o S S

180
ASSEMBLY LANGUAGE
SUBROUTINES

Lance A. Leventhal
Winthrop Saville

280°
Assembly Language
Subroutines

280
Assembly Language
Subroutines

Lance A. Leventhal
Winthrop Saville

Osborne/McGraw-Hill
Berkeley, California

Disclaimer of Warranties and Limitation of Liabilities

The authors have taken due care in preparing this book and the programs in it,
including research, development, and testing to ascertain their effectiveness. The
authors and the publisher make no expressed or implied warranty of any kind with
regard to these programs or the supplementary documentation in this book. In no
event shall the authors or the publisher be liable for incidental or consequential
damages in connection with or arising out of the furnishing, performance, or use of
any of these programs.

Z80 is a registered trademark of Zilog, Inc.

ZID and ZSID are trademarks of Digital Research Corp.
ED is a product of Digital Research Corp.

IBM is a registered trademark of IBM.

Teletype is a registered trademark of Teletype Corp.

Published by
Osborne/McGraw-Hill
2600 Tenth Street
Berkeley, California 94710
U.S.A.

For information on translations and book distributors outside of the U.S.A., please write to Osborne/
McGraw-Hill at the above address.

7280° ASSEMBLY LANGUAGE SUBROUTINES

Copyright ©1983 by McGraw-Hill, Inc. All rights reserved. Printed in the United States of America.
Except as permitted under the Copyright Act of 1976, no part of this publication may be reproduced or
distributed in any form or by any means, or stored in a data base or retrieval system, without the prior
written permission of the publisher, with the exception that the program listings may be entered, stored,
and executed in a computer system, but they may not be reproduced for publication.

1234567890 DODO 89876543
ISBN 0-931988-91-8

Cover by Jean Lake

Text design by Paul Butzler

Contents

WN —

Om@>IT500~J0 01

Preface vii

General Programming Methods 1

Implementing Additional Instructions and Addressing Modes
Common Programming Errors 139

Introduction to the Program Section 161

Code Conversion 167

Array Manipulation and Indexing 195

Arithmetic 217

Bit Manipulation and Shifts 267

String Manipulation 288

Array Operations 319

Input/Output 356

Interrupts 394

Z80 Instruction Set Summary 433

Programming Reference for the Z80 PIO Device 457
ASCII Character Set 463

Glossary 465

Index 489

71

Preface

T his book is intended to serve as a source and a reference for the assembly language
programmer. It contains an overview of assembly language programming for a partic-
ular microprocessor and a collection of useful subroutines. In the subroutines, a
standard format, documentation package, and parameter passing techniques were
used. The rules of the most popular assemblers have been followed, and the purpose,
procedure, parameters, results, execution time, and memory usage of each routine
have been described.

The overview sections summarize assembly language programming for those who
do not have the time or need for a complete textbook; the Assembly Language
Programming series provides more extensive discussions. Chapter 1 introduces
assembly language programming for the particular processor and summarizes the
major features that make this processor different from other microprocessors and
minicomputers. Chapter 2 shows how to implement instructions and addressing
modes that are not explicitly available. Chapter 3 describes common programming
errors.

The collection of subroutines emphasizes common tasks that occur in many applica-
tions. These tasks include code conversion, array manipulation, arithmetic, bit
manipulation, shifting functions, string manipulation, sorting, and searching. We
have also provided examples of I/ O routines, interrupt service routines, and initializa-
tion routines for common family chips such as parallel interfaces, serial interfaces, and
timers. You should be able to use these programs as subroutines in actual applications
and as starting points for more complex programs.

This book is intended for the person who wants to use assembly language imme-
diately, rather than just learn about it. The reader could be

+ An engineer, technician, or programmer who must write assembly language
programs for a design project.

- A microcomputer user who wants to write an I/ O driver, a diagnostic program, a
utility, or a systems program in assembly language.

Vil 780 ASSEMBLY LANGUAGE SUBROUTINES

* An experienced assembly language programmer who needs a quick review of
techniques for a particular microprocessor.

- A systems designer who needs a specific routine or technique for immediate use.

+ A high-level language programmer who must debug or optimize programs at the
assembly level or must link a program written in a high-level language to one
written in assembly language.

* A maintenance programmer who must understand quickly how specific assembly
language programs work.

* A microcomputer owner who wants to understand the operating system for a
particular computer or who wants to modify standard I/ O routines or systems
programs.

- A student, hobbyist, or teacher who wants to see examples of working assembly
language programs.

This book can also serve as a supplement for students of the Assembly Language
Programming series.

This book should save the reader time and effort. The reader should not have to
write, debug, test, or optimize standard routines or search through a textbook for
particular examples. The reader should instead be able to obtain easily the specific
information, technique, or routine that he or she needs. This book has been organized
and indexed for rapid use and reference.

Obviously, a book with such an aim demands feedback from its readers. Although
all the programs have been thoroughly tested and carefully documented, please inform
the publisher if you find any errors. If you have suggestions for better methods or for
additional topics, routines, programming hints, or index entries, please tell us about
them. We have used our programming experience to develop this book, but your help
is needed to improve it. We would greatly appreciate your comments, criticisms, and
suggestions.

NOMENCLATURE

We have used the following nomenclature in this book to describe the architecture of
the Z80 processor, to specify operands, and to represent general values of numbers and
addresses.

PREFACE X

280 Architecture

Byte-length registers include

A (accumulator) R (refresh)
A’

B

c

D

E

H’

F (flags) L

I (interrupt vector) F

CmmgOw

Of these, the primary user registers are the first seven: A, B, C, D, E, H,and L. The I
(interrupt vector) register contains the more significant byte (page number) of inter-
rupt service addresses in Interrupt Mode 2. The R (refresh) register contains a memory
refresh counter. The F (flag) register consists of a set of bits with independent functions
and meanings, organized as shown in the following diagram:

7 6 5 4 3 2 1 0 -e——aBitNumber
ﬁ l V4 l X IACI X—[P/(WN TC]———Processor Status Register F
N T

Carry
Add/Subtract
Parity/ Overflow
Not Used (Logic 1)
Aucxiliary Carry
Not Used (Logic 1)
Zero

Sign

Register pairs and word-length registers include

AF (Accumulator and flags, accumulator most significant)
AF" (Registers A’ and F’, A’ most significant)
BC (Registers B and C, B most significant)
BC” (Registers B’ and C’, B’ most significant)
DE (Registers D and E, D most significant)
DE’ (Registers D’ and E’, D’ most significant)
HL (Registers H and L, H most significant)
HL” (Registers H and L’, H’ most significant)
IX (Index register X or IX)

1Y (Index register Y or 1Y)

PC (Program counter)

SP (Stack pointer)

Flags include

Add/Subtract (N)
Carry (C)
Auxiliary Carry (AQ)

X 780 ASSEMBLY LANGUAGE SUBROUTINES

Parity/ Overflow (P/O or P/ V)
Sign (S)
Zero (Z)

These flags are arranged in the F register as shown previously.

Miscellaneous facilities include

Interrupt Flip-flop 1 (IFF1)
Interrupt Flip-flop 2 (IFF2)

280 Assembler

Delimiters include

: After a label, except for EQU, DEFL, and MACRO, which require a space
space After an operation code

s Between operands in the operand (address) field

5 Before a comment

() Around memory references

All operands are treated as data unless they are enclosed in parentheses.

Pseudo-Operations include

DB or DEFB Define byte; place byte-length data in
memory.

DEFL Define label (may be redefined later).

DEFM Define string; place ASCII data in memory.

DS or DEFS Define storage; allocate bytes of memory.

DW or DEFW Define word; place word-length data in
memory.

END End of program.

EQU Equate; define the attached label.

ORG Set origin; place subsequent object code

starting at the specified address.

Designations include

Number systems:

B (suffix) Binary

D (suffix) Decimal

H (suffix) Hexadecimal
Q (suffix) Octal

The default mode is decimal; hexadecimal numbers must start with a digit (you must
add a leading zero if the number starts with a letter).

Others:

o

or “ "ASCII (characters surrounded by single or double quotation marks)
3 Current value of location (program) counter

PREFACE

General Nomenclature

ADDR
ADDRI
ADDR?2
BASE
BICON
CONST
DEST

HIGH
INDIR

LOW
MASK
n

NPARAM
NEXT
NRESLT
NTIMES
NTIML
NTIMM
NUM
NUMI1
NUM2
OFF
OFFSET
oper

OPER
OPERI1
OPER2
reg
regl
RETPT
p

rph

rpl

rpl
rplh
rpll
rp2
rp2h
rp2l
SPTR
STRNG
SUM
TEMP
VALI6
VALI6H
VALI6L
VALUE

Xy

A 16-bit address in data memory

A 16-bit address in data memory

A 16-bit address in data memory

A constant 16-bit address in data memory

An 8-bit data item in binary format

A constant 8-bit data item

A 16-bit address in program memory, the
destination for a jump instruction

A 16-bit data item

A 16-bit address in data memory, the start-
ing address for an indirect address. The
indirect address is stored in memory
locations INDIR and INDIR+1.

A 16-bit data item

An 8-bit number used for masking

A bit position in a byte; possible values are
0 through 7

A 16-bit data item

A 16-bit address in program memory

A 16-bit data item

An 8-bit data item

An 8-bit data item

An 8-bit data item

A 16-bit data item

A 16-bit address in data memory

A 16-bit address in data memory

An 8-bit fixed offset

An 8-bit fixed offset

An 8-bit data item, a register, (HL), or an
indexed address

A 16-bit address in data memory

A 16-bit address in data memory

A 16-bit address in data memory

A primary user register (A, B, C, D, E, H,or L)

A primary user register

A 16-bit address in program memory

A primary register pair (BC, DE, or HL)

The more significant byte of rp

The less significant byte of rp

A primary register pair

The more significant byte of rpl

The less significant byte of rp!

Another primary register pair, not the same as rpl

The more significant byte of rp2

The less significant byte of rp2

A 16-bit address in data memory

A 16-bit address in data memory

A 16-bit address in data memory

A 16-bit address in data memory

A 16-bit data item

The more significant byte of VAL16

The less significant byte of VALI6

An 8-bit data item

An index register, either IX or IY

xi

Chapter 1 General
Programming Methods

Some general methods for writing assembly language programs for the Z80 micro-
processor are presented in this chapter. In addition, techniques for performing the
following operations are explained:

+ Loading and saving registers

- Storing data in memory

+ Arithmetic and logical functions

- Bit manipulation and testing

- Testing for specific values

+ Numerical comparisons

+ Looping (repeating sequences of operations)
+ Array processing and manipulation
- Table lookup

+ Character code manipulation

+ Code conversion

+ Multiple-precision arithmetic

+ Multiplication and division

+ List processing

+ Processing of data structures.

Also included in this chapter are special sections that describe passing parameters to
subroutines, general methods for writing I/ O drivers and interrupt service routines,
and ways of making programs run faster or use less memory.

The operations described are required in such applications as instrumentation, test
equipment, computer peripherals, communications equipment, industrial control,
process control, business equipment, aerospace and military systems, and consumer
products. Microcomputer users will employ these operations in writing I/ O drivers,
utility programs, diagnostics, and systems software, and in understanding, debugging,
and improving programs written in high-level languages. This chapter provides a brief

1

2 780 ASSEMBLY LANGUAGE SUBROUTINES

guide to Z80 assembly language programming for those who have an immediate
application in mind.

SUMMARY FOR EXPERIENCED PROGRAMMERS

For those who are familiar with assembly language programming on other comput-
ers, we provide here a brief review of the peculiarities of the Z80. Being aware of these
unusual features can save a lot of time and trouble.

1. Arithmetic and logical operations are allowed only between the accumulator and
a byte of immediate data, the contents of a general-purpose register, the contents of the
address in register pair HL, or the contents of an indexed address. Arithmetic and
logical instructions do not allow direct addressing.

For example, the alternatives for the OR instruction are OR CONST, where CONST
is a fixed data byte; OR reg, where reg is an 8-bit general-purpose register; OR (HL);
and OR (xy+OFF). The third alternative logically ORs the accumulator with the data
byte located at the address in HL. The fourth alternative logically ORs the accumula-
tor with the data byte located at an indexed address; the processor determines the
address by adding the 8-bit offset OFF to-a 16-bit index register.

2. The accumulator and register pair HL are special. The accumulator is the only
byte-length register that can be loaded or stored directly. The accumulator is also the
only register that can be complemented, negated, shifted with a single-byte instruction,
loaded indirectly from the addresses in register pairs BC or DE, stored indirectly at the
addresses in register pairs BC or DE, or used in IN and OUT instructions with direct
addressing.

HL is the only register pair that can serve as an indirect address in arithmetic or logi-
calinstructions or in loading or storing registers other than the accumulator. HL is also
the only register pair that can be transferred to the program counter or stack pointer.
Furthermore, HL serves as a double-length accumulator in 16-bit addition and sub-
traction. Register pair DE is also special because the instruction EX DE,HL can
exchange it with HL. Thus, the Z80’s registers are highly asymmetric, and the pro-
grammer must carefully choose which data and addresses go in which registers.

3. There are often several names for the same physical register. The registers A, B,
C, D, E, H, and L are all available as 8-bit registers. The register pairs BC (B more
significant), DE (D more significant), and HL (H more significant) are also available
as 16-bit register pairs in many instructions. The terms “register pair B,” “registers B
and C,” and “register pair BC” all have the same meaning, and there are similar
variations for registers D and E and H and L. Note that the register pair and the two
single registers are physically identical and cannot be used for different purposes at the
same time.

CHAPTER /1: GENERAL PROGRAMMING METHODS 3

In fact, H and L are almost always used to hold an indirect address because of the
availability of instructions that access the data at that address as well as special
instructions like LD SP,HL; JP (HL); EX (SP),HL; and EX DE,HL. Register pair DE
is used for a second address when one is needed because of the EX DE,HL instruction.
Registers B and C are generally used as separate 8-bit registers for temporary data
storage and counters.

4. Theeffects of instructions on flags are extremely inconsistent. Some particularly
unusual effects are (a) logical instructions clear the Carry, (b) one-byte accumulator
rotate instructions affect no flags other than the Carry, (c) load, store, transfer,
increment register pair or index register, and decrement register pair or index register
instructions affect no flags at all, and (d) 16-bit addition (ADD HL or ADD xy) affects
only the Carry flag. Table A-1 in Appendix A can be used as an aid in determining how
an instruction affects the flags.

5. There is no indirect addressing through memory locations. The lack of indirect
addressing is overcome by loading the indirect address into register pair HL. Thus,
indirect addressing is a two-step process. The indirect address can also be loaded into
registers pair BC or DE, but it can then only be used to load or store the accumulator.

6. The Z80’s indexing allows only an 8-bit fixed offset in the instruction. Its main
purpose is to implement postindexing and to allow offsets in data structures. A more
general form of indexed addressing requires an explicit 16-bit addition of register pairs
using HL as a 16-bit accumulator. Thus, indexing usually requires several steps: The
index must be loaded into one register pair, the base address must be loaded into
another register pair (one pair must be HL), the two must be added explicitly (using
ADD HL,rp), and the sum must be used as an indirect address (by referring to (HL)).
Generalized indexing on the Z80 is a long, awkward process.

7. There is a combined Parity/Overflow indicator. This flag indicates even parity
after all instructions that affect it except addition and subtraction. Then it indicates the
occurrence of two’s complement overflow.

8. Many common instructions are missing but can easily be simulated with register
operations. Some examples are clearing the accumulator (use SUB A or XOR A),
clearing the Carry flag (use AND A or OR A), and logically shifting the accumulator
left (use ADD A,A). Either AND A or OR A clears the Carry flag and sets the other
flags according to the contents of the accumulator. But remember, loading a register
does not affect any flags.

9. There are both relative and absolute branches (using the operation codes JR and
JP, respectively). Both addressing methods are allowed for unconditional branches.
The sets of conditional branches differ; relative branches exist only for the Carry and
Zero flags, whereas absolute branches exist for the Carry, Sign, Parity/ Overflow, and
Zero flags. What is interesting here is that the relative branches occupy less memory

4 750 ASSEMBLY LANGUAGE SUBROUTINES

than the corresponding absolute branches (2 bytes rather than 3) but execute more
slowly if the branch is taken (12 cycles rather than 10).

10. Increment and decrement instructions behave differently, depending on whether
they are applied to 8-bit or 16-bit operands. Decrementing or incrementing an 8-bit
register affects all flags except the Carry. Decrementing or incrementing a 16-bit
register pair or index register does not affect any flags at all. A 16-bit register pair can
be used as a counter, but the only way to test the pair for zero is to logically OR the two
bytes together in the accumulator. The 16-bit instructions are intended primarily for
address calculations, not for data manipulation.

11. Instructions that are additions to the original 8080 instruction set occupy more
memory and execute more slowly than other instructions with similar functions and
addressing modes. Among them are bit manipulation, arithmetic shift, logical shift,
shifts of registers other than the accumulator, and some loads. These instructions
execute more slowly because they require a prefix byte that tells the processor the
instruction is not an original 8080 instruction and the next byte is the real operation
code. Weller makes it easier to recognize the secondary instructions by using mnemon-
ics derived from the 8080 instruction set.!

12. Certain registers and facilities are clearly secondary in importance. The pro-
grammer should employ them only when the primary registers and facilities are
already in use or too inconvenient to use. The secondary facilities, like the secondary
instructions, represent additions to the underlying 8080 microprocessor. The most
important additions are index registers IX and IY; many instructions use these
registers, but they take more memory and much more time than instructions that use
the other register pairs. Another addition is the primed register set. Only two instruc-
tions (EX ‘AF,AF’ and EXX) allow access to the primed set, and for this reason
programmers generally reserve it for functions such as fast interrupt response.

13. Operations that can be done directly to a general-purpose register are shift it,
transfer it to or from another register, load it with a constant, increment it by 1, or
decrement it by 1. These operations can also be performed indirectly on the memory
address in HL or on a memory location addressed via indexing.

14. Only register pairs or index registers can be moved to or from the stack. One
pair is AE, which consists of the accumulator (more significant byte) and the flags (less
significant byte). The CALL and RET instructions transfer addresses to or from the
stack; there are conditional calls and returns but they are seldom used.

15. The Z80 has a readable interrupt enable flag. One can determine its value by
executing LD A,I or LD A,R. Either instruction moves the Interrupt flip-flop to the
Parity/ Overflow flag. That flag then reflects the state of the interrupt system at a
particular time, and thus can be used to restore the state after the processor executes
code that must run with interrupts disabled.

CHAPTER 1: GENERAL PROGRAMMING METHODS 5

16. The Z80 uses the following common conventions:

- The 16-bit addresses are stored with the less significant byte first (that is, at the
lower address). The order of the bytes in an address is the same as in the 8080, 8085, and
6502 microprocessors, but the opposite of that used in the 6800 and 6809.

- The stack pointer contains the lowest address actually occupied by the stack. This
convention is also used in the 8080, 8085, and 6809 microprocessors, but the obvious
alternative (next available address) is used in the 6502 and 6800. Z80 instructions store
data in the stack using predecrementing (they subtract 1 from the stack pointer before
storing a byte) and load data from the stack using postincrementing (they add 1 to the
stack pointer after loading a byte).

- The interrupt (enable) flag is 1 to allow interrupts and 0 to disallow them. This
convention is the same as in the 8080 and 8085, but the opposite of that used in the
6502, 6800, and 6809.

REGISTER SET

780 assembly language programming is complicated by the asymmetry of the
processor’s instruction set. Many instructions apply only to particular registers,
register pairs, or sets of registers. Almost every register has its own unique features,
and almost every instruction has its own peculiarities. Table 1-1 lists the 8-bit registers
and the instructions that use them. Table 1-2 lists the 16-bit registers and the instruc-
tions that use them (of course, all instructions change the program counter implicitly).
Table 1-3 lists the indirect addresses contained in on-board register pairs and the
instructions that use them. Table 1-4 lists the instructions that apply only to the
accumulator, and Table 1-5 lists the instructions that apply only to particular 16-bit
registers. Table 1-6 lists the instructions that apply to the stack.

The general uses of the registers are as follows:

- The accumulator, the center of data processing, is the source of one operand and
destination of the result for most arithmetic, logical, and other processing operations.

- Register pair HL is the primary memory address register. Instructions can often
refer to the data at the address in HL, that is, (HL).

- Register pair DE is the secondary memory address register because the pro-
grammer can exchange its contents with HL using EX DE,HL.

- Registers B and C (register pair BC) are general-purpose registers used mainly for
counters and temporary data storage. Register B is often used as a loop counter
because of its special usage in the DJNZ instruction.

+ Index registers IX and IY are used when the programmer is referring to memory
addresses by means of fixed offsets from a variable base. These registers also serve as
backups to HL when that register pair is occupied.

6 730 ASSEMBLY LANGUAGE SUBROUTINES

Table 1-1. Eight-Bit Registers and Applicable Instructions

8-Bit Register

Instructions

A only

A,B,C,D,E,H,L

B only
C only

F (flags)
I (interrupt vector)
R (refresh)

CPL, DAA; IN A,(port); LD (ADDR),LD (BC or DE), NEG;
OUT (port),A; RLA, RLCA, RLD, RRA, RRCA, RRD.

ADC A; ADD A; AND, CP, DEC; IN reg,(C); INC, LD, OR;
OUT (O),reg; RL, RLC, RR, RRC, SBC A; SLA, SRA,
SRL, SUB, XOR

DJNZ, IND, INDR, INI, INIR, OTDR, OTIR, OUTD, OUTI

IN reg,(C); OUT (C),reg; IND, INDR, INI, INIR, OTDR,
OTIR, OUTD, OUTI

CCE, SCF (see also AF register pair)
LD LA; LD A\l
LD R,A; LD A,R

Table 1-2. Sixteen-Bit Registers and Applicable Instructions

16-Bit Register

Instructions

AF
AF’
BC

BC’
DE

DFE’
HL

HL’

IX

IY

Program Counter

Stack Pointer

POP; PUSH; EX AFAF’
EX AEAF’

ADC HL, ADD xy, ADD HL, CPD, CPDR, CPI, CPIR,
DEC, EXX, INC, LD, LDD, LDDR, LDI, LDIR, POP,
PUSH, SBC HL

EXX

ADC HL, ADD xy, ADD HL, DEC; EX DE,HL; EXX, INC,
LD, LDD, LDDR, LDI, LDIR, POP, PUSH, SBC HL

EXX

ADC HL, ADD HL, CPD, CPDR, CPI, CPIR, DEC; EX
DE,HL; EX (SP),HL; EXX, INC, IND, INDR, INI, INIR,
LD, LDD, LDDR, LDI, LDIR, OTDR, OTIR, OUTD,
OUTI, POP, PUSH, SBC HL

EXX
ADD IX, LD, POP, PUSH; EX (SP),IX
ADD 1Y, LD, POP, PUSH; EX (SP),IY

CALL instructions, JP, JR, RETURN instructions, RETI,
RETN, RST

CALL instructions, ADD HL, DEC, INC, LD, POP, PUSH,
RETURN instructions, RST

CHAPTER 1: GENERAL PROGRAMMING METHODS

Table 1-3. Indirect Addresses and Applicable Instructions

Location of Address Instructions

Register pair BC LD A,(BC); LD (BC),A
LD A,(DE); LD (DE),A

ADC A; ADD A; AND, CP, DEC, INC, JP, LD, OR, SBC

Register pair DE
Register pair HL*

Stack Pointer

Index register
XorY

A; SUB, XOR

CALL instructions, POP, PUSH, RETURN instructions,
RST

JP

* Index register X or Y can also be used as an indirect address for the same instructions as HL by
specifying indexed addressing with a fixed offset of zero.

Table 1-4. Instructions That Apply Only to the Accumulator

Instruction Function
ADCA Add with carry
ADD A Add
AND Logical AND immediate
CPL One’s complement
CP Compare
DAA Decimal adjust (decimal correction)
IN A,(port) Input direct
LD A,(ADDR) Load direct
LD A,(rp) Load indirect
NEG Two’s complement (negate)
OR Logical OR
OUT (port),A Output direct
RLA Rotate accumulator left through carry
RLCA Rotate accumulator left
RRA Rotate accumulator right through carry
RRCA Rotate accumulator right
SBC A Subtract with borrow
SUB Subtract
XOR Logical EXCLUSIVE OR

8 780 ASSEMBLY LANGUAGE SUBROUTINES

Table 4-5. Instructions That Apply Only to One or Two 16-Bit Registers

Instruction 16-Bit Registers Function

EX AFAF AEAF Exchange program status with alternate
program status

EX DE,HL DE,HL Exchange HL with DE

EX (SP),HL HL Exchange HL with top of stack

EX (SP),xy IX or IY Exchange index register with top of stack

LD SPHL HL,SP Load stack pointer from HL

LD SPxy IX or 1Y,SP Load stack pointer from index register

Table 4-6. Instructions That Use the Stack

Instruction Function

Call instructions Jump and save program counter in stack (including
conditionals)

EX (SP),HL Exchange HL with top of stack

EX (SP),xy Exchange index register with top of stack

POP Load register pair from stack

PUSH Store register pair in stack

RETURN instructions Load program counter from stack (including
conditionals)

RST Jump to vector address and save program
counter in stack

We may describe the special features of particular registers as follows:

- Accumulator. Only single register that can be loaded or stored directly. Only 8-bit
register that can be shifted with a one-byte instruction. Only register that can be
complemented, decimal adjusted, or negated with a single instruction. Only register
that can be loaded or stored using the addresses in register pairs BC or DE. Only
register that can be stored in an output port or loaded from an input port using direct
addressing. Source and destination for all 8-bit arithmetic and logical instructions
except DEC and INC. Only register that can be transferred to or from the interrupt
vector (1) or refresh (R) register.

- Register pair HL. Only register pair that can be used indirectly in the instructions
ADC, ADD, AND, CMP, DEC, INC, OR, SBC, SUB, and XOR. Source and
destination for the instructions ADC HL, ADD HL, and SBC HL. Only register pair

CHAPTER 1: GENERAL PROGRAMMING METHODS @

that can be exchanged with register pair DE or with the top of the stack. Only register
pair that can have its contents moved to the stack pointer (LD SP,HL) or the program
counter (JP (HL)). Only register pair that can be shifted with a single instruction
(ADD HL,HL). Automatically used as a source address register in block move, block
compare, and block output instructions. Automatically used as a destination address
register in block input instructions.

- Register pair DE. Only register pair that can exchanged with HL (EX DE,HL).
Automatically used as a destination address register in block move instructions.

- Register pair BC. Automatically used as a counter in block move and block
compare instructions.

- Register B. Automatically used as a counter in the DJNZ instruction and in block
input and output instructions.

- Register C. Only register that can be used as an indirect port address for input and
output. Automatically used as a port address in block input and output instructions.

- Index registers IX and IY. Only address registers that allow an indexed offset.
Used as source and destination in ADD xy instruction. Can be exchanged with the top
of the stack, moved to the stack pointer or program counter, or shifted with ADD
XY,XY.

- Stack pointer. Automatically postincremented by instructions that load data from
the stack and predecremented by instructions that store data in the stack. Only address
register that can be used to transfer other register pairs to or from memory (PUSH and
POP) or to transfer the program counter to or from memory (CALL instructions and
RETURN instructions).

Note the following:

- The A register is the only 8-bit register that can be loaded from memory or stored
in memory using direct addressing.

- Only the address in register pair HL or an address obtained via indexing can be
used in operations other than loading and storing the accumulator. That is, only the
data at the address in HL or at an indexed address can be moved to or from a user
register, decremented, incremented, or used in arithmetic and logical operations.

+ Only DECregand INC reg perform 8-bit arithmetic operations without involving
the accumulator (of course, DEC and INC may be applied to the accumulator).

+ Only index registers IX and IY allow an offset from a base address. The data at the
indexed address can be, used like the data at the address in HL.

+ The index registers IX and 1Y make useful backups to HL because of the
availability of the 16-bit instructions ADD xy; EX (SP),xy; JP (xy); and LD SP,xy.

40 730 ASSEMBLY LANGUAGE SUBROUTINES

Register Transfers

The LD instruction can transfer any 8-bit general-purpose register (A, B,C, D, E, H,
or L) to any other 8-bit general-purpose register. The flag (F) register can only be
transferred to or from the stack along with the accumulator (PUSH AF and POP AF).
Register pairs DE and HL can be exchanged using EX DE,HL.

The common transfer instructions are

+ LD A,reg transfers the contents of reg to the accumulator

+ LD reg,A transfers the contents of the accumulator to reg

* LDreg,(HL) loads reg with the contents of the memory address in register pair HL
+ LD (HL),reg stores reg at the memory address in register pair HL

+ EX DE,HL exchanges register pair DE with HL.

The destination always comes first in the operand field of LD. That is, LD regl,reg2
transfers the contents of reg2 to regl, the opposite of the convention proposed in IEEE
Standard 694 for assembly language instructions.2 The LD changes the destination,
but leaves the source as it was. Note that EX DE,HL changes all four registers (D, E,
H, and L); it is thus equivalent to four LDs plus some intermediate steps that save one
byte of data while transferring another.

LOADING REGISTERS FROM MEMORY

The Z80 microprocessor has five addressing modes that can be used to load registers
from memory. These addressing modes are: Direct (from a specific memory address),
Immediate (with a specific value), Indirect (from an address stored in a register pair),
Indexed (from an address obtained by adding a fixed offset to an index register), and
Stack (from the top of the stack).?

Direct Loading of Registers

The accumulator, a primary register pair (BC, DE, or HL), the stack pointer, or an
index register can be loaded from memory using direct addressing.

Examples
1. LD A,(2050H)

This instruction loads the accumulator (register A) from memory location 2050 6.

CHAPTER 1: GENERAL PROGRAMMING METHODS 44

2. LD HL,(0A000H)

This instruction loads register L from memory location A000¢ and register H from
memory location. A001¢ Note the standard Z80 practice of storing 16-bit numbers
with the less significant byte at the lower address, followed by the more significant byte.

3. LD SP(9AI12H)

This instruction loads the stack pointer from memory locations 9A 12 ¢ (less signifi-
cant byte) and 9A13 ¢ (more significant byte).

Immediate Loading of Registers

Immediate addressing can be used to load any register, register pair, or index register
with a specific value. The register pairs include the stack pointer.

Examples

1. LD C,6

This instruction loads register C with the number 6. The 6 is an 8-bit data item, nota
16-bit address. Do not confuse the number 6 with the address 0006 .

2. LD DE,15E3H
This instruction loads register D with 154 and register E with E3 .

3. LD IY,0B7EEH
This instruction loads index register IY with B7EE 6.

Indirect Loading of Registers

The instruction LD reg,(HL) can load any register from the address in register pair
HL. The instruction LD A,(rp) can load the accumulator using the address in a register
pair (BC, DE, or HL). Note that there is no instruction that loads a register pair
indirectly.

Examples

1. LD D,(HL)

This instruction loads register D from the memory address in register pair HL. The
assembly language instruction takes the form “LD destination register, source regis-
ter”; the order of the operands is the opposite of that proposed for IEEE Standard
6944

42 780 ASSEMBLY LANGUAGE SUBROUTINES

2. LD A,(BC)

This instruction loads the accumulator from the memory address in register pair
BC. Note that you cannot load any register except A using BC or DE indirectly.

Indexed Loading of Registers

The instruction LD A,(xy+OFFSET) loads the accumulator from the indexed
address obtained by adding the 8-bit number OFFSET to the contents of an index
register. Note that OFFSET is a fixed 8-bit number (its value is part of the program),
while the index register contains a 16-bit address that can be changed.’ If OFFSET =0,
indexing is equivalent to indirection, but it is slower since the processor still must
perform the address addition.

Stack Loading of Registers

The instruction POP rp or POP xy loads a register pair or an index register from the
top of the stack and adjusts the stack pointer appropriately. One register pair for POP
rp is AF which consists of the accumulator (more significant byte) and the flags (less
significant byte). No instructions load 8-bit registers from the stack or use the stack
pointer indirectly without changing it (although EX (SP),HL and EX (SP),xy have no
net effect on the stack pointer since they transfer data both to and from the stack).

Examples
1. POP DE

This instruction loads register pair DE from the top of the stack and increments the
stack pointer by 2. Register E is loaded first.

2. POP1Y

This instruction loads index register IY from the top of the stack and increments the
stack pointer by 2. The less significant byte of IY is loaded first.
The stack has the following special features:

+ The stack pointer contains the address of the most recently occupied location.
The stack can be anywhere in memory.

+ Datais stored in the stack using predecrementing—the instructions decrement
the stack pointer by 1 before storing each byte. Data is loaded from the stack using
postincrementing—the instructions increment the stack pointer by 1 after loading
each byte.

+ As is typical with microprocessors, there are no overflow or underflow
indicators.

CHAPTER 1: GENERAL PROGRAMMING METHODS 13

STORING REGISTERS IN MEMORY

The Z80 has four addressing modes that can be used to store registers in memory.
These modes are: Direct (at a specific memory address), Indirect (at an address stored
in a register pair), Indexed (at an address calculated by adding an 8-bit offset to the
contents of an index register), and Stack (at the top of the stack).

Direct Storage of Registers

Direct addressing can be used to store the accumulator, a register pair (BC, DE, or
HL), the stack pointer, or an index register.
Examples

1. LD (35C8H),A

This instruction stores the accumulator in memory location 35C8 6.

2. LD (203AH),HL

This instruction stores register L in memory location 203A ¢ and register H in
memory location 203B .

3. LD (0AS7BH),SP

This instruction stores the stack pointer in memory locations A57B g (less signifi-
cant byte) and A57C ¢ (more significant byte).

Indirect Storage of Registers

The instruction LD (HL),reg can store any register at the address in register pair
HL. The instruction LD (rp),A can store the accumulator at the address in a register
pair (BC, DE, or HL). Note that there is no instruction that stores a register pair
indirectly.

Examples
1. LD (HL),C

This instruction stores register C at the address in register pair HL. The form is
“move to address in HL from C.”

2. LD (DE),A

This instruction stores the accumulator at the memory address in register pair DE.
Note that you cannot store any register except A using BC or DE indirectly.

44 750 ASSEMBLY LANGUAGE SUBROUTINES

Indexed Storage of Registers

The instruction LD (xy+OFFSET),A stores the accumulator at the indexed address
obtained by adding the 8-bit number OFFSET to the contents of an index register. If
OFFSET = 0, the indexed address is simply the contents of the index register, and
indexing is reduced to a slow version of indirect addressing.

Stack Storage of Registers

The instruction PUSH rp or PUSH xy stores a register pair or an index register at
the top of the stack and adjusts the stack pointer appropriately. One register pair is AF,
consisting of the accumulator (more significant byte) and the flags (less significant
byte). There is no instruction that stores an 8-bit register in the stack.

Examples

1. PUSH BC

This instruction stores register pair BC at the top of the stack and decrements the
stack pointer by 2. Note that B is stored first, so C ends up at the top of the stack.

2. PUSH IX

This instruction stores index register IX at the top of the stack and decrements the
stack pointer by 2. Note that the less significant byte of IX is stored last, and thus it
ends up at the top of the stack.

OTHER LOADING AND STORING OPERATIONS

Other loading and storing operations require more than one instruction. Some
typical examples are

1. Direct loading of a register other than A.

Lo A, (ADOR)
LD reg, A

An alternative is

LD HL.; ADDR
LD reg, (HL)

The second approach leaves A unchanged, but makes HL an indirect addressing pair.
Of course, the address in HL would then be available for later use.

CHAPTER 1: GENERAL PROGRAMMING METHODS 15

2. Indirect loading of a register (from the address in memory locations INDIR and
INDIR+1).

Lo HL, (INDIR) sGET INDIRECT ADDRESS
Ln reg, (HL) s LOAD DATA INDIRECTLY
3. Direct storage of a register other than A.

LD A,reg
Ln (ADDR), A

An alternative is
LD HL, ADDR
LD (HL) ,reg

4. Indirect storage of a register (at the address in memory locations INDIR and
INDIR+1).

LD HL, (INDIR) sGET THE INDIRECT ADDRESS
LD (HL),reg s STORE DATA THERE
STORING VALUES IN RAM

The usual ways to initialize RAM locations are (I) through the accumulator, (2)
using register pair HL directly or indirectly, and (3) using an index register with a fixed
offset.

Examples

1. Store an 8-bit item (VALUE) in address ADDR.

LD A, VALUE
LD (ADDR), A

or

LD HL, ADDR
LD (HL), VALUE

If VALUE = 0, we could use SUB A or XOR A instead of LD A, 0. Note, however,
that SUB A or XOR A affects the flags, whereas LD A,0 does not.

2. Store a 16-bit item (VALI6) in addresses ADDR and ADDR+1 (MSB in
ADDR+1).

LD HL, VAL1&
LD (ADDR) , HL

46 750 ASSEMBLY LANGUAGE SUBROUTINES

3. Store an 8-bit item (VALUE) at the address in memory locations INDIR and
INDIR+1.

LD HL, (INDIR) sGET INDIRECT ADDRESS
LD (HL), VALLE s STORE DATA INDIRECTLY

4. Store an 8-bit item (VALUE) nine bytes beyond the address in memory locations
INDIR and INDIR+1.

LD A, VALLIE
LD xy, C(INDIR) s GET BASE ADDRESS
Ln (xy+9), A ;STORE DATA @ BYTES BEYOND BASE

Here the indirect address is the base address of an array or other data structure.

ARITHMETIC AND LOGICAL OPERATIONS

Most arithmetic and logical operations (addition, subtraction, AND, OR, EXCLU-
SIVE OR, and comparison) can be performed only between the accumulator and an
8-bit register, a byte of immediate data, or a byte of data in memory addressed through
register pair HL or via indexing. Note that arithmetic and logical instructions do not
allow direct addressing. If a result is produced (comparison does not produce any), it
replaces the operand in the accumulator.

Examples

1. Logically OR the accumulator with register C.
OR C

OR C logically ORs register C with the accumulator and places the result in the
accumulator. The programmer only has to specify one operand; the other operand and
the destination of the result are always the accumulator.

2. Add register B to the accumulator.
ADD A,B

ADD A,B adds register B to the accumulator (register A) and places the result in the
accumulator. In the instructions ADC, ADD, and SBC, the programmer must specify
both operands. The reason is that the Z80 also has the instructions ADC HL (add
register pair to HL with carry), ADD HL (add register pair to HL), ADD xy (add
register pair or index register to index register), and SBC HL (subtract register pair
from HL with borrow). Note the inconsistency here: Both operands must be specified
in ADC, ADD, and SBC, but only one operand in SUB; furthermore, the Z80 has an
ADD xy instruction, but no ADC xy or SBC xy instruction. Since the 16-bit arithmetic
instructions are mainly intended for addressing, we will discuss them later.

CHAPTER 1: GENERAL PROGRAMMING METHODS 17

3. Logically AND the accumulator with the binary constant BICON.
AND RICON

Immediate addressing is the default mode; no special operation code or designation is
necessary.

4. Logically OR the accumulator with the data at the address in register pair HL.
OR (HL)

Parentheses indicate a reference to the contents of a memory address.
Other operations require more than one instruction. Some typical examples are:
* Add memory locations OPER 1 and OPER2, place sum in memory location SUM.

LD A, (QPER1) s GET FIRST OFERAND
LD E, A
LD A, (OPER2) s GET SECOND OPERAND
ADD A,B
LD (SUM), A ; SAVE SUIM

or
LD HL, OPER1
LD A, (HL) sGET FIRST QFERAND
LD HL, OPER2
ADD A, (HL) sADD SECOND OPERAND
LD HL, SUM
LD (HL), A s SAVE SUM

We can shorten the second alternative considerably if the operands and the sum
occupy consecutive memory addresses. For example, if OPER2 = OPER1 + 1 and
SUM = OPER2 + 1, we have

LD HL, OPER1

Lo A, (HL) ;GET FIRST OPERAND
INC HL

ADD A, (HL) sADD SECOND QFERAND
INC HL

LD (HL), A s SAVE SUM

- Add a constant (VALUE) to memory location OPER.

LD A, (OPER)
ADD A,VALLE
LD (OFER), A

or

LD HL, OPER
LD A, (HL)
ADD A, VALLE
LD (HL) , A

48 730 ASSEMBLY LANGUAGE SUBROUTINES

If VALUE = 1, we can shorten the second alternative to

LD HL, OPER
INC (HL)

You can use DEC (HL) similarly without changing the accumulator, but both DEC
(HL) and INC (HL) affect all the flags except Carry.

BIT MANIPULATION

The Z80 has specific instructions for setting, clearing, or testing a single bit in a
register or memory location. Other bit operations require a series of single-bit instruc-
tions or logical instructions with appropriate masks. Complementing (CPL) applies
only to the accumulator. Chapter 7 contains additional examples of bit manipulation.

The specific bit manipulation instructions are

SET n,reg
RES n,reg
BIT n,reg
+ Sets bit n of register reg
+ Clears bit n of register reg
- Tests bit n of register reg, setting the Zero flag if that bit is 0 and clearing the Zero
flag if it is 1.

Allthree instructions can also be applied to (HL) or to an indexed address. Note that
the bit position is not a variable; it is part of the instruction.®

Other bit operations can be implemented by applying logical instructions to the
accumulator as follows:

+ Set bits to 1 by logically ORing them with 1’ in the appropriate positions.

- Clear bits by logically ANDing them with 0’s in the appropriate positions.

- Invert (complement) bits by logically EXCLUSIVE ORing them with 1’s in the
appropriate positions.

- Test bits (for all 0’) by logically ANDing them with 1’s in the appropriate
positions.

This approach is inconvenient since the logical instructions can only be applied to
the accumulator. It does, however, allow the programmer to invert bits and change
several bits at the same time.

Examples

1. Set bit 6 of the accumulator.
SET &,A

CHAPTER 1: GENERAL PROGRAMMING METHODS 49

or
OR 01000000k sSET RIT & BY ORING WITH 1
Logically ORing a bit with 0 leaves it unchanged.

2. Clear bit 3 of the accumulator.
REZ 2,A
or
AND 11110111E ;CLEAR RIT 3 BY ANDING WITH 0
Logically ANDing a bit with 1 leaves it unchanged.

3. Invert (complement) bit 2 of the accumulator.
XOR 00000100R s INVERT BIT 2 BY XORING WITH 1

Logically EXCLUSIVE ORing a bit with 0 leaves it unchanged. Here there is no
special bit manipulation instruction. Fortunately, setting and clearing bits are much
more common operations than complementing bits.

4. Test bit 5 of the accumulator. In other words, clear the Zero flag if bit 5 is 1, and
set it if bit 5 is 0.

BRIT S,A
or
AND Q00100000R s TEST BIT S BY ANDING WITH 1

Note the inversion here in either alternative: The Zero flag s set to 1 if the bit is 0, and
to 0 if the bit is 1.

5. Set bit 4 of register D.
SET 4,D

To use a logical function, we would have to load the data into the accumulator and
load the result back into register D.

6. Invert (complement) bit 7 of memory location ADDR.

LD A, (ADDR) sGET DATA
XOR 10000000B ; COMPLEMENT BIT 7
LD (ADDR), A sRETURN RESULT TOQ MEMORY

7. Set bit 0 of the memory location five bytes beyond the address in INDIR and
INDIR+1.

LD xy, (ADDR) ; GET INDIRECT ADDRESS
SET 0, {(xy+3) ;SET BIT O OF BRYTE S

20 750 ASSEMBLY LANGUAGE SUBROUTINES

You can change more than one bit at a time by using a series of bit manipulation
instructions or by using the logical functions with appropriate masks.

8. Set bits 4 and 5 of the accumulator.

OR 00110000B ;SET BITS 4 AND § BY ORING WITH 1
or

SET 4,A ;SET BIT 4 FIRST

SET 5,A s AND THEN SET BIT S

9. Invert (complement) bits 0 and 7 of the accumulator.
XOR 10000001B ;s INVERT BITS O AND 7 BY XORING WITH 1

A handy shortcut to change bit 0 of a register or memory location is to use INC to set
it (if you know that it is 0) and DEC to clear it (if you know that it is 1). You can also use
either INC or DEC to complement bit 0 if you are not using the other bits of a register
or memory location. These shortcuts are useful when you are storing a single 1-bit flag
in a register or memory location.

SHIFT OPERATIONS

The Z80 has shift instructions that operate on any register or memory location.
Special instructions apply only to the accumulator, register pair HL, or an index
register. Chapter 7 contains further examples of shift operations.

The instructions RL and RR rotate a register or memory location and the Carry flag
as if they formed a 9-bit register. Figures 1-1 and 1-2 show the effects of RL and RR.
The instructions RLC and RRC rotate the register or memory location alone as shown
in Figures 1-3 and 1-4. The bit shifted off the end still appears in the Carry flag as well
as in the bit position at the other end. The instructions SLA and SRL perform logical
shifts (as shown in Figures 1-5 and 1-6) which fill the bit at the far right or left witha 0.
SRA performs an arithmetic shift (see Figure 1-7) which preserves the sign bit by
extending (copying) it to the right. Note that RL and RR preserve the old Carry flag (in
either bit 0 or bit 7), whereas the other shift instructions destroy it.

Certain special instructions are shorter and faster than the regular shifts in specific
situations. One-byte circular shifts (RLA, RLCA, RRA, RRCA) apply only to the
accumulator. Adding a register to itself (ADD A,A; ADD HL,HL; ADD xy,xy) is
equivalent to a logical left shift, while adding a register to itself with Carry (ADC A,A
or ADC HL,HL) is equivalent to a left rotate through Carry.

Examples

1. Rotate accumulator right two positions without the Carry.

RRCA
RRCA

CHAPTER 1 GENERAL PROGRAMMING METHODS 24

Original contents of Carry flag and register or memory location
Carry Data

(B 1% [% [B B]% [,]3|

After RL (rotate left through Carry)
Carry Data

[[% [[% [B [P []

Figure 1-4. The RL (rotate left through Carry) instruction

Original contents of Carry flag and register or memory location
Carry Data

(B 1% [® (2[5]2 [P [B

After RR (rotate right through Carry)
Carry Data

Lo L% [Be] BB B " [P)

Figure 1-2. The RR (rotate right through Carry) instruction

Original contents of Carry flag and register or memory location

Carry Data

(B [B [Be[B [B[, [B [B
After RLC (rotate left)

Carry Data

(B B 12 B [[B []

FAgure 1-3. The RLC (rotate left) instruction

22 750 ASSEMBLY LANGUAGE SUBROUTINES

Original contents of Carry flag and register or memory location
Carry Data

(18 [B [[Bs [2 [B) [%

After RRC (rotate right)
Carry Data

(% [[P P [B [B % [B]

Fgure 1-4. The RRC (rotate right) instruction

Original contents of Carry flag and register or memory location

| (B2 [B [B [[[[]3]
After SLA (shift left arithmetic)

(% [Bs [[[B [B[R] 0]

Figure 1-5. The SLA (shift left arithmetic) instruction

Original contents of Carry flag and register or memory location

[[B s [B [[Ba [[

After SRL (shift right logical)

Lo[®[Be]Bs[ea e [a

Fgure 1-6. The SRL (shift right logical) instruction

CHAPTER 1. GENERAL PROGRAMMING METHODS 23

Original contents of Carry flag and register or memory location
B[[Bs[B] [B. [B B

After SRA (shift right arithmetic)

BT[]

Fgure 1-7. The SRA (shift right arithmetic) instruction

Note the special form for the accumulator.

2. Shift accumulator left logically two positions.

SLA A
SLA A

A shorter, faster alternative is

ADD A,A
ADD A,A

The instruction ADD A, A is equivalent to a logical left shift of A. Note that ADD A,A
is a one-byte instruction, whereas SLA is always at least a two-byte instruction since it
is an addition to the 8080 instruction set.

3. Shift register C right logically one position.
SRL C

4. Shift register pair HL left logically two positions.

ADD HL,HL
ADD HL,HL

ADD HL, HL is a one-byte logical left shift of HL.
Shift instructions can also be applied to memory locations addressed either through
register pair HL or through indexing from IX or IY.

5. Shift memory location ADDR right one position, preserving the sign bit (bit 7).

LD HL, ADDR
SRA (HL)

Shifting while preserving the sign bit is called sign extension. A shift that operates in

24 750 ASSEMBLY LANGUAGE SUBROUTINES

this manner is called an arithmetic shift, since it preserves the sign of a two’s comple-
ment number. It can therefore be used to divide or normalize signed numbers.

6. Rotate right the memory location eight bytes beyond the address in INDIR and
INDIR+1.

LD xy, (INDIR) ;GET INDIRECT ADDRESS
RR (xy+8) ;ROTATE BYTE & RIGHT

MAKING DECISIONS

In this section procedures are presented for making the following three types of
decisions:

+ Branching if a bit is set or cleared
+ Branching if two values are equal or not equal
- Branching if one value is greater or less than another.

The first type of decision allows the processor to sense the value of a flag, switch,
status line, or other binary (ON/OFF) input. The second type of decision allows the
processor to determine whether an input or a result has a specific value (an input is a
specific command character or terminator, or a result is 0). The third type of decision
allows the processor to determine whether a value is above or below a numerical
threshold (a value is valid or invalid, or is above or below a warning level or setpoint).
Assuming that the primary value is in the accumulator and the secondary value (if
needed) is at address ADDR, the procedures are as follows.

CHAPTER 1: GENERAL PROGRAMMING METHODS 28

Branching Set or Cleared Bit

Determine if a bit is set or cleared with the BIT instruction. The operands are the bit
position and the register or memory address (either the one in HL or one accessed via
indexing). The Zero flag reflects the bit value and can be used for branching.

Examples

1. Branch to DEST if bit 5 of the accumulator is 1.

BIT &S,A
JR NZ, DEST

JP (absolute addressing) can be used instead of JR (relative addressing). The Zero
flag is set to 1 if and only if bit 5 of A is 0.

2. Branch to DEST if bit 2 of register C is 0.

BIT 2,C
JR Z,DEST

3. Branch to DEST if bit 6 of memory location ADDR is 1.
Lo HL, ADDR

BIT &, (HL)
JR NZ, DEST

4. Branch to DEST if bit 3 of the memory location seven bytes beyond the address
in INDIR and INDIR+1 is 0.

Lo ®y, CINDIR)
BIT 3, (xy+7)
JR Z,DEST

There are shortcuts for bits 0, 6, and 7 of the accumulator.

5. Branch to DEST if bit 7 of the accumulator is 1.

AND A ;ESTABLISH SIGN FLAG
JP M, DEST

There is no relative jump based on the Sign flag.

6. Branch to DEST if bit 6 of the accumulator is 0.

ADD A,A ;ESTABLISH SIGN FLAG FROM BIT &
JP P, DEST

7. Branch to DEST if bit 0 of the accumulator is 1.

26 730 ASSEMBLY LANGUAGE SUBROUTINES

RRA sMOQVE BRIT O TO CARRY
JR C, DEST

Here we have the choice of either a relative or an absolute jump.

Branching Based on Equality

Determine if the value in the accumulator is equal to another value by subtraction.
The Zero flag is set to 1 if the values are equal. Compare instructions (CP) are more
useful than subtract instructions (SBC or SUB) because compares preserve the value in
the accumulator for later operations. Note, however, that the Z80 has a 16-bit subtract
with borrow instruction (SBC HL), but no 16-bit compare or subtract instruction.

Examples

1. Branch to DEST if the accumulator contains the number VALUE.

CP VALUE ;DOES A CONTAIN VALUE?
JR Z,DEST ; YES, BRANCH

2. Branchto DEST if the contents of the accumulator are not equal to the contents
of memory location ADDR.

LD HL, ADDR
CP (HL) ;IS A THE SAME AS DATA IN MEMORY?
JR NZ, DEST 3 NQ, BRANCH

There are shortcuts if VALUE is 0, 1, or FF .

3. Branch to DEST if the accumulator contains 0.

AND A ;ESTABLISH ZERO FLAG
JR Z,DEST s BRANCH IF A CONTAINS ZERO

4. Branch to DEST if the accumulator does not contain FFg.

INC A sESTABLISH ZERQ FLAG
JR NZ,DEST sBRANCH IF A WAS NOT FF

This procedure can be applied to any 8-bit register or to a memory location addressed
through HL or via indexing.

5. Branch to DEST if the accumulator contains 1.

DEC A sESTABLISH ZERQ FLAG
JR Z,DEST sBRANCH IF A WAS 1

CHAPTER 1: GENERAL PROGRAMMING METHODS 27

6. Branch to DEST if memory location ADDR contains 0.
Lo HL, ADDR

INC (HL) ;ESTABLISH ZERO FLAG IN TWQ STEFS
DEC (HL)
JR Z,DEST s BRANCH IF ADDR CONTAINS ZEROQ

This procedure will also work on data at an indexed address or in registers B, C, D, E,
H, or L.

7. Branch to DEST if register pair HL contains VAL16.

AND A ; CLEAR CARRY, DON‘T CHANGE A
LD rp,VAL1&

SEC HL,rp s DOES HL CONTAIN VAL1&7

JR Z,DEST s YES, BRANCH

The 16-bit subtraction instruction always includes the Carry and is available only for
HL and another register pair (BC, DE, or SP).

Branching Based on Magnitude Comparisons

Determine if the value in the accumulator is greater than or less than some other
value by subtraction. If, as is typical, the values are unsigned, the Carry flag indicates
which is larger. In general,

+ Carry= 1 if the value subtracted is larger than the value in the accumulator (that
is, if a borrow is required).

- Carry = 0 if the value in the accumulator is larger or if the two values are equal.

Since subtracting equal values makes the Carry 0, the alternatives (considering the
accumulator as the primary operand) are

+ Primary operand less than secondary operand (Carry set)

+ Primary operand greater than or equal to secondary operand (Carry cleared).

If the alternatives you need are “less than or equal to” and “greater than,” you can
simply exchange the primary and secondary operands (that is, from Y — X instead of
X=Y).

Examples

1. Branch to DEST if the contents of the accumulator are greater than or equal to
the number VALUE.

CFP VALLUE ;IS A ABQVE VALUE?
JR NC, DEST s YES, BRANCH

28 750 ASSEMBLY LANGUAGE SUBROUTINES

2. Branch to DEST if the contents of memory address OPERI1 are less than the
contents of memory address OPER2.

LD A, (QPER1) ; GET FIRST OPERAND

LD HL, OPER2

CP (HL) ;IS IT LESS THAN SECOND OQOFERAND?
JR C,DEST s YES, BRANCH

3. Branch to DEST if the contents of memory address OPER are less than or equal
to the contents of memory address OPER2.

LD A, (QPER2) ; GET SECOND QOFERAND

LD HL, OPER1

CP (HL) ;IS IT GREATER THAN OR EQUAL TO FIRST?
JR NC, DEST : YES, BRANCH

If we loaded the accumulator with OPER1 and compared to OPER2, we could
branch only on the conditions

- OPERI greater than or equal to OPER2 (Carry cleared)
* OPERI less than OPER2 (Carry set).
Since neither is what we want, we must reverse the order in which the operands are

handled.

4. Branch to DEST if the contents of register pair HL are greater than or equal to
VALI6.

AND A s CLEAR CARRY

LD rp,VAL1& ;IS HL ABQVE VAL1&7?
SBC HL,rp

JR NC, DEST 3 YES, BRANCH

If the values are signed, we must allow for the possible occurrence of two’s comple-
ment overflow.” This is the situation in which the difference between the numbers
cannot be contained in seven bits and, therefore, the sign bit is changed. For example,
if one number is +7 and the other is —125, the difference is —132, which is beyond the
capacity of eight bits (it is less than — 128, the most negative number that eight bits can
hold).

If overflow is a possibility, we can determine if it occurred by examining the
Parity/ Overflow flag after the addition or subtraction instruction. If that flag is 1,
overflow did occur. The mnemonics here are confusing, since the Parity/ Overflow flag
normally indicates whether the result has even parity; the branches are therefore PE
(Parity Even or Overflow Set) and PO (Parity Odd or Overflow Clear). Weller clarifies
the situation by defining additional mnemonics JV and JNV.8

Thus, in the case of signed numbers, we must allow for the following possibilities:

- The result has the sign (positive or negative, as shown by the Sign flag) that we
want, and the Parity/ Overflow flag indicates that the sign is valid.

CHAPTER 1: GENERAL PROGRAMMING METHODS 29

- The result does not have the sign that we want, but the Parity/ Overflow flag
indicates that two’s complement overflow has changed the real sign.

We have to look for both a true positive (the sign we want, unaffected by overflow)
or a false negative (the opposite of the sign we want, but inverted by two’s complement
overflow).

Examples

1. Branch to DEST if the accumulator contains a signed number greater than or
equal to the number VALUE.
CP VALUE : PERFORM THE COMPARISON

JP FE, FNEG ;DID QVERFLOW QCCUR?
JP P, DEST sNQ, BRRANCH IF RESULT POSITIVE

JR DONE
FNEG: JP M, DEST ; YES, BRANCH IF RESULT NEGATIVE
DONE: NOP

There are no relative jumps based on the Parity/ Overflow flag.

2. Branch to DEST if the accumulator contains a signed number less than the
contents of memory address ADDR.

LD HL, ADDR

CP CHL) ;s PERFORM THE COMFARISON
JP PE,FPOS ;DID OVERFLOW QCCUR?
JP M, DEST ;NO, BRANCH IF RESULT NEGATIVE
JR DONE
FPOS: JF P, DEST ;s YES, BRANCH IF RESULT POSITIVE
DONE: NOP

Remember, JP PE means “jump on overflow,” while JP PO means “jump on no
overflow.”

The programmer should also note that this is one of the few cases in which the Z80 is
not fully upward-compatible with the 8080 microprocessor. The 8080 has no overflow
indicator and the P flag always indicates even parity.

There are some cases in which overflow cannot occur and all we must do is use the
Sign flag instead of the Carry flag for branching. These cases are the following:

+ The two numbers have the same sign. When this occurs, the difference is smaller in
magnitude than the larger of the two numbers and overflow cannot occur. You can
easily determine if two numbers have the same sign by EXCLUSIVE ORing them
together and checking the Sign flag. Remember, the EXCLUSIVE OR of two bits is 1 if
and only if the two bits have different values.

XOR VALUE ;s COULD OVERFLOW QCCUR?
JP P, NQQVF sNOT IF SIGNS ARE THE SAME

30 7580 ASSEMBLY LANGUAGE SUBROUTINES

* A value is being compared with zero. In this case, the Sign flag must be set and
examined.

Examples

1. Jump to DEST if the accumulator contains a signed positive number.

AND A ;SET FLAGS FROM VALUE IN A
JP P, DEST

2. Jump to DEST if an 8-bit register contains a signed negative number.

INC reg s SET FLAGS FROM VALLE IN REGISTER
DEC reg
JP M, DEST

This sequence does not affect the accumulator or the register.

3. Jump to DEST if memory location ADDR contains a signed positive number.

LD HL, ADDR sPOINT TO DATA IN MEMORY
INC (HL)

DEC (HL)

JP P, DEST ;s BRANCH IF DATA IS POSITIVE

This sequence does not affect the accumulator or the memory location.

Tables 1-7 and 1-8 summarize the common instruction sequences for making
decisions with the Z80 microprocessor. Table 1-7 lists the sequences that depend only
on the value in the accumulator; Table 1-8 lists the sequences that depend on numerical
comparisons between the value in the accumulator and a specific number, the contents
of a register, or the contents of a memory location (addressed through HL or anindex
register). Table 1-9 contains the sequences that depend only on the contents of a
memory location.

LOOPING

The simplest way to implement a loop (that is, to repeat a sequence of instructions)
with the Z80 microprocessor is to perform the following steps:

1. Load register B with the number of times the sequence is to be repeated.
2. Execute the sequence.

3. Use the DJNZ instruction to decrement register B and return to Step 2 if the
result is not 0.

The DJNZ instruction is useful for loop control since it combines a decrement and a
conditional relative branch. Note that DJNZ always operates on register B and

CHAPTER 1: GENERAL PROGRAMMING METHODS 34

Table 4-7. Decision Sequences Depending on the Accumulator Alone

Condition Flag Setting Instruction Conditional Jump
Any bit=0 BIT n,A JRZorJPZ
Any bit= 1 BIT n,A JR NZ or JPNZ
Bit7=0 RLA, RLCA, or ADD A A JR NC or JP NC
Bit7=1 RLA, RLCA, or ADD A A JRCorJPC
Bit6=0 ADD A A JP P
Bit6=1 ADD AA JPM
Bit0=10 RRA or RRCA JR NC or JP NC
Bit0=1 RRA or RRCA JRCorJPC
Equals zero AND A or OR A JRZorJPZ
Not equal to zero AND A or OR A JR NZ or JPNZ
Positive (MSB = 0) AND A or OR A JP P
Negative (MSB= 1) AND A or OR A JPM

Table 4-8. Decision Sequences Depending on Numerical Comparisons
with the Accumulator (Using CP)

Condition Conditional Jump

Equal JRZorJPZ

JRNZ or JP NZ

JR NCor JP NC
JRCorJPC

JP P (assuming no overflow)

Not equal

Greater than or equal (unsigned)
Less than (unsigned)

Greater than or equal (signed)

Less than (signed) JP M (assuming no overflow)

Note: All conditions assume that the accumulator contains the primary operand; for example,
less than means “accumulator less than other operand.”

Table 1-9. Decision Sequences Depending on a
Memory Location Alone

Condition Flag Setting Instruction(s) Conditional Jump
Any bit =10 BIT n, (HL) or (xy+OFFSET) JRZorJPZ
Any bit =1 BIT n,(HL) or (xy+OFFSET) JR NZ or JP NZ
=0 INC,DEC JRZorJPZ
*0 INC,DEC JR NZ or JP NZ

32 730 ASSEMBLY LANGUAGE SUBROUTINES

branches if B is not decremented to 0 —the instruction set does not provide any other
combinations. However, DJNZ has limitations: It allows only an 8-bit counter and an
8-bit offset for the relative branch (the branch is thus limited to 129 bytes forward or
126 backward from the first byte of the instruction).

Typical programs look like the following:

LD B, NTIMES " sNTIMES = NUMBER OF REPETITICONS
LOOP: .

. Instructions to be repeated

DJNZ LOOP

We could, of course, use other 8-bit registers or count up rather than counting down.
These alternative approaches would require a slightly different initialization, an
explicit DEC or INC instruction, and a conditional JR or JP instruction. In any case,
the instructions to be repeated must not interfere with the counting of the repetitions.
Note that register B is special, and most programmers reserve it as a loop counter.

The 8-bit length of register B limits this simple loop to 256 repetitions. The
programmer can provide larger numbers of repetitions by nesting single-register loops
or by using a register pair as illustrated in the following examples:

+ Nested loops

LD C,NTIMM s START QUTER COUNTER
LOOPQ: LD B, NTIML s START INNER COUNTER
LOOPI: .

. Instructions to be repeated

DUNZ LOOPI s DECREMENT INNER COUNTER

DEC C s DECREMENT QUTER COLINTER

JR NZ, LOOFO

The outer loop restores the inner counter (register B) to its starting value (NTIML)
after each decrement of the outer counter (register C). The nesting produces a
multiplicative factor —the instructions starting at LOOPI are repeated NTIMM X
NTIML times. We use register B as the inner counter to take maximum advantage of
DJNZ. (Clearly, the inner loop is executed many more times than the outer loop.)

+ A register pair as 16-bit counter

LD BC, NTIMES s INITIALIZE 16-BIT COQUNTER
LOCP: .

. Instructions to be repeated

DEC BC

LD A B s TEST 16-RIT COUNTER FOR ZERO

OR c

JR NZ, LooOP

CHAPTER 1. GENERAL PROGRAMMING METHODS 33

The extra steps are necessary because DEC rp (or DEC xy) does not affect the Zero
flag (so there is no way of telling if the count has reached 0). The simplest way to
determine if a 16-bit register pair contains 0 is to logically OR the two registers. The
result of the logical OR is 0 if and only if all bits in both registers are 0’s. Check this
procedure by hand if you are not sure why it works. A major drawback to this
approach is its use of the accumulator, which requires saving the previous contents if
they are needed in the next iteration.

ARRAY MANIPULATION

The simplest way to access a particular element of an array is to place the element’s
address in register pair HL. In this way, it is possible to

+ Manipulate the element by referring to it indirectly, that is, as (HL).

- Access the succeeding element (at the next higher address) by using INC to incre-
ment register pair HL or access the preceding element (at the next lower address) by
using DEC to decrement HL.

- Access an arbitrary element by loading another register pair with the element’s
offset from the address in HL and using the ADD HL instruction. If the offset is fixed,
we can also use indexing from a base address in either index register.

Typical array manipulation procedures are easy to program if the array is one-
dimensional and the elements each occupy one byte. Some examples are

- Add an element of an array to the accumulator. Assume that the address of the
element is in register pair HL. Update HL so that it contains the address of the
succeeding 8-bit element.

ADD (HL) s ADD CURRENT ELEMENT
INC HL s ADDRESS NEXT ELEMENT

- Check to see if an element of an array is 0 and add 1 to register C if it is. Assume
that the element’s address is in register pair HL. Update HL so that it contains the
address of the preceding 8-bit element.

LD A, (HL) ; GET CURRENT ELEMENT

AND A IS IT ZEROQ?

JR NZ,UPDDT

INC C ;YES, ADD 1 TO COUNT OF ZEROS
URDDT: DEC HL ;»ADDRESS PRECEDING ELEMENT

+ Load the accumulator with the 35th element of an array. Assume that the base
address of the array is in register pair HL.
LD DE, 3% ;GET OFFSET FOR REQUIRED ELEMENT

ADD HL,DE s CALCULATE ADDRESS OF ELEMENT
LD A, (HL) sOBTAIN THE ELEMENT

34 750 ASSEMBLY LANGUAGE SUBROUTINES

ADD HL,DE performs a 16-bit addition, using register pair HL as a 16-bit accumu-
lator. Note that the 16-bit offset in register pair DE can be either positive or negative.

The following single instruction performs the same task if the offset is an 8-bit
unsigned number and the base address is in an index register:

LD A, (xy+35) ;0BTAIN THE ELEMENT IN ONE STEP

Manipulating array elements becomes more difficult if more than one element is
needed during each iteration (as in a sort that requires interchanging of elements), if
the elements are more than one byte long, or if the elements are themselves addresses
(asinatable of starting addresses). The basic problems are the lack of indexing witha
variable offset and the lack of instructions that access 16-bit items indirectly. Some
examples of more general array manipulation are

+ Load register pair DE with a 16-bit element of an array (stored LSB first). The
starting address of the element is in register pair HL. Update HL so that it points to the
next 16-bit element.

LD E, (HL) s GET LSE OF ELEMENT
INC HL

LD 0, (HL) sGET MSB OF ELEMENT
INC HL ;s ADDRESS NEXT ELEMENT

+ Exchange an element of an array with its successor if the two are not already in
descending order. Assume that the elements are 8-bit unsigned numbers and that the
address of the current element is in register pair HL. Update HL so that it contains the
address of the successor element.

LD A, (HL) s GET CURRENT ELEMENT
INC (HL)
CP (HL) ;IS IT LESS THAN SUCCESSOR?
JR NC, DONE NG, NO INTERCHANGE NECESSARY
LD B, (HL) ;s YES, START THE INTERCHANGE
LD (HL) , A s CURRENT ELEMENT TO NEW POSITION
DEC HL
LD (HL) , B ; SUCCESSOR ELEMENT TO NEW POSITION
INC HL
DONE: NOP

This procedure is awkward because the processor can address only one element ata
time using HL. Clearly, the problem would be even more serious if the two elements
were more than one position apart.

An alternative approach is to use an index register; that is,

LD A, (xy+0) ;GET CURRENT ELEMENT
- CP (xy+1) ;IS IT LESS THAN SUCCESSOR?
JR NC, DONE sNQ, NO INTERCHANGE NECEZSARY
LD B, {xy+0) ;YES, START THE INTERCHANGE
LD (xy+1),A ;CURRENT ELEMENT TO NEW POSITION
LD (xy+0),B ;SUCCESSOR ELEMENT TO NEW POSITION
DONE: INC xy ;MOVE ON TQ NEXT PAIR

CHAPTER 1: GENERAL PROGRAMMING METHODS 39

- Load the accumulator from the 12th indirect address in a table. Assume that the
base address of the table is in register pair HL.

LD DE, 24 sGET DOUBLED OFFSET FOR ELEMENT

ADD HL,DE ; CALCULATE STARTING ADDRESS OF ELEMENT
LD E, (HL) sGET LSB OF INDIRECT ADDRESS

INC HL

LD 0, (HL) sGET MSR OF INDIRECT ADDRESS

LD A, (DE) ;OBTAIN DATA FROM INDIRECT ADDREZS

An alternative approach using an index register is

LD A, (xy+24) ;GET LSB OF INDIRECT ADDRESS

LD E,A

LD A, (xy+25) ;GET MSBR OF INDIRECT ADDRESS

LD 0, A

LD A, (DE) ;OBTAIN DATA FROM INDIRECT ADDRESS

Note that in either approach you must double the index to handle tables containing
addresses, since each 16-bit address occupies two bytes of memory.

Some ways to simplify array processing are

+ Keep the base address of the table or array in register pair DE (or BC),so ADD HL
or ADD xy does not destroy it.

- Use ADD A,A todouble anindex in the accumulator. The doubled index can then
be used to handle arrays or tables consisting of 16-bit elements. ADD HL,HL or ADD
Xy,Xy may be used to double 16-bit indexes.

+ Use EX DE,HL to move addresses to and from register pair HL.

Chapters S and 9 contain further examples of array manipulation.

Block Move and Block Compare Instructions

Another way to simplify array processing is to use the Z80’s block move and block
compare instructions. The block move instructions not only transfer data from one
memory location to another without using the accumulator, but they also update the
array pointers and decrement a 16-bit loop counter. Thus, a block move instruction
can replace a sequence of load, increment, and decrement instructions. Repeated
block move instructions continue transferring data, updating the pointers, and decre-
menting the counter until the counter is decremented to zero. Block compare instruc-
tions are similar to block moves, except that only a single pointer is involved (the other
operand is in the accumulator), and the repeated versions also terminate if the
operands being compared are equal (this is referred to as a true comparison).

A further convenience of block moves and block compares is that they solve the
problem of testing a 16-bit counter for 0. Both block moves and block compares clear

36 730 ASSEMBLY LANGUAGE SUBROUTINES

the Parity/Overflow flag if the 16-bit counter (always in register pair BC) is decre-
mented to zero, and set the Parity/ Overflow flag otherwise. Note that the indicator is
the Parity/ Overflow flag, not the Zero flag.

The block move and compare instructions are the following:

+ LDI (LDD) moves a byte of data from the address in HL to the address in DE,
decrements BC, and increments (decrements) DE and HL.

+ LDIR (LDDR) repeats LDI (LDD) until BC is decremented to 0.

+ CPI (CPD) compares the accumulator to the data at the address in HL, decre-
ments BC, and increments (decrements) HL. Both CPI and CPD set the Zero flag if
the operands being compared are equal, and clear the Zero flag otherwise.

+ CPIR (CPDR) repeats CPI (CPD) until BC is decremented to 0.

Note that block moves reserve BC, DE, and HL for special purposes, while block
compares reserve only BC and HL.

Examples

1. Move a byte of data from memory location ADDRI to memory location
ADDR2.

LD BC, 1 s NUMBER OF BYTES TO MOVE = 1

LD DE,ADDR1 ;INITIALIZE SQURCE POINTER

LD HL,ADDR2 ; INITIALIZE DESTINATION PQINTER
LDI or LDD ;MOVE A BYTE OF DATA

Obviously, the overhead of loading all the register pairs makes it uneconomical to use
LDI or LDD to move a single byte of data.

2. Move two bytes of data from memory locations ADDR1 and ADDRI1+1 to
memory locations ADDR2 and ADDR2+1.

LD BC, 2 ;NUMBER OF BYTES TO MOVE = 2

LD DE,ADDR1 ;INITIALIZE SQURCE POINTER

LD HL,ADDR2 ;INITIALIZE DESTINATION POINTER
LDIR sMOVE TWO BYTES OF DATA

or

LD BC, 2 sNUMBER OF BYTES TO MOVE = 2

LD DE, ADDR1+1 ; INITIALIZE SOQURCE POINTER

LD HL, ADDR2+1 ; INITIALIZE DESTINATION POQINTER
LDDR sMOQVE TWO BYTES OF DATA

The block move instructions become more useful as the number of bytes to be moved
increases.

CHAPTER 1- GENERAL PROGRAMMING METHODS 37

3. Move ten bytes of data from memory locations starting at ADDRI1 to memory
locations starting at ADDR2.

LD BC, 10 sNUMBER OF BYTES TQ MQVE = 10
LD DE,ADDR1 ; INITIALIZE SQURCE POINTER

LD HL, ADDR2 ;INITIALIZE DESTINATION POINTER
LDIR sMQVE TEN BYTES OF DATA

or

LD BC, 10 s NUMBER OF BYTES TQ MOVE = 10
LD DE, ADDR1+% ; INITIALIZE SQURCE POINTER

Lo HL, ADDR2+9 ; INITIALIZE DESTINATION POINTER
LDDR sMOQVE TEN BYTES OF DATA

4. Examine memory locations starting at ADDR until one is encountered that
contains 0 or until 256 bytes have been examined.

LD BC, 100H s MAXIMUM LENGTH = 100 HEX = 256
LD HL, ADDR ;POINT TO START OF SEARCH AREA
SUB A sGET ZERQO FOR COMPARISON

CFIR

The final value of the Zero flag indicates why the program exited.

Zero flag = 1 if the program found a 0 in memory.
Zero flag = 0 if the program decremented BC to 0.

The block move and block compare instructions are convenient, but their forms are
restricted and their applications are limited. The programmer must remember the
following:

- BC always serves as the counter; it is decremented after each iteration. The
Parity/ Overflow flag (not the Zero flag) indicates whether BC has been decremented
to 0. Be careful —the P/ V flagis set to 0 if BC has been decremented to 0; the polarity
is opposite of that used with the Zero flag. Thus, after a block move or block compare,
the relevant conditional branches have the following meanings:

JP PE means “branch if BC has not been decremented to 0.”
JP PO means “branch if BC has been decremented to 0.”
- HL always serves as the source pointer in block moves and as the memory pointer

in block compares. HL is incremented or decremented after the data is transferred or a
comparison is performed.

- DE always serves as the destination pointer in block moves; it is not used in block
compares. Like HL, DE is incremented or decremented after the data is transferred.
Note also that LDI and LDIR increment both HL and DE, while LDD and LDDR
decrement both pairs.

38 730 ASSEMBLY LANGUAGE SUBROUTINES

+ Repeated block comparisons exit if either a true comparison occurs or BC is
decremented to 0. Testing the Zero flag will determine which condition caused the exit.

TABLE LOOKUP

Although the Z80 processor has indexing, the calculations required for table lookup
must be performed explicitly using the ADD HL or ADD xy instruction. This is
because the Z80’s indexing assumes a variable 16-bit address in an index registerand a
fixed 8-bit offset. As with array manipulation, table lookup is simple if the table
consists of 8-bit data items; it is more complicated if the table contains longer items or
addresses. The instructions EX DE,HL and JP (HL) or JP (xy) can be useful, but
require the programmer to place the results in specific 16-bit registers.

Examples

1. Load the accumulator with an element from a table. Assume that the base
address of the table is BASE (a constant) and the 16-bit index is in memory locations
INDEX and INDEX+1 (MSB in INDEX+1).

LD DE, BASE ;GET BASE ADDRESS

LD HL, (INDEX) s GET INDEX

ADD HL,DE ; CALCULATE ADDRESS OF ELEMENT
LD A, (HL) ;OBTAIN THE ELEMENT

Reversing the roles of DE and HL would slow down the program since LD
DE,(ADDR) executes more slowly and occupies more memory than does LD
HL,(ADDR). This asymmetry is caused by the fact that only LD HL,(ADDR) is an
original 8080 instruction; the direct loads of other register pairs (including the stack
pointer) are additions to the underlying 8080 instruction set.

2. Load the accumulator with an element from a table. Assume that the base
address of the table is BASE (a constant) and the index is in the accumulator.

LD L,A sEXTEND INDEX TO 146 BITS IN HL
LD H,0

LD DE, BASE ;GET BASE ADDRESS

ADD HL,DE s CALCULATE ADDRESS OF ELEMENT
LD A, (HL) sOBTAIN THE ELEMENT

3. Load register pair DE with a 16-bit element from a table. Assume that the base
address of the table is BASE (a constant) and the index is in the accumulator.
ADD A,A s DOUBLE INDEX FOR 1&-BIT ELEMENTS

LD L,A sEXTEND INDEX TO 1é BITS
LD H,0

LD
ADD
LD
INC
LD

CHAPTER 1. GENERAL PROGRAMMING METHODS 39

BC, BASE s GET BASE ADDRESS

HL, BC sCALCULATE STARTING ADDRESS
E, (HL) ;GET LSE OF ELEMENT

HL

0O, (HL) sGET MSB OF ELEMENT

You can also use the instruction ADD HL,HL to double the index; it is slower than
ADD A,A but it automatically handles cases in which the doubled index is too large

for 8 bits.

4. Transfer control (jump) to a 16-bit address obtained from a table. Assume that
the base address of the table is BASE (a constant) and the index is in the accumulator.

ADD
LD
LD
LD
ADD
LD
INC
LD
EX
JP

A A ; DOUBLE INDEX FOR 1&6-BIT ELEMENTS
L,A sEXTEND INDEX TQ 14& BITS

H, 0

BC, BASE ;s GET BASE ADDRESS

HL, BC ; CALCULATE STARTING ADDRESS

E, (HL) sGET LSE OF DESTINATION

HL

D, (HL) sGET MSB OF DESTINATION

DE, HL

(HL) s JUMP TO DESTINATION

The common uses of jump tables are to implement CASE statements (multi-way
branches used in languages such as FORTRAN, Pascal, and PL/I), to decode com-
mands from a keyboard, and to respond to function keys on a terminal.

CHARACTER MANIPULATION

The easiest way to manipulate characters on the Z80 processor is to treat them as
unsigned 8-bit numbers. The letters and digits form ordered subsequences of the
ASCII character set (for example, the ASCII version of the letter A is one less than the
ASCII version of B). Appendix C contains a complete ASCII character set.

Examples

1. Branch to address DEST if the accumulator contains ASCII E.

CP
JR

“E” ; IS DATA ASCII E?
Z,DEST ; YES, BRANCH

2. Search astring starting at address STRNG until a non-blank character is found.

LD
EXAMC: LD

HL,STRNG ;POINT TQO START OF STRING
A, (HL) s GET NEXT CHARACTER

c ;IS IT A BLANK?

NZ, DONE #NQ, DONE

A0 730 ASSEMBLY LANGUAGE SUBROUTINES

INC HL ; YES, PROCEED TO NEXT CHARACTER
JP EXAMC
DONE: NOP

or

LD HL,STRNG-1 ;POINT TO BYTE BEFORE STRING

EXAMC: INC HL

LD A, (HL) $GET NEXT CHARACTER
CP s ;IS IT A BLANK?
JR Z, EXAMC s YES, KEEP LOOKING

We could make either version execute faster by placing the blank character in a
general-purpose register (for example, register C) and comparing each character with
that register (using CP C) rather than with an immediate data value.

We could also use the block compare instructions which combine the comparison
and the incrementing of the pointer in HL. The CPI instruction, for example, not only
compares the accumulator with the data at the address in HL, but also increments HL
and decrements BC. Thus, the program using CPI is

LD HL,STRNG ;POINT TO START OF STRING
LD A7 ;GET A BLANK FOR COMPARISON

EXAMC: CPI 3 IS NEXT CHARACTER A BLANK?
JR Z,EXAMC s YES, KEEF LOOKING

The CPlinstruction sets the Zero flag to 1 if the operands being compared are equal
and to O if they are not equal. It also sets the Parity/ Overflow flag to 0 if it decrements
BC to 0 and to 1 if it does not, thus allowing the programmer to check easily for the
termination of the string as well as for a true comparison. We cannot use CPIR here,
since it would terminate as soon as a blank character (rather than a non-blank
character) was found. -

3. Branch to address DEST if the accumulator contains a letter between C and E,
inclusive.

CP “C” ;IS DATA BELOW C7?
JR C, DONE s YES, DONE
CP ‘G ;IS DATA BELOW G?

JR C, DEST s YES, MUST BE BETWEEN C AND F
DONE: NOP

We have taken advantage of the fact that G follows F numerically in ASCII, just
asit does in the alphabet. Chapter 8 contains further examples of string manipulation.

CODE CONVERSION

You can convert data from one code to another using arithmetic or logical opera-
tions (if the relationship is simple) or lookup tables (if the relationship is complex).

CHAPTER 1 GENERAL PROGRAMMING METHODS 44

Examples
1. Convert an ASCII digit to its binary-coded decimal (BCD) equivalent.
SUR ‘07 ; CONVERT ASCII TQ ECD

Since the ASCII digits form an ordered subsequence of the code, all that must be done
is subtract the offset (ASCII 0).
You can also clear bits 4 and 5 with the instruction

AND 11001111E ;CONVERT ASCII TOQ BCD

Either the arithmetic instruction or the logical instruction will convert ASCII 0 (304¢)
to decimal 0 (00¢).

2. Convert a binary-coded-decimal (BCD) digit to its ASCII equivalent.
ADD A, 707 ; CONVERT BCD TO ASCII
The inverse conversion is equally simple. Bits 4 and S can be set with the instruction
QR 00110000B ; CONVERT BCD TO ASCII

Either the arithmetic instruction or the logical instruction will convert decimal 6 (06,¢)
to ASCII 6 (364¢).

3. Convert one 8-bit code to another using a lookup table. Assume that thelookup
table starts at address NEWCD and is indexed by the value in the original code (for
example, the 27th entry is the value in the new code corresponding to 27 in the original
code). Assume that the data is in memory location CODE.

LD A, (CODE) ;GET THE OLD CODE

LD L.A sEXTEND INDEX TO 16 BITS

LD H,0

LD DE,NEWCD ;GET BRASE ADDRESS

ADD HL,DE ; CALCULATE ADDRESS OF ELEMENT
LD A, (HL) ;GET THE ELEMENT

Indexed addressing cannot be used here, since memory location CODE contains a
variable value.

Chapter 4 contains further examples of code conversion.

MULTIPLE-PRECISION ARITHMETIC

Multiple-precision arithmetic requires a series of 8-bit operations. They are

» Clear the Carry flag initially, since there is never a carry into or borrow from the
least significant byte.

42 750 ASSEMBLY LANGUAGE SUBROUTINES

+ Use the Add with Carry (ADC) or Subtract with Carry (SBC) instruction to
perform an 8-bit operation and include the carry or borrow from the previous
operation.

A typical 64-bit addition program is

LD E,8 s NUMBRER OF BYTES = 8
SUE A s CLEAR CARRY INITIALLY
LD HL.; NUM1 sPOINT TO START OF NUMBERS
LD DE, NUM2
ADDS: LD A, (DE) ;GET A BYTE OF ONE OFERAND
ADC A, (HL) ;ADD A BYTE OF THE OTHER OFPERAND
LD (HL), A ;STORE THE S8-BIT SUM

INC DE s UPDATE POINTERS
INC HL
DJUNZ ADDS ; COUNT BYTE OFERATIONS

Chapter 6 contains further examples.

MULTIPLICATION AND DIVISION

There are many ways to implement multiplication. One approach is to convert
multiplication by a small integer into a specific short sequence of additions and left
shifts.

Examples

1. Multiply the contents of the accumulator by 2.
ADD A, A ; DOUBLE A

2. Multiply the contents of the accumulator by 5.

LD B, A

ADD A,A ;A TIMES 2
ADD A,A ;A TIMES 4
ADD A,B A TIMES 5

Both examples assume that no carries ever occur. ADD HL could be similarly used
to produce a 16-bit result.

This approach is often handy in accessing elements of two-dimensional arrays. For
example, assume a set of temperature readings taken at four different positions in each
of three different storage tanks. Organize the readings as a two-dimensional array
T(1,J), where L is the tank number (1, 2, or 3) and J identifies the position in the tank (1,
2, 3, or 4). Store the reading in the computer’s memory one after another as follows,
starting with the reading at position 1 of tank 1:

BASE T(1,1) Reading at tank 1, position 1
BASE+1 T(1,2) Reading at tank 1, position 2
BASE+2 T(L,3) Reading at tank 1, position 3

BASE+3
BASE+4
BASE+S
BASE+&
BASE+7
BASE+8
BASE+9
BASE+10
BASE+11

CHAPTER 1: GENERAL PROGRAMMING METHODS 43

T(1,4) Reading at tamnk 1, position 4
T(2,1) Reading at tank 2, position 1
T(2,2) Reading at tank 2, position 2
T¢(2,3) Reading at tank 2, position 3
T(2,4) Reading at tank 2, position 4
T(3,1) Reading at tank 3, position 1
T(3,2) Reading at tank 3, position 2
T(3,3) Reading at tank 3, position 3
T(Z, 4) Reading at tank 3, position 4

Generally, the reading T(I,J) is located at address BASE+4 * (I—1)+ (J—1). If Lis in
the accumulator and J is in register B, the accumulator can be loaded with T(I,J) as

follows:

DEC
ADD
ADD
ADD
DEC
LD
LD
LD DE, RASE
ADDY HL,DE
LD A, (HL)

. % o~

Ir>»>»>>»>»>»

. -

°r»r WD

sOFFSET FOR TANK I

;2 ® (I-1)

34 & (I-1)

;ADD OFFSET FOR POSITION J
74 = (I-1) + (J4-1)

:EXTEND INDEX TO 148 BITS

; GET BASE ADDRESS OF READINGS
; ACCESS DESIRED READING
sFETCH T(I,

Extending this approach to handle arrays with more dimensions is shown in

Division by a power of 2 can be implemented as a series of right logical shifts.

Divide the contents of the accumulator by 4.

Chapter 5.
Example
SRL A
SRL A
o1
RRA
RRA

;DIVIDE A BY 2
;AND THEN BY 2 AGAIN

;DIVIDE A BRY 4 BY ROTATING IT TWICE

AND 00111111B ;MAKE SHIFTS LOGICAL BY CLEARING MSE’S

The second alternative uses the one-byte instruction RR A, rather than the two-byte
instruction SRL A. When multiplying or dividing signed numbers, be careful to
separate the signs from the magnitudes. Replace logical shifts with arithmetic shifts
that preserve the value of the sign bit.

Other approaches to multiplication and division include algorithms involving shifts
and additions (multiplication) or shifts and subtractions (division) as described in
Chapter 6, and lookup tables as discussed previously in this chapter.

44 750 ASSEMBLY LANGUAGE SUBROUTINES

LIST PROCESSING

Additional information on the following material can be found in an article by K.S.
Shankar published in JEEE Computer.?

Lists can be processed like arrays if the elements are stored in consecutive addresses.
If the elements are queued or chained, however, the limitations of the instruction set
are evident because

+ Indexed addressing allows only an 8-bit fixed offset.

- Noindirect addressing is available, except through register pairs or index registers.

- Addresses in register pairs or index registers can be used only to retrieve or store
8-bit data.

Examples

1. Retrieve an address stored starting at the address in register pair HL. Place the
retrieved address in HL.

LD E, (HL) ;GET LSE OF LINK

INC HL

LD D, (HL) ;GET MSE OF LINK

EX DE, HL ;REPLACE CURRENT POINTER WITH LINK

This procedure allows you to move from one element to another in a linked list.

2. Retrieve data from the address currently in memory locations INDIR and
INDIR+1 and increase that address by 1.

LD HL, (INDIR):;GET PQINTER FROM MEMORY
LD A, (HL) sGET DATA USING POINTER
INC HL s UPDATE POINTER RY 1
LD (INDIR) ,HL
This procedure allows the use of the address in memory as a pointer to the next
available location in a buffer.

3. Store an address from DE starting at the address currently in register pair HL.
Increment HL by 2.

LD (HL),E s STORE LSB OF POINTER

INC HL
LD (HL), D ;STORE MSB OF POINTER
INC HL s COMPLETE UPDATING OF HL

This procedure allows building a list of addresses. Such a list could be used, for
example, to write threaded code in which each routine concludes by transferring
control to its successor. The list could also contain the starting addresses of a series of
test procedures or tasks or the addresses of memory locations or I/ O devices assigned
by the operator to particular functions.

CHAPTER 1: GENERAL PROGRAMMING METHODS 45

GENERAL DATA STRUCTURES

Additional information on the following material can be found in the book Data
Structures Using Pascal by A. Tenenbaum and M. Augenstein.!! There are several
versions of this book by the same authors for different languages and computers.

More general data structures can be handled using the procedures for array manipu-
lation, table lookup, and list processing that have been described earlier. The key
limitations in the instruction set are the same ones mentioned in the discussion of list
processing.

Examples

1. Queues or linked lists. Assume there is a queue header consisting of the base
address of the first element in memory locations HEAD and HEAD+-1. If there are no
elements in the queue, HEAD and HEAD+ 1 both contain 0. The first two locations in
each element contain the base address of the next element or 0 if there is no next
element.

- Add an element to the head of the queue. Assume that the element’s base address is
in DE.

LD HL, HEAD s REFLACE HEAD, SAVING QLD VALLE
LD A, (HL) s MOVE LESS SIGNIFICANT BYTES

LD (HL), E

INC HL

LD B, {(HL) s MOVE MORE SIGNIFICANT BYTES

LD (HL), D

LD (DE), A sNEW HEAD POINTS TO OLD HEAD

LD A,B ;s INCLUDING MORE SIGNIFICANT BYTES
INC DE

LD (DE), A

- Remove an element from the head of the queue and set the Zero flag if no element
is available. Place the base address of the element (or 0 if there is no element) in DE.

LD HL , HEAD ;OBTAIN HEAD OF QUELE
LD E, (HL) sLESS SIGNIFICANT BYTE
INC HL

LD 0, (HL) s MORE SIGNIFICANT BYTE
Ln A, D

OR E s ANY ELEMENTS IN QUELIE?
JR Z, DONE s NQ, DONE

INC DE : YES, MAKE NEXT ELEMENT NEW HEAD
Lo A, (DE)

LD (HL), A ;MORE SIGNIFICANT BYTE
DEC DE

DEC HL

LD (DE), A s LESS SIGNIFICANT BYTE
LD (HL), A

DONE: NOP

46 750 ASSEMBLY LANGUAGE SUBROUTINES

Since no instruction after OR E affects any flags, the final value of the Zero flag
indicates whether the queue was empty.

2. Stacks. Assume there is a stack structure consisting of 8-bit elements. The
address of the next empty location is in addresses SPTR and SPTR+1. The lowest
address that the stack can occupy is LOW and the highest address is HIGH. Note that
this software stack grows up in memory (toward higher addresses), whereas the Z80’s
hardware stack grows down (toward lower addresses).

- If the stack overflows, set the Carry flag and exit. Otherwise, store the accumula-
tor in the stack and increase the stack pointer by 1. Overflow means that the stack has
expanded beyond its assigned area.

LD HL, (SPTR) s GET THE STACEK POINTER
EX DE, HL
LD HL, —~{(HIGH+1) s CHECK FOR STACK OVERFLOW
ADD HL,DE s SET CARRY IF STACK QVERFLOWS
JR C, DONE ;AND EXIT ON OVERFLOW
EX DE, HL ;GET STACK FOINTER BACK
Lo (HL), A 3 STORE ACCUMULATOR IN STACK
INC HL : UFDATE STACK PQOINTER
LD (SPTR) , HL.

DONE: NOP

« If the stack underflows, set the Carry flag and exit. Otherwise, decrease the stack
pointer by 1 and load the accumulator from the stack. Underflow means that an
attempt has been made to remove data from an empty stack.

LD HL, (SPTR) ;GET THE STACK POINTER
EX DE,HL
LD HL, - {(LOW+1) ; CHECK FOR STACK UNDERFLOW
ADD HL,DE ;CLEAR CARRY IF STACK UNDERFLOWS
JR NC, DONE sAND EXIT ON UNDERFLOW
EX DE, HL ;GET STACK POINTER BACK
DEC HL s UFDATE STACK POQINTER
LD A, (HL) ; LOAD ACCUMULATOR FROM STACK
LD (SPTR), HL ;RESTORE STACK POINTER
DONE: CCF 3 SET CARRY ON UNDERFLOW

Both example programs utilize the fact that ADD HL affects only the Carry flag.
Remember, ADD HL does not affect the Zero flag. Note also that DEC rp and INC rp
do not affect any flags.

PARAMETER PASSING TECHNIQUES

The most common ways to pass parameters on the Z80 microprocessor are

1. In registers. Seven 8-bit primary user registers (A, B, C, D, E, H, and L) are
available, and the three register pairs (BC, DE, and HL) and two index registers (IX

CHAPTER 1- GENERAL PROGRAMMING METHODS 47

and 1Y) may be used readily to pass addresses. This approach is adequate in simple
cases, but it lacks generality and can handle only a limited number of parameters. The
programmer must remember the normal uses of the registers in assigning parameters.
In other words,

+ The accumulator is the obvious place to put a single 8-bit parameter.

+ Register pair HL is the obvious place to put a single address-length (16-bit)
parameter.

- Register pair DE is a better place to put a second address-length parameter than
register pair BC, because of the EX DE,HL instruction.

- Anindex register (IX or IY) is the obvious place to put the base address of a data
structure when elements are available at fixed offsets.

This approach is reentrant as long as the interrupt service routines save and restore
all the registers.

2. Inan assigned area of memory. There are two ways to implement this approach.
One is to place the base address of the assigned area in an index register. Then
particular parameters may be accessed with fixed offsets. The problem here is that the
Z80’s indexing is extremely time-consuming. An alternative is to place the base
address in HL. Then parameters must be retrieved in consecutive order, one byte at a
time.

In either alternative, the calling routine must store the parameters in memory and
load the starting address into the index register or HL before transferring control to
the subroutine. This approach is general and can handle any number of parameters,
but it requires a lot of management. If different areas of memory are assigned for each
call or each routine, a unique stack is essentially created. If a common area of memory
is used, reentrancy is lost. In this method, the programmer is responsible for assigning
areas of memory, avoiding interference between routines, and saving and restoring the
pointers required to resume routines after subroutine calls or interrupts.

3. In program memory immediately following the subroutine call. If this approach
is used, remember the following:

- The base address of the memory area is at the top of the stack; that is, the base
address is the normal return address, the location of the instruction immediately
following the call. The base address can be moved to an index register by popping the
stack with

POF xy sRETRIEVE BASE ADDRESS OF PARAMETERS

Now access the parameters with fixed offsets from the index register. For example,
the accumulator can be loaded with the first parameter by using the instruction

LD A, (xy+0) ;MOVE FIRST PARAMETER TO A

48 /50 ASSEMBLY LANGUAGE SUBROUTINES

+ All parameters must be fixed for a given call, since the program memory is
typically read-only.

+ The subroutine must calculate the actual return address (the address immediately
following the parameter area) and place it on top of the stack before executinga RET
instruction.

Example

Assume that subroutine SUBR requires an 8-bit parameter and a 16-bit parameter.
Show a main program that calls SUBR and contains the required parameters. Also
show the initial part of the subroutine that retrieves the parameters, storing the 8-bit
item in the accumulator and the 16-bit item in register pair HL, and places the correct
return address at the top of the stack.

Subroutine call

CALL SUBR s EXECUTE SUBROUTINE
DEFR PARS ;8-RIT PARAMETER
DEFW PAR1& ; 16-BIT PARAMETER

... next instruction ...

Subroutine
SUBR: POP xy s POINT TOQ START OF PARAMETER AREA

LD A, (xy+1) ;GET LSR OF 14-BIT PARAMETER
LD E,A
LD A, (xy+2) :GET MSB OF 146-RIT PARAMETER
LD n,A
Ln A, (xy+Q) ;GET 8-BIT PARAMETER
LD BC, 3 s UPDATE RETURN ADDRESS
ADD xy,RBC
PUSH xy

« « . remainder of subroutine . . .

éET sRETURN TO NEXT INSTRUCTION

The initial POP xy instruction loads the index register with the return address that
CALL SUBR saved at the top of the stack. In fact, the return address does not contain
an instruction; instead, it contains the first parameter (PAR8). The next instructions
move the parameters to their respective registers. Finally, adding 3 to the return
address and saving the sum in the stack makes the final RET instruction transfer
control back to the instruction following the parameters.

This approach allows parameter lists of any length. However, obtaining the parame-
ters from memory and adjusting the return address is awkward at best; it becomes a
longer and slower process as the number of parameters increases.

CHAPTER 1: GENERAL PROGRAMMING METHODS 49

4. In the stack. When using this approach, remember the following:

- CALL stores the return address at the top of the stack. The parameters that the
calling routine placed in the stack begin at address ssss + 2, where ssss is the contents of
the stack pointer. The 16-bit return address occupies the top two locations of the stack,
and the stack pointer itself always refers to the lowest occupied address, not the highest
empty one.

+ The subroutine can determine the value of the stack pointer (the location of the
parameters) by (a) storing it in memory with LD (ADDR),SP or (b) using the sequence

LD HL, 0 s MOVE STACK POINTER TO HL
ADD HL,SP

This sequence places the stack pointer in register pair HL (the opposite of LD SP,HL).
We can use an index register instead of HL if HL is reserved for other purposes.

- The calling program must place the parameters in the stack and assign space for
the results before calling the subroutine. It must also remove the parameters from the
stack (often referred to as cleaning the stack) afterward. Cleaning the stack is simple if
the programmer always places the parameters above the empty area assigned to the
results. Then the parameters can be removed, leaving the results at the top. The next
example illustrates how this is done. An obvious alternative is for the results to replace
some or all of the parameters.

- Stack locations can be allocated dynamically for results with the sequence

LD HL, -NRESLT ;LEAVE ROOM FOR RESULTS
ADD HL,SP
LD SP, HL

This sequence leaves NRESLT empty locations at the top of the stack as shown in
Figure 1-8. Of course, if NRESLT is small, simply executing DEC SP NRESLT times
will be faster and shorter. The same approaches can be used to provide stack locations
for temporary storage.

Example

Assume that subroutine SUBR requires an 8-bit parameter and a 16-bit parameter,
and that it produces two 8-bit results. Show a call of SUBR, the placing of the
parameters in the accumulator and register pair HL, and the cleaning of the stack after
the return. Figure 1-9 shows the appearance of the stack initially, after the subroutine
call, and at the end. Using the stack for parameters and results will generally keep the
parameters at the top of the stack in the proper order. In this case, there is no need to
save the parameters or assign space in the stack for the results (they will replace some
or all of the original parameters). However, space must be assigned on the stack for
temporary storage to maintain generality and reentrancy.

80 730 ASSEMBLY LANGUAGE SUBROUTINES

Calling program
LD HL, -2 s LEAVE ROOM ON STACK FOR RESULT
ADD HL,SP 1A GENERAL WAY TQ ADJUST =P
Lo SP,HL
LD HL, (PAR1&);0BTAIN 14-BIT FPARAMETER
PUSH HL sMOVE 1&6-BIT PARAMETER TO STACK
LD A, (PARS) sOBTAIN 8-BRIT FARAMETER
PUSH AF sMOVE 8-RIT PARAMETER TO STACK
INC SP s REMOQVE EXTRANEOQUS BYTE
CALL SUBR s EXECUTE SUBROUTINE
LD HL, 3 s CLEAN PARAMETERS FROM STACK
ADD HL, 5P
LD SP, HL sRESULT IS NOW AT TOP OF STACK
Subroutine
SUBR: LD HL, 2 sPOINT TO START OF PARAMETER AREA
AN HL, =
LD A, (HL) ;GET 8-RIT FARAMETER
INZ HL
LD E, (HL) sGET 146-BIT FARAMETER
INC HL
LD n, (HL)
INC HL
EX DE, HL

. -« . remainder of subroutine . . .
RET
The first three instructions of the calling program could be replaced with two DEC
SP instructions, and the last three instructions with three INC SP instructions. Note

that only 16-bit register pairs can be moved to or from the stack. Remember, AF
consists of the accumulator (MSB) and the flags (LSB).

ssss - NRESLT

Empty space
for storing
results in the
stack

$8SS

Stack Stack
Pointer Pointer

No values are placed in the locations.
The initial contents of the stack pointer are ssss.

Figure 1-8. The stack before and after assigning NRESLT empty locations for results

CHAPTER 1: GENERAL PROGRAMMING METHODS 54

Initial State of Stack After Execution Final State of
the Stack of CALL SUBR the Stack

ssss-7

LSB of return
address
MSB of return
address
8-bit
parameter

LSB of 16-bit
parameter

MSB of 16-bit 5588-2
parameter

Empty byte
for result #1 Result #1

Empty byte
$sS
A for result #2 Result #2

Stack Stack Stack
Pointer Pointer Pointer

The initial contents of the stack pointer are ssss.

Figure 1-9. The effect of a subroutine on the stack

SIMPLE INPUT/OUTPUT

Simple input/ output can be performed using either 8-bit device (port) addresses or
full 16-bit memory addresses. The advantages of device addresses are that they are
short and provide a separate address space for I/ O ports. The disadvantages are that
only a few instructions (IN, OUT, and block I/ O instructions) use device addresses. If,
on the other hand, I/O devices occupy memory addresses, any instruction that
references memory can also perform I/ O. The problems with this approach are that it
is non-standard, it makes it difficult for a reader to differentiate 1/ O transfers from
memory transfers, and it requires that some memory address space be reserved for I/ O
devices.

Examples
I. Load the accumulator from input port 2.

IN A, (2) ;READ FROM FORT 2

or

LD G, 2 ;PUT PORT ADDRESS IN C
IN A, (C) s READ FROM PORT 2

52 750 ASSEMBLY LANGUAGE SUBROUTINES

The second alternative is longer but more flexible. The IN reg,(C) instruction allows
the data to be obtained from any port and loaded into any register. On the other hand,
IN A,(port) is limited to loading the accumulator from a fixed port address. The Sign
and Zero flags can be set by IN reg,(C) for later testing, whereas IN A,(port) does not
affect the flags.

2. Load the accumulator from the input port addressed by the contents of memory
location IPORT.

LD A, (IPORT) ;GET DEVICE (PORT) ADDRESS
LD C,A
IN A, (D) sREAD DATA FROM INPUT PORT
The port address can be readily changed (by changing RAM location IPORT) to
accommodate multiple input devices attached to a single CPU or to handle different
device addresses used in different models, configurations, or computers.

3. Load the accumulator from the input port assigned to the memory address in
HL.

LD A, (HL) ; READ DATA FROM INPUT PORT

Here the same input routine can obtain data from any memory address. Of course,
that memory address is no longer available for normal use, thus reducing the actual
memory capacity of the computer.

4. Store the accumulator in output port 6.

auT (&), A sWRITE DATA TO PORT &
or

LD c,é ;s ACCESS PORT &

autT (O, A sWRITE DATA TO PORT &

In the second alternative, the indirect port address can be changed easily to accom-
modate a different set of I/ O ports or variable I/ O devices.

5. Store the accumulator in the output port addressed by the contents of memory
location OPORT. '

LD HL, OPORT ;OBTAIN PORT ADDRESS
LD C, (HL)
ouT (), A ; SEND DATA TO QUTPUT PORT

Here the port address is a variable.

6. Store the accumulator in the output port assigned to the memory address in HL.

LD (HL), A ; SEND DATA TO QUTFUT PORT

CHAPTER 1: GENERAL PROGRAMMING METHODS 53

Here the same output routine can send data to any memory address.

7. Set the Zero flag if bit 5 of port D4 is 0.

IN A, (OD4H) sREAD DATA FROM PORT D4
BIT S,A ; TEST BIT S

If the bit position to be tested is 0, 6, or 7, a shift or AND A instruction can be used to
test it.

8. Load the Carry flag from bit 7 of the input port assigned to memory address
33A55.

LD A, (I3ASH) ;OBTAIN DATA
RLA sMOQVE SIGN RIT TO CARRY

or

LD HL, (33ATH)
RL (HL) sMOVE SIGN BIT OF INPUT DATA TQ CARRY

RL (HL) could have unpredictable side effects, since it will attempt to store its result
back in the input port. Although the port is addressed as a memory location, it may not
be writable (that is, it might act like a ROM location). For example, it could be
attached to a set of switches that the microprocessor obviously cannot change.

9. Set bit 5 of output port AS.

LD A, 00100000R ;SET BIT S 7O 1
QuUT (0ASH), A ;MOVE THE BIT TO PORT AS

To leave the other bits of port A5;¢ unchanged, a copy of the data in RAM is needed.
Then the following sequence will set bit 5 to 1.

LD A, (COFY) sGET COPY OF DATA
SET G,A sSET BIT S

auT (0ASH) , A s UFDATE QUTFUT DATA
LD (COFY), A s UFDATE COPY OF DATA

Note that the CPU cannot generally read an output port, and the input port with the
same device address is not necessarily the same physical location.

10. Clear bit 3 of the output port assigned to memory address B070¢.

LD HL, OBO70H
RES 3, (HL) ;CLEAR BIT 3

Even though the output port is addressed as a memory location, it may not be
readable. If it is not, the overall effect of RES 3,(HL) will be uncertain; the instruction
will surely clear bit 3, but it will assign the other bits of the port the values supposedly
obtained by reading from them. These values are generally arbitrary unless the port is

B84 730 ASSEMBLY LANGUAGE SUBROUTINES

latched and buffered. Saving a copy of the data in RAM location TEMP removes the
uncertainty. Now bit 3 can be cleared with the sequence

Lo HL, TEMP

RES 3, (HL) ;SET BIT 3 OF COPY
LD DE, BO70H
LDI sSET BIT 2 OF QUTPUT DATA ALSO

Block Input and Output Insiructions

The Z80 has special instructions that combine input or output with counting and
updating of a memory pointer. These so-called block I/ O instructions work much like
the block move and block compare instructions discussed earlier. All block 1/O
instructions move data either from memory to an output port or from an input port to
memory (without involving the accumulator), update (either increment or decrement)
the memory pointer in register pair HL, and decrement the counter in register B. Note
that block I/ O instructions use an 8-bit byte counter in register B, whereas block move
and block compare instructions use a 16-bit counter in BC. In block I/ O instructions,
register C always contains the device address. The only meaningful flag is the Zero
flag; it is set to 1 if the instruction decrements B to 0, and to 0 otherwise.

Repeated block I/O instructions continue transferring data, updating HL, and
decrementing B until B is decremented to 0. The drawback here is that continuous data
transfers make sense only if the I/ O device operates at the same speed as the processor.
Obviously, most I/O devices operate much more slowly than the processor, and the
programmer must introduce a delay between transfers. For example, the processor
cannot transfer a block of data to or from a keyboard, printer, video display, or
magnetic tape unit without waiting between characters. Thus, repeated block I/O
instructions are useful only to transfer data to devices that operate at processor speed,
such as a buffer memory or a peripheral chip.

The Z80’s block 1/0 instructions are the following:

- INI(IND) moves a byte of data from the port address in C to the memory address
in HL, increments (decrements) HL, and decrements B.

- INIR (INDR) repeats INI (IND) until B is decremented to 0.

- OUTI (OUTD) moves a byte of data from the memory address in HL to the port
address in C, increments (decrements) HL, and decrements B.

- OTIR (OTDR) repeats OUTI (OUTD) until B is decremented to 0.

Note that block I/ O instructions reserve B, C, and HL, but not DE. These instruc-
tions also change all the flags except Carry, although only the Zero flag is meaningful.

CHAPTER 1: GENERAL PROGRAMMING METHODS 55

Examples

1. Move a byte of data from memory address ADDR to output port OPORT.

LD B, 1 sNUMBER OF EYTES = 1

LD C, OPORT ; PORT ADDRESS = OPORT

LD HL, ADDR s INITIALIZE MEMORY POINTER
QuTI ;MOQVE A BYTE OF DATA

Obviously, the overhead of loading the registers makes it uneconomical to use OUTI to
send a single byte of data.

2. Move two bytes of data from input port IPORT to memory addresses ADDR
and ADDR+1. Use subroutine DELAY to wait before each transfer; assume that
DELAY provides the proper time interval without affecting any registers.

LD B,2 sNUMEER OF BYTES = 2

LD C, IPORT s PORT ADDRESS = IPORT

LD HL, ADDR ;s INITIALIZE MEMORY POINTER
INBYT: CALL DELAY ;WAIT BEFORE EACH INFUT BYTE

INI ;READ A BYTE AND UPDATE

JR NZ, INBYT

The Zero flag indicates whether the counter in B has been decremented to 0. Not only
does INI transfer the data directly into memory, but it also increments HL and
decrements B.

3. Move ten bytes of data from memory addresses starting with ADDR to output
port OPORT. Use subroutine DELAY to wait between bytes.

LD E, 10 s NUMBER OF BYTES = 10

LD C, QPORT s PORT ADDRESS = QPORT

LD HL, ADDR s INITIALIZE MEMORY POINTER
QUTBYT: auTI sWRITE A BYTE AND UFPDATE

CALL DELAY ;WAIT BETWEEN BYTES

JR NZ, QUTBYT

We cannot use the repeated block output instruction OTIR, since it does not allow a
delay between bytes.

4. Move 30 bytes of data from an input buffer addressed through input port IPORT
to memory addresses starting with ADDR. Assume that the processor can read
successive bytes of data from the buffer without waiting.

LD B, 30 s NUMBER OF BYTES = 30
LD C, IPORT s PORT ADDRESS = IPORT
LD HL, ADDR s INITIALIZE MEMORY POINTER
INIR ;READ A BLOCK OF DATA

This sequence does not allow any programmed delay between input operations, so it
makes sense only if the input device operates at the same speed as the processor.

56 750 ASSEMBLY LANGUAGE SUBROUTINES

LOGICAL AND PHYSICAL DEVICES

One way to allow references to I/ O devices by number is to use an I/ O device table.
An 1/0 device table assigns the actual I/ O addresses (physical devices) to the device
numbers (logical devices) to which a program refers. A systems program then uses the
table to convert the device numbers into actual I/ O addresses.

The same applications program can be made to utilize different I/O devices by
making the appropriate changes in the I/O device table. A program written in a
high-level language may, for example, refer to input device #2 and output device #5.
For testing purposes, an operator may assign devices #2 and #5 to be the input and
output ports, respectively, of his or her console. For normal stand-alone operation, the
operator may assign device #2 to be an analog input unit and device #5 the system

" printer. For operation by remote control, the operator may assign devices #2 and #5 to
be communications units used for input and output.

This distinction between logical and physical devices can be implemented by using
the instructions IN reg,(C) and OUT (C),reg. If a device table starting in address
IOTBL and consisting of 8-bit device addresses is used, input and output are general-
ized as follows:

+ Load the accumulator from a fixed device number DNUM.

LD A, (IOTBL+DNUM) ;GET DEVICE ADDRESS
LD C,A
IN A, () ;OBTAIN DATA FROM DEVICE

+ Load the accumulator from the device number in memory location DEVNO.

LD A, (DEVNQ) s GET DEVICE NUMEER

LD L,A s MAKE DEVICE NUMBER INTO INDEX

LD H, 0

LD DE, IOTBL ;GET BRASE ADDRESS OF DEVICE TABLE
ADD HL,DE s ACCESS ACTUAL DEVICE ADDRESS

LD C, (HL) ; OBTAIN DEVICE ADDRESS

IN A, (C) ;ORTAIN DATA FROM DEVICE

+ Store the accumulator in a fixed device number DNUM.

LD HL, IOTBL+DNUM ;GET DEVICE ADDRESS
LD C, (HL)
auT (C),A s SENDD DATA TO DEVICE

+ Store the accumulator in the device number in memory location DEVNO.

LD B, A ; SAVE OUTPUT DATA

LD A, (DEVNQ) s GET DEVICE NUMBER

LD L,A s MAKE DEVICE NUMBER INTQ INDEX

LD H, 0

LD DE, IOTBL ;GET BASE ADDRESS OF DEVICE TAELE
ADD HL,DE s ACCESS ACTUAL DEVICE ADDRESS

LD C, (HL) ;OBTAIN DEVICE ADDRESS

auT (C),B ; SEND DATA TO DEVICE

CHAPTER 1- GENERAL PROGRAMMING METHODS 57

In real applications (see Chapter 10), the device table generally contains the starting
addresses of I/ O subroutines (drivers) rather than actual device addresses.

STATUS AND CONTROL

Status and control signals can be handled like any other data. The only special
problem is that the processor cannot ordinarily read output ports. To know the current
contents of an output port, retain a copy in RAM of the data stored there.
Examples

1. Branch to address DEST if bit 3 of input port 6 is 1.

IN A, (&) ;s READ STATUS FROM PORT &
BIT 3,A s TEST BIT 3
JR NZ,DEST sBRANCH IF BIT 3 IS 1

2. Branchtoaddress DEST if bits 4, 5, and 6 of input port STAT are 5 (101 binary).

IN A, (STAT) s READ STATUS

AND 01110000B ;MASK. OFF BITS 4,5,AND &
cP 010100008 3 IS STATUS FIELD = 57
JR Z,DEST s YES, BRANCH TO DEST

3. Set bit 5 of output port CNTL to 1. Assume that a copy of the data is in a table
starting at address OUTP.

LD HL, QUTP+CNTL ;GET COPY OF DATA

LD A, (HL)

OR 00100000B sSET BIT S OF PORT

QUT (CNTL), A s SEND DATA TO QUTPUT PORT
LD (HL), A- s UPDATE COPY OF DATA

Update the copy every time the data is changed.

4. Setbits 2, 3, and 4 of output port CNTL to 6 (110 binary). Assume that a copy of
the data is in a table starting at address OUTP.

LD HL, OUTP+CNTL sGET COPY OF DATA

LD A, (HL)

AND 11100011B ;CLEAR BITS 2,3, AND 4
OR 00011000B ;SET CONTROL FIELD TO &
QUT (CNTL), A ; SEND DATA TO QUTPUT PORT
LD (HL), A sUPDATE COPY OF DATA

Retaining copies of the data in memory (or using the values stored in a latched,
buffered output port) allows changing part of the data without affecting other parts
that may have unrelated meanings. For example, changing the state of one indicator

B8 750 ASSEMBLY LANGUAGE SUBROUTINES

light (such as a light that indicated remote operation) will not affect other indicator
lights attached to the same port. Similarly, changing one control line (for example, a
line that determined whether an object was moving in the positive or negative
X-~direction) would not affect other control lines attached to the same port.

5. Branch to address DEST if bit 7 of input port IPORT is 0.

LD C, IPORT ;ESTABLISH PORT ADDRESS
IN A, (C) sREAD DATA FROM PORT
JP Z,DEST s BRANCH IF INPUT BRIT 7 IS O

The instruction IN reg,(C) affects the Sign and Zero flags, whereas IN A,(port) does
not.

PERIPHERAL CHIPS

The most common peripheral chips in Z80-based computers are the PIO (Parallel
Input/Output device), SIO (Serial Input/Output device), and CTC (Clock/ Timer
Circuit). All these devices can perform many functions, much as the microprocessor
itself can. Of course, peripheral chips perform fewer different functions than proces-
sors, and the range of functions is much more limited. The idea behind programmable
peripheral chips is that each chip contains many useful circuits; the designer selects the
one he or she wants to use by storing arbitrary codes in control registers, much like
selecting circuits from a designer’s casebook by specifying arbitrary page numbers or
other designations. The advantages of programmable chips are that a single board
containing such devices can handle many applications, and changes or corrections can
be made by changing selection codes rather than by redesigning circuit boards. The
disadvantages of programmable chips are the lack of standards and the difficulty of
learning and explaining how specific chips operate.

