cs 411 ASSEM 11/3/72 p.'1

ASSEM is now the "standard" assembler for the CDC 3300 under
0S=3., COMPASS 1s still available, but is no longer "supported”.
ASSEM is about twice as fast as COMPASS and takes much less scratch
file space, It is similar to COMPASS, but there are some
incompatible differences, ASSEM also has a number of features
that COMPASS does not have. We shall first list the differences,
then give a brief description of ASSEM's features,

Differences between ASSEM and COMPASS.

1. ASSEM i= called by a control statement of the form:
ASSEM,D,I,L,P,R,S,X

The parameters have the same meanings as they do for COMPASS.
There is no M parameter., The input unit is not rewound unless it
is a file name, or the lun 50, If I=50 18 used, ASSEM does a
iiset destructive read® on the unit. (This rewinds the unit, and
if 4t is a non-saved unprotected file, puts it into destructive
read mode.) Also on I=50, ASSEM unequlps lun 50 when it is done.

One can use the "/R" notation on units. For example:
I=20/R,L=15/BR. Another difference is that ASSEM does not write
file marks on its output units when done. In a batch job, if
there 1s no D or L parameter, ASSEM will list diagnostics anyway.
On teletypes and TV's, diagnostics will not be listed unless the
D parameter is used. Of course, if a listing is obtained, the
diagnostics are printed on 1it.

2. The following COMPASS pseudo-ops are not recognized by ASSEM,
and willl cause an 0 diagnostic 1f encountered:

ASCII IFF IFT
ENDM IFN IFZ
FINIS IFP LIBM

3. ASSEM does not recognize literals, For example, the following
is not allowed: '
LDA =D1234567

4, ASSEM has a more general and more flexible macro capability
than COMPASS, but it is not compatible. See the section on macros,

5. ASSEM is less restrictive than COMPASS on the format of source
programs, In ASSEM, labels must start in column 1, but the operation
code can start in any column after column 1. At least one space :
1s required between the label (if any) and the op code field.

At least one space is required between the op code field and the
address field. If there is a comment, the address field must be
present and at least two spaces are required Letween the address
field and the comment. (Exception: the address field is not
required on instructions that do not have address fields, such as
AQE, CTI, etc.) Within the address field, single spaces are used ' -
to separate operands and operators, when the operators are words
such as AND, EQ, etc.

ASSEM p. 2

5. (econ.) ‘

ASSEM ignores blank lines, (COMPASS assembles a zero word
and flags an error on a blank line). If the input to ASSEM
consists of BCD records, columns 73 to 80 are ignored, except that
line numbers in columns 76 to 80 are picked up (if present) and
moved over to the left side of the listing., If the input to ASSEM
consists of a COSY or EDIT deck, columns 73 to 80 are included in
the processing of instructions,

6. ASSEM does not allow binary or decimal scaling factors on
fixed-point constants in OCT, DEC, and DECD pseudo-ops. Such
constants must be written as expressions. For example: '

COMPASS ASSEM
OCT 23B12 OCT 23%2t12D
DEC 495B14D-2 DEC 495%2t14 DIV (1012)

7. The power of‘ten scale factor on floating point constants in
DECD, which is denoted by D in COMPASS, can be specified by either
D or E in ASSEM., However, ASSEM does not allow a floating point
constant to begin with a point, For example, DECD .025 must

be written as DECD 0.025 ., I Y

8. If the IDENT pseudo-op is omitted, ASSEM does not complein,
but uses blanks for the program name.

9. COMPASS allows pseudo-ops of the form ¥*** $3%, etc., and
prints a line of stars, dollar signs, etc. (These are used to
"dress up" the listing). ASSEM does not recognize these pseudo-ops
and flags them as errors,

10, The principal features of ASSEM that distinguish it from
COMPASS are: (1) the macro facility; (2) address expressions;

(3) =tring variables; and (4) conditional assembly. These features
are described in subsequent sections. Here we present a list of
operation codes for which there are differences between ASSEM and
COMPASS, :

ASCII

This pseudo-op is not recognized by ASSEM. However, ASCII
constants can be used in address expressions (see the section on
expressions).

