Mth 351 Notes

COC 33006 Computer

(The following information refers specifically to the
CDC 3300 computer, and does not necessariiy apply to other
computers,) ,
20

L
remgreepon e Steeke pn
.o

A word is a storage element composed of 24 bits: |, ---
23 10
. . 6 6 6 b

Each word contains 4 6-bit-characters: ']

i
PRI |

23 1817 1211 &
Most instructions refer to words or portions of words. A
few instructions refer to characters.

5 0

Registers. A register is astorage element which has special
purposes. The CDC 3300 has the following registers:

24 15 ~
Aj | Accumulator B1f ig
2 15 ';
QT l Auxiliary accumulator, B2} E?rén?giers
’ or extension of A. Hired
15 p
48 ‘ 83' b
E ! | Double-length W,
" accumulator. Used
in double-precision
and floating point,
24 ~
Register 00 ?
file 01 ;64 words, Some of these registers
Faster than have special purposes. The
76 imain memory. others are available for
77 temporary storage of cata.
y

—

Control Registers: These registers are in the control unit.

15 Program ccunter,
b} . Holds memory address
! | from which instruction
was obtained.
E r 24 iFunction register.

! Holds instruction being
per formed.

Mth 351 Notes page 2

Memory. The main memory consists of magnetic core storage
with a 1.25x4s cycle time.

24

06000 ‘1 There are 215: 32,768 words of
00001 / 24 bits each, or

. - A 2 "= 131,072 characters of

. Y 32 760 : . ?

) ? 6-bits.

: words
_ \ Memory can be expanded to as
;9;;? } much as 2] = 262,144 words.

: -

Main memory can hold instructions
and data.

Instruction Formats., Most instructions occupy one word, but
some occupy two or. three words. There are many different for-
mats. In all cases, the left-most six bits determine the
operation {of group of operations). The format of the instruct-
ion depends on which operation code is specified in the Tirst

6 b]tS. Here are some of the 1-word instruction formats:

Most 6 1 2 15
word-addressed : o -
instructions

]8 1716 1514 0

operation 4 A W !
ord address
code ! ; a

t

!

indirect bit ' index j00=no modification

0 =no effect field Cl = add (Bl1)to address
‘i L
]

1 = indirect addressing 0= " (B2) "
- (fetch new bits 17-0 and 1= " (B3) o
repeat address calculation)

Other 6 3 15
word-addressed L j 3
instructions
23 18 171514 1\ 0
operation‘*___J | ___word address (no index
code 1 modification or indirect

sub-operation addressing)

Mth 351 Notes page 3

6 1 17
Character-addressed T _J
instructions

23 1817 16 A 0
; T
operation ___ ! L character address

code . . e .
% index 0=no modificaticn

field d=add (B1) or (B2) to
address {depending
on-op code)