Chapter 10 contains typical initialization routines for the PIO, SIO, and CTC
devices. (The PIO and CTC are discussed in detail in the Osborne 4 & 8-Bit Micro-
processor Handbook.!?) We will provide only a brief overview of the PIO device here,
since it is the most widely used. Bas and Kaynak describe a typical industrial applica-
tion using a PIO. 13

PIO (Parallel Input/Output Device)
General Description

The PIO contains two 8-bit ports, A and B. Each port contains

+ An 8-bit output register.
+ An 8-bit input register.

CHAPTER 1: GENERAL PROGRAMMING METHODS 59

- A 2-bit mode control register, which indicates whether the port is in an output,
input, bidirectional, or control mode.

- An 8-bit input/ output control register, which determines whether the correspond-
ing data pins are inputs (1) or outputs (0) in the control mode.

- Two control lines (STB and RDY) that can be used for handshaking signals (the
contents of the mode control register determine how these lines operate).

- An interrupt enable bit.

- A 2-bit mask control register (used only in the control mode) that determines the
active polarity of the inputs and whether they will be logically ANDed or ORed to
form an interrupt signal.

- An 8-bit mask register (used only in the control mode) that determines which port
lines will be monitored to form the interrupt signal.

+ An 8-bit vector address register used with the interrupt system.

Here, the important points are the input and output registers, the mode control
register, the input/ output control register, and the control lines. The interrupt-related
features of the PIO are discussed in Z80 Assembly Language Programming.'4

The meanings of the bits in the various control and mask registers are related to the
underlying hardware and are entirely arbitrary as far as the programmer is concerned.
Tables are provided here and in Appendix B for looking them up.

Each PIO occupies four input port addresses and four output port addresses. The
B/A SEL (Port B or A select)and C/ D SEL (Control or Data select) lines choose one
of the four ports as described in Table 1-10. Most often, designers attach address line
AgtoB/A SEL and A;to C/D SEL. The PIO then occupies the four consecutive port
addresses given in the last column of Table 1-10.

Clearly, there are far more internal control registers than there are port addresses
available. In fact, all the control registers for each port occupy one address determined

Table 14-10. PIO Addresses

Control or Port B or A Register Port Address (Starting
Data select Select Addressed with PIOADD)
0 0 Data Register A PIOADD
0 1 Data Register B PIOADD+1
1 0 Control A PIOADD+2
1 1 Control B PIOADD+3
The port addresses assume that C/D SEL is tied to A; and B/ A SEL to A.

60 750 ASSEMBLY LANGUAGE SUBROUTINES

Table 1-11. Addressing of PIO Control Registers

Register Addressing
Mode Control D;=D,=D;=Dy=1
Input/Output Control Next byte after port placed in mode 3
Mask Control Register D;=0,D,=D;=Dy=1
Interrupt Mask Register Next byte after mask control register accessed with D, = |
Interrupt Enable D;=D,=0,D;=Dy=1
Interrupt Vector Dy=1

by the C/D SEL connection. Thus, some of the data bits sent to a control register are
actually used for addressing. Note the following situations (see Table 1-11):

+ If Dg = 0, the remaining data bits are loaded into the interrupt vector register.

+ If D3=0and D,= D;= D= I, the remaining data bits are loaded into the mask
control register. If D4 = 1, the next control byte is loaded into the interrupt mask
register. Interrupts can be enabled (D7 = 1) or disabled (D7 = 0) with D3= Dy =0,
D] = D() =1.

- If D3, Dy, Dy, and Dy are all I’s, the remaining data bits are loaded into the mode
control register. If D;= Dg= 1 (that is, the port has been placed in the control mode),
the next control byte is loaded into the input/output control register.

This sharing of an external address means

- The programmer must be careful to specify the proper addresses, data values, and
order of operations. The actual destination of an OUT instruction directed to a PIO
control address depends on the data value and may also depend on the OUT instruc-
tion that preceded it.

+ The programmer should document the PIO initialization in detail. The device is
complex, and a reader cannot be expected to understand the initializing sequence.

The control registers of the PIO are usually initialized only in an overall startup
routine. Other routines typically refer only to the PIO input and output registers. Since
all of its control registers share a port address, a repeated block output instruction
(OTIR or OTDR) can be used to initialize a P10. No timing problem occurs, since the
PIO operates at the same speed as the CPU. Chapter 10 contains an example showing
the use of repeated block output instructions to initialize PIOs and other peripheral
chips.

CHAPTER 1: GENERAL PROGRAMMING METHODS 64

PIO Operating Modes

A startup program selects the operating mode of a PIO port by writing a control
byte to the PIO in the form shown in Figure 1-10. The lower table in Figure 1-10
describes the operating modes and their associated control bytes. Note that only bits 6
(Mg) and 7 (M) affect the operating mode; bits 4 and 5 are not used and bits 0 through
3 are used for addressing. When power is turned on, the PIO comes up in mode 1
(input). The modes may be summarized as follows:

+ Mode 0 — Qutput (bit 7= bit 6 = 0)

Writing data into the port’s output register latches the data and causes it to appear
on the port’s data bus. The Ready (RDY) line goes high to indicate Data Ready; it
remains high until the peripheral sends a rising edge (a 0-to-1 or low-to-high transition)
on the Strobe (STB) line to indicate Data Accepted or Device Ready. The rising edge
of STB causes an interrupt if the interrupt is enabled.

* Mode 1 —Input (bit 7= 0, bit 6 = 1)

The peripheral latches data into the port’s input register using the Strobe signal. The
rising edge of STB causes an interrupt (if enabled) and deactivates RDY (makes it 0).
When the CPU reads the data, RDY goes high to indicate Data Accepted or Input
Register Empty. Note that the peripheral can strobe data into the register regardless of
the state of RDY. The programmer is therefore responsible for guarding against
overrun (new data being placed in the register before the CPU has read the old data).

Set Mode
M1 Mo Mode
0 0 Output MIIMOIX IXT T T]1]1
0 0 [oun Parfwolx [xfu o]
1 0 Bidirectional
1 1 Bit Control If a port is placed in mode 3. the
next byte sets the I/ O control
register:
PIO Meani Control Byte
eaning -
Mode (Binary) | (Hex) |ﬂ07|1/oell/osl|/o4J 1/0311/0211/0111/001
0 Output 00001111 OF
1 Input 01001111 4F I/O =1 Sets bit to Input
2 Bidirectional 10001111 8F 1/0 = 0 Sets bit to Output
3 Control 11001111 CF
Note that bits 4 and 5 are not used and could have
any values.

Figure 1-10. Mode control for the Z80 PIO

62 730 ASSEMBLY LANGUAGE SUBROUTINES

* Mode 2 — Bidirectional (bit 7= 1, bit 6 = 0)

Since this mode uses all four handshake lines, it is allowed only on port A. The port
A RDY and STB signals are used for output control and the port B RDY and STB
signals are used for input control. The only difference between this mode and a
combination of modes 0 and 1 is that data from the port A Output register is enabled
onto the port’s data bus only when A STB is active. This allows the port A bus to be
used bidirectionally under the control of A STB (Output Data Request) and B STB
(Input Data Available). Note that operations on input register A govern port B’s
control signals in this mode.

+ Mode 3 — Control (bit 7= 1, bit 6 = 1)

This mode does not use the RDY and STB signals. It is intended for status and
control applications in which each bit has an individual meaning. When mode 3 is
selected, the next control byte sent to the PIO defines the directions of the port’s bus
lines. A 1 in a bit position makes the corresponding bus line an input, whereas a 0
makes it an output.

Note the following features of the PIO’s operating modes:

- InmodesO0, 1, and 2, the peripheral indicates Data Ready, Device Ready, or Data
Accepted with a rising edge on the STB line. This edge also causes an interrupt if the
interrupt is enabled.

+ Inmodes0, 1, and 2, the PIO indicates Data Ready, Input Buffer Empty, or Data
Accepted by sending RDY high. This signal remains high until the next rising edge on
STB.

+ The bidirectional mode (mode 2) applies only to port A, and port B must be placed
in mode 3 (control) since all the handshaking lines are already committed.

+ The input/output control register is used only in the control mode (mode 3).
Otherwise, the entire 8-bit port is used for either input or output.

+ There is no way for the processor to determine if a pulse has occurred on STB if
interrupts are not being used. The PIO is designed for use in interrupt-driven systems
rather than in programmed I/ O systems. STB should be tied low if it is not being used.

+ The processor cannot control the RDY lines directly. The RDY line on a port goes
high when data is transferred to or from the port and goes low on the rising edge of
STB.

- The contents of the output register can be read if the port is in the output or
bidirectional mode. If the port is in the control mode, the output register data from the
lines assigned as outputs can be read. The contents of control registers cannot be read.
If a program needs to know their contents, it must save copies in RAM of the values
stored there.

- Ifthe RDY output is tied to the STB input on a port in the output mode, RDY will
go high for one clock period after each output operation. This brief pulse can be used
to multiplex displays.

CHAPTER 1. GENERAL PROGRAMMING METHODS 63

PIO Initialization

When power is turned on, the PIO comes up in the input mode with all interrupts
disabled and inhibited and control signals deactivated (low). The steps in initializing a
PIO port are

+ Select the operating mode by writing the appropriate control byte into the mode
control register. Interrupt control as well as I/ O mode information may have to be
sent.

+ Ifin mode 3, establish the directions of the I/ O pins by writing a control byte into
the input/ output control register. This byte must follow the control byte that selected
mode 3.

Examples
1. Make port B output.

LD A, 00001111B s MAKE PORT B OUTPUT
ouT (FIOCRB), A

Bits 0 through 3 of the control byte are all 1’s to address the mode control register. Bits
6 and 7 are both 0’s to put the port in the output mode. Bits 4 and 5 are not used.

2. Make port A input.
LD A,01001111R s MAKE FORT A INFUT
auT (FIOCRA),A

Bit 7= 0 and bit 6 = 1 to put the port in the input mode.

3. Make port A bidirectional.

Lo A, 10001111R s+ MAKE PORT A EIDIRECTIONAL
QuUT (FPIQCRA), A

Bit 7= 1 and bit 6 = 0 to put the port in the bidirectional mode. Remember that only
port A can be operated in the bidirectional mode, and that port B must then be
operated in the control mode.

4. Make port A control with all lines inputs.

LD A, 11001111B s MAKE PORT A CONTROL
ouT (PIOCRA), A

LD A, 11111111B sALL BITS INPUTS
ouT (PIOCRA),A

The first OUT instruction puts port A in the control mode, since bits 6 and 7 are both
1. The second OUT operation to the same address loads a different register (the

64 730 ASSEMBLY LANGUAGE SUBROUTINES

input/output control register). A 0 in a bit position of that register makes the
corresponding pin an output, while a 1 makes it aninput. The polarity here is arbitrary,
and many bidirectional devices use the opposite convention.

5. Make port B control with all lines outputs.

LD A,11001111E s MAKE PORT B CONTROL
QUT (PIOCRB),A

SUB A sALL BITS OUTPUTS
QuUT (PIOCRB),A

The second byte is directed automatically to the input/output control register if the
first byte puts the port in the control mode.

6. Make port A control with lines 1, 5, and 6 inputs and lines 0, 2, 3, 4, and 7
outputs.
LD A, 11001111B s MAKE PORT A CONTROL

QuUT (PIOCRA),A
LD A, 01100010B $1,5,6 IN--0,2,3,4,7 QUT

INTERRUPT SERVICE ROUTINES

More information on material in this section can be found in the book Practical
Microcomputer Programming: The Z80 by W.J. Weller, Chapter 16.

Z80 interrupt systems may operate in any of three modes.!s In all three modes, the
processor responds to an interrupt by executing a CALL or RST instruction which
transfers control to a specific memory address and saves the current program counter
at the top of the stack. Table 1-12 lists the destination addresses for the RST instruc-
tions and the non-maskable interrupt. No other registers (besides the program coun-
ter) are saved automatically.

There are two common approaches to saving registers:

+ If there is only a single level of interrupts, primary registers may be saved in the
alternate set. The service routine begins with

EX AF, AF~ 3 SAVE PRIMARY REGISTERS IN ALTERNATES
EXX

The EXX instruction exchanges registers B, C, D, E, H, and L with their primed
equivalents. The service routine must end by restoring the original primary registers
with

EXX s RESTORE ORIGINAL PRIMARY REGISTERS
EX AF , AF~

This approach assumes that the alternate (primed) registers are reserved for use in
interrupt service routines.

CHAPTER 1: GENERAL PROGRAMMING METHODS 68

Table 1-12. Destination Addresses for RST (Restart) Instructions and
the Non-Maskable Interrupt

Destination Address

RST Instruction Operation Code

(Mnemonic) (Hex) (Hex) (Decimal)
RSTO C7 0000 0
RST 8 CF 0008 08
RST 10H D7 0010 16
RST 18H DF 0018 24
RST 20H E7 0020 32
RST 28H EF 0028 40
RST 30H F7 0030 48
RST 38H FF 0038 56
Non-maskable 0066 102

interrupt

- If there are several levels of interrupts, each service routine must save all registers
that it uses in the stack. Since the Z80 has so many registers, most programmers keep
their service routines simple so that they must save only a few registers. Otherwise, the
overhead involved in servicing interrupts (sometimes called the interrupt latency)
becomes excessive. A typical sequence for saving the primary registers in the stack is

PUSH AF ; SAVE REGISTERS
PUSH BC
FUSH DE
PUSH HL

The opposite sequence restores the primary registers.

POP HL ;RESTORE REGISTERS
POF DE
POF BC
POF AF

Interrupts must be reenabled explicitly with El immediately before the RET instruc-
tion that terminates the service routine. The EI instruction delays the actual enabling
of interrupts for one instruction cycle to avoid unnecessary stacking of return ad-
dresses (that is, an RET instruction can remove the return address from the stack
before a pending interrupt is recognized).

You must be careful to save any write-only registers that may have to be restored at
the end of the routine. For example, the PIO’s control registers are all write-only, and

66 730 ASSEMBLY LANGUAGE SUBROUTINES

many external priority registers are also write-only. Copies of such registers must be
saved in RAM and restored from the stack. A typical example is

PUSH AF s SAVE REGISTERS

PUSH EC -

PUSH DE

PUSH HL

LD A, (FRTY) ;SAVE OLD PRIORITY

PUSH AF

LD A, NPRTY ;GET NEW PRIORITY

QuUT PPORT sPLACE IT IN EXTERNAL PRIORITY REGISTER

LD (PRTY),A ;SAVE COPY OF NEW PRICRITY IN RAM

The restoration procedure must recover the previous priority as well as the original
contents of the registers.

POFP AF sRESTORE OLD PRIORITY

QuT PPORT sPLACE IT IN EXTERNAL PRIORITY REGISTER
LD (PRTY),A ;SAVE COPY OF PRIORITY IN RAM

POF HL s RESTORE REGISTERS

FOF DE

POP EC

POF AF

To achieve general reentrancy, the stack must be used for all temporary storage
beyond that provided by the registers. As noted in the discussion of parameter passing,
space is assigned on the stack (NPARAM bytes) with the sequence

LD HL, -NPARAM ; ASSIGN NFARAM EMFTY BYTES
ADD HL,SP
LD SP, HL

Later, of course, the temporary storage area is discarded with the sequence

LD HL , NFARAM ;s REMOVE NPARAM BYTES FROM STACK
ADD HL,SP
LD SP, HL

If NPARAM is small, save execution time and memory by replacing these sequences
with NPARAM DEC SP or INC SP instructions. Chapter 11 contains examples of
simple interrupt service routines.

Interrupt service routines that are based on signals from Z80 peripheral chips (P1Os,
SIOs, or CTCs) or that utilize the non-maskable input require special terminating
instructions. These special instructions restore the program counter from the top of
the stack just like the normal RET. The RETI (return from interrupt) instruction also
signals the peripheral chips that the service routine has been completed, thus unblock-
ing lower priority interrupts. The RETN (return from non-maskable interrupt)
instruction also restores the interrupt enable logic, thus reenabling interrupts if (and
only if) they were enabled when the non-maskable interrupt occurred.

CHAPTER 1: GENERAL PROGRAMMING METHODS 67

MAKING PROGRAMS RUN FASTER

More information on material in this section can be found in an article by T. Doll-
hoff, “Microprocessor Software: How to Optimize Timing and Memory Usage. Part
Four: Techniques for the Zilog Z80,” Digital Design, February 1977, pp. 44-45.

In general, programs can be made to run substantially faster only by first determin-
ing where they spend their time. This requires determining which loops (other than
delay routines) the processor is executing most often. Reducing the execution time of a
frequently executed loop will have a major effect because of the multiplying factor. It is
thus critical to determine how often instructions are being executed and to work on
loops in the order of their frequency of execution.

Once it is determined which loops the processor executes most frequently, reduce
their execution time with the following techniques:

+ Eliminate redundant operations. These may include a constant that is being added
during each iteration or a special case that is being tested repeatedly. Another example
is a constant value or a memory address that is being fetched from memory each time
rather than being stored in a register or register pair.

+ Reorganize the loop to reduce the number of jump instructions. You can often
eliminate branches by changing the initial conditions, inverting the order of opera-
tions, or combining operations. In particular, you may find it helpful to initialize
everything one step back, thus making the first iteration the same as all the others.
Inverting the order of operations can be helpful if numerical comparisons are involved,
since the equality case may not have to be handled separately. Reorganization may
also combine condition checking inside the loop with the overall loop control.

- Usein-line code rather than subroutines. This will save at leasta CALL and RET.

+ Use the stack rather than specific memory addresses for temporary storage.
Remember that EX HL,(SP) exchanges the top of the stack with register pair HL and
thus can serve to both restore an old value and save the current one.

- Assign registers to take maximum advantage of such specialized instructions as
LD HL,(ADDR); LD (ADDR),HL; EX DE, HL; EX HL,(SP); DJNZ; and the block
move, compare, and I/ O instructions. Thus it is preferable to always use B or BC fora
counter, HL for an indirect address, and DE for another indirect address if needed.

- Use the block move, block compare, and block I/ O instructions to handle blocks
of data. These instructions can replace an entire program sequence, since they combine
counting and updating of pointers with the actual data manipulation or transfer
operations. Note, in particular, that the block move and block I/O instructions
transfer data to or from memory without using the accumulator.

+ Use the 16-bit instructions whenever possible to manipulate 16-bit data. These
instructions are ADC, ADD, DEC, EX, INC, LD, POP, PUSH, and SBC.

68 730 ASSEMBLY LANGUAGE SUBROUTINES

+ Use instructions that operate directly on data in user registers or in memory to
avoid having to save and restore the accumulator, HL, or an index register. These
instructions include DEC, EX, INC, LD, POP, PUSH, and the bit manipulation and
shift instructions.

- Minimize the use of the index registers, since they always require extra execution
time and memory. The index registers are generally used only as backups to HL and in
handling data structures that involve many fixed offsets.

+ Minimize the use of special Z80 instructions that require a 2-byte operation code.
These always require extra execution time and memory. Examples are BIT, RES, SET,
SLA, SRA, and SRL, as well as some load instructions such as LD DE,(ADDR), LD
(ADDR),BC, and LD SP,(ADDR).

- Take advantage of specialized short instructions such as the accumulator shifts
(RLA, RLCA, RRA, and RRCA) and DJNZ.

+ Use absolute jumps (JP) rather than relative jumps (JR). The absolute jumps take
less time if a branch actually occurs.

- Organize sequences of conditional jumps to minimize average execution time.
Branches that are often taken should come before ones that are seldom taken, for
example, checking for a result being negative (true 50% of the time if the value is
random) before checking for it to be zero (true less than 1% of the time if the value is
random).

- Test for conditions under which a sequence has no effect and branch around it if
the conditions hold. This will be profitable if the sequence is long, and it frequently
does not change the result. A typical example is the propagation of carries through
higher order bytes. If a carry seldom occurs, it will be faster on the average to test for it
rather than simply propagate a 0.

A general way to reduce execution time is to replace long sequences of instructions
with tables. A single table lookup can perform the same operation as a sequence of
instructions if there are no special exits or program logic involved. The cost is extra
memory, but that may be justified if the memory is available. If enough memory is
available, a lookup table may be a reasonable approach even if many of its entries are
repetitive—that is, even if many inputs produce the same output. In addition to its
speed, table lookup is also general, easy to program, and easy to change.

MAKING PROGRAMS USE LESS MEMORY

Only by identifying common instruction sequences and replacing those sequences
with subroutine calls can a program be made to use significantly less memory. The
result is a single copy of each sequence; the cost is the extra execution time of the

CHAPTER 1: GENERAL PROGRAMMING METHODS 69

CALL and RET instructions. The more instructions placed in subroutines, the more
memory is saved. Of course, such subroutines are typically not general and may be
difficult to understand or use. Some sequences may even be available in a monitor or
other systems program. Then those sequences can be replaced with calls to the systems
program as long as the return is handled properly.

Some methods that reduce execution time also reduce memory usage. In particular,
eliminating redundant operations, reorganizing loops, using the stack, organizing the
use of registers, using the 16-bit registers, using block instructions and short forms,
operating directly on memory or registers, and minimizing the use of the index
registers and special Z80 instructions reduce both memory usage and execution time.
Of course, using in-line code rather than loops and subroutines reduces execution time
but increases memory usage. Absolute and relative jumps represent a minor tradeoff
between memory and execution time; absolute jumps are faster (if a branch occurs) but
use more memory.

Lookup tables generally use extra memory but save execution time. Some ways to
reduce their memory requirements are to eliminate intermediate values and interpo-
late the results, eliminate redundant values with special tests, and reduce the range of
input values.!617 Often a few prior tests or restrictions will greatly reduce the size of the
required table.

REFERENCES

1. Weller, W.J., Practical Microcomputer Programming: The Z80, Evanston, 1l1.:
Northern Technology Books, 1979.

2. Fisher, W.P,, “Microprocessor Assembly Language Draft Standard,” IEEE
Computer, December 1979, pp. 96-109. Further discussions of the draft standard
appear on pp. 79-80 of IEEE Computer, April 1980 and on pp. 8-9 of IEEE Computer,
May 1981. See also Duncan, EG., “Level-Independent Notation for Microcomputer
Programs,” IEEE Micro, May 1981, pp. 47-56.

3. Osborne, A. An Introduction to Microcomputers: Volume 1 — Basic Concepts,
2nd ed., Berkeley, Calif.: Osborne/ McGraw-Hill, 1980.

. Fisher, op.cit.

. Osborne, op. cit.

. Weller, op.cit., p. 224.
Ibid., pp. 19-26.

Ibid.

. Ibid., p. 69.

=TI T Y I N

70 730 ASSEMBLY LANGUAGE SUBROUTINES

10. Shankar, K.S., “Data Structures and Abstractions,” IEEE Computer, April,
1980, pp. 67-77.

11. Tenenbaum, A. and M. Augenstein, Data Structures Using Pascal, Englewood
Cliffs, N.J.: Prentice-Hall, 1981.

12. Osborne, A. and G. Kane, 4 & 8-Bit Microprocessor Handbook, Berkeley,
Calif.: Osborne/ McGraw-Hill, 1981, pp. 7-45 to 7-54 (P10), pp. 7-54 to 7-62 (CTC).

13. Bas, S. and O. Kaynak, “Microprocessor Controlled Single Phase Cycloconver-
ter,” 1981 IECI Proceedings on Industrial Applications of Mini and Microcomputers,
pp. 39-44. Available from IEEE, 445 Hoes Lane, Piscataway, N.J. 08854 (catalog no.
81CH1714-5).

14. Leventhal, L., Z80 Assembly Language Programming, Berkeley, Calif.:
Osborne/ McGraw-Hill, 1979, Chapter 12.

15. Ibid.

i

16. Seim, T.A., “Numerical Interpolation for Microprocessor-Based Systems,’
Computer Design, February 1978, pp. 111-116.

17. Abramovich, A. and T.R. Crawford, “An Interpolating Algorithm for Control
Applications on Microprocessors,” 1978 IECI Proceedings on Industrial Applications
of Microprocessors, pp. 195-201. This Proceedings is available from IEEE, 445 Hoes
Lane, Piscataway, N.J. 08854.

Chapter 2 Implementing
Additional Instructions and
Addressing Modes

This chapter shows how to implement instructions and addressing modes that are
not included in the Z80 instruction set. Of course, no instruction set can ever include all
possible combinations. Designers must choose a set based on how many operation
codes are available, how easily an additional combination could be implemented, and
how often it would be used. A description of additional instructions and addressing
modes does not imply that the basic instruction set is incomplete or poorly designed.

The chapter will concentrate on additional instructions and addressing modes that
are

- Obvious parallels to those included in the instruction set.
+ Described in Fischer’s “Microprocessor Assembly Language Standard™.!
+ Discussed in Volume 1 of An Introduction to Microcomputers.?

+ Implemented on other microprocessors, especially ones that are closely related or
partly compatible. 3

This chapter should be of particular interest to those who are familiar with the
assembly languages of other computers.

INSTRUCTION SET EXTENSIONS

In describing extensions to the instruction set, we follow the organization sug-
gested in the draft standard for IEEE Task P694.4 Instructions are divided into the
following groups (listed in the order in which they are discussed): arithmetic, logical,
data transfer, branch, skip, subroutine call, subroutine return, and miscellaneous.
For each type of instruction, types of operands are discussed in the following order:
byte (8-bit), word (16-bit), decimal, bit, nibble or digit, and multiple. In describing
addressing modes, we use the following order: direct, indirect, immediate, indexed,

71

72 7580 ASSEMBLY LANGUAGE SUBROUTINES

register, autopreincrement, autopostincrement, autopredecrement, autopostdecre-
ment, indirect preindexed (also called preindexed or indexed indirect), and indirect
postindexed (also called postindexed or indirect indexed).

ARITHMETIC INSTRUCTIONS

This group includes addition, addition with Carry, subtraction, subtraction in
reverse, subtraction with Carry (borrow), increment, decrement, multiplication, divi-
sion, comparison, two’s complement (negate), and extension. Instructions that do not
clearly fall into a particular category are repeated for convenience.

Addition Instructions (Without Carry)

1. Add memory location ADDR to accumulator.

LD HL., ADDR s POINT TO DATA
ADD A, (HL) s THEN ADD IT

2. Add Carry to accumulator.
ADC A,0 sACC = ACC + CARRY + O

3. Decimal add Carry to accumulator.

ADC A0 sACC = ACC + CARRY + O
DAA 3 IN DECIMAL

4. Decimal add VALUE to accumulator.

ADD A,VALUE sACC = ACC + VALUE
DAA 3 IN DECIMAL

5. Decimal add register to accumulator.

ADD A,reg sACC = ACC + REG
DAA ; IN DECIMAL

6. Add 16-bit number VAL16 to HL.

LD rp,VAL1é
ADD HL,vp sHL = HL + VAL1S

rp can be either BC or DE.

7. Add 16-bit number VALI16 to an index register.

LD rp,VAL16
ADD xy,rp s XY = XY + VAL14

rp can be either BC or DE.

CHAPTER 2: IMPLEMENTING ADDITIONAL INSTRUCTIONS AND ADDRESSING MODES 73

8. Add memory locations ADDR and ADDR+1 (MSB in ADDR+1) to HL.

LD rp, (ADDR)
ADD HL,vrp

The 16-bit data is stored in the usual Z80 format with the less significant byte first (at
the lower address).

9. Add memory locations ADDR and ADDR+1 (MSB in ADDR+1) to an index
register.

LD rp, (ADDR)
ADD xy,rp

10. Add memory locations ADDR and ADDR+1(MSBin ADDR+1) to memory
locations SUM and SUM+1 (MSB in SUM+1).

LD HL, (SUM) : GET CURRENT SUM
LD DE, (ADDR) s ADD ELEMENT

ADD HL,DE

LD (SUM) , HL ; SAVE UFDATED SUM

11. Add the 16-bit number VAL16 to memory locations ADDR and ADDR+1
(MSB in ADDR+1).

LD HL, (SUM) ; GET CURRENT SUIM
LD DE, VAL1& ; ADDD ELEMENT

ADD HL,DE

LD (SUM) , HL ; SAVE UFDATED SUM

Addition Instructions (with Carry)

1. Add memory location ADDR to accumulator with Carry.
LD HL, ADDR s POINT TO DATA
ADC A, (HL) s THEN ADD IN DATA

2. Add Carry to accumulator.
ADC A,0 sACC = ACC + CARRY + 0O

3. Decimal add VALUE to accumulator with Carry.

ADC A, VALUE s ACC = ACC + VALUE + CARRY
DAA 7 IN DECIMAL
4. Decimal add register to accumulator with Carry.

ADC A,reg ;ACC = ACC + REG + CARRY
DAA 3 IN DECIMAL

74 730 ASSEMBLY LANGUAGE SUBROUTINES

5. Add 16-bit number VALI16 to HL with Carry.

LD rp,VAL14
ADC HL,rp s;HL = HL + VAL14é + CARRY

6. Add memory locations ADDR and ADDR+1 (MSBin ADDR+1) to HL with
Carry.

LD rp, (ADDR)
ADC HL,vrp sHL = HL + (ADDR) + CARRY

Subtraction Instructions (Without Borrow)

1. Subtract memory location ADDR from accumulator.

LD HL, ADDR s POINT TO DATA

SUB (HL) s THEN SUBTRACT IT
2. Subtract borrow (Carry) from accumulator.

SBC A,0 s ACC = ACC - CARRY

3. Decimal subtract VALUE from accumulator.
SUBR VALLE sACC = ACC - VALLE
DAA H IN DECIMAL

4. Decimal subtract register from accumulator.

SUB reg sACC = ACC - REG
DAA 3 IN DECIMAL

Since the Z80 has an Add/Subtract flag, it can perform decimal subtraction directly.
On the 8080 and 8085 processors, the programmer must implement decimal subtrac-
tion as the addition of a negative number.

5. Subtract register pair from HL.

AND A s CLEAR CARRY
SBC HL,rp s SUBRTRACT REGISTER PAIR WITH CARRY

The Z80 has a subtract register pair with Carry instruction, but no plain subtract
register pair (without Carry).

6. Subtract 16-bit number VAL16 from HL.
LD rep,-VAL1&
ADD HL,rp
or

AND A ; CLEAR CARRY

LD rp,VAL1é
SBC HL,rp ;s SUBRTRACT 1&6-BIT NUMBER FROM HL

CHAPTER 2: IMPLEMENTING ADDITIONAL INSTRUCTIONS AND ADDRESSING MODES 79

rp can be either BC or DE. Carry is an inverted borrow in the first alternative and a true
borrow in the second. The first alternative is obviously much shorter, particularly since
SBC HL requires a 2-byte operation code.

7. Subtract memory locations ADDR and ADDR+1 (MSB in ADDR+1) from
HL.

AND A s CLEAR CARRY
LD rp, (ADDR) s THEN SUBTRACT WITH CARRY
SRC HL,rp

There is no subtract register pair (without Carry) instruction.

Subtraction in Reverse Instructions

1. Subtract accumulator from VALUE and place difference in accumulator.

NEG s NEGATE A
ADD A, VALUE sFORM - A + VALUE
or
LD reg, A s CALCULATE VALLUE - ACC
LD A, VALLIE
SUE reg

The Carry is an inverted borrow in the first method and a true borrow in the second.

2. Subtract accumulator from register and place difference in accumulator.

NEG s NEGATE A
ADD A,reg sFORM — A + REG

The Carry is an inverted borrow; that is, it is 1 if the subtraction does not require a

borrow.

3. Decimal subtract accumulator from VALUE and place difference in accumu-
lator.

LD reg,A s CALCULATE VALUE - ACC
LD A, VALLE

SUE reg

[DAA

4. Decimal subtract accumulator from register and place difference in accumulator.

LoD regl, A ;s CALCUWLATE REG - ACC
Lo A,reg
SUBR regl

DAA ; IN DECIMAL

76 750 ASSEMBLY LANGUAGE SUBROUTINES

Subiraction with Borrow (Carry) Instructions

1. Subtract memory location ADDR from accumulator with borrow.
Lo HL, ADDR sPOINT TGO DATA

SBC A, (HL) : THEN SUBTRACT WITH BORROW
2. Subtract borrow (Carry) from accumulator.
SBC A0 ;FORM A — BORROW

3. Decimal subtract inverted borrow from accumulator (Carry = 1 if no borrow
was generated, 0 if a borrow was generated).

ADC A, 99H ;ADD 99 PLUS CARRY
DAA

The final Carry is 1 if the subtraction generates a borrow and 0 if it does not.

4. Decimal subtract VALUE from accumulator with borrow.
SBC A, VALUE sA = A — VALUE ~ BORRCOW
DAA s IN DECIMAL

5. Decimal subtract register from accumulator with borrow.
SBC A,reg sA = A - REG - BORROW
DAA s IN DECIMAL

6. Subtract 16-bit number VAL16 from HL with borrow.

LD rp,VAL1&
SRC HL,rp sHL = HL - VAL14é - BCORROW

Increment Instructions

1. Increment memory location ADDR.

LD HL, ADDR
INC (HL)

2. Increment accumulator, setting the Carry flag if the result is 0.
ADD A, 1

Remember that INC does not affect Carry, but it does affect the Zero flag.

CHAPTER 2: IMPLEMENTING ADDITIONAL INSTRUCTIONS AND ADDRESSING MODES 77

3. Decimal increment accumulator (add 1 to A in decimal).

ADD A,1
DAA

You cannot use INC, since it does not affect Carry.

4. Decimal increment register (add 1 to reg in decimal).

LD A,reg
ADD A, 1
DAA

LD reg, A

DAA applies only to the accumulator.

5. Increment memory locations ADDR and ADDR+1 (MSB in ADDR + 1).

LD HL, (ADDR)
INC HL 3 14-BIT INCREMENT
LD (ADDR) , HL

or

LD HL, ADDR
INC (HL) 7 INCREMENT LSBE
JR NZ, DONE
INC HL sADD CARRY TO MSBE
INC (HL)
DEC HL
DONE: NOP

The second alternative leaves ADDR in HL for later use.

6. Increment register pair, setting the Zero flag if the result is 0.

INC rp 3 18-BIT INCREMENT
LD A, rpl s TEST RESULT FOR ZERO
QR reh

This sequence destroys the old contents of the accumulator and the flags. OR clears
Carry.

Decrement Instructions

1. Decrement memory location ADDR.

LD HL, ADDR
DEC (HL)

78 780 ASSEMBLY LANGUAGE SUBROUTINES

2. Decrement accumulator, setting Carry flag if a borrow is generated.
SUB 1

3. Decrement accumulator, setting Carry flag if no borrow is generated.

ADD A, OFFH

4. Decimal decrement accumulator (subtract 1 from A in decimal).

SUE 1
DAA

DEC cannot be used here, since it does not affect Carry.

5. Decimal decrement register (subtract 1 from reg in decimal).

LD A,reg
SUB 1

DAA

LD reg, A

DAA applies only to the accumulator.

6. Decrement memory locations ADDR and ADDR+1 (MSB in ADDR+1).
LD HL, (ADDR)

DEC HL 3 16-BIT DECREMENT
Lo (ADDR) , HL

7. Decrement register pair, setting the Zero flag if the result is 0.

DEC rp 3 14-RIT DECREMENT
LD A,rpl s TEST 14-BIT RESULT FOR ZERO
OR rph

This sequence destroys the old contents of the accumulator and changes the other
flags. OR clears the Carry flag.

Multiplication Instructions

1. Multiply accumulator by 2.
ADD A,A

2. Multiply accumulator by 3 (using reg for temporary storage).

LD reg, A s SAVE A
ADD A,A 2 X A
ADD A,reg 33 X A

CHAPTER 2: IMPLEMENTING ADDITIONAL INSTRUCTIONS AND ADDRESSING MODES 79

3. Multiply accumulator by 4.

ADD A,A
ADD A,A

DT

S

X A
X A
We can easily extend cases 1, 2, and 3 to multiplication by other small integers.

4. Multiply register by 2.

SLA reg

5. Multiply register by 4.

SLA reg sMULTIPLY BY 2
SLA reg sAND THEN BY 2 AGAIN

Since SLA is a 2-byte instruction, it eventually becomes faster to move the data to the
accumulator and use the 1-byte instruction ADD A, A.

6. Multiply register pair HL by 2.
ADD HL,HL

7. Multiply register pair HL. by 3 (using rp for temporary storage).

Lo rph, H
LD rpl,L
ADD HL,HL ;2 X HL
ADD HL,rp 33 X HL

Note that you cannot use EX DE HL here, since it changes HL.

8. Multiply an index register by 2.
ADD xy,xy

9. Multiply memory locations ADDR and ADDR+1 (MSB in ADDR+1) by 2.
LD HL, ADDR

stA (HL) sSHIFT LSB LEFT LOGICALLY
INC HL
RL (HL) s THEN ROTATE MSB TO PICK UP CARRY

or

LD Xy, ADDR
SLA (xy+0) sSHIFT LSB LEFT LOGICALLY
RL {(xy+1) s THEN ROTATE MSB TO PICK UP CARRY

Note that you must rotate the more significant byte to pick up the Carry produced by
shifting the less significant byte.

80 730 ASSEMBLY LANGUAGE SUBROUTINES

Division Instructions

1. Divide accumulator by 2 unsigned.
SRL A ;DIVIDE BY 2, CLEARING SIGN

2. Divide accumulator by 4 unsigned.

SRL A ;DIVIDE BY 2, CLEARING SIGN
SRL A ; THEN BY 2 AGAIN
or
RRA ;ROTATE A RIGHT TWICE
RRA
AND OQO0111111R ; THEN CLEAR 2 MSBR’S

Since SRL is a 2-byte instruction, it eventually becomes faster to use the 1-byte
instruction RRA and clear the more significant bits explicitly at the end.

3. Divide accumulator by 2 signed.
SRA A sDIVIDE BY 2, EXTENDING SIGN

4. Divide memory locations ADDR and ADDR+1 (MSB in ADDR+1) by 2
unsigned.

LD XY, ADR
SRL (XY+1) ;SHIFT MSB RIGHT LOGICALLY
RR (XY+0) s THEN ROTATE LSB RIGHT

Rotating the less significant byte picks up the Carry from the more significant byte.

5. Divide memory locations ADDR and ADDR+1 (MSB in ADDR+1) by 2
signed.

LD XY, ADR
SRA (XY+1) s SHIFT MSB RIGHT ARITHMETICALLY
RR (XY+0) ; THEN ROTATE LSB RIGHT

6. Divide register pair by 2 unsigned.

SRL rph s SHIFT MSB RIGHT LOGICALLY
RR rpl s THEN ROTATE LSB RIGHT

7. Divide register pair by 2 signed.

SRA rph s SHIFT MSB RIGHT ARITHMETICALLY
RR rpl ;s THEN ROTATE LSB RIGHT

CHAPTER 2: IMPLEMENTING ADDITIONAL INSTRUCTIONS AND ADDRESSING MODES 81

Comparison Instructions

1. Compare VALUE with accumulator bit by bit, setting each bit position that is
different.

XOR VALUE
Remember, the EXCLUSIVE OR of two bits is 1 if and only if the two bits are different.

2. Compare register with accumulator bit by bit, setting each bit position that is
different.

XOR reg

3. Compare register pairs (rp and HL). Set Carry if rp is larger (unsigned) than HL
and clear Carry otherwise.

AND A ; CLEAR CARRY
SBC HL,rp

This sequence changes HL.

4. Compare register pair HL with 16-bit number VALI16.

LD rp,~VAL1é sFORM HL - VAL1é6 BY ADDING
ADD HL,rp
or
AND A ; CLEAR CARRY
LD rp,VAL1S
SBC HL,rp

Carry is an inverted borrow after the first alternative and a true borrow after the
second. Both sequences change HL and rp.

S. Compare index register with 16-bit number VAL16. Clear Carry if VAL16 is
greater than index register and set Carry otherwise.

LD rp,-VAL14 sFORM INDEX REGISTER - VAL1s&
ADD xy,rp

Carry is an inverted borrow here, since we are subtracting by adding the two’s
complement.

6. Compare register pair with memory locations ADDR and ADDR+1 (MSB in
ADDR+1).

AND A ;s CLEAR CARRY
LD rp, (ADDR) s SUBRTRACT REGISTER PAIR
SEC HL,rp

Carry is a true borrow.

82 750 ASSEMBLY LANGUAGE SUBROUTINES

7. Compare index register with memory locations ADDR and ADDR+1 (MSBin
ADDR+1).

PUSH

POP
AND
LD

SBC

Xy ;MOVE INDEX REGISTER TO HL

HL

A ; CLEAR CARRY

rp, (ADDR) ;FORM INDEX REGISTER - OTHER OPERAND
HL,rp

The Z80 has no SBC xy instruction.

8. Compare stack pointer with the 16-bit number VALI6.

LD

ADD

LD

ADD

HL, 0 s MOVE STACK POINTER TO HL
HL,SP

rp,-VAL1&

HL,rp

Carry is an inverted borrow.

9. Compare stack pointer with memory locations ADDR and ADDR+1 (MSB in
ADDR+1).

LD

ADD

LD

AND
SBC

HL,0 sMOVE STACK POQINTER TO HL
HL, SP

rp, (ADDR)

A ; CLEAR CARRY

HL,rp sFORM SP — MEMORY

Carry is a true borrow.

Two’s Complement (Negate) Instructions

or

1. Negate register.
SUB A sFORM 0 - REG

SuB

LD

LD
NEG
LD

reg
reg, A

A,reg

reg, A

2. Negate memory location ADDR.

SUB
LD

A
HL, ADDR

CHAPTER 2: IMPLEMENTING ADDITIONAL INSTRUCTIONS AND ADDRESSING MODES 83

SUB
LD

or

LD
LD
NEG
LD

(HL) sFORM O - (MEMORY)
(HL), A

HL , ADDR

A, (HL) sFORM - (ADDR)
(HL), A

3. Negate register pair.

or

LD
AND
SRC

A, rph 3146-BIT ONE“S COMPLEMENT
reh, A

A,rpl

rpl, A

rep sADD 1 FOR TWO-S COMPLEMENT
HL, O sFORM O - (RP)

A ;s CLEAR CARRY

HL,rp

The second sequence leaves the negative in HL; it can then be moved easily to another

register pair.

4. Negate memory locations ADDR and ADDR+1 (MSB in ADDR+1).

LD
LD
AND
SBC
LD

HL,0 sFORM 0 - (MEMORY)
rp, (ADDR)

A

HL,rp

(ADDR) , HL

5. Nine’s complement accumulator (that is, replace (A) with 99—(A)).

LD
LD
SUB

reg, A
A, 99H
reg

No DAA is necessary, since 99 — (A) is always a valid BCD number if the accumulator
originally contained a valid BCD number.

6. Ten’s complement accumulator (that is, replace (A) with 100—(A)).

NEG
DAA

;FORM 0 - ACCUMULATOR
; THEN DECIMAL ADJUST

84 750 ASSEMBLY LANGUAGE SUBROUTINES

Extend Instructions

1. Extend accumulator to a 16-bit unsigned number in a register pair.

LD rpl, A ;8-BIT MOVE
LD rph, 0 ;EXTEND 8 BITS TO 16 RITS

This procedure allows you to use the value in the accumulator as an index. ADD HL
or ADD xy will then add the index to the base.

2. Extend accumulator to a 16-bit signed number in a register pair.

LD rpl,A ;8-BIT MQVE

ADD A, A sMQVE SIGN BIT TO CARRY

SBC A.A ; SUBTRACT SIGN BIT FROM ZERO

LD rph, A sEXTEND 8 BITS TO 1& RITS SIGNED

SBC A,A produces 00 if Carry is 0 and FFq if Carry is 1. It thus extends Carry
across the entire accumulator.

3. Extend memory location ADDR to a 16-bit signed number in memory locations
ADDR (LSB) and ADDR+1 (MSB).

LD HL, ADDR s FETCH NUMEER

LD A, (HL)

ADD A, A ;MOVE SIGN TO CARRY

SEC A.A ;FORM SIGN BYTE (00 OR FF)
INC HL 3 STORE SIGN BYTE

LD (HL)Y, A

4. Extend bit0 of accumulator across entire accumulator; thatis, (A)= 00if bit 0=
0and FFgif bit0 = 1.

RRA ;MOVE BIT O TOQ CARRY
SBC A.A ;FORM O - BIT O

5. Sign function. Replace the value in the accumulator by 00 if it is positive and by
FF ¢ if it is negative.

ADD A, A ;MOVE SIGN BIT TQ CARRY
SBC A.A sFORM O - SIGN BIT

CHAPTER 2: IMPLEMENTING ADDITIONAL INSTRUCTIONS AND ADDRESSING MODES 85

LOGICAL INSTRUCTIONS

This group includes logical AND, logical OR, logical EXCLUSIVE OR, logical
NOT (complement), shift, rotate, and test instructions. Also included are arithmetic
instructions (such as adding the accumulator to itself) that perform logical functions.

Logical AND Instructions

1. Clear bits of accumulator.

AND MASK ;CLEAR BITS BY MASKING
MASK has 0’ in the bit positions to be cleared and 1’s in the positions to be left
unchanged. For example:

AND 11011011B ;CLEAR BITS 2 AND S
Remember, logically ANDing a bit with 1 does not affect its value. Since RES can clear

only one bit at a time, the following sequence would be needed to produce an
equivalent result:

RES 2,A ;CLEAR BIT 2
RES ©§,A s AND THEN CLEAR BIT S

2. Bittest—set the flags asif accumulator had been logically ANDed with a register
or memory location, but do not change the accumulator.

LD reg,A s SAVE ACCUMULATOR

LD HL, ADDR

AND (HL) ; PERFORM LOGICAL AND
LD A,reg ;s RESTORE ACCUMULATOR

LD does not affect any flags.

3. Test bits of accumulator. Set the Zero flag to 1 if all the tested bits are 0 and to 0
otherwise.

AND MASK s TEST BITS BY MASKING

MASK has 1’s in the positions to be tested and 0’s elsewhere. The Zero flag is set to 1
if all the tested bit positions are 0, and to 0 otherwise. Since the BIT instruction can test
only one bit position at a time, AND MASK is equivalent to a sequence of BIT
instructions and conditional jumps. For example:

AND 010000010R s TEST BITS 1 AND é FOR ZERO

86 750 ASSEMBLY LANGUAGE SUBROUTINES

is equivalent to the sequence

BIT é&,A ; TEST BIT é FOR ZERO

JR NZ, DONE sBRANCH IF IT IS NOT ZERO

BIT 1,A s THEN TEST BIT 1 FOR ZERO
DONE: NOP

4. Logical AND immediate with flags (condition codes). Logically AND a byte of
immediate data with the Flag register, clearing those flags that are logically ANDed
with 0’s.

PUSH AF sMOVE AF TO A REGISTER PAIR
POF rp

LD A, MASK s CLEAR FLAGS

AND rpl

LD rpl, A

PUSH rp ;RESTORE AF WITH FLAGS CLEARED
POP AF

This sequence changes a register pair (BC, DE, or HL).

Logical OR Instructions

1. Set bits of accumulator.
OR MASK s SET BITS BY MASKING
MASK has I’s in the bit positions to be set and 0’s elsewhere. For example:
OR 00010010B 3SET BITS 1 AND 4

Remember, logically ORing a bit with 0 does not affect its value. Since SET can set
only one bit at a time, we would need the following sequence to produce the same
result:

SET 1,A sSET BIT 1
SET 4,A ;AND THEN SET BIT 4

2. Test a register pair for 0. Set the Zero flag if both halves of a register pair are 0.

LD A,rph s TEST REGISTER PAIR FOR ZEROQ

OR rpl
The Zero flagis set if and only if both halves of register pair rp are 0. The accumulator
and the other flags are also changed.

3. Logical OR immediate with flags (condition codes). Logically OR a byte of
immediate data with the flag register, setting those flags that are logically ORed with
I’s.

PUSH AF sMOVE AF TO A REGISTER PAIR
POF rp

CHAPTER 2: IMPLEMENTING ADDITIONAL INSTRUCTIONS AND ADDRESSING MODES 87

LD A, MASK s SET FLAGS

OR rpl

LD rpl, A

PUSH rp sRESTORE AF WITH FLAGS SET
POFP AF

This sequence changes a register pair (BC, DE, or HL).

Logical EXCLUSIVE OR Instructions

1. Complement bits of accumulator.
XOR MASEK ;s COMPLEMENT BITS BY MASKING
MASK has I’s in the bit positions to be complemented and 0’s in the positions that are
to be left unchanged. For example:
XOR 11000000R ; COMPLEMENT BITS & AND 7

Remember, logically EXCLUSIVE ORing a bit with 0 leaves it unchanged.

2. Complement accumulator, setting flags.
XOR 11111111B ;s INVERT AND SET FLAGS

Logically EXCLUSIVE ORing with all 1’s inverts all the bits. This instruction differs
from CPL only in that it affects the flags, whereas CPL does not.

3. Compare register with accumulator bit by bit, setting each bit position that is
different.
XOR reg sBIT BY BIT COMPARISON

The EXCLUSIVE OR function is the same as a “not equal” function. Note that the
Sign flag is 1 if the two operands have different values in bit 7.

4. Add register to accumulator logically (that is, without any carries between bit
positions).
XOR reg sLOGICAL ADDITION

The EXCLUSIVE OR function is also the same as a bit-by-bit sum with no carries.
Logical sums are often used to form checksums and error-detecting or error-correcting
codes.

Logical NOT Instructions

1. Complement accumulator, setting flags.

88 730 ASSEMBLY LANGUAGE SUBROUTINES

XOR 11111111B ;s INVERT AND SET FLAGS

Logically EXCLUSIVE ORing with all 1’s inverts all the bits. This instruction differs
from CPL only in that it affects the flags, whereas CPL does not.

2. Complement bits of accumulator.
XOR MASK ;s COMPLEMENT BIT BY MASKING

MASK has I’sin the bit positions to be complemented and 0’s in the positions that are
to be left unchanged. For example:

XOR 01010001B ; COMPLEMENT BITS O, 4, AND é
Remember, logically EXCLUSIVE ORing a bit with 0 leaves it unchanged.

3. Complement memory location ADDR.
LD HL, ADDR

LD A, (HL) ;OBTAIN DATA
CPL ; COMPLEMENT
LD (HL) , A ;s RESTORE RESULT

CPL applies only to the accumulator.

4. Complement bit 0 of a register.
INC reg

or

DEC reg

Either instruction may, of course, affect the other bits in the register. The final value of
bit 0 will surely be 0 if it was originally 1 and if it was originally 0.

5. Complement bit 0 of a memory location.

LD HL, ADDR
INC (HL)

or
LD HL,ADDR

DEC (HL)
6. Complement digit of accumulator.

- Less significant digit
XOR 00001111B s COMPLEMENT LESS SIGNIFICANT DIGIT

CHAPTER 2: IMPLEMENTING ADDITIONAL INSTRUCTIONS AND ADDRESSING MODES 89

+ More significant digit
XOR 11110000R ;s COMPLEMENT MORE SIGNIFICANT DIGIT

These procedures are useful if the accumulator contains a decimal digit in negative
logic, such as the input from a typical ten-position rotary or thumbwheel switch.

7. Complement a register pair.

LD HL, OFFFFH sSET HL TO ALL ONES
AND A ; CLEAR CARRY
SBC HL,vp ; SUBTRACT REGISTER PAIR FROM ALL ONE3

The result ends up in HL.

Shift Instructions

1. Shift accumulator left logically.
ADD A,A sSHIFT A LEFT LOGICALLY

Adding the accumulator to itself is equivalent to a logical left shift.

2. Shift register pair HL left logically.
ADD HL,HL ;SHIFT HL LEFT LOGICALLY

3. Shift index register left logically.
ADD xy,xy sSHIFT IX OR 1Y LEFT LOGICALLY

4. Shift register pair right logically.

SRL rph sSHIFT MSB RIGHT LOGICALLY
RR rpl s AND THEN ROTATE LSB RIGHT

The key point here is that the less significant byte must be rotated to pick up the Carry
from the logical shifting of the more significant byte.

5. Shift register pair right arithmetically.

SRA rph s SHIFT MSB RIGHT ARITHMETICALLY
RR rpl s AND THEN ROTATE LSR RIGHT

The rotation of the less significant byte is the same as in the logical shift.

6. Shift memory locations ADDR and ADDR+1 (MSB in ADDR+1) left
logically.

Q0 730 ASSEMBLY LANGUAGE SUBROUTINES

LD HL,ADDR

SLA (HL) sSHIFT LSE LEFT LOGICALLY
INC HL
RL (HL) s AND THEN ROTATE MSE LEFT

or

LD xy, ADOR
SLA (xy+0) ;SHIFT LSE LEFT LOGICALLY
RL (xy+1) s AND THEN ROTATE MSE LEFT

To produce a 16-bit left shift, you must shift the less significant byte first and then
rotate the more significant byte.

7. Shift memory locations ADDR and ADDR+1 (MSB in ADDR+1) right
logically.

LD HL,ADDR+1

SRL (HL) s SHIFT MSB RIGHT LOGICALLY
DEC HL
RR (HL) s AND THEN ROTATE LSB RIGHT

or

LD Xy, ADDR
SRL (xy+1) s SHIFT MSR RIGHT LOGICALLY
RR (xy+0) s AND THEN ROTATE LSB RIGHT

8. Digit swap accumulator. That is, exchange the four least significant bits with the
four most significant bits.

RLCA ;DIGIT SHIFT = 4 LEFT ROTATES
RLCA
RLCA
RLCA

or
RRCA ;DIGIT SHIFT = 4 RIGHT ROTATES
RRCA

RRCA
RRCA

9. Normalize accumulator. That is, shift the accumulator left until its most signif-
icant bit is 1. Do not shift at all if the accumulator contains 0.

AND A s TEST ACCUMULATOR
JP M, DONE ;EXIT IF ALREADY NORMALIZED
JR Z,DONE sEXIT IF ZERO
SHIFT: ADD A,A s OTHERWISE, SHIFT A LEFT 1 BIT
JP P, SHIFT s KEEP SHIFTING UNTIL NORMALIZED

DONE: NOP

CHAPTER 2: IMPLEMENTING ADDITIONAL INSTRUCTIONS AND ADDRESSING MODES 91

10. Normalize register pair HL. That is, shift the 16-bit number left until its most
significant bit is 1. Do not shift the number at all if it is 0.

LD A, H ; IS ENTIRE NUMBER 07
oR L
JR Z,DONE ; YES, DONE
SHIFT: ADD HL,HL s SHIFT NUMBER LEFT 1 BIT
JR NG, SHIFT s KEEP SHIFTING UNTIL CARRY IS 1
RR H s THEN SHIFT BACK ONCE
RR L
DONE: NOP

ADD HL affects the Carry but not the Sign or Zero flag.

Rotate Instructions
1. Rotate register pair right.
RRC rpl ;COPY BIT O FOR ROTATION
RL rpl s CARRY = BIT 0O
RR rph sROTATE MSB WITH BIT O
RR rpl s THEN ROTATE LSB RIGHT

The RRC rpl instruction places bit 0 both in bit 7 and in the Carry flag; RL rpl then
restores the register but leaves the original bit 0 in the Carry.

2. Rotate register pair left.

RLC rph ;COPY RIT 15 FOR ROTATION
RR reph ;CARRY = BIT 15

RL rpl ;ROTATE LSB WITH BIT 1S
RL rph ; THEN ROTATE MSB LEFT

RLC rph places bit 7 of the more significant byte both in bit 0 and in the Carry. RR rph
then restores the register but leaves the original bit 7 (bit 15 of the 16-bit register pair) in
the Carry.)

3. Rotate accumulator left through Carry, setting flags.
ADC A,A sROTATE LEFT AND SET FLAGS
This instruction is the same as RLA, except that it affects all the flags whereas RLA
affects only the Carry.

4. Rotate register pair right through Carry.

RR rph ;ROTATE MSB RIGHT WITH CARRY
RR rpl 3 THEN ROTATE LSB RIGHT WITH CARRY

Q92 730 ASSEMBLY LANGUAGE SUBROUTINES

5. Rotate register pair left through Carry.
RL rpl ;ROTATE LSB LEFT WITH CARRY
RL rph sROTATE MSE LEFT WITH CARRY

6. Rotate memory locations ADDR and ADDR+1(MSBin ADDR+1) right 1 bit
position through Carry.

LD HL,ADDR+1

RR (HL) ;ROTATE MSB RIGHT WITH CARRY
DEC HL
RR (HL) ; THEN ROTATE LSB RIGHT WITH CARRY

or

LD Xy, ADDR
RR (xy+1) ;ROTATE MSB RIGHT WITH CARRY
RR (xy+0) s THEN ROTATE LSB RIGHT WITH CARRY

7. Rotate memory locations ADDR and ADDR+1 (MSBin ADDR+1) left one bit
position through Carry.

LD HL, ADDR

RL (HL) ;ROTATE LSB LEFT WITH CARRY
INC HL
RL (HL) s THEN ROTATE MSE LEFT WITH CARRY

or

LD Xy, ADDR

RL {(xy+0) :ROTATE LSB LEFT WITH CARRY
RL {xy+1) + THEN ROTATE MSB LEFT WITH CARRY
Test Instructions

1. Test accumulator. Set flags according to the value in the accumulator without
changing that value.

AND A ; TEST ACCUMULATOR
or
OR A s TEST ACCUMULATOR

Both alternatives clear the Carry.

2. Test register. Set flags according to the value in a register without changing that
value.

INC reg s TEST REGISTER
DEC reg

This sequence does not affect the Carry or the accumulator.

CHAPTER 2: IMPLEMENTING ADDITIONAL INSTRUCTIONS AND ADDRESSING MODES 93

3. Test memory location. Set flags according to the value in memory location
ADDR without changing that value.

LD HL, ADDR ; TEST MEMORY LOCATION ADDR
INC (HL)
DEC (HL)

This sequence does not affect the Carry or the accumulator.

4. Test register pair. Set the Zero flag according to the value in a register pair
without changing that value.

LD A, rph s TEST REGISTER PAIR
OR rpl

This sequence changes the accumulator and the other flags.

5. Test index register. Set the Zero flag according to the value in an index register
without changing that value.

PUSH xvy sMOVE INDEX REG TQ REGISTER PAIR
POF rp

LD A, rph s TEST REGISTER PAIR

OR rpl

This sequence changes a register pair, the accumulator, and the other flags.

6. Test a pair of memory locations. Set the Zero flag according to the contents of
memory locations ADDR and ADDR+1.

LD HL, (ADDR) s TEST A MEMORY WORD
LD AH
OR L

This sequence changes HL, the accumulator, and the other flags.

7. Test bits of accumulator. Set the Zero flag if all the tested bits are 0’s and clear the
Zero flag otherwise.

AND MASK s TEST BITS BY MASKING
MASK has I’sin the bit positions to be tested and 0’s elsewhere. The Zero flag is set
to 1 if all the tested bits are 0’s and to 0 otherwise. For example:
AND 10000001R s TEST BITS O AND 7

The Zero flag is set to 1 if bits 0 and 7 of the accumulator are both zero, and to 0
otherwise. The BIT instruction, on the other hand, can only handle one bit at a time;
for example:

BIT 7.,A s TEST BIT 7

Q4 730 ASSEMBLY LANGUAGE SUBROUTINES

To duplicate the AND instruction, we would need the sequence

BIT 7,A s TEST BIT 7

JR NZ, DONE sEXIT IF IT IS 1

BIT 0,A s TEST BIT O
DONE:: NOP

8. Compare register with accumulator bit by bit. Set each bit position that is
different to 1.

XOR reg sBIT-RY-BIT COMPARISON
The EXCLUSIVE OR function is the same as a “not equal” function.

9. Bittest. Setflags asif the accumulator had been logically ANDed with a memory
location, but do not change the accumulator.

LD reg, A 3 SAVE ACCUMULATOR

LD HL, ADDR

AND (HL) s PERFORM LOGICAL AND
LD A,reg s RESTORE ACCUMULATOR

DATA TRANSFER INSTRUCTIONS

In this group, we consider load, store, move, exchange, input, output, clear, and set
instructions. We also include arithmetic instructions (such as subtracting the accumu-
lator from itself) that move a specific value or the contents of another register to the
accumulator or other destination without changing any data.

Load Instructions

1. Load register direct.

LD A, (ADDR)
LD reg, A

or

LD HL, ADDIR
LD reg, (HL)

The first alternative uses the accumulator, while the second alternative uses register
pair HL.
2. Load register indirect.

+ From address in HL

CHAPTER 2: IMPLEMENTING ADDITIONAL INSTRUCTIONS AND ADDRESSING MODES 95

LD reg, (HL)

- From address in BC or DE

LD A, (rp)
LD reg,A

Note that only the accumulator can be loaded indirectly via BC or DE.
- From address in an index register

LD reg, (xy+0)

3. Load flag register with the 8-bit number VALUE.

LD rpl,VALUE ;PUT VALUE IN LSE OF REGISTER PAIR
PUSH rp sMOVE TO FLAGS THROUGH STACK
POF AF

The limitation of pushing and popping register pairs causes some unnecessary
operations.

4. Load interrupt vector register with the 8-bit number VALUE.
LD A, VALUE
LD I,A

5. Load refresh register with the 8-bit number VALUE.

LD A, VALUE
LD R, A

6. Load flag register direct from memory location ADDR.

LD HL, (ADDR) ;LOAD L FROM ADDR
PUSH HL sHL TO STACK, L ON TOP
POP AF ;HL TO AF WITH L TO FLAGS

This procedure allows a user to initialize the flag register for debugging or testing
purposes. Note that it changes the accumulator and the less significant byte of a
register pair.

7. Load interrupt vector register direct from memory location ADDR.

LD A, (ADDR)
LD I.A

8. Load refresh register direct from memory location ADDR.

LD A, (ADDR)
LD R,A

96 750 ASSEMBLY LANGUAGE SUBROUTINES

9. Load register pair HL indirect from address in HL.

LD A, (HL) ;LOAD LSB
INC HL

LD H, (HL) ; LOAD MSB
LD L.A

10. Load register pair (BC or DE) indirect from address in HL.

LD rpl, (HL) sLOAD LSB

INC HL

LD reh, (HL) ; LOAD MSB

DEC HL sRESTORE HL TO ORIGINAL VALLUE

11. Load alternate processor status (AF’) from stack.
POP AF

EX AF, AF~

12. Load memory locations PTR and PTR+1 (MSB in PTR+1) with ADDR.

LD HL, ADDR sGET INDIRECT ADDRESS
LD (PTR), HL ;STORE INDIRECT ADDRESS IN MEMCORY

Store Instructions

1. Store register direct.

LD A,reg
LD (ADDR) , A

or

LD HL, ADDR
LD (HL) ,regqg

The first alternative uses the accumulator, whereas the second uses register pair HL.

2. Store register indirect.

+ At address in HL
LD (HL),reg

- At address in DE or BC
LD A,reg
LD {rp),A

Only the accumulator can be stored at the address in BC or DE.

CHAPTER 2: IMPLEMENTING ADDITIONAL INSTRUCTIONS AND ADDRESSING MODES 97

- At address in an index register
LD {(xy+0),reqg

3. Store flag register direct.

PUSH AF ;F TO TOP OF STACK

POP HL sF TO L

LD (ADDR) , HL ;F TO ADDR, DESTRQY ADDR+1
or

PUSH AF 3F TO TOP OF STACK

POP HL sF TO L

LD AL ;F TO A

STA ADDR ;F TO ADDR

4. Store interrupt vector register direct.

LD Al
LD (ADDR), A

5. Store refresh register direct.
LD AR
LD (ADDR), A

6. Store register pair (BC or DE) indirect at address in HL.

LD (HL), rpl 3 STORE LSE

INC HL

LD (HL),rph s STORE MSRB

DEC HL sRETURN HL TO ORIGINAL VALLE

The register pair is stored in memory in the usual upside-down fashion.

7. Store alternate processor status (AF’) in stack.

EX AF, AF
PUSH AF

Move Instructions

1. Transfer accumulator to flag register.

LD rpl,A

PUSH rp

POF AF
The flag register is the less significant byte of register pair AF. This sequence also
changes the accumulator and the less significant byte of a register pair (i.e., C, E, or L).

98 750 ASSEVBLY LANGUAGE SUBROUTINES

2. Transfer flag register to accumulator.

PUSH AF
POP rp
MOV A, rpl

This sequence changes register pair rp.

3. Move register pair 1 to register pair 2.
LD rp2l,rpll
LD rpzh,rplh

This sequence transfers the contents of register pair rpl to rp2 without changing rpl.
Remember, EX DE,HL exchanges register pairs DE and HL specifically.

4. Move stack pointer to HL.

LD HL, 0
ADD HL,SP

5. Move stack pointer to an index register.

LD ®y,0
ADD xy,SP

6. Move index register to register pair.

PUSH xy
POP rp

7. Move register pair to index register.

PUSH rp
POP xy

8. Move index register IX to index register IY.

PUSH IX
FPOP 1Y

9. Move index register IY to index register IX.

PUSH 1Y
POP IX

10. Move HL to program counter.
JP (HL)

CHAPTER 2: IMPLEMENTING ADDITIONAL INSTRUCTIONS AND ADDRESSING MODES 99

11. Move index register to program counter.

JP (xy)

12. Move memory locations ADDR and ADDR+1 (MSB in ADDR+1) to the
program counter (an indirect jump).

LD HL, (ADDR)
JP (HL)

13. Move multiple (fill). Place the accumulator in successive memory locations
starting at the address in register pair HL. The number of bytes to be filled (one or
more) is in register B.

FILBYT: LD (HL), A sFILL A MEMORY LOCATION
INC HL sPOINT TO NEXT LOCATION
DJUNZ FILBYT s COLINT BYTES

This routine can initialize an array or buffer. If more than 256 bytes are to be filled,
the repeated block move instructions become handy. The approach is to fill the first
byte from the accumulator and then use a repeated block move to fill the succeeding
bytes. The destination pointer is always one byte ahead of the source pointer, so the
data being moved is always the same.

LD (HL), A sFILL THE FIRST BYTE MANUALLY

LD D, H s DESTINATION POINTER IS 1 BYTE UP
LD E, L

INC DE

DEC BC ; COUNT DQWN 1 BYTE

LDIR sFILL THE REST AUTOMATICALLY

Exchange Instructions

1. Exchange registers using the accumulator.

LD A,regl
LD regl,regl
LD reg2, A

2. Exchange register pairs.

- DE with HL
EX DE, HL
- BC with HL
PUSH BC ;BC TO TOP OF STACK
EX HL, (SP) ;BC TO HL, HL TO TOF OF STACK

POP BC ;HL TO BC

100 730 ASSEMBLY LANGUAGE SUBROUTINES

EX HL,(SP) exchanges HL with the top of the stack.
- general, rpl with rp2

PUSH rpl ;PUT RP1, RP2 IN STACK

PUSH rp2

POP rpl s EXCHANGE BY POPPING IN WRONG ORDER
POP rp2

3. Exchange stack pointer with HL.

EX DE,HL sHL TO DE

LD HL,0 ;SP TO HL

ADD HL,SP

EX DE,HL ;SP TO DE, RESTORE HL
LD SP,HL ;HL TO SP

EX DE,HL 3P TO HL

This procedure can be used to differentiate between the user stack and the operating
system or monitor stack.

4. Exchange index register with register pair.

PUSH xy :SAVE INDEX REG, REG PAIR IN STACK
PUSH rp ,

POP xy ;EXCHANGE BY POPPING IN WRONG ORDER
POF rp

5. Exchange index registers.

PUSH IX ;SAVE BOTH INDEX REGISTERS IN STACK
PUZH 1Y
POP IX s EXCHANGE BY POPPING IN WRONG ORDER
POFP 1Y

Clear Instructions

1. Clear the accumulator.
SUB A
or
XOR A
or

LD A, 0

The third alternative executes more slowly and occupies more memory than the
other two, but does not affect the flags.

CHAPTER 2: IMPLEMENTING ADDITIONAL INSTRUCTIONS AND ADDRESSING MODES 101

2. Clear a register.

LD reg,Q

3. Clear memory location ADDR.

SUB A
LD (ADDR), A

or

LD HL, ADDR
LD (HL), 0

The second alternative executes more slowly than the first, but does not affect the
accumulator or the flags. Of course, it does use register pair HL.

4. Clear a register pair.

LD re,0

5. Clear memory locations ADDR and ADDR+1.

LD HL, O
LD (ADDR) , HL

HL is faster to use here than DE or BC.

6. Clear Carry flag.
ANDI A

or
OR A
Any other logical instruction (except CPL) will also clear the Carry, but these two
are particularly useful because they do not change the accumulator. Remember,

ANDing or ORing a bit with itself does not affect its value. To clear Carry without
affecting any other flags, use the sequence

SCF sFIRST SET CARRY FLAG
CCF ;s THEN CLEAR CARRY BY COMPLEMENTING

7. Clear bits of accumulator.
AND MASK ;CLEAR BITS BY MASKING

MASK has0’s in the bit positions to be cleared and 1’s in the positions that are to be
left unchanged. For example:
AND 10111110B ;CLEAR BITS O AND &

RES can clear only one bit at a time.

402 750 ASSEMBLY LANGUAGE SUBROUTINES

Set Instructions

1. Set the accumulator to FFg (all 1’s in binary).
LD A, OFFH

or
SUB A
DEC A
2. Set register to FFy.
LD reg, OFFH

3. Set memory location ADDR to FFy.

LD A,OFFH
LD (ADDR), A

or

LD HL,ADDR
LD (HL) , OFFH

4. Set bits of accumulator.
OR MASK sSET BITS BY MASKING

MASK has 1’ in the bit positions to be set and 0’s elsewhere.. For example:
OR 10110000E sSET BITS 4, S, AND 7

The SET instruction can set only one bit at a time.

BRANCH (JUMP) INSTRUCTIONS

Unconditional Branch Instructions

1. Jump indirect.

+ To address in HL
JP (HL)

+ To address at the top of the stack
RET

Note that RET is just an ordinary indirect jump that obtains its destination from the

CHAPTER 2! IMPLEMENTING ADDITIONAL INSTRUCTIONS AND ADDRESSING MODES 4 03

top of the stack. RET can be used for purposes other than returning from a subroutine.

+ To address in DE

EX DE, HL

JP (HL)
+ To address in BC

LD H,B

LD L,C

JP (HL)

or
PUSH BC
RET

The second alternative is much slower than the first (21 cycles as compared to 12
cycles), but does not change HL.

+ To address in an index register

JP (xy)

+ To address in memory locations ADDR and ADDR+1
LD HL, ADDR sFETCH INDIRECT ADDRESS
JP (HL) sAND BRANCH TO IT

2. Jump indexed, assuming that the base of the address table is in register pair HL
and the index is in the accumulator.

ADD A, A ;DOUBLE INDEX FOR 2-BYTE ENTRIES
LD E,A sEXTEND INDEX TO 16 BITS

LD n,o

ADD HL,DE s CALCULATE ADDRESS OF ELEMENT
LD E, (HL) ; FETCH ELEMENT FROM ADDRESS TABLE
INC HL

LD 0, (HL)

EX DE, HL sAND JUMP TO IT

JP C(HL)

We have assumed that the address table (jump table) consists of as many as 128 2-byte
entries, stored in the usual Z80 format with the less significant byte at the lowel
address. A typical table would be

JTAB: W ROUTO s ADDRESS ENTRY ©
W ROUT1 ; ADDRESS ENTRY 1
oW ROUTZ2 ; ADDRESS ENTRY 2

3. Jump and link; that is, transfer control to address DEST, saving the current
program counter in register pair HL.

404 750 ASSEMBLY LANGUAGE SUBROUTINES

LD HL, HERE sLOAD H AND L WITH LINK
HERE: JP DEST ; TRANSFER CONTROL

This procedure can provide a subroutine capability that does not use the stack. The
subroutine can return control by adjusting the link and executing JP (HL). For
example, to return control to the instruction immediately following JP DEST, the
subroutine would have to add 3 to HL (since JP DEST occupies 3 bytes). Of course,
the link could also be changed to HERE+3.

Conditional Branch Instructions

1. Branch if 0.
+ Branch if accumulator contains 0

AND A 3 TEST ACCUMULATOR
JR Z,DEST

+ Branch if a register contains 0
INC reg ;s TEST REGISTER
DEC reg
JR Z,DEST

+ Branch if memory location ADDR contains 0

LD HL , ADDR ; TEST MEMORY LOCATION

INC (HL)
DEC (HL)
JR Z,DEST

or
LD A, (ADDR) s TEST MEMORY LOCATION

AND A
JR Z,DEST

* Branch if a register pair contains 0

LD A,rph s TEST REGISTER PAIR
OR rpl
JR Z,DEST

+ Branch if an index register contains 0

PUSH xy :MOVE INDEX REGISTER TO REGISTER PAIR
POF rp

LD A,rph ; TEST REGISTER PAIR

OR rpl

JR Z,DEST

CHAPTER 2: IMPLEMENTING ADDITIONAL INSTRUCTIONS AND ADDRESSING MODES 105

+ Branch if memory locations ADDR and ADDR+1 both contain 0

LD HL, (ADDR) s TEST A 146-BIT NUMBER IN MEMORY
LD AH

QR L

JR Z,DEST

- Branch if a bit of a register is 0

BIT N,reg ; TEST BIT N OF REGISTER
JR Z,DEST

Special cases are

+ Branch if bit 7 of the accumulator is 0

AND A s TEST BIT 7 OF ACCUMULATOR
JP P,DEST

or
RLA ;MOVE BIT 7 TO CARRY

JR NC, DEST
The second alternative allows relative jumps, but it also changes the accumulator.

-+ Branch if bit 6 of the accumulator is 0
ADD A,A s SET SIGN FROM BIT &
JP P, DEST s THEN TEST SIGN FLAG
- Branch if bit 0 of the accumulator is 0

RRA sMOVE RIT O TO CARRY
JR NC, DEST ; AND TEST CARRY

- Branch if a bit of a memory location is 0

LD HL,ADDR
BIT N, (HL) s TEST BIT N OF MEMORY LOCATION ADDR
JR Z,DEST

+ Branch if interrupts are disabled (that is, if interrupt flip-flop IFF2 is 0)

LD AI yMOVE IFF2 TO P/V FLAG
JP PO, DEST

The instruction LD A,I and LD A,R both move interrupt enable flip-flop IFF2 to
the Parity/ Overflow flag. This sequence can be used to save the current interrupt
status before executing a routine that must run with interrupts disabled. That status
can then be restored afterward.

2. Branch if not 0.

+ Branch if accumulator does not contain 0

AND A s TEST ACCUMULATOR
JR NZ,DEST

406 7530 ASSEMBLY LANGUAGE SUBROUTINES

+ Branch if a register does not contain 0

INC reg s TEST REGISTER
DEC reg
JR NZ,DEST

+ Branch if memory location ADDR does not contain 0

LD HL, ADDR ; TEST MEMORY LOCATION
INC (HL)

DEC (HL)

JR NZ, DEST

or

LD A, (ADDR) s TEST MEMORY LOCATION
AND A
JR NZ, DEST

= + Branch if register pair does not contain 0

LD A, rph s TEST REGISTER PAIR
OR rpl
JR NZ,DEST

+ Branch if index register does not contain 0

PUSH xy 3 TRANSFER INDEX REGISTER TO REG PAIR
POP rp

LD A,rph s TEST REGISTER PAIR

OR rpl

JR NZ,DEST
+ Branch if memory locations ADDR and ADDR+1 do not both contain 0

LD HL, (ADDR) s TEST 16-BIT NUMBER IN MEMORY
LD AH
OR L

JR NZ,DEST

+ Branch if a bit of a register is 1
BIT N,reg s TEST BIT N OF REGISTER
JR NZ,DEST
Special cases are
+ Branch if bit 7 of the accumulator is 1

AND A ; TEST BIT 7 OF ACCUMULATOR
JP M, DEST
or
RLA sMOVE BIT 7 TO CARRY
JR C, DEST

The second alternative allows relative jumps, but it also changes the accumulator.

CHAPTER 2: IMPLEMENTING ADDITIONAL INSTRUCTIONS AND ADDRESSING MODES 407

- Branch if bit 6 of the accumulator is 1

ADD A, A sSET SIGN FROM BIT &

JP M, DEST s THEN TEST SIGN FLAG
+ Branch if bit 0 of the accumulator is 1

RRA sMQVE RIT O TO CARRY

JR C,DEST s THEN TEST CARRY

+ Branch if a bit of a memory location is 1

LD HL, ADDR
RIT N, (HL) s TEST BIT N OF MEMORY LOCATION ADDR
JR NZ, DEST

+ Branch if interrupts are enabled (that is, if interrupt flip-flop IFF2 is 1)

LD Al sMQVE IFF2 TO P/V FLAG
JP PE, DEST

The instructions LD A,I and LD A,R both move interrupt enable flip-flop IFF2 to
the Parity/Overflow flag. This sequence can be used to save the current interrupt
status before executing a routine that must run with interrupts disabled. That status
can be restored afterward.

3. Branch if Equal.
- Branch if (A) = VALUE

CP VALUE ;s COMPARE BY SUBTRACTING
JR Z,DEST

The following special cases apply to any register or to a memory location addressed
using HL or through indexing.

+ Branch if (reg) = 1

DEC reg ; CHECK BY DECREMENTING
JR Z,DEST ;AND TESTING RESULT FOR ZERO

This procedure can be applied to any primary register, to the memory location
addressed through HL, or to memory locations addressed via indexing.

+ Branch if (reg) = FF g

INC reg s CHECK BY INCREMENTING
JR Z,DEST ;AND TESTING RESULT FOR ZERO

This procedure can be applied to any primary register, to the memory location
addressed through HL, or to memory locations addressed via indexing.

- Branch if (A) = (reg)

CP reg ;s COMPARE BY SUBTRACTING
JR Z,DEST

408 730 ASSEMBLY LANGUAGE SUBROUTINES

+ Branch if (A) = (ADDR)

LD HL, ADDR ; COMPARE BY SUBTRACTING
CP (HL.)
JR Z,DEST

+ Branch if (rp) = VALI16

LD HL,VAL1&

AND A s CLEAR CARRY

SBC HL,rp

JR Z,DEST
Carry must be cleared, since the Z80 lacks a 16-bit subtract instruction without Carry.
Note that the two’s complement of VAL16 cannot be added using ADD HL, since that
instruction does not affect the Zero flag.

+ Branch if (HL) = (rp)

AND A s CLEAR CARRY
SBC HL,rp
JR Z,DEST

Note: Do not use either of the next two sequences to test for stack overflow or under-
flow, since intervening operations could change the stack pointer by more than 1.

+ Branch if (SP) = VALI16

LD HL, VAL14

AND A ;s CLEAR CARRY
SBC HL,SP

JR Z,DEST

- Branch if (SP) = (HL)

AND A s CLEAR CARRY
SBC HL,SP
JR Z,DEST

+ Branch if (xy) = VALI6

PUSH xy ;MOVE INDEX REGISTER TO REGISTER PAIR
POF rp

LD HL,VAL1& ; THEN COMPARE REGISTER PAIR, VAL1&
AND A ; CLEAR CARRY

SBC HL,SP

JR Z,DEST

ADD xy cannot be used to add the two’s complement of VAL16, since ADD xy does
not affect the Zero flag.
4. Branch if Not Equal.
* Branch if (A) # VALUE

CcpP VALUE ; COMPARE BY SUBTRACTING
JR NZ,DEST

CHAPTER 2. IMPLEMENTING ADDITIONAL INSTRUCTIONS AND ADDRESSING MoDEs 409

The following special cases apply to any register or to a memory location addressed

using HL or through indexing.
+ Branch if (reg) # 1

DEC reg
JR NZ, DEST

+ Branch if (reg) # FFq
INC reg
JR NZ,DEST

+ Branch if (A) # (reg)
CP reg
JR NZ, DEST

+ Branch if (A) # (ADDR)
LD HL, ADDR
CP ¢(HL)
JR NZ, DEST

+ Branch if (rp) # VALI16
LD HL, VAL14&
AND A H
SBC HL,rp
JR NZ, DEST

+ Branch if (HL) # (rp)
AND A
SRC HL,rp
JR NZ, DEST

; CHECK BY DECREMENTING
s AND TESTING RESULT FOR ZERO

s CHECK BY INCREMENTING
;AND TESTING RESULT FOR ZERO

; COMPARE BY SUBTRACTING

;s COMPARE BY SUBTRACTING

CLEAR CARRY

;s CLEAR CARRY

Note: You should not use either of the next two sequences to test for stack overflow
or underflow, since intervening operations could change the stack pointer by more

than 1.
- Branch if (SP) # VALI16

LD HL, VAL14
AND A

SBC HL,SP

JR NZ, DEST

+ Branch if (SP) # (HL)

AND A
SBC HL,SP
JR NZ,DEST

- Branch if (xy) # VALI6

PUSH xy
POF rp

;s CLEAR CARRY

3 CLEAR CARRY

sMOVE INDEX REGISTER TO REGISTER PAIR

410 7580 ASSEMBLY LANGUAGE SUBROUTINES

LD HL, VAL1é s THEN COMPARE REGISTER PAIR AND VAL1&
AND A sCLEAR CARRY
SRC HL,rp

JR NZ,DEST

ADD xy cannot be used to add the two’s complement of VAL16, since ADD xy does
not affect the Zero flag.

5. Branch if Positive.
+ Branch if contents of accumulator are positive

AND A s TEST ACCUMULATOR
JP P, DEST

+ Branch if contents of a register are positive

INC reg s TEST REGISTER
DEC reg

JP P, DEST

+ Branch if contents of memory location ADDR are positive

LD HL, ADDR s TEST MEMORY LOCATION
INC (HL)
DEC (HL)
JP P, DEST
or
LD A, (ADDR) TEST MEMORY LOCATION
AND A
JP P,DEST

- Branch if contents of a register pair are positive

INC rph s TEST MORE SIGNIFICANT BRYTE ONLY
DEC rph

JP P, DEST

+ Branch if contents of index register are positive

PUSH xy : TRANSFER INDEX REGISTER TO AF
POP AF

AND A s TEST MORE SIGNIFICANT BYTE ONLY
JP P,DEST

+ Branch if 16-bit number in memory locations ADDR and ADDR+1 (MSB in
ADDR+1) is positive

LD A, (ADDR+1) ; TEST MORE SIGNIFICANT BYTE ONLY
AND A

JP P, DEST

CHAPTER 2: IMPLEMENTING ADDITIONAL INSTRUCTIONS AND ADDRESSING MODES 444

or

LD HL, ADDR+1 s TEST SIGN BIT OF MSB
BIT 7, (HL)
JR Z,DEST

6. Branch if Negative.

+ Branch if contents of accumulator are negative

AND A s TEST ACCUMULATOR
JP M, DEST

- Branch if contents of a register are negative
INC reg s TEST PRIMARY REGISTER
DEC reg
JP M, DEST

+ Branch if contents of memory location ADDR are negative

LD HL, ADDR ; TEST MEMORY LOCATION
INC (HL)
DEC (HL)

JP M, DEST
or

LD A, (ADDR) s TEST MEMORY LOCATION
AND A
JP M, DEST

+ Branch if contents of a register pair are negative

INC rph s TEST MORE SIGNIFICANT BYTE ONLY
DEC rph
JP M, DEST
+ Branch if contents of an index register are negative
PUSH xy s MOVE INDEX REGISTER TO AF
POF AF
AND A ; TEST MORE SIGNIFICANT BYTE ONLY
JP M, DEST

+ Branch if 16-bit number in memory locations ADDR and ADDR+1 (MSB in
ADDR+1) is negative

LD A, (ADDR+1) ; TEST MORE SIGNIFICANT BYTE ONLY
AND A

JP M, DEST

or

LD HL, ADDR+1 s TEST SIGN BIT OF MSB
BIT 7, (HL)
JR NZ, DEST

442 730 ASSEMBLY LANGUAGE SUBROUTINES

7. Signed Branches.

These sequences must allow for two’s complement overflow. After a comparison, the
setting of the Parity/ Overflow flag indicates that overflow occurred. The branches are
JP PE (Branch on Overflow) and JP PO (Branch on No Overflow). The idea then is to
force a branch if the specified condition holds and overflow did not occur (a true
positive), or if the condition does not hold but overflow did occur (a false negative).
The operand in the initial comparison (indicated as oper) could be a data byte, a
register, (HL), or an indexed address.

+ Branch if accumulator is greater than other operand (signed)

CP oper s PERFORM COMPARISON
JP PE,CHRVS ;BRANCH IF QVERFLOW QCCURRED
JP M, DONE ;NO QVERFLOW -~ NO BRANCH ON NEGATIVE
JR NZ, DEST 3 BRANCH IF RESULT NON-ZEROQ POSITIVE
JR DONE
CHRVS: JP M, DONE s BRANCH IF NEGATIVE BUT OQVERFLOW
DONE: NOP

This sequence forces a branch if the result is greater than 0 and overflow did not
occur, or if the result is less than 0 but overflow did occur.
- Branch if accumulator is greater than or equal to other operand (signed)

CP oper ; PERFORM COMPARISON
JP PE,CHRVS ;BRANCH IF QVERFLOW OCCURRED
JP P, DEST ; BRANCH IF NO QVERFLOW, POSITIVE

JR DONE
CHRVS: JP M, DEST s BRANCH IF OVERFLOW, NEGATIVE
DONE: NOP

This sequence forces a branch if the result is greater than or equal to 0 and overflow
did not occur, or if the result is less than 0 but overflow did occur.

+ Branch if accumulator is less than other operand (signed)

cP oper ; PERFORM COMPARISON
JP PE,CHRVS ;BRANCH IF QVERFLOW OQCCURRED
JP M, DEST s BRANCH IF NO QVERFLOW, NEGATIVE
JR DONE
CHRVS: JP P,DEST s BRANCH IF QVERFLOW, POSITIVE
DONE: NOP

This sequence forces a branch if the result is less than 0 and overflow did not occur,
or if the result is greater than or equal to 0 and overflow did occur.

+ Branch if accumulator is less than or equal to other operand (signed)

CP oper s PERFORM COMPARISON
JP PE,CHRVS ;BRANCH IF QVERFLOW QCCURRED
JP M, DEST s BRANCH IF NO QVERFLOW, NEGATIVE
JR Z,DEST s BRANCH IF NO QVERFLOW, ZERO
JR DONE
CHRVS: JP M, DONE

CHAPTER 2: IMPLEMENTING ADDITIONAL INSTRUCTIONS AND ADDRESSING MODES 44 3

JR NZ, DEST s BRANCH IF QVERFLOW, POSITIVE
DONE: NOP
This sequence forces a branch if the result is less than or equal to 0 and overflow did
not occur, or if the result is greater than 0 and overflow did occur.

8. Branch if Higher (Unsigned).

Branch if the operands being compared are not equal and the comparison does not
require a borrow. The special problem here is avoiding a branch when the operands are
equal.

+ Branch if (A) > VALUE (unsigned)

cP VALUE s COMPARE BY SUBTRACTING
JR C, DONE s NO BRANCH IF BORROW NEEDED
JR NZ,DEST s BRANCH IF NO BORROW, NOT EQUAL

DONE: NOP
Comparing equal numbers clears Carry. An alternative approach is

CP VALUE+1 s COMPARE BY SUBTRACTING VALUE+1
JR NC, DEST s BRANCH IF NO BORROW NEEDED

+ Branch if (A) > (reg) (unsigned)

cP reg ; COMPARE BY SUBTRACTING
JR C, DONE :NO BRANCH IF BORROW NEEDED
JR NZ, DEST ; BRANCH IF NO BORROW, NOT EQUAL

DONE: NOP
or

LD regl, A ;FORM REG - A
LD A,reg

cpP regl
JR NC, DEST s BRANCH IF BORROW NEEDED

or

INC reg sFORM A — REG - 1
CP reg

JR NC, DEST s BRANCH IF NO EORROW NEEDED
In the third alternative, we could replace INC reg with DEC A, thus changing the
accumulator instead of the register.

* Branch if (A) > (ADDR) (unsigned)

LD HL, ADDR

CP (HL) s COMPARE BY SUBTRACTING

JR C, DONE sNO BRANCH IF BORROW NEEDED

JR NZ, DEST s BRANCH IF NO BORROW, NOT EQUAL

DONE: NOP

or

4144 /30 ASSEVBRLY LANGUAGE SUBROUTINES

LD reg,A sFORM (ADDR) - A

Ln A, (ADDR)

CP reg

JR C,DEST s BRANCH IF BORROW NEEDED
+ Branch if (HL) > (rp) (unsigned)

SCF ;s SET CARRY FLAG

SRC HL,rp

JR NC, DEST s BRANCH IF NO BORROW NEEDED
+ Branch if (HL) > VALI6 (unsigned)

LD rp,-VAL16-1 sFORM HL - VAL1S - 1

ADD HL,rp

JR C,DEST s BRANCH IF NO BORROW NEEDED

Carry is an inverted borrow here, since we are subtracting by adding the two’s
complement.

+ Branch if (SP) > (HL) (unsigned)

AND A ; CLEAR CARRY FLAG
SBC HL,SP
~JR C,DEST

+ Branch if (SP) > VALI16 (unsigned)

LD HL, -VAL16-1 sFORM SP - VALl - 1

ADD HL,5P

JR C, DEST s BRANCH IF NO EORROW GENERATED
- Branch if (xy) > VAL16 (unsigned)

LD rp,-VAL1&6~-1 sFORM XY - VAL1& - 1

ADD xy,rp
JR C, DEST s BRANCH IF NO BORROW GENERATED
+ Branch if (xy) > (HL) (unsigned)
PUSH xy s MOVE INDEX REGISTER TO REGISTER PAIR
POF rp
AND A ;CLEAR CARRY FLAG
SBC HL,rp
JR C, DEST

9. Branch if Not Higher (Unsigned).

Branch if the operands being compared are equal or the comparison requires a
borrow. The special problem here is forcing a branch if the operands are equal.

+ Branch if (A) < VALUE (unsigned)

CP VALUE ; COMFARE BY SUBTRACTING
JR C, DEST s BRANCH IF BORROW NEELDED
JR Z,DEST 3y OR IF EQUAL

or

CHAPTER 2: IMPLEMENTING ADDITIONAL INSTRUCTIONS AND ADDRESSING MODES 445

cP VALUE+1 s COMPARE BY SUBTRACTING VALUE+1
JR C,DEST s BRANCH IF BORROW NEEDED

+ Branch if (A) < (reg) (unsigned)

CP reg s COMPARE BY SURTRACTING
JR C, DEST s BRANCH IF BORROW NEEDED
JR Z,DEST s OR IF EQUAL
or
LD regl, A sFORM REG - A
LD A,reg
CP regl
JR NC, DEST s BRANCH IF NO EORROW NEEDED
or
INC reg sFORM A — REG - 1
cP reg
JR C, DEST s BRANCH IF BORROW NEEDED

In the third alternative, we could replace INC reg with DEC A, thus changing the
accumulator instead of the register.

- Branch if (A) < (ADDR) (unsigned)
LD HL , ADDR

CF (HL) ;s COMFARE RY SUETRACTING
JR C, DEST s BRANCH IF BORROW NEELDED
JR Z,DEST s+ O0OR IF EQUAL
or
LD reg,A s FORM (ADDR) - A
LD (ADDR) , A
CP reg
JR NC, DEST s BRANCH IF NO BORROW NEEDED

+ Branch if (HL) < (rp) (unsigned)

SCF s SET CARRY FLAG
SBRC HL,rp sFORM HL - RFP - 1
JR C,DEST ;s BRANCH IF BORROW NEEDED

+ Branch if (HL) = VALI16 (unsigned)
LD rp,-VAL1&6-1

ADD HL,rp ;FORM HL - VAL1é - 1
JR NC, DEST s BRANCH IF BORROW NEEDED

- Branch if (SP) =< (HL) (unsigned)

AND A s CLEAR CARRY
SRBRC HL,SP ;FORM HL - 5P

JR NC, DEST s BRANCH IF NO BORROW NEEDED

446 7530 ASSEMBLY LANGUAGE SUBROUTINES

- Branch if (SP) =< VALI16 (unsigned)

Lo HL, -VAL1&-1 sFORM SP - VAL1Sé - 1

ADD HL,SP

JR NC, DEST s BRANCH IF EBORROW NEEDED
+ Branch if (xy) < VALI16 (unsigned)

Lo rp,-VAL146-1 ;FORM XY - VAL1As - 1

ADD xy,rp

JR NC, DEST s BRANCH IF BORROW NEEDED

+ Branch if (xy) < (HL) (unsigned)

PUSH xy ;MOVE INDEX REGISTER TO REGISTER PAIR
POF rp

AND A ; CLEAR CARRY

SBC HL,rp ;FORM HL - XY

JR NC, DEST s BRANCH IF NO BORROW NEEDED

10. Branch if Lower (Unsigned). Branch if the unsigned comparison requires a
borrow.

+ Branch if (A) < VALUE (unsigned)

CP VALUE ;s COMPARE BY SUBTRACTING

JR C,DEST s BRANCH IF EORROW NEEDED
- Branch if (A) < (reg) (unsigned)

CP reg ;s COMFARE BY SUBTRACTING

JR C, DEST s BRANCH IF BORROW NEEDED

+ Branch if (A) < (ADDR) (unsigned)
LD HL, ADDR

CP (HL) s COMFARE BY SUBTRACTING

JR C, DEST
+ Branch if (HL) < (rp) (unsigned)

AND A sFORM HL - RP

SBC HL,rp

JR C, DEST s BRANCH IF BORROW NEELDED
+ Branch if (HL) < VALI6 (unsigned)

LD rp,-VAL1é ;FORM HL - VAL1&

ADD HL,rp

JR NC, DEST s BRANCH IF EORROW NEEDED
+ Branch if (SP) < (HL) (unsigned)

SCF ;FORM HL - SP-1

SBC HL,SP

JR NC, DEST ; BRANCH IF NO BORROW NEEDED

CHAPTER 2: IMPLEMENTING ADDITIONAL INSTRUCTIONS AND ADDRESSING MODES 447

+ Branch if (SP) < VALI6 (unsigned)

LD HL, -VAL1& ;FORM SFP - VAL1A
ADD HL,SP
JR NC, DEST ; BRANCH IF NO EBORROW NEEDED

+ Branch if (xy) < VALI16 (unsigned)

LD rp,-VAL1& s FORM XY - VAL1&
ADD xy,rp
JR NC, DEST s BRANCH IF NO EBORROW NEEDED

+ Branch if (xy) < (HL) (unsigned)

PUSH xvy sMOVE INDEX REGISTER TQ REGISTER PAIR
POF rp

SCF sFORM HL - XY-1

SEC HL,vp

JR NC, DEST s BRANCH IF NQ BORROW NEEDED

11. Branch if Not Lower (Unsigned). Branch if the unsigned comparison does not
require a borrow.

+ Branch if (A) = VALUE (unsigned)

CP VALUE ; COMFARE BY SUBTRACTING

JR NC, DEST s BRANCH IF NQO RORROW NEELDED
* Branch if (A) = (reg) (unsigned)

CP reg ;s COMFARE BY SUBTRACTING

JR NC, DEST s RBRANCH IF NO BORROW NEEDED

+ Branch if (A) = (ADDR) (unsigned)
LD HL, ADDR

CP (HL) ; COMPARE RY SUBTRACTING

JR NC, DEST s BRANCH IF NOQ BORROW NEELDED
+ Branch if (HL) = (rp) (unsigned)

AND A sFORM HL - RP

SEC HL,rp

JR NC, DEST s BRANCH IF NO BORROW NEEDED
* Branch if (HL) = VALI16 (unsigned)

LD rp,-VAL14 sFORM HL - VAL1é&

ADD HL,rp

JR C, DEST s BRANCH IF NO BORROW NEEDED

- Branch if (SP) = (HL) (unsigned)

SCF ;FORM HL - SP-1
SBC HL,SP
JR C,DEST ;s BRANCH IF BORROW NEEDED

448 730 ASSEMBLY LANGUAGE SUBROUTINES

+ Branch if (SP) = VALI16 (unsigned)

LD HL,-VAL1& ;FORM SP - VAL1S
ADD HL,rp
JR C,DEST s BRANCH IF NO EORROW NEEDED

+ Branch if (xy) = VALI16 (unsigned)

Ln rp,-VAL1& ;FORM XY - VAL1S

ADD xy,SP

JR C,DEST s BRANCH IF NO EORROW NEEDED
* Branch if (xy) = (HL) (unsigned)

PUSH xy s TRANSFER INDEX REG TQ REGISTER PAIR
POF rp

SCF sFORM HL - XY - 1

SBC HL,rp

JR C,DEST ; BRANCH IF BORROW NEEDED

SKIP INSTRUCTIONS

Skip instructions can be implemented on the Z80 microprocessor by using jump
instructions with the proper destination. That destination should be one instruction
beyond the one that follows the jump sequentially. The actual number of bytes skipped
will vary, since Z80 instructions vary from one to four bytes in length.

SUBROUTINE CALL INSTRUCTIONS

Unconditional Call Instructions

Anindirect call on the Z80 microprocessor can be implemented by calling a routine
that performs an indirect jump. An RET instruction at the end of the subroutine will
then transfer control back to the original calling point. The main program performs

CALL TRANS

where subroutine TRANS transfers control to the ultimate destination. Note that
TRANS ends with a jump, not with a return. Typical TRANS routines are

+ To address in HL
TRANS: JP {HL) sENTRY POINT IN HL
- To address in an index register

TRANS: JP (xy) sENTRY POINT IN AN INDEX REGISTER

CHAPTER 2: IMPLEMENTING ADDITIONAL INSTRUCTIONS AND ADDRESSING MODES 119

+ To address in DE

TRANS: EX DE, HL sENTRY POINT IN DE

JP (HL)
- To address in BC

TRANS: LD H, R sENTRY PQINT IN BC
LD L,C
JP HL)

or

TRANS: PUSH RC sENTRY POINT IN EC

RET

The second alternative is longer, but leaves HL unchanged.

- To address in memory locations ADDR and ADDR+1

TRANS: LD HL, (ADDR) ;ENTRY FOINT AT ALDDR
JF (HL)
+ To address at the top of the stack. Here we must exchange the return address
with the top of the stack. This can be done in the main program as follows:

LD HL,RETPT ;GET RETURN POINT ADDRESS
EX HL, (SP) ;PUT RETURN ADDRESS ON STACK
JF (HL) sAND JUMP TQ OLD TOP OF STACK

The exchange can allow later resumption of a suspended program or provide a
special exit to an error-handling routine.

You can implement indexed calls in the same way as indirect calls. The CALL
instruction transfers control to a routine that performs an indexed jump as shown
earlier. That routine ends with an ordinary jump instruction (typically JP (HL)) that
does not affect the stack. An RET instruction at the end of the actual subroutine will
therefore transfer control back to the original calling point.

If the main program executes CALL JMPIND with the index in the accumulator
and the starting address of the jump table in register pair HL, the indexed jump routine
is

JMPIND: ADD A, A s DOUBLE INDEX FOR 2-BYTE ENTRIES
LD E,A sEXTEND INDEX TO 1é BITS
LD Dn,o0
ADD HL,DE ; CALCULATE ADDRESS OF ELEMENT
LD E, (HL) sFETCH ELEMENT FROM ADDRESS TABLE
INC HL
LD 0, (HL)
EX DE, HL sAND JUMP TO IT
JP (HL)

One problem with indexed and indirect calls is that the transfer routines may
interfere with the subroutines. For example, the indexed jump routine JMPIND
changes the accumulator, register pair DE, register pair HL, and the flags. Thus, none

420 750 ASSEMRLY LANGUAGE SUBROUTINES

of these registers can be used to pass parameters to the subroutine. The programmer
must always remember that the intermediate transfer routines are interposed between
the main program and the actual subroutine. A similar interposition occurs when
operating system routines transfer control from one task to another or from a main
program to an I/O driver or an interrupt service routine.

Conditional Call Instructions

Conditional calls can be implemented on the Z80 by using the sequences shown for
conditional branches. The only change is that jumps to the actual destination must be
replaced with calls (for example, replace JR NZ,DEST with CALL NZ,DEST or JP
PDEST with CALL P,DEST).

SUBROUTINE RETURN INSTRUCTIONS

Unconditional Return Instructions

The RET instruction returns control automatically to the address saved at the top of
the stack. If the return address is saved elsewhere (for example, in a register pair or in
two fixed memory locations) you can transfer control to it by performing an indirect
jump.

Conditional Return Instructions

Conditional returns can be implemented on the Z80 microprocessor by using the
sequences shown earlier for conditional branches. The only change is that you must
replace jumps to the actual destination with RETs (for example, replace JR NC, DEST
with RET NC or JP M,DEST with RET M).

Return with Skip Instructions

* Return control to the address at the top of the stack after it has been
incremented by an offset NEXT. This sequence lets you transfer control past
parameters, data, and other non-executable items.

POP DE s GET RETURN ADDRESS
LD HL, NEXT sOFFSET TO NEXT EXECUTABLE INSTRUCTION
ADD HL,DE

JP (HL) s AND RETURN

CHAPTER 2: IMPLEMENTING ADDITIONAL INSTRUCTIONS AND ADDRESSING MODES 121

+ Change the return address to RETPT. Assume that the return address is
currently stored at the top of the stack.

LD HL, RETPT s CHANGE RETURN ADDRESS TO RETPT
EX HL., (SF)

EX HL,(SP) exchanges HL with the top of the stack. This procedure allows you to
force a special exit to an error routine or other exception-handling program without
changing the logic of the subroutine or losing track of the original return address.

Return from Interrupt Instructions

If the initial portion of the interrupt service routine saves all the primary registers
and the index registers with the sequence

PUSH AF s SAVE PRIMARY REGISTERS
PUSH BC

FUSH DE

PUSH HL

PUSH IX : SAVE INDEX REGISTERS
PUSH 1Y

a standard return sequence is

POF 1Y ;RESTORE INDEX REGISTERS
POF IX

POFP HL s RESTORE PRIMARY REGISTERS
FOF DE

FOF BC

POF AF

EI s REENABLE INTERRUFTS

RETI

The order of restoration is the opposite of the order in which the registers were
saved. The instruction EI must come immediately before RETI to avoid unnecessary
stacking of return addresses.

MISCELLANEOUS INSTRUCTIONS

In this category, we include no operations, push, pop, halt, wait, trap (break or
software interrupt), decimal adjust, enabling and disabling of interrupts, translation
(table lookup), and other instructions that do not fall into any of the earlier categories.

1. No Operation Instructions.

Like NOP itself, any LD instruction with the same source and destination register
does nothing except advance the program counter. These additional no-ops are

422 750 ASSEMBLY LANGUAGE SUBROUTINES

Lo AA
LD E,B
LD c,C
Lo n,D
LD E,E
LD H.H
LD L,L

2. Push Instructions.
+ Push a single register (A, B, D, or H)

PUSH rp sPUSH THE REGISTER PAIR
INC SP :BUT DROP THE LESS SIGNIFICANT HALF
The register pair could be AF. Programmers generally prefer to combine byte-length
operands or simply waste a byte of the stack rather than attempt to push a single byte.
+ Push memory location ADDR

LD A, (ADDR) ;OBTAIN. DATA FROM MEMORY
PUSH AF s PUSH DATA, FLAGS
INC SFP ; THEN DROFP THE FLAGS

ADDR could be an external priority or control register (or a copy of an external
register).

+ Push memory locations ADDR and ADDR+1

LD HL, (ADDR) ;PUSH A PAIR OF MEMORY LOCATIONS
PUSH HL

- Push the interrupt flip-flop IFF2

Lo Al sMOVE IFF2Z TO PARITY/OVERFLOW FLAG
PUSH AF

This sequence allows you to save the interrupt status in the Parity/ Overflow flag (bit
2 of register F) for later restoration.

3. Pop (Pull) Instructions.

- Pop a single register (A, B, D, or H), assuming that it has been saved as shown
previously

DEC SP s BACK UP THE STACK POINTER
FOFP rp ;POF THE REGISTER PAIR

This sequence changes the less significant half of the register pair unpredictably.

- Pop memory location ADDR, assuming that it has been saved at the top of the
stack
DEC &SP $ BACK. UF THE STACE POINTER

FOF AF ; POP ACCUMULATOR AND FLAGS
LD (ADDR) , A sRESTORE DATA TO MEMORY

CHAPTER2: IMPLEMENTING ADDITIONAL INSTRUCTIONS AND ADDRESSING MODES 123

This sequence changes the flags unpredictably. ADDR could be an external priority
or control register (or a copy of an external register).
* Pop memory locations ADDR and ADDR+1, assuming that they were saved as
shown previously

FOF HL ;RESTORE A PAIR OF MEMORY LOCATIONS
LD (ADDR) , HL

Sometimes you must push and pop key memory locations and other values beside the
registers.

* Restore interrupt status, assuming that it has been saved at the top of the stack.

FOF AF s OBTAIN PREVIQUS INTERRUFPT STATUS
JF FE, ENAELE
DI ; DISABLE INTERRUPTS IF PREVIQUSLY S0
JR DONE
ENABLE: EI s ENABLE INTERRUPTS IF PREVIQUSLY SO
DONE: NOP

The interrupt flip-flop IFF2 is saved in the Parity/Overflow flag; interrupts were
previously enabled if that flag is 1 and disabled if it is 0.

Wait Instructions

The simplest way to implement a wait on the Z80 microprocessor is to use an endless
loop such as

HERE: JP HERE

The processor will execute JP until it is interrupted and will resume executing it after
the interrupt service routine returns control. Of course, regular interrupts must have
been enabled (with EI) or the processor will execute the endless loop indefinitely. The
non-maskable interrupt can interrupt at any time without being enabled.

Trap Instructions

The common Z80 traps (also called breaks or software interrupts) are the RST
instructions (see the list in Table 1-9). RST n calls the subroutine starting at address n.
Thus, for example, RST 0 transfers control to memory address 0000 after saving the
current program counter in the stack. Similarly, RST 30H transfers control to memory
address 0030, after saving the current program counter in the stack. The interrupt
system generally uses the RST instructions, but the programmer can dedicate unused
ones to common subroutines, error traps, or supervisor entry points. RST then serves
as a l-byte call.

424 750 ASSEVBLY LANGUAGE SUBROUTINES

Adjust Instructions
1. Branch if accumulator does not contain a valid decimal (BCD) number.
Lo reg,A ; SAVE COPY OF ACCUMULATOR
ADD A,0 ; THEN DECIMAL ADJUST ACCUMULATOR
DAA
CMP reg sDID DECIMAL ADJUST CHANGE A7
JR NZ, DEST s YES, A WAS NOT DECIMAL

2. Decimal increment accumulator (add 1 to A in decimal).

ADD A1 ;ADD 1 IN DECIMAL
DAA

3. Decimal decrement accumulator (subtract 1 from A in decimal).

SUR 1 s SUBTRACT 1 IN DECIMAL
DAA

or
ADD A, 99H s SUBTRACT 1 BY ADDING %9
DAA

The second alternative is compatible with the 8080 and 8085 processors, where DAA
works properly only after addition instructions.

Enable and Disable Interrupt Instructions

1. Enable interrupts but save previous value of interrupt flip-flop 2 (the interrupt
status).

LD Al ; MOVE INTERRUPT FLIP-FLOF TO F/V FLAG
PUSH AF sSAVE OLD IFF2 IN STACK
EI s THEN ENABLE INTERRUFTS

2. Disable interrupts but save previous value of interrupt flip-flop 2 (the interrupt
status).

LD Al sMOVE INTERRUPT FLIF-FLOF TQ F/V FLAG
PUSH AF sSAVE OLD IFF2 IN STACK
DI s THEN DISABLE INTERRUPTS

3. Restore interrupt status, assuming that it is currently saved in the Parity/
Overflow flag at the top of the stack.

FOF AF sOBTAIN PREVIOUS INTERRUPT STATUS
P PE, ENABLE sWERE INTERRUFTS ENABLED ORIGINALLY?

CHAPTER 2: IMPLEMENTING ADDITIONAL INSTRUCTIONS AND ADDRESSING MODES 125

DI ;NQ, THEN DISABLE THEM NOW
JR DONE
ENABLE: EI s YES, THEN ENAELE THEM NOW
DONE: NOP

After LD A,Ior LD A,R, JP PE means “branch if interrupts are enabled,” while JP
PO means “branch if interrupts are disabled.”

Translate Instructions

1. Translate the accumulator into the corresponding entry in a table starting at the
address in register pair HL.

LD E,A s EXTEND QPERAND TO 14-BIT INDEX
LD n,o

ADD HL,DE ;USE OFPERAND TQ ACCESS TAELE

Lo A, (HL) s REFLACE OFERANLD WITH TABLE ENTRY

This procedure can be used to convert data from one code to another.

2. Translate the accumulator into the corresponding 16-bit entry in a table starting
at the address in register pair HL. Place the entry in HL.

EX DE, HL s MOVE STARTING ADDRESS TQ DE

Ln L,A sEXTEND OPERAND TO 14-EIT INDEX
LD H, 0

ADD HL,HL s DOUBLE INDEX FOR 2-BYTE ENTRIES
ADD HL,DE s CALCULATE INDEXED ADDRESS

LD E, (HL) ;OBTAIN ENTRY

INC HL

LD L, (HL)

EX DE, HL sMOVE ENTRY TO HL

Using ADD HL,HL to double the operand allows it to take on any 8-bit value (using
ADD A,A would limit us to values below 128).

Miscellaneous Instructions

1. Allocate space on the stack; decrease the stack pointer to provide NUM empty
locations at the top.

LD HL, =NUM sADD NUM EMPTY BYTES TO TOP OF STACK
ADD HL,SP
LD SP, HL 3SP = SP - NUM

An alternative is a series of DEC SP instructions.

2. Deallocate space from the stack; increase the stack pointer to remove NUM
temporary locations from the top.

426 730 ASSEMBLY LANGUAGE SUBROUTINES

LD HL, NUM s DELETE NUM BYTES FROM STACK
ADD HL,SP
LD SP,HL 3SF = SP + NUM

An alternative is a series of INC SP instructions.

ADDITIONAL ADDRESSING MODES

+ Indirect Addressing. Indirect addressing can be provided on the Z80 processor by
loading the indirect address into register pair HL. Then addressing through HL
provides the equivalent of true indirect addressing. This is a two-step process that
generally requires HL, although BC or DE can be employed to load and store the
accumulator. The index registers may also be used, although at the cost of extra
execution time and memory. Note that indexed addressing with a 0 offset is simply a
slow version of indirect addressing.

Examples

1. Load the accumulator indirectly from the address in memory locations ADDR
and ADDR+1.

LD HL, (ADDR) ;FETCH INDIRECT ADDRESS

LD A, (HL) sFETCH DATA INDIRECTLY
or

LD xy, (ADDR) ;FETCH INDIRECT ADDRESS

LD A, (xy+0) sFETCH DATA INDIRECTLY

2. Store the accumulator indirectly at the address in memory locations ADDR and
ADDR+1.

LD HL, (ADDR) ;FETCH INDIRECT ADDRESS

LD (HL), A ; STORE DATA INDIRECTLY
or

LD xy, (ADDR) sFETCH INDIRECT ADDRESS

LD (xy+0),A s STORE DATA INDIRECTLY

3. Load the accumulator indirectly from the address in register pair HL (that is,
from the address stored starting at the address in HL).

LD E, (HL) ;FETCH INDIRECT ADDREZS
INC HL
LD D, (HL)

LD A, (DE) ;FETCH DATA INDIRECTLY

CHAPTER 2: IMPLEMENTING ADDITIONAL INSTRUCTIONS AND ADDRESSING MODES 127

4. Load the accumulator indirectly from the address in an index register (that is,
from the address stored starting at the address in an index register).

LD L, (xy+0) sFETCH INDIRECT ADDRESS
Lo H, (xy+1)
LD A, (HL) sFETCH DATA INDIRECTLY

5. Store the accumulator indirectly at the address in register pair HL (that is, at the
address stored starting at the address in HL).

LD E, (HL) ;FETCH INDIRECT ADDRESS
INC HL

LD 0, (HL)>

LD (DE), A 3 STORE DATA INDIRECTLY

6. Store the accumulator indirectly at the address in an index register (that is, at the
address stored starting at the address in an index register).

LD L, (xy+0) sFETCH INDIRECT ADDRESS
LD H, (xy+1)
LD (HL) , A ; STORE DATA INDIRECTLY

7. Jump indirectly to the address in memory locations ADDR and ADDR+1.

LD HL, (ADDR) sFETCH INDIRECT ADDRESS

JP (HL) ; AND TRANSFER CONTROL TO IT
or

LD 3y, CADDR) sFETCH INDIRECT ADDRESS

JP (xy) ; AND TRANSFER CONTROL TO IT

Indirection can be repeated indefinitely to provide multi-level indirect addressing. For
example, the following routine uses the indirect address indirectly to load the
accumulator:

LD E, (HL) ;FETCH FIRST INDIRECT ADDRESS
INC HL

LD 0, (HL)

EX DE, HL

LD E, (HL) s USE INDIRECT ADDRESE INDIRECTLY
INC HL

Lo 0, (HL)

LD A, (DE) ;FETCH DATA INDIRECTLY

Indirect addresses should be stored in memory in the usual Z80 format—that is, with
the less significant byte first (at the lower address).

- Indexed Addressing. Indexed addressing can be provided by using ADD HL to
add the base and the index. Obviously, the explicit addition requires extra execution
time. The index registers are useful when the index is fixed (as in a data structure) or
when HL is already occupied.

428 730 ASSEMBLY LANGUAGE SUBROUTINES

Examples

1. Load the accumulator from an indexed address obtained by adding the accumu-
lator to a fixed base address.

LD DE, BASE ;GET BASE ADDRESS

LD L,A sEXTEND INDEX TO 14 BITS

LD H, 0

ADD HL,DE ; CALCULATE INDEXED ADDRESS

LD A, (HL) sFETCH DATA FROM INDEXED ADDRESS

2. Load the accumulator from an indexed address obtained by adding the accumu-
lator to memory locations BASE and BASE+1.

LD HL, (BASE) ;GET BASE ADDRESS

LD E.A ;EXTEND INDEX TO 1é BITS

LD 0,0

ADD HL,DE ; CALCULATE INDEXED ADDRESS

LD A, (HL) ;FETCH DATA FROM INDEXED ADDRESS

3. Load the accumulator from an indexed address obtained by adding memory
locations INDEX and INDEX+1 to register pair HL.

LD DE, (INDEX) ;GET INDEX FROM MEMORY
ADD HL,DE ; CALCULATE INDEXED ADDRESS
LD A, (HL) sFETCH DATA FROM INDEXED ADDRESS

4. Jump indexed to a jump instruction in a list. The index is in the accumulator and
the base address of the list is in register pair HL.