BCD
ASSEM allows the use of an expression to specify the number
of words, For example:

MESSIZE EQU 5
MESSAGE BCD MESSIZE,THIS IS AN EXAMPLE

BCD,C .
’ ASSEM allows the use of an expression to specify the number
of characters,

ASSEM P. 3

BOX

In COMPASS, BOX and EBOX produce a "box" on the listing
consisting of the first character found in the address field of
BOX. (If no address field is present, the box is made of asterisks).
On the lines between BOX and EBOX, COMPASS replaces column 1 by
blank, and puts the sides of the box in columns 2 and 72.

ASSEM ignorez the address field of BOX, and always uses
asterisks for the box, The sides of the box are in columns 0 and 73,
so that all information from column 1 through 72 is printed.

COMMON
DATA

ASSEM can assemble information to be placed in named data
blocks, To specify such blocks, use either COMMON or DATA, and
put the data block name in the label field (column 1), If there
is no label on COMMON or DATA, ASSEM behaves the same as COMPASS,

DEC

COMPASS allows only decimal constants in the "address" field
of DEC, but it allows binary and decimal scaling factors,

ASSEM allows expressions in a DEC and each expression deflnes
one word, Scaling factors are not allowed. Integer constants are
assumed to be decimal integers unless followed by a B, in which
case they are octal integers,

DECD

COMPASS allows double-word fixed point constants, with binary
or decimal scaling factors, if desired. It also allows floating
point constants, with a D to specify the decimal scaling factor,

ASSEM allows expressions for double-word fixed point constants,
and does not allow scaling factors. Integer constants are decimal
unless followed by a B, in which case they are octal. ASSEM also
allows floating point constants (no expressions), witha D or E to
specify the decimal scaling factor.

END
ASSEM uses END for two purposes: (1) to end macro prototypes;
(2) to end & subprogram,

ENDM
ASSEM does not recognize ENDM, Use END to end macro prototypes,

ENTRY

On the listing, ASSEM prints the value of the last symbol
appearing in the ENTRY declaration, This compensates for the fact
that ASSEM does not print a 1list of entry points, as COMPASS does,

EXIT
Within a macro prototype, EXIT can be used to terminate
sxpansion of the macro., (COMPASS doss not recognize EXIT).

ASSEM pP. 4

FINIS

ASSEM does not recognize FINIS and flags it as an error.
For ASSEM, one can use a file mark, or simply end of data, to
terminate the source deck,

GOTO

This pseudo-op causes ASSEM to "go to" the line with the
specified label and continue assembly from that point, See the
section on conditional assembly,

IDENT

For ASSEM, the IDENT pseudo-op can occur anywhere before the
END card, 1t simply defines the subprogram name, If no IDENT
card 1s found, ASSEM uses blanks for the subprogram name,

IF
The IF pseudo-op handles conditional assembly in ASSEM.
See the section on conditional assembly.

IFF
IFN
IFP
IFT
IFZ ,
These COMPASS conditional pseudo-ops are not recognized by
ASSEM,

INCLUDE

This ASSEM pseudo-op causes information in a specified file
to be included in the program, The information can be anything
that is acceptable to ASSEM, such as macro definitions, COMMON
or DATA declarations, etc. The "address" field of INCLUDE must
be the file name or logical unit number of the file to be
included. For example, INCLUDE #*IF will include the text in
the public file *IF (which contains macro definitions that simulate
the COMPASS pseudo-ops IFN, IFP, and IFZ). ’

JUMP .
COMPASS does not recognize the simulated JUMP instruction,
which enables transfer of control to any location in lower or
upper memory. In COMPASS, one must use the octal op code 77,
or use a VFD.

ASSEM recognizes JUMP, and allows a 16-bit address field.