oN
AVSS

15

Other
instructions

23 4 18174\1514 To

operation ’ l other purposes (depend-
code sub-operation "9 on instruction)

~~~~~

arithmetic. There is an optional Business Data Processor {237
which can be added to the computer. This unit does decimal
arithmetic and character handling. All other arithmetic in
the 3300 is binary, one's complement arithmetic.

In one's complement notation, the left-most bit determines
the sign of a number. If the left-most bit is 0, the numbper
is positive; if 1, negative. To change the sign of a number,
all bits are changed {complemented). All zeroes (0000) de-
notes +0, all ones (1111) denotes -0. A number can be
lengthened by extending its sign bit: +5=0101=00000101,
-5=1010=11111010. Addition is performed by simply adding
two binary numbers, and if a carry occurs from the  left, adding
one to the right-most bit (end-around carry).

In the 3300, if the result of an arithmetic operation
is -0, it is changed to +0. For example: 111110 (-1)

+ 000001 (+1)

111111, (-0)
changed to
000000 (+0)

There are 3 modes of binary arithmetic in the 3300.
The numbers indicate the number of bits in the operands and
results.



M+h 351 Hotes page 4

Single-precision addition: (24)y+{2h)->(24) 'Ovmrfiow sets]
fixed point subtraction: (24)-{2%) -~ (24; pn indicator /
muxt1911catlon (2L) %( 24) = (L48)
division: {48)/(24)—>(2h)quotient,
(24)rema1nder

{(L8)Y+(48)—>(48) {bVGrflﬂw ShLS)

Double-precision addition:
~Tixed point subtraction: (48)-{48)—>(i48) \an indicator
multiplication: (48)*(h8)—;(96)

division: {98)/(48)—~>(LB)quotient,
(48)remainder

Floating point addition, subtraction, multiplication, arx
division oberate on 48-bit floating point numbers:

sigéj | T T

exponent  fraction



Mth 351 Notes

Character codes

- Ke . ‘
: éﬁgi gggg 5PunZh Ptzgier
iﬁOCta!} CbaraCtercharacter
0 1 o0 | 0 0
o1 0 i 1
02 .2 2 2
L 03 03 3 3
| ol 4 b
|05 5 | 5 5
06 6 6 ! 6
07 7 L7 i 7
P10 8 8 | 8
1L 9 L9 i 9
12 2,8 L
: i3 3:8 = =
.14 4,8 7
P og 5,8 <
16 6,8 %
17 7,8 Hwe care [
20 1 + ! +
21 12,1 At A
P22 12,2 B | B
23 12,3 c C
Lok 12,4 p ! D
25 | 12,5 £ | E
26 12,6 F Foo
27 1 12,7 c | &
6+ 12,8 H | H
.31 12,9 I 1|
32 12,0 <
i 33 112,38 .
"3k li2,4,80 ) ) !
i 35 }12,5,8] N
; 36 12,6,8 P—y
| 37 112,7,8 L

page 5

Key .
;§§L gggg Punch _P?%ggeé
(octal) gharactef ...aracter
4O 11 — —
b1 11,1 J J_
L2 11,2 K K
3 11,3 L L
"L 11,4 M M
. L5 11,5 N i
L6 11,6 0 0
47 11,7 P P
50 | 11,8 o g
51 11,9 R R
52 11,0 v
53 1 11,3,81 $ $
5t (11,4,8; % x
55 111,5,8 T
56 111,6,8 L L
57 111,7,8 >
60 Blank . Blank iBlank |
61 01 |/ i/
62 ! 0,2 s S
63 0,3 T T
C bh 0,k U U
. 65 0,5 v Voo
i 66 1 0,6 W W
L 67 0,7 X X
. 70 . 0,8 Y Y
t 71 0,9 Z Z_
L 72 10,2,8 1
| 73 10,3,8 | , |
. 7k {0,4,8 ( C
i 75 '0,5,8 -
| 76 10,6,8 L=
77 10,7,8 LA




Mth 351 Notes page 6

Punched Cards. (Also called tabulating cards, tab cards,
foTTerith cards, and IBM cards.)

A punched card is a card 7 3/8" long and 3 1/L" wide
which is used in various devices that can punch holes in
such cards.and/or sense the presence of holes. Usually,
one side of the card is printed, When looking at the
printed face of the card, one will find that either the
upper left or upper right corner is cut. The other corners
may be square or rounded. See figure below.

/ 12 or +
, 11 or -

12

cut corner Fows

O Weree —O

N

)
~J
W0
[0 9]
O

80 columns

There are 80 columns and 12 rows, defining 960 positions
where holes may be punched in the card. There are two common
ways of representing information in terms of punched holes.
One way is the "binary" card. In this mode, any combination
of holes may be punched, all combinations are meaningful.
This mode allows a maximum of information to be punched into
the card, but it is difficult for humans to interpret such
cards. (Also, the presence of a large number of holes
tends to weaken a card.)

The other way of representing information is to use
each column to represent a single character (digit, letter,
or special character). This mode, which is called "Hollerith"
or “"BCD" uses a code of 1, 2, or 3 punches in a column to
designate a character. Only certain combinations of holes
are meaningful., There are K? characters, plus blank (no
punches), which are commonly used. See page 5 for a list
of characters and the corresponding card codes.

Card-handling machines. There are many different kinds of
machines which can use punched cards, such as sorters, print-
ers, etc. Here we shall be concerned with the following:

card reader. Attached to the CDC 3300 is a photoelectric
card reader which can read 1200 cards per minute. This machine
can read cards in either the binary or BCD modes, as commanded
by the computer. However, if the first column of the card




Mth 351 Notes ' page 7

contains a 7 and a 9 punch, the card is read as a binary card,
regardless of which other holes may be punched. The table
on page 5 gives the octal (so-called BCD) codes which the

reader supplies to the computer when it reads a BCD card.

Card punch. . -Also attached to the CDC 3300 is a card
punch wﬁicE can punch cards in either binary or BCD mode

at a rate of 250 cards per minute. This relatively slow
device is used primarily to punch binary forms of assembled
‘and compiled programs.

~ Key punch. A key punch has a keyboard with letters,
digits, special characters, and various control buttons on
it. The key punch can punch and/or read cards, feeding them
from a hopper at the top right of the machine and stacking
them at top left. Therfe are a number of IBM key punches in
the computer center, which are used by human operators to
prepare punched cards. The kéy punches are used to punch
programs and data for input to computers, or for use in
other card machines.

Line Printer, The principal output device on the CDC 3300
is a line printer which can print as many as 136 characters