LD B,A sMULTIPLY INDEX TIMES 3
ADD A,A
ADD E,A
LD C,A sEXTEND INDEX TO 16 BITS
LD E, O
ADD HL,RBC ;s CALCULATE INDEXED ADDRESS
JP (HL) s AND TRANSFER CONTROL THERE
The following is a typical list starting at address BASE:

BASE: JP SURO s JUMP TO SUBROUTINE O
JP SUB1 3 JUMP TO SUBROUTINE 1
JP SuB2 ;JUMP TO SUBROUTINE 2

a2

Since each JP instruction occupies three bytes, we must multiply the index by 3 before
adding it to the base address. If the list is more than 256 bytes long, we can use the
following procedure to multiply the index by 3:

EX DE, HL 3 SAVE BASE ADDRESS IN DE
LD L,A ;EXTEND INDEX TO 1é BITS
LD H,0

LD B,L ;COFY INDEX INTO BC

CHAPTER2: IMPLEMENTING ADDITIONAL INSTRUCTIONS AND ADDRESSING MODES - 429

LD C,H

ADD HL,HL ;s DOURLE INDEX

ADD HL,BC ; TRIPLE INDEX

ADD HL,DE ;s CALCULATE INDEXED ADDRESS
JP (HL) ;s AND TRANSFER CONTROL THERE

+ Autopreincrementing. In autopreincrementing, the address register is incre-
mented automatically before it is used. Autopreincrementing can be provided on the
780 by incrementing a register pair before using it as an address.

Examples

+ Load the accumulator using autopreincrementing on register pair HL.

INC HL s AUTOPREINCREMENT HL
LD A, (HL) sFETCH DATA

+ Store the accumulator using autopreincrementing on register pair DE.

INC DE 3 AUTOFREINCREMENT DE
LD (DE), A ; STORE DATA

+ Load register pair DE starting at the address two larger than the contents of HL.

INC HL s AUTOPREINCREMENT HL. BY 2
INC HL

LD E, (HL) sFETCH LEB

INC HL

LD D, (HL) ;FETCH MZB

Autoincrementing by 2 is essential in handling arrays of addresses or 16-bit data
items.

+ Store the accumulator using autopreincrementing on memory locations ADDR
and ADDR+1.

LD HL, (ADDR) 3 AUTOPREINCREMENT INDIRECT ADDRESS

INC HL
LD (HL) , A ;STORE DATA
LD (ADDR) , HL s UPDATE INDIRECT ADDRESS

Autopreincrementing can be combined with indirection. Here memory locations
ADDR and ADDR+1 could point to the last occupied location in a buffer.

+ Transfer control to the address stored starting at an address two larger than the
contents of memory locations NXTPGM and NXTPGM+1.

LD HL, (NXTPGM) s GET POINTER

INC HL s AUTOFREINCREMENT POINTER
INC HL

LD (NXTPGM) , HL ;s UPDATE POINTER

LD E, (HL) sFETCH STARTING ADDRESS

INC HL

430 750 ASSEMBLY LANGUAGE SUBROUTINES

LD 0, (HL)
EX DE, HL AND TRANSFER CONTROL TO IT
JP (HL)

Here NXTPGM and NXTPGM+1 point to the starting address of the routine that
the processor has just executed. Initially, NXTPGM and NXTPGM+1 would contain
BASE-2, where BASE is the starting address of a table of routines. A typical table
would be

BASE: DW ROUTO ; STARTING ADDRESS FOR ROQUTINE ©
oW ROUT1 ;STARTING ADDRESS FOR ROUTINE 1
oW ROUT2 ; STARTING ADDRESS FOR ROUTINE 2
DW ROUT3 ;s STARTING ADDRESS FOR ROUTINE 3

+ Autopostincrementing. In autopostincrementing, the address register is incre-
mented after it is used. Autopostincrementing can be provided on the Z80 by
incrementing a register pair after using it as an address. Note that the Z80 autopostin-
crements the stack pointer when it executes POP and RET.

Examples
* Load the accumulator using autopostincrementing on register pair HL.

LD A, (HL) sFETCH DATA
INC HL s AUTOPOSTINCREMENT HL

+ Store the accumulator using autopostincrementing on register pair DE.

Ln (DE), A s STORE DATA
INC DE s AUTOPOST INCREMENT DE
* Load register pair DE starting at the address in HL. Then increment HL by 2.
LD E, (HL) sFETCH LSB
INC HL
LD v, (HL) sFETCH MSB
INC HL

Autoincrementing by 2 is essential in handling arrays of addresses or 16-bit data
items. Note that postincrementing is generally simpler and more natural than
preincrementing.

+ Store the accumulator using autopostincrementing on memory locations ADDR
and ADDR+1.

LD HL, (ADDR) sFETCH INDIRECT ADDRESS
LD (HL) , A s STORE DATA
INC HL s AUTOPOSTINCREMENT INDIRECT ADDRESS

LD (ADDR) , HL

* Autopostincrementing can be combined with indirection. Here memory locations
ADDR and ADDR+1 could point to the next empty location in a buffer.

CHAPTER 2: IMPLEMENTING ADDITIONAL INSTRUCTIONS AND ADDRESSING MODES 4 31

- Transfer control to the address stored at the address in memory locations
NXTPGM and NXTPGM+1. Then increment those locations by 2.

LD HL, (NXTPGM)

LD E, (HL) ;FETCH STARTING ADDRESS

INC HL

LD 0, (HL)

INC HL ; COMPLETE AUTOPOSTINCREMENT

LD (NXTPGM) , HL

EX DE, HL ;s TRANSFER CONTROL TO START ADDRESS
JP (HL)

Here NXTPGM and NXTPGM+1 point to the starting address of the next routine
the processor is to execute. Initially, NXTPGM and NXTPGM+1 would contain
BASE, the starting address of a table of routines. A typical table would be

BASE: DW ROUTO s STARTING ADDRESS FOR ROUTINE O
W ROUT1 ;s STARTING ADDRESS FOR ROUTINE 1
oW RQUT2 ; STARTING ADDRESS FOR ROUTINE 2
W ROUTR s STARTING ADDRESS FOR ROUTINE 3

- Autopredecrementing. In autopredecrementing, the address register is decre-
mented automatically before it is used. Autopredecrementing can be provided on the
Z80 processor by decrementing a register pair before using it as an address. Note that
the processor autopredecrements the stack pointer when it executes PUSH and
CALL.

Examples
+ Load the accumulator using autopredecrementing on register pair HL.

DEC HL 3 AUTOPREDECREMENT HL
LD A, (HL) sFETCH DATA

+ Store the accumulator using autopredecrementing on register pair DE.

DEC DE s AUTOPREDECREMENT DE
LD (DE), A ;s STORE DATA

+ Load register pair DE starting at the address two smaller than the contents of HL.

DEC HL sFETCH MSB
LD 0, (HL)
DEC HL sFETCH LSB
LD E, (HL)

Autodecrementing by 2 is essential in handling arrays of addresses or 16-bit data
items. Note that predecrementing is generally simpler and more natural than
postdecrementing.

+ Store the accumulator using autopredecrementing on memory locations ADDR
and ADDR+1.

432 750 ASSEMBLY LANGUAGE SUBROUTINES

LD HL, (ADDR) $ AUTOPREINCREMENT INDIRECT ADDRESS
DEC HL

LD (HL) , A ; STORE DATA

LD (ADDR) , HL ;UPDATE INDIRECT ADDRESS

Autodecrementing can be combined with indirection. Here memory locations ADDR
and ADDR+1 could point to the last occupied location in a stack.

- Transfer control to the address stored at an address two smaller than the contents
of memory locations NXTPGM and NXTPGM+1. ‘

LD HL, (NXTPGM) sFETCH STARTING ADDRESS

DEC HL

LD 0, (HL)

DEC HL

LD E, (HL)

LD (NXTPGM) , HL 3 3TORE AUTOPREDECREMENTED POINTER
EX DE, HL ; TRANSFER CONTROL TO START ADDRESS
JP (HL)

Here NXTPGM and NXTPGM+1 point to the starting address of the most recently
executed routine in a list. Initially, NXTPGM and NXTPGM+1 would contain
FINAL+2, where FINAL is the address of the last entry in a table of routines. A
typical table would be

DW RQUTO 3 STARTING ADDRESS FOR ROUTINE O
DW ROUT1 ; STARTING ADDRESS FOR ROUTINE 1
FINAL: W ROUTL s STARTING ADDRESS FOR LAST ROUTINE

Here we work through the table backward. This approach is useful in evaluating
mathematical formulas entered from a keyboard. If, for example, the computer must
evaluate the expression

Z = LN (A % SIN (B x EXP(C » Y)))

it must work backward. That is, the order of operations is

- Calculate Cx Y

+ Calculate EXP (Cx Y)

+ Calculate B x EXP(C xY)

- Calculate SIN (B x EXP(C x Y))

+ Calculate A x SIN (B x EXP(C x Y))

+ Calculate LN(A x SIN(B x EXP(C x Y))) .

Working backward is convenient when the computer cannot start a task until it has
received an entire line or command. It must then work back to the beginning.

CHAPTER 2: IMPLEMENTING ADDITIONAL INSTRUCTIONS AND ADDRESSING MODES - 133

- Autopostdecrementing. In autopostdecrementing, the address register is decre-
mented automatically after it is used. Autopostdecrementing can be implemented on
the Z80 by decrementing a register pair after using it as an address.

Examples

- Load the accumulator using autopostdecrementing on register pair HL.

LD A, (HL) ;FETCH DATA
DEC HL 3 AUTOFQSTDECREMENT HL

- Store the accumulator using autopostdecrementing on register pair DE.

LD (DE), A s STORE DATA
DEC DE s ALITORPDSTDECREMENT DE

- Load register pair DE starting at the address in HL. Afterward, decrement HL
by 2.

INC HL sFETCH MSRB

LD 0, (HL)

DEC HL sFETCH LEB

Lo E, (HL)

DEC HL ; AUTOPOSTDECREMENT HL BY 2
DEC HL

Autodecrementing by 2 is essential in handling arrays of addresses or 16-bit data items.

- Store the accumulator using autopostdecrementing on memory locations ADDR
and ADDR+1.

LD HL, (ADDR) sFETCH INDIRECT ADDRESS
LD (HL) , A ; STORE DATA
DEC HL 3 AUTOPQSTDECREMENT INDIRECT ADDRESS

LD CADDR) , HL

Autopostdecrementing can be combined with indirection. Here memory locations
ADDR and ADDR+1 could point to the next empty location in a buffer.

- Transfer control to the address stored at the address in memory locations
NXTPGM and NXTPGM + 1. Then decrement those locations by 2.

LD HL, (NXTPGM) sFETCH POINTER

INC HL sFETCH STARTING ADDRESS
LD 0, (HL)

DEC HL

LD E, (HL)

DEC HL s AUTOPOSTDECREMENT POINTER
DEC HL

LD (NXTPGM) , HL

EX DE, HL s JUMP TO STARTING ADDRESS
JP (HLD

Here NXTPGM and NXTPGM-+1 point to the starting address of the next routine

434 750 ASSEMBLY LANGUAGE SUBROUTINES

the processor is to execute. Initially, NXTPGM and NXTPGM+1 contain FINAL,
the address of the last entry in a table of routines. A typical table would be

oW ROUTO s STARTING ADDRESS OF ROUTINE O
oW ROUT1 s STARTING ADDRESS OF ROUTINE 1
FINAL: 6N ROUTL s STARTING ADDRESS OF LAST ROUTINE

Here the computer works through the table backward. This approach is useful in
interpreting commands entered in the normal left-to-right manner from a keyboard.
For example, assume that the operator of a process controller enters the command
SET TEMP(POSITION 2)= MEAN(TEMP(POSITION 1), TEMP(POSITION 3)).
The controller program must execute the command working right-to-left and starting
from inside the inner parentheses as follows:

1. Determine the index corresponding to POSITION 1.
2. Obtain TEMP(POSITION 1) from a table of temperature readings.
3. Determine the index corresponding to POSITION 3.
4. Obtain TEMP(POSITION 3) from a table of temperature readings.

5. Evaluate MEAN(TEMP(POSITION 1), TEMP(POSITION 3)) by executing
the MEAN program with the two entries as data.

6. Determine the index corresponding to POSITION 2.

7. Execute the SET function, which presumably involves setting controls and
parameters to achieve the desired value of TEMP (POSITION 2).

The operator enters the command working left to right and from outer parentheses
to inner parentheses. The computer, on the other hand, must execute it inside out
(starting from the inner parentheses) and right to left. Autodecrementing is obviously
a handy way to implement this reversal.

* Indirect preindexed addressing (preindexing). In preindexing, the processor
must first calculate an indexed address and then use that address indirectly. Since the
indexed table must consist of 2-byte indirect addresses, the indexing must involve a
multiplication by 2.

Examples

+ Load the accumulator using preindexing. The base address is in an index register
and the index is a constant INDEX.

LD L, (xy+2%INDEX) s OBTAIN LSE OF ADDRESS
LD H, (xy+2=%INDEX+1) ;OBTAIN MSER OF ADDRESS

Lo A, (HL) ;OBTAIN DATA INDIRECTLY

CHAPTER 2: IMPLEMENTING ADDITIONAL INSTRUCTIONS AND ADDRESSING MODES 135

Because of the limitations of Z80 indexing, this approach works only when INDEX is a

constant.

+ Load the accumulator using preindexing. The base address is in register pair HL

and the index is in the accumulator.

ADD A, A
LD E.A
LD 0,0
ADD HL,DE
LD E, (HL)
INC HL
LD 0, (HL)
LD A, (DE)

s DOUBLE INDEX FOR 2-BYTE ENTRIESD
sEXTEND INDEX TO 16 BITS

;s CALCULATE INDEXEDY ADDRESS
;OBTAIN INDIRECT ADDRESS

;OBTAIN DATA INDIRECTLY

- Store the accumulator using preindexing. The base address is in memory locations
ADDR and ADDR+1 and the index is a constant INDEX.

LD xy, (ADDR)

LD L, (xy+2%INDEX)
LD H, (xy+2=INDEX+1)
LD (HL) , A

;OBTAIN BASE ADDRESS
;OBTAIN INDIRECT ADDRESS

3 STORE DATA INDIRECTLY

- Store the accumulator using preindexing. The base address is in memory locations
ADDR and ADDR++1 and the index is in memory location INDEX.

LD HL, (ADDR)

LD B,A

LD A, C(INDEX)
ADD A,A

Lo E,A

LD 0,0
ADD HL,DE
LD E, (HL)
INC HL

LD 0, (HL)
EX DE, HL
LD (HL),B

;FETCH BASE ADDRESS

; SAVE DATA

;FETCH INDEX

sDOUBLE INDEX FOR 2-BYTE ENTRIES
sEXTEND INDEX TO 14 BITS

s CALCULATE INDEXED ADDRES:S
;OBTAIN INDIRECT ADDRESS

; STORE DATA INDIRECTLY

« Transfer control (jump) to the address obtained indirectly from the table starting
at address JTAB. The index is in the accumulator.

ADD A, A

LD E,A

LD D,o

LD HL, JTAE
ADD HL,DE
Ln E, (HL)
INC HL

LD 0O, (HL)
EX DE, HL

JP (HL)

s DOUBLE INDEX FOR 2-BYTE ENTRIES
sEXTEND INDEX TO 14 BITS

;GET BASE ADDRESS

; CALCUILATE INDEXED ADDRESS
;OBTAIN INDIRECT ADDRESS

s JUMP TO INDIRECT ADDRESS

436 750 ASSEMBLY LANGUAGE SUBROUTINES

The table starting at address JTAB would appear as follows:

JTAE: DW ROUTO ; STARTING ADDRESS OF ROUTINE O
oW ROUT1 s STARTING ADDRESS OF ROUTINE 1
DW ROUT2 ; STARTING ADDRESS OF ROUTINE 2

- Indirect postindexed addressing (postindexing). In postindexing, the processor
must first obtain an indirect address and then apply indexing with that address as the
base. Thus the indirect address tells the processor where the table or array starts.

Examples

- Load a register using postindexing. The base address is in memory locations
ADDR and ADDR++1 and the index is a constant OFFSET.
LD xy, (ADDR) ;OBTAIN BASE ADDRESS INDIRECTLY
Lo reg, (xy+0OFF3ET) ; ORTAIN DATA

This approach is useful when ADDR and ADDR+1 contain the base address of a
data structure and OFFSET is the fixed distance from the base address to a particular
data item.

+ Load the accumulator using postindexing. The base address is in memory loca-
tions ADDR and ADDR+1 and the index is in the accumulator.

LD HL, (ADDR) ;OBTAIN BASE ADDRESS INDIRECTLY
LD E,A ;EXTEND INDEX TO 1é BITS

LD n,o

ADD HL,DE ; CALCULATE INDEXED ADDRESS

Ln A, (HL) sOBTAIN DATA

- Store a register using postindexing. The base address is in memory locations
ADDR and ADDR+1 and the index is a constant OFFSET.

LD xy, (ADDR) ;OBTAIN BASE ADDRESS INDIRECTLY
LD (xy+0OFFSET),reg; STORE DATA POSTINDEXED

+ Store the accumulator using postindexing. The base address is in memory loca-
tions ADDR and ADDR+1 and the index is in memory location INDEX.

LD HL., (ADDR) sOBTAIN BASE ADDRESS INDIRECTLY
LD B,A 3 SAVE DATA

LD A, (INDEX) ;OBTAIN INDEX

LD E,A sEXTEND INDEX TO 1& BITS

LD n,o

ADD HL,DE ; CALCULATE INDEXED ADDRESS

LD (HL),B s STORE DATA

By changing the contents of memory locations ADDR and ADDR+1, we can make
this routine operate on many different arrays.

CHAPTER 2: IMPLEMENTING ADDITIONAL INSTRUCTIONS AND ADDRESSNG MODES 437

+ Transfer control (jump) to the address obtained by indexing from the base address
in memory locations ADDR and ADDR+1. The index is a constant OFFSET.

LD xy, (ADDR) sOBTAIN BASE ADDRESS INDIRECTLY
LD L, {xy+QFFSET) ;OBTAIN LSE OF DESTINATICN

LD H, {xy+0FFSET+1); 0BTAIN MSE OF DESTINATION

JP (HL) 3 JUMP TO DESTINATION

This procedure is useful when a data structure contains the starting address of a
routine at a fixed offset. The routine could, for example, be a driver foran I/ O control

block, an error routine for a mathematical function, or a control equation for a process
loop.

- Transfer control (jump) to the address obtained by indexing from the base address
in memory locations ADDR and ADDR+1. The index is in the accumulator.

LD B,A s TRIPLE INDEX FOR 3-BYTE ENTRIES
ADDI A, A

ADD A,B

LD E,A sEXTEND INDEX TO 1é BITS

LD D,o

LD HL., (ADDR) ;OBTAIN BASE ADDRESS INDIRECTLY
ADD HL,DE ; CALCULATE INDEXED ADDRESS

JP (HL) s AND TRANSFER CONTROL TO IT

The table contains 3-byte JP instructions; a typical example is

RASE: JP ROUTO ; JUMP TO ROUTINE ©
JP ROUT1 s JUMP TO ROUTINE 1
JP ROUT2 s JUMP TO ROUTINE 2

The address BASE must be placed in memory locations ADDR and ADDR+1.

REFERENCES

1. Fisher, W.P., “Microprocessor Assembly Language Draft Standard,” IEEE
Computer, December 1979, pp. 96-109. (See also Distler, R.J. and M.A. Shaver, “Trial
Implementation Reveals Errors in IEEE Standard,” IEEE Computer, July 1982,
pp. 76-77.)

2. Osborne, A., An Introduction to Microcomputers. Volume 1: Basic Concepts.
2nd ed. Berkeley, Calif.: Osborne/McGraw-Hill, 1980.

3. Leventhal, L.A., 8080A4/8085 Assembly Language Programming. Berkeley,
Calif.: Osborne/ McGraw-Hill, 1978.

4. Fischer, op. cit.

Chopter3 Common Programming
Errors

This chapter describes common errors in Z80 assembly language programs. The
final section describes common errors in input/output drivers and interrupt service
routines. Our aims here are the following:

- To warn programmers of potential trouble spots and sources of confusion.
+ To describe likely causes of programming errors.
+ To emphasize the techniques and warnings presented in Chapters 1 and 2.

+ To inform maintenance programmers of likely places to look for errors and
misinterpretations.

- To provide the beginner with a starting point in the difficult process of locating
and correcting errors.

Of course, no list of errors can be complete. Only the most common errors are
emphasized —not the infrequent or subtle errors that frustrate even the experienced
programmer. However, most errors are remarkably obvious once uncovered, and this
discussion should help in debugging most programs.

CATEGORIZATION OF PROGRAMMING ERRORS

Common Z80 programming errors can be divided into the following categories:

- Reversing the order of operands or parts of operands. Typical errors include
reversing source and destination in load instructions, inverting the format in which
16-bit quantities are stored, and inverting the direction of subtractions or comparisons.

139

440 750 ASSEMBLY LANGUAGE SUBROUTINES

+ Using the flags improperly. Typical errors include using the wrong flag (such as
Sign instead of Carry), branching after instructions that do not affect a particular flag,
inverting branch conditions (particularly those involving the Zero flag), branching
incorrectly in equality cases, and changing a flag accidentally before branching.

- Confusing registers and register pairs. A typical error is operating on a register
instead of on a register pair.

+ Confusing addresses and data. The most common error is omitting the paren-
theses around an address and hence accidentally using immediate addressing instead
of direct addressing. Another error is confusing registers or register pairs with the
memory locations addressed via register pairs.

- Using the wrong formats. Typical errors include using BCD (decimal) instead of
binary, or vice versa, and using binary or hexadecimal instead of ASCII.

- Handling arrays incorrectly. The usual problem is going outside the array’s
boundaries.

- Ignoring implicit effects. Typical errors include using the accumulator, a register
pair, the stack pointer, flags, or memory locations without considering the effects of
intervening instructions. Most errors arise from instructions that have unexpected,
implicit, or indirect effects.

- Failing to provide proper initial conditions for routines or for the microcomputer
as a whole. Most routines require the initialization of counters, indirect addresses, base
addresses, registers, flags, and temporary storage locations. The microcomputer as a

" whole requires the initialization of the interrupt system and all global RAM addresses.
(Note particularly indirect addresses and counters.)

+ Organizing the program incorrectly. Typical errors include skipping or repeating
initialization routines, failing to update counters or address registers, and forgetting to
save intermediate or final results.

A common source of errors that is beyond the scope of this discussion is conflict
between user programs and systems programs. A simple example of conflict is for a
user program to save data in memory locations that a systems program also uses. The
user program’s data thus changes mysteriously whenever the systems program is
executed.

More complex sources of conflict include the interrupt system, input/ output ports,
the stack, and the flags. After all, systems programs must employ the same resources as
user programs. Systems programs generally attempt to save and restore the user’s
environment, but they often have subtle or unexpected effects. Making an operating
system transparent to the user is a problem comparable to devising a set of regulations,
laws, or tax codes that have no loopholes or side effects.

CHAPTER 3 COMMON PROGRAMMING ERRORS ‘4441

REVERSING THE ORDER OF OPERANDS

The following instructions and conventions are the most common sources of errors:

+ The LD D,S instruction moves the contents of S to D. Reversing the source and
the destination in LD instructions is probably the single most common error in Z80
assembly language programs. The best way to avoid this problem is to use the operator
notation described by Duncan.!

- 16-bit addresses and data items are assumed to be stored with their less significant
bytes first (that is, at the lower address). This convention becomes particularly confus-
ing in instructions that load or store register pairs or use the stack.

- The CP instruction subtracts its operand from the accumulator, not the other way
around. Thus, CP sets the flags as if the processor had calculated (A) — OPER, where
OPER is the operand specified in the instruction.

Examples

1. LD A,B

This instruction loads the accumulator from register B. Since it does not change B,
the instruction acts like “copy B into A.”

2. LD (HL),A

This instruction stores the accumulator at the memory address in register pair HL.
Since it does not change the accumulator, the instruction acts like “copy A into
memory addressed by HL.”

3. LD (2040H),A

The address 20405 occupies the two bytes of program memory immediately follow-
ing the operation code; 401 comes first and 204 last. This order is particularly
important to remember when entering or changing an address at the object code level
during debugging.

4. PUSH HL

This instruction stores register pair HL in memory at the addresses immediately
below the initial contents of the stack pointer (that is, at addresses S-1 and S-2if S is the
initial contents of the stack pointer). Register H is stored at address S-1 and L at S-2in
the usual upside-down format.

5. LD HL,(2050H)
This instruction loads register L from memory address 20506 and H from 2051 6.

442 750 ASSEMBRLY LANGUAGE SUBROUTINES

6. LD (3600H),HL
This instruction stores register L at memory address 36006 and H at address 3601 (6.

7 CPB

This instruction sets the flags as if register B had been subtracted from the
accumulator.

8. CP 25H

This instruction sets the flags as if the number 25, had been subtracted from the
accumulator.

USING THE FLAGS INCORRECTLY

Z80 instructions have widely varying effects on the flags. There are few general rules,
and even instructions with similar meanings may work differently. Cases that require
special caution are

+ Data transfer instructions such as LD and EX (except EX AF, AF’) do not affect
any flags. You may need an otherwise superfluous arithmetic or logical instruction
(such as AND A, DEC, INC, or OR A) to set the flags.

+ The Carry flag acts as a borrow after CP, SBC, or SUB instructions; that is, the
Carry is set if the 8-bit unsigned subtraction requires a borrow. If, however, you
implement subtraction by adding the two’s or ten’s complement of the subtrahend, the
Carry is an inverted borrow; that is, the Carry is cleared if the 8-bit unsigned
subtraction requires a borrow and set if it does not.

+ After acomparison (CP), the Zero flag indicates whether the operands are equal; it
is set if they are equal and cleared if they are not. There is an obvious source of
confusion here —JZ means “jump if the result is 0,” that is, “jump if the Zero flagis 1.”
JNZ, of course, has the opposite meaning.

* When comparing unsigned numbers, the Carry flag indicates which number is
larger. CP sets Carry if the accumulator is less than the other operand and clears it if the
accumulator is greater than or equal to the other operand. Note that the Carry is
cleared if the operands are equal. If this division of cases (“greater than or equal” and
“less than”) is not what you want (that is, you want the division to be “greater than” and
“less than or equal”), you can reverse the subtraction, subtract 1 from the accumulator,
or add 1 to the other operand.

* In comparing signed numbers, the Sign flag indicates which operand is larger
unless two’s complement overflow occurs (see Chapter 1). CP sets the Sign flag if the
accumulator is less than the other operand and clears it if the accumulator is greater

CHAPTER 3: COMMON PROGRAMMING ERRORS 443

than or equal to the other operand. Note that comparing equal operands clears the
Sign flag. As with the unsigned numbers, you can handle the equality case in the
opposite way by adjusting either operand or by reversing the subtraction. If overflow
occurs (signified by the setting of the Parity/ Overflow flag), the sense of the Sign flag is
inverted.

- All logical instructions except CPL clear the Carry flag. AND A or OR A is, in
fact, a quick, simple way to clear Carry without affecting any registers. CPL affects no
flags at all (XOR OFFH is an equivalent instruction that affects the flags).

- The common way to execute code only if a condition is true is to branch around it
if the condition is false. For example, to increment register B if Carry is 1, use the
sequence

JR NC, NEXT
INC B
NEXT: NOP

The branch occurs if Carry is 0.

- Many 16-bit arithmetic instructions have little effect on the flags. INCand DEC do
not affect any flags when applied to register pairs or index registers; ADD HL and
ADD xy affect only the Carry flag. The limited effects on the flags show that these
instructions are intended for address arithmetic, not for the processing of 16-bit data.
Note, however, that ADC HL and SBC HL affect all the flags and can be used for
ordinary processing of 16-bit data.

+ INC and DEC do not affect the Carry flag. This allows them to be used for
counting in loops that perform multiple byte arithmetic. (The Carry is needed to
transfer carries or borrows between bytes.) The 8-bit versions of INC and DEC do,
however, affect the Zero and Sign flags, and you can use those effects to determine
whether a carry or borrow occurred.

- The special instructions RLCA, RLA, RRCA, and RRA affect only the Carry
flag.

- Special-purpose arithmetic and logical instructions such as ADD A,A (logical left
shift accumulator), ADC A,A (rotate left accumulator), SUB A (clear accumulator),
and AND A or OR A (test accumulator) affect all the flags.

- PUSH and POP instructions do not affect the flags, except for POP AF which
changes all the flags. Remember, AF consists of the accumulator (MSB) and the flags
(LSB).

Examples

1. The sequence

LD A, (2040H)
JR Z, DONE

444 50 ~5SEMVBLY LANGUAGE SUBROUTINES

has unpredictable results, since LD does not affect the flags. To produce a jump if
memory location 2040¢ contains 0, use

LD A, (2040H)

AND A ;s TEST ACCUMULATOR
JR Z, DONE

OR A may be used instead of AND A.

2. The sequence

LD AE
JP P,DEST

has unpredictable results, since LD does not affect the flags. Either of the following
sequences forces a jump if register E is positive:

LD AE

AND A

JP P,DEST
or '

SUB A

OR E

JP P,DEST

3. The instruction CP 25H sets the Carry flag as follows:
+ Carry = 1 if the contents of A are between 00 and 24 6.
+ Carry = 0 if the contents of A are between 25 and FFg.
The Carry flag is set if A contains an unsigned number less than the other operand

and is cleared if A contains an unsigned number greater than or equal to the other
operand.

If you want to set Carry if the accumulator contains 254, use CP 26H instead of CP
25H. That is, we have

CcP 25H

JR C,LESS s BRANCH IF (A) LEST THAN 235
or

CP 26H

JR C,LESSEQ s BRANCH IF (A) 25 OR LESS

4. The sequence

RLA

JP P, DONE
has unpredictable results, since RLA does not affect the Sign flag. The correct
sequence (producing a circular shift that affects the flags) is

ADC A, A ;SHIFT CIRCULAR, SETTING FLAGS
JP P, DONE

CHAPTER 3: COMMON PROGRAMMING ERRORS 145

Of course, you can also use the somewhat slower

RLA
RLA
JR C, DONE

This approach allows a relative branch.
5. The sequence

INC B
JR C,QVRFLW

has unpredictable results, since INC does not affect the Carry flag. The correct
sequence is

INC B
JR Z,0VRFLW

since INC does affect the Zero flag when it is applied to an 8-bit operand.

6. The sequence
DEC B
JR C, QVRFLW
has unpredictable results, since DEC does not affect the Carry flag. If B cannot contain
a number larger than 80,¢ (unsigned), you can use
DEC B
JP M, QVRFLW
since DEC does affect the Sign flag (when applied to an 8-bit operand). Note, however,
that you will get an erroneous branch if B initially contains 81 .
A longer but more general sequence is

INC B s TEST REGISTER B

DEC B

JR Z,0VRFLW ;BRANCH IF B CONTAINS ZERO
DEC B

Note that register B will contain 0 (not FFe) if the program branches to address
OVRFLW.

7. The sequence

DEC EC
JR NZ,LO0O0P

has unpredictable results, since DEC does not affect any flags when it is applied to a
16-bit operand. The correct sequence for decrementing and testing a 16-bit counter in
register pair BC is

DEC EC
LD A,C ;CHECK IF BC HAS ANY 1 BITS
OR B

JR NZ,LOoP ;s BC CANNOT BE ZERO IF ANY EBITS ARE 1

446 750 ASSEMVRLY LANGUAGE SUBROUTINES

This sequence affects the accumulator and all the flags, including Carry (which OR
clears).

8. AND A or OR A clears Carry without affecting any registers. To clear Carry
without affecting the other flags, use the sequence

SCF sFIRST SET THE CARRY FLAG
CCF ; THEN CLEAR IT BY COMPLEMENTING

9. SUB A or XOR A clears the accumulator, the Carry flag, and the Sign flag (and
sets the Zero flag). To clear the accumulator without affecting the flags, use LD A,0.

10. The sequence

ADD HL,DE
JR Z, BNDRY

has unpredictable results, since ADD HL does not affect the Zero flag. To force a
branch if the sum is 0, you must test HL explicitly as follows:

ADD HL,DE
LD AH s;TEST H AND L FOR ZERO
OR L

JR Z, ENDRY
An alternative is
AND A s CLEAR CARRY
ADC HL,DE
JR Z, BNORY

Unlike ADD HL, ADC HL affects the Zero flag.

CONFUSING REGISTERS AND REGISTER PAIRS

The rules to remember are

- ADC, ADD, DEC, INC, LD, and SBC can be applied to either 8-bit operands or
16-bit register pairs. ADD, DEC, INC, and LD can also be applied to index registers.

- AND, OR, SUB, and XOR can only be applied to 8-bit operands.
+ EX, POP, and PUSH can only be applied to register pairs or index registers.

+ (rp) refers to the byte of memory located at the address in the register pair. It does
not refer to either half of the register pair itself.

One common error is that of referring to H or L instead of (HL). The use of register
pairs to hold addresses means that certain transfers are uncommon. For example, LD

CHAPTER 3: COMMON PROGRAMMING ERRORS 447

L,(HL) would load register L from the address in HL; HL would then contain one byte
of an address (in H) and one byte of data (in L). While this is legal, it is seldom useful.

Examples
1. LD AH

This instruction moves register H to the accumulator. It does not change register H
or any memory location.

2. LD A,(BC)

This instruction loads the accumulator from the memory address in register pair BC.
It does not affect either register B or register C.

3. LD H,0

This instruction places 0 in register H. It does not affect memory.

4. LD (HL),A

This instruction stores the accumulator in the memory location addressed by
register pair HL. It does not affect either H or L. A sequence that loads HL with an
address indirectly is

LD E, (HL) sGET LSB OF INDIRECT ADDRESS
INC HL

LD 0, (HL) sGET MSR OF INDIRECT ADDRESS
EX DE, HL sPUT INDIRECT ADDRESS IN HL

We may limit ourselves to a single temporary register (the accumulator) by loading the
more significant byte directly into H as follows:

LD A, (HL) sGET LSE OF INDIRECT ADDRESS
INC HL

LD H, (HL) sGET MSB OF INDIRECT ADDRESS
LD L,A ;MOVE LSR OF ADDRESS TO L

This takes the same number of clock cycles as the previous sequence, but uses A instead
of DE for temporary storage.

5. LD HL,2050H
This instruction loads 20504 into register pair HL (20,6 into H and 501¢ into L).

6. ADD A,(HL)

This instruction adds the memory byte addressed via register pair HL to the
accumulator. It does not affect either H or L.

448 750 ASSEMBLY LANGUAGE SUBROUTINES

7. ADD HL,HL

This instruction adds register pair HL to itself, thus shifting HL left 1 bit logically.
This instruction does not affect the accumulator or access data from memory.

CONFUSING ADDRESSES AND DATA

The rules to remember are

- LD requires an address when you want to move data to or from memory. That
address must be placed in parentheses.

- The standard assembler treats all operands as data unless they are enclosed in
parentheses. Thus, if you omit the parentheses around an address, the assembler will
treat it as a data item.

- DINZ, JP, JR, and CALL always require addresses.

There is some confusion with addressing terminology in jump instructions. These
instructions essentially treat their operands as if one level of indirection had been
removed. For example, we say that JP 2040H uses direct addressing, yet we do not
place the address in parentheses. Furthermore, JP 2040H loads 20404 into the
program counter, much as LD HL,2040H loads 2040,¢ into register pair HL. LD
HL,(2040H) loads the contents of memory locations 20404 and 20414 into register
pair HL. Note also that JP (HL) loads HL into the program counter; it does not use
HL indirectly or access the memory at all.

Examples
1. LD A,40H loads the number 40¢ into the accumulator. LD A,(40H) loads the
contents of memory location 0040;¢ into the accumulator.

2. LD HL,0C00H loads 0C00¢ into register pair HL (0C¢ into H and 00¢ into L).
LD HL,(0CO0H) loads the contents of memory locations 0C00;¢ and 0C01¢ into
register pair HL (the contents of 0C00;¢ into L and the contents of 0C014 into H).

3. JP (xy) transfers control to the address in an index register. No indexing is
performed, nor is the address used to access memory.

Confusing addresses and their contents is a common error in handling data struc-
tures. For example, the queue of tasks to be executed by a piece of test equipment
might consist of a block of information for each task. That block might contain

- Starting address of the test routine

+ Number of seconds for which the test is to run

CHAPTER 3: COMMON PROGRAMMING ERRORS 449

+ Address in which the result is to be saved
- Upper and lower thresholds against which the result is to be compared

- Base address of the next block in the queue.

Thus, the block contains data, direct addresses, and indirect addresses. Typical
errors that a programmer could make are

+ Transferring control to the memory locations containing the starting address of
the test routine, rather than to the actual starting address.

- Storing the result in the block rather than in the address specified in the block.

+ Using a threshold as an address rather than as data.

- Assuming that the next block starts in the current block, rather than at the base
address given in the current block.

Jump tables are another common source of errors. The following are alternative
implementations:

+ Form a table of jump instructions and transfer control to the correct element (for
example, to the third jump instruction).

- Form a table of destination addresses and transfer control to the contents of the
correct element (for example, to the address in the third element).

You will surely have problems if the processor uses jump instructions as addresses or
vice versa.

FORMAT ERRORS

The rules you should remember for the standard Z80 assembler are

- An H at the end of a number indicates hexadecimal and a B indicates binary.

+ The default mode for numbers is decimal; that is, the assembler assumes all
numbers to be decimal unless they are specifically marked otherwise.

- All operands are treated as data unless they are enclosed in parentheses. Operands
enclosed in parentheses are assumed to be memory addresses.

+ A hexadecimal number that starts with a letter digit (A, B, C, D, E, or F) must be
preceded by 0 (for example, 0OCFH instead of CFH) for the assembler to interpret it
correctly. Of course, the leading 0 does not affect the value of the number.

- All arithmetic and logical operations are binary, except DAA, which corrects the
result of an 8-bit binary addition or subtraction to the proper BCD value.

450 750 ASSEMBLY LANGUAGE SUBROUTINES

You should beware of the following common errors:

- Omitting the H from a hexadecimal operand. The assembler will assume it to be
decimal if it contains no letter digits and to be a name if it starts with a letter. The
assembler will indicate an error only if it cannot interpret the operand as either a
decimal number or a name.

+ Omitting the B from a binary operand. The assembler will assume it to be decimal.

+ Confusing decimal (BCD) representations with binary representations. Remem-
ber, ten is not an integral power of two, so the binary and BCD representations are not
the same beyond nine. BCD constants must be designated as hexadecimal numbers,
not as decimal numbers.

- Confusing binary or decimal representations with ASCII representations. An
ASCII input device produces ASCII characters and an ASCII output device responds
to ASCII characters.

Examples

1. LD A,(2000)

This instruction loads the accumulator from memory address 20009 (07D0y¢), not
address 20001¢. The assembler will not produce an error message, since 2000 is a valid
decimal number.

2. AND 00000011

This instruction logically ANDs the accumulator with the decimal number 11
(10115), not with the binary number 11 (3). The assembler will not produce an error
message, since 00000011 is a valid decimal number despite its unusual form.

3. ADD A,40

This instruction adds the number 40;, to the accumulator. Note that 40 is not the
same as BCD 40, which is 40;¢; 4019 = 28 6. The assembler will not produce an error
message, since 40 is a valid decimal number.

4. LD A3

This instruction loads the accumulator with the number 3. If this value is now sent to
an ASCII output device, the device will respond as if it had received the character ETX
(031¢), not the character 3 (3316). The correct version is

LD A, 73" ;GET AN ASCII 3

CHAPTER 3: COMMON PROGRAMMING ERRORS 151

If memory location 20404 contains a single digit, the sequence

LD A, (2040H)
QuUT (DEVCE), A

will not print that digit on an ASCII output device. The correct sequence is

LD A, (2040H) ;GET DECIMAL DIGIT
ADD A, 70~ s ADJUST TO ASCII
QuT (DEVCE), A

If input port INDEV contains a single ASCII decimal digit, the sequence

IN A, CINDEV)

Lo (2040H), A
will not store the actual digit in memory location 2040¢. Instead, it will store the
ASCII version, which is the actual digit plus 30;¢. The correct sequence is

IN A, CINDEV) :GET ASCII DIGIT

SUB 07 s ADJUST TO DECIMAL

Lo (2040H) , A

Performing decimal arithmetic on the Z80 is awkward, since a DAA instruction is

required after each 8-bit addition or subtraction. Chapter 6 contains programs for
decimal arithmetic operations. Since DA A does not work properly after DEC or INC,
the following sequences are necessary to perform decimal increment and decrement
by L:

+ Add 1 to the accumulator in decimal.

ADD A1
DAA

+ Subtract 1 from the accumulator in decimal.

SUB 1
DAA
or
ADD A,99H
DAA

in the second alternative, Carry is an inverted borrow.

HANDLING ARRAYS INCORRECTLY

The most common problems here are executing an extra iteration or stopping one
short. Remember, memory locations BASE through BASE+N contain N+1 bytes, not
N bytes. It is easy to forget the last entry or drop the first one. On the other hand, if you
have N entries, they will occupy memory locations BASE through BASE+N—1; now it
is easy to find yourself working beyond the end of the array.

452 730 ASSEMBLY LANGUAGE SUBROUTINES

IMPLICIT EFFECTS

Some implicit effects you should remember are

+ The clearing of Carry by all logical operations except CPL.

+ The moving of the interrupt flip-flop IFF2 to the Parity/ Overflow flagby LD A,I
and LD A,R.

+ The use of the data at the address in HL by the digit rotations RRD and RLD.

+ The use of the memory address one larger than the specified one by LD
rp,(ADDR), LD (ADDR),rp, LD xy,(ADDR), and LD (ADDR),xy.

+ The changing of the stack pointer by POP, PUSH, CALL, RET, RETI, RETN,
and RST.

- The saving of the return address in the stack by CALL and RST.
+ The decrementing of register B by DJNZ.

- The implicit effects on BC, DE, and HL of the block compare, input, move, and
output instructions.

+ The use of the Parity/ Overflow flag by LDD, LDI, CPD, CPDR, CPI, and CPIR
to indicate whether the counter in BC has been decremented to 0.

Examples

1. AND 00001111B

This instruction clears the Carry, as well as performing a logical operation.

2. LD AJI

This instruction not only loads the accumulator, but also moves the interrupt
flip-flop IFF2 to the Parity/ Overflow flag. The interrupt status can then be saved
before the computer executes a routine that must run with interrupts disabled.

3. RRD

This instruction performs a 4-bit (digit) circular shift right involving the accumula-
tor and the memory location addressed by HL. The results are

+ The 4 least significant bits of A go into the 4 most significant bits of the memory
location.

- The 4 most significant bits of the memory location go into its 4 least significant
bits.

CHAPTER 3: COMMON PROGRAMMING ERRORS 453

- The 4 least significant bits of the memory location go into the 4 least significant
bits of A.

The result is thus a 4-bit right rotation of the 12-bit number made up of the 4 LSBs of
the accumulator and the memory byte.

4. LD HL,(16EFH)

This instruction loads register L from memory location 16EF ;¢ and H from memory
location 16F0,¢. Note the implicit use of address 16F0g.

5. POP HL

This instruction not only loads register pair HL from memory, but also increments
the stack pointer by 2.

6. CALL SUBR

This instruction not only transfers control to address SUBR, but it also saves the
address of the next sequential instruction in the stack. Furthermore, CALL decre-
ments the stack pointer by 2.

7. DJNZ LOOP

This instruction decrements register B and branches to address LOOP if the result is
not 0. Note that register B is implied as the counter.

8. LDD

This instruction moves data from the address in HL to the address in DE. It also
decrements BC, DE, and HL by 1. The Parity/Overflow flag (not the Zero flag) is
cleared (not set) if BC is decremented to 0; the Parity/ Overflow flag is set otherwise.

9. CPIR

This instruction compares the accumulator with the memory byte at the address in
HL. After the comparison, it increments HL by 1 and decrements BC by 1. It repeats
these operations until it decrements BC to 0 (indicated by the Parity/ Overflow flag
being cleared) or until the comparison sets the Zero flag. Note that CPIR updates BC
and HL before it tests for an exit condition.

10. OUTI

This instruction transfers data from the memory address in HL to the output port in
C. It then decrements B (not BC) by 1 and increments HL by 1. OUTI sets the Zero flag
to 1 if it decrements BC to 0; it clears the Zero flag otherwise.

454 750 ASSEMBLY LANGUAGE SUBROUTINES

INITIALIZATION ERRORS

Initialization routines must perform the following tasks, either for the microcom-
puter system as a whole or for particular routines:

+ Load all RAM locations with initial values. This includes indirect addresses and
other temporary storage. You cannot assume that a memory location contains 0 just
because you have not used it.

- Load all registers and flags with initial values. Reset initializes the interrupt system
by disabling regular interrupts and selecting Mode 0. The startup program for an
interrupt-driven system must set the interrupt mode (if it is not 0), initialize the stack
pointer, and load the interrupt vector register (in Mode 2).

- Initialize all counters and indirect addresses. Pay particular attention to register
pairs that are used as address registers; you must initialize them before using instruc-
tions that refer to them indirectly.

ORGANIZING THE PROGRAM
INCORRECTLY

The following problems are the most common:

- Accidentally reinitializing a register, register pair, flag, memory location, counter,
or indirect address. Be sure that your branches do not result in the repetition of
initialization instructions.

- Failing to update a counter, index register, address register, or indirect address. A
problem here may be a path that branches around the updating instructions or changes
values before executing those instructions.

+ Forgetting to save results. It is remarkably easy to calculate a result and then load
something else into the accumulator. Identifying this kind of error is frustrating and
time-consuming, since all the instructions that calculate the result work properly and
yet the result itself is being lost. For example, a branch may transfer control to an
instruction that writes over the result.

- Forgetting to branch around instructions that should not be executed in a particu-
lar path. Remember, the computer will execute instructions consecutively unless told
to do otherwise. Thus, the computer may fall through to a section of the program that
you expect it to reach only via a branch. An unconditional jump instruction will force a
branch around the section that should not be executed.

CHAPTER 3: COMMON PROGRAMMING ERRORS 155

ERROR RECOGNITION BY ASSEMBLERS

Most assemblers will recognize some common errors immediately, such as

- Undefined operation code (usually a misspelling or the omission of a colon after a
label).

- Undefined name (often a misspelling or an omitted definition).

- Illegal character (for example, a 2 in a binary number or a Bin a decimal number).
- lllegal format (for example, an incorrect delimiter or the wrong operands).

- Illegal value (usually a number too large for 8 or 16 bits).

+ Missing operand.

- Double definition (two different values assigned to one name).

- Illegal label (for example, a label attached to a pseudo-operation that does not
allow a label).

- Missing label (for example, on an EQU pseudo-operation that requires one).

These errors are annoying but easy to correct. The only problem comes when an
error (such as omitting the semicolon from a comment line) confuses the assembler
completely and results in a series of meaningless error messages.

There are, however, many simple errors that assemblers will not recognize. The
programmer should be aware that his or her program may contain such errors even if
the assembler does not report them. Typical examples are

- Omitted lines. Obviously, the assembler cannot tell that you have omitted a line
completely unless it contains a label or definition that is used elsewhere. The easiest
lines to omit are ones that are repetitious or seem unnecessary. Typical repetitions are
series of shifts, branches, increments, or decrements. Instructions that often appear
unnecessary include AND A, DEC HL, INC HL, OR A, and SUB A.

- Omitted designations. The assembler cannot tell if you meant an operand to be
hexadecimal or binary unless the omission results in anillegal character (suchas Cina
decimal number). Otherwise, the assembler will assume all numbers to be decimal.
Problems occur with hexadecimal numbers that contain no letter digits (such as 44 or
2050) and with binary numbers (such as 00000110).

+ Omitted parentheses. The assembler cannot tell if you meant to refer to a memory
address unless omitting the parentheses results in an error. Many instructions, such as
LD A,(40H), INC (HL), DEC (HL), and LD HL,(2050H), are also valid without
parentheses.

- Misspellings that are still valid. Typical examples are typing AND or ADCinstead
of ADD, DI instead of EI, or D instead of E. Unless the misspelling is invalid, the

456 30 ASSEMBLY LANGUAGE SUBROUTINES

assembler has no way of sensing an error. Valid misspellings are often a problem if you
use names that look alike, such as XXX and XXXX, L121 and L112, or VARII and
VARIL

- Designating instructions as comments. If you place a semicolon at the start of an
instruction line, the assembler will treat the line as a comment. This can be a perplexing
error, since the line appears in the listing but is not assembled into code.

Sometimes you can confuse an assembler by entering completely invalid instruc-
tions. An assembler may accept them simply because its developer never anticipated
such mistakes. The results can be unpredictable, much like the result of accidentally
entering your weight instead of your age or your telephone number instead of your
credit card number on a form. Some cases in which a Z80 assembler can go wrong are

- If you specify a single register instead of a register pair. Some assemblers will
accept instructions like LD A,(L), ADD HL,D, or LD E,2040H. They will produce
meaningless object code without any indication of error.

+ If you enter an invalid digit, such as X in a decimal or hexadecimal number or 7 in
a binary number. Some assemblers will assign arbitrary values to such invalid digits.

+ Ifyou enter an invalid operand such as 40H in RST, AF in LD, or SPin PUSH or
POP. Some assemblers will accept these and generate meaningless code.

The assembler will only recognize errors that its developer anticipated. Pro-
grammers are often able to make mistakes the developer never imagined, much as
automobile drivers are often capable of getting into predicaments that no highway
engineer or traffic policeman ever thought possible. Note that only a line-by-line hand
checking of the program will find errors that the assembler does not recognize.

COMMON ERRORS IN I/O DRIVERS

Since most errors in I/O drivers involve both hardware and software, they are
difficult to categorize. Some things you should watch for are

- Confusing input ports and output ports. Input port 20, and output port 20;¢ are
different in most systems. Even when the two ports are the same physically, it may still
be impossible to read back output data unless the port is latched and buffered.

+ Attempting to perform operations that are physically impossible. Reading data
from an output device (such as a display) or sending data to an input device (suchas a
keyboard) makes no physical sense. However, accidentally using the wrong port
number will cause no assembly errors; the port, after all, exists and the assembler has
no way of knowing that certain operations cannot be performed on it. Similarly, a
program may attempt to save data in an unassigned address or in a ROM.

CHAPTER 3: COMMON PROGRAMMING ERRORS 157

+ Forgetting implicit hardware effects. At times, transferring data to or from a port
will change the status lines automatically (as in most PIO modes). Even reading or
writing the port while debugging a program will change status lines. When using
memory-mapped 1/ O, be particularly careful of instructions like comparisons and BIT
that read a memory address even though they do not change any registers. Similarly,
instructions like BIT, RES, SET, DEC, INC, and shifts can both read and write a
memory address. Automatic port operations can save parts and simplify programs, but
you must remember how they work and when they occur.

+ Reading or writing without checking status. Many devices can only accept or
provide data when a status line indicates they are ready. Transferring data to or from
them at other times will have unpredictable results.

+ Ignoring the differences between input and output. Remember that an input device
normally starts out not ready — it has no data available although the computer is ready
to accept data. On the other hand, an output device normally starts out ready — that is,
it could accept data but the computer usually has none to send it. In many situations
(particularly when using PIOs), you may have to send a null character (something that
has no effect) to each output port just to change its state from ready to not ready
initially.

+ Failing to keep a copy of output data. Generally, you will not be able to read data
back from an output port. You must save a copy in memory if it could be needed later to
repeat a transmission, change some bits, or restore interrupt status (the data could, for
example, be the current priority level).

- Reading data before it is stable or while it is changing. Be sure that you understand
exactly when the data from the input device is guaranteed to be stable. In the case of
switches that may bounce, you may want to sample them twice (more than a debounc-
ing time apart) before taking any action. In the case of keys that may bounce, you may
want to take action only when they are released rather than when they are pressed.
Acting on release also forces the operator to release the key rather than holding it
down. In the case of persistent data (such as in serial I/O), you should center the
reception (that is, read the data near the centers of the pulses rather than at the edges
where the values may be changing).

- Forgetting to reverse the polarity of data being transferred to or from devices that
operate in negative logic. Many simple I/ O devices, such as switches and displays, use
negative logic; a logic 0 means that a switch is closed or a display is lit. Common
ten-position switches or dials also often produce data in negative logic, as do many
encoders. The solution is simple —complement the data using CPL after reading it or
before sending it.

+ Confusingactual I/ O ports with registers that are inside I/ O chips. Programmable
I/O devices, such as the CTC, PIO, and SIO, typically have control or command
registers that determine how the device operates and status registers that reflect the

458 730 ASSEMBLY LANGUAGE SUBROUTINES

current state of the device or the transfer. These registers are inside the chips; they are
not connected to peripherals. Transferring data to or from these registers is not the
same as transferring data to or from actual I/ O ports.

+ Using bidirectional ports improperly. Many devices, such as the PIO, have bidirec-
tional I/ O ports that can be used either for input or output. Normally, resetting the
computer makes these ports inputs in order to avoid initial transients, so the program
must explicitly change them to outputs if necessary. Be particularly careful of instruc-
tions that read bits or ports that are designated as outputs or that write into bits or
ports designated as inputs. The only way to determine what will happen is to read the
documentation for the specific device.

+ Forgetting to clear status after performing an I/ O operation. Once the processor
has read data from a port or written data into a port, that port should revert to the not
ready state. Some I/ O devices change the status of their ports automatically after input
or output operations, but others either do not or they change status automatically only
after input. Leaving the status set can result in an endless loop or erratic operation.

COMMON ERRORS IN INTERRUPT
SERVICE ROUTINES

Many errors that are related to interrupts involve both hardware and software. The
following are some of the more common mistakes:

- Failing to reenable interrupts. The Z80 disables interrupts automatically after
accepting one, but does not reenable interrupts unless it executes EI.

+ Failing to save registers. The Z80 does not automatically save any registers except
the program counter, so any registers that the service routine uses must be saved
explicitly in the stack.

- Saving or restoring registers in the wrong order. Registers must be restored in the
opposite order from that in which they were saved.

- Enabling interrupts before initializing modes, priorities, the interrupt vector
register, or other parameters of the interrupt system.

+ Forgetting that the response to an interrupt includes saving the program counter
at the top of the stack. The return address will thus be on top of whatever else is in the
stack.

- Not disabling the interrupt during multi-byte transfers or instruction sequences
that cannot be interrupted. In particular, watch for possible partial updating of data
(such as time) that a service routine may use.

CHAPTER 3: COMMON PROGRAMMING ERRORS 459

+ Failing to reenable interrupts after a sequence that must be run with interrupts
disabled. One problem here is that interrupts should not be enabled afterward if they
were not enabled originally. This requirement is difficult to meet on the Z80 since its
interrupt enable is not directly readable. The only way to access the interrupt flip-flop
is by executing LD A,I or LD A,R; either instruction moves the interrupt flip-flop to
the Parity/Overflow flag.

- Failing to clear the signal that caused the interrupt. The service routine must clear
the interrupt even if no I/O operations are necessary. For example, even when the
processor has no data to send to an interrupting output device, it must nonetheless
either clear or disable the interrupt. Otherwise, the processor will get caught in an
endless loop. Similarly, a real-time clock will typically require no servicing other than
an updating of time, but the service routine still must clear the clock interrupt. This
clearing may involve reading a timer register.

+ Failing to communicate with the main program. The main program will not know
that the interrupt has been serviced unless it is informed explicitly. The usual way to
inform the main program is to have the service routine change a flag. The main
program can tell from the flag’s value whether the service routine has been executed.
This procedure works like a postal patron raising a flag to indicate that there is mail to
be picked up. The letter carrier lowers the flag after picking up the mail. Note that this
simple procedure means that the main program must examine the flag often enough to
avoid missing changes in its value. Of course, the programmer can always provide a
buffer that can hold many data items.

- Failing to save and restore priority. The priority of an interrupt is often held in a
write-only register or in a memory location. That priority must be saved just like a
CPU register and restored properly at the end of the service routine. If the priority
register is write-only, a copy of its contents must be saved in memory.

REFERENCES

1. Duncan, F.G., “Level-Independent Notation for Microcomputer Programs,”
IEEFE Micro, May 1981, pp. 47-52.

Infroduction fo the
Program Section

The program section contains sets of assembly language subroutines for the Z80
microprocessor. Each subroutine is documented with an introductory section and
comments and is followed by at least one example of its use. The introductory material
contains the following information about the purpose of the routine: its procedure and
the registers that are used; the execution time, program size, and data memory
required for the routine; as well as special cases, entry conditions, and exit conditions.

We have made each routine as general as possible. This is particularly difficult for
the input/ output (I/ O) and interrupt service routines described in Chapters 10 and 11,
since these routines are always computer-dependent in practice. In such cases, we have
limited the computer-dependence to generalized input and output handlers and inter-
rupt managers. We have drawn specific examples from computers based on the CP/M
operating system, but the general principles are applicable to other Z80-based com-
puters as well.

In all routines, we have used the following parameter passing techniques:

1. Asingle 8-bit parameter is passed in the accumulator. A second 8-bit parameter is
passed in register B, and a third in register C.

2. A single 16-bit parameter is passed in register pair HL with the more significant
byte in H. A second 16-bit parameter is passed in register pair DE with the more
significant byte in D.

3. Large numbers of parameters are passed in the stack, either directly or indirectly.
We assume that subroutines are entered via a CALL instruction that places the return
address at the top of the stack, and hence on top of the parameters.

Where there has been a choice between execution time and memory usage, we have
generally chosen to minimize execution time. We have therefore avoided slowly
executing instructions such as stack transfers and instructions that use the index
registers, even when they would make programs shorter. However, we have used

161

462 750 ASSEMBLY LANGUAGE SUBROUTINES

relative jumps whenever possible rather than the slightly faster but longer absolute
jumps to make programs easier to relocate.

‘We have also chosen the approach that minimizes the number of repetitive calcula-
tions. For example, in the case of array indexing, the number of bytes between the
starting addresses of elements differing only by one in a particular subscript (known as
the size of that subscript) depends only on the number of bytes per element and the
bounds of the array. Thus, the sizes of the various subscripts can be calculated as soon
as the bounds of the array are known,; the sizes are therefore used as parameters for the
indexing routines, so that they need not be calculated each time a particular array is
indexed.

As for execution time, we have specified it for most short routines. For longer
routines we have given an approximate execution time. The execution time of pro-
grams involving many branches will obviously depend on which path the computer
follows in a particular case. This is further complicated for the Z80 because condi-
tional jump instructions themselves require different numbers of clock cycles depend-
ing on whether the branch is taken. Thus, a precise execution time is often impossible
to define. The documentation always contains at least one typical example showing an
approximate or maximum execution time.

Although we have drawn examples from CP/M-based systems, we have not made
our routines compatible with the 8080 or 8085 processors. Readers who need routines
that can run on any of these processors should refer to the 8080/8085 version of this
book. We have considered the Z80 as an independent processor and have taken
advantage of such features as block moves, block compares, loop control instructions,
and relative jumps.

Our philosophy on error indicators and special cases has been the following:

1. Routines should provide an easily tested indicator (such as the Carry flag) of
whether any errors or exceptions have occurred.

2. Trivial cases, such as no elements in an array or strings of zero length, should
result in immediate exits with minimal effect on the underlying data.

3. Incorrectly specified data (such as a maximum string length of zero or an index
beyond the end of an array) should result in immediate exits with minimal effect on the
underlying data.

4. The documentation should include a summary of errors and exceptions (under
the heading of “Special Cases”).

5. Exceptions that may actually be convenient for the user (such as deleting more
characters than could possibly be left in a string rather than counting the precise
number) should be handled in a reasonable way, but should still be indicated as errors.

Obviously, no method of handling errors or exceptions can ever be completely
consistent or well-suited to all applications. And rather than assume that the user will

INTRODUCTION TO THE PROGRAM SECTION 463

always provide data in the proper form, we believe a reasonable set of subroutines
must deal with this issue.
The subroutines are listed as follows:

Code Conversion

4A Binary to BCD Conversion 167

4B BCD to Binary Conversion 170

4C Binary to Hexadecimal ASCII Conversion 172

4D Hexadecimal ASCII to Binary Conversion 175

4E Conversion of a Binary Number to Decimal ASCII 178
4F Conversion of ASCII Decimal to Binary 183

4G Lower-Case to Upper-Case Translation 187

4H ASCII to EBCDIC Conversion 189

41 EBCDIC to ASCII Conversion 192

Array Manipulation and Indexing

S5A Memory Fill 195

5B Block Move 198

5C Two-Dimensional Byte Array Indexing 201
5D Two-Dimensional Word Array Indexing 205
SE N-Dimensional Array Indexing 209

Arithmetic

6A 16-Bit Multiplication 217

6B 16-Bit Division 220

6C 16-Bit Comparison 225

6D Multiple-Precision Binary Addition 228

6E Multiple-Precision Binary Subtraction 231
6F Multiple-Precision Binary Multiplication 234
6G Multiple-Precision Binary Division 239

464 750 ASSEMBLY LANGUAGE SUBROUTINES

6H Multiple-Precision Binary Comparison 245

61 Multiple-Precision Decimal Addition 248

6J Multiple-Precision Decimal Subtraction 251
6K Multiple-Precision Decimal Multiplication 254
6L Multiple-Precision Decimal Division 260

6M Multiple-Precision Decimal Comparison 266

Bit Manipulations and Shifts

7A Bit Field Extraction 267

7B Bit Field Insertion 270

7C Multiple-Precision Arithmetic Shift Right 273
7D Multiple-Precision Logical Shift Left 276

7E Multiple-Precision Logical Shift Right 279
7F Multiple-Precision Rotate Right 282

7G Multiple-Precision Rotate Left 285

String Manipulation

8A String Compare 288

8B String Concatenation 292

8C Find the Position of a Substring 297
8D Copy a Substring from a String 302

8E Delete a Substring from a String 308
8F Insert a Substring into a String 313

Array Operations

9A 8-Bit Array Summation 319

9B 16-Bit Array Summation 322

9C Find Maximum Byte-Length Element 325
9D Find Minimum Byte-Length Element 328
9E Binary Search 331

INTRODUCTION TO THE PROGRAM SECTION 465

9F Quicksort 336
9G RAM Test 347
9H Jump Table 352

Input/Output

10A Read a Line from a Terminal 356

10B Write a Line to an Output Device 365
10C CRC-16 Checking and Generation 368
10D I/O Device Table Handler 373

10E Initialize I/ O Ports 385

10F Delay Milliseconds 391

Interrupts

11A Unbuffered Input/Output Using an SIO 394
11B Unbuffered Input/Output Using a PIO 404
11C Buffered Input/Output Using an SIO 413
11D Real-Time Clock and Calendar 425

Binary to BCD Conversion (BN2BCD)

AA

Converts one byte of binary data to two bytes
of BCD data.

Procedure: The program subtracts 100 repeat-
edly from the original data to determine the
hundreds digit, then subtracts 10 repeatedly
from the remainder to determine the tens digit,
and finally shifts the tens digit left four positions
and combines it with the ones digit.

Registers Used: AF, C, HL

Execution Time: 497 cycles maximum; depends on
the number of subtractions required to determine the
tens and hundreds digits

Program Size: 27 bytes
Data Memory Required: None

Entry Conditions

Binary data in A

Exit Conditions

Hundreds digit in H
Tens and ones digits in L

Examples

1. Data:
Result:

(A) = 6E ¢ (110 decimal)

(H) = 01 4 (hundreds digit)
(L) = 1044 (tens and ones digits)

2. Data:

Result:

(A) = B7,¢ (183 decimal)

(H) = 01,4 (hundreds digit)
(L) = 834 (tens and ones digits)

B NE ME NE NE NS w8 NS

Title

Name: BN2BCD
H Purpose:
H bytes of BCD
; Entry: Register A =
H Exit: Register H =
H Register L =

Registers used: AF,C,HL

Binary to BCD conversion

Convert one byte of binary data to two

NE e NE NE B we we ws

data
binary data

High byte of BCD data
Low byte of BCD data

NE ME N ME B wE wE Ns wE wn

167

468 CODE CONVERSION

8 4B NS ws ws ws

EN2BCD:

D100LF:

D10LF:

s NS s v s

SC4A:

Time: 497 cycles maximum

Size: Program 27 bytes

s CALCULATE 100°S DIGIT - DIVIDE BY 100

3 H = QUOTIENT

; A = REMAINDER

LoD H, OFFH s START QUOTIENT AT -1
INC H sADD 1 TO QUOTIENT

SUB 100 ;s SURTRACT 100

JR NC, D1OOLP sJUMP IF DIFFERENCE STILL POSITIVE
ADD A, 100 sADD THE LAST 100 BACE
;s CALCULATE 10-S AND 1S DIGITS

s DIVIDE REMAINDER OF THE 100-S DIGIT EBY 10

s L = 10°S DIGIT

s A= 1S DIGIT

LD L,OFFH s START GQUOTIENT AT -1
INC L ;ADD 1 TO QUOTIENT

SUR 10 :SUBTRACT 10

JR NC, DIOQLP +JUMP IF DIFFERENCE STILL POSITIVE
ADD A, 10 sADD THE LAST 10 BACK
s COMBINE 1°S AND 10°5 DIGITS

LD C,A sSAVE 175 DIGIT IN C
(M AL

RLCA sMOVE 10°S TO HIGH NIBELE OF A
RLCA

RLCA

RLCA

ul C sOR IN THE 1-2 DIGIT
sRETURN WITH L = LOW BYTE, H = HIGH RYTE

LD L,A

RET

SAMPLE EXECUTION:

; CONVERT OA HEXADECIMAL TO 10 ECD
LD A, OAH
CALL BN2BCD s;H =0, L = 10H

; CONVERT FF HEXADECIMAL TO 255 ECD

CTRCTRTY

~ w Ns

o NE s e

~

4A BINARY TO BCD CONVERSION (BN28CD) 469

LD A, OFFH
CALL BNZRBCD

T
0
o)
1
x
r
I
o
a
I

.
’

; CONVERT O HEXADECIMAL TQ O BCD
LD A0
CALL BNZECD

T
"
°
r
0
o

JR SC4A
END

BCD to Binary Conversion (BCD2BN) 4B

Converts one byte of BCD data to one byte
of binary data.

Procedure: The program masks off the more
significant digit, multiplies it by 10 using shifts
(10=8+-2, and multiplying by 8 or by 2 is equiv-

Registers Used: AF, BC
Execution Time: 60 cycles
Program Size: 14 bytes

Data Memory Required: None

alent to three or one left shifts, respectively).
Then the program adds the product to the less
significant digit.

Entry Conditions Exit Conditions
BCD data in A Binary data in A
Examples
1. Data: (A) =99 2. Data: (A) =23

Result: (A)=163,=99 Result: (A)=174=23
i ;
H Title BCD to binary conversion H
H Name: BCD2BN H
: ;
H H

Purpose: Convert one byte of BCD data to one

byte of binary data
Entry: Register A = BCD data
Exit: Register A = Binary data
Registers used: A,R,C,F

Time: &0 cycles

B NE NE NE ME NB NE NS NE NE v w8

ME N NE B NE NE ME NS NE NE v N8

170

4B BCD TO BINARY CONVERSION (BCD28N) 174

Frogram 14 bytes

(2]
-
2]
]

s s w ws
. owE e s

EBCD2EN:
sMULTIPLY UPPER NIBELE BY 10 AND SAVE IT
; UPPER NIBELE = 10 = UFPER NIBBLE = (8 + 2)
LD B, A ;s SAVE ORIGINAL BCD VALUE IN E
AND OFOH s MASK OFF UPPER NIBELE
RRCA sSHIFT RIGHT 1 BIT
Lo c,A ;C = UPPER NIBELE = 8
RRCA sSHIFT RIGHT 2 MORE TIMES
RRCA sA = UFPER NIBELE = 2
ADD A, C
LD c,A ;C = UPPER NIBBELE = (8+2)
s GET LOWER NIBBLE AND ADD IT TO THE
; BINARY EQUIVALENT OF THE UFPER NIBELE
LD A B ;GET ORIGINAL VALUE BACE
AND OFH s MASE OFF UFFER NIBELE
ADD A, C ;ADD TO'BINARY UPFER NIBELE
RET
H SAMPLE EXECUTION: H
SC4E:
;s CONVERT O ECD TO O HEXADECIMAL
LD A, 0O
CALL BCDZBN ;A = OH
; CONVERT 9% BCD TQ &3 HEXADECIMAL
LD A, 09%H
CALL BCD2BN P A=EEH
;CONVERT 23 BCD TO 17 HEXADECIMAL
LD A, 23H
CALL BCD2ZBN 1 A=17H
JR SC4E

END

Binary to Hexadecimal ASCII

Conversion (BN2HEX)

4C

Converts one byte of binary data to two
ASCII characters corresponding to the two
hexadecimal digits.

Procedure: The program masks off each hexa-
decimal digit separately and converts it to its
ASCII equivalent. This involves a simple addi-
tion of 30 if the digit-is decimal. If the digit is
non-decimal, an additional 7 must be added to

Registers Used: AF, B, HL

Execution Time: 162 cycles plus two extra cycles for
each non-decimal digit

Program Size: 28 bytes
Data Memory Required: None

account for the break between ASCII 9 (39¢)
and ASCII A (41).

Entry Conditions

Exit Conditions

Binary data in A ASCII version of more significant hexadecimal
digit in H
ASCII version of less significant hexadecimal
digit in L
Examples
1. Data: (A) = FByg 2. Data: (A) =59
Result: (H)= 46,4 (ASCII F) Result: (H)= 35, (ASCII 5)

(L) = 42,5 (ASCII B)

(L) = 39, (ASCII 9)

N8 B wB N8 NS N8 s wE

Title Binary to hex ASCII
Name: BN2HEX

H FPurpose: Convert

H two ASCII characters

; Entry: Register A = Binary data

172

one byte of binary data to

NE NE R NB NE NE N3 NB

P R LT

4C BINARY TO HEXADECIMAL ASCI CONVERSION (BN2HEX) 173

Exit: Register H = ASCII more significant digit
Register L = ASCII less significant digit

Registers used: AF,BR.HL

NE ME ME NE N NS NB B NS wB
NE ME ME MR NE N us Nm ws NS

Time: Approximately 142 cycles
Size: Fragram 28 bytes
ENZ2HEX:
;s CONVERT HIGH NIBELE
LD B, A ; SAVE ORIGINAL BINARY VALLIE
AND OFOQH s GET HIGH NIBELE
RRCA sMOVE HIGH NIBRLE TO LOW NIBELE
RRCA
RRCA
RRCA
CALL NASCII s CONVERT HIGH NIBRBLE TQ ASCII
LD H,A sRETURN HIGH NIEEBLE IN H
s CONVERT LQOW NIBELE
LD A B
ANLD QOFH s GET LOW NIBELE
CALL NASCII s CONVERT LOW NIEBLE TO ASCII
Lo L,A sRETURN LOW NIBBLE IN L
RET

s SUBRCUTINE ASCII
; FPURFOSE: CONVERT A HEXADECIMAL DIGIT TO ASCII
;ENTRY: A = BINARY DATA IN LOWER NIBELE

sEXIT: A ASCII CHARACTER

; REGISTERS USED: A,F
NASCII:

CF 10

JR C,NAS] sJUMP IF HIGH NIEBBLE < 10

ADD A, 7 ;ELSE ADD 7 S0 AFTER ADDING <07 THE

; CHARACTER WILL BE IN “A“..° F~

NAS1:

ADD A, 707 ;ADD ASCII O TO MAKE A CHARACTER

RET
; SAMPLE EXECUTION: H
SC4C:

s CONVERT O TOQ 7007
LD A0

474 CODE CONVERSION

CALL BN2HEX ;H=70"=30H, L="0"=Z0H
; CONVERT FF HEX TO “FF~

LD A, OFFH

CALL BN2HEX sH="F =44&H, L="F '=4&H
s CONVERT 23 HEX TO “237

LD A, 23H

CALL BN2ZHEX sH="2=32H, L="3"=323H
JR SC4aC

END

Hexadecimal ASCII to Binary

Conversion (HEX2BN)

4D

Converts two ASCII characters (represent-
ing two hexadecimal digits) to one byte of
binary data.

Procedure: The program converts each ASCII
character separately to a hexadecimal digit. This
involves a simple subtraction of 30 (ASCII 0)
if the digit is decimal. If the digit is non-decimal,
another 7 must be subtracted to account for the
break between ASCII 9 (39,¢) and ASCII A
(41 16). The program then shifts the more signif-
icant digit left four bits and combines it with the

Registers Used: AF, B

Execution Time: 148 cycles plus two extra cycles for
each non-decimal digit

Program Size: 24 bytes
Data Memory Required: None

less significant digit. The program does not
check the validity of the ASCII characters (that
is, whether they are indeed the ASCII represen-
tations of hexadecimal digits).

Entry Conditions

More significant ASCII digit in H, less signifi-
cant ASCII digit in L

Exit Conditions

Binary data in A

Examples
1. Data: (H) = 44, (ASCII D) 2. Data: (H) = 31,5 (ASCII 1)

(L) =37, (ASCIL 7) (L) = 42,5 (ASCII B)

Result: (A)=D7 Result: (A)= 1By

i ;
H Title Hex ASCII to binary H
H Name: HEXZ2BN H
H Purpose: Convert two ASCII characters to one H
H byte of binary data H
H B
H Entry: Register H = ASCII more significant digit ;

175

476 CODpE CONVERSION

ASCII less significant digit

[}

Register L

Exit: Register A Binary data

Registers used: AF,R

B NP NS NE WS ME NS N NS NS N

Time: Approximately 148 cycles
Size: Program 24 bytes
HEX2EN:
Lo AL s GET LOW CHARACTER
CALL AZHEX sCONVERT IT TO HEXADECIMAL
LD B, A s SAVE HEX VALUE IN B
LD AH s GET HIGH CHARACTER
CALL AZHEX s CONVERT IT TO HEXADECIMAL
RRCA s SHIFT HEX VALLE TO UFPER 4 BITS
RRCA
RRCA
RRCA
OR B sOR IN LOW HEX VALLE
RET
s SUBRQUTINE: AZHEX
s PURPOSE: CONVERT ASCII DIGIT TO A HEX DIGIT
sENTRY: A = ASCII HEXADECIMAL DIGIT
sEXIT: A = BINARY VALUE OF ASCII DIGIT
sREGISTERS USED: A,F
A2HEX :
SUR 0 s SUBTRACT ASCII OFFSET
CF 10
JR C, AZHEX1 sBRANCH IF A IS A DECIMAL DIGIT
SUR 7 sELSE SUBTRACT OFFSET FOR LETTERS
AZHEX1:
RET
H SAMPLE EXECUTION:
SC4Li:
s CONVERT “C77 TQ C7 HEXADECIMAL
LD H, “C~
LD L, 7"
CALL HEX2EN s A=C7H

; CONVERT “2F“ TO 2F HEXADECIMAL
LD H, “27
Lo L, F~

N8 ME M NB NE NE NE NS NE N us

CPRCTRC TR

4D HEXADECIMAL ASCII TO BINARY CONVERSION (HEX28N) 477

CALL HEX2EN ; A=2FH
; CONVERT “2A“ TO 2A HEXADECIMAL
Lo H, "2~
LD L, A"
CALL HEX2EN s A=2AH
JR SC4Dn

END

Conversion of a Binary Number to

Decimal ASCII (BNZDEC)

4E

Converts a 16-bit signed binary number into
an ASCII string. The string consists of the
length of the number in bytes, an ASCII minus
sign (if needed), and the ASCII digits. Note that
the length is a binary number, not an ASCII
number.

Procedure: The program takes the absolute
value of the number if it is negative. The program
then keeps dividing the absolute value by 10
until the quotient becomes 0. It converts each
digit of the quotient to ASCII by adding ASCIT 0
and concatenates the digits along with an ASCII

Registers Used: AF, BC, DE, HL
Execution Time: Approximately 7200 cycles
Program Size: 107 bytes

Data Memory Required: Four bytes anywhere in
memory for the buffer pointer (two bytes starting at
address BUFPTR), the length of the buffer (one byte
at address CURLEN), and the sign of the original
value (one byte at address NGFLAG). This data
memory does not include the output buffer which
should be seven bytes long.

minus sign (in front) if the original number was
negative.

Entry Conditions

Base address of output buffer in HL
Value to convert in DE

Exit Conditions

Order in buffer:

Length of the string in bytes (a binary number)
ASCII — (if original number was negative)
ASCII digits (most significant digit first)

Examples

1. Data: Value to convert = 3EB7 ¢
Result (in output buffer):

05 (number of bytes in buffer)
31 (ASCII 1)

36 (ASCII 6)

30 (ASCII 0)

35 (ASCII 5)

35 (ASCII 5)

That is, 3EB7,s = 16055,y

2. Data:
Result (in output buffer):

03 (number of bytes in buffer)

2D (ASCII —)

35 (ASCII 5)

36 (ASCII 6)

That is, FFC8,,=—56,o, when considered asa
signed two’s complement number

Value to convert = FFC8¢

178

48 CONVERSION OF A BINARY NUMBER TO DECIMAL ASCII (BN2DEC) 179

N8 e wE uE uS NS wB w8
NE Ns NE N s ws ¥E s

Title Binary to decimal ASCII
Name: BN2DEC
Purpose: Convert a 1léa-bit signed binary number

to ASCII data

Entry: Register H = High byte of output buffer address
Register L = Low byte of cutput buffer address
Register D = High byte of value to caonvert
Register E = Low byte of value to convert

Exit: The first byte of the buffer is the length,

followed by the characters.

Registers used: AF, BC,DE, HL

Time: Appraximately 7,200 cycles
Size: Program 107 bytes
Data 4 bytes

NE NE ME NE NE N NS NE ME NE NE NS N M NE NS NE N NG Nm
ME N3 NE NS NS ME NS N NE ME ME NS NE NS NS NE NS NS w8 ws

EN2DEC:
; SAVE PARAMETERS
LD (BUFPTR), HL s STORE THE BUFFER POINTER
EX DE, HL
LD A, O
LD (CURLEN) , A ; CURRENT BUFFER LENGTH IS O
Lo AH
LD (NGFLAG) , A s SAVE SIGN OF VALLE
OR A s SET FLAGE FROM VALLE
JP P, CNVERT s JUMP IF VALLE IS POSITIVE
EX DE, HL sELSE TAKE ABSOLUTE VALUE (0 - VALLUE)
LD HL, O
oR A ;s CLEAR CARRY
SRC HL, DE s SUETRACT VALLUE FROM ©
; CONVERT VALUE TO A STRING
CNVERT:
sHL := HL DIV 10 (DIVIDEND, QUOTIENT)
;DE := HL MOD 10 (REMAINDER)
Lp E, O sREMAINDER = O
LD B, 16 3146 BITS IN DIVIDEND
OR A s CLEAR CARRY TO START
OVLOOP:

sSHIFT THE NEXT BIT OF THE QUOTIENT INTO BIT O OF THE DIVIDEND
sSHIFT NEXT MOST SIGNIFICANT BIT OF DIVIDEND INTO

480 oo conveRSION

; LEAST SIGNIFICANT BIT OF REMAINDER

;HL HOLDS BOTH DIVIDEND AND QUOTIENT. QUOTIENT IS SHIFTED
IN AS THE DIVIDEND IS SHIFTED QUT.

;E IS THE REMAINDER.

~

;DO A 24-BIT SHIFT LEFT, SHIFTING
; CARRY TO L, L TOH, HTOE

RL L s CARRY (NEXT BIT OF QUOTIENT) TO RIT ©
RL H ; SHIFT HIGH BYTE
RL E s SHIFT NEXT EIT OF DIVIDEND

; IF REMAINDER IS 10 OR MORE, NEXT EBIT OF
;7 QUOTIENT IS 1 (THIS BIT IS PLACED IN CARRY)

LD AE
SUR 10 s SUBTRACT 10 FROM REMAINDER
CCF ; COMPLEMENT CARRY
: (THIS IS NEXT BIT OF QUOTIENT)
JR NC, DECCNT s JUMF IF REMAINDER IS LESS THAN 10
LD E,A s OTHERWISE REMAINDER = DIFFERENCE
3 BETWEEN PREVIQUS REMAINDER AND 10
DECCNT =
D.INZ ovLoorP sCONTINUE UNTIL ALL BITS ARE DONE
s SHIFT LAST CARRY INTQ QUOTIENT
RL L sLAST BIT OF QUOTIENT TO EIT O
RL H
© 3 INSERT THE NEXT CHARACTER IN ASCII
CHINZ:
LD AE
ADD A, 707 s CONVERT 0...%9 TO ASCII “0°... %"
CALL INSERT
;s IF QUOTIENT IS NOT O THEN KEEP DIVIDING
LD AH
oOR L
JR NZ, CNVERT
EXIT:
LD A, (NGFLAG)
oRrR A
JP P, POS s BRANCH IF ORIGINAL VALLIE WAS POSITIVE
LD A, = sELSE
CALL INSERT 3 PUT A MINUS SIGN IN FRONT
POS:

RET s RETURN

INSERT:

EXITMR:

BUFPTR:
CURLEN:
NGFLAG:

“r w3 w8 ws ws

SC4E:

4E CONVERSION OF A BINARY NUMBER TO DECIMAL ASCII (BN2DEC) 184

7

3 SUBROUTINE:
; PURPQSE:

INSERT

INSERT THE CHARACTER IN REGISTER A AT THE

; FRONT OF THE EUFFER

;ENTRY: CURLEN = LENGTH OF BUFFER
3 BUFPTR = CURRENT ADDRESS OF LAST CHARACTER IN BLFFER
;EXIT: REGISTER A INSERTED IMMEDIATELY AFTER LENGTH BYTE
;REGISTERS USED: AF,B,C,0,E
PUSH HL 3 SAVE HL
PUSH AF s SAVE CHARACTER TO INSERT
;MOVE ENTIRE BUFFER UP 1 BYTE IN MEMORY
LD HL, (RUFPTR) ; GET BUFFER POINTER
LD nO,H sHL = SOURCE (CURRENT END OF BUFFER)
Lo E,L
INC DE ;DE = DESTINATION (CURRENT END + 1)
LD (BUFFTR), DE s STORE NEW BUFFER POINTER
LD A, (CURLEN)
OR A s TEST FOR CURLEN = O
JR Z,EXITMR s JUMP IF ZERQ (NOTHING TO MOQVE,
3 JUST STORE THE CHARACTER)
LD C,A sBC = LOOF COUNTER
LD E, O
LDDR sMOVE ENTIRE BUFFER UP 1 BYTE
LD A, (CURLEN) 3 INCREMENT CURRENT LENGTH EY 1
INC A
LD (CURLEN) , A
LD (HL), A s UPDATE LENGTH BYTE OF EUFFER
EX DE, HL sHL FOINTS TO FIRST CHARACTER IN EUFFER
FOP AF s GET CHARACTER TO INSERT
LD (HL) , A s INSERT CHARACTER AT FRONT OF BUFFER
POP HL s RESTORE HL
RET
; DATA
ns 2 ;s ADDRESS OF LAST CHARACTER IN BLUFFER
ns 1 s CURRENT LENGTH OF EUFFER
Ds 1 sSIGN OF ORIGINAL VALUE

SAMPLE EXECUTION:

s CONVERT O TQ ‘0~

Lo HL, BUFFER
LD DE, 0
CALL BN2DEC

sHL = BASE ADDRESS OF BUFFER
;DE = 0
s CONVERT

; BUFFER SHOULD = 707

“s w8 v ws ws

482 CODE CONVERSION

; CONVERT 32747 TO 7327877

LD HL, BUFFER sHL = BASE ADDRESS OF BUFFER

LD DE, 32767 ;DE = 327&7

CALL BN2DEC ; CONVERT

; BUFFER SHOQULD = “227&77

; CONVERT -32748 TO “-327&87

LD HL, BUFFER ;HL = BASE ADDRESS OF BUFFER

LD DE, -3274&8 sDE = -32748

CALL BN2DEC s CONVERT

JR SC4E : BUFFER SHOULD = ~-327&2¢
BUFFER: DS 7 3 7-BYTE BLIFFER

END

Conversion of ASCII Decimal to

Binary (DEC2BN)

AF

Converts an ASCII string consisting of the
length of the number (in bytes), a possible
ASCII — or + sign, and a series of ASCII digits
to two bytes of binary data. Note that the length
is an ordinary binary number, not an ASCII
number.

Procedure: The program sets a flag if the first

ASCII character is a minus sign and skips over a
leading plus sign. It then converts each subse-
quent digit to decimal by subtracting ASCII 0,
multiplies the previous digits by 10 (using the
fact that 10=8+ 2, so a multiplication by 10 can
be reduced to left shifts and additions), and adds
the new digit to the product. Finally, the pro-
gram subtracts the result from 0 if the original
number was negative. The program exits imme-
diately, setting the Carry flag, if it finds some-

Registers Used: AF, BC, DE, HL

Execution Time: Approximately 152 cycles per byte
plus a maximum of 186 cycles overhead

Program Size: 79 bytes

Data Memory Required: One byte anywhere in
RAM (address NGFLAG) for a flag indicating the
sign of the number

Special Cases:

1. If the string contains something other than a
leading sign or a decimal digit, the program returns
with the Carry flag set to 1. The result in HL is
invalid.

2. If the string contains only a leading sign

(ASCII + or ASCII —), the program returns with
the Carry flag set to 1 and a result of 0.

thing other than a leading sign or a decimal digit
in the string.

Entry Conditions

Base address of string in HL

Exit Conditions

Binary value in HL

Carry flag is 0 if the string was valid; Carry flag
is 1 if the string contained an invalid charac-
ter.

Note that the result is a signed two’s complement
16-bit number.

Examples

1. Data: String consists of

04 (number of bytes in string)
31 (ASCII 1)
32 (ASCII 2)
33 (ASCII 3)
34 (ASCII 4)

That is, the number is +1,234,,

Result: (H) = 04,¢ (more significant byte of binary
data)

(L) = D24 (less significant byte of binary
data)

That is, the number +1,234,, = 04D2,4

183

484 oDt CONVERSION

2. Data: String consists of Result: (H) = 80,4 (more significant byte of binary
. . data)
06
ZD(?ngflr f§ bytes in string) - (L) = 12/¢ (less significant byte of binary
data)
33 (ASCII
3 EASgII g; That is, the number —32,750,, = 80124
37 (ASCIL 7) ‘
35 (ASCII 5)
30 (ASCII 0)

That is, the number is —32,750,,

NE NE NS wE S uB NB WS
NE NE NS NE s NE ws ws

Title Decimal ASCII to binary
Name: DECZEN
Purpose: Convert ASCII characters to two bytes of binary
data
Entry: HL = Base address of input buffer
Exit: HL = Rinary value
if no errors then
Carry = 0
else
Carry =1

Registers used: AF,RC,DE, HL

Time: Approximately 152 cycles per byte plus
a maximum of 186 cycles overhead

B NS ME NE NB NE NS ME MF WS NB NE NS WS NE NS NS NE NS B wS
NE ME ME ME NE ME NB NS NE ME NE NS ME WS W NI NS R WA N us

Size: Program 79 bytes
Data 1 byte
DEC2EN:
s INITIALIZE - SAVE LENGTH, CLEAR SIGN AND VALLUE
LD A, (HL) s SAVE LENGTH IN B
LD B, A ‘
INC HL s POINT TO BYTE AFTER LENGTH
SUB A
LD (NGFLAG) , A s ASSUME NUMRER IS POSITIVE
LD DE, O s START WITH VALLUE = O

s CHECK FOR EMPTY BUFFER
OR B ; IS BUFFER LENGTH ZERO?

4F CONVERSION OF ASCII DECIMAL TO BINARY (DEC2BN) 185

JR Z,EREXIT ;YES, EXIT WITH VALUE = 0O
s CHECK FOR MINUS OR PLUS SIGN IN FRONT
INIT1:
LD A, (HL) sGET FIRST CHARACTER
cP i ;IS IT A MINUS SIGN?
JR NZ,PLUS ;NQ, BRANCH
LD A, OFFH
LD (NGFLAG) , A s YES, MAKE SIGN OF NUMEBER NEGATIVE
JR SKIP ; SKIP QVER MINUS SIGN
PLUS:
CcP ik ;IS FIRST CHARACTER A PLUS SIGN?
JR NZ,CHKDIG ;NQ, START CONVERSION
SKIP: INC HL s SKIP QVER THE SIGN BYTE
DEC B s DECREMENT COUNT
JR Z,EREXIT sERROR EXIT IF ONLY A SIGN IN BLFFER
3 CONVERSION LOOP
3 CONTINUE UNTIL THE BUFFER IS EMFTY
; OR A NON-NUMERIC CHARACTER IS FOUND
CNVERT:
LD A, (HL) ; GET NEXT CHARACTER
CHKDIG: SUB 07
JR C,EREXIT sERROR IF < <07 (NOT A DIGIT)
CP 9+1
JR NC, EREXIT sERROR IF > 97 (NOT A DIGIT)
LD C,A ; CHARACTER IS DIGIT, SAVE IT

;VALID DECIMAL DIGIT SO
VALUE := VALUE = 10

H = VALUE = (& + 2)

; = (VALUE # 8) + (VALUE = 2)

FUSH HL ; SAVE BUFFER POINTER
EX DE, HL ;HL = VALLE

ADD HL, HL 7 ¥ 2

LD E,L ;SAVE TIMES 2 IN DE
LD D, H

ADD HL, HL 7 % 4

ADD HL, HL 7 ¥ 8

ADD HL,DE s VALUE = VALUE = (8+2)

;ADD IN THE NEXT DIGIT
3 VALUE := VALUE + DIGIT

LD E,C s MOVE NEXT DIGIT TO E

LD 0,0 ; HIGH BYTE IS O

ADD HL, DE sADD DIGIT TO VALLUE

EX DE, HL sDE = VALUE

POP HL ;POINT TO NEXT CHARACTER
INC HL

DJNZ CNVERT s CONTINUE CONVERSION

; CONVERSION IS COMPLETE, CHECK SIGN

EX DE, HL sHL = VALUE

LD A, (NGFLAG)

OR A

486 oD CONVERSION

s JUMP IF THE VALUE WAS POSITIVE
;ELSE REPLACE VALUE WITH -VALLE

;s CLEAR CARRY
; SUBTRACT VALUE FROM O

;NQO ERRORS, EXIT WITH CARRY CLEAR

JR Z,0KEXIT
EX DE, HL
LD HL, O
OR A
SBC HL, DE
OKEXIT:
OR A
RET
;AN ERROR,
EREXIT:
EX DE, HL
SCF
RET
; DATA
NGFLAG: DS 1
H
; SAMPLE EXECUTION:
SC4F:
; CONVERT <1234~
LD HL, 51
CALL DEC2EN
s CONVERT “+32767~
LD HL, S2
CALL DECZEN
s CONVERT “-32768~
LD HL, S3
CALL DECZEN
JR SCAF
S1: DB 4,71234°
s2: DB &, “+327677
S3: DB é, " -32768"

END

;s CLEAR CARRY

EXIT WITH CARRY SET

sHL = VALUE
sSET CARRY TO INDICATE ERROR

3 SIGN OF NUMEER

;HL = BASE ADDRESS OF

o
-

3H = 04, L = D2 HEX

sHL = RASE ADDRESS OF %2
sH = 7F, L = FF HEX

;HL = BASE ADDRESS OF 53
iH =

80 HEX, L = 00 HEX

~8 ws wE ws ws

Lower-Case to Upper-Case

Translation (LC2UC)

4G

Converts an ASCII lower-case letter to its
upper-case equivalent.

Procedure: The program uses comparisons to
determine whether the data is an ASCII lower-
case letter. If it is, the program subtracts 20i¢
from it, thus converting it to its upper-case equiv-
alent. Ifitis not, the program leaves it unchanged.

Registers Used: AF

Execution Time: 45 cycles if the original character is
a lower-case letter, fewer cycles otherwise

Program Size: 11 bytes
Data Memory Required: None

Entry Conditions

Character in A

Exit Conditions

If an ASCII lower-case letter is present in A,
then its upper-case equivalent is returned in A.
In all other cases, A is unchanged.

Examples

1. Data: (A)= 62, (ASCII b)
Result: (A) = 42,, (ASCII B)

2. Data: (A)= 54,5 (ASCII T)
Result: (A)= 54, (ASCII T)

s s s

H
H Title Lower—-case to upper-case translation
H Name: Lca2uc
:
H
Furpose: Convert one ASCII character to upper case from

lower case if

Entry: Register A =

Exit: Register A

NE ME N ME NS N uE NS NS v

Registers used: AF

NE NS B NS NN Nw s we

necessary
Lower—case ASCII character

Upper—-case ASCII character if A
is lower case, else A is unchanged

NS NS NS ME ws B Ne uE s v

187

4188 oo CONVERSION

H Time: 45 cycles if A is lower case, less otherwise
;
H Size: Program 11 bytes
H Data none
LC2ucs
CP “a”
JR C,EXIT sBRANCH IF < “a“ (NOT LOWER CASE)
CF ‘z7+1
JR NC,EXIT sBRANCH IF > “z” (NOT LOWER CASE)
SUR ‘a—="A" sCHANGE “a“.."z” into "A7.."2"
EXIT:
RET
H
H SAMPLE EXECUTION:
?
SCAG:
s CONVERT LOWER CASE E TQ UPPER CASE
LD A)’E"‘
CALL Lcauc sA="E =45H
s CONVERT LOWER CASE Z TO UFPPER CASE
LD A"'Z"
CALL Lcauc sA="Z7 7 =SAH
s CONVERT UPFER CASE A TO UPPER CASE A
LD A, A7
CALL Lcauc sA="A"=41H
JR SC4G

END

NE uE NE NE B NE us

8 wE wE we s

ASCII to EBCDIC Conversion (ASC2EB) als

Converts an ASCII character to its EBCDIC
equivalent.

Procedure: The program uses a simple table
lookup with the data as the index and address
EBCDIC as the base. A printable ASCII charac-
ter with no EBCDIC equivalent is translated to
an EBCDIC space (40¢); a non-printable ASCII
character with no EBCDIC equivalent is trans-
lated to an EBCDIC NUL (00¢).

Registers Used: AF, DE, HL
Execution Time: 55 cycles

Program Size: 11 bytes, plus 128 bytes for the con-
version table

Data Memory Required: None

Entry Conditions

ASCII character in A

Exit Conditions

EBCDIC equivalent in A

Examples
1. Data: (A) = 35,5 (ASCII 5)
Result: (A) = F5,4 (EBCDIC 5)

2. Data: (A)= 77,4 (ASCII w)
Result: (A)= A6, (EBCDIC w)

Data: (A) = 2A 5 (ASCII %)
Result: (A) = 5C4 (EBCDIC *)

B NE w5 NE NE M & ws

Title

Name: ASC2ER
H Purpose:
H Entry: Register A =
H Exit: Register A =

ASCII to EBCDIC conversion

Convert an ASCII character to its
corresponding ERCDIC character

ASCII character

EEBCDIC character.

N8 N ME NE NS wE s w8

NE N8 wE wE we

RTEET

189

490 CODE CONVERSION

Registers used: AF,DE, HL

H Time: S5 cycles
B
H Size: Program 11 bytes
H Data 128 bytes for the table
H
ASC2ER:
LD HL, ERCDIC ;GET BASE ADDRESS OF EBCDIC TAELE
AND O1111111E ;BE SURE EBIT 7 = 0
LD E,A sUSE ASCII AS INDEX INTQ EBCDIC TABLE
LD 0,0
ADD HL, DE
Lo A, (HL) s GET ERBCOIC
RET

;ASCII TO EBCDIC TABLE

3 A PRINTABLE ASCII CHARACTER WITH NO ERCDIC EQUIVALENT IS

; TRANSLATED TO AN EBCDIC SPACE (040H), A NONFRINTABLE ASCII CHARACTER
7 WITH NO EQUIVALENT IS TRANSLATED TO A ERBCDIC NUL C(OOOH)

EBCDIC:

H NUL S0OH STX ETX EOT EN@ ACK BEL sASCIT
DR Q00H, 001H, 002H, 003H, 0237H, 02ZDH, 0ZEH, 02FH sERBCDIC
; BS HT LF vT FF CR 0 Sl sASCII
DR 0148H, 005H, 025H, 00BH, 0OCH, 00DH, 00EH, 00FH sERCDIC
H DLE DC1 DC2 DC3 DC4 NAK SYN ETB sASCIT
DB 010H, 011H, 012H, 013H, 03CH, 030H, 032H, 024H sERBCDIC
; CAN EM SUB ESC IFs IGS IRS 1IUS sASCIT
DB 018H, 019H, 03FH, 027H, 01CH, 01DH, O1EH, 01FH s ERCDIC
H SPACE ! " # 3 % & sASCIIT
DB 040H, 05AH, 07FH, O7BH, 0SBH, 04CH, 0S0H, 0ODH sERBCDIC
H () £ + / sASCIT
DR 04DH, 0SDH, OﬁCH Q4EH, OéBH 0&0H, 04BH 041H sERBCDIC
H (] 1 2 e 4 S) 7 sASCIT
DB OFQH, OF 1H, OF2H, OF 3H, 0F4H OFSH, OF&H, 0F7H sERCDIC
; 8 ? : H = by sASCII
DB QOF38H, OF9H, 07AH, 0SEH, 04CH 07EH, O&EH, 06FH sERBCDIC
H @ A B C D E F G sASCIT
DB Q7CH, OC1H, OC2H, OC3H, OC4H, OCSH, OC&H, OC7H sERCDIC
3 H 1 N K L M N a] sASCII
DR . OCS8H, OCPH, OD1H, OD2H, OD3H, OD4H, ODSH, ODAEH sERCDIC
H P Q@ R S T u v W sASCIT
DR OD7H, OD&H, OD9H, OE2H, OERH, OE4H, OESH, OEA&H sEBCDIC
H X Y z L \] » - sASCIT
DR QE7H, OE2H, OE?H, 040H, OEOH, 040H, 040H, 0&6DH sERCDIC
H - a b c d e f g9 s ASCII
De Q0%9H, 081H, 082H, 083H, 084H, 083H, 084H, 087H sEBCDIC
H h i J k 1 m n o sASCIT
jalc] OQQH 0Q9H 091H, 092H, 0923H, 024H, 095H, 096H sEBCDIIC
H r s t u v sASCII
DB 097H 098H 099H, 0A2H, 0A3H, 0A4H, OASH, OAoH sEBCDIC
; b Y = i H ¥ ~ DEL ;ASCIT

DB 0A7H, OASH, 0A9H, OCOH, 04AH, ODIOH, 0ALH, 007H sERCDIC

B NB NE wB e NS NS N e

“8 uE NS wn ws

SC4H:

4AH ASCII TO EBCDIC CONVERSION (ASCZ2EB)

SAMPLE EXECUTION:

s CONVERT ASCII
LD A, TA7
CALL ASC2ER
;s CONVERT ASCII
LD A, 71"
CALL ASCZER
s CONVERT ASCII
LD A, "a“
CALL ASC2ER
JR SC4H

END

‘A7 TO ERCDIC

sASCII

717 TO EBCDIC

3ASCII

s EBCDIC

“a’ TQ EBRCDIC
;ASCII

sEBCDIC

A
sEBCDIC “A°

1

-

”

a-

-

17

-

a’

= QC1H

= OF1H

191

N8 uE wE ws wE

EBCDIC to ASCII Conversion (EB2ASC) o

Converts an EBCDIC character to its ASCII

equivalent. Registers Used: AF, DE, HL
Procedure: The program uses a simple table Execution Time: 48 cycles
lookup with the data as the index and address Program Size: 9 bytes, plus 256 bytes for the con-

version table

ASClII as the base. A printable EBCDIC charac- Data Memory Required: None

ter with no ASCII equivalent is translated to an

ASCII space (2046); a non-printable EBCDIC
character with no ASCII equivalent is trans-
lated to an ASCII NUL (004¢).

Entry Conditions Exit Conditions
EBCDIC character in A ASCII equivalent in A
Examples
l. Data: (A)= 85, (EBCDICe) 2. Data: (A)=4E (EBCDIC +)
Result: (A) = 65,5 (ASCII ¢) Result: (A) = 2B (ASCII +)
; Title EBCDIC to ASCII conversion H
H Name: EB2ASC :
Purpose: Convert an EBCDIC character to its

corresponding ASCII character
Entry: Register A = EBCDIC character

ASCII character

Exit: Register A

Registers used: AF,DE,HL

NE NS ME NS NS WS WE uE ws ws
NE NS YR N NE NE NS NS WS s

192

41 EBCDIC TO ASCI CONVERSION (E8245C) 4193

Time: 43 cycles

Size: Program @ bytes
Data 256 bytes for the table

N8 NS ws NE ws ws
NI NE wE NE we N

EB2ASC:
LD HL,ASCII ;GET BASE ADDRESS OF ASCII TABLE
LD E,A ;USE ERCDNIC AS INDEX
LD 0,0
ADD HL, DE
LD A, (HL) ;GET ASCII CHARACTER
RET

ERCDIC TQ ASCII TABLE

A FRINTABLE ERCDIC CHARACTER WITH NQ ASCII EQUIVALENT IS

TRANSLATED TQO AN ASCII SPACE (020H), A NONFRINTABLE EBRCDIC CHARACTER
WITH NO EQUIVALENT IS TRANSLATED TO AN ASCII NUL (Q00H)

D s s -

SCII:
H NUL SO0H STX ETX HT DEL sEBCDIC
DB Q00H, 001H, 002H, 003H, 000H, 00?H, 000H, 07FH ;ASCII
H vT FF CR = u] SI sERCDIC
juj Q00H, 000H, 000H, 00RH, 0QCH, 00ODH, O0EH, COFH sASCII
H DLE DC1 DC2 DC3 BR3 sERCDIC
DB 010H, 011H, 012H, 013H, 0QOH, 000H, 008H, COOH sASCII
H CAN EM IFS IGS IRS 1Ius sERCDIC
DB Q18H, 019H, 000H, 000H, 01CH, O1DH, O1EH, O1FH sASCII
H LF ETB ESC sERCDIC
DB QO0H, 000H, 000H, 000H, 0O0H, 00AH, 017H, O1BH sASCII
H EN@ ACK BEL sERCDNIC
DR QQOH, 000H, 0O0H, 000H, 000H, 0OSH, 00&H, 007H sASCII
H SYN EOT sERBCDIC
DB Q0QH, 000H, 018H, 000H, 000H, 000H, 000H, 004H sASCIT
H DC4 NAK SUR sEBCDIC
OB 000H, Q00H, 000H, 000H, 014H, 015H, O0O0H, O1AH sASCII
H SFACE sERCDIC
OB “ 7, 000H, O00H, 000H, 000H, OO0OH, 000H, 000H sASCII
H . < { + sERCDIC
DR QOOH, Q00H, ~ 7 , .7 77,77 7+ 7 ¢ sASCIT
H & sERCDIC
DR “&“ , 000H, O00H, O00H, O0O0H, O0O0H, COOH, QOOH sASCIT
- ! $ E) H sERCDIC
DB QQQ0H, QOOH, 7 , %7 7 =* 7)) g7 7 7 sASCIT
H _ / sERCDIC
DB 7 .7/ ,000H, Q00H, Q00H, O0QH, Q0O0OH, 0O0H sASCII
; H ’ % - > ? ;ERBCIDIIC
DR Q00H, Q00H, “1* , 7,7 %" , =" , 7> 72~ 3ASCIIT
H sEBCDIC
DR Q00H, 000H, 0O00H, O00H, 000H, 000H, 000H, O00H sASCIIT
; > : # @ < = " s ERCDIC
DB OOOH’.'\.' '/= . ’.f*.r "'e.- ,.'.-‘.'.f'./=.r ’.fu.-' ;AS‘:II
3 a b c d e f g sERCDIC
DR 000H, “a“ ,“b” ,“c” ,"d” ,"e° ,"f" ,“g” sASCII

; h i ;EBCDIC

494 oD CONVERSION

N8 uS ws us ws

SC41:

DB “h* , 717 ,000H, O00H, 000OH, OOOH, O0O0H, 00OH
; J k 1 m n o P
DB Q00H, “j* ., k" ," 17 ,“m” ,“n” , 0’ , P~
H q r

DB ‘9 ,“r* ,000H, 000H, 000H, OOOH, OOOH, 00OOH
H ~ s t u v w »
DB Q00H, “™* ,“s* ,7“t° ,"u” ,"v’ ,“w’, “x°
H Y b-4

jujc] Ty’ . z7 ,000H, 000H, O00OH, 0O00H, Q00H, 0O0H
DB 000H, 000H, 000H, 0O0H, 000H, 000H, 000OH, 000H
DB QQOH, 000H, 00OH, 0QOH, 0O0H, 000H, 000H, 000OH
3 { A B [] E F G
DB ‘r{‘» ','A.ﬁ '.'B.f 'IC/ ,.”D.’ '/E/ '/F('.'G-"

; H 1

DB “HY 717 ,000H, 000H, 0O0H, 000H, 000H, 000H
H 3 N K L M N [u} P
DB .’}/‘ '."-'.' '/K./ '.’L/ '.'M/ ,IN/ ’/0.' '.'P.’

H @ R

DR ‘@ ,“R‘ ,000H, 000H, 000H, 0OQH, 0OOH, 0OOH
; \ S T u Y W X
DB .'\.' 'OOOH' .'S.' N /Tn’ N .'Ll.’ , .'v.' , .'w." .IX/

: Y z

DB ‘Y ,Z* ,000H, 000H, O00H, 000H, O00H, 00OH
H 0 1 2 3 4 S & 7
DB 4‘0.‘ '/1.’ ’.“2‘/ ’.*3.' '.'4/ '4'5/ '.'6.' '.'7."

4 Q

DB ‘94, 000H, 000H, O00H, 000H, 0O0H, 000H, O0OOH

SAMFPLE EXECUTION:

: CONVERT EBCDIC “A“ TO ASCII

LD A, OC1IH sERBCDIC
CALL EB2ASC s ASCII
; CONVERT EBCDIC “17 TO ASCII

LD A, OF1H sEBCDIC
CALL ER2ASC s ASCII
; CONVERT ERCDIC “a” TQ ASCII

LD A, 081H ;ERCDIC
CALL EB2ASC 3 ASCII
JR SC41

END

ey

/A.'

‘AT =

fq-

car

-

“a7 =

041H

031H

3ASCII
sEBCDIC
;ASCII
;EBCDIC
sASCII
sERCDIC
sASCII
sEBCDIC
JASCII
;ERCDIC
ASCII
sERCDIC
sASCII
;EBCDIC
3ASCII
EBCDIC
sASCIIT
sEBCDIC
sASCII
;EBCDIC
ASCIT
sEECDIC
ASCII
sEBCDIC
sASCII
sERBCDIC
sASCII
sERCDIC
ASCII

. Ns W ws ws

Memory Fill (MFILL)

oA

Piacesa specified value in each byte of a mem-
ory area of known size, starting at a given ad-
dress.

Procedure: The program stores the specified
value in the first byte and then uses a block move
to fill the remaining bytes. The block move
simply transfers the value a byte ahead during
each iteration.

Registers Used: AF, BC, DE, HL

Execution Time: Approximately 21 cycles per byte
plus 50 cycles overhead

Program Size: 11 bytes

Data Memory Required: None

Special Cases:

1. Asize of 00004 is interpreted as 10000 ¢. It there-
fore causes the program to fill 65,536 bytes with
the specified value.

2. Filling areas occupied or used by the program
itself will cause unpredictable results. Obviously,
filling the stack area requires special caution,
since the return address is saved there.

Entry Conditions

Starting address of memory area in HL
Area size (number of bytes) in BC

Value to be placed in memory in A

Exit Conditions

The area from the base address through the
number of bytes given by the area size is filled
with the specified value. The area thus filled
starts at BASE and continues through BASE +
SIZE — 1 (BASE is the base address and SIZE is
the area size).

Examples

1. Data: Value= FF¢
Area size (in bytes) = 0380,

Base address = 1AEQ ¢

FF4 placed in addresses 1AE0Q,4 through
1E5F g

Result:

2. Data: Value = 00,4 (Z80 operation code for NOP)
Area size (in bytes) = 1C65,¢
Base address = E34C¢
Result: 00,4 placed in addresses E34C ¢ through

FFBO0,q

195

496 ~rRRAY MANIPULATION

8 N8 NB NE NE wE ws W

NP NS NS NE N0 NS B NS NS NS N8 NG NS NS MBS WS WS WS NS S 6 s

MFILL:

w5 ws s

SCSA:

Title Memory fill

Name: MFILL

Purpose: Fill an area of memory with a value
Entry: Register H High byte of base address

Register L
Register B
Register C
Register A

Low byte of base address
High byte of area size

Low byte of area size

Value to be placed in memory

W

Note: A size of 0 is interpreted as 65536
Exit: Area filled with value
Registers used: AF,BC,DE,HL

Time: Approximately 21 cycles per byte plus
S0 cycles overhead

Size: Program 11 bytes
Data None
LD (HL), A sFILL FIRST BYTE WITH VALLUE
LD D,H sDESTINATION PTR = SOURCE PTR + 1
LD E,L
INC DE
DEC BRC sELIMINATE FIRST BYTE FROM COUNT
LD AB s ARE THERE MORE BYTES TO FILL?
OR C
RET z sNO, RETURN - SIZE WAS 1
LDIR s YES, USE BLQCK MOVE TO FILL REST

3 BY MOVING VALUE AHEAD 1 BYTE
RET

SAMPLE EXECUTION:

sFILL BF1 THROUGH BF1+15 WITH 00
LD HL, BF1 ; STARTING ADDRESS
LD BC, SIZEL ; NUMBER OF BYTES

8 NS N w8 w8 we Ns ws

NE NS NB WE NS NE NE NE N NP B NE N8 WS N WS WS N NS N NS ws

.8 ws s ws s

5A MEMORY FILL (VAL 197

LD A0 sVALUE TO FILL

CALL MFILL ;FILL MEMORY

sFILL BF2 THROUGH BF2+1999 WITH FF

LD HL, BF2 ; STARTING ADDRESS

LD BC,SIZE2 sNUMBER OF BYTES

LD A, OFFH ;VALUE TO FILL

CALL MFILL ;FILL MEMORY

JR SCSA
SIZEL EQU 16 ;SIZE OF BUFFER 1 (10 HEX)
SIZE2 EQU 2000 ;SIZE OF BUFFER 2 (07D0O HEX)
BF1: DS SIZE1
BF2: DS SIZEZ2

END

Block Move (BLKMOV)

oB

Moves a block of data from a source area to
a destination area.

Procedure: The program determines if the
base address of the destination area is within the
source area. If it is, then working up from the
base address would overwrite some source data.
To avoid overwriting, the program works down
from the highest address (this is sometimes called
amove right). If the base address of the destina-
tion area is not within the source area, the
program simply moves the data starting from
the lowest address (this is sometimes called a
move left). An area size (number of bytes to
move) of 0000 causes an exit with no memory
changed. The program provides automatic ad-
dress wraparound mod 64K.

Registers Used: AF, BC, DE, HL

Execution Time: 21 cycles per byte plus 97 cycles
overhead if data can be moved starting from the
lowest address (i.e., left) or 134 cycles overhead if
data must be moved starting from the highest
address (i.e., right) because of overlap.

Program Size: 27 bytes
Data Memory Required: None

Special Cases:
1. Asize (number of bytes to move) of 0 causes an
immediate exit with no memory changed.

2. Movingdata to or from areas occupied or used
by the program itself or by the stack will have
unpredictable results.

Entry Conditions

Base address of source area in HL
Base address of destination area in DE

Number of bytes to move in register BC

Exit Conditions

The block of memory is moved from the source
area to the destination area. If the number of
bytes to be moved is NBYTES, the base address
of the destination area is DEST, and the base
address of the source area is SOURCE, then the
data in addresses SOURCE through SOURCE
+ NBYTES — 1 is moved to addresses DEST
through DEST + NBYTES — 1.

Examples

1. Data: Number of bytes to move = 02004
Base address of destination area = 05D1 ¢

Base address of source area = 035E¢

Result: The contents of locations 035E through
055D)s are moved to 05Dl through

07D0,q

198

2. Data: Number of bytes to move = IB7Aq
Base address of destination area = C946¢
Base address of source area = C300,4
Result: The contents of locations C300,4 through

DE79,s are moved to C946,, through
E4BF 4

58 BLOCK MOVE (BLKMOV) 199

Note that Example 2 is a more difficult prob- This would destroy the old contents of C946¢,
lem than Example 1 because the source and des- which are needed later in the move. The solution
tination areas overlap. If, for instance, the pro- to this problem is to move the data starting from
gram were simply to move data to the destination the highest address if the destination area is
area starting from the lowest address, it would above the source area but overlaps it.
initially move the contents of C300;4 to C946¢.

NB WS we wE ws wE s ws
e wE NS wE R B e we

Title Block Move

Name: BLKMOV

Purpose: Move data from source to destinaticn

Entry: Register+H = High byte of source address
Register L = Low byte of source address
Register D = High byte of destination address
Register E = Low byte of destination address
Register B = High byte of number of bytes to move
Register C = Low byte of number of bytes to move

Exit: Data moved from scurce to destination

Registers used:AF,BC,DE, HL

Time: 21 cycles per byte plus 97 cycles overhead
if no overlap exists, 134 cycles overhead
if overlap occurs

WB NS NE NE ME B NE NE N NE NB NB B NE MR NE NE NE N NS w
NE NE MR NE NE NE NE MR NE NE YE ME MR WE NE N8 NB NS N we Ne

Size: Program 27 bytes
BLKMOV:
LD A,B s IS SIZE OF AREA 07
OR 4
RET Z s YES, RETURN WITH NOTHING MOQVED

;DETERMINE IF DESTINATION AREA IS ABOVE SOURCE AREA AND QVERLAPS
IT (OVERLAP CAN BE MOD &é4K). OVERLAP OCCURS IF

STARTING DESTINATION ADDRESS MINUS STARTING SOURCE ADDRESS
(MOD 64K) IS LESS THAN NUMBER OF BYTES TO MOVE

EX DE, HL ; CALCULATE DESTINATION - SOURCE

PUSH HL 3 SAVE DESTINATION

AND A ;s CLEAR CARRY

- v s

200 ~rRAY MANIPULATION

DOLEFT:

.o ws v ws s

SOURCE
DEST
LEN

SCSB:

SBC
AND
SBC
POP
EX
JR

HL,DE

A s THEN SUBRTRACT AREA SIZE

HL, BC

HL ;RESTORE DESTINATION

DE, HL

NC, DOLEFT 3 JUMP IF NO PROBLEM WITH QVERLAP

;DESTINATION AREA IS ABQVE SQURCE AREA AND OVERLAPS IT
sMOVE FROM HIGHEST ADDRESS TO AVOID DESTROYING DATA

ADD
DEC
EX
ADD
DEC
EX
LDDR
RET

HL, BC 3 SOURCE = SOURCE + LENGTH - 1
HL
DE, HL s DEST = DEST + LENGTH - 1
HL, BC
HL
DE, HL
s BLOCK MOVE HIGH TO LOW

s ORDINARY MOVE STARTING AT LOWEST ADDRESS

LDIR
RET

; BLOCK MOVE LOW TQ HIGH

SAMPLE EXECUTION:

EQU
EQU
EQU

2000H ; BASE ADDRESS OF SOURCE AREA
2010H ; BASE ADDRESS OF DESTINATION AREA
11H ;NUMBRER OF BYTES TO MOVE

;MOVE 11 HEX BYTES FROM 2000-2010 HEX TO 2010-2020 HEX

LD
LD
LD
CALL

JR
END

HL. , SOURCE

DE, DEST

BC,LEN

BLKMQV s MOVE DATA FROM SQURCE TO DESTINATION

SCSB

. ws ws wn s

Two-Dimensional Byte Array

Indexing (D2BYTE)

oC

Calculates the address of an element of a
two-dimensional byte-length array, given the
base address of the array, the two subscripts of
the element, and the size of a row (that is, the
number of columns). The array is assumed to be
stored in row major order (that is, by rows) and
both subscripts are assumed to begin at 0.