KLUDGE

ASSEM has a string substitution feature (see the section on
string variables), in which the characters § and : are control
characters, Normally this feature is off, exnept during macro
expansions, or in case one has used the SET or RESET pseudo-ops,
To enable this feature, use the pseudo-instruction KLUDGE ON,
To disable it again, use KLUDGE OFF,

ASSEM p. 5

LIBM

ASSEM does not recognize the LIBM pseudo-op, and does not
have the "macro library" feature of COMPASS. One can use INCILUDE
(see description) to accomplish a similar effect.

LIST

The LIST pseudo-op, with no address field, has the same effect
in ASSEM as in COMPASS (turn listing on). In ASSEM, there are two
special forms of this pseudo-op, I1IIST DETAIL causes ASSEM to
list all the words generated by DEC, DECD, OCT, etc, (It normally
lists only the first word). LIST MACROS ~ causes ASSEM to list
macro expansions (which are normally not listed). Of course, no
listing at all occurs unless the L option is used in the parameter
string when ASSEM is called, Also see NOLIST,

LOCAL

This pseudo-op is used in ASSEM macro prototypes to declare
local symbols, See the section on macros,

MACRO
Both COMPASS and ASSEM have macro capabilities, but they are
very different., See the section on ASSEM's macro facility.

NAME
This pseudo-op i=s used in ASSEM macro prototypes to speclfy
a8 name for the macro, See the section on macros,

NDLIST

This is similar to LIST, but turns off the listing. In ASSEMN,
one can use NOLIST to suppress listing completely, NOLIST DETAIL
to turn off the "detail" listing, or NOLIST MACROS to suppress
li=sting of macro expansions, Also see LIST,

ocT

COMPASS allows only octal constants in the "address" field of
OCT, but 1t allows an optional binary scaling factor.

ASSEM allows expressions in an OCT and each expression defines
one word, Scaling factors are not allowed, Integer constants are
assumed to be octal integers unless followed by a D, in which case
they are decimal integers,

PCHANGE

This ASSEM pseudo-op can be used to change the names of.
pseudo-ops. For example, PCHANGE EXT,EXTRN changes the EXT
pseudo-op to EXTEN., This makes it posslble to have a macro with
the name EXT,

PRG

In ASSEM, if a label is used on PRG, subsequent lines will
be assembled into a data block whose name is the label. 1In other
words, a labeled PRG 18 the same as a labeled COMMON or DATA (see
description).

PUNCH

This ASSEM pseudo-op causes a BCD card to be punched (written)
on the same unit as the object deck (P or X parameter). The
information to be punched is specified by a string, enclosed in any

ASSEM p. 6

non-blank character. For example, PUNCH !'EXS,ERROR=2"
punches a BCD card with EXS,ERROR=2 on 1t.

REEQU
This ASSEM pseudo-op 18 the same as EQU, : except that it allows
& symbol: to be re-defined.

RESET :
This ASSEM pseudo-op is the same as SET (see which), except
that 1t allows a symbol to be re-defined.

SCAQ

ASSEM does not permit a relocatable address field on the
SCAQ instruction, This limitation can be circumvented by using
a VFD,

SET

This ASSEM pseudo-op defines a symbol to have a string value,
It also turns the "kludge" feature on.See the section on string
variables, :

SHA
SHAQ
SHQ
ASSEM does not permit relocatable addresses on these shift
instructions, VFD's can be used to get around this restriction.

STOP v

This ASSEM pseudo-op is the same as SBJP, except that STOP
allows an address field of up to 12 bits, Thus, STOP 0 is
exactly the same as SBJP, while STOP 1 does a SBJP and zeroes
lower memory.

VFD

ASSEM does not recognize the I (ASCII) fleld in VFD's., One
can use ASCII constants in A or O fields, however, ASSEM allows
expressions in both A (address expression) and O (octal) fields.

V¥D,C

ASSEM allows a C modifier on VFD. The effect is similar to
BCD,C. A VFD,C on one line can leave a word partly filled (up to
a character boundary), and a VFD,C on the next line can fill that
word and go on to the next one, if desired.