on a line, at a rate of 1000 lines per minute. There are
63 different characters which can be printed, plus blank,
The chart on page 5 shows the characters that are available,
and the octal (BCD) codes which must be sent to the print-
er by the computer to print these characters.

The printer prints 10 characters per inch on a line,
6 lines per inch, 66 lines per page. (In ordinary usage,
fewer than 66 lines are printed, to allow a margin at top
and bottom of the page.)

Input-Output Programming. The programming for the computer
To handle input from the card reader and output to the line
printer is rather complicated. To avoid these complexities
(for a while, at least), we shall use a set of subroutines
for input and output which are easy to use. These sub-
routines are described on a later page.

COMPASS

COMPASS (COMPrehensive ASSembler) is an assembly pro-
gram for the CDC 3300 which enables us to write programs
in a symbolic form., The assembler translates the symbolic
form into the actual binary operation codes and addresses
which the computer can interpret. Thus, we use ADA to de-
note "Add to A-"'; COMPASS translates ADA into the operation



Mth 351 HNotes page 8

code 30 (octal). We can use a symbol such as X as the name
of a storage location in memory; COMPASS translates this into
an actual machine address. We do not need to know what the
actual address is.-

In COMPASS, there is a set of pre-defined mnemonic
operation codes (such as LDA, ADA, etc.) which represent
machine operation codes. There are also some 'pseudo-
instructions' which tell COMPASS to reserve storage for
data, or to do various other things. Some of these sym-
bolic instructions are listed on following pages.

To refer to storage locations containing instructions
or data, we use names of our own choosing. These symbolic
names may consist of 1 to 8 letters, digits, or periods (.),
of which the first character must be a letter. All symbols
used in-a program must be defined, either by appearing in
the location field of some instruction, or by being declaread
as external to the program.

A COMPASS-language program consists of a sequence of
symbolic instructions. These are written one per line, and
punched one per card., The card is divided into several
fields, as illustrated below.

LOCATION| |OPERATION,MODIFIERS:ADDRESS FIELD { COMMENTS | IDENT
1 81910 = 1920 - GO 5] 72172 80

Location field. Columns 1 to 8. May be blank, or may con-
tain a 1 to 8 character symbol (see above) placed anywhere
in the field. .

Column 9. Must be blank.

Operation field. The mnemonic operation code or pseudo-
Thstruction, and any modifiers following it, must start in
column 10. It is terminated by the first blank column.

One may also use a two-digit octal operation code in columns
10 and 11. (If column 10 is blank, the operation field

is assumed to be absent and is assembled as zero.)

Address field. The address field may start anywhere after
The blank that terminates the operation field, but must start
no later- than column 40. It is terminated by the first

blank or column 73. The address field may consist of several
sub-fields, separated by commas. It usually contains a
symbol, a decimal integer (positive or negative), or an octal
integer (positive or negative, consisting of 1 or more octal
digits followed by ngh), or it may consist of several of
these items connected by "+ or "-" signs. The asterisk (¥)




&)
0]
W

Mth 351 ilotes %!

may be used in the address field like a symbol, and repres-
ents the location of the instruction jtself. If the address
field consists solely of the notation ¥** , it will be
assembled with the address field filled with 1-bits.

Comments field. Comments or remarks may be written after
the address field, up to column 72,

Icentification. Columns 73 to 80 are treated as a comment
by COMPASS. This field is usually left blank, or used for
identification, or sequence numbers.

Comment card. If column 1 contains an asterisk (%), the
entire card is treated as a comment.

lote: It is recommended that the address field begin in
Column 20, and comments in column L1, for legibility of the
orinted listing.

Operation Codes

Here we list some of the operation codes available in
COMPASS. We include some jump, ltoad, store, arithmetic,
shift, and logical instructions. In the following table,
the octal operation code is in the leftmost column, then
the COMPASS mnemonic code, the form of the address (m means
a memory address, Kk stands for a shift parameter), name
and description of the operation. (A) denotes contents of
A, (Q) denotes contents of Q, etc. The arrow — means
"replaces the contents of". Thus, (m)-— (A) means that the
contents of m are copied into the A register. A bar over
a quantity (for example: (m)) denotes Hcomplement of' (all
G-bits changed to 1-bits and vice-versa). (m+1) denotes
contents of location m+ 1 (it does not mean contents of
location m, plus 1).

Jump Instructiohs

Ci uJdr m Unconditional Jump. Take next instruction from
location m, {Jump to m.)
00.7 RTJ m Return Jump. Store program counter (P) in

address field (bits 14-0)
at location m, and take
next instruction from
location m+ 1.

03.0 AZJ,EQ m A Zero Jump, Equal. If (A)=0, jump to m. Other-
wise, take next instruction
in sequence (+0 and -0 are
treated as 0.)



Mth 351 Notes page 10

03
03.
03.
03.
03.

3
L

2

6

AZJ,NE
AZJ,GE
AZJ,LT
AQJ, EQ
AQJ,NE
AQJ,GE

03.7 AQJ,LT

20 LDA m
21 LDQ m
2L LCA m
25 LDAQ m
26 LCAQ m
Lo STA m
L1 STQ m
L5 STAQ m
55.3 EAQ

55.7 AQE

30 ADA m
31 SBA m
32 ADAQ m
33 SBAQ m
50 MUA m
51 DVA m
56 MUAQ m
57 DVAC m

m A Zero Jump, Not Equal. If (A) # 0, Jump to m.
m A Zero Jump, Greater or Equal. If (A4) =0, jump
to m. (Does not jump if
(Ay = -0.)

m A Zero Jump, Less Than. If (A) < 0, jump to m.
(Jumps if (A) = -0.)

m AQ Jump, Equal. If(A) = {Q), jump to m.
(+0 = -0)

m  AQ Jump, Not EQual. If {(A) # (Q), jump to m.