Procedure: The program multiplies the row
size (number of columns in a row) times the row
subscript (since the elements are stored by rows)
and adds the product to the column subscript. It
then adds the sum to the base address. The
program performs the multiplication using a

Registers Used: AF, BC, DE, HL

Execution Time: Approximately 1100 cycles, de-
pending mainly on the amount of time required to
perform the multiplication.

Program Size: 44 bytes

Data Memory Required: Four bytes anywhere in
memory to hold the return address (two bytes start-
ing at address RETADR) and the column subscript
(two bytes starting at address SS2).

standard shift-and-add algorithm (see Subrou-
tine 6A).

Entry Conditions

Order in stack (starting from the top)

Less significant byte of return address
More significant byte of return address

Less significant byte of column subscript
More significant byte of column subscript

Less significant byte of the size of a row (in bytes)
More significant byte of the size of a row (in bytes)

Less significant byte of row subscript
More significant byte of row subscript

Less significant byte of base address of array
More significant byte of base address of array

Exit Conditions

Address of element in HL

Examples

1. Data: Baseaddress = 3C004
Column subscript = 00044
Size of row (number of columns) = 00184

Row subscript = 00034

Result: Element address = 3C00,5 + 00034 * 0018, +

0004, = 3C00,5 + 0048 5 + 0004, =
3C4C4

That is, the address of ARRAY(3,4) is 3C4C,4

201

202 ARRAY MANIPULATION

Note that all subscripts are hexadecimal Result: Element address= 6A4A+ 0002, * 0050, +
(3516 = 5310). 201331;'6 = 6A4A ¢+ 00A0,¢ + 0035, =
. 16
The general formula is That is, the address of ARRAY(2,35) is
ELEMENT ADDRESS = ARRAY BASE 6BI1F ¢
ADDRESS + ROW SUBSCRIPT * ROW SIZE
+ COLUMN SUBSCRIPT Note that we refer to the size of the row sub-
script; the size is the number of consecutive
memory addresses for which the subscript has
the same value. This is also the number of bytes
2. Data: Base address = 6A4Aq from the starting address of an element to the
Column subscript = 00354 . dd f the el ith th
Size of row (number of columns) = 0050, starting a ress o the element v\flt the same
Row subscript = 0002;¢ column subscript but a row subscript one larger.
: ;
i ;
; ;
; ;
H Title Two—dimensional byte array indexing H
H Name: D2BYTE H
; '
Purpose: Given the base address of a byte array, two

subscripts “I17,7J”, and the size of the first
subscript in bytes, calculate the address of
ALI,J]. The array is assumed to be stored in
row major order (A[O,01, ALO,11,..., ALK,L1),
and both dimensions are assumed to begin at
zero as in the following Pascal declaration:
A:ARRAYLO..2,0..7]1 OF BYTE;

Entry: TOP OF STACK
Low byte of return address,
High byte of return address,
Low byte of second subscript (column element),
High byte of second subscript (column element),
Low byte of first subscript size, in bytes,
High byte of first subscript size, in bytes,
Low byte of first subscript (row element),
High byte of first subscript (row element),
Low byte of array base address,
High byte of array base address,
NOTE:
The first subscript size is length of a row
in bytes

NE NE NS NE NE NS NE NE W NE WS w8 ws

ME NE N ME NB ME NI NE N N 4R MR NB NE W e we

NE NS NE NE N8 NS NE NE NE 9 NS N

ME NE NS wE wE uR we we

NB NE NB NS NE N NE Y WE e w

D2BYTE:

MLP:

MLP1:

MLP2:

5C TWO-DIMENSIONAL BYTE ARRAY INDEXING (D2BYTE)

High byte of element address
Low byte of element address

Exit: Register H
Register L

Registers used: AF,BC,DE, HL

Time: Approximately 1100 cycles
Size: Program 44 bytes
Data 4 bytes

s SAVE RETURN ADDRESS

POP HL

LD (RETADR) , HL

s GET SECOND SUBSCRIPT

POP HL

LD (S82),HL

sGET SIZE OF FIRST SUBSCRIPT (ROW LENGTH), FIRST SUBSCRIPT
POP DE s GET LENGTH OF ROW

POP BC ;GET FIRST SUBSCRIPT

sMULTIPLY FIRST SUBSCRIPT ®* ROW LENGTH USING SHIFT AND ADD
;3 ALGORITHM. PRODUCT IS IN HL

LD HL,0 s PRODUCT = 0O

LD A, 15 ;COUNT = BIT LENGTH - 1

SLA E sSHIFT LOW BYTE OF MULTIPLIER

RL D ;s ROTATE HIGH BYTE OF MULTIPLIER
JR NC, MLP1 sJUMP IF MSB OF MULTIPLIER = O
ADD HL,BC sADD MULTIPLICAND TQ PARTIAL PRODUCT
ADD HL, HL s SHIFT PARTIAL PRODUCT

DEC A

JR NZ,MLP s CONTINUE THROUGH 1S BITS

;D0 LAST ADD IF MSB OF MULTIPLIER IS 1

OR D ;SIGN FLAG = MSB OF MULTIPLIER
JP P,MLP2

ADD HL, BC ;ADD IN MULTIPLICAND IF SIGN = 1
;ADD IN SECOND SUBSCRIPT

LD DE, (S52)

ADD HL,DE

; ADD BASE ADDRESS TO FORM FINAL ADDRESS

POP DE sGET BASE ADDRESS OF ARRAY

ADD HL, DE sADD BASE TO INDEX

sRETURN TO CALLER

LD DE, (RETADR) ;RESTORE RETURN ADDRESS TO STACK
PUSH DE

RET

; DATA

203

NS NE NE NP NE NE NE R NP s W

204 ~rrAY MANIPULATION

RETADR: DS
8823 Ds

s w8 ws we ws

SCSC:
LD
PUSH

PUSH
LD
PUSH
LD
PUSH
CALL

JR

s DATA
SUBS1: DW
SSUBS1: DW
SURS2: DW

s THE ARRAY (3 ROWS OF 8 COLUMNS)

ARY: DR
DB
DB

END

SAMPLE EXECUTION:

HL, ARY

HL

HL, (SUBS1)
HL

HL, (SSUBRS1)
HL

HL, (SUBS2)
HL

D2BYTE

SCSC

HOMN

s TEMPORARY FOR RETURN ADDRESS
s TEMPORARY FOR SECOND SUBSCRIPT

; PUSH BASE ADDRESS OF ARRAY

s PUSH FIRST SUBSCRIPT

;PUSH SIZE OF FIRST SUBSCRIPT
; PUSH SECOND SUBSCRIPT

s CALCULATE ADDRESS

sFOR THE INITIAL TEST DATA

sHL ADDRESS OF ARY(2,4)

ARY + (2=3) + 4

ARY + 20 (CONTENTS ARE 21)
BOTH SUBSCRIPTS START AT O

muui

CTRETa

NOT!

s SUBSCRIPT 1
sSIZE OF SUBSCRIPT 1
3 SUBSCRIPT 2

1 ,2,3,4,5,86 ,7 .8
9 ,10,11,12,13,14,15,16
17,18,19,20,21,22,23,24

“ o~

e wr us

Two-Dimensional Word Array

Indexing (D2WORD)

oD

Calculates the starting address of an element
of a two-dimensional word-length (16-bit) array,
given the base address of the array, the two
subscripts of the element, and the size of a row in
bytes. The array is assumed to be stored in row
major order (that is, by rows) and both sub-
scripts are assumed to begin at 0.

Procedure: The program multiplies the row
size (in bytes) times the row subscript (since the
elements are stored by row), adds the product to
the doubled column subscript (doubled because
each element occupies two bytes), and adds the
sum to the base address. The program uses a

Registers Used: AF, BC, DE, HL
Execution Time: Approximately 1100 cycles, de-

pending mainly on how long it takes to multiply row
size times row subscript

Program Size: 45 bytes

Data Memory Required: Four bytes anywhere in
memory to hold the return address (two bytes start-
ing at address RETADR) and the column subscript
(two bytes starting at address SS2)

standard shift-and-add algorithm (see Subrou-
tine 6A) to multiply.

Entry Conditions

Order in stack (starting at the top)

Less significant byte of return address
More significant byte of return address

Less significant byte of column subscript
More significant byte of column subscript

Less significant byte of size of rows (in bytes)
More significant byte of size of rows (in bytes)

Less significant byte of row subscript
More significant byte of row subscript

Less significant byte of base address of array
More significant byte of base address of array

Exit Conditions

Starting address of element in HL
The element occupies the address in HL and the
next higher address

Examples

1. Data: Base address = 5El4¢

Column subscript = 00084

Size of a row (in bytes) = 001C, (i.e., each
row has 0014, or 000E4 word-length ele-
ments)

Row subscript = 00054

Result:

Element starting address = SE14,¢ + 0005, *
001C,¢ + 0008, * 2 = SE14;c + 008C ¢+
0010, = SEBO¢

That is, the starting address of ARRAY(5,8)
is SEBO;¢ and the element occupies SEB0 ¢
and 5EB116

205

206 ~rRAY MANIPULATION

2. Data: Base address = B100,¢

Column subscript = 00024

Size of a row (in bytes) = 00084 (i.e., each
row has four word-length elements)

Row subscript = 0006,

Result: Element starting address = B100,¢ + 00064 *
0008, + 0002y * 2= B100, + 0030, +

0004, = B134,4

That is, the starting address of ARRAY (6,2)
is B134,5 and the element occupies B134¢
and B135

The general formula is

ELEMENT STARTING ADDRESS = ARRAY
BASE ADDRESS + ROW SUBSCRIPT *
SIZE OF ROW + COLUMN SUBSCRIPT * 2

Note that one parameter of this routine is the
size of a row in bytes. The size for word-length
elements is the number of columns per row
times 2 (the size of an element in bytes). The
reason we chose this parameter rather than the
number of columns or the maximum column
index is that this parameter can be calculated
once (when the array bounds are determined)
and used whenever the array is accessed. The
alternative parameters (number of columns or
maximum column index) would require extra
calculations during each indexing operation.

Title

Name: D2WORD

B NS N B wB wE wE N

Given the base
subscripts

Purpose:

ALCI,J].

0 s wE wE wr W s

zero as in the

Entry: TOP OF STACK

High byte of

High byte of

High byte of

High byte of
NOTE:

NP MO NE NB WS WE ME MO NE NE NS NE B NS R e

in words % 2

Two-dimensional word array indexing

III'
subscript in bytes,
The array is assumed to be stored in
row major order (A[0,0],
and both dimensions are assumed to begin at

A: ARRAYLO..2,0..71 OF WORD;
Low byte of return address,
High byte of return address,
Low byte of second subscript (column element)
Low byte of first subscript size,

Low byte of first subscript (row element),

Low byte of array base address,

The first subscript size is length of a row

N8 NE NR NS R B W ws

“

two
and the size of the first
calculate the address of

address of a word array,
Id/’

ALO,11,..., ALK,LD),

following Pascal declaration:

second subscript {(column element)
in bytes,
in bytes,

NME NS N8 N NE NE NE NS NS N NE M8 v wm

first subscript size,

-

first subscript (row element),

array base address,

NE ME NE v we NE we

5D TWO-DIMENSIONAL WORD ARRAY INDEXING (D2WORD) 207

Exit: Register H = High byte of element address
Register L = High byte of element address

Registers used: AF,BC,DE, HL

Time: Approximately 1100 cycles
Size: Program 45 bytes
Data 4 bytes

NP NP NS NS NE N NS W WS e W NS
NE NE B NB WE w8 NE NE W s N e

D2WORD:
;s SAVE RETURN ADDRESS
FPOP HL
LD {RETADR) ,HL
sGET SECOND SUBSCRIPT, MULTIPLY RY 2 FOR WORD-LENGTH ELEMENTS
POP HL
ADD HL, HL 3% 2
LD (852),HL
sGET SIZE OF FIRST SUBSCRIPT (ROW LENGTH), FIRST SUBSCRIPT
FOP DE sGET LENGTH OF ROW
FOP BC sGET FIRST SUBSCRIPT
sMULTIPLY FIRST SUBSCRIPT # ROW LENGTH USING SHIFT AND ADD
s ALGORITHM. PRODUCT IS IN HL
LD HL, 0 s PRODUCT = O
LD A, 15 sCOUNT = BIT LENGTH - 1
MLP:
SLA E sSHIFT LOW BYTE OF MULTIPLIER
RL D sROTATE HIGH BYTE OF MULTIPLIER
JR NC, MLF1 s JUMP IF MSB OF MULTIPLIER = O
ADD HL, BC sADD MULTIPLICAND TQ PARTIAL PRODUCT
MLP1: ADD HL, HL s SHIFT PARTIAL PRODUCT
DEC A
JR NZ,MLP s CONTINUE THROUGH 1S BITS
sADD MULTIPLICAND IN LAST TIME IF MSB OF MULTIPLIER IS 1
OR D 3 SIGN FLAG = MSB OF MULTIPLIER
JP P,MLP2
ADD HL,BC sADD IN MULTIPLICAND IF SIGN = 1
sADD IN SECOND SUBSCRIPT
MLP2: LD DE, (SS2)
ADD HL, DE
s ADD BASE ADDRESS TO FORM FINAL ADDRESS
POP DE ;GET BASE ADDRESS OF ARRAY
ADD HL,DE ;ADD BASE TO INDEX
sRETURN TO CALLER
LD DE, (RETADR) sRESTORE RETURN ADDRESS TO STACK
PUSH DE

RET

208 ~rrAY MANIPULATION

; DATA

RETADR: DS
8521 Ds

8 wB NB ws ws

SCSh:
LD
PUSH
LD
PUSH
LD
PUSH
LD
PUSH
CALL

JR

; DATA

SUBS1: DW
SSUBS1: DW
SURS2: DW

3 THE ARRAY (3 ROWS OF 8 COLUMNS)

ARY: DW
jal’]
oW

END

SAMPLE EXECUTION:

HL., ARY

HL

HL, (SUBS1)
HL

HL, (SSUBS1)
HL

HL, (SUBS2)
HL

D2WORD

SC5D

2
18
4

s TEMPORARY FOR RETURN ADDRESS
;s TEMPORARY FOR SECOND SUBSCRIPT

;PUSH BASE ADDRESS OF ARRAY
;PUSH FIRST SUBSCRIPT

sPUSH SIZE OF FIRST SUBSCRIPT
; PUSH SECOND SUBSRIPT

s CALCULATE ADDRESS

sFOR THE INITIAL TEST DATA

sHL ADDRESS OF ARY(2,4)

ARY + (2Z%18) + 4 = 2

ARY + 40 (CONTENTS ARE 2100H)
NOTE BOTH SUBSCRIPTS START AT O

-
’
-
7
-
r

; SURSCRIPT 1
sSIZE OF SUBSCRIPT 1
; SURSCRIPT 2

0100H, 0200H, 0300H, 0400H, 0S00H, 0600H, 0700H, 0800H
Q?00H, 1000H, 1100H, 1200H, 1300H, 1400H, 1500H, 1600H
1700H, 1800H, 1900H, 2000H, 2100H, 2200H, 2300H, 2400H

s wE w8 w8 ws

N-Dimensional Array
Indexing (NDIM)

O

Calculates the starting address of an element
of an N-dimensional array given the base address
and N pairs of sizes and subscripts. The size of a
dimension is the number of bytes from the start-
ingaddress of an element to the starting address
of the element with an index one larger in the
dimension but the same in all other dimensions.
The array is assumed to be stored in row major
order (that is, organized so that subscripts to the
right change before subscripts to the left).

Note that the size of the rightmost subscript is
simply the size of the elements (in bytes); the size
of the next subscript is the size of the elements
times the maximum value of the rightmost sub-
script plus 1, and so forth. All subscripts are
assumed to begin at 0. Otherwise, the user must
normalize the subscripts. (See the second exam-
ple at the end of the listing.)

Procedure: The program loops on each dimen-
sion, calculating the offset in that dimension as
the subscript times the size. If the size is an easy

Registers Used: AF, BC, DE, HL

Execution Time: Approximately 1300 cycles per
dimension plus 165 cycles overhead (depending
mainly on how much time is required to perform the
multiplications)

Program Size: 120 bytes

Data Memory Required: Five bytes anywhere in
memory to hold the return address (two bytes start-
ing at address RETADR), the accumulated offset
(two bytes starting at address OFFSET), and the
number of dimensions (one byte at address
NUMDIM)

Special Case: If the number of dimensions is 0, the
program returns with the base address in HL.

case (an integral power of 2), the program reduc-
es the multiplication to left shifts. Otherwise, it
performs each multiplication using the shift-
and-add algorithm of Subroutine 6A. Once the
program has calculated the overall offset, it adds
that offset to the base address to obtain the
starting address of the element.

Entry Conditions

Order in stack (starting from the top)

Less significant byte of return address
More significant byte of return address

Less significant byte of number of dimensions
More significant byte of number of dimensions
(not used)

Less significant byte of size of rightmost dimen-
sion

More significant byte of size of rightmost dimen-
sion

Less significant byte of rightmost subscript

More significant byte of rightmost subscript

Exit Conditions

Starting address of element in HL

The element occupies memory addresses START
through START + SIZE — 1, where START
is the calculated address and SIZE is the size
of an element in bytes.

209

210 ~RRAY MANIPULATION

Less significant byte of size of leftmost dimen-
sion

More significant byte of size of leftmost dimen-
sion

Less significant byte of leftmost subscript

More significant byte of leftmost subscript

Less significant byte of base address of array
More significant byte of base address of array

Example

1. Data: Base address = 3C00,¢

Number of dimensions = 00034

Rightmost subscript = 00054

Rightmost size = 0003, (3-byte entries)

Middle subscript = 00034

Middle size = 00124 (six 3-byte entries)

Leftmost subscript = 0004,

Leftmost size = 007E ¢ (seven sets of six 3-
byte entries)

Element starting address = 3C00,5 + 0005 ¢ *
00035 + 0003,5 * 0012, + 0004, *
007E;s = 3C00,, + 000F;4 + 0036,x +
01F8,s = 3E3D¢

That is, the element is ARRAY (4,3,5); it
occupies addresses 3E3D,¢ through 3E3F ¢
(the maximum values of the various sub-
scripts are 6 (leftmost) and 5 (middle) with
each element occupying three bytes)

Result:

The general formula is

STARTING ADDRESS = BASE ADDRESS +

N-1

D SUBSCRIPT; * SIZE,

i=0
where

N is the number of dimensions

SUBSCRIPT; is the ith subscript

SIZE, is the size of the ith dimension

Note that we use the size of each dimension as
a parameter to reduce the number of repetitive
multiplications and to generalize the procedure.
The sizes can be calculated and saved as soon as
the bounds of the array are known. Those sizes
can then be used whenever indexing is per-
formed on that array. Obviously, the sizes do not
change if the bounds are fixed, and they should
not be recalculated as part of each indexing
operation. The sizes are also general, since the
elements can themselves consist of any number
of bytes.

CTRCTRCT Y]

CTRCTRCTIRT)

ME NS WE N MBS NE NB NS WE NE NE ME ME MG WE NS NG MO NE NE N MR WS WP NP WA NE ME NG NB NE W8 MNP ME NS ME NS N NG ME NS NS wE e e

Title
Name:

Purpose:

Entry:

Exit:

Registers used:

Time:

5E N-DIMENSIONAL ARRAY INDEXING (NDIM) 211

N-dimensional array indexing
NDIM

Calculate the address of an element in an
N-dimensional array given the base address,
N pairs of size in bytes and subscript, and the
number of dimensions of the array. The array is
assumed to be stored in row major order
(AL[0,0,01,A[0,0,13,...,A[0,1,01,A10,1,13,...).
Also, it is assumed that all dimensions begin
at 0 as in the following Pascal declaration:
A:ARRAY[0..10,0..3,0..5]1 OF SOMETHING
For arrays that do not begin at 0 boundaries,
normalization must be performed before calling
this routine. An example is given at the end.

TOP OF STACK
Low byte of return address,
High byte of return address,
Low byte of number dimensions,
High byte of number dimensions (not used),
Low byte of dim N-1 size
High byte of dim N-1 size
Low byte of dim N-1 subscript
High byte of dim N-1 subscript
Low byte of dim N-2 size
High byte of dim N-2 size
Low byte of dim N-2 subscript
High byte of dim N-2 subscript

Low byte of dim 0 size

High byte of dim O size

Low byte of dim O subscript

High byte of dim O subscript

Low byte of array base address

High byte of array base address
NOTE:

All sizes are in bytes

Register H = High byte of address
Register L = Low byte of address

AF,BC,DE, HL

Approximately 1300 cycles per dimension
plus 165 cycles overhead

NE NB NE NE NB NS W we

NE NE N NS ME MR N ME NE NE WS NE NE NE NS WS N8 NE N8 NE we N e e

NE ME NS N wE wE e e

ME NE MR N NE N R N8 NE NG R MR wE e

212 ARRAY MANIPULATION

Size: Program 120 bytes
Data S bytes

. w8 B B s

NDIM:
s POP PARAMETERS
POP HL
LD (RETADR) , HL
sOFFSET := 0
LD HL, 0
LD (OFFSET) , HL
s GET NUMBER OF DIMENSIONS AND TEST FOR O
POP HL
LD AL
LD (NUMDIM) , A s GET NUMBER OF DIMENSIONS
OR A : TEST FOR O
JR Z, ADBASE ;RETURN WITH BASE ADDRESS IN HL
3 IF THERE ARE NO DIMENSIONS
;LOOP ON EACH DIMENSION
;3 DOING OFFSET := OFFSET + (SUBSCRIPT # SIZE)
LOOP:
POP DE ;GET SIZE
POP HL ; GET SUBSCRIPT
CALL NXTOFF sOFFSET := OFFSET + (SUBSCRIPT = SIZE)
LD HL, NUMDIM
DEC (HL) ; DECREMENT NUMBER OF DIMENSIONS
JR NZ, LOOP ;CONTINUE THROUGH ALL DIMENSIONS
ADRASE:

; CALCULATE STARTING ADDRESS OF ELEMENT
;OFFSET = BASE + OFFSET

LD HL, (OFFSET)

POP DE ;GET BASE ADDRESS
ADD HL, DE 3 SUM WITH OFFSET
;RESTORE RETURN ADDRESS AND EXIT

LD DE, (RETADR)

PUSH DE

RET

-

3 SUBROUTINE NXTOFF
s PURPOSE: OFFSET := OFFSET + (SUBSCRIPT % SIZE);
;ENTRY: OFFSET = CURRENT OFFSET
DE = CURRENT SIZE OF THIS DIMEMSION
HL = CURRENT SUBSCRIPT
XIT: OFFSET = OFFSET + (SUBSCRIPT + SIZE);

E
REGISTERS USED: AF, BC, DE, HL

s N w8 ws w

PP IE ITY

NXTOFF:

EASYLP:

ISEASY:

SHIFT:

BIGSZ:

MLP:

MLP1:

5E N-DIMENSIONAL ARRAY INDEXING (NDIM) 213

3 SAVE CURRENT SUBSCRIPT IN STACK
QF 2 LESS THAN 258

;HIGH BYTE = 0 7
s JUMP IF SIZE IS5 LARGE

tA = LOW BYTE OF SIZE

sHL = BASE ADDRESS OF EASYAY
;B SIZE OF EASY ARRAY

;C SHIFT COUNTER

s JUMP IF SIZE IS A POWER OF 2

s INCREMENT TO NEXT BYTE OF EASYAY
s INCREMENT SHIFT COUNTER

; DECREMENT COUNT

s JUMP IF SIZE IS NOT EASY

; GET SUBSCRIPT

s GET NUMBER OF SHIFTS

; TEST FOR O

s JUMP IF SHIFT FACTOR =

s ELEMENT SIZE ® SUBSCRIPT REDUCES TO LEFT SHIFTS

PUSH HL
;CHECK IF SIZE IS POWER
LD A D

OR A

JR NZ,BIGSZ
LD AE

LD HL, EASYAY
LD B, SZEASY
LD c,0

CcP (HL)

JR Z, ISEASY
INC HL

INC C

DJNZ EASYLP
JR BIGSZ
POP HL

LD A, C

OR A

JR Z, ADDOFF
LD B,A

ADD HL, HL
DJUNZ SHIFT

JR ADDOFF

;SIZE IS NOT POWER OF 2,

;B = SHIFT COUNT
sMULTIPLY SUBSCRIPT BY 2

s CONTINUE UNTIL DONE
s DONE SQ ADD OFFSET + SUBSCRIPT

MULTIPLY

3 ELEMENT SIZE TIMES SUBSCRIPT THE HARD WAY

POP

BC

s GET SUBSCRIPT

sMULTIPLY FIRST SUBSCRIPT = ROW LENGTH USING SHIFT AND ADD

3 ALGOR
; BC =

; DE =
LD

LD

SLA
RL
JR
ADD
ADD
DEC
JR
sADD IN
OR
JP

ITHM.

RESULT IS IN HL

SUBSCRIPT (MULTIPLICAND)

SIZE (MULTIPLIER)

HL, 0
A, 15

E

D

NC, MLP1
HL, BC
HL, HL
A
NZ,MLP

s PRODUCT = O
;COUNT = BIT LENGTH - 1

s SHIFT LOW BYTE OF MULTIPLIER

;s ROTATE HIGH BYTE OF MULTIPLIER

s JUMP IF MSB OF MULTIPLIER = O

s ADD MULTIPLICAND TO PARTIAL PRODUCT
; SHIFT PARTIAL PRODUCT

s CONTINUE THROUGH 1S BITS

MULTIPLICAND LAST TIME IF MSB OF MULTIPLIER IS 1

D
P, ADDOFF

3SIGN FLAG = MSB OF MULTIPLIER

214 /rrAY MANIPUATION

ADDOFF

EASYAY:

SZEASY

RETADR:
OFFSET:
NUMDIM:

. v wB ws ws

SCSE:

ADD HL, BC yADD IN MULTIPLICAND IF SIGN = 1
s ADD SUBSCRIPT ®* SIZE TO OFFSET
EX DE, HL
LD HL, (OFFSET) sGET OFFSET
ADD HL, DE ;ADD PRODUCT OF SUBSCRIPT = SIZE
LD (OFFSET) ,HL ; SAVE OFFSET
RET
s SHIFT FACTOR
DB 1 10
DB 2 i1
DB 4 32
DB 8 33
DB 18 14
DB 32 35S
DB é4 36
DB 128 37
EQU $-EASYAY
; DATA
Ds 2 ;s TEMPORARY FOR RETURN ADDRESS
DS 2 ;s TEMPORARY FOR PARTIAL OFFSET
DS 1 s NUMBER OF DIMENSIONS '

SAMPLE EXECUTION:

;FIND ADDRESS OF AY1(1,3,0]
SINCE LOWER BOUNDS OF ARRAY 1 ARE ALL ZERO IT IS NOT
; NECESSARY TO NORMALIZE THEM

~

; PUSH BASE ADDRESS OF ARRAY 1

LD HL., AY1

PUSH HL

s PUSH SUBSCRIPT/SIZE FOR DIMENSION 1
LD HL, 1

PUSH HL s SUBSCRIPT
LD HL,A1SZ1

PUSH HL 3 SIZE

yPUSH SUBSCRIPT/SIZE FOR DIMENSION 2
LD HL,3

PUSH HL ; SUBSCRIPT
LD HL,A18Z2

PUSH HL ;SIZE

s PUSH SUBSCRIPT/SIZE FOR DIMENSION 3
LD HL,0

~ ~e

. s ws

s DATA
3AYL ¢

A1DIM
A1DIL
A1D1H
AlD2L
Al1D2H

5E N-DIMENSIONAL ARRAY INDEXING (NDIM) 2415

PUSH HL s SUBSCRIPT

LD HL,A1SZ3

PUSH HL ;SIZE

3 PUSH NUMBER OF DIMENSIONS

LD HL,A1DIM

PUSH HL

CALL NDIM ; CALCULATE ADDRESS

STARTING ADDRESS OF ARY1(1,3,0)
ARY + (1%126) + (3x21) + (Ox3)
ARY + 189

1 AY

e

;CALCULATE ADDRESS OF AY2(-1,6]
:+ SINCE LOWER BOUNDS OF AY2 DO NOT START AT O, SUBSCRIPTS
;7 MUST BE NORMALIZED

s PUSH BASE ADDRESS OF ARRAY 2

LD HL, AY2

PUSH HL

s PUSH (SUBRSCRIPT - LOWER BOUND)/SIZE FOR DIMENSION 1

LD HL, -1

LD DE, -A2D1IL sNEGATIVE OF LOWER BOUND

ADD HL, DE ; ADD NEGATIVE TO NORMALIZE TO O
PUSH HL ; SUBSCRIPT

LD HL,A2SZ1

PUSH HL 3 SIZE

;s PUSH (SUBSCRIPT - LOWER BOUND)/SIZE FOR DIMENSION 2
LD HL, é

LD DE, -A2D2L s NEGATIVE OF LOWER BOUND

ADD HL, DE ;s ADD NEGATIVE TO NORMALIZE TO 0O

PUSH HL 3 SUBSCRIPT

LD HL, A2SZ2

PUSH HL s SIZE

s PUSH NUMBER OF DIMENSIONS

LD HL, A2DIM

PUSH HL

CALL NDIM ;s CALCULATE ADDRESS
;s AY=STARTING ADDRESS OF ARY1(-1,6)
3 SARY+H({(-1)=(-5))%18)+{(6-2)x2)
3 =ARY + 80

JR SCSE

ARRAYLAIDIL..A1D1IH, A1D2L..A1D2H, A1D3L. .A1D3H] 3-BYTE ELEMENTS

t o .. 3, 0 .. 5, 0 .. &1
EQU 3 s NUMBER OF DIMENSIONS
EQU o] ;LOW BOUND OF DIMENSION 1
EQU 3 sHIGH BOUND OF DIMENSION 1
EQU 0 ;LOW BOUND OF DIMENSION 2
EQU S ;HIGH BOUND OF DIMENSION 2

216 ~rRAY MANIPULATION

ALD3L EQU 0 ;LOW BOUND OF DIMENSION 3
A1D3H EQU é sHIGH BOUND OF DIMENSION 3
A1SZ3 EQU 3 ;SIZE OF ELEMENT IN DIMENSION 3
Al1S5Z2 EQU (C(ALID3H-A1D3L) +1)®A1SZ3 SIZE OF ELEMENT IN DIMENSION 2
A1SZ1 EQU ((A1D2H-AID2L) +1)%A1SZ2 ;SIZE OF ELEMENT IN DIMENSION 1
AY1: Ds ((A1D1H-A1DIL) +1)%A1SZ1 ; ARRAY

3AY2 : ARRAYLALIDIL..A1D1H,A1D2L..A1D2H] OF WORD

; L -5.. -1 , 2 .. 101

A2DIM EQU 2 ;NUMBER OF DIMENSIONS

A2D1L EQU -5 ;LOW BOUND OF DIMENSION 1

A2lMH EGU -1 © 3HIGH BOUND OF DIMENSION 1
A2D2L. EQU 2 ;LOW BOUND OF DIMENSION 2
Az2D2H EOQU 10 sHIGH BOUND OF DIMENSION 2
A2SZ2 EQU 2 s SIZE OF ELEMENT IN DIMENSION 2
A2SZ1 EQU ((A2D2H-A2D2L)+1)%A25Z2 ;SIZE OF ELEMENT IN DIMENSION 1
AY2: DS ((AZ2D1H-AZ2D1L) +1)%A2SZ1 ; ARRAY

END

16-Bit Multiplication (MUL16)

OA

Multiplies two 16-bit operands and returns
the less significant (16-bit) word of the product.

Procedure: The program uses an ordinary
shift-and-add algorithm, adding the multipli-
cand to the partial product each time it finds a 1
bit in the multiplier. The partial product and the
multiplier are shifted left 15 times (the number
of bits in the multiplier minus 1) to produce
proper alignment. The more significant 16 bits
of the product are lost.

Registers Used: AF, BC, DE, HL

Execution Time: Approximately 865 to 965 cycles,
depending largely on the number of 1 bits in the
multiplier

Program Size: 22 bytes
Data Memory Required: None

Entry Conditions

Multiplicand in HL
Multiplier in DE

Exit Conditions

Less significant word of product in HL

Examples

1. Data: Multiplier = 00124

Multiplicand = 03D1,4
Product = 44B2,4
The more significant word is 0.

Result:

Note that MULI6 returns only the less signif-
icant word of the product to maintain compati-

2. Data: Multiplier = 37D14
Multiplicand = A045 ¢
Result: Product = AB55¢

This is actually the less significant 16-bit word
of the 32-bit product 22F1 AB554.

bility with other 16-bit arithmetic operations.
The more significant word of the product is lost.

Title

Name: MUL1&

M wE NS w8 ws w8 NF wp

Purpose:

-~

16-bit Multiplication

Multiply 2 signed or unsigned 1é6-bit words and
return a 16-bit signed or unsigned product

w8 w8 w8 P me w8 wE W

“s us ws

217

218 /nmvETC

WP WS NE ME W NP SO ME NS NP W6 w6 NG NS N8 WE mE S N =

MUL1&:

MLF:

MLP1:

“s w8 w8 w ws

Answers needing more than 168 bits: bits higher

than bit 15 are lost

Entry: Register L = Low byte of multiplicand
Register H = High byte of multiplicand
Register E = Low byte of multiplier
Register D = High byte of multiplier

Exit: Praoduct = multiplicand ® multiplier

Register L = Low byte of product
Register H = High byte of product

Registers used: AF,RBC,DE,HL
Time: Approximately 885 to 945 cycles

Size: Program 22 bytes

; INITIALIZE PARTIAL PRODUCT, BIT COUNT

LD G,L sBC = MULTIPLIER

LD B, H

LD HL, 0 3 PRODUCT = 0O

LD A, 15 ;COUNT = BIT LENGTH - 1

3 SHIFT-AND-ADD ALGORITHM

: IF MSB OF MULTIPLIER IS 1, ADD MULTIPLICAND TO PARTIAL
; PRODUCT]

+ SHIFT PARTIAL PRODUCT, MULTIPLIER LEFT 1 BIT

SLA E ;SHIFT MULTIPLIER LEFT 1 BIT

RL D

JR NC, MLP1 s JUMP IF MSB OF MULTIPLIER = O
ADD HL,BC s ADD MULTIPLICAND TO PARTIAL PRODUCT
ADD HL, HL s SHIFT PARTIAL PRODUCT LEFT

DEC A

JR NZ,MLP ; CONTINUE UNTIL COUNT = O

sADD MULTIPLICAND ONE LAST TIME IF MSB OF MULTIPLIER IS 1
OR D ;SIGN FLAG = MSE OF MULTIPLIER
RET P ;EXIT IF MSB OF MULTIPLIER IS O
ADD HL, BC sADD MULTIPLICAND TO PRODUCT

RET

SAMPLE EXECUTION:

W ME MBS SE NP WS g wF N NE NE NS W W6 w8 wg B % we

. w8 w8 we =

6A 16-BIT MULTIPUCATION (MUL16) 249

SCéA:
LD HL, -2 ;HL = MULTIPLICAND
LD DE, 1023 ;DE = MULTIPLIER
CALL MUL1& $16-BIT MULTIPLY
sRESULT OF 1023 # -2 = -2045 = OF802H
7 REGISTER L = 02H
} H = F&H

JR SCéA
END

16-Bit Division (SDI\16, UDIV16)

oB

Divides two 16-bit operands and returns the
quotient and the remainder. There are two entry
points: SDIV16 divides two 16-bit signed oper-
ands, whereas UDIV16 divides two 16-bit un-
signed operands. If the divisor is 0, the Carry
flag is set to 1 and both quotient and remainder
are set to 0; otherwise, the Carry flag is cleared.

Procedure: If the operands are signed, the
program determines the sign of the quotient and
takes the absolute values of any negative oper-
ands. It must also retain the sign of the dividend,
since that determines the sign of the remainder.
The program then performs an unsigned division
using a shift-and-subtract algorithm. It shifts
the quotient and dividend left, placing a 1 bit in
the quotient each time a trial subtraction is
successful. If the operands are signed, the program
must negate (that is, subtract from 0) the
quotient or remainder if either is negative. The

Registers Used: AF, BC, DE, HL

Execution Time: Approximately 1770 to 2340 cycles,
depending largely on how many trial subtractions are
successful and thus require the replacement of the
previous dividend by the remainder

Program Size: 104 bytes

Data Memory Required: 3 bytes anywhere in
RAM for the sign of the quotient (address SQUOT),
the sign of the remainder (address SREM), and a
divide loop counter (address COUNT)

Special Case: If the divisor is 0, the program
returns with the Carry set to 1, and both the quotient
and the remainder set to 0.

Carry flag is cleared if the division is proper and
set if the divisor is 0. A 0 divisor also causes a
return with the quotient and remainder both set
to 0.

Entry Conditions

Dividend in HL
Divisor in DE

Exit Conditions

Quotient in HL

Remainder in DE

If the divisor is non-zero, Carry = 0 and the
result is normal.

If the divisor is 0, Carry = 1 and both quotient
and remainder are 0000.

Examples

1. Data: Dividend = 03EQ

Divisor = 00B6 ¢

Quotient (from UDIV16) = 0005
Remainder (from UDIV16) = 00524
Carry = 0 (no divide-by-0 error)

Result:

220

2. Data: Dividend = D73A¢
Divisor = 02F1¢
Result: Quotient (from SDIV16) = FFF34

Remainder (from SDIV16) = FD77¢
Carry = 0 (no divide-by-0 error)

6B 16-BIT DIVISION (SDIVA6, UDIV16) 224

The remainder of a signed division may be 1 from the quotient and add the divisor to the
either positive or negative. In this procedure, the remainder. The result of Example 2 is then
remalnd.er always. takes the sign of the dividend. Quotient = FFF2,, = —14,,

A negative remainder can easily be converted Remainder (always positive) = 00684
into one that is always positive. Simply subtract

8 NB WE wE NB NE we ws
NS MR N e R w we e

Title 16-bit Division
Name: SDIV1é, UDIV1S
Purpose: SDIVié

Divide 2 signed 16-bit words and return a
16-bit signed quotient and remainder

uUDIVié
Divide 2 unsigned 1é-bit words and return a
16-bit unsigned quotient and remainder

Entry: Register L = Low byte of dividend
Register H = High byte of dividend
Register E = Low byte of divisor
Register D = High byte of divisor

Exit: Register L = Low byte of quotient
Register H = High byte of quotient
Register E = Low byte of remainder
Register I = High byte of remainder

If no errors then
carry = 0

else
divide-by-zero error
carry = 1
quotient := 0O
remainder := 0

Registers used: AF,BC,DE,HL

ME MR N N ME B NS NE NS NE NE NS NE N WE WA NT N WE W0 N6 NE WE NE MB WE W S NB N

Time: Approximately 1770 to 2340 cycles

Size:s Program 10% bytes
Data 2 bytes

NE NE MR NE NE NE NE NE WE ME N NE NE M8 NE M8 NE MR N NE WA D ME e YR NE wE NE WS %8 N MA W e N8

. s us wa v

222 ARTHVETIC

s SIGNED DIVISION

SDIVié: :
;DETERMINE SIGN OF QUOTIENT BY EXCLUSIVE ORING HIGH BYTES
3 OF DIVIDEND AND DIVISOR. QUOTIENT IS POSITIVE IF SIGNS
3 ARE THE SAME, NEGATIVE IF SIGNS ARE DIFFERENT
r
sREMAINDER HAS SAME SIGN AS DIVIDEND
LD A H sGET HIGH BYTE OF DIVIDEND
LD (SREM) , A 3 SAVE AS SIGN OF REMAINDER
XOR D sEXCLUSIVE OR WITH HIGH BYTE OF DIVISOR
LD (SQUOT) , A ; SAVE SIGN OF QUOTIENT
; TAKE ABSOLUTE VALUE OF DIVISOR
LD A,D
OR A
JP P, CHKDE ;JUMP IF DIVISOR IS POSITIVE
SUB A 3 SUBTRACT DIVISOR FROM ZERO
SUB E
LD E.A
SBC AA s PROPAGATE BORROW (A=FF IF BORROW)
sSuB D
LD D, A
; TAKE ARSOQLUTE VALUE OF DIVIDEND
CHKDE :
LD A H
OR A
JP P, DODIV ;JUMP IF DIVIDEND IS POSITIVE
SUB A s SUBTRACT DIVIDEND FROM ZERO
SUB L
LD L.A
SBC A A ; PROPAGATE BORROW (A=FF IF BORROW)
SUB H
LD H. A
;DIVIDE ABSOLUTE VALUES
DODIV:
CALL univia
RET C sEXIT IF DIVIDE BY ZEROD
s NEGATE QUOTIENT IF IT IS NEGATIVE
LD A, (SQUOT)
OR A
JP P, DOREM 3 JUMP IF QUOTIENT IS POSITIVE
SUB A 3 SUBTRACT QUOTIENT FROM ZERO
SUB L
LD LA
SBC A A s PROPAGATE BORROMW (A=FF IF BORRCW)
SuUB H
LD H, A
DOREM:

sNEGATE REMAINDER IF IT IS NEGATIVE
LD A, (SREM)
OR A

6B 16-BIT DIVISION (SDIV16, UDIV16) 223

RET
SUE
SUB
LD

SBC
SuUB
LD

RET

;RETURN IF REMAINDER IS POSITIVE
;s SUBRTRACT REMAINDER FROM ZERO

; PROPAGATE BORROW (A=FF IF BORROW)

oo>mMmM> U

-

> >

s UNSIGNED DIVISION

UDIVia:
3 CHECK FOR DIVISION BY ZEROQ
LD AE
OR D
JR NZ,DIVIDE s BERANCH IF DIVISOR IS NON-ZERC
LD HL, 0 ;DIVIDE BY O ERROR
LD D, H
LD E,L
SCF ;SET CARRY, INVALID RESULT
RET
DIVIDE:
LD G L ;C = LOW BYTE OF DIVIDEND/QUOTIENT
LD AH ;A = HIGH BYTE OF DIVIDEND/QUOTIENT
LD HL, 0 ;HL = REMAINDER
LD B, 16 ;16 BITS IN DIVIDEND
OR A ; CLEAR CARRY TO START
DVLOOP 2

3 SHIFT NEXT BIT OF QUOTIENT INTO BIT O OF DIVIDEND

s SHIFT NEXT MOST SIGNIFICANT BIT OF DIVIDEND INTO

3 LEAST SIGNIFICANT BIT OF REMAINDER

;BC HOLDS BOTH DIVIDEND AND QUOTIENT. WHILE WE SHIFT A
BIT FROM MSB OF DIVIDEND, WE SHIFT NEXT BIT OF QUOTIENT
IN FROM CARRY

HL HOLDS REMAINDER

e s ws ws

;DO A 32-BIT LEFT SHIFT, SHIFTING
s CARRY TOC, CTO A, ATOL, L TOH

RL C ;CARRY (NEXT BIT OF QUOTIENT) TO BIT O,
RLA 3 SHIFT REMAINING BYTES

RL L

RL H ; CLEARS CARRY SINCE HL WAS O

; IF REMAINDER IS GREATER THAN OR EQUAL TO DIVISOR, NEXT
s BIT OF QUOTIENT IS 1. THIS BIT GOES TO CARRY

PUSH HL ; SAVE CURRENT REMAINDER
SBC HL, DE ; SUBTRACT DIVISOR FROM REMAINDER
CCF ; COMPLEMENT BORRQW SO 1 INDICATES

; A SUCCESSFUL SURTRACTION

3 (THIS IS NEXT BIT OF QUOTIENT)
JR C, DROP ;s JUMP IF REMAINDER IS »= DIVIDEND
EX (SP), HL ; OTHERWISE RESTORE REMAINDER

224 riHvETC

DROP:
INC sp s DROP REMAINDER FROM TOP OF STACK
INC SP
DJNZ DVLOOP ;CONTINUE UNTIL ALL BITS DONE
$SHIFT LAST CARRY BIT INTO QUOTIENT
EX DE, HL :DE = REMAINDER
RL C sCARRY TO C
LD L.C ;L = LOW BYTE OF QUOTIENT
RLA
LD H, A tH = HIGH BYTE OF QUOTIENT
OR A ;CLEAR CARRY, VALID RESULT
RET
;1 DATA
SQUOT: DS 1 ;SIGN OF QUOTIENT
SREM: DS 1 ; SIGN OF REMAINDER
COUNT: DS 1 ;DIVIDE LOOP COUNTER
;
; SAMPLE EXECUTION:
:
SC4B:
;SIGNED DIVISION
LD HL, -1023 : HL = DIVIDEND
LD DE, 123 ; DE = DIVISOR
CALL SDIV1é ;QUOTIENT OF -1023 / 123 = -8
i L =FaH
: H = FFH
;REMAINDER OF -1023 / 123 = -39
; E = D9H
: D = FFH
UNSIGNED DIVISION

HL = DIVIDEND

DE = DIVISOR
QUOTIENT OF &4513 / 123 = 524
L = OCH

H = 02H

REMAINDER OF &4513 / 123 = &1
E = 3DH

D = O00H

LD HL, 64513
LD DE, 123
CALL uDnIvie

S 4B wE N8 WS NE NR WS WS

JR SC&B
END

~e e v ws v

16-Bit Comparison (CNP16)

oC

Compares two 16-bit operands and sets the
flags accordingly. The Zero flag always indicates
whether the numbers are equal. If the operands
are unsigned, the Carry flag indicates which is
larger (Carry = 1 if subtrahend is larger and 0
otherwise). If the operands are signed, the Sign
flag indicates which is larger (Sign=1 if subtra-
hend is larger and 0 otherwise); two’s comple-
ment overflow is considered and the Sign flag is
inverted if it occurs.

Procedure: The program subtracts the subtra-
hend from the minuend. If two’s complement
overflow occurs (Parity/ Overflow flag= 1), the
program inverts the Sign flag by EXCLUSIVE
ORing the sign bit with 1. This requires an extra
right shift to retain the Carry in bit 7 initially,
since XOR always clears Carry. The program
then sets Carry to ensure a non-zero result and
shifts the data back to the left. The extra left

Registers Used: AF, HL

Execution Time: 30 cycles if no overflow, 57 cycles
if overflow

Program Size: 11 bytes
Data Memory Required: None

shift uses ADC A, A rather than RLA to set the
Sign and Zero flags (RLA would affect only
Carry). Bit 0 of the accumulator must be 1 after
the shift (because the Carry was set), thus
ensuring that the Zero flag is cleared. Obviously,
the result cannot be 0 if the subtraction causes
two’s complement overflow. Note that after an
addition or subtraction, PE (Parity/ Overflow
flag = 1) means “overflow set” while PO
(Parity/ Overflow flag = 0) means “overflow
clear.”

Entry Conditions

Minuend in HL
Subtrahend in DE

Exit Conditions

Flags set as if subtrahend had been subtracted
from minuend, with a correction if two’s comple-
ment overflow occurred.

Zero flag= 1 if the subtrahend and minuend are
equal; 0 if they are not equal.

Carry flag = 1 if subtrahend is larger than
minuend in the unsigned sense; 0 if it is less than
or equal to the minuend.

Sign flag = 1 if subtrahend is larger than
minuend in the signed sense; 0 if it is less than or
equal to the minuend. This flag is corrected
(inverted) if two’s complement overflow occurs,

225

226 RTHVETC

Examples
1. Data: Minuend (HL) = 03El 3. Data:
Subtrahend (DE) = 07E4,¢
Result: Carry = 1, indicating subtrahend is larger in Result:
unsigned sense.
Zero= 0, indicating operands are not equal.
Sign = 1, indicating subtrahend is larger in
signed sense.
2. Data: Minuend (HL)= CS1A
Subtrahend (DE) = C51A 4
Result: Carry= 0, indicating subtrahend is not larger

in unsigned sense.
Zero = 1, indicating operands are equal.
Sign= 0, indicating subtrahend is not larger
in signed sense.

Minuend (HL) = A45Dq
Subtrahend (DE) = 77El ¢

Carry = 0, indicating subtrahend is not larger
in unsigned sense.

Zero = 0, indicating operands are not equal.

Sign = 1, indicating subtrahend is larger in
signed sense.

In Example 3, the minuend is a negative two’s
complement number, whereas the subtrahend is
a positive two’s complement number. Subtract-
ing produces a positive result (3C7C4) with
two’s complement overflow.

NP N WS uE NE R ws e

Title 16-bit Compare

Name: CMP1&

Purpose:

Entry: Register L =
Register H =
Register E =
Register D =

Exit:

complement numbers,
flags;
Z=1,5=0,C=0
2=0,5=0,C=0
2=0,5=1,C=1
AF, HL

Registers used:

Time:

MO NE NS NE NS NE NS NS NE NE NE NP NE ME ME NE WE N WE WS NE NE A we

Compare 2 16-bit signed or unsigned words and
return the C,Z,S flags set or cleared

Low byte of minuend

High byte of minuend

Low byte of subtrahend

High byte of subtrahend

Flags returned based on minuend - subtrahend
If both the minuend and subtrahend are 2-°s
then use the Z and €

Else use the Z and C flags
IF minuend = subtrahend THEN

IF minuend > subtrahend THEN

IF minuend < subtrahend THEN

30 cycles if no overflow,

8 WA R ws s we wa wE

B NE WE MR VB NE N WE NE ME NE MR NS N N WS N NE NP NE wE NP e w6

else 57 cycles

6C 16-BIT COMPARISON (CMP16) 227

r 7
H Size: Program 11 bytes :
CMP16:

OR A s CLEAR CARRY

SBC HL, DE s SUBRTRACT SUBTRAHEND FROM MINUEND

RET PO sRETURN IF NO QVERFLOW

LD AH s OVERFLOW — INVERT SIGN FLAG

RRA ;s SAVE CARRY IN BIT 7

XOR 01000000R s COMPLEMENT BIT & (SIGN BIT)

SCF s ENSURE A NON-ZERO RESULT

ADC A A s RESTORE CARRY, COMPLEMENTED SIGN

3 ZERQ FLAG = 0 FOR SURE

RET
H H
3 SAMPLE EXECUTION: ;
H ;
H H
SCéC:

s COMPARE -32768 (8000 HEX) AND 1
sSINCE -32768 15 THE MOST NEGATIVE 16-BIT NUMBER,
5 THIS COMPARISON WILL SURELY CAUSE OVERFLOW

LD HL, -32748

LD DE, 1

CALL CMP1& s Cy =0, Z =0, § =1
;COMPARE -4 (FFFC HEX) AND -1 (FFFF HEX)

LD HL, -4

LD DE, -1

CALL CMP16 sCy =1, Z =0, §=1
;s COMPARE —1234 AND -1234

LD HL,~-1234

LD DE, -1234

CALL CMP16 sCy =0, Z =1, =0
JR ScéC

Multiple-Precision Binary Addition
(MPBADD) 6D

Adds two multi-byte unsigned' binary num- Registers Used: AE, B, DE, HL
b‘ers.. Both numbers are stored with their least Execution Time: 46 cycles per byte plus 18 cycles
significant bytes at the lowest address. The sum overhead
replaces the addend. The length of the numbers Program Size: 11 bytes
(in bytes) is 255 or less. Data Memory Required: None
Procedure: The program clears the Carry flag Special Case: A length of 0 causes an immediate
initially and adds the operands one byte at a e;(it with the addend unchanged. The Carry flag is
time, starting with the least significant bytes. cleared.
The final Carry flag reflects the addition of the
most significant bytes. A length of 00 causes an
immediate exit with no addition.
Entry Conditions Exit Conditions
Base address of addend in HL Addend replaced by addend plus adder
Base address of adder in DE
Length of the operands in bytes in B
Example
1. Data: Length of operands (in bytes) = 6
Addend = 19D028A193EA ¢
Adder = 293EABF059C7 4
Result: Addend = 430ED491EDBI ¢
Carry=0
i H
; ;
H Title Multiple—-Precision Binary Addition H
; Name: MPBADD ;
H Purpose: Add 2 arrays of binary bytes

. owE e

Arrayl = Arrayl + Array2

228

6D MULTIPLE-PRECISION BINARY ADDITION (MPBADD) 229

Entry: Register pair HL = Base address of array 1
Register pair DE = Base address of array 2
Register B = Length of the arrays

CTRC TR

The arrays are unsigned binary numbers with a
maximum length of 255 bytes, ARRAYLO] is the
least significant byte, and ARRAYLLENGTH-11
the most significant byte.

Exits: Arrayl := Arrayl + Array2

Registers used: AF,B,DE,HL

Time: 446 cycles per byte plus 18 cycles overhead

Size: Program 11 bytes

NE NS NE NS ME N NS MR NE NE ME B ME NE N8 NE WA NE s

NE NE SR NS NE VB MR NE NE MR NS NE wR W N

MPBADD:
;CLEAR CARRY, EXIT IF ARRAY LENGTH IS 0
LD A, B
AND A ;CLEAR CARRY, TEST ACCUMULATOR
RET z ;RETURN IF LENGTH = ZERO
LOOP:
LD A, (DE) ;GET NEXT BYTE
ADC A, C(HL) ;ADD BYTES
LD (HL), A ; STORE SUM
INC HL ; INCREMENT ARRAY1 POINTER
INC DE ; INCREMENT ARRAY2 POINTER
DJNZ LOOP s CONTINUE UNTIL COUNTER = O
RET
: ;
; SAMPLE EXECUTION: ;
; ;
SC6D:
LD HL, AY1 ;HL = BASE ADDRESS OF ARRAY 1
LD DE, AY2 ;DE = BASE ADDRESS OF ARRAY 2
LD B, SZAYS ;B = LENGTH OF ARRAYS IN BYTES
CALL MPBADD ;ADD THE ARRAYS
; AY1+0 = S6H
; AY1+1 = 13H
; AY1+2 = CFH
; AY1+3 = BAH
; AY1+4 = &7H
; AY1+5 = 45H
: AY1+6 = 23H
; AY1+7 = O1H

230 ARmHVETIC

JR 3CéD
SZAYS EQU 8 ;LENGTH OF ARRAYS IN BYTES
AY1l:
DB OEFH
DB OCDH
DB OAEH
DB 089H
DB 067H
DB 045SH
DB 023H
DB 001H
AYZ2: .
DB 067H
DB 045H
DB 022H
DB 001H
DB 0
DB (o]
DB 0
DE 0

END

Multiple-Precision Binary Subtraction

(MPBSUB)

ol=

Subtracts two multi-byte unsigned binary
numbers. Both numbers are stored with their
least significant bytes at the lowest address. The
difference replaces the minuend. The length of
the numbers (in bytes) is 255 or less.

Procedure: The program clears the Carry flag
initially and subtracts the operands one byte at a
time, starting with the least significant bytes.
The final Carry flag reflects the subtraction of
the most significant bytes. A length of 0 causes
an immediate exit with no subtraction.

Registers Used: AF, B, DE, HL

Execution Time: 46 cycles per byte plus 22 cycles
overhead

Program Size: 12 bytes

Data Memory Required: None

Special Case: A length of 0 causes an immediate
exit with the minuend unchanged (that is, the

difference is equal to the minuend). The Carry flag is
cleared.

Entry Conditions

Base address of minuend in HL
Base address of subtrahend in DE
Length of the operands in bytes in B

Exit Conditions

Minuend replaced by minuend minus subtrahend

Example

1. Data: Length of operands (in bytes) = 4
Minuend = 2F5SBA7C3 ¢
Subtrahend = 14DF35B8
Result: Minuend = 1A7C720B¢
The Carry flag is set to 0 since no borrow is

necessary.
H H
H Title Multiple-Precision Binary Subtraction H
H Name: MPBSUR H

231

232 ARTHVETC

Purpose: Subtract 2 arrays of binary bytes
Minuend = minuend - subtrahend

Entry: Register pair HL = Base address of minuend
Register pair DE = Base address of subtrahend
Register B = Length of the arrays

The arrays are unsigned binary numbers with a
maximum length of 255 bytes, ARRAYLO] is the
least significant byte, and ARRAYLLENGTH-11]
the most significant byte.

NB WE NG B MR ME wE e NE N

Exit: Minuend := minuend - subtrahend
Registers used: AF,B,DE,HL
Time: 46 cycles per byte plus 22 cycles overhead

Size: Program 12 bytes

B NE N NE NE NB NE NS NE NS N N

MPBSUB:
;CLEAR CARRY, EXIT IF ARRAY LENGTH IS 0
LD A B
AND A ;sCLEAR CARRY, TEST ACCUMULATOR
RET r4 sRETURN IF LENGTH = ZERO
EX DE, HL ;SWITCH ARRAY POINTERS
;3 S0 HL POINTS TO SUBTRAHEND
LOOP:
LD A, (DE) sGET NEXT BYTE OF MINUEND
SBC A, (HL) ; SUBTRACT BYTES
LD (DE),A s STORE DIFFERENCE
INC DE s INCREMENT MINUEND POINTER
INC HL ; INCREMENT SUBTRAHEND POINTER
DUNZ LOOP s CONTINUE UNTIL COUNTER = O
RET

SAMFLE EXECUTION:

“s NS ws w8 ws

SC4&E:
LD HL, AY1 sHL = BASE ADDRESS OF MINUEND
LD DE, AY2 ;DE = BASE ADDRESS OF SUBTRAHEND
LD B, SZAYS ;B = LENGTH OF ARRAYS IN BYTES
CALL MPBSUR s SURTRACT THE ARRAYS
3 AY1+0 = 8B8H
; AY1+1 = 88H
H AY1+2 = 82H

NE ME NE NE NE NE ME NE B MR NE wE N8 v N

NE NE NE wa B W R

“ we we wa ws

6E MULTIPLE-PRECISION BINARY SUBTRACTION (MPBSUB) 233

H AY1+3 = 88H
; AY1+4 = 67H
; AY1+5 = 4%H
; AY1+46 = 23H
; AY1+7 = O1H
JR SC6E
SZAYS EQU 8 sLENGTH OF ARRAYS IN BYTES
AY1:
DB OEFH
DB OCDH
DB OABH
DB 087H
DB 067H
DB 045H
DB 023H
DB Q01H
AYZ2:
DB 067H
DB 045H
DB 023H
DB 001H
DB 0
DB 0o
DB o]
DB 0

END

Multiple-Precision Binary Multiplication

(MPBMUL)

OF

Multiplies two multi-byte unsigned binary
numbers. Both numbers are stored with their
least significant byte at the lowest address. The
product replaces the multiplicand. The length of
the numbers (in bytes) is 255 or less. Only the
less significant bytes of the product are returned
to retain compatibility with other multiple-
precision binary operations.

Procedure: The program uses an ordinary
shift-and-add algorithm, adding the multiplier to
the partial product each time it finds a 1 bit in the
multiplicand. The partial product and the multi-
plicand are shifted through the bit length plus 1;
the extra loop moves the final Carry into the
product. The program maintains a full double-
length unsigned partial product in memory
locations starting at HIPROD (more significant
bytes) and in the multiplicand (less significant
bytes). The less significant bytes of the product
replace the multiplicand as it is shifted and

Registers Used: AF, BC, DE, HL

Execution Time: Depends on the length of the
operands and on the number of 1 bits in the
multiplicand (requiring actual additions). If the
average number of 1 bits in the multiplicand is four
per byte, the execution time is approximately 728 *
LENGTH?2 + 883 * LENGTH + 300 cycles where
LENGTH is the number of bytes in the operands.

Program Size: 104 bytes

Data Memory Required: 261 bytes anywhere in
RAM. This is temporary storage for the more
significant bytes of the product (255 bytes starting at
address HIPROD), the loop counter (2 bytes starting
at address COUNT), the address immediately follow-
ing the most significant byte of the high product (2
bytes starting at address ENDHP), and the base
address of the multiplier (2 bytes starting at address
MLIER).

Special Case: A length of 0 causes an immediate
exit with the product equal to the multiplicand. The
Carry flag is cleared.

examined for 1 bits. A 0 length causes an exit
with no multiplication.

Entry Conditions

Base address of multiplicand in HL
Base address of multiplier in DE
Length of the operands in bytes in B

Exit Conditions

Multiplicand replaced by multiplicand times
multiplier

Example

1. Data: Length of operands (in bytes) = 04
Multiplicand = 0005D1F7¢
Multiplier = 00000AB1,¢
Result: Multiplicand = 3E39D1C7¢

Note that MPBMUL returns only the less
significant bytes (that is, the number of bytes in
the multiplicand and multiplier) of the product

234

to maintain compatibility with other multiple-
precision arithmetic operations. The more signif-
icant bits of the product are available starting
with their least significant byte at address
HIPROD. The user may need to check those
bytes for a possible overflow or extend the
operands with additional zeros.

6F MULTIPLE-PRECISION BINARY MULTIPLICATION (MPBMUL) 239

s wB e wE v N

N8 fus NE N NE wE ws v

Title Multiple—-Precision Binary Multiplication
Name: MPBMUL
Purpose: Multiply 2 arrays of binary bytes

Multiplicand = multiplicand * multiplier

Entry: Register pair HL = Base address of multiplicand
Register pair DE = Base address of multiplier
Register B = Length of the arrays

The arrays are unsigned binary numbers with a
maximum length of 2535 bytes, ARRAYL[O0] is the
least significant byte, and ARRAYLLENGTH-11]
the most significant byte.

Exit: Multiplicand := multiplicand ®* multiplier

Registers used: AF,BC,DE,HL

Time: Assuming the average number of 1 bits in multi-
plicand is 4 ®# length, then the time is approxi-
mately

(728 » length*2) + (833 # length) + 300 cycles

ME NE WE NE NE ST NE ME N8 NS N NS ME ME B ME R N8 N8 NE ¥ 8w

Size: Program 104 bytes
Data 261 bytes

WE NE NB NE NE ME NE ME NE NE NE NE ME WO NB NE MR NE N NE M8 N8 N W B e

e e

MPBMUL :
;EXIT IF LENGTH IS ZERO
LD A B
AND A ; IS LENGTH OF ARRAYS = 0 7
RET z s YES, EXIT
sMAKE POINTERS POINT TO END OF OPERANDS
LD C,B sBC = LENGTH
LD B,0O
ADD HL, BC sEND = BRASE + LENGTH
EX DE, HL sDE POQINTS TO END OF MULTIPLICAND
LD (MLIER),HL ; SAVE ADDRESS OF MULTIPLIER
LD HL, HIPROD
ADD HL, BC
LD (ENDHP) , HL ; SAVE ADDRESS AT END OF HIPROD

;SET CQUNT TO NUMBER OF BITS IN ARRAY PLUS 1
3 COUNT := (LENGTH = 8) + 1

236 . rHvETC

ZEROPD:

ZEROLP:

LQCOP:

SRPLF:

SRAILILP:

ADDLP:

LD L,C ;MOVE LENGTH TO HL

LD H,B

ADD HL, HL ;LENGTH = 8, SHIFT LEFT 3 TIMES
ADD HL, HL

ADD HL, HL

INC HL ;ADD 1

LD (COUNT) , HL ; SAVE NUMBER OF BITS TO DO

s ZERO HIGH PRODUCT ARRAY

LD B,C 3B = LENGTH IN BYTES

LD HL, HIPROD 3 GET ADDRESS OF HIPROD

LD (HL), 0 s STORE O

INC HL

DUNZ ZEROLP ; CONTINUE UNTIL HIPROD ARRAY IS ZERQ

sMULTIPLY USING SHIFT AND ADD ALGORITHM
AND A ; CLEAR CARRY FIRST TIME THROUGH

s SHIFT CARRY INTO HIPROD ARRAY AND LEAST SIGNIFICANT
3 BIT OF HIPROD ARRAY TO CARRY

LD BR,C sGET LENGTH IN BYTES

LD HL, (ENDHP) ;GET LAST BYTE OF HIPRQOD + 1
DEC HL s BACK UP TO NEXT BYTE

RR (HL)

DJUNZ SRPLP sCONTINUE UNTIL INDEX = O

$sSHIFT CARRY (NEXT BIT OF LOWER PRODUCT) INTO MOST
3 SIGNIFICANT BIT OF MULTIPLICAND.
; THIS ALSQ SHIFTS NEXT BIT OF MULTIPLICAND TO CARRY

LD L,E sHL = ADDRESS OF END OF MULTIPLICAND
LD H,D

LD B,C ;B = LENGTH IN BYTES

DEC HL s BACK UP TO NEXT BYTE

RR C(HL)

DJUNZ SRALLP ; CONTINUE UNTIL DONE

3 IF NEXT BIT OF MULTIPLICAND IS 1 THEN
3 ADD MULTIPLIER TO HIPROD ARRAY

JP NC, DECCNT s JUMP IF NEXT BIT IS ZERO
sADD MULTIPLIER TO HIPROD

PUSH DE : SAVE ADDRESS OF MULTIPLICAND
LD DE, (MLIER) sDE = ADDRESS OF MULTIPLIER
LD HL, HIPROD sHL = ADDRESS OF HIPROD

LD B,C 3B = LENGTH IN BYTES

AND A ;s CLEAR CARRY

LD A, (DE) s GET NEXT MULTIPLIER BYTE
ADC A, (HL) sADD TO HIPRQOD

LD (HL) , A s STORE NEW HIPROD

INC DE

6F MULTIPLE-PRECISION BINARY MULTIPLICATION (MPBMUL) 237

INC HL
DJUNZ ADDLP ; CONTINUE UNTIL DONE
POP DE ;RESTORE ADDRESS OF MULTIPLICAND

3 DECREMENT RIT COUNTER, EXIT IF DONE
; DOES NOT CHANGE CARRY!

DECCNT:

LD A, (COUNT)

DEC A

LD (COUNT), A

JP NZ, LOOP s BRANCH IF LSB OF COUNT NOT ZERQ

PUSH AF s SAVE CARRY

LD A, (COUNT+1) sGET HIGH BYTE OF COUNT

AND A s IS IT ZERO?

JP Z,EXIT ; EXIT IF SO

DEC A s DECREMENT HIGH BYTE OF COQUNT

LD (COUNT+1), A

POF AF s RESTORE CARRY

JP LQQP s CONTINUE
EXIT:

FQOP AF s DROP PSW FROM STACK

RET s RETURN

; DATA
COQUNT: D& 2 s TEMPORARY FOR LOOQF COUNTER
ENDHP: DS 2 s ADDRESS OF LAST BYTE OF HIPROD + 1
MLIER: DS 2 s ADDRESS OF MULTIPLIER
HIFRQD: DS 255 sHIGH PRODUCT BUFFER

SAMFLE EXECUTION:

- w8 N3 w8 w8
CTRCT RET R Ry

SC&F:
LD HL, AY1 sHL = ADDRESS OF MULTIPLICAND
LD DE, AY2 ;DE = ADDRESS OF MULTIPLIER
LD B, SZAYS ;B = LENGTH OF QPERANDS IN BYTES
CALL MPBMUL sMULTIPLE-PRECISION BRINARY MULTIPLY
sRESULT OF 12345H = 1234H = 14B&0404H
3 IN MEMORY AY1 = 04H
H AY1+1 = 04H
H AY1+2 = B&H
H AY1+3 = 14H
H AY1+4 = 00H
; AY1+3 = 00H
H AY1+4 = 00H

JR SC&F
SZAYS EQU 7 ;LENGTH OF OPERANDS IN BYTES

238 ArHMVETC

AY1l:

DB 045H
DB 023H
DB 001H
DB)
DB)
DB)
DB o
AY2:
DB 034H
DB 012H
DB 0
DB 0
DB 0
DB 0
DB)

END

Multiple-Precision Binary Division

(MPBDIV)

oG

Divides two multi-byte unsigned binary
numbers. Both numbers are storéd with their
least significant byte at the lowest address. The
quotient replaces the dividend; the address of
the least significant byte of the remainder is in
HL. The length of the numbers (in bytes) is 255
or less. The Carry flag is cleared if no errors
occur; if a divide by 0 is attempted, the Carry
flag is set to 1, the dividend is left unchanged,
and the remainder is set to 0.

Procedure: The program divides with the

usual shift-and-subtract algorithm, shifting quo-
tient and dividend and placing a 1 bit in the
quotient each time a trial subtraction is success-
ful. An extra buffer holds the result of the trial
subtraction; that buffer is simply switched with
the buffer holding the dividend if the trial
subtraction is successful. The program exits
immediately, setting the Carry flag, if it finds the
divisor to be 0. The Carry flag is cleared
otherwise.

Registers Used: AF, BC, DE, HL

Execution Time: Depends on the length of the
operands and on the number of 1 bits in the quotient
(requiring a buffer switch). If the average number of
1 bits in the quotient is 4 per byte, the execution time
isapproximately 1176 * LENGTH2+ 2038 * LENGTH
+ 515 cycles where LENGTH is the number of bytes
in the operands.

Program Size: 161 bytes

Data Memory Required: 522 bytes anywhere in
RAM. This is temporary storage for the high divi-
dend (255 bytes starting at address HIDE1), the result
of the trial subtraction (255 bytes starting at address
HIDE2), the base address of the dividend (2 bytes

starting at address DVEND), the base address of the
divisor (2 bytes starting at address DVSOR), pointers
to the two temporary buffers for the high dividend (2
bytes starting at addresses HDEPTR and ODEPTR,
respectively), a loop counter (2 bytes starting at
address COUNT), and a subtraction loop counter (1
byte at address SUBCNT).

Special Cases:

1. Alength of 0 causes an immediate exit with the
Carry flag cleared, the quotient equal to the original
dividend, and the remainder undefined.

2. Adivisor of 0 causes an exit with the Carry flag
set to 1, the quotient equal to the original dividend,
and the remainder equal to 0.

Entry Conditions

Base address of dividend in HL
Base address of divisor in DE
Length of the operands in bytes in B

Exit Conditions

Dividend replaced by dividend divided by divisor

If the divisor is non-zero, Carry = 0 and the
result is normal.

If the divisor is 0, Carry = 1, the dividend is
unchanged, and the remainder is 0.

The remainder is stored starting with its least
significant byte at the address in HL.

239

240 ~rHvETC

Example

1. Data:

Result:

NB NS NE WE B wE wE ws

ME NS NE ME ME NS ME WE ME M8 ME NE WE WE NE ME NE MR NE N8 N8 WO NE NE MR NE NE N N wE g

Length of operands (in bytes) = 03

Divisor = 000F45
Dividend = 35A2F7,4

Dividend = 0003834

Remainder (starting at address in HL) =

0003A8

Carry flagis 0 to indicate no divide-by-0 error.

Title
Name:

Purpose:

Entry:

Exit:

Registers used:

Time:

Size:

Multiple-Precision Binary Division
MPBDIV

Divide 2 arrays of binary bytes
Dividend = dividend / divisor

Register pair HL = Base address of dividend
Register pair DE = Base address of divisor
Register B = Length of operands in bytes

The arrays are unsigned binary numbers with a
maximum length of 255 bytes, ARRAYLO] is the
least significant byte, and ARRAYLLENGTH-11]
the most significant byte.

Dividend := dividend / divisor
Register pair HL = Base address of remainder
If no errors then
carry := 0
ELSE
divide-by-0 error
carry := 1
dividend unchanged
remainder = 0

AF, BC, DE, HL

Assuming there are length/2 1 bits in the
quotient then the time is approximately

(1176 = length*2) + (2038 * length) + 515 cycles

Program 161 bytes
Data 522 bytes

NE NE MR N N we wE e

NE ME NE ME NE NE NS NS WS NS NE e W NP N

NE ME NS NE B ME NE WS NE NE WE N NS WS v v

6G MULTIPLE-PRECISION BINARY DIVISION (MPEDIV) 244

~ s
~e

s TEST LENGTH OF OPERANDS, INITIALIZE POINTERS

MPEDIV:
LD A, B
OR A ; IS LENGTH OF ARRAYS = 07?
JP Z,0KEXIT sEXIT IF SO
LD (DVEND) , HL s SAVE BASE ADDRESS OF DIVIDEND
LD (DVSOR), DE ; SAVE BASE ADDRESS OF DIVISOR
LD C,B ;C = LENGTH OF OPERANDS
sSET COUNT TO NUMBER OF BRITS IN THE ARRAYS
3 COUNT := (LENGTH = 8) + 1
LD L,C sHL = LENGTH IN RYTES
LD H, 0
ADD HL, HL sLENGTH = 2
ADD HL, HL ;LENGTH = 4
ADD HL, HL sLENGTH = 8
INC HL sLENGTH # 8 + 1
LD (COUNT) , HL : SAVE RIT COUNT
3 ZERO BOTH HIGH DIVIDEND ARRAYS
LD HL,HIDE1 sHL = ADDRESS OF HIDE1
LD DE,HIDE2 sDE = ADDRESS OF HIDEZ2
LD B,C ;B = LENGTH IN BYTES
SUB A sGET O FOR FILL
ZEROLP:
LD (HL) , A ; ZERQ HIDE1
LD (DE), A 3 AND HIDEZ2
INC HL
INC DE
DJUNZ ZEROLP
SET HIGH DIVIDEND POINTER TO HIDE1L
LD HL, HIDE1L
LD (HDEPTR) , HL
s SET OTHER HIGH DIVIDEND POINTER TO HIDE2
LD HL,HIDE2
LD (QDEPTR) , HL
s CHECK IF DIVISOR IS ZERQ BY LOGICALLY ORING ALL BYTES
LD HL, (DVSOR) ;HL = ADDRESS OF DIVISOR
LD B,C +B = LENGTH IN BYTES
SuB A ; START LOGICAL OR AT O
CHKOLP:
OR (HL) ;OR NEXT BYTE
INC HL ; INCREMENT TO NEXT BYTE
DUNZ CHKOLP s CONTINUE UNTIL ALL BYTES ORED
OR A s SET FLAGS FROM LOGICAL OR
JR Z,EREXIT sERROR EXIT IF DIVISOR IS O

;DIVIDE USING TRIAL SUBTRACTION ALGORITHM
OR A ;CLEAR CARRY FIRST TIME THROUGH

242 ./ rivETC

LOCOP:

SLLP1:

DECCNT:

CONT:

SLLP2:

SUBLP:

;C = LENGTH
;DE = ADDRESS OF DIVISOR

3 CARRY = NEXT BIT OF QUOTIENT
; SHIFT CARRY INTQ LOWER DIVIDEND ARRAY AS NEXT BIT OF QUOTIENT
3 AND MOST SIGNIFICANT BIT OF LOWER DIVIDEND TO CARRY

INC
DUNZ

B'C
HL., (DVEND)

(HL)
HL
SLLP1

;B = NUMBER OF BYTES TO ROTATE
sHL = ADDRESS OF DIVIDEND

; ROTATE BYTE OF DIVIDEND LEFT
sNEXT BYTE
; CONTINUE UNTIL ALL BYTES SHIFTED

; DECREMENT BRIT COUNTER AND EXIT IF DONE

s CARRY IS NOT CHANGED !

LD
DEC
LD
JR
LD
DEC
LD
JP

A, (COUNT)
A
(COUNT), A
NZ, CONT

A, (COUNT+1)
A

(COUNT+1), A

M, OKEXIT

;CONTINUE IF LOWER RYTE NQT ZERO

sEXIT WHEN COUNT BECOMES NEGATIVE

s SHIFT CARRY INTO LSB OF UPPER DIVIDEND

LD
LD

RL.
INC
DJNZ

HL, (HDEPTR)
B,C

(HL)
HL
SLLP2

sHL = CURRENT HIGH DIVIDEND POINTER
;B = LENGTH IN RYTES

sROTATE BYTE OF UPPER DIVIDEND
3 INCREMENT TO NEXT BYTE
s CONTINUE UNTIL ALL BYTES SHIFTED

; SUBTRACT DIVISOR FROM HIGH DIVIDEND, PLACE DIFFERENCE IN
;7 OTHER HIGH DIVIDEND ARRAY

PUSH
LD
LD
LD
LD
LD
OR

LD
SBC
LD
INC
INC
INC
LD
DEC
LD
JR
POP

BC

AC
(SUBRCNT) , A
BC, (ODEPTR)
DE, (HDEPTR)
HL, (DVSOR)
A

A, (DE)
A, (HL)
(BC), A

A, (SUBCNT)
A
(SUBCNT) , A
NZ, SUBLP
BC

; SAVE LENGTH

3 SUBCNT = LENGTH IN BYTES
;BC = OTHER DIVIDEND

sDE = HIGH DIVIDEND

sHL = DIVISOR

; CLEAR CARRY

sNEXT BYTE OF HIGH DIVIDEND
s SUBTRACT DIVISOR

3 SAVE IN OTHER HIGH DIVIDEND
s INCREMENT POINTERS

s DECREMENT COUNT

s CONTINUE UNTIL DIFFERENCE COMFLETE
s RESTORE LENGTH

6G MULTIPLE-PRECISION BINARY DIVISION (MPBDIV) 243

IF CARRY IS 1, HIGH DIVIDEND IS LESS THAN DIVISOR
S0 NEXT BIT OF QUOTIENT IS 0. IF CARRY IS O

NEXT BIT OF QUOTIENT IS 1 AND WE REPLACE DIVIDEND
3 WITH REMAINDER BY SWITCHING POINTERS.

e us ws

CCF s COMPLEMENT BORROW SO IT EQUALS
3 NEXT BIT OF QUOTIENT
JR NC, LOOP 3 JUMP IF NEXT BIT OF QUOTIENT O
Lo HL, (HDEPTR) ; OTHERWISE EXCHANGE HDEPTR AND QDEPTR
LD DE, (ODEPTR)
LD (ODEPTR) ,HL
LD (HDEPTR), DE
s CONTINUE WITH NEXT BIT OF QUOTIENT 1 (CARRY = 1)
JP LOOP
$SET CARRY TO INDICATE DIVIDE-BY-ZERO ERROR
EREXIT:
SCF 3 SET CARRY, INVALID RESULT
JP EXIT
s CLEAR CARRY TO INDICATE NO ERRORS
OKEXIT:
oR A ;s CLEAR CARRY, VALID RESULT
sARRAY 1 IS QUOTIENT
sHDEPTR CONTAINS ADDRESS OF REMAINDER
EXIT: LD HL, (HDEPTR) ;HL = BASE ADDRESS OF REMAINDER
RET
; DATA
DVEND: DS ; ADDRESS OF DIVIDEND

2
DVSOR: DS 2 s ADDRESS OF DIVISOR

HDEPTR: DS 2 s ADDRESS OF CURRENT HIGH DIVIDEND ARRAY
QDEPTR: DS 2 ;s ADDRESS OF OTHER HIGH DIVIDEND ARRAY
COUNT: DS 2 s TEMPORARY FOR LOOP COUNTER

SUBCNT: DS 1 s SUBTRACT LOOP CQUNT

HIDE1l: DS 255 ;HIGH DIVIDEND BUFFER 1

HIDE2: DS 2355 sHIGH DIVIDEND BUFFER 2

SAMPLE EXECUTION:

. ws ws us w5
w8 w8 s ws ws

SC&G:
LD HL, AY1 sHL = BASE ADDRESS OF DIVIDEND
LD DE, AY2 ;DE = BASE ADDRESS OF DIVISOR
LD B, SZAYS 3B = LENGTH OF ARRAYS IN BYTES
CALL MFBDIV sMULTIPLE-PRECISION BINARY DIVIDE

sRESULT OF 14B&0404H / 1234H = 12347TH

;+ IN MEMORY AY1 = 45H
H AY1+]1 = 23H
H AY1+2 = 01H

244

SZAYS
AY1l:

ARITHMETIC

JR
EQU

DB
DB
DB
DB
DB
DB
DB

DB
DB
DR
DB
DB
DB
DB

END

034H
012H

[oRoNoRoge)

s LENGTH

AY1+3
AY1+4
AY1+5
AY1+4

s u s ws

OF ARRAYS IN BYTES

OOH
OOH
O0H
OOH

Multiple-Precision Binary Comparison

(MPBCMP)

OH

Compares two multi-byte unsigned binary
numbers and sets the Carry and Zero flags
appropriately. The Zero flag is set to 1 if the
operands are equal and to 0 if they are not equal.
The Carry flag is set to 1 if the subtrahend is
larger than the minuend; the Carry flag is
cleared otherwise. Thus, the flags are set as if the
subtrahend had been subtracted from the
minuend.

Procedure: The program compares the oper-
ands one byte at a time, starting with the most
significant bytes and continuing until it finds
corresponding bytes that are not equal. If all the
bytes are equal, it exits with the Zero flag set to
1. Note that the comparison works through the
operands starting with the most significant
bytes, whereas the subtraction (Subroutine 6E)
starts with the least significant bytes.

Registers Used: AF, BC, DE, HL

Execution Time: 44 cycles per byte that must be
examined plus approximately 60 cycles overhead.
That is, the program continues until it finds cor-
responding bytes that are not the same; each pair of
bytes it must examine requires 44 cycles.

Examples:

1. Comparing two 6-byte numbers that are equal:
44 * 6+ 60 = 324 cycles
2. Comparing two 8-byte numbers that differ in
the next to most significant bytes:
44 x 2+ 60 = 148 cycles

Program Size: 19 bytes
Data Memory Required: None

Special Case: A length of 0 causes an immediate
exit with the Carry flag cleared and the Zero flag set
to L.

Entry Conditions

Base address of minuend in HL
Base address of subtrahend in DE
Length of the operands in bytes in B

Exit Conditions

Flags set as if subtrahend had been subtracted
from minuend.

Zero flag =1 if subtrahend and minuend are
equal, O if they are not equal.

Carry flag = 1 if subtrahend is larger than
minuend in the unsigned sense, 0 if it is less
than or equal to the minuend.

Examples

1. Data: Length of operands (in bytes) = 6
Subtrahend = 19D028A193EA ¢

Minuend = 4E67BCISA266,,

Zero flag = 0 (operands are not equal)
Carry flag = 0 (subtrahend is not larger than
minuend)

Result:

3. Data: Length of operands (in bytes) = 6
Subtrahend = 19D028A193EA 4
Minuend = 0F37E5991D7C ¢
Result: Zero flag = 0 (operands are not equal)

Carry flag = 1 (subtrahend is larger than
minuend)

245

246 riHvETIC

2. Data:

Result:

“s N WB WS NS NE uB ws

NE ME B NB ME NE NS WS NE N6 NG N WE WS NE NS WS WS NS N NS NS WS WS NG WS ws ws

MPBCMP 2

RET Z
LD C,B 3 BC = LENGTH

Length of operands (in bytes) = 6
Subtrahend = 19D028A193EA ¢
Minuend = 19D028A193EA ¢

Zero flag = 1 (operands are equal)
Carry flag = 0 (subtrahend is not larger than

minuend)
Title Multiple-Precision Binary Comparison
Name: MPRCMP
Purpose: Compare 2 arrays of binary bytes and return
the Carry and Zero flags set or cleared
Entry: Register pair HL = Base address of minuend
Register pair DE = Base address of subtrahend
Register B = Length of operands in bytes
The arrays are unsigned binary numbers with a
maximum length of 255 bytes, ARRAYLOl is the
least significant byte, and ARRAYLLENGTH-11
the most significant byte.
Exit: IF minuend = subtrahend THEN
C=0,Z=1
IF minuend > subtrahend THEN
C=0, 2=0
IF minuend < subtrahend THEN
C=1,2=0

Registers used: AF,RC,DE,HL

Time: 44 cycles per byte that must be examined plus

&0 cycles overhead

Size: Pragram 19 bytes

; TEST LENGTH OF OPERANDS, SET POINTERS TO MSB’S

LD A, B
OR A 3 IS LENGTH OF ARRAYS = 07
s YES, EXIT WITH C=0, ZI=1

N8 NE N NE B e w8 w

NE M NG NE NE NE NS NE W NS ME WE NE NE NE NS B WE NE NE WS WS 95 WA wE N8 N8 s

6H MULTIPLE-PRECISION BINARY COMPARISON (MPBCMVP) 247

LD B,0

ADD HL,BC

EX DE, HL ;DE POINTS TO END OF MINUEND
ADD HL, BC sHL POINTS TO END OF SUBTRAHEND
LD B,C ;B = LENGTH

OR A ;CLEAR CARRY INITIALLY

; SUBTRACT BYTES, STARTING WITH MOST SIGNIFICANT
EXIT WITH FLAGS SET IF CORRESPONDING BYTES NOT EQUAL

LOOP:
DEC HL sBACK UP TO LESS SIGNIFICANT BYTE
DEC DE
LD A, (DE) s GET NEXT BYTE OF MINUEND
SBC A, (HL) s SUBTRACT BYTE OF SUBTRAHEND
RET NZ sRETURN IF NOT EGUAL WITH FLAGS
7 SET
DJNZ LOOP s CONTINUE UNTIL ALL BYTES COMPARED
RET sEQUAL, RETURN WITH C=0, Z=1
: H
s H
H SAMPLE EXECUTION: H
7 H
SC6H:
LD HL, AY1 ;HL = RASE ADDRESS OF MINUEND
LD DE, AY2 ;DE = RASE ADDRESS OF SUBTRAHEND
LD R, SZAYS sB = LENGTH OF OPERANDS IN BYTES
CALL MPRCMP sMULTIPLE-PRECISION BINARY COMPARISON
sRESULT QF COMPARE(7654321H, 1234567H) 1S
: C=0,I=0
JR SC&H
SZAYS EQU 7 ;LENGTH OF OPERANDS IN BYTES
AY1l:
DB 021H
DB 043H
DB 065H
DB 007H
DB (o]
DB 0
DB 0
AY2:
DB 067H
DB 045SH
DB 023H
DB 001H
DB o
DB 0
DB (o}

END

Multiple-Precision Decimal Addition

(MPDADD)

Ol

Adds two multi-byte unsigned decimal num-
bers. Both numbers are stored with their least
significant digits at the lowest address. The sum
replaces the addend. The length of the numbers
(in bytes) is 255 or less.

Procedure: The program first clears the Carry
flag and then adds the operands one byte (two
digits) at a time, starting with the least significant
digits. The sum replaces the addend. A length of
00 causes an immediate exit with no addition.
The final Carry flag reflects the addition of the
most significant digits.

Registers Used: AF, B, DE, HL

Execution Time: 50 cycles per byte plus 18 cycles

overhead
Program Size: 12 bytes
Data Memory Required: None

Special Case: A length of 0 causes an immediate
exit with the addend unchanged and the Carry flag

cleared.

Entry Conditions

Base address of addend in HL
Base address of adder in DE
Length of the operands in bytes in register B

Exit Conditions

Addend replaced by addend plus adder

Example

1. Data: Length of operands (in bytes) = 6
Addend = 1960288193154
Adder = 293471605987 ¢

Result: Addend = 489500425302,

Carry=0
H
H Title Multiple—Precision Decimal Addition
H Name: MPDADD

248

w8 NS NB NE we N we s

ME NE WS WB N W W wE wn we

-

N NS N NE B wE N wE v

MPDADD:

LOOP:

. ws ws ws w

SC61:

Purpose:

Entry:

Exit:

Registers used: A,B,DE,F,HL

Time:

Size:

6 MULTIPLE-PRECISION DECIMAL ADDITION (MPDADD) 249

Add 2 arrays of BCD bytes
Arrayl = Arrayl + Array2

Register pair HL = Base address of array 1
Register pair DE = Base address of array 2
Register B = Length of arrays in bytes
The arrays are unsigned BCD numbers with a
maximum length of 255 bytes, ARRAYLO]l is the
least significant byte, and ARRAYLLENGTH-11
the most significant byte.

Arrayl := Arrayl + Array2

50 cycles per byte plus 18 cycles overhead

Program 12 bytes

NE NE N ME ME NS NE NE NS NE NP N8 WE WR NE MR NS N N8 N ~s

;s TEST ARRAY LENGTH FOR ZERQ, CLEAR CARRY
LD A B
OR A s TEST LENGTH AND CLEAR CARRY
RET z sEXIT IF LENGTH IS O
;s ADD OPERANDS 2 DIGITS AT A TIME
3 NOTE CARRY IS O INITIALLY
LD A, (DE)
ADRC A, (HL) ;ADD NEXT BYTES
DAA s CHANGE TO DECIMAL
LD (HL), A 3 STORE SUM
INC HL ;s INCREMENT TO NEXT BYTE
INC DE
DJNZ LOOP sCONTINUE UNTIL ALL BYTES SUMMED
RET
4
SAMPLE EXECUTION: ;
LD HL, AY1 sHL = BASE ADDRESS OF ARRAY 1
LD DE, AY2 sDE = BASE ADDRESS OF ARRAY 2
LD B, SZAYS ;B = LENGTH OF ARRAYS IN BYTES
CALL MPDADD sMULTIPLE-PRECISION BCD ADDITION
sRESULT OF 1234567 + 1234567 = 2469134
; IN MEMORY AY1 = 34H
H AY1+1 = 91H
H AY1+2 = 4&H

250

SZAYS
AY1:

AYZ2:

ARITHMETIC

DB
DB
DB
DB
DB
DB
DB

END

SCél

067H
04%H
023H
001H

067H
04SH
023H
001H

s LENGTH

AY1+3
AY1+4
AY1+5
AY1+4

~e e wm v

OF ARRAYS IN BYTES

wnuwun

O2ZH
OOH
O0OH
OOH

Multiple-Precision Decimal Subtraction

(MPDSUB)

6J

Subtracts two multi-byte unsigned decimal
numbers. Both numbers are stored with their
least significant digits at the lowest address. The
difference replaces the minuend. The length of
the numbers (in bytes) is 255 or less.

Procedure: The program first clears the Carry
flag and then subtracts the subtrahend from the
minuend one byte (two digits) at a time, starting
with the least significant digits. A length of 0
causes an immediate exit with no subtraction.
The final Carry flag reflects the subtraction of
the most significant digits.

Registers Used: A, B, DE, F, HL

Execution Time: 50 cycles per byte plus 22 cycles
overhead

Program Size: 13 bytes

Data Memory Required: None

Special Case: A length of 0 causes an immediate
exit with the minuend unchanged (that is, the
difference is equal to the minuend). The Carry flag is
cleared.

Entry Conditions

Base address of minuend in HL
Base address of subtrahend in DE
Length of the operands in bytes in B

Exit Conditions

Minuend replaced by minuend minus subtrahend

Example

1. Data: Length of operands (in bytes) = 6
Minuend = 2934716059874
Subtrahend = 1960288193151

Result: Minuend = 097442786672,
Carry = 0, since no borrow is necessary

Name: MPDSUR

“B NE B NE N NE ND WS

Title Multiple-Precision Decimal Subtraction

N8 w3 NR N8 N B N we

251

252 ARTHVETIC

LI TR

ME NT ME NE NE B NE NB B NE W8 MR NS NE e

.

MPDSUB:

LOOP:

N8 wp ws wp

SCéJ:

Purpose:

Entry:

Exit:
Registers used:
Time:

Size:

Subtract 2 arrays of BCD bytes
Minuend = minuend — subtrahend

Register pair HL = Base address of minuend

Register pair DE = Base address of subtrahend

Register B = Length of arrays in bytes
The arrays are unsigned BCD numbers with a
maximum length of 255 bytes, ARRAYLO] is the
least significant byte, and ARRAYLLENGTH-11]
the most significant byte.

Minuend := minuend — subtrahend

A,B,DE,F,HL

S50 cycles per byte plus 22 cycles overhead

Program 13 bytes

s TEST ARRAY LENGTH FOR ZERQ, CLEAR CARRY

LD A B
OR A

RET z

EX DE, HL

3 TEST ARRAY LENGTH, CLEAR CARRY
sEXIT IF LENGTH IS O

sHL = SUBTRAHEND

;DE = MINUEND

; SUBTRACT OPERANDS 2 DIGITS AT A TIME
3 NOTE CARRY IS INITIALLY ©

LD A, (DE)
SBRC A, (HL)
DAA

LD (DE), A
INC HL

INC DE

DJNZ LOQP
RET

sGET BYTE OF MINUEND

s SUBTRACT BYTE OF SUBTRAHEND
s CHANGE TO DECIMAL

s STORE BRYTE OF DIFFERENCE

; INCREMENT TO NEXT BYTE

s CONTINUE UNTIL ALL BYTES SUBTRACTED

SAMPLE EXECUTION:

LD HL, AY1
LD DE, AY2
LD B, SZAYS

cAaLL MPDSUB

sHL = BASE ADDRESS OF MINUEND
sDE. = BASE ADDRESS OF SUBTRAHEND

;B = LENGTH OF ARRAYS IN BYTES
sMULTIPLE-PRECISION BCD SUBTRACTION
sRESULT OF 2489134 - 1234567 = 1234567
IN MEMORY AY1 = &67H

AY1+1 = 45H

- us

N8 NE wE ws v wE we

B ME NE M8 NB NE NE NE WD WS R s

~e ~s

. uE ws s s

6J MULTIPLE-PRECISION DECIMAL SUBTRACTION (MPDSUB) 253

H AY1+2 = 23H
H AY1+3 = O1H
H AY1+4 = O0H
H AY1+5 = 00OH
H AY1+4 = 00H
JR SCéu
SZAYS EQU 7 sLENGTH OF ARRAYS IN BYTES
AY1l:
DB 034H
DB 091H
DB 044H
DR 002H
DB Q
DB (o}
DB o]
AY2:
DB 067H
DB 045H
DB 023H
DB 001H
DB 0
DB (o]
DB o]

END

Multiple-Precision Decimal Multiplication

(MPDMUL)

OK

Multiplies two multi-byte unsigned decimal
numbers. Both numbers are stored with their
least significant digits at the lowest address. The
product replaces the multiplicand. The length of
the numbers (in bytes) is 255 or less. Only the
least significant bytes of the product are returned
to retain compatibility with other multiple-
precision decimal operations.

Procedure: The program handles each digit of
the multiplicand separately. It masks the digit
off, shifts it (if it is the upper nibble of a byte),
and then uses it as a counter to determine how
many times to add the multiplier to the partial
product. The least significant digit of the partial
product is saved as the next digit of the full
product and the partial product is shifted right
four bits. The program uses a flag to determine
whether it is currently working with the upper or
lower digit of a byte. A length of 00 causes an
exit with no multiplication.

Registers Used: AF, BC, DE, HL

Execution Time: Depends on the length of the
operands and on the size of the digits in the
multiplicand (since those digits determine how many
times the multiplier must be added to the partial
product). If the average digit in the multiplicand has
avalue of 5, then the execution time is approximately
694 * LENGTH2 + 1555 * LENGTH + 272 cycles
where LENGTH is the number of bytes in the
operands.

Program Size: 167 bytes

Data Memory Required: 520 bytes anywhere in
RAM. This is temporary storage for the high bytes of
the partial product (255 bytes starting at address
PROD), the multiplicand (255 bytes starting at
address MCAND), the length of the arrays (1 byte at
address LEN), a digit counter indicating upper or
lower digit (1 byte at address DCNT), a loop counter
(1 byte at address LPCNT), an overflow byte (1 byte
at address OVRFLW), pointers to the multiplicand
and multiplier (2 bytes each starting at addresses
MCADR and MPADR, respectively), and the next
byte of the multiplicand (1 byte at address NBYTE).
Special Case: A length of 0 causes an immediate
exit with the multiplicand unchanged. The more
significant bytes of the product (starting at address
PROD) are undefined.

Entry Conditions

Base address of multiplicand in HL
Base address of multiplier in DE
Length of the operands in bytes in B

Exit Conditions

Multiplicand replaced by multiplicand times
multiplier

Example

1. Data: Length of operands (in bytes) = 04
Multiplier = 000035184
Multiplicand = 000062944
Result: Multiplicand = 22142292,

254

Note that MPDMUL returns only the less sig-
nificant bytes of the product (that is, the number
of bytes in the multiplicand and multiplier) to

OK MULTIPLE-PRECISION DECIMAL MULTIPLICATION (MPDMUL) 255

maintain compatibility with other multiple- address PROD. The user may need to check
precision decimal arithmetic operations. The those bytes for a possible overflow or extend the
more significant bytes of the product are avail- operands with zeros.

able starting with their least significant digits at

B N NE NS us NE wE N8
NE N NE B NE e N e

Title Multiple—Precision Decimal Multiplication
Name: MPDMUL ’
Purpose: Multiply 2 arrays of BCD bytes

Multiplicand = multiplicand * multiplier

DYRET R T

Entry: Register pair HL = Multiplicand base address
Register pair DE = Multiplier base address
Register B = Length of arrays in bytes

“ ws we we

The arrays are unsigned BCD numbers with a
maximum length of 255 bytes, ARRAYIL[O0] is the
least significant byte, and ARRAYLLENGTH-11
the most significant byte.

Exit: Multiplicand := multiplicand # multiplier

Registers used: AF,BC,DE,HL

NE ME NR N MR NE 9 v N

Time: Assuming the average digit value of multiplicand
is 5, the time is approximately
(694 * length*2) + (1555 % length) + 272 cycles

Size: Program 167 bytes
Data 520 bytes

NE NG NE MR NE NE ME N N NE NE WS NE NE NE ME ME w8 N8 N B 48 B N e

NE WP N W wE wE Ne W

MPDMUL 2
s INITIALIZE COUNTERS AND POINTERS
LD A B s TEST LENGTH OF QPERANDS
aR A
RET f4 ;EXIT IF LENGTH IS ©
LD (LEN), A 3 SAVE LENGTH
LD (LPCNT), A ;LOOP COUNTER = LENGTH IN BYTES
LD {MCADR) , HL s SAVE MULTIPLICAND ADDRESS

LD (MPADR) , DE ; SAVE MULTIPLIER ADDRESS

256 ,rimvETIC

LOOP:

DLOOF:

DLOOP1:

ADDLP:

INNER:

3 SAVE MULTIPLICAND IN TEMPORARY BUFFER (MCAND)

LD DE, MCAND sDE POINTS TO TEMPORARY MULTIPLICAND
LD (NBYTE), DE
sHL POINTS TO MULTIPLICAND
LD C,B sBC = LENGTH
LD B,0
LDIR ;MOVE MULTIPLICAND TO BUFFER

7 CLEAR PARTIAL PRODUCT, CONSISTING OF UPPER BYTES
s STARTING AT PROD AND LOWER BYTES REPLACING

;3 MULTIPLICAND

LD HL, (MCADR)

LD A, (LEN)

CALL ZEROBUF 3 ZERO MULTIPLICAND
3 ZERO PRODUCT

LD HL, PROD

CALL ZEROBUF ;s ZERO PRODUCT ARRAY

sLOOP THROUGH ALL BYTES OF MULTIPLICAND

LD Al
LD (DCNT) , A ; START WITH LOWER DIGIT

;LOOP THROUGH 2 DIGITS PER BYTE
; DURING LOWER DIGIT DCNT 1

DURING UPPER DIGIT DCNT = 0

SUB A 1A = 0

LD (OVRFLW) , A ;CLEAR OVERFLOW BYTE

LD A, (DCNT)

OR A s TEST FOR LOWER DIGIT (Z=0)
LD HL, (NBYTE) ;GET NEXT BYTE

LD A, (HL)

JR NZ, DLOOP1 ;JUMP IF LOWER DIGIT

RRCA $SHIFT UPPER DIGIT RIGHT 4 BITS
RRCA

RRCA

RRCA

AND OFH ;KEEP ONLY CURRENT DIGIT
JR Z,SDIGIT ;BRANCH IF DIGIT IS ZERO
LD C.,A :C = DIGIT

sADD MULTIPLIER TO PRODUCT NDIGIT TIMES

LD HL, (MPADR) sHL = MULTIPLIER ADDRESS
LD DE, PROD sDE = PRODUCT ADDRESS

LD A, (LEN)

LD B, A 3B = LENGTH

OR A ;s CLEAR CARRY INITIALLY
LD A, (DE) sGET NEXT BYTE OF PRODUCT

ADC A, (HL) sADD NEXT BYTE OF MULTIPLIER

6K MULTIPLE-PRECISION DECIMAL MULTIPLICATION (MPDMUL) 297

DAA ; DECIMAL ADJUST
LD (DE), A ; STORE SUM IN PRODUCT
INC HL
INC DE
DJNZ INNER s CONTINUE UNTIL ALL BYTES ADDED
JR NC, DECND ; JUMP IF NO QVERFLOW FROM ADDITION
LD HL, QVRFLW ; ELSE INCREMENT QVERFLOW BYTE
INC CHL)
DECND:
DEC C
JR NZ, ADDLP s CONTINUE UNTIL DIGIT = 0O
;s STORE LEAST SIGNIFICANT DIGIT OF PRODUCT
3 AS NEXT DIGIT OF MULTIPLICAND
SDIGIT:
LD A, (PROD) ;GET LOW BYTE OF PRODUCT
AND OFH
LD B,A sSAVE IN B
LD A, (DCNT)
OR A ; TEST FOR LOWER DIGIT (Z=0)
LD A B ;A = NEXT DIGIT
JR NZ,SD1 ; JUMP IF WORKING ON LOWER-DIGIT
RRCA sELSE MOVE DIGIT TO HIGH EITS
RRCA
RRCA
RRCA
SD1:
LD HL, (MCADR) s PLACE NEXT DIGIT IN MULTIPLICAND
OR (HL)
LD (HL), A
3 SHIFT PRODUCT RIGHT 1 DIGIT (4 BITS)
LD A, (LEN)
LD B, A ;B = LENGTH
LD E,A
LD D, 0
LD HL, PROD
ADD HL, DE sHL POINTS BEYOND END OF PROD
LD A, (QVRFLW) sA = QVERFLOW BYTE
SHFTLP:
DEC HL ; DECREMENT, POINT TQ NEXT BYTE
RRD sROTATE BYTE OF PRODUCT RIGHT 1 DIGIT
DJUNZ SHFTLP ; CONTINUE UNTIL DONE
;CHECK IF DONE WITH BOTH DIGITS OF THIS BYTE
LD HL, DCNT sARE WE ON LOWER DIGIT?
DEC (HL.)
JR Z, DLOOP :YES, DO UPPER DIGIT OF SAME BYTE
3 INCREMENT TO NEXT BYTE AND SEE IF DONE
LD HL, (NBYTE) s INCREMENT TO NEXT MULTIPLICAND BYTE
INC HL

LD (NBYTE), HL

258 ~rHvETIC

LD HL, (MCADR) 3 INCREMENT TO NEXT RESULT BYTE
INC HL
LD (MCADR) , HL
LD HL, LPCNT ;s DECREMENT LOOP COUNTER
DEC (HL)
JR NZ,LOoO0P
EXIT:
RET
sROUTINE: ZEROBUF
; PURPOSE: ZERO A BUFFER
;ENTRY: HL POINTS TO FIRST BYTE OF BUFFER
? LEN = LENGTH OF BUFFER
;EXIT: BUFFER ZEROED
;REGISTERS USED: AF,BC,DE,HL
ZEROBUF :
LD (HL), 0 s ZERO FIRST BYTE
LD A, (LEN)
DEC A
RET z sRETURN IF ONLY ONE BYTE
LD D, H
LD E,L
INC DE ;DE = SECOND BYTE
LD C.A sBC = LENGTH OF ARRAY
LD B,0
LDIR ;s CLEAR REST OF BUFFER BY
RET 3 PROPAGATING ZEROS FROM ONE
3 BYTE TO THE NEXT
s DATA
LEN: DS 1 sLENGTH OF ARRAYS
DCNT: DS 1 sDIGIT COUNTER FOR BYTES
LPCNT: DS 1 ; LOOP COUNTER
OVRFLW: DS 1 s OVERFLOW BYTE
MCADR: DS 2 sNEXT BYTE TO STORE INTO
MPADR: DS 2 s ADDRESS OF MULTIPLIER
NBYTE: DS 2 sNEXT DIGIT OF MULTIPLICAND
PROD: . DS 235 s PRODUCT BLUFFER
MCAND: DS 235 sMULTIPLICAND BUFFER

“r w ws ws w8

SC6K:
LD
LD
LD

CALL

SAMPLE EXECUTION:

HL, AY1
DE, AY2

B, SZAYS
MPDMUL

; BASE ADDRESS OF MULTIPLICAND

s BASE ADDRESS OF MULTIPLIER

sLENGTH OF ARRAYS IN BYTES
sMULTIPLE-PRECISION BCD MULTIPLICATION
sRESULT OF 1234 = 1234 = 1522756

8 w8 w8 v s

6K MULTIPLE-PRECISION DECIMAL MULTIPLCATION (MPDMUL) 259

s IN MEMORY AY1 = S4H
H AY1+1 = 27H
H AY1+2 = 52H
s AY1+43 = O01H
H AY1+4 = 00H
H AY1+5 = 00H
H AY1+4 = O0H
JR SCEK
SZAYS EQU 7 s LENGTH OF ARRAYS IN BYTES
AY1:
DR 034H
DB 012H
DB Q
DR Q
DB o]
DR o]
DB (o]
AY2:
DR 034H
DB 012H
DB 0
DB 0
DB 0
DB 0
De (o]

END

Multiple-Precision Decimal Division

(MPDDIV)

oL

Divides two multi-byte unsigned decimal
numbers. Both numbers are stored with their
least significant digits at the lowest address. The
quotient replaces the dividend; the remainder is
not returned, but its base address is in memory
locations HDEPTR and HDEPTR+1. The
length of the numbers (in bytes) is 255 or less.
The Carry flag is cleared if no errors occur; if a
divide by 0 is attempted, the Carry flag is set to
1, the dividend is unchanged, and the remainder
is set to 0.

Procedure: The program divides by determin-
ing how many times the divisor can be subtracted
from the dividend. It saves that number in the
quotient, makes the remainder into the new
dividend, and rotates the dividend and the
quotient left one digit. The program exits
immediately, setting the Carry flag, if it finds
the divisor to be 0. The Carry flag is cleared
otherwise.

Registers Used: AF, BC, DE, HL

Execution Time: Depends on the length of the
operands and on the size of the digits in the
quotient (determining how many times the divisor
must be subtracted from the dividend). If the
average digit in the quotient has a value of 5, the
execution time is approximately 1054 * LENGTH?2+
2297 * LENGTH + 390 cycles where LENGTH is the
number of bytes in the operands.

Program Size: 168 bytes

Data Memory Required: 523 bytes anywhere in
RAM. This is storage for the high dividend (255
bytes starting at address HIDE1), the result of the
subtraction (255 bytes starting at address HIDE2),
the length of the operands (1 byte at address

LENGTH), the next digit in the array (1 byte at
address NDIGIT), the counter for the subtraction
loop (1 byte at address CNT), pointers to the
dividend, divisor, current high dividend and remain-
der, and other high dividend (2 bytes each starting at
addresses DVADR, DSADR, HDEPTR, and
ODEPTR, respectively), and the divide loop counter
(2 bytes starting at address COUNT).

Special Cases:

1. Alength of 0 causes an immediate exit with the
Carry flag cleared, the quotient equal to the original
dividend, and the remainder undefined.

2. Adivisor of 0 causes an exit with the Carry flag
set to 1, the quotient equal to the original dividend,
and the remainder equal to 0.

Entry Conditions
Base address of dividend in HL

Base address of divisor in DE
Length of the operands in bytes in B

260

Exit Conditions

Dividend replaced by dividend divided by divisor

If the divisor is non-zero, Carry = 0 and the
result is normal.

If the divisor is 0, Carry = 1, the dividend is
unchanged, and the remainder is 0.

The base address of the remainder (i.e., the
address of its least significant digits) is in
HDEPTR and HDEPTR+1.

6L MULTIPLE-PRECISION DECIMAL DIVISION (MPDDI) 264

Example

1. Data: Length of operands (in bytes) = 04
Dividend = 221422984
Divisor = 000062944
Result: Dividend = 00003518,
Remainder (base address in HDEPTR and
HDEPTR + 1) = 00000006,
Carry flag is 0 to indicate no divide-by-0 error.

B N R N8 we NE wE W
N8 NB N NE wR v ws ws

Title Multiple-Precision Decimal Division
Name: MPDDIV
Purpose: Divide 2 arrays of BCD bytes

Guotient := dividend / divisor

Entry: Register pair HL = Base address of dividend
Register pair DE = Base address of divisor
Register B = Length of operands in bytes

The arrays are unsigned BCD numbers with a
maximum length of 255 bytes, ARRAYLO]l is the
least significant byte, and ARRAYLLENGTH-11
the most significant byte.

Exit: Dividend := dividend / divisor

Remainder := base address in HDEPTR
If no errors then

carry = 0
ELSE

divide-by-0 error

carry =1

dividend unchangsd

remainder := 0O

Registers used: AF,BC,DE,HL

Time: Assuming the average digit value in the
quotient is 5 then the time is approximately
{1054 = length*2) + (2297 % length) + 390 cycles

Size: Program 168 bytes
Data 523 bytes

NE NS N NE NE ME NE NE NS N NE NS N8 ME ME N NE ME N N8 YR ME M8 B NS N NE NS ME WE w8 we
NE ME B NE MR NS YR NE NE NE NE ME NS NE ME M8 ME ME ME NE WE NE ME MB N8 NE N8 NS B e N N

262 /riHvETIC

MPDDIV:

s SAVE PARAMETERS AND CHECK FOR ZERQ LENGTH

LD (DVADR) , HL. ; SAVE DIVIDEND ADDRESS

Lo (DSADR), DE 3 SAVE DIVISOR ADDRESS

LD A B

LD (LENGTH) , A s SAVE LENGTH

OR A ;s TEST LENGTH

JP Z,0KEXIT sEXIT IF LENGTH = O

s ZERQO BOTH DIVIDEND BUFFERS

; AND SET UP THE DIVIDEND POINTERS

LD HL, HIDE1 sHL = ADDRESS OF HIGH DIVIDEND 1

LD (HDEPTR) , HL sHIGH DIVIDEND PTR = HIDE1

LD DE, HIDE2 ;DE = ADDRESS OF HIGH DIVIDEND 2

LD (QDEPTR), DE ;OTHER DIVIDEND PTR = HIDE2

SUR A ;GET O TO USE IN FILLING BUFFERS
;B = LENGTH IN BYTES

sFILL BOTH DIVIDEND BUFFERS WITH ZEROS

INITLP:

LD (HL) , A 3 ZERO BYTE OF HIDE1

LD (DE), A ; ZERO BYTE OF HIDE2

INC HL

INC DE

DUNZ INITLP

: SET COQUNT TO NUMBER OF DIGITS PLUS 1
3 COUNT := (LENGTH = 2) + 1;

LD A, (LENGTH) sEXTEND LENGTH TO 14 BITS
LD L,A

LD H, 0

ADD HL, HL sLENGTH = 2

INC HL sLENGTH = 2 + 1

LD (COUNT) , HL s COUNT = LENGTH = 2 + 1

s CHECK FOR DIVIDE BY ZEROQ
3 LOGICALLY OR ENTIRE DIVISOR TO SEE IF ALL BYTES ARE O

LD HL, (DSADR) sHL = ADDRESS OF DIVISOR

LD A, (LENGTH)

LD B,A ;B = LENGTH IN BYTES

SUB A ; START LOGICAL OR WITH O
Dvo1:

OR (HL) ;OR NEXT BYTE OF DIVISOR

INC HL

DJUNZ Dvo1

OR A ; TEST FOR ZERO DIVISOR

JR Z,EREXIT sERROR EXIT IF DIVISOR IS O

SUR A

LD (NDIGIT),A ;s START NEXT DIGIT AT O

;DIVIDE BY DETERMINING HOW MANY TIMES DIVISOR CAN
y BE SURTRACTED FROM DIVIDEND FOR EACH DIGIT
; POSITION

6L MULTIPLE-PRECISION DECIMAL DIVISION (MPDDIV) 263

DVLOOP:
s ROTATE LEFT LOWER DIVIDEND AND QUOTIENT:
3 HIGH DIGIT OF NDIGIT BECOMES LEAST SIGNIFICANT DIGIT
y OF QUOTIENT (DIVIDEND ARRAY) AND MOST SIGNIFICANT DIGIT
s OF DIVIDEND ARRAY GOES TO HIGH DIGIT OF NDIGIT
LD HL, (DVADR)
CALL RLARY sROTATE LOW DIVIDEND
s IF DIGIT COUNT = O THEN WE ARE DONE
LD HL, (COUNT) s DECREMENT COUNT BY 1
DEC HL
LD (COUNT) , HL
LD AH ; TEST 16-RBIT COUNT FOR ©
OR L
JR Z,0KEXIT sEXIT WHEN COUNT = O
;ROTATE LEFT HIGH DIVIDEND, LEAST SIGNIFICANT DIGIT
3 OF HIGH DIVIDEND BECOMES HIGH DIGIT OF NDIGIT
LD HL, (HDEPTR)
CALL RLARY ; ROTATE HIGH DIVIDEND
s SEE HOW MANY TIMES DIVISOR GOES INTQ HIGH DIVIDEND
7 ON EXIT FROM THIS LOOP, HIGH DIGIT OF NDIGIT IS NEXT
5 QUOTIENT DIGIT AND HIGH DIVIDEND IS REMAINDER
SUR A s CLEAR NUMBER OF TIMES INITIALLY
LD (NDIGIT), A
SUBLF:
LD HL, (DSADR) ;HL POINTS TO DIVISOR
LD DE, (HDEPTR) ;DE POINTS TO CURRENT HIGH DIVIDEND
LD BC, (ODEPTR) s BC POINTS TO OTHER HIGH DIVIDEND
LD A, (LENGTH)
LD (CNT), A ; LOOP COUNTER = LENGTH
OR A ;s CLEAR CARRY INITIALLY
INNER:
LD A, (DE) s GET NEXT BYTE OF DIVIDEND
SBC A, (HL) ; SUBTRACT DIVISOR
DAA ; CHANGE TO DECIMAL
LD (BC), A ; STORE DIFFERENCE IN QTHER DIVIDEND
INC HL 3 INCREMENT TQ NEXT BYTE
INC DE
INC BC
LD A, (CNT) ; DECREMENT COUNTER
DEC A
LD (CNT), A
JR NZ, INNER sCONTINUE THROUGH ALL BYTES
JR C,DvLooP 3 JUMP WHEN BORROW OCCURS

sNDIGIT IS NUMBER OF TIMES DIVISOR
3 GOES INTO ORIGINAL HIGH DIVIDEND
s HIGH DIVIDEND CONTAINS REMAINDER

264 ., rivEC

s DIFFERENCE IS NOT NEGATIVE, SO ADD 1 TO
3 NUMBER OF SUCCESSFUL SUBTRACTIONS
7 (LOW DIGIT OF NDIGIT)

LD HL,NDIGIT ;NDIGIT = NDIGIT + 1
INC (HL)
$ EXCHANGE POINTERS, THUS MAKING DIFFERENCE NEW DIVIDEND
LD HL, (HDEPTR)
LD DE, (ODEPTR)
LD (HDEPTR) ,DE
LD (QODEPTR) , HL
JR SUBLP ; CONTINUE UNTIL DIFFERENCE NEGATIVE
:NO ERRORS, CLEAR CARRY
OKEXIT:
OR A s CLEAR CARRY, VALID RESULT
RET
s DIVIDE-BY-ZERQO ERROR, SET CARRY
EREXIT:
. SCF ;SET CARRY, INVALID RESULT
RET
PREREERA AN RN RN R R R RN RN R RS RS
; SUBROUTINE: RLARY
s PURPOSE: ROTATE LEFT AN ARRAY ONE DIGIT (4 BITS)
sENTRY: HL = BASE ADDRESS OF ARRAY
H LOW DIGIT OF NDIGIT IS DIGIT TO ROTATE THROUGH
;EXIT: ARRAY ROTATED LEFT THROUGH LOW DIGIT OF NDIGIT
sREGISTERS USED: AF, BC, DE, HL
§ ORI IE R I63E 263638 4 23T B0 B MM R MM B A MM H B
RLARY:
SHIFT NDIGIT INTO LOW DIGIT OF ARRAY AND
;3 SHIFT ARRAY LEFT
LD A, (LENGTH)
LD B,A sB = LENGTH OF ARRAY IN BYTES
LD A, (NDIGIT) A = NDIGIT
SHIFT:
RLD ;SHIFT BYTE LEFT 1 DIGIT (4 BITS)
INC HL
DUNZ SHIFT ; CONTINUE UNTIL ALL BYTES SHIFTED
LD (NDIGIT), A s SAVE NEW NEXT DIGIT
RET
; DATA
LENGTH: DS 1 sLENGTH OF ARRAYS IN BYTES
NDIGIT: DS 1 sNEXT DIGIT IN ARRAY
CNT: ns 1 s COUNTER FOR SUBTRACT LOOP
DVADR: DS 2 s DIVIDEND ADDRESS
DSADR: DS 2 sDIVISOR ADDRESS
HDEPTR: DS 2 sHIGH DIVIDEND POINTER
ODEPTR: DS 2 s OTHER DIVIDEND PQINTER

6L MULTIPLE-PRECISION DECIMAL DIVISION (MPDDIY) 269

COUNT: DS 2 ;DIVIDE LOOP COUNTER
HIDE1: DS 235 sHIGH DIVIDEND BUFFER 1
HIDE2: DS 255 sHIGH DIVIDEND BUFFER 2

SAMPLE EXECUTION:

s w8 w8 ws s
8 w8 uB ws wE

SCaL =
LD HL, AY1 s BASE ADDRESS OF DIVIDEND
LD DE, AY2 s BASE ADDRESS OF DIVISOR
LD R, SZAYS sLENGTH QF ARRAYS IN BYTES
CALL MPDDIV sMULTIPLE-PRECISION BCD DIVISION
sRESULT OF 1522756 / 1234 = 1224
s IN MEMORY AY1 = 34H
; AY1+1 = 12H
H AY1+2 = O0OH
H AY1+3 = O0OH
H AY1+4 = O0H
; AY1+5 = O0H
H AY1+6 = Q0H
JR SC6L
SZAYS EQU 7 sLENGTH OF ARRAYS IN BYTES
AY1:
DB 056H
DB 027H
DB 052H
DB O1H
DB o]
i)] 0
DB o]
AYZ2:
DB 034H
DB 012H
OB (o]
DB 0
DB 0
DE 0
DB Q

END

Multiple-Precision Decimal Comparison

oM

Compares two multi-byte unsigned decimal
(BCD) numbers and sets the Carry and Zero
flags appropriately. The Zero flagis set to 1 if the
operands are equal and to 0 if they are not equal.
The Carry flag is set to 1 if the subtrahend is
larger than the minuend; the Carry flag is
cleared otherwise. Thus the flags are set as if the

subtrahend had been subtracted from the
minuend.