VFD,B '

ASSEM al=o allows a B modifier on VFD. A VFD,B on one line
can leave a word partly filled (to any bit position in the word),
and a VFD,B on the next line can put more bits into that word,

ASSEM | p. 7

Address expressions.

In COMPASS, the only operators allowed in address expressions
are + and -, ASSEM handles many arithmetic and logical operations,
and recognizes several forms of constants, It also allows expressions
to be used in places where COMPASS permits only constants, such as
the "address" fields of DEC, DECD, OCT, and O (octal) fields in
VFD's, ASSEM allows any form of constant in the operation code
field, provided that its value is in the range 0 to ?78.

Expressions in ASSEM consist of operators, operands, and
parentheses (), which can be nested. Operators are listed below,
in order of precedence (highest to lowest).

?

* / BYTE DIV MOD
$ -

EQ GE GT LE LT NE
AND

OR XOR

Operators that are denoted by words (such as AND, EQ, etc.) must be
separated from their operands by a single space on each side,

(These words can alszo be used as symbols in a program). Two spaces
in a2 row terminates an address field. Operands have integer values,
which may be relocatable, and operators perform integer arjithmetic
on these values, Relocatable values can only be added or subtracted.
Absolute values can participate in any operations. Intermediate
results during evaluation of an expression can be up to 3 words

(72 bits) in length. A description of the various operators follows,

+ - .
When used as binary operators (two operands), + denotes addition
and - denotes subtraction,

When used as unary operators (one operand), + is ignored, and
the - denotes change of sign (complement all bits),

*

The * can be used both as an operator, denoting multiplication,
and as an operand, denoting the location of the current instruction,
It is also used in the special form *¥,

/ A
The / denotes division, The division must go exactly, with
Zero remainder, or an A error will be flagged. Also see DIV,

t
The t denotes exponentiation (raise to power). The exponent
must be an integer in the range 0 to 47,

AND
This is a logical operator, which performs a bit-for-bit
logical "and" on i1ts operands,

ASSEM _ p. 8

BYTE

This operation "forces" a number to be divisible by a specified
divisor. The definition i1s: A BYTE B is equal to (A <= B)*B ,
(Divide A by B, discarding remainder, then multiply quotient by B).

DIV

This operation denotes division, with the remainder (if any)
discarded. The only difference between DIV and / is that DIV does
not ‘complain' about a non-zero remainder,

EQ GE GT IE LT NE

These operations compare their operands, to see if they are
=, >, >, <, <, or #, respectively, and produce a result of 1 if
the comparison is satisfied, O if not.

MOD
The result of this operation is the remainder from division.
For example, 17 MOD 5 produces the result 2,

OR
This is a logical operation, that performs a bit-for-bit
inclusive "or" on its operands.

XOR
Thi=s is a2 logical operation, that performs a bit-for-bit
exclusive "or"” on 1ts operands,

The following kinds of items can be used as operands in an
expression:
constants
symbols
¥*

functions

Constants can be numerical, Hollerith, ASCII, or hexadecimal,
A numerlcal constant consists of one or more digits, It is an
octal constant if it 1s followed by a B; it is a decimal constant
if followed by a D, If neither a B nor D follows it, it is assumed
to be decimal unless it appears in an OCT instruction, in an 0 field
of a VFD, or in an operation code field. An octal constant must
not contain the digits 8 or 9.

Hollerith, ASCII, and hexadecimal constants can be denoted in
either of two ways, One way is to write a decimal integer specifying
the number of characters, then the mode specifier (H, K, or X), and
then the characters themselves, The other way is to write the
mode specifier first (H, K, or X), followed by a string of characters
enclosed in apostrophes ('S Any characters can appear in Hollerith
or ASCII constants, except that in the second form, &n apostrophe
within the string muet be denoted by two apostrophes in a row.

