a series of fixed length
blocks with a two level directory. The topmost directory
holds pointers to a set of directory blocks, each of which
contains pointers to a set of linked storage blocks. A
serial pass through the file can use the links for travers-
ing bloecks, while a random search utilizes the directories
(Figure 3). A user reads or writes a random access file n
words at a time-beginning at the current pointer loca-
tion. At the end of the operation, the pointer is ad-
vanced by n words. ,

Files may be named and saved in semi-permanent
storage. It is also possible to create temporary files that
can be assigned to a logical unit number (in the range
0-99). Any saved file can be equated to a logical unit
and conversely, a logical unit may be subsequently
saved under a file name. While running programs ma-
nipulate logical units, not named files, the major pro-
graros in the library allow the user to supply only a
file name that is then assigned to a logical unit by the
program. Any file may be file protected. Any file may
be placed in the public domain by preceding its name
by an asterisk (*).

In addition to being equated to files, logical units
may assume the following hardware types:

«line printer
«card reader
«.card punch
«console input
«console output
«plotter
~magnetic tape
null

Request processor

A console user is placed in control mode at the time
he logs in, and he can revert to this mode at any time.
Communieation with the system while in control mode
takes place via the request processor. In this language
the user can call for any of the supported systems,
execute jobs, manipulate files, examine the state of the
system, the status of his running program, inspect in-
formation about his account, ete.

Of special note is that a user with a program in exe-
cution can cause that program to be suspended for an
indefinite time by reverting to control mode. From
control mode it is then possible to execute a sequence
of commands and subsequently resume running by
typing the command ‘GO’. This capability may be used

244 Spring Joint Computer Conference, 1969

File Control Block

11

Level I Directory .o\ \

Level II Directory

J/
4 Y ¥ ¥
.o file block file block file block
G ey

Figure 3—Random access file

to allow the user to solicit information about the run-
ning program or accomplish on-line error recovery.
In a similar way, the command ‘MI’ simulates & man-
ual interrupt that may be used for communication
between the request processor and other supported
systems. '

Accounting

Associated with every user is a unique job/user
number pair. The first number is used for billing pur-
poses; the second is a code used for identification.
Associated with each job/user number are three limits:

1. Maximum time—a time limit equal to the total
processor time that may be used. This number
is appropriately decremented at the conclusion
of a session at the console.

2. Saved file space—a maximum storage limit for
saved files.

3. Scrateh file space—a maximum storage limit for
temporary files.

When a user logs into the system, his time is auto-
matically set to one minute and his scratch file limit to
100 storage blocks. He may change these limits up to
the maximum limits associated with his job/user num-
ber.

When a console user logs off or when a batch job is
completed, the charges for that job are converted to a
CPU time equivalent and deducted from the user’s
remaining total time.

Charges are made for CPU time, some I/0, elapsed

time at the console, and saved storage space. Since sys-
tem overhead increases with increasing demand on the
system, the apparent CPU time required for a job will
be higher during peak hours. A user can get an indica-
tion of the current system loading by typing the com-
mand ‘TRAFFIC’. If he decides against running and
logs off at this point, no charge is incurred.

System characteristics

Several guidelines were adopted in writing the sys-
tem. Development has been modular with all modules
written strictly in tightly coded assembly language.
Since core is at a premium in our configuration, it was
imperative to keep the size of the resident monitor at
a minimum. To this end, even the request processor is
subject to memory swapping. In addition, the system
is hardware sensitive, i.e., particular I/O instructions
in the order code have been avoided because their
failure rate, over the years, has been disproportionately
high. Further, the system is highly parameterized.
For example, if a memory module fails, a parameter
can be changed and the system run in reduced memory.

With these guidelines in mind, the system can be
described roughly as follows. Associated with every
active user is a fixed length program status area (PSA)
together with a set of attached lists. PSA’s are linked
together into a user queue (Figure 4). In general, 0S-3
runs under the influence of this user queue, with re-
source allocation and I/O dependent upon the list
structures connected to a particular PSA. At any given

o

Idle
PSA

Batch
PSA

PSA PSA

PSA

Figure 4—User queue

moment, the system is running a single user whose
PSA is indicated by a pointer. Alteration of the con-
tents of this pointer occurs at the end of discrete time
intervals called quanta (see Figure 5). This general
picture is qualified by other considerations as will be
seen.

Physical memory is partitioned into four distinet
areas:

The resident monitor
Free storage
File core blocks

Available memory

0 8o =

The resident monitor occupies approximately 10K
words of core. PSA’s with associated lists and console
I/0 occupy space in free storage that can be dynami-
cally expanded. Two pages (2!* words per page) of file
core blocks are reserved for disk transfers. The re-
maining core is assigned to running users and swapped.
Any user can work in an address space of up to 2
words of virtual memory.