Note: This program is exactly the same as
Subroutine 6H, the multiple-precision binary
comparison, since the form of the operands does
not matter if they are only being compared. See
Subroutine 6H for a listing and other details.

Examples

1. Data: Length of operands (in bytes) = 6
Subtrahend = 1965287193404

Minuend = 456780153266,

Zero flag = 0 (operands are not equal)
Carry flag= 0 (subtrahend is not larger than
minuend)

Result:

2. Data: Length of operands (in bytes) = 6
Subtrahend = 1965287193404

Minuend = 1965287193404

Zero flag = 1 (operands are equal)
Carry flag= 0 (subtrahend is not larger than
minuend)

Result:

266

3. Data: Length of operands (in bytes) = 6
Subtrahend = 196528719340,
Minuend = 073785991074 ¢
Result: Zero flag = 0 (operands are not equal)

Carry flag= 1 (subtrahend is larger than
minuend)

Bit Field Extraction (BFE)

/A

Extracts a field of bits from a byte and
returns the field in the least significant bit posi-
tions. The width of the field and its lowest bit
position are parameters.

Procedure: The program obtains a mask with
the specified number of 1 bits from a table, shifts

the mask left to align it with the specified lowest
bit position, and obtains the field by logically
ANDing the mask with the data. It then normal-
izes the bit field by shifting it right so that it
starts in bit 0.

Registers Used: AF, BC, DE, HL

Execution Time: 21 * LOWEST BIT POSITION
plus 86 cycles overhead. (The lowest bit position
determines the number of times the mask must be
shifted left and the bit field right.)

Program Size: 32 bytes

Data Memory Required: None

Special Cases:

1. Requesting a field that would extend beyond
the end of the byte causes the program to return with
only the bits through bit 7. That is, no wraparound is
provided. If, for example, the user asks for a 6-bit

field starting at bit 5, the program will return only 3
bits (bits 5 through 7).

2. Both the lowest bit position and the number of
bits in the field are interpreted mod 8. That is, for
example, bit position 11 is equivalent to bit position 3
and a field of 10 bits is equivalent to a field of 2 bits.
Note, however, that the number of bits in the field is
interpreted in the range 1 to 8. That is, a field of 16
bits is equivalent to a field of 8 bits, not to a field of 0
bits.

3. Requesting a field of width 0 causes a return
with a result of 0.

Entry Conditions

Starting (lowest) bit position in the field
(0to7)in A

Number of bits in the field (1 to 8) in D

Data byte in E

Exit Conditions

Bit field in A (normalized to bit 0)

Examples

1. Data: Data value = F6,,= 11110110,
Lowest bit position = 4

Number of bits in the field = 3

Bit field = 07,4 = 00000111,
Three bits, starting at bit 4, have been ex-
tracted (that is, bits 4 through 6).

Result:

2. Data: Data value = A2, = 10100010,
Lowest bit position = 6
Number of bits in the field = 5
Result: Bit field = 02,5, = 00000010,

Two bits, starting at bit 6, have been ex-
tracted (that is, bits 6 and 7); that was all
that was available, although five bits were

requested.
267

268 7 MANIPULATIONS AND SHIFTS

w8 ws ws w8 ws

W8 ME 48 NF w8 s we ws

Title Bit Field Extraction

Name: BFE H
7

Purpose: Extract a field of bits from a byte and

return the field normalized to bit 0

NOTE: IF THE REQUESTED FIELD IS TOO LONG, THEN
ONLY THE BITS THROUGH BIT 7 WILL BE
RETURNED. FOR EXAMPLE, IF A 4-BIT FIELD IS
REQUESTED STARTING AT BIT 7, ONLY 1
BRIT (BIT 7) WILL BE RETURNED.

Entry: Register D = Number of bits in field (1 to 8)
Register E = Data byte
Register A = Starting (lowest) bit position in
the field (0 to 7)
Exit: Register A = Field
Registers used: AF,BC,DE,HL
Time: 86 cycles overhead plus

(21 # lowest bit position) cycles

Size: Program 32 bytes

WE WB NS M B NB NE NS NE NG N5 NE N6 N6 NG NG ME NF WE N6 NE N6 w6 u§
NE WP WS 9B B WE N6 w8 B NE NB WE NS NE NB N8 ME 48 NE NS w8 ue NF g

BFE:
s SHIFT DATA TO NORMALIZE TO RIT O
3 NO SHIFTING NEEDED IF LOWEST POSITION IS ©
AND 00000111B ;ONLY ALLOW POSITIONS O TO 7
JR Z,EXTR s JUMP IF NO SHIFTING NEEDED
LD B,A sMOQVE SHIFT COUNT TO B

SHFT:
SRL E s SHIFT DATA RIGHT
DUNZ SHFT s CONTINUE UNTIL NORMALIZED
sEXTRACT FIELD BY MASKING WITH 1-S

EXTR:
LD A, D ; TEST NUMBER OF BITS FOR ZERO
OR A
RET r4 $EXIT IF NUMBER OF BITS = O

y FIELD IS O ON EXIT

DEC A ; DECREMENT A TO NORMALIZE TO O
AND 00000111R sONLY ALLOW O THROUGH 7
LD C,A ;BC = INDEX INTO MASK ARRAY
LD B, 0
LD HL , MSKARY sHL = BASE OF MASK ARRAY

ADD HL,BC

7A BIT FIELD EXTRACTION (BFE) 269

LD AE ;s GET DATA

AND (HL) s MASK OFF UNWANTED BITS

RET

;MASK ARRAY WITH 1 TO 8 ONE BITS
MSKARY:

DB 00000001 R

DB 00000011B

DB 00000111B

DB 00001111B

DR 00011111R

DB 00111111B

DB 01111111B

DB 111111118

SAMPLE EXECUTION:

N w8 ws s w5
s s N ws ws

SC7A:
LD E,00011000B ;REGISTER E = DATA
LD 0,3 ;REGISTER D = NUMBER OF BITS
LD A2 3 ACCUMULATOR = LOWEST BIT POSITION
CALL BFE sEXTRACT 3 BITS STARTING WITH #2
JR SC7A 3 RESULT = 00000110B

END

Bit Field Insertion (BF)

/B

Inserts a field of bitsinto a byte. The width of
the field and its starting (lowest) bit position are
parameters.

Procedure: The program obtains a mask with
the specified number of 0 bits from a table. It
then shifts the mask and the bit field left to align

them with the specified lowest bit position. It
logically ANDs the mask with the original data
byte, thus clearing the required bit positions,
and then logically ORs the result with the shifted
bit field.

Registers Used: AF, BC, DE, HL

Execution Time: 25 * LOWEST BIT POSITION
plus 133 cycles overhead. (The lowest bit position of
the field determines how many times the mask and
the field must be shifted left.)

Program Size: 40 bytes
Data Memory Required: None
Special Cases:

1. Attempting to insert a field that would extend
beyond the end of the byte causes the program to
insert only the bits through bit 7. That is, no wrap-

around is provided. If, for example, the user attempts
to insert a 6-bit field starting at bit 4, only 4 bits (bits 4
through 7) are actually replaced.

2. Both the starting bit position and the width of
the bit field (number of bits) are interpreted mod 8.
That is, for example, bit position 11 is the same as bit
position 3 and a 12-bit field is the same as a 4-bit field.
Note, however, that the width of the field is mapped
into the range 1 to 8. That is, for example, a 16-bit
field is the same as an 8-bit field.

3. Attempting to insert a field of width 0 causes a
return with a result of 0.

Entry Conditions

Data in A

Number of bits in the field (1 to 8) in B
Starting (lowest) bit position of field in C
Field to insert in E

Exit Conditions

Result in A
The result is the original data with the bit field
inserted, starting at the specified bit position.

Examples

1. Data: Value = F6,5 = 11110110,
Lowest bit position = 4
Number of bits in the field = 2

Bit field = 01,, = 00000001,

Value with bit field inserted =
D6, = 11010110,

The 2-bit field has been inserted into the origi-
nal value starting at bit 4 (into bits 4 and 5).

Result:

270

2. Data: Value = B8;s = 10111000,
Lowest bit position = 1
Number of bits in the field = 5
Bit field = 15,4 = 00010101,
Result: Value with bit field inserted = AA ¢ =10101010,

The 5-bit field has been inserted into the origi-
nal value starting at bit 1 (into bits 1 through
5), changing 11100, (1Cy¢) to 10101, (15).

7B BIT FIELD INSERTION (BF)) 274

B N8 N NE we ws e
N8 N NE N wm wE N e

Title Bit Field Insertion
Name: BF1
Purpose: Insert a field of bits into a byte and return

the byte

NOTE: IF THE REQUESTED FIELD IS TOO LONG,
ONLY THE BITS THROUGH BIT 7 WILL BE
INSERTED. FOR EXAMPLE, IF A 4-BIT FIELD I%
TO BE INSERTED STARTING AT BIT 7 THEN
ONLY 1 BIT (BIT 7) WILL BE INSERTED.

NE e NS B wE NS N

Entry: Register A = Byte of data
Register B = Number of bits in the field (1
to 8)

Starting (lowest) bit position in
which the data will be inserted
(0 to 7)

Register E = Field to insert

Register C

ME R N NS NE NE NE ME ME NG N NE NE NE NE e NS WS W8 ws v

Exits Register A = Data
Registers used: AF,BC,DE,HL
Time: 133 cycles overhead plus

(25 ® starting bit position) cycles

Size: Program 40 bytes

WE MB ME ME ME N NB NE NE N8 WE NE NE N NE NA W8 wE we

N8 e NE NE we we

w

T

L
.

PUSH AF ; SAVE DATA BYTE

;GET MASK WITH REQUIRED NUMBER OF O BITS

PUSH BC s SAVE STARTING BIT POSITION

LD HL., MSKARY

LD A,B ;GET NUMBER OF BITS

AND A ; TEST NUMBER OF BITS FOR O

RET 4 sRETURN WITH O RESULT IF NUMBER
; OF BITS IS O

DEC A s NORMALIZE TO 0...7

AND 00000111B sONLY ALLOW 0...7

LD C,A

LD B,0

ADD HL, BC ; INDEX INTO MASK ARRAY

LD D, (HL) sD = MASK WITH ZEROS FOR CLEARING

POP BC ;RESTORE STARTING BIT

; TEST IF STARTING BIT IS O

272 31 MANIPUATIONS AND SHIFTS

SFIELD:

INSRT:

s w8 w8 ws ws

SC7BR:

LD A, C
AND 00000111B sRESTRICT STARTING BIT TO 0...7
JR Z, INSRT s JUMP IF STARTING BIT IS O

;3 NO ALIGNMENT IS NECEZSARY

;ALIGN FIELD TO INSERT AND MASK IF STARTING BIT NON-ZERO

LD B, C ;B = STARTING BIT NUMBER

LD A, D ;A = MASK

SLaA E sSHIFT FIELD LEFT TO INSERT
RLCA s ROTATE MASK

DJUNZ SFIELD ;CONTINUE UNTIL ALIGNED

LD D, A

s INSERT FIELD

POP AF ;GET DATA BACK

AND D s AND OFF MASK AREA

OR E ;OR IN FIELD

RET

s MASK ARRAY - 1 TO 8 ZERO BITS

DB 11111110B
DB 111111008
DB 11111000B
DB 11110000B
DB 11100000B
DB 11000000B
DB 10000000B
DR 00000000B

SAMPLE EXECUTION:

LD A,11111111B ;REGISTER A = DATA

LD B,3 sREGISTER B = NUMBER OF BITS

LD c,2 sREGISTER C = LOWEST BIT POSITION
LD E, 00000101B sREGISTER E = FIELD TO INSERT
CALL BFI 3 INSERT 3-BIT FIELD STARTING AT
JR SC7R 3 BIT 2, RESULT = 11110111E

END

. ws w8 ws e

Multiple-Precision Arithmetic Shift Right

(MPASR)

/C

Shifts a multi-byte operand right arithmeti-
cally by a specified number of bit positions. The
length of the operand (in bytes) is 255 or less.
The Carry flag is set from the last bit shifted out
of the rightmost bit position. The operand is
stored with its least significant byte at the lowest
address.

Procedure: The program obtains the sign bit
from the most significant byte, saves that bit in
the Carry, and then rotates the entire operand
right one bit, starting with the most significant
byte. It repeats the operation for the specified
number of shifts.

Registers Used: AF, BC, DE, HL
ExecutionTime: NUMBER OF SHIFTS =* (46+
34 * LENGTH OF OPERANDS IN BYTES) +
59 cycles
Program Size: 28 bytes
Data Memory Required: None
Special Cases:

1. If the length of the operand is 0, the program

exits immediately with the operand unchanged and
the Carry flag cleared.

2. If the number of shifts is 0, the program exits
immediately with the operand unchanged and the
Carry flag cleared.

Entry Conditions

Base address of operand in HL
Length of the operand in bytes in B
Number of shifts (bit positions) in C

Exit Conditions

Operand shifted right arithmetically by the spec-
ified number of bit positions. The original sign
bit is extended to the right. The Carry flag is set
from the last bit shifted out of the rightmost bit
position. Carry is cleared if either the number
of shifts or the length of the operand is 0.

Examples

1. Data: Length of operand (in bytes) = 08
Operand = 85A4C719FE06741E 4

Number of shifts = 04

Shifted operand = F85A4C719FE06741 ¢

This is the original operand shifted right four
bits arithmetically; the four most signifi-
cant bits all take the value of the original
sign bit (1).

Carry = 1, since the last bit shifted from the
rightmost bit position was 1.

Result:

2. Data: Length of operand (in bytes) = 04
Operand = 3F6A42D3 ¢
Number of shifts = 03
Result: ~ Shifted operand = 07ED485A (¢

This is the original operand shifted right three
bits arithmetically; the three most signifi-
cant bits all take the value of the original
sign bit (0).

Carry = 0, since the last bit shifted from the
rightmost bit position was 0.

273

274 37 \MANIPULATIONS AND SHIFTS

N NE N NE B NE wE ws

Title Multiple-Precision Arithmetic Shift Right

Name: MPASR

Purpose: Arithmetic shift right a multi-byte operand
N bits

Entry: Register pair HL = Base address of operand

Register B = Length of operand in bytes
Register C Number of bits to shift

The operand is stored with ARRAYLO] as its
least significant byte and ARRAYLLENGTH-11]
its most significant byte, where ARRAY

is its base address.

Exit: Operand shifted right with the most significant
bit propagated.
CARRY := Last bit shifted from least
significant position.

Registers used: AF,BC,DE,HL

B WE N MR MR NS ME NB NE NE NE NE NE R 9B N8 NE w0 N e

Time: 59 cycles overhead plus
({34 # length) + 44) cycles per shift

Size: Program 28 bytes

8 w3 s uE ws s

MPASR:
sEXIT IF NUMBER OF SHIFTS OR LENGTH OF OPERAND IS O
3sOR CLEARS CARRY IN EITHER CASE

LD A, C
OR A
RET z sRETURN IF NUMBER OF SHIFTS IS ©
LD A B
OR A
RET z sRETURN IF LENGTH OF OPERAND IS O
; CALCULATE ADDRESS OF MOST SIGNIFICANT (LAST) BYTE
LD E,B s ADDRESS OF MSB = BASE + LENGTH-1
LD n,o
ADD HL., DE
DEC HL ;HL = ADDRESS OF MSB
sC = NUMBER OF SHIFTS

;A = LENGTH OF OPERAND
sLOOP ON NUMBER OF SHIFTS TOQ PERFORM
s INITIAL CARRY = MOST SIGNIFICANT BIT OF ENTIRE OFERAND

~ o~

~e wn v wE v we

ME NE NE NB NB NE NE ME NS ME NE NE MB N M8 N8 N WA N WE WA NS N8 NS w8 we

LQOOF:

ASRLP:

CONT:

w8 w8 ws ws ws

SC7C:

SZAY
SHIFTS
AY:

s ROTATE

RR
DEC
D.INZ

LD
LD
DEC
JR
RET

7C MULTIPLE-PRECISION ARITHMETIC SHIFT RIGHT (MPASR)

B, (HL) sGET MOST SIGNIFICANT BYTE

B s CARRY = MOST SIGNIFICANT BIT
B, A

E,L s SAVE ADDRESS OF MS

D,H

BYTES RIGHT STARTING WITH MOST SIGNIFICANT
(HL) ;ROTATE A BYTE RIGHT

HL ; DECREMENT TO LESS SIGNIFICANT BYTE
ASRLP

L,E ;s RESTORE ADDRESS OF MSB

H,D

C ; DECREMENT NUMBER OF SHIFTS
NZ, LOOP

SAMPLE EXECUTION:

275

- us ws ws w8

LD HL, AY ; BASE ADDRESS OF OPERAND
LD B, SZAY sLENGTH OF OPERAND IN BYTES
LD C,SHIFTS ;NUMBER OF SHIFTS
CALL MPASR s SHIFT
sRESULT OF SHIFTING EDCBA?874854321H, 4 BITS IS
H FEDCBA98765432H, C=0
; IN MEMORY AY = 032H
3 AY+1 = 0T4H
H AY+2 = 076H
H AY+3 = 098H
; AY+4 = OBAH
H AY+S = ODCH
; AY+4 = OFEH
JR SC7C
s DATA SECTION
EQU 7 ;LENGTH OF OPERAND IN BYTES
EQU 4 sNUMBER OF SHIFTS
DB 21H, 43H, 65H, 87H, 0A9H, OCBH, OEDH

END

Multiple-Precision Logical Shift Left

(MPLSL)

/D

Shifts a multi-byte operand left logically by a
specified number of bit positions. The length of
the operand (in bytes) is 255 or less. The Carry
flag is set from the last bit shifted out of the
leftmost bit position. The operand is stored with
its least significant byte at the lowest address.

Procedure: The program clears the Carry
initially (to fill with a 0 bit) and then shifts the
entire operand left one bit, starting with the least
significant byte. It repeats the operation for the
specified number of shifts.

Registers Used: AF, BC, DE

Execution Time: NUMBER OF SHIFTS * (27+ 34+
LENGTH OF OPERAND IN BYTES)+ 31 cycles

Program Size: 21 bytes
Data Memory Required: None
Special Cases:

1. If the length of the operand is 0, the program
exits immediately with the operand unchanged and
the Carry flag cleared.

2. If the number of shifts is 0, the program exits
immediately with the operand unchanged and the
Carry flag cleared.

Entry Conditions

Base address of operand in HL
Length of operand in bytes in B
Number of shifts (bit positions) in C

Exit Conditions

Operand shifted left logically by the specified
number of bit positions (the least significant bit
positions are filled with 0’s). The Carry flag is set
from the last bit shifted out of the leftmost bit
position. Carry is cleared if either the number of
shifts or the length of the operand is 0.

Examples

1. Data: Length of operand (in bytes) = 08
Operand = 85A4C719FE06741E ¢

Number of shifts = 04

Shifted operand = 5SA4C719FE06741E0,¢

This is the original operand shifted left four
bits logically; the four least significant bits
are all cleared.

Carry = 0, since the last bit shifted from the
leftmost bit position was 0.

Result:

276

2. Data: Length of operand (in bytes) = 04
Operand = 3F6A42D3¢
Number of shifts = 03
Result: Shifted operand = FB521698 ¢

This is the original operand shifted left three
bits logically; the three least significant bits
are all cleared.

Carry = 1, since the last bit shifted from the
leftmost bit position was 1.

7D MULTIPLE-PRECISION LOGICAL SHIFT LEFT (MPLSL) 277

N uE NE NE NB N D N
NE NE NE NE NB N ws we

Register B = Length of operand in bytes
Register C = Number of bits to shift

Title Multiple-Precision Logical Shift Left
Name: MPLSL

H Purpose: Logical shift left a multi-byte operand

H N bits

H Entry: Register pair HL = Base address of operand

The operand is stored with ARRAY[O] as its
least significant byte and ARRAYLLENGTH-11]
its most significant byte, where ARRAY

is its base address.

NE ME MR NE NB NE NE Y NE we wE e

Exit: Operand shifted left filling the least
significant bits with zercos
CARRY := Last bit shifted from
most significant position

Registers used: AF,BC,DE

Time: 31 cycles overhead plus
{(34 % length) + 27) cycles per shift

Size: Program 21 bytes

NE NB NE ME NE NS NE NE N ME NS ME WS NE NE w8 WS v

WR NE NB NB ME B NE wE NE NE NE NE wE we

MPLSL:
sEXIT IF NUMBRER OF SHIFTS OR LENGTH QF OPERAND IS O
sOR CLEARS CARRY IN EITHER CASE
LD A, C
OR A
RET r4 sRETURN IF NUMBER OF SHIFTS IS O
LD AB
OR A
RET z sRETURN IF LENGTH OF OPERAND IS O
sLOOP ON NUMBER QF SHIFTS TOQ PERFORM
sA = LENGTH OF OPERAND
sC = NUMBER OF SHIFTS
sHL = ADDRESS OF LEAST SIGNIFICANT (FIRST) BYTE OF OPERAND
sCARRY = O INITIALLY FOR LOGICAL SHIFT
LOOFP:
LD E,L 1 SAVE ADDRESS OF LSB
LD D,H
LD B, A sB = LENGTH OF OPERAND
OR A sCLEAR CARRY FOR LOGICAL SHIFT

278 BT MANIPULATIONS AND SHIFTS

LSLLP:

~8 w8 ws w8 ws

SC7D:

SZAY
SHIFTS
AY:

sROTATE BYTES STARTING WITH LEAST SIGNIFICANT

RL
INC

DJUNZ

LD
LD
DEC
JR
RET

(HL)
HL

LSLLP

L,E

H,D

C

NZ, LOOP

SAMPLE EXECUTION:

sROTATE NEXT BYTE LEFT
3 INCREMENT TO MORE SIGNIFICANT BYTE

s RESTORE ADDRESS OF LSE

; DECREMENT NUMBER OF SHIFTS

LD HL, AY sHL = BASE ADDRESS OF OPERAND
LD B, SZAY ;B = LENGTH OF OPERAND IN BYTES
LD C,SHIFTS sC = NUMBER OF SHIFTS
CALL MPLSL s SHIFT
sRESULT OF SHIFTING EDCBAY878954321H, 4 BITS IS
;) DCRBA9876543210H, C=0
;3 IN MEMORY AY = 010H
3 AY+1 = 032H
; AY+2 = 054H
; AY+3 = 076&H
H AY+4 = 098H
; AY+3 = OBAH
3 AY+é6 = ODCH
JR SC7D
s DATA SECTION
EQU 7 ;LENGTH OF OPERAND IN BRYTES
EQU 4 sNUMBER OF SHIFTS
DB 21H, 43H, 65H, 87H, 0AH, OCBH, OEDH

END

e s NS v s

Multiple-Precision Logical Shift Right

(MPLSR)

/E

Shiftsa multi-byte operand right logically by
a specified number of bit positions. The length
of the operand (in bytes) is 255 or less. The
Carry flag is set from the last bit shifted out of
the rightmost bit position. The operand is stored
with its least significant byte at the lowest
address.

Procedure: The program clears the Carry
initially (to fill with a 0 bit) and then shifts the
entire operand right one bit, starting with the
most significant byte. It repeats the operation
for the specified number of shifts.

Registers Used: AF, BC, DE, HL

Execution Time: NUMBEROF SHIFTS *(35+34 «
LENGTH OF OPERAND IN BYTES) + 59 cycles

Program Size: 26 bytes
Data Memory Required: None
Special Cases:

1. If the length of the operand is 0, the program
exits immediately with the operand unchanged and
the Carry flag cleared.

2. If the number of shifts is 0, the program exits
immediately with the operand unchanged and the
Carry flag cleared.

Entry Conditions

Base address of operand in HL
Length of operand in bytes in B
Number of shifts (bit positions) in C

Exit Conditions

Operand shifted right logically by the specified
number of bit positions. (The most significant
bit positions are filled with 0’.)

The Carry flag is set from the last bit shifted out
of the rightmost bit position. Carry is cleared
if either the number of shifts or the length of
the operand is 0.

Examples

1. Data: Length of the operand (in bytes) = 08
Operand = 85A4C719FE06741E ¢

Number of shifts = 04

Shifted operand = 085A4C7I19FE06741 4

This is the original operand shifted right
four bits logically; the four most significant
bits are all cleared.

Carry= 1, since the last bit shifted from the
rightmost bit position was 1.

Result:

2. Data: Length of operand (in bytes) = 04
Operand = 3F6A42D3,,
Number of shifts = 03
Result: Shifted operand = 07ED485A ¢

This is the original operand shifted right three
bits logically; the three most significant bits
are all cleared.

Carry = 0, since the last bit shifted from the
rightmost bit position was 0.

279

280 &7 MANIPULATIONS AND SHIFTS

N8 B NE o ws

~8 us we

ME ME NE NE NE ME NE N8 WS N8 NE NE NE NB ME NE NE NE N 9B ME N N NE N w8

MPLSR:

Title Multiple-Precision Logical Shift Right

Name: MPLSR

Purpose: Logical shift right a multi-byte operand N bits
Entry: Register pair HL = Base address of operand

Register B = Length of operand in bytes
Register C = Number of bits to shift

The operand is stored with ARRAYLO] as its
least significant byte and ARRAYLLENGTH-11
its most significant byte, where ARRAY

is its base address.

Exit: Operand shifted right filling the most
significant bits with zeros

CARRY := Last bit shifted from least
significant position

Registers used: AF,BC,DE,HL

Time: 59 cycles overhead plus
({34 # length) + 35) cycles per shift

Size: Program 24 bytes

;EXIT IF NUMBER OF SHIFTS OR LENGTH OF QPERAND IS O
;OR CLEARS CARRY IN EITHER CASE

LD A C
OoR A
RET z sRETURN IF NUMBER QF SHIFTS IS O
LD A B
OoR A
RET z sRETURN IF LENGTH OF OPERAND IS O
s CALCULATE ADDRESS OF MOST SIGNIFICANT (LAST) BYTE
LD E,B s ADDRESS OF MSB = BASE + LENGTH-1
LD D,o
ADD HL, DE
DEC HL sHL = ADDRES®S OF MSB
;C = NUMBER OF SHIFTS

A = LENGTH OF OFERAND
;LOOP ON NUMBER OF SHIFTS TO PERFORM
;START WITH CARRY = O FOR LOGICAL SHIFT

B NE NE ME WE NE MR NE NE NE VE NE ME NE ME NE N8 NE W8 NE NE B NE MR N8 s

NB NE NE MR Ne wE v e

7E MULTIPLE-PRECISION LOGICAL SHIFT RIGHT (MPLSR) 281

LOOF:
OR A s CLEAR CARRY FOR LOGICAL SHIFT
LD B,A ;B = LENGTH OF OPERAND
LD E,L ; SAVE ADDRESZ OF MZE
LD D,H
sROTATE BYTES STARTING WITH MOST SIGNIFICANT
LSRLF:
RR (HL) ;ROTATE A BYTE RIGHT
DEC HL s DECREMENT TO LESS SIGNIFICANT BYTE
DUINZ LSRLP
LD L,E s RESTORE ADDRESZS OF M3ZB
LD H,D
DEC C s DECREMENT NUMBER OF SHIFTS
JR NZ, LOOF
RET
; SAMPLE EXECUTION: H
SC7E:
LD HL, AY ;HL = BASE ADDRESS OF OFPERAND
LD R, SZAY sB = LENGTH OF QOPERAND IN BYTES
LD C,SHIFTS ;C = NUMBER OF SHIFTS
CALL MPLSR s SHIFT
sRESULT OF SHIFTING EDCBA®874854321H, 4 BITS IS
H OEDCEBAY8785432H, C=0
3 IN MEMORY AY = 03zH
; AY+1 = 0T54H
H AY+2 = Q0764H
; AY+3 = 098H
H AY+4 = OBRAH
H AY+S = ODCH
; AY+é = QOEH
JR SC7E
;s DATA SECTION
SZAY EQU 7 sLENGTH OF OPERAND IN BYTES
SHIFTS EQU 4 s NUMBER QF SHIFTS
AY: DB 21H, 43H, 65H, 87H, 0APH, OCBH, OEDH

END

Multiple-Precision Rotate Right (\MPRIR)

/F

Rotatesa multi-byte operand right by a spec-
ified number of bit positions as if the most signif-
icant bit and least significant bit were connected.
The length of the operand (in bytes) is 255 or
less. The Carry flag is set from the last bit shifted
out of the rightmost bit position. The operand is
stored with its least significant byte at the lowest
address.

Procedure: The program shifts bit 0 of the
least significant byte of the operand to the Carry
flag and then rotates the entire operand right
one bit, starting with the most significant byte. It
repeats the operation for the specified number
of rotates.

Registers Used: AF, BC, DE, HL, IX

Execution Time: NUMBER OF ROTATES * (58 +
34 * LENGTH OF OPERAND IN BYTES) + 83
cycles

Program Size: 33 bytes

Data Memory Required: None

Special Cases:

1. If the length of the operand is 0, the program
exits immediately with the operand unchanged and
the Carry flag cleared.

2. If the number of rotates is 0, the program exits

immediately with the operand unchanged and the
Carry flag cleared.

Entry Conditions

Base address of operand in HL
Length of operand in bytes in B
Number of rotates (bit positions) in C

Exit Conditions

Operand rotated right logically by the specified
number of bit positions (the most significant bit
positions are filled from the least significant bit
positions). The Carry flag is set from the last bit
shifted out of the rightmost bit position. Carry is
cleared if either the number of rotates or the
length of the operand is 0.

Examples

1. Data: Length of operand (in bytes) = 08
Operand = 85A4C719FE06741E ¢

Number of rotates = 04

Rotated operand = E85A4C719FE06741,¢

This is the original operand rotated right four
bits; the four most significant bits are equiv-
alent to the original four least significant
bits.

Carry = 1, since the last bit shifted from the
rightmost bit position was 1.

Result:

282

2. Data: Length of operand (in bytes) = 04
Operand = 3F6A42D3¢
Number of rotates = 03
Result: Rotated operand = 67ED485A ¢

This is the original operand rotated right
three bits; the three most significant bits are
equivalent to the original three least signif-
icant bits.

Carry = 0, since the last bit shifted from the
rightmost bit position was 0.

R R LR TR

NE ME NB NB NE NS N NE NE ME NE NE NE NB NE NE NE w8 NE NE N8 N8 Ne e

MPRR:

Title
Name:

Purpose:

Entry:

Exit:

Registers used:

Time:

Size:

7F MULTIPLE-PRECISION ROTATE RIGHT (MPRR) 283

Multiple-Precision Ratate Right
MFPRR

NB B NE B N wE v NS

Rotate right a multi-byte operand N bits

Register pair HL = Base address of operand
Register B = Length of coperand in bytes
Register C = Number of bits to rotate

The coperand is stored with ARRAYLO] as its
least significant byte and ARRAYLLENGTH-11]
its most significant byte, where ARRAY

is its base address.

Operand rotated right

CARRY := Last bit shifted from least
significant position

AF,BC,DE, HL, IX

83 cycles overhead plus
({34 = length) + S8) cycles per rotate

Program 32 bytes

ME NE NE NE ME ME NE NE ME NE N B NE N8 M8 NE N en NE NS NS we w8~

$EXIT IF NUMBER OF ROTATES OR LENGTH OF OPERAND IS O
;OR CLEARS CARRY IN EITHER CASE

sRETURN IF NUMBRER OF ROTATES IS 0O

;RETURN IF LENGTH OF QOPERAND IS O

;s CALCULATE ADDRESS OF MQOST SIGNIFICANT (LAST) BYTE

LD A C
OR A
RET z
LD A B
OR A
RET z
PUSH HL
POP IX
LD E,B
LD 0n,o
ADD HL, DE
DEC HL

s IX POINTS TQ LSEB (FIRST BYTE)
s ADDRESS OF MSR = BASE + LENGTH-1

sHL POINTS TO MSB (LAST RYTE)
;C = NUMBER OF ROTATES
;A = LENGTH OF OPERAND

;LOOP ON NUMBER OF ROTATES TO PERFORM
s CARRY = LEAST SIGNIFICANT BIT OF ENTIRE OFERAND

284 17T MANIPULATIONS AND SHIFTS

LOOP:
LD R, (IX+0) sGET LSB
RR B sCARRY = RIT 0 OF LSR
LD E.A sB = LENGTH OF OPERAND IN BYTES
LD E,L s SAVE ADDRESS OF MSE
LD D,H
;ROTATE BYTES RIGHT STARTING WITH MOST SIGNIFICANT
RRLF:
RR (HL) sROTATE A BYTE RIGHT
DEC HL s DECREMENT TO LESS SIGNIFICANT BYTE
D.INZ RRLP
LD L,E s RESTORE ADDRESS OF MSB
LD H, D
DEC C s DECREMENT NUMBER OF ROTATES
JR NZ, LaopP
RET
H SAMPLE EXECUTION:
SC7F:
LD HL., AY ;s BASE ADDRESS OF OFERAND
LD R,SZAY s LENGTH QF OPERAND IN BRYTES
LD C, ROTATS s NUMBER OF ROTATES
CALL MPRR sROTATE
sRESULT OF ROTATING EDCBA927654321H, 4 BITS IS
: 1EDCRAYR7485432H, C=0
3 IN MEMORY AY = Q32H
H AY+1 = QS4H
H AY+2 = 074H
H AY+3 = Q93H
H AY+4 = ORAH
; AY+S = ODCH
H AY+4 = Q1EH
JR SC7F
s DATA SECTION
SZAY EQU 7 sLENGTH OF QOPERAND IN BYTES
ROTATS EQU 4 sNUMBER OF ROTATES
AY: DR 21H, 43H, 65H, 87H, 0A?H, OCBH, OEDH

END

N s s N8 ws

Multiple-Precision Rotate Left (\VPRRL)

/G

Rotates a multi-byte operand left by a speci-
fied number of bit positions as if the most signif-
icant bit and least significant bit were connected.
The length of the operand (in bytes) is 255 or
less. The Carry flagis set from the last bit shifted
out of the leftmost bit position. The operand is
stored with its least significant byte at the lowest
address.

Procedure: The program shifts bit 7 of the
most significant byte of the operand to the
Carry flag. It then rotates the entire operand left
one bit, starting with the least significant byte. It
repeats the operation for the specified number
of rotates.

Registers Used: AF, BC, DE, HL, IX
Execution Time: NUMBER OF ROTATES * (58 +
34 * LENGTH OF OPERAND IN BYTES) + 104
cycles
Program Size: 35 bytes
Data Memory Required: None
Special Cases:
1. If the length of the operand is 0, the program

exits immediately with the operand unchanged and
the Carry flag cleared.

2. If the number of rotates is 0, the program exits
immediately with the operand unchanged and the
Carry flag cleared.

Entry Conditions

Base address of operand in HL
Length of operand in bytes in B
Number of rotates (bit positions) in C

Exit Conditions

Operand rotated left the specified number of bit
positions (the least significant bit positions are
filled from the most significant bit positions).
The Carry flagis set from the last bit shifted out
of the leftmost bit position. Carry is cleared if
either the number of rotates or the length of the
operand is 0.

Examples

1. Data: Length of operand (in bytes) = 08
Operand = 85A4C719FE06741E,,

Number of rotates = 04

Rotated operand = SA4C719FE06741E84

This is the original operand rotated left four
bits; the four least significant bits are equiv-
alent to the original four most significant
bits.

Carry = 0, since the last bit shifted from the
leftmost bit position was 0.

Result:

2. Data: Length of operand (in bytes) = 04
Operand = 3F6A42D3 ¢
Number of rotates = 03
Result: Rotated operand = FB521699 4

This is the original operand rotated left three
bits; the three least significant bits are equiv-
alent to the original three most significant
bits.

Carry = 1, since the last bit shifted from the
leftmost bit position was 1.

285

286 &7 \MANPULATIONS AND SHIFTS

NS ME N N B NS wE N

N NE NS ME N NE NE ME NI NE NE N8 NB WE NS M8 WE s B we

“8 ws ws v

MPRL.:

Title Multiple—-Precision Rotate Left

Name: MPRL

Purpose: Rotate left a multi-byte operand N bits
Entry: Register pair HL = Base address of operand

Register B = Length of operand in bytes
Register C = Number of bits to rotate

The operand is stored with ARRAYLO1 as its
least significant byte and ARRAYLLENGTH-11
its most significant byte, where ARRAY

is its base address.

Exit: Operand rotated left
CARRY := Last bit shifted from most
significant position
Registers used: AF,BC,DE,HL,IX

Time: 104 cycles overhead plus
({34 = length) + 58) cycles per rotate

Sizes Program 35 bytes

sEXIT IF NUMBER OF ROTATES OR LENGTH OF OPERAND IS ©
;OR CLEARS CARRY IN EITHER CASE

LD A, C

OR A

RET z sRETURN IF NUMBER OF ROTATES IS O

LD A B

OR A

RET z sRETURN IF LENGTH OF OPERAND IS O

; CALCULATE ADDRESS OF MOST SIGNIFICANT (LAST) BYTE

PUSH HL s SAVE ADDRESS OF FIRST BYTE

LD E,B s ADDRESS OF MSB = BASE +LENGTH-1

LD D, 0

ADD HL, DE

DEC HL

PUSH HL

POP IX s IX POQINTS TO MOST SIGNIFICANT BYTE

POP HL sHL POINTS TO LEAST SIGNIFICANT BYTE
sC = NUMBER OF ROTATES
A = LENGTH OF OPERAND

sLOOP ON NUMBER OF ROTATES TO PERFORM

NE NE MBS e wE ew e

NE ME ME NB ME MR NS NS NE NE NE MR ME N8 NE NE NS NS NS N R wE wE v

7G MULTIPLE-PRECISION ROTATE LEFT (MPRL) 287

s CARRY = MOST SIGNIFICANT BIT OF ENTIRE OPERAND

LOOP:
Lo B, (IX+0) sGET MOST SIGNIFICANT BYTE
RL B sCARRY = BIT 7 OF M3E
LD E,A ;B = LENGTH OF OPERAND IN EYTES
LD E,L s SAVE ADDRESS OF LSRE
LD o, H
sROTATE BYTES LEFT STARTING WITH LEAST SIGNIFICANT
RLLP:
RL (HL) s ROTATE A EBYTE LEFT
INC HL s INCREMENT TO MORE SIGNIFICANT BYTE
DUNZ RLLP
LD L,E sRESTORE ADDRESS OF LSB
LD H,D
DEC C s DECREMENT NUMRER OF ROTATES
JR NZ, LOaP
RET
H SAMFLE EXECUTION: H
; ;
SC7G:
LD HL, AY sHL = BASE ADDRESS OF QFPERAND
LD B, SZAY 3B = LENGTH OF QFERAND IN BYTES
LD C,ROTATS sC = NUMBER OF ROTATES
cALL MFRL s ROTATE
sRESULT OF ROTATING EDCRA9874854321H, 4 BITS IS
H DCRASS7854321EH, C=0
3 IN MEMORY AY = Q1EH
H AY+1 = QO32H
H AY+2 = 054H
: AY+3 = QO74H
H AY+4 = 092H
H AY+S = OEAH
H AY+é = QOCH
JR SC705
s DATA SECTION
SZAY EQU 7 sLENGTH OF QOPERAND IN RYTES
ROTATS EQU 4 s NUMBER OF ROTATES
AY: DB 21H, 43H, &5H, 87H, 0A%H, OCBH, OEDH

END

String Compare (STRCMP)

8A

Compares two strings and sets the Carry and
Zero flags appropriately. The Zero flagis set to 1
if the strings are identical and to 0 otherwise.
The Carry flag is set to 1 if the string with the
base address in DE (string 2) is larger than the
string with the base address in HL (string 1); the
Carry flag is set to 0 otherwise. The strings are a
maximum of 255 bytes long and the actual
characters are preceded by a byte containing the
length. If the two strings are identical through
the length of the shorter, the longer string is
considered to be larger.

Procedure: The program first determines which
string is shorter from the lengths that precede
the actual characters. It then compares the
strings one byte at a time through the length of
the shorter. The program exits with the flags set
if it finds corresponding bytes that differ. If the
strings are the same through the length of the

Registers Used: AE, BC, DE, HL
Execution Time:

1. If the strings are not identical through the
length of the shorter, the time is 91 + 60 * NUMBER
OF CHARACTERS COMPARED. If, for example,
the routine compares five characters before findinga
disparity, the execution time is

91+ 60 * 5= 91+ 300 = 391 cycles

2. Ifthestrings are identical through the length of
the shorter, the time is 131 + 60 * LENGTH OF
SHORTER STRING. If, for example, the shorter
string is eight bytes long, the execution time is

131 + 60 * 8 = 131 + 480 = 611 cycles

Program Size: 32 bytes

Data Memory Required: Two bytes anywhere in
RAM for the lengths of the strings (addresses
LENSI and LENS2).

shorter, the program sets the flags by comparing
the lengths.

Entry Conditions

Base address of string 2 in DE
Base address of string 1 in HL

Exit Conditions

Flags set as if string 2 had been subtracted from
string 1. If the strings are the same through
the length of the shorter, the flags are set as if
the length of string 2 had been subtracted
from the length of string 1.

Zero flag= 1 if strings are identical, 0 if they are
not.

Carry flag= 1if string 2 is larger than string 1, 0
if they are identical or string 1 is larger. If the
strings are the same through the length of the
shorter, the longer one is considered to be
larger.

Examples
1. Data: String I = 05PRINT’ (05 is the length of the
string)
String 2 = 03‘END’ (03 is the length of the
string)
Result: Zero flag = 0 (strings are not identical)
Carry flag = 0 (string 2 is not larger than
string 1)
2. Data: String 1= 05‘PRINT’ (05 is the length of the
string)
String 2 = 02‘PR’ (02 is the length of the
string)
Result: Zero flag = 0 (strings are not identical)

Carry flag = 0 (string 2 is not larger than
string 1)

The longer string (string 1) is considered to be
larger. If you want to determine whether string 2
is an abbreviation of string 1, you could use
Subroutine 8C (Find the Position of a Substring)
and determine whether string 2 was part of
string 1 and started at the first character.

We are assuming here that the strings consist

8A STRING COMPARE (STRCMP) 289

3. Data: String | = 05‘PRINT’ (05 is the length of the
string)
String 2= 06‘SYSTEM’ (06 is the length of
the string)
Result: Zero flag = 0 (strings are not identical)

Carry flag= 1 (string 2 is larger than string 1)

of ASCII characters. Note that the byte preceding
the actual characters contains a hexadecimal
number (the length of the string), not a character.
We have represented this byte as two hexadecimal
digits in front of the string. The string itself is
shown surrounded by single quotation marks.
These serve only to delimit strings in the examples;
they are not actually part of the data. This
format is used to display string data in the
examples throughout this chapter.

This routine treats spaces like other charac-
ters. If, for example, the strings are ASCII, the
routine will find that SPRINGMAID is larger
than SPRING MAID, since an ASCII M (4D)
is larger than an ASCII space (201¢).

NB NS NS NE N8 B NE w8

NE NE NS B N NB w8 e N N

Compare 2 strings and return C and Z flags set

Title String compare
Name: STRCMP
Purpose:

or cleared
Entry: Register pair HL

Register pair DE =

A string is a maximum of 255 bytes long plus
a length byte which precedes it.

NE NE NS N B R v ~e

Base address of string 1
Base address of string 2

MR NE NME NE N8 MR B N wR s

290 SIRING MANIPULATION

e we

-

B B NE NE WE N NB NS R WE N8 WS w8 v

STRCMP:

BEGCMFP:

CMPLP:

CMPLEN:

LENS1:
LENS2:

Exit:

Registers used:

Time:

Size:

L[}

IF string 1
Z=1,C=0
IF string 1 > string 2 THEN

7=0,C=0
IF string 1 < string 2 THEN
1=0,C=1

string 2 THEN

AF, BC, DE, HL

9?1 cycles overhead plus &0 cycles per byte plus
40 cycles if strings are identical
through length of shorter

Program 32 bytes
Data 2 bytes

s DETERMINE WHICH STRING IS SHORTER
;LENGTH OF SHORTER = NUMBER OF BYTES TO COMPARE

LD
LD
LD
LD
CP
JR
LD

A, (HL)
(LENS1),
A, (DE)
(LENS2),
(HL)

C, BEGCMP
A, (HL)

;SAVE LENGTH OF STRING 1

A
3 SAVE LENGTH OF STRING 2

A
;s COMPARE TO LENGTH OF STRING 1
s JUMP IF STRING 2 IS SHORTER
sELSE STRING 1 IS SHORTER

s COMPARE STRINGS THROUGH LENGTH OF SHORTER

OR
JR

LD
EX

INC
INC
LD
CP
RET

DJUNZ

A
Z,CMPLEN

B,A
DE, HL

HL

DE

A, (DE)
(HL)
NZ

CMPLP

s TEST LENGTH OF SHORTER STRING
3 COMPARE LENGTHS

IF LENGTH IS ZERO

B = NUMBER OF BYTES TQ COMPARE
sDE = STRING 1

sHL = STRING 2

«

s INCREMENT TO NEXT BYTES

;GET A BYTE OF STRING 1

s COMPARE TO BYTE OF STRING 2
sRETURN WITH FLAGS SET IF BYTES
3 NOT EQUAL

s CONTINUE THROUGH ALL BYTES

s STRINGS SAME THROUGH LENGTH OF SHORTER
3 S0 USE LENGTHS TO SET FLAGS

LD
LD
CP
RET

A, (LENS1
HL, LENS2
(HL)

) s COMPARE LENGTHS

sRETURN WITH FLAGS SET OR CLEARED

sLENGTH QF STRING 1
sLENGTH OF STRING 2

ETRETEETY

NE NS NE ME N NS NE NE e uR w8 w8 v wE

8A STRING COMPARE (STRCMP) 294

SAMPLE EXECUTION:

. ws ws us ws
e w8 ws w8 w8

SC8A:
LD HL, S1 ;s BASE ADDRESS OF STRING 1
LD DE, 82 ; BASE ADDRESS OF STRING 2
CALL STRCMP s COMPARE STRINGS
s COMPARING "STRING 1" AND "STRING 2"
;3 RESULTS IN STRING 1 LESS THAN
;3 STRING 2, S0 Z=0,C=1
JR SC8A ;LOOP FOR ANOTHER TEST
S1i: DB 20H, “STRING 1 i
§2: DB 20H, “STRING 2 -

END

String Concatenation (CONCAT)

8B

Combines (concatenates) two strings, placing
the second immediately after the first in memory.
If the concatenation produces a string longer
than a specified maximum, the program con-
catenates only enough of string 2 to give the
combined string its maximum length. The Carry
flagis cleared if all of string 2 can be concatenated
or set to 1 if part of string 2 must be dropped.
Both strings are a maximum of 255 bytes long
and the actual characters are preceded by a byte
containing the length.

Procedure: The program uses the length of

string 1 to determine where to start adding char-
acters and the length of string 2 to determine how
many characters to add. If the sum of the lengths
exceeds the maximum, the program indicates an
overflow and reduces the number of characters it
must add (the number is the maximum length
minus the length of string 1). It then moves the
appropriate number of characters from string 2
to the end of string 1, updates the length of string
1, and sets the Carry flag to indicate whether any
characters were discarded.

Registers Used: AF, BC, DE, HL

Execution Time: Approximately 21 * NUMBER
OF CHARACTERS CONCATENATED plus 288
cycles overhead. NUMBER OF CHARACTERS
CONCATENATED is normally the length of string
2, but it will be the maximum length of string 1 minus
its current length if the combined string would be too
long. If, for example, NUMBER OF CHARACTERS
CONCATENATED is 144 (20,0), the execution time
is
21 * 20 + 288 = 420 + 288 = 708 cycles

Program Size: 83 bytes

Data Memory Required: Five bytes anywhere in
RAM for the base address of string 1 (2 bytes starting
at address SIADR), the lengths of the strings
(addresses SILEN and S2LEN), and a flag that

indicates whether the combined strings overflowed
(address STRGOV).

Special Cases:

1. If concatenating would make the string longer
than its specified maximum length, the program
concatenates only enough of string 2 to reach the
maximum. If any of string 2 must be truncated, the
Carry flag is set to 1.

2. If string 2 has a length of 0, the program exits
with the Carry flag cleared (no errors) and string 1
unchanged. That is, a length of 0 for either string is
interpreted as 0, not as 256.

3. If the original length of string 1 exceeds the
specified maximum, the program exits with the
Carry flag set to 1 (indicating an error) and string 1
unchanged.

Entry Conditions

Base address of string 2 in DE
Base address of string 1 in HL
Maximum length of string 1 in B

292

Exit Conditions

String 2 concatenated at the end of string 1 and
the length of string 1 increased appropriately. If
the resulting string would exceed the maximum
length, only the part of string 2 that would give
string 1 its maximum length is concatenated. If
any part of string 2 must be dropped, the Carry
flag is set to 1. Otherwise, the Carry flag is
cleared.

8B STRING CONCATENATION (CONCAT) 293

Examples
1. Data: Maximum length of string 1 = 0E;, = 14, 2. Data: String I = 07" JOHNSON’ (07 is the length of

String 1 = 07 JOHNSON’ (07 is the length of the string)
the string) String 2= 09, RICHARD’ (09 is the length of

String 2 = 05°,DON” (05 is the length of the the string)
string) Result: String 1 = 0E'JOHNSON, RICHA’ (0E;4 =

Result: String 1 =0C‘JOHNSON, DON’(0C,= 12, 14,4 is the maximum length allowed, so the
is the length of the combined string with last two characters of string 2 have been
string 2 placed after string 1) dropped)

Carry = 0, since the concatenation did not Carry = 1, since the concatenation produced
produce a string exceeding the maximum a string longer than the maximum length.
length.

Note that we are representing the initial byte
(containing the length of the string) as two
hexadecimal digits in both examples.
i :
; ;
; H
; H
H Title String Concatenation H
H Name: CONCAT H
: ;
H H
Purpose: Concatenate 2 strings into one string
Entry: Register pair HL = Base address of string 1

CARRY := 0
else
begin
CARRY :=

end;

W5 NS NE WS WS NE ¥E NS NG WS WE WS WE MO NE WS NE WE NG W w8 w ws

1

Register pair DE = Base address of string 2
Register B = Maximum length of string 1

A string is a maximum of 255 bytes long plus
a length byte which precedes it.

Exit: String 1 := string 1 concatenated with string 2
If no errors then

if the concatenation makes string 1 too

long, concatenate only enough of string 2

to give string 1 its maximum length.

if length{(stringl) > maximum length then
no concatenation is done

NE NE NE N N ME NS NB NE NE NS WS NE B NE M8 w8 N8 N NS wE N ws

294 sRING MANIPULATION

B WE- NE w8 w8 WS ws wS w8

CONCAT:

TOOLNG:

Registers used: AF,BC,DE,HL

Time: Approximately 21 # (length of string 2) cycles
plus 288 cycles overhead

Size: Program 823 bytes
Data S bytes

s DETERMINE WHERE TO START CONCATENATING

; CONCATENATION STARTS AT THE END OF STRING 1
;END OF STRING 1 = BASE1 + LENGTH1 + 1, WHERE

3 THE EXTRA 1 MAKES UP FOR THE LENGTH BYTE
sNEW CHARACTERS COME FROM STRING 2, STARTING AT
7 BASE2 + 1 (SKIPPING QVER LENGTH BYTE)

LD (S1ADR), HL s SAVE ADDRESS OF STRING 1

PUSH BC 3 SAVE MAXIMUM LENGTH OF STRING 1
LD A, (HL) s SAVE LENGTH OF STRING 1

LD (SILEN), A

LD C,A sEND1 = BASE1l + LENGTH1 + 1

LD B,0

ADD HL, BC

INC HL sHL = START OF CONCATENATION

LD A, (DE) ;SAVE LENGTH OF STRING 2

LD (S2LEN), A

INC DE ;DE = FIRST CHARACTER OF STRING 2
POP BC sRESTORE MAXIMUM LENGTH

s DETERMINE HOW MANY CHARACTERS TO CONCATENATE

LD C,A sADD LENGTHS OF STRINGS

LD A, (S1LEN)

ADD A, C

JR C, TOOLNG 7 JUMP IF SUM EXCEEDS 235

CcP B ; COMPARE TO MAXIMUM LENGTH

JR Z, LENQK ; JUMP IF NEW STRING IS MAX LENGTH
JR C, LENOK y OR LESS

; COMBINED STRING IS TOO LONG

3 INDICATE A STRING QVERFLOW, STRGQV := OFFH

; NUMBER OF CHARACTERS TO CONCATENATE = MAXLEN - S1LEN
; LENGTH OF STRING 1 = MAXIMUM LENGTH

LD A, OFFH s INDICATE STRING OVERFLOW

LD (STRGOV) , A

LD A, (S1LEN) ; CALCULATE MAXLEN - S1LEN

LD C,A

LD A,B

SUB Cc

RET c sEXIT IF ORIGINAL STRING TOO LONG
LD (S2LEN) , A s CHANGE S2LEN TO MAXLEN - SILEN
LD A B sLENGTH OF STRING 1 = MAXIMUM

LD (SILEN), A

JR DOCAT s PERFORM CONCATENATION

~s WS us w5 ws

w8 s ws ws

LENCK:

DOCAT:

EXIT:

S1ADR:
S1LEN:
S2LEN:
STRGOV:

. wa v w8 s

SC8E:

S1:

8B STRING CONCATENATION (CONCAT) 295

sRESULTING LENGTH DOES NOT EXCEED MAXIMUM

s LENGTH OF STRING 1 = S1LEN + S2LEN

3 INDICATE NO OVERFLOW, STRGOV := O

s NUMBER OF CHARACTERS TO CONCATENATE = LENGTH OF STRING 2

LD (S1LEN), A s SAVE SUM OF LENGTHS
suB A : INDICATE NO OVERFLOW
LD {STRGOWV) , A

; CONCATENATE STRINGS BY MOVING CHARACTERS FROM STRING 2
; TO END OF STRING 1

LD A, (S2LEN) ;s GET NUMBER OF CHARACTERS
OR A
JR Z,EXIT ;EXIT IF NOTHING TO CONCATENATE
LD C,A s BC = NUMBER OF CHARACTERS
LD B,0
EX DE, HL sDE = DESTINATION
sHL = SOURCE
LDIR s MQVE CHARACTERS
LD A, (SILEN) ;ESTABLISH NEW LENGTH OF STRING 1
LD HL, (S1ADR)
LD (HL) , A
kgA A, (STRGOV) ;CARRY = 1 IF OVERFLOW, O IF NOT
RET
; DATA
DS 2 ; BASE ADDRESS OF STRING 1
ns 1 s LENGTH OF STRING 1
ns 1 sLENGTH OF STRING 2
Dns 1 ; STRING QVERFLOW FLAG

SAMPLE EXECUTION:

~8 wE w8 we WS

LD HL, S1 sHL = BASE ADDRESS OF S1

LD DE, §2 ;DE = BASE ADDRESS OF 32

LD R, 20H sB = MAXIMUM LENGTH OF STRING 1
CALL CONCAT ; CONCATENATE STRINGS

JR SC8R sRESULT OF CONCATENATING

3 TEST DATA,

DB
DB

8H
“LASTNAME

;7 "LASTNAME" AND ", FIRSTNAME"
3 IS S1 = 13H, "LASTNAME, FIRSTNAME"

CHANGE FOR OTHER VALUES

sLENGTH OF S1
7 332 BYTE MAX LENGTH

296 sRING MANIPULATION

S2: DB OBH s LENGTH OF S2
DB “,» FIRSTNAME 332 BYTE MAX LENGTH

END

Find the Position of a Substring (POS)

8C

Searches for the first occurrence of a substring
within a string. Returns the index at which the
substring starts if it is found and 0 if it is not
found. The string and the substring are both a
maximum of 255 bytes long, and the actual
characters are preceded by a byte containing the
length. Thus, if the substring is found, its starting
index cannot be less than 1 or more than 255.

Procedure: The program searches the string
for the substring until either it finds the substring
or the remaining part of the string is shorter
than the substring and hence cannot possibly
contain it. If the substring is not in the string, the
program clears the accumulator; otherwise, the
program places the starting index of the substring
in the accumulator.

Registers Used: AE, BC, DE, HL

Execution Time: Data-dependent, but the overhead
is 157 cycles, each successful match of 1 character
takes 56 cycles, and each unsuccessful match of 1
character takes 148 cycles. The worst case is when the
string and substring always match except for the last
character in the substring, such as
String = ‘AAAAAAAAB’
Substring = ‘AAB’
The execution time in that case is
(STRING LENGTH — SUBSTRING LENGTH
+ 1) * (56 * (SUBSTRING LENGTH — 1) +
148) + 154
If, for example, STRING LENGTH = 9 and SUB-
STRING LENGTH = 3 (as in the case shown), the
execution time is
O—3+1)*(56*(3— 1)+ 148)+ 154="T7+ 260+
154 = 1820 + 154 = 1974 cycles
Program Size: 69 bytes

Data Memory Required: Seven bytes anywhere in
RAM for the base address of the string (2 bytes

starting at address STRING), the base address of the
substring (2 bytes starting at address SUBSTG), the
length of the string (address SLEN), the length of the
substring (address SUBLEN), and the current starting
index in the string (address INDEX).

Special Cases:

1. If either the string or the substring has a length
of 0, the program exits with 0 in the accumulator,
indicating that it did not find the substring.

2. If the substring is longer than the string, the
program exits with 0 in the accumulator, indicating
that it did not find the substring.

3. If the program returns an index of 1, the
substring may be regarded as an abbreviation of the
string. That is, the substring occurs in the string,
starting at the first character. A typical example
would be a string PRINT and a substring PR.

4. If the substring occurs more than once in the
string, the program will return only the index to the
first occurrence (the occurrence with the lowest
starting index).

Entry Conditions

Base address of substring in DE
Base address of string in HL.

Exit Conditions

A contains index at which first occurrence of
substring starts if it is found and contains 0 if
substring is not found.

297

298 STRING MANIPULATION

Examples

1. Data:

Result:

2. Data:

Result:

8 NS NB NS B N ws

B NE NB NS NE NE NE NE NS NS NE NE NS WE NS NS N6 WS ws w8

String = 1D‘ENTER SPEED IN MILES
PER HOUR’ (1D = 29, is the length of
the string)

Substring = 05‘MILES’ (05 is the length of
the substring)

A contains 10,4 (16,y), the index at which the
substring ‘MILES’ starts.

String = 1B‘SALES FIGURES FOR JUNE

1981’ (1B =27,y is the length of the string)

Substring = 04JUNE’ (04 is the length of the
substring)

A contains 13,4 (19/0), the index at which the
substring ‘JUNE’ starts.

3.

4.

Data:

Result:

Data:

Result:

String= 10‘LET Y1= X1+ R7°(10,s= 16,9 is
the length of the string)

Substring = 02‘R4’ (02 is the length of the
substring)

A contains 0, since the substring ‘R4’ does not
appear in the string LET Y1 = X1 + R7.

String = 07°RESTORE’ (07 is the length of
the string)

Substring = 03‘RES’ (03 is the length of the
substring)

A contains 1, the index at which the substring
‘RES’ starts. An index of | indicates that
the substring could be an abbreviation of
the string. Interactive programs, such as
BASIC intepreters and word processors,
often use such abbreviations to save on
typing and storage.

A string is a maximum of 235 bytes long plus
a length byte which precedes it.

Title

Name: FQS

Purpose:

Entry: Register pair HL
Register pair DE

Exit:

else

Register A = 0

Registers used: AF,BC,DE,HL

Time:

Find the position of a substring in a string

Search for the first occurrence of a substring
within a string and return its starting index.
If the substring is not found a 0 is returned.

= Base address of string
= Base address of substring

If the substring is found then
Register A = its starting index

Since the algorithm is so data-dependent,

NS B NS NS we wB W w8

NE NE NE ME NE N8 NS NG WS NE W8 NS NI NG ¥B NS NS NE NE W

NE NE NE NE NB NS NS N WE NS M8 NS W

“8 N8 w8 Wb ws w8

-
Q
)
"

SLP1:

as
fol
wor

154
Eac
Am

Wor
str
exc
sub

8C FIND THE POSITION OF A SUBSTRING (POS) 299

imple formula is impossible; but the
lowing statements are true, and a
st case is given.

cycles overhead
h match of 1 character takes 5é cycles
ismatch takes 148 cycles

st case timing will be when the
ing and substring always match
ept for the last character of the
string, such as

string = “AAAAAAAAAR’

substring = “AAB“

gram &9 bytes
a 7 bytes

NE NS NS NE NE NS NS NE NE NE NS NS NE NS NS MR N NE NS

sEXIT IF STRING OR SUBSTRING HAS ZERO LENGTH

Size: Pro
Dat

s SET UP TEMPORARIES

LD (STRING) , HL

EX DE, HL

LD A, (HL)

OR A

JR Z,NOTFND

INC HL

LD (SUBSTG) , HL

LD (SUBLEN), A

LD C,A

LD A, (DE)

OR A

JR Z,NOTFND

s SAVE STRING ADDRESS

;s TEST LENGTH OF SUBSTRING

sEXIT IF LENGTH OF SUBSTRING = 0O

s MOVE PAST LENGTH BYTE OF SUBSTRING
; SAVE SUBSTRING ADDRESS

;C = SUBSTRING LENGTH
s TEST LENGTH OF STRING

sEXIT IF LENGTH OF STRING = O

s NUMBER OF SEARCHES = STRING LENGTH - SUBSTRING LENGTH

+ 1.

8 w8 wn w ws

SUR
JR
INC
LD
SUR
LD

s SEARCH

LD
INC
LD
LD

AFTER THAT,

C
C, NOTFND
A

B, A

A
CINDEX), A

UNTIL REMAI

HL, INDEX
(HL)

HL, SUBLEN
C, (HL)

NQ USE SEARCHING SINCE THERE AREN-T

ENQUGH CHARACTERS LEFT TO HOLD SUBSTRING

IF SUBSTRING IS LONGER THAN STRING, EXIT IMMEDIATELY AND
; INDICATE SUBRSTRING NOT FOUND

3A = STRING LENGTH -~ SUBSTRING LENGTH
sEXIT IF STRING SHORTER THAN SUBSTRING
; COUNT = DIFFERENCE IN LENGTHS + 1

s INITIAL STARTING INDEX = O

NING STRING SHORTER THAN SUBSTRING
s INCREMENT STARTING INDEX

;C = LENGTH OF SUBSTRING

300 sinG MANIPULATION

LD HL, (STRING) s INCREMENT TQ NEXT BYTE OF STRING
INC HL
LD (STRING), HL s HL NEXT ADDRESS IN STRING

[]

LD DE, (SUBSTG) ; DE STARTING ADDRESS OF SUBSTRING
;C = CURRENT VALUE OF COQUNT

; TRY TO MATCH SUBSTRING STARTING AT INDEX
sMATCH INVOLVES COMPARING CORRESPONDING CHARACTERS
; ONE AT A TIME

CMPLP:
LD A, (DE) sGET A CHARACTER OF SUBSTRING
CP (HL) s COMPARE TO CHARACTER OF STRING
JR NZ, SLP2 s JUMP IF NOT SAME
DEC c
JR Z,FOUND s JUMP IF SUBSTRING FQUND
INC HL s PROCEED TO NEXT CHARACTERS
INC DE
JR CMPLP
sARRIVE HERE IF MATCH FAILS, SUBSTRING NOT YET FOUND
SLP2:
DUNZ SLP1 s TRY NEXT HIGHER INDEX IF
s ENOUGH STRING LEFT
JR NOTFND sELSE EXIT NOT FOUND
s FOUND SUBSTRING, RETURN ITS STARTING INDEX
FOUND:
LD A, (INDEX) s SUBSTRING FOUND, A = STARTING INDEX
RET
;COULD NOT FIND SUBSTRING, RETURN O AZ INDEX
NOTFND:
SUR A s SURSTRING NOT FOUND, A = Q
RET
s DATA
STRING: DS 2 s BASE ADDRESS OF STRING
SUBRSTG: DS 2 s BASE ADDRESS OF SUBSTRING
SLEN: ns 1 sLENGTH OF STRING
SUBLEN: DS 1 sLENGTH OF SUBSTRING
INDEX: DS 1 s CURRENT INDEX INTO STRING
s
b SAMPLE EXECUTION:
SCRC:
LD HL, STG sHL = BASE ANDRESS OF STRING
LD DE, SSTG sDE = BASE ADDRESS OF SUBSTRING
CALL POS sFIND POSITION OF SUBSTRING

s SEARCHING "AAAAAAAAAE" FOR "AAB"
; RESULTS IN REGISTER A = 8

w8 wB ws w8 W

8C FIND THE POSITION OF A SUBSTRING (POS) 301

JR scec ;LOOP FOR ANOTHER TEST

; TEST DATA, CHANGE FOR OTHER VALUES

DB 0AH s LENGTH OF STRING

DB “AAAAAAAAAR “ 332 BYTE MAX LENGTH
DB 3H ;LENGTH OF SUBSTRING

DB “AAR ‘< 332 BYTE MAX LENGTH

END

Copy a Substring from a String (COPY)

8D

Copies a substring from a string, given a
starting index and the number of bytes to copy.
The strings are a maximum of 255 bytes long,
and the actual characters are preceded by a byte
containing the length. If the starting index of the
substring is 0 (that is, the substring would start
in the length byte) or is beyond the end of the
string, the substring is given a length of 0 and
the Carry flag is set to 1. If the substring would
exceed its maximum length or would extend
beyond the end of the string, then only the
maximum number or the available number of
characters (up to the end of the string) is placed
in the substring, and the Carry flag is set to 1. If
the substring can be formed as specified, the
Carry flag is cleared.

Procedure: The program exits immediately if
the number of bytes to copy, the maximum
length of the substring, or the starting index is 0.
It also exits immediately if the starting index
exceeds the length of the string. If none of these
conditions holds, the program checks if the
number of bytes to copy exceeds either the
maximum length of the substring or the number
of characters available in the string. If either is
exceeded, the program reduces the number of
bytes to copy appropriately. It then copies the
proper number of bytes from the string to the
substring. The program clears the Carry flag if

the substring can be formed as specified and sets

the Carry flag if it cannot.

Registers Used: AF, BC, DE, HL

Execution Time: Approximately 21 * NUMBER OF
BYTES COPIED plus 237 cycles overhead. NUMBER
OF BYTES COPIED is the number specified if no
problems occur, or the number available, or the maxi-
mum length of the substring if copying would extend
beyond either the string or the substring. If, for
example, NUMBER OF BYTES COPIED = 12,
(0Cy¢), the execution time is

21 * 12+ 237 = 252+ 237 = 489 cycles

Program Size: 73 bytes

Data Memory Required: Two bytes anywhere in
RAM for the maximum length of the substring
(address MAXLEN) and an error flag (address
CPYERR)

Special Cases:

1. If the number of bytes to copy is 0, the program
assigns the substring a length of 0 and clears the Carry
flag, indicating no errors.

2. Ifthe maximum length of the substring is 0, the
program assigns the substring a length of 0 and sets
the Carry flag to 1, indicating an error.

3. If the starting index of the substring is 0, the
program assigns the substring a length of 0 and sets
the Carry flag to 1, indicating an error.

4. If the source string does not even reach the speci-
fied starting index, the program assigns the substring
alength of 0 and sets the Carry flagto 1, indicatingan
eITOr.

S. If the substring would extend beyond the end of
the source string, the program places all the available
characters in the substring and sets the Carry flag to
1, indicating an error. The available characters are
the ones from the starting index to the end of the
string. .

6. If the substring would exceed its specified maxi-
mum length, the program places only the specified
maximum number of characters in the substring. It
sets the Carry flag to 1, indicating an error.

Entry Conditions

Base address of substring in DE
Base address of string in HL
Number of bytes to copy in B

302

Starting index to copy from in C
Maximum length of substring in A

8D COPY A SUBSTRING FROM A STRING (CoPy) 303

Exit Conditions

Substring contains characters copied from string.
If the starting index is 0, the maximum length of
the substring is 0, or the starting index is beyond
the length of the string, the substring will have a
length of 0 and the Carry flag will be set to 1. If

the substring would extend beyond the end of
the string or would exceed its specified maximum
length, only the available characters from the
string (up to the maximum length of the substring)
are copied into the substring; the Carry flag is set
in this case also. If no problems occur in forming
the substring, the Carry flag is cleared.

Examples

1. Data: String= 10°LET Y1 = R7+ X4’
(1046 = 164 is the length of the string)

Maximum length of substring = 2

Number of bytes to copy = 2

Starting index = §

Substring = 02°Y1” (2 is the length of the
substring)

Two bytes from the string were copied,
starting at character #5 (that is, characters
5 and 6)

Carry = 0, since no problems occurred in
forming the substring.

String = 0E‘8657 POWELL ST’

(OE;s = 14, is the length of the string)
Maximum length of substring = 10,4 = 16,
Number of bytes to copy = 0D = 13y,
Starting index = 6
Substring = 09POWELL ST’ (09 is the

length of the substring)

Carry = 1, since there were not enough
characters available in the string to provide
the specified number of bytes to copy.

Result:

2. Data:

Result:

3. Data: String= 16'9414 HEGENBERGER DRIVE’
(16,4 = 22, is the length of the string)

Maximum length of substring = 10,4 = 16,

Number of bytes to copy = 11;4= 17

Starting index = 6

Substring = 10)HEGENBERGER DRIV’
(10, = 16y, is the length of the substring)

Carry = 1, since the number of bytes to copy
exceeded the maximum length of the sub-
string.

Result:

Title

Name: Copy

8 N8 uE NS w8 wE W B

Copy a substring from a string

~ we

~8 N8 w8 wa B N

304 siNG MANIPULATION

e

Purpose: Copy a substring from a string given a starting
index and the number of bytes

Entry: Register pair HL = Address of scurce string
Register pair DE = Address of destination string
Register A = Maximum length of destination

string

Number of bytes to copy

Starting index into source string

Index of 1 is first character of

string

NS NE wE we wE N

Register B
Register C

A string is a maximum of 255 bytes long plus
a length byte which precedes it.

Exit: Destination string := The substring from the
string.
if no errors then
CARRY := 0
else
begin
the following conditions cause an
error and the CARRY flag = 1.
if (index = 0) or (maxlen = 0) or
(index > lengthi(source)) then
the destination string will have a zero
length.
if (index + count - 1) > length(source)
then
the destination string becomes everything
from index to the end of socurce string.
END;

Registers used: AF,BC,DE,HL

NE N M MB NE NE NS NE NE NE WS N ME MG NE NE M WB N8 M8 ME NE NE W6 MO NN R wE e

Time: Approximately (21 # count) cycles plus 237
cycles overhead.

Size: Program 73 bytes
Data 2 bytes

N NE N NE ws wE s

COPY:
3 SAVE MAXIMUM LENGTH OF DESTINATION STRING
LD (MAXLEN), A 3 SAVE MAXIMUM LENGTH
s INITIALIZE LENGTH OF DESTINATION STRING AND ERROR FLAG
SUE A
LD (DE), A s LENGTH OF DESTINATION STRING = ZERO
LD (CPYERR), A s ASSUME NO ERRORS

3 IF NUMBER OF BYTES TO COPY IS O, EXIT WITH NO ERRORS
OR B s TEST NUMBER OF BYTES TO COPY

e wa we o~

NE NE W8 N8 v NE B v v

NE NE NE ME N ME NE ME NE ME NE ME ME NE ME NB ME N8 A NB WS NE NE N8 WE e e

Ne e v e

RECALC:

CNT10K:

8D COPY A SUBSTRING FROM A STRING (COPY)

RET z sEXIT WITH NQ ERRORS
; CARRY = 0

; IF MAXIMUM LENGTH IS O, TAKE ERROR EXIT

LD A, (MAXLEN) s TEST MAXIMUM LENGTH

OR A

JR Z,EREXIT sERROR EXIT IF MAX LENGTH IS O
;s IF STARTING INDEX IS ZERQ, TAKE ERROR EXIT

LD A,C s TEST STARTING INDEX

OR A

JR Z,EREXIT sERROR EXIT IF INDEX IS O

; IF STARTING INDEX IS GREATER THAN LENGTH OF SOURCE
s STRING, TAKE ERROR EXIT

LD A, (HL) s GET LENGTH OF SOURCE STRING

CpP c ;s COMPARE TO STARTING INDEX

RET Cc sERROR EXIT IF LENGTH LESS THAN INDEX
3 CARRY = 1

sCHECK IF COPY AREA FITS IN SOURCE STRING

sOTHERWISE, COPY ONLY TO END OF STRING

sCOPY AREA FITS IF STARTING INDEX + NUMBER OF

s CHARACTERS TO COPY - 1 IS LESS THAN OR EQUAL TO

s LENGTH OF SOURCE STRING

;NOTE THAT STRINGS ARE NEVER MORE THAN 255 BYTES LONG

LD A, C s FORM STARTING INDEX + COPY LENGTH
ADD A, B

JR C,RECALC s JUMP IF SUM > 255

DEC A

cP (HL)

JR C,CNT10K s JUMP IF MORE THAN ENOUGH TO COPY
JR Z,CNT10K 3 JUMP IF EXACTLY ENOUGH

; CALLER ASKED FOR TOO MANY CHARACTERS. RETURN EVERYTHING
; BETWEEN INDEX AND END OF SOURCE STRING.
3 SET COUNT := LENGTH(SQURCE) - INDEX + 1;

LD A, OFFH s INDICATE TRUNCATION OF COUNT
LD (CPYERR), A

LD A, (HL) s COUNT = LENGTH - INDEX + 1
SUB c

INC A

LD B,A s CHANGE NUMBER OF BYTES

;CHECK IF COUNT LESS THAN OR EQUAL TO MAXIMUM LENGTH OF

s DESTINATION STRING. IF NOT, SET COUNT TO MAXIMUM LENGTH
3 IF COUNT > MAXLEN THEN

H COUNT := MAXLEN

LD A, (MAXLEN) 3 IS MAX LENGTH LARGE ENOUGH?
cp B

JR NC, CNT20K sJUMP IF IT IS

LD B,A sELSE LIMIT COPY TO MAXLEN

LD A, OFFH s INDICATE STRING OVERFLOW

305

306 sRING MANIPULATION

LD (CPYERR), A
s MOVE SUBSTRING TO DESTINATION STRING
CNT20K:
LD A B s TEST NUMBER OF BYTES TO COPY
OR A
JR Z,EREXIT sERROR EXIT IF NO BYTES TO COPY
LD B, 0 s START COPYING AT STARTING INDEX
ADD HL, BC
LD (DE) , A s SET LENGTH OF DESTINATION STRING
LD C,A ; RESTORE NUMBER OF BYTES
INC DE s MOVE DESTINATION ADDRESS PAST
;3 LENGTH BYTE
LDIR ; COPY SUBSTRING
s CHECK FOR COPY ERROR
LD A, (CPYERR) s TEST FOR ERRORS
OKEXIT:
OR A
RET z sRETURN WITH C = 0 IF NO ERRORS
sERROR EXIT
EREXIT:
SCF 3 SET CARRY TO INDICATE AN ERROR
RET
s DATA SECTION
MAXLEN: DS 1 s MAXIMUM LENGTH OF DESTINATION STRING
CPYERR: DS 1 ; COPY ERROR FLAG

SAMPLE EXECUTION:

“s wP ws ws we

Scsh:
LD HL, SSTG 3 SOURCE STRING
LD DE, DSTG s DESTINATION STRING
LD A, (IDX)
LD C,A s STARTING INDEX FOR COPYING
LD A, (CNT)
LD B,A sNUMBER OF BYTES TO COPY
LD A, (MXLEN) s MAXIMUM LENGTH OF SUBSTRING
CALL COPY ; COPY SUBSTRING

s COPYING 3 CHARACTERS STARTING AT
s INDEX 4 FROM “12.345E+10° GIVES “34%57

JR sC8aD ;LOOP FOR MORE TESTING
;s DATA SECTION

IDX: DB 4 s STARTING INDEX FOR COPYING
CNT: DB 3 ;s NUMBER OF CHARACTERS TO COPY

w8 w8 ws w8 ws

8D COPY A SUBSTRING FROM A STRING (CopPy) 307

MXLEN: DB 20H s MAXIMUM LENGTH OF DESTINATION STRING
SSTG: DB OAH sLENGTH OF STRING

DB “12.345E+10 7 332 BYTE MAX LENGTH
DSTG: DB 0 sLENGTH OF SUBSTRING

DR ’ 7 332 BYTE MAX LENGTH

END

Delete a Substring from a String (DELETE)

8k

Deletesa substring from a string, given a start-
ing index and a length. The string is a maximum
of 255 bytes long, and the actual characters are
preceded by a byte containing the length. The
Carry flag is cleared if the deletion can be per-
formed as specified. The Carry flag is set if the
starting index is 0 or beyond the length of the
string; the string is left unchanged in either case.
If the deletion extends beyond the end of the
string, the Carry flag is set to 1 and only the
characters from the starting index to the end of
the string are deleted.

Procedure: The program exits immediately if
either the starting index or the number of bytes

to delete is 0. It also exits if the starting index is
beyond the length of the string. If none of these
conditions holds, the program checks to see if the
string extends beyond the area to be deleted. If it
does not, the program simply truncates the string
by setting the new length to the starting index
minus 1. If it does, the program compacts the
resulting string by moving the bytes above the
deleted area down. The program then determines
the new string’s length and exits with the Carry
cleared if the specified number of bytes were
deleted or with the Carry set to 1 if any errors
occurred.

Registers Used: AF, BC, DE, HL

Execution Time: Approximately 21 * NUMBER OF
BYTES MOVED DOWN + 224 cycles, where NUM-
BER OF BYTES MOVED DOWN is zero if the string
can be truncated and is STRING LENGTH —
STARTING INDEX — NUMBER OF BYTES TO
DELETE + 1 if the string must be compacted. That
is, it takes extra time when the deletion creates a
“hole”in the string that must be filled by compaction.

Examples

1. STRING LENGTH = 20,4 (32y)
STARTING INDEX = 19 (259)
NUMBER OF BYTES TO DELETE = 08
Since there are exactly eight bytes left in the string
starting at index 19,¢, all the routine must do is trun-
cate (that is, cut off the end of the string). This takes
21 * 0 + 224 = 224 cycles
2. STRING LENGTH = 40,4 (64,,)

STARTING INDEX = 19, (25,9)
NUMBER OF BYTES TO DELETE = 08

Since there are 20,4 (32,) bytes above the truncated
area, the routine must move them down eight posi-
tions to fill the “hole.” Thus NUMBER OF BYTES
MOVED DOWN = 32, and the execution time is

21 * 32+ 224 = 672 + 224 = 896 cycles

Program Size: 58 bytes

Data Memory Required: One byte anywhere in
RAM for an error flag (address DELERR)

Special Cases:

1. If the number of bytes to delete is 0, the
program exits with the Carry flag cleared (no errors)
and the string unchanged.

2. If thestring does not even extend to the specified
starting index, the program exits with the Carry flag
set to | (indicating an error) and the string unchanged.

3. If the number of bytes to delete exceeds the
number available, the program deletes all bytes from
the starting index to the end of the string and exits
with the Carry flag set to 1 (indicating an error).

Entry Conditions

Base address of string in HL
Number of bytes to delete in B
Starting index to delete from in C

308

Exit Conditions

Substring deleted from string. If no errors occur,
the Carry flag s cleared. If the starting index is 0
or beyond the length of the string, the Carry flag

8E DELETE A SUBSTRING FROM A STRING (DELETE) 309

is set and the string is unchanged. If the number
of bytes to delete would go beyond the end of the
string, the Carry flag is set and the characters
from the starting index to the end of the string

are deleted.

Examples

1.

B ME NE B NS NB ws we

NE NB ME NE NE MR ME NS NE N NS v W

~ W ws

Data:

Result:

String = 26°'SALES FOR MARCH AND
APRIL OF THIS YEAR’
(26,6 = 38, is the length of the string)
Number of bytes to delete = 0A4 = 10,
Starting index to delete from = 10,4 = 16,

String= 1C ‘SALES FOR MARCH OF THIS
YEAR’ (1C¢ = 28, is the length of the
string with ten bytes deleted starting with
the 16th character—the deleted material is

2. Data:

Result:

String = 28‘THE PRICE IS $3.00 ($2.00
BEFORE JUNE 1)’ (28, = 40, is the
length of the string)

Number of bytes to delete = 30,, = 48,

Starting index to delete from = 13, = 19,

String = 12°THE PRICE IS $3.00° (12), =
18,y is the length of the string with all
remaining bytes deleted)

Carry= 1, since there were not as many bytes
left in the string as were supposed to be

8 N8 B NP e N we wm

‘AND APRIL’)
Carry = 0, since no problems occurred in the deleted.
deletion.
Title: Delete a substring from a string
Name: Delete
Purpose: Delete a substring from a string given a
starting index and a length
Entry: Register pair HL = Base address of string
Register B = Number of bytes to delete
Register C = Starting index into the string.
An index of 1 is the first character
A string is a maximum of 255 bytes long plus
a length byte which precedes it.
Exit: Substring deleted.

if no errors
CARRY := 0
else

then

NE NE NE NS ME NE B NE N NE NE N NS N8 wE we

310 sRING MANIPULATION

NE NE NS NE NP NE NB NE NS NE N8 NB NS NE WE 9B N N

-

DELETE:

begin
the following conditions cause an
error with CARRY = 1.
if (index = 0) or (index > length(string))
then do not change string
if count is too large then
delete only the characters from
index to end of string
end;

Registers used: AF,BC,DE,HL

Time: Approximately 21 = (LENGTH(STRG)-INDEX-COUNT+1)
plus 224 cycles overhead

Size: Program 58 bytes
Data 1 bytes

; INITIALIZE ERROR INDICATOR (DELERR) TO O
SUB A
LD (DELERR), A s ASSUME NQ ERRORS

3sCHECK IF COUNT AND INDEX ARE BOTH NON-ZERO
OR B s TEST NUMBER OF BYTES TO DELETE

RET z sRETURN WITH CARRY = O (NO ERRORS) IF
; O BYTES TO DELETE

LD A, C s TEST STARTING INDEX

OR A

SCF sCARRY = 1

RET z sERROR EXIT (CARRY = 1) IF

7 STARTING INDEX = O

;CHECK IF STARTING INDEX WITHIN STRING
; ERROR EXIT IF NOT

LD A, (HL) s GET LENGTH
CcP c ;IS INDEX WITHIN STRING?
RET c sNQ, TAKE ERROR EXIT

;BE SURE ENOUGH CHARACTERS ARE AVAILAEBLE

IF NOT, DELETE ONLY TO END OF STRING

IF INDEX + NUMBER OF CHARACTERS - 1 > LENGTH(STRING) THEN
’ NUMBER OF CHARACTERS := LENGTH(STRING) - INDEX + 1

. ws s

LD A, C ;GET INDEX

ADD A B s ADD NUMBER OF CHARACTERS TO DELETE

JR C, TRUNC ; TRUNCATE IF SUM > 255

LD E,A ;s SAVE SUM AS STARTING INDEX FOR MOVE

DEC A

CP (HL) s COMPARE TO LENGTH

JR C, CNTOK s JUMP IF ENOUGH CHARACTERS AVAILAELE

JR Z, TRUNC ;: TRUNCATE BUT NO ERRORS (EXACTLY ENOUGH
3 CHARACTERS)

LD A, OFFH s INDICATE ERROR — NOT ENQUGH CHARACTERS

LD (DELERR) , A ;7 AVAILABLE FOR DELETION

NE NE NE NE NG NE N NE MR NE NE NE NE NE NE N M8 wR e

8 DELETE A SUBSTRING FROM A STRING (DELETE) 344

s TRUNCATE STRING — NO COMPACTING NECESSARY
5 STRING LENGTH = INDEX - 1

TRUNC
LD A,C :STRING LENGTH = INDEX - 1
DEC A
LD (HL)Y, A
LD A, (DELERR)
RRA :CARRY = 0 IF NO ERRORS
RET sEXIT
: DELETE SUBSTRING BY COMPACTING
+ MOVE ALL CHARACTERS ABOVE DELETED AREA DOWN
sNEW LENGTH = OLD LENGTH ~ NUMBER OF RYTES TO DELETE
CNTOK :
LD A, (HL)
LD D,A :SAVE OLD LENGTH
SUR B s SET NEW LENGTH
LD (HL), A
:CALCULATE NUMBER OF CHARACTERS TO MOVE
3 NUMBER = STRING LENGTH — (INDEX + NUMBER OF BYTES) + 1
LD A,D :GET OLD LENGTH
SUB E :SUBTRACT INDEX + NUMBER OF BYTES
INC A :+A = NUMBER OF CHARACTERS TO MOVE
s CALCULATE SOURCE AND DESTINATION ADDRESSES FOR MOVE
;SOURCE = BASE + INDEX + NUMBER OF RYTES TO DELETE
sDESTINATION = BASE + INDEX
PUSH HL : SAVE STRING ADDRESS
LD B,0 ;DESTINATION = BASE + INDEX
ADD HL, EC
EX (SP), HL : SOURCE = BASE + INDEX + NUMBER
LD D,0 : OF BYTES TO DELETE
ADD HL, DE sHL = SOURCE (ABOVE DELETED AREA)
POP DE ;DE = DESTINATION
LD C,A ;BC = NUMBER OF CHARACTERS TO MOVE
LDIR s COMPACT STRING BY MOVING DOWN
+GOOD EXIT
OKEXIT:
OR A :CLEAR CARRY, NO ERRORS
RET
; DATA
DELERR: DS 1 ;DELETE ERROR FLAG
: SAMPLE EXECUTION: ;
SCSE:

LD HL, SSTG s;HL = BASE ADDRESS OF STRING

312 STRING MANIPULATION

LD A, (IDX)

LD C,A ;C = STARTING INDEX FOR DELETION
LD A, (CNT)

LD B,A B = NUMBER OF CHARACTERS TO DELETE

CALL DELETE ;DELETE CHARACTERS
;DELETING 4 CHARACTERS STARTING AT INDEX 1
;3 FROM "JOE HANDOVER" LEAVES "HANDOVER"

JR SC8E ;LOOP FOR ANQTHER TEST

; DATA SECTION
IDX: DR 1 s STARTING INDEX FOR DELETION
CNT: DB 4 s NUMBER OF CHARACTERS TO DELETE
SSTG: DB 12 sLENGTH OF STRING

DB “JOE HANDOVER”

END

Insert a Substring into a String (INSERT)

8F

Insertsa substring into a string, given a start-
ing index. The string and substring are both a
maximum of 255 bytes long, and the actual
characters are preceded by a byte containing the
length. The Carry flag is cleared if the insertion
can be accomplished with no problems. The
Carry flagis set if the starting index is 0 or beyond
the length of the string. In the second case, the
substring is concatenated to the end of the string.
The Carry flag is also set if the string with the
insertion will exceed a specified maximum length.
Inthat case, the program inserts only enough of
the substring to give the string its maximum
length.

Procedure: The program exits immediately if
the starting index or the length of the substring
is 0. If neither is 0, the program checks to see if
the insertion will produce a string longer than

the specified maximum length. If this is the case,
the program truncates the substring. The program
then checks to see if the starting index is within
the string. If it is not, the program simply con-
catenates the substring by moving it to the
memory locations immediately after the end of
the string. If the starting index is within the
string, the program must first make room for
the insertion by moving the remaining characters
up in memory. This move must start at the high-
est address to avoid writing over any data. Final-
ly, the program can move the substring into the
open area. The program then determines the new
string length and exits with the Carry flag set
appropriately (to 0 if no problems occurred and
to 1 if the starting index was 0, if the substring
had to be truncated, or if the starting index was
beyond the length of the string).

Registers Used: AF, BC, DE, HL

Execution Time: Approximately 21 * NUMBER
OF BYTES MOVED + 21 * NUMBER OF BYTES
INSERTED+ 290. NUMBER OF BYTES MOVED
is the number of bytes that must be moved to
create space for the insertion. If the starting index is
beyond the end of the string, NUMBER OF BYTES
MOVED is 0 since the substring is simply concatenated
to the string. Otherwise, it is STRING LENGTH —
STARTING INDEX + 1, since the bytes at or above
the starting index must be moved. NUMBER OF
BYTES INSERTED is the length of the substring if
no truncation occurs. It is the maximum length of the
string minus its current length if inserting the substring
produces a string longer than the maximum.

Examples

1. STRING LENGTH = 204 (32,0)
STARTING INDEX = 194 (25,)
MAXIMUM LENGTH = 30,4 (489)
SUBSTRING LENGTH = 06
We want to insert a substring six bytes long, start-
ing at the 25th character. Since eight bytes must be

moved up (NUMBER OF BYTES MOVED = 32—
25+ 1) and six bytes must be inserted, the execution
time is approximately

21* 8+ 21*6+ 290= 168+ 126+ 290= 584 cycles

2. STRING LENGTH = 20,4 (32,0)
STARTING INDEX = 19 (25,9)
MAXIMUM LENGTH = 24, (36,0)
SUBSTRING LENGTH = 06

Unlike Example 1, here we can insert only four
bytes of the substring without exceeding the maximum
length of the string. Thus, NUMBER OF BYTES
MOVED= 8 and NUMBER OF BYTES INSERTED
= 4. The execution time is approximately

21* 8+ 21* 4+ 290= 168 + 84+ 290 = 542 cycles

Program Size: 90 bytes
Data Memory Required: One byte anywhere in
RAM for an error flag (address INSERR).
Special Cases:

1. Ifthe length of the substring (the insertion) is 0,

the program exits with the Carry flag cleared (no
errors) and the string unchanged.

313

314 sRING MANIPULATION

2. If the starting index for the insertion is 0 (that
is, the insertion would start in the length byte), the
program exits with the Carry flag set to 1 (indicating
an error) and the string unchanged.

3. If the string with the substring inserted exceeds
the specified maximum length, the program inserts
only enough characters to reach the maximum length.
The Carry flagis set to 1 to indicate that the insertion
has been truncated.

4. If the starting index of the insertion is beyond
the end of the string, the program concatenates the
insertion at the end of the string and indicates an
error by setting the Carry flag to 1.

5. If the original length of the string exceeds its
specified maximum length, the program exits with
the Carry flag set to 1 (indicating an error) and the
string unchanged.

Entry Conditions

Base address of substring in DE

Base address of string in HL

Maximum length of string in B

Starting index at which to insert the
substring in C

Exit Conditions

Substring inserted into string. If no errors occur,
the Carry flag is cleared. If the starting index or
the length of the substring is 0, the Carry flag is
set and the string is not changed. If the starting
index is beyond the length of the string, the Carry
flagis set and the substring is concatenated to the
end of the string. If the string with the substring
inserted would exceed the specified maximum
length, the Carry flagis set and only those char-
acters from the substring which bring the string
to maximum length are inserted.

Examples

1. Data: String= 0A‘JOHN SMITH’ (0A ;= 10, is
the length of the string)

Substring = 08*WILLIAM” (08 is the length
of the substring)

Maximum length of string = 14,4 = 20,,

Starting index = 06

String = 12’JOHN WILLIAM SMITH’
(12,6 = 18, is the length of the string
with the substring inserted)

Carry = 0, since no problems occurred in the
insertion.

Result:

2. Data: String= 0A‘JOHN SMITH’ (0A 4 = 10, is
the length of the string)
Substring = 0C'ROCKEFELLER’ (0C 4 =
12} is the length of the substring)
Maximum length of string = 14,5 = 20,
Starting index = 06
Result: String= 14JOHN ROCKEFELLESMITH’

(14,6 = 20, is the length of the string with
as much of the substring inserted as the
maximum length would allow)

Carry = 1, since some of the substring could
not be inserted without exceeding the maxi-
mum length of the string.

NE NE MB N NS NE N e

NE B NE NE NE NE NE NE NE N wE wE wE N

ME NE ME NE ME NS ME NE NB M MR NE NB NE wE NS w8 NE we ws

NE ME NE NE N N NE e v

INSERT:

Title:
Name:

Purpose:

Entry:

Exit:

Registers used:

Time:

Size:

8F INSERT A SUBSTRING INTO A STRING (INSERT) 315

Insert a substring into a string
Insert

Insert a substring into a string given a
starting index

Address of string
Address of substring to
insert
Register B = Maximum length of string
Register C = Starting index to insert the
substring

Register pair HL
Register pair DE

A string is a maximum of 255 bytes long plus
a length byte which precedes it.

Substring inserted into string.
if no errors then
CARRY = 0
else
begin
the following conditions cause the
CARRY flag to be set.
if index = 0 then
do not insert the substring
if length(strg) > maximum length then
do not insert the substring
if index > length(strg) then
concatenate substg onto the end of the
source string
if length(strg)+length(substring) > maxlen
then insert only enough of the substring
to reach maximum length
end;

AF, BC, DE, HL

Approximately

21 ¥ (LENGTH(STRG) - INDEX + 1) +
21 # (LENGTH(SUBSTG)) +

290 cycles overhead

Program 90 bytes
Data 1 byte

; INITIALIZE ERROR FLAG

~e we

N8 B wE ws s we

NG NE N NE NE M ME NE NS ME NE NE N8 NE ME NS N8 NB NE WE M8 NE NE N8 NWE NE NE NF WE NE WE N8 N8 NG NE N0 NE NE N8 MNE N8 we NS

316 srING MANIPULATION

SUB A ;ERROR FLAG = 0 (NO ERRORS)
LD (INSERR) ., A

sGET SUBSTRING AND STRING LENGTHS
;7 IF LENGTH(SUBSTG) = O THEN EXIT BUT NO ERROR

LD A, (DE) ;s TEST LENGTH OF SUBSTRING
OR A
RET z sEXIT IF SUBSTRING EMPTY

3 CARRY = 0 (NO ERRORS)

; IF STARTING INDEX IS ZERQ, TAKE ERROR EXIT

IDXO:
LD A, C ; TEST STARTING INDEX
OR A
SCF ; ASSUME AN ERROR
RET F4 sRETURN WITH ERROR IF INDEX = O
s CHECK WHETHER INSERTION WILL MAKE STRING TOQ LONG
s IF IT WILL, TRUNCATE SURSTRING AND SET
3 TRUNCATION FLAG.
s INSERTION TOO LONG IF STRING LENGTH + SUBSTRING LENGTH
3y EXCEEDS MAXIMUM LENGTH. REMEMBER, STRINGS CANNOT BRE
+ MORE THAN 255 BYTES LONG
CHKLEN:
LD A, (DE) s TOTAL = STRING + SUBSTRING
ADD A, (HL)
JR C, TRUNC s TRUNCATE SUBSTRING IF NEW LENGTH > 255
CP B ;s COMPARE TO MAXIMUM LENGTH OF STRING
LD A, (DE) A = LENGTH OF SUBSTRING
JR C, IDXLEN sJUMP IF TOTAL < MAX LENGTH
JR Z, IDXLEN s OR EQUAL
;SUBSTRING DOES NOT FIT, SO TRUNCATE IT
5 SET ERROR FLAG TO INDICATE TRUNCATION
 LENGTH THAT FITS = MAXIMUM LENGTH - STRING LENGTH
TRUNC 2
LD A, OFFH s INDICATE SUBSTRING TRUNCATED
LD (INSERR) , A
LD A,B s LENGTH = MAX - STRING LENGTH
SUB C(HL)
RET c ;RETURN WITH ERROR IF STRING TODO
SCF + LONG INITIALLY OR ALREADY MAX
RET r4 3 LENGTH S0 NO ROOM FOR SUBSTRING
s CHECK IF INDEX WITHIN STRING. IF NOT, CONCATENATE
3 SUBSTRING ONTO END OF STRING
IDXLEN:
LD B,A sB = LENGTH OF SUBSTRING
LD A, (HL) s GET STRING LENGTH
CP Cc ; COMPARE TO INDEX
JR NC, LENOK s JUMP IF STARTING INDEX WITHIN STRING

s INDEX NOT WITHIN STRING, SO CONCATENATE

3 NEW LENGTH OF STRING = OLD LENGTH + SUBSTRING LENGTH
Lo C,A s SAVE CURRENT STRING LENGTH
ADD AB sADD LENGTH OF SUBSTRING

8F INSERT A SUBSTRING INTO A STRING (INSERT) 347

LD (HL), A ;SET NEW LENGTH OF STRING

SET ADDRESSES FOR CONCATENATION
DE = STRING ADDRESS + LENGTH(STRING) + 1

-
’
-
r

; HL = SUBSTRING ADDRESS

EX DE, HL ;HL = SUBSTRING ADDREZS
LD A,C ;DE = END OF STRING
INC A
ADD AE
LD E.A
JR NC, IDXL1
INC]
IDXL1:
LD A, OFFH s INDICATE INSERTION ERROR
LD (INSERR), A
JR MVESUB 3 JUST MOVE, NOTHING TO OFPEN UP
sOPEN UP SPACE IN SQURCE STRING FOR SUBSTRING RY MOVING
7 CHARACTERS FROM END OF SOURCE STRING DOWN TO INDEX, UP BY
3 SIZE OF SUBSTRING.
s A = LENGTH{(STRING)
LENOK:
PUSH BRC s SAVE LENGTH OF SUBSTRING
PUSH DE ; SAVE ADDRESS OF SUBSTRING
sNEW LENGTH OF STRING = OLD LENGTH + SUBSTRING LENGTH
LD E,A ;DE = STRING LENGTH
LD D, o
ADD A B
LD (HL) , A s STORE NEW LENGTH OF STRING

; CALCULATE NUMBER QF CHARACTERS TO MOVE
7 = STRING LENGTH - STARTING INDEX + 1

LD AE sGET ORIGINAL LENGTH OF STRING
SuUB C
INC A sA = NUMBER OF CHARACTERS TO MOVE

s CALCULATE ADDRESS OF LAST CHARACTER IN STRING. THIS IS
; SOURCE ADDRESS = STRING ADDRESS + LENGTH(STRING)

ADD HL, DE sHL POINTS TO LAST CHARACTER IN STRING
LD E,L ;DE ALSO
LD D,H

; CALCULATE DESTINATION ADDRESS

; = STRING ADDRESS + LENGTH(STRING) + LENGTH OF SUBSTRING
; THIS MQVE MUST START AT HIGHEST ADDRESS AND WORK DOWN

3 TO AVOID QVERWRITING PART OF THE STRING

LD C,B sBC = LENGTH OF SUBSTRING
LD B,0

ADD HL, BC

EX DE, HL sHL SOURCE ADDRESS

s DE
LD C,A s BC

DESTINATION ADDRESS
NUMBER OF CHARACTERS TQ MQVE

318 SIRING MANIPULATION

LDDR ;OPEN UFP FOR SUBSTRING

;RESTORE REGISTERS

EX DE, HL

INC DE ;DE = ADDRESS TO MOVE STRING TQ
POP HL sHL = ADDRESS OF SUBSTRING

POP BC ;B = LENGTH OF SUBSTRING

sMOVE SUBSTRING INTO OPEN AREA

s HL = ADDRESS OF SUBSTRING

s DE = ADDRESS TO MOVE SUBSTRING TO

3 C = LENGTH OF SUBSTRING
MVESUB:

INC HL s INCREMENT PAST LENGTH BYTE OF SUBSTRING

LD C,B sBC = LENGTH OF SUBSTRING TO MOVE

LD B,0

LDIR sMQVE SUBSTRING INTO OPEN AREA

LD A, (INSERR) sGET ERROR FLAG

RRA s IF INSERR <> 0 THEN CARRY = 1

s TO INDICATE AN ERRCR

RET

s DATA SECTION
INSERR: DS 1 sFLAG USED TO INDICATE ERROR
H SAMPLE EXECUTION:
SCEF:

LD HL,STG ;HL = BASE ADDRESS OF STRING

LD DE, SSTG ;DE = BASE ADDRESS OF SUBSTRING

LD A, (IDX)

LD C,A sC = STARTING INDEX FOR INSERTION

LD A, (MXLEN)

LD B, A 3B = MAXIMUM LENGTH OF STRING

CALL INSERT ; INSERT SUBSTRING

sRESULT OF INSERTING “—-- INTOQ “12345&8° AT
s INDEX 1 IS “-1234%547

JR SC8F s LOOP FOR ANOTHER TEST

s DATA SECTION
1DX: DR 1 s STARTING INDEX FOR INSERTION
MXLEN: DB 20H s MAXIMUM LENGTH OF DESTINATION
STG: DB Q&H sLENGTH OF STRING

DB “123456 < 332 BYTE MAX LENGTH
SSTG: DB 1 sLENGTH OF SUBSTRING

DR - “ 332 BYTE MAX LENGTH

END

. wE ws ws ws

8-Bit Array Summation (ASUMS8) QA

Adds the elements of an array, producing a Registers Used: AF, B, DE, HL
16-bit sum. The array consists of up to 255 byte-
length elements.

Procedure: The program clears the sum initial-
ly. It then adds elements one at a time to the less
significant byte of the sum, starting at the base Data Memory Required: None
address. Whenever an addition produces a carry, . .

. . g Special Case: An array size of 0 causes an imme-
the program increments the more significant diate exit with the sum equal to 0.
byte of the sum.

Execution Time: Approximately 38 cycles per byte-
length element plus 49 cycles overhead

Program Size: 19 bytes

Entry Conditions Exit Conditions

Base address of array in HL Sum in HL
Size of array in bytes in B

Example

1. Data: Array consists of

FT6 SAq
2346 16,6
3146 CByg
7046 Elg

Result: Sum = (HL) = 03D74

B NS e W NB ws ws ws
D TR TR T AR TR T

Title 8-bit array summation

Name: ASUME
; Furpose: Sum the elements of an array, yielding a 1&6-bit ;
H H

result. Maximum size is 255

W
=n
O

320 ~rRAY OPERATIONS

8 w8 w8 %8 8 ws ws

N s ws B s ws N

ASUMB:

SUMLP:

DECCNT:

EXIT:

“ s w9 w

SC9A:

Entry: Register pair HL = Base address of array
Register B = Size of array in bytes

Exits Register pair HL = Sum
Registers used: AF,B,DE,HL

Time: Approximately 38 cycles per element plus
49 cycles overhead

Size: Program 19 bytes

s TEST ARRAY LENGTH
sEXIT WITH SUM = 0 IF NOTHING IN ARRAY

EX DE, HL ; SAVE BASE ADDRESS OF ARRAY
LD HL,0 s INITIALIZE SUM TQ O
s CHECK FOR LENGTH OF ZERO
LD A,B ; TEST ARRAY LENGTH
OR A
RET 4 EXIT WITH SUM = O IF LENGTH = 0
: INITIALIZE ARRAY POINTER, SUM
EX DE, HL s RESTORE BASE ADDRESS OF ARRAY
3y HIGH BYTE OF SUM = 0
SUR A ;A = LOW BYTE OF SUM = O

;D = HIGH BYTE OF SuUM

sADD BYTE-LENGTH ELEMENTS TO SUM ONE AT A TIME
3 INCREMENT HIGH BYTE OF SUM WHENEVER A CARRY OCCURS

ADD A, (HL) s ADD NEXT BYTE

JR NC, DECCNT s JUMP IF NQ CARRY

INC D 3 ELSE INCREMENT HIGH BYTE OF SUM
INC HL

DUNZ SUMLP

LD L.,A sHL = SUM

LD H,D

RET

SAMPLE EXECUTION

LD HL, BUF ;HL = BASE ADDRESS OF BUFFER
LD A, (BUFSZ)

NB NE NB WB NE NS wE s

NS NS w9 Ns ws

e ws v ws e

A 8-BIT ARRAY SUMMATION (ASUMS) 321

LD B, A sB = SIZE OF BUFFER IN BYTES
CALL ASUMB
;SUM OF TEST DATA 1S O7F8 HEX,
;3 H

L = O7F8H

JR SCoA
s TEST DATA, CHANGE FOR OTHER VALUES
SIZE EQU 010H ;SIZE OF BUFFER IN BYTES
BUFSZ: DB SIZE ;SIZE OF BUFFER IN BYTES
BUF: DB Q0H s BUFFER

DB 11H ;s DECIMAL ELEMENTS ARE 0,17,34,51,468

DR 22H ; 85,102,119,135,153,170, 187,204

DB 33H 3 221,238,255

DB 44H

DB S5H

DB 66H

DB 77H

DB 88H

DB 99H

DB OAAH

DB OBBH

DB OCCH

DB ODDH

DB OEEH

DR OFFH sSUM = O7F8 (2040 DECIMAL)

16-Bit Array Summation (ASUM16) 9B

Adds the elements of an array, producing a
24-bit sum. The array consists of up to 255 word- Registers Used: AF, BC, DE, HL
length (16-bit) elements. The elements are ar-
ranged in the usual Z80 format with the less
significant bytes first.

Procedure: The program clears the sum initial- Program Size: 25 bytes
ly. It then adds elements to the less significant
bytes of the sum one at a time, starting at the
base address. Whenever an addition produces a Special Case: An array size of 0 causes an imme-
carry, the program increments the most signifi- diate exit with the sum equal to 0.
cant byte of the sum.

Execution Time: Approximately 68 cycles per 16-
bit element plus 49 cycles overhead

Data Memory Required: None

Entry Conditions Exit Conditions
Base address of array in HL Most significant byte of sum in E
Size of array in 16-bit words in B Middle and least significant bytes of sum in HL

Example

1. Data: Array (in 16-bit words) consists of
F7Al 5A36,4
239B¢ 166C¢
31D5;¢ CBF5¢
T0F2,4 E107,4
Result: Sum = 03DBA1 4
(E)= 034
(HL)= DBAl4
H Title 16-bit array summation H
H Name: ASUM14&

~e wn

322

ME ME NB ME NE N NE NE NE NE M NE NB NS NE NE N8 WE NS

ASUM16:

SUMLP:

DECCNT:

EXIT:

Purpose: S
v

Entry: R

Register B = Size of array in words

Exit: R
R
R
Registers used: A

Time: A
4

Size: P

;s TEST ARRAY LENGT
sEXIT WITH SUM =
EX DE, HL

LD HL, O

s CHECK FOR ARRAY
LD A,B

OR A

RET z

s INITIALIZE ARRAY
EX DE, HL

LD C,E

s ADD WORD-LENGTH
s INCREMENT HIGH B
LD A E

ADD A, (HL)

LD E,A

INC HL

LD A,D

ADC A, (HL)

LD D,A

JR NC, DECCNT
INC C

INC HL

DJNZ SUMLP

EX DE, HL

9B 16-BIT ARRAY SUMMATION (ASUM16) 323

um the elements of an array, yielding a 24-bit
esult. Maximum size is 255 14-bit elements

egister pair HL = Base address of array
High byte of sum

Middle byte of sum
Low byte of sum

egister A
egister H
egister L

nnn

F,BC, DE, HL

pproximately 68 cycles per element plus
@ cycles overhead

NB NE NE B NB NE NE MR MR NE NE ME N B N® NS

rogram 25 bytes

N w

H

O IF NOTHING IN ARRAY
; SAVE BASE ADDRESS OF ARRAY
; INITIALIZE SUM TO O

LENGTH OF ZERO
;s TEST ARRAY LENGTH

sEXIT WITH SUM = O IF LENGTH = 0O
POINTER, SUM

s BASE ADDRESS BACK TO HL
LOW, MIDDLE BYTES OF SUM = 0O

;C = HIGH BYTE OF SUM = 0
;D = MIDDLE BYTE QF SLIM
sE = LOW BYTE OF SUM

ELEMENTS TO SUM ONE AT A TIME
YTE OF SUM WHENEVER A CARRY QCCURS

sADD LOW BYTES OF ELEMENT AND SUM

;ADD HIGH BYTE OF ELEMENT TQ
; MIDDLE BYTE OF SUM

s JUMP IF NO CARRY
; ELSE INCREMENT HIGH BYTE OF SUM

;HL = MIDDLE AND LOW BYTES OF SUM

324 /Ay OPERATIONS

LD A, C
RET

SAMPLE EXECUTION

s s s uE NS

SCoB:

LD HL, BUF
LD A, (BUFSZ)
LD B,A

CaLL ASUM1&

A = HIGH BYTE OF SUM

-

DU TR T RET BT

HL = BASE ADDRE3S OF BUFFER
;B = SIZE OF BUFFER IN WORDS
S

;SUM OF TEST DATA IS 21FF8 HEX,
; REGISTER PAIR HL = 1FF&H
; REGISTER A = 3

;SIZE OF BUFFER IN WORDS
s SIZE OF BUFFER IN WORDS

s BUFFER

s DECIMAL ELEMENTS ARE 0,273,546,819,1092
3 1365,1638,1911, 2184, 2457, 2730, 3003, 3276
;3 56797,61166, 65535

JR SCo9B
3 TEST DATA, CHANGE FOR QOTHER VALUES
SIZE EQU 010H
BUFSZ: DB SIZE
BUF: W Q00H
oW 111H
W 2224
oW 333H
W 444H
W SS5H
DwW &86H
DW 777H
DW 883H
DW 999H
oW 0AAAH
DW OBBEH
DW OCCCH
DW OonDDDH
DW OEEEEH
oW OFFFFH

;SUM = 31IFF8 (204792 DECIMAL)

Find Maximum Byte-Length

Element (MAXELM)

9C

Finds the maximum element inan array. The
array consists of up to 255 unsigned byte-length
elements.

Procedure: The program exits immediately
(setting Carry to 1) if the array has no elements.
Otherwise, the program assumes that the ele-
ment at the base address is the maximum. It then
proceeds through the array, comparing the sup-
posed maximum with each element and retaining
the larger value and its address. Finally, the
program clears Carry to indicate a valid result.

Registers Used: AF, B, DE, HL
Execution Time: Approximately 36 to 58 cycles per
element plus 35 cycles overhead. If, on the average,
the program must replace the maximum in half of
the iterations, the execution time is approximately
94 * ARRAY SIZE/2 + 35 cycles.
Program Size: 19 bytes
Data Memory Required: None
Special Cases:

1. An array size of 0 causes an immediate exit
with the Carry flag set to 1 to indicate an invalid
result.

2. If the largest unsigned value occurs more than
once, the program returns with the lowest possible
address. That is, it returns with the address closest to
the base address that contains the maximum value.

Entry Conditions

Base address of array in HL.
Size of array in bytes in B

Exit Conditions

Largest unsigned element in A

Address of largest unsigned element in HL

Carry = 0 if result is valid; 1 if size of array is 0
and result is meaningless.

Example

I. Data: Array (in bytes) consists of
3556 44,
A6 5916
D2 TA 4
1Byg Fi
Result: The largest unsigned element is element #2

(D2,)

(A) = largest element (D2¢)

(HL) = BASE + 2 (lowest address contain-
ing D24)

Carry flag = 0, indicating that array size is
non-zero and the result is valid.