Only hexadecimal characters (0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F) can
appear in a hexadecimal constant, In all cases, the value of the

ASSEM P. 9

constant is an integer, right-adjusted, zero filled on the left.
The following table shows the number of bits per character, the
maxyimum number of charscters allowed, and the codes used for
characters in each kind of constant,

Max no.
Mode Bits/char of chars Code
H (Hollerith) 6 8 BCD
K (ASCII) 8 6 ASCII (bit 7 = 1)
X (hexadecimal) 4 12 hexadecimal

The following examples show the octal value that results from
each of several cases,

3HA'B = H'A''B! = 00211422
3KA'B = K'A''B! o= 60323702
3X9A2 = X'9A2! = 00004642

Symbols have the same form as in COMPASS (one to eight letters,
digits, or periods, starting with a letter). They are defined by
appearing in the label field of a machine instruction or of certain
pseudo-ops. In ASSEM, a symbol may 2l1s0o be defined by appearing
in a SET or RESET instruction, which assigns a character string as
a value, Symbols whose values are numeric (not string) can be
used in expressions, They may be defined on a subsequent line,
except in the case of certain pseudo instructions (such as BSS,

EQU’ etco). ’

The * can be used as an operand to denote the location of the
current instruction. It thus has a relocatable value.

There are three functions which can be used in expressions,
In each case, the function consists of a letter (L, N, or T) denoting
which function is desired, then an apostrophe{'), and then a symbol
which is the argument of the function, The functions are described
below,

L'symbol -
The symbol must have a string value, and the value of this
function 1s the Length (number of characters in the string).

N!'symbol

The symbol must have & string value, and the value of the
function is the Number of "items" in the string (number of commas
plus 1). '

T'symbol

This function can be used on any symbol, and its value i=s 0O if
the symbol is undefined, 1 if the symbol has a numeric value (or has
been declared external), and 2 if the symbol ras a string value.

The special notation #¥* can be used instead of an expression
in address fields that reference memory (either 15-bit word addresses
or 17-bit character addresses) or in flelds that refer to the

ASSEM p. 10

register file (6-bit field). It can also be used in A, C, and O
fields of a VFD. In each case, the fleld is filled with 1-bits,
Unlike COMPASS, ASSEM does not allow the *¥* notation to be used
in 12-bit mask fields (INS, SSIM, etc.), nor in index or channel
fields.,

ASSEM's expression evaluator has some peculiar quirks, If it
refuses to accept an expression that it ought to, one can usually
rearrange the expression (change the order of factors, for example)
to make it acceptable,

Conditional assembly.

In COMPASS, one can use the pseudo-instructions IFF, IFN,
IFP, IFT, and IFZ to assemble a group of instructions only if some
condition 1s satisfied. If the condition is not satisfied, a
specified number of lines is skipped (not processed),

ASSEM does not recognize an& of the five pseudo-ops mentioned
above, Instead, it has two pseudo-ops, IF and GOTO, which provide
a more powerful conditi onal assembly facility than that of COMPASS.

440 5 b

These operations are discussed below.

A A M W WaLwt e W e waats (== vp 11 4 e LiiERll L3LA

IF expression,line

The expression is evaluated (in pass 1), If the value is
0 (false), the "line" following the comma is ignored. If the value
is non-zero (true), the information following the comma is processed
just like any line of code, If the character following the comma
is non-blank, then the "line" has a label., If it is blank, the
next non-blank character 1s the operation code, The "line" to be
conditionally processed can be any machine or pseudo-operation,
including another IF., The expression following IF usually includes
compare operators (EQ, LT, etc.), but this is not required.
Here are some examples:

IF A EQ B, OCT 473
IF T'X EQ 0,X EQU *
IF CTR GT 0, GOTO .LOOP

GOTO .label

This pseudo-op causes the assembler to "go to" the line on
which the .label appears, process that line, and go on from there,
GOTO can jump either forward or backward. Theilabels used with
GOTO must start with a pericd. On the line which is labeled, the
label must start in column 1 (the period must be in col. 1). The
rest of the line can be an instruction, or can be left blank,
Here 1s an example:

IF A LT B, GOTO .AB
ENA B
GOTO ,BA

.AB

ENA A

.BA '

ASSEM p. 11

If the value of the symbol A is less than the value of B, an
ENA A 1is assembled; otherwise, an ENA B 1is assembled.
(Both A and B must have absolute numerical values; relocatable
values eannot be compared,)

The public file *IF contains an ASSEM macro that simulates
COMPASS pseudo-ops IFN, IFP, and IFZ, It also includes an IFM
(1f minus). If one has a COMPASS program in which these p=eudo-ops
are used, one can insert an INCLUDE *IF to enable ASSEM to handle
the program, The IFN, IFP, IFZ pseudo-ops become macro calls,

String variables,

In COMPASS, the formal parameters in a macro prototype are
"string variables"”, When a macro is called, the actual parameters,
which are strings of characters, are assigned to the corresponding
formal parameters, As the body of the macro i3 processed, esch
reference to & formal parameter is replaced by the string which
it represents, It is also possible to compare strings in the
macro body, using IFF and IFT, and parts of the macro body can be

assembled or skipped according to the results of the comparisons,

ASSEM also has a string-variable feature which is invoked
automatically by a macro call. In ASSEM, however, this feature
can be used independently of macros, One can substitute an entire
string, or portions of the string (which cannot be done in COMPASS).
ASSEM does not have a string comparison capability, but one can
convert strings (thet are not too long) to integer values and
compare the integers. .

In ASSEM, a macre call assigns the strings constituting the
actual parameters to the corresponding formal parameters (see next
section). The SET and RESET operations explicitly carry out
a string assignment, The forms are:

SET symbol,string
RESET symbol,string

RESET is the same as SET except that it allows a symbol to be
re-defined. The string is not enclosed in brackets, It consists
of all the characters after the comma, to and including the last
non-blank character in the line., String substitution is not
automatic in ASSEM (as it is in COMPASS macros). The 3 1s used to
specify that substitution is to take place. One can also use
nsubscripts" to specify that only a part of the string is to be
substituted., The forms and actions are described below,

$symbol :

If the symbol has a string value, the $ cnd the symbol are
replaced by the entire string which is the value of the symbol.
If the symbol has a numeric value, the form (§symbol) is replaced
by & Y4~charscter decimal integer representing its value,

ASSEM p. 12

$symbol (expression) :

The symbol must have a string value, The expression is
evaluated, and must produce & positive integer value, The entire
form (shown above) is replaced by the n'th item in the string,
where n 1s the value of the expression. Items in a string are
separated by commas, For example, the third item consists of all
chnrac?ers between the second and third commas (net including the
commas),

$symbol (expression,expression) :

The symbol must have a string value., The expressions are
evaluated, and must produce positive integer values (the second
expression may be zero). The entire form (shown above) is
replaced by a substring consisting of the n characters beginning
with the k'th character of the string, where k (starting
character position) is the value of the first expression, and
n (number of charscters) is the value of the second expression,

In this substitution, commas are treated like any cother characters,

Here are some examples.
SET S,ABC,D,*/Z :

This assigns to S the string ABC,D,*/Z. The form $S would be
replaced by the entire string. $S(2) would be replaced by D.
And, $S(3,5) would be replaced by C,D,*., Note that the L and N
functions can be very useful in working with strings, For example,
given the value of S shown above, SET SS,$S(3) assigns to SS
the string */2., Then #SS(1,L'SS=1) would be replaced by */,

The eolon (:) also plays a special role, It serves as a
"vanishing delimiter"”., For example, SET T,ABC. Then the form
$T:K5 becomes ABCK5. The colon serves to separate T and K, but
disappears after the substitution is made, If one actually needs
a § or : at some point, one uses $$ or :: to represent it.