(+0 = -0)

m AQ Jump, Greater or Equal. If (A) 2 (Q), jump

to m. (+0 > -0)
m- AQ Jump, Less Than. If (A) < (Q), jump to m.
(+0 > -0)

Load and Store Instructions

Loag A. $m2'~>$ ).
toad Q. {m) =(Q).
Load Complement A, (m) —>(A}.
Load AQ. (m) =>(A), (m+1) =>(0).
Load Complement AQ. (m) —=(A), (m=+T)—>(Q).
Store A. (A)—>(m).
Store Q. (Q) —>(m).
Store AQ. (A)—>(m), (Q)—>(m+1).
E to AQ. (E) —(AQ). {No address field.;
AQ to E. (AQ) —>(E). "

Arithmetic Instructions

Add to A. (A) + (m)—>(A).
Subtract from A. (A) - (m)—>(A).
Add to AQ. (AQ) + (m,m +1)—>(AQ).
Subtract from AQ.(AQ) - {m,m +1)—>(AQ)
Multiply A. (A) * (m)—=(CQA).
DIVIDE A. (AQ) / (m)—>(A), remainder to {(Q).
Multiply AQ. (AQ) * (m,m+1)—>(AQE).
DIVIODE AQ. (AQE) /(m,m+1) —>(AQ), remaén?er
—> (E).

Shift Instructions

12.0 SHA k Shift A, iIf k =2 0, shift (A} left end-around

k places.
If k < 0, shift (A) right sign-extended
-k places,



iieh 351 Notes page 11

shift Instructions (cont.)

12.4 SHQ k Shift Q. Same as SHA, except shift (Q).

13.0 SHAQ k Shift AQ. Same as SHA, except shift (AQ).

Logical Instructions

27 LDL m Load Logicai;v (QIN(m) —(A).

35 SSAm Selectively Set A. (BN (m) == (A).

36 SCA m Selectively Complément A. (Afxz(mfﬂ—aéAfﬁb(Excfuiive
o " OR

s

37. LPA m Logical Product A. (RN (m) — ().

pseudo Instructions

Here we list some of the more impor tant pseudo instruct-

"~ jons in COMPASS.

<blank> IDENT m

The first instruction of each subprogram must be an
IDENT. The 'm" here is the name of the subprogram {8 char-
acters or lessj.

<blank> END m

The last instruction of each subprogram must be an END.
The "m' is normally a symbolic location at which the sub-
program is to be started. This symbol must aiso appear on
an ENTRY card. The address Field (m) should be left blank
if this subprogram is not to receive control from SCOPE.

<pblank> FINIS <blank>

This instruction immediately follows the END of the
last subprogram to be assembled. It terminates assembly
and causes COMPASS to return control to SCOPL.

<blank> ENTRY M5y, eee m.

The symbols MysMos oo appearing in the address field

of an ENTRY card are declared as entry points to the sub-
program, which means that they can be referred to by other



Mth 351 Notes : page 12

subprograms. These symbols must be defined in this sub-
program.
<blank> EXT My Mys eeo s m
The symbols m,,m,, ... are symbols used in address fields
of instructions in th?s subprogram, which refer to entry

points of other subprograms. They must not be defined in
this subprogram.

<symbol or blank> BSS m

This instruction reserves m words of storage space
in the subprogram. If a symbol appears in the location
field, it is defined as the address of the first word of
the block of words reserved. '

<symbol or blank> oCT m],mz, ves oM

The my, My, ... are signed or unsigned octal integers,

of 1 to 8 octal digits. They are assembled into consecutive
words in the program. If a symbol appears in the location
field, it is defined as the address of the first octal in-
teger.

<symbol or blank> DEC MysMys oes AU

Similar to OCT, except that decimal integers are con-
verted to binary form and assembled into the program.

Input-0Litput Subrqutine

INCHAR (Entry points: INCHAR, LCI, CHEOF.)

INCHAR reads cards and supplies one character each time
it is called. See page 5 for the codes supplied for various
characters. Where there is a string of consecutive blanks
on the card, INCHAR returns only one blank. INCHAR supplies
a blank at the end of each card.

Calling sequence: RTJ INCHAR

Returns with next character in (A)S_G (rest of A zero).

The Last Character In is also in location LCI.
Clobbers Q. Restores Bl1, B2, B3.

To check for End-of-File, store an address in location
CHEOF. When an end-of-file card is read, the subroutine
will jump to this address. (For example, to cause jump
to EOFCHK when EOF is read, do the instructions ENA EOFCHK,



Mth 351 Notes | ‘ page 13

SWA CHEOF .) This should be done befote first call on
INCHAR, If it is not done, an end-of-file will cause
abnormal termination of job.

QUTCHAR (Entry Points: OUTCHAR,LCO, OUTLINE, OUTPAGE.)
OUTCHAR, OUTLINE, and OUTPAGE are three subroutines
which provide for printing outputs on the line printer.
Characters to be printed are supplied one at a time to
QUTCHAR. OUTCHAR stores these characters in a buffer
(an area of memory). When 100 characters have been stored,
OUTCHAR causes the line to be printed, and resets, ready
for another 100 characters, OUTLINE can be called to
print whatever is in the buffer. OUTPAGE is called to
eject the paper to the top of the next page.

Calling sequence: ‘
Character (A)S_O (Rest of A does not matter.)

RTJ OUTCHAR
Stores character in buffer, prints line if 100 characters
have beeri supplied since last line was printed. Last
Charactet Qut is also stored ih LCO. Clobbers A and Q,
restores BT, B2, and B3. ‘

Calling sequence: RTJ OUTLINE
Causes a line to be printed, containing the characters
which have been supplied to OUTCHAR since last line was print-
ed. If no characters have been supplied, prints blank line.
Clobbers 4, Q, restores Bl, B2, B3.

Calling sequence: RTJ OUTPAGE '

If any characters have been supplied to OUTCHAR
since last line was printed, causes a line to be printed.
Then causes the paper to be ejected to the top of the next
page. The next line will be printed about one inch from
the top of the new page. Clobbers A, Q, restores B1, B2,
B3.

INDEC (Entry points: INDEC, NODIGS.)

INDEC reads characters from INCHAR and converts a
positive or negative decimal integer to binary form,
allowing up to 48 bits in the binary form. (Maximum
size of decimal integer: 140, 737, 488, 355, 327.)
INDEC begins by examining the character in LCI (Last
Character In). It ignores all characters until it gets
a minus sign (-) or a decimal digit. Then it accepts