325

326 ~RRAY OPERATIONS

ME WE NE WS NB WP T NE v

Title Find maximum byte—length element
Name: MAXELM
Purpose: Given the base address and size of an array,

find the largest element

Entry: Register pair HL = Base address of array
Register B = Size of array in bytes

Exit: If size of array not zero then

Carry flag = O

Register A = Largest element

Register pair HL = Address of that element
if there are duplicate values of the largest
element, register pair HL has the address
nearest to the base address

else
Carry flag = 1

Registers used: AF,B,DE,HL

Time: Approximately 36 to S8 cycles per element
plus 35 cycles overhead

Size: Program 19 bytes

NE NE ME NE NP NE N NE ME NP ME NE WD NE NS B NG NE N M8 ME M N8 N s

MAXELM:
sEXIT WITH CARRY SET IF NO ELEMENTS IN ARRAY
LD A B ;s TEST ARRAY SIZE
OR A
SCF 3SET CARRY TO INDICATE ERROR EXIT
RET z sRETURN IF NO ELEMENTS
sREPLACE PREVIQUS GUESS AT LARGEST ELEMENT WITH
; CURRENT ELEMENT. FIRST TIME THRQUGH, TAKE FIRST
; ELEMENT AS GUESS AT LARGEST
MAXLP: LD A, (HL) s LARGEST = CURRENT ELEMENT
LD E,L s SAVE ADDRESS OF LARGEST
LD D, H
3 COMPARE CURRENT ELEMENT TO LARGEST
s KEEP LOOKING UNLESS CURRENT ELEMENT IS LARGER
MAXLP1:
DEC B
JR Z,EXIT

INC HL

NE NE NE NE R N N8 R N

NE ME NE ME NE NE NE NE NS NP NB NE NE ME ME NF ME MR ME NE B N NS uE s

9C FIND MAXIMUM BYTE-LENGTH ELEMENT (MAXELM) 327

CP (HL) ; COMPARE CURRENT ELEMENT, LARGEST
JR NC, MAXLP1 ;s CONTINUE UNLESS CURRENT ELEMENT LARGER
JR MAXLP ;ELSE CHANGE LARGEST
EXIT:
OR A s CLEAR CARRY TO INDICATE NO ERRORS
EX DE, HL ;HL = ADDRESS OF LARGEST ELEMENT
RET
; SAMPLE EXECUTION: H
r r
i H
SCoC:=
LD HL, ARY sHL = RASE ADDRESS OF ARRAY
LD B, SZARY ;B = SIZE OF ARRAY IN BYTES
CALL MAXELM
sRESULT FOR TEST DATA IS
3 A = FF HEX (MAXIMUM), HL = ADDRESS OF
; FF IN ARY
JR SC9C ;LOOP FOR MORE TESTING
SZARY EQU 10H ;SIZE OF ARRAY IN BYTES
ARY: DB 8
DB 7
DB é
DB S
DB 4
DR 3
DR 2
DB 1
DB OFFH
DB OFEH
DB OFDH
DB OFCH
DB OFEH
jaly OFAH
DB OF9H
DB OF3H

END

Find Minimum Byte-Length

Element (MINELM)

oD

Finds the minimum element in an array. The
array consists of up to 255 unsigned byte-length
elements.

Procedure: The program exits immediately
(setting Carry to 1) if the array has no elements.
Otherwise, the program assumes that the ele-
ment at the base address is the minimum. It then
proceeds through the array, comparing the sup-
posed minimum to each element and retaining
the smaller value and its address. Finally, the
program clears Carry to indicate a valid result.

Registers Used: AF, B, DE, HL

Execution Time: Approximately 36 to 65 cycles per
element plus 35 cycles overhead. If, on the average,
the program must replace the minimum in half of
the iterations, the execution time is approximately
101 * ARRAY SIZE/2 +35 cycles.

Program Size: 21 bytes
Data Memory Required: None

Special Cases:

1. An array size of 0 causes an immediate exit
with the Carry flag set to 1 to indicate an invalid
result.

2. If the smallest unsigned value occurs more
than once, the program returns with the lowest pos-
sible address. That is, it returns with the address
closest to the base address that contains the min-
imum value.

Entry Conditions

Base address of array in HL
Size of array in bytes in B

Exit Conditions

Smallest unsigned element in A

Address of smallest unsigned element in HL

Carry = 0 if result is valid; 1 if size of array is 0
and result is meaningless.

Example

I. Data: Array (in bytes) consists of
3556 44,6
Abq 596
D24 TA¢
1By CF¢
Result: The smallest unsigned element is element #3

(1Byg)
(A) = smallest element (1B,¢)
(HL) = BASE + 3 (lowest address contain-
ing 1By4)
Carry flag = 0, indicating that array size is
non-zero and the result is valid.

328

3D FIND MINIMUM BYTE-LENGTH ELEMENT (MINELM)

.

N

3 Title Find minimum byte—-length element
H Name: MINELM
Purpose: Given the base address and size of an array,

Carry flag = O

else
Carry flag = 1

ME N N NE NE N ME NE MR VS MR WB e NE N6 W

Registers used: AF,B,DE,HL

e w wE o

Size: Program 21 bytes

- ur ws e v

MINELM:
;EXIT WITH CARRY SET IF NO ELEMENTS IN ARRAY
LD AR ; TEST ARRAY SIZE
OR A
SCF 3 SET CARRY TO INDICATE AN ERROR EXIT
RET z sRETURN IF NO ELEMENTS

s REPLACE PREVIOQUS GUESS AT SMALLEST ELEMENT WITH
;3 CURRENT ELEMENT. FIRST TIME THROUGH,

; ELEMENT AS GUESS AT SMALLEST

MINLP: LD A, (HL) s SMALLEST = CURRENT ELEMENT
LD E,L s SAVE ADDRESS OF SMALLEST
LD D, H

; COMPARE CURRENT ELEMENT TO SMALLEST

sKEEP LOOKING UNLESS CURRENT ELEMENT IS SMALLER

MINLP1:
: DEC B
JR Z,EXIT

find the smallest element

Entry: Register pair HL = Base address of array
Register B = Size of array in bytes

Exit: If size of array not zero then

Register A = Smallest element
Register pair HL = Address of that element

if there are duplicate values of the smallest
element, HL will have the address

nearest to the base address

Time: Approximately 36 to 65 cycles per element
plus 35 cycles overhead

TAKE FIRST

329

NE NE NB NE NF B wE w3 e

R NE NB wE v wm W

e B we

e we

NE ONE NB NS ME MB NE M NP B R B 8

330 rrav OPERATIONS

EXIT:

. s s w5 ws

SC9D:

SZARY
ARY:

INC
CP
JR
JR
JR

OR
EX
RET

HL

(HL) ; COMPARE CURRENT ELEMENT, SMALLEST
C,MINLP1 ; CONTINUE IF CURRENT ELEMENT LARGER
Z,MINLP1 3 OR SAME

MINLP ;ELSE CHANGE SMALLEST

A ;s CLEAR CARRY TO INDICATE NO ERRORS

DE, HL sHL = ADDRESS OF SMALLEST ELEMENT

SAMPLE EXECUTION:

LD
LD
CALL

JR

EQU
DB
DB
DB
DB
DB
DR
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB

END

HL, ARY sHL = BASE ADDRESS OF ARRAY
R, SZARY ;B = SIZE OF ARRAY IN BYTES
MINELM
sRESULT FOR TEST DATA IS
s A =1 HEX (MINIMUM), HL = ADDRESS OF
s 1 IN ARY
SC9D sLOOP FOR MORE TESTING
10H s SIZE OF ARRAY IN BYTES
=]
7
&
S
4
3
2
1
OFFH
OFEH
OFDH
OFCH
OFEH
OFAH
OF7H
OF8H

5 wp NE B v

Binary Search (BINSCH)

QF

Searches an array of unsigned byte-length
elements for a particular value. The elements are
assumed to be arranged in increasing order.
Clears Carry if it finds the value and sets Carry
to 1 if it does not. Returns the address of the
value if found. The size of the array is specified
and is a maximum of 255 bytes.

Procedure: The program performs a binary
search, repeatedly comparing the value with the
middle remaining element. After each compari-
son, the program discards the part of the array
that cannot contain the value (because of the
ordering). The program retains upper and lower
bounds for the remaining part. If the value is
larger than the middle element, the program
discards the middle and everything below it. The
new lower bound is the address of the middle
element plus 1. If the value is smaller than the
middle element, the program discards the mid-
dle and everything above it. The new upper
bound is the address of the middle element
minus 1. The program exits if it finds a match or
if there is nothing left to search.

For example, assume that the array is

0146, 0214, 05,6, 0714, 0916, 0914, 0D, 104,

2E 6, 3716 5Dy, 7E 6, Al g, B4(g, D7, EOy¢

and the value to be found is 0D¢. The proce-
dure works as follows.

In the first iteration, the lower bound is the
base address and the upper bound is the address
of the last element. So the result is

LOWER BOUND = BASE

UPPER BOUND= BASE+ SIZE— 1= BASE+ 0F 4

GUESS = (UPPER BOUND + LOWER BOUND)/2
(the result is truncated) = BASE + 7

(GUESS) = ARRAY(7) = 10,4 = 16/,

Since the value (0D¢) is less than ARRAY(7),
the elements beyond #6 can be discarded. So the
result is

Registers Used: AF, BC, DE, HL

Execution Time: Approximately 114 cycles per
iteration plus 53 cycles overhead. A binary search
requires on the order of log, N iterations, where N is
the number of elements in the array.

Program Size: 37 bytes
Data Memory Required: None

Special Case: A size of 0 causes an immediate exit
with the Carry flag set to 1. That is, the array con-
tains no elements and the value surely cannot be
found.

LOWER BOUND = BASE

UPPER BOUND = GUESS — 1 = BASE+ 6
GUESS = (UPPER BOUND + LOWER BOUND)/2
= BASE+ 3

(GUESS) = ARRAY(3) = 07

Since the value (0D ¢) is greater than ARRAY(3),
the elements below #4 can be discarded. So the
result is

LOWER BOUND = GUESS + 1= BASE + 4

UPPER BOUND = BASE + 6

GUESS = (UPPER BOUND + LOWER BOUND)/2
=BASE+ 5

(GUESS) = ARRAY(5) = 09

Since the value (0D ¢) is greater than ARRAY(5),
the elements below #6 can be discarded. So the
result is

LOWER BOUND = GUESS + 1= BASE+ 6

UPPER BOUND = BASE + 6

GUESS = (UPPER BOUND + LOWER BOUND)/2

=06

(GUESS) = ARRAY(6) = 0D;¢

Since the value (0D¢) is equal to ARRAY(6),
the element has been found. If, on the other
hand, the value were OE ¢, the new lower bound

would be BASE + 7 and there would be nothing
left to search.

331

332 ARRAY OPERATIONS

Entry Conditions

Value to find in A

Size of the array in bytes in C

Base address of array (address of smallest
unsigned element) in HL

Exit Conditions

Carry = 0 if the value is found; 1 if it is not
found.
If the value is found, (HL) = its address.

Examples

Length of array = 10,¢
Elements of array are 014, 024, 05,4, 07,4, 09,4,09,6,0D}4,
1046, 2E 6, 3716, SDg, TE 6, Al g, Bdg, D74, EOy

1. Data: Value to find = 0D¢

Result: Carry = 0, indicating value found

(HL)= BASE + 6 (address containing 0D)

2. Data: Value to find = 9B,

Result: Carry = 1, indicating value not found

s wE up NE ws w8

Title Binary search
Name: BINSCH
Purpose: Search
Entry:
Register C = Size of array
Register A = Byte to find
Exit:

ELSE
Carry flag

MB NP NME NE NP NE NB NP NE NE B NS NE NS B

Registers used: AF,BC,DE,HL

an ordered array of unsigned bytes
with a maximum size of 255 elements

Register pair HL = Base address of array

If the value is found then
Carry flag = O
Register pair HL = Address of value

MR NE N2 W s WS B e

1

NB ME NE WS WE NE B WA NB NS N NE MR N 4w

9 BINARY SEARCH (BINSCH) 333

Time: Approximately 114 cycles for each iteration of
the search loop plus 53 cycles overhead

CTRCT T

A binary search takes on the order of lcg
base 2 of N searches, where N is the number of
elements in the array.

N NB N NS e W

Size: Program 37 bytes

NP NE us NS NP NE wE we

CURET R T

BINSCH:
sEXIT WITH CARRY SET IF NO ELEMENTS IN ARRAY
INC c s TEST ARRAY SIZE
DEC c
SCF s SET CARRY IN CASE SIZE IS O
RET z s RETURN INDICATING VALUE NOT FOUND
3 IF SIZE IS O
s INITIALIZE LOWER BOUND, UPPER BOUND OF SEARCH AREA
sLOWER BOUND (DE) = BASE ADDRESS
sUPPER BOUND (HL) = ADDRESS OF LAST ELEMENT
3 = BASE ADDRESS + SIZE - 1
LD E,L s LOWER BOUND = BASE ADDRESS
LD D, H
LD B,0 sEXTEND SIZE TO 16 BITS
ADD HL, BC s UPPER BOUND = BASE + SIZE - 1
DEC HL
;s SAVE VALUE BEING SOUGHT
LD C,A 3 SAVE VALUE
; ITERATION OF BINARY SEARCH
;1) COMPARE VALUE TQ MIDDLE ELEMENT
32) IF THEY ARE NQOT EQUAL, DISCARD HALF THAT
H CANNOT POSSIBLY CONTAIN VALUE (BECAUSE OF ORDERING)
$3) CONTINUE IF THERE IS ANYTHING LEFT TO SEARCH
LOOP:
sHL = UPPER BOUND
;DE = LOWER BOUND

3C = VALUE TQ FIND
;FIND MIDDLE ELEMENT
sMIDDLE = (UPPER BOUND + LOWER BOUND) / 2

PUSH HL 3 SAVE UPPER BOUND ON STACK

ADD HL,DE s ADD UPPER BROUND AND LOWER BOUND
RR H sDIVIDE 17-BIT SUM BY 2

RR L

LD A, (HL) s GET MIDDLE ELEMENT

;s COMPARE MIDDLE ELEMENT AND VALUE

CP c ; COMPARE MIDDLE ELEMENT AND VALUE
JR NC, TOOLRG s JUMP IF VALUE SAME OR LARGER

;MIDDLE ELEMENT LESS THAN VALUE

334 . rravY OPERATIONS

3 SO CHANGE LOWER BOUND TO MIDDLE + 1
;3 SINCE EVERYTHING BELOW MIDDLE IS EVEN SMALLER

EX DE, HL sLOWER BOUND = MIDDLE + 1
INC DE

POP HL s RESTORE UPPER BOUND

JR CONT

sMIDDLE ELEMENT GREATER THAN OR EQUAL TO VALUE
3 SO CHANGE UPPER BOUND TO MIDDLE - 1
; SINCE EVERYTHING ABQVE MIDDLE IS EVEN LARGER
sEXIT WITH CARRY CLEAR IF VALUE FOUND

TOOLRG:
INC SP ;DISCARD OLD UPPER BOUND FROM STACK
INC SP
RET Z s IF MIDDLE ELEMENT SAME AS VALUE
; RETURN WITH CARRY CLEAR
; AND HL = ADDRESS CONTAINING VALUE
DEC HL s UPPER BOUND = MIDDLE - 1
sCONTINUE IF THERE IS ANYTHING LEFT TO BE SEARCHED
sNOTHING LEFT WHEN LOWER BOUND ABOVE UPPER BOUND
CONT:
LD AL s FORM UPPER BOUND - LOWER BOUND
CP E ;3 MUST SAVE BOTH, SO USE 8-BIT SUBTRACT
LD A H
SBC A, D
JR NC, LOOP sCONTINUE IF ANYTHING LEFT TO SEARCH
sNOTHING LEFT TO SEARCH SO COULD NOT FIND VALUE
sRETURN WITH CARRY SET (MUST BE OR JR NC WOULD HAVE BRANCHED)
RET

SAMPLE EXECUTION

“ 9w s s

0w
[y}
0
m

s SEARCH FOR A VALUE THAT IS IN THE ARRAY

LD HL, BF sHL = BASE ADDRESS OF ARRAY
LD A, (BFSZ)

LD C,A sC = ARRAY SIZE IN BYTES

LD A7 sA = VALUE TO FIND

CALL BINSCH ; SEARCH

s CARRY FLAG = 0 (VALUE FOUND)
sHL = BF + 4 (ADDRESS OF 7 IN ARRAY)

: SEARCH FOR A VALUE THAT IS NOT IN THE ARRAY

LD HL, BF sHL = BASE ADDRESS OF ARRAY
LD A, (BFSZ)

LD C,A :C = ARRAY SIZE IN BYTES
LD A, 0 ;A = VALUE TO FIND

CALL BINSCH s SEARCH

;CARRY FLAG = 1 (VALUE NOT FOUND)

. v w8

~ s

OF BINARY SEARCH (BINSCH) 335

JR SC9E sLOOP FOR MORE TESTS

; DATA
SIZE EQU 010H $SIZE OF ARRAY IN BYTES
BFSZ: DR SIZE 3SIZE OF ARRAY IN BYTES
BF: DB 1 s BUFFER

DB 2

DB 4

DB S

DB 7

DB ?

DB 10

DB 11

DB 23

DB S0

DB 81

DB 123

DB 191

DB 199

DB 250

DB 255

END

Quicksort (QL50ORT)

QF

Arranges an array of unsigned word-length
elements into ascending order using a quicksort
algorithm. Each iteration selects an element and
divides the array into two parts, one consisting
of elements larger than the selected element and
the other consisting of elements smaller than the
selected element. Elements equal to the selected
element may end up in either part. The parts are
then sorted recursively in the same way. The
algorithm continues until all parts contain either
no elements or only one element. An alternative
is to stop recursion when a part contains few
enough elements (say, less than 20) to make a
bubble sort practical.

The parameters are the array’s base address,
the address of its last element, and the lowest
available stack address. The array can thus
occupy all available memory, as long as there is
room for the stack. Since the procedures that
obtain the selected element, compare elements,
move forward and backward in the array, and
swap elements are all subroutines, they could be
changed readily to handle other types of elements.

Ideally, quicksort should divide the array in
half during each iteration. How closely the
procedure approaches this ideal depends on
how well the selected element is chosen. Since
this element serves as a midpoint or pivot, the
best choice would be the central value (or
median). Of course, the true median is unknown.
A simple but reasonable approximation is to
select the median of the first, middle, and last
elements.

Procedure: The program first deals with the
entire array. It selects the median of the current
first, last, and middle elements to use in dividing
the array. It moves that element to the first
position and divides the array into two parts or
partitions. It then operates recursively on the

336

Registers Used: AF, BC, DE, HL

Execution Time: Approximately N * log,N loops
through PARTLP plus 2 * N + 1 overhead calls
to SORT. Each iteration of PARTLP takes approx-
imately 200 cycles and each overhead call to SORT
takes approximately 300 cycles. Thus, the total
execution time is on the order of 200 * N * log,N + 300
*(2*N+1).

Program Size: 206 bytes

Data Memory Required: 8 bytes anywhere in
RAM for pointers to the first and last elements of a
partition (2 bytes starting at addresses FIRST and
LAST, respectively), a pointer to the bottom of the
stack (2 bytes starting at address STKBTM), and the
original value of the stack pointer (2 bytes starting at
address OLDSP).

Special Case: If the stack overflows (i.e., comes
too close to its boundary), the program exits with
the Carry flag set to 1.

parts, dividing them further into parts and stop-
ping when a part contains no elements or only
one element. Since each recursion places six
bytes on the stack, the program must guard
against stack overflow by checking whether the
stack has grown to within a small buffer of its
lowest available address.

Note that the selected element always ends up
in the correct position after an iteration. There-
fore, it need not be included in either partition.

The rules for choosing the middle element are
as follows, assuming that the first element is #1:

1. If the array has an odd number of ele-
ments, take the one in the center. For example,
if the array has 11 elements, take #6.

2. If the array has an even number of ele-
ments and its base address is even, take the
element on the lower (base address) side of the
center. For example, if the array starts in 0300¢
and has 12 elements, take #6.

3. If the array has an even number of ele-
ments and its base address is odd, take the
element on the upper side of the center. For
example, if the array starts in 03014 and has 12

9F QUICKSORT (QSORT) 337

elements, take #7.

Entry Conditions

Base address of array in HL
Address of last word of array in DE
Lowest available stack address in BC

Exit Conditions

Array sorted into ascending order, considering
the elements as unsigned words. Thus, the
smallest unsigned word ends up stored starting
at the base address. Carry = 0 if the stack did
not overflow and the result is proper. Carry = |
if the stack overflowed and the final array is
not sorted.

Example

1. Data: Length (size) of array = 0C,
Elements = 2B, 574, 1D4, 2644,
226, 2E 6, 0Cyg, 446,
1716, 4By, 3716, 2716

Result: The result of the first iteration is:

Selected element = median of the first
(#1 = 2B¢), middle (#6 = 2E,¢), and last
(#12 = 27,¢) elements. The selected ele-
ment is therefore #1 (2By4), and no swap-
ping is necessary since it is already in the
first position.

At the end of the iteration, the array is

2716, 1716, 1Dyg, 2614,
2246, 0Cy, 2B, 446,
2E 4, 4Byg, 3756, 5716

The first partition, consisting of elements
less than 2B g, is 27,¢, 1714, 1Dy, 2616, 226,
and 0Cl6'

The second partition, consisting of ele-
ments greater than 2B g, is 44¢, 2E ¢, 4B¢,
37,6, and 57 4.

Note that the selected element (2Bg) is

now in the correct position and need not be
included in either partition.

The first partition may now be sorted recur-
sively in the same way:

Selected element = median of the first
(#1 = 27,¢), middle (#3 = 1D,¢), and last
(#7 = 0Cy¢) elements. Here, #4 is the
median and must be exchanged initially
with #1.

The final order of the elements in the first
partition is

0Cy4, 1716, 1D, 2646, 2216, 2716

The first partition of the first partition
(consisting of elements less than 1D) is
0C,g, 17,¢. This will be referred to as the (1,1)
partition.

The second partition of the first partitior.
(consisting of elements greater than 1D,¢) is
264, 224, and 27¢.

As in the first iteration, the selected ele-
ment (1Dy4) is in the correct position and
need not be considered further.

338 ~rrAY OPERATIONS

The (1,1) partition may now be sorted
recursively as follows:

Selected element = median of the first
(#1 = 0C;4), middle (#1 = 0C), and last
(#2 = 17,¢) elements. Thus the selected ele-
ment is the first element (#1 = 0C,4) and no
initial swap is necessary.

The final order is obviously the same as the
initial order, and the two resulting partitions
contain 0 and 1 elements, respectively. Thus
the next iteration concludes the recursion,
and the other partitions are sorted by the

same method. Obviously, quicksort’s over-
head is large when the number of elements is
small. This is why one might use a bubble
sort once quicksort has created small enough
partitions.

Note that the example array does not con-
tain any identical elements. During an itera-
tion, elements that are the same as the
selected element are never moved. Thus they
may end up in either partition. Strictly speak-
ing, then, the two partitions consist of ele-
ments “less than or possibly equal to the
selected element” and elements “greater than
or possibly equal to the selected element.”

REFERENCES

Augenstein, M.J., and Tenenbaum, A.M. Data Structures and PL/I Programming.

Englewood Cliffs, N.J.: Prentice-Hall, 1979, pp. 460-71. There is also a Pascal version
of this book entitled Data Structures Using Pascal (Englewood Cliffs, N.J.: Prentice-
Hall, 1982).

1977, Chapter 15.

W8 48 48 ws % ws we w8

8 N8 ws ws ws ws w

Bowles, K.L. Microcomputer Problem Solving Using Pascal. New York: Springer-Verlag,

Knuth, D.E. The Art of Computer Programming, Volume 3: Searching and Sort-
ing. Reading, Mass.: Addison-Wesley, 1973, pp. 114-23.

Title - Quicksort
Name: QSORT
Purpose: Arrange an array of unsigned words into

ascending order using quicksort, with a
maximum size of 32,767 words

Entry: Register pair HL = Address of first word in the
array

NS NS NP NB N NS we we

.. s ws ws v

DTECT)

9F QUICKSORT (QSORD) 339

Register pair DE = Address of last word in the
array

Register pair BC = Lowest available stack
address
Exit: If the stack did not overflow then

array is sorted into ascending order.
Carry flag = O

Else
Carry flag = 1

Registers used: AF,BC,DE,HL

Time: The timing is highly data-dependent but the
quicksort algorithm takes approximately
N % log (N) loops through PARTLP. There will be
2 ® N+1 calls to Sort. The number of recursions
will probably be a fraction of N but if all
data is the same, the recursion could be up to
N. Therefore the amount of stack space should
be maximized. NOTE: Each recursion level takes
é bytes of stack space.

In the above discussion N is the number of
array elements.

For example, sorting a 16,384-word array took
about 27 seconds and 1200 bytes of stack space
on a 6 MHz Z80.

Size: Program 206 bytes
Data 8 bytes

OO ME NE NE NS NS NE WE N8 NP N8 NP N WS NE N6 WD MO NG NE NE V6 NG A N8 NS WS NS N NG N8 N N

NE NE NB UE MU NG ¥B N WG NS ME NB N WE V6 N6 MO NE NS NP S NE WS UG VS NE NS B NS N5 N5 N8 w5 w8

QSORT:
sWATCH FOR STACK OVERFLOW
;CALCULATE A THRESHOLD TO WARN OF QVERFLOW
s+ (10 BYTES FROM THE END OF THE STACK)
s SAVE THIS THRESHOLD FOR LATER COMPARISONS
$sALSO SAVE THE POSITION OF THIS ROUTINE‘S RETURN ADDRESS
; IN THE EVENT WE MUST ABORT BECAUSE OF STACK OVERFLOW

PUSH HL s SAVE BASE ADDRESS OF ARRAY
LD HL, 10 sADD SMALL BUFFER (10 BYTES) TO
ADD HL, BC ; LOWEST STACK ADDRESS
LD (STKBTM) , HL $SAVE SUM AS BOTTOM OF STACK
3 FOR FIGURING WHEN TO ABORT
LD HL, 2 $ SAVE POINTER TO RETURN ADDRESS
ADD HL, SP 3 IN CASE OF ABORT
LD (OLDSP) , HL
POP HL s RESTORE BASE ADDRESS

s WORK RECURSIVELY THROUGH THE QUICKSORT ALGORITHM AS
s FOLLOWS:

340 ~rrAY OPERATIONS

1. CHECK IF THE PARTITION CONTAINS O OR 1 ELEMENT.
MOVE UP A RECURSION LEVEL IF IT DOES.

2. USE MEDIAN TO OBTAIN A REASONABLE CENTRAL VALUE
FOR DIVIDING THE CURRENT PARTITION INTO TWO
PARTS.

3. MOVE THROUGH ARRAY SWAPPING ELEMENTS THAT
ARE OUT OF ORDER UNTIL ALL ELEMENTS BELOW THE
CENTRAL VALUE ARE AHEAD OF ALL ELEMENTS ABOVE

" THE CENTRAL VALUE. SUBROUTINE COMPARE
COMPARES ELEMENTS, SWAP EXCHANGES ELEMENTS,
PREV MQVES UPPER BOUNDARY DOWN ONE ELEMENT,
AND NEXT MOVES LOWER BOUNDARY UP ONE ELEMENT.

4. CHECK IF THE STACK IS ABOUT TO OVERFLOW. IF IT
1S, ABORT AND EXIT.

S. ESTABLISH THE BOUNDARIES FOR THE FIRST PARTITION
(CONSISTING OF ELEMENTS LESS THAN THE CENTRAL VALUE)
AND SORT IT RECURSIVELY.

6. ESTABLISH THE BOUNDARIES FOR THE SECOND PARTITION
(CONSISTING OF ELEMENTS GREATER THAN THE CENTRAL
VALUE) AND SORT IT RECURSIVELY.

B NG NS N UE MO NE NE NG N6 NE NB NS NP NE NS NS NS wB wE

SORT:
1 SAVE BASE ADDRESS AND FINAL ADDRESS IN LOCAL STORAGE
LD (FIRST),HL s SAVE FIRST IN LOCAL AREA
EX DE, HL
LD (LAST) ,HL : SAVE LAST IN LOCAL AREA

sCHECK IF PARTITION CONTAINS O OR 1 ELEMENTS
» IT DOES IF FIRST IS EITHER LARGER THAN (0)
3 OR EQUAL TO (1) LAST.

PARTION:
s STOP WHEN FIRST >= LAST
;DE = ADDRESS OF FIRST
sHL = ADDRESS OF LAST

LD AE ; CALCULATE FIRST - LAST .

SUB L 7 MUST KEEP BOTH, SO USE 8-BIT SUBTRACT
LD A, D

SBC A H

RET NC s IF DIFFERENCE POSITIVE, RETURN

s THIS PART IS SORTED

3sUSE MEDIAN TO FIND A REASONABLE CENTRAL (PIVOT) ELEMENT
3 MOVE CENTRAL ELEMENT TO FIRST POSITION

CALL MEDIAN s SELECT CENTRAL ELEMENT, MOVE IT
; TO FIRST POSITION
LD cC,0 sBIT O OF REGISTER C = DIRECTION

s IF IT“S O THEN DIRECTION IS UP
3 ELSE DIRECTION IS DOWN

REORDER ARRAY BY COMPARING OTHER ELEMENTS WITH

CENTRAL ELEMENT. START BY COMPARING THAT ELEMENT WITH
LAST ELEMENT. EACH TIME WE FIND AN ELEMENT THAT
BELONGS IN THE FIRST PART (THAT IS, IT IS LESS THAN
THE CENTRAL ELEMENT), SWAP IT INTO THE FIRST PART IF IT

. us us wE o~

PARTLP:

UP:

9F QUICKSORT (@sorT) 344

IS NOT ALREADY THERE AND MOVE THE BOUNDARY OF THE

FIRST PART DOWN ONE ELEMENT. SIMILARLY, EACH TIME WE
FIND AN ELEMENT THAT BELONGS IN THE SECOND PART (THAT
1S, IT IS GREATER THAN THE CENTRAL ELEMENT), SWAP IT INTO
THE SECOND PART IF IT IS NOT ALREADY THERE AND MOVE

THE BOUNDARY OF THE SECOND PART UP ONE ELEMENT.
ULTIMATELY, THE BOUNDARIES COME TOGETHER

AND THE DIVISION OF THE ARRAY IS THEN COMPLETE
NOTE THAT ELEMENTS EQUAL TO THE CENTRAL ELEMENT ARE NEVER
SWAPPED AND SO MAY END UP IN EITHER PART

NE W8 B NI N WS s we Ne wa

sLOOP SORTING UNEXAMINED PART OF THE PARTITION
3 UNTIL THERE IS NOTHING LEFT IN IT

LD A E ;s LOWER BOUNDARY - UPPER BOUNDARY

SUR L 3y MUST KEEP BOTH, SO USE 8-BIT SUBTRACT
LD A, D

SBC A H

JR NC, DONE sEXIT WHEN EVERYTHING EXAMINED

s COMPARE NEXT 2 ELEMENTS. IF OUT OF ORDER, SWAP THEM
3 AND CHANGE DIRECTION OF SEARCH
s IF FIRST > LAST THEN SWAP

CALL COMPARE ; COMPARE ELEMENTS

JR C,0K s JUMP IF ALREADY IN ORDER
JR Z,0K 3 OF IF ELEMENTS EQUAL

s ELEMENTS OUT OF ORDER. SWAP THEM

CALL SWAP s SWAP ELEMENTS

INC Cc 3 CHANGE DIRECTION

s REDUCE SIZE OF UNEXAMINED AREA

3 IF NEW ELEMENT LESS THAN CENTRAL ELEMENT, MOVE

3 TOP BOUNDARY DOWN

3 IF NEW ELEMENT GREATER THAN CENTRAL ELEMENT, MOVE
3 BOTTOM BOUNDARY UP

s IF ELEMENTS EQUAL, CONTINUE IN LATEST DIRECTION

BIT 0,C sBIT 0 OF C TELLS WHICH WAY TO GO
JR Z,UP s JUMP IF MOVING UP

EX DE, HL

CALL NEXT ;ELSE MOVE TOP BOUNDARY DOWN BY
EX DE, HL ;3 ONE ELEMENT

JR PARTLP

CALL PREV sMQVE BOTTOM BOUNDARY UP BY

7 ONE ELEMENT
JR PARTLP

s THIS PARTITION HAS NOW BEEN SUBDIVIDED INTO TWO
PARTITIONS. ONE STARTS AT THE TOP AND ENDS JUST
ABOVE THE CENTRAL ELEMENT. THE OTHER STARTS
JUST BELOW THE CENTRAL ELEMENT AND CONTINUES

TO THE BOTTOM. THE CENTRAL ELEMENT IS NOW IN
ITS PROPER SORTED POSITION AND NEED NOT BE
INCLUDED IN EITHER PARTITION

8 N8 B wB we w8

342 Ay OPERATIONS

DONE:

ABORT:

MEDIAN:

s FIRST CHECK WHETHER STACK MIGHT QVERFLOW
sIF IT IS GETTING TOO CLOSE TO THE BOTTOM, ABORT
;s THE PROGRAM AND EXIT

LD HL, (STKBTM) s CALCULATE STKBTM - SP
OR A s CLEAR CARRY

SBC HL, SP

JR NC, ABORT sEXIT IF STACK TOO LARGE

s ESTABLISH BOUNDARIES FOR FIRST (LOWER) PARTITION

; LOWER BOUNDARY IS SAME AS BEFORE

s UPPER BOUNDARY IS ELEMENT JUST BELOW CENTRAL ELEMENT
3 THEN RECURSIVELY QUICKSORT FIRST PARTITION

PUSH DE s SAVE ADDRESS OF CENTRAL ELEMENT
LD HL, (LAST)

PUSH HL s SAVE ADDRESS OF LAST

EX DE, HL

CALL PREV ; CALCULATE LAST FOR FIRST PART
EX DE, HL

LD HL, (FIRST) ;FIRST IS SAME AS BEFORE

CALL SORT 3 QUICKSORT FIRST PART

sESTABLISH ROUNDARIES FOR SECOND (UPPER) PARTITION

s UPPER BOUNDARY IS SAME AS BEFORE

s LOWER BOUNDARY IS ELEMENT JUST AROVE CENTRAL ELEMENT
3 THEN RECURSIVELY QUICKSORT SECOND PARTITION

POP DE sLAST IS SAME AS BEFORE

POP HL s CALCULATE FIRST FOR SECOND PART

CALL NEXT

CALL SORT s QUICKSORT SECOND PART

OR A ;CARRY = 0 FOR NO ERRORS

RET

sERROR EXIT - SET CARRY

LD SP, (OLDSP) ;s TOP OF STACK IS ORIGINAL
3 RETURN ADDRESS

SCF ;s INDICATE ERROR IN SORT

RET sRETURN TO ORIGINAL CALLER

T T a2 T
;ROUTINE: MEDIAN
s PURPOSE: DETERMINE WHICH VALUE IN A PARTITION

H SHOULD BE USED AS THE CENTRAL ELEMENT OR PIVOT
;ENTRY: DE = ADDRESS OF FIRST VALUE
4 HL = ADDRESS OF LAST VALUE

sEXIT: DE IS ADDRESS OF CENTRAL ELEMENT
;REGISTERS USED: AF,BC,DE
P REREREERBRERR R ERRRRR R R R R RRE R R

s DETERMINE ADDRESS OF MIDDLE ELEMENT

3 MIDDLE := ALIGNED (FIRST + LAST) DIV 2

LD AL s ADD ADDRESSES OF FIRST, LAST
ADD AE sMUST KEEP BOTH, S0 USE 8-BIT
LD C,A s ADD INSTEAD OF 14-BIT

MED1:=

MIDD1:

9F QUICKSORT (QsOr) 343

LD A H

ADC A, D

LD B,A

RR B sDIVIDE SUM BY 2, BYTE AT A TIME
RR c

RES o,C ;CLEAR BIT O FOR ALIGNMENT

BIT 0,E sALIGN MIDDLE TO BOUNDARY OF FIRST
JR Z,MED1 3 JUMP IF BIT O OF FIRST IS O

INC c 3 ELSE MAKE BIT O OF MIDDLE 1

s DETERMINE WHICH OF FIRST, MIDDLE, LAST IS
s MEDIAN (CENTRAL VALUE)
s COMPARE FIRST AND MIDDLE

PUSH HL ; SAVE LAST

LD L.C

LD H,B

CALL COMPARE s COMPARE FIRST AND MIDDLE
POP HL sRESTORE LAST

JR NC, MIDD1 s JUMP IF FIRST >= MIDDLE

sWE KNOW (MIDDLE > FIRST)

3 SO0 COMPARE MIDDLE AND
PUSH DE

LAST
s SAVE FIRST

LD E,C

LD D,B

CALL COMPARE ; COMPARE MIDDLE AND LAST
POP DE ;s RESTORE LAST

JR C, SWAPMF s JUMP IF LAST >= MIDDLE
JR Z, SWAPMF ; MIDDLE IS MEDIAN

sWE KNOW (MIDDLE > FIRST) AND (MIDDLE > LAST)
; SO COMPARE FIRST AND LAST

CALL COMPARE

; COMPARE FIRST AND LAST

RET NC sRETURN IF LAST >= FIRST
s FIRST IS MEDIAN
JR SWAPLF sELSE LAST IS MEDIAN

sWE KNOW (FIRST >= MIDDLE)
; SO COMPARE FIRST AND LAST

CALL COMPARE
RET Cc
RET z

; COMPARE LAST AND FIRST
sRETURN IF LAST >= FIRST
s FIRST IS MEDIAN

;sWE KNOW (FIRST >= MIDDLE) AND (FIRST > LAST)

3 SO COMPARE MIDDLE AND
PUSH DE

LAST
3 SAVE FIRST

LD E,C ;DE = MIDDLE

LD D,B

CALL COMPARE ; COMPARE MIDDLE AND LAST
FQP DE s RESTORE FIRST

JR C, SWAPLF s JUMP IF LAST > MIDDLE

3 LAST IS MEDIAN

344 /rrav OPERATIONS

sMIDDLE IS MEDIAN, SWAP IT WITH FIRST

SWAPMF:
PUSH HL s SAVE LAST
LD L.C yHL = ADDRESS OF MIDDLE
LD H,B
CALL SWAP s SWAP MIDDLE, FIRST
POP HL sRESTORE LAST
RET
s LAST IS MEDIAN, SWAP IT WITH FIRST

SWAPLF:
CALL SWAP ; SWAP FIRST AND LAST
RET

T it 2 T i T s g
;ROUTINE: NEXT

; PURPOSE: MAKE HL POINT TO NEXT ELEMENT
sENTRY: HL = ADDRESS OF CURRENT ELEMENT
3EXIT: HL = ADDRESS OF NEXT ELEMENT

s REGISTERS USEDR: HL

R 2 T

NEXT:
INC HL s INCREMENT TO NEXT ELEMENT
INC HL
RET
§ 66036 06 26 06 26 00 3606 06 36 06 0636 06 26 38 3696 3636 2636 26 FE I
sROUTINE: PREV
s PURPOSE: MAKE HL POINT TO PREVIOUS ELEMENT
sENTRY: HL = ADDRESS OF CURRENT ELEMENT
$EXIT: HL = ADDRESS OF PREVIOUS ELEMENT
sREGISTERS USED: HL
§ P06 000 B34 00 26 06 36 06 26 36 06 26 06 B0 R0 B I A0 I 26 22 B A B A

PREV:
DEC HL s DECREMENT TO PREVIOQUS ELEMENT
DEC HL
RET

B RN R MMM BRI RER MR RRR R R
s ROUTINE: COMPARE

s PURPOSE: COMPARE DATA ITEMS POINTED TCG BY DE AND HL

sENTRY: DE = ADDRESS OF DATA ELEMENT 1
H HL = ADDRESS OF DATA ELEMENT 2
3EXIT: IF ELEMENT 1 > ELEMENT 2 THEN
4

9]
X000

IF ELEMENT 1 < ELEMENT 2 THEN

IF ELEMENT 1 = ELEMENT 2 THEN

N8 NS NS NS wE
LI I e 1 O

NO NO N
= OXOr

;REGISTERS USED: AF
PRRBERRRABRE R R R R R R RRR RN BB RRERR

COMPARE :

SWAP =

FIRST:
LAST:
STKBTM:
QLDSP:

. w8 w8 v we

9F QUICKSORT (QSORT) 345

INC HL ;POINT TO HIGH BYTES

INC DE

LD A, (DE)

CcP (HL) ; COMPARE HIGH BYTES

DEC DE ;POINT TO LOW BYTES

DEC HL

RET NZ sRETURN IF HIGH BYTES NOT EQUAL
LD A, (DE) ; OTHERWISE, COMPARE LOW BYTES
cP (HL)

RET

R T e T 3
sROUTINE: SWAP

s PURPOSE: SWAP ELEMENTS POINTED TO BY DE,HL
sENTRY: DE = ADDRESS OF ELEMENT 1

; HL = ADDRESS OF ELEMENT 2

sEXIT: ELEMENTS SWAPPED

;REGISTERS USED: AF,B

3 ORBER IR RN MMM B R R MR ER BN

; SWAP LOW BYTES

LD B, (HL) ;GET ELEMENT 2

LD A, (DE) sGET ELEMENT 1

LD (HL) , A s STORE NEW ELEMENT 2
LD A, B

LD (DE), A s STORE NEW ELEMENT 1
INC HL

INC DE

3 SWAP HIGH BRYTES

LD B, (HL) s GET ELEMENT 2

LD A, (DE) ;GET ELEMENT 1

LD (HL), A ;s STORE NEW ELEMENT 2
LD A B

LD (DE), A s STORE NEW ELEMENT 1
DEC HL

DEC DE

RET

s DATA SECTION
DS
DS
ns
ns

s POINTER TO FIRST ELEMENT OF PART

s POINTER TO LAST ELEMENT OF PART

7 THRESHOLD FOR STACK OVERFLOW
;POINTER TO ORIGINAL RETURN ADDRESS

LVILVE R

SAMFLE EXECUTION:

s w8 wE ws s

346 ey oPERATIONS

SCoF =
; SORT AN ARRAY BETWEEN BEGBUF (FIRST ELEMENT)
3 AND ENDBUF (LAST ELEMENT)
3 START STACK AT S000 HEX AND ALLOW IT TO EXPAND
3 AS FAR AS 4F00 HEX
LD SP, S000H sSET UP A STACK AREA
LD BC, 4FOOH sBC = LOWEST AVAILABLE STACK ADDRESS
LD HL , BEGRUF sHL = ADDRESS OF FIRST ELEMENT OF ARRAY
LD DE, ENDBUF sDE = ADDRESS OF LAST ELEMENT OF ARRAY
CALL QS0RT s SORT
: sRESULT FOR TEST DATA IS
y 0,1,2,3, ... ,14,13
JR SC9F ;LOOP FOR MORE TESTS
;s DATA SECTION
BEGBUF: DW 15
DW 14
DW 13
DW 12
DW 11
bW 10
DW 9
oW 8
DW 7
W é
oW S
oW 4
oW 3
oW 2
DW 1
ENDBUF: DW (¢}

END

RAM Test (RAMTST)

9G

Testsa RAM area specified by a base address
and a length in bytes. Writes the values 0, FF ¢,
AA6(10101010;7), and 556 (01010101,) into each
byte and checks whether they can be read back
correctly. Places 1 in each bit position of each
byte and checks whether it can be read back
correctly with all other bits cleared. Clears the
Carry flag if all tests run properly. If it finds an
error, it exits immediately, setting the Carry flag
and returning the test value and the address at
which the error occurred.

Procedure: The program performs the single
value checks (with 0, FF4, AA¢, and 55;¢) by
first filling the memory area and then comparing
each byte with the specified value. Filling the
entire area first should provide enough delay
between writing and reading to detect a failure

“to retain data (perhaps caused by improperly
designed refresh circuitry). The program then
performs the walking bit test, starting with bit 7;

Registers Used: AF, BC, DE, HL

Execution Time: Approximately 633 cycles per
byte tested plus 663 cycles overhead

Program Size: 82 bytes
Data Memory Required: None

Special Cases:

1. An area size of 00004 causes an immediate
exit with no memory tested. The Carry flag is
cleared to indicate no errors.

2. Since the routine changes all bytes in the
tested area, using it to test an area that includes
itself will have unpredictable results.

Note that Case | means this routine cannot be
asked to test the entire memory. Such a request
would be meaningless anyway since it would re-
quire the routine to test itself.

3. Testing a ROM causes a return with an error
indication after the first occasion on which the test
value differs from the memory’s contents.

here it writes the data into memory and attempts
to read it back immediately for a comparison.

Entry Conditions

Base address of test area in HL
Size of test area in bytes in DE

Exit Conditions

If an error is found:
Carry =1
Address containing error in HL
Test value in A
If no error is found:
Carry =10
All bytes in test area contain 0

Example

1. Data: Base address = 03804

Length (size) of area = 02004

Result: Area tested is the 0200, bytes starting at
address 0380, that is, addresses 0380

through 057F . The order of the tests is

347

348 /rray OPERATIONS

B NS 4P B 9B N wr we

NE N NE NS NP NE NE NE NE NS NS N e

ME NE NB NS NB ME NB NE N8 NS N NE WS w8 NS

“ -

. ws we

. Write and read 0

[V NSl S

. Write and read FF 4

. Write and read AA ¢ (10101010,)

. Write and read 55,4 (01010101,)

. Walking bit test, starting with 1 in

bit 7. That is, start with 10000000,
(80,¢) and move the 1 one position
right for each subsequent test of a

byte.

Title
Name:

Purpose:

Entry:

Exit:

Registers used:

Time:

Size:

RAM test
RAMTST

Test a RAM (read/write memory) area
1) Write all O and test
2) Write all FF hex and test
3) Write all AA hex and test
4) Write all S5 hex and test
S5) Shift a single 1 through each bit,
while clearing all other bits

If the program finds an error, it exits
immediately with the Carry flag set and
indicates where the error occurred and
what value it used in the test.

Register pair HL = Base address of test area
Register pair DE = Size of area in bytes

If there are no errors then
Carry flag = O
test area contains O in all bytes
else
Carry flag = 1
Register pair HL = Address of error
Register A = Expected value

AF, BC, DE. HL

Approximately 633 cycles per byte plus
663 cycles overhead

Program 82 bytes

DT

8 Ne NE B W ws

NE MR NB NE NE NE B wE wE v R

NP B NG NE NE NE NE NE NE NE NE NE WE NE NP N NE NE NS NE N N

9G RAM TEST (RAMTST) 349

RAMTST:
:EXIT WITH NO ERRORS IF AREA SIZE IS O
LD A, D s TEST AREA SIZE
OR E
RET Y4 ;EXIT WITH NO ERRORS IF SIZE IS ZERO
LD B,D 3BC = AREA SIZE
LD C,.E
sFILL MEMORY WITH O AND TEST
SUB A
CALL FILCMP
RET C sEXIT IF ERROR FOUND
sFILL MEMORY WITH FF HEX (ALL 1°S) AND TEST
LD A, OFFH
CALL FILCMP
RET C ;EXIT IF ERROR FOUND
;FILL MEMORY WITH AA HEX (ALTERNATING 1“S AND 0°S) AND TEST
LD A, OAAH
CALL FILCMP
RET Cc sEXIT IF ERROR FOUND
sFILL MEMORY WITH S5 HEX (ALTERNATING 0“S AND 17S) AND TEST
LD A, S5H
CALL FILCMP
RET C sEXIT IF ERROR FOUND
s PERFORM WALKING BIT TEST. PLACE A 1 IN BIT 7 AND
; SEE IF IT CAN BE READ BACK. THEN MOVE THE 1 TO
; BITS &, S, 4, 3, 2, 1, AND O AND SEE IF IT CAN
; BE READ BACK
WLKLP:
LD A, 10000000B ;MAKE BIT 7 1, ALL OTHER BITS O
WLKLF1z
LD (HL) , A s STORE TEST PATTERN IN MEMORY
cP (HL) ; TRY TO READ IT BACK
SCF s SET CARRY IN CASE OF ERROR
RET NZ sRETURN IF ERROR
RRCA sROTATE PATTERN TO MOVE 1 RIGHT
CP 10000000B
JR NZ, WLKLP1 sCONTINUE UNTIL 1 IS BACK IN BIT 7
LD (HL), 0 s CLEAR BYTE JUST CHECKED
INC HL
DEC BC ; DECREMENT AND TEST 16-BIT COUNTER
LD A, B
OR c
JR NZ, WLKLP s CONTINUE UNTIL MEMORY TESTED
RET ;NO ERRORS (NOTE OR C CLEARS CARRY)

P ERNEENRREE RN RR RN R RN R R R R R R E RN
sROUTINE: FILCMP

s PURPOSE: FILL MEMORY WITH A VALUE AND TEST
H THAT IT CAN BE READ BACK

350 ~RRAY OPERATIONS

sENTRY: A = TEST VALUE
H HL = BASE ADDRESS
H BC = SIZE OF AREA IN BYTES
sEXIT: IF NO ERRORS THEN
H CARRY FLAG IS O
H ELSE
i CARRY FLAG IS 1
H HL = ADDRESS OF ERROR
H DE = BASE ADDRESS
H BC = SIZE OF AREA IN BYTES
; A = TEST VALLE
sREGISTERS USED: AF, BC, DE, HL
3 B 000 T 0 30 0 00 26 00 20 00 0 20 0696 26 0600 36 0636 696 26 0636 3606 36 636 2606
FILCMP:
PUSH HL s SAVE BASE ADDRESS
PUSH BC s SAVE SIZE OF AREA
LD E,A s SAVE TEST VALUE
LD (HL), A s STORE TEST VALUE IN FIRST BYTE
DEC BC sREMAINING AREA = SIZE - 1
LD A, B sCHECK IF ANYTHING IN REMAINING AREA
OR C
LD AE sRESTORE TEST VALUE
JR Z, COMPARE s BRRANCH IF AREA WAS ONLY 1 BYTE
sFILL REST OF AREA USING EBLOCK MQVE
3 EACH ITERATION MOVES TEST VALUE TQ NEXT HIGHER ADDRESS
LD n,H sDESTINATION IS ALWAYS SOURCE + 1
LD E.,L
INC DE
LDIR s FILL MEMORY
sNOW THAT MEMORY HAS BEEN FILLEDRD, TEST TO SEE IF
s EACH BYTE CAN RE READ BACK CORRECTLY
COMPARE:
POP RC sRESTORE SIZE OF AREA
POP HL s RESTORE BASE ADDRESS
PUSH HL s SAVE BASE ADDRESS
PUSH BC s SAVE SIZE QF VALUE
s COMPARE MEMORY AND TEST VALUE
CMPLP:
CPI
JR NZ, CMPER s JUMP IF NOT EQUAL
JP PE, CMPLP s CONTINUE THROUGH ENTIRE AREA

3 NOTE CPI CLEARS P/V FLAG IF IT
: DECREMENTS BC TO O

3 NO ERRORS FOUND, SO CLEAR CARRY

FOP BC ;BC = SIZE OF AREA .

POP HL ;HL = BASE ADDRESS

OR A ; CLEAR CARRY, INDICATING NO ERRORS
RET

sERROR EXIT, SET CARRY
sHL = ADDRESS OF ERROR
sA = TEST VALUE

9G RAM TEST (RAMTST) 354

CMPER:

POP BC sDE = SIZE OF AREA

POP DE ; BC = BASE ADDRESS

SCF 31 SET CARRY, INDICATING AN ERROR

RET
; SAMPLE EXECUTION H
SC9G:

s TEST RAM FROM 2000 HEX THROUGH 300F HEX
3 SIZE OF AREA = 1010 HEX BYTES

LD HL., 2000H sHL = BASE ADDRESS
LD DE, 1010H sDE = NUMBER OF BYTES
CALL RAMTST 3 TEST MEMORY

;s CARRY FLAG SHOULD BE O

JR

o)

C9G ;LOOP FOR MORE TESTING
END

Jump Table (JTAB)

9H

Transfers control to an address selected from
atable accordingto anindex. The addresses are
stored in the usual Z80 format (less significant
byte first), starting at address JMPTAB. The
size of the table (number of addresses) is a
constant, LENSUB, which must be less than or
equal to 128. If the index is greater than or equal
to LENSUB, the program returns control imme-
diately with the Carry flag set to 1.

Procedure: The program first checks if the
index is greater than or equal to the size of the
table (LENSUB). If it is, the program returns
control with the Carry flag set. If it is not, the
program obtains the starting address of the
appropriate subroutine from the table and jumps
to 1t.

Registers Used: AF

Execution Time: 117 cycles overhead, besides the
time required to execute the actual subroutine

Program Size: 21 bytes plus 2 * LENSUB bytes for
the table of starting addresses, where LENSUB s the
number of subroutines

Data Memory Required: None
Special Case: Entry with an index greater than or

equal to LENSUB causes an immediate exit with
the Carry flag set to 1.

Entry Conditions

Index in A

Exit Conditions

If (A) is greater than LENSUB, an immediate
return with Carry = 1. Otherwise, control is
transferred to the appropriate subroutine as if
anindexed call had been performed. The return
address remains at the top of the stack.

Example

1. Data: LENSUB (size of subroutine table) = 03
Table consists of addresses SUBO, SUBI,
and SUB2.
Index = (A) = 02
Result: Control transferred to address SUB2

(PC=SUB2)

352

OH JUMP TABLE (JTAR) 353

“ v s

L IR LI LR TR T

H Title Jump table
H Name: JTAB
Purpose: Given an index, jump to the subroutine with

that index in a table.

Entry: Register A is the subroutine number (O to
LENSUB—-1, the number of subroutines)
LENSUE must be less than or equal to
12a.

Exit: If the routine number is valid then
execute the routine
else
Carry flag = 1
Registers used: AF

Time: 117 cycles plus execution time of subroutine

Size: Program 21 bytes plus size of table (2=LENSUR)

NE N NS MB ME NE B NS NE NS NE NE NB NE ME NE WE ME N N NP

NE O NB ME NE NB NE ME B MR N8 WE NE NS NE NE NE NE NE R N W

sEXIT WITH CARRY SET IF ROUTINE NUMERER IS INVALID
s THAT 1S, IF IT IS TOO LARGE FOR TABLE (>LENSUE - 1)

JTAR:
CP LENSUR ; COMFARE ROUTINE NUMBER, TABLE SIZE
CCF ;s COMPLEMENT CARRY FOR ERRQR INDICATOR
RET c sRETURN IF ROUTINE NUMBER TOO LARGE

; WITH CARRY SET

: INDEX INTO TABLE OF WORD-LENGTH ADDRESSES
;s LEAVE REGISTER PAIRS UNCHANGED SO THEY CAN BE USED
3 FOR PASSING PARAMETERS

PUSH HL s SAVE HL

ADD A A s DOUBLE INDEX FOR WORD-LENGTH ENTRIES
LD HL, JMPTAR s INDEX INTO TABLE USING 8-BIT

ADD AL 3 ADDITION TO AVOID DISTURBING

LD L.A s ANOTHER REGISTER PAIR

LD A, 0

ADC AH

LD H,A s ACCESS ROUTINE ADDRESS

;OBTAIN ROUTINE ADDRESS FROM TABLE AND TRANSFER
; CONTROL TO IT, LEAVING ALL REGISTER PAIRS UNCHANGED

354 . rray OPERATIONS

LENSUB

JMPTAE:

SURO:

SUB1:

SUB2:

w8 ws s NP w8

SC%H:

LD A, (HL)
INC HL

LD H, (HL)
LD L,A

EX (SP), HL
RET

EQU 3

oW SURO

DW SUEB1

DW SUB2

;s THREE TEST SUBROUTINES

LD Al
RET
LD A2
RET
LD A2
RET

SAMPLE EXECUTION:

SUB A
CALL JTAB

s MOVE ROUTINE ADDRESS TO HL

sRESTORE OLD HL, PUSH ROUTINE ADDRESS
s JUMP TO ROUTINE

s NUMBER OF SUBROUTINES IN TABLE

; JUMP TABLE

sROUTINE O

;ROUTINE 1

sROUTINE 2

FOR JUMP TAELE

; TEST ROUTINE O SETS (A)

L[}
[

; TEST ROUTINE 1 SETS (A)

]
N

; TEST ROUTINE 2 SETS (A)

]
w

s EXECUTE ROUTINE O
3 AFTER EXECUTION, (A) =1

.

“s s we ws

LD
CaLL

CALL
LD
CALL
JR

END

Al
JTAR
A2
JTAR
A, 3
JTAB

SCoH

OH JUMP TABLE (JTAB) 358

s EXECUTE ROUTINE 1
s+ AFTER EXECUTION, (A)
s EXECUTE RQUTINE 2
3 AFTER EXECUTION, (A)
;EXECUTE ROUTINE 3
3 AFTER EXECUTION, CARRY

] L}
w N

L}
-

;LOOP FOR MORE TESTS

Read a Line from a Terminal (RDLINE)

10A

Readsa line of ASCII characters ending with
a carriage return and saves them in a buffer.
Defines the control characters Control H (08
hex), which deletes the latest character, and
Control X (18 hex), which deletes the entire line.
Sends a bell character (07 hex) to the terminal if
the buffer overflows. Echoes each character
placed in the buffer. Echoes non-printable char-
acters asan up arrow or caret (*) followed by the
printable equivalent (see Table 10-1). Sends a
new line sequence (typically carriage return, line
feed) to the terminal before exiting.

RDLINE assumes the following system-depen-
dent subroutines:

1. RDCHAR reads a character from the
terminal and puts it in the accumulator.

2. WRCHAR sends the character in the
accumulator to the terminal.

3. WRNEWL sends a new line sequence to
the terminal.

These subroutines are assumed to change all
user registers.

RDLINE is an example of a terminal input
handler. The control characters and I/ O subrou-
tines in a real system will, of course, be computer-
dependent. A specific example in the listing is
for a computer running the CP/M operating
system with a standard Basic Disk Operating
System (BDOS) accessed by calling memory
address 0005,,. Table 10-2 lists commonly used
CP/M BDOS functions. For more information
on CP/M, see Osborne CP/M User Guide,
Second Edition by Thom Hogan (Berkeley:
Osborne/ McGraw-Hill, 1982).

Procedure: The program starts the loop by
reading a character. If the character is a carriage

356

Registers Used: AF, BC, DE, HL

Execution Time: Approximately 162 cycles to place
an ordinary character in the buffer, not including the
execution time of RDCHAR or WRCHAR

Program Size: 148 bytes
Daia Memory Required: None

Special Cases:

1. Typing Control H (delete one character) or
Control X (delete the entire line) when the buffer is
empty has no effect.

2. The program discards an ordinary character
received when the buffer is full, and sends a bell
character to the terminal (ringing the bell).

return, the program sends a new line sequence to
the terminal and exits. Otherwise, it checks for
the special characters Control H and Control X.
If the buffer is not empty, Control H makes the
program decrement the buffer pointer and char-
acter count by 1 and send a backspace string
(cursor left, space, cursor left) to the terminal.
Control X makes the program delete characters
until it empties the buffer.

If the character is not special, the program
determines whether the buffer is full. If it is, the
program sends a bell character to the terminal.
If not, the program stores the character in the
buffer, echoes it to the terminal, and increments
the character count and buffer pointer.

Before echoing a character or deleting one
from the display, the program must determine
whether the character is printable. If it is not
(that is, it is a non-printable ASCII control
character), the program must display or delete
two characters, the control indicator (up arrow
or caret) and the printable equivalent (see Table
10-1). Note, however, that the character is stored
in its non-printable form.

10A READ A LINE FROM A TERMINAL (RDUNE) 357

Table 10-1: ASCII Control Characters and Printable Equivalents

Name Hex Value Printable Name Hex Value Printable
Equivalent Equivalent
NUL 00 Control @ DLE 10 Control P
SOH 01 Control A DCl1 11 Control Q
STX 02 Control B DC2 12 Control R
ETX 03 Control C DC3 13 Control S
EOT 04 Control D DC4 14 Control T
ENQ 05 Control E NAK 15 Control U
ACK 06 Control F SYN 16 Control V
BEL 07 Control G ETB 17 Control W
BS 08 Control H CAN 18 Control X
HT 09 Control 1 EM 19 Control Y
LF 0A Control J SUB 1A Control Z
VT 0B Control K ESC 1B Control [
FF 0C Control L FS 1C Control -
CR 0D Control M GS 1D Control]
SO 0E Control N RS 1E Control *
SI OF Control O VS 1F Control __
Table 10-2: BDOS Functions for CP/M 2.0
Function
Number Function Input Output

(Decimal in Name Parameters Parameters

Register C)
0 System Reset None None
1 Console Input None A = ASCII character
2 Console Output E = ASCII character None
3 Reader Input None A = ASCII character
4 Punch Output E = ASCII character None
5 List Output E = ASCII character None
6 Direct Console Input E = FFy4 A = ASCII character or 00

if no character is available

6 Direct Console Output E = ASCII character None
7 Get 1/O Byte None A =10BYTE
8 Set 1/O Byte E=10BYTE None
9 Print String DE = String Address None
10 Read Console Buffer DE = Buffer Address (Data in buffer)

Get Console Status

None

A = 00 (no character) or A =
FF ¢ (character ready)

358 nrut/ouTPUT

Entry Conditions

Base address of buffer in HL
Length (size) of buffer in bytes in A

Exit Conditions

Number of characters in the buffer in A

Examples

1. Data:
Result:

Line from keyboard is ‘ENTERecr’

Character count = 5 (line length)

Buffer contains ‘ENTER’

‘ENTER’ is sent to terminal, followed by a
new line sequence (typically either carriage
return, line feed or just carriage return).

Note that the ‘cr’ (carriage return) character
does not appear in the buffer.

2. Data: Linefromkeyboard is ‘DMcontrolHNcontrol
XENTETcontrolHRcr’

Character count = 5 (length of final line)

Buffer contains ‘ENTER’

‘DMBackspaceStringNBackspaceStringBack-
spaceStringENTETBackspaceStringR”’ is
sent to terminal, followed by a new line
sequence. The Backspace String deletes a
character from the screen and moves the
cursor left one space.

The sequence of operations is as follows:

Result:

Initial
Buffer

Character
Typed

Final
Buffer

Sent to
Terminal

D Empty ‘D’ D

M ‘D’ ‘DM’ M

Control H ‘DM’ ‘D’ Backspace string

N ‘D’ ‘DN’ N

Control X ‘DN’ Empty 2 Backspace strings
Empty ‘E’

‘E’ ‘EN’
‘EN’ ‘ENT’
‘ENT’ ‘ENTE’
‘ENTE’ ‘ENTET’
Control H ‘ENTET’ ‘ENTE’ Backspace string
‘ENTE’ ‘ENTER’ R

cr ‘ENTER’ ‘ENTER’ New line string

O-m=2Zm
- m—Zm

=

What has happened is

a. The operator types ‘D’, ‘M".

b. The operator sees that ‘M’ is wrong (it
should be ‘N’), types Control H to delete it, and
types ‘N’.

c. The operator then sees that the initial ‘D’ is
also wrong (it should be ‘E’). Since the error is
not in the latest character, the operator types
Control X to delete the entire line, and then
types ‘ENTET".

d. The operator sees that the second ‘T’ is
wrong (it should be ‘R’), types Control H to
delete it, and types ‘R’.

e. The operator types a carriage return to end
the line.

N NS uB B wa w8 we ew

N8 N N8 e 98 wm W8 en o5 am s

e 98 wa <8 we

5 wa s en 8

BELL
BSKEY
CR
CRKEY
CSRLFT
DELKEY
LF
SPACE
UPARRW

BDOS

DIRIG
STRG

STERM

RDLINE:

INIT:

Title
Name:

Purpose:

Entry:

Exit:

Registers used:

Time:

n

izes

1,

s EQUATES
EQU
EQU
EGQU
ERL
EQU
EGU
EGU
EQU
EQU

EQU
EQU
EGIL
EQU

Lo

O7H
03H
OnH-
ODH
0gH
13H
0AH
20H
SEH

C.A

10A READ A LINE FROM A TERMINAL (RDUNE) 3959

Read line
ROLINE

Read characters from CP/M BDOS CON: devics
until carriage return encountered. All contral
characters but the following are placed in the
buffer and displaved as the equivalent printable
ASCII character preceded by a caret.

Contral H: delete last character

Control X: delete entire line

Register pair HL = Base address of buffar
Register A = Length of buffer in bvtes

Register A = Number of characters in buffer
AF, BC, DE, HL
Not applicable

Frogram 148 bytes

sBELL CHARACTER (RINGS EELL ON TERMINAL)

s BACKSPACE KEYROARD CHARACTER

s+ CARRIAGE RETURN FOR CONSOLE

s CARRIAGE RETURN KEYEOARD CHARACTER

sMOVE CURSOR LEFT FOR CONSOLE

sDELETE LINE KEYBOARD CHARACTER

:LINE FEED FOR CONSOLE

3 SPACE CHARACTER

sUP ARROW OR CARET USED AT CONTROL INDICATOR

s BDOS ENTRY FOINT

+BDOS DIRECT I/0 FUNCTION

s BDOS PRINT STRING FUNCTION
sCF/M STRING TERMINATOR

:C = BUFFER LENGTH
sHL = BUFFER POINTER

s INITIALIZE CHARACTER COUNT TO ZERO

LD

E.O

s CHARACTER COUNT = 0

s READ CHARACTERS LINTIL A CARRIAGE RETURN IS TYPED

8 we W8 g ws s am

<= v e
we o8 ue < v ap -

45w 95 e e

360 prur/ouTPUT

ROLOOP:
CALL ROCHAR s READ CHARACTER FROM KEYEOARD — NO ECHO
:CHECK FOR CARRIAGE RETURN, EXIT IF FOUND
CcP CREEY
JR Z.EXITRD sEND OF LINE IF CARRIAGE RETURN
s CHECK FOR BACKSFACE AND DELETE CHARACTER IF FOUND
CcP BSKEY
JR NZ.ROLP1 s BRANCH IF NOT BRACKSFACE
CALL BACKSP s IF RBACKSPACE, DEILLETE ONE CHARACTER
JR ROLOOF s THEN START READ LOOF AGAIN
sCHECK FOR DELETE LINE CHARACTER AND EMPTY BUFFER IF FOUND
ROLPL:
CF DELKEY
JR NZ,ROLFZ2 s BRANCH IF NOT DELETE LINE
DEL1L:
CALL BACKSF sDELETE A CHARACTER
JR NZ, DEL1 s CONTINUE UNTIL BUFFER EMPTY
JR ROLQOF :THIS ACTUALLY BACKS UF OVER EACH
3 CHARACTER RATHER THAN JUST MOVING
s UP A LINE
sNOT A SPECIAL CHARACTER
» CHECKE IF BUFFER IS FULL
5 IF FIULL, RING BELL AND CONTINUE
3 IF NOT FULL, STORE CHARACTER AND ECHO
ROLP2:
LD E,A : SAVE CHARACTER
Lo AE 3 IS BUFFER FULL?
CP C 3 COMFARE COUNT AND BUFFER LENGTH
JR C,5TRCH s JUMP IF BUFFER NOT FULL
LD A, RELL. sFULL, RING THE TERMINAL-S BELL
CALL WRCHAR
JR ROLOGP s THEN CONTINUE THE READ LOOP
s BUFFER NOT FULL. STORE CHARACTER
STRCH:
LD A.E s GET CHARACTER BACK
Lo (HL), A 3 STORE CHARACTER IN BUFFER
INC HL s INCREMENT BUFFER POINTER
INC E s INCREMENT CHARACTER COUNT
: IF CHARACTER IS CONTROL, THEN QUTPUT
; UP ARROW FOLLOWED BY PRINTABLE EQUIVALENT
CP SPACE s CONTROL IF LESS THAN SPACE (20 HEX)
JR NC, PRCH s JUMP IF A PRINTABLE CHARACTER
PUSH AF s SAVE CHARACTER
LD A, UPARRW sWRITE UP ARROW OR CARET
CALL. WRCHAR
FOP AF s RECOVER CHARACTER
ALD A,40H s CHANGE TO PRINTAELE FORM
FRCH: CALL WRCHAR s ECHO CHARACTER TO TERMINAL

JR ROLOOP ; THEN CONTINUE READ LOOF

10A READ A LINE FROM A TERMINAL (RDUNE) 364

sEXIT
s SENDY NEW LINE SEQUENCE (USUALLY CR,LF) TO TERMINAL
3 GET LENGTH OF LINE

EXITRD:
CALL WRNEWL 3 SEND NEW LINE SEQUENCE
LD AR sLINE LENGTH = CHARACTER COUNT
RET
HE L P Pttt b et
s ROUTINE: RDOCHAR
s FPURPOSE: READ CHARACTER EUT DO NOT ECHO TO CONSOLE
s ENTRY: NONE
tEXIT: REGISTER A = CHARACTER
sREGISTERS USED: ALL EXCEPT BC, HL
LR R E I I I PTT EETT T T F T T P F Py g e
ROCHAR:
PUSH HL s SAVE B, HL
FLESH BC
sWAIT FOR CHARACTER FROM CONZOLE
ROWAIT:
LI C,0DIRIC sDIRECT CONSOLE I/0
LD E, OFFH s INDICATE INPUT
CALL BDOZ sREAD CHARACTER FROM CONSOLE
OR A s LR IF NO CHARALCTER (A = 0O)
JR Z.ROWAIT
FOP DE s RESTORE BC, HL
FOF HL
RET sRETURN WITH CHARACTER IN REGISTER A
P EREE RS EES R R S SRR RS R R R R R
sROUTINE: WRCHAR
s PURPOSE: WRITE CHARACTER TO CONSOLE
sENTRY: REGISTER A = CHARACTER
sEXIT: NONE
sREGISTERS USED: ALL EXCEPT BC, HUL
LT TE PR TP P TP I P P P $ P L o r
WRCHAR:
PUSH HL s SAVE BC, HL
PUSH BC
sWRITE A CHARACTER
LD C,DIRIO sDIRECT CONSOLE I/70
LI E.A s INDICATE OUTFUT - CHARACTER IN E
CALL BDOS sWRITE CHARACTER ON CONSOLE
FOF BC s RESTUORE BC, HL
POP HL
RET

R e s L B D e
s ROUTINE: WRNEWL
sPURFOSE: ISSUE NEW LINE SEGQUENCE TO CONZOLE

362 rur/outrUT

NORMALLY, THIS IS A CARRIAGE RETURN AND
LINE FEED, BUT SOME COMFUTERE REGUIRE ONLY
A CARRIAGE RETLIRN.

$ENTRY: NONE

sEXIT: NONE

sREGISTERS USED: ALL EXCEPT BC,HL

Lt et EE E E R P R E R A

. . we

WRNEWL :
PUSH HL s SAVE BC, HL
PLIZH BC
s SEND NEW LINE STRING TO CONSOLE
Lo DE, NLETRG sPOINT TO NEW LINE STRING
CALL WRETRG s SEND STRING TO CONSOLE
FOP BC s RESTORE BC, HL
FOF HL
RET
NLETRG: DR CR,LF, STERM sNEW LINE STRING
; NOTE: STERM (%) IS CP/M TERMINATOR
RSN EEE SRR R R RN SRR R
sROUTINE: BACKSP
s FURFOSE: FPERFORM A DESTRUCTIVE BACKESFACE
sENTRY: B = NUMBER 0OF CHARACTERS IN BUFFER
H HL = NEXT AVAILAELE BUFFER ADDRESS
sEXIT: IF NO CHARACTERS IN BUFFER
H Z =1
3 ELSE
s Z =20
H CHARACTER REMOVED FROM BUFFER
sREGISTERS USED: ALL EXCEPT C, HL
HEE S Bt P b Bt Bl b B bt it p ittt
BACKSP:
1 CHECK FOR EMFTY BUFFER
(W] AR s TEST NUMBER OF CHARACTERS
OR &
RET z sEXIT IF BUFFER EMFTY
s OUTFUT BACKSPACE STRING
3 TO REMOVE CHARACTER FROM DIISFLAY
DEC HL s DECREMENT BUFFER FOINTER
PUSH HL s SAVE BC, HL
FPLIZH EC
Lo A, (HL) s GET CHARACTER
[ZOH s IS5 IT A CONTROL?
JR NC, BS1 s NO, BRANCH, DELETE ONLY ONE CHARACTER
Lo DE, BSSTRG ;7 YES, DELETE 2 CHARALCTERS
B (UF ARROW AND PRINTABLE EQUIVALENT)
CALL WRSTRG sWRITE BACKSPACE STRING
BESls LI DE, BESTRG
CALL WRSTRG sWRITE BACKSPACE STRING
FOF BC sRESTORE RBC, HL

POP HL

10A READ A LINE FROM A TERMINAL (ROUNE) 363

s DECREMENT CHARACTER COUNT BY 1
DEC E sONE LESS CHARACTER IN BUFFER
RET

s DESTRUCTIVE BACESFACE STRING FOR CONSOLE
sMOVES CURSOR LEFT, PRINTS SPACE OVER CHARACTER, MOVES
; CURSOR LEFT
sNOTE: STERM ($) IS CF/M STRING TERMINATOR
BSESTRG: DB CERLFT, SPACE, CSRLFT, STERM

B S T R T e
sROUTINE: WRSTRG

:PURPOSE: OUTPUT STRING TO CONSOLE
sENTRY: HL = BASE ADDRESS OF STRING
sEXIT: NONE

sREGISTERS USED: ALL EXCEPT EBC
PEEEEEEEEEEENEEE R R R RN RN

WRSTRIG:
PUSH EBC s SAVE EC
Lo C, PETRG sFUNCTION IS PRINT STRING
CALL EDOS sQUTPUT STRING TERMINATED WITH &
POF BC ; RESTORE BC
RET
3 SAMPLE EXECUTION: '
s EQUATES
PROMFT EGU i ; OPERATOR PROMFT = QUESTION MAREK
SC10A:
sREAD LINE FROM CONSOLE
LD A, PROMPT s OUTPUT PROMFT (7)
CALL WRCHAR
Lo HL, INBUFF sHL = INFUT BUFFER ADDRESS
LD A, LINBUF ;A = BUFFER LENGTH
CALL RDLINE sREAD A LINE
OR A 3 TEST LINE LENGTH
JR Z,SC10A sNEXT LINE IF LENGTH IS O
;ECHO LINE TO CONSOLE
LD B,A ; SAVE NUMERER OF CHARACTERE IN EBUFFER
LD HL, INBUFF s POINT TO START OF BLFFER
TLOOP:
LD A, (HL) s OUTPUT NEXT CHARACTER
CALL WRCHAR
INC HL s INCREMENT BUFFER POINTER
DJUNZ TLOOP s DECREMENT CHARACTER COLUNT
: CONTINUE UNTIL ALL CHARACTERES SENT
CALL WRNEWL s THEN END WITH CR,LF

JR SC10A

364 rurouPuT

; DATA SECTION
sLENGTH OF INFUT BUFFER

LINEBUF EGQU 18
INBUFF: DS LINBLUF ; INFUT BUFFER

END

Wirite a Line to an Output Device (\W]RLINE)

10B

Wirites characters until it empties a buffer
with given length and base address. Assumes the
system-dependent subroutine WRCHAR, which
sends the character in the accumulator to the
output device.

WRLINE is an example of an output driver.
The actual 1/O subroutines will, of course, be
computer-dependent. A specific example in the
listing is for a CP/M-based computer with a
standard Basic Disk Operating System (BDOS)
accessed by calling address 0005,.

Procedure: The program exits immediately if
the buffer is empty. Otherwise, it sends characters

Registers Used: AF, BC, DE, HL

Execution Time: 18 cycles overhead plus 43 cycles
per byte besides the execution time of subroutine
WRCHAR

Program Size: 22 bytes
Data Memory Required: None

Special Case: An empty buffer causes an immediate
exit with nothing sent to the output device.

to the output device one at a time until it empties
the buffer. The program saves all temporary
data in memory rather than in registers to
avoid dependence on WRCHAR.

Entry Conditions

Base address of buffer in HL

Number of characters in the buffer in A

Exit Conditions

None

Example

Number of characters = 5
Buffer contains ‘ENTER’
‘ENTER’ sent to the output device

1. Data:

Result:

Write line
WRL INE

Title
Name 3

NB NS NE MR we w8 e en

a3 wa 48 Nz w0 wE aw

Y

365

366 rur/ouTPLT

we N =k eE we

NE NE WE wr 4E e N e N

EDOS
DIRIO

WRLINE:

WRLLF:

WRCHAR:

Purpose: Write characters to CP/M BDOS CON: deviece

Entry: Register pair HL = Base address of buffer
Register A = Number of characters in buffer

Exit: None

Registers used: All

Time: Not applicable

Size: Frogram 22 bytes

sEQUATES

EQL 0005H sBOOS ENTRY POINT

e & sBDOS DIRECT I/0 FUNCTION

sEXIT IMMEDIATELY IF BUFFER IS EMPTY

R A : TEST NUMBER OF CHARACTERS
RET z s RETURN IF BUFFER EMFTY
Lo E, A B = COUNTER

sHL = BASE ADDRESS OF BUFFER

s LOOP SENDING CHARACTERS TO QOUTPUT DEVICE

LoD A, (HL) ;s GET NEXT CHARACTER

CALL WRCHAR 3 SEND CHARACTER TO OQUTPUT DEVICE
INC HL s INCREMENT BUFFER POINTER

DUNZ WRLLP s DECREMENT COUNTER

; CONTINUE UNTIL ALL CHARACTERS SENT
RET

LRt e e s S i St s d i]
s ROUTINE: WRIHAR

s PURPOSE: WRITE CHARACTER TO QUTPUT DEVICE
sENTRY: REGISTER A = CHARACTER

sEXIT: NONE

sREGISTERS LISED: AF,DE

I e e L R T T

FUSH HL s SAVE BC, HL

PUSH EC

LD C,DIRIG sDIRECT I/0 FUNCTION

Lo E,A s CHARACTER IN REGISTER E
CALL BDOS ; QUTPUT CHARACTER

FOF EBC sRESTORE BC, HL

FOP HL

RET

N8 NE NS wE NS uw %8 wE wE wE 4R wa V8 ws

10B WRITE A LINE TO AN OUTPUT DEVICE (WRLINE)Y 367

SAMFLE EXECUTION:

s ME B ws w8
[LT I

RCELF EGL 10 s BDOS READ CONSOLE BUFFER FUNCTION

s BODS READ CONSOLE BUFFER FUNCTION USES
THE FOLLOWING BUFFER FORMAT:

BYTE O : BUFFER LENGTH (MAXIMUM NUMBER OF CHARACTERS)
BYTE 1 : NUMEER OF CHARACTERS READN (LINE LENGTH)

e wE um e

BYTE 2 ON: ACTUAL CHARACTERS
; CHARACTER ERQUATES
CR EQU onH sCARRIAGE RETURN FOR CONSOLE
LF EQL OAH s LINE FEED FOR CONSOLE
PROMPT EQLI R s OPERATOR PROMPT = QUESTION MARK

SC10E:
sREAD LINE FROM CONSCOLE

LD A, PROMPT sOUTPUT PROMPT (7)

CALL WRCHAR

LD DE, INBUFF sFPOINT TO INPUT BUFFER
LD C, RCEUF s BDOS READ LINE FUNCTION
CALL EDOS s READ LINE FROM CONZOLE
LD A, LF s QUTPUT LINE FEED

CALL WRCHAR
sWRITE LINE TO CONSOLE

LD HL, INBUFF+1 s POINT AT LENGTH BYTE RETURNED BY CF/M
LD AM sGET LENGTH OF LINE
INC HL sPOINT TO FIRST DATA BYTE OF INBUFF
CALL WRL INE sWRITE LINE
LD HL, CRLF ; OUTPUT CARRIAGE RETURN, LINE FEED
LD A2 s LENGTH OF CRLF STRING
CALL WRLINE sWRITE CRLF STRING
JR SC10R : CONTINUE
;s DATA SECTION
CRLF: DB CR,LF ; CARRIAGE RETURN, LINE FEED
LINBUF EQU 10H sLENGTH OF INPUT BUFFER
INBUFF: DB LINBUF s LENGTH OF INPUT BUFFER
D3 L INBUF ; DATA BUFFER

END

CRC-16 Checking and Generation

(ICRC16,CRC16,GCRC16)

10C

Generates a 16-bit cyclic redundancy check
(CRC) based on the IBM Binary Synchronous
Communications protocol (BSC or Bisync).
Uses the polynomial X!6 4+ X154 X2+ 1. Entry
point ICRCI6 initializes the CRC to 0 and the
polynomial to the appropriate bit pattern. Entry
point CRC16 combines the previous CRC with
the CRC generated from the current data byte.
Entry point GCRCI16 returns the CRC.

Procedure: Subroutine ICRC16 initializes the
CRC to 0 and the polynomial to a 1 in each bit
position corresponding to a power of X present
in the formula. Subroutine CRC16 updates the
CRC for a data byte. It shifts both the data and
the CRC left eight times; after each shift, it
EXCLUSIVE-ORs the CRC with the polynomial
if the EXCLUSIVE-OR of the data bit and the
CRC’s most significant bit is 1. Subroutine
CRCI16 leaves the CRC in memory locations
CRC (less significant byte) and CRC+1 (more

Registers Used:

1. ICRCIl6: HL

2. CRCI16: None

3. GCRCIl6: HL
Execution Time:

1. ICRCI6: 62 cycles

2. CRCI16: 148 cycles overhead plus an average of
584 cycles per data byte, assuming that the previous
CRC and the polynomial must be EXCLUSIVE-ORed
in half of the iterations

3. GCRCI16: 26 cycles
Program Size:

1. ICRCI6: 13 bytes
2. CRCI6: 39 bytes
3. GCRCI6: 4 bytes

Data Memory Required: 4 bytes anywhere in
RAM for the CRC (2 bytes starting at address CRC)
and the polynomial (2 bytes starting at address PLY)

significant byte). Subroutine GCRC16 loads the
CRC into HL.

Entry Conditions
1. ICRCI16: none

2. CRC16: data byte in A, previous CRC in
memory locations CRC (less significant byte)
and CRCH1 (more significant byte), CRC polynomial
in memory locations PLY (less significant byte)
and PLY+1 (more significant byte)

3. GCRCI16: CRC in memory locations CRC

(less significant byte) and CRC+1 (more significant
byte)

368

Exit Conditions

1. ICRCI16: 0 (initial CRC value) in memory
locations CRC (less significant byte) and
CRC+1 (more significant byte), CRC
polynomial in memory locations PLY (less
significant byte) and PLY+1 (more significant
byte)

2. CRCI16: CRC with current data byte in-
cluded in memory locations CRC (less significant

byte) and CRC+1 (more significant byte)

3. GCRC16: CRC in HL

10C CRC-16 CHECKING AND GENERATION (1CRC16, CRC16, GCRC16) 369

Examples
1. Generating a CRC 2. Checking a CRC
a. Call ICRCI6 for initialization and to start the CRC a. Call ICRCI6 for initialization and to start the CRC
at 0. at 0.
b. Call CRCI6 repeatedly to update the CRC for each b. Call CRCI6 repeatedly to update the CRC for each data
data byte. byte (including the stored CRC) for checking.
c. Call GCRCI6 to obtain the final CRC. ¢. Call GCRCI6 to obtain the final CRC; it will be 0 if

there were no errors.

Note that only ICRC16 depends on the particular memory locations PLY (less significant byte)
CRC polynomial used. To change the polynomial, and PLY+1 (more significant byte).
simply change the data ICRCI6 loads into

REFERENCE

J.E.McNamara. Technical Aspects of Data Communications, 2nd ed. Billerica, Mass.:
Digital Press, 1982. This book contains explanations of CRC and communications
protocols.

NE NB B NS s W s ws
B WE NE 4B wm ws s wE

Title Generate CRC-1&
Name: CRC1&
Purpose: Generate a 14-bit CRC based on IBM“s Einary

Synchraonous Communicaticons protocal. The CRC is
based on the polynomials
{* indicates "to the power")
X214 + X*15 + X*2 + 1

To generate a CRC:
1) Call ICRC1é to initialize the CRC
polynomial and clear the CRC.
2) Call CRC14 for each data byte.
3) Call GCRC146 to obtain the CRC,
It should then be appended to the data,
high byte first.

NE NS N NS ME W8 Na ME wE WS ws NE w8 w8
NE NS NE NS wE WR uw 4B wE WE ws WS ws «2

370 nrut/OUTRUT

To check a CRC:
1) Call ICRC1é to initialize the CRC.
2) Call CRC14 for sach data byte and
the 2 bytes of CRC previcusly generated.
2) Call GCRC1é to obtain the CRC. It will
be zerc if no errors accurred.

Entry: ICRC16 - None
CRC16 - Register A = Data byte
GCRC1& - None

Exit: ICRC14 - CRC, PLY initialized
CRC14 - CRC updated
GCRC16 — HL = CRC

Registers used: None

Time: 143 cycles overhead plus an average of 524
cycles per byte, assuming that half the
iterations require EXCLUSIVE-ORing the CRC
and the polynomial.

Size: Program S5é bytes
Data 4 bytes

NE NS NG NE up B ME NB wE MO s B e NE wp W8 e N8 Mg Y8 wn W8 wE NE g NS ws s

CRC1é:
3 SAVE REGISTERS
PUSH AF
PUSH BC
PUSH DE
FLUISH HL
sLOOP THROUGH EACH BIT GENERATING THE CRC
LD E,& ;8@ BITS PER BYTE
Lo DE, (FLY) s GET POLYNOMIAL
Lo HL, (CRC) ; GET CURRENT CRC VALLUE
CRCLP:
Lo C,A s SAVE DATA C
AND 10000000E s GET BIT 7 OF DATA
XOR H sEXCLUSIVE~-OR EIT 7 WITH RIT 135 OF CRC
Lo H, A
ADD HL, HL 3 SHIFT CRC LEFT
JR NC, CRCLP1 s JJUMF IF BRIT 7 QF EXCLUSIVE-OR WAS O

sBIT 7 WAS 1, S0 EXCLUSIVE-OR CRC WITH POLYNOMIAL

(B AE sGET LOW BYTE OF POLYNOMIAL

XOR L sEXCLUSIVE-OR WITH LOW BYTE OF CRC
Lo L,A

LD A, D sGET HIGH BYTE OF FOLYNOMIAL

XOR H sEXCLUSIVE-OR WITH HIGH RYTE OF CRC
LD H, A

B P wE B ME W8 wg WE wm %6 N NF up WE NE WE wE WE w@ ¢ Mg V8 N N5 wa NS ws s

CRCLPL:

ICRC1G:

GCRC1é&:

CRC:
PLY:

8 wE NB Nm s

SC10C:

10C CRC-16 CHECKING AND GENERATION (1CRC16, CRC16, GCRC16)

Lo A, C ; RESTORE DATA
RLA ;SHIFT NEXT DATA EBIT TO BIT 7
DINZ CRCLP s DECREMENT RIT COUNTER
; JUMP O IF NOT THROUGH 8 BITS
LD (CRC), HL s SAVE UFPDATED CRC
s RESTORE REGISTERT AND EXIT
POP HL
FOP DE
FOF EC
FOF AF
RET

sROUTINE: ICRC1é&

;PURPOSE: INITIALIZE CRC AND PLY

sENTRY: NONE

;EXIT: CRC AND FOLYNOMIAL INITIALIZED
sREGISTERS USED: HL

L P e e

LD HL, O ;CRC = 0

Lo (CRC), HL

Lo HL, 08005H ;PLY = 8005H

LD (PLY) , HL 3EB00TH IS FOR X 14+X*1S+X*2+1

;A 1 IS IN EACH RIT POSITION

; FOR WHICH A POWER AFPPEARS IN

;7 THE FORMULA (RITS O, 2, AND 1%)
RET

EEELEL L e 33 1 33 23 333 P 3 1
sROUTINE: GCRC1é

PURFOSE: GET CRC VALUE

sENTRY: NONE

EXIT: REGISTER PAIR HL = CRC VALLE
sREGISTERS WISED: HL

LR R RS S 23 F 2 333 3 33 A T TS FE S F T RS

LD HL., (CRC) sHL = CRC

RET

s DATA

ns 2 s CRC VALUE

2 2 s POLYNOMIAL VALLUE

SAMFLE EXECUTION:

s GENERATE A CRC FOR THE NUMBER 1 AND CHECK IT

371

-8 wE s ws ws

372 nput/OUTPUT

GENLF:

CHELP:

cALL ICRC1& s INITIALIZE CRC, FOLYNOMIAL
(W] Al s GENERATE CRC FOR 1
CALL CRC1&
CALL GURC1E
EX DE, HL 3 SAVE CRC IN DE
CALL ICRC1A s INITIALIZE AGAIN
LD Al
CALL CRC1& s CHECK CRC BY GENERATING IT FOR DATA
Lo A D
CALL CRC14 3 AND STORED CRC ALSO
LD AE
CALL CRC1&
CALL GCRC16& sCRC SHOULD BE ZERO IN HL
; GENERATE CRC FOR THE ZSEQUENCE 0,1,2,...,235 AND CHECK IT
CALL ICRC1& s INITIALIZE CRC, POLYNOMIAL
LD E,0 3 START DATA BYTES AT O
Lo AR s GET DATA BYTE
CALL CRC1S s UPDATE CRC
INC B sADD 1 TO PRODUCE NEXT DATA BYTE
JR NZ, GENLP s BRANCH IF NOT DONE
CALL GCRC16& sGET RESULTING CRC
EX DE, HL sAND SAVE IT IN DE
sCHECK CRC BY GENERATING IT AGAIN
CALL ICRC1& s INITIALIZE CRC, POLYNOMIAL
Lo E, O s START DATA BYTES AT O
Lo AR sGET DATA BYTE
CALL CRC14& s UFDATE CRC
INC B sADD 1 TO PRODUCE NEXT DATA BYTE
JR NZ, CHELF
s ALSCO INCLUDE STORED CRC IN CHECK
LD A, D s UPDATE FOR HIGH BYTE OF STORED CRC
CALL CRC1&
Ln AE sUPDATE FOR LOW BYTE OF STORED CRC
CALL CRC14
CALL GCRC16 sGET RESULTING CRC
s IT SHOULD BE ©
JR sSC10C

END

1/O Device Table Handler (IOHDLR)

10D

Performs input and output in a device-
independent manner using I/ O control blocks
and an I/ O device table. The I/ O device table is
a linked list; each entry contains a link to the
next entry, the device number, and starting
addresses for routines that initialize the device,
determine its input status, read data from it,
determine its output status, and write data to it.
An I/ O control block is an array containing the
device number, operation number, device status,
and the base address and length of the device’s
buffer. The user must provide IOHDLR with the
base address of an I/ O control block and the
data if only one byte is to be written. IOHDLR
returns the status byte and the data (if only one
byte is read).

This subroutine is an example of handling
input and output in a device-independent man-
ner. The I/O device table must be constructed
using subroutines INITDL, which initializes the
device list to empty, and ADDDL, which adds a
device to the list.

An applications program will perform input
or output by obtaining or constructing an I/O
control block and then calling IOHDLR. IOHDLR
uses the I/O device table to determine how to
transfer control to the I/O driver.

Procedure: The program first initializes the
status byte to 0, indicating no errors. It then
searches the device table, trying to match the
device number in the 1/O control block. If it
does not find a match, it exits with an error
number in the status byte. If it finds a match, it

Registers Used:
1. IOHDLR: AF,BC,DE,HL,IX
2. INITDL: HL
3. ADDDL: DE

Execution Time:

1. IOHDLR: 270 cycles overhead plus 90 cycles
for each unsuccessful match of a device number

2. INITDL: 36 cycles

3. ADDDL: 72 cycles
Program Size:

1. IOHDLR: 70 bytes

2. INITDL: 7 bytes

3. ADDDL: 12 bytes

Data Memory Required: 3 bytes anywhere in
RAM for the device list header (2 bytes starting at
address DVLST) and temporary storage for data to
be written without a buffer (1 byte at address
BDATA)

checks for a valid operation and transfers control
to the appropriate routine from the device table
entry. That routine must end by transferring
control back to the original caller. If the operation
is invalid (the operation number is too large or
the starting address for the routine is 0), the
program returns with an error number in the
status byte.

Subroutine INITDL initializes the device list,
setting the initial link to 0.

Subroutine ADDDL adds an entry to the
device list, making its base address the head of
the list and setting its link field to the old head of
the list.

Entry Conditions

1. IOHDLR: Base address of input/output
control block in IX

Exit Conditions

1. IOHDLR: 1/O control block status byte

in A if an error is found;

373

374 put/ouTPUT

Data byte (if the operation is
to write one byte) in A

2. INITDL: None

3. ADDDL: Base address of a device table
entry in HL

otherwise, the routine exits

to the appropriate 1/O driver.
Data byte in A if the opera-

tion is to read one byte

2. INITDL: Device list header (addresses

DVLST and DVLSTH1)
cleared to indicate empty list

3. ADDDL: Device table entry added to

Example

1. The example in the listing uses the following structure:

Input/Output Operations

Operation
Number Operation

0 Initialize device

1 Determine input status

2 Read 1 byte from input device

3 Read N bytes (normally 1 line) from input
device

4 Determine output status

5 Write 1 byte to output device

6 Write N bytes (normally 1 line) to output
device

Input/Output Control Block

Index Contents

0 Device number

1 Operation number

2 Status

3 Less significant byte of base address of
buffer

4 More significant byte of base address of
buffer

5 Less significant byte of buffer length

6 More significant byte of buffer length

Device Table Entry

Index Contents

0 Less significant byte of link field (base address

of next entry)

list

1 Moresignificant byte of link field (base address
of next entry)

2 Device number

3 Less significant byte of starting address of
device initialization routine

4 More significant byte of starting address of
device initialization routine

5 Less significant byte of starting address of
input status determination routine

6 More significant byte of starting address of
input status determination routine

7 Less significant byte of starting address of
input driver (read 1 byte only)

8 More significant byte of starting address of
input driver (read 1 byte only)

9 Less significant byte of starting address of
input driver (N bytes or 1 line)

10 More significant byte of starting address of
input driver (N bytes or 1 line)

11 Less significant byte of starting address of
output status determination routine

12 More significant byte of starting address of
output status determination routine

13 Less significant byte of starting address of
output driver (write 1 byte only)

14 More significant byte of starting address of
output driver (write 1 byte only)

15 Less significant byte of starting address of
output driver (N bytes or 1 line)

16 More significant byte of starting address of

output driver (N bytes or 1 line)

If an operation is irrelevant or undefined (such as output

status determination for a keyboard or input driver for a
printer), the corresponding starting address in the device
table is 0.

8 w8 N8 B we W wn we

NE N NF YE US NS NE NS UE NS Y8 NG B NE NS WS W WS N NS W WS B WS NS WS NS ws ws

Status Values

Description
No errors

10D 1/O DEVICE TABLE HANDLER (IOHDIR) 379

Bad device number (no such device)
Bad operation number (no such operation

or invalid operation)

Input data available or output device ready

Buffer too small for use by CP/M BDOS
function 10 (Read Console Buffer). This
function requires 2 bytes for the buffer
length and character count.

Title
Name:

Purpose:

I/0 Device Table Handler
IOHDLR

Perform I/0 in a device-independent manner.
This can be done only by accessing all
devices in the same way using an I/0 Control
Block (IOCB) and a device table. The routines
here allow the following operations:

Operation number Description
Q Initialize device

Determine input status
Read 1 byte

Read N bytes

Determine output status
Write 1 byte

Write N bytes

AWM

Other operations that could be included are
Qpen, Close, Delete, Rename, and Append, which
would support devices such as floppy disks.

A IOCB is an array of the following form:

IOCB + 0 = Device number

IOCR + 1 = Operation number

IOCB + 2 = Status

IOCB + 3 = Low byte of buffer address
IQCB + 4 = High byte of buffer address
IOQCB + S = Low byte of buffer length
IOCBR + é = High byte of buffer length

s we wm ws wE N e-

Y

-~

B N8 w8 e N ws e s ws

NB NE NB NE ME NS NS VR NE NP NE NS NS NS NS wE NS w8

376 nput/OUTPUT

VB NB ME GE M B NS NG R WS NB WS WS WE WE NG WE WS N6 WE WS MG WS YE WS NS WS ¥S WS N6 WS NG NE NS NE NS N VS NS US W6 YD N8 N5 NS WS VS WE WS S NS US VS ws we ws

Entry:

Exit:

Registers used:

Times

Size:

The device table is implemented as a linked
list. Two routines maintain the list: INITDL,
which initializes the device list to empty, and
ADDDL, which adds a device ta the list.

A device table entry has the following form:

DVTBL + 0 = Low byte of link field

DVTBL + 1 = High byte of link field

DVTBL + 2 = Device number

DVTRL + 3 = Low byte of device initialization
DVTBL + 4 = High byte of device initialization
DVTBL + S = Low byte of input status routine
DVTBL + & = High byte of input status routine
DVTBL + 7 = Low byte of input 1 byte routine
DVTBL + & = High byte of input 1 byte routine
DVTBL + 9 = Low byte of input N bytes routine
DVTBL + 10= High byte of input N bytes routine
DVTBL + 11= Low byte of output status routine
DVTBL + 12= High byte of cutput status rcutine
DVTBL + 13= Low byte of cutput 1 byte routine
DVTBL + 14= High byte of output 1 byte routine
DVTBL + 15= Low byte of ocutput N bytes routine
DVTBL + 16= High byte of ocutput N bytes routine

Register IX = Base address of IOCE
Register A = Far write 1 byte, contains the
data (no buffer is used)

Register A = Copy of the IOCB status byte
Except contains the data for
read 1| byte (no buffer is used)
Status byte of IOCB is O if the operation was
completed successfully; otherwise, it contains
the error number.

Status value Description
o} No errors
1 Bad device number
2 Bad operation number
3 Input data available or output
device ready
254 Buffer too small for CP/M BDOS
function 10 (Read Console
Buffer)
AF,BC, DE, HL , IX

270 cycles minimum plus 90 cycles for each
device in the list which is not the requested
device

Program 89 bytes
Data 3 bytes

NE MR wB ws wE ws o~

NE NS NE WS ME NE ME ME ME NE WS ME ME N8 NE NE ME NE NS N8 NE N NE NE NS NS g ws s

NE NE NE B NS NS NS NB NS NE B NE NE NS NS NS uR N8 N we

I0CBDN
I0CBOP
I0CBST
IOCBBA
I0CBBL
DTLNK
DTDN
DTSR

NUMOP
INIT
STAT
R1EBYTE
RNBYTE
OSTAT
WI1BYTE
WNEYTE

NOERR
DEVERR
OPERR
DEVRDY
BUFERR

IOHDLR:

SRCHLFP:

10D 1/O DEVICE TABLE HANDLER (IOHDIR) 377

; IOCB AND DEVICE TABLE EQUATES

EQU o ; I0CE DEVICE NUMEER

EQU 1 s IOCB OPERATION NUMBER

EQU 2 s IOCB STATUS

EQU 3 ; I0CB BUFFER ADDRESS

EQU S s IOCE BUFFER LENGTH

EQU 0 sDEVICE TABLE LINK FIELD

EQU 2 ;DEVICE TABLE DEVICE NUMEER

EQU 3 s BEGINNING OF DEVICE TABLE SUBROUTINES

; OPERATION NUMBERS

EQU 7 sNLIMBER OF OPERATIONS

EQU (] s INITIALIZATION

EQU 1 s INPUT STATUS

EQU 2 sREAD' 1 BYTE

EQL 3 sREAD N BYTES

EQU 4 s QUTPUT STATUS

EQU S sWRITE 1 BYTE

EGU & sWRITE N BYTES

s STATUS VALLES

EQU (o] s NO ERRORS

EQU 1 s BAD DEVICE NUMBER

EQU 2 s BAD OPERATION NUMBER

EQU 3 s INPUT DATA AVAILABLE QR QUTFUT DEVICE READY
EQU 254 s BUFFER TOO SMALL FOR BDOS READ CONSOLE BUFFER
Lo (BOATA), A s SAVE DATA BYTE FOR WRITE 1 BYTE

s INITIALIZE STATUS EBYTE TO ZERO (NO ERRORS)

Lo (IX+I0CBST), NCERR s STATUS = NO ERRORS

s CHECK THAT OPERATION I5 VALID

LD A, (IX+I0OCROFP) sGET OPERATION NUMRBER FROM IQCE

LD B,A ;s SAVE OPERATION NUMBER

cP NUMOP s+ IS OPERATION NUMBER WITHIN LIMIT?
JR NC, BADOP s JUMP IF OPERATION NUMBER TOO LARGE

s SEARCH DEVICE LIST FOR THIS DEVICE
;C = IOCB DEVICE NUMBER
;DE = POINTER TO DEVICE LIST

LD C, (IX+IOCBDN) ;C = IOCEB DEVICE NUMBER

LD DE, (DVLST) sDE = FIRST ENTRY IN DEVICE LIST
s;DE = POINTER TO DEVICE LIST

;B = OPERATION NUMEER

;C = REQUESTED DEVICE NUMBER

sCHECK IF AT END OF DEVICE LIST (LINK FIELD = 0000)

LD A, D s TEST LINK FIELD

OR E

JR Z,EBADDN s BRANCH IF NO MORE DEVICE ENTRIES

378 nrut/OUTPUT

FOUND:

EADDN:

BADOF:

EREXIT:

s CHECK IF CURRENT ENTRY IS DEVICE IN IOCB

LD HL, DTDN s POINT TO DEVICE NUMEBER IN ENTRY
ADD HL, DE

Lo A, (HL)

cpP C ;s COMPARE TO REQUESTED DEVICE

JR Z, FOUND s BRANCH IF DEVICE FOLUND

;DEVICE NOT FOUND, SO ADVANCE TO NEXT DEVICE
s TABLE ENTRY THROWGH LINK FIELD
; MAKE CURRENT DEVICE = LINK

EX DE, HL sPOINT TO LINK FIELD (FIRST WORD)
LD E, (HL) ;GET LOW BYTE OF LINK

INC HL

LD O, (HL) ;GET HIGH BYTE OF LINK

JR SRCHLP sCHECK NEXT ENTRY IN DEVICE TABLE

s FOUND DEVICE, S0 VECTOR TGO APPROPRIATE ROUTINE IF ANY
;DE = ADDRESS OF DEVICE TABLE ENTRY
;B = OPERATION NUMBER

;GET ROUTINE ADDRESS (ZERO INDICATES INVALID OPERATION)

LD L, B sHL = 14-BIT OPERATION NUMBER
LD H,0
ADD HL., HL sMULTIPLY BY 2 FOR ADDRESS ENTRIES
LD BC, DTSR
ADD HL, BC sHL = OFFSET TO SUBROUTINE IN
H DEVICE TAELE ENTRY
ADD HL, DE sHL = ADDRESS OF SUBROUTINE
LI A, (HL) s GET SUBROUTINE S STARTING ADDRESS
INC HL
Lo H, (HL)
LI L.,A 3 1% STARTING ADDRESS ZERO?Y
OR H
JR Z, BADCF s YEZ, JUMP (OPERATION INVALILIND
LD A, (BDATA) sGET DATA BYTE FOR WRITE 1 BYTE
JFP (HL) s GOTO SUBROUTINE
LD A, DEVERR sERROR CODE —- NO SUCH DEVICE
JR EREXIT
LD A, OFERR sERROR CODE —- NO SUCH OFERATION
LD CIX+IQCEST), A sSET STATUS BYTE IN ICQCE
RET

sROUTINE: INITDL

s PURFOSE: INITIALIZE DEVICE LIST TO EMPTY
sENTRY: NONE

;EXIT: DEVICE LIST SET TO NO ITEMES
sREGISTERS USED: HLU
Rt R R)

10D /O DEVICE TABLE HANDLER (IOHDLR) 379

INITDL:
s INITIALIZE DEVICE LIST HEADER TQ O TO INDICATE NO DEVICES
LD HL, O sHEADER = O (EMPTY LIST)
LD COVLET) , HL
RET
sROUTINE: ADDDL
s PURFOSE: ADD DEVICE TO DEVICE LIST
sENTRY: REGISTER HL = ADDRESS OF DEVICE TAELE ENTRY
;EXIT: DEVICE ADDED TO DEVICE LIST
sREGISTERS USED: DE

ADDDL :
Lo DE, (OVLET) ; GET CURRENT HEAD OF DEVICE LIST
LD (HL) ,E s STORE CURRENT HEAD OF DEVICE LIST
INC HL 3 INTO LINK FIELD OF NEW DEVICE
LD (HL), D
DEC HL
Lo (OVLET) , HL sMAKE DVLET FOINT AT NEW DEVICE
RET
; DATA SECTION

OVLET: D= 2 s DEVICE LIST HEADER

EDATA: DS 3 ;DATA BYTE FOR WRITE 1 EBYTE

SAMFLE EXECUTION:

This test routine sets up the CF/M cansole as
device 1 and the CP/M printer as device 2.

The routine then reads a line from the console and
echoes it to the console and the printer.

NI NE wE wE qe NE we e e e
NE B ME W N8 wE B e MBS

s CHARACTER EQUATES

CR EGL OnH s CARRIAGE RETURN CHARACTER
LF Ecd OAH s LINE FEED CHARACTER

s CF/M EQUATES
BROS EQL QO0SH s ADDRESS OF CP/M BDOS ENTRY POINT
CINFP EQL 1 s BOODS CONSOLE INPUT FUNCTION
COUTF EQL 2 ; BDOS CONSOLE QUTRUT FUNCTION
LouTe e 3 sEDOS LIST QUTPUT FUNCTION
RCELUF EGL 10 s BOOS READ CONSOLE BUFFER FUNCTION
CETAT EG 11 s BOOS CONSOLE STATUS FUNCTION
SC100:

s INITIALIZE DEVICE LIST, FOINT TO IOCE

CALL INITDL » INITIALIZE DEVICE LIST

LD IX, I0CE sPOINT TO IOCE

FBET UP CONSOLE AS DEVICE 1 AND INITIALIZE IT

380 rut/oUTPLT

TSTLF:

LD
CALL
L
LD
CALL.

$5ET UP
LD

CALL

LD

LD

CALL

HL., CONLDV sPOINT TO CONSOLE DEVICE ENTRY
ADDDL s ADD CONSOLE TO DEVICE LIST
(IX+IOCROF), INIT 3 INITIALIZE OFERATION
CIX+IOCBOND, 1 s DEVICE NUMBER = 1

IOHDLR s INITIALIZE CONSOLE

FPRINTER AS DEVICE 2 AND INITIALIZE IT

HL., FRTIWV sPOINT TO PRINTER DEVICE ENTRY
ADDDL sADD PRINTER TO DEVICE LIST

CIX+IQCROF), INIT ; INITIALIZE OFERATION
CIX+I0CBOND, 2 ;DEVICE NUMBER = 2
I0HDLR s INITIALIZE PRINTER

sLOOP READING LINES FROM CONSOLE, AND ECHOING THEM TO
; CONSOLE AND FRINTER UNTIL A BLANK LINE IS ENTERED

LI CIX+I0OCEBOND , 1 sDEVICE NUMBER = 1 (CONSOLE)
I CIX+IDCRBOP), RNBYTE ;OPERATION IS READ N BYTES
LI HL, LENBLUF

LD CIOCB+INCEBL) , HL 3SET BUFFER LENGTH TO LENBUF
CALL. I0OHDLR sREAD' A LINE

s OUTFUT LINE FEED TO CONSOLE

LI (IX+IOCEROR), WIBYTE ;OFERATION IS WRITE 1 BYTE
.o A,LF s CHARACTER IS LINE FEED

CALL I0HDLR sWRITE 1 BYTE (LINE FEED)
sECHO LLINE TO DEVICE 1 AND 2

Lo Al

CALL ECHO sECHO LINE TO DEVICE 1

LD A,2

CALL ECHO sECHO LINE TO DEVICE 2

sETOP IF LINE LENGTH IS O

Lo
LD
OR
JR

JR

s QUTPUIT
LI

LD
CALL

; OUTPUT

HL, (IQCE+IOCEEL) ;GET LINE LENGTH

A H s TEST LINE LENGTH

L

NZ, TSTLF s CONTINUE IF LENGTH NOT ZERD
3C10D 3 AGAIN

LINE

CIX+IOCBOND , A SET DEVICE NUMBER IN IOCE
NOTE THAT ECHO WILL SEND A LINE

TO ANY DEVICE. THE DEVICE NUMEBER
I3 IN THE ACCUMULATOR
(IX+I0CEQP) ,WNEYTE ;SET OPERATION TO WRITE N BYTES
IOHDLR sWRITE N BYTES

~e s we wm

CARRIAGE RETURN/LINE FEED
CIX+IOCROP), WIRBYTE ;5SET OPERATION TO WRITE 1 BYTE

A, CR ;s CHARACTER IS CARRIAGE RETURN
IOHDLR sWRITE 1 BYTE
A,LF s CHARACTER IS LINE FEED

IOHDLR ;WRITE 1 BYTE

10D 1/O DEVICE TABLE HANDLER (IOHDLR) 381

RET
; IOCE FOR PERFORMING I/0
I0CE: ns 1 ;s DEVICE NUMEER
D= 1 ; OPERATION NUMBER
D 1 s STATUE
oW BUFFER ; BUFFER ADDRESS
0= 4 s BUFFER LENGTH
s BUFFER
LENEUF EGQU 127
BUFFER: DS LENBUF
sDEVICE TAEBLE ENTRIES
CONDV: DW 0 s LINK FIELD
DR 1 sDEVICE 1
oW CINIT ;CONSOLE INITIALIZE
JC CISTAT s CONSOLE INPUT STATUE
W CIN ;CONSOLE INPUT 1 BYTE
oW CINN s CONSOLE INFUT N RYTES
oW COSTAT s CONSOLE OUTPUT STATUS
oW couT s CONSOLE OUTPUT 1 BYTE
oW COUTN ;s CONSOLE OUTFUT N BYTES
PRTDV: DW (4] sLINK FIELD
DE 2 s DEVICE 2
oW FPINIT s PRINTER INITIALIZE
oW 0 sNO FRINTER INPUT STATUS
0w o] s NOPRINTER INFUT 1 BYTE
oW 0 ;NO PRINTER INPUT N BYTES
oW POSTAT sPRINTER OUTPUT STATUS
oW FOUT s PRINTER QUTPUT | BYTE
oW POUTN sPRINTER QUTPUT N BYTES

CINIT:
SUR A STATUS = NO ERRORE
RET sNO INITIALIZATION NECETSARY
; CONSOLE INPUT STATUS
CISTAT:
FUSH IX $ SAVE IOCE ADDRESS
LD C, CSTAT s BDOS CONSOLE STATUS FUNCTION
CALL BOOS ;GET CONSOLE STATUS
FOP IX sRESTORE IOCE ADDRESS
OR A
JR Z,CIs1 s JUMP IF NOT READY
LD A, DEVROY ; INDICATE CHARACTER READY
CIsi: LI CIX+I0CRET), A ;STORE STATUZ AND LEAVE IT IN REGISTER A

RET

382 nrut/oUTRUT

s CONSOLE REALD 1 BYTE
ZIN:

PUSH IX s SAVE IX
Lo C, CINP s BDOS CONSOLE INPUT FUNCTION
CALL BLOS sREAD 1 BYTE FROM CONSOLE
FOF IX JRESTORE IX
RET
; CONSOLE READ N BYTES
CINN:
sREAD LINE USING BDOS READ CONSOLE BUFFER FUNCTION
s BDOS READ CONSOLE BUFFER FUNCTION LESES THE FOLLOWING BUFFER FORMAT:
; BYTE O: BUFFER LENGTH (MAXIMUM NUMEBER OF CHARACTERS)
H BYTE 1: NUMBER OF CHARACTERS READ (LINE LENGTH)
; BYTES 2 ON: ACTUAL CHARACTERS
PUSH IX ; SAVE BASE ADDRESS OF IOCE
Lo A, (IX+I0CREL) ; GET BUFFER LENGTH
SUB 3 s BUFFER MUST BE AT LEAST 3 CHARACTERS
; TO ALLOW FOR MAXIMUM LENGTH AND COUNT
; USED BY BDOS READ CONSOLE BUFFER
JR NC, CINNA ;JUMP IF BUFFER LONG ENOLUIGH
LD (IX+I0CBST), BUFERR ;SET ERROR STATUS — BUFFER TOO SMALL
RET
CINNL: INC A ;ADD ONE BACK TO DETERMINE HOW MUCH
; SPACE IS AVAILARLE IN BUFFER FOR DATA
Lo E, (IX+I0OCEEA) s GET BUFFER ADDRESS FROM IOCE
LD 0, (IX+IDCEBA+1)
PUSH DE s SAVE BUFFER ADDRESES
LD (DE), A 3 SET MAXIMUM LENGTH IN BUFFER
LD C, RCEUF ;BDOS READ CONSOLE BUFFER FUNCTION
CALL BDOE ; READ BUFFER
;s RETURN NUMBER OF CHARACTERS READ IN THE IOCE
FOF HL s RESTORE BUFFER ADDRESS
POP IX s RESTORE BASE ADDRESS OF IOCE
INC HL sPOINT TO NUMRBER OF CHARACTERE REALD
LD A, (HL) s GET NUMBER 0OF CHARACTERS READ
Lo (IX+I0OCREL), A ; SET BUFFER LENGTH IN ICGCE
Lo CIX+IOCBEL+1),0 3 WITH UPPER BYTE = O

;MOVE DATA TO FIRET RYTE OF BUFFER
s DROPPING OVERHEAD (BUFFER LENGTH, LINE LENGTH)
3 RETURNELD BY CP/M. LINE LENGTH IS NOW IN THE IOCE

OR A ; TEST LINE LENGTH
RET z sRETURN IF LENGTH WAS O
Lo C,A ;s BC = NUMBER OF BYTES
LI E,0
Lo 0LH sPOINT TO START OF BUFFER + 1
LD E,L
INC HL ;HL = SOURCE = FIRST BYTE OF DATA
2 BYTES BEYOND START
DEC DE ;DE = DESTINATION (FIRST BYTE OF BUFFER)
LDIR sMOVE DATA DOWN 2 BYTES IN BUFFER

SUR A s STATUS = NO ERRORES

COSTAT:

couT:

COUTN:

FINIT:

POSTAT:

POUT:

POUTN:

10D I/O DEVICE TABLE HANDLER (IOHDLR) 383

RET

; CONSOLE QUTPUT STATUS

LD A, DEVRIY s STATUS = ALWAYS READY TO QUTPRUT
RET

s CONSOLE QUTPUT 1 BYTE

PUSH IX 3 SAVE IX

LD C,CouTp s BOOS CONSOLE OUTPUT OPERATION
Lo E,A sE = CHARACTER

CALL EBDOS sOUTPUT 1 BYTE

POF X sRESTORE IX

SUE A ;RETURN, NO ERRORS

RET

s CONSOLE OUTPUT N BYTES

Lo HL, CouT sHL POINTS TO QUTPUT CHARACTER ROUTINE
CALL OUTN ;CALL DUTPUT N CHARACTERS

SUR A ;STATUS = NO ERRORES

RET

LR EEL T 2 et T
s PRINTER ROUTINES

e S T s
sFRINTER INITIALIZE

suE A sNOTHING TO DO, RETURN NO ERRORS
RET

s PRINTER QUTPUT STATUS

LD A, DEVRIY s ETATUS = ALWAYS READY TO QUTPUT
RET

;s PRINTER QUTPUT 1 BYTE

FUSH IX s SAVE IX

LD C, LOUTP s BOOS LIST QUTPUT FUNCTION
Lo E,A ;E = CHARACTER

CALL BDOE sOUTFUT TO FPRINTER

FOF IX sRESTORE IX

SUB A s STATUS = NO ERRORS

RET

sPRINTER OUTPUT N BYTES

LD HL, POUT sHL = ADDRESS OF OUTPUT ROUTINE
CALL OLUITN ;OUTPUT N CHARALCTERS
SUR A s NO ERRORS

RET

384 \ruijouruT

P EEEEEER NN R RN R R R R RN R R R

sROUTINE: OUTN

s PURFOSE: QUTPUT N CHARACTERS

;ENTRY: REGISTER HL = CHARACTER OUTPUT SUBROUTINE ADDRESS
; REGISTER IX = BASE ADDRESS OF AN IOCE

sEXIT: DATA OUTPUT

sREGISTERE USED: AF, BRC ,HL

PEE LR E R BT E LR Rt E e S Lt

OUTN:
s STORE ADDRESS OF CHARACTER OUTPUT SUBROUTINE
LD (COSR), HL ; SAVE ADDRESS
sGET NUMBER OF BYTES, EXIT IF LENGTH IS ©
;3 BC = NUMBER OF BYTES
LD C, (IX+IOCBEL) ;BC = BUFFER LENGTH
LD B, (IX+I0OCBBL+1)
Lo AB ; TEST BUFFER LENGTH
OR c
RET Y4 sEXIT IF BUFFER EMPTY
sGET QUTPUT BUFFER ADDRESS FROM IOCB
; HL = BUFFER ADDRESS
LD L, (IX+IOCBEA) sHL = BUFFER ADDRESS
LD H, (IX+IQCEBA+1)
QUTLP:
LD A, (HL)
FPUSH HL ; SAVE BUFFER POINTER, COUNT
PUSH BC
CALL DOSUR ; QUTPUT CHARACTER
POP EBC ;RESTORE COUNT, BUFFER POINTER
FOF HL
INC HL s POINT TO NEXT CHARACTER
DEC BC s DECREMENT AND TEST COUNT
LD AEB
OR C
JR NZ, QUTLP s CONTINUE UNTIL COUNT = O
RET
DOSUB: LD HL, (COSR)
JP CHL) 3 GOTO ROUTINE
COZR: oW 0 s ADDRESS OF CHARACTER QUTPUT SUBROUTINE

END

Initialize 1/O Ports (IPORTS)

10k

Initializes a set of 1/O ports from an array of
port device addresses and data values. Examples
are given of initializing the common Z80 program-
mable 1/ O devices: CTC, PIO, and SIO.