The § and : are normally treated like any other characters.
They only assume the special meanings demcribed above when the
"kludge" feature 18 on., This feature is turned on when a macro is
called, and turned off when the macro expansion is complete, It
12 also turned on by SET or RESET, or by using the KLUDGE ON
pseudo-op, In these cases, it remains on until a KLUDGE OFF, or
until the END of the subprogram.

To compare strings, one can use the Hollerith constant
feature, For example, if X has a string value, then
H'$X' EQ H'ABC' would be true (1) if the value of X is ABC, and
frlse (0) if not., However, note that H'OABC' and H'ABC' are
equal (both have the octal value 00212223), Also, no more than
eight characters are allowed in a Hollerith constant.

ASSEM p. 13
Macros,

The conditional assembly and string variable features of
ASSEM are especially useful in macros., These features make
ASSEM's macro facility more powerful than that of COMPASS. 1In
both assemblers, a macro is defined by a "prototype". In COMPASS,
all macro prototypes must appear at the beginning of the subprogram,
In ASSEM, a macro prototype must appear before the first call on
the macro. In both assemblers, there may be some formal parameters
associated with the macro. A macro call specifies actual
parameters that are strings of characters, which are assigned to
the formal parameters, Then the body of the macro is processad
as if 1t were source code just being read. When a formal parameter
‘1s encountered in th» macro body, the corresponding actual
parameter may be substituted for it. In COMPASS, this substitution
takes place automatically, In ASSEM, the substitution occurs only
Af a § precedes the formal psrameter, and one can use subscripts to
specify that only part of the actual parameter is to be substituted
(see the previous section).

The basic form of a macro prototype in ASSEM is:

MACRO P1,P2,P3
NAME symbol

s e

END

The MACRO pseudo-op begins the prototype and specifies up to 3

formal parameters. Any valid symbols can be used as formal parameters,
and any or all of them may be omitted. For example, MACRO ,,A

has only one parameter, the third one, with the first two being
omitted.

The NAME pseudo-op specifies a name for the macro, and also
indicates where ASSEN is te begin expansion of the body. A single
macro prototype can have several names, The NAME line has one of
two forms: ‘

NAME symbol
NAME symbol,line

The first form simply specifies‘a name and starting point. The
gecond form also specifies a "line" which is the first thing
processed when the macro is called by the specified name,

The END pseudo-op terminates the prototype and also ends the
processing of a macro call., One can use the EXIT pseude-op within
the macro body to terminate processing.

The LOCAL pseudo-op can be used in macro bodies to declare
symbols that are "local" te the macro. It has the ferm:
LOCAL symbol,symbol, ...

The LOCAL pseudo-op should be executed before the first occurrence
of any ef the symbols declared to be local., It must follow the

ASSEM p. 14

NAME line, so that it will be executed during the processing of
the macro body.

There is aspeclel form of the SET and RESET pseudo-ops which
can be useful in macros. The form is:

SET symbol+
RESET symbol+

As usuesl, RESET i1s the same as SET, except that it permits a symbel
te be re-defined. In either form, the next line from the next
lower level of processing is obtained, and is assigned to the
symbol, In a "level one" macro call, this will be the next line

of the source program. This makes it possible fer a macro te
"read" lines following the line that called the maecro.

A macre call in ASSEM has the ferm
label name ,mod address

The <name> must be the symbol specified in a NAME line in a macre
prototype. <label>, <mod>, and <address> are all optional, If
present, they are strings of characters, which are assigned te

the first, second, and third formal parameters respectively

(1f the formal parameters exist). The comma shown above between
<name> and <mod> is included sas the first character of the second
parameter, and can in fact be any special character, such as %, +,
etc. If there is no "first" formal parameter, but there is a label
on the macro call, the label is defined as the current location
(equivalent toe label EQU *),

Here are some examples of macros:

Example 1.
MACRO A
NAME ADD, RESET OP,FAD
NAME SUB, RESET OP,FSB
LDAQ $z(1)
$OP $2(2)
STAQ $2(3)
END

This prototype has two names, ADD #nd SUB, A call such as ADD 4,B,C
means A+B—>C, in floating point arithmetic. The expansions ef twe
calls are shown below,