decimal digits, converting to binary, until it receives
a character from INCHAR that is not a decimal digit.

if the number was preceded by a minus sign, the decimal
integer is complemented (after converting to binary).




Mth 351 HNotes ' page 14

Calling sequence: . RTJ INDEC :

Returns with binary equivalent of decimal integer
in AQ. The terminating character is in LCI. The number
of digits that the number contained (counting leading
zeroes, if any) is in location NODIGS. Clobbers E.
Restores Bl1, B2, B3.

OUTDEC (Entry point: GUTDEC.)

CUTDEC accepts a 48-bit positive or negative binary
integer, which it converts to a decimal integer with sign,
and outputs it to OUTCHAR. The sign (+ or 7?’15 printed
first, then the decimal digits with leading zeroes sup-
pressed (at least one digit is printed). A space (blank)
is output after the number. If the current line does not
have enough room left for the number, OUTDEC calls OUTLINE
to print the current line, and the number will be printed
on the next line. This avoids "splitting" a number on
two lines. ’

Calling sequence: Binary integer—>{(AQ)
RTJ  OUTDEC

A AR N

Clobbers A, Q, E. Restores Bl, B2, B3.



Mth 351 Hotes _ : paée 15

Debugging Aids., We have two subroutines which can be called
to print contents of registers and of selected areas of mem-
ory. Calls to these subroutines can be inserted at various
places in-a program to obtain information which may .be of
help in determining what is wrong with the program. The
subroutines are described beiow. . ,

REGDUMP (Entry point: REGDUMP.) = ., .
Calling sequence: RTJ ~ REGDUMP

REGDUMP first saves the contents of various registers.
Then it calls OUTLINE to print any characters which may have
been given to OUTCHAR., It next prints one line giving the
contents (in octal) of P, A, Q, E, Bl1, B2, B3. (The value
of P is the octal location of the instruction following
the RTJ REGDUMP.) Finally, REGDUMP restores the contents
of the registers and returns to the program.

(Be sure to declare REGDUMP as external if you insert
calls to REGDUMP into a program.)

MEMDUMP (Entry point: MEMDUMP.)
Calling sequence consists of three words:

RTJ MEMDUMP
00 FWA
co LWA

Like REGDUMP, MEMDUMP saves the registers and calls
QUTLINE., Then it prints a line giving the value of P
in octal (which is the location of the word following the
RTJ MEMDUMP.) Next it prints (in octal) the contents of
all the memory locations from FWA (First Word Address) to
LWA (Last Word Address), inclusive. These are printed
8 words per line, with the octal locaticn of the first
word in each line printed at the left of the page. FWA
and LWA can be any symbolic locations in the program,
(Usual COMPASS address expressions may be used.) Finally,
the registers are restored, and control is returned to the
instruction following the OGO LWA,

Be sure to declare MEMDUMP as external. The memory
map will be useful in determining the correspondence be-
tween symbolic addresses and the absolute (octal) address-
es printed by MEMDUMP.

COMPASS Error Messages. If there is an error in a line
of a COMPASS program, an error flag (a single letter) is
printed at the left of the listing. Here are some of the
error flags which you may encounter. (It is possible to




Mth 351 Notes page 16

have more than one error in the same lirie.)

A Address field error.

D Dupiicate symbol {symbol defined more than once).

L Location field error.

M Modifier subfield of operation code field is in error,
0 Operation code error.

U Undefined symbol in address field.

If any errors are detected by COMPASS, the program will
neither be loaded nor run,

More Input-Qutput Subroutines
QUTDECE (Entry point: OQUTDECF)

OUTDECF accepts a 48-bit positive or negative binary
integer, which it converts to a decimal integer, and out-
puts it to OUTCHAR. The format of the output may be
controlied by two numbers, n and ¢, which are specified
in the word foliowing the RTJ OUTDECF . OUTDECF will
print n digits, or more if necessary to represent the
number correctly. If ¢ = 0, the sign (+ or -} will be
printed in front of the number, leading zeroes (if any)
are converted to blanks {and the sign is moved over ac-
cordingly), and a trailing blank is output. Other values
of ¢ have the following effects:

1: does not convert leading zeroes to blanks
(prints zeroes).

c = 2: does not print the sign,

¢ = b: does not print the trailing blank.

it

C

Combinations of these effects may be obtained by adding
the values given above. For example, ¢ = 3 has the
effect of both 1 and 2.

If the current line does not have enough room for
the number, OUTDECF calls OUTLINE to print the current
line, and the number will be printed on the next line.

.-Calling sequence:

Binary integer —>(AQ)

RTJ QUTDECF
00 n, c (0<sn<s31,0<c<7)
Clobbers A, Q, E. Restores Bl, B2, B3.

IND (Entry point: IND)

IND reads characters from INCHAR and converts a
positive or negative decimal number to 2h:2h fixed point
binary form (2% bit integer portion, 24 bit fraction).
10 begins by examining the character in LCI. It ignores



Mth 351 Notes page 17

all characters until it gets a minus sign (-), a decimal
digit, or a point (,). Then it accepts decimal digits,

a point (if it hasn't already gotten one), and more digits.
wWhen a noni-digit, non-point is received from INCHAR, it
converts the number to a 2L4:24 binary number, and comple-
ments it if a minus sign preceded the number. Decimal
numbers to be read by IND may start with a minus-sign or
no sign. (A plus sign would be ignored.)  They may cont-
ain from 0 to 7 digits before the point and from O to 7
digits after the point. The point may be omitted if the
number is an integer. The integer portion must not exceed
8388607 in magnitude, and the fraction portion must not
exceed .9999999 . There must not be any blanks in the