This subroutine is a generalized method for
initializing I/ O sections. The initialization may
involve data ports, data direction registers that
determine whether bits are inputs or outputs,
control or command registers that determine the
operating modes of programmable devices, count-
ers (in timers), priority registers, and other ex-
ternal registers or storage locations.

Tasks the user may perform with this routine
include:

1. Assigning bidirectional I/ O lines as inputs
or outputs

2. Initializing output ports
3. Enabling or disabling interrupts from

peripheral chips

4. Determining operating modes, such as
whether inputs are latched, whether strobes
are produced, how priorities are assigned,
whether timers operate continuously or only on
demand, etc. '

5. Loading starting values into timers and
counters

6. Selecting bit rates for communications

7. Clearing or resetting devices that are not
tied to the overall system reset line

8. Initializing priority registers or assigning

Registers Used: AF, BC, DE, HL

Execution Time: 22 cycles overhead plus 46+ 21 * N
cycles for each port, where N is the number of bytes
sent.

Program Size: 11 bytes plus the size of the table (at
least 3 bytes per port plus 1 byte for a terminator)

Data Memory Required: None

initial priorities to interrupts or other opera-
tions

9. Initializing vectors used in servicing
interrupts, DMA requests, and other inputs.

Procedure: For each port, the program obtains
the number of bytes to be sent and the device
address. It then sends the data values to the port
using a repeated block output instruction. This
approach does not depend on the number or
type of devices in the I/ O section. The user may
add or delete devices or change the initialization
by changing the array rather than the program.
Each entry in the array consists of a series of
byte-length elements in the following order:

1. Number of bytes to be sent to the port
2. 8-bit device address for the port
3. Data bytes in sequential order.

The array ends with a terminator that has 0 in
its first byte.

Note that an entry may consist of an arbitrary
number of bytes. The first element determines
how many bytes are sent to the device address in
the second element. The subsequent elements
contain the data values. The terminator need
consist only of a single 0 byte.

Entry Conditions

Base address of initialization array in HL

Exit Conditions

All data values sent to appropriate ports

385

386 ruoUTRLT

Example

1. Data: Array elements are Result: Three values sent to port 1’s device address
3 (number of bytes for port 1) Two values sent to port 2’s device address
Port 1 device address, first value, second Four values sent to port 3’s device address

value, third value

2 (number of bytes for port 2)
Port 2 device address, first value, second
value

4 (number of bytes for port 3)
Port 3 device address, first value, second
value, third value, fourth value

0 (terminator)

NE Ma B Nn NS w98 v
N% wa N8 we s ws ws we

Title Initialize I/0 FPorts
Name: IFPORTR
Furpose: Initialize I/0 ports from an array of port

addresses and values

e W N B N

Entry: Register pair HL = Base address of array

The array consists of byte-length =lemzsnts
in the following arder: number of bytes to
be sent to the port, port device address, data
values for the part. This sequence is repeated
for any number of ports. The array is terminated
by an entry with O in the number of bytes.
array+0 = Number of bytes for this port
array+l = Port device address
array+2 = First value for this port

array+2+(N-1) = Last value for this port

Exit: None
Registers used: AF,BC,DE, HL

Time: 22 cycles overhead plus 46 + (N # 21) cycles for
each port, where N is the number of bytes sent

B NE N ws NS NE NE wE B e NS NS NS NE Y8 NS VE N@ W6 ME VR Np NE wp B N NS e

NE NE NS NE MR wE NB Na M e NB e N MBS wE NS wE NB ws WS we NE

10E INITIALIZE 1/O PORTS (IPORTS) 387

Froagram 11 bytes

“ we v e
ow
-
M
n
™
v o

IPORTS:
s GET NUMBER OF DATA BYTES TO SEND TO CURRENT PORT
sEXIT IF NUMBER 0OF BYTES IS O, INDICATING TERMINATOR
Ln A, (HL) s GET NUMEBER OF BRYTES
OR A s TEST FOR ZERO (TERMINATOR)
RET z sRETURN IF NUMRER OF BYTES = 0
LD E,A
INC HL sPOINT TO PORT ADDRESS (NEXT BYTE)
sC = PORT ADDRESS
sHL = ADDRESS OF DATA TO OQUTPUT
Lo C, (HL) sGET PORT ADDRESS
INC HL sPOINT TO FIRST DATA VALUE (NEXT EBYTE)
sOUTPUT DATA AND CONTINLUE TO NEXT PORT
OTIR s SEND' DATA VALUES TCO PORT
JR IFORTS ; CONTINUE TO NEXT PORT ENTRY
H SAMPLE EXECUTION: H
s INITIALIZE
5 Z20 CTC (PROGRAMMABLE TIMER/COUNTER)
;7 180 ZI0 (PROGRAMMAELE SERIAL INTERFACE)
3 20 PIO (PROGRAMMABLE PARALLEL INTERFACE)
;s ARBITRARY FORT ADDRESSES
7 LCTC PORT ASSIGNMENTS
CTCO EQU 70H s CTC CHANNEL O
cTC EQL 71H sCTC CHANNEL 1
cTCZ Ecil 72H sCTC CHANNEL 2
CTC: EQL 73H ;CTC CHANNEL 3
3 SI0 PORT ASSIGNMENTS
SIOCAD EQU 20H 3510 CHANNEL A DATA
SIOCED EGU 81H ;SI0 CHANNEL E DATA
SIOCAS EQU 22H 3510 CHANNEL A COMMANDS/STATUS
SIOCES EQU a3H ;SI0 CHANNEL E COMMANDS/STATUS
3 PIO PORT ASSIGNMENTS
FIOAD EQL OFOH sFIO PORT A DATA
PIOBD EQU OF1H ;PIO PORT B DATA
FPI0AC EQU OF 2H sFIC FORT A CONTROL
PIOBC EQ OF3H sPIO PORT B CONTROL

3 INTERRUFT VECTORS
SI0IV EQL OCOH 3510 INTERRUPT VECTOR

388 nrut/ouTPLT

PICGIVA EGU ODOH sFPIO PORT A INTERRUFT VECTOR
PIOIVE EQL On2H sPIO PORT B INTERRUPT VECTOR
SC10E:
LD HL,PINIT sPOINT TO INITIALIZATION ARRAY
CALL IFORTS s INITIALIZE FORTS
JR SC10E
PINIT:

LE
DE
DB

DE

w8 NS NS N8 NE wS

DR

INITIALIZE Z&80 CTC CHANNEL ©
RESET CHANNEL

AFTER EACH POSITIVE (RISING) EDGE ON CLOCK INPUT.
SET INITIAL TIME CONSTANT TO 24 CLOCK CYCLES.

B uB WS S wE wr w8

AUTOMATICALLY AFTER EACH COUNTDOWN TOQ 0.

TRANSMISSION,

“s v w8 ws we

SI0 IS QPERATING IN DIVIDE RY 1é MODE.

2 sOUTPUT TWO BYTES
CTCo sDESTINATION IS CHANNEL CONTROL REGISTER
01010111E JEIT O = 1 (WRITE CHANNEL CONTROL WORDD
;BIT 1 = 1 (RESEY CHANNEL)
sBIT 2 = 1 (TIME CONSTANT FOLLOWS)
sBIT 3 = 0 (NOT UZED IN COUNTER MODE)
sBIT 4 = 1 (DECREMENT COUNTER ON
; FOSITIVE CLOCE EDGE)
sBIT S = O (NOT USED IN COUNTER MODE)
+BIT & = 1 (COUNTER MODE)
sBIT 7 = O (NO INTERRUFT)
26 s TIMER COUNTIDOWN VALLIE FOR 9600 EBAUL

INITIALIZE Z80 SI0O CHANNEL A FOR ASYNCHRONOUS SERIAL I/01.

SET INTERRUFT VECTOR (ALWAYS IN CHANNEL EB) TO SIOIV

NO FARITY, 2 STOP RITS, 14 TIMES CLOCK.

RECEIVE AND TRANSMIT 8 BITS/CHAR, NO SPECIAL CONTROLE.
ENABLE TRANSMIT INTERRUPT, RECEIVE INTERRUFPTS ON ALL CHARS:
FARITY OR STATUS DOES NOT AFFECT INTERRUFT VECTORS.

SET INTERRUPT VECTOR

= . s QUTPUT TWO BYTES

SIOCES ;DESTINATION IS COMMAND REGISTER B
Q0000010E s SELECT WRITE REGISTER 2

SI0IV $SET INTERRUPT VECTOR FOR 310

INITIALIZE CHANNEL A
4 sOUTPUT NINE BYTES
SI0CAS sDESTINATION IS COMMAND REGISTER A

OPERATE CHANNEL IN COUNTER MODE, DECREMENTING DOWN COUNTER

NOTE: CTC RELOADS TIME CONSTANT REGISTER INTO DOWN COUNTER

THIS INITIALIZATION PRODUCES AN SIO CLOCK FOR 9800 BALID

IT ASSUMES 4 MHZ CLOCEK INPUT TO FPIN 23, S0 A COUNT OF
4,000,000/ (14%9400) = 24 WILLL GENERATE A 153, 400
(16%9400) HZ SQUARE WAVE ON PIN 7 FOR SI0 PINS 132 AND 14,

10E INIIALIZE /O PORTS (IPORTS) 389

; RESET THE CHANNEL

DE Q0011000E s SELECT WRITE REGISTER O
sBITS 2,1,0 O (WRITE REGISTER 0)
sBITS S,4,2 = 011 (CHANNEL RESET)
sBITS 7,6 = 0 (DO NOT CARE)

INITIALIZE BAULD RATE CONTROL

NO PARITY, 2 STOP RITS, 16 TIMES CLOCK

DE QOO00100E ;SELECT WRITE REGISTER 4

DE 01001100R sBIT O = 0 (NO PARITY)

sBIT 1 = O (DON'T CARE)

sBITS 2,2 11 (2 STOP BITS)
sBITS 5,4 00 (DONT CARE)
sBITS 7,4 01 (14 TIMES CLOCK)

~ s

INITIALIZE RECEIVE CONTROL
8 BITS PER CHARACTER, ENABLE RECEIVER, NO AUTO ENARLE
0000001 1R s SELECT WRITE REGISTER 3
11100001E ;BIT 0 = 1 (RECEIVE ENABLE)
sBITS 4,3,2,1 = 0 (DON'T CARE)
sBIT S = 0 (NO AUTO ENABLE)
sBIT 7,6 = 11 (RECEIVE & BRITS/CHAR)

=
L2 o

INITIALIZE TRANSMIT CONTROL
€ BITS PER CHARACTER, ENABLE TRANSMIT, NO BREAK OR CRC
OO000101E SELECT WRITE REGISTER 3
11101010E sBRIT O (NO CRC ON TRANSMIT)
tRBIT 1 (REGLIEST TO SEND)
sBIT O (DON'T CARE)
+BIT 1 (TRANESMIT ENAELE)
sEIT O (DO NOT SEND BREAK)
(BITS 6,5 = 11 (TRANSMIT & BITS/CHAR)
;EBIT 7 = 1 (DATA TERMINAL READY)

g e e
W

B —D
wnwonon

INITIALIZE INTERRUFT CONTROL
RESET INTERRUPTS FIRST
ENAELE TRANSMIT INTERRUPT, RECEIVE INTERRUPTS ON ALL CHARS
NEITHER STATUS NOR PARITY ERRORS AFFECT INTERRUPT VECTOR
DO NOT CONTROL THE WAIT/READY CQUTFUT LINE
00010001E 3 3ELECT WRITE REGISTER 1 AND
3 RESET EXTERNAL/STATUS INTERRUFTS
00011010R sBIT O O (NO EXTERNAL INTERRLUFTS)
;BIT 1 1 (ENABLE TRANSMIT INTERRUPT)
sBIT 2 O (STATUS DOES NOT AFFECT
VECTOR)
BITS 4,2 = 11 (RECEIVE INTERRLUFTS ON
ALL CHAREZ, PARITY DOES NOT
AFFECT VECTOR)
BITS 7,6,5 = 000 (NO WAIT/READY
FLNCTION)

I we e ws s

=
Wm =

e wE v s up e

? TRANSMIT A NULL BYTE TO START INTERRUFT PROCESESING
DB 1 sOUTPUT 1 BYTE

DE SI0CAD ;DESTINATION IS CHANNEL A DATA

DE 0 NULL CHARACTER (00 HEX)

390 npur/ouTPUT

INITIALIZE Z80 PIC
FORT A — INPUT PORT WITH INTERRUPT ENABLED
PORT B - CONTROL PORT WITH INTERRUPT ENABLED. AN INTERRUPT IS
GENERATED IF ANY OF BITS 0, 4, OR 7 BECOME 1

“8 wE 8w ~e

H INITIALIZE PIOQ PORT A

DE 2 s QUTPUT 3 BYTES

DE PIDAC sDESTINATION IS PORT A CONTROL

ja)c] PIOIVA $ SET INTERRUPT VECTOR FOR PORT A
DE 100011 11R BITS 3,2,1,0 = 1111 (MODE SELECT)

sBITS 5,4 = 00 (DON’'T CARE)

sBITS 7,6 = 01 (INFUT MODE)

DB 100001118 sBITS 2,2,1,0 = 0111 C(INTERRUPT CONTROL)
sBITS 6,5,4 = 000 (DONT CARE)
;BITS 7 = 1 (ENABLE INTERRUPTS

7 INITIALIZE PIO PORT B

DE 4 sOUTPUT 4 BYTES

DE FIORBC ;DESTINATION IS PORT B CONTROL

DE PIOIVB 3 SET INTERRUPT VECTOR FOR PORT B

jgc 11001111R sBITS 3,2,1,0 = 1111 (MODE SELECT)

3;BITS 5,4 = 00 (DON'T CARE)
sRITS 7,6 = 11 (CONTROL MODE)

DB 10110111B sBITS 2,2,1,0 = 0111 (INTERRUPT CONTROL)
sBIT 4 = 1 (MASK FOLLOWS)
sBIT S5 = 1 (ACTIVE STATE ON MONITORED
7 INPUT LINES IS 1 FOR AN INTERRUFPT)
sBIT 6 = O (INTERRUPT IF ANY OF THE
;3 MONITORED INFUT LINES IS ACTIVE)
sRIT 7 = 1 (ENABLE INTERRUPTS)

oe 10010001 R sMONITOR INPUT BITS O, 4, AND 7
; FOR INTERRUFTS

; END OF PORT INITIALIZATION DATA
DE 0 s TERMINATOR

END

Delay Milliseconds (DELAY)

10F

Provides a delay of between 1 and 256 milli-
seconds, depending on the parameter supplied.
A parameter value of 0 is interpreted as 256. The
user must calculate the value CPMS (cycles per
millisecond) to fit a particular computer. Typical
values are 2000 for a 2 MHz clock, 4000 for a
4 MHz clock, and 6000 for a 6 MHz clock.

Procedure: The program simply counts down
register B for the appropriate amount of time as
determined by the user-supplied constant. Extra

Registers Used: AF

Execution Time: 1 ms * (A)

Program Size: 51 bytes

Data Memory Required: None

Special Case: (A) = 0 causes a delay of 256 ms

instructions account for the CALL instruction,
RET instruction, and routine overhead without
changing anything.

Entry Conditions

Number of milliseconds to delay (1 to 256) in A

Exit Conditions

Returns after the specified delay with (A)=0

Example

1. Data:
Result:

(A)= number of milliseconds = 2A ¢ (42,)
Software delay of 2A 4 milliseconds, with
proper CPMS supplied by user

Delay from 1 to 256 milliseconds

A = Number of milliseconds to delay
A 0 equals 256 milliseconds

Returns to calling routine after the
specified delay

r

H

H

H Title Delay milliseconds
H Name: Delay

;

v

H

H Furpase:

r

H Entry: Register
5

H

H Exit:

H

NEB M ME NE 9B w8 NE g w8 s 8 NE NS we NE v

391

392 rur/ouTPUT

o NS N 4B e w2 ws

CPMS

DELAY:

LOLP:

LDLYL:
LoLyz:
LDLY3:

Registers used: AF

Time: 1 millisecond # Register A
Size: Frogram 51 bytes
s EQUATES
; CYCLES PER MILLISECOND - USER-SUPPLIED
EG 4000 32000 = 2 MHZ CLOCK

1 4000 4 MHZ CLOCK

34000 = & MHZ CLOCK

w ws
-

s METHOLD:

THE ROUTINE IS DIVIDED INTO 2 PARTS. THE CALL TO
THE "DLY" ROUTINE DELAYS EXACTLY 1 LESS THAN THE
REGUIRED NUMBER OF MILLISECONDS. THE LAST ITERATION
TAKES INTO ACCOUNT THE QVERHEAD TO CALL "DELAY" AND
"OLY". THIS QOVERHEAD IS:

17 CYCLES ==> CALL DELAY

11 CYCLES ==> PUSH BC

17 CYCLES ==> CALL DLY

4 CYCLES ==> DEC A

11 CYCLES ==> RET I

7 CYCLES ==> LD B, (CPMS/100)-1
10 CYCLES == POP BC

13 CYCLES ==> LD A, (DELAY)

10 CYCLES ==> RET

100 CYCLES OVERHEAD

ME B NE N N NE NE NB WS NE us NS wm s ws N

sDO0 ALL BUT THE LAST MILLISECOND
317 CYCLES FOR THE USER‘S CALL

FUSH BC ;11 CYCLES
CALL DLy 332 CYCLES TO RETURN FROM DLY
;D0 2 LESS THAN 1 MILLISECOND FOR OVERHEAD
LD B, +(CPMS/50)-2 ;7 CYCLES
;67 CYCLES
JP LOLYL ;10 CYCLES
JP LoLy2 310 CYCLES
JP LOLYZ ;10 CYCLES
ADD A0 37 CYCLES
[LINZ LOLP 313 CYCLES
1 S0 CYCLES

sEXIT IN 33 CYCLES
FOF BC ;10 CYCLES
LD A, (DELAY) 313 CYCLES

N8 N8 wm w4 wE s w8

10F DELAY MILLISECONDS (DELAY) 393

RET 310 CYCLES

133 CYCLES

3 0ot 30 i 0 6 0 6 0 6

sROUTINE: DLY

s PURPOSE: DELAY ALL BUT LAST MILLISECOND

sENTRY: REGISTER A = TOTAL NUMEBER OF MILLISECONDS
EXIT: DELAY ALL BUT LAST MILLISECOND

;REGISTERS USED: AF, BC,HL

P EEEEREEREREEEERRE RS ER RN R

DLY:
DEC A 14 CYCLES
RET z 35S CYCLES (RETURN WHEN DONE 11 CYCLESD)
LD B, +{(CPMS/S0)-1 7 CYCLES
;16 CYCLES
DLP:
JP DLY1 310 CYCLES
DLY1: JP oLy2 310 CYCLES
oLy2: JP DLY3 310 CYCLES
DLY3: ADD A, 0 37 CYCLES
[INZ [313 CYCLES
3 S0 CYCLES
sEXIT IN 24 CYCLES
JF oLy4 510 CYCLES
DLYA4: JP OLYS 510 CYCLES
DLYS: NOP 34 CYCLES
JP oLy ;10 CYCLES
M
324 CYCLES
H SAMPLE EXECUTION: 3
SC10F:
‘ s DELAY 10 SECONDS
s CALL DELAY 40 TIMES AT 250 MILLISECONDS EACH
Lo B, 40 340 TIMES (28 HEX)
QTRSCD:
Lo A, 250 3250 MILLISECONDS (FA HEX)
CALL DELAY
DuUNZ QRTRSCD sCONTINUE UNTIL DONE
JR SC10F

END

Unbuffered Input/Output

Using an SIO (SINTIO)

A

Performs interrupt-driven input and output
using an SIO and single-character input and
output buffers. Consists of the following sub-
routines:

1. INCH reads a character from the input
buffer.

2. INST determines whether the input buffer
is empty.

3. OUTCH writes a character into the output
buffer.

4. OUTST determines whether the output
buffer is full.

5. INIT initializes the SIO, the interrupt
vectors, and the software flags. The flags are
used to manage data transfers between the main
program and the interrupt service routines.

The actual service routines are

1. RDHDLR responds to the input interrupt
by reading a character from the SIO into the
input buffer.

2. WRHDLR responds to the output interrupt
by writing a character from the output buffer
into the SIO.

Procedures

1. INCH waits for a character to become
available, clears the Data Ready flag (RECDF),
and loads the character into the accumulator.

2. INST sets Carry from the Data Ready flag
(RECDF).

3. OUTCH waits for the output buffer to
empty, stores the character in the buffer, and
sets the Character Available flag (TRNDF). If
no output interrupt is expected (i.e., the interrupt

394

Registers Used:

. INCH: AF

. INST: AF

. OUTCH: AF

. OUTST: AF

. INIT: AF, BC, HL, 1

Execution Time:
1. INCH: 72 cycles if a character is available
2. INST: 27 cycles

3. OUTCH: 150 cycles if the output buffer is not
full and an output interrupt is expected; 75 additional
cycles to send the data to the SIO if no output
interrupt is expected.

4. OUTST: 27 cycles

5. INIT: 618 cycles

6. RDHDLR: 82 cycles

7. WRHDLR: 160 cycles
Program Size: 202 bytes
Data Memory Required: 5 bytes anywhere in
RAM for the received data (address RECDAT),
Receive Data flag (address RECDF), transmit data
(address TRNDAT), Transmit Data flag (address

TRNDF), and Output Interrupt Expected flag ad-
dress OIE)

T N S

has been reset because it occurred when no
data was available), OUTCH sends the data to
the SIO immediately.

4. OUTST sets Carry from the Character
Available flag (TRNDF).

5. INIT clears the software flags, sets up the
interrupt vectors, and initializes the SIO by
placing the appropriate values in its control
registers. See Subroutine 10E for more details
about initializing SIOs.

6. RDHDLR reads the data, saves it in the
input buffer, and sets the Data Ready flag
(RECDF).

11A UNBUFFERED INPUT/OUTPUT USING AN SIO (SINTIO) 398

7. WRHDLR determines whether data is
available. If not, it simply resets the output
interrupt. If data is available, the program sends
it to the SIO and clears the Character Available
flag (TRNDF).

The special problem here is that an output
interrupt may occur when no data is available.
It cannot be ignored or it will assert itself
indefinitely, causing an endless loop. The solution
is simply to reset the SIO’s transmit interrupt
without sending any data.

But now a new problem arises when output
data becomes available. That is, since the
interrupt has been reset, it obviously cannot
inform the system that the SIO is ready to
transmit. The solution is to have a flag that
indicates (with a 0 value) that the output
interrupt has occurred without being serviced.
This flag is called OIE (Output Interrupt
Expected).

The initialization routine clears OIE (since
the SIO surely starts out ready to transmit). The
output service routine clears it when an output
interrupt occurs that cannot be serviced (no
data is available) and sets it after sending data to
the SIO (in case it might have been cleared).
Now the output routine OUTCH can check OIE
to determine whether an output interrupt is
expected. If not, OUTCH simply sends the data
immediately.

Note that an SIO interrupt can be reset
without actually sending any data. This is not
possible with a PIO (see Subroutine 11B), so the
procedure there is slightly different.

Unserviceable interrupts occur only with
output devices, since input devices always have
dataready to transfer when they request service.
Thus, output devices cause more initialization
and sequencing problems in interrupt-driven
systems than do input devices.

Entry Conditions Exit Conditions
1. INCH: none 1. INCH: character in A
2. INST: none 2. INST: Carry= 0 if input buffer empty, 1 if
3. OUTCH: character to transmit in A full
4. OUTST: none 3. OUTCH: none
5. INIT: none 4. OUTST: Carry = 0 if output buffer empty,
1 if full
5. INIT: none
Title Simple interrupt input and output using an SIO

Name: SINTIO

N8 ¥ N8 ws B us ws s

and single character buffers

NP B B NS B we ws v

396 \i1erruPTS

-

Purpose: This program consists of 5 subroutines which
perform—interrupt driven input and output using
an SIO.

INCH
Read a character
INST

Determine input status (whether input
buffer is empty)

OUTCH
Write a character

QuTST
Determine output status (whether output
buffer is full)

INIT
Initialize SIO and interrupt system

Entry: INCH
No parameters
INST
No parameters
OUTCH
Register A = character to transmit
QUTST
No parameters
INIT
No parameters

Exit: INCH
Register A = character
INST
Carry = 0 if input buffer is empty,
1 if character is available
QUTCH
No parameters
QuUTST
Carry = 0 if output buffer is not
full, 1 if it is full
INIT
No parameters

Registers used: INCH - AF

INST - AF
QUTCH - AF
QUTST - AF
Time: INCH
72 cycles if a character is available
INST

B ME NS NS B NP NB NS NS ND NS UE NG NS NS NS VB N NE WS WS WS NB WS U WS NE NG WS NG NS N6 UK U5 B NS NS WS NS NS WS WS W %5 NS WS NS NS N6 N3 WS wp

27 cycles

-

NE ME NS NS NP up WP NE NE NE MO NS N SR NE NP NE WP NP NE M NS NE WB NE NS W NS NE NS N NS M NS NE WS NS WE ME W NP NS WD NE WS NS N NE N8 WS N v

NP NP NE NE NS NP NE NE NS N NS NS NE NS NS ws

SIQCAD
SIOCBD
SIOCAS
SIOCRS
SI0IV
SIQWV
SIOEV

SIORV
SIOsV

INCH:

INST:

Size: Program 202 bytes

S

. ws w8 wE ws s

11A UNBUFFERED INPUT/OUTPUT USING AN SIO (SINTIO) 397

OUTCH
150 cycles if output buffer is not full
and output interrupt is expected
QuUTST
27 cycles
INIT
618 cycles
RDHDLR
82 cycles
WRHDLR
160 cycles

Data S bytes

B NE NS NE MB NE NE NE NS NE N NE NP N NE N3

SI0 EQUATES

10 IS PROGRAMMED FOR:

ASYNCHRONOUS OPERATION

16 X BAUD RATE

8-BIT CHARACTERS

1 1/2 STOP BITS

; ARBITRARY SI0O PORT ADDRESSES

EQU
EQU
EQU
EQuU
EQU
EQU
EQU

EQU
EQU

1CH ;SI0 CHANNEL A DATA

1EH ;SI0 CHANNEL B DATA

1DH ;SI0 CHANNEL A COMMANDS/STATUS

1FH 3 SI0O CHANNEL B COMMANDS/STATUS

8000H ; INTERRUPT VECTOR

SI0OIV+8 $SI0 CHANNEL A WRITE INTERRUPT VECTOR

SIOIV+10 3 SI0 CHANNEL A EXTERNAL/STATUS INTERRUPT
3 VECTOR

SIOIV+12 ;SI0O CHANNEL A READ INTERRUPT VECTOR

SI0IV+14 ;SI0 CHANNEL A SPECIAL RECEIVE INTERRUPT
;+ VECTOR

s READ CHARACTER

CALL INST ;GET INPUT STATUS
JR NC, INCH sWAIT IF NO CHARACTER AVAILABLE
DI ; DISABLE INTERRUFPTS
SUB A
LD (RECDF), A ; INDICATE INPUT BUFFER EMPTY
LD A, (RECDAT) ;GET CHARACTER FROM INPUT BUFFER
EI sENABLE INTERRUPTS
RET
s RETURN INPUT STATUS (CARRY = 1 IF INPUT DATA IS AVAILABLE)
LD A, (RECDF) ;GET DATA READY FLAG
RRA ; SET CARRY FROM DATA REALDY FLAG
3 IF CARRY = 1, CHARACTER IS AVAILABLE
RET

sWR

ITE CHARACTER

398 nTERRUPTS

QUTCH:

WAITOC:

QUTST:

INIT:

PUSH AF s SAVE CHARACTER TO WRITE
;WAIT FOR CHARACTER BUFFER TO EMPTY, THEN STORE NEXT CHARACTER

CALL ouTsST ;GET OUTPUT STATUS

JR C,WAITOC sWAIT IF OUTPUT BUFFER IS FULL

DI ; DISABLE INTERRUPTS WHILE LOOKING AT
3 SOFTWARE FLAGS

POP AF 3 GET CHARACTER

LD (TRNDAT) , A 3 STORE CHARACTER IN QUTPUT BUFFER

LD A, OFFH ;s INDICATE OUTPUT BUFFER FULL

LD (TRNDF) , A

LD A, (QIE) s TEST OUTPUT INTERRUPT EXPECTED FLAG

OR A

CALL Z,0UTDAT ;s OUTPUT CHARACTER IMMEDIATELY IF
3 NO QUTPUT INTERRUPT EXPECTED

EI sENABLE INTERRUFPTS

RET

s OUTPUT STATUS (CARRY = 1 IF OUTPUT BUFFER IS FULL)

LD A, (TRNDF) s GET TRANSMIT FLAG
RRA 3 SET CARRY FROM TRANSMIT FLAG
RET ; CARRY = 1 IF BUFFER FULL

s INITIALIZE INTERRUPT SYSTEM AND SIO

DI ; DISABLE INTERRUPTS FOR INITIALIZATION
s INITIALIZE SOFTWARE FLAGS

SUB A

LD (RECDF), A ;NO INPUT DATA AVAILABLE

LD (TRNDF) , A ;s OUTPUT BUFFER EMPTY

LD (0IE),A sNO QUTPUT INTERRUPT EXPECTED

3 SIO IS READY TO TRANSMIT INITIALLY
s INITIALIZE INTERRUPT VECTORS

LD A,SIOIV SHR 8 sGET INTERRUPT PAGE NUMBER

LD I,A s SET INTERRUPT VECTOR IN Z80

IM 2 s INTERRUPT MODE 2 - VECTORS IN TABLE
3 ON INTERRUPT PAGE

LD HL , RDHDLR 3 STORE READ VECTOR (INPUT INTERRUPT)

LD (SIORV),HL

LD HL, WRHDLR $STORE WRITE VECTOR (QUTPUT INTERRUPT)

LD (SIOWV), HL

LD HL, EXHDLR s STORE EXTERNAL/STATUS VECTOR

LD (SIOEV),HL

LD HL, REHDLR s STORE RECEIVE ERROR VECTOR

LD (SI0SV),HL

s INITIALIZE SIO

LD HL, SIOINT ;GET BASE OF INITIALIZATION ARRAY

CALL IPORTS s INITIALIZE SIO

EI s ENABLE INTERRUPTS

RDHDLR:

RD1:

WRHDLR:

NODATA:

WRDONE :

EXHDLR:

11A UNBUFFERED INPUT/OUTPUT USING AN SIO (SINTIO) 399

: INFUT (READ) INTERRUFPT HANDLER

PUSH AF s SAVE AF

IN A, (SIOCAD) s READ DATA FROM SIO

LD (RECDAT), A ;s SAVE DATA IN INPUT BUFFER

LD A, OFFH

LD (RECDF) , A s INDICATE INPUT DATA AVAILABLE
POP AF :RESTORE AF

EI ; REENABLE INTERRUPTS

RETI

;OUTPUT (WRITE) INTERRUPT HANDLER

PUSH AF

LD A. (TRNDF) :GET DATA AVAILABLE FLAG
RRA

JR NC, NODATA s JUMP IF NO DATA TO TRANSMIT
CALL QUTDAT s OUTPUT DATA TO SIO

JR WRDONE

IF AN OUTPUT INTERRUPT OCCURS WHEN NO DATA IS AVAILABLE.

WE MUST RESET IT TO AVOID AN ENDLESS LOOF. LATER. WHEN A
CHARACTER BECOMES AVAILABLE, WE NEED TO KNOW THAT AN OUTPUT
INTERRUPT HAS OCCURRED WITHOUT BEING SERVICED. THE KEY HERE
IS THE QUTPUT INTERRUPT EXPECTED FLAG OIE. THIS FLAG IS
CLEARED WHEN AN QUTPUT INTERRUPT HAS QCCURRED BUT HAS NOT

BEEN SERVICED. IT IS ALSO CLEARED INITIALLY SINCE THE

SI0 STARTS OUT READY. OQIE IS SET WHENEVER DATA IS ACTUALLY
SENT TO THE SI0. THUS THE OUTPUT ROUTINE OUTCH CAN CHECK

QIE TO DETERMINE WHETHER TO SEND THE DATA IMMEDIATELY

OR WAIT FOR AN QUTPUT INTERRUPT.
THE PROBLEM IS THAT AN . QUTPUT DEVICE MAY REQUEST SERVICE BEFORE
THE COMPUTER HAS ANYTHING TO SEND (UNLIKE AN INPUT DEVICE

THAT HAS DATA WHEN IT REQUESTS SERVICE). THE OIE FLAG

SOLVES THE PROBLEM OF AN UNSERVICED QUTPUT INTERRUPT ASSERTING
ITSELF REPEATEDLY, WHILE STILL ENSURING THE RECOGNITION OF
QUTPUT INTERRUPTS.

WB NE NE B NB NP NB NE WE N NS w8 WS NS N8 we 8

SUB A

LD (OIE), A ;DO NOT EXPECT AN INTERRUPT

auT (SIQCAS), A s SELECT REGISTER O

LD A,00101000B sRESET SIO TRANSMITTER INTERRUPT
ouT (SIOCAS), A

POP AF ;RESTORE AF

EI

RETI

s EXTERNAL /STATUS CHANGED INTERRUPT HANDLER

PUSH AF
LD A, 00010000B ;RESET STATUS INTERRUPT
ouT (SIOCAS) . A

EI sDCD OR CTS CHANGED STATE, OR A BREAK

400 \reRRUPTS

REHDLR:

QUTDAT:

IPORTS:

POP AF

RETI

; SPECIAL RECEIVE ERROR I
PUSH AF

LD A, 00110000B

ouT (SIOCAS), A

EI

POP AF

RETI

PRERREREEENERERERRRRERERR
sROUTINE: OUTDAT

3+ WAS DETECTED
s SERVICE HERE IF NECESSARY
NTERRUPT

s RESET RECEIVE ERROR INTERRUPT
:FRAMING ERROR OR OVERRUN ERROR

3 OCCURRED
; SERVICE HERE IF NECESSARY

HRERREERRREEERR

s PURPOSE: SEND CHARACTER TO SIO

sENTRY: TRNDAT = CHARACT
sEXIT: NONE
sREGISTERS USED: AF

ER

PERRRENNRRN NN RAE RN RN AN RN RN RN AR TER

LD A, (TRNDAT) sGET DATA FROM OUTPUT BUFFER

auT (SI0CAD).A :SEND DATA TO SIO

SUB A s INDICATE QUTPUT BUFFER EMPTY

LD (TRNDF), A

DEC A : INDICATE OUTPUT INTERRUPT EXPECTED
LD (0IE), A 3 OIE = FF HEX

RET

R i S g s]

sROUTINE: IPORTS

sPURPOSE: INITIALIZE I/0 PORTS

;ENTRY: HL = BASE ADDRESS OF INITIALIZATION ARRAY
:EXIT: DATA OUTPUT TO PORTS

s REGISTERS USED: AF,BC,HL
PRERRERERRRRRRRRERR KRR E R RR R R RN RRENR

sGET NUMBER OF DATA BYTES TO SEND TO CURRENT PORT
sEXIT IF NUMBER OF BYTES IS O, INDICATING TERMINATOR

LD A, (HL) ;s GET NUMBER OF RYTES

OR A s TEST FOR ZERO (TERMINATOR)

RET r4 sRETURN IF NUMBER OF BYTES = 0

LD B,A

INC HL s POINT TO PORT ADDRESS (NEXT BYTE)

:C = PORT ADDRESS
sHL = BASE ADDRESS OF OUTPUT DATA

LD C, (HL) s GET PORT ADDRESS

INC HL sPOINT TO FIRST DATA VALUE (NEXT BYTE)
; OUTPUT DATA AND CONTINUE TO NEXT PORT

QTIR s SEND DATA VALUES TO PORT

JR IPORTS :CONTINUE TO NEXT PORT ENTRY

$SI0 INITIALIZATION DATA

SIOINT:

11A UNBUFFERED INPUT/OUTPUT USING AN SIO (SINTIO) 401

; RESET CHANNEL A

DB 1
DB SIOCAS
DR 00011000B

:OUTPUT 1 BYTE

s DESTINATION IS CHANNEL A COMMAND/STATUS
s SELECT WRITE REGISTER O

;BITS 2,1,0 = 0 (WRITE REGISTER 0)

3BITS 5.4.3 = 011 (CHANNEL RESET)

:BITS 7,6 = 0 (DO NOT CARE)

3 SET INTERRUPT VECTOR AND ALLOW STATUS TO AFFECT IT

DR

DB SIOCBS

DB 00000010B

DB SIOIV AND OFFH
DB 00000001B

DB 00000100B

; INITIALIZE CHANNEL A
DB 8

:QUTPUT 2 BYTES

sDESTINATION IS COMMAND REGISTER B
s SELECT WRITE REGISTER 2

s SET INTERRUPT VECTOR FOR SIO
+SELECT WRITE REGISTER 1

sALLOW STATUS TO AFFECT VECTOR

:QUTPUT 8 BYTES
s DESTINATION IS COMMAND REGISTER A

:SELECT WRITE REGISTER 4
; RESET EXTERNAL/STATUS INTERRUFPT

DB SIOCAS

: INITIALIZE BAUD RATE CONTROL
DB 00010100R

DB 01001000B

sBIT 0 = 0 (NO PARITY)

sBIT 1 0 (DON“T CARE)

:BITS 3.2 = 10 (1 1/2 STOP BITS)
;BITS 5,4 = 00 (DON'T CARE)
;BITS 7,6 = 01 (1é TIMES CLOCK)

s INITIALIZE RECEIVE CONTROL

DR 00000011B
DR 11000001R

s SELECT WRITE REGISTER 3

sBIT 0 = 1 (RECEIVE ENABLE)

;BITS 4,3,2,1 = 0 (DON“T CARE)

sBIT 5 = 0 (NO AUTO ENABLE)

sBIT 7,6 = 11 (RECEIVE 8 BITS/CHAR)

;s INITIALIZE TRANSMIT CONTROL

DB 00000101B
DB 11101010B
DB Q0000001RB
DR 00011011B

s SELECT WRITE REGISTER S

sBIT O = O (NO CRC ON TRANSMIT)
sBIT 1 = 1 (REQUEST TO SEND)
;BIT 2 = 0 (DON“T CARE)

sBIT 3 = 1 (TRANSMIT ENABLE)
sBIT 4 = 0 (DO NOT SEND BREAK)

$;BITS 6,5 = 11 (TRANSMIT 8 BITS/CHAR)

;BIT 7 = 1 (DATA TERMINAL READY)

s SELECT WRITE REGISTER 1

:BIT 0 = 1 (EXTERNAL INTERRUPTS)

:BIT 1 = 1 (ENABLE TRANSMIT INTERRUPT)
3BIT 2 = 0 (DO NOT CARE)

;BITS 4,3 = 11 (RECEIVE INTERRUPTS ON
;3 ALL CHARS, PARITY DOES NOT AFFECT

:+ VECTOR)

sBITS 7,6,5 = 000 (NO WAIT/READY

3+ FUNCTION)

402 errUPTS

DB

RECDAT: DS

RECDF:

TRNDAT:
TRNDF:

OIE:

6 98 w8 v NS

ESCAPE
TESTCH

SC11A:

LOGP:

ASYNLP:

DS

Ds
ns

ns

; DATA SECTION
1

0 : TERMINATOR FOR INITIALIZATION ARRAY

sRECEIVE DATA

1 :RECEIVE DATA FLAG
; (0 = NO DATA, FF = DATA AVAILABLE)
1 ;s TRANSMIT DATA
1 : TRANSMIT DATA FLAG
;3 (0O = BUFFER EMPTY. FF = BUFFER FULL)
1 s QUTPUT INTERRUPT EXPECTED

(0 = NO INTERRUPT EXPECTEL,
FF = INTERRUPT EXPECTED)

SAMPLE EXECUTION:

s CHARACTER EQUATES

EQU
EQU

CALL

s SIMPLE
+ UNTIL

CALL
PUSH
CALL
POP
CcP
JR

1BH ;ASCII ESCAPE CHARACTER
‘A7 ; TEST CHARACTER = A
INIT ; INITIALIZE SIO, INTERRUPT SYSTEM

EXAMPLE - READ AND ECHO CHARACTERS

AN ESC IS RECEIVED

INCH ; READ CHARACTER

AF

QUTCH s ECHO CHARACTER

AF

ESCAPE + IS CHARACTER AN ESCAPE?
NZ, LOOP $STAY IN LOOP IF NOT

: AN ASYNCHRONQUS EXAMPLE

- v

INPUT

: OUTPUT
CALL

JR

LD

CALL

QUTPUT

"A" TO CONSOLE CONTINUOUSLY. BUT ALSQO LOOK AT

SIDE, READING AND ECHOING ANY INPUT CHARACTERS
AN "A" IF QUTPUT IS NOT BUSY

ouTsT 3 IS QUTPUT BUSY?

C.ASYNLP s JUMP IF IT IS

A, TESTCH

OUTCH s OUTPUT TEST CHARACTER

3 CHECK INPUT PORT
s ECHO CHARACTER IF ONE IS AVAILABLE
sEXIT ON ESCAPE CHARACTER

CALL
JR
CALL
CcP
JR

INST ; IS INPUT DATA AVAILABLE?

NC, ASYNLP ; JUMP IF NOT (SEND ANOTHER "A")
INCH :GET CHARACTER

ESCAPE IS IT AN ESCAPE?

Z, DONE s BRANCH IF IT IS

NF w8 wE <5 s

DONE =

CALL
JP

JP
END

QUTCH
ASYNLP

LooP

11A UNBUFFERED INPUT/OUTPUT USING AN SIO (SINTIO) 403

:ELSE ECHO CHARACTER
s AND CONTINUE

Unbuffered Input/Output

Using a PIO (PINTIO)

11B

Performs interrupt-driven input and output
using a PIO and single-character input and
output buffers. It consists of the following
subroutines:

I. INCH reads a character from the input
buffer.

2. INST determines whether the input buffer
is empty.

3. OUTCH writes a character into the output
buffer.

4. OUTST determines whether the output
buffer is full.

5. INIT initializes the PIO, the interrupt
vectors, and the software flags. The flags are
used to manage data transfers between the main
program and the interrupt service routines.

The actual service routines are

1. RDHDLR responds to the input interrupt
by reading a character from the PIO into the
_ input buffer.

2. WRHDLR responds to the output interrupt
by writing a character from the output buffer
into the PIO.

Procedures

1. INCH waits for a character to become
available, clears the Data Ready flag (RECDF),
and loads the character into the accumulator.

2. INST sets Carry from the Data Ready flag
(RECDF).

3. OUTCH waits for the output buffer to
empty, stores the character in the buffer, and
sets the Character Available flag (TRNDF). If
no output interrupt is expected (i.e., the interrupt

404

Registers Used:

. INCH: AF

. INST: AF

. OUTCH: AF

. OUTST: AF

. INIT: AF, BC, HL, 1

Execution Time:
I. INCH: 72 cycles if a character is available
2. INST: 27 cycles

3. OUTCH: 150 cycles if the output buffer is not
fulland an output interrupt is expected; 93 additional
cycles to send the data to the PIO if no output
interrupt is expected.

4. OUTST: 27 cycles

5. INIT: 377 cycles

6. RDHDLR: 82 cycles

7. WRHDLR: 178 cycles
Program Size: 166 bytes
Data Memory Required: 5 bytes anywhere in
RAM for the received data (address RECDAT),
Receive Data flag (address RECDF), transmit data
(address TRNDAT), Transmit Data flag (address

TRNDF), and Output Interrupt Expected flag (address
OIE)

[I S S

has been disabled because it occurred when no
data was available), OUTCH sends the data to
the PIO immediately.

4. OUTST sets Carry from the Character
Available flag (TRNDF).

5. INIT clears the software flags, sets up the
interrupt vectors, and initializes the PIO by
loading its control registers and interrupt vec-
tor. See Chapter 1 and Subroutine 10E for more
details about initializing PIOs.

6. RDHDLR reads the data, saves it in the
input buffer, and sets the Data Ready flag
(RECDF). ‘

118 UNBUFFERED INPUT/OUTPUT USING A PIO (PINTIO) 409

7. WRHDLR determines whether data is
available. If not, it simply disables the output
(PIO port B) interrupt. If data is available,
WRHDLR sends it to the PIO and clears the
Character Available flag (TRNDF).

The special problem here is that an output
interrupt may occur when no data is available.
It cannot simply be ignored or it will assert it-
self indefinitely, causing an endless loop. The
solution is simply to disable the output in-
terrupt from PIO port B.

But now a new problem arises when output
data becomes available. That is, since the
interrupt has been disabled, it obviously
cannot inform the system that the output de-
vice is ready for data. The solution is to have
a flag that indicates (with a 0 value) that the
output interrupt has occurred without being
serviced. This flag is called OIE (Output In-
terrupt Expected).

The initialization routine clears OIE (since
the output device surely starts out ready for
data). The output service routine clears it when
an output interrupt occurs that cannot be
serviced (no data is available) and sets it after
sending data to the PIO (in case it might have
been cleared). Now the output routine OUTCH
can check OIE to determine whether an output
interrupt is expected. If not, OUTCH simply
sends the data immediately.

Note that a PIO interrupt cannot be cleared
without actually sending any data. This is
possible with an SIO (see Subroutine 11A), so
the procedure there is slightly different.

Unserviceable interrupts occur only with
output devices, since input devices always have
data ready to transfer when they request service.
Thus, output devices cause more initialization
and sequencing problems in interrupt-driven
systems than do input devices. '

Entry Conditions

1. INCH: none

2. INST: none

3. OUTCH: character to transmit in A
4. OUTST: none

5. INIT: none

Exit Conditions

1. INCH: character in A

2. INST: Carry= 0 if input buffer empty, 1 if
full

3. OUTCH: none

4. OUTST: Carry = 0 if output buffer empty,
1 if full

5. INIT: none

Title

N8 NS WS ws ws v <5

Name: PINTIO

Simple interrupt input and output using a
PIO and single character buffers

“ 8 w8 s we

780

406 erRruPTS

Purpose: This program consists of S subroutines which
perform interrupt driven input and ocutput using
a Z80 PIQ.

INCH
Read a character
INST
Determine input status (whether input
buffer is empty)
OUTCH
Write a character
ouTsST
Determine ocutput status (whether output
buffer is full)
INIT
Initialize PIO and interrupt system

Entry: INCH
No parameters
INST
No parameters
QUTCH
Register A = character to transmit
ouUTST
No parameters
INIT
No parameters

Exit: INCH
Register A = character
INST
Carry = 0 if input buffer is empty.
1 if character is available
OUTCH
No parameters
QUTST
Carry = 0 if output buffer is not
full, 1 if it is full
INIT
No parameters

Registers used: INCH
A,F
INST
A,F
QUTCH
A, F
QUTST
A F
INIT
A,F,BC,HL, I

WB B NS NB WP UE NG 45 UE B VB WE UE NS WS WE 45 95 WO YD WG NUE W6 WS US WS 8 VB WS WS W6 WE W6 <E 9B 4B <6 VA VB WS N5 ¥ w8 WS 45 <6 VG WS NS NG w8 w8 48

“

NE N NE YR B g g MR WS NE UE 9B 98 B WS NP NE NP N NS 4F 4P 4 NP W8 NS NP NE NS 4F 9B 48 90 NG NB NB NS NP 9B 4B 90 NF NE NE NS NS WE 95 95 9 WS WS w9

118 UNBUFFERED INPUT/OUTPUT USING A PIO (PINTIO) 407

Time: INCH
72 cycles if a character is available
INST
27 cycles
QUTCH
150 cycles if output buffer is not full
and output interrupt is expected
QuUTST
27 cycles
INIT
377 cycles
RDHDLR
82 cycles
WRHDLR
178 cycles

we

Size: Program 166 bytes
Data S bytes

W8 B 9B NP 48 NE NB NE NS W5 B WE 98 <8 NS NS NS 45 wn ws

4B WB B NB NS NB B 45 9B <8 NS NE B NG NS w8 a8 48

PIO EQUATES
PI0 IS PROGRAMMED FOR:
PORT A INPUT
+ PORT B QUTPUT
; ARBITRARY PIO PORT ADDRESSES

e w

PIOAD EQU 90H sPORT A DATA
PI0OAC EQU 91H s PORT A CONTROL
PI0OBD EQU 92H ;PORT B DATA
PIOBC EQU 93H :PORT B CONTROL
INTRPV EQU 8000H s BASE OF INTERRUPT VECTORS
PIOIVA EQU INTRPV s INTERRUPT VECTOR FOR PORT A
PIOIVE EQU INTRPV+2 s INTERRUPT VECTOR FOR PORT B
:READ CHARACTER
INCH:
CALL INST sGET INPUT STATUS
JR NC, INCH sWAIT IF NO CHARACTER AVAILAELE
DI s DISABLE INTERRUFTS
SUB A
LD (RECDF), A s INDICATE INPUT BUFFER EMPTY
LD A. (RECDAT) :GET CHARACTER FROM INPUT BUFFER
El s REENABLE INTERRUPTS
RET
sRETURN INPUT STATUS (CARRY = 1 IF INPUT DATA IS AVAILABLE)
INST:
LD A, (RECDF) sGET DATA READY FLAG
RRA s SET CARRY FROM DATA READY FLAG

3 IF CARRY = 1, CHARACTER IS AVAILAELE
RET

sWRITE CHARACTER

QUTCH:
PUSH AF : SAVE CHARACTER TO WRITE

408 \1errUPTS

WAITOC:

QUTST:

INIT:

RDHDLR=

sWAIT FOR CHARACTER BUFFER TO EMPTY,

CALL ouTST

JR C,WAITOQC
DI

POP AF

LD (TRNDAT) , A
LD A, OFFH

LD (TRNDF) . A
LD A, (OIE)

OR A

CALL Z, QUTDAT

El
RET

s QUTPUT STATUS (CARRY =
LD A, (TRNDF)

RRA
RET

THEN STORE NEXT CHARACTER

;GET OUTPUT STATUS

s WAIT IF QUTPUT BUFFER IS FULL

s DISABLE INTERRUPTS WHILE LOOKING AT
+ SOFTWARE FLAGS

; GET CHARACTER

3 STORE CHARACTER IN OUTPUT BUFFER

; INDICATE OUTPUT BUFFER FULL

: TEST QUTPUT INTERRUPT EXPECTED FLAG
; OUTPUT CHARACTER IMMEDIATELY IF

; NO QUTPUT INTERRUPT EXPECTED
sENABLE INTERRUPTS

1 IF QUTPUT BUFFER IS FULL)

;GET TRANSMIT FLAG

:SET CARRY FROM TRANSMIT FLAG
3 CARRY = 1 IF OUTPUT BUFFER FULL

s INITIALIZE PIO AND INTERRUPT SYSTEM

; DISABLE INTERRUFTS

sNO INPUT DATA AVAILABLE
s OUTPUT BUFFER EMPTY

DI

s INITIALIZE SOFTWARE FLAGS
SUB A

LD (RECDF), A

LD (TRNDF) , A

LD (OIE), A

3 NO QUTPUT INTERRUPT EXPECTED
s DEVICE IS READY INITIALLY

s INITIALIZE INTERRUPT VECTORS

LD A, INTRPV SHR 8
LD I,A

M 2

LD HL., RDHDLR

LD (PIOIVA),HL
LD HL, WRHDLR

LD (PIOIVB),HL

s INITIALIZE PIO

LD HL, PIOINT

CALL IPORTS

El

RET

3 INPUT (READ) INTERRUPT
PUSH AF

IN A, (PI0OAD)

LD (RECDAT) , A

sGET HIGH BYTE OF INTERRUPT PAGE

$ SET INTERRUPT VECTOR IN Z20

s INTERRUPT MODE 2 - VECTORS IN TAELE
+ ON INTERRUPT PAGE

$ STORE READ VECTOR (INPUT INTERRUFT)

$STORE WRITE VECTOR (QUTPUT INTERRUPT)

; BASE ADDRESS OF INITIALIZATION ARRAY
s INITIALIZE PIO
3 ENABLE INTERRUPTS

HANDLER

;s READ DATA FROM FIO
3 SAVE DATA IN INPUT BUFFER

WRHDLR:

NODATA:

WRDONE =

OUTDAT:

118 UNBUFFERED INPUT/OUTPUT USING A PIO (PINTIO) 409

LD A, OFFH : INDICATE INPUT DATA AVAILABLE
LD (RECDF) , A

POP AF

El s REENABLE INTERRUPTS

RETI

sOUTPUT (WRITE) INTERRUPT HANDLER

PUSH AF

LD A, (TRNDF) ;s GET DATA AVAILABLE FLAG
RRA

JR NC, NODATA sJUMP IF NO DATA TO TRANSMIT
CALL QUTDAT s OUTPUT DATA TO PIO

JR WRDONE

:IF AN QUTPUT INTERRUPT QOCCURS WHEN NO DATA IS AVAILABLE,

3 WE MUST DISABLE IT 7O AVOID AN ENDLESS LOOP. LATER, WHEN A

3 CHARACTER BECOMES AVAILABLE, WE NEED TO KNOW THAT AN QUTPUT

+ INTERRUPT HAS OCCURRED WITHOUT BEING SERVICED. THE KEY HERE

3 IS THE QUTPUT INTERRUPT EXPECTED FLAG OIE. THIS FLAG IS

3 CLEARED WHEN AN QUTPUT INTERRUPT HAS OCCURRED BUT HAS NOT

s+ BEEN SERVICED. IT IS ALSO CLEARED INITIALLY SINCE THE

;3 OUTPUT DEVICE IS ASSUMED TO START OUT READY. OIE IS SET

3 WHENEVER DATA IS ACTUALLY SENT TO THE PIO. THUS THE OUTPUT ROUTINE
3 OUTCH CAN CHECK OIE TO DETERMINE WHETHER TO SEND THE DATA

3 IMMEDIATELY OR WAIT FOR AN OUTPUT INTERRUPT.

:THE PROBLEM IS THAT AN OQUTPUT DEVICE MAY REQUEST SERVICE BEFORE
3+ THE COMPUTER HAS ANYTHING TO SEND (UNLIKE AN INPUT DEVICE

3 THAT HAS DATA WHEN IT REQUESTS SERVICE). THE OIE FLAG SOLVES
s+ THE PROBLEM OF AN UNSERVICED QUTPUT INTERRUPT ASSERTING ITSELF
3 REPEATEDLY, WHILE STILL ENSURING THE RECOGNITION OF

s OUTPUT INTERRUPTS.

SUB A

LD (0IE), A s INDICATE NO OUTPUT INTERRUPT EXPECTED
LD A, 00000011R s DISABLE QUTPUT INTERRUPTS

ouT (PIOBC), A

POP AF :RESTORE REGISTERS

EI

RETI

3 ORR BRI R RN B I 00 M3 MBI BB BB W BN
+ROUTINE: OUTDAT

s PURPOSE: SEND CHARACTER TO PIO PORT B
$ENTRY: TRNDAT = CHARACTER

sEXIT: NONE

:REGISTERS USED: AF

3 ORHEMR BRI MMM MM H IR BR IR R R R MR SR

LD A, (TRNDAT) s GET DATA FROM OUTPUT BUFFER
ouT (PIOBD), A s SEND DATA TO PIO
SUB A s INDICATE OUTPUT BUFFER EMPTY

410 rerRRUPTS

IPORTS:

PIOINT:

LD (TRNDF) , A

DEC A s INDICATE OUTPUT INTERRUPT EXPECTED
LD (0IE),A s OIE = FF HEX

LD A, 10000011B sENABLE OQUTPUT INTERRUPTS

ouT (PIOBC).A

RET

R g i

sROUTINE: IPORTS

s PURPOSE: INITIALIZE I/0 PORTS

sENTRY: HL = BASE ADDRESS OF INITIALIZATION ARRAY
sEXIT: DATA QUTPUT TO PORTS

;s REGISTERS USED: AF,BC,HL
RS

sGET NUMBER OF DATA BYTES TO SEND TO CURRENT PORT
sEXIT IF NUMBER OF BYTES IS O, INDICATING TERMINATOR

LD A, (HL) ;GET NUMBER OF BYTES

OR A s TEST FOR ZERO (TERMINATOR)

RET b4 :RETURN IF NUMBER OF BYTES = O

LD B,A

INC HL s PQINT TO PORT ADDRESS (NEXT BYTE)

:C = PORT ADDRESS
sHL = BASE ADDRESS OF OUTPUT DATA

LD C. (HL) :GET PORT ADDRESS

INC HL sPOINT TO FIRST DATA VALUE (NEXT BYTE)
; QUTPUT DATA AND CONTINUE TO NEXT PORT

QTIR ; SEND DATA VALUES TO PORT

JR IPORTS :CONTINUE TO NEXT PORT ENTRY

;PIO INITIALIZATION DATA
PORT A = INPUT
PORT B = OUTPUT

DB 3 ;OUTPUT 3 BYTES

DB PIOAC :DESTINATION IS PORT A CONTROL

DB PIOIVA AND OFFH ;SET INTERRUPT VECTOR FOR PORT A

DB 10001111B $BITS 3,2,1,0 = 1111 (MODE SELECT)
sBITS 5,4 = 00 (DON“T CARE)
$BITS 7,6 = 01 (INPUT MODE)

DB 10000111RB :BITS 3.2.1.0 = 0111 (INTERRUPT CONTROL)
3sBITS 6,5,4 = 000 (DON‘T CARE)
sBITS 7 = 1 (ENABLE INTERRUPTS)

DB 3 s QUTPUT 3 BYTES

DB PIOBC :DESTINATION IS PORT B CONTROL

DB PIOIVB AND OFFH ;SET INTERRUPT VECTOR FOR FORT B

DB 11001111B sBITS 3,2,1,0 = 1111 (MODE SELECT)

sBITS 5,4 = 00 (DON‘T CARE)
sBITS 7,6 = 00 (CONTROL MODE)
DB 00000111B sBITS 3.2,1,0 = 0111 (INTERRUPT CONTROL)
sBIT 4,5,6 = 000 (DON‘T CARE)
;BITS 7 = 0 (DISABLE INTERRUPTS)

RECDAT:
RECDF:

TRNDAT:
TRNDF:

0IE:

@ ws NB %9 ws

ESCAPE
TESTCH

SC11B:

LOOP:

ASYNLP:

118 UNBUFFERED INPUT/OUTPUT USING A PIO (PINTIO) 444

DB o] s TERMINATOR FOR INITIALIZATION ARRAY
:DATA SECTICN
DS 1 sRECEIVE DATA
DS 1 s RECEIVE DATA FLAG
: (0O = NO DATA. FF = DATA)
DS 1 ;s TRANSMIT DATA
Ds 1 : TRANSMIT DATA FLAG
;3 (0 = BUFFER EMPTY, FF = BUFFER FULL)
Ds 1 s OUTPUT INTERRUPT EXPECTED
3 (O = NO INTERRUPT EXPECTELD,
;7 FF = INTERRUPT EXPECTED)
SAMPLE EXECUTION:
; CHARACTER EQUATES
EQU 1BH 3ASCII ESCAPE CHARACTER
EQU ‘A7 s TEST CHARACTER = A
CALL INIT s INITIALIZE PIOQ, INTERRUPT SYSTEM

s SIMPLE EXAMPLE - READ AND ECHO CHARACTERS
: UNTIL AN ESC IS RECEIVED

CALL INCH ; READ CHARACTER

PUSH AF

cAaLL QUTCH s ECHO CHARACTER

POP AF

CcP ESCAPE ; IS CHARACTER AN ESCAPE?
JR NZ,LO00P ;STAY IN LOOP IF NOT

s AN ASYNCHRONOUS EXAMPLE
QUTPUT "A" TO CONSOLE CONTINUOUSLY, BUT ALSO LOOK AT
INPUT SIDE, READING AND ECHOING ANY INPUT CHARACTERS

. e

;QUTPUT AN “"A" IF QUTPUT IS NOT BUSY

CALL QuTsT 3 IS QUTPUT BUSY?

JR C, ASYNLP sJUMP IF IT IS

LD A, TESTCH

CALL OUTCH s OUTPUT TEST CHARACTER

s CHECK INPUT PORT
s ECHO CHARACTER IF ONE IS AVAILABLE
EXIT ON ESCAPE CHARACTER

CALL INST s IS INPUT DATA AVAILABLE?
JR NC, ASYNLP s JUMP IF NOT (SEND ANOTHER "A")
CALL INCH ;GET THE CHARACTER

CP ESCAPE ;IS IT AN ESCAPE CHARACTER?

“ us w99

442 nrerRRUPTS

ASDONE:

JR
CALL
JP
JP

END

Z.ASDONE
OUTCH
ASYNLP

LOOP

:JUMP IF IT IS
;ELSE ECHO CHARACTER
; AND CONTINUE

Buffered Input/Output
Using an SIO (SINTB)

1MC

Performs interrupt-driven input and output
using an SIO and multiple-character buffers.
Consists of the following subroutines:

1. INCH reads a character from the input
buffer.

2. INST determines whether the input buffer
is empty.

3. OUTCH writes a character into the output
buffer.

4. OUTST determines whether the output
buffer is full.

5. INIT initializes the buffers, the interrupt
system, and the SIO.

The actual service routines are

1. RDHDLR responds to the input interrupt
by reading a character from the SIO into the
input buffer.

2. WRHDLR responds to the output interrupt
by writing a character from the output buffer
into the SIO.

Procedures

1. INCH waits for a character to become
available, gets the character from the head of
the input buffer, moves the head up one position,
and decreases the input buffer counter by 1.

2. INST clears Carry if the input buffer
counter is 0 and sets it otherwise.

3. OUTCH waits until there is space in the
output buffer (that is, until the output buffer is
not full), stores the character at the tail of the
buffer, moves the tail up one position, and in-
creases the output buffer counter by 1.

Registers Used:

. INCH: AF, C, DE, HL

. INST: AF

. OUTCH: AF, DE, HL

. OUTST: AF

. INIT: AF, BC, HL, 1

Execution Time:
1. INCH: 197 cycles if a character is available
2. INST: 39 cycles

3. OUTCH: 240 cycles if the output buffer is not
full and an output interrupt is expected; 160 addition-
al cycles to send the data to the SIO if no output
interrupt is expected.

4. OUTST: 34 cycles

5. INIT: 732 cycles

6. RDHDLR: 249 cycles

7. WRHDLR: 308 cycles
Program Size: 299 bytes
Data Memory Required: 11 bytes anywhere in
RAM for the heads and tails of the input and output
buffers (2 bytes starting at addresses IHEAD, ITAIL,
OHEAD, and OTAIL, respectively), the numbers of
characters in the buffers (2 bytes at addresses ICNT
and OCNT), and the Output Interrupt Expected flag

(address OIE). This does not include the actual input
and output buffers.

[o R S

4. OUTST sets Carry if the output buffer
counter is equal to the buffer’s length (i.e., if
the output buffer is full) and clears Carry other-
wise.

5. INIT clears the buffer counters, sets both
the heads and the tails of the buffers to their
base addresses, sets up the interrupt vectors,
and initializes the SIO by storing the appropriate
values in its control registers. See Subroutine
10E for more details about initializing SIOs.
INIT also clears the Output Interrupt Expected
flag, indicating that the SIO is initially ready to
transmit data.

413

414 s

6. RDHDLR reads a character from the
SIO. If there is room in the input buffer, it stores
the character at the tail of the buffer, moves
the tail up one position, and increases the in-
put buffer counter by 1. If the buffer is full,
RDHDLR simply discards the character.

7. WRHDLR determines whether output
data is available. If not, it simply resets the
output interrupt. If data is available, WRHDLR
obtains a character from the head of the output
buffer, moves the head up one position, and
decreases the output buffer counter by 1.

The new problem with multiple-character
buffers is the management of queues. The main
program must read the data in the order in
which the input interrupt service routine receives
it. Similarly, the output interrupt service routine
must send the data in the order in which the
main program stores it. Thus, there are the
following requirements for handling input:

1. The main program must know whether
the input buffer is empty.

2. If the input buffer is not empty, the main
program must know where the oldest character
is (that is, the one that was received first).

3. The input interrupt service routine must
know whether the input buffer is full.

4. If the input buffer is not full, the interrupt
service routine must know where the next
empty place is (that is, where it should store the
new character).

The output interrupt service routine and the
main program have similar requirements for
the output buffer, although the roles of sender
and receiver are reversed.

Requirements 1 and 3 are met by maintaining
a counter ICNT. INIT initializes ICNT to 0, the
interrupt service routine adds 1 to it whenever it

receives a character (assuming the buffer is not
full), and the main program subtracts 1 from it
whenever it removes a character from the
buffer. Thus, the main program can determine
whether the input buffer is empty by checking if
ICNT is 0. Similarly, the interrupt service rou-
tine can determine whether the input buffer is
full by checking if ICNT is equal to the size of
the buffer.

Requirements 2 and 4 are met by maintain-
ing two pointers, IHEAD and ITAIL, defined
as follows:

1. ITAIL contains the address of the next
empty location in the input buffer.

2. IHEAD contains the address of the oldest
character in the input buffer.

INIT initializes IHEAD and ITAIL to the
base address of the input buffer. Whenever the
interrupt service routine receives a character, it
places it in the buffer at ITAIL and moves ITAIL
up one position (assuming that the buffer is not
full). Whenever the main program reads a
character, it removes it from the buffer at
IHEAD and moves IHEAD up one position.
Thus, IHEAD “chases” ITAIL across the buffer
with the service routine entering characters at
one end (the tail) while the main program
removes them from the other end (the head).

The occupied part of the buffer could thus
start and end anywhere. If either IHEAD or
ITAIL goes beyond the end of the buffer, the
program simply sets it back to the buffer’s base
address, thus providing wraparound. That is,
the occupied part of the buffer could start near
the end (say, at byte #195 of a 200-byte buffer)
and continue back past the beginning (say, to
byte #10). Then IHEAD would be BASE+ 194,
ITAIL would be BASE+9, and the buffer
would contain 15 characters occupying ad-
dresses BASE+194 through BASE+199 and
BASE through BASE+S8.

11C BUFFERED INPUT/OUTPUT USING AN IO (SINTB) 445

multiple-character buffers

Entry Conditions Exit Conditions
1. INCH: none 1. INCH: character in A
2. INST: none 2. INST: Carry= 0 if input buffer empty, 1 if
3. OUTCH: character to transmit in A otherwise
4. OUTST: none 3. OUTCH: none
5. INIT: none 4. OUTST: Carry = 0 if output buffer not
full, 1 if full
5. INIT: none
: ;
; Title Interrupt input and output using a Z80 SIO and ;

Name: SINTR
Purpose: This program consists of 5 subroutines which
perform interrupt driven input and output using
a Z80 SIO.
INCH
Read a character
INST

Determine input status {(whether input
buffer is empty)

QUTCH
Write a character

QuUTST
Determine output status (whether output
buffer is full)

INIT
Initialize SIO and interrupt system

Entry: INCH
No parameters
INST
No parameters
QUTCH
Register A = character to transmit
ouTSsT
No parameters
INIT
No parameters

4B ME NE N N WP B 48 NE NB NE W 48 <5 W8 N8 WD NE 9P 4B 4B NE NS WB wE 4p

€5 9P WG NE WS B B 4B VS B B WE B 48 45 NG NE 4B WE B 48 NB N8 WO wE B 96 45 N8 N8

CTRE TR

446 errupTS

Exit: INCH
Register A = character
INST
Carry = 0 if input buffer is empty,
1 if character is available
QUTCH
No parameters
ouTsT
Carry = 0 if output buffer is not
full, 1 if it is full
INIT
No parameters

Reaisters used: INCH
AF,C,DE, HL
INST
AF
OUTCH
AF, DE, HL
QUTST
AF
INIT
AF,BC,HL, I

Time: INCH
Approximately 197 cycles if a character is
available
INST
39 cycles
QUTCH
Approximately 240 cycles if output buffer
is not full and output interrupt is expected
QUTST
34 cycles
INIT
732 cycles
RDHDLR
Approximately 249 cycles
WRHDLR
Approximately 308 cycles

Size: Program 299 bytes
Data 11 bytes plus size of buffers

€5 45 NB WE N8 4B 4B 45 NP VB NE N8 NG 8 45 WS B VG W8 48 49 NG NE WS NG N6 N5 NS N6 N U6 <6 WS WG WG NS <6 VS 98 45 NG WS WS WS 9B 95

SI0 EQUATES
SI0 IS PROGRAMMED FOR:
ASYNCHRONOUS OPERATION
16 X BAUD RATE
8-BIT CHARACTERS
1 1/2 STOP BITS
s ARBITRARY SI0O PORT ADDRESSES
SIOCAD EQU 1CH ;SI0 CHANNEL A DATA

. Y8 B <8 wB a8

NP NP NB 9B 6B WB NS NE NP 48 48 4B WB NE NS NS 4B 45 N8 NE WS NF 98 95 98 WP oy 45 48 wE NB WE WS NS 48 45 B N NG 9 S <8 48 48 ws 48

11C BUFFERED INPUT/OUTPUT USING AN SIO (SINTB) 447

SIOCBD EQU 1EH :SI0 CHANNEL B DATA
SIOCAS EQU 1DH $SI0 CHANNEL A COMMANDS/STATUS
SIOCBS EQU iFH 3 SI0 CHANNEL B COMMANDS/STATUS
SIOIV EQU 8000H s INTERRUPT VECTOR
SIOWV EQU SI0IV+8 3SI0 CHANNEL A WRITE INTERRUPT VECTOR
SIOEV EQU SIQIV+10 3 SI0 CHANNEL A EXTERNAL/STATUS
; INTERRUPT VECTOR
SIORV EQU SI0IV+12 :SI0 CHANNEL A READ INTERRUPT VECTOR
S108V EQU SI0IV+14 3 SI0 CHANNEL A SPECIAL RECEIVE

s+ INTERRUPT VECTOR
:READ CHARACTER

INCH:
CALL INST +GET INPUT STATUS
JR NC, INCH sWAIT IF NO CHARACTER AVAILABLE
DI ; DISABLE INTERRUPTS
LD HL, ICNT sREDUCE INPUT BUFFER COQUNT BY 1
DEC (HL)
LD HL, (ITHEAD) :GET CHARACTER FROM HEAD OF INPUT BUFFER
LD €, (HL)
CALL INCIPTR s MOVE HEAD PQINTER UP 1
LD (IHEAD), HL
LD A.C
El s REENABLE INTERRUPTS
RET
INST sRETURN INPUT STATUS (CARRY = 1 IF INPUT DATA IS AVAILABLE)
LD A, (ICNT) s TEST INPUT BUFFER COUNT
OR A s CLEAR CARRY ALWAYS
RET z s RETURN, CARRY = O IF NQO DATA
SCF s SET CARRY
RET sRETURN, CARRY = 1 IF DATA AVAILABLE
s WRITE CHARACTER
QUTCH:
PUSH AF s SAVE CHARACTER TO QUTPUT
sWAIT FOR OUTPUT BUFFER NOT FULL, THEN STORE NEXT CHARACTER
WAITOC:
CALL QuUTST :GET QUTPUT STATUS
JR C,WAITOC sWAIT IF OUTPUT BUFFER IS FULL
DI s DISABLE INTERRUPTS WHILE LOOKING AT
3 BUFFER, INTERRUPT STATUS
LD HL. QCNT : INCREASE QUTPUT BUFFER COUNT BY 1
INC {(HL)
LD HL, (OTAIL) sPOINT TO NEXT EMPTY BYTE IN BUFFER
POP AF :GET CHARACTER
LD (HL), A s STORE CHARACTER AT TAIL OF BUFFER
CALL INCOPTR s MOVE TAIL POINTER UP 1
LD (OTAIL).HL
LD A, (OIE) s TEST QUTPUT INTERRUPT EXPECTED FLAG
OR A
CALL Z,QUTDAT ;s OUTPUT CHARACTER IMMEDIATELY IF

; OUTPUT INTERRUPT NOT EXPECTED

448 1errUPTS

QUTST:

INIT:

ROHDLR:

RO1:

EI
RET

s OUTPUT STATUS (CARRY =

LD
CP
CCF
RET

s INITIALIZE SIO,

A, (OCNT)
SZOBUF

s REENABLE INTERRUPTS

1 IF BUFFER IS FULL)

sGET CURRENT QUTPUT BUFFER COUNT

s COMPARE TO MAXIMUM

;s COMPLEMENT CARRY

:CARRY = 1 IF BUFFER FULL, O IF NOT

INTERRUPT SYSTEM

:DISABLE INTERRUFPTS

s INITIALIZE BUFFER COUNTERS AND POINTERS, INTERRUPT FLAG

s INDICATE NO OQUTPUT INTERRUFTS
s BUFFER COUNTERS = 0

sALL BUFFER POINTERS = BASE ADDRESS

3GET HIGH BYTE OF INTERRUPT PAGE

s SET INTERRUPT VECTOR IN Z20

s INTERRUPT MODE 2 - VECTORS IN TABLE
: ON INTERRUPT PAGE

;s STORE READ VECTOR

s STORE WRITE VECTOR
s STORE EXTERNAL/STATUS VECTOR
:STORE SPECIAL RECEIVE VECTOR

BASE ADDRESS OF INITIALIZATION ARRAY
INITIALIZE SIO
ENABLE INTERRUPTS

-
’
-
»
-
£

DI

SUB A

LD (OIE), A

LD (ICNT), A

LD (OCNT). A

LD HL, IBUF

LD (IHEAD) , HL
LD (ITAIL),HL
LD HL.OBUF

LD (QHEAD) , HL
LD (OTAIL),HL

s INITIALIZE INTERRUPT VECTORS
LD A,SI0OIV SHR 8
LD I,A

M 2

LD HL.RDHDLR

LD (SIORV), HL

LD HL. WRHDLR

LD (SIOWV) , HL

LD HL, EXHDLR

LD (SIOEV),HL

LD HL, REHDLR

LD (SI0OSV) . HL

s INITIALIZE 1/0 PORTS
LD HL, SIOINT
CALL IPORTS

EI

RET

; INPUT (READ) INTERRUPT

PUSH
PUSH
PUSH
PUSH

IN
LD
LD

AF
BC
DE
HL

A, (SIQCAD)
CIA
HL, ICNT

HANDLER

s SAVE REGISTERS

;READ DATA FROM SIO
: SAVE DATA IN REGISTER C

sANY ROOM IN INPUT BUFFER?

XITRH:

WRHDLR:

NODATA:

WRDONE 2

EXHDLR:

11C BUFFERED INPUT/OUTPUT USING AN SIO (SINTB) 449

LD A, (HL)

cP SZIBUF

JR NC. XITRH :JUMP IF NO ROOM

INC (HL) ; INCREMENT INPUT BUFFER COUNTER
LD HL, CITAIL) s STORE CHARACTER AT TAIL OF INPUT BUFFER
LD (HL), C

CALL INCIPTR s INCREMENT TAIL POINTER

LD (ITAIL),HL

POP HL :RESTORE REGISTERS

POP DE

POP BC

POP AF

EI ;s REENABLE INTERRUPTS

RETI

s OUTPUT (WRITE) INTERRUPT HANDLER

PUSH AF 3 SAVE REGISTERS

PUSH BC

PUSH DE

PUSH HL

LD A, (QCNT) s GET QUTPUT BUFFER COUNTER
OR A s TEST FOR EMPTY BUFFER

JR Z,NODATA ; JUMP IF NO DATA TO TRANSMIT
CALL QUTDAT sELSE OUTPUT DATA

JR WRDONE

IF AN QUTPUT INTERRUFT OCCURS WHEN NO DATA IS AVAILABLE.

WE MUST DISABLE OUTPUT INTERRUPTS TO AVOID AN ENDLESS LOOF.
WHEN THE NEXT CHARACTER IS READY, IT MUST RE SENT IMMEDIATELY
SINCE NO INTERRUPT WILL OCCUR. THIS STATE IN WHICH AN QUTFUT
INTERRUPT HAS QCCURRED BUT HAS NOT BEEN SERVICED IS INDICATED
BY CLEARING OIE (QUTPUT INTERRUPT EXPECTED FLAG).

w8 w8 a8 wE ws ws

SUB A

LD (0IE), A ;D0 NOT EXPECT AN INTERRUPT
QuT (SIQCAS). A :+ SELECT REGISTER 0

LD A, 00101000B s RESET TRANSMITTER INTERRUPT
our (SI0OCAS), A

POP HL :RESTORE REGISTERS

POP DE

POP BC

POP AF

EI

RETI

s EXTERNAL /STATUS CHANGED INTERRUPT HANDLER

PUSH AF
LD A, 00010000B ;s RESET STATUS INTERRUPT

420 NTERRUPTS

out (SIOCAS) . A

POP AF

EI :DCD OR CTS LINE CHANGED STATE. OR A
RETI : BREAK WAS DETECTED

s SERVICE HERE IF NECESSARY

s SPECIAL RECEIVE ERROR INTERRUFPT

REHDLR:
PUSH AF
LD A, 00110000B sRESET RECEIVE ERROR INTERRUPT
ouT (SIOCAS). A
POP AF
EI s FRAMING ERROR OR QVERRUN ERROR QCCURRED
RETI :+ SERVICE HERE IF NECESSARY
P RERERERRERERRRERRRRRRRRRERBRRRR BB RN RS
sROUTINE: OUTDAT
s PURPOSE: SEND CHARACTER TO SIO
sENTRY: NONE
sEXIT: NONE
sREGISTERS USED: AF,DE,HL
$ BB RERE R RR R FRIE R AR E R R R R R RIERT R
QUTDAT:
LD HL, (QHEAD)
LD A, (HL) sGET DATA FROM HEAD OF QUTPUT BUFFER
ouT (SIQCAD). A :OUTPUT DATA
CALL INCOPTR 3 INCREMENT HEAD POINTER
LD (OHEAD) , HL
LD HL, OCNT s DECREMENT OUTPUT BUFFER COUNT
DEC (HL)
LD A, OFFH
LD (QIE), A sEXPECT AN QUTPUT INTERRUPT
RET
P REERARAERERRER AR RN R RN RN R RN R
sROUTINE: INCIPTR
s PURPOSE: INCREMENT POINTER INTO INPUT
; BUFFER WITH WRAFARQUND
sENTRY: HL = POINTER
sEXIT: HL = POINTER INCREMENTED WITH WRAPAROUND
sREGISTERS USED: AF,DE,HL
EENERAREE RN R RN RN RN R R R R
INCIPTR:
INC HL : INCREMENT POINTER
LD DE, EIBUF ;s COMPARE POINTER, END OF BUFFER
LD A.L
CP E
RET NZ
LD A H
cP D
RET NZ :RETURN IF NOT EQUAL
LD HL, IBUF s IF POINTER AT END OF BUFFER,

RET 7 SET IT BACK TO BASE ADDRESS

11C BUFFERED INPUT/OUTPUT USING AN SIO (SINTB) 424

AT e it 3 g

sROUTINE: INCOPTR

3 PURPOSE: INCREMENT POINTER INTO OQUTPUT

3 BUFFER WITH WRAPARQUND

sENTRY: HL = POINTER

sEXIT: HL = POINTER INCREMENTED WITH WRAPAROUND

s REGISTERS USED: AF,DE,HL
P RRRRRRREAR RN RN RN R R R RN R R RER R

INCOPTR:
INC HL ; INCREMENT POINTER
LD DE, EQBUF ; COMPARE POINTER, END OF BUFFER
LD A.L
CP E
RET NZ
LD A.H
CP D
RET NZ
LD HL, OBUF ;s IF POINTER AT END OF BUFFER,
RET 3 SET IT BACK TO BASE ADDRESS

R 2 it e e e
:ROUTINE: IPORTS

;PURPOSE: INITIALIZE I/0 PORTS

sENTRY: HL = BASE ADDRESS OF INITIALIZATION ARRAY
sEXIT: DATA OUTPUT TO PORTS

:REGISTERS USED: AF.BC.HL

R S e T T3

IPORTS:
s GET NUMBER OF DATA BYTES TO SEND TO CURRENT PORT
sEXIT IF NUMBER OF BYTES IS O, INDICATING TERMINATOR
LD A, (HL) s GET NUMBER OF BYTES
OR A ; TEST FOR ZERO (TERMINATOR)
RET z ' sRETURN IF NUMBER OF BYTES = O
LD B, A
INC HL :POINT TO PORT ADDRESS (NEXT BYTE)
;C = PORT ADDRESS
:HL = BASE ADDRESS OF QUTPUT DATA
LD C, (HL) ; GET PORT ADDRESS
INC HL sPOINT TQ FIRST DATA VALUE (NEXT BYTE)
s OUTPUT DATA AND CONTINUE TO NEXT PORT
QTIR 3 SEND DATA VALUES TO PORT
JR IPORTS :CONTINUE TO NEXT PORT ENTRY
sSI0 INITIALIZATION DATA

SIOINT:
s RESET CHANNEL A
DB 1 :OUTPUT 1 BYTE
DB SIQCAS ; TO CHANNEL A COMMAND/STATUS
DB 00011000B :SELECT WRITE REGISTER O

sBITS 2,1,0 = 0 (WRITE REGISTER 0)
;BITS 5,4,3 = 011 (CHANNEL RESET)
sBITS 7,6 = O (DO NOT CARE)

422 \ieRrUPTS

IHEAD:
ITAIL:

ICNT:
QOHEAD:

s SET INTERRUPT VECTOR AND ALLOW STATUS TO AFFECT IT

s QUTPUT 2 BYTES

;DESTINATION IS COMMAND REGISTER B
s SELECT WRITE REGISTER 2

$SET INTERRUPT VECTOR FOR SIO
+SELECT WRITE REGISTER 1

s TURN ON STATUS AFFECTS VECTOR

:OUTPUT 8 BYTES
s DESTINATION IS COMMAND REGISTER A

s SELECT WRITE REGISTER 4
3 RESET EXTERNAL/STATUS INTERRUPT

DR 4

DB SIOCRS

DB 00000010B

DB SIOIV AND OFFH
DB 00000001B

DB 00000100B

;s INITIALIZE CHANNEL A
DB 8

DB SIOCAS

s INITIALIZE BAUD RATE CONTROL
DB 00010100R

DB 01001000B

+BIT O
3BIT 1
3BITS 3,2
3;BITS 5.4
;BITS 7,6

0 (NO PARITY)

0 (DON'T CARE)

10 (1 1/2 STOP BITS)
00 (DON“T CARE)

01 (16 TIMES CLOCK)

wnn

;s INITIALIZE RECEIVE CONTROL

DB
DB

00000011B
11000001B

:SELECT WRITE REGISTER 3

sBIT 0 = 1 (RECEIVE ENABLE)

;BITS 4,3,2,1 = 0 (DON'T CARE)

:BIT S = 0 (NO AUTO ENABLE)

3BIT 7,6 = 11 (RECEIVE 8 BITS/CHAR)

s INITIALIZE TRANSMIT CONTROL

DB 00000101B
DB 11101010B
DB 00000001R
DR 00011011B
DB o

s DATA SECTION

DS 2

DS 2

DS 1

DS 2

:SELECT WRITE REGISTER S

sBIT O = O (NO CRC ON TRANSMIT)
sBIT 1 = 1 (REQUEST TO SEND)
:BIT 2 = 0 (DON“T CARE)

sBIT 3 = 1 (TRANSMIT ENABLE)
sBIT 4 = 0 (DO NOT SEND BREAK)

$BITS 4,5 = 11 (TRANSMIT & BITS/CHAR)
;BIT 7 = 1 (DATA TERMINAL READY)
s SELECT WRITE REGISTER 1

:BIT O = 1 (EXTERNAL INTERRUPTS)
sBIT 1 = 1 (ENABLE TRANSMIT INTERRUPT)
sBIT 2 = 0 (DO NOT CARE)

+BITS 4.3 = 11 (RECEIVE INTERRUPTS ON
ALL CHARS, PARITY DOES NOT AFFECT
VECTOR)

BITS 7.6.5 = 000 (NO WAIT/READY
FUNCTION)

END OF TABLE

“s s <8 s e

s ADDRESS OF OLDEST CHARACTER IN INPUT
:+ BUFFER

s ADDRESS OF NEWEST CHARACTER IN INPUT
s BUFFER

s NUMBER OF CHARACTERS IN INPUT BUFFER
s ADDRESS OF OLDEST CHARACTER IN OUTPUT
; BUFFER

OTAIL:

QCNT:
OIE:

SZIBUF
IBUF:
EIBUF
SZOBUF
OBUF:
EOBRUF

. s ws 9 e

ESCAPE
TESTCH

SC1iC:

LOOP:

ASYNLP:

DS

DS
DS

EQU
Ds
EQU
EQU
Ds
EQU

SAMPLE EXECUTION:

s CHARACTER EQUATES

1
SZIBUF
¢

255
SZORUF
$

11C BUFFERED INPUT/OUTPUT USING AN SIO (SINTB) 423

:ADDRESS OF NEWEST CHARACTER IN QUTPUT
; BUFFER

s NUMBER OF CHARACTERS IN OUTPUT BUFFER
s OUTPUT INTERRUPT EXPECTED

3 (0O = NO INTERRUPT EXPECTED,

3 FF = INTERRUPT EXPECTED)

s SIZE OF INPUT BUFFER

s INPUT BUFFER

:END OF INPUT BUFFER

s SIZE OF OUTPUT BUFFER

s QUTPUT BUFFER

;END OF OQUTPUT BUFFER

- e <0 w» wo

3ASCII ESCAPE CHARACTER
; TEST CHARACTER = A

; INITIALIZE SI0Q, INTERRUPT SYSTEM

EXAMPLE - READ AND ECHO CHARACTER
AN ESC IS RECEIVED

; READ CHARACTER
; ECHO CHARACTER

3 IS CHARACTER AN ESCAPE?
:STAY IN LOOP IF NOT

"A" TO CONSOLE CONTINUQUSLY BUT ALSO LOOK AT

READING AND ECHOING ANY INPUT CHARACTERS

sQUTPUT AN "A" IF QUTPUT IS NQOT BUSY

: IS OUTPUT BUSY?
;JUMP IF IT IS

EQU 1BH

EQU A7

CALL INIT

: SIMPLE

3 UNTIL

CALL INCH
PUSH AF

CALL QUTCH
POP AF

CcP ESCAPE
JR NZ,LOooP
3 AN ASYNCHRONOUS EXAMPLE
s OUTPUT

s INPUT SIDE,
CALL ouUTST

JR C, ASYNLP
LD A.TESTCH
CALL QUTCH

:CHECK INPUT PORT

;s QUTPUT CHARACTER

s ECHO CHARACTER IF ONE IS AVAILABLE
:EXIT ON ESCAPE CHARACTER

CALL
JR
CALL
CP
JR

INST

NC, ASYNLP

INCH
ESCAPE
Z, DONE

s IS INPUT DATA AVAILABLE?

s JUMP IF NOT (SEND ANOTHER “A")
:GET CHARACTER

;IS IT AN ESCAPE CHARACTER?
sBRANCH IF IT IS

424 \1errueTs

DONE:

CALL OUTCH
JP ASYNLP

JP LOOP
END

sELSE ECHO CHARACTER
s AND CONTINUE

Real-Time Clock and Calendar (CLOCK)

11D

M aintains a time-of-day 24-hour clock and
a calendar based on a real-time clock interrupt
generated from a Z80 CTC. Consists of the
following subroutines:

1. CLOCK returns the base address of the
clock variables.

2. ICLK initializes the clock interrupt and
the clock variables.

3. CLKINT updates the clock after each
interrupt (assumed to be spaced one tick apart).

Procedures

1. CLOCK loads the base address of the
clock variables into register pair HL. The clock
variables are stored in the following order
(lowest address first): ticks, seconds, minutes,
hours, days, months, less significant byte of
year, more significant byte of year.

2. ICLK initializes the CTC, the interrupt
system, and the clock variables. The arbitrary
starting time is 00:00:00, January 1, 1980. A real
application would clearly require some kind of
outside intervention to load or change the
clock.

3. CLKINT decrements the remaining tick
count by 1 and updates the rest of the clock if
necessary. Of course, the number of seconds
and minutes must be less than 60 and the

Registers Used:
1. CLOCK: HL
2. ICLK: AF,HL,I
3. CLKINT: None
Execution Time:
1. CLOCK: 20 cycles
2. ICLK: 251 cycles

3. CLKINT: 93 cycles if only TICK must be dec-
remented; 498 cycles maximum if changing to a new
year.

Program Size: 171 bytes

Data Memory Required: 8 bytes for the clock vari-
ables starting at address CLKVAR

number of hours must be less than 24. The day
of the month must be less than or equal to the
last day for the current month; an array of the
last days of each month begins at address
LASTDY. If the month is February (#2), the
program checks if the current yearis a leap year.
This involves determining whether the two least
significant bits of memory location YEAR arc
both 0s. If the current year is a leap year, the last
day of February is the 29th, not the 28th. The
month number may not exceed 12 (December)
or a carry to the year number is necessary. The
program must reinitialize the variables properly
when carries occur; that is, TICK to DTICK; sec-
onds, minutes, and hours to 0; day and month
to 1 (meaning the first day and January, respec-
tively).

Entry Conditions

1. CLOCK: none
2. ICLK: none
3. CLKINT: none

Exit Conditions
1. CLOCK: base address of clock variables in
HL
2. ICLK: none
3. CLKINT: none

425

426 \1errUPTS

Examples
These examples assume that the tick rate is Result:)
DTICK Hz (less than 256 Hz — typical values ?4‘;22)8’:1]9)% é%ooig%”é)”:agd DT(IS;‘(;;CEOS
would be 60 Hz or 100 Hz) and that the clock (MIN)=0 (MONTH) = 03
and calendar are saved in memory locations: (HOUR)=0 (YEAR)= 1982
TICK ticks before a carry, counted down
from DTICK 2. Data .

SEC seconds (0 to 59) Dec. 31, 1982, 11:59.59 p.M. and 1 tick left
MIN minutes (0 to 59) (TICK)=1 (SEC) =59 (DAY) =31
HOUR hour of day (0 to 23) (M 3923 (MonT H) s
DAY day of month (I to 28, 29, 30, or 31) ()=23)=
MONTH month of year (1 through 12)
YEAR and current year Result:

YEAR+1 Jan. 1, 1983, 12:00.00 A.m./and DTICK ticks

(TICK)= DTICK (SEC)=0 (DAY)=1
1. Data: (MIN)=0 (MONTH)= 1
March 7, 1982, 11:59.59 p.M. and 1 tick left (HOUR) =0 (YEAR) =1

(TICK)=1 (SEC)= 59 (DAY) = 07
(MIN)=59 (MONTH) =03
(HOUR)=23 (YEAR)= 1982

48 ¥ WS NS 48 we s ws
B 4B 48 N8 wB N8B a8 s

Title Real-time clock and calendar
Name: CLOCK
Purpose: This program maintains a time-of-day 24-hour

clock and a calendar based on a real-time clock
interrupt from a Z80 CTC.

CLOCK
Returns base address of clock variables
ICLK

Initializes CTC and clock interrupt
CLKINT
Updates clock variables for each tick

Entry: CLOCK
None

ICLK
None

WE NP NS B VB UB UE UE <5 NB W8 8 WE <8 B WS WS 8
4B 4B WO NE R 9B 4B NS NE NE 4B E NP N8 NS 48 <8 V8

Exit: CLOCK

11D REAL-TIME CLOCK AND CALENDAR (CLOCK) 427

Register HL = Base address of time variables
ICLK
None

Registers used: CLOCK
HL
ICLK
AF,HL, I
CLKINT
None

4B NS uE WE NB 48 NB NG4S NS <8 wE

Time: CLOCK
20 cycles
ICLK
251 cvycles
CLKINT
93 cycles normally if decrementing tick
498 cycles maximum if changing to a new year

. s s

Size: Program 171 bvytes
Data 8 bytes

B MBS 48 MB NE NE WE 98 4P WP NWE NS 45 B NP N8 NS 46 <8 Wb NE W

w8 4B uE B N8 ws <8 w8

: ARBITRARY PORT ADDRESSES FOR Z80 CTC

CTCCHO EQU 80H sCTC CHANNEL O PORT

CTCITRP EQU 08000H sCTC INTERRUPT ADDRESS

CTCCMD EQU 101001118 :BIT 7 = 1 INTERRUPTS ENABLED
sBIT 6 = 0 TIMER MODE
sBIT 5 = 1 258 COUNT PRESCALER
:BIT 4 = 0 NEGATIVE EDGE TRIGGER
$BIT 3 = 0 START TIMER AFTER TIME CONST
sBIT 2 = 1 TIME CONSTANT FOLLOWS
:BIT 1 = 1 RESET CHANNEL
;BIT O = 1 CONTROL WORD

CTCTC EQU 250 s TIME CONSTANT

s CALCULATION FOR TICK

3 ASSUME A 4 MHZ CLOCK FOR CTC WITH PRESCALER = 256
' AND COUNT = 230 = (4 = 10*8) / (258 = 2T0)

H IS ABOUT &2 TICKS PER SECOND

DFLTS:
DTICK EQU &2 s DEFAULT TICK
:RETURN BASE ADDRESS OF CLOCK VARIABLES
CLOCK:
LD HL, CLKVAR :GET BASE ADDRESS OF CLOCK VARIABLES
RET
s INITIALIZE CTC CHANNEL O AS A REAL-TIME CLOCK INTERRUPT
ICLK:=
DI :DISABLE INTERRUPTS
LD A,CTCITRP SHR 8
LD I,A s SET UP INTERRUPT VECTOR
M 2 s SET INTERRUPT MODE 2 - VECTORS IN

3 TABLE ON INTERRUPT PAGE

428 \ieRrUPTS

CLEINT:

ouT

HL, CLKINT

(CTCITRP), HL

Al
(CTCCHO) , A

A.CTCITRP AND OFFH

(CTCCHO) , A
A.CTCCMD
(CTCCHO) , A
A.CTCTC
(CTCCHO) , A

s SET INTERRUPT ADDRESS
sy DISABLE CHANNEL ©

s VECTOR TO CTC

s OUTPUT CTC COMMAND

s OUTPUT TIME CONSTANT

s INITIALIZE CLOCK VARIABLES TO AREBITRARY VALLUE

: JANUARY 1.

1980 00:00.00

3A REAL CLOCK WOULD NEED OUTSIDE INTERVENTION
: TO SET OR CHANGE VALUES

LD HL, TICK
LD (HL) .DTICK
INC HL

SUB A

LD (HL), A

INC HL

LD (HL) . A

INC HL

LD (HL) . A

INC A

INC HL

LD (HL) , A

INC HL

LD (HL) , A

LD HL. 1980
LD (YEAR), HL
EI

RET

+HANDLE CLOCK INTERRUPT
PUSH AF

PUSH HL

LD HL, TICK
DEC (HL)

JR NZ,EXIT1
LD (HL), DTICK
PUSH BC

PUSH DE

LD B,0

s INCREMENT SECONDS
INC HL

INC (HL)

LD A, (HL)

CP &0

JR C,EXITO

s INITIALIZE TICKS

sSECOND = O
:MINUTE = O
+tHOUR = O
sA = 1

;DAY = 1 (FIRST)
sMONTH = 1 (JANUARY)

;s YEAR = 1980

1 SAVE AF.HL

s DECREMENT TICK COUNT
sJUMP IF TICK NOT ZERO
;SET TICK COUNT BACK TO DEFAULT

1 SAVE EC. DE

30 = DEFAULT FOR SECONDS,

; POINT AT SECONDS
s INCREMENT TQ NEXT SECOND

: SECONDS = &07?
sEXIT IF LESS THAN &0 SECONDS

:LOW BYTE OF CTC INTERRUPT

MINUTES.

HOURS

INCMTH:

11D REAL-TIVE CLOCK AND CALENDAR (CLOCK) 429

LD (HL), B sELSE SECONDS = O

3 INCREMENT MINUTES

INC HL s PQINT AT MINUTES

INC (HL) s INCREMENT TO NEXT MINUTE
LD A, (HL)

CP &0 sMINUTES = &07?

JR C,EXITO sEXIT IF LESS THAN 60 MINUTES
LD (HL).B :ELSE MINUTES = 0

3 INCREMENT HOUR

INC HL :PQINT AT HOUR

INC (HL) 3 INCREMENT TO NEXT HOUR

LD A, (HLD

CP 24 sHOURS = 247

JR C,EXITO EXIT IF LESS THAN 24 HOURS
LD (HL).B tELSE HOUR = O

s INCREMENT DAY

EX DE. HL :SAVE ADDRESS OF HOUR

LD HL, LASTDY-1

LD A. (MONTH) :GET CURRENT MONTH

LD C,A sREGISTER C = MONTH

LD B.O

ADD HL, BC ;s POINT AT LAST DAY OF MONTH
EX DE, HL s RESTORE ADDRESS OF HOUR
INC HL :POINT AT DAY

LD A, (HL) ;s GET CURRENT DAY

INC (HL) : INCREMENT TOQ NEXT DAY

EX DE, HL ;DE = ADDRESS OF DAY

LD B,A sREGISTER B = DAY

cP (HL) : IS CURRENT DAY END OF MONTH?
EX DE, HL sHL = ADDRESS OF DAY

JR C,EXITO sEXIT IF NOT AT END OF MONTH

:DETERMINE IF THIS IS END OF FEBRUARY IN A LEAP
3 YEAR (YEAR DIVISIBLE RY 4)

LD A, C s GET MONTH

CP 2 ;IS THIS FEBRUARY?

JR NZ, INCMTH :JUMP IF NOT. INCREMENT MONTH
LD A, (YEAR) ;IS IT A LEAP YEAR?

AND 00000011B

JR NZ, INCMTH s JUMP IF NOT

s FEBRUARY OF A LEAF YEAR HAS 29 DAYS. NOT 28 DAYS

LD A,B ;s GET DAY

CP 29

JR C,EXITO sEXIT IF NOT 1ST OF MARCH

LD B,1 s DEFAULT IS 1 FOR DAY AND MONTH
LD (HL).B :DAY = 1

INC HL

INC (HL) + INCREMENT MONTH

LD A, C ;GET OLD MONTH

430 NTeRRUPTS

EXITO:

EXIT1:

LASTDY:

CLKVAR:
TICK:
SEC:
MIN:
HOUR:
DAY:
MONTH:
YEAR:

“ e 48 NS ws

TCKIDX

CcP 12
JR NC,EXITO
LD (HL),B

: INCREMENT YEAR

LD HL, (YEAR)
INC HL
LD (YEAR) . HL

s RESTORE REGISTERS

POP DE
POP BC
POP HL
POP AF
EI

RETI

sWAS OLD MONTH DECEM
sEXIT IF NOT

;ELSE

s CHANGE MONTH TO 1

:RESTORE BC.DE

+RESTORE HL.AF

:REENABLE INTERRUPTS
3 RETURN

:ARRAY OF LAST DAYS OF EACH MONTH

DB 31
DB a8
DB 31
DB 30
DB 31
DB 30
DB 31
DB 31
DB 30
DB 31
DB 30
DB 31

:CLOCK VARIABLES

Ds
DS
DS
DS
DS
DS
Ds

P et bt b b b s

SAMPLE EXECUTION

; CLOCK VARIABLE INDEXES
EQU o]

: JANUARY

s FEBRUARY (EXCEPT LE
: MARCH

3 APRIL
:MAY

3 JUNE

s JULY

s AUGUST

: SEPTEMBER
; OCTORER

: NOVEMBER
3 DECEMBER

s TICKS LEFT IN CURRE
s SECONDS (O TO S9)
sMINUTES (O TO 59)
sHOURS (0 TO 23)

:DAY (1 TO NUMBER OF DAYS IN A MONTH)

s MONTH 1=JANUARY ..
s YEAR

s INDEX TO TICK

BER?

(JANUARY)

AP YEARS)

NT SECOND

12=DECEMEBER

4 w8 NS s e

SECIDX
MINIDX
HRIDX
DAYIDX
MTHIDX
YRIDX

SC11D:

WAITYR:

EQU
EQU
EQU
EQU
EQU
EQU

CADWN -

CALL ICLK

11D REAL-TIME CLOCK AND CALENDAR (CLOCK) 431

: INDEX TO SECOND
; INDEX TO MINUTE
s INDEX TO HOUR

; INDEX TO DAY

: INDEX TO MONTH
s INDEX TO YEAR

;s INITIALIZE CLOCK

3 INITIALIZE CLOCK TO 2/7/83 14:00:00 (2 PM. FER. 7, 1983)

CALL CLOCK

DI

PUSH HL

POP IX

LD (IX+SECIDX), 0
LD (IX+MINIDX).O
LD (IX+HRIDX), 14
LD (IX+DAYIDX).7
LD CIX+MTHIDX), 2
LD HL. 1983

LD (IX+YRIDX),L
LD (IX+YRIDX+1).H
EI

sHL = BASE ADDRESS OF CLOCK VARIABLES

s IX = ADDRESS OF TICKS
;SECONDS = O

:MINUTES = O

sHOUR = 14 (2 PM)

:DAY = 7

sMONTH = 2 (FEBRUARY)

sYEAR = 1983

;WAIT FOR CLOCK TO BE 2/7/83 14:01:20 (2:01.20 PM, FEB.7, 1983)
s IX = BASE ADDRESS OF CLOCK VARIABLES

:NOTE: MUST BE CAREFUL TO EXIT IF CLOCK IS ACCIDENTALLY
3 SET AHEAD. IF WE CHECK ONLY FOR EQUALITY, WE MIGHT NEVER
s FIND IT. THUS WE HAVE >= IN TESTS BELQW, NOT JUST =.

:WAIT FOR YEAR >= 1983

LD DE, 1983

DI

LD H. (IX+YRIDX+1)
LD L, (IX+YRIDX)
EI

OR A

SBC HL, DE

JR C.WAITYR

;WAIT FOR MONTH >= 2
PUSH IX

POP HL

LD DE.MTHIDX
ADD HL, DE

LD B,2

CALL WAIT

sWAIT FOR DAY >= 7
DEC HL

LD B,7

CALL WAIT

sWAIT FOR HOUR >= 14
DEC HL

;s DISABLE INTERRUPTS TO LOAD 2-BYTE YEAR
:GET YEAR

:CLEAR CARRY
; COMPARE YEAR, 1983
:JUMP IF NOT 1983

sHL = BASE ADDRESS OF CLOCK VARIABLES
;POINT AT MONTH

sWAIT FOR FEBRUARY OR LATER

;s POINT AT DAY
:WAIT FOR 7TH OR LATER

:POINT AT HOUR

432 \rerRUPTS

LD B,14
CALL WAIT sWAIT FOR 2 PM OR LATER
sWAIT FOR MINUTE >= 1
DEC HL sPOINT AT MINUTE
LD B,1
CALL WAIT sWAIT FOR 2:01 OR LATER
sWAIT FOR SECOND >= 20
DEC HL s POINT AT SECOND
LD B, 20
CALL WAIT sWAIT FOR 2:01.20 OR LATER
s DONE
HERE:
JP HERE sIT IS NOW TIME OR LATER
PRRRERENERRER RN RERER BRI ER RRHERERE
sROUTINE: WAIT
sPURPOSE: WAIT FOR VALUE POINTED TO BY HL
3 TO BECOME GREATER THAN OR EQUAL TO VALUE IN B
sENTRY: HL = ADDRESS OF VARIABLE TO WATCH
H B = VALUE TO WAIT FOR
sEXIT: WHEN B >= (HL)
sUSED: AF
P HERERERERE AR RER AR RRRBRRERERRRERE
WAIT:
LD A, (HL) sGET PART OF CLOCK TIME
CP B :COMPARE TO TARGET
JR C,WAIT sWAIT IF TARGET NOT REACHED
RET

END

Appendix A 280 Instruction Set
Summary

STACK POINTER SP

PROGRAM COUNTER PC

MAIN REG SET ALTERNATE REG SET
ACCUMULATOR FLAGS ACCUMULATOR FLAGS
A F A F
B c B’ c
D E D E
H L H v
INTERRUPT MEMORY
VECTOR REFRESH
1 R
INDEX REGISTER I1X
SPECIAL
PURPOSE
INDEX REGISTER 1Y RlémsTsERs

GENERAL
PURPOSE
REGISTERS

Figure A-1. 780 internal register organization

433

COPYRIGHT © 1977 BY ZILOG, INC.

434 750 ASSEVBLY LANGUAGE SURBROUTINES

7 6 5 4 3 2 1 0

[s[z]x|u] x[e/vin | c|

WHERE:

"

CARRY FLAG
ADD/SUBTRACT FLAG
PARITY/OVERFLOW FLAG
HALF-CARRY FLAG

ZERO FLAG

SIGN FLAG

NOT USED

"

MM NDT<ZO

Figure A-2. Organization of the Z80 flag register

COPYRIGHT @ 1977 BY ZILOG, INC.

APPENDIX A 780 INSTRUCTION SET SuMvARY 438

MASKABLE (INT)
MODE 0

PLACE INSTRUCTION ONTO DATA BUS DURING INTACK = Mi « {ORQ LIKE 8080A
MODE 1

RESTART TO 38, OR 56,, ('RST 56')
MODE 2

USED BY Z80 PERIPHERALS

INTERRUPT
SERVICE LOW ORDER
ROUTINE | REGISTER 8-BIT VECTOR

STARTING CONTENTS FROM PERIPHERAL
ADDRESS HIGH ORDER
TABLE

NON MASKABLE (NMI)
RESTART TO 66, OR 102,,

INTERRUPT ENABLE / DISABLE FLIP-FLOPS

ACTION IFF, IFF,

CPU RESET [}

oI o o

El 101

LD A, I LI IFF, - PARITY FLAG
LD AR c IFF, - PARITY FLAG
ACCEPT NMI 0 .

RETN IFF, « IFF, - IFF,

ACCEPT INT o 0

RETI o .

“e" INDICATES NO CHANGE

Figure A-3. Z80 interrupt structure

COPYRIGHT © 1977 BY ZILOG, INC.

436 750 ASSEMBLY LANGUAGE SUBROUTINES

Table A-1. Z80 Instructions in Alphabetical Order

ADC HL, ss
ADCA,s

ADD A, n
ADD A, r
ADD A, (HL)
ADD A, (I1X+d)
ADD A, (1Y+d)
ADD HL, ss
ADD IX, pp
ADD 1Y, rr

AND s

BIT b, (HL)
BIT b, (IX+d)
BIT b, (1Y+d)

BITb, r

CALL cc, nn

CALL nn

CCF
CPs

CcPD

CPDR

CPI

CPIR

Add with Carry Reg. pair ss to HL
Add with carry operand s to Acc.
Add value n to Acc.

Add Reg. r to Acc.

Add location (HL) to Acc.

Add location (1X+d) to Acc.

Add location (1Y+d) to Acc.

Add Reg. pair ss to HL

Add Reg. pair pp to IX

Add Reg. pair rr to Y

Logical ‘AND’ of operand s and Acc.

Test BIT b of location (HL)
Test BIT b of location (1X+d)
Test BIT b of location (1Y+d)

Test BIT b of Reg. r

Call subroutine at location nn if
condition cc if true

Unconditional call subroutine at
location nn

Complement carry flag
Compare operand s with Acc.

Compare location (HL) and Acc.
decrement HL and BC

Compare location (HL) and Acc.
decrement HL and BC, repeat
until BC=0

Compare location (HL) and Acc.
increment HL and decrement BC

Compare location (HL} and Acc.
increment HL, decrement BC
repeat until BC=0

CPL
DAA
DECm
DECIX
DEC 1Y
DEC ss
DI

DINZ e

El

EX (SP), HL
EX (SP), IX
EX (SP), 1Y

EX AF, AF’
EX DE, HL

EXX

HALT

MO
M1
M 2

IN A, (n)
INr, (C)

INC (HL)
INC IX

INC (IX+d)

Complement Acc. (1's comp)
Decimal adjust Acc.
Decrement operand m
Decrement IX

Decrement 1Y

Decrement Reg. pair ss
Disable interrupts

Decrement B and Jump
relative if B0

Enable interrupts

Exchange the location (SP) and HL
Exchange the location (SP) and I1X
Exchange the location (SP) and 1Y

Exchange the contents of AF
and AF’

Exchange the contents of DE
and HL

Exchange the contents of BC, DE,
HL with contents of BC’, DE’, HL’
respectively

HALT (wait for interrupt or reset)

Set interrupt mode 0
Set interrupt mode 1
Set interrupt mode 2

Load the Acc. with input from
device n

Load the Reg. r with input from
device (C)

Increment location (HL)
Increment IX

Increment location (1 X+d)

COPYRIGHT © 1977 BY ZILOG, INC.

Table A-1. (Continued)

APPENDIX A 780 INSTRUCTION SET sSuMmary 437

INC 1Y

INC (1Y+d)
INC r
INC ss

IND

INDR

INI

INIR

JP (HL)
JP (1X)
JP (1Y)

JP cc, nn

JP nn

JPC,e

JRe

JPNC, e

JRNZ, e

JRZ, e
LD A, (BC)
LD A, (DE)

LD A, I

Increment 1Y

Increment location (1Y +d)
Increment Reg. r
Increment Reg. pair ss

Load location (HL) with input
from port (C), decrement HL
and B

Load location (HL) with input
from port (C), decrement HL and
decremerit B, repeat until B=0

Load location (HL) with input
from port (C); and increment HL
and decrement B

Load location (HL) with input
from port (C), increment HL
and decrement B, repeat until
B=0

Unconditional Jump to (HL)
Unconditional Jump to (1X)
Unconditonal Jump to (1Y)

Jump to location nn if
condition cc is true

Unconditional jump to location
nn

Jump relative to PC+e if carry=1

Unconditional Jump relative
to PC+e

Jump relative to PC+e if carry=0

Jump relative to PC+e if non
zero (Z=0)

Jump relative to PC+e if zero (2=1)
Load Acc. with location (BC)
Load Acé. with location (DE)

Load Acc. with |

LD A, (nn)
LD AR

LD (BC), A
LD (DE), A
LD (HL), n
LD dd, nn
LD HL, (nn)
LD (HL), r
LDI,A

LF IX, nn
LD IX, (nn)
LD (1X+d), n
LD (1X+d), r
LD 1Y, nn
LD 1Y, (nn)
LD (1Y+d), n
LD (1Y+d), r
LD (nn), A
LD (nn), dd
LD (nn), HL
LD (nn), IX
LD (nn), 1Y
LDR,A
LD, (HL)
LD r, (IX+d)
LD v, (1Y+d)
LDr,n
LDr, r

LD SP, HL

Load Acc. with location nn
Load Acc. with Reg. R

Load location (BC) with Acc.
Load location (DE) with Acc.
Load location (HL) with value n

Load Reg. pair dd with value nn

Load HL with location (nn)

Load location (HL) with Reg. r
Load | with Acc.

Load IX with value nn

Load 1X with location (nn)

Load location (IX+d) with value n
Load location (1X+d) with Reg. r
Load 1Y with value nn

Load 1Y with location (nn)

Load location (1Y+d) with value n
Load location (1Y+d) with Reg. r
Load location (nn) with Acc.
Load location (nn) with Reg. pair dd
Load location (nn) with HL

Load location (nn) with IX

Load location (nn) with 1Y

Load R with Acc.

Load Reg. r with location (HL)
Load Reg. r with location (1X+d)
Load Reg. r with location (1Y+d)
Load Reg. r with value n

Load Reg. r with Reg. r’

Load SP with HL

COPYRIGHT © {977 BY ZILOG, INC.

438 750 ASSEMBLY LANGUAGE SUBROUTINES

Table A-1. (Continued)
LD SP, IX Load SP with IX RES b, m Reset Bit b of operand m
LD sP, 1Y Load SP with IY RET Return from subroutine
LDD Load location (DE) with location RET cc Return from subroutine if condition
(HL), decrement DE, HL and BC cc is true
LDDR Load location (DE) with location RETI Return from interrupt
(HL), decrement DE, HL and BC;
repeat until BC=0 RETN Return from non maskable interrupt
LDI Load location (DE) with location RLm Rotate left through carry operand m
(HL), increment DE, HL, RLA Rotate left Acc. through carry
decrement BC
RLC (HL) Rotate location (HL) left circular
LDIR Load location (DE) with location
(HL), increment DE, HL, RLC (I1X+d) Rotate location (1X+d) left circular
decrement BC and repeat until . .
BC=0 RLC (1Y+d) Rotate location (1Y+d) left circular
NEG Negate Acc. (2's complement) RLCr Rotate Reg. r left circular
NOP No operation RLCA Rotate left circular Acc.
. , RLD Rotate digit left and right between
ORs Logical ‘OR’ or operand s and Acc. Acc. and location (HL)
OTDR Load output port (C) with location .
(HL) decrement HL and B, repeat RR m Rotate right through carry operand m
until 8=0 RRA Rotate right Acc. through carry
OTIR Load output port (C) with location .)
(HL), increment HL, decrement B, RRCm Rotate operand m right circular
repeat until B=0 RRCA Rotate right circular Acc.
ouT (C), r Load output port (C) with Reg. r RRD Rotate digit right and left between
OUT (n), A Load output port (n) with Acc. Acc. and location (HL)
OouTD Load output port (C) with location RST p Restart to location p
(HL), decrement HL and B
OUTI Load output port (C) with location SBCA,s Subtract operand s from Acc. with
(HL), increment HL and decrement carry
B SBC HL, ss Subtract Reg. pair ss from HL with
POP IX Load IX with top of stack carry
POP 1Y Load 1Y with top of stack SCF Set carry flag (C=1)
POP qq Load Reg. pair qq with top of stack SET b, (HL) Set Bit b of location (HL)
PUSH IX Load IX onto stack SET b, (IX+d) Set Bit b of location (1X+d)
PUSH 1Y Load 1Y onto stack SET b, (1Y+d) Set Bit b of location (1 Y+d)
PUSH qq Load Reg. pair qq onto stack SETb, r Set Bit b of Reg. r

COPYRIGHT © 1977 BY ZILOG, INC.