The system ineludes the following major modules:

«Scheduler —allocates processor time and
memory

. User 1/0 —interprets and handles user
generated requests for I/O

«Intsort —a recursive interrupt pro-
cessor

.I/0 Drivers —a set of integrated device
drivers

«Request Processor —the command language in-
terpreter

« Accounting —user accounting routines

This paper will consider only the scheduler and User
I/0 in greater detail.

User 1/0

User I/0 is a collection of routines that supervise the
peripheral device drivers and user requests for input
or output operations. This module is divided into two
principal sections: the mass storage device scheduler
and the executive request interpreter.

The mass storage (M.S.) device scheduler governs a
multi-priority transfer queue containing mass storage
1/0 requests. This queue is created by the M.S. device
scheduler in response to requests received from periph-
eral devices in operation as well as user programs. For
example, when the line printer driver exhausts its cur-
rent block of output, and the next block is requested,
the M.S. device scheduler interprets this request, as-

Program Status Area (PSA)

9 3

to next PSA

Registers

Virtual Memory Map

Register File

Logical Unit List

Name List ->

TOBOUND status wora

Teletype Buffer —_"]

Accounting and charzgter
Limiting Information string

Figure 5—Program status area

signs it a priority, and extends the transfer queue
accordingly.

The executive request processor interprets all execu-
tive requests (trapped instructions) generated by a user.
After decoding a request, the processor delivers control
to the appropriate routine. All I/O called for by a user
is included in the category of executive requests.

Time and memory allocation

Allocation of the time and physical memory oceurs
primarily within the Scheduler and is controlled by the
tables PAGETABLE and PAGETIME. Memory is
divided into pages by the hardware. Each page has a
page number associated with it which is used for re-
location and reference to the software tables. Each
page of physical memory has one word in PAGETABLE
and a corresponding word in PAGETIME. Part of
each PAGETABLE word serves as an indicator of the
status of the associated page; the remainder is an ad-
dress of a page access word which is used to map one
page of virtual memory into the associated physical
memory page. PAGETIME has one word per page
that indicates the time at which a user last referenced
the page in question. (See Figure 6.)

246 Spring Joint Computer Conference, 1969

PAGETABLE PAGETIME
» — TIME
Value v \
L] []

v

To Page Access Word
Figure 6—PAGETABLE and PAGETIME

When a page of memory is needed for swapping pur-
poses, a search is performed on PAGETABLE to find
the page with the smallest value. Value is infinite if the
system bit is set or zero if the occupied bit is not set.
In all other cases, a function is evaluated which is the
sum of

PAGETIME - clock + Value (I) 4]
where
1 is a set of status bits from PAGETABLE
clock is the current reading of the real time
clock
and
Value is given by a function that maps bit con-

figurations into time values.

PAGETIME is set to clock + 1 hour whenever a page
is referenced and is shifted right one position every
hour to prevent overflow. The values in PAGETIME
do not age linearly because of this shift; however, the
function is continuous and is not inaccurate in the
region where the clock is set back one hour and PAGE-
TIME entries shifted.

A user’s reference to his virtual memory occurs upon
detection of an illegal write interrupt, and the system is
then table driven based upon the above tables and the
virtual memory map (VMM) in the user’s PSA. Each
word in the VMM is either a page access word or a

pointer to a page access word, depending upon whether
the page in question is written in reentrant code (Figure
7.

)Processor time ig also allocated to each user by the
Scheduler. A running program pointer (RPSAPTR)
advances in a circle around the user queue. If a user’s
program is to be activated when RPSAPTR advances
to his PSA, then the following condition must be sat-
isfied:

TIMELEFT > O & ~IOBOUND (2

where

TIMELEFT—is the time left in the current quan-
tum

and

IOBOUND —is a status word in the PSA that
indicates whether the wuser is
awaiting the completion of an I/0
operation.

If no PSA satisfies condition 2, the RPSAPTR ad-
vances until a PSA that is not IOBOUND is found and
sets that program to run another quantum.

It is clear that a user who requires extensive swapping
will contribute significantly to the flow of page traffic

Virtual Memory Map
page access word

L =

non-reentrant

Nl

page

Library Tabl&

3

page access word N

reentrant

page

Figure 7—Page access word

0S-3 247

to and from the disk. Moreover, such a user will re-
ceive poor service if the page traffic flow is heavy.

In order to cope with this situation, a more sophisti-
cated scheduling arrangement is required. This kind of
extension to the scheduling algorithm should be adap-
tive in nature, that is the system should recognize the
existence of a problem situation and proceed to ‘tune
itself up.” Further, detection of the problem condition
as well as modification of the scheduling tacties must be
easily computable if an undesirable increase in system
overhead is to be avoided.