Call: ADD A,B,C
Expansion: LDAQ A
FAD B
STAQ C
Call: SUB X+2,Y,ZI1CH
Expansion: LDAQ X+2
: FSB Y

STAQ ZILCH

Example 2,

MACRO
NAME
NAME
NAME
NAME
NAME
NAME
NAME
NAME
NAME
ENQ
CNTL$M
END

This pretotype has 9 names,

ASSEM p. 15

+M,LUN

BKSP,CODE REEQU 7
CLEAR,CODE REEQU 1
FWSP,CODE REEQU 8
RELEASE,CODE REEQU 3
REWIND,CODE REEQU &4
SEFB,CODE REEQU 6
SEFF,CODE REEQU 5
STATUS,CODE REEQU O
WFM,CODE REEQU 2
$CODE

$LUN

Calls on this macre perferm various

file eperations, such as BEWIND, WFM, etc.

Call: WFM LUN
Expansion: ENQ 0002
CNTL LUN
(Nete: LUN in the macro protetype is local, LUN in the
expansion is global).
Call: REWIND,I OUTUNIT
Expansion: ENQ 0004
CNTL,I OUTUNIT
Call: FWSP 0,2
Expansion: ENQ 0008
CNTL 0,2
Nete that CODE is net local te the macre. If the line ENQ $CODE

in the prototype were written ENQ CODE, then all the expansions

would centain ENQ CODE and the last value assigned te CODE weould

be used in all cases,

Example 3.

MACRO
NAME
LOCAL
ENI
ENQ
SHAQ
SHQ
SQCH
IF
IJD
END

LOOP

s M,A
BINOCT
LOOP
gA(z)"l’l

-3
3
$A(1),1

H'$M' EQ H',SZ', ASE,S O
LOOP,1

ASSENM - p. 16

Example 3 (cen).

A call such as BINOCT ADDR,N converts the number in the
A-register to octal ferm for printing, stering N ectal digits with
the left-mest digit at character address ADDR. If the medifier

SZ 18 used oen BINOCT, leading zerees are suppressed,

Call: BINOCT LINE+7,4
Expansien: ENI ho1.1
LOOP ENQ 0
SHAQ -3
SHQ 3
SQCH LINE+7,1
IJD LOOP,1
(Nete: ne ASE,S 0 in this expansien. Leading zerees are
stered.)
Call: BINOCT,SZ ZiP,7
Expansion: ENI 7-1,1
LOOP ENQ 0
SHA -3
SHQ 3
SQCH Z1pP,1
ASE,S 0
1JD LOOP,1

This expansioen includes the ASE,S O to exit frem the loep when
(A) becoemes O, thereby suppressing leading zeroes, Note that
1OOP is declared local, so that the macre can be called several
times, and the references te LOOP in each call de not conflict
with those in ether calls,

Example 4, »

MACRO s s LUNS
NAME UNEQUIP
LOCAL CTRH

CTR EQU 1

.LOOP
ENI ‘ 2,1
XREQ $LUNS(CTR)

CTR REEQU CTR+1
IF CTR LE N'LUNS, GOTO .LOOP
END

A call en this macro unequips ene er several logical units,
Call: UNEQUIP X

Expansion: ENI 2,1
XREQ X

(X is presumably equated to an integer denoting a legical unit number),

Example 4 (cen.)

Call: UNEQUIP

Expansien: ENI
. XBREQ

ENI
XREQ

ENI
XREQ

ASSEM p. 17

34,9,50

2,1
34
2,1
9
2,1
50

In this macre,'the local symbel CTR is used as a subscript in

$LUNS(CTR)

te select successzive items in the address field.

The funetien N'LUNS tells how many items there are,

ASSEM does noet list maero expansiens unless the pseude-ep

LIST MACROS

has been executed.

If this eperatien is net used,

then the octel form ef the firszt werd generated by each macre
call is printed at the left of the line centaining the call,

	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17