middle of the number, and the number must be entirely

on one card.

Calling sequence: RTJ IND
Returns with 24:24 binary equivalent of decimal
number in AQ. The terminating character is in LCI.
Clobbers E. Restores B1, B2, B3.

Another Output Subroutine

QUTD (Entry point: 0OUTD)

OUTD accepts a 24:24 fixed point binary number, which
it converts to decimal form with sign, and outputs it to
OUTDECF and OUTCHAR. The sign (+ or -) is always printed.
7 digits are printed before the point (leading zeroes are
converted to blanks), and 7 digits are printed after the
soint., A trailing blank is output after the number. OUT-
LINE is called before printing the number if there is not
enough room left on the current line for the number .

Calling sequence: 24:24 binary number —> (AQ)
RTJ QUTD
Clobbers A, 3, E. Restores Bl, B2, B3.

Fixed-point Arithmetic

One method of using a computer to calculate with num-
bers that are not integers is the technique known as "fixed
point arithmetic". In this method, one assumes that each
number has a point somewhere in it, and programs the comp-
uter to handle the numbers properly. In general, the tech-
nique requires shifting numbers to line up the points be-
fore adding or subtracting, and shifting operands in mult-
iplication and division so as to get the proper results.
Here we shall discuss a special case of fixed point arith-



Mth 351 Notes page 18

metic for the CDGC 3300 inwhich thepoint is in the same place

in all numbers. This will simplify things, although it poses
some restrictions on the range and accuracy of numbers we

can handle,

In this fixed point scheme, we shall use 2 words (48
bits) for each number, and we shall suppose that the point
is between the two words. This means we have 24 bits be-
fore the point (integer part), and 24 bits after it (frac-
tion part), so we shall refer to this as nok:24 arithmetic',
Of course, the left-most bit is the sign bit, so we really
have only 23 bits for the magnitude of the integer portion.
This allows our numbers to range from -8388607 to +3388607,
and to have an accuracy of 24 bits in the fraction, which
is roughly equivalent to 7 decimal places.

Let us now show how to do arithmetic operations with
oly: 2L numbers. In each case below, we shall assume we want
to do our operation with two 24:24 operands X and Y, and
store the 24:24 resuit in Z. In actual practice, one of
the operands may already be in AQ, or we may wish to do
further calculations with the result and not bother stor-
ing it.

Addition and subtraction are very simple, since the
point 1s in the same position in both operands, and no
shifting is required to line up the points.

add subtract
LDAQ X LDAQ X
ABAQ Y ' SBAQ Y
STAQ Z STAQ Z

In multiplication, we multiply two 24:24 numbers, and
get a 48:48 result {the number of places after the point
“n the result is the sum of the number of places after the
points in the two operands). This result is in AQE with
the point between AQ and E. It would be nice if we could
simply shift AQE left 24 places to put the point between
A and Q, where we want it to be. Unfor tunately, the 3300
does not have any instructions that shift AQE. So, we
have to do something like the following:

multiply

LDAQ X
MUAQ Y
EUA
SHAQ 24
STAQ Z



Mth 351 Wotes page 19

Division is a little more complicated. We want to
nlace the riumerator (dividend) in AQE as a k8:48 number,
and then divide it by the demominator (divisor), which
is a 2L:2L number. This will give us a 2h:24 quotient in
AQ, which is just the result we want.  The numerator must
have its upper half placed in (Q) end its lower half in
(E upper). (A) and (E tower) should be filled with sign
bits. Here is one method of doing this:

A Q EU EL
[Signs | num[ber | signs |

divide )
LDQ X Upper half of X to (Q).
SHQ -23 Generate sign bits in (Q).
LDA X+1 Lower half of X to (A)..
AQE (AQ) to (E), sets up (E) properly.
LDA X Upper half of X to (A).
SHAQ -24 Shift into (Q), filling (A) with sign bits.
DVAQ Y Divide by Y {at tast:l)
STAQ Z Store the quotient.
(A shorter method is shown below.)

Combined multiplication and division. Wwe note that
the result of a multiplication is a L8048 number in AQE,
and that this is exactiy the form required for the num-
erator of a division., Hence, if we have to do a multip-
lication followed by a division, we can save a lot of
trouble. Suppose we wish to compute W:=X*Y/L, where
¥, Y, Z, and W are all 2L:2h4 numbers. Here is how we
can do it:

LDAQ X X to (AQ).

MUAD Y X*Y in 48:48 form in (AQE).
DVAQ Z X*Y /I in 24:24 form in (AQ).
STAQ W Store resuit.

This suggests a simpler way of doing division. 7o
compute Z:=X/Y, we could rewrite it as Z:=1#X/Y and do
the following:

ENA 1 These two instructions place a |
ENQ O in 24:24 form in (AQ).

MUAQ X 1%X in 48:48 form in (AQE).

DVAQ Y 1%X/Y in 24:24 form in (AQ).
STAQ Z Store result.

This requires fewer instructions than the method suggested

above, but it might take a little more time, since the MUAQ
instruction takes more time to do than instructions such as
104 and SHAQ.



Mth 351 Hotes page 20

Constants. One can use the JECD pseudo-instruction
to catse COMPASS to assemble 24L:2L4 constants and place them
in a program. One must nmot use a decimal point in such
constants, because COMPASS will assenmble a fleating point
constant if a decimal point appears. \le must express the
number as an integer with a power of ten factor (D3, D-5, etc.
and binary factor B24. Here are a few examples. Suppose
we wish to have the comstants 3, 40C, 5.87, -.0042, -12,
and -83.5 stored in our program in 24:24 form. This could
be done with the following instruction:

DECD  3B24,L4D2B24,587D-2024, -42D-4B24, -12824,-835D-1B24

Each constant will occupy two words and they will be stored
in consecutive locations in storage.

Square root. Here we give a square root subroutine