At present, OS-3 includes an initial version of a de-
mand scheduling strategy called the debogging algo-
rithm. This algorithm governs the allocation of pro-
cessor memory so as to minimize page traffic flow in the
presence of varying user requests.

Conceptually, the algorithm can be viewed as a high
priority pointer that is cycled around the user queue
independent of the RPSAPTR. If a user is designated
the high priority user, then his in-core pages increase in
value, and he is automatically placed second in line in
the swapping queue for requested pages.

In effect, the debogging strategy tends to delay users
whose page requests are heavy with respect to current
page traffic flow, and then run such users with greater
priority for a period of time during which they ean
occupy a substantial amount of core.

In particular, the algorithm governs the behavior of
the following independent categories of events:

1. Advancing the high priority pointer
2. Delaying troublemakers, and
3. Rehabilitating former troublemakers.

These categories are now described in greater detail.

The high priority pointer, HPP, is advanced to the
next user whenever one of the following conditions is
satisfied:

The user logs off (3)
The user becomes I/0 bound 4)
WCT + (PR, *2%1) > K2 5)

where

WCT —is the amount of wall clock time that has
elapsed since the HPP was advanced

PR; —is the page request word in the i*® user’s

PSA. PR; is incremented by one each
time the i*® user requests a page

and

K1, K2—are constants.

K1 influences the rate at which the HPP will shift to
the next user if the current user is busy swapping. K2
is simply a constant that governs the cycle rate of the
HPP.

If any of the conditions 3, 4, or 5 is satisfied, then

WCT: =8Q: = QCT:‘ =0 (6)
PRi:=0 (i=1,...n))
where
SQ —is the average length of the swapping
queue
and
QCT —is the number of useful quantums of com-

puting (i.e., time not spent in the idle
loop).

The second category concerns the troublemaker. A
user is a sroublemaker if only the mass storage wait bit
of his IOBOUND word is set, and if

PR; > K3 <~ (8

where

K3 —is a constant that determines the num-
ber of swap requests a user must generate
in order to qualify as a troublemaker.

The last troublemaker is defined as the troublemaker
that is located the greatest distance from the HPP in
the direction of pointer rotation. A troublemaker is
delayed by setting the delay bit in the IOBOUND
word of his PSA. The last troublemaker will, in fact,
be delayed if :

(5Q > K4) & (SQ > K5) ©)
where
SQ —is a counter that contains the current
length of the swapping queue
Sﬁ —the average length of the swapping queue
K4 —is a stabilizing factor
and

K5 —determines heavy page traffic flow.
If condition (9) is satisfied then

SQ: =8Q: =QCT: =0 (10)

248 Spring Joint Computer Conference, 1969

The final category provides for the rehabilitation of
former troublemakers. A former froublemaker is a user

whose delay bit is set. The closest former troublemaker
is defined to be the former roublemaker located the

13U 1 (04017103 1a) 8 81 Oi UCQOW il

least distance from the HPP in the direction of pointer

rotation. The closest former troublemaker may be reha-

bilitated by clearing his delay bit. This will occur when
(QCT > K6) & (SQ < K7) (11

where

K6 —is a stabilizing factor

and

-3

-
¥

—determines relatively light page traffic
flow.

The effect of the preceding debogging strategy is to
match available processor memory to user demands.
If this cannot be done, then an obvious troublemaker
is delayed, and, after a period of stabilization, the situ-
ation is sampled again to determine whether an accept-
able match has occurred. If not, then another trouble-
maker is delayed, and so forth, until a match is
achieved. Conversely, if user demands are not over-
loading the swapping queue, then former trouble-
makers are rehabilitated, one at a time. Of course, if
several users require large quantities of physical mem-
ory, the recidivism rate will be high.

System performance

System performance measured in terms of system

overhead tends to be quite good. If the total number of
user hours for a month is compared to the total amount
of billable CPU time for that period, it turns out that

the system spends slightly more than 65 percent time in
an idle loop. Of course, this might indicate that the sys-
tem is heavily I/0 bound; however, test measurements
indicate that this is not the case.

In another test, switching time was measured by
loading the system with a sample job mix. Jobs were
chosen from three categories:

1. Compute bound
2. 65K swap bound
3. I/0 bound

The 100 millisecond quantum was then reduced until no
useful computing took place. This break-even point
oceurred at four milliseconds.

ACKNOWLEDGMENTS

The authors are indebted to Steven K. Sullivan for his
incisive comments, useful criticisms, and system pro-
gramming support.

REFERENCES

1 J DAVIS
A brief description of OSCAR (Second Revision)
OSU Computer Center cc-68-45

2 J MEEKER

RADAR

0OSU Computer Center cc—68-30
3 F DAYTON W MASSIE

08-3 teletypewriter editor manual (Revised)
OSU Computer Center cc—68-17

	241
	242
	243
	244
	245
	246
	247
	248