APPENDIX A: Z80 INSTRUCTION SET SUMMARY 439

Table A-4. (Continued)
SLAm Shift operand m left arithmetic SUB s Subtract operand s from Acc.
SRA m Shift operand m right arithmetic XOR s Exclusive ‘OR’ operand s and Acc.
SRL m Shift operand m right logical

Table A-2. 780 Operation Codes in Numerical Order

OBJECT CODE INSTRUCTION OBJECT CODE INSTRUCTION
00 NOP 19 ADD HL.DE
01 yyyy LD BC.data16 1A LD A (DE)
02 LD (BC)A 1B DEC DE
03 INC BC 1C INC E
04 INC B 10 DEC E
05 DEC B 1Eyy LD E.data
06 vy LD B.data 1F RRA
07 RLCA 20 disp-2 JR NZ,disp
08 EX AF AF 21 yyyy LD HL.data16
09 ADD HL.BC 22 ppaq LD (addr) HL
0A LD A.(BC) 23 INC HL
0B DEC BC 24 INC H
ocC INC Cc 25 DEC H
oD DEC Cc 26 yy LD H,data
OE yy LD C.data 27 DAA
OF RRCA 28 disp-2 JR Z disp
10 disp-2 DJNZ disp 29 ADD HLHL
11 yyyy LD DE.data16 2A ppaq LD HL (addr)
12 LD (DE).A 28 DEC HL
13 INC DE 2C INC L
14 INC D 2D DEC L
15 DEC D 2E LD L.data
16 yy LD D.data 2F CPL
17 RLA 30 disp-2 JR NC.disp
18 disp-2 JR disp 31 yyyy LD SP.data16

COPYRIGHT © 1977 BY ZILOG, INC.

440 730 ASSEMBLY LANGUAGE SUBROUTINES

Table A-2. (Continued)

OBJECT CODE INSTRUCTION OBJECT CODE INSTRUCTION
32 ppaq LD (addr).A CB 0 Orrr RLC reg
33 INC SP CB 06 RLC (HL)
34 INC (HL) CB O 1rrr RRC reg
35 DEC (HL) CB OE RRC (HL)
36 yy LD (HL).data CB 1 Orrr RL reg
37 SCF CB 16 RL (HL}
38 JR C.disp CB 1 trrr RR reg
39 ADD HL.SP CB 1E RR (HL)
3A ppaq LD A (addr) CB 2 Orrr SLA reg
3B DEC SP CB 26 SLA (HL)
3C INC A CB 2 1rrr SRA reg
30 DEC A CB 2E SRA (HL)
3E yy LD A data CB 3 1trrr SRL reg
3F CCF CB 3E SRL (HL)
4 Osss LD B.reg CB O1bbbrrr BIT b.reg
46 LD B.(HL) CB 01bbb110 BIT b.(HL)
4 1sss LD C.reg CB 10bbbrrr RES b.reg
4E LD C.(HL) CB 10bbb 110 RES b (HL)
5 Osss LD D.reg CB 11bbbrrr SET b.reg
56 LD D.(HL) CB 11bbb 110 SET b.(HL)
5 1sss LD E.reg CC ppaq CALL Z,addr
5E LD E(HL) CD ppqq CALL addr
6 Osss LD H.reg CE yy ADC A data
66 LD H.(HL) CF RST 08H
6 1sss LD Lreg DO RET NC
6E LD L(HL) D1 POP DE
7 Osss LD (HL).reg D2 ppaq JP NC.addr
76 HALT D3 yy ouT (port), A
7 1sss LD Areg D4 ppqq CALL NC addr
7€ LD A (HL} D5 PUSH DE
8 Orrr ADD A.reg D6 yy SuB data
86 ADD A (HL) D7 RST 10H
8 1rr ADC Areg D8 RET C
8E ADC A (HL) D9 EXX
9 Orrr SuB reg DA ppaq JP C.addr
96 sus (HL) DB yy IN A (port)
9 rrr SBC A reg DC ppaq CALL C,addr
9E SBC A(HLY DD 00xx 9 ADD 1X.pp
A Orrr AND reg DD 21 yyyy LD IX, data16
A6 AND (HL) DD 22 ppaq LD (addr),IX
A 1rr XOR reg DD 23 INC IX
AE XOR (HL) DD 2A ppaq LD 1X (addr)
B Orrr OR reg DD 2B DEC IX
B6 OR (HL) DD 34 disp INC (IX + disp)
B 1rrr cpP reg DD 35 disp DEC (IX + disp)
BE CcP (HL) DD 3% disp yy LD (IX + disp).data
Cco RET NZ DD 01ddd 110 disp LD reg,(IX + disp)
Cci1 POP BC DD 7 Osss disp LD (IX + disp).reg
C2 ppaq JP NZ.addr DD 86 disp ADD A(IX + disp)
C3 ppag JP addr DD 8E disp ADC A(IX +disp)
C4 ppaq CALL NZ,addr DD 96 disp SuB (IX + disp)
C5 PUSH BC DD 9E disp SBC A(IX + chsp)
C6 yy ADD A.data DD A6 disp AND (IX + disp)
c7 RST 00H DD AE disp XOR (IX + disp)
cs RET z DD B6 disp OR (IX + disp)
c9 RET DD BE disp CcP {IX + disp)
CA ppga JP Z.addr DD CB disp 06 RLC (X + disp)

APPENDIX A: 780 INSTRUCTION SET SuMMARY 444

Table A-2. (Continued)

OBJECT CODE INSTRUCTION OBJECT CODE INSTRUCTION
DD CB disp OE RRC (IX + disp) ED B8 LDDR
DD CB disp 16 RL (IX + disp) ED B9 CPDR
DD CB disp 1E RR (1X + dhisp) ED BA INDR
DD CB disp 26 SLA (IX + disp) ED BB OTDR
DD CB disp 2E SRA (IX + disp) EE yy XOR data
DD CB disp 3E SRL (IX + disp) EF RST 28H
DD CB disp 01bbb110 BIT b,(IX + disp) FO RET P
DD CB disp 10bbb110 RES b.(IX + disp) F1 POP AF
DD CB disp 11bbb110 SET b.(IX + disp) F2 ppaq JP P.addr
DD E1 POP 1X F3 o]
DD E3 EX (SP).IX F4 ppqq CALL P,addr
DD E5 PUSH X F5 PUSH AF
DD E9 JP (1X) F6 yy OR data
DD F9 LD SP.IX F7 RST 30H
DE yy SBC A data F8 RET ™M
DF RST 18H F9 LD SP.HL
EO RET PO FA ppaq JP M,addr
El POP HL FB El
E2 ppqq JP PO.addr FC ppaq CALL M, addr
E3 EX (SP).HL FD 00xx 9 ADD 1Y.,rr
E4 ppaq CALL PO,addr FD 21 yyyy LD 1Y.data16
ES PUSH HL FD 22 ppqq LD (addr),1Y
E6 yy AND data FD 23 INC Y
E7 RST 20H FD 2A ppaq LD 1Y (addr)
E8 RET PE FD 2B DEC Iy
E9 JP (HL) FD 34 disp INC (1Y + disp)
EA ppaq JP PE,addr FD 35 disp DEC (1Y + disp)
EB EX DE HL FD 36 disp yy LD (IY + disp),data
EC ppaq CALL PE,addr FD 01ddd 110 disp LD reg.(IY + disp)
ED 01ddd000 IN reg.(C) FD 7 Osss disp LD (1Y + disp).reg
ED 01sss001 ouT (C).reg FD 86 disp ADD ALY + disp)
ED O1xx 2 SBC HL.rp FD 8E disp ADC A(Y +disp)
ED O1xx 3 ppqq LD (addr),rp FD 96 disp sus (1Y + disp)
ED 44 NEG FD 9E disp S8C ALY +disp)
ED 45 RETN FD A6 disp AND (Y + disp)
ED 010nn110 1Y) m FD AE disp XOR (1Y + cisp)
ED 47 LD LA FD B6 disp OR (IY + disp)
ED O1xx=A ADC HL.rp FD BE disp cpP (IY + disp)
ED O1xx B ppqq LD rp,(addr) FD CB disp 06 RLC (1Y + disp)
ED 4D RETI FD CB disp OE RRC (IY + disp)
ED 4F LD R.A FD CB disp 16 RL (IY + disp)
ED 57 LD Al FD CB disp 1E RR (IY + disp)
ED 5F LD AR FD CB disp 26 SLA (1Y + disp)
ED 67 RRD FD CB disp 2E SRA (IY + disp)
ED 6F RLD FD CB disp 3E SRL (IY + disp)
ED A0 LDI FD CB disp 01bbb110 BIT b,(IY + disp)
ED A1 CPI FD CB disp 10bbb110 RES b.(IY + disp)
ED A2 INI FD CB disp 11bbb110 SET b.(Y + disp)
ED A3 ouT! FD E1 POP Iy
ED A8 LDD FD E3 EX (SPLIY
ED A9 CPD FD E5 PUSH N4
ED AA IND FD E9 JP (1Y)
ED AB ouTD FD F9 LD SPIY
ED BO LDIR FE yy cp data
ED B1 CPIR FF RST 38H
ED B2 INIR
ED B3 OTIR

442 50 ASSEVBLY LANGUAGE SUBROUTINES

Table A-3. Z80 8-Bit Load Instructions

Symbolic Flags opcode | T | B | 5t
Mnemonic Operation ZP/VS|N|H |76 543 210 Bytes Cycles | Cycles | Comments
LDr,r rer efefle]efe 01 r 1 1 4 nLr Reg.
LDz, n ren olele|ele |00 r 110 2 2 7 000 B
« n - 001 C
LD 1, (HL) r+ (HL) o|le|eje|e |01 r 110 1 2 7 010 D
LD 1, (IX+d) | 1+ (IX+d) olefe s (11 011 101 3 5 19 011 E
o1 r 110 100 H
- d - 101 L
LD r, (IY+d) 1+ (IY+d) o|lofofeofe (1l 111 101 3 N 19 111 A
01 r 110
- d -
LD (HL), r (HL) «r o|lo|lejo]|o |01 110 1 1 2 7
LD (IX+d),r | (IX+d) <1 eje|e|o|e (11 011 101 3 5 19
01 110 r
- d -
LD (IY+d), r (Y+d) «r e|le|eo|eje Il 111 101 3 N 19
01 110 r
« d -
LD (HL), n (HL) < n efefeleie 00 110 110 | 2 3 10
« n -
LD (IX+d),n | (IX+d) <n e|e|o|o|e |1l 011 101 4 5 19
00 110 110
« d -
« n -
LD (Y+d),n | (IY+d)«n oleleje|alll 111 101 | 4 5 19
00 110 110
- d -
« n -
LD A, (BC) A+ (BC) elele|e}e |00 001 010 1 2 7
LD A, (DE) A « (DE) olelele 00 011 Ci 1 2 7
LD A, (nn) A « (nn) elejeleje (00 111 010 3 4 13
- n -
« n -
LD (BC), A (BC)«A o(e|e|e]|e |00 000 010 1 2 7
LD (DE), A (DE) <~ A o|le|e|ele |00 010 C10 1 2 7
LD (nn), A (nn) « A eleofe e |00 110 010 3 4 13
- n -
« n -
LD A, I A<l $|IFF$] 0| 0 f11 101 101 2 2 9
01 010 111
LDA,R A«<R $|IFF$| 0f 0|11 101 101 2 2 9
01 011 111
LDI A IT<A el ol ol @l @11 101 101 2 2 9
01 000 111
LDR,A R<A el el efefe|11 101 101 2 2 9
01 001 111
Notes: 1, r means any of the registers A, B,C,D,E, H, L
IFF the content of the interrupt enable flip-flop (IFF) is copied into the P/V flag
Flag Notation: e = flag not affected, 0 = flag reset, 1 = flag set, X = flag is unknown,
¢ = flag is affected according to the result of the operation.

COPYRIGHT © 1977 BY ZILOG, INC.

APPENDIX A: Z80 INSTRUCTION SET Suvvary 443

Table A-4. 780 16-Bit Load Instructions

Flags OpCode | No. No. No.
Symbolic P of of M of T
Mnemonic Operation c|z| M s| N|n| 76 543 210 | Bytes | Cycles | States | Comments
LD dd, nn dd «nn o|efle|e| o|e|00 dd0 001 3 3 10 dd Pair
-~ n - 00 BC
< n - 01 DE
LD IX, an IX «<nn o|(o|e|efe|lel11 011 101 4 4 14 10 HL
00 100 001 11 Sp
- n -
“ n -
LDIY, nn 1Y «nn ofe|efofo|e|11 111 101 | 4 4 14
00 100 001
- n -
- n -
LD HL, (nn) H + (nn+1) e|eje|efelef00 101 010 3 S 16
L« (nn) -~ n -
- n -
LD dd, (nn) | ddy «~(an+1) [o|efe|e| e|e| 11 101 101 | 4 6 20
dd; « (nn) 01 dd1 011
- n -
- n -
LDIX,(an) | Xy« (nn+l) | o efefef efel 11 011 101 | 4 6 20
1X| ~ (nn) 00 101 010
- 0 -
« n -
LD 1Y, (nn) IYy—inn+l) | ejelelelejelil 111 101 | 4 6 20
1Y « (nn) 00 101 010
n -
« n -
LD (nn), HL (nn+1) «-H e|efe el oef00 100 010 3 s 16
(nn) ~L < n -
- n -
LD (nn), dd (nnﬂ%—ddH o|efleo|ofefef11 101 161 4 6 20
(nn)«ddl 01 ddo 011
« n -
- n -
LD (mn), 1X | (nn+1) ~iX, [e|e|ofo| ofe| 11 011 101 | 4 6 20
(nn) < IXy 00 100 010
- n -
- n -
LD (nn), 1Y | (an+1) 1Y, | ofe|e[ef o/ o[11 111 101 | 4 6 20
(nn)leL 00 100 010
- n -
« n -
LD SP, HL SP«HL o|e|efe|ofe]11 111001 1 1 6
LD SP, IX SP ~IX of(eflofef ofef11 011 101 2 2 10
11 111 001
LD SP, IY SP 1Y ele|eflefe|e| 1t 111 101]| 2 2 10
11 111 001 qq Pair
PUSH qq (SP-Z)*‘NL ojefefel ofel 11 qq0 101 1 3 11 00 BC
(SP-1) < qqy 01 DE
PUSH IX (SP—Z)‘—IXL e|ejeofel ofef11 011 101 2 4 15 10 HL
(SP-I)’-IXH 11 100 101 11 AF
PUSH 1Y (SP-Z)»IYL ejefeofel ofe|11 111 101 2 4 15
(SP-1) « 1Yy 11 100 101
POPqq qqy + (SP+1) | @[el el el of e} 11 qq0 001 [1 3 10
qq; +~ (SP)
POP IX IXH*-(SPOI) ejefo|e| efe|11 011 101 2 4 14
IXL~—(SP) 11 100 001
POPIY IYH-(SP+1) e|e|o|ef o ef11 111 101 2 4 14
IYL"(SP) 11 100 001

Notes: dd 1s any of the register pairs BC, DE, HL, SP
qq 1s any of the register pairs AF, BC, DE, HL
(PMR)H, (PAIR)L refer to high order and low order eight bits of the register pair respectively.
Eg. BCL =C, AFy=A

Flag Notation: e = flag not affected, 0 = flag reset, 1 = flag set, X = flag is unknown,
4 flag is affected according to the result of the operation.

COPYRIGHT @ 1977 BY ZILOG, INC.

444 750 £5SEVBLY LANGUAGE SUBROUTINES

Table A-5. Z80 Exchange, Block Transfer, and Block Search Instructions

Flag Notation:

Notes: (D P/V flagis O if the result of BC-1 = 0, otherwise P/V = |
@ Zflagis 1if A = (HL), otherwise Z = 0,

o = flag not affected, 0 = flag reset. 1 = flag set, X = flag 1s unknown,
t = flag is affected according to the result of the operation.

Flags Op-Code
i P No. No. No.
Symbolic] of of M of T
Mnemonic Operation ClZ|V|ISIN|{H|76 543 210 | Bytes Cycles | States | Comments
EX DE, HL DE --HL o|ejefe|e]e |1l 101 O11 1 1 4
EX AF, AF’ AF -- AF’ o|eleleieofe 00 001 000 1 1 4
EXX (BD_(:(") o|[ele|ele|e |11 011 001 1 1 4 ‘Register bank and
DE }4 DE” auxiliary register
H. L, bank exchange
EX (SP), HL | H« (SP+1) ole|efjo|e|e |11 100011 |1 H 19
L ~ (SP)
EX (SP),IX | IXy~(SP+1) [e|elele]ele |11 011 101 |2 6 23
IXL’*lSP) 11 100 011
EX (SP), 1Y IYHW(SPH) e|lejefofefefil 111 101 2 6 23
IYL"(SP) 11 100 011
[©]
LDI (DE) «~ (HL) ele|tlefO]OfIl 101 101 2 4 16 Load (HL) into
DE «DE+] 10 100 000 (DE), increment the
pointers and
HL < HL+1 decrement the byte
BC ~ BC-1 counter (BC)
LDIR (DE) « (HL) elejOfe|0| Ol 101 101 2 5 21 IfBC#0
DE « DC+1 10 110 000 2 4 16 ItBC=0
HL « HL+I
BC ~ BC-1
Repeat until
BC=0
Q@
LbD (DE) « (HL) ejeltlel0jO]Il 101 10O} 2 4 16
DE «~ DF-1 10 101 000
HL « HL-1
BC ~ BC-1
LDDR (D) ~ (HL) elelO|ef0]O]|1I 101 101 2 5 21 IfBC#0
DE « DE-1 10 111 000 2 4 16 IfBC=0
HL < HL-1
BC « BC-1
Repeat until
BC =0
QD
CP1 A - (HL) ej)t tj1]si1 101 101 2 4 16
HL ~ HL+1 10 100 001
BC ~ BC-1
Q||
CPIR A - (HL) el t{t] ¢ 1t (11 101 1O} 2 N 21 If BC # 0 and A # (HL)
HL «~ HL+1 10 110 001 | 2 4 16 IfBC=0orA = (HL)
BC «~ BC-1
Repeat until
A = (HL) or
BC =0
ool
CPD A - (HL) e[t{t|][4 |11 101 10} 2 4 16
HL - HL-1 10 101 001
BC « BC-1
Qo
CPDR A - (HL) el t|t]t] 1]t i1l 101 101 2 5 21 IfBC# 0and A # (HL)
HL < HL-1 10 111 001 2 4 16 IfBC=0o0rA=(HL)
BC «~ BC-1
Repeat until
A = (HL)or
BC=0

COPYRIGHT © 1977 BY ZILOG, INC.

APPENDIX A: Z80 INSTRUCTION SET SuMvaRy 448

Table A-6. Z80 8-Bit Arithmetic and Logical Instructions

Flags Op-Code
P No. No. No.
. Symbolic / of of M of T
Mnemonic Operation C|{Z|V|S|N|H|76 543 210 Bytes Cycles | States Comments
ADD A, r A—A+r t|e|vi]tio]|s [10]000] r 1 1 4 r Reg.
ADD A,n AcA+n t]slv]t]o]|s [11[o0g] 110 | 2 2 7 gg? g
- n - 010 D
ADDA,(HL) [A« A+(HL) |t |t|Vv|t]o|¢|10[000] 110 | 1 2 7 011 E
ADD A, (IX+d) A—A+(xX+d) [t]|tV]t]|of¢ {11 011 101 | 3 s 19 100 H
101 L
10 [000] 110 I A
- d -
ADD A, (IY+d) A<A+(IY+d) |t |t|V|t]O]¢ |11 111 101 | 3 s 19
10 [000] 110
- 4 -
ADC A, s A—A+s+CY[t|t|V]|t]|o]2 sisany of r, n,
SUB's Ae-A- vt [o10] (HL), (IX+d),
SBC A S ol ' ! (1Y +d) as shown for
»$ Ac-A-s-CY[tE]VIt[T]8 @11] ADD instruction
ANDs A-A As |0]t|P|t]|O]1
ORs A<A Vs loft|pP|t|o]o The indicated bits
- replace the 000 in
XOR s A—Aes oft|P|t|o]0O 101 e ADD set above.
CPs A-s sl vis{i]s| Om
INC r rer+1 eft|v]t|oft]oo r [00]| 1 1 4
INC (HL) (HL) « (HL)+1|e |t |V [t]|O|t]oo 110[100] | 1 3 11
INC (1X+d) (IX+d) « e|t|VIt|o]t [t 011101 |3 6 23
(IX+d)+1 00 110[T00]
« d -
INC (1Y+d) (IY+d) — elt{Vvit]oft 11101 | 3 6 23
(1Y+d) + 1 00" 110[T00]
- d -~
DEC m mem-1 eli|Vitit]e 101 mis any of r, (HL),
(IX+d), (1Y+d) as

shown for INC
Same format and
states as INC.
Replace 100 with
101 n OP code.

Notes: The V symbol in the P/V flag column indicates that the P/V flag contains the overflow of the result of the
operation Similarly the P symbol indicates panty. V = | means overflow, V = 0 means not overflow. P = |
means parity of the result is even, P = 0 means panty of the result is odd.

Flag Notation:

e = flag not affected, 0 = flag reset, | = flag set, X = flag1s unknown,
t = flag is affected according to the result of the operation.

COPYRIGHT © 1977 BY ZILOG, INC.

446 750 AsSEVBLY LANGUAGE SUBROUTINES

Table A-7. Z80 General-Purpose Arithmetic and CPU Control

4 = flag is affected according to the result of the operation.

Flags Op-Code
) - No. No. No.
Symbolic ! of of M of T
Mi Operation C|Z] VIS|{N|H|76 543 210 | Bytes Cycles | States | Comments
DAA Convertsacc. |$| $|P|¢]|e 00 100 111 1 1 4 Decimal adjust
content into accumulator
packed BCD
following add
or subtract
with packed
BCD operands
CPL A<A ele|eief]1]|1]00 101 111 1 1 4 Complement
accumulator
(one’s complement)
NEG A<0-A ${s{V]$]1]¢]11 101 101 2 2 8 Negate acc. (two’s
01 000 100 complement)
CCF CY «CY t]e|le|elO0fX|00 111 111 1 1 4 Complement carry
flag
SCF CY <1 1{e]efef0]0]|00 110 111 1 1 4 Set carry flag
NoP No operation |e|e|e]|ejee 00 000 000 1 1 4
HALT CPU halted e|o|e|eje]e |01 110 110 1 1 4
DI IFF <0 e(ejeje|e]e |11 110 011 1 1 4
El IFF « 1 e|lofeflejo|e |11 111 011 1 1 4
MO Set interrupt elo|ofo|e|ell]l 101 101 2 2 8
mode 0 01 000 110
M1 Set interrupt eloelojeje|e |1} 101 101 2 2 8
mode 1 01 010 110
M2 Setinterrupt |e| e|e|e|e}e |11 101 101 2 2 8
mode 2 01 011 110
Notes: IFF indicates the interrupt enable flip-flop
CY indicates the carry flip-flop.
Flag Notation: e = flag not affected, 0 = flag reset, 1 = flag set, X = flag is unknown,

COPYRIGHT @ 1977 BY ZILOG, INC.

Table A-8. 780 16-Bit Arithmetic Instructions

APPENDIX A: Z80 INSTRUCTION SET SUMMARY

447

Flag Notation:

pp is any of the register pairs BC, DE, IX, SP
1r is any of the register pairs BC, DE, 1Y, SP.

o = flag not affected, 0 = flag reset, | = flag set, X = flag s unknown,
t = flag is affected according to the result of the operation.

Symbolic Flags OpCode | O om | oft
Mnemonic Operation —ZW/V S H |76 543 210 | Bytes Cycles | States | Comments
ADD HL, ss HL « HL+ss e|lo|e X100 ssl 001 1 3 11 38 Reg.
00 BC
ADCHL,ss | HL—HL+ss+CY|t|¢| V|4 11 101 101 | 2 4 15 ‘])(1) g'ﬁ
01 ssl 010 1 SP
SBC HL, ss HL+~HL-ss-CY t{ V]t 11 101 101 2 4 15
01 ssO 010
ADDIX,pp | IX«<IX+pp oflefe 11 011 101 | 2 4 15 PP Reg.
00 ppl 001 00 BC
01 DE
10 X
B Sp
ADDIY,mr IYIY+1r e|leo|e 11 111 101 2 4 is o3 Reg.
00 rrl 001 00 BC
0i DE
10 1Y
11 Sp
INC ss ss — ss +1 eloje 00 ssO 011 1 1 6
INC IX IX<IX+1 ofle]o 11 011 101 2 2 10
00 100 011
INC1Y IY «1Y + 1 3K 11 111 101 2 2 10
00 100 011
DEC ss ss < ss - | o|e|e 00 ssl 011 1 1 6
DEC IX IX<IX-1 e|eofe 11 011 101 2 2 10
00 101 011
DECI1Y IY «IY -1 eoleofe 11 111 101 2 2 10
00 101 011
Notes: ss is any of the register pairs BC, DE, HL, SP

COPYRIGHT © 1977 BY ZILOG, INC.

448 750 ASSEMBLY LANGUAGE SUBROUTINES

Table A-9. 780 Rotate and Shift Instructions

Flag Notation: e = flag not affected, 0 = flag reset, 1 = flag set, X = flag is unknown,
$ = flag is affected according to the result of the operation.

Flags Op-Code
" P No. No. No.
Symbolic ! of of M of T
M Operati V(s 76 543 210{ Bytes | Cycles | States | Comments
RLCA [————] ole 00 000 111 1 1 4 Rotate left circular
accumulator
RLA .-7 — -] ole 00 010 111] 1 1 4 Rotate left
A accumulator
RRCA .1 — ol ole 00 001 111| 1 1 4 Rotate right circular
B accumulator
RRA ... ole 00 011 111 1 1 4 Rotate right
A accumulator
RLCr Pt 11 001 011 2 2 8 Rotate left circular
00 r register r
RLC (HL) Pl 11 001 011 2 4 15 r Reg.
oo[000]110 000 B
RLC (IX+d) Pt 11 011 101 4 6 23 001 ¢
£ (HL), (X+d), (IV+d) o010 D
11 001 011 011 E
«~ d - 100 H
o0[a0])1 10 oL
A
RLC (1Y+d) Plt 11 111 101 4 6 23
11 003 011
- d -
oo[o00]110
RLm Pt Instruction format and
1. (L), (o, (Y d) states are as shown
for RLC,m. To form
new OP-code replace
RRC m H Pt [001] [000]of RLC,m with
m e (HL), (X+d). (1Y +d) shown code
RRm L= o.l Pt
m =1, (HL), (1X+d). (1Y+d)
SLAm T - oo Pt
m = r (HL), (IX+d). (IY+d)
7 —t 0
SRAm [Pls
m =1, (HL). (IX+d), (1Y+d)
SRL m 0 Pt oo
m = ¢ (HL), (IX+d). (IY+d)
RLD Al b d [oun P|t 11 101 101| 2 s 18 Rotate digit left and
01 101 111 right between the
accumulator
[and location (HL).
RRD AL 9 [e Pt 11 101 101 2 s 18 The content of the
01 100 111 upper half of the
accumulator is
unaffected

COPYRIGHT © 1977 BY ZILOG, INC.

APPENDIX A- 780 INSTRUCTION SET SUMvARY 449

Table A-10. Z80 Bit Manipulation Instructions

Flags Op-Code
P No. No. No.
Symbolic / of of M of T
M i Operation C|Z|V|S|N|H|76 543 210 | Bytes Cycles | States | Comments
BITb, r Zo—Tb o | X|X]0]1]11 001 011 2 2 8 r Reg.
01 b r 000 B
BITb, (HL) | Z (L), ol tI x| x|0o|1]11 001 011 2 3 12 g‘l)(l’ CD
01 b 110 ol | E
BIT b, (IX+d) Z¢-(lX+d)b el t|X|X|O]1]11 011 101 4 5 20 100 H
11 001 011 101 L
100 111 A
- d -
01 b 110 b Bit Tested
BIT b, (IY+d) Z‘-(lY+d)b ol ¢t X{X[O0O]1]11 111 101 4 s 20 000 0
001 1
1
11 001 01 010 2
- 4 - 011 3
01 b 110 100 4
101 S
110 6
111 7
SETb, r rb<—l ejle|ofe|e]elll 001 O11 2 2 8
mE
SET b, (HL) (HL)b'-l o|e|le|lele|e]|1l 001 OI1 2 4 15
] b 110
SET b, (IX+d) (IX+d)bo-1 e|le|efjejeoje|11 O1I1 101 4 6 23
i1 001 011
- d -
] b 110
SET b, (IY+d) (lY+d)b*—1 o|lolo|eoleo|e| 11 111 101 4 6 23
11 001 011
- d -
1] b 110
RESb,m | +0 To form new OP-
= code replace [T1]
m=r, (HL),]
(IX+d) of SET b,m with
(lY+d), . Flags and time
states for SET
instruction

Notes: The notation 8 indicates bit b (0 to 7) or location s.

Flag Notation: e = flag not affected, 0 = flag reset, | = flag sct. X = flag is unknown,
$ = flag is aftected according to the result of the operation.

COPYRIGHT © 1977 BY ZILOG, INC.

450 7530 ASSEMBLY LANGUAGE SUBROUTINES

Table A-44. Z80 Jump Instructions

Flags Op-Code
P No. No. No.
Symbolic / of of M of T
Mnemonic Operation Vvis 76 543 210| Bytes Cycles | States | Comments
JP nn PC «<nn o e 11 000 011 3 3 10
- n —
< n - Condition
JP cc, nn If condition cc o |e 11 cc 010 3 3 10 NZnon zero
is true PC «nn, P 001 | Z zero
otherwise 010 | NCnon carry
continue cor - 011 | C carry
100 | PO parity odd
101 | PE parity even
110 | P sign positive
JRe PC+PC+e e le 00 011 000 2 3 12 111 | M sign negative
- e-2 —
JRC,e IfC=0, o le 00 111 000 2 2 7 If condition not met
continue
- e=2 —
IfC=1, 2 3 12 If condition is met
PC < PC+e
JRNC, e IfC=1, o le 00 116 000 2 2 7 If condition not met
continue
- e=2 —
If C=0, 2 3 12 1f condition 1s met
PC+~PC+e
JRZ,e If Z=0 o le 00 101 000| 2 2 7 If condition not met
continue
- e=2 -
Ifz=1, 2 3 12 If condition 1s met
PC~PC+te
JRNZ, e IfzZ=1, o le 00 100 000 2 2 7 If condition not me
continue - e-2 -
IfZ=0, 2 3 12 If condition met
PC«~PC+e
JP (HL) PC <~ HL o |e 1i 101 001 1 1 4
JP (IX) PC «1X o le 11 011 101 2 2 8
11 101 001
JP (1Y) PC «1Y ole 11 111 101 2 2 8
11 101 001
DINZ,e B« B-1 ole 00 010 000| 2 2 8 IfB=0
IfB=0, - o2
continue
IfB#0, 2 3 13 IFB#0
PC+PC+e
Notes: e represents the extension in the relative addressing mode.
¢ is a signed two’s complement number in the range <-126, 129>
e-2 in the op-code provides an effective address of pc +e as PC is
incremented by 2 prior to the addition of e.
Flag Notation: e = flag not affected, 0 = flag reset, 1 = flag set, X = flag is unknown,
4 = flag is affected according to the result of the operation.

COPYRIGHT @ 1977 BY ZILOG, INC.

APPENDIX A 780 INSTRUCTION SET SuMMARY 454

Table A-12. Z80 Call and Return Instructions

Flags Op-Code
P No. No. No.
" . Symbolic / of of M of T
Op C|Z|V|S|N|[H|76 543 210| Bytes | Cycles | States | Comments
CALL nn (SP-])«—PCH ejeloefele]e|]1]1 001 101 3 N 17
(§P-2)~PCy - n -
PCenn -« n -
CALL cc,nn | If condition olo|lojejo|e |1l cc 100| 3 3 10 If cc is false
cc is false - n o
continue, .
otherwise - n - 3 5 17 If cc is true
same as
CALL nn
RET PCL*-(SP) e|le|e|e|e|e |11 001 001 1 3 10
PCH'-(SPH)
RET cc If condition o|loe|e|oeje|e|11 cc 000 1 1 5 If cc is false
cc is false
tinue, .
gtll:e:::i:e 1 3 11 If cc is true
same as cc | Condition
RET 000 | NZ non zero
001] z zero
010 | NC non carry
RETI Return from elefejefe|e|]1] 101 101 2 4 14 o11| ¢ carry
interrupt 01 001 101 1001 PO parity odd
parity even
RETN Illlg't‘ul;g :ll;gglle o|ejejo|e]e (l): ;g(l) :g; 2 4 14 10| p sign positive
interrupt 111 | M sign negative
RST p (SP-1)<PCy | elejejelofefll t 111 1 3 11
(SP-Z)«PCL
<t
L t | P
000 | OOH
001 | O8H
010{ 10H
011 | 18H
100 | 20H
101 | 28H
110 | 30H
111 | 38H

Flag Notation: e = flag not affected, O = flag reset, 1 = flag set, X = flag is unknown
¢ = flag is affected according to the result of the operation.

COPYRIGHT © 1977 BY ZILOG, INC.

452 750 ASSEMBLY LANGUAGE SUBROUTINES

Table A-13. 780 I/ O Instructions

Flags Op-Code
. P No. No. No.
Symbolic] . of of M of T
Mnemonic Operation V|Ss H| 76 543 210 | Bytes Cycles | States | Comments
IN A, (n) A+~ (n) ole e |11 011 011 2 3 11 nto Ay~ A,
<~ n - AcctoA8~A15
INT1, (O r+—(C) Pl $111 101 101 2 3 12 Ctvo~A7
if r =110 only 01 r 000 BtoAa"'Als
the flags will
be affected
INI (HL) « (C) X| X X| 11 101 101 2 4 16 CtoA0~A7
B~B-1 10 100 010 BtoA8~A15
HL «~HL+1
INIR (HL) « (C) X| X X] 11 101 101 2 5 21 CtoA0~A7
B«B-1 16 110 010 (f B +0) BtoAg~ A
HL «HL+1 2 4 16
Repeat until (If B=0)
B=0
IND (HL) < (O) Xl X X] 11 101 101 2 4 16 CtoA0~A7
B<~B-1 10 101 010 BtoA8~A|5
HL < HL-1
INDR (HL) < (O) X} X X]11 101 101 2 5 21 Ctvo“'A
B+-B-1 10 111 010 (f B +0) BtoAg~ A
HL —HL-1 2 4 16
léip(e)al until AfB=0)
OUT (n), A] (n) <A ofe e|11 010 OI1 2 3 11 nto Ay~
— n — Ac«:toA8~Als
OUT (O), t ©) «r ole e}l 11 101 101 2 3 12 CtoA0~A
01 r 001 BtoMB'*Al5
OUTI (C) « (HL) X| X X]11 101 101 2 4 16 Cto A ~A7
B+<B-1 12 100 O11 BtoA8~A|5
HL «HL +1
OTIR (C) « (HL) Xl X X111 101 101 2 5 21 Cto A ~A7
B+B-1 10 110 011 (fB =0) BloAg~ A
}:{L"HLfll 2 4 16
epeat unti fB =
B=0 (fB=0)
OUTD (C) < (HL) X| X Xf11 101 101 2 4 16 CtoA ~ A
B<B-1 10 101 011 BloAB"ALS
HL «HL-1
OTDR (C) < (HL) X| X X[11 101 101 2 5 21 CtoA, ~ A
BeB-1 10 111 011 (fB #0) BloAg~ A
iL““L"“ 2 4 |6
epeat unt lacs =
P (IfB=0)
Notes: @ If the result of B - 1 is zero the Z flag is set, otherwise it is reset .
Flag Notation: e = flag not affected, 0 = flag reset, 1 = flag set, X = flag is unknown,
$ = flag is affected according to the result of the operation.

COPYRIGHT © 1977 BY ZILOG, INC.

APPENDIX A 780 INSTRUCTION SET SuMvvary 453

Table A-14. Summary of Z80 Flag Operations

Symbol

C
YA
S
1704

LT

goammgen

3

Instruction ClZ lZ/ S|INIH | C t

ADD A,s; ADC A5 ${¢|V[s]|0[¢ | 8-bitadd or add with carry

SUBs; SBC A, s, CP s, NEG $1IVIEL]e 8-bit subtract, subtract with carry, compare and
negate accumulator

AND s o|¢|P|¢|o]1 } Logical operations

ORs; XOR s oj¢|P|%]Of0 And set’s different flags

INC s o[t[VIt]|0]|f | 8-bitincrement

DEC m o$|V[$]1]|4 | 8-bitdecrement

ADD DD, ss tlo|e(ef0(X 16-bit add

ADC HL, ss $1e|VvVItloX 16-bit add with carry

SBC HL, ss $LVIETX 16-bit subtract with carry

RLA; RLCA, RRA, RRCA {|eje|e®jOfO Rotate accumulator

RL m; RLC m; RR m; RRC m t{¢(P([s]|O]O Rotate and shift location m

SLA m; SRA m; SRL m

RLD, RRD o({|P|4]0|0 | Rotate digit left and right

DAA $1t|P|t|e]t Decimal adjust accumulator

CPL ejej|ele|]|]1 | Complement accumulator

SCF 1|e|e®|®|0|0 | Setcarry

CCF t|e|e|®[0|X | Complement carry

INT,(C) ®|$|P|t|0]|0 | Input registerindirect

INI; IND; OUTI; OUTD o ¢ |X|X[1]|X ’ Block input and output

INIR; INDR; OTIR; OTDR o 1IX|X|1{X || Z=0if B# 0otherwise Z=1

LDI, LDD e(X|$|X|0]|0 ’ Block transfer instructions

LDIR, LDDR ®|X|0|X]|0]|0 [} P/V=1if BC# 0, otherwise P/V =0

CPI, CPIR, CPD, CPDR CIEAEREZRED ¢ Block search instructions
Z=1if A=(HL), otherwise Z=0
P/V = 1if BC # 0, otherwise P/V =0

LDA,[;LDA,R o L JFF$|0| 0 [The content of the interrupt enable flip-flop (IFF)
is copied into the P/V flag

BITb, s e ¢|X|X|0]|1 The state of bit b of location s is copied into the Z flag

NEG tislvitinl g Negate accumulator

The following notation is used in this table:

Operation

Carry/link flag. C=1 if the operation produced a carry from the MSB of the operand or result.
Zero flag. Z=1 if the result of the operation is zero.
Sign flag, S=1 if the MSB of the result is one.

Parity or overflow flag. Parity (P) and overflow (V) share the same flag. Logical operations affect thus flag
with the parity of the result while arithmetic operations affect this flag with the overflow of the result. If P/V
holds parity, P/V=1 if the result of the operation is even, P/V=0 if result is odd. If P/V holds overflow, P/V=1
if the result of the operation produced an overflow.

Half-carry flag. H=1 if the add or subtract operation produced a carry into or borrow from into bit 4 of the accumulator.
Add/Subtract flag. N=1 if the previous operation was a subtract.

H and N flags are used in conjunction with the decimal adjust instruction (DAA) to properly correct the re-
sult into packed BCD format following addition or subtraction using operands with packed BCD format.

The flag is affected according to the result of the operation.

The flag is unchanged by the operation.

The flag is reset by the operation.

The flag is set by the operation.

The flag is a “‘don’t care.”

P/V flag affected according to the overflow result of the operation.
P/V flag affected according to the parity result of the operation.

Any one of the CPU registers A, B,C, D, E, H, L.

Any 8-bit location for all the addressing modes allowed for the particular instruction. .
Any 16-bit location for all the addressing modes allowed for that instruction.

Any one of the two index registers IX or IY.

Refresh counter,

8-bit value in range <0, 255>

16-bit value in range <0, 65535>
Any 8-bit location for all the addressing modes allowed for the particular instruction.

COPYRIGHT © 1977 BY ZILOG, INC.

454 750 ASSEMBLY LANGUAGE SUBROUTINES

Table A-15. Summary of Z80 Restart Instructions

op
CODE
0000, | €7
0008, | CF
¢ | oo, | 07
L
L
A | 0018, | OF
D
D
R | o020, | 7
s
s
0028, | EF
0030, | F7
0038, | FF
L. L

‘RST 0

‘RST 8

‘RST 16’

‘RST 24

‘RST 32

‘RST 40°

‘RST 48’

‘RST 56’

COPYRIGHT © 1977 BY ZILOG, INC.

APPENDIX A: Z80 INSTRUCTION SET SUMMARY

Table A-16. Summary of the Z80 Assembler

455

ASSEMBLER FIELD STRUCTURE

The assembly language instructions have the standard field structure (see Table
2-1). The required delimiters are:

1) A colon after a label, except for the pseudo-operations EQU, DEFL, and
MACRO, which require a space.

2) A space after the operation code.

3) A comma between operands in the operand field. (Remember this one!)

4) A semicolon before a comment.

5) Parenth around ry refer

LABELS

The assembler allows six characters in labels; the first character must be a letter,
while subsequent characters must be letters, numbers, ?, or the underbar
character (-). We will use only capital letters or numbers, although some versions
of the assembler allow lower-case letters and other symbols.

RESERVED NAMES

Some names are reserved as keywords and should not be used by the program-
mer. These are the register names (A, B, C, D, E, H, L, |, R), the double register
names (IX, 1Y, SP), the register names (AF, BC, DE, HL, AF’, BC’, DE’, HL'), and
the states of the four testable flags (C, NC, Z, NZ, M, P, PE, PO).

PSEUDO-OPERATIONS

The assembler has the following basic pseudo-operations:

DEFBorDB - DEFINE BYTE
DEFL - DEFINE LABEL
DEFM - DEFINE STRING
DEFS or DS - DEFINE STORAGE
DEFW or DW - DEFINE WORD
END - END

EQU - EQUATE

ORG - ORIGIN

ADDRESSES

The Zilog Z80 assembler allows entries in the address field in any
of the following forms:

1) Decimal (the default case)
Example: 1247

2) Hexadecimal (must start with a digit and end with an H)
Examples: 142CH. OE7H

3) Octal (must end with O or Q. but Q s far less confusing)
Example: 1247Q or 12470

4) Binary (must end with B)
Example: 1001001000111B

5) ASCII (enclosed in single quotation marks)
Example: '"HERE’

6) As an offset from the Program Counter ($)
Example: $+237H

Appendix B Programming

Reference forthe
280 PIO Device

D2 a—] | 40 ja— D3
D7 a—s~{ 2 39 laa—o= D4
D6 <-a—»1 3 38 j-a— D5
CE—»{ 4 37 jug—— MI
C/DSEL—=] 5 36 f#— IORQ
B/ASEL—] 6 35 j«@—— RD
Al a8 7 34 lg—= B7
A6 a—{ 8 33 ja—> B6
A5 a—»{ 9 32 j=a—» BS

A4 <a—{ 10 780 31 j— B4

GND 11 PIO 30 j~-a—> B3
A3 a—a{ 12 29 ja—> B2
A2 a—»] 13 28 j— BI
Al] 14 27 j=a—»= B0
A) a—] 15 26 +5V
A STB —— 16 25—
BSTE —] 17 24 }a—IEL
A RDY a— 18 23— INT
D0 -a—» 19 22— IEO
Dl -a—8=120 21 —® BRDY
Pin Name Description Type
D0-D7 Data Bus Tristate, Bidirectional
CE _ Device Enable Input
B/A SEL Select Port A or Port B Input
C/DSEL Select Control or Data Input
™M1 Instruction fetch machine Input
cycle signal from CPU
IORQ Input/ Output request from CPU Input
RD Read cycle status from CPU Input
A0-A7 Port A Bus Tristate, Bidirectional
A RDY Register A Ready Output
A STB Port A strobe pulse Input
BO-B7 Port B Bus Tristate, Bidirectional
B RDY Register B Ready Output
BSTB Port B strobe pulse Input
IEI Interrupt enable in Input
IEO Interrupt enable out Output
INT Interrupt request Output, Open-drain
&, +5V,GND Clock, Power, and Ground

Figure B-1. PIO pin assignments

457

458 730 ASSEVBLY LANGUAGE SUBROUTINES

+5VGND ¢
8 Data or
Internal PORT A Control
Control 1/0
Logic
8 | __>:» Handshake
CPU Data Bus %ilsj Peripheral
Interface 6 1/0 Interface
PIO Control 8 Data or
ntro.
Lines Interrupt PORT B Control
Control I/0
I > :»Handshake
3
Interrupt Control Lines
Figure B-2. Block diagram of the PIO
Mode Control Input/Output
Reg (A Select Reg
(2 Bits) (8 Bits)
{} Output Enable
Data
P :> Output
b Re
¢ Internal Bus) @ st)
8-Bit Peripheral
Data or Control Bus
Mask F Data
Mask |
Control Input
Reg :> 8Reg Reg
(2 Bits) (8 Bits) (8 Bits)
Input Data
READY
Interrupt Héndsha}(e —— | Handshake
Requests f:;{: STROBE (' Lines

Hgure B-3. Block diagram of PIO port I/O

APPENDIX B: PROGRAMMING REFERENCE FOR THE Z80 PIO DEVICE

459

Register Selection

Select Lines
Register Selected
C/D | B/A
0 0 A Data
0 1 B Data
1 0 A Control
1 1 B Control

Mode Control Word

L——ldenlnﬁes mode control word
Don't care

Mode select

00 Mode 0 Output

01 Mode | Input

I 0 Mode2 Bidirectional
11 Mode 3 Bit Control

Interrupt Vector Word

(oo e [, o

Identifies interrupt
vector

Ut pplied interrupt
vector

1/0 Register Control Word

[2]B[0,[p,[0,0)]

+—0 sets bit to output

1 sets bit to input

Interrupt Control Word

EEELELI T
A —
4— Identifies interrupt

Mask Control Word

|o-[D D] D] D,[B, [D, [D

Interrupt Disable Word

N————

(oofos[o o o] 1] 1]
— e —

*—ldemiﬁes interrupt

control word

D, =0 No mask word follows

D, =1 Mask word follows

D; =0 Active level is low

Dy =1 Active level is high

D, =0 Interrupt on OR function
Dy =1 Interrupt on AND function
D, =0 Interrupt disabled

D, =1 Interrupt enabled*

7
*Note: The Port 1s not enabled until the interrupt enable
is followed by an active M1.

MB-MB, mask bits. A
bit is monitored for an
Interrupt if it is defined
as an input and the mask
bit is set to 0.

disable word
Don't care

D, =0 Interrupt disable
D, =1 Interrupt enable

Figure B-4. Programming summary for the PIO

460 750 ASSEMBLY LANGUAGE SUBROUTINES

M1 | MO Mode MI|MO| X | X 1 1 1 1
0 0 | Output When selecting Mode 3, the next byte must
0 1 Input set the I/ O Register:
1 0 Bidirectional
1 1 Bit Control
it --ontro 1/07|1/06{1/05{1/04|1/03|1/02{1/01]1/00

I/O =1 Sets bit to input
I/0 = 0 Sets bit to output

PIO Mode | Meaning | Control Word

(Binary) (Hex)

0 Output 00001111 OF
1 Input 01001111 4F
2 Bidirectional | 10001111 8F
3 Control 11001111 CF

Note that bits 4 and 5 are not used and
could have any values.

Figure B-5. Mode control for the PIO

7 6 5 4 3 2 1 (0 -e—Bitno.

I I I [| I] r0J<-—Command byte

—
T 1—Interrupt vector specified

Output these eight bits when
an interrupt request is acknowledged

Figure B-6. Interrupt vector loading format for the PIO

APPENDIX B: PROGRAMMING REFERENCE FOR THE Z80 PIO DEVICE

461

7 6 5 4 3 2 1 (0 -s——Bitno.

[T IXIX llllllll<—Controlcode:

S N \—— ——

T L—————Mode select code

Don’t care

00 Output, mode 0

01 Input, mode 1

10 Bidirectional, mode 2
11 Control, mode 3

Figure B-7. Mode selection format for the PIO

7 6 5 4 3 2 1 0 -w—Bitno.

[Ix[x]x[olofr]1 Control code
e e e s’
T *————— Interrupt enable control
Don’t care

0 Disable interrupts
1 Enable interrupts

Figure B-8. Interrupt enable/disable format for the PIO

462 750 ASSEMBLY LANGUAGE SUBROUTINES

7 6 4 3 2 1 (0 --——Bitno.
l I I l I OI 11 1 l ll<'—-—C0ntrolcode
‘ N—

*—— Interrupt control word

1 if interrupt select mask follows
0 otherwise

1 high input on selected pins is active
0 low input on selected pins is active

1 AND selected pins for interrupt
0 OR selected pins for interrupt

1 Enable interrupts
0 Disable interrupts

Figure B-9. Interrupt condition-setting format for the PIO

Table B-1. PIO Select Logic

(mode

3 only)

Table B-2. Addressing of PIO Control Registers

Signal Register Addressing
— — — Selected Location
CE B/A SEL|C/D SEL Mode control D,=D,=D,= D, = 1
0 0 0 Port A data buffer Input/ Output control Next byte after mode control
sets mode 3
0 0 1 Port A control buffer Mask | rexi D.=0.D.=D.=D.= 1
0 1 0 | Port B data buffer ask control register 3=0.D,=D,; =D, =
0 1 1 Port B control buffer Interrupt mask register Next byte after mask control
1 X X Device not selected register accessed with D, = 1
Interrupt enable D,=D,=0,D,=D,=1
Interrupt vector D,=1

Appendix C ASCII Character
Set

ONI " MILYINAS NOISSIN d3d A9 AIINIIdTY

- —
N 0 o= » o= 3> B X o> N[— e
- a)
o
6H.abcdefghl.l.klmn0
WS | O U D> B X N[— <
wSl@<mvomnor —~~|¢aszo0
—
mg|loe—a et n|los ®o ~V I A e
S | N N o~ - ~
ZMS!,#Q.V%& * |+ | e
W — N oen <t M Z @
~2|20C00C0<%[£E%s8|Rnunn
AN AQAZlnumUmnnKkLox D
=L o X = O O
=
ER-i= HFOZ|IVmwmbE |- L —
ONmﬂEEEABBHLVFCmS
Q S —o—~9o ~lo—o =09 — o —~
e /188gss=8|Z2=883|s=2=CZ
b SSSSoco|locoo=m === = = = —
=)
50123456789ABCDEF

463

Glossary

A

Absolute address. An address that identifies a storage location or an I/O device
without the use of a base, offset, or other factor. See also Effective address, Relative
offset.

Absolute addressing. An addressing mode in which the instruction contains the actual
address required for its execution, as opposed to modes in which the instruction
contains a relative offset or identifies a base register.

Accumulator. A register that is the implied source of one operand and the destination
of the result in most arithmetic and logical operations.

Active transition. The edge on a strobe line that sets an indicator. The alternatives are a
negative edge (1 to 0 transition) or a positive edge (0 to 1 transition).

Address. The identification code that distinguishes one memory location or I/ O port
from another and that can be used to select a specific one.

Addressing mode. The method for specifying the addresses to be used in executing an
instruction. Common addressing modes are direct, immediate, indexed, indirect,
and relative.

Address register. A register that contains a memory address.
Address space. The total range of addresses to which a particular computer may refer.
ALU. See Arithmetic-logic unit.

Arithmetic-logic unit (ALU). A device that can perform a variety of arithmetic and
logical functions; function inputs select which one the device performs during a
particular cycle.

465

466 750 ASSEVBLY LANGUAGE SUBROUTINES

Arithmetic shift. A shift operation that keeps the sign (most significant) bit the same.
In a right shift, this results in copies of the sign bit moving right (called sign
extension).

Arm. Usually refers specifically to interrupts. See Enable.

Array. A collection of related data items, usually stored in consecutive memory
addresses.

ASCII (American Standard Code for Information Interchange). A 7-bit character
code widely used in computers and communications.

Assembler. A computer program that converts assembly language programs into a
form (machine language) that the computer can execute directly. The assembler
translates mnemonic operation codes and names into their numerical equivalents
and assigns locations in memory to data and instructions.

Assembly language. A computer language in which the programmer can use mne-
monic operation codes, labels, and names to refer to their numerical equivalents.

Asynchronous. Operating without reference to an overall timing source, that is, at
irregular intervals.

Autodecrementing. The automatic decrementing of an address register as part of the
execution of an instruction that uses it.

Autoincrementing. The automatic incrementing of an address register as part of the
execution of an instruction that uses it.

Automatic mode (of a peripheral chip). An operating mode in which the peripheral
chip produces control signals automatically without specific program intervention.

Base address. The address in memory at which an array or table starts. Also called
starting address or base.

Baud. A measure of the rate at which serial data is transmitted; bits per second,
including both data bits and bits used for synchronization, error checking, and other
purposes. Common baud rates are 110, 300, 1200, 2400, 4800, 9600, and 19,200.

Baudrate generator. A device that generates the proper time intervals between bits for
serial data transmission.

BCD (Binary-Coded Decimal). A representation of decimal numbers in which each
decimal digit is coded separately into a binary number.

Bidirectional. Capable of transporting signals in either direction.

cLossary 467

Binary-coded decimal. See BCD.

Binary search. A search method that divides the set of items to be searched into two
equal (or nearly equal) parts in each iteration. The part containing the item being
sought is determined and then used as the set in the next iteration. Each iteration of a
binary search thus halves the size of the set being searched. This method obviously
assumes an ordered set of items.

BIOS (Basic Input/Output System). The part of CP/M that allows the operating
system to use the I/ O devices for a particular computer. The computer manufacturer
or dealer typically supplies the BIOS; Digital Research, the originator of CP/M,
provides only a sample BIOS with comments.

Bit test. An operation that determines whether a bit is 0 or 1. Usually refers to a logical
AND operation with an appropriate mask.

Block. An entire group or section, such as a set of registers or a section of memory.

Block comparison (or block compare). A search that extends through a block of
memory until either the item being sought is found or the entire block is examined.

Block move. Moving an entire set of data from one area of memory to another.
Block search. See Block comparison.

Boolean variable. A variable that has only two possible values, which may be repre-
sented as true and false or as 1 and 0. See also Flag.

Borrow. A bit that is set to 1 if a subtraction produces a negative result and to 0 if it
produces a positive or zero result. The borrow is commonly used to subtract num-
bers that are too long to be handled in a single operation.

Bounce. Move back and forth between states before reaching a final state. Usually
refers to mechanical switches that do not open or close cleanly, but rather move back
and forth between positions for a while before settling down.

Branch instruction. See Jump instruction.

Breakpoint. A condition specified by the user under which program execution is to end
temporarily, used as an aid in debugging programs. The specification of the condi-
tions under which execution will end is referred to as setting breakpoints, and the
deactivation of those conditions is referred to as clearing breakpoints.

BSC (Binary Synchronous Communications or Bisync). An older line protocol often
used by IBM computers and terminals.

Bubble sort. A sorting technique that works through the elements of an array consecu-
tively, exchanging an element with its successor if they are out of order.

468 730 ASSEMBLY LANGUAGE SUBROUTINES

Buffer. Temporary storage area generally used to hold data before they are transferred
to their final destinations.

Buffer empty. A signal that is active when all data entered into a buffer or register have
been transferred to their final destinations.

Buffer full. A signal that is active when a buffer or register is completely occupied with
data that have not been transferred to their final destinations.

Buffer index. The index of the next available address in a buffer.
Buffer pointer. A storage location that contains the next available address in a buffer.
Bug. An error or flaw in a program.

Byte. A unit of eight bits. May be described as consisting of a high nibble or digit (the
four most significant bits) and a low nibble or digit (the four least significant bits).

Byte-length. A length of eight bits per item.

C

Call (a subroutine). Transfer control to a subroutine while retaining the information
required to resume the current program. A call differs from a jump or branch in that
a call remembers the previous position in the program, whereas a jump or branch
does not.

Carry. A bit that is 1 if an addition overflows into the succeeding digit position.

Carry flag. A flag that is 1 if the last operation generated a carry from the most sig-
nificant bit and 0 if it did not.

CASE statement. A statement in a high-level computer language that directs the
computer to perform one of several subprograms, depending on the value of a
variable. That is, the computer performs the first subprogram if the variable has the
first value specified, and so on. The computed GO TO statement serves a similar
function in FORTRAN.

Central processing unit (CPU). The control section of the computer; the part that
controls its operations, fetches and executes instructions, and performs arithmetic
and logical functions.

Checksum. A logical sum that is included in a block of data to guard against recording
or transmission errors. Also referred to as longitudinal parity or longitudinal
redundancy check (LRC).

Circular shift. See Rotate.

clLossary 469

Cleaning the stack. Removing unwanted items from the stack, usually by adjusting the
stack pointer.

Clear. Set to zero.
Clock. A regular timing signal that governs transitions in a system.

Close (a file). To make a file inactive. The final contents of the file are the last
information the user stored in it. The user must generally close a file after working
with it.

Coding. Writing instructions in a computer language.
Combo chip. See Multifunction device.
Command register. See Control register.

Comment. A section of a program that has no function other than documentation.
Comments are neither translated nor executed, but are simply copied into the
program listing.

Complement. Invert; see also One’s complement, Two’s complement.

Concatenation. Linking together, chaining, or uniting in a series. In string operations,
concatenation refers to the placing of one string after another.

Condition code. See Flag.

Control (or command) register. A register whose contents determine the state of a
transfer or the operating mode of a device.

CP/M (Control Program/Microcomputer). A widely used disk operating system for
Z80-based computers developed by Digital Research (Pacific Grove, CA).

CTC (Clock/ Timer Circuit). A programmable timer chip in the Z80 family. A CTC
contains four 8-bit timers, range controls (prescalers), and other circuits.

Cyclic redundancy check (CRC). An error-detecting code generated from a poly-
nomial that can be added to a block of data or a storage area.

Data accepted. A signal that is active when the most recent data have been transferred
successfully.

Data direction register. A register that determines whether bidirectional I/ O lines are
being used as inputs or outputs.

Data-link control. Conventions governing the format and timing of data exchange
between communicating systems. Also called a protocol.

470 750 ASSEMBLY LANGUAGE SUBROUTINES

Data-link controller. A chip that performs all or most of the functions required by a
data-link control. The SIO is a data-link controller in the Z80 family.

Dataready. A signal that is active when new data are available to the receiver. Same as
valid data.

DDCMP (Digital Data Communications Message Protocol). A protocol that sup-
ports any method of physical data transfer (synchronous or asynchronous, serial or
parallel).

Debounce. Convert the output from a contact with bounce into a single clean transi-
tion between states. Debouncing is most commonly applied to outputs from
mechanical keys or switches that bounce back and forth before settling into their
final positions.

Debounce time. The amount of time required to debounce a change of state.

Debugger. A systems program that helps users locate and correct errors in their
programs. Some versions are referred to as dynamic debugging tools, or DDTs after
the famous insecticide. Popular CP/M debuggers are SID (Symbolic Instruction
Debugger) and ZSID (Z80 Symbolic Instruction Debugger) from Digital Research.

Debugging. Locating and correcting errors in a program.

Device address. The address of a port associated with an I/O device.

Diagnostic. A program that checks the operation of a device and reports its findings.
Digit shift. A shift of one BCD digit position or four bit positions.

Direct addressing. An addressing mode in which the instruction contains the address
required for its execution. Note that the standard Z80 assembler requires paren-
theses around an address that is to be used directly.

Disable (or disarm). Prevent an activity from proceeding or a signal (such as an
interrupt) from being recognized.

Disarm. Usually refers specifically to interrupts. See Disable.
Double word. When dealing with microprocessors, a unit of 32 bits.
Driver. See 1/ O driver.

Dump. A facility that displays the contents of an entire section of memory or group of
registers on an output device.

Dynamic allocation (of memory). The allocation of memory for a subprogram from
whatever is available when the subprogram is called. An alternative is static alloca-
tion of a fixed area of storage to each subprogram. Dynamic allocation often

clossary 471

reduces overall memory usage because subprograms can share areas; it does,
however, generally require additional execution time and overhead spent in memory
management.

EBCDIC (Expanded Binary-Coded Decimal Interchange Code). An 8-bit character
code often used in large computers.

Echo. Reflect transmitted information back to the transmitter; send back to a terminal
the information received from it.

Editor. A program that manipulates text material and allows the user to make
corrections, additions, deletions, and other changes. A popular CP/M editor is ED
from Digital Research.

Effective address. The actual address used by an instruction to fetch or store data.
EIA RS-232. See RS-232.

Enable (or arm). Allow an activity to proceed or a signal (such as an interrupt) to be
recognized.

Endless loop or jump-to-self instruction. Aninstruction that transfers control to itself,
thus executing indefinitely (or until a hardware signal interrupts it).

Error-correcting code. A code that the receiver can use to correct errors in messages;
the code itself does not contain any additional message.

Error-detecting code. A code that the receiver can use to detect errors in messages; the
code itself does not contain any additional message.

Even parity. A 1-bit error-detecting code that makes the total number of 1 bits in a unit
of data (including the parity bit) even.

EXCLUSIVE OR function. A logical function that is true if either, but not both, of its
inputs is true. It is thus true if its inputs are not equal (that is, if one of them is a logic
I and the other is a logic 0).

Extend (a number). Add digits to a number to conform to a format without changing
its value. For example, one may extend an 8-bit unsigned result with zeros to fill a
16-bit word.

External reference. The use in a program of a name that is defined in another program.

F register. See Flag register.

472 730 ASSEMBLY LANGUAGE SUBROUTINES

Field. A set of one or more positions within a larger unit, such as a byte, word, or
record.

File. A collection of related information that is treated as a unit for purposes of storage
or retrieval.

Fill. Placing values in storage areas not previously in use, initializing memory or
storage.

Flag (or condition code or status bit). A single bit that indicates a condition within the
computer, often used to choose between alternative instruction sequences.

Flag (software). An indicator that is either on or off and can be used to select between
two alternative courses of action. Boolean variable and semaphore are other terms
with the same meaning.

Flag register. A Z80 register that holds all the flags. Also called the (processor) status
register.

Free-running mode. An operating mode for a timer in which it indicates the end of a
time interval and then starts another of the same length. Also called a continuous
mode.

Function key. A key that causes a system to execute a procedure or perform a function
(such as clearing the screen of a video terminal).

G

Global variable. A variable that is used in more than one section of a computer pro-
gram rather than only locally.

Handshake. An asynchronous transfer in which sender and receiver exchange signals
to establish synchronization and to indicate the status of the data transfer. Typically,
the sender indicates that new data are available and the receiver reads the data and
indicates that it is ready for more.

Hardware stack. A stack that the computer manages automatically when executing
instructions that use it.

Head (of a queue). The location of the item most recently entered into a queue.
Header, queue. See Queue header.

Hexadecimal (or hex). Number system with base 16. The digits are the decimal
numbers 0 through 9, followed by the letters A through F (representing 10 through
15 decimal).

clossary 473

Hex code. See Object code.

High-level language. A programming language that is aimed toward the solution of
problems, rather than being designed for convenient conversion into computer
instructions. A compiler or interpreter translates a program written in a high-level
language into a form that the computer can execute. Common high-level languages
include Ada, BASIC, C, COBOL, FORTRAN, and Pascal.

Immediate addressing. An addressing mode in which the data required by an instruc-
tion are part of the instruction. The data immediately follow the operation code in
memory.

Index. A data item used to identify a particular element of an array or table.

Indexed addressing. An addressing mode in which the address is modified by the
contents of an index register to determine the effective address (the actual address
used).

Indexed indirect addressing. See Preindexing.
Index register. A register that can be used to modify memory addresses.

Indirect addressing. An addressing mode in which the effective address is the contents
of the address included in the instruction, rather than the address itself.

Indirect indexed addressing. See Postindexing.

Indirect jump. A jump instruction that transfers control to the address stored in a
register or memory location rather than to a fixed address.

Input [output control block (IOCB). A group of storage locations that contains the
information required to control the operation of an I/ O device. Typically included
in the information are the addresses of routines that perform operations such as
transferring a single unit of data or determining device status.

Input/output control system (IOCS). A set of computer routines that controls the
performance of 1/ O operations.

Instruction. A group of bits that defines a computer operation and is part of the
instruction set.

Instruction cycle. The process of fetching, decoding, and executing an instruction.

Instruction execution time. The time required to fetch, decode, and execute an
instruction.

474 750 ~SSEMBLY LANGUAGE SUBROUTINES

Instruction fetch. The process of addressing memory and reading an instruction into
the CPU for decoding and execution.

Instruction length. The amount of memory needed to store a complete instruction.

Instruction set. The set of general-purpose instructions available on a given computer;
the set of inputs to which the CPU will produce a known response when they are
fetched, decoded, and executed.

Interpolation. Estimating values of a function at points between those at which the
values are already known.

Interrupt. A signal that temporarily suspends the computer’s normal sequence of
operations and transfers control to a special routine.

Interrupt-driven. Dependent on interrupts for its operation; may idle until it receives
an interrupt.

Interrupt flag. A bit in the input/output section that is set when an event occurs that
requires servicing by the CPU. Typical events include an active transition on a
control line and the exhaustion of a count by a timer.

Interrupt mask (or interrupt enable). A bit that determines whether interrupts will be
recognized. A mask or disable bit must be cleared to allow interrupts, whereas an
enable bit must be set.

Interrupt request. A signal that is active when a peripheral is requesting service, often
used to cause a CPU interrupt. See also Interrupt flag.

Interrupt service routine. A program that performs the actions required to respond to
an interrupt.

Interrupt vector. An address to which an interrupt directs the computer, usually the
starting address of a service routine.

Inverted borrow. A bit that is set to 0 if a subtraction produces a negative result and to
1 if it produces a positive or 0 result. An inverted borrow can be used like a true
borrow, except that the complement of its value (i.e., I minus its value) must be used
in the extension to longer numbers.

IOCB. See Input/output control block.
10CS. See Input/output control system.

I/ O device table. A table that establishes the correspondence between the logical
devices to which programs refer and the physical devices that are actually used in
data transfers. An I/O device table must be placed in memory in order to run a

clossary 479

program that refers to logical devices on a computer with a particular set of actual
(physical) devices. The I/O device table may, for example, contain the starting
addresses of the I/ O drivers that handle the various devices.

1/ O driver. A computer program that transfers data to or from an 1/ O device, also
called a driver or I/ O utility. The driver must perform initialization functions and
handle status and control, as well as physically transfer the actual data.

Isolated input/output. An addressing method for I/O ports that uses a decoding
system distinct from that used by the memory section. I/ O ports thus do not occupy
memory addresses.

J

Jump instruction (or branch instruction). An instruction that places a new value in the
program counter, thus departing from the normal one-step incrementing. Jump
instructions may be conditional; that is, the new value may be placed in the program
counter only if a condition holds.

Jump table. A table consisting of the starting addresses of executable routines, used to
transfer control to one of them.

L

Label. A name attached to an instruction or statement in a program that identifies the
location in memory of the machine language code or assignment produced from
that instruction or statement.

Latch. A device that retains its contents until new data are specifically entered into it.
Leading edge (of a binary pulse). The edge that marks the beginning of a pulse.

Least significant bit. The rightmost bit in a group of bits, that is, bit 0 of a byte or a
16-bit word.

Library program. A program that is part of a collection of programs and is written and
documented according to a standard format.

LIFO (last-in, first-out) memory. A memory that is organized according to the order in
which elements are entered and from which elements can be retrieved only in the
order opposite of that in which they were entered. See also Stack.

Linearization. The mathematical approximation of a function by a straight line
between two points at which its values are known.

Linked list. Alist in which each item contains a pointer (or /ink) to the next item. Also
called a chain or chained list.

476 750 ASSEMBLY LANGUAGE SUBROUTINES

List. An ordered set of items.

Logical device. The input or output device to which a program refers. The actual or
physical device is determined by looking up the logical device in an I/ O device table
—a table containing actual I/ O addresses (or starting addresses for I/O drivers)
corresponding to the logical device numbers.

Logical shift. A shift operation that moves zeros in at either end as the original data are
shifted.

Logical sum. A binary sum with no carries between bit positions. See also Checksum,
EXCLUSIVE OR function.

Longitudinal parity. See Checksum.
Longitudinal redundancy check (LRC). See Checksum.

Lookup table. An array of data organized so that the answer to a problem may be
determined merely by selecting the correct entry (without any calculations).

Low-level language. A computer language in which each statement is translated
directly into a single machine language instruction.

Machine language. The programming language that the computer can execute directly
with no translation other than numeric conversions.

Maintenance (of programs). Updating and correcting computer programs that are in .
use.

Majority logic. A combinational logic function that is true when more than half the
inputs are true.

Mark. The 1 state on a serial data communications line.
Mask. A bit pattern that isolates one or more bits from a group of bits.
Maskable interrupt. An interrupt that the system can disable.

Memory capacity. The total number of different memory addresses (usually specified
in bytes) that can be attached to a particular computer.

Memory-mapped I/ O. An addressing method for 1/O ports that uses the same
decoding system used by the memory section. The I/ O ports thus occupy memory
addresses.

Microcomputer. A computer that has a microprocessor as its central processing unit.

clossary 477

Microprocessor. A complete central processing unit for a computer constructed from
one or a few integrated circuits.

Mnemonic. A memory jogger, a name that suggests the actual meaning or purpose of
the object to which it refers.

Modem (Modulator/demodulator). A device that adds or removes a carrier
frequency, thereby allowing data to be transmitted on a high-frequency channel or
received from such a channel.

Modular programming. A programming method whereby the overall program is
divided into logically separate sections or modules.

Module. A part or section of a program.

Monitor. A program that allows the computer user to enter programs and data, run
programs, examine the contents of the computer’s memory and registers, and utilize
the’computer’s peripherals. See also Operating system.

Most significant bit. The leftmost bit in a group of bits, that is, bit 7 of a byte or bit 15 of
a 16-bit word.

Multifunction device. A device that performs more than one function in a computer
system; the term commonly refers to devices containing memory, input/output
ports, timers, and so forth.

Multitasking. Executing many tasks during a single period of time, usually by working
on each one for a specified part of the period and suspending tasks that must wait for
input, output, the completion of other tasks, or external events.

Murphy’s Law. The famous maxim that “whatever can go wrong, will.”

Negate. Find the two’s complement (negative) of a number.

Negative edge (of a binary pulse). A 1-to-0 transition.

Negative flag. See Sign flag.

Negative logic. Circuitry in which a logic zero is the active or ON state.

Nesting. Constructing programs in a hierarchical manner with one level contained
within another. The nesting level is the number of transfers of control required to
reach a particular part of a program without ever returning to a higher level.

Nibble. A unit of four bits. A byte (eight bits) may be described as consisting of a high
nibble (four most significant bits) and a low nibble (four least significant bits).

478 7530 ASSEMBLY LANGUAGE SUBROUTINES

Nine’s complement. The result of subtracting a decimal number from a number having
nines in all digit positions.

Non-maskable interrupt. An interrupt that cannot be disabled within the CPU.
Non-volatile memory. A memory that retains its contents when power is removed.

Nop (or no operation). An instruction that does nothing except increment the
program counter.

Normalization (of numbers). Adjusting a number into a regular or standard format. A
typical example is the scaling of a binary fraction to make its most significant bit 1.

o

Object code (or object program). The program that is the output of a translator
program, such as an assembler—usually a machine language program ready for
execution.

Odd parity. A 1-bit error-detecting code that makes the total number of 1 bits in a unit
of data (including the parity bit) odd.

One’s complement. A bit-by-bit logical complement of a number, obtained by replac-
ing each 0 bit with a 1 and each 1 bit with a 0.

One-shot. A device that produces a pulse output of known duration in response to a
pulse input. A timer operates in a one-shot mode when it indicates the end of a single
interval of known duration.

Open (a file). Make a file ready for use. The user generally must open a file before
working with it.

Operating system (OS). A computer program that controls the overall operations of a
computer and performs such functions as assigning places in memory to programs
and data, scheduling the execution of programs, processing interrupts, and control-
ling the overall input/output system. Also known as a monitor, executive, or
master-control program, although the term monitor is usually reserved for a simple
operating system with limited functions.

Operation code (op code). The part of an instruction that specifies the operation to be:
performed.

OS. See Operating system.
Overflow (of a stack). Exceeding the amount of memory allocated to a stack.

Overflow, two’s complement. See Two’s complement overflow.

clossary 479

P

Packed decimal. A binary-coded decimal format in which each byte contains two
decimal digits.

Page. A subdivision of the memory. In byte-oriented computers, a page is generally a
256-byte section of memory in which all addresses have the same eight most
significant bits (or page number). For example, page C6 would consist of memory
addresses C600 through C6FE

Paged address. The identifier that characterizes a particular memory address on a
known page. In byte-oriented computers, this is usually the eight least significant
bits of a memory address.

Page number. The identifier that characterizes a particular page of memory. In
byte-oriented computers, this is usually the eight most significant bits of a memory
address.

Parallel interface. An interface between a CPU and input or output devices that handle
data in parallel (more than one bit at a time). The PIO is a parallel interface in the
780 family.

Parameter. An item that must be provided to a subroutine or program for it to be
executed.

Parity. A 1-bit error-detecting code that makes the total number of 1 bits in a unit of
data, including the parity bit, odd (odd parity) or even (even parity). Also called
vertical parity or vertical redundancy check (VRC).

Passing parameters. Making the required parameters available to a subroutine.
Peripheral ready. A signal that is active when a peripheral can accept more data.

Physical device. An actual input or output device, as opposed to a logical device.

PIO (Parallel Input/ Output Device). A parallel interface chip in the Z80 family. A PIO
contains two 8-bit I/ O ports, four control lines, and other circuitry.

Pointer. A storage place that contains the address of a data item rather than the item
itself. A pointer tells where the item is located.

Polling. Determining which I/O devices are ready by examining the status of one
device at a time.

Polling interrupt system. An interrupt system in which a program determines the
source of a particular interrupt by examining the status of potential sources one at a
time.

Pop. Remove an operand from a stack.

480 730 ASSEMBLY LANGUAGE SUBROUTINES

Port. The basic addressable unit of the computer’s input/output section.
Positive edge (of a binary pulse). A 0-to-1 transition.

Postdecrementing. Decrementing an address register after using it.
Postincrementing. Incrementing an address register after using it.

Postindexing. An addressing mode in which the effective address is determined by first
obtaining the base address indirectly and then indexing from that base address. The
“post” refers to the fact that the indexing is performed after the indirection.

Power fail interrupt. An interrupt that informs the CPU of an impending loss of power.
Predecrementing. Decrementing an address register before using it.
Preincrementing. Incrementing an address register before using it.

Preindexing. An addressing mode in which the effective address is determined by
indexing from the base address and then using the indexed address indirectly. The
“pre” refers to the fact that the indexing is performed before the indirection. Of
course, the array starting at the given base address must consist of addresses that can
be used indirectly.

Priority interrupt system. An interrupt system in which some interrupts have
precedence over others; that is, they will be serviced first or can interrupt the others’
service routines.

Program counter (PC register). A register that contains the address of the next
instruction to be fetched from memory.

Programmable I/ O device. An 1/O device that can have its mode of operation
determined by loading registers under program control.

Programmable peripheral chip (or programmable peripheral interface). A chip that
can operate in a variety of modes; its current operating mode is determined by
loading control registers under program control.

Programmable timer. A device that can handle a variety of timing tasks, including the
generation of delays, under program control. The CTC is a programmable timer in
the Z80 family.

Programmed input/output. Input or output performed under program control
without using interrupts or other special hardware techniques.

Program relative addressing. A form of relative addressing in which the base address
is the program counter. Use of this form of addressing makes it easy to move
programs from one place in memory to another.

Protocol. See Data-link control.

cLossary 4841

Pseudo-operation (or pseudo-op or pseudo-instruction). An assembly language
operation code that directs the assembler to perform some action but does not
result in the generation of a machine language instruction.

Pull. Remove an operand from a stack; same as pop.

Push. Store an operand in a stack.

Queue. A set of tasks, storage addresses, or other items that are used in a first-in,
first-out manner; that is, the first item entered into the queue is the first to be used or
removed.

Queue header. A set of storage locations describing the current location and status of
a queue.

RAM. See Random-access memory.

Random-access (read/write) memory (RAM). A memory that can be both read and
altered (written) in normal operation.

Read-only memory (ROM). A memory that can be read but not altered in normal
operation.

Ready for data. A signal that is active when the receiver can accept more data.
Real-time. In synchronization with the actual occurrence of events.
Real-time clock. A device that interrupts a CPU at regular time intervals.

Real-time operating system. An operating system that can act as a supervisor for
programs that have real-time requirements. May also be referred to as a real-time
executive or real-time monitor.

Reentrant. A program or routine that can be executed concurrently while the same
routine is being interrupted or otherwise held in abeyance.

Refresh. Rewriting data into a memory before its contents are lost. Dynamic RAM
must be refreshed periodically (typically every few milliseconds) or it will lose its
contents spontaneously.

Register. A storage location inside the CPU.

Register pair. In Z80 terminology, two 8-bit registers that can be referenced as a 16-bit
unit.

482 30 ASSEMBLY LANGUAGE SUBROUTINES

Relative addressing. An addressing mode in which the address specified in the
instruction is the offset from a base address.

Relative offset. The difference between the actual address to be used in an instruction
and the current value of the program counter.

Relocatable. Can be placed anywhere in memory without changes; that is, a program
that can occupy any set of consecutive memory addresses.

Return (from a subroutine). Transfer control back to the program that originally
called the subroutine and resume its execution.

ROM. See Read-only memory.

Rotate. A shift operation that treats the data as if they were arranged in a circle; that is,
as if the most significant and least significant bits were connected either directly or
through a Carry bit.

Row major order. Storing elements of a multidimensional array in memory by
changing the indexes starting with the rightmost first. For example, if a typical
element is A(L,J,K) and the elements begin with A(0,0,0), the order is A(0,0,0),
A(0,0,1),...,A(0,1,0), A(0,1,1),.... The opposite technique (changing the leftmost
index first) is called column major order.

RS-232 (or EIA RS-232). A standard interface for the transmission of digital data,
sponsored by the Electronic Industries Association of Washington, D.C. It has been
partially superseded by RS-449.

S

Scheduler. A program that determines when other programs should be started and
terminated.

Scratchpad. An area of memory that is generally easy and quick to use for storing
variable data or intermediate results.

SDLC. (Synchronous Data Link Control). The successor protocol to BSC for IBM
computers and terminals.

Semaphore. See Flag.
Serial. One bit at a time.

Serial interface. An interface between a CPU and input or output devices that handle
data serially. The SIO is a popular serial interface chip in the Z80 family. See also
UART.

Setpoint. The value of a variable that a controller is expected to maintain.

clossary 483

Shift instruction. An instruction that moves all the bits of the data by a certain
number of bit positions, just as in a shift register.

Signed number. A number in which one or more bits represent whether the number is
positive or negative. A common format is for the most significant bit to represent
the sign (0 = positive, | = negative).

Sign extension. The process of copying the sign (most significant) bit to the right asin
an arithmetic shift. Sign extension preserves the sign when two’s complement
numbers are being divided or normalized.

Sign flag. A flag that contains the most significant bit of the result of the previous
operation. It is sometimes called a negative flag, since a value of 1 indicates a
negative signed number.

Sign function. A function thatis 0 if its parameter is positive and 1 if its parameter is
negative.

S10 (Serial Input/Output Device). A serial interface chip in the Z80 family. An SIO
can be used as an asynchronous or synchronous serial interface (i.e., asa UART or
USRT) or as a data-link controller.

Size (of an array dimension). The distance in memory between elements that are
ordered consecutively in a particular dimension; the number of bytes between the
starting address of an element and the starting address of the element with an index
one larger in a particular dimension but the same in all other dimensions.

Software delay. A program that has no function other than to waste time.
Software interrupt. See Trap.

Software stack. A stack that is managed by means of specific instructions, as opposed
to a hardware stack which the computer manages automatically.

Source code (or source program). A computer program written in assembly language
or in a high-level language.

Space. The zero state on a serial data communications line.

Stack. A section of memory that can be accessed only in a last-in, first-out manner.
That is, data can be added to or removed from the stack only through its top; new
data are placed above the old data and the removal of a data item makes the item
below it the new top.

Stack pointer. A register that contains the address of the top of a stack.

Standard (or 8,4,2,1) BCD. A BCD representation in which the bit positions have the
same weight as in ordinary binary numbers.

484 50 ~SSEVBLY LANGUAGE SUBROUTINES

Standard teletypewriter. A teletypewriter that operates asynchronously at a rate of
ten characters per second.

Start bit. A 1-bit signal that indicates the start of data transmission by an asynchro-
nous device.

Static allocation (of memory). Assignment of fixed storage areas for data and pro-
grams; an alternative is dynamic allocation, in which storage areas are assigned
when they are needed.

Status register. A register whose contents indicate the current state or operating mode
of a device.

Status signal. A signal that describes the current state of a transfer or the operating
mode of a device.

Stop bit. A 1-bit signal that indicates the end of data transmission by an asynchro-
nous device.

String. An array (set of data) consisting of characters.

String functions. Procedures that allow the programmer to operate on data consist-
ing of characters rather than numbers. Typical functions are insertion, deletion,
concatenation, search, and replacement.

Strobe. A signal that identifies or describes another set of signals and can be used to
control a buffer, latch, or register.

Subroutine. A subprogram that can be executed (called) from more than one place in
a main program.

Subroutine call. The process whereby a computer transfers control from its current
program to a subroutine while retaining the information required to resume the
current program.

Subroutine linkage. The mechanism whereby a computer retains the information
required to resume its current program after it completes the execution of a
subroutine.

Suspend (a task). Halt execution and preserve the status of a task until some future
time.

Synchronization (or sync) character. A character that is used only to synchronize the
transmitter and the receiver.

Synchronous. Operating according to an overall timing source or clock, that is, at
regular intervals.

clossary 485

Systems software. Programs that perform administrative functions or aid in the
development of other programs but do not actually perform any of the computer’s
workload.

T

Tail (of a queue). The location of the oldest item in the queue, that is, the earliest
entry.

Task. A self-contained program that can serve as part of an overall system under the
control of a supervisor.

Task status. The set of parameters that specifies the current state of a task. A task can
be suspended and resumed as long as its status is saved and restored.

Teletypewriter. A device containing a keyboard and a serial printer that is often used in
communications and with computers. Also referred to as a Teletype (a registered
trademark of Teletype Corporation of Skokie, [llinois) or TTY.

Ten’s complement. The result of subtracting a decimal number from zero (ignoring the
minus sign); the nine’s complement plus one.

Terminator. A dataitem that has no function other than to signify the end of an array.

Threaded code. A program consisting of subroutines, each of which automatically
transfers control to the next one upon its completion.

Timeout. A period during which no activity is allowed to proceed; an inactive period.

Top of the stack. The address containing the item most recently entered into the
stack.

Trace. A debugging aid that provides information about a program while the pro-
gram is being executed. The trace usually prints all or some of the intermediate
results.

Trailing edge (of a binary pulse). The edge that marks the end of a pulse.

Translate instruction. An instruction that converts its operand into the correspond-
ing entry in a table.

Transparent routine. A routine that operates without interfering with the operations
of other routines.

Trap (or software interrupt). An instruction that forces a jump to a specific (CPU-
dependent) address, often used to produce breakpoints or to indicate hardware or
software errors.

True borrow. See Borrow.

486 750 ASSEMBLY LANGUAGE SUBROUTINES

True comparison. A comparison that finds the two operands to be equal.

Two’s complement. A binary number that, when added to the original number in a
binary adder, produces a zero result. The two’s complement of a number may be
obtained by subtracting the number from zero or by adding 1 to the one’s com-
plement.

Two’s complement overflow. A situation in which a signed arithmetic operation
produces a result that cannot be represented correctly; that is, the magnitude
overflows into the sign bit.

UART (Universal Asynchronous Receiver/ Transmitter). An LSI device that acts as
an interface between systems that handle data in parallel and devices that handle
data in asynchronous serial form.

Underflow (of a stack). Attempting to remove more data from a stack than has been
entered into it.

Unsigned number. A number in which all the bits are used to represent magnitude.

USART (Universal Synchronous/Asynchronous Receiver/ Transmitter). An LSI
device (such as the SIO) that can serve as either a UART or a USRT.

USRT (Universal Synchronous Receiver/ Transmitter). An LSI device that acts asan
interface between systems that handle data in parallel and devices that handle data
in synchronous serial form.

Utility. A general-purpose program, usually supplied by the computer manufacturer
or part of an operating system, that executes a standard or common operation such
as sorting, converting data from one format to another, or copying a file.

Vv

Valid data. A signal that is active when new data are available to the receiver.

Vectored interrupt. Aninterrupt that produces an identification code (or vector) that
the CPU can use to transfer control to the appropriate service routine. The process
whereby control is transferred to the service routine is called vectoring.

Volatile memory. A memory that loses its contents when power is removed.

w

Walking bit test. A procedure whereby a single 1 bit is moved through each bit
positionin an area of memory and a check is made as to whether it can be read back
correctly.

clossary 487

Word. The basic grouping of bits that a computer can process at one time. When
dealing with microprocessors, the term often refers to a 16-bit unit of data.

Word boundary. A boundary between 16-bit storage units containing two bytes of
information. If information is being stored in word-length units, only pairs of bytes
conforming to (aligned with) word boundaries contain valid information. Mis-
aligned pairs of bytes contain one byte from one word and one byte from another.

Word-length. A length of 16 bits per item.

Wraparound. Organization in a circular manner as if the ends were connected. A
storage area exhibits wraparound if operations on it act as if the boundary
locations were contiguous.

Write-only register. A register that the CPU can change but cannot read. If a program
must determine the contents of such a register, it must save a copy of the data
placed there.

Zero flag. A flag that is 1 if the last operation produced a result of zero and 0 if it did
not.

Zoned decimal. A binary-coded decimal format in which each byte contains a single
decimal digit.

Index

A

A register. See Accumulator
Abbreviations, recognition of, 289, 297, 298
Absolute branches, 3-4
Absolute value, 82-83, 84-85, 186, 222-23
Accumulator (register A), 5,6, 7, 8,9
clearing, 15
decimal operations, 73, 74, 124
decision sequences, 31
functions, 5, 6, 7
instructions, 7
special features, 2, 8
testing, 92
Accumulator rotates, 3, 20, 23
ADC, 42, 73-74
decimal version, 73
result, 42
rotate (ADC A,A), 91
ADC, 42, 73-74
logical shifts (A, HL, xy), 23, 35, 89
Addition
BCD, 72, 73, 248-50
binary, 16, 41-42, 72-74, 228-30
decimal, 72, 73, 248-50
8-bit, 16, 72, 73
multiple-precision, 41-42, 228-30, 248-50
16-bit, 72-73, 74
Addition instructions
with Carry, 42, 73-74
without Carry, 16, 72-73
Address addition, 3, 4, 33, 34
Address arrays, 35, 39
Address format in memory (upside-down), 5, 11
Addressing modes, 10, 13
arithmetic and logical instructions, 2
autoindexing, 129-34
default (immediate), 17, 149
direct, 10-11, 13, 94, 95, 96, 97
immediate, 11, 95
indexed, 3, 12, 14, 103, 127-29
indirect, 2, 3, 11-12, 13, 94-95, 96-97, 126-27
jump and call instructions, 148
postindexed, 136-37
preindexed, 134-36
register, 2
register indirect, 2
Add/subtract (N) flag, ix, 74
Adjust instructions, 124
AF register pair, 12
Aligning bit fields, 272
Alternate (primed) registers, 4, 96, 97

AND, 85-86
clearing bits, 18, 19, 85
masking, 268, 271
testing bits, 18, 19
Apostrophe indicating ASCII character, x
Arithmetic
BCD, 72-78, 248-66
binary, 16-18, 72-80, 217-47
decimal, 72-78, 248-66
8-bit, 16-18, 72-80
multiple-precision, 41-42, 228-66
16-bit, 73-80, 217-27
Arithmetic expressions, evaluation of, 132
Arithmetic instructions, 72-84
addressing modes, 2
8-bit, 445, 446
multiple operands, 16
16-bit, 143, 447
Arithmetic shift, 80, 89, 273-75
Arrays, 33-38, 128-37, 319-55
addresses, 39, 129-30, 131, 352-55
initialization, 195-97
manipulation, 33-38
ASCII, 150, 463
assembler notations, x
control characters, 357
conversions, 172-94
table, 463
ASCII to EBCDIC conversion, 189-91
Assembler
defaults, x, 149, 155, 455
error recognition, 155-56
format, x, 455
pseudo-operations, x, 455
summary, 455
Autoindexing, 129-34
Autopostdecrementing, 133-34
Autopostincrementing, 130-31
Autopredecrementing, 131-32
Autopreincrementing, 129-30
Auxiliary carry (A¢) flag, ix. See also Half-carry

B (indicating binary number), x

B register, special features of, 5, 6, 9, 30, 32, 54
Backspace, destructive, 362-63

Base address of an array or table, 33-35, 38-39
BC register pair, 5, 9, 12, 36

BCD (decimal) arithmetic, 72-78, 248-66

BCD representation, 150

BCD to binary conversion, 170-71

489

490 750 ASSEMBLY LANGUAGE SUBROUTINES

BDOS calls (in CP/ M), 359-63, 366-67, 379-84
table, 357
Bidirectional mode of PIO, 62
Bidirectional ports, 61-62, 63-64, 158
Binary search, 331-35
Binary to BCD conversion, 167-69
BIT, 18, 19, 93-94, 341
Bit field extraction, 267-69
Bit field insertion, 270-72
Bit manipulation, 18-20, 85-87, 88, 93-94, 101,
102, 267-72
instructions, 449
Block compare, 35-38, 288-91, 444
flags, 37
registers, 36, 37
Block input/output instructions, 54-55, 452
initialization, 385, 387
limitations, 54
registers, 54
Block move, 35-38, 99, 198-200
Block search, 444. See also Block compare
Boolean algebra, 18-20
Borrow, 27, 76
Branch instructions, 24-31, 102-18, 450
absolute branches, 3-4
conditional branches, 104-18
decision sequences, 31
relative branches, 3-4, 32
signed branches, 112-13
unconditional branches, 102-04
unsigned branches, 113-18
Buffered interrupts, 413-24
Byte shift, 181

c

C register, special use of, 6, 9, 54

Calendar, 425-32

Call instructions, 118-20, 451

Carry (C) flag, 453
adding to accumulator, 72
arithmetic applications, 41-42
borrow, 142
branches, 27-28
clearing, 101
comparison instructions, 27-28, 142, 144
decimal arithmetic, 72, 74
decrement instructions (no effect), 4
extending across accumulator, 84
increment instructions (no effect), 4
instructions affecting, 3, 453
inverted borrow, 76, 142
logical instructions, 3
multiple-precision arithmetic, 41-42
position in F register, ix, 434
SBC, 42

Carry (C) flag (continued)
shifts, 3, 20
subtracting from accumulator, 76
subtraction, 42, 76
Case statements, 39
Character manipulation, 39-40. See also String
manipulation
Checksum, 87. See also Parity
Circular shift (rotation), 20-22, 91-92, 282-87
Cleaning the stack, 49-51
Clear instructions, 100-01
Clearing accumulator, 100
Clearing an array, 196-97, 258, 262
Clearing bits, 18, 19, 85, 101
Clearing flags, 86
Clearing memory, 258, 262
Clearing peripheral status, 61-62, 157, 158, 159,
389, 399
Clock interrupt, 425-32
Code conversion, 40-41, 167-94
Colon (delimiter after label), x
Command register. See Control register
Commands, execution of, 134
Comment, x
Common programming errors, 139-59
interrupt service routines, 158-59
1/ 0O drivers, 156-58
Communications between main program and
interrupt service routines, 159, 394-95,
413-14
Communications reference, 369
Compacting a string, 311
Comparison instructions, 81-82
bit-by-bit (logical EXCLUSIVE OR), 81
Carry flag, 27, 144
decimal, 266
multiple-precision, 245-47
operation, 26
16-bit, 81-82, 225-27
string, 288-91
Zero flag, 26
Complementing (inverting) bits, 18, 19, 20, 88
Complementing the accumulator, 87-88
Complement (logical NOT) instructions, 87-89
Concatenation of strings, 292-96
Condition code. See Flags; Status register
Conditional call instructions, 120
Conditional jump instructions, 104-18
execution time (variable), 450
Conditional return instructions, 120
Control characters (ASCII), 357
deletion, 362-63
printing, 360
Control register, 59-64, 157-58
Control signal, 57-58

Copying a substring, 302-07
Conventions, 5
CP, 26-29, 142, 144
CPD, 36
CPDR, 36
CPI, 36, 40, 350
CPIR, 36, 37, 40, 153
CP/M operating system, 356-67, 379-84
BDOS functions, 357
buffer format, 367, 382
string terminator, 359, 363
CRC (cyclic redundancy check), 368-72
CTC (clock/timer circuit), 388, 427-28

DAA, 151
Data direction (I/ O control) register, 60
Data structures, 44-46, 148-49, 414
Data transfer instructions, 94-102, 142
DB pseudo-operation, x
DE register pair, special features of, 2, 5, 6,9
Debugging, 139-59
interrupt service routines, 158-59
1/O drivers, 156-58
DEC, 4, 32
differences between 8- and 16-bit versions, 4
flags, 4
Decimal (BCD) arithmetic, 151, 248-66
addition, 248-50
binary conversions, 167-71
comparison, 266
decrement by 1, 78, 124
division, 260-65
8-bit, 72-78
increment by 1, 77, 124
muitibyte, 248-66
multiplication, 254-59
subtraction, 231-33
validity check, 124
Decimal default in assembler, 149, 150
Decision sequences, 31
Decrement instructions, 77-78
decimal, 78, 124
setting Carry, 78
Defaults in assembler, x, 149, 155, 455
DEFB pseudo-operation, x, 48
DEFS pseudo-operation, x
DEFW pseudo-operation, x, 48
Delay program, 391-93
Deletion of a substring, 308-12
Device numbers, 56-57, 373-84
Digit (4-bit) shift, 90, 152-53, 256, 257, 264
Digit swap, 90

NDEX 494

Direct addressing, 10-11, 13
arithmetic and logical instructions, lack of, 2
parentheses around addresses, x, 149, 155
Direction of stack growth, 46
Disassembly of numerical operation codes,
439-41
Division, 80
by 2, 80, 333
by 4, 80
by 10, 168
by 100, 168
decimal, 260-65
multiple-precision binary, 239-44
remainder, sign of, 221
simple cases, 43, 80
16-bit, 220-24
DIJINZ, 30, 32
Documentation of programs, 60
Double operands in arithmetic instructions, 16
Doubling an index, 35, 39
Drivers (I/O routines), 57, 373-74
Dynamic allocation of memory, 49, 66, 125-26

EBCDIC to ASCII conversion, 192-94
El, 65, 124
position in return sequence, 121
8080 additions, 4, 22, 29, 74, 124
incompatibility (Parity flag), 29
Enabling and disabling interrupts, 124-25
accepting an interrupt, 64
DI, 124
EI 65, 124
interrupt status, saving and restoring, 124-25
interrupt status, testing, 105, 107, 124-25
unserviced output interrupt, 405
when required, 158-59
END pseudo-operation, x
Endless loop (wait) instruction, 123
EQU pseudo-operation, x
Equal values, comparison of, 26-27, 142
Error-correcting codes. See CRC
Error-detecting codes. See Parity
Error handling, 162-63
Errors in programs, 139-59
Even parity (parity/ overflow) flag, 29
EX, 64, 96, 97, 99, 121, 444
EX DE,HL, 10
EX (SP), 12, 67, 119, 121
Exchange instructions, 99-100
Exchanging elements, 34
Exchanging pointers, 100
EXCLUSIVE OR function, 18, 19
EXCLUSIVE OR instructions, 87

492 750 ASSEMBLY LANGUAGE SUBROUTINES

Execution time, reducing, 67-68
Execution times for instructions, 442-52
Extend instructions, 84

EXX, 64

F (flag) register, ix, 86-87, 95, 97, 434
FIFO buffer (queue), 45-46, 414
Fill memory, 99, 195-97
Flag register, ix, 86-87, 95, 97, 434
Flags, 434, 453
instructions, effects of, 3, 453
loading, 95
organization in flag register, ix, 434
storing, 97
summary, 453
use, 31
Format errors, 149-51
Format for storing 16-bit addresses, 5, 11

H (half-carry) flag, 434
H (indicating hexadecimal number), x, 150
Handshake, 61-62
Head of a queue, 45, 414
Hexadecimal ASCII to binary conversion, 175-77
Hexadecimal to ASCII conversion, 172-74
Hexadecimal numbers, zero in front, 149
HL register pair, special features, 2, 8-9

use, 3,5

IFF1 (interrupt flip-flop 1), 435
IFF2 (interrupt flip-flop 2), 105, 107, 123, 124-25,
435
Immediate addressing, 11, 17
assembler notation, 17, 148
default, 17, 148
use of, 11
Implicit effects of instructions, 152-53
INGC, 3,4
differences between 8- and 16-bit versions, 4
flags, 3, 4
Increment instructions, 76-77
decimal, 77, 124
setting Carry, 76
IND, 54
Indexed addressing, 33-35, 38-39, 127-29
data structures, 5, 377-78, 384
generalized form, 3
limitations, 3
loading, 12
parameter retrieval, 47-48
storing, 14
Indexed call, 119-20, 352-55
leaving register pairs unchanged, 353-54

Indexed jump, 39, 103, 119
Indexing of arrays, 33-35, 201-16
byte arrays, 42-43, 201-04
multidimensional arrays, 209-16
two-dimensional byte array, 42-43, 201-04
two-dimensional word array, 205-08
word arrays, 205-08
Index registers, 3
backup to HL, 9
features, 9
instructions, 6
secondary status, 4
uses, 5
Indirect addressing, 3, 11-12, 13, 126-27
indexed addressing with zero offset, 12
jump instructions, 102-03
multilevel versions, 127
subroutine calls, 119-20
Indirect call, 119-20, 352-55
Indirect jump, 102-03
INDR, 54
INI, 54, 55
INIR, 54, 55
Initialization
arrays, 195-97
CTC, 388
indirect addresses, 15
interrupt service routines, 64-66
interrupt vectors, 398, 408, 418
1/ O devices, 63-64, 385-90
PIO, 63-64, 390, 410-11
RAM, 15-16, 195-97
SI0, 388-89, 400-02, 421-22
Initialization errors, 154
Input/Output (I/O)
block I/O instructions, 54-55
control block (IOCB), 373-84
device-independent, 56-57
device table, 56-57, 373-84
differences between input and output, 157, 395
errors, 156-58
indirect addressing, 51-52, 58
initialization, 63-64, 385-90
instructions, 51-55, 452
interrupt-driven, 64-66, 394-424
logical devices, 56-57
output, generalized, 365-67
peripheral chips, 58
physical devices, 56-57
read-only ports, 53, 158
status and control, 57-58
terminal handler, 356-64
write-only ports, 53-54, 57-58, 62, 65-66, 157
Inserting a character, 181
Insertion into a string, 313-18
Instruction execution times, 442-52

Instruction set, 433-55
alphabetical list, 436-39
asymmetry, 5
numerical list, 439-41
Interrupt enable flip-flops (IFF1 and
1FF2), 4, 105, 107, 123, 124-25, 435
Interrupt latency, 65
Interrupt response, 64, 435
Interrupts. See also Enabling and disabling
interrupts
buffered, 413-24
elapsed time, 425-32
handshake, 394-424
initialization, 158, 398, 408, 418, 427-28
instructions, 446
latency, 65
modes, 64, 158, 398, 435
order in stack, 65
P10, 60, 404-12, 459, 460, 461
programming guidelines, 64-66, 158-59
real-time clock, 425-32
reenabling, 64, 123, 159, 410
response, 64, 435
service routines, 394-432
structure, 435
Interrupt service routines, 394-432
CTC, 425-32
errors, 158-59
examples, 394-432
main program, communicating with, 159,
394-95, 413-14
PIO, 404-12
programming guidelines, 64-66, 158-59
real-time clock, 425-32
SIO, 394-403, 413-24
terminating instructions, 66
Interrupt status, S, 105, 107, 124-25
Interrupt vector register, 95, 97, 398, 435
Inverted borrow in subtraction, 75, 76, 142
Inverting bits, 18-20, 88
Inverting decision logic, 140, 142
1/ 0 control block (IOCB), 373-84
example, 381
format, 374
1/ O device table, 56-57, 373-84
I/ O instructions, 452

J

JP, 24-31
addressing terminology, 148
block move or block compare, 37
overflow branches, 28-30, 112-13

JR, 25-29, 68
comparison with absolute branches, 3-4
flag limitations, 34

Jump and link, 103-04

Noex 493

Jump instructions, 450
Jump table, 39, 103, 119, 149, 352-55

L

LD, 10-12, 13, 14-16
8080 instruction set, additions, 38
order of operands, 10, 141
LDD, 36, 37
LDDR, 36, 37, 181, 200, 318
LDI, 36, 37
LDIR, 36, 37, 99, 196, 200, 295, 306, 311, 318
Limit checking, 27-30
Linked list, 45-46, 373, 374, 377-79
List processing, 45-46, 377-79
Load instructions, 10-16, 94-96
8-bit, 442
flags, 3, 142
order of operands, 10, 141
16-bit, 443
Logical 1/O devices, 56-57, 373-84
Logical instructions, 85-94, 445
addressing modes, 2
Carry, clearing of, 3, 143
limitations, 2
Logical shift, 20, 22, 23, 89-90, 276-81
Logical sum, 87. See also Parity
Long instructions, 4
Lookup tables, 38-39, 41, 68, 69, 125, 189-94
Loops, 30, 32-33
reorganizing to save time, 67
Lower-case ASCII letters, 187-88

Masking bits, 18, 268, 271

Maximum, 325-27

Median (of 3 elements), 342-44

Memory fill, 99, 195-97

Memory-mapped 1/0, 51-53

Memory test, 347-51

Memory usage, reduction of, 68-69

Millisecond delay program, 391-93

Minimum, 328-30

Missing addressing modes, 126-37

Missing instructions, 3, 71-126

Move instructions, 97-99

Move left (bottom-up), 198, 199-200

Move multiple, 99

Move right (top-down), 198, 199-200

Multibit shifts, 23, 273-87

Multibyte entries in arrays or tables, 34-35, 38-39,
125, 205-16

Multidimensional arrays, 209-16

Multilevel indirect addressing, 127

Multiple names for registers, 2

Multiple-precision arithmetic, 41-42, 228-66

Multiple-precision shifts, 273-87

494 750 ~5SEVBLY LANGUAGE SUBROUTINES

Multiple-precision shifts (continued)
arithmetic right, 273-75
digit (4-bit) left, 264
logical left, 276-78
logical right, 279-81
rotate left, 285-87
rotate right, 282-84
Multiplexing displays, 62
Multiplication, 42-43, 78-79
by a small integer, 42-43
by 10, 171, 185
by 2, 35
decimal, 254-59
multiple-precision, 234-38, 254-59
16-bit, 217-19
Multiway branches (jump table), 39, 103, 119, 352-55

N (add/subtract) flag, 74, 434
Negative, calculation of, 82-83, 222-23
Negative logic, 89, 157

Nested loops, 32-33

New line string, 356, 361-62

Nibble (4 bits), 171, 173

Nine’s complement, 83
Non-maskable interrupt, 65, 66, 123
NOP, filling with, 195
Normalization, 90-91

Normalizing array bounds, 215-16
NOT instructions, 87-89, 268
Numerical comparisons, 26-31

o

One-dimensional arrays, 33-38
One’s complement, 87-89
Operation (op) codes
alphabetical order, 436-39
numerical order, 439-41
OR, 18, 86-87, 268, 272
Ordering elements, 34
ORG pseudo-operation, x
OTDR, 54
OTIR, 54, 387
OUTD, 54
OUTI, 54, 55, 153
Output interrupts, unserviced, 395, 405
Output line routine, 365-67
Overflow (P/ V) flag, 3, 28
branches (PE, PO), 28, 29, 112
Overflow of a stack, 46, 108, 109
Overflow, two’s complement, 28-30, 112-13
Overlapping memory areas, 198-200

P/ V (parity/ overflow) flag, 434. See also Parity/
overflow flag
Parameters, passing, 46-51, 161

Parentheses around addresses (indicating “con-
tents of”), x, 149, 155
Parity/ overflow flag, 3, 35-36, 434
block moves and compares, 35-36, 37
interrupt enable flag, 4, 124-25
overflow indicator, 28, 112, 225, 227
reversed polarity in block move and compare, 37
Passing parameters, 46-51, 161
memory, 47-48
registers, 46-47
stack, 49-51
subroutine convention, 161
PC register. See Program counter
Physical 1/ O device, 56-57
PIO (parallel input/ output device), 58-64, 457-62
addressing, 59-60
control lines, 61-62
initialization, 63-64, 390, 410-11
interrupt-driven I/ O, 404-12
operating modes, 61-62
reference, 457-62
registers, 59-60
Pointer
exchanging, 99-100, 243, 265
loading, 96
Polling, 57-58
POP, 12
Pop instructions, 122-23
Position of a substring, 297-301
Postdecrement, 133-34
Postincrement, 12, 130-31
Postindexing, 136-37
Predecrement, 12, 131-32
Preincrement, 129-30
Preindexing, 134-36
Primed (alternate) registers, 4, 96, 97
Processor status (flag) register, 434
Program counter
CALL, 118-20
RET, 120-21
Programmable 1/O devices, 58
advantages, 58
CTC, 388, 427-28
initialization, 385-90
operating modes, 58
PIO, 58-64, 404-12, 457-62
SIO, 388-89, 394-403, 413-24
Programming model of microprocessor, 433
Pseudo-operations, x, 455
PUSH, 14, 141
Push instructions, 122

Queue, 45-46, 414
Quicksort, 336-46
Quotation marks around ASCII string, x

RAM, 481
filling, 99, 195-97
initialization, 15-16, 154
saving data, 13-14
testing, 347-51
Read-only memory, 48
Read-only ports, 53, 158
Ready flag (for use with interrupts), 394-95
Real-time clock, 425-32
Recursive program (quicksort), 336-46
Reenabling interrupts, 65, 124-25
Reentrancy, 47
Refresh (R) register, 95, 97
Register pairs, ix, 2, 433
instructions, 6, 8
loading, 11
Registers, 5-15
functions, 5
instructions, 6-8
length, ix
names, 2
order in stack, 65
passing parameters, 46-47
primed, 4, 96, 97
programming model, 433
saving and restoring, 65, 121
secondary, 4
special features, 8-9
transfers, 10
Register transfers, 10
Relative branches, 3-4, 32
RES, 18, 19, 53-54
Reset
CTC, 388
PIO, 61, 63
SIO, 389
Restart instructions, 64, 65, 451, 454
RETI, 66
RETN, 66
Return address, changing of, 120-21
Return instructions, 120-21
Return from interrupt instructions, 121
Return with skip instructions, 120-21
RL, 20, 53
RLC, 20
RLD, 264
ROM (read-only memory), 48
Rotation (circular shift), 20-22, 24, 91-92, 282-87
Row major order (for storing arrays), 205, 209
RR, 20, 80
RRC, 20
RRD, 152-53, 257
RST, 64, 65, 451, 454

NDEx 495

S

Saving and restoring interrupt status, 5, 105, 107,
124-25
Saving and restoring registers, 12, 14, 64-66, 121
SBC A,A (extend Carry across A), 84
Searching, 35-38, 331-35
Secondary instructions, 4, 38
Secondary registers, 4
Semicolon indicating comment, x
Serial input/output, 394-403, 413-24
SET, 18-20, 53
Set instructions, 102
Set Origin (ORG) pseudo-operation, x
Setting bits to 1, 18-20, 102
Setting directions
initialization, 158
PIO (control mode), 60, 63-64, 459
Setting flags, 86-87
Shift instructions, 20-24, 89-92, 448
byte, 181
diagrams, 21-23
digit, 152-53
multibit, 23, 273-87
multibyte, 273-87
32-bit left shift, 223
24-bit left shift, 180
Sign byte, 184-85
Sign extension, 20, 23-24, 273-75
Sign flag, 28-30, 142-43
Sign function, 84
Signed division, 220-24
Signed branches, 28-30, 112-13
Signed numbers, 28-30
Signs, comparison of, 29, 222
SIO (Serial Input/Output Device), 388-89,
394- 403, 413-24
16-bit address format, 5
16-bit operations, 217-27
absolute value, 83
addition, 72-73, 74
average, 333
comparison, 81-82, 225-27
counter, 32-33, 35
division, 220-24
flags, effect on, 3
indexing, 128
instructions, 443, 447
multiplication, 217-19
pop, 12
push, 14
registers, ix
shifts, 89-92
subtraction, 27, 74-76
test for zero, 93

496 750 ASSEMBLY LANGUAGE SUBROUTINES

6800 microprocessor, differences from, 5
6809 microprocessor, differences from, 5
Skip instructions, 118, 120-21
SLA, 20
Slow instructions, 4, 38
Software delay, 391-93
Software stack, 46
Sorting, 336-46
references, 338
SP register. See Stack pointer
Special cases, 162-63
Special features of processor, 2-5
SRA, 20, 23, 80
SRL, 20, 80
Stack, 12, 14, 49-51
cleaning, 49, 50
data transfers, 12, 14
diagrams, 50, 51
downward growth, 5, 12
overflow, 46
passing parameters, 49-51
pointer, 6, 7, 12, 49-51
POP, 12
PUSH, 14
saving registers, 65
software, 46
underflow, 46
Stack pointer
automatic change when used, 12
comparison, 82
contents, 5, 12
decrementing, 12
definition, 12

dynamic allocation of memory, 49, 66, 125-26

features, 9
incrementing, 14
moving to HL, 49
transfers, 98
Stack transfers, 12, 14, 46
Status bit. See Flags; Flag register
Status signals, 57-58
Status values in 1/ O, 375

Store instructions, effect on flags (none), 3

String operations, 39-40, 288-318

abbreviations, recognition of, 289, 297, 298

compacting, 311

comparison, 288-91
concatenation, 292-96
copying a substring, 302-07
deletion, 308-12

insertion, 313-18

matching a substring, 300
position of substring, 297-301
search, 39-40

Strobe, 61-62
SUB, single operand in, 16
Subroutine call, 49, 118-20
saving memory, 68-69
variable addresses, 118-20
Subroutine linkage, 49, 103-04, 161
Subscript, size of, 206, 209, 210
Subtraction, 74-76
BCD, 74-76, 231-33
binary, 74-76, 231-33
Carry flag, 27, 76
decimal, 74-76, 231-33
8-bit, 74-76
inverted borrow, 75, 76, 142
multiple-precision, 231-33
reverse, 75
16-bit, 27, 74-76
Subtraction instructions, 74-76
in reverse, 75
with borrow, 76
without borrow, 74-75
Summation, 33
binary, 33
8-bit, 33, 319-21
16-bit, 322-24
Systems programs, conflict with, 140

T

Table, 38-39, 41, 68, 69, 125, 189-94
Table lookup, 38-39, 41, 125
Tail of a queue, 414
Ten’s complement, 82-83
Terminal 1/0, 356-67
Testing, 92-94
array, 241, 262
bits, 18, 19, 25-26, 85
bytes, 92-93
multiple-precision number, 241, 262
16-bit number, 93
32-bit left shift, 223
Threaded code, 44
Threshold checking, 27-31
Timeout, 391-93
Timing for instructions, 442-52
Top of stack, 12
Transfer instructions, effect on flags, 3
Translate instructions, 125
Trivial cases, 162
True comparison, 35, 38
24-bit left shift, 180
Two-byte entries, 34-35, 38-39, 125
Two-dimensional arrays, 42-43, 201-08
Two’s complement, 82-83
Two’s complement overflow, 28-30, 112-13

NoEx 497

U 4
Unconditional jump instructions, 102-04 Zero flag, 142
Underflow of stack, 46 block compares, 37
Upside-down addresses, 5, 11 block 1/0, 54
branches, 142
\ comparisons, 26
Validity check for BCD number, 124 inversion in masking, 19, 25
load instructions, 3
w masking, 19, 93
Wait instructions, 123 position in flag register, ix, 434
Walking bit test, 347-49 transfer instructions, 3
Wraparound of buffer, 414 uses, 25-27, 31

Write-only ports, 53-54, 57-58, 62, 65-66, 157 Zero in front of hexadecimal numbers, 149

Other Osborne/McGraw-Hill Publications

An Introduction to Microcomputers: Volume 0 — The Beginner’s Book, 3rd Edition
An Introduction to Microcomputers: Volume 1— Basic Concepts, 2nd Edition
Osborne 4 & 8-Bit Microprocessor Handbook

Osborne 16-Bit Microprocessor Handbook

8089 1/O Processor Handbook

CRT Controller Handbook

68000 Microprocessor Handbook

8080A/8085 Assembly Language Programming

6800 Assembly Language Programming

Z80® Assembly Language Programming

6502 Assembly Language Programming

Z8000® Assembly Language Programming

6809 Assembly Language Programming

Running Wild —The Next Industrial Revolution

The 8086 Book

PET®/CBM™ and the IEEE 488 Bus (GP1B)

PET® Personal Computer Guide

CBM™ Professional Computer Guide

Business System Buyer’s Guide

Osborne CP/M®@ User Guide, 2nd Edition

Apple 11® User’s Guide

Microprocessors for Measurement and Control

Some Common BASIC Programs

Some Common BASIC Programs — Atari® Edition

Some Common BASIC Programs — TRS-80™ Level 1I Edition
Some Common BASIC Programs — Apple II® Edition
Some Common BASIC Programs — IBM® Personal Computer Edition
Some Common Pascal Programs

Practical BASIC Programs

Practical BASIC Programs —TRS-80™ Level II Edition
Practical BASIC Programs — Apple 11® Edition

Practical BASIC Programs —IBM® Personal Computer Edition
Practical Pascal Programs

Payroll with Cost Accounting

Accounts Payable and Accounts Receivable

Accounts Payable and Accounts Receivable CBASIC™
General Ledger

CBASIC™ User Guide

Science and Engineering Programs— Apple 1I® Edition
Interfacing to S-100/IEEE 696 Microcomputers

A User Guide to the UNIX™ System

PET® Fun and Games

Trade Secrets: How to Protect Your Ideas and Assets
Assembly Language Programming for the Apple I1®
VisiCalc®: Home and Office Companion

Discover FORTH

6502 Assembly Language Subroutines

8080/8085 Assembly Language Subroutines

Your ATARI™ Computer

The HP-IL System

Wordstar® Made Easy, 2nd Edition

Armchair BASIC

Data Base Management Systems

The HHC™ User Guide

VIC 20™ User Guide

Your IBM® PC: A Guide to the IBM® Personal Computer

280
Assembly Language

Subroutines
by Lance A. Leventhal and Winthrop Saville

Save valuable programming time with this collection of more than
40 useful subroutines. Each routine has been documented, tested,
and debugged, and is ready to use immediately.

280" Assembly Language Subroutines provides you with

—General Z80 programming methods (includifig a quick summary
for experienced programmers).

—Routines for array manipulation, arithmetic, bit manipulation,
code conversion, string processing, input/output, and interrupts.

— A discussion of common Z80 assembly language programming
errors, as well as the strengths and weaknesses of the Z80
instruction set.

—Directions for implementing additional instructions and
addressing modes.

With these subroutines, you can

—Run a specific routine.

—Speed up a program written in a high-level language such as
BASIC, Pascal, or Fortran.

—Assist in programming an |/O driver, a diagnostic, a utility, or a
systems program.

—Debug, maintain, or revise an existing program.

m;

. ot
Z80 is a registered trademark of Ziloginc: N:n .

ISBN 0-931988-91-8

ah