for 2%:2h% numbers, to illustrate some programming technigues.,
The subroutine uses Newton's method, in which a new appro-
ximation XNEW i5 computed from the old one XOLD by the for-
mula XNEW :=({XOLD + Y/XOLD)/2, where Y is the number whose
square root is sought. This formula is applied repeatedly
until the new and old approximations are nearly the same.

The calling sequence for the subroutine is:

2424 number (Y) —=(AQ)
RTJ SORT
24124 result G/Y)-—>(AQ)

If Y is negative, the subroutine simply returns with the
original number Y in AQ.

SCRT uJp *%
AZJ,LT SCRT If Y < 0, forget it!
STAQ Y Save Y,
SCAQ 0 Scale Y to test for zero.
AZJ,EQ SQRT If Y = 0, we are done already.
LDAQ INIT Initial XOLD is 1.
uJp LOOP+1 Go to LOCOP.

LOOP LDAQ ANEW Pick up XHEW to use as XOLD.
STAQ XOoLD Set XOLD.

LDAQ  Y+1 Set up Y.
AQE in (AQE) for
LDAQ  Y-1 division.

- DVAQ  XOLD Divide Y by XOLD.
ADAQ  XOLD Add XOLD to result,
SHAQ -1 Divide by 2.
STAQ  ANEW Store new approximation.
SBAZ  XOLD Subtract XOLD for comparison.
AZJ,NE LOOP If XNEW-XOLD is not
SHAQ 22 very small, do
AZJ,NE LOOP another iteration.
LDAQ XNEW It is smail, return with
uJp SQRT answer in (AQ).



Mth 351 Notes page 21

(Square Root Subroutine, cont.)

: OCT 0

Y 8SS 2
0oCT 0

INIT DECD 1824

XOLD BSS 2

XHEW  BSS 2

Input. Here we give the program and flow chart for
the 20725 input subroutine IND, described on page 16.

EXT LCI;INCHAR,INDEC,NODIGS

IND UJP **

ENA 0

STA SIGN Zero to Sign Flag.

LDA LCI Pick up Last Character In.
TD  ASG 10 Is character a digit?

uJp DIG Yes, go read integer part.

ASE LoB No. Is it a minus sign?

uJpP M No.

ENA,S -0 Yes, set sign flag to one's.

RD STA SIGN
RTJ INCHAR Fetch next character,

uJp TD Go and test it.
MM ASE 338 Is character a point?
uJP NP No.
EWNA 0 Yes, put zero in
STA INT integer part.
UJpP RF Go look for fraction part.
HP ENA 0 Set sign flag to zero.
yJdpe RD
0IG RTJ INDEC Read integer part
STQ INT and store it,
LDA LCI Check Last Char In.
ASE 33B Is it a point?
udJdp MNF No, there is no fraction part.
RF RTJ INCHAR Yes, read next character.
ASG 1C Is it a digit?
uJp FR Yes, go read fraction part.
NF ENQ 0 No, zero to fraction part (Q).
uJdpP ITA
FR  RTJ INDEC Read fraction part
STAQ  FRAC+! and store it.
LOA NODIGS Get no. of digits in fraction.
SHA 1 Muttiply by 2.
ADA pDv Add to divide instruction.
STA DIV Store modified divide instr.
LDA FRAC+2 Put fraction part
AQE in {AQE) FOR

LDAQ FRAC division.



Mth 351 Notes page 22

(Input subroutine, cont.)

DIV 00 Divide by 10*KODIGS
ITA LDA INT Pick up integer part.
SSH  SIGN Test sign flag.
uJe IND Flag=0, number is positive.
XCA,S -0 Flag=1, change
X0Q,S =0 sign of number.
UJP  IND Return,
DV DVAQ PT-2 Divide instruction to be modified.
T DBEC ’.“,1“0,100n 1DL Table of powers
DECD 1D5,1D6,107 of ten.
SIGN BSS i Sign flag.
INT BSS i Storage for integer:
FRAC OoCT 0,0,0,0 Storage for fraction.
FLOW CHART
H+H ._>sign @
v T,
LCI —>CHAR <_sign D7
D’ vo
"““’*—r~no N — 1!
<GHRTET - 2(E) =]
’ A/ W V
o . N T T
"‘\JEP_EE_,;,J (_return )
|
N ST TR
no.—=>INT ‘ (Mj”\<-CHAR_" -7
: yeg
— /4
-'C"‘ LCT""“ “?‘,.._Eg...“; ”"“’-}‘SIGN
| yes ‘ e N
(D)ol THCHAR (" INCHAR |
‘\J‘?k._ e’ I ‘\ T S
; : :
A d :
% .A\
*’CHAR<10?\""‘” v O
yes §O~—>Q |
‘ INDEC D g <:bHAR»u n§>_,
_,.l_._m i ‘ \Lno ;
Wy i .
(no. | et —>STGN | |
[T S -
| } ‘ « [ o—Int |
COINT—>A e 1}
i ‘ f\\,
B3 2

.

4'-“



Mth 351 Notes page 23

Floating Point Arithmetic

"Floating Point" is the name given to a method of
doing calculations in a computer, which provides for a
wide range of values of numbers with a reasonable amount

of

accuracy, and eliminates problems of shifting, etc., which

are present in fixed point arithmetic, Floating point is

analogous to the "scientific notation' which is often usec

in dealing with very large and very small numbers. For

example, one writes 3.708*1020 instead of writing a 21-
digit number, In a binary computer, it is. more convenient

to use a power of 2 as a factor instead of a power of 10.

There are various ways to represent floating point numbers

in computers. Here we shall discuss the scheme used in
the CDC 3300, which is a fairly typical method.

In the 3300, a non-zero number X is represented in

floating point by finding a fraction f and an integer
such that x = f * 2P , and 1/2 < |f] <1 . If pis in

the range -1023 < p s +1023 , the number can be represen

in 3300 floating point. If not, the number is too large
(overflow) or too small {underflow) to be represented.

P

ted

This means that x itself must be in the (approximate)range

10"306 < |x} < 10308 . A special case is the number O,

which is represented by taking f = 0 and p = -1023, which

turns out to be "all 0" in the machine representation.

The machine representation of a floating point number
in the 3300 occupies 2 words, of which 11 bits are used for
the exponent (p) and 37 bits are used for the fraction (f).

One problem is that both f and p need a sign bit",
since either may be positive or negative. This problem
is solved by representing f in usual one's complement
notation, and by “biasing" p so as to make it appear
positive. If p is negative, it is biased by adding
17?78 to it; if it is non-negative, the bias is 20008.

Here is a chart showing how various values of p are
represented:

true true biased true true bijased

exponent exponent exponent exponent exponent exponent
{decimal) (octal) {octal) (decimal) (octal) (octa!)

+1023 +1777 3777 - 0 -0000 1777 * .

+1022 +1776 3776 - 1 -0001 1776

+ T2 +0002 2002 1022 -1776 0001

+ 1 +3001 2001 -1023 -1777 0000

+ 0 +0000 2000

* see next page



Mth 351 Notes page 24

* (From previous page) A biased exponent of "minus zetro"

(1777) is handled correctly by the machine's circuits, but
is not generated as a result of a floating point operation.
That is, a zero exponent will always come out "pius zero"

(2000).

As can be seen, the biased exponents range from 0000
(representing -1023) to 3777 (representing +1023), with 1777
not used. It thus requires 11 bits to represent tiie expo-
nent. These 11 bits are placed between the sign bit of the
fraction and the other 36 bits, as shown below:

1 11 36

sign bit biased fraction
of fraction exponent

A positive number has a "0" in the sign bit, the biased
exponent as described previously, and the 36 bits denoting
the magnitude of the fraction. A negative number is the
one's complement of the positive number of equal magnitude.,
That is, in changing the sign of a floating point number ,
all 48 bits (including the exponent) are complemented.

Here are some example:

+1 =1 *2] =,100

i 1
%0l = =
2 2 2 -.ﬁ8*2 -—20014000000000008

2

+2.375 = 10,011, = .10011,%2 :.1001102*22=.u68*22

2:
= 2002L466000000000
+.1875= .0011, = .1102*2'2==.6 %272 = 1775600000000000

-1=5776377777777777  -2.375=577531777777777171
-.1875=6002177777777777 .5 = 2000400000000000 .25
= 1776400000000000

As a result of this manner of representing floating
point numbers, one can test a floating point number for
positive, negative, non-zero, or zero by testing the upper
half of it (AZJ,LT for example). If one "looks' at float-
ing point numbers as if they were fixed point, larger
numbers look larger than smaller ones.



Mmth 351 Notes page 25

Arithmetic with floating point numbers requires special
actions. This can be done either by subroutines (software)
or by special circuits (hardware). In the 3300, floating
point hardware is available at extra cost (the OSU machine
has this hardware). when this is present, one can use the
floating point instructions (FAD, FSB, FMU, FDV) to operate
on floating point numbers. These instructions all operate
on two floating point numbers, one of which is in AQ, the
other being in M and M+1 {(two consecutive words in
memory). The result is a floating point number in AQ. All
four instructions use the E register. Indirect addressing
and index modification can be used, if desired.

FAD M (AQ) + (M,M+1)—>(AQ) FMU M (AQ)*(M,M+1)—>(AQ)
FSB M (AQ) - (M,M+1) —>(AQ) FOV M (AQ)/(M,M+1) —>(AQ)

In working with floating point numbers, one uses LDAQ
to load a number, LCAQ to load the negative {complement) of
a number, and STAQ to store a number. One can use [xoa,s -0 ;
X0Q,S -0] to change the sign of a number in AQ. To com-
pare two floating point numbers X and Y , one can do
LDAQ X ; FSB Y ; AZJ,LT .. (or AZJ,NE , AZJ,GE , or AZJ,EQ).

Constarits. One can use the DECD pseudo-instruction to cause’
COMPASS to assemble floating point constants and place them
in a program. Such constants must contain a decimal point.

A power of ten scale factor (D] may be used, but not a bi-
nary factor (B). For example, to have the constants 3, 400,

5.87, -.0042, -12, -83.5, -h*%O"]S, and 3.09*1032 stored
in a program, we can write:

DECD  3.,4.D2,5.87,-.00k2,-12,,-83.5,-4.D0-15,3.09D32

Each floating point constant will occupy two words and
they will be stored in successive loacations in storage.

Square root. Here is a square root subroutine for float-
ing point numbers. It uses Newton's method, the same as
the fixed point subroutine (page 2C). The calling sequence
is:

Floating point number (Y)—>(AQ)
RTJ FSQRT
Floating point result (/¥) in (AQ)



Mth 351 Notes

“pageV26

If Y is negative, the subroutine returhs with the original

number Y in  AQ.

FSQRT  UJP
AZJ,LT
AZJ,EQ
STAQ

1a

SHA
ADA
SSA

FLOOP  STAQ
LDAQ
FDV
FAD
FDV
STAQ
SBAQ
AZJ,NE

oLin N

SHAQ
AZJ,EC

NOTYET LDAQ
uJp

DONE LDAG
udpe

HBIAS  OCT
FB 0CT
FY BSS
XoLD BSS
XMNEW BSS

Float and Fix.

*%
FSQRT
FSQRT
FY
=1

HBIAS
FB

XOLD
FY .
XOLD
XOLD
=202.0
XNEW
XOLD
NOTYET
22
DONE
XNEW
FLOOP
XNEW
FSCRT

10000000
L0090

2

2

2

If Y < 0, return.
If Y = 0, we are done.
Store Y.
Shift right 1 and add 1/2 bias
to divide exponent by 2.
Set left-most fraction bit to .
This is our initial approximation.
Set XOLD .
Fetch Y. v
Divide by quotient.
Add XOLD to quotient.
Divide by 2. SRR
Store new approximation.
Subtract XOLD for comparison.
If XNEW and XOLD are.riot almost
the same, do another iteration.
If they are, we are done.
Pick up XNEW and
repeat loop.
Pick up answer (XNEW) ~
and return.,

Half of bias (2000).
left-most bit of fraction.

Here are subroutines for converting 24:2h

Fixed point numbers to floating point and vice-versa. The
calling sequences are: ’

2L : 24 number —>( AQ)

RTJ FLOAT

Float. pt. equiv. in (AQ)

Float. pt. number =>{AQ)
RTJ FIX
24324 equiv. in (AQ)

The FIX subroutine does not check for overflow or under-
flow; it will give an erroneous result if the floating
point number is too large or too small to be represented

in 2L4:24 form.



Mth 351 Notes page 27

FLOAT  UJP *%
STI RB1,1 Save Bl.
SCAQ 23,1 Scale number. 23-(no. of shifts)-—=B1,
AZJ,EQ  RBI I1f number is zero, we are done,
SHAQ =11 Position fraction.
STA X Save upper half.
TIA 1 B1—=>A, (True exponent.)
INA 20008 Add bias;
ANA 37778 Eliminate stray bits.
SHA 12 Shift to position exponent.
SCA X Assemble number. Exponent js
complemented if number is negative.
RB1 ENI ** 1 Restore Bl.
uJdp FLOAT Return.
FIX UJP **
AZJ,EQ FIX If number is zero, return.
STI RX1,1 Save Bl,
STA S Remember sign.
AZJ,GE PLUS 1f number is not positive,
X0A,S -0 complement it to
X0Q,S -0 make it positive.
PLUS STA X Save upper half of number.
SHA -12 Shift exponent to right end of A,
INA 760008 Remove bias to get true exponent.
TAI 1 put it in Bl.
LDA X Pick up upper half of number.
ANA 77778 Wipe out the exponent,
SHAQ -12,1 Shift [(true exponent)-12] places
to position number.
SSH S Test sign of original number.
uJp RX1 It was +, we are done,
X0A,S -0 It was -, we have to
complement the number.
RX1 ENI ®% ] Restore Bl,
uJp FIX Return.
X BSS - Sto&age.

S BSS 1



	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27

